
Encouragez les Framabooks !

You can use Unglue.it to help to thank the creators for making Beginning with Code_Aster free. The amount is up to
you.

Click here to thank the creators

https://unglue.it
https://unglue.it/work/140706/download/?offer_id=67&source=pdf

Jean-Pierre Aubry

Beginning with Code_Aster

A practical introduction to finite element
method using

Code_Aster Gmsh and Salome

Version 1.1.1

Publié sous licence

LAL 1.3, GNU FDL 1.3 et CC By-SA 3.0

II

Framasoft a été créé en novembre 2001 par Alexis Kauffmann. En
janvier 2004 une association éponyme a vu le jour pour soutenir le
développement du réseau. Pour plus d’information sur Framasoft, con-
sultez http://www.framasoft.net.

Se démarquant de l’édition classique, les Framabooks sont dits « livres
libres » parce qu’ils sont placés sous une licence qui permet au lecteur
de disposer des mêmes libertés qu’un utilisateur de logiciels libres. Les
Framabooks s’inscrivent dans cette culture des biens communs qui, à
l’instar de Wikipédia, favorise la création, le partage, la diffusion et
l’appropriation collective de la connaissance. Le projet Framabook est
coordonné par Christophe Masutti. Pour plus d’information, consultez
http://framabook.org.

Copyright 2013 : Jean-Pierre Aubry, Framasoft (coll. Framabook)
Beginning with Code_Aster est placé sous :

• Licence Art Libre (1.3);

• GNU Free Documentation Licence (1.3);

• Creative Commons By-SA (3.0).

ISBN : 979-10-92674-03-3
Prix : 58 euros
Dépôt légal : décembre 2013, Framasoft (impr. lulu.com Raleigh, USA)
5, avenue Stephen Pichon – 75013 Paris
Pingouins : LL de Mars, Licence Art Libre
Couverture : création par Nadège Dauvergne, Licence CC By
Illustration de couverture par Pascal Galeppe
Mise en page avec LATEX

Preface

I am very proud to introduce this book which is a perfect example of the
Code_Aster Open-Source community vitality. I will take the opportunity

to tell a story, in which I am pleased to have played my part, brilliantly
continued by Pascal MIALON, François WAECKEL and Christophe

DURAND.

Founder’s goals

The development and release process started more than 25 years ago.
Following a report of Yves BAMBERGER to the scientific council, Paul
CASEAU, head of EDF R&D, decided in March 1988 to provide EDF
needs a global answer.

. . . A unique code for mechanics

During the years 1975-1985, the deployment of the finite element
method for mechanical analysis led to multiple software developments.
The scattering of EDF R&D teams as well as the need for numerical tools
dedicated to typical engineering subjects ended with numerous specific
programs rather than one single general software.

III

IV

Procurement, release and maintenance cost control showed the need,
for EDF, for an involvement in a unique software integrating the previ-
ous developments. Started as a multidisciplinary project with voluminous
specifications and a short timing, it became a great help in know-how
management.

. . . A durable code

The need for a long run management of the project cases at EDF plants
yielded heavy quality control requirements, regarding nuclear safety re-
quirements. These projects were led by scattered and frequently renewed
teams: the software should therefore play an important part regarding ex-
perience feedback in the long run.

. . . A code for expertise

The life span analysis of electricity power plants components requires
to take into account: the loading history, the manufacturing process, the
possible repairs. Thus, the required numerical models should respond to
more demanding calculation hypothesis than the one used for classical
engineering, systematically including: non-linear approaches, thermal ef-
fects, dynamic loading stresses, fluid structure interactions.

These models imply a R&D activity, whose results have to be submitted,
as quickly as possible, to an industrial qualification when releasing the
software.

Today it is an integrated computation system

. . . A solver

From a functional point of view, Code_Aster is a solver for mechanics:
from a given geometric representation of the structure, the meshing, it im-
plements the finite element method to produce result fields -deformation,
stress, energy, material state-.

. . . For wider needs

But users have wider software needs: from CAD, to mathematical pro-
cess and graphical result analysis in the end. Obtaining, ever and ever,
more realistic input data -loadings, material parameters- requires that
Code_Aster should be able to interact with other software dealing with
the related physical phenomena. If a mechanical engineer may accept to

V

cope with several tools, they certainly expect a “seamless” software offer
regarding service, interoperability, version and quality control.

. . . Pre and post integrated processing

The fact that the software integrated from the beginning numerous ded-
icated tools to the code itself, including mathematical processing, allowed
at the time to capitalize a broad panel of engineering technologies as well
as regulations and codes approach. This also enabled a “global” certifi-
cation of the code while avoiding the use of external components with
uncontrollable life cycle -commercial spreadsheet. . .-.

. . . From Python supervision to Salome-Meca

The initial architectural design turned out to be relevant and adaptable
enough to allow the integration of new methodological input with no need
of rebuilding. In 2000, Python was chosen to be the supervisor language
and it increased the code modularity in dedicated tools and specific math-
ematical computation.

The present outcome of this approach is Salome-Meca: an integrated
and complete GUI made available on the engineer workstation. With the
same quality controlled software, the mechanical engineer can handle the
whole simulation, from CAD to coupling with other physical solvers.

Developing the network . . .

. . . A durable process and agile software development

Very early what is now known as “agile software development” was
settled down .

Needs are assessed through experience feedback sheets, and do not rely
on any global specification. Each request follows its own development
cycle, from requirements needs to final delivery, and do not depend on the
other development cycles. The continuous update of the development ver-
sion, available to any user, allows a quick feedback and enables improve-
ment as well as debugging. Finally, developers, code architects and po-
tential users may discuss continuously and more particularly at the stage
of integration by the development team.

. . . A network supporting the industry innovation

VI

This network structure, prefiguring the free software style contributes
to the computational mechanics research. In twenty years, almost 200 de-
velopers and more than twenty doctoral students added their contribution
to Code_Aster .

A numerical model is considered valid when it can be delivered to the
operational teams in a qualified version. It has to fulfill three require-
ments: reliability, robustness, performance. Code_Aster reviewing pro-
cedures contribute to this goal through a set of requirements regression
test cases, documentation, rules for system architecture. . .- as part of an
incremental development process.

. . . Quality first

Documents tracing the code improvements enhance its quality. Apart
from these everyday an independent validation occurs: the critical exper-
tise by third parties. This type of reviews, along the versions, enhance the
code qualified domain. This qualification, together with Quality Insur-
ance, is essential when studies relating to nuclear safety are undertaken.
Ultimately it does benefit to everyone.

Four major audits reinforced Code_Aster quality approach as well as
its original network development strategy. Thus, thanks to the engineer-
ing services requirements and support, collective trust in the software pa-
tiently aroused. It is now well established at EDF and beyond.

Assisting internal users . . .

Code_Aster deployment has only possible by keeping a constant rela-
tionship between development teams and users.

The first major contribution to quality approach was to provide a user
documentation with each new version. But also a theoretical justification
of the models used in each verification test cases. This documentation
is a great contribution greatly to EDF know-how in the mechanical field.
The 20,000 pages current corpus is enhanced or reviewed with every new
addition.

. . . Informing and sharing

The users’ club, with its local correspondents, is the place where one
can share experience and discuss with the development team. The most
representative studies, displaying important issue or setting up advanced

VII

modeling, are presented at the annual users’ day as well as in the free
Code_Aster information letter.

. . . Training

Hundreds of users follow annual training sessions, basic or more ad-
vanced ones, dedicated to dynamics, contact and non-linear analysis . . .
The documentation broadness and the pedagogical dimension of more
than 3,000 basic test cases allows efficient self-learning. The whole cor-
pus of training documents is now accessible to the entire Code_Aster
Open-Source Community.

. . . Listening and answering

Exchanges with users benefit of the use of a central main frame coupled
with a cooperative system for experience feedback, particularly regarding
the cases associated with confidential data.

A powerful simulation tool is nothing without the control and the de-
velopment of a skill’s network. Beyond the hotline, in house users have
access to the expertise of R&D mechanical engineers for the implementa-
tion of complex studies.

For a wider distribution . . .

"You will not decide for yourself that you are good: others should have
to tell you!" (Paul GODIN, at project inception on January 2 th 1989)

After a decade of development and three non public versions, releasing
Code_Aster outside of the in-house user’s circle was tempting. The appeal
of an external recognition and possible new contributions supported this
approach. In addition, valuing the industrial research results was fashion-
able at the end of the 90’s.

. . .. Preparing code portability to prevent isolation

To reach the level of confidence and transparency suited to a tool used
in nuclear safety, external distribution imposed itself. Preparing for dis-
tribution Code_Aster, a tool previously operated only in-house, on secure
servers, required a significant number of proof tests to insure portability
to other computers.

. . . Trying economic and commercial development

VIII

The commercial distribution of the operating and closed source version-
was attempted in April, 1998. But this attempt imposed premature invest-
ments on the studies environment and above all developments in fields
not closely related to our core business. Finally, the ”closed” nature of the
code was in contradiction with its expertise goal.

The difficulty was also to find resellers who would accept to get involved
in completely new software, particularly if they were already distributing
one or more other software. This required from them a capacity that we
failed to motivate, in an already very crowded market. This operation was
rapidly stopped, in 1999.

. . . Evaluating the free software model

By the end of the twentieth century the free software model was be-
coming increasingly popular, whether for operating systems -Linux- or
for internet development -Apache-. But application software were not
yet concerned by this model. One first trigger was the Matra-Datavision
choice to initiate, in 1999, the Open Cascade process which led to Salome
development. At the same time INRIA 1 started the free distribution of
SCILAB/Sicos. Thus we chose to evaluate the full implications of this
model to an industrial simulation tool.

For a free diffusion . . .

This exhaustive evaluation of the free software model led to choose, in
June 2001, the distribution under the GNU General Public License. The
internet web site www.code-aster.orgwas opened on October, 19th
2001.

. . . Remaining close to internal users support

EDF did not intend to evolve to a software publisher. The requirement
of maintaining, not increasing, the resources assigned by EDF to outside
distribution implied de facto to give up the idea of any financial profit. The
development team was at the service of the in-house engineering teams
and had to remain so. It had also to contribute, as efficiently as possible,
to the processing of the company sensitive dossiers.

1 French national agency for computer science

www.code-aster.org

IX

. . . For a recognition by usage and a supplementary qualification

Beyond the 250 internal users, EDF wished to increase the credibility
of its tools through a permanent confrontation with the main commercial
tools and the evolution of the best industrial practices.

Open-Source allows a wide confrontation with the state of the art.

With more than the 5,000 annual downloads -20,000 for Salome-
Meca- and through the public forum, the independent users community
-industrial and academic- is rising . The Open-Source distribution allowed
new proof tests and comparisons, a wider reading of the documentation
as well as the detection of a few bugs. Several “benchmarks ”reinforced
our confidence in the relevance of current models and the performance of
the code.

. . . For spreading of competence

Several university teams run tutorial courses in finite elements or in me-
chanics linked to Code_Aster. Some service’s companies have a commer-
cial activity in addition to their contract with EDF. The software talent
pool has expended and is now durably established.

. . .For contribution collecting and cooperation building

The modular architecture of the code allows an easy integration of new
modules and functionality. While following our quality criteria, signifi-
cant contributions have already been integrated to the code.

Linus TORVALDS promotes the free software model through the
efficiency of the technical cooperation that it allows.

Several academic partnerships have been developed. Code_Aster co-
development agreements enable to develop, trough cost-sharing, common
interest models , to guarantee their integration in the source code. They
also serve as a foundation to collaborations in geomechanics, crack prop-
agation, sliding contact, X-FEM. . . In 2012, a dozen of thesis had already
been added on, and the process is still going on.

Code_Aster: a federative role for professional enhancement. . .

Code_Aster had from the beginning a vocation for general simulation in
mechanics.

X

. . . For all operations related to energy technology

EDF uses it today for modeling the behavior or pathology of its equip-
ment:

• All components of the nuclear steam supply : pressure vessel, steam
generators, primary motor-pump, primary and secondary circuits;

• The production equipment: turbo generator set and turbine com-
ponents, towers and overhead power lines, both wind and hydro
turbines;

• The civil engineering applications: pre-stressed concrete contain-
ment building, cooling towers, hydroelectric dams, nuclear waste
storage sites.

The wealth of the available models -finite elements, behavior laws, anal-
ysis methods, post-processing- reflects this by itself.

. . . But also in unplanned areas

Taking advantage of the wide Open-Source deployment, Code_Aster
has become by now an attractive industrial software. These means of
dissemination have been used as an opportunity to show Code_Aster rel-
evance in other mechanical simulation areas that were, for some, unex-
pected: the tectonic of geological layers, biomechanics, forming of steel
or porcelain manufactured pieces, vibro-acoustic. . .

. . . For self-sustained development in digital simulation services

The possibilities offered by the GPL license have already allowed the
emergence of services companies -training, assistance, development ser-
vices, simulation deliveries. . .- in several countries. The progressive
deployment of parallelism as well as its implementation in Code_Aster,
particularly with the support of MUMPS Community, both allow these
service providers to expand their offer to different organizations -SME,
company of intermediate size . . .- with access to supercomputing centers
HPC.

One remaining goal to realize would be to allow the emergence of dis-
tributors as added value resellers in various parts of the world.

. . . For the users community assistance

XI

One of the latest avatars of the story, but not the last, was founding in
July 2011 of Code_Aster Professional Network.

Code_Aster ProNet aims to increase Code_Aster Open-Source, and
Salome-Meca, added values and make them better known. It allows links
between the community actors beyond the technical exchanges on the fo-
rum.

Five prior modes of action were retained and are now shared by more
than fifty members around the world, industrial organizations, research
teams, service providers, teachers. . .:

• to create better quality multilateral exchanges -with EDF R&D and
between members- by removing the limitations of a public and
anonymous forum;

• to increase the members visibility on the various existing applica-
tions which have already been carried out and various usages;

• to disseminate insider information related to axes of evolution ini-
tiated by the members contributing to development, including EDF
R&D ;

• to gather and structure common requests to services providers;

• to improve the collaborative development opportunities.

One to be continued!

The story has not ended yet and will continue to grow with the contri-
butions of the new generations developers and users, after its twenty-fifth
birthday in January 2014.

Let me conclude by warmly thanking Jean-Pierre AUBRY who has been
using both his engineering and structural designer know-how to offer
Code_Aster users’ community a real learning guide for this specific soft-
ware.

His high level practice within the forum can now be found here to help
anyone discovering the software and also sometimes finite elements. His
advices of best practice in the area of structural analysis will be very pre-
cious to every reader.

XII

The way in which the numerical approach of structural computations is
implanted in the different software is singular enough to require perma-
nent explanations about what lies behind a series of "click".

In the Code_Aster command file explicitly writing everything you are
doing is required. It will not only help you to remember what you did
but it will also help anyone who will need to use the study results: that is
traceability!

This guide is there to accompany you to enable you to join this adven-
ture.

Jean-Raymond LÉVESQUE

Former member of Code_Aster Team (1989-2002)

Representative of Code_Aster ProNet

August 2013

Introduction

Code_Aster, acronym for Analysis of Structures and Thermomechanics
for Studies and Research, is a general Finite Element Analysis software,
coming from EDF (Électricité De France) R&D department.

It can handle mechanical, thermal and associated phenomena in all sort
of analysis: linear statics, non-linear statics or dynamics, thermics and
more.

Its development started in 1989. In 2001 EDF took the rather unusual
decision, for a software of this size and scope, to put it under GNU GPL
license.

Due to its numerous capabilities, Code_Aster is a very complex affair,
and its somewhat unfriendly user interface makes the learning curve quite
steep at the beginning.

The aim of this book is to ease up this steepness.

In itself Code_Aster does not provide any graphical interface for pre
or post-processing, this task is left to third party software, and a few of
them are also under GNU GPL licenses. This book introduces Gmsh and
Salome for this task.

XIII

XIV

Last but not least, this book is in English, about a software whose native
language is French, just as is the native language of the author. I hope the
reader will forgive my poor level in Joyce’s language.

Finally I have to express my thanks. To “La Machine”1 for letting me
apply, over many years, Code_Aster to many peculiar, and peculiar they
were, engineering problems.

To Thomas de Soza, now in charge of EDF R&D Code_Aster core de-
velopment team for a helpful, tedious yet uncompromising proof reading
and suggestions.

Jean-Pierre AUBRY

Nantes, October 2011, November 2013.

1 www.lamachine.fr, the web site helps to understand why a free software was accepted
here!

www.lamachine.fr

Contents

Preface iii

Introduction xiii

1 Foreword 1
1.1 How to read . 1
1.2 What this book is . 2
1.3 What this book is not . 2
1.4 What is Code_Aster . 3
1.5 What is Gmsh . 3
1.6 What are Salome and Salome-Meca 3
1.7 Typographic . 4
1.8 Software version . 4

2 Beginning with... 7
2.1 Preparing the geometry and mesh 8
2.2 Preparing the command file 9
2.3 Launching the calculation 10
2.4 Viewing the results . 10

3 Drawing and meshing a simple frame 13
3.1 Drawing the frame with Gmsh 13
3.2 Meshing with Gmsh . 20
3.3 Drawing and meshing it with Salome-Meca 23
3.4 Calculating it with Salome-Meca 23

4 Creating the command file 25
4.1 Beginning with DEBUT() 26
4.2 Reading and modifying the mesh 27
4.3 Making a finite element model from the mesh 28

XV

XVI CONTENTS

4.4 Defining materials . 29
4.5 Assigning materials to elements 30
4.6 Giving properties to elements 30
4.7 Setting boundary conditions 32
4.8 Setting loadings . 32
4.9 Stepping for the load case 33
4.10 Stepping for the solution . 34
4.11 Analysing it . 35
4.12 Calculating results . 36
4.13 Calculating and printing the mass of the model 37
4.14 Printing the reactions . 37
4.15 Printing some key values 39
4.16 Printing some others results in ASCII file .resu 40
4.17 Printing results for graphical viewing, MED file 41
4.18 Ending the command file with FIN() 41
4.19 Preparing the command file with Eficas 42

5 Solving in Salome-Meca 45
5.1 Putting it together . 45
5.2 Viewing the results with Salome-Meca 48
5.3 Sophisticating the display 53
5.4 Looking at ASCII results 55

5.4.1 Printing RESULTAT . 55
5.4.2 Printing results in TABLE 58

5.5 Verifying the results . 58
5.6 Spotting a mistake? . 59

6 Understanding some details 61
6.1 Dealing with units . 61
6.2 Understanding SIEF, SIPO, SIPM... 63
6.3 Orienting beam elements 65
6.4 Finding it out when things go wrong 72
6.5 Understanding the “Overwriting” rule 73

7 Adding end release to the top bar 75
7.1 Using parametric scripting in Gmsh 76
7.2 Modifying the .comm file 78
7.3 Solving . 80
7.4 Viewing the results in the ParaVis module 81
7.5 Looking at ASCII results 85

CONTENTS XVII

7.6 Using an alternative option with beam elements 86

8 Making an highway sign 89
8.1 Creating geometry and mesh in Gmsh 90
8.2 Commanding for plate elements 95
8.3 Printing the results . 101
8.4 Viewing the results in ParaVis 104
8.5 Viewing the results in Gmsh 107

8.5.1 Displaying displacement 107
8.5.2 Displaying stress in beam element 109
8.5.3 Displaying stress in plate element 110
8.5.4 Displaying stress of a named field 111
8.5.5 Displaying more... 112

9 Stiffening it with rods 113
9.1 Modifying in Gmsh . 114
9.2 Enhancing the command file 116
9.3 Introducing ASTK for the analysis 117
9.4 Using STANLEY, a quick approach to post-processing . . 119

10 Replacing rods, by cables, first step in non-linear 125
10.1 Replacing rod by cables . 125
10.2 Switching to non-linear analysis 126
10.3 Printing results . 132
10.4 A variation in CREA_RESU 133

11 Cycling on a cable 135
11.1 Replacing the top bar by a cable 135
11.2 Cycling on the cable, like a clown! 138

11.2.1 Commanding for solution 139
11.2.2 Commanding for results 144
11.2.3 Creating time dependent plots 146
11.2.4 Concluding about this command file 150

11.3 Viewing results . 150
11.4 Plotting results with XmGrace 152
11.5 Verifying some results . 155
11.6 Working with tables . 156

12 Going solid, with contact, a bi-linear spring 159
12.1 Introducing the study . 159
12.2 Meshing ’part1’ . 162

XVIII CONTENTS

12.3 Meshing ’part2’ . 164
12.4 Commanding for the solution 167

12.4.1 Reading and manipulating the meshes 167
12.4.2 Setting the boundary conditions 169
12.4.3 Gluing the two parts around the pin 169
12.4.4 Relieving rotation around the pin 170
12.4.5 Setting the contact conditions around the pin 170
12.4.6 Setting the contact conditions around the pin, with friction . . 171
12.4.7 Setting the vertical load 172
12.4.8 Setting for the five solutions 173

12.5 Running the study . 176

13 Post-processing the spring 177
13.1 Commanding for Post-processing 177

13.1.1 Preliminaries . 177
13.1.2 Creating the MED result file 180
13.1.3 Creating a plot of some results 180

13.2 Running the post processing 185
13.3 Viewing deformed shape for all cases 185
13.4 Numerical results . 189
13.5 Checking the results . 189
13.6 Looking at some plots . 191

14 Introducing plastic analysis, and more... 195
14.1 Running an Elasto-plastic analysis 195

14.1.1 Initializing the mesh . 196
14.1.2 Creating the non-linear material 196
14.1.3 Setting model and BC 198
14.1.4 Solving . 199
14.1.5 Looking at the results 202

14.2 Replacing volumes by beams 205
14.2.1 Meshing . 205
14.2.2 Commanding . 207
14.2.3 Viewing results . 212

15 Buckling and modal analysis 215
15.1 Modal analysis . 215

15.1.1 Gmsh geometry and mesh 217
15.1.2 Command file, preliminaries 217
15.1.3 Command file, analysis 219

CONTENTS XIX

15.1.4 First results . 221
15.1.5 More results . 222
15.1.6 Estimating (roughly) the natural frequency 223
15.1.7 Viewing mode shapes 224
15.1.8 What to read in the documentation 225
15.1.9 Modal analysis on an pre-loaded model 225

15.2 Checking buckling . 226
15.2.1 Buckling solving . 227
15.2.2 Calculating in version 10.8 231
15.2.3 Looking at results . 231

15.3 Buckling analysis with plates and beams, or rods 235
15.4 Some remarks about buckling 237

16 Pre-processing topics 239
16.1 Various type of beams, from Euler-Bernoulli to, multi-

fiber.... 239
16.2 Using MACR_CARA_POUTRE to calculate section proper-

ties . 241
16.3 Various types of plates and shells.... 245

16.3.1 Plates . 245
16.3.2 Shells . 245

16.4 Using quadratic mesh or not 246
16.5 Creating groups from scratch 248

17 Gathering more information before processing 251
17.1 Coloring mesh and model according to properties 251
17.2 Showing element orientation 253
17.3 Showing the applied load 256
17.4 Calculating length and area of mesh elements 259

18 Getting more from post-processing 265
18.1 Manipulating results with TABLE 266

18.1.1 Printing only a few parameters 266
18.1.2 Getting the maximum value of a field 266
18.1.3 Getting values within a range 269

18.2 Renaming field’s components in a result 270
18.3 Adding node coordinates in a result 271
18.4 Printing a cleaner ASCII result file 272
18.5 Creating a mesh on a deformed shape 272
18.6 Reading (and enhancing) a result 273

XX CONTENTS

18.7 Post-processing in version 10 276

19 Handling Code_Aster, bits and pieces 279
19.1 Dealing with multiple FORCE_POUTRE 279
19.2 Converting mesh . 281
19.3 Launching from terminal 283
19.4 Multiple ASTK configurations 284
19.5 Alarming about ’alarme’? 284
19.6 Keeping informed with INFO 285

A Living with good practice 289

B Using Gmsh, tips and tricks 291
2.1 Viewing the right results . 291

2.1.1 Viewing ELNO type fields 292
2.1.2 Viewing vector type fields 292
2.1.3 Viewing scalar fields on deformed shapes 293

2.2 Using Plugins . 294
2.2.1 For creating and viewing a composite result 294
2.2.2 For animating a mode shape 296

2.3 Orienting Surfaces . 298
2.4 Using the legacy Gmsh Post-pro files 300
2.5 Importing Nastran® and other alien files 302
2.6 Customizing Gmsh . 303

C Using discrete elements 305
3.1 Stiffness matrix . 305

3.1.1 K_TR_D_L element . 306
3.1.2 K_TR_L element . 307

3.2 Mass matrix . 309
3.3 Combining both . 309

D Drawing and meshing with Salome 311
4.1 First example with beams 312

4.1.1 Creating geometry and meshing 312
4.1.2 Modifying the command file 319
4.1.3 Dumping and replaying the study 319

4.2 Example with beams and plates 320
4.2.1 Geometry . 320
4.2.2 Hints about creating groups 329
4.2.3 Meshing . 330

CONTENTS XXI

4.2.4 View 3D with Eficas in Salome-Meca 334
4.3 3D Example . 335
4.4 Further reading . 339
4.5 Salome setup and preferences 339
4.6 Differences between Gmsh and Salome 339
4.7 Meshing imported CAD file 340

E Installing and maintaining, tips 343
5.1 Code_Aster installation . 343
5.2 Code_Aster versions . 344
5.3 Code_Aster setup . 346
5.4 Code_Aster update . 347
5.5 Code_Aster directories maintenance 347
5.6 Salome-Meca Installation 348
5.7 Salome Installation . 348
5.8 Salome or Salome-Meca Installation Problems 349
5.9 Gmsh Installation . 350
5.10 A word about CAELinux 350
5.11 About the forums . 351
5.12 Distribution, window manager and more 351

Bibliography 353

Index 354

CHAPTER 1

Foreword

1.1 How to read

The first chapters from chapter 3, to chapter 9, are meant to be read by
the newbie user in a sequential order; these go from simple to more com-
plicated examples concerning the geometry, the mesh and the model. At
the same time we go from simple to more complicated analysis and post-
processing tools, starting with a simple Salome-Meca analysis and fin-
ishing with a stand alone Code_Aster with ASTK and STANLEY post-
processing.

The following chapters are more independent as we dive into non-linear
analysis, 3D modeling with contact and friction. Their reading assumes
that the fundamentals from the previous chapters have been understood.
However the experienced user may find some useful hints, here or there,
throughout the chapters.

We refer to the gigantic documentation just as little as necessary. For
example we refer to DEFI_MATERIAU just enough to define the mate-

1

2 Foreword

rial used in our examples not wandering into the 157 pages of U4.43.01
document1.

Going through the examples on the computer needs to have the pro-
grams fully installed. If this is not the case, one needs to go to appendix E
to learn how to, and do it!

1.2 What this book is

It is step by step introduction to the finite element analysis using
Code_Aster.

In this book we take a few complete examples, from a practical engineer
point of view, from the beginning to the solution.

It is limited to mechanical static analysis.

1.3 What this book is not

It is not a text book about mechanical engineering or structural design.
Generally speaking, a successful finite element analysis of a structure, i.e.
one giving a result without any runtime error or warning, is NO proof of
a soundly designed structure!

It is not a text book about finite element theory, and I will not risk myself
giving any reference in this matter in the bibliography section, particularly
in English.

It is not a Code_Aster description of dynamic analysis like seismic re-
sponse.

It is not a Code_Aster description of non purely mechanical analysis
(hydraulics, thermics, coupling, heat induced stress like in welding).

It is not a collection of benchmarks trying to compare, to the last digit
and with various types of meshing or modeling, the results of some prob-
lems with some well known analytical solutions.

1 A large number of them referring to rather exotic cases, at least for the beginner!

1.4 What is Code_Aster 3

1.4 What is Code_Aster

Code_Aster is a Finite Element Analysis engine, given the appropriate
data files it will produce a set of result files. Used in this basic manner, one
does not see anything on the screen, except a flow of lines in a terminal,
and that’s “all”. But at the end of a successful run the problem is solved
and this is the “all”.

Except for the command file editor “Eficas”, the problem manager tool
“ASTK”, and the post-processing tool “STANLEY”1, Code_Aster does
not provide any GUI.

The whole Code_Aster bundle is about 900 Mb on the hard drive.

1.5 What is Gmsh

”Gmsh: a three-dimensional finite element mesh generator with built-in
pre- and post-processing facilities” by Christophe GEUZAINE and Jean-
François REMACLE, is a private venture2.

Gmsh can produce a geometry and convert it to a usable mesh. This is
usually done in its own GUI, but could as well be done in a script only
manner, with no graphical output.

Gmsh can also read, manipulate and display results in its GUI.

At less than 200 Mb on the hard drive Gmsh is a small boy.

1.6 What are Salome and Salome-Meca

”SALOME is an open-source software that provides a generic platform
for pre- and post-Processing for numerical simulation. It is based on an
open and flexible architecture made of reusable components.” It is a joint
venture from CEA3, EDF, and OPEN CASCADE.

1 All these three may well not be used at all.
2 According to the authors “Gmsh” means nothing.
3 ”Commissariat à l’Énergie Atomique” French agency for nuclear power.

4 Foreword

Salome1 is a very complex piece of software including: a geometry
module, a mesh module, some pot-processing modules, and much more.

It is also a very hefty guy filling almost 4 Gb on the hard drive.

Salome-Meca is a bundle which allows to run Code_Aster within Sa-
lome in a simple manner which allows to make studies in a single GUI!

1.7 Typographic

Menus or buttons more generally actions in the GUIs are typeset like
this: Menu . Code_Aster reserved words, operators, function names, key-
words, concepts are typeset like this: MECA_STATIQUE. File, or exten-
sion, names are typeset like this: .comm. And windows, or dialog boxes,
titles as they appear on the screen are typeset like this: Gmsh.

“X” or “YOZ”, in uppercase refer to a global direction or plane, while
“x”, in lower case, refers to a local direction i.e. in the local element
coordinate system.

1.8 Software version

The example meshes and command files have been verified with the fol-
lowing versions:

• Gmsh up to 2.8.4;

• Code_Aster stable from 10.8 to 11.4;

• Salome-Meca 2013-2;

• Salome 6.6.0.
1 Apart from being known as the queen of Calchis, Salome is the acronym for “Simulation

Numérique par Architecture Logicielle en Open Source et à Méthodologie d’Évolution”
which can be crudely translated into “Numerical simulation by means of open source soft-
ware architecture and with methodological evolution”.

1.8 Software version 5

Tests were conducted on different machines, all of them running GNU
Linux1. In addition tests have been carried as well on openSUSE 12.3 in
a VirtualBox®running in Windows 7®.

This book deals only with a standalone installation, on a single machine,
where the programs are installed in some adequate directories, and the
studies are run from a directory with read-write access for the regular
user2.

1 SuSE 10 to openSUSE 12.3 flavors, the screen caps are from a customized “fvwm” desktop
environment.

2 It is strongly advised NOT to run the programs as root, with super user privileges

CHAPTER 2

Beginning with...

If everything seems to be going well, you have obviously overlooked
something.

11th Murphy’s law.

A study work-flow in Code_Aster is sufficiently different from most
“black box” Finite Element Analysis codes to justify this chapter.

A finite element analysis is usually performed to foresee the mechani-
cal1 behavior of some structure, or part, at the design stage.

For this, we make an idealized model from the plans, sometimes pre-
liminary sketches, of the structure. When we say idealized, we mean that
every part is represented by components or elements which are under-
standable by the finite element program.

Then we apply some loads to the structure and check its behavior under
the various loads and compare the behavior with requirements.

For example, for a walking bridge most standards or building codes, for
instance Eurocode in Europe, may require:

1 At least in the limited scope of this book.

7

8 Beginning with...

• a maximum vertical deflection under the sole action of a given num-
ber of people on the bridge, the service load;

• a stress level below the yield stress under the action of 1.35 times
the dead load plus 1.5 times the service load;

• the same with the addition of several wind loads with their own
coefficients.

In addition:

• the concrete engineer may want to know the reaction forces on the
ground for some well specified load cases;

• very often a buckling analysis is required;

• the engineer may want to look at natural frequency and mode shape.

How is this set up in Code_Aster?

2.1 Preparing the geometry and mesh

The geometry of the problem is prepared from the CAD file of the de-
signer. At the very exception of some solid machine parts, a CAD draw-
ing file always needs to be [deeply] modified to be transformed in a valid
mesh.

In this book we draw and mesh the examples from scratch using either
Gmsh or Salome. This means:

• outlining the borders of the structure, or the neutral fiber in case of
beams, with points and lines;

• building the required surfaces and volumes from these lines;

• creating and naming groups of objects, e.g.:

– all the lines supporting the same beam section;

– all the surfaces having the same thickness;

2.2 Preparing the command file 9

– all the points, lines or surfaces carrying an identical load;

– all the points, bearing some ground fixation.

From this geometry we produce a mesh, which is a subdivision in ele-
mentary objects (point, edge, square, triangle, tetrahedron, etc) changing
if necessary the overall or local density or size.

This mesh is saved in a Code_Aster understandable format, for instance
the MED format.

2.2 Preparing the command file

The mesh is only a topological entity1, we need to instruct Code_Aster
what to make of it in order to solve a physical problem and output the
results.

This is done with a command file, the so called .comm file which is
essentially a flow of operations. It is written in Code_Aster language2.

The minimum blocks in this file are roughly:

• reading and modifying the mesh;

• assigning finite elements to it;

• defining the properties of the materials which are used;

• assigning the materials to the model;

• assigning geometric properties to the structural element, (shell
thickness, beam section, etc.);

• setting boundary conditions and loads;

• choosing the adequate analysis type and solving;

• calculating the forces, stress, strain or more;

• writing the results in files, in ASCII and binary format.

1 It consists of nodes, elements and groups.
2 Which is just a package of specific commands interpreted in Python.

10 Beginning with...

I will allow myself a little digression here: in Code_Aster a command
file must be written as an ASCII text while most commercial software
hide the creation of this command file behind numerous mouse clicks
in no less numerous dialog boxes popping out, here and there, on the
screena.

Code_Aster behavior calls for some more forethought from the user
compared to the “click factories”b, and is thus a much better tool for
learning what all this business of “finite element calculation” is made
of inside.

a Although for most of them this file exists and can be edited by hand!
b “Usines à clics” to retain the terminology used by C. DURAND former Code_Aster

development manager.

2.3 Launching the calculation

Next is the actual execution of the study. This can be done in various ways
which are [almost] all3 described in this book:

• in the GUI of Salome-Meca, easy and simple;

• in the ASTK interface, less easy, more powerful;

• on the command line with ’as_run’, useful for scripting.

2.4 Viewing the results

Once the calculation is done4 we are able to read the results in their ASCII
format. And, more pleasing, to display colorful views on the screen in
Gmsh or in the Salome Post-Pro or ParaVis modules.

Like...

3 As far as the basic ones are concerned.
4 Don’t panic if it does not work on the first go, after many years of practice it hardly ever

works on the first run for me!

2.4 Viewing the results 11

FIGURE 2.1: Post-processing view of ’Ile de Nantes Carousel’ top structure, with
beams, plates and cables, built in steel wood glass and canvas, 22 m diameter

CHAPTER 3

Drawing and meshing a simple frame

In this first chapter, we draw a simple structure in Gmsh and make a
mesh from the geometry.

3.1 Drawing the frame with Gmsh

As a first example we study an A frame1, 1 m high, with a 2 m span, with
one load under the form of a 10 kg mass at three quarter chord of the span
and another load of 100 N, vertical downwards at the quarter chord. This
frame is sketched in figure 3.1.

Note: the structure is symmetrical in geometry not in mass.

The first thing to be done is to create a directory for the problem, any-
where we have read-write permissions, we name this directory frame1.

Now let’s launch Gmsh, we should have something looking like
figure 3.2:

1 It really is an inverted U shape, and could support a swing for the kids in the garden.

13

14 Drawing and meshing a simple frame

FIGURE 3.1: Sketch of frame1

• one large window, named untitled.geo;

• a menu bar on the top;

• a status bar at the bottom;

• a little trihedron at the bottom right;

• a “Modules” tree on the left-hand side.

From the main window choose the menu File Save As... and save the
file in the directory frame1 recently created, name it frame1.geo. Push
Yes in the next dialog box. We can notice that the file name has not
changed in the Gmsh window title, we must open the frame1.geo, file
through the File Open... menu.

That’s an important feature of Gmsh. When we do Save As... , Gmsh
saves a copy but does not switch to this newly created file, it keeps work-
ing on the current file, as important is the fact that every change made

3.1 Drawing the frame with Gmsh 15

FIGURE 3.2: Gmsh, with some modules expanded

in the GUI is saved on the fly in the .geo file. This behavior may look
strange to the beginner used to common spreadsheet and text processor,
but once understood, we wonder how we would do without it. This is the
common behavior of almost all database processing programs1.

In the tree, under - Modules :

• push on the button Geometry , then Elementary entities ;

• then Add Point , another little windows pops up;

• type in the coordinates x=0, in X coordinate box, y=-1000, z=0;

• in the box Prescribed mesh element size at point enter 100;

• push Add .

1 Likewise there is no Revert menu option, the way is to edit the.geo file.

16 Drawing and meshing a simple frame

FIGURE 3.3: Creating a Point in Gmsh

We can notice some instructions about what can be done in the context
displayed at the top center of the main window. We can also notice at the
bottom of the Gmsh main window, the status bar reminding us what is
the active command. We can see the newly created point as a little square
box in Gmsh main window. Now let’s open the file frame1.geo with our
favorite text editor1. We can see something like this:

// Gmsh project created on Mon Nov 18 08:32:45 2013
cl1=100;
Point (1) = {0 , −1000, 0 , cl1 } ;

Let’s enter a new point, in Gmsh, with x=0, y=-1000, z=1000 then push
Add . In the text editor we can see some warning that the source file has
been changed, refresh the text window, a new line appears:

1 As far as I am concerned, it’s Kate.

3.1 Drawing the frame with Gmsh 17

// Gmsh project created on Mon Nov 18 08:32:45 2013
cl1=100;
Point (1) = {0 , −1000, 0 , cl1 } ;
Point (2) = {0 , −1000, 1000 , cl1 } ;

In the text editor add a new line like this:

Point (3) = {0 , −500, 1000 , cl1 } ;

Save the file, then in Gmsh, push on Geometry Reload , the new point
appears in the main window.

Switching from the text editor to Gmsh GUI is the real way to do things
efficiently!

In Tools menu choose Options , then the entry Geometry , by checking
or unchecking the Point numbers option we can trigger the display of the
numbering of the points. Complete the geometry with a point:

Point (4) = {0 , 0 , 1000 , cl1 } ;

Now in the Geometry module we push on the button Elementary entities

Add New Straight line , with the mouse we connect the points by choos-
ing the 2 end points of each line, while looking carefully at the request in
the top center of the screen.

Then in Geometry Elementary entities Symmetry Line fill the dialog
box with A=0, B=1, C=0, D=0 1, and we pick all the lines with the mouse
and type e . The structure has been duplicated by symmetry about the
XOZ plane and looks like figure 3.4, depending on the visibility toggles.

Note: new points are automatically created and there is no duplicate
point at Point 4. We can have a look in the text editor to see how this is
done. And the Gmsh window looks like figure 3.4

1 The symmetry is defined by a vector, A, B, C being the 3 components (in X, Y, Z) of the
vector normal to the plane and D the distance in space from the plane to the origin of the
global axis, in short the 4 parameters of the plane equation in space!

18 Drawing and meshing a simple frame

FIGURE 3.4: Geometric entities in Gmsh, with symmetry dialog box

Now we put together in ’Groups’ the geometric entities which share
some properties1, in the tree Geometry Physical groups Add Line , pick
with the mouse the four lines being part of the frame top bar, once this is
done type e , like in figure 3.5.

We can notice a new line appended in the text editor:

Physical Line (7) = {2 , 3 , 5 , 4 } ;

1 In Gmsh groups are called Physical

3.1 Drawing the frame with Gmsh 19

The actual digit may be different! Edit it so it becomes:

Physical Line ("topbeam") = {2 , 3 , 5 , 4 } ;

FIGURE 3.5: 4 Lines selected to make a Physical

Before we continue a very important warning: within a mesh file which
is to be processed later by Code_Aster we must not use group names
longer than 24 characters1 .

This gives the name ’topbeam’ to the group formed by the four lines 2,
3, 5, 4. We keep going on either from the GUI or from the text editor until
the groups looks like below, notice we have also groups of points. The
final .geo file looks like this2:

// Gmsh project created on Mon Nov 18 08:32:45 2013
cl1=100;
Point (1) = {0 , −1000, 0 , cl1 } ;
Point (2) = {0 , −1000, 1000 , cl1 } ;
Point (3) = {0 , −500, 1000 , cl1 } ;

1 With versions earlier than 11.3.10 it used to be 8 characters, a major improvement!
2 // at the beginning of a line means this line is a comment in Gmsh, just like in C language.

20 Drawing and meshing a simple frame

Point (4) = {0 , 0 , 1000 , cl1 } ;
Line (1) = {1 , 2 } ;
Line (2) = {2 , 3 } ;
Line (3) = {3 , 4 } ;
Symmetry {0 , 1 , 0 , 0} {
Duplicata { Line {2 , 3 , 1 } ; }

}
Physical Line ("topbeam") = {2 , 3 , 5 , 4 } ;
Physical Line ("mast") = {1 , 6 } ;
Physical Point ("groundS") = { 1 } ;
Physical Point ("groundN") = { 1 3 } ;
Physical Point ("loadS") = { 3 } ;
Physical Point ("massN") = { 6 } ;

Some Gmsh hints:

• At the left end of the status bar there are several buttons;

– X , Y , Z set the view from the selected axis, pushing
at the same time reverses the axis;

– S means snapping, sometimes we have to deactivate it, if it
was activated by error (if activated it appears in red);

– a few other buttons whose use is explained in the balloon help.

• To select multiple items at once, we push ctrl and draw a bound-
ing box with the mouse, any entity having a bit of itself within the
bounding box is selected.

3.2 Meshing with Gmsh

At this stage, we have only geometric entities, we have to transform them
into mesh entities.

In the tree push Mesh 1D , the model is meshed like in figure 3.6.

In the Options window toggle the boxes in Visibility for Mesh and
Geometry to see what has been created.

In the text editor we can see an entry at line 2: ’cl1=100’, this entry ’cl1’
is repeated as the fourth entry at every node. This is the elementary mesh
size, named as ’Characteristic length’ in Gmsh which is applied around
this given point. Change cl1=500 in this line, save in the text editor, reload
in Gmsh and mesh again, we can see quite a coarser mesh.

3.2 Meshing with Gmsh 21

FIGURE 3.6: This is the mesh, with node numbers and Options Color
Coloring mode set to By physical group and a bit of tweaking with the colors for

the elements

We can just as well push Mesh Define Elements size at points in the
tree, then fill the Value with any number let’s say 10 and pick up one of
the point, then do the meshing. The mesh is refined around this point.

Now, to save the mesh we do, menu File Save As... , in the Format

pull down list choose MED File (*.med) and save the file as frame1.med .
A small dialog box named MED Options pops up, like at the top
of figure 3.7:

Leave unchecked the box Save all (ignore physical groups) so as to save
the groups created in the mesh.

22 Drawing and meshing a simple frame

FIGURE 3.7: Only Physical ’mast’, ’massN’ and ’loadS’ are set to visible, with
node and line numbers, and coloring by elements

More about that:

• If we leave this box unchecked all the elements belonging to groups
are translated to the .med file, and ONLY these elements, Points
elements (or nodes) as well. This means we have to create groups
for everything we need later.

• If we check this box all the elements are translated, all of them, but
WITHOUT any group definition.

This is very important, as when we do the meshing Gmsh meshes all the
entities it founds without any distinction, it is only at save time that the
real mesh is saved as stated above.

One more hint about using Gmsh, go to the menu Tools Visibility in the
list browser tab at the bottom, pull down to Physicals groups , here we can

3.3 Drawing and meshing it with Salome-Meca 23

play with the visibility groups by groups to see if things look like what we
want, like in figure 3.7.

To finish with, pushing ctrl + L displays the ’Message Console’
which is a log, and appears at the bottom of the main window, and can
be re-sized.

3.3 Drawing and meshing it with Salome-Meca

The drawing and meshing job we have just done in Gmsh can also take
place in Salome-Meca1, we do that in appendix D.

3.4 Calculating it with Salome-Meca

In this first example, we are going to run the study in Salome-Meca.
Salome-Meca is used here as a front end to automate tasks for Code_Aster,
we describe here only the basics to get a result for this example.

In order to calculate, Salome-Meca needs as input:

• a mesh file, we have just made it,

• a command file *.comm, we are just going do this in chapter 4.

1 Or in a stand alone version of Salome.

CHAPTER 4

Creating the command file

Never make anything simple and efficient when a way can be found to
make it complex and wonderful.

13th Murphy’s law.

In this second chapter, we write a command file to study the behavior
of the structure we drew and meshed in chapter 3.

We command to study the behavior under a static linear analysis,
with several load cases.

And we command to produce the results files.

• First but important remark: in this first example we start straight
away with a multiple load case, solved at once, study.

• Second remark: we describe the file, step by step, regardless of the
tools used to produce it1.

1 Section 4.19 gives a quick glance at Eficas.

25

26 Creating the command file

• Third remark: in this book we show the command files with a small
indent scheme rather than in the classical Code_Aster or Eficas
manner with its very large indent1.

• Fourth remark: all the concepts we create in the command files,
in this book, are typeset in lowercase, we leave uppercase to the
exclusive use of Code_Aster reserved words2.

Now let’s have a look, bit by bit, at the commented command file for
the frame1 study.

Note: lines beginning with # are comments3. Many things are explained
directly in the code with commented lines at the right place. A line like,
#U4.21.01 means: the following command or operator is described in the
U4.21.01 document in Code_Aster documentation available on http:

//www.code-aster.org.

And before going any further a very important warning: within a com-
mand file, we must not use concept names4 longer than 8 characters,
which is not much!

4.1 Beginning with DEBUT()

Not much to say here, but in more demanding examples the DEBUT()
procedure may take some arguments, however any .comm file must begin
with this procedure, whose documentation is U4.11.01.

#U4.11.02
DEBUT () ;

1 Code_Aster command files do not require any mandatory indent at all as long as we do not
use conventional Python inside them, however a command must start at the beginning of a
line without any indent.

2 Code_Aster is case sensitive: ’TRUE’, ’true’ and ’truE’ point to 3 different objects while
’True’ is a Python reserved word. And a concept can be named ’modele’, while ’MODELE’
is a Code_Aster reserved word.

3 More generally the .comm file follows the Python syntax.
4 The names created on the left hand side on the “=” sign.

http://www.code-aster.org
http://www.code-aster.org

4.2 Reading and modifying the mesh 27

4.2 Reading and modifying the mesh

Here, we read the mesh which by default is assigned the Fortran unit
LU 20 (Logical Unit 20). The INFO_MED=2 line provides a more ver-
bose mode of what is read, the output being in the .mess file. This feature
is quite useful for checking that Code_Aster is actually reading what we
expect. And of course we read a file in MED format, the one we saved
previously1 .

#U4.21.01
mesh=LIRE_MAILLAGE (

INFO=1 ,
#INFO_MED=2,
UNITE=20 ,
FORMAT=’MED’ ,

) ;

Now we create some groups within the mesh.

With CREA_GROUP_MA=_F(NOM=’TOUT’,TOUT=’OUI’,), we
create a group named ’TOUT’ which contains all the elements which
are in the mesh2.

With CREA_GROUP_NO=_F(TOUT_GROUP_MA=’OUI’,), we cre-
ate a group of nodes for every group of element, each one of these groups
contains all the nodes belonging to the parent element, and bears the
same name. This is very useful with MED file imported from Gmsh
because Physical Points (groups) are translated as groups of elements,
GROUP_MA3, in the MED file. Thus we can, later on, apply boundary
conditions to nodes.

1 Code_Aster can read other format:

• ASTER (.mail) format, mostly used in the test cases, U4.21.01;

• IDEAS (.unv) format with PRE_IDEAS, U7.01.01;

• Gmsh (.msh) format with PRE_GMSH, U7.01.31.

2 This may be useful but we do not use it in this command file.
3 Point element, POI1.

28 Creating the command file

#U4.22.01
mesh=DEFI_GROUP (

reuse =mesh ,
MAILLAGE=mesh ,
CREA_GROUP_MA=_F (NOM=’TOUT’ ,TOUT=’OUI’ ,) ,
CREA_GROUP_NO=_F (TOUT_GROUP_MA=’OUI’ ,) ,

) ;

With CREA_GROUP_NO=_F(GROUP_MA=’mast’,), we would
have done the same only for the ’mast’ group. Many other useful
things can be done in this command, for example using the boolean
UNION of groups to simplify their manipulation later on. We can also
have a look at the commands: CREA_MAILLAGE, ASSE_MAILLAGE,

MODI_MAILLAGE... in the generous Code_Aster documentation.

After that is a little trick that saves the modified mesh so it can be
checked within Salome or Gmsh. However, this line is only translated
if the study is run within ASTK, not in Salome-Meca, some more about
this later...

IMPR_RESU (
FORMAT=’MED’ ,
UNITE=71 ,
RESU=_F (MAILLAGE=mesh ,) ,

) ;

4.3 Making a finite element model from the mesh

Here, we transform the mesh in a proper finite element model by assigning
some properties to the mesh elements, as explained in U4.41.011. For
example:

• we assign, AFFE=, to the mesh groups

GROUP_MA=(’topbeam’,’mast’,);

• the type of beam, MODELISATION=’POU_D_T’;

• telling as well that we deal with a mechanical behavior,
PHENOMENE=’MECANIQUE’;

1 In Code_Aster the MAILLAGE contains only the topology of the mesh and nothing else.

4.4 Defining materials 29

as explained in U3.11.01.

On the next line, we assign to the mesh group ’massN’, in fact it is a
point, the properties of a discrete element, as explained in U3.11.02 so as
to put a mass on it later on.

#U4.41.01
model=AFFE_MODELE (

MAILLAGE=mesh ,
AFFE=(

_F (
GROUP_MA=(’topbeam’ ,’mast’ ,) ,
PHENOMENE=’MECANIQUE’ ,
MODELISATION=’POU_D_T’ ,

) ,
_F (

GROUP_MA=(’massN’ ,) ,
PHENOMENE=’MECANIQUE’ ,
MODELISATION=’DIS_T’ ,

) ,
) ,

) ;

Here the mesh is transformed in a model in the most straightforward
manner, the whole mesh at once. We may also not transform some of the
mesh elements, thus excluding them from the analysis, just to see what
would happen if they were not there, quite useful in preliminary design!

4.4 Defining materials

With this operator, we define a material, with its properties.

#U4.43.01
steel=DEFI_MATERIAU (ELAS=_F (E=210000 . ,NU= 0 . 3 ,RHO=8e−9) ,) ;

As we are performing a simple linear elastic analysis only the Young
modulus E and the Poisson ratio NU are needed. We also add the mass
density RHO as we want to load the frame with its own weight1.

1 The mass density needs to be given in t/mm3, as we use mm as length unit and N as force
unit, more about unit system in chapter 6.1 .

30 Creating the command file

4.5 Assigning materials to elements

Here we assign to the beam elements groups the material properties
’steel’.

Note: the discrete element, ’massN’, is not assigned a material, this is
not necessary, but Code_Aster does not complain if we assign one.

#U4.43.03
material=AFFE_MATERIAU (

MAILLAGE=mesh ,
AFFE=_F (GROUP_MA=(’topbeam’ ,’mast’ ,) , MATER=steel ,) ,

) ;

4.6 Giving properties to elements

With beam, and in general with structural elements, this is a rather tricky
part.

Here, we define a set, or concept, named ’elemcar’ and assign some
physical properties to the model elements, this is described in U4.42.01,
and this document is most important and should be read carefully!

We begin with the beam properties, with some alternatives which are
commented.

#U4.42.01
elemcar=AFFE_CARA_ELEM (

MODELE=model ,
POUTRE=(

#the vertical members are rectangular section
#(40x20 mm) with a thickness of 1.5 mm
_F (

GROUP_MA=(’mast’ ,) ,
SECTION=’RECTANGLE’ ,
CARA=(’HY’ ,’HZ’ ,’EP’ ,) ,
VALE=(40 , 20 , 1 . 5 ,) ,

) ,
#same with the horizontal bar
_F (

GROUP_MA=(’topbeam’ ,) ,SECTION=’RECTANGLE’ ,
CARA=(’HY’ ,’HZ’ ,’EP’ ,) ,VALE=(40 , 20 , 1 . 5 ,) ,

) ,
#next lines would have produced the same section properties
#_F(

#GROUP_MA=(’topbeam’,),SECTION=’GENERALE’,
#CARA=(

4.6 Giving properties to elements 31

#’A’,’IY’,’IZ’,’AY’,’AZ’,’EY’,’EZ’,
#’JX’,’RY’,’RZ’,’RT’,

#),
#VALE=(

#171, 11518, 34908, 1.5, 1.5, 0, 0,
#26700, 20, 10, 12,

#),
#),

) ,

This next section deals about orientation of the beams, for the moment
everything is commented and we review that in detail in chapter 6.3 .

#in the next lines we would give the ’mast’ group
#the same orientation as the top beam
#leave it commented at first
#ORIENTATION=_F(

#GROUP_MA=(’mast’,),
#CARA=’VECT_Y’,
#VALE=(1.0, 0.0, 0.0,),

#),
#and in the next ones we can rotate
#to the ’topbeam’ along its axis,
#leave it commented at first
#ORIENTATION=_F(

#GROUP_MA=(’topbeam’,),
#CARA=’ANGL_VRIL’,
#VALE=90.0,

#),

In this last section, we set the properties of the mass element.

#in the next line we give to the discrete element
#the property of a point mass
#(CARA=’M_T_D_N’), and give it
#the value of 0.01 tonnes e.g. 10 kg
DISCRET=(

_F (GROUP_MA=’massN’ , CARA=’M_T_D_N’ ,VALE = (. 0 1) ,) ,
#following block set stiffness of point element ’massN’
#to null stiffness
#although this is not necessary,
#commenting this block would raise a warning,
#unimportant in this case
_F (

GROUP_MA=(’massN’ ,) ,
CARA=’K_T_D_N’ ,
VALE= (0 , 0 , 0 ,) ,
REPERE=’GLOBAL’ ,

) ,
) ,

) ;

32 Creating the command file

4.7 Setting boundary conditions

Now, we assign the boundary conditions and loads, in several sets as
explained in U4.44.01, again, this document is also most important and
should be read carefully! In this first set we fix in all 6 DOFs at the bot-
tom of the masts.

#U4.44.01
ground=AFFE_CHAR_MECA (

MODELE=model ,
DDL_IMPO=_F (

GROUP_NO=(’groundS’ ,’groundN’ ,) ,
DX=0 ,DY=0 ,DZ=0 ,DRX=0 ,DRY=0 ,DRZ=0 ,

) ,
) ;

I strongly advise not to mix fixations and loads in a boundary condition
set and to split the loads in as many elementary AFFE_CHAR_MECA as is
logical.

DDL is the french acronym for DOF.

4.8 Setting loadings

In a second set, we apply the gravity, PESANTEUR, to the beam groups
and also to the discrete element. GRAVITE, the acceleration of gravity is
rounded off to 10000mm/s2 = 10m/s2 so as to produce a 100 N load,
symmetrical to the force load, with due allowance to the multiplier used
later on.

Despite its name, “pesanteur” meaning “gravity”, this keyword may be
used to apply any uniform acceleration, in any direction, to any group of
a model.

selfwght=AFFE_CHAR_MECA (
MODELE=model ,
PESANTEUR =_F (

GRAVITE=10000 ,
DIRECTION= (0 , 0 , −1) ,
GROUP_MA=(’topbeam’ ,’mast’ ,’massN’ ,) ,

) ,
) ;

4.9 Stepping for the load case 33

In the third set, we apply a vertical force of 135 N to the node at the first
quarter of the top bar.

cc=AFFE_CHAR_MECA (
MODELE=model ,
FORCE_NODALE=_F (GROUP_NO=(’loadS’ ,) ,FZ=−135 ,) ,

) ;

And in the fourth set we apply a distributed vertical force of 0.1 N per
unit length (here mm) to the top bar.

cr=AFFE_CHAR_MECA (
MODELE=model ,
#FORCE_POUTRE=_F(GROUP_MA=(’topbeam’,),FZ=-0.1,),
FORCE_NODALE=_F (GROUP_NO=(’topbeam’ ,) ,FZ= −0 .1*2000/17 ,) ,
#17 is the number of nodes in the group ’topbeam’

) ;

In the above lines we have commented the line with FORCE_POUTRE
as Code_Aster cannot yet calculate with more than one distributed
load on beam elements! However it knows how to in a single
AFFE_CHAR_MECA1.

This is a very annoying limitation. The work around is to replace it with
an equivalent nodal force applied to the GROUP_NO=(’topbeam’,)
which we have created earlier with DEFI_GROUP and which contains all
the nodes of GROUP_MA=(’topbeam’,).
This equivalent nodal force is the distributed load multiplied by the length
of the beam elements 2.

4.9 Stepping for the load case

Here we define some step functions which are applied to the loads.

For example, for the gravity force ’selfwght’, the function ’selfw_m’ is
applied, 0 at instant 2, 1.35 at instant 3 and for all instant after 3, except
at instant 6 where it drops down to 0.

1 More about this in chapter 19.1 .
2 A trick would be to have Code_Aster calculate the exact nodal forces depending on the

element length, this is very feasible with some Python coding.

34 Creating the command file

For the nodal force ’cc’, the function ’cc_m’ is applied , 0 at instant 3, 1
at instant 4 and 5, with 0 at any instant before 3, and again 0 at instant 6.

Finally for the distributed force ’cr’, the function ’cr_m’ is applied , 0
at instant 4, 1.5 at instant 5, dropping down to 1 at instant 6 where it is
acting alone, with 0 at any instant before 41.

selfw_m=DEFI_FONCTION (
NOM_PARA=’INST’ ,
VALE= (2 , 0 , 3 , 1 . 3 5 , 5 , 1 . 3 5 , 6 , 0) ,
PROL_GAUCHE=’CONSTANT’ ,PROL_DROITE=’CONSTANT’ ,

) ;
cc_m=DEFI_FONCTION (

NOM_PARA=’INST’ ,
VALE= (3 , 0 , 4 , 1 , 5 , 1 , 6 , 0) ,
PROL_GAUCHE=’CONSTANT’ ,PROL_DROITE=’CONSTANT’ ,

) ;
cr_m=DEFI_FONCTION (

NOM_PARA=’INST’ ,
VALE= (4 , 0 , 5 , 1 . 5 , 6 , 1 ,) ,
PROL_GAUCHE=’CONSTANT’ ,PROL_DROITE=’CONSTANT’ ,

) ;

4.10 Stepping for the solution

Here we define a step function which is applied to the calculation, we
calculate every single instant from 2, DEBUT=2.0, to 6, JUSQU_A=6,
with a step of 1, PAS=1.0

liste=DEFI_LIST_REEL (
DEBUT= 2 . 0 ,
INTERVALLE=_F (JUSQU_A=6 ,PAS= 1 . 0 ,) ,

) ;

We must understand what is done just above. We perform the calcula-
tion at five steps or instants, INST in the Code_Aster jargon, from 2 to 6,
for every integer:

• at INST 2, we have no load at all2;
1 The word instant must be taken here with some restriction, it just only means step, it is not

related to time (in time unit, seconds) but the same word, INST, is used by Code_Aster to
specify the step in static analysis and a real instant, in seconds, in a dynamic analysis.

2 We start at 2 but we might have started at 0, -5 or 1.342! In linear static the choice is
completely arbitrary and left to the user.

4.11 Analysing it 35

FIGURE 4.1: Load steps

• at INST 3, 1.35 times the self weight load;

• at INST 4, 1.35 times the self weight load, plus 1 times the nodal
load ’cc’;

• at INST 5, 1.35 times the self weight load, plus 1 times the nodal
load ’cc’, plus 1.5 times the “distributed” load ’cr’;

• at INST 6, 1 times the “distributed” load ’cr’ is acting alone.

This is illustrated in figure 4.1

4.11 Analysing it

After having defined loads and material now is the time for the main cal-
culation. We conduct here a linear static calculation and therefore we use
MECA_STATIQUE:

• with the previously defined model, MODELE=model;

• the defined material set, CHAM_MATER=material;

• the properties, CARA_ELEM=elemcar;

• the boundary conditions and loads defined under EXCIT=...

36 Creating the command file

• at all the instants prescribed in LIST_INST=liste;

• and store the results in the concept stat.

#U4.51.01
stat=MECA_STATIQUE (

MODELE=model ,
CHAM_MATER=material ,
CARA_ELEM=elemcar ,
#with the load, or boundary condition defined in EXCIT
#with the applied step function where needed
EXCIT=(

_F (CHARGE=ground ,) ,
_F (CHARGE=selfwght ,FONC_MULT=selfw_m ,) ,
_F (CHARGE=cc ,TYPE_CHARGE=’FIXE’ ,FONC_MULT=cc_m ,) ,
_F (CHARGE=cr ,TYPE_CHARGE=’FIXE’ ,FONC_MULT=cr_m ,) ,

) ,

#the calculation is made for all instant in this list
LIST_INST=liste ,
#we can give a title to this study
#TITRE=’my_title’

) ;

If FONC_MULT had been omitted in EXCIT and LIST_INST omitted
as well we would have run the solution for one load case being the sum of
all the EXCIT instances.

4.12 Calculating results

For now the concept stat contains only the displacement at nodes, as
well as the forces at Gauss points, we must enhance it with some useful
results on elements.

Enhance! that’s why we use the keyword reuse, which is curiously
written in lower case.

#U4.80.01
stat=CALC_CHAMP (

reuse =stat ,RESULTAT=stat ,
CONTRAINTE=(
’SIEF_ELNO’ ,’SIPO_ELNO’ ,’SIPM_ELNO’ ,

) ,
FORCE=(’REAC_NODA’ ,) ,

) ;

4.13 Calculating and printing the mass of the model 37

For the versions earlier than 11, commands to calculate stresses and
forces were a bit different, this is the subject of chapter 18.7 .

4.13 Calculating and printing the mass of the model

The next lines calculate the structural mass of the given groups and put
the results in the .resu file in a tabular format as explained in U4.81.22.
This should always be done to check the consistency of the model and
calculation.

masse=POST_ELEM (
RESULTAT =stat ,
MODELE=model ,
MASS_INER=_F (GROUP_MA=(’topbeam’ ,’mast’ ,’massN’ ,) ,) ,
TITRE= ’masse’

) ;
#U4.91.03
IMPR_TABLE (

TABLE=masse ,
FORMAT_R=’1PE12.3’ ,

)

I reckon that checking the calculated mass with the estimates made oth-
erwise is the prime test of the model validity. In structures made of beams
this calls for an increased mass density of the materials so as to cope
with all the unmodeled bits and pieces which contribute nonetheless to
the loading of the structure by their own weight.

FORMAT_R=’1PE12.3’ prints the numbers with twelve characters,
3 digits after the decimal point and one digit to the left of the decimal
point, for example −2.762E + 03 while FORMAT_R=’E12.3’ would
print −0.276E + 04.

4.14 Printing the reactions

Checking the reactions against what is expected is just as well very im-
portant, so, in the next lines we calculate the sum of the reactions and put
the results in the .resu file, in a tabular format, and in the conventional
format.

38 Creating the command file

#U4.81.21
sum_reac=POST_RELEVE_T (

ACTION=_F (
INTITULE=’sum reactions’ ,
GROUP_NO=(’groundS’ ,’groundN’ ,) ,
RESULTAT=stat ,
NOM_CHAM=’REAC_NODA’ ,
TOUT_ORDRE=’OUI’ ,
RESULTANTE=(’DX’ ,’DY’ ,’DZ’ ,) ,
MOMENT=(’DRX’ ,’DRY’ ,’DRZ’ ,) ,
POINT= (0 , 0 , 0 ,) ,
OPERATION=’EXTRACTION’ ,
) ,

) ;
IMPR_TABLE (TABLE=sum_reac ,FORMAT_R=’1PE12.3’ ,)

This first abstract of code puts the sum of the individual reaction on the
groups of node ’groundS’, ’groundN’, in a table named ’sum_reac’ with
the OPERATION=’EXTRACTION’ keyword. Then the table is printed
with IMPR_TABLE.

MOMENT=(’DRX’,’DRY’,’DRZ’,), computes the moment of this
sum of reaction about the point whose coordinates are stated in
POINT=(x,y,z,) coordinates.

Using RESULTANTE=(’DX’,’DY’,’DZ’,’DRX’,’DRY’,’DRZ’),
would have printed the sum of the individual reaction force as well as the
sum of the individual reaction moment, the sum of the individual moment
being not very meaningful!

#then in tabular format per group of node
reac1=POST_RELEVE_T (

ACTION=_F (
INTITULE=’reactionsS’ ,
GROUP_NO=(’groundS’ ,) ,
RESULTAT=stat ,
NOM_CHAM=’REAC_NODA’ ,
TOUT_ORDRE=’OUI’ ,
RESULTANTE=(’DX’ ,’DY’ ,’DZ’) ,
OPERATION=’EXTRACTION’ ,

) ,
) ;
#very simple form
#IMPR_TABLE (TABLE=reac1,)

#or more detailed with field separator
IMPR_TABLE (

TABLE=reac1 ,
FORMAT=’TABLEAU’ ,

4.15 Printing some key values 39

UNITE=8 , #this is also the default value
#whichever separator that suits the needs
SEPARATEUR=’ * ’ ,
FORMAT_R=’1PE12.3’ ,
TITRE=’reaction_1’ ,
INFO=2 ,

) ;

reac2=POST_RELEVE_T (
ACTION=_F (

INTITULE=’reactionsN’ ,
GROUP_NO=(’groundN’ ,) ,
RESULTAT=stat ,
NOM_CHAM=’REAC_NODA’ ,
TOUT_ORDRE=’OUI’ ,
RESULTANTE=(’DX’ ,’DY’ ,’DZ’) ,
OPERATION=’EXTRACTION’ ,

) ,
) ;
IMPR_TABLE (TABLE=reac2 ,FORMAT_R=’1PE12.3’ ,)

#now we print the individual reactions
#in the .resu file in RESULTAT format
#U4.91.01
IMPR_RESU (

MODELE=model ,
FORMAT=’RESULTAT’ ,
RESU=_F (

NOM_CHAM=’REAC_NODA’ ,
GROUP_NO=(’groundS’ ,’groundN’ ,) ,
RESULTAT=stat ,
FORMAT_R=’1PE12.3’ ,

) ,
) ;

4.15 Printing some key values

It is a wise idea to print in the .resu file some key values, here we print:

• the minimum and maximum value of the vertical component of the
displacement in the ’topbeam’ group;

• the minimum and maximum value of the axial force in the ’mast’
group of elements;

• the minimum and maximum value of the bending moments in the
two beam groups.

40 Creating the command file

This print out gives a quick glance at the overall basic results as a check
of what was expected. It can also be used to compare with the values
displayed in the post-processor views!

IMPR_RESU (
MODELE=model ,
FORMAT=’RESULTAT’ ,
RESU=(

_F (
RESULTAT=stat ,
NOM_CHAM=’DEPL’ ,
NOM_CMP=’DZ’ ,
GROUP_MA=(’topbeam’ ,) ,
FORMAT_R=’1PE12.3’ ,
VALE_MAX=’OUI’ ,VALE_MIN=’OUI’ ,

) ,
_F (

RESULTAT=stat ,
NOM_CHAM=’SIEF_ELNO’ ,
NOM_CMP=’N’ ,
GROUP_MA=(’mast’ ,) ,
FORMAT_R=’1PE12.3’ ,
VALE_MAX=’OUI’ ,VALE_MIN=’OUI’ ,

) ,
_F (

RESULTAT=stat ,
NOM_CHAM=’SIEF_ELNO’ ,
NOM_CMP=(’MFY’ ,’MFZ’ ,) ,
GROUP_MA=(’topbeam’ ,) ,
FORMAT_R=’1PE12.3’ ,
VALE_MAX=’OUI’ ,VALE_MIN=’OUI’ ,

) ,
) ,

) ;

4.16 Printing some others results in ASCII file .resu

Then we put some stress results, all components for every element in the
specified groups in the .resu file.

IMPR_RESU (
MODELE=model ,
FORMAT=’RESULTAT’ ,
RESU=(

_F (
RESULTAT=stat ,
NOM_CHAM=’SIPO_ELNO’ ,
GROUP_MA=(’topbeam’ ,’mast’ ,) ,

4.17 Printing results for graphical viewing, MED file 41

FORMAT_R=’1PE12.3’ ,
) ,

) ,
) ;

This is a rather restricted set printed to ASCII file, we may want more
or different fields according to the study.

4.17 Printing results for graphical viewing, MED file

Finally we put in a .med file the results we want to be displayed, in graph-
ical format, in the Post-Pro or ParaVis modules of Salome-Meca or in the
Post-pro module of Gmsh.

#U7.05.21
IMPR_RESU (

FORMAT=’MED’ ,
UNITE=80 ,
RESU=_F (

#following lines print on the named groups,
GROUP_MA=(’topbeam’ ,’mast’ ,) ,
RESULTAT=stat ,
NOM_CHAM=(

’DEPL’ ,
’SIEF_ELNO’ ,
’SIPO_ELNO’ ,
’SIPM_ELNO’ ,
’REAC_NODA’ ,

) ,
) ,

) ;

4.18 Ending the command file with FIN()

Well not exactly finally, as the .comm file must be ended with the proce-
dure FIN(), which like the procedure DEBUT() would take some argu-
ments in a more complicated study.

#U4.11.02
FIN () ;

42 Creating the command file

4.19 Preparing the command file with Eficas

In the above sections we described step by step the command file regard-
less of the way it is prepared.

As far as I am concerned I write it with a text editor, Kate1.

However the Code_Aster package provides a useful tool for editing the
.comm file, called Eficas, it provides integrated syntax check capabilities,
it also provides a choice of allowable keywords for every command or
operator.

We can launch it within Salome-Meca, in the Aster module and then in
the menu Aster Tools Run Eficas . Figure 4.2 shows an Eficas window
with frame3.comm loaded.

The main draw back is that as soon as we have some Python in the
.comm file Eficas cannot be used to edit the file, making it a useful tool
at learning stage but not so much for serious studies.

The acronym EFICAS means, in french “Editeur de FIchier de Com-
mandes ASter” which translates into “Aster command file editor” but it is
also a pun with the french word “efficace” meaning “efficient”!

1 Gedit, SciTE, Geany, Emacs, or any text editor does the job just as well. Depending on the
editor we use we may give it some “syntaxic coloration”, for a more comfortable reading.
Usually Python syntax hightlighting is just enough.

4.19 Preparing the command file with Eficas 43

FIGURE 4.2: Eficas in action

CHAPTER 5

Solving in Salome-Meca

It works better if you plug it in.

Sattinger’s law.

In this third chapter, we assemble the mesh file produced in chapter 3
with the command file produced in chapter 4 in a Salome-Meca study.

We run this study and look at the results in the Post-Pro module of
Salome-Meca.

5.1 Putting it together

We have now a working .comm file saved in the study’s directory, we can
launch Salome-Meca. Once this is done:

• we first need to create a study with File New ;

• then we save it with File SaveAs... under the name frame1.hdf in
the study directory;

45

46 Solving in Salome-Meca

FIGURE 5.1: Mesh imported in Salome-Meca

• we go in the pull down list to Mesh module;

• then menu File Import MED file and after the appropriate naviga-
tion we open frame1.med ;

• in the browser on the left-hand side click on the + sign/button
along Mesh , then RMB click on frame1 Show .

We can now see the mesh previously created, like in figure 5.1, with the
1D elements in blue, 0D in red and nodes in a green circle1.

We can play a bit with the various possibilities in the menus or by RMB

clicking on entities.

• Then we switch to Aster module using the pull down list to Aster

module;

1 To get this exact view it is necessary to tweak a bit in File Preferences... Mesh .

5.1 Putting it together 47

• then menu Aster Add study case , a new window pops up, looking
like figure 5.2;

• name the case as ’frame1’;

• choose from disk in the Command file sub menu, then with the icon
just on the right choose the frame1.comm file;

• do the same with the MESH to choose frame1.med .

FIGURE 5.2: Setting the study parameters

All the other options can be left as they are by default, the meaning of
Total memory and Time is self explanatory, the values can be changed if
needed.

The check box Save result database can be unchecked at this stage, leav-
ing it does not do any harm1.

1 We are going to see later how helpful is the database.

48 Solving in Salome-Meca

• Click OK ;

• in the browser click on the + sign along Aster ;

• then RMB click on frame1 Run .

• within a few seconds a little green “checked” sign should appear to
the left of ’frame1’ in the browser, and a RMB click on frame1

Status should pop up an Information box stating an ’OK’, oth-
erwise see chapter 6.4 .

5.2 Viewing the results with Salome-Meca

A new entry named Post-Pro has been created in the browser1:

1. click on the + sign along it;

2. RMB click on frame1.med ;

3. on the + sign left of mesh ;

4. on the + sign left of Fields ;

5. on the + sign left of stat_DEPL ;

6. RMB click on 4 Activate Post-Pro Module ;

7. again on 4 ;

8. choose Deformed Shape and Scalar Map ;

9. and finally click OK on the next box.

and we can see a nice picture, like figure 5.3, of the deformed shape of the
structure under the load at INST 42.

We can do the same at any other instant.

1 Post-Pro does not exist anymore in version 7 of Salome.
2 I have changed a bit the defaults settings to print readable a view on a white background.

5.2 Viewing the results with Salome-Meca 49

FIGURE 5.3: Deformed shape with values, and bounding box in red

50 Solving in Salome-Meca

Now let’s try to display SIEF_ELNO component MFY on a Scalar map,
like figure 5.4.

FIGURE 5.4: Display of the field SIEF_ELNO, (it’s written in the Scalar Bar),
component MFY, but alas nothing tells us about the component in the bar!

5.2 Viewing the results with Salome-Meca 51

Then with the vector of REAC_NODA on top of it like figure 5.5.

FIGURE 5.5: Value of the field SIEF_ELNO, with the Reaction vector on top

52 Solving in Salome-Meca

FIGURE 5.6: Modifying the appearance

5.3 Sophisticating the display 53

To access the dialog box allowing us to change the appearance of the
displayed picture we can RMB click in the image title in the browser
and choose Edit... , or RMB click on its picture in the graphical window
(the activated object shows within a red bounding box frame) and choose
Edit... .

This dialog box, figure 5.6 displays its Scalar Bar tab, allows us to
change the appearance of almost anything appearing in a Post-pro win-
dow:

• scale of deformed shape;

• range of value in the Scalar Bar;

• as well as its position and dimensions;

• we can also select the groups to be displayed;

• and much more...

5.3 Sophisticating the display

We can also ’pick’ a value from the screen. For this, we first need to have
one result selected in the browser tree, then in the menu select View

Windows Selection , and a dialog box like in figure 5.7 should appear.

Here the SIEF_ELNO fields is displayed with the Scalar Bar showing
the N component.

In the Selection dialog box we choose the Cell tab and click on one
element, some values appear in the Selection dialog box.

Here the element selected is at the bottom of the mast1, we can check
that the first value of the vector ’170.91’ is in agreement with the graphical
display.

However, this nice feature is not of much interest for beam results as
only the first 3 components of the tensor (or vector) are shown, which
means that it is impossible to access a component like MFY, this is rather
disappointing!

1 Highlighted in purple.

54 Solving in Salome-Meca

FIGURE 5.7: ’Picking ’ a result from the screen

5.4 Looking at ASCII results 55

Maybe of interest in some case, we can display a tensor value, like
SMFY on a deformed shape, for that:

• in the tree choose stat___DEPL ;

• choose the instant we want;

• RMB click, Edit ;

• then select Deformed Shape and Scalar Map ;

• in the Scalar Field pull down to stat___SIPO_ELNO ;

• in Scalar Bar :

– in the Scalar Mode ;

– pull down to the component SMFY ;

• push OK .

And the ’ScalarDef.Shape’ results display should look like figure 5.8.

5.4 Looking at ASCII results

5.4.1 Printing RESULTAT

It is easy to read the .resu file with any text editor.

First is the printout of the reaction sum:

#

#--

#

#ASTER 11.03.22 CONCEPT sum_reac CALCULE LE 25/06/2013 A 06:58:46 DE TYPE

#TABLE_SDASTER

INTITULE RESU NOM_CHAM NUME_ORDRE INST RESULT_X

RESULT_Y RESULT_Z MOMENT_X MOMENT_Y MOMENT_Z

sum reactions REAC_NODA 1 2 .000E+00 0 .000E+00
0 .000E+00 0 .000E+00 0 .000E+00 0 .000E+00 0 .000E+00
sum reactions REAC_NODA 2 3 .000E+00 8 .834E−27

8 .811E−12 2 .089E+02 6 .750E+04 −1.692E−11 −3.061E−24
sum reactions REAC_NODA 3 4 .000E+00 1 .516E−26

1 .137E−13 3 .439E+02 −8.731E−11 −2.932E−11 −3.292E−24
sum reactions REAC_NODA 4 5 .000E+00 2 .913E−26

−2.274E−13 6 .439E+02 −1.746E−10 −5.634E−11 −6.151E−24
sum reactions REAC_NODA 5 6 .000E+00 9 .137E−27

−1.137E−13 2 .000E+02 −7.276E−11 −1.801E−11 −1.954E−24

56 Solving in Salome-Meca

Then the printout of the maximum displacement, component DZ, for
the ’topbeam’ group:

−−
ASTER 1 1 . 0 3 . 2 2 CONCEPT stat CALCULE LE 2 5 / 0 6 / 2 0 1 3 A 0 6 : 5 8 : 4 6 DE TYPE EVOL_ELAS

ENTITES TOPOLOGIQUES SELECTIONNEES

GROUP_MA : topbeam

======>

−−−−−−>
CHAMP AUX NOEUDS DE NOM SYMBOLIQUE DEPL

NUMERO D ’ORDRE: 1 INST : 2 .000E+00

LA VALEUR MAXIMALE DE DZ EST 0 .000E+00 EN 17 NOEUD(S) : N2
LA VALEUR MINIMALE DE DZ EST 0 .000E+00 EN 17 NOEUD(S) : N2

======>

−−−−−−>
CHAMP AUX NOEUDS DE NOM SYMBOLIQUE DEPL
NUMERO D’ORDRE : 2 INST : 3 . 000E+00

LA VALEUR MAXIMALE DE DZ EST −1.534E−03 EN 1 NOEUD (S) : N2

LA VALEUR MINIMALE DE DZ EST −2.116E+00 EN 1 NOEUD (S) : N26

======>

−−−−−−>
CHAMP AUX NOEUDS DE NOM SYMBOLIQUE DEPL

NUMERO D ’ORDRE: 3 INST : 4 .000E+00

LA VALEUR MAXIMALE DE DZ EST −4.531E−03 EN 1 NOEUD(S) : N5
LA VALEUR MINIMALE DE DZ EST −3.571E+00 EN 1 NOEUD(S) : N4

======>

−−−−−−>
CHAMP AUX NOEUDS DE NOM SYMBOLIQUE DEPL
NUMERO D’ORDRE : 4 INST : 5 . 000E+00

LA VALEUR MAXIMALE DE DZ EST −8.708E−03 EN 1 NOEUD (S) : N5

LA VALEUR MINIMALE DE DZ EST −6.772E+00 EN 1 NOEUD (S) : N4

======>

−−−−−−>
CHAMP AUX NOEUDS DE NOM SYMBOLIQUE DEPL

NUMERO D ’ORDRE: 5 INST : 6 .000E+00

LA VALEUR MAXIMALE DE DZ EST −2.785E−03 EN 1 NOEUD(S) : N5
LA VALEUR MINIMALE DE DZ EST −2.133E+00 EN 1 NOEUD(S) : N4

5.4 Looking at ASCII results 57

FIGURE 5.8: SMFY value on deformed shape

58 Solving in Salome-Meca

5.4.2 Printing results in TABLE

We can print results with IMPR_TABLE or with IMPR_RESU...

FORMAT=’RESULTAT’. The printed results have, of course, the same
value as long as we print the same thing; the appearance may be more
pleasing in RESULTAT or in TABLE mode, this a matter of taste.

TABLE makes it easier to export to a spreadsheet. And for this a clever
use of the keyword SEPARATEUR allows more exporting flexibility to the
output file.

The object TABLE allows many manipulations with some Python code
which may be very helpful. Later in this book there are a few examples of
tables manipulated with Python.

5.5 Verifying the results

What we have here is not quite a simple problem which could be easily
solved by hand, we would need to apply the virtual work theory, lead-
ing to a lengthy process of solving a set of 3 equations with 3 unknowns
variables1.

However a first critical look at the ASCII results shows:

• at INST=2, reactions are null, as expected there is no load;

• at INST=3, the sum of the vertical reactions is equal to 13.5 times
the mass (with due allowance to units and the value of 10 we used
for g), the reactions are not symmetrical as expected as a 10 kg mass
is sitting at a quarter of the length of the top beam, on ’massN’,
again as expected;

• at INST=4, the sum of the reactions is equal to 13.5 times the mass
plus the 135 N force on ’loadS’, the reactions are now symmetrical
as the 135 N force balances the 10 kg mass, multiplied by the 1.35
factor, again as expected;

1 This is what Code_Aster does, with a few more equations!

5.6 Spotting a mistake? 59

• at INST=5, the sum of the reactions is increased by 300 N, that’s
the “distributed load” applied on ’topbeam’ with its 1.5 multiplier,
again as expected;

• and at INST=6, the sum of the reactions is just 200 N, balancing
the “distributed load” applied on ’topbeam’ with its 1.0 multiplier,
all good.

And we should always perform this type of simple checkup, and if
it is not “as expected”, something is wrong somewhere and should be
sorted out. The following tables summarize what are the right1 results for
frame1 example:

Code_Aster INST 2 3 4
maximum vertical displacement DZ mm 0 -2.116 -3.571
’topbeam’ max bending moment MFY Nmm 0 3.54E+04 5.24E+04
’topbeam’ min bending moment MFY Nmm 0 -2.45E+04 -2.43E+04

’groundS’ vertical reaction DZ N 0 64.33 171.94
’groundN’ vertical reaction DZ N 0 144.54 171.94
’groundS’ moment reaction DRX Nmm 0 -2.07E+04 -2.60E+04
’groundN’ moment reaction DRX Nmm 0 8.04E+03 2.60E+04

Code_Aster INST 5 6
maximum vertical displacement DZ mm -6.772 -2.133
’topbeam’ max bending moment MFY Nmm 9.57E+04 2.88E+04
’topbeam’ min bending moment MFY Nmm -5.16E+04 -1.82E+04

’groundS’ vertical reaction DZ N 321.94 100.00
’groundN’ vertical reaction DZ N 321.94 100.00
’groundS’ moment reaction DRX Nmm -4.74E+04 -1.43E+04
’groundN’ moment reaction DRX Nmm 4.74E+04 1.43E+04

5.6 Spotting a mistake?

Taking a closer look at figure 5.4 we can see a 5.24E4 value for the bend-
ing moment MFY in the ’topbeam’ at the corner where it joins the mast,
but the value of the same field MFY seems to be rather different, in fact it is
null, in the ’mast’ at the same corner. As the connection is rigid shouldn’t
we have the same value in each member?

Have we spotted a mistake in the calculation?

1 Right? More exactly the one calculated on my computer!

60 Solving in Salome-Meca

YES but NO!

If we display the value of MFZ we can see the same value of 5.24E4 for
the bending moment MFZ in the ’mast’. Figure 5.9 shows the two result
values on the same picture, MFY at the bottom and MFZ at the top.

FIGURE 5.9: MFY in ’topbeam’ equals MFZ in ’mast’ at corner

The answer is that the local axis of the ’topbeam’ and ’mast’ groups are
not oriented in the same direction, this is explained in chapter 6.3 .

CHAPTER 6

Understanding some details

Dimensions will always be expressed in the least useable terms. For
example, velocity will be expressed in furlongs/fortnight.

Murphy’s law.

Before refining the model and the analysis we make a pause to go
deeper into some details like:

• units;

• some Code_Aster jargon related to stress results;

• beam elements orientation;

• understanding the various messages of the .mess file;

• the “Overwriting” rule.

6.1 Dealing with units

The previous model has its lengths in millimeters, its forces in Newton
and its time in seconds. In such a system we need to express the mass in

61

62 Understanding some details

tons and the mass density in t/mm3. These oddities, though common in
the world of engineering are necessary to form an homogeneous system
of units.

In frame1 example: the volume of the element is calculated by
Code_Aster in cubic mm which multiplied by the mass density gives us
mass in ton, which again multiplied by an acceleration, which is implied in
mm per square seconds, gives us kilograms multiplied by meters divided
by squared seconds also known as Newton. Then the forces results are in
Newton, N , the moments results in N.mm and the stresses in N/mm2.

All this to say that Code_Aster is not aware of the units we use, given a
set of units as entries it produces results in a set of homogeneous units.

The following table summaries the two mostly used mechanical engi-
neering sets of units, “mm.t.s” and “SI”, also known as “ISO”, with a few
typical values 1:

physical quantity dimension mm.t.s SI
base units length L mm m

mass M t kg
time T s s

temperature ° K K
derived units angle 1 rad rad

frequency T−1 Hz Hz
force M.L.T−2 N N

pressure, stress M.L−1.T−2 N/mm2 N/m2

mass density M.L−3 t/mm3 kg/m3

example, steel mass density M.L−3 7.80E-09 7800
example, gravity acceleration L.T−2 9810 9.81

example, steel Young modulus M.L−1.T−2 210000 2.10E11

1 For temperature the base unit is Kelvin degree, everyday Celsius degree scale uses the same
increment, but Farenheit does not.

6.2 Understanding SIEF, SIPO, SIPM... 63

6.2 Understanding SIEF, SIPO, SIPM...

The fields DEPL and SIEF_ELGA are calculated even if we do not re-
quest it in CALC_CHAMP. Calculation and/or printing of any field can be
restricted to one or more of its component with NOM_CMP.

Field DEPL means displacement.

The field SIEF_ELGA means SIgma (stress) or EFfort (force or mo-
ment), per ELement at GAuss points.

The field SIEF_ELNO means SIgma (stress) or EFfort (force or mo-
ment), per ELement at NOde.

With due allowance to stress or effort these two fields are meaningful
whatever the element.

For beams, the field SIEF_ELNO means EFfort (force or moment), per
ELement at NOdes. From a practical point of view it contains the normal
force, N, the 2 shear forces, VY and VZ, and the 3 moments, MT, MFY
and MFZ in the beam, in its LOCAL axis1.

The field EFGE_ELNO means EFfort (force or moment), GEneralised,
per ELement at NOdes, in the element local axis, it contains the same
components as SIEF_ELNO and for any practical purpose shows the
same things. The same applies at GAuss points for EFGE_ELGA.

For beams2, the field SIPO_ELNO means Stress (SIgma POutre), per
ELement at end NOdes. This is the stress produced by any of the three
forces and moment defined in SIEF_ELNO if they were acting alone on
the beam section. For example SMFY is the stress due to the single bend-
ing moment MFY, it is computed from MFY above and the beam charac-
teristics, defined in AFFE_CARA_ELEM...POUTRE3.

SIPM_ELNO4 (SIgma Poutre Maximum) gives the component of the
stress in the direction of the last 2 characters of the component name.
The most important SIXX, can be seen as the extremum, maximum or

1 For plates it would be NXX (with the unit of N/mm), NXY, NXY, MXX... in the local
element axis. And for 3D elements, pure stresses SIXX, SIYY, SIZZ, SIXY... in the global
axis .

2 And for beams only, this field is restricted to beams.
3 Here, SMFY = MFY

IY × RZ.
4 Same remark as above.

64 Understanding some details

minimum, normal stress, i.e. the addition of the normal stresses due to the
normal force and the two bending moments.

For beam elements, another important note is: the stress due to the tor-
sional moment is only true if the “Saint Venant” conditions are achieved,
that is to say there is no warping of the section. Which is more and more
false as the section differs from a round and closed one to an open one,
and/or if the warping is restrained by boundary conditions1. The actual
stress may then be much higher by a factor which can be ten or more,
the problem then cannot strictly be solved by this type of beam analy-
sis. This is a classical problem of stress analysis described in many text
books. Using solid elements connected to beams can be an alternative,
this is described in chapter 14.2 .

Another important note: Salome Post-Pro proposes as the first choice of
a field the option modulus, which is the “modulus” of the vector formed
by the sum of the first three components. For displacement this is the
sum of the first three, DX, DY, DZ and is thus a meaningful value2.
For some other fields like SIEF_ELNO or SIPO_ELNO this modulus
has therefore no engineering meaning and should never be looked at as a
serious information.

For plates, the fields SIEF_ELGA and SIEF_ELNO give 9 compo-
nents, the first three being the normal forces, ’N..’, the next three the
moments, ’M..’, and the last three the shear forces, ’V..’, in the ele-
ment LOCAL axis.

Document U2.01.05, named “Stresses, forces and strain”, is a useful
reference regarding this matter.

1 Some type of beam elements like POU_D_TG take warping restrain into account.
2 Just as well for reactions.

6.3 Orienting beam elements 65

6.3 Orienting beam elements

As we have seen in chapter 5.6 , not understanding the orientation of beam
local axis may lead: at best to improper result interpretation, at worst to
completely erroneous results.

In this example the ’topbeam’ group has its local Y axis lying in the
XOY global plane. It is the same for the ’mast’ group but since the el-
ements are strictly lying on the global Z axis, the local Y axis is strictly
lying in the global Y axis. Figure 6.1 shows the beam orientation as de-
fined in the original .geo and .comm files.

FIGURE 6.1: Original orientation and orienting the ’topbeam’ elements

To modify this, we search for these lines in the frame1.comm:

66 Understanding some details

#ORIENTATION=_F(
#GROUP_MA=(’mast’,),
#CARA=’VECT_Y’,
#VALE=(1.0, 0.0, 0.0,),

#),

Un-comment them, this puts the local y axis of mast beam pointing
in the global X direction and produces a continuous MFY in ’mast’ and
’topbeam’ groups.

Search again for these other lines in the frame1.comm:

#ORIENTATION=_F(
#GROUP_MA=(’topbeam’,),
#CARA=’ANGL_VRIL’,
#VALE=90.0,

#),

Un-comment them and change VALE to 90.01, so it becomes:

ORIENTATION=_F (
GROUP_MA=(’topbeam’ ,) ,
CARA=’ANGL_VRIL’ ,
VALE= 9 0 . 0 ,

) ,

If we run the calculation, we can see a reduced maximum displacement.
In fact the rectangular section of the top bar (group ’topbeam’) was
originally lying on its flat side and we have turned it 90 degrees along its
own axis so it now lies vertically, just like in the figure 6.1.

The rule for the orientation of the local axis of beams2 inCode_Aster is
very simple:

• the local x axis lies along the beam;

• the local y axis lies by default in the global XOY plane;

• and the local z completes the trihedron.

1 Here the angles are given in degrees, somewhere else in radians! One has to be careful.
2 Or any line element.

6.3 Orienting beam elements 67

Here “by default” means: the keyword ORIENTATION is not specified in
the .comm file for the given group.

If the beam is strictly parallel to the global Z axis, the beam y local axis
is then exactly coincident with the global Y axis.

If we have a circular array of vertical beams along the Z axis around
a circle in the XOY plane and want them to have a rectangular section
pointing towards the center of the circle, the trick is to offset them slightly
from vertical, just enough so that the tangent of the angle is not null.

In the following figures, we have a few cases depicting beam orienta-
tion1:

• In figure 6.2, a circular array of three beams of rectangular section,
lying “on their flat” at an angle of 30° on the global horizontal plane
XOY, without any ORIENTATION keyword.

FIGURE 6.2: Circular array of beam, y local axis lying in the global XOY plane

1 In these figures the global axis Z is vertical

68 Understanding some details

• In figure 6.3, a similar array with the beams lying exactly vertical,
strictly parallel to Z global axis, without any ORIENTATION key-
word, note the local y axis pointing in Y global axis.

FIGURE 6.3: Circular array of beam, , local x axis strictly vertical, y local axis
lying in the global XOY plane and pointing in Y direction

6.3 Orienting beam elements 69

• Figure 6.4, is almost like figure 6.3 but the x local axis is turned a
bit so as to be off vertical1, note the local axis z pointing towards
the center of the global coordinate system.

FIGURE 6.4: Circular array of beam, local x axis slightly offset from vertical z
local axis lying in the global XOY plane and pointing towards the array’s center

1 The beams are not exactly parallel.

70 Understanding some details

• Figure 6.5 shows almost the same case as n figure 6.2, but the
third beam at the top of the figure is rotated by 90° with the
keywords ORIENTATION=_F(....,CARA=’ANGL_VRIL’,

VALE=90.0,),.

FIGURE 6.5: One beam rotated 90° with ORIENTATION=_F(....
CARA=’ANGL_VRIL’, VALE=90.0,)

6.3 Orienting beam elements 71

• In figure 6.6, the two beams occupy an identical position in 3D
space but the order of their nodes is inverted.

FIGURE 6.6: Node order reversed

As a general rule I advise to build the mesh with:

• global Z is the vertical, earth gravity direction, pointing upward;

• global X is the principal direction of the mesh, the direction of mo-
tion for a mobile object (road vehicle, airplane or ship);

• global Y completes the trihedron.

Another way to define the orientation of beam element, or group of
beam element, is to use the following syntax:

ORIENTATION=_F (
GROUP_MA=(’topbeam’ ,) ,
CARA=’VECT_Y’ ,
VALE= (0 . 0 , 0 . 0 , 1 . 0) ,

) ,

which orients the local Y axis in the direction of the global Z axis.

Again document U4.42.01 gives all the instructions, and more key-
words, on how to change the orientation of the local axis.

When we perform any change of orientation of one beam, we of course
change its local axis, this has to be kept in mind to understand the forces
and stresses results. This applies also to the forces applied along the beam

72 Understanding some details

if defined with the keyword REPERE=’LOCAL’, and may lead to exactly
the reverse of what we expected!

Once we have fully understood the principles of beam orientation in
Code_Aster and applied them in the mesh and groups of element we
may well find it is hardly ever necessary to use anything but the key-
word ANGL_VRIL to model any practical model. However when we are
in doubt about some orientation it is always a good idea to perform a
“dummy” analysis with loads and boundary conditions restricted to the
very area raising the doubt and to check the results at various orientations
with a quick hand calculation1.

6.4 Finding it out when things go wrong

In this first example all went well and we got a result at the first try2. Let’s
say this is an exception. We, more than often, have some kinds of errors
in the early stages. The only way around is to look at the .mess file, the
different kinds of errors are quite explicitly described and the .comm file
can be corrected accordingly.

At the beginning of a project there, most probably, are many syntax
errors3, and it can make debugging a rather tedious process. Even when
the calculation gives a result there may be warnings in the .mess file. As
is usually stated in the warning itself we must understand what it means
before taking the results for granted.

Here is the end of the .mess file in case of success:

EXECUTION_CODE_ASTER_EXIT_9671=0

=0 means no error, no warning. 9671 is the job ID, in case of problems
we find some files with this ID in $HOME/flasheur directory.

Here is the end of a .mess file with a typical Syntax Error:

1 In chapter 17.2 we explain how to draw in a graphical window, Gmsh or Salome, vectors
showing the local beam axis.

2 The guy, or girl, who typed all this command file without any error is a lucky one!
3 All the more so as we proceed without Eficas.

6.5 Understanding the “Overwriting” rule 73

! !
! erreur de syntaxe ,
Erreur de nom :
name ’DEFI_GROUPE’ is not defined ligne 11 !

! !

We should have written DEFI_GROUP instead of DEFI_GROUPE.

If we have =1 instead of =0 at the end of the file, we must look higher
in the file until we find something like this:

!−−!
! <EXCEPTION> <MODELISA7_75> !
! !
! le GROUP_NO couron ne fait pas partie du maillage : !
! maillage !

!−−!

The error description always begins with a < character. Here some com-
mand refers to the group ’couron’ which is not part of the mesh. We do
not go any further in the description of errors and warnings this is well
documented in the .mess file.

And our ingeniousness in raising errors does not seem to have any limit.

A final note to point out is: if a fatal error is briefly repeated at the end
of the .mess file, a more complete explanation is situated earlier in the
same file, just by the command that generated the fatal error1.

6.5 Understanding the “Overwriting” rule

This rule governs how keyword repetitions are handled in the .comm
file, we give here some practical examples. This topic is explained in
U1.03.002.

In this first example, we give to the group ’massN’, at first the prop-
erty of a beam -which is wrong- and in a second sentence the property
of a discrete element, only the second one is applied, luckily it is what

1 The “just by” word must be taken with a grain of salt, as for a PAR_LOT=’NON’ run the
error message may not pop up exactly where it is relevant, though it is descriptive enough.

2 The translation of the french “Surcharge” by “Overload” in the machine translation of the
English version of the documentation does not look satisfactory to me, and I prefer the word
“Overwriting”.

74 Understanding some details

we wanted. Swapping the two sentences would have raised an error as
’massN’ which is here a point element, cannot be a beam!

model=AFFE_MODELE (
MAILLAGE=mesh ,
AFFE=(

_F (
GROUP_MA=(’topbeam’ ,’mast’ ,’massN’ ,) ,
PHENOMENE=’MECANIQUE’ ,
MODELISATION=’POU_D_E’ ,

) ,
_F (

GROUP_MA=(’massN’ ,) ,
PHENOMENE=’MECANIQUE’ ,
MODELISATION=’DIS_T’ ,

) ,
) ,

) ;

In this second example, we specify twice, a load on the same element
(here a node).

cc=AFFE_CHAR_MECA (
MODELE=model ,
FORCE_NODALE=(
_F (GROUP_NO=(’loadS’ ,) ,FZ=−100 ,) ,
_F (GROUP_NO=(’loadS’ ,) ,FX=2000 ,FZ=−1000 ,) ,

) ,
) ;

The effective load taken into account in the calculation is FX=2000,

FZ=-1000:

• the second instance FZ=-1000 REPLACES the first one
FZ=-1001;

• the FX=2000 of the second sentence is added to the load case2.

We should always remember clearly this feature when specifying loads
within a single AFFE_CHAR_MECA.

1 Some finite element codes would have made the sum resulting in FZ=-1100.
2 As it replaces a non existent item!

CHAPTER 7

Adding end release to the top bar

In this chapter, we slightly modify the first structure, adding end re-
lease to the top beam.

We use some parametric scripting capabilities of Gmsh.

And look at the results in the ParaVis module of Salome.

It is obvious from the results of the preceding example that the top bar
is rigidly linked to the top of the masts. What, if we want a rotation free
joint? Code_Aster does not provide any built-in end release option at the
end of a beam element. What we do is create a short (10 mm) line element
in the mesh at this connection. Then we give it the properties of a discrete
element K_TR_D_L as specified in U4.42.01. Appendix C 3.1 deals in
more details with these elements.

75

76 Adding end release to the top bar

7.1 Using parametric scripting in Gmsh

We take the opportunity to make a new .geo file and mesh, using some
scripting capabilities of Gmsh to first of all create a new mesh. Here is the
file:

cl1=100;
max=3;
pas=2;
ly=1000; //half length of frame along y
hz=1000; //height of frame along z
dly=10; //length of hinge along y
Point (1) = {0 , 0 , 1000 , cl1 } ;
//create Point
For i In { 0 :max :pas }
Point(10+i) = {0 ,ly / 2 * (i−1) , hz , cl1 } ;
Point(20+i) = { 0 , (ly−dly) * (i−1) , hz , cl1 } ;
Point(30+i) = {0 ,ly * (i−1) , hz , cl1 } ;
Point(40+i) = {0 ,ly * (i−1) , 0 , cl1 } ;

EndFor
//create Line
top [] = { } ; //initialize list for top
hinge [] = { } ; //idem for hinge
mast [] = { } ;
For i In { 0 :max :pas }
Line(10+i) = {1 , 10+i } ;
top []+=10+i ; //add element in top list
Line(20+i) = {10+i , 20+i } ;
top []+=20+i ;
Line(30+i) = {20+i , 30+i } ;
hinge []+=30+i ; //add element in hinge list
Line(40+i) = {30+i , 40+i } ;
mast []+=40+i ;

EndFor
//makes the group ’topbeam’ with the list top,
Physical Line ("topbeam") = top [] ;
Physical Line ("hinge") =hinge [] ;
Physical Line ("mast") = mast [] ;
Physical Point ("groundS") = { 4 0 } ;
Physical Point ("groundN") = { 4 2 } ;
Physical Point ("loadS") = { 1 0 } ;
Physical Point ("massN") = { 1 2 } ;

The first lines set the values of some control variables1, then some of the
frame dimensions which are used in the next loops to create the points. It
should be noted that the points are named in a discontinuous order, this is

1 The hinge length is very small and is hardly visible in the graphical window at a normal
scale, figure 7.1 is a zoom view on the discrete element n° 30 in black, with mast in red and
top beam in green.

7.1 Using parametric scripting in Gmsh 77

allowed in Gmsh1. Next, we initialize some lists which we fill up in the
next loop while creating the lines, to finally put these lists in Physical.

FIGURE 7.1: Zoom on the discrete line, n° 30, in black

There is a feature in the loop creating the lines, it is the outward orien-
tation of the created geometrical lines. In the Gmsh graphical window,
if we set the Tangents field at a value of 100, like in figure 7.2, we can
see the lines of the ’topbeam’ oriented outwards. If we set a load with
FORCE_POUTRE, with values related to element orientation like N2 the
force pulls outwards from the center, it maybe what we want. If not the
loop for creating the lines should be written differently3.

However the Code_Aster MODI_MAILLAGE ... ORIE_LIGNE

comes in handy to reorient line elements on request.

1 This allows us to use some kind of “logical” numbering.
2 In tension along the beam.
3 We wrote it this way here so as to illustrate the feature.

78 Adding end release to the top bar

FIGURE 7.2: ’frame2’ with line orientation

7.2 Modifying the .comm file

As the line element may not be oriented exactly as we want we first reori-
ent the top beam along the y global axis with aCode_Aster command:

#U4.23.04
mesh=MODI_MAILLAGE (
MAILLAGE=mesh ,
reuse =mesh ,
ORIE_LIGNE=(
#next lines reorient all the line element on ’topbeam’
#along a vector lying along y global axis
#with origin at node ’masseN
_F (

7.2 Modifying the .comm file 79

GROUP_MA=’topbeam’ ,
VECT_TANG=(0 , 1 , 0 ,) ,
GROUP_NO=’massN’ ,

) ,
#next lines raise an error as the elements in ’mast’
#are not all connected
#we would have needed 2 groups ’mastN’ and ’mastS’
#like wise for the ’hinge’ group
#_F(
#GROUP_MA=’mast’,
#VECT_TANG=(0, 0, 1,),
#GROUP_NO=’groundN’,

#),
) ,

) ;

This is not strictly necessary for this simple example, however it comes
useful with more demanding ones. Note: the elements within a group
must be connected so as to apply this operator, if not, we have to split in
more groups, which can become a bit tedious.

Secondly we modify AFFE_MODELE.

As said earlier we are going to use a discrete element ’K_TR_D_L’
from U4.42.01. in this type of element:

• K stands for stiffness;

• TR for Translation and Rotation;

• D for diagonal only matrix (only 6 terms);

• and L for line (the element being a SEG2 mesh element).

model=AFFE_MODELE (
MAILLAGE=mesh ,
AFFE=(

. .
_F (

GROUP_MA=(’hinge’ ,) ,PHENOMENE=’MECANIQUE’ ,
MODELISATION=’DIS_TR’ ,

) ,
) ,

) ;

Then the ad-hoc lines to add in AFFE_CARA_ELEM are so:

80 Adding end release to the top bar

DISCRET = (.
#here we define the hinges as an element
#with very low stiffness 1e1 in rotation around
#the X axis in GLOBAL coordinates

_F (
GROUP_MA=(’hinge’ ,) ,
CARA=’K_TR_D_L’ ,
VALE=(1e6 , 1e6 , 1e6 , 0 , 1e9 , 1e9 ,) ,
REPERE=’GLOBAL’ ,

) ,
) ,
. .

The order of the six value is:

• stiffness in translation along X, Y, Z;

• stiffness in rotation around X, Y, Z;

we give relatively high value to all of them but for the rotation around X
which is set to null1.

X being here in ’GLOBAL’ coordinate. In ’LOCAL’ it would have been
a free rotation around Y with the specified ’ORIENTATION’2.

Note: the orientation of this discrete line element follows exactly the
same rules as the one described earlier for beams.

7.3 Solving

This part is the same as for frame1 example, see chapter 3.

We should just check, once the calculation is made, that the top bar is
really articulated, that is to say no moments are transmitted to the masts.
In fact a very small moment is transmitted due to the offset of the vertical
load, the length of the hinge, on top of the mast.

1 Or a very small value.
2 Appendix C 3.1 provides some formulas to hand calculate the matrix rigidity coefficients of

a line member.

7.4 Viewing the results in the ParaVis module 81

7.4 Viewing the results in the ParaVis module

As ParaVis is going to replace Post-Pro as a result display module in Sa-
lome, from version 7 upward, and Salome-Meca, it is time to learn a few
basics about how to use it. We first go in the ParaVis module of Salome:

• select the file to open, either with File OpenParaViewFile...

or with the Open File Icon;

• in the PipeLine Browser, if this tear off window is not visible
open it with View Windows PipeLine Browser 1;

• in the Properties window:

– in Supports tick the elements we want, here we leave every-
thing ticked;

– in Fields tick stat_DEPL ;

– push the green colored Apply button, the frame appears in the
window;

• push on the Warp By Vector icon, lying in the middle of the
View Toolbars Common tool bar;

• eventually fill the Scale Factor field in the Properties window with
a convenient value, here 10, and push Apply 2;

• in the Display window, on the Color by pull down list, probably set
to Solid Color on a first run, select stat_DEPL_Vector 3;

• on the pull down list just to the right pull to Magnitude ;

• toggle Color Legend Visibility icon , sitting at the left of this
toolbar;

• in the Time toolbar4 choose the INST we want;

• push the Rescale to Data Range icon, this has to be done all
the time to be certain of what is displayed on the screen!

1 The useful working windows of ParaVis are hidden in View Windows .
2 Or in the Object Inspector type the Scale Factor , here 10, and push Apply
3 This is also available through a tool bar hidden in View Toolbars Active Variable Controls
4 This one is in View Toolbars Current Time Controls

82 Adding end release to the top bar

FIGURE 7.3: ParaVis view of displacement

7.4 Viewing the results in the ParaVis module 83

At the end of this rather lengthy process, we get a view like figure 7.3
at INST 61.

There may be quite a bit of searching around to find out where are the
windows or the tool bars in ParaVis, it is very important to make room for
the tool bars, that otherwise may be hidden out of the screen on the right
hand side or partially superposed one on top of the other.

And now to display some forces in the beams:

• in the Pipeline Browser select again the main result;

• in the Properties window:

– in Supports tick the elements we want, here ’mast’ and ’top-
beam’;

– in Fields tick stat_SIEF_ELNO ;

– push the green colored Apply button;

• in the menu select Filters Integration Points Elno Mesh an entry ap-
pears in the PipeLine Browser, make it visible;

• push again the green colored Apply button in the window Proper-
ties;

• on the pull down list, probably named Solid Color select
stat_SIEF_ELNO ;

• on the pull down list just to the right select MFY ;

• toggle Color Legend Visibility icon, sitting at the left of this toolbar;

• in the Time toobar2 choose the INST we want;

• push the Rescale to Data Range icon this has to be done all the time
to be certain of what one is looking at on the screen!

At the end of this process we get a view like figure 7.4, at INST 6, showing
the bending moment around the local y axis.

1 I changed some of the visibility settings in File Preferences... ParaVis and by pushing
the icon Edit Color Map to change the defaults values which do not render a nice image on
a paper print.

2 This one in View Toolbars Current Time Controls

84 Adding end release to the top bar

FIGURE 7.4: ParaVis view of bending moment

7.5 Looking at ASCII results 85

7.5 Looking at ASCII results

This example, with the pinned end top beam, provides a very easy way
to check up the result, for example the deflection for a simply supported
beam subject to a distributed load is known as being:

DZ =
5

384

pL4

EI

which in this case turns out to be:

DZ =
5

384
× 0.1× 19804

210000× 11518
= 8.27

which compares to the printed results at INST=6

−−
ASTER 1 1 . 0 3 . 2 2 CONCEPT stat CALCULE LE 2 5 / 0 6 / 2 0 1 3 A 1 2 : 1 2 : 5 5 DE TYPE EVOL_ELAS

ENTITES TOPOLOGIQUES SELECTIONNEES

GROUP_MA : topbeam

======>

−−−−−−>
CHAMP AUX NOEUDS DE NOM SYMBOLIQUE DEPL

NUMERO D ’ORDRE: 5 INST : 6 .000E+00

LA VALEUR MAXIMALE DE DZ EST −2.885E−03 EN 2 NOEUD(S) : N4
LA VALEUR MINIMALE DE DZ EST −7.822E+00 EN 1 NOEUD(S) : N1

Likewise the maximum bending moment is:

MFY =
pL2

8

which in this case turns out to be1:

MFY =
0.1× 19802

8
= 49005

which compares to the printed results at INST=6

1 The question arises whether to use a length of 2000, overall length, or 1980, length excluding
the end hinges.

86 Adding end release to the top bar

−−
ASTER 1 1 . 0 3 . 2 2 CONCEPT stat CALCULE LE 2 5 / 0 6 / 2 0 1 3 A 1 2 : 1 2 : 5 5 DE TYPE EVOL_ELAS

ENTITES TOPOLOGIQUES SELECTIONNEES

GROUP_MA : topbeam

======>

−−−−−−>
CHAMP PAR ELEMENT AUX NOEUDS DE NOM SYMBOLIQUE SIEF_ELNO

NUMERO D ’ORDRE: 5 INST : 6 .000E+00

LA VALEUR MAXIMALE DE MFY EST 1 .164E−10 EN 1 MAILLE(S) : M20
LA VALEUR MAXIMALE DE MFZ EST 3 .073E−13 EN 1 MAILLE(S) : M16
LA VALEUR MINIMALE DE MFY EST −4.635E+04 EN 1 MAILLE(S) : M5
LA VALEUR MINIMALE DE MFZ EST −3.073E−13 EN 1 MAILLE(S) : M20

The [not so] slight discrepancies can be practically put onto the account
of the fact that the load is not exactly a distributed load1.

Generally, this kind of hand calculation is done to provide a rough esti-
mate of a result value to ensure the calculation validity.

If we want to perform a bench mark of Code_Aster, we can:

• isolate the ’topbeam’ as a single span beam pinned in between 2
fixed supports (this can be dine by adding the group oh node ’mast’
to the boundary condition ’ground’,

• apply in ’cr’ a true distributed load with,

FORCE_POUTRE=_F(GROUP_MA=(’topbeam’,),FZ=-0.1,);

• run the solution with only that load case;

and we will find an exact agreement of the Code_Aster results values with
the text book values.

7.6 Using an alternative option with beam elements

Instead of using a K_TR_D_L for the ’hinge’ group we may use a beam
element with a null, or near null, value for the moment of inertia on the
right axis. We then should not forget to assign with elements a beam
element model and assign them a material as well. Here are the command
file abstracts doing that.

1 A larger number of nodes on ’mast’ group would produce a closer result.

7.6 Using an alternative option with beam elements 87

Model section:

model=AFFE_MODELE (
MAILLAGE=mesh ,
AFFE=(

_F (
GROUP_MA=(’topbeam’ ,’mast’ ,’hinge’ ,) ,
PHENOMENE=’MECANIQUE’ ,
MODELISATION=’POU_D_T’ ,

) ,
_F (

GROUP_MA=(’massN’ ,) ,
PHENOMENE=’MECANIQUE’ ,
MODELISATION=’DIS_T’ ,

) ,
#_F(

#GROUP_MA=(’hinge’,),
PHENOMENE=’MECANIQUE’ ,
#MODELISATION=’DIS_TR’,

#),
) ,

) ;

Material section:

material=AFFE_MATERIAU (
MAILLAGE=mesh ,
AFFE=_F (
GROUP_MA=(’topbeam’ ,’mast’ ,’hinge’ ,) ,
MATER=steel ,

) ,
) ;

Element properties section:

elemcar=AFFE_CARA_ELEM (
MODELE=model ,
POUTRE=(

#the vertical members are rectangular section
#(40x20 mm) with a thickness of 1.5 mm
_F (

GROUP_MA=(’mast’ ,) ,SECTION=’RECTANGLE’ ,
CARA=(’HY’ ,’HZ’ ,’EP’ ,) ,VALE=(40 , 20 , 1 . 5 ,) ,

) ,
#same with the horizontal bar
_F (

GROUP_MA=(’topbeam’ ,) ,SECTION=’RECTANGLE’ ,
CARA=(’HY’ ,’HZ’ ,’EP’ ,) ,VALE=(40 , 20 , 1 . 5 ,) ,

) ,
_F (

GROUP_MA=(’hinge’ ,) ,SECTION=’GENERALE’ ,
CARA=(

88 Adding end release to the top bar

’A’ ,’IY’ ,’IZ’ ,’AY’ ,’AZ’ ,’EY’ ,’EZ’ ,
’JX’ ,’RY’ ,’RZ’ ,’RT’ ,

) ,
VALE=(

171 , 0 . 1 , 34908 , 1 . 5 , 1 . 5 , 0 , 0 ,
26700 , 20 , 10 , 12 ,

) ,
) ,

) ,
#orientation would be here if necessary
DISCRET=(

_F (GROUP_MA=’massN’ , CARA=’M_T_D_N’ ,VALE = (. 0 1) ,) ,
) ,

) ;

As we use a null or near null for one value of moment of inertia1 it is of
course meaningless to try to calculate the related bending stress in these
elements, but the forces and moments are meaningful!

Last but not least using short beam elements or discrete elements is
not strictly equivalent, chapter 3.1 provides a deeper insight into discrete
stiffness elements.

1 However the values chosen for IZ or JX are true for the full tubular section and are thus
highly questionable.

CHAPTER 8

Making an highway sign

In this chapter, we modify the structure by adding some other beam
members and some plating making it much like a highway gantry
signal.

After the drawing and meshing of the plates we modify the com-
mand file for the pates.

And in the end we look at the graphical results in ParaVis and in
Gmsh.

For this study, we modify the geometry by adding a second top bar 200
mm below the first one, joining these two bars by 5 vertical members and
filling the gaps with a steel plate, leaving the hinged joints in between the
masts and the top panel1. Thus our frame looks very much like a motor-
way signal frame. And we modify the last load ’cr’ into ’cv’ representative
of the wind blowing onto the top panel.

Figure 8.1 shows the finished structure.
1 The joints being still modeled with discrete elements.

89

90 Making an highway sign

FIGURE 8.1: Sketch of frame3

8.1 Creating geometry and mesh in Gmsh

cls=25; //small characteristic length for the surfaces
clb=100; //coarser elsewhere
max=3;
pas=2;
ly=1000; //half length of frame along y
hz=1000; //height of frame along z
hz1=200;
dly=10; //length of hinge along y
Point (1) = {0 , 0 , hz , cls } ;
Point (101) = {0 , 0 , hz−hz1 , cls } ;
//create Point
For i In { 0 :max :pas }
Point(10+i) = {0 ,ly / 2 * (i−1) , hz , cls } ;
Point(20+i) = { 0 , (ly−dly) * (i−1) , hz , cls } ;
Point(30+i) = {0 ,ly * (i−1) , hz , clb } ;
Point(40+i) = {0 ,ly * (i−1) , hz−hz1 , clb } ;
Point(50+i) = {0 ,ly * (i−1) , 0 , clb } ;
//next point in middle of inner surfaces
Point(60+i) = {0 ,ly / 4 * (i−1) , hz−hz1 / 2 , cls } ;
//next points for bottom bar
Point(110+i) = {0 ,ly / 2 * (i−1) , hz−hz1 , cls } ;
Point(120+i) = { 0 , (ly−dly) * (i−1) , hz−hz1 , cls } ;
//next points for hollows in outside panels

8.1 Creating geometry and mesh in Gmsh 91

Point(210+i) = {0 ,ly / 2 * (i−1)*1.4 , hz−hz1 / 4 , cls } ;

Point(220+i) = {0 ,ly / 2 * (i−1)*1.6 , hz−hz1 / 4 , cls } ;

Point(230+i) = {0 ,ly / 2 * (i−1)*1.4 , hz−hz1 *3 /4 , cls } ;
Point(240+i) = {0 ,ly / 2 * (i−1)*1.6 , hz−hz1 *3 /4 , cls } ;

EndFor

//create Line
top [] = { } ; //initialize list for top
hinge [] = { } ; //idem for hinge
mast [] = { } ;
vertb [] = { } ;
panelN [] = { } ;
panelS [] = { } ;
For i In { 0 :max :pas }
Line(10+i) = {1 , 10+i } ;
top []+=10+i ; //add element in top list
Line(20+i) = {10+i , 20+i } ;
top []+=20+i ;
Line(110+i) = {101 , 110+i } ;
top []+=110+i ;
Line(120+i) = {110+i , 120+i } ;
top []+=120+i ;
Line(30+i) = {20+i , 30+i } ;
hinge []+=30+i ; //add element in hinge list
Line(130+i) = {120+i , 40+i } ;
hinge []+=130+i ;
Line(40+i) = {30+i , 40+i } ;
mast []+=40+i ;
Line(50+i) = {40+i , 50+i } ;
mast []+=50+i ;
Line(210+i) = {10+i , 110+i } ;
vertb []+=210+i ;
Line(220+i) = {20+i , 120+i } ;
vertb []+=220+i ;
//next lines for the hollows on outside panels
Line(250+i) = {210+i , 230+i } ;
Line(260+i) = {230+i , 240+i } ;
Line(270+i) = {220+i , 240+i } ;
Line(280+i) = {210+i , 220+i } ;

EndFor
Line (201) = {1 , 101} ;
vertb []+=201 ;
//makes sure the hinge line are not split in several elements
Transfinite Line {hinge [] } = 2 Using Progression 1;

Up to here, it is just like the previous example, with more beams, now
come the tricky part, creating the surface panels.

//create surface
For i In { 0 :max :pas }

//Loop and Surface on the interior

92 Making an highway sign

Line Loop(310+i) = {201 , 110+i , −(210+i) , −(10+i) } ;
Plane Surface(311+i) = {310+i } ;
//Loop and Surface on the exterior
Line Loop(320+i) = {210+i , 120+i , −(220+i) , −(20+i) } ;
Line Loop(320+i+1) = {280+i , 270+i , −(260+i) , −(250+i) } ;
//hollowed surface with two loops
Plane Surface(325+i) = {320+i , 320+i+1} ;
//inside surface on the inner loop
//minus sign for coherent normals
Plane Surface(335+i) = {−(320+i+ 1) } ;

EndFor
For i In { 0 :max :pas }
//forces the surface mesh to pass through the point
Point{60+i } In Surface{311+i } ;

EndFor
a [] = {311 , 325 , 335} ;
panelS [] =a [] ;
//changing next line to a[]={-313, -327};
//would reverse the normal but only in the saved mesh!!
//not visible in the geam GUI
a [] = {313 , 327} ;
panelN [] =a [] ;
Recombine Surface {panelN [] } ;
//Recombine Surface {panelS[]};

We create the surfaces within a loop, as we can see in figure 8.2
the normals are oriented differently, changing a[]={313, 327} to
a[]={-313, -327}, with the minus sign would put all the normals
in the same direction, however this is not visible in Gmsh GUI until one
read a mesh file! For this, in Gmsh File Save Mesh creates a .msh file
which can the be opened again and looks like figure 8.3.

We also create a hollow surface with two loops, first the outer one, then
the inner one1.

In the end, we specify Recombine Surface panelN[];, for one
of the group so as to mesh it with quadrilateral elements while panelS
is meshed only with triangles.

1 There may be as many loops as there are hollows.

8.1 Creating geometry and mesh in Gmsh 93

FIGURE 8.2: Orientation of normals from Geometry

Now we create two groups for the surfaces on either side.

//makes the group ’topbeam’ with the list top,
Physical Line ("topbeam") = top [] ;
Physical Line ("hinge") =hinge [] ;
Physical Line ("mast") = mast [] ;
Physical Line ("vertb") = vertb [] ;
Physical Surface ("panelN") = panelN [] ;
Physical Surface ("panelS") = panelS [] ;
Physical Point ("groundS") = { 5 0 } ;
Physical Point ("groundN") = { 5 2 } ;
Physical Point ("loadS") = { 1 0 } ;
Physical Point ("massN") = { 1 2 } ;
Physical Point ("oripanel") = { 6 0 } ;

Color Cyan { Surface {panelN [] } ; }
Color Yellow { Surface {panelS [] } ; }

94 Making an highway sign

Color Green { Line {top [] } ; }
Color Red { Line {mast [] } ; }
Color Purple { Line {vertb [] } ; }
Color Black { Line {hinge [] } ; }

FIGURE 8.3: Orientation of normals from Mesh saved as frame3.msh and re-
opened, with a[]=-313, -327

This last part creates the groups and assigns some color to the mesh.
To look at the orientations of the Surface in Gmsh, in the menu Tools

Options Geometry Visibility , we enter a realistic value in the Normals

field. Once meshed, with the extra 2D , the mesh looks like 8.31.

1 For the color to appear properly on mesh line elements Lines must be unchecked in Tools
Options Geometry Visibility .

8.2 Commanding for plate elements 95

The physical point ’oripanel’ is created to be used later as a reference
point to set the normal orientation in the command file.

We used the Point In Surface command to force one
Point to become a Node belonging to the Surface, the command
Line In Surface would do the same to force all nodes belonging to
a Line to be nodes on the Surface1.

Several notes:

• The rendering of the surface is possible only on the mesh not on the
geometry.

• Creating line loop by hand in the text editor must be done with an
extreme care as it is easy to create an inverted loop on which Gmsh
crashes after an error message.

8.2 Commanding for plate elements

Producing a .comm file for plates is quite straightforward for the first part.

DEBUT () ;

mesh=LIRE_MAILLAGE (INFO=1 ,UNITE=20 ,FORMAT=’MED’ ,) ;

mesh=DEFI_GROUP (
MAILLAGE=mesh ,

reuse =mesh ,
CREA_GROUP_MA=(

_F (NOM=’panel’ ,UNION=(’panelN’ ,’panelS’ ,) ,) ,
_F (NOM=’TOUT’ ,TOUT=’OUI’ ,) ,

) ,
CREA_GROUP_NO=(_F (TOUT_GROUP_MA=’OUI’ ,) ,) ,

) ;

mesh=MODI_MAILLAGE (
MAILLAGE=mesh ,
reuse =mesh ,
#U4.23.04
ORIE_NORM_COQUE=(

_F (
GROUP_MA=(’panel’ ,) ,
VECT_NORM= (1 . 0 , 0 , 0) ,

1 If the Point(s) or Line(s) do not lie exactly in the plane of a Plane Surface a distorted mesh
is created.

96 Making an highway sign

GROUP_NO=’oripanel’ ,

) ,

#_F(GROUP_MA=(’panelN’,),),
#_F(GROUP_MA=(’panelS’,),),

) ,
) ;

We create a new group which the UNION of the two panel groups cre-
ated in Gmsh.With ORIE_NORM_COQUE, we reorient the normals of
all the elements of this newly created group, in the direction given by
VECT_NORM with its origin on the node GROUP_NO=’oripanel’.

Then the assignation part.

model=AFFE_MODELE (
MAILLAGE=mesh ,

AFFE=(
_F (

GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,) ,
PHENOMENE=’MECANIQUE’ ,MODELISATION=’POU_D_T’ ,

) ,
_F (

GROUP_MA=(’massN’ ,) ,PHENOMENE=’MECANIQUE’ ,
MODELISATION=’DIS_T’ ,

) ,
_F (

GROUP_MA=(’hinge’ ,) ,PHENOMENE=’MECANIQUE’ ,
MODELISATION=’DIS_TR’ ,

) ,
#here is the modeling of plate element
_F (

GROUP_MA=(’panel’ ,) ,PHENOMENE=’MECANIQUE’ ,
MODELISATION=’DKT’ ,

) ,
) ,

) ;
steel=DEFI_MATERIAU (ELAS=_F (E=210000 . ,NU= 0 . 3 ,RHO=8e−9) ,) ;

material=AFFE_MATERIAU (
MAILLAGE=mesh ,
AFFE=_F (

GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,’panel’) ,
MATER=steel ,

) ,
) ;

elemcar=AFFE_CARA_ELEM (
MODELE=model ,
POUTRE=(

_F (
GROUP_MA=(’mast’ ,) ,

8.2 Commanding for plate elements 97

SECTION=’RECTANGLE’ ,CARA=(’HY’ ,’HZ’ ,’EP’ ,) ,
VALE=(40 , 2 0 , 1 . 5 ,) ,

) ,
_F (

GROUP_MA=(’topbeam’ ,) ,
SECTION=’RECTANGLE’ ,CARA=(’HY’ ,’HZ’ ,’EP’ ,) ,
VALE=(40 , 20 , 1 . 5 ,) ,

) ,
_F (

GROUP_MA=(’vertb’) ,
SECTION=’RECTANGLE’ ,CARA=(’HY’ ,’HZ’ ,’EP’ ,) ,
VALE=(20 , 20 , 1 . 5 ,) ,

) ,
) ,
DISCRET=(

_F (GROUP_MA=’massN’ , CARA=’M_T_D_N’ ,VALE = (. 0 1) ,) ,
_F (

GROUP_MA=’hinge’ ,
CARA=’K_TR_D_L’ ,VALE=(1e6 , 1e6 , 1e6 , 1e1 , 1e9 , 1e9) ,
REPERE=’GLOBAL’

) ,
) ,
#the plate is given a thickness of 3 or 1
#and the orientation of the element is defined
#by VECTEUR see U4.42.01
COQUE=(

_F (GROUP_MA=’panelN’ ,EPAIS= 3 . 0 ,VECTEUR= (0 , 1 , 0) ,) ,
_F (GROUP_MA=’panelS’ ,EPAIS= 1 . 0 ,VECTEUR= (0 , 1 , 0) ,) ,

) ,
) ;

We apply the panel properties to the UNION group panel but we
give different thickness to the groups panelN and panelS1.

VECTEUR is a vector whose projection on the element plane, sets the
local x axis of the coordinate system of the element. It is used to compute
the principal stresses2, it should not be normal to ANY element in the
group3! In our case it is a Y (global axis) oriented vector, lying perfectly
in the plane of all the elements, it is not always so easy!

We should not make a confusion between the normal vector and the vec-
tor defined just above. Just like any structural element, beam or discrete,
a plate, or a shell, needs an associated local coordinate system in which:

• local z axis is the normal vector, defined by the mesh topology it-
self;

1 And this 1 to 3 different thickness is visible in the flexural stress in the panel.
2 For anisotropic plates it is also used to define the anisotropic directions.
3 If this happens Code_Aster raises an error, and the vector needs another definition or the

group needs to be split into several others.

98 Making an highway sign

• local x axis is the projection of the above defined, VECTEUR, vector
on the plane tangent to the element at its barycenter, this is unknown
by the mesh topology andhas to be defined;

• local y axis completes the trihedron.

Figure 8.4 illustrates the matter.

FIGURE 8.4: Shell element local axis

With:

1. triangular shell element (1,2,3), with local z vector, normal, as given
from mesher or ORIE_NORM_COQUE;

2. VECTOR given as VECTEUR=(0,0,1), projected on element
gives local x axis;

3. complete local axis trihedron.

The boundary conditions are as follows.

ground=AFFE_CHAR_MECA (
MODELE=model ,
DDL_IMPO=_F (

GROUP_NO=(’groundS’ ,’groundN’ ,) ,
DX=0 ,DY=0 ,DZ=0 ,DRX=0 ,DRY=0 ,DRZ=0 ,

) ,
) ;

8.2 Commanding for plate elements 99

selfwght=AFFE_CHAR_MECA (
MODELE=model ,
PESANTEUR=_F (

GRAVITE=10000 ,DIRECTION=(0 ,0 , −1) ,
GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,’massN’ ,’panel’ ,) ,

) ,
) ;

cc=AFFE_CHAR_MECA (
MODELE=model ,
FORCE_NODALE=_F (GROUP_NO=(’loadS’ ,) ,FZ=−100 ,) ,

) ;

cv=AFFE_CHAR_MECA (
MODELE=model ,
#here we define a pressure on the plate elements
FORCE_COQUE=_F (GROUP_MA=(’panel’) ,PRES= 0 . 0 1 ,) ,
#next line would have meant a distributed force along x
#equivalent if normals are in the right direction
#FORCE_COQUE=_F(GROUP_MA=(’panel’),FX=-0.01,),

) ;

PRES is a uniform pressure, acting along the normal of the element, but
in the opposite direction, this can raise many errors or give unexpected
results if the normals are not oriented as we think they are! For this kind
of study I would rather use FORCE_COQUE, but for learning from the
mistakes let’s try with F3.

Stepping for the load case and solving.

selfw_m=DEFI_FONCTION (
NOM_PARA=’INST’ ,
VALE= (2 , 0 , 3 , 1 . 3 5 , 5 , 1 . 3 5 , 6 , 0 ,) ,
PROL_DROITE=’CONSTANT’ ,

) ;
cc_m=DEFI_FONCTION (

NOM_PARA=’INST’ ,
VALE= (3 , 0 , 4 , 1 , 5 , 1 , 6 , 0 ,) ,
PROL_GAUCHE=’CONSTANT’ ,PROL_DROITE=’CONSTANT’ ,

) ;
cv_m=DEFI_FONCTION (

NOM_PARA=’INST’ ,
VALE= (4 , 0 , 5 , 1 . 5 , 6 , 1) ,
PROL_GAUCHE=’CONSTANT’ ,PROL_DROITE=’CONSTANT’ ,

) ;

liste=DEFI_LIST_REEL (
DEBUT= 2 . 0 ,
INTERVALLE=_F (JUSQU_A=6 ,PAS= 1 . 0 ,) ,

) ;

100 Making an highway sign

stat=MECA_STATIQUE (
MODELE=model ,
CHAM_MATER=material ,
CARA_ELEM=elemcar ,
EXCIT=(

_F (CHARGE=ground ,) ,
_F (CHARGE=selfwght ,FONC_MULT=selfw_m ,) ,
_F (CHARGE=cc ,TYPE_CHARGE=’FIXE’ ,FONC_MULT=cc_m ,) ,
_F (CHARGE=cv ,TYPE_CHARGE=’FIXE’ ,FONC_MULT=cv_m ,) ,

) ,
LIST_INST=liste ,

) ;

stat=CALC_CHAMP (
reuse =stat ,RESULTAT=stat ,
CONTRAINTE=(

’SIEF_ELNO’ ,
’SIPO_ELNO’ ,
’SIPM_ELNO’ ,
’SIGM_ELNO’ ,

) ,
FORCE=(’REAC_NODA’) ,

) ;

In a single call of CALC_CHAMP we calculate forces, stresses and nodal
reactions1.

Keyword SIGM_ELNO is here to calculate the stress in the plate ele-
ment, but only in the neutral plane.

And the way to post-process the plate elements with the stress and cri-
teria on the top face is as follow:

stat2=POST_CHAMP (
RESULTAT=stat ,
GROUP_MA=(’panel’ ,) ,
EXTR_COQUE=_F (

NUME_COUCHE=1 ,
NIVE_COUCHE=’SUP’ ,
NOM_CHAM=(’SIGM_ELNO’ ,) ,

) ,
) ;

statsup=CALC_CHAMP (
RESULTAT=stat2 ,
GROUP_MA=(’panel’ ,) ,

1 Though under CONTRAINTE, SIEF_ELNO for beams is a force, or moment, and not a
stress.

8.3 Printing the results 101

CRITERES=(’SIEQ_ELNO’ ,) ,

) ;

At first the concept ’stat’ holds the results for all layers. When
one needs to compute on a particular layer, it is necessary to ex-
tract in a new concept, stat2, the field on the element per
node NOM_CHAM=(’SIGM_ELNO’,), with POST_CHAMP, here on
NUME_COUCHE=11, as there is only one layer, on the top face
NIVE_COUCHE=’SUP’. Before using CALC_CHAMP again to com-
pute a field at node CRITERES=(’SIEQ_ELNO’) in the final concept
statsup.

With this, we have calculated the stresses in the plate elements in the
top face NIVE_COUCHE=’SUP’ together with stresses at nodes, like the
well known “von Mises” equivalent stress2.

masse=POST_ELEM (
RESULTAT =stat ,
MODELE=model ,
MASS_INER=_F (

GROUP_MA=(’topbeam’ ,’mast’ ,’massN’ ,’panelN’ ,’panelS’) ,
) ,
TITRE= ’masse’

) ;

This, now well known, bit to calculate and print the mass of the model.

This previous section about calculating forces and stresses in elements
is only valid in 11.3, or higher, versions of Code_Aster. For version 10.8
the syntax was different and is described in chapter 18.7 .

8.3 Printing the results

Printing the ASCII results is just like the previous example, however we
print the maximum and minimum for SIEQ_NOEU, VMIS on the top
face of the plate elements to check the displayed values.

1 “Couche”, in french, means Layer, and “Nive” is an abstract for “Niveau” which means
Level.

2 If the difference in between the neutral plate of the plate and the top face does not jump
to the eye, add a bottom face calculation with INF to better show the bending behavior in
’panel’.

102 Making an highway sign

IMPR_RESU (
MODELE=model ,
FORMAT=’RESULTAT’ ,
RESU=(

_F (
RESULTAT=statsup ,
NOM_CHAM=’SIEQ_NOEU’ ,
NOM_CMP=(’VMIS’ ,) ,
GROUP_MA=(’panelN’ ,) ,
FORMAT_R=’1PE12.3’ ,
VALE_MAX=’OUI’ ,VALE_MIN=’OUI’ ,
INST= 6 . 0 ,

) ,
_F (

RESULTAT=statsup ,
NOM_CHAM=’SIEQ_NOEU’ ,
NOM_CMP=(’VMIS’ ,) ,
GROUP_MA=(’panelS’ ,) ,
FORMAT_R=’1PE12.3’ ,
VALE_MAX=’OUI’ ,VALE_MIN=’OUI’ ,
INST= 6 . 0 ,

) ,
) ,

) ;

And now, we are going to prepare a .med result file slightly different
from the previous ones, and read this file with Salome-Meca module Par-
aVis and Gmsh.

IMPR_RESU (
FORMAT=’MED’ ,
UNITE=80 ,
RESU=(

_F (
GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,’panel’ ,) ,
RESULTAT=stat ,NOM_CHAM=(’DEPL’ ,) ,

) ,
_F (

GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,) ,
RESULTAT=stat ,NOM_CHAM=(’SIPO_ELNO’ ,) ,

) ,
_F (

GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,) ,
RESULTAT=stat ,NOM_CHAM=(’SIPO_ELNO’ ,) ,
NOM_CMP=(’SMFY’ ,) ,NOM_CHAM_MED=’smfy’ ,

) ,
_F (

GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,’panel’ ,) ,
RESULTAT=stat ,NOM_CHAM=(’SIPM_ELNO’ ,) ,
NOM_CMP=(’SIXX’ ,) ,NOM_CHAM_MED=’sixx’ ,

) ,
_F (

8.3 Printing the results 103

GROUP_MA=(’panel’ ,) ,RESULTAT=statsup ,
NOM_CHAM=’SIEQ_NOEU’ ,NOM_CMP=’VMIS’ ,
NOM_CHAM_MED=’vmis’ ,

) ,
_F (

GROUP_MA=(’panel’ ,) ,RESULTAT=statsup ,
NOM_CHAM=’SIEQ_NOEU’ ,

) ,
) ,

) ;

FIN () ;

Printing is split in many groups of lines, each one of them performing
one and only one specific task.

• First group of lines prints DEPL, the standard displacement field.

• Second group of lines prints SIPO_ELNO the standard beam
stresses field, without specific options, the group ’panel’ being ex-
cluded of the print out1.

• Third group of lines prints SIPO_ELNO restricted to
NOM_CMP=(’SMFY’,) giving it the name, NOM_CHAM_MED,
’smfy’ in the med file.

• Fourth group of lines prints SIPM_ELNO restricted to
NOM_CMP=(’SIXX’,) giving it the name, NOM_CHAM_MED,
’sixx’ in the med file.

• Fifth group of lines prints SIEQ_NOEU restricted to
NOM_CMP=(’VMIS’,) for the group ’panel’ only2 and for
the result concept ’statsup’, giving it the name, NOM_CHAM_MED,
’vmis’ in the med file.

• And finally the sixth group of lines prints SIEQ_NOEU as standard,
with all the components.

The reason for these restricted outputs is that most of the post-
processors do their own averaging or mixture on field from a tensor value

1 It is not wise to print results specific to beams on plates.
2 Likewise it is not wise to print results specific to plates on beams.

104 Making an highway sign

calculated by Code_Aster and the results for a selected component within
a standard field may be wrong1.

8.4 Viewing the results in ParaVis

We do not deal with the display of displacement which is just like as
explained in the previous chapter.

Here we display the stresses in beams:

• in the Properties window;

– in Supports tick the elements we want, here ’mast’, ’vertb’
and ’topbeam’;

– in Fields tick stat_SIPO_ELNO ;

– push the green colored Apply button;

• in the menu select Filters Integration Points Elno Mesh an entry ap-
pears in the PipeLine Browser , make it visible;

• on the pull down list, probably named Solid Color select
_SIPO_ELNO ;

• on the pull down list just to the right select SMFY ;

• toggle Color Legend Visibility icon, sitting at the left of this toolbar;

• in the Time toolbar2 choose the INST we want;

• push the Rescale to Data Range icon, this has to be done all the time
to be certain of what-is displayed at on the screen!

At the end of this process, we get the view like figure 8.5, at INST 6 3,
showing the stress due to the bending moment around the local y axis .

Displaying stresses is much simpler, like a displacement, as it is not nec-
essary to go through the Filters Integration Points Elno Mesh step. And
we can get a view like figure 8.6 showing the von Mises criteria in the
panels at INST 6.

1 By a small amount due to some averaging algorithm, however they are not wrong with a
component directly extracted from the Code_Aster calculated results.

2 This one in View Toolbars Current Time Controls
3 ParaVis is using yet another numbering scheme of the instants!

8.4 Viewing the results in ParaVis 105

FIGURE 8.5: ParaVis view of SIPO_ELNO, SMFY component

106 Making an highway sign

FIGURE 8.6: ParaVis view of SIEQ_NOEU, VMIS component

8.5 Viewing the results in Gmsh 107

8.5 Viewing the results in Gmsh

We can open the med result file n Gmsh. On the left-hand side in the
tree, we can see under Post_processing 6 lines for every one of the 6 fields
we saved in the med file. Likewise there are 6 scalar bars in the graphic
window.

In the tree untick the values until only stat__DEPL remains ticked and
is the only visible field in the graphic window.

Only the ticked views in the tree are visible in the graphic window.

Push the little arrow on the right-hand side to the menu Options which
opens a dialog window, this window allows to make change to the display
in the graphic window.

First of all it is a good idea to go in Tools Options Mesh Visibility and
uncheck everything so the post-processing view is not polluted by some
mesh views1. Pushing the keys < Alt> + M also hides the mesh, or push
the ’M’ in the status bar.

To choose the step, we go to the General tab and increase or decrease the
list right of Time step , either by typing a value or using the - and +

buttons. Whatever was the step numbering scheme chosen in Code_Aster
Gmsh always starts at 0, likewise the views are also numbered from 0.

8.5.1 Displaying displacement

To view the deformed shape:

1. in the Visibility tab pull the lower left list to Force vector ;

2. in the Aspect tab pull the Vector display list to Displacement ;

3. choose a significant value for Displacement factor .

Figure 8.7 shows the deformed shape2.

1 Though sometimes it is useful to see the mesh.
2 Note the view restricted to some groups in Visibility dialog box, and the mesh has been

made visible for lines.

108 Making an highway sign

FIGURE 8.7: Gmsh view of displacement at INST 6, superimposed on the undis-
placed mesh

To view individual components:

1. in the Visibility tab pull the lower left list to Force scalar ;

2. in the box immediately to the right type in the field Id (Id is 0 for
DX, 1, is for DY, and so on);

3. in the General tab pull the list Range mode to Custom ;

4. and push the Min and Max buttons to refresh the display with the
proper component values.

To view numerical values:

1. in the General tab pull the list right of Interval types to
Numeric values ;

8.5 Viewing the results in Gmsh 109

2. in the Aspect tab pull the Glyph location list to Vertex to display the
values at the nodes.

8.5.2 Displaying stress in beam element

Select and make visible the view stat__SIPO_ELNO Here the view of the
field as Vector display is meaningless! To view individual components:

1. in the Visibility tab, pull the lower left list to Force scalar ;

2. in the box immediately to the right, type in the field Id (Id is 0 for
SN, 3 is for SMT, 4 is for SMFY, and so on);

3. in the General tab pull the list Range mode to Custom ;

4. and push the Min and Max buttons to refresh the display with the
proper component values.

To view numerical values:

1. in the General tab pull the list right of Interval types to
Numeric values ;

2. in the Aspect tab pull the Glyph location list to Vertex to display
the values at the nodes, which sometimes may produce a very clut-
tered view, or Barycenter to display the values in the middle of the
element.

To restrict the view to some groups:

1. in the Gmsh menu Tools choose Visibility ;

2. in the Physical groups options restrict the views to whichever groups
we want.

Figure 8.8 shows value of the field SIPO_ELNO component SMFY.

110 Making an highway sign

FIGURE 8.8: Gmsh view of SIPO_ELNO, SMFY at INST 6

8.5.3 Displaying stress in plate element

Select and make visible the view stat__SIEQ_NOEU , and proceed along
just as for the stresses in beam elements.

8.5 Viewing the results in Gmsh 111

FIGURE 8.9: Gmsh view of SIEQ_NOEU, VMIS component

8.5.4 Displaying stress of a named field

In the .comm field we specified some results like this:

IMPR_RESU (
FORMAT=’MED’ ,
UNITE=80 ,
RESU=(

. .
_F (

GROUP_MA=(’panel’ ,) ,RESULTAT=statsup ,
NOM_CHAM=’SIEQ_NOEU’ ,NOM_CMP=’VMIS’ ,
NOM_CHAM_MED=’vmis’ ,

) ,
) ,

) ;

here the field contains only one component and the view in Gmsh is best
made with:

112 Making an highway sign

FIGURE 8.10: Gmsh “exploded” view of ’vmis’ at INST 6

1. in the Visibility tab pull the lower left list to Original Field ;

2. and proceed along as above.

Figure 8.10 shows value of the field ’vmis’ MED field with, in dialog
box Options :

• tab Visibility with Draw elements outlines ticked on;

• tab Aspect with Element shrinking factor set to 0.8;

to display a well known “exploded” or “shrunk” appearance!

8.5.5 Displaying more...

More tips about the use of Gmsh in post-processing are given in
appendix B.

CHAPTER 9

Stiffening it with rods

In this chapter, we add to the structure of chapter 8 a lateral stiffening
against lateral load under the shape of rod shrouds.

We take the opportunity to run the study directly in ASTK, without
the help of Salome-Meca.

And we look at the results directly in STANLEY.

Back to engineer problems. We may consider this structure needs stiff-
ening against horizontal loads, so we add four stiffening rods downwards
from the top of the masts. These rods are what is called BARRE in
Code_Aster jargon. These elements transmit axial forces, either tension
or compression, but no end moments. Of course the real building must
be designed and built according to this feature. To handle correctly these
elements, Code_Aster, like any finite element code, requires one single
element along the rod length.

113

114 Stiffening it with rods

Figure 9.1 shows the finished structure with the stiffening rods.

FIGURE 9.1: Sketch of frame4

9.1 Modifying in Gmsh

To create the ground points, the following is added to the points loop.

Point(550+i) = {500 , (ly+500)*(i−1) , 0 , cls } ;
Point(560+i) = {−500 ,(ly+500)*(i−1) , 0 , cls } ;

In the loop creating the lines, we add1:

Line(550+i) = {550+i , 20+i } ;
rod []+=550+i ;

1 And here we can see the advantages of the “logical” numbering scheme we use.

9.1 Modifying in Gmsh 115

Line(560+i) = {560+i , 30+i } ;
rod []+=560+i ;

And:

Transfinite Line {rod [] } = 2 Using Progression 1;
Physical Line ("rod") = rod [] ;
Physical Point ("groundR") = {550 , 552 , 560 , 562} ;

to ensure the rods are meshed as a single element, and finally a group is
created for both the rods and the ground points. Once meshed the model
looks like figure 9.2, and we save it as frame4.med

FIGURE 9.2: Motorway signal frame meshed with rod support, visibility re-
strained to Physicals.

116 Stiffening it with rods

9.2 Enhancing the command file

We add the following lines1:

model=AFFE_MODELE (
MAILLAGE=meshf ,
AFFE=(

.
_F (

GROUP_MA=(’rod’ ,) ,
PHENOMENE=’MECANIQUE’ ,MODELISATION=’BARRE’ ,

) ,
. .

elemcar=AFFE_CARA_ELEM (
MODELE=model ,
. .
BARRE=_F (

GROUP_MA=(’rod’ ,) ,SECTION=’CERCLE’ ,
CARA=(’R’ ,’EP’ ,) ,VALE= (1 6 , 1 . 5 ,) ,

) ,
. .

ground=AFFE_CHAR_MECA (
MODELE=model ,
DDL_IMPO=(
. .

_F (GROUP_NO=(’groundR’ ,) ,DX=0 ,DY=0 ,DZ= 0 ,) ,
) ;

A node belonging to a BARRE carries only translational DOFs, that’s
why the boundary condition misses DRX, DRY and DRZ.

The part for print out may be modified with this addition as it is a good
idea to verify the traction or compression force load in the bar2.

IMPR_RESU (
MODELE=model , FORMAT=’MED’ , UNITE=80 ,
RESU=(

. .
_F (

GROUP_MA=(’rod’ ,) , RESULTAT=stat ,
NOM_CHAM=(’SIEF_ELNO’ ,) ,NOM_CMP=’N’ ,
NOM_CHAM_MED=’force_in_rod’ ,

) ,
. .

Finally, we also save this file as frame4.comm
1 Not forgetting to add ’rod’ in material assignment
2 The same type of entry could be put in the .resu file.

9.3 Introducing ASTK for the analysis 117

9.3 Introducing ASTK for the analysis

Here, we run the study in a more sophisticated tool named ASTK. ASTK,
whose name is the contraction of ASTER and TK, is a powerful tool al-
lowing to put together very complex studies in a relatively simple graphi-
cal interface.

ASTK may be launched from Salome-Meca or from a stand alone
Code_Aster installation1. From Salome-Meca, in the browser, RMB

click on Aster - frame4 then choose Export to ASTK .

The ASTK handling is well described in U1.04.00.

Once launched a window like figure 9.3 appears2.

FIGURE 9.3: ASTK window

On the top part, right of Base path field, click on the icon looking like a
directory, then navigate until reaching the study directory and select it.

In the main part of the window, we can see the files of the study. And a
stack of icon on the right. Let’s click on the top one to create a new line.

On this line, we create an entity to retrieve the verification mesh, refer-
enced in the first lines of the .comm file:

1 Where it stands in $ASTER_ROOT/bin.
2 Here it is filled up, more or less the way it looks like following an export from Salome-Meca,

otherwise it is empty.

118 Stiffening it with rods

• Pull down the name list on the extreme left and choose mmed to
specify it as a med file.

• Name it ./frame4verif.med .

• In the column LU , Logical Unit change 20 to 71, that’s what we
have specified in the .comm file.

• Uncheck the column D , standing for data and check the column
R , standing for results as we want to write in this file.

We also create a new line with type base , named ’frame4base’, LU=0

and with R and C 1 ticked to retrieve a database with the results.

Tick interactive follow-up and push the button Run . A terminal window
should pop up. Once the terminal has disappeared, have a look in the
.mess file to see if all went well.

ASTK is a powerful tool offering a more sophisticated handling of jobs,
like chaining multiple .comm file and multiple output files and much
more...
However we have to go back to Salome-Meca2 or Gmsh to open the .med
results file to see what the results looks like.

A few more notes about ASTK:

• on the right side of the ASTK window, we can change the
Total memory and the Time allocated to the job;

• the file extensions are not mandatory at all and we can use whatever
we like, or none at all3;

• except for 1, 6 and 8 the LU may be also chosen as one desires.

1 C stands for compressed.
2 Or a stand alone version of Salome.
3 Like any file in the Unix world!

9.4 Using STANLEY, a quick approach to post-processing 119

9.4 Using STANLEY, a quick approach to post-
processing

Once the calculation is successfully finished we can RMB

click on the line of the database and choose Open with...

Post-processing using Code_Aster (Stanley) a window like figure 9.4
pops up. A data base enables the restart of a calculation where it was left
off.

STANLEY is a very powerful tool to view results, particularly in the
early stages of a study.

The document U4.81.31 explains the use of STANLEY.

FIGURE 9.4: STANLEY window

At first, we may have to set some parameters in the menu
Parametres - Editer , toggle the Mode switch to Gmsh/Xmgrace , push the
button OK , figure 9.5.

We could have left the Mode on Salome , but it’s more fun to start in
Gmsh mode1!

Then select the same item as in figure 9.6, push STANLEY :

• on the left most column named Champs (fields) select SIEQ_NOEU .

• On the next column named Composantes (components) select
VMIS ;

1 It is also the default, and only way to proceed if you have a stand alone Code_Aster install
without Salome

120 Stiffening it with rods

FIGURE 9.5: STANLEY parameters set to Gmsh/Xmgrace” mode

• on the next column named Entites Geometriques (geometric entities)
select panel (2D) ;

• on the right most column named Ordres select 5 (this is the load
case at the last instant, number 6 in our case)1.

The window now looks like figure 9.6. On the extreme right the traffic
light is green, we can push TRACER .

Had the traffic light been orange we would have had to push CALCULER

so as to calculate the field and turn the light to green.

Had the light been red, then the requirements could not be met and the
field could not be calculated.

In our case the light is green. Let’s go, push TRACER !

1 A LMB click on the Ordres opens a large list of options to change to, among which Inst .

9.4 Using STANLEY, a quick approach to post-processing 121

FIGURE 9.6: STANLEY window, selection made

Hum! nothing happens? Then read in appendix E 5.3 . Once corrected
or if all go well then a window like figure 9.7 appears.

I am cheating a bit, as at first the selected view is the XOZ plane, and
our model has a null y dimension, so we have to turn it a bit, to view
something1.

A useful hint for Post-processing view in Gmsh is as follows:

• in the Gmsh command window, we choose the view we want in
the view list;

• push the arrow on the right;

• then Options - Color ;

• then uncheck Enable lighting .

With this the color mapping of results is independent of any light source,
otherwise it may become unreadable in areas which are in the shade from
the light source.

In the Gmsh command window, menu File Save Default Options saves
this setting for all further Gmsh work.

One annoying drawback of Gmsh post-processing with STANLEY is
that the groups of 1D elements like beams or rods are not present as groups
in the file, while the groups of 2D elements are.

1 The Gmsh windows appearance is also a little different from what we saw previously as the
version of Gmsh embedded inCode_Aster is not the last one.

122 Stiffening it with rods

FIGURE 9.7: Von Mises criteria in ’panel’ element in Gmsh Post-pro View

There is a lot more to play-with concerning the display appearance in
Gmsh, this can be set by pressing the arrow on the right of the View , then
Options , a lot of them are available there.

In the Options of Gmsh, if we play with the - + button on the
list named Time step we notice that Gmsh has its own stepping, always
starting at 0, with steps one by one, whatever the stepping of INST stated
in the .comm file is.

And a final remark, Stanley can be called within a .comm file
just by writing the line STANLEY() just after the calculation,
MECA_STATIQUE here, as the fields do not need to have been calculated
before. And in this case we have to quit STANLEY by pushing SORTIR

for the .mess and .resu and all the results files to be saved on disk.

9.4 Using STANLEY, a quick approach to post-processing 123

And last but not least STANLEY may be called by a RMB click on the
database even in case of an aborted calculation1 allowing us to have a look
at the results just before the crash, quite useful to guess was went wrong!

1 As this happens all too often in a non-linear calculation.

CHAPTER 10

Replacing rods, by cables, first step in
non-linear

In this chapter, we replace the rods of chapter 9 by cables.

And this implies a non linear analysis which we setup.

10.1 Replacing rod by cables

We can see, in the previous model, some rods being in tension while the
others are in compression. These rods when in compression may fail by
buckling at a very modest load1, in order to take this kind of failure into
account a sound approach is to replace them by wire ropes.

If we want to replace the rod elements by wire rope elements or
CABLE2, we need to perform a non-linear analysis. Indeed a cable does

1 More about buckling in chapter 15.2 .
2 This is how this element is known in the Code_Aster jargon.

125

126 Replacing rods, by cables, first step in non-linear

not support any compressive load: its behavior is therefore non-linear and
a dedicated constitutive law has to be used.

Switching to a non-linear simulation is quite easy.

Starting from frame4.geo, we create a frame5.geo file replacing the
group name ’rod’ by ’cable’, for the sake of clarity. We also change the
’Transfinite’ command allowing to mesh the cables with 20 elements, and
not a single one, along their length. Then, we update the mesh and save it
as frame5.med .

Roughly speaking a non-linear analysis is performed in multiple calcu-
lation steps in order to diminish the effects of the non-linearities. At each
step the geometry may be updated to account for large displacements, the
stiffness of each element may change due to non-linear constitutive be-
havior. This usually makes non-linear calculations more CPU-intensive.

In the case of cables, this stiffness update causes them to be kind of
“eliminated” when they are in compression (near-zero stiffness). There
are many parameters available in non-linear analysis, here, we just only
scratch the surface of what is available.

One last remark before starting: a linear calculation always gives a
result, but it may sometimes be irrelevant, for example with displace-
ments exceeding the model dimensions. This is because the calcula-
tion is made only once on the un-deformed shape with the assump-
tion of linear elastic behavior. That’s why a result should always be
questioned and the hypothesis used in the analysis verified. On the
contrary non-linear calculations may fail and stop at one step in the
middle with a singular matrix or a lack of convergence, in this case
we need to tune some parameters and try it again. A close look at
the .mess file is here of great help. Non-linear analysis may become
a rather tedious involvement.

10.2 Switching to non-linear analysis

Non-linear calculation requires some changes to the command file, we
describe them now.

10.2 Switching to non-linear analysis 127

model=AFFE_MODELE (
MAILLAGE=mesh ,
AFFE=(
.
#here is the modelling of cable element

_F (
GROUP_MA=(’cable’ ,) ,
PHENOMENE=’MECANIQUE’ ,MODELISATION=’CABLE’ ,

) ,
) ,

) ;

Most structures including cables require some pre-tension being applied
in the cable, here, we do it by cooling them1.

Firstly, we describe a temperature field, set to zero on the whole model.

temper1=CREA_CHAMP (
TYPE_CHAM=’NOEU_TEMP_R’ ,
MODELE=model ,
OPERATION=’AFFE’ ,
AFFE=(

_F (TOUT=’OUI’ ,NOM_CMP=’TEMP’ ,VALE= 0 . ,) ,
) ,

) ;

Secondly, we describe another temperature field, set to -100° C on the
cables and to zero on the rest of the model.

temper2=CREA_CHAMP (
MODELE=model ,

TYPE_CHAM=’NOEU_TEMP_R’ ,
OPERATION=’AFFE’ ,
AFFE=(

_F (TOUT=’OUI’ ,NOM_CMP=’TEMP’ ,VALE= 0 . ,) ,
_F (GROUP_MA=(’cable’ ,) ,NOM_CMP=’TEMP’ ,VALE= −100. ,) ,

) ,
) ;

From these two fields we create a thermals results, indexed by the time
variable, INST:

• from INST = -1, which is before the start of the actual calculation,
to instant INST = 1, the null temperature field is applied;

1 This is a very common practice with most finite elements codes.

128 Replacing rods, by cables, first step in non-linear

• from INST = 1 to INST = 2, a temperature ramp is created using
the second field defined below, this cools the cable creating the pre-
tension.

• finally from INST 2 to INST 7, which is beyond the actual cal-
culation range, we apply a constant temperature field in order to
maintain the pre-load.

ltemp2=DEFI_LIST_REEL (
DEBUT= 2 . 0 ,
INTERVALLE=_F (JUSQU_A= 7 . 0 ,PAS= 1 . 0 ,) ,

) ;

evtemp=CREA_RESU (
TYPE_RESU=’EVOL_VARC’ ,
NOM_CHAM=’TEMP’ ,
OPERATION=’AFFE’ ,
AFFE=(

_F (CHAM_GD=temper1 ,INST= (−1 , 0 , 1 ,) ,) ,
_F (CHAM_GD=temper2 ,LIST_INST=ltemp2 ,) ,

) ,
) ;

Strictly speaking this simple model would have converged without any
pre-load in the cable and the real construction itself would not need a
significant pre-load considering the load direction and level.

Moreover the time at which the pre-load is introduced in the calculation
is not very realistic. In true life we would first erect the structure then
tighten the cables and afterward submit it to working loads, so the proper
order for applying loads might be:

1. gravity load;

2. thermal load to tighten the cables;

3. service load.

This makes an excellent exercise after having read this book!

The coefficient of thermal expansion for the cable is set to
α = 12× 10−6K−1.

With a temperature increase ∆T = −100°K.

10.2 Switching to non-linear analysis 129

This yields a strain ∆L
L = αtimes∆T = −0.0012.

And, if the cable is constrained, a force:

F = ∆L
L × E × SECTION = −1200 N.

And a normal stress of σN = F
SECTION = 120 N.mm−2.

The cable material needs a special treatment as it is supposed to have
no stiffness in compression1, it also needs a proper assignment of temper-
ature behavior.

Also, although in steel, the cable is of wired construction, so we use an
“apparent” modulus of elasticity which is somewhat less than solid steel2.

#U4.43.01
steel=DEFI_MATERIAU (

ELAS=_F (E=210000 . ,NU= 0 . 3 ,RHO=8e−9,ALPHA=12e−6 ,) ,
) ;
msteel=DEFI_MATERIAU (

ELAS=_F (E=100000 ,NU= 0 . 3 ,RHO=8e−9,ALPHA=12e−6 ,) ,
CABLE=_F (EC_SUR_E=1 .E−4 ,) ,

) ;

Then we assign the material to the model.

material=AFFE_MATERIAU (
MAILLAGE=mesh ,
AFFE=(

_F (
GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,’panel’ ,) ,
MATER=steel ,

) ,
#material to cables
_F (GROUP_MA=(’cable’ ,) ,MATER=msteel ,) ,

) ,
#here we apply the temperature that makes the pretension
AFFE_VARC=_F (

TOUT=’OUI’ ,
NOM_VARC=’TEMP’ ,
EVOL=evtemp ,
VALE_REF= 0 . 0 ,

) ,

1 Since this is not possible and would yield a singular matrix, a cable is assumed to have a frac-
tion of the tension stiffness while in compression, EC_SUR_E stands for E in Compression
divided by E.

2 The value used here, 100000N.mm−2 holds true for quite a low quality cable.

130 Replacing rods, by cables, first step in non-linear

) ;

Note: the temperature is applied to the whole model in this section,
TOUT=’OUI’, and this is done with NOM_VARC=’TEMP’ in the mate-
rial assignment.

And finally the cable section, only the section is required,
N_INIT=10.0 is a numerical pre-tension in the cable so the calculation is
possible and has no effects on the results.

elemcar=AFFE_CARA_ELEM (
MODELE=model ,
.
CABLE=_F (

GROUP_MA=(’cable’ ,) ,
N_INIT= 1 0 . 0 ,
SECTION= (1 0 ,) ,

) ,

The non-linear analysis inCode_Aster allows many options and param-
eters to be tweaked. Here is an example of the commands which solve our
problem.

#we may need tweaking with PAS until the problem converges
#here the problem is almost linear so a large PAS is OK
liste=DEFI_LIST_REEL (

DEBUT= 1 . 0 ,
INTERVALLE=_F (JUSQU_A=6 ,PAS= 0 . 5 ,) ,

) ;
#we may also want a more restricted list
at which to print results
listresu=DEFI_LIST_REEL (

DEBUT= 1 . 0 ,
INTERVALLE=_F (JUSQU_A=6 ,PAS= 1 . 0 ,) ,

) ;

We start calculation and printing results at INST 1 to be able to see the
temperature and cable pre-loading in at post-processing

#here is the non-linear analysis see
#U4.51.03
#U4.51.11
statnl=STAT_NON_LINE (

MODELE=model ,
CHAM_MATER=material ,
CARA_ELEM=elemcar ,
EXCIT=(

_F (CHARGE=ground ,) ,
_F (CHARGE=selfwght ,FONC_MULT=selfw_m ,) ,

10.2 Switching to non-linear analysis 131

_F (CHARGE=cc ,TYPE_CHARGE=’FIXE_CSTE’ ,FONC_MULT=cc_m ,) ,
_F (CHARGE=cv ,TYPE_CHARGE=’FIXE_CSTE’ ,FONC_MULT=cv_m ,) ,

) ,
#the beam and plates parts are allowed to deform in
’PETIT’ kinematics, e.g. small perturbations
COMP_INCR=_F (

RELATION=’ELAS’ ,DEFORMATION=’PETIT’ ,
GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,’panel’) ,

) ,
#the cables parts are allowed to deform in
’GROT_GDEP’ kinematics,
e.g. large rotations, large displacements
COMP_ELAS=_F (

RELATION=’CABLE’ ,DEFORMATION=’GROT_GDEP’ ,
GROUP_MA=(’cable’ ,) ,

) ,
INCREMENT=_F (LIST_INST=liste ,) ,
#the resolution method
NEWTON=_F (

PREDICTION=’TANGENTE’ ,
MATRICE=’TANGENTE’ ,
REAC_ITER=1 ,

) ,
#this numerical trick may speed things up
RECH_LINEAIRE=_F () ,
#how do we consider the calculation is finished at every step
#that is a sort of quality criteria as well
CONVERGENCE=_F (

RESI_GLOB_RELA=1e−4,
ITER_GLOB_MAXI=300 ,

) ,
) ;

With the relevant options for the calculations of results for our study :

#result concept on the whole model
statnl=CALC_CHAMP (
reuse =statnl ,
RESULTAT=statnl ,
CONTRAINTE=(
’SIEF_ELNO’ ,
’SIPO_ELNO’ ,
#’SIPM_ELNO’, is non available in non-linear
’SIGM_ELNO’ ,

) ,
FORCE=(’REAC_NODA’ ,) ,

) ;

#result concept on the face of the panel
stat2=POST_CHAMP (
RESULTAT=statnl ,
GROUP_MA=(’panel’ ,) ,
EXTR_COQUE=_F (

NUME_COUCHE=1 ,

132 Replacing rods, by cables, first step in non-linear

NIVE_COUCHE=’SUP’ ,
NOM_CHAM=(’SIGM_ELNO’ ,) ,

) ,
) ;

statsup=CALC_CHAMP (
RESULTAT=stat2 ,
GROUP_MA=(’panel’ ,) ,
CRITERES=(’SIEQ_ELNO’ ,’SIEQ_NOEU’ ,) ,

) ;

10.3 Printing results

Printing the result is no different of what we have shown previously, keep-
ing in mind that we can print only what’s been calculated before.

However we want to see the temperature applied in the different mem-
bers, so we add this section in the .med printing.

IMPR_RESU (
FORMAT=’MED’ ,
UNITE=80 ,
RESU=(
_F (

RESULTAT=evtemp ,
NOM_CHAM=’TEMP’ ,
LIST_INST=listresu ,

) ,
.

) ,
) ;

And we can use the restricted list of results by introducing this keyword
LIST_INST=listresu, wherever we want in POST_RELEVE_T or
IMPR_RESU

The results displays as follows, figure 10.1.

A look at the .mess file shows us that the calculation is done in hardly
more than one iteration at each step which means that the behavior of the
structure is almost linear for the given loads. This is what we expected
anyway, here the non-linear calculation is made to take into account the
cable behavior. And we can actually see that the load carried by the cable,
under the wind load, is quite different from the one carried previously by
the rods.

10.4 A variation in CREA_RESU 133

FIGURE 10.1: Results with cables

Precisely the rods in he previous example carried a tension on the wind-
ward side and a compression on the leeward of about the same magnitude,
at about 2000 N, for the wind load. When the windward cables carry here
a tension of 3900 N, and the leeward ones, at -0.18 N are just slack, the
pre-tension being 1140 N. Lowering the pre-tension would produce a no
load in the leeward cables.

10.4 A variation in CREA_RESU

Creating the ’evtemp’ concept with CREA_RESU can also be written like
this:

evtemp=CREA_RESU (
TYPE_RESU=’EVOL_VARC’ ,

NOM_CHAM=’TEMP’ ,

134 Replacing rods, by cables, first step in non-linear

OPERATION=’AFFE’ ,
AFFE=(
_F (CHAM_GD=temper1 ,INST= −1.0 ,) ,
_F (CHAM_GD=temper1 ,INST= 1 . 0 ,) ,
_F (CHAM_GD=temper2 ,INST= 2 . 0 ,) ,
_F (CHAM_GD=temper2 ,INST= 7 . 0 ,) ,
) ,

) ;

The intermediate values being interpolated in between the given ones1.

1 The first alternative gives a more understandable display of ’evtemp’, in Gmsh for a .med
file.

CHAPTER 11

Cycling on a cable

In this chapter, we remove all the top structure to replace it by a cable
spanned in between the two masts.

We let a clown cycle along this cable.

Once the analysis is performed we look at the graphical results and
animate them on the screen.

And we also produce some time dependent plots with XmGrace,
which gives us the opportunity to work with tables.

11.1 Replacing the top bar by a cable

We now model a structure with two vertical masts, each one supported by
2 angled cable shrouds and with an horizontal cable extending in-between
the two mast tops. The geometry looks like figure 11.1.

135

136 Cycling on a cable

FIGURE 11.1: Geometry ready for cycling

And the corresponding .geo file:

cl1=100;
Point (1) = {0 , −1000, 0 , cl1 } ;
Point (2) = {0 , −1000, 1000 , cl1 } ;
Point (5) = {−500, −1500, 0 , cl1 } ;
Point (6) = {500 , −1500, 0 , cl1 } ;
Line (1) = {1 , 2 } ;
Line (4) = {5 , 2 } ;
Line (5) = {6 , 2 } ;
Symmetry {0 , 1 , 0 , 0} {
Duplicata { Line {1 , 4 , 5 } ; }

}

Physical Line ("mast") = {1 , 6 } ;
Physical Line ("shroud") = {4 , 5 , 7 , 8 } ;
Physical Point ("mastgrd") = {1 , 7 } ;
Physical Point ("shrgrd") = {5 , 6 , 11 , 15 } ;

11.1 Replacing the top bar by a cable 137

And its second part building the top cable geometry:

//this loop creates the points along the top cable
//notice that Point 100 doubles with Point 2,
// Point 110 with Point 8
For i In { 0 : 1 0 : 1 }

Point (i+100)={0 ,−1000+200*i ,1000 ,cl1 } ;
EndFor
//this loop creates the top cable section
For i In { 0 : 9 : 1 }

Line (i+100)={i+100 , i+100+1};
EndFor
//this loops creates individual Physical Point along the
//cable each one with a "logical" name
For i In { 0 : 1 0 }
Physical Point (Sprintf ("cycl%02g" ,i)) = {i+100};

EndFor
//this loop creates the Physical Line
//describing the top cable
lg [] = { } ;
For i In { 0 : 9 }
lg [] +=i+100;

EndFor
Physical Line ("cblcy") = lg [] ;
Transfinite Line {lg [] } = 0 Using Progression 1;
//This line removes the double points at geometry level
Coherence ;
//This line removes doubles Nodes, once meshed,
//experiment the difference!!
//Coherence Mesh;

Notice the loop creating the points 100 to 109, along the top cable,
together with the lines joining these points. Notice also the loop creating
one group of Physical Point with an indexed name, like ’cycl01’, for each
one of the above points1.

And also the ’Coherence’ command removing the double points, as well
as its fellow ’Coherence Mesh’ which does not do exactly the same thing.

Experiment with it to grasp the difference !

Once meshed our structure looks like figure 11.2:

1 Using the C alike command ’Sprintf’.

138 Cycling on a cable

FIGURE 11.2: Structure meshed, ready for analysis

11.2 Cycling on the cable, like a clown!

Now, we look at the behavior of this model with a clown cycling along
the cable. This is done by applying the load in a “sawtooth” manner on
the node groups previously created, in relation to time.

Here again the so called “instants” are only steps and not a real time, ex-
pressed in seconds. We just take into account the fact that the clown load
is changing place, regardless of the speed at which the clown is moving
since this would be dynamics, outside the scope of this book1.

1 The static analysis carried here is valid for the slow speed implied here.

11.2 Cycling on the cable, like a clown! 139

Note: as we apply the clown load on a single node, we suppose he is
using a single wheel vehicle, easier for us, trickier for him !

11.2.1 Commanding for solution

We give the first part of the command file with little commentary as all
the concepts used here have been reviewed in the previous chapters.

Firstly, mesh reading, manipulating and model making.

DEBUT (
#next line is only useful for more sophisticated Python call
#within the .comm file
#U4.11.1
#PAR_LOT=’NON’,

) ;

mesh=LIRE_MAILLAGE (
INFO=1 ,
#INFO_MED=2,
UNITE=20 ,FORMAT=’MED’ ,

) ;

mesh=DEFI_GROUP (
reuse =mesh ,MAILLAGE=mesh ,
CREA_GROUP_MA=_F (NOM=’TOUT’ ,TOUT=’OUI’ ,) ,
CREA_GROUP_NO=(_F (TOUT_GROUP_MA=’OUI’ ,) ,) ,

) ;

IMPR_RESU (FORMAT=’MED’ , UNITE=71 , RESU=_F (MAILLAGE=mesh ,) ,) ;

model=AFFE_MODELE (
MAILLAGE=mesh ,
AFFE=(

_F (
GROUP_MA=(’mast’ ,) ,PHENOMENE=’MECANIQUE’ ,
MODELISATION=’POU_D_T’ ,

) ,
_F (

GROUP_MA=(’cblcy’ ,’shroud’ ,) ,
PHENOMENE=’MECANIQUE’ ,
MODELISATION=’CABLE’ ,

) ,
) ,

) ;

Secondly, setting the temperature fields so as to pre-load the cables.

140 Cycling on a cable

#putting pre-load in the vertical cables ’shroud’ is enough
#the top cable ’cblcy’ is pre-loaded by the shroud
#and the relatively low stiffness of the ’mast’
temper=CREA_CHAMP (

MODELE=model ,
TYPE_CHAM=’NOEU_TEMP_R’ ,
OPERATION=’AFFE’ ,
AFFE=(
#here we benefit of the Overwriting rule
_F (TOUT=’OUI’ ,NOM_CMP=’TEMP’ ,VALE= 0 . ,) ,
_F (GROUP_MA=(’shroud’ ,) ,NOM_CMP=’TEMP’ ,VALE= −10.0 ,) ,
) ,

) ;

#from this field we create a thermal result
ltemp=DEFI_LIST_REEL (

DEBUT=−1.0 ,
INTERVALLE=_F (JUSQU_A= 1 1 . 0 ,PAS= 1 . 0 ,) ,

) ;

evtemp=CREA_RESU (
TYPE_RESU=’EVOL_VARC’ ,
NOM_CHAM=’TEMP’ ,
OPERATION=’AFFE’ ,
AFFE=(

_F (CHAM_GD=temper ,LIST_INST=ltemp ,) ,
) ,

) ;

Note how we take advantage of the “Overwriting rule”, described in
chapter 6.5 , in superimposing a temperature of -10°C, on ’shroud’ group
only, after having set ’TOUT’ at 0°C.

Thirdly, defining the materials and setting the element’s properties.

steel=DEFI_MATERIAU (ELAS=_F (
E=210000 . ,NU= 0 . 3 ,RHO=8e−9,ALPHA=12e−6) ,

) ;

cablst=DEFI_MATERIAU (
ELAS=_F (E=100000 ,NU= 0 . 3 ,RHO=8e−9,ALPHA=12e−6 ,) ,
CABLE=_F (EC_SUR_E=1 .E−4 ,) ,

) ;

material=AFFE_MATERIAU (
MAILLAGE=mesh ,
AFFE=(

_F (GROUP_MA=(’mast’ ,) , MATER=steel ,) ,
_F (

GROUP_MA=(’cblcy’ ,’shroud’ ,) ,
MATER=cablst ,

) ,

11.2 Cycling on the cable, like a clown! 141

) ,
AFFE_VARC=_F (

TOUT=’OUI’ ,
NOM_VARC=’TEMP’ ,
EVOL=evtemp ,
VALE_REF= 0 . 0 ,

) ,
) ;

elemcar=AFFE_CARA_ELEM (
MODELE=model ,
POUTRE=_F (

GROUP_MA=(’mast’ ,) ,
SECTION=’RECTANGLE’ ,
CARA=(’HY’ ,’HZ’ ,’EP’ ,) ,
VALE=(100 , 50 , 5 ,) ,

) ,
#mast section is increased compared to other examples,
#it would not withstand the load
ORIENTATION=_F (

GROUP_MA=(’mast’ ,) ,CARA=’ANGL_VRIL’ , VALE= 9 0 . 0 ,
) ,
CABLE=_F (

GROUP_MA=(’cblcy’ ,’shroud’ ,) ,
N_INIT= 1 0 . 0 ,
SECTION= (1 0 ,) ,

) ,
) ;

Fourthly, setting boundary conditions and gravity load.

ground=AFFE_CHAR_MECA (
MODELE=model ,
DDL_IMPO=(

_F (
GROUP_NO=(’mastgrd’ ,) ,
DX=0 ,DY=0 ,DZ=0 ,DRX=0 ,DRY=0 ,DRZ=0 ,

) ,
_F (GROUP_NO=(’shrgrd’ ,) ,DX=0 ,DY=0 ,DZ= 0 ,) ,

) ,
) ;

selfwght=AFFE_CHAR_MECA (
MODELE=model ,
PESANTEUR =_F (

GRAVITE=10000 ,DIRECTION=(0 ,0 , −1) ,
GROUP_MA=(’mast’ ,’cblcy’ ,’shroud’ ,) ,

) ,
) ;

And know the part applying the cycling load, as a traveling point load
along the 9 nodes previously created on the cable.

142 Cycling on a cable

#in the next line we apply a vertical load of 100 N on each
#of the group of nodes
#(1 node in each group here) on the cable
#with a sawtooth style time stepping on the load
#so as to mimic a rolling load
#this is done in a Python loop, note mandatory indents in the loop
iter=9;
lc=[None] * (iter+ 1) ;
lcm=[None] * (iter+ 1) ;
for i in range (1 ,iter+ 1) :

grpno=’cycl%02g’ %i ;
lc [i]=AFFE_CHAR_MECA (

MODELE=model ,
FORCE_NODALE=_F (GROUP_NO=(grpno ,) , FZ=−100 ,) ,

) ;
lcm [i]=DEFI_FONCTION (

NOM_PARA=’INST’ ,
VALE=(i−1 ,0 , i , 1 , i+ 1 , 0 ,) ,
PROL_GAUCHE=’CONSTANT’ ,
PROL_DROITE=’CONSTANT’ ,

) ;

selfw_m=DEFI_FONCTION (
NOM_PARA=’INST’ ,
VALE= (0 , 1 , 1 0 , 1 ,) ,
PROL_GAUCHE=’CONSTANT’ ,
PROL_DROITE=’CONSTANT’ ,

) ;

Here is a block with some list definition, each one of them serves a
special purpose:

• the first one, ’liste’ is used as an argument by INCREMENT, the
calculation1 is performed at every single step described in this list,
it may need to be adapted until the problem converges;

• the second one, ’listresu’ is used as an argument by many
IMPR_RESU, it tells which steps are printed in the results files,
it is entirely arbitrary and has no influence on the problem solving,
to reduce the size of the files this list should be restricted to useful
values;

• the third one, ’listarchiv’ is used as an argument by the keyword
ARCHIVAGE, it tells which steps are saved in the ’data base’, it has
a direct influence on the ’data base’ size and is entirely to the user’s
choice.

1 A linear system solution.

11.2 Cycling on the cable, like a clown! 143

liste=DEFI_LIST_REEL (
#we start at the beginning of the preload

DEBUT=−1.0 ,
INTERVALLE=(

_F (JUSQU_A= 0 . 0 ,PAS= 0 . 2 ,) ,
_F (JUSQU_A= 1 0 . 0 ,PAS= 0 . 2 ,) ,

) ,
) ;

#we also want a more restricted list
#at which to print results
#only the INST not the NUME_ORDRE
from −1.0 as we want to see the preload
#and only up to 5 as the problem is symmetrical
listresu=DEFI_LIST_REEL (

DEBUT=−1.0 ,
INTERVALLE=_F (JUSQU_A=5 ,PAS= 1 . 0 ,) ,

) ;

#the following list would restrict the instant
#written in the data base hence it’s size
listarchivc=DEFI_LIST_REEL (

DEBUT=−1.0 ,
INTERVALLE=_F (JUSQU_A=10 ,PAS= 1 . 0 ,) ,

) ;

Now, we create the cycling load case:

#Python loop to create the argument ’loadr’ passed to ’EXCIT’
#loadr is actually a list, or a tuple!
#first the grounded DOF, then the gravity,
#and the various cycling load
loadr = [] ;
loadr .append (_F (CHARGE=ground ,) ,) ;
loadr .append (_F (CHARGE=selfwght ,FONC_MULT=selfw_m ,) ,) ;
for i in range (1 ,iter+ 1) :

loadr .append (_F (
CHARGE=lc [i] ,
TYPE_CHARGE=’FIXE_CSTE’ ,FONC_MULT=lcm [i] ,) ,

) ;

This is just one of the several available ways to create the argument
’loadr’ in Python which is a rich language. A close look at the .mess file
helps us to understand howCode_Aster translates this bit of Python code.

statnl=STAT_NON_LINE (
MODELE=model ,
CHAM_MATER=material ,
CARA_ELEM=elemcar ,

144 Cycling on a cable

EXCIT=loadr ,

COMP_INCR=_F (

RELATION=’ELAS’ ,DEFORMATION=’PETIT’ ,
GROUP_MA=(’mast’ ,) ,

) ,
COMP_ELAS=_F (

RELATION=’CABLE’ ,DEFORMATION=’GROT_GDEP’ ,
GROUP_MA=(’cblcy’ ,’shroud’ ,) ,

) ,
INCREMENT=_F (LIST_INST=liste ,) ,
NEWTON=_F (

PREDICTION=’TANGENTE’ ,
MATRICE=’TANGENTE’ ,
REAC_ITER=1 ,

) ,
RECH_LINEAIRE=_F () ,
CONVERGENCE=_F (

RESI_GLOB_RELA=1e−4,
ITER_GLOB_MAXI=300 ,

) ,
ARCHIVAGE=_F (LIST_INST=listarchiv ,) ,

) ;

statnl=CALC_CHAMP (
reuse =statnl ,
RESULTAT=statnl ,
CONTRAINTE=(

’SIEF_ELNO’ ,
’SIPO_ELNO’ ,

) ,
FORCE=(’REAC_NODA’) ,

) ;

11.2.2 Commanding for results

We are know going to print some results in ASCII format, firstly the usual
sum of reactions and individual reactions.

sum_reac=POST_RELEVE_T (
ACTION=_F (

INTITULE=’sum reactions’ ,
GROUP_NO=(’mastgrd’ ,’shrgrd’ ,) ,
RESULTAT=statnl ,
NOM_CHAM=’REAC_NODA’ ,
RESULTANTE=(’DX’ ,’DY’ ,’DZ’) ,
OPERATION=’EXTRACTION’ ,
LIST_INST=listresu ,
#another way to restrict the useful printing
#INST=(0, 1, 2, 3, 4, 5, 6, 7,),

11.2 Cycling on the cable, like a clown! 145

#a good way to produce a lot of
#maybe useless information
#TOUT_ORDRE=’OUI’,

) ,
) ;
IMPR_TABLE (TABLE=sum_reac ,)

IMPR_RESU (
MODELE=model ,
FORMAT=’RESULTAT’ ,
RESU=_F (

NOM_CHAM=’REAC_NODA’ ,
GROUP_NO=(’mastgrd’ ,’shrgrd’ ,) ,
RESULTAT=statnl ,
LIST_INST=listresu ,

) ,
) ;

Followed by some key values of forces.

IMPR_RESU (
MODELE=model ,
FORMAT=’RESULTAT’ ,
RESU=(

_F (
NOM_CHAM=’SIEF_ELNO’ ,
GROUP_MA=(’mast’ ,’shroud’ ,’cblcy’ ,) ,
RESULTAT=statnl ,
LIST_INST=listresu ,
VALE_MAX=’OUI’ ,VALE_MIN=’OUI’ ,

) ,
_F (

NOM_CHAM=’SIEF_ELNO’ ,
GROUP_MA=(’shroud’ ,) ,
RESULTAT=statnl ,
LIST_INST=listresu ,
VALE_MAX=’OUI’ ,VALE_MIN=’OUI’ ,

) ,
_F (

NOM_CHAM=’SIEF_ELNO’ ,
GROUP_MA=(’cblcy’ ,) ,
RESULTAT=statnl ,
LIST_INST=listresu ,
VALE_MAX=’OUI’ ,VALE_MIN=’OUI’ ,

) ,
) ,

) ;

And in a .med file.

IMPR_RESU (
FORMAT=’MED’ , UNITE=80 ,
RESU=(

146 Cycling on a cable

_F (
GROUP_MA=(’mast’ ,’shroud’ ,’cblcy’) ,
RESULTAT=statnl ,
NOM_CHAM=(’DEPL’ ,’SIEF_ELNO’ ,) ,
LIST_INST=listresu ,

) ,
_F (

GROUP_MA=(’mast’ ,) ,
RESULTAT=statnl ,
NOM_CHAM=(’SIPO_ELNO’ ,) ,
LIST_INST=listresu ,

) ,
) ,

) ;

11.2.3 Creating time dependent plots

Up to know, we have only produced numerical or graphical result files
with step by step results, in the next section, we produce a graphical plot
of some results, displacement or forces, versus “time”1.

This section must be read carefully and well understood as the produc-
tion of such a plot is a rather low level code approach in Code_Aster. Yet
it reveals a very powerful one!

Firstly, we extract the vertical displacement of the point in the middle
of the cable, ’dz5’ and at the point at one tenth of the length, ’dz1’.

#next lines are how to prepare and save a plot for XmGrace
#here we make a table with the displacement
#in z direction of the point ’cycl05’
#in the middle of the cable in function of the time
dz5=POST_RELEVE_T (

ACTION=_F (
OPERATION=’EXTRACTION’ ,
INTITULE=’displ_middle’ ,
RESULTAT=statnl ,
NOM_CHAM=’DEPL’ ,
TOUT_ORDRE=’OUI’ ,
GROUP_NO=’cycl05’ ,
RESULTANTE=(’DZ’ ,) ,
MOYE_NOEUD=’NON’ ,

) ,
TITRE=’displacement middle of cable’ ,

) ;
#next line line to print it the .resu file, not really useful here,
#just to see what it looks like
IMPR_TABLE (TABLE=dz5 ,)

1 With the same restriction as above.

11.2 Cycling on the cable, like a clown! 147

#the same for point 1
dz1=POST_RELEVE_T (

ACTION=_F (
OPERATION=’EXTRACTION’ ,
INTITULE=’displ_near_end’ ,
RESULTAT=statnl ,
NOM_CHAM=’DEPL’ ,
TOUT_ORDRE=’OUI’ ,
GROUP_NO=’cycl01’ ,
RESULTANTE=(’DZ’ ,) ,
MOYE_NOEUD=’NON’ ,

) ,
TITRE=’displacement near end of cable’ ,

) ;

Secondly, we extract the extreme values of the force in the top cable.

#here we prepare a table with the EXTREMA
#of the normal force in cable elements
forcec=POST_RELEVE_T (

ACTION=_F (
OPERATION=’EXTREMA’ ,
INTITULE=’force_in_cable’ ,
RESULTAT=statnl ,
NOM_CHAM=’SIEF_ELNO’ ,
NOM_CMP=’N’ ,
TOUT_ORDRE=’OUI’ ,
GROUP_MA=’cblcy’ ,

) ,
TITRE=’force_in_cable’ ,

) ;
#first print out
IMPR_TABLE (TABLE=forcec ,)

Thirdly, we keep only the positive, tensional, values.

#then we restrict it to the maximum + tension value
forcec=CALC_TABLE (

TABLE=forcec ,reuse=forcec ,
ACTION=_F (

OPERATION=’FILTRE’ ,NOM_PARA=’EXTREMA’ ,VALE_K=’MAX’ ,
) ,
TITRE=’max_tension_in_cable’ ,

) ;
#second print out
IMPR_TABLE (TABLE=forcec ,)

To get a nicer plot we want to scale these values, dividing them by ten.

148 Cycling on a cable

#here we define a function, divide by ten
byten=FORMULE (NOM_PARA=’VALE’ ,VALE=’VALE/10’ ,) ,

#then we divide the tension value by ten for a nicer plot
forcec=CALC_TABLE (

TABLE=forcec ,reuse=forcec ,
ACTION=_F (

OPERATION=’OPER’ ,
FORMULE=byten ,
NOM_PARA=’VALE10’ ,

) ,
TITRE=’max_tension_in_cable/10’ ,

) ;
#third print out
IMPR_TABLE (TABLE=forcec ,)

##the same could be done with a single call to CALC_TABLE
#byten=FORMULE(NOM_PARA=’VALE’,VALE=’VALE/10’,),
#forcec=CALC_TABLE(

#TABLE=forcec,reuse=forcec,
#ACTION=(

#_F(OPERATION=’FILTRE’,NOM_PARA=’EXTREMA’,VALE_K=’MAX’,),
#_F(OPERATION=’OPER’,FORMULE=byten,NOM_PARA=’VALE10’,),

#),
#);

And, we create the functions for the plot:

• to have INST, against NUME_ORDRE as abscissa of the XmGrace
plot;

#here is a function that loads in a tuple:
#x = value time step instant, time = value time step instant
time=RECU_FONCTION (

TABLE=dz5 , #could have been dz1
#as the parameters are the same

PARA_X=’NUME_ORDRE’ ,
PARA_Y=’INST’ ,

) ;

• to have DZ for ’dz5’, against’ NUME_ORDRE as one ordinate of the
XmGrace plot;

#here a function that loads in a tuple:
#x = value tnum order,
#deltaZ5 = Z displacement in the middle of the cable
deltaZ5=RECU_FONCTION (
TABLE=dz5 ,
PARA_X=’NUME_ORDRE’ ,
PARA_Y=’DZ’ ,

11.2 Cycling on the cable, like a clown! 149

) ;

• to have the same for ’dz1;

#the same near the end of the cable
deltaZ1=RECU_FONCTION (

TABLE=dz1 ,
PARA_X=’NUME_ORDRE’ ,
PARA_Y=’DZ’ ,

) ;

• to have the tension in the cable as another ordinate of the XmGrace
plot.

#the same for the tension in the cable
fNc=RECU_FONCTION (

TABLE=forcec ,
PARA_X=’NUME_ORDRE’ ,
PARA_Y=’VALE10’ ,

) ;

Finally, this next section assembles the whole plot, with some enhance-
ments like titles, legends and scales1.

#here we print these functions in an XmGrace format file
#we need an entry in ASTK for that file with LU=29,
#maybe extension .agr
IMPR_FONCTION (

FORMAT=’XMGRACE’ ,
UNITE=29 ,
TITRE=’displacement and force ’ ,
BORNE_X= (0 , 1 0) ,
#restrict to nice ordinates
BORNE_Y=(−80 ,100) ,
#restrict to useful abscissa
GRILLE_X=1 ,
GRILLE_Y=10 ,
LEGENDE_X=’time (s)’ ,
LEGENDE_Y=’displacement (mm) or force (N*10)’ ,
COURBE=(

_F (FONC_X=time ,FONC_Y=deltaZ5 ,LEGENDE=’dZ5’ ,) ,
_F (FONC_X=time ,FONC_Y=deltaZ1 ,LEGENDE=’dZ1’ ,) ,
_F (FONC_X=time−num ,FONC_Y=fNc ,LEGENDE=’tension’ ,) ,

) ,
) ;

STANLEY ()

1 There could be many more arguments.

150 Cycling on a cable

FIN ()

11.2.4 Concluding about this command file

To sum it up what has to be noted in this file is the use of one single Python
loop to create the loads , lc[i], of the clown cycling along the cable.

With one line, within the loop, we are able to create 10 load cases!

Another loop appends all the load case in a single Python list, or tuple,
loadr, used as an argument to EXCIT in STAT_NON_LINE.

Finally, we use the list listresu to limit the printing to the round
numbered INST.

11.3 Viewing results

Figure 11.3 is a view of the displacement at INST 2 and 5, in Gmsh. To
obtain the 2 superimposed views, we proceed like this:

• we make view[0] the active and only visible, set the proper param-
eters:

– OPTIONS Aspect Displacement factor to 10;

– button Min and Max in General tab;

– Tools Visibility with only line groups visible;

– set Time step to 5;

• RMB on the arrow right of view[0], Alias View with Options , this
creates a view[3];

• return in view[0] and set Time step to 2;

• button Min and Max in General tab;

• in the Axes tab set Axes mode to Full grid , just to show a scaled
bounding box 1.

1 Of course this is not necessary at all.

11.3 Viewing results 151

We can animate one displacement, the classical 4 buttons (Rewind, Step
backward, Play/Pause Step forward) are in the status bar at the bottom
of the Gmsh window. We can even record this animation: in File

Save as... we can choose Format: Movie -MPEG (*.mpg) to record a movie
with quite a few options available.

FIGURE 11.3: Deformed shape at INST 1 and 5

152 Cycling on a cable

11.4 Plotting results with XmGrace

XmGrace is a GNU plotting program coming within theCode_Aster pack-
age1.

If we run the study in ASTK and let the STANLEY window appear:

• in the first column on the left-hand side titled, in French, Champs ,
we choose DEPL ;

• in the second column titled Composantes , we choose DZ ;

• in the third column Entites Geometriques , we LMB click the title to
toggle it to Courbes and choose cycl01 and cycl05 , this is how we
previously named the first and the middle nodes on which the clown
is cycling.

We leave the last right column Ordres as it is to plot the curve on the
whole set of orders, the STANLEY window looks like figure 11.4.

FIGURE 11.4: STANLEY ready for plotting in XmGrace

A gentle push on the TRACER button and the XmGrace window like
figure 11.5 appears with the plot of the vertical displacement of the two
nodes with respect to time or more precisely NUME ORDRE as stated
along the abscissa axis.

The strange appearance on the left hand side of the plots comes from
the fact that the load does start later than NUME ORDRE=0. To change

1 More information is available here http://plasma-gate.weizmann.ac.il/
Grace/

http://plasma-gate.weizmann.ac.il/Grace/
http://plasma-gate.weizmann.ac.il/Grace/

11.4 Plotting results with XmGrace 153

FIGURE 11.5: Plot in XmGrace within STANLEY

NUME ORDRE to INST, which is more meaningful in our case, we have
to RMB click the last column and select INST1.

A click on the Stanley menu Geometrie Ajout Point would have allowed
us to plot on another point, created on the fly by giving its coordinates. If
these coordinates do not point to a node in the structure the produced plot
is meaningless!

1 The very long list popping up shows us the vast possibilities of STANLEY in post-
processing.

154 Cycling on a cable

FIGURE 11.6: Combined plot

As we have saved an XmGrace file, in LU 29, with extension .agr we
can also open it with XmGrace outside of STANLEY. This plot is shown
in figure 11.6. The saved plot is somewhat more sophisticated than the
one produced from STANLEY and may be customized even more. This is
described in the operator IMPR_FUNCTION U4.33.01 as well as manual
U2.51.01.

This plot shows at its bottom the displacement of the node in the middle
of the cable (dZ5), in red, and the displacement of a node at 10% of the
length of the cable (dZ1), in green, with respect to time. These displace-
ments have of course a negative value. In blue, the value of the maximum
tension in the cable is also displayed. Note: the force scale is multiplied
by 10, so as to make a nicer plot.

11.5 Verifying some results 155

11.5 Verifying some results

It is quite easy to do a quick check on the results, the formula for a cable
with a point load in the middle is well known1, we have:

tan θ − sin θ =
W

2EA
, or if θ < 12°, θ = (

W

EA
)

1
3

where θ is the slope of the cable at the ends, W the point load, E the
cable’s Young modulus, A its section and L its length, which gives here:

θ = (
100

100000× 10
)

1
3 = 0.046rad = 2.6°

the vertical displacement being:

δ =
L

2
tan θ = 46mm

compared to 62mm calculated by Code_Aster; and the tension in the
cable:

T =
W

2 sin θ
= 1078N

compared to 496N calculated by Code_Aster. The discrepancy is quite
large but can be explained by the low pre-load in the ’shroud’ cables with
which the top of the masts move inward by 1.13mm. Setting the temper-
ature from −10° to −100° would give Code_Aster results almost like the
formula.

However one of the real design problem in this type of cable vehicle
may occur when the vehicle reaches the end of the cable the slope may
become steep and the cable should not foul some part of the structure at
this stage.

Here, we are self powered and when the clown reaches point 9 the de-
flection of the cable becomes 31mm which for a length to go of 200mm

gives a slope of around 16%, we must ensure that this guy has got good
legs and that the wheel does not slip on the cable!

1 Again it can be found in [Roark], precisely in TABLE 12.

156 Cycling on a cable

11.6 Working with tables

To build the entries for the XmGrace plot, we use several operators like
POST_RELEVE_T or CALC_TABLE, let’s have a closer look of what we
actually do.

In the call to POST_RELEVE_T, we ask the code to extract the
EXTREMA value of SIEF_ELNO component N, the tension, in the ele-
ment forming the cycling cable.

As we can see in the following listing (commented as “#first print out” in
the command file) we have 2 values, MAX or MIN at each NUME_ORDRE.

#force in cable
INTITULE RESU NOM_CHAM NUME_ORDRE
EXTREMA MAILLE NOEUD CMP VALE
force in cable statnl SIEF_ELNO

0 MAX M82 N2 N 0 .00000E+00
force in cable statnl SIEF_ELNO

0 MIN M82 N2 N 0 .00000E+00
force in cable statnl SIEF_ELNO

0 MAX_ABS M82 N2 N 0 .00000E+00
force in cable statnl SIEF_ELNO

0 MIN_ABS M82 N2 N 0 .00000E+00
force in cable statnl SIEF_ELNO

1 MAX M82 N2 N 4 .99876E+02
force in cable statnl SIEF_ELNO

1 MIN M88 N14 N 4 .63404E+02
force in cable statnl SIEF_ELNO

1 MAX_ABS M82 N2 N 4 .99876E+02
force in cable statnl SIEF_ELNO

1 MIN_ABS M88 N14 N 4 .63404E+02
. .

MIN entry could have been negative, e.g. compressive, if we had not
chosen a cable element.

In the first call to CALC_TABLE, we clean the table to keep only the
MAX tensile value, resulting in the “#second print out” shown below. Only
this MAX is retained under VALE.

#force in cable
#FILTRE -> NOM_PARA: EXTREMA CRIT_COMP: EQ
VALE: (’MAX’,)
INTITULE RESU NOM_CHAM NUME_ORDRE
EXTREMA MAILLE NOEUD CMP VALE
force in cable statnl SIEF_ELNO

0 MAX M82 N2 N 0 .00000E+00

11.6 Working with tables 157

force in cable statnl SIEF_ELNO
1 MAX M82 N2 N 4 .99876E+02
. .

The value of the tensile force are so large compared to the displacement
that the XmGrace plot would not look nice. That’s why in the second call
to CALC_TABLE, we add another column which contains the value of the
tensile force divided by ten, we name this new column ’VALE10’, and we
use this one in the plot.

#force in cable
#FILTRE -> NOM_PARA: EXTREMA CRIT_COMP: EQ
VALE: (’MAX’,)
INTITULE RESU NOM_CHAM NUME_ORDRE

EXTREMA MAILLE NOEUD CMP VALE VALE10
force in cable statnl SIEF_ELNO

0 MAX M82 N2 N 0 .00000E+00 0 .00000E+00
. .

This is just an introduction to the many options in POST_RELEVE_T
and CALC_TABLE, they are fully described U4.81.21 and U4.33.03, and
we are dealing again with this matter in chapter 18.1 .

CHAPTER 12

Going solid, with contact, a bi-linear spring

In this chapter, with a 2 parts model, we cope with various problems:

• 3D solid meshing and modeling;

• with a quadratic mesh;

• with various options to link the two parts together: glued, glued
with free rotation, contact and contact with friction;

• at the same time we run five analysis within a single command
file;

• and we run the study without any post processing but saving
the results in a base.

12.1 Introducing the study

In this chapter, we study the behavior of what can be seen as a bi-linear
leaf spring1, of rather simple design, shown in figure 12.2. One male part,

1 The name “leaf” may not be very suitable, as this “leaf” is thicker than it is wide.

159

160 Going solid, with contact, a bi-linear spring

which we call ’part1’ is a thick plate, in magenta, carrying a pin, in red,
at the left-hand end, this ’part1’ is solidly fixed at its right-hand end. Two
female parts, ’part2’ with a hole receiving the pin and solidly fixed at their
left-hand end. There is a little radial play, 0.5 mm, of the pin within the
hole.

FIGURE 12.1: Dimensional sketch of bi-linear spring

We study the behavior of this model subjected to a vertical load on the
pin, under various hypothesis:

1. ’part1’ is not linked at all to ’part2’ and takes the whole load;

2. both part are solidly ’glued’ together around the pin and behave like
one single continuous part taking the load;

3. relative rotation is freed around the pin, but not translation;

4. ’part1’ moves down until the pin touches the hole face, and then
both parts share the load;

5. the same as above, but with friction along the vertical faces, just like
there was a nut on the pin, tightened as required, and in this case
load sharing starts at the very beginning, before the pin comes in
contact of the hole face, which may never happen if the tightening
pressure is high enough.

12.1 Introducing the study 161

FIGURE 12.2: View of the full model (slightly exploded)

All this is carried at once, within a single run of Code_Aster. However
we split the study in two parts:

1. putting the study together and solving;

2. independent post-processing.

For this kind of study the solution may take hours, while post-processing
calculations are a matter of minutes. We calculate the solution, store
it in a database, and call a post-processing .comm file to calculate and
print out the results. This post-processing command file can be tailored
without having to re-run the solution. This is known as POURSUITE in
the Code_Aster jargon. We also see how to calculate the solution on a
quadratic mesh but projecting the result on a linear1 simplified mesh.

We also use the symmetry of the model, and the fact that the load acts
in the plane of symmetry to mesh only half of the model.

1 Here linear means non-quadratic as explained in chapter16.4 .

162 Going solid, with contact, a bi-linear spring

12.2 Meshing ’part1’

The .geo file for Gmsh is as below:

//’part1’ geometry
cl1=2.5 ; //characteristic length, for meshing
t1=5; //thickness of half part
r1=10.0; //radius of pin
r2=17.0; //outside radius of eye

Point (1) = {0 , −t1 , 0 , cl1 } ; //base point
Point (11) = {0 , −t1 , −r1 , cl1 } ;
Point (12) = {r1*Sin (2 *Pi / 3) , −t1 , r1+r1*Cos (2 *Pi / 3) , cl1 } ;
Point (13) = {r1*Sin (4 *Pi / 3) , −t1 , r1+r1*Cos (4 *Pi / 3) , cl1 } ;
Point (21) = {Sqrt (r2*r2−r1*r1) , −t1 , r1 , cl1 } ;
Point (22) = {−r2 , −t1 , 0 , cl1 } ;
Point (23) = {Sqrt (r2*r2−r1*r1) , −t1 , −r1 , cl1 } ;
Point (24) = {4*r2 , −t1 , r1 , cl1 } ;
Point (25) = {4*r2 , −t1 , −r1 , cl1 } ;
Circle (1) = {11 , 1 , 12 } ;
Circle (2) = {12 , 1 , 13 } ;
Circle (3) = {13 , 1 , 11 } ;
Circle (4) = {21 , 1 , 22 } ;
Circle (5) = {22 , 1 , 23 } ;
Line (6) = {21 , 24 } ;
Line (7) = {23 , 25 } ;
Line (8) = {25 , 24 } ;

//extrusion of lines to create surfaces
//this line would have only extruded the geometry
//fix1s[] = { Extrude {0, t1, 0} {Line{-8};} };
//this line line extrude the geometry and the associated
//mesh have 3 divisions along the extrusion length
fix1s [] = { Extrude {0 , t1 , 0} {Line{−8};Layers { 3 } ; } } ;
edge1s [] = { Extrude {0 , t1 , 0} {Line {6 , −4, −5, −7};

Layers { 3 } ; } } ;
pin1s [] = { Extrude {0 , −1.5*t1 , 0} {Line {1 , 2 , 3 } ;

Layers { 5 } ; } } ;

//creation of plane surface
Line Loop (41) = {2 , 3 , 1 } ;
Plane Surface (42) = { 4 1 } ;
Line Loop (43) = {6 , −8, −7, −5, −4};
Plane Surface (44) = {−43, 41 } ;

//extrusion of plane surfaces into volume
//as the bounding surface are layered
//it is not necessary to use layer for extruding the volume
part1v [] = { Extrude {0 , t1 , 0} {Surface {42 , 44 } ; } } ;
pin1v [] = { Extrude {0 , −1.5*t1 , 0} {Surface { 4 2 } ; } } ;

// this point is used to compute and plot displacement

12.2 Meshing ’part1’ 163

Point {30} In Surface { 6 1 } ;
//only the items necessary in the calculation are grouped

Physical Point ("load1p") = { 3 0 } ;
Physical Surface ("bear1s") = { 4 4 } ;
Physical Surface ("sym1s") = { 1 0 3 } ;
Physical Surface ("pin1s") = {pin1s [] } ;
Physical Surface ("fix1s") = {fix1s [] } ;
Physical Surface ("load1s") = { 6 1 } ;
Physical Volume ("part1v") = {part1v [] } ;
Physical Volume ("pin1v") = {pin1v [] } ;

//coloring of mesh
//all surfaces in Cyan
Color Cyan {

Surface {12 , 16 , 20 , 24 , 28 , 32 , 36 , 40 , 42 , 44 , 52 , 56 ,
60 , 61 , 103 , 120} ;

}
//then
Color Orange { Surface { 4 4 } ; }
Color Black { Surface { 6 1 } ; }
Color Green { Surface { 1 0 3 } ; }
Color Red { Surface {pin1s [] } ; }
Color Blue { Surface {fix1s [] } ; }
Color Magenta { Volume {part1v [] , pin1v [] } ; }

It is entirely parametric, with the parameters on the first lines. Once
meshed it looks like figure 12.3. Note also how ’Surface’ are created by
’Extrude’ of ’Line’, and ’Volume’ by ’Extrude’ of ’Surface’. The com-
mand ’Extrude’ takes the argument ’Layers’ to tell how many elements
are created along the length of the extrusion at mesh time.

One remark: we divide the circle in three arcs as Gmsh cannot draw an
arc whose angle is equal to or greater than π1.

At the end of the file is the group building and naming, the last character
stands as “v” for volume, “s” for surface and “p” for point.

The last lines are for coloring the mesh, which gives:

• green and black for the plane of symmetry;

• the load is applied onto ’load1s’ which is black;

• the ground fixation is on ’fix1s’ which is blue;
1 This not a Gmsh restriction but basic geometry: given the center and 2 points there is an

infinite number of arcs in 3D space if the three points are aligned (angle = π), and 2 arcs in
the other case, the one with the angle < π is drawn.

164 Going solid, with contact, a bi-linear spring

• orange for the plane which receives contact in the ’bolted’ joint,
’bear1s’;

• while the pin shows in red.

FIGURE 12.3: ’part1’ meshed, with and without the element’s’ outline

12.3 Meshing ’part2’

The .geo file for Gmsh looks like this:

//’part2’ geometry
cl1=2.0 ; //characteristic length, for meshing
off1=5.5 ; //y offset from part 1
t1=5; //thickness of half part
r1=10.5; //inside radius of eye
r2=17.0; //outside radius of eye

Point (1) = {0 , −off1 , 0 , cl1 } ;
Point (11) = {0 , −off1 , −r1 , cl1 } ;
Point (12) = {−r1*Sin (2 *Pi / 3) , −off1 , r1+r1*Cos (2 *Pi / 3) , cl1 } ;
Point (13) = {−r1*Sin (4 *Pi / 3) , −off1 , r1+r1*Cos (4 *Pi / 3) , cl1 } ;
Point (21) = {−Sqrt (r2*r2−r1*r1) , −off1 , r1 , cl1 } ;

12.3 Meshing ’part2’ 165

Point (22) = {r2 , −off1 , 0 , cl1 } ;
Point (23) = {−Sqrt (r2*r2−r1*r1) , −off1 , −r1 , cl1 } ;
Point (24) = {−4*r2 , −off1 , r1 , cl1 } ;
Point (25) = {−4*r2 , −off1 , −r1 , cl1 } ;
Circle (1) = {11 , 1 , 12 } ;
Circle (2) = {12 , 1 , 13 } ;
Circle (3) = {13 , 1 , 11 } ;
Circle (4) = {21 , 1 , 22 } ;
Circle (5) = {22 , 1 , 23 } ;
Line (6) = {21 , 24 } ;
Line (7) = {23 , 25 } ;
Line (8) = {25 , 24 } ;
Circle (9) = {21 , 1 , 23 } ;

//extrusion of lines to create surfaces
fix2s [] = { Extrude {0 , −t1 , 0} {Line{−8};Layers { 3 } ; } } ;
edge2s [] = { Extrude {0 , −t1 , 0} {Line {6 , −4, −5, −7, 9 } ;

Layers { 3 } ; } } ;
hole2s [] = { Extrude {0 , −t1 , 0} {Line{−1, −2, −3};

Layers { 3 } ; } } ;

//creation of plane surface
Line Loop (106) = {4 , 5 , −9};
Line Loop (107) = {2 , 3 , 1 } ;
Plane Surface (108) = {106 , 107} ;
Line Loop (109) = {6 , −8, −7, −9};
Plane Surface (110) = { 1 0 9 } ;

//extrusion of plane surface into volume
part2v [] = { Extrude {0 , −t1 , 0} {Surface{−108, 110} ; } } ;

Physical Point ("move2p") = { 1 1 } ;
Physical Surface ("bear2s") = { 1 0 8 } ;
Physical Surface ("hole2s") = {hole2s [] } ;
Physical Surface ("fix2s") = {fix2s [] } ;
Physical Surface ("pres2s") = { 1 4 2 } ;
Physical Volume ("part2v") = {part2v [] } ;

color of mesh
//all surfaces in Cyan
Color Cyan {

Surface {17 , 21 , 25 , 29 , 33 , 37 , 41 , 45 , 108 , 110 ,
142 , 164} ;

}
//then
Color Orange { Surface { 1 0 8 } ; }
Color Purple { Surface { 1 4 2 } ; }
Color Black { Surface {hole2s [] } ; }
Color Blue { Surface {fix2s [] } ; }
Color Magenta { Volume {part2v [] } ; }

166 Going solid, with contact, a bi-linear spring

And the mesh is shown in figure 12.4 . Note: there is a gap of 0.5 mm
in the Y direction in between the two parts.

FIGURE 12.4: ’part2’ meshed

The same remarks as for part1 apply:

• the ground fixation is on ’fix2s’ which is blue;

• the face of the hole ’hole2s’ is black;

• ’bear2s’, the plane which applies contact in the “bolted” joint is
orange, it is hidden on figure 12.4;

• while the “nut” pressure is applied on ’pres2s’ which shows in pur-
ple.

We create a 3D quadratic mesh on both parts with Mesh 3D and
Mesh Set order 2 . We keep these meshes quite coarse to get a solution
in a relatively short time. Any serious industrial study, trying to optimize
the part, particularly for stress, would, at first, show a more complicated
shape, and require much finer a mesh in the strategic areas.

12.4 Commanding for the solution 167

12.4 Commanding for the solution

We introduce the command file step by step.

12.4.1 Reading and manipulating the meshes

DEBUT () ;
#in group naming
#last char s stands for surface,
#v for volume and p for point
#last but one char stands for the part number

#we read the med file for each part
part1=LIRE_MAILLAGE (UNITE=20 ,FORMAT=’MED’ ,) ;
part2=LIRE_MAILLAGE (UNITE=21 ,FORMAT=’MED’ ,) ;

#U4.23.03
#we assemble the two meshes into a new one
mesh12=ASSE_MAILLAGE (

MAILLAGE_1=part1 ,
MAILLAGE_2=part2 ,
OPERATION=’SUPERPOSE’ ,

) ;

We read the two meshes from to different Logical Units, we assemble
them in one single new mesh with ASSE_MAILLAGE.

#re orient the normal for the face groups,
#with the Gmsh design as seen earlier this should be ok
#but one never knows
mesh12=MODI_MAILLAGE (

reuse =mesh12 ,
MAILLAGE=mesh12 ,
ORIE_PEAU_3D=(

_F (GROUP_MA=’sym1s’ ,) ,
_F (GROUP_MA=’pin1s’ ,) ,
_F (GROUP_MA=’fix1s’ ,) ,
_F (GROUP_MA=’hole2s’ ,) ,
_F (GROUP_MA=’fix2s’ ,) ,
_F (GROUP_MA=’load1s’ ,) ,

) ,
) ;

#define groups of nodes on the new mesh
#should be here, not before,
#to compute and print a correct value for reaction
mesh12=DEFI_GROUP (

reuse =mesh12 ,

168 Going solid, with contact, a bi-linear spring

MAILLAGE=mesh12 ,

#CREA_GROUP_MA=_F(NOM=’TOUT’,TOUT=’OUI’,),

CREA_GROUP_NO=(
_F (GROUP_MA=’fix2s’ ,) ,
_F (GROUP_MA=’fix1s’ ,) ,
_F (GROUP_MA=’sym1s’ ,) ,
_F (GROUP_MA=’load1p’ ,) ,
_F (GROUP_MA=’move2p’ ,) ,

) ,
) ;

Then, we reorient the normal to the surface elements to be sure they
point in the same outward direction within each group. We create groups
of node where necessary, for post processing, at the boundary conditions
for example.

#make a copy of mesh12
qmesh=COPIER (CONCEPT=mesh12) ;

#convert the quadratic mesh to linear mesh
#onto which the results will be projected
lmesh=CREA_MAILLAGE (

MAILLAGE=qmesh ,
QUAD_LINE=_F (TOUT=’OUI’ ,) ,

) ;

#alternatively to run the problem on a linear mesh
#lmesh=COPIER(CONCEPT=qmesh);
#which should written like this in version 11.2 and earlier
lmesh=CREA_MAILLAGE (MAILLAGE=qmesh , COPIE=_F () ,) ;

#to have a look at the different meshes
IMPR_RESU (FORMAT=’MED’ , UNITE=71 , RESU=_F (MAILLAGE=qmesh ,) ,) ;
IMPR_RESU (FORMAT=’MED’ , UNITE=72 , RESU=_F (MAILLAGE=lmesh ,) ,) ;

#make a quadratic model
qmod=AFFE_MODELE (

MAILLAGE=qmesh ,
AFFE=_F (TOUT=’OUI’ ,PHENOMENE=’MECANIQUE’ ,MODELISATION=’3D’ ,) ,

) ;

#and a linear model
lmod=AFFE_MODELE (

MAILLAGE=lmesh ,
AFFE=_F (TOUT=’OUI’ ,PHENOMENE=’MECANIQUE’ ,MODELISATION=’3D’ ,) ,

) ;

steel=DEFI_MATERIAU (ELAS=_F (E=2.1e5 ,NU = 0 . 3 ,) ,) ;

mate=AFFE_MATERIAU (
MAILLAGE=qmesh ,
AFFE=_F (TOUT=’OUI’ ,MATER=steel ,) ,

12.4 Commanding for the solution 169

) ;

Finally, we create the quadratic mesh, named ’qmesh’, as a copy1 of
’mesh12’, make a model out of it and assign it a material.

We also create a linear mesh, named ’lmesh’ onto which the the graph-
ical results will be projected, with PROJ_CHAMP, and make a model out
of it.

12.4.2 Setting the boundary conditions

We describe the boundary conditions and loadings which are used
throughout the various calculations.

#set the boundary fixing for part1
#’encastre’ on the right-hand end
#no Y displacement for the symmetrical model
fix1=AFFE_CHAR_MECA (

MODELE=qmod ,
DDL_IMPO=(

_F (GROUP_MA=(’sym1s’ ,’load1s’ ,) ,DY= 0 . 0 ,) ,
_F (GROUP_MA=’fix1s’ ,DX= 0 . 0 ,DY= 0 . 0 ,DZ= 0 . 0 ,) ,

) ;

#set the boundary fixing for part2
#’encastre’ on the left-hand end
fix2=AFFE_CHAR_MECA (

MODELE=qmod ,
DDL_IMPO=_F (GROUP_MA=’fix2s’ ,DX= 0 . 0 ,DY= 0 . 0 ,DZ= 0 . 0 ,) ,

) ;

This is straightforward and does not need any comment, however note
that 3D elements do not bear rotational degrees of freedom, thus neither
DRX, DRY nor DRZ.

12.4.3 Gluing the two parts around the pin

#u4.44.01
#we ’glue’ volume ’part2’ to the face of the pin ’pin1s’
glue=AFFE_CHAR_MECA (

MODELE=qmod ,
LIAISON_MAIL=_F (

GROUP_MA_MAIT=’part2v’ ,
GROUP_MA_ESCL=’pin1s’ ,

1 Copy the mesh is not necessary at all and is introduced here to illustrate its use.

170 Going solid, with contact, a bi-linear spring

) ,
) ;

The LIAISON_MAIL, allows to “glue together” two groups of el-
ements. In this case, we ask for the GROUP_MA_ESCL=’pin1s’,
the group of surface elements to be glued in translation and rotation
to GROUP_MA_MAIT=’part2v’, the group of volume of all ’part2’1.
Which part should be master and which one slave is explained in the doc-
umentation.

12.4.4 Relieving rotation around the pin

#same thing but only
#the displacement normal to the contact face are glued
#the two part can rotate one in each other
#and slide along the pin axis
#but their respective axis remain identical
#they cannot move one to each other in x and z directions
freerot=AFFE_CHAR_MECA (

MODELE=qmod ,
#just as above but rotation is allowed
LIAISON_MAIL=_F (

GROUP_MA_MAIT=’part2v’ ,
GROUP_MA_ESCL=’pin1s’ ,
DDL_MAIT=’DNOR’ ,
DDL_ESCL=’DNOR’ ,

) ,
) ;

To relieve the rotation, we use the keywords DDL_MAIT=’DNOR’

and DDL_ESCL=’DNOR’ in LIAISON_MAIL, this means: we allow-
ing relative displacement, but the normal distance to the two surfaces re-
mains constant.

12.4.5 Setting the contact conditions around the pin

#define contact in-between the pin and the hole
#as soon as the pin touches the hole surface
#it pushes the hole and part2 with it
contact=DEFI_CONTACT (

MODELE=qmod ,
FORMULATION=’DISCRETE’ ,
#’hole’overlaps ’pin’ so should be ’MAIT’

1 MAIT, “maître” in french stands for master and ESCL, “esclave”, for slave.

12.4 Commanding for the solution 171

#or ’hole’ is bigger than ’pin’ so should be ’MAIT’
#U2.04.04
ZONE=_F (

GROUP_MA_MAIT=’hole2s’ ,
GROUP_MA_ESCL=’pin1s’ ,

) ,
) ;

Here, the master and slave are group of surface elements, with the same
remarks about which is which1. There are many choices regarding the
selection of a contact solver, FORMULATION, here again one should read
the documentation, and try out!

Concerning contact, U2.04.04 is the first introductory document to be
read.

12.4.6 Setting the contact conditions around the pin, with friction

This first part sets the contact with Coulomb friction.

contact5=DEFI_CONTACT (
MODELE=qmod ,
FORMULATION=’CONTINUE’ ,
FROTTEMENT=’COULOMB’ ,

ZONE=(
#first the same vertical contact as before
#no friction COULOMB=0.0
_F (

GROUP_MA_MAIT=’hole2s’ ,
GROUP_MA_ESCL=’pin1s’ ,
COULOMB= 0 . 0 ,

) ,
#second the fiction on the vertical planes
#rather low friction coefficient
#COULOMB=0.1
_F (

GROUP_MA_MAIT=’bear1s’ ,
GROUP_MA_ESCL=’bear2s’ ,
COULOMB= 0 . 1 ,

) ,
) ,

) ;

The difference between these two contact definitions must be noted:
1 Here ’hole2s’ which overlaps ’pin2s’ should be master.

172 Going solid, with contact, a bi-linear spring

• as we want to allow friction in-between the two bodies
FORMULATION=’CONTINUE’, FROTTEMENT=’COULOMB’

has to be used;

• although we use two contact ZONE they must share these same pa-
rameters;

• we set the frictional coefficient, ’COULOMB’, at 0.1, which is
rather a low -slippery- value for steel on steel contact.

For friction to take place it is necessary to tighten the bolt, we do this
below. We specify this tightening to be done from INST -5 to 0, which is
before the vertical load is applied1. It stricto sensu is a pre-load.

We apply this load using FORCE_FACE applying a distributed load on
the face of a 3D volume, the unit is force/area.

#pressure load to tighten the joint
pres=AFFE_CHAR_MECA (

MODELE=qmod ,
FORCE_FACE=_F (GROUP_MA=’pres2s’ ,FY= 1 2 ,) ,

) ;

#tightening bolt load steps for non-linear analysis
pres_m=DEFI_FONCTION (

NOM_PARA=’INST’ ,VALE=(−5 ,0 , 0 , 1) ,
PROL_GAUCHE=’CONSTANT’ ,PROL_DROITE=’CONSTANT’ ,

) ;

This 12N/mm2 pressure applied on a π(17.52 − 102) = 562mm2 area
gives a total load of 6739N , which multiplied by the frictional coefficient
gives a vertical resisting force of 674N which in turn is about 8.6% of the
ultimate vertical load 7854N 2.

12.4.7 Setting the vertical load

#vertical load on the pin in part1 on the plane of symmetry
load=AFFE_CHAR_MECA (

MODELE=qmod ,
FORCE_FACE=_F (GROUP_MA=’load1s’ ,FZ= −25.0 ,) ;
#total force is 25*pi*10^2=7854

1 Just as in true life, the bolt would be tightened before loading the spring.
2 This very modest friction will not restrain displacement very much, except at the beginning

of the loading, as we can see at solution time.

12.4 Commanding for the solution 173

) ;

#load steps for non-linear analysis
load_m=DEFI_FONCTION (

NOM_PARA=’INST’ ,VALE= (0 , 0 , 5 , 1) ,
PROL_GAUCHE=’CONSTANT’ ,PROL_DROITE=’CONSTANT’ ,

) ;

The load is set as a force per unit of area on the group ’load1s’, together
with a ramp for the non-linear contact solution.

12.4.8 Setting for the five solutions

We solve the study, and later, post-process the results within a Python
loop.

We initialize the loop used in the post-precessing and set the 5 solution
parameters.

#iter is the number of solutions
iter=5;
result=[None] * (iter+ 1) ;

For case 1, ’part1’ is free from ’part2’ and is loaded alone.

#case one
#part1 alone with the load
#no ’LIAISON’ nor contact with part2
result [1] =MECA_STATIQUE (

MODELE=qmod ,
CHAM_MATER=mate ,
EXCIT=(

_F (CHARGE=fix2 ,) ,
_F (CHARGE=fix1 ,) ,
_F (CHARGE=load ,) ,

) ,
) ;

For case 2, ’part1’ and ’part2’ are solidly glued together.

#case two
#part1 and part2 glued together
result [2] =MECA_STATIQUE (

MODELE=qmod ,
CHAM_MATER=mate ,
EXCIT=(

_F (CHARGE=fix2 ,) ,

174 Going solid, with contact, a bi-linear spring

_F (CHARGE=fix1 ,) ,
_F (CHARGE=glue ,) ,
_F (CHARGE=load ,) ,

) ,
) ;

For case 3, rotation is freed around ’part1’ and ’part2’.

#case three
#part1 and part2 free to rotate at joint
result [3] =MECA_STATIQUE (

MODELE=qmod ,
CHAM_MATER=mate ,
EXCIT=(

_F (CHARGE=fix2 ,) ,
_F (CHARGE=fix1 ,) ,
_F (CHARGE=freerot ,) ,
_F (CHARGE=load ,) ,

) ,
) ;

For case 4, ’part1’ comes in contact with ’part2’.

#case four
#part1 coming into contact with part2
linst=DEFI_LIST_REEL (

DEBUT= 0 . 0 ,
INTERVALLE=_F (JUSQU_A= 5 . 0 ,PAS= 1 . 0 ,) ,

) ;

result [4] =STAT_NON_LINE (
MODELE=qmod ,
CHAM_MATER=mate ,
EXCIT=(

_F (CHARGE=fix2 ,) ,
_F (CHARGE=fix1 ,) ,
_F (
CHARGE=load ,
TYPE_CHARGE=’FIXE_CSTE’ ,FONC_MULT=load_m ,

) ,
) ,
CONTACT=contact ,
COMP_INCR=_F (

RELATION=’ELAS’ ,DEFORMATION=’PETIT’ ,
GROUP_MA=(’pin1v’ ,’part1v’ ,’part2v’ ,) ,

) ,
INCREMENT=_F (LIST_INST=linst ,) ,
NEWTON=_F (

PREDICTION=’TANGENTE’ ,
MATRICE=’TANGENTE’ ,
REAC_ITER=1 ,

) ,

12.4 Commanding for the solution 175

CONVERGENCE=_F (RESI_GLOB_RELA=1e−4,ITER_GLOB_MAXI= 3 0 ,) ,
) ;

For case 5, we add some friction along the mating vertical surfaces. For
this we need to perform the calculation from the beginning of the
pre-load, so we create a new ’listinst’.

linst5=DEFI_LIST_REEL (
DEBUT=−5.0 ,
INTERVALLE=(
_F (JUSQU_A= 0 . 0 ,PAS= 5 . 0 ,) ,
_F (JUSQU_A= 3 . 7 5 ,PAS= 1 . 2 5 ,) ,
_F (JUSQU_A= 5 . 0 ,PAS= 0 . 6 2 5 / 2 ,) ,

) ,
) ;

This rather sophisticated list of steps does not come from any devil-
ish theory but from trial and error, looking at the convergence table
in the .mess file:

• it very strongly depends on the pressure load ’pres’, values of
10 or 15 require very different stepping schemes;

• it depends also on the mesh, the set given here works for the
linear mesh;

• sometimes the solution is reached with largish steps like
JUSQU_A=0.0,PAS=5.0 in one single step, for the pres-
sure load, in this example1 .

#case five
#part1 coming in contact with part2
#friction taken into account
result [5] =STAT_NON_LINE (

MODELE=qmod ,
CHAM_MATER=mate ,
EXCIT=(

_F (CHARGE=fix1 ,) ,
_F (CHARGE=fix2 ,) ,
_F (

CHARGE=pres ,
TYPE_CHARGE=’FIXE_CSTE’ ,FONC_MULT=pres_m ,

) ,
_F (

1 Which, according to Code_Aster guru Thomas de Soza: “That does not surprise me, tangen-
tial contact should be avoided as it raises an indeterminacy. By applying the pre-load in one
step one sets a sheer contact”.

176 Going solid, with contact, a bi-linear spring

CHARGE=load ,
TYPE_CHARGE=’FIXE_CSTE’ ,FONC_MULT=load_m ,

) ,
) ,
CONTACT=contact5 ,
COMP_INCR=_F (

RELATION=’ELAS’ ,DEFORMATION=’PETIT’ ,
GROUP_MA=(’pin1v’ ,’part1v’ ,’part2v’ ,) ,

) ,
INCREMENT=_F (LIST_INST=linst5 ,) ,
NEWTON=_F (

PREDICTION=’TANGENTE’ ,
MATRICE=’TANGENTE’ ,
REAC_ITER=1 ,

) ,
CONVERGENCE=_F (RESI_GLOB_RELA=1e−4,ITER_GLOB_MAXI= 5 0 ,) ,

) ;

STANLEY () ;

FIN () ;

We have created a tuple holding five ’result[]’. STANLEY() call is here
so we can have a first look at the results.

With minor alterations, we could have also run the problem from a linear
mesh built in Gmsh. Moreover in some more complicated problems some
groups can be quadratic while the rest of the mesh is linear.

12.5 Running the study

Now, we can launch the study within ASTK not forgetting to create a
’base’, where to save the results1.

1 At this stage ’R’ (result) should be ticked, not ’D’ (data) as we create the base for the first
time , ’C’ for compressed may be ticked.

CHAPTER 13

Post-processing the spring

In this chapter, we write a command file to post-process the base
created in chapter 12.

We project the results of the calculation on a simpler linear mesh.

We look at the results and create some time dependent plots.

All with a significant use of Python.

13.1 Commanding for Post-processing

13.1.1 Preliminaries

We do the post-processing in POURSUITE, that is to say: we read the
database previously built and enhance the results it contains. This way we
can tailor the post-processing .comm file until we get a satisfactory set of
information without having to re-run the study.

177

178 Post-processing the spring

#U4.11.03
POURSUITE (
#may be required in more complex problems,
#not here
#PAR_LOT=’NON’,

) ;

#some definition for solution loop
#qres is the tuple for the quadratic solutions
#sr1 and sr2 are the tuples for the sums
#of reaction at the fixing of part1 and part2
#and sr12 the sum of both
qres=[None] * (iter+ 1) ;
sr1=[None] * (iter+ 1) ;
sr2=[None] * (iter+ 1) ;
sr12=[None] * (iter+ 1) ;

While a normal command file starts with DEBUT(), here we start with
POURSUITE(). Then, we initialize some tuples to hold the results.

And we start the post-processing inside the loop over the result[].

for i in range (1 ,iter+ 1) :
result [i]=CALC_CHAMP (
reuse =result [i] ,
RESULTAT=result [i] ,
CONTRAINTE=’SIGM_ELNO’ ,
FORCE=’REAC_NODA’ ,
CRITERES=(
#’SIEQ_ELNO’,
’SIEQ_NOEU’ ,
#’SIEQ_ELGA’,

) ,
) ;

Printing displacement of typical loaded node, and stresses in elements,
at nodes.

IMPR_RESU (
FORMAT=’RESULTAT’ ,
RESU=(
_F (

RESULTAT=result [i] ,
GROUP_NO=(’load1p’ ,) ,
NOM_CHAM=’DEPL’ ,NOM_CMP=(’DZ’ ,) ,
FORMAT_R=’1PE12.3’ ,

) ,
_F (

RESULTAT=result [i] ,
NOM_CHAM=’SIEQ_NOEU’ ,NOM_CMP=(’VMIS’ ,) ,
FORMAT_R=’1PE12.3’ ,

13.1 Commanding for Post-processing 179

VALE_MAX=’OUI’ ,
) ,
_F (

RESULTAT=result [i] ,
GROUP_NO=(’fix1s’ ,) ,
NOM_CHAM=’SIEQ_NOEU’ ,NOM_CMP=(’VMIS’ ,) ,
FORMAT_R=’1PE12.3’ ,
VALE_MAX=’OUI’ ,

) ,
) ,

) ;

And reactions at end supports.

#computing and printing the sum of reaction
#for part1 and part2
sr1 [i]=POST_RELEVE_T (

ACTION=_F (
INTITULE=’reac1’ ,
GROUP_NO=(’fix1s’ ,) ,
RESULTAT=result [i] ,
NOM_CHAM=’REAC_NODA’ ,TOUT_ORDRE=’OUI’ ,
RESULTANTE=(’DX’ ,’DY’ ,’DZ’) ,
OPERATION=’EXTRACTION’ ,

) ,
) ;
IMPR_TABLE (TABLE=sr1 [i] ,)
sr2 [i]=POST_RELEVE_T (

ACTION=_F (
INTITULE=’reac2’ ,
GROUP_NO=(’fix2s’ ,) ,
RESULTAT=result [i] ,
NOM_CHAM=’REAC_NODA’ ,TOUT_ORDRE=’OUI’ ,
RESULTANTE=(’DX’ ,’DY’ ,’DZ’) ,
OPERATION=’EXTRACTION’ ,

) ,
) ;
IMPR_TABLE (TABLE=sr2 [i] ,)
sr12 [i]=POST_RELEVE_T (

ACTION=_F (
INTITULE=’reac12’ ,
GROUP_NO=(’fix1s’ ,’fix2s’ ,) ,
RESULTAT=result [i] ,
NOM_CHAM=’REAC_NODA’ ,TOUT_ORDRE=’OUI’ ,
RESULTANTE=(’DX’ ,’DY’ ,’DZ’) ,
OPERATION=’EXTRACTION’ ,

) ,
) ;
IMPR_TABLE (TABLE=sr12 [i] ,)

180 Post-processing the spring

13.1.2 Creating the MED result file

#project the quadratic model qmod result[i]
#onto the low definition linear model lmod
#name this result qres[i]
qres [i]=PROJ_CHAMP (

RESULTAT=result [i] ,MODELE_1=qmod ,MODELE_2=lmod ,
) ;

IMPR_RESU (
FORMAT=’MED’ ,
RESU=(

_F (RESULTAT=qres [i] ,NOM_CHAM=(’DEPL’ ,) ,) ,
_F (RESULTAT=qres [i] ,NOM_CHAM=(’SIEF_ELNO’ ,) ,) ,
_F (

RESULTAT=qres [i] ,
NOM_CHAM=(’SIEQ_NOEU’ ,) ,NOM_CMP=(’VMIS’ ,) ,

) ,
#_F(

#RESULTAT=qres[i],
#whatever else we want

#),
) ,

) ;
#here ends the Python loop

Projecting the quadratic mesh onto the original mesh and printing re-
sults in a a med file.

13.1.3 Creating a plot of some results

In his section, we look in details at case 4 and 5 with contact. We want
to see what happens to the displacement of the pin, at what time it makes
contact with the hole and what are the reactions for each part. This is done
in a XmGrace readable graphic created here1.

#here we define a function, multiply by 10000
by10000=FORMULE (NOM_PARA=’DZ’ ,VALE=’DZ*10000’ ,) ,

and initialize some tuplez
dz1=[None] * (iter+ 1) ;
dz2=[None] * (iter+ 1) ;
rz1=[None] * (iter+ 1) ;
rz2=[None] * (iter+ 1) ;
rz12=[None] * (iter+ 1) ;
loadt=[None] * (iter+ 1) ;

1 However we create almost empty plot values for case 1 to 3 in the same time.

13.1 Commanding for Post-processing 181

dtaZ1=[None] * (iter+ 1) ;
dtaZ2=[None] * (iter+ 1) ;
rcZ1=[None] * (iter+ 1) ;
rcZ2=[None] * (iter+ 1) ;

These tuples, if used as an argument in XmGrace, should be no more
than 8 characters long, including the trailing “_” plus the index, this is not
much!

In this first part, we extract the displacement, in the global Z direction,
of node ’load1p’ on ’part1’.

for i in range (1 ,iter+ 1) :
#next lines are how to prepare and save a plot for XmGrace
#one on each case
#here we make a table with the displacement
#in z direction of the point ’load1p’
#in the centre of the pin on the plane of symmetry
dz1 [i]=POST_RELEVE_T (
ACTION=_F (
OPERATION=’EXTRACTION’ ,
INTITULE=’displ_part1’ ,
RESULTAT=qres [i] ,
NOM_CHAM=’DEPL’ ,
TOUT_ORDRE=’OUI’ ,
GROUP_NO=’load1p’ ,
RESULTANTE=(’DZ’ ,) ,
MOYE_NOEUD=’NON’ ,

) ,
TITRE=’displacement of pin center’ ,

) ;
#print in
IMPR_TABLE (TABLE=dz1 [i] ,)

dz1 [i]=CALC_TABLE (
TABLE=dz1 [i] ,reuse=dz1 [i] ,
ACTION=_F (
OPERATION=’OPER’ ,FORMULE=by10000 ,NOM_PARA=’Z10000’ ,

) ,
) ;
IMPR_TABLE (TABLE=dz1 [i] ,)

In this second part, we do the same for node ’move2p’ on ’part2’.

#here we make a table with the displacement
#in z direction of the point ’move2p’
#on top of part2 above the hole
dz2 [i]=POST_RELEVE_T (

ACTION=_F (
OPERATION=’EXTRACTION’ ,
INTITULE=’displ_part2’ ,
RESULTAT=qres [i] ,

182 Post-processing the spring

NOM_CHAM=’DEPL’ ,
TOUT_ORDRE=’OUI’ ,
GROUP_NO=’move2p’ ,
RESULTANTE=(’DZ’ ,) ,
MOYE_NOEUD=’NON’ ,

) ,
TITRE=’displacement of part2 above pin’ ,

) ;
#print in
IMPR_TABLE (TABLE=dz2 [i] ,) ,

dz2 [i]=CALC_TABLE (
TABLE=dz2 [i] ,reuse=dz2 [i] ,
ACTION=_F (

OPERATION=’OPER’ ,FORMULE=by10000 ,NOM_PARA=’Z10000’ ,
) ,

) ;
IMPR_TABLE (TABLE=dz2 [i] ,) ,

IMPR_TABLE (TABLE=dz2 ,)

And in the third part, we extract the reactions at the ends of ’part1’ and
’part2’ as well as their sums.

rz1 [i]=POST_RELEVE_T (
ACTION=_F (

OPERATION=’EXTRACTION’ ,
INTITULE=’reaction 1’ ,
RESULTAT=qres [i] ,
NOM_CHAM=’REAC_NODA’ ,
TOUT_ORDRE=’OUI’ ,
GROUP_NO=’fix1s’ ,
RESULTANTE=(’DZ’ ,) ,
MOYE_NOEUD=’NON’ ,

) ,
TITRE=’reaction 1’ ,

) ;

rz2 [i]=POST_RELEVE_T (
ACTION=_F (

OPERATION=’EXTRACTION’ ,
INTITULE=’reaction 2’ ,
RESULTAT=qres [i] ,
NOM_CHAM=’REAC_NODA’ ,
TOUT_ORDRE=’OUI’ ,
GROUP_NO=’fix2s’ ,
RESULTANTE=(’DZ’ ,) ,
MOYE_NOEUD=’NON’ ,

) ,
TITRE=’reaction 2’ ,

) ;

rz12 [i]=POST_RELEVE_T (
ACTION=_F (

13.1 Commanding for Post-processing 183

OPERATION=’EXTRACTION’ ,
INTITULE=’reaction 12’ ,
RESULTAT=qres [i] ,
NOM_CHAM=’REAC_NODA’ ,
TOUT_ORDRE=’OUI’ ,
GROUP_NO=(’fix1s’ ,’fix2s’ ,) ,
RESULTANTE=(’DZ’ ,) ,
MOYE_NOEUD=’NON’ ,

) ,
TITRE=’reaction 1+2’ ,

) ;

Then, we create some functions of the values we want to plot with re-
spect to INST.

#here a function that loads in a tuple:
#x = value time step instant,
#loadt = applied load, as sum of reactions
loadt [i]=RECU_FONCTION (

TABLE=rz12 [i] ,
PARA_X=’INST’ ,
PARA_Y=’DZ’ ,

) ;
#here a function that loads in a tuple:
#x = value time step instant,
#deltaZ1 = Z displacement of part 1
dtaZ1 [i]=RECU_FONCTION (

TABLE=dz1 [i] ,
PARA_X=’INST’ ,
PARA_Y=’Z10000’ ,

) ;

dtaZ2 [i]=RECU_FONCTION (
TABLE=dz2 [i] ,
PARA_X=’INST’ ,
PARA_Y=’Z10000’ ,

) ;

rcZ1 [i]=RECU_FONCTION (
TABLE=rz1 [i] ,
PARA_X=’INST’ ,
PARA_Y=’DZ’ ,

) ;

rcZ2 [i]=RECU_FONCTION (
TABLE=rz2 [i] ,
PARA_X=’INST’ ,
PARA_Y=’DZ’ ,

) ;

To create the plots of displacements and reactions for case 4 and 5 in
XmGrace.

184 Post-processing the spring

#here we print these functions in XmGrace format files
#numbering is such than case 4 is in LU 29, case 5 in LU 30
#we have to have entry in ASTK for these files
#type dat in ASTK maybe extension .agr
IMPR_FONCTION (
FORMAT=’XMGRACE’ ,
UNITE=25+i ,
TITRE=’displacement and reaction ’ ,
BORNE_X= (0 , 8 0 0 0) ,
BORNE_Y=(−10000 ,8000) ,
GRILLE_X= (1 0 0 0) ,
GRILLE_Y= (1 0 0 0) ,
LEGENDE_X=’applied load (N)’ ,
LEGENDE_Y=’displacement (mm/10000) or force (N)’ ,
COURBE=(

_F (FONC_X=loadt [i] ,FONC_Y=dtaZ1 [i] ,LEGENDE=’dz1’ ,) ,
_F (FONC_X=loadt [i] ,FONC_Y=dtaZ2 [i] ,LEGENDE=’dz2’ ,) ,
_F (FONC_X=loadt [i] ,FONC_Y=rcZ1 [i] ,LEGENDE=’reacz1’ ,) ,
_F (FONC_X=loadt [i] ,FONC_Y=rcZ2 [i] ,LEGENDE=’reacz2’ ,) ,

) ,
) ;
#end of loop

One remark here: IMPR_FONCTION is executed for case 1 to 5 but
files are created in ASTK only for case 4 and 5 (LU=29 and LU=30),
see figure 13.1, so only these last two cases are printed, this is not very
optimized!

And the next part makes a plot of the displacement of ’load1p’ node for
all five cases.

IMPR_FONCTION (
FORMAT=’XMGRACE’ ,
UNITE=31 ,
TITRE=’compare displacement’ ,
BORNE_X= (0 , 8 0 0 0) ,
BORNE_Y=(0 , −10000) ,
GRILLE_X= (1 0 0 0) ,
GRILLE_Y= (1 0 0 0) ,
LEGENDE_X=’applied load (N)’ ,
LEGENDE_Y=’compared displacement (mm/10000) or force (N)’ ,
COURBE=(
_F (FONC_X=loadt [1] ,FONC_Y=dtaZ1 [1] ,LEGENDE=’dz1, case 1’ ,) ,
_F (FONC_X=loadt [2] ,FONC_Y=dtaZ1 [2] ,LEGENDE=’dz1, case 2’ ,) ,
_F (FONC_X=loadt [3] ,FONC_Y=dtaZ1 [3] ,LEGENDE=’dz1, case 3’ ,) ,
_F (FONC_X=loadt [4] ,FONC_Y=dtaZ1 [4] ,LEGENDE=’dz1, case 4’ ,) ,
_F (FONC_X=loadt [5] ,FONC_Y=dtaZ1 [5] ,LEGENDE=’dz1, case 5’ ,) ,

) ,
) ;

13.2 Running the post processing 185

And finally, we need to kill the previously created concepts. If we want
to run this command file later on we will have to write them again, as we
save the base we have to make allowance for writing them again.

#we have to kill the CONCEPT if we want to run this command file
#more than one time
#first the ones lying within a loop
for i in range (1 ,iter+ 1) :
DETRUIRE (CONCEPT=_F (NOM=(sr1 [i] ,sr2 [i] ,sr12 [i] ,qres [i] ,) ,) ,) ;
DETRUIRE (CONCEPT=_F (NOM=(dz1 [i] ,dz2 [i] ,rz1 [i] ,rz2 [i] ,) ,) ,) ;
DETRUIRE (CONCEPT=_F (NOM=(rz12 [i] ,loadt [i] ,) ,) ,) ;
DETRUIRE (CONCEPT=_F (NOM=(dtaZ1 [i] ,dtaZ2 [i] ,rcZ1 [i] ,rcZ2 [i] ,) ,) ,) ;

#note the Python indent

#then the one outside of a loop
DETRUIRE (CONCEPT=_F (NOM=by10000) ,) ;

STANLEY () ;

FIN () ;

13.2 Running the post processing

Figure 13.1 is a view of the ASTK setup to run the post-processing.

We use the same database as previously which this time is set for ’D’
data. and ’R’ results.

13.3 Viewing deformed shape for all cases

Here are the views, in Gmsh, of the deformed shape for all cases, at the
last instant for the non linear cases, the first three of them with a dis-
placement factor of 5. The two last ones, with contact, are shown with
a a displacement factor of 1. As using a factor different from 1, in these
cases, for the displacements will lead to an erroneous picture, e.g. here a
displacement of 1 mm of ’part1’ induces a displacement of 0.5 mm only
on part 2 1!

Finally the views are from a quadratic mesh computation except the
view for case 5 coming from a linear one.

1 This is an illustration of the non linear behavior in case of contact (unilateral boundary
condition).

186 Post-processing the spring

FIGURE 13.1: ASTK windows for Post-processing

FIGURE 13.2: ’part1’ loaded on its own is the only deformed part, it is penetrating
inside ’part2’

13.3 Viewing deformed shape for all cases 187

FIGURE 13.3: ’part1’ is “glued” ’to part 2’

FIGURE 13.4: Rotation is freed around the pin

188 Post-processing the spring

FIGURE 13.5: ’part1’ comes in contact with ’part2’ (displacement factor = 1)

FIGURE 13.6: Here with some friction (displacement factor = 1, calculation from
a linear mesh)

13.4 Numerical results 189

13.4 Numerical results

case sol type max dspl, dZ1 reac, ’part1’ reac, ’part2’
1 quadratic -1.23 7854 0
2 -0.13 3802 4052
3 -0.57 3663 4191
4 -0.87 5536 2318
5 NA NA NA
1 linear -1.16 7783 0
2 -0.13 3783 4000
3 -0.46 3692 4091
4 -0.82 5515 2268
5 -0.79 5520 2264

We should note that the displacement given above is the vertical dis-
placement of the node ’load1p’ at the center of the loaded area in ’part1’
while the previous screen views show the displacement vector, every-
where in the model, this is not exactly the same thing.

As we pointed out in 12.4.6 , the estimated value of the frictional vertical
resisting force is about 8.6% of the vertical load, we can see in the above
’linear mesh’ results that the displacement for case 5 is somewhat less,
as it shows a decrease of 3.7%, here the estimates is of a softer assembly
than the finite element calculation.

13.5 Checking the results

For all cases we consider the part 1 or 2 as a beam of b = 5mm width by
h = 20mm height, which gives a moment of inertia:

I = b×h3

12 = 3333mm4, a section modulus Z = I
h
2

= 333mm3 and an
equivalent point load F = 7854N

For the first result the right part, ’part1’ is a cantilever beam of
L = 68mm, hence the displacement comes out at:

dz =
FL3

3EI
=

7854× 683

3× 210000× 3333
= 1.17mm

190 Post-processing the spring

compared toCode_Aster calculated 1.23mm for case one;

and a maximum normal stress of:

σ =
M

Z
=
FL

Z
=

7854× 68

333
= 1584N/mm2

compared toCode_Aster calculated 2031N/mm2;

For the second result the assembly of ’part1’ and part2’ glued together
acts a beam fixed at both ends of L = 136mm , hence the displacement
comes out at:

dz =
FL3

192EI
=

7854× 1363

192× 210000× 3333
= 0.15mm

compared to Code_Aster calculated 0.134mm for case two;

and a maximum normal stress of:

σ =
M

Z
=
FL

8Z
=

7854× 136

8× 333
= 396N/mm2

compared to Code_Aster calculated 468N/mm2.

The discrepancy is coming from the approximation we are making here.
The values for the other results lying obviously in between these two ex-
tremes.

This technique, to hand calculate two analytical approximate values for
a problem, one, optimistic, the second, pessimistic, is known as “brack-
eting” and should be used as much as possible to ensure the validity of a
finite element result’s value!

13.6 Looking at some plots 191

13.6 Looking at some plots

Creating the plot in the command file is quite a lengthy job, and we are
a bit eager to look at it, figure 13.7 shows the plot for case 4, [almost]
straight out of the box1.

FIGURE 13.7: XmGrace plot for case 4

The bi-linear behavior of the model is clearly visible here.

1 I changed one color, thickness of lines and legend position.

192 Post-processing the spring

And the plot for case 5 in figure 13.8:

FIGURE 13.8: XmGrace plot for case 5

The friction influence is also clearly visible.

And finally the compared displacements for all five cases is shown in
figure 13.9. For case 1 to 3 it is only a single point at the load of 7854N .

13.6 Looking at some plots 193

FIGURE 13.9: XmGrace plot comparing Z displacement of point ’load1p’

However this analysis is of course only valid in the elastic range. Fig-
ure 13.10 shows the von Mises criteria at the last instant for case 4, the
maximum value, at 991N/mm2, is rather above the yield stress1, which
should warn the engineer!

1 Not to speak of fatigue allowance in a spring design.

194 Post-processing the spring

FIGURE 13.10: Von Mises criteria for case4 at last INST.

CHAPTER 14

Introducing plastic analysis, and more...

In the first part of this chapter, we study the plastic behavior of one of
the part of chapter 12.

In the second part, we substitute a length of beam section to one
portion of the solid part.

14.1 Running an Elasto-plastic analysis

We have seen in the previous example that the stresses in the components
of the model were exceeding the elastic limit, or yield stress, it is of course
not the proper behavior for a spring. Nevertheless we describe in this
chapter how we can compute and display this behavior for ’part1’ alone
of the previous example.

As far as the mesh is concerned we just simply use the mesh created for
part1 in our previous example.

195

196 Introducing plastic analysis, and more...

This calculation is made on a simple linear mesh, it does not really make
sense to launch a quadratic mesh refinement until the problem is solved at
first with a linear mesh and the result do not show real deficiencies.

14.1.1 Initializing the mesh

Nothing new here.

DEBUT () ;

mesh=LIRE_MAILLAGE (UNITE=20 ,FORMAT=’MED’ ,) ;

mesh1=MODI_MAILLAGE (
reuse =mesh1 ,
MAILLAGE=mesh1 ,
ORIE_PEAU_3D=(

_F (GROUP_MA=’fix1s’ ,) ,
_F (GROUP_MA=’load1s’ ,) ,

) ,
) ;

mesh1=DEFI_GROUP (
reuse =mesh1 ,
MAILLAGE=mesh1 ,
CREA_GROUP_MA=_F (N
CREA_GROUP_NO=(NOM=’TOUT’ ,TOUT=’OUI’ ,) ,

_F (GROUP_MA=’fix1s’ ,) ,
_F (GROUP_MA=’load1s’ ,) ,

) ,
) ;

IMPR_RESU (FORMAT=’MED’ , UNITE=71 , RESU=_F (MAILLAGE=mesh1 ,) ,) ;

mod1=AFFE_MODELE (
MAILLAGE=mesh1 ,
AFFE=_F (TOUT=’OUI’ ,PHENOMENE=’MECANIQUE’ ,MODELISATION=’3D’ ,) ,

) ;

14.1.2 Creating the non-linear material

Here, we are dealing with a non linearity related to the material, so we
have to describe, within a function, the deformation or strain, of the ma-
terial versus the stress. Here, we use a rather simple one for a mild
steel whose yield limit is 240N/mm2, the strain is 20% for a stress of
380N/mm2 and 40% for a stress of 420N/mm2. Following the curve
given in figure 14.1.

14.1 Running an Elasto-plastic analysis 197

FIGURE 14.1: Steel elastoplastic stress/strain curve

s235elpl=DEFI_FONCTION (
NOM_PARA=’EPSI’ ,NOM_RESU=’SIGMA’ ,
VALE=(

#there should not be a point at 0.0, 0.0
#0.0000, 0.0
0 . 0 0 1 1 4 , 2 4 0 . 0 ,
0 . 0 0 1 2 , 2 4 1 . 0 ,
0 . 0 0 2 0 , 2 4 1 . 6 ,
0 . 0 0 5 0 , 2 4 4 . 0 ,
0 . 0 1 0 0 , 2 4 8 . 0 ,
0 . 0 1 5 0 , 2 5 2 . 0 ,
0 . 0 5 0 0 , 2 8 0 . 0 ,
0 . 1 0 0 0 , 3 2 0 . 0 ,
0 . 1 5 0 0 , 3 6 0 . 0 ,
0 . 2 0 0 0 , 3 8 0 . 0 ,
0 . 4 0 0 0 , 4 2 0 . 0 ,

) ,
INTERPOL=’LIN’ ,
PROL_DROITE=’LINEAIRE’ ,
PROL_GAUCHE=’CONSTANT’ ,

) ;

Note that there should not be an explicit point at (0, 0) the first couple
of point: ’EPSI’ (ε) , ’SIGMA’ (σ) marks the frontier of the elastic
domain and should verify σ

ε = E where E is the young modulus given in
DEFI_MATERIAU.

198 Introducing plastic analysis, and more...

Note also that we may need quite closely spaced points after the sharp
bend of the yield limit so the solver does not get lost1.

Finally, the keyword PROL_DROITE=’CONSTANT’, ensure a con-
stant strain after a stress of 420N/mm2.

14.1.3 Setting model and BC

steel=DEFI_MATERIAU (
ELAS=_F (E=210000 ,NU= 0 . 3 ,) ,
TRACTION=_F (SIGM=s235elpl ,) ,

) ;

mate=AFFE_MATERIAU (
MAILLAGE=mesh1 ,
AFFE=_F (TOUT=’OUI’ ,MATER=steel ,) ,

) ;

fix1=AFFE_CHAR_MECA (
MODELE=mod1 ,
DDL_IMPO=(

_F (GROUP_MA=(’sym1s’ ,’load1s’ ,) ,DY= 0 . 0 ,) ,
_F (GROUP_MA=’fix1s’ ,DX= 0 . 0 ,DY= 0 . 0 ,DZ= 0 . 0 ,) ,

) ,
) ;

load=AFFE_CHAR_MECA (
MODELE=mod1 ,
FORCE_FACE=_F (GROUP_MA=’load1s’ ,FZ= −25.0 ,) ,

) ;

load_m=DEFI_FONCTION (
NOM_PARA=’INST’ ,VALE= (0 , 0 , 5 , 1) ,
PROL_GAUCHE=’CONSTANT’ ,PROL_DROITE=’CONSTANT’ ,

) ;

lreel=DEFI_LIST_REEL (
DEBUT= 0 . 0 ,
INTERVALLE=(

_F (JUSQU_A= 1 . 2 ,PAS= 0 . 1 ,) ,
_F (JUSQU_A= 1 . 5 ,PAS= 0 . 1 ,) ,
_F (JUSQU_A= 5 . 0 ,PAS= 0 . 1 ,) ,

) ,
) ;

#U4.34.03 for DEFI_LIST_INST
#particularly keyword ECHEC
linst=DEFI_LIST_INST (

1 This may not be absolutely necessary in Code_Aster, but, from previous experiences, I like
to do it like that!

14.1 Running an Elasto-plastic analysis 199

DEFI_LIST=_F (METHODE=’MANUEL’ ,LIST_INST=lreel ,) ,
#ECHEC=_F(

#EVENEMENT=’ERREUR’,
#ACTION=’DECOUPE’,
#SUBD_METHODE=’MANUEL’,
#SUBD_PAS=5,
#SUBD_NIVEAU=4,

#),
) ;

14.1.4 Solving

We perform two calculations:

• ’resulin’ is a static linear;

• ’resunl’ is a non linear calculation.

This, just to be able to look at the two results side by side in the post-
processor viewer.

resulin=MECA_STATIQUE (
MODELE=mod1 ,
CHAM_MATER=mate ,
EXCIT=(

_F (CHARGE=fix1 ,) ,
_F (CHARGE=load ,) ,

) ,
) ;

resunl=STAT_NON_LINE (
MODELE=mod1 ,
CHAM_MATER=mate ,
EXCIT=(

_F (CHARGE=fix1 ,) ,
_F (CHARGE=load ,TYPE_CHARGE=’FIXE_CSTE’ ,FONC_MULT=load_m ,) ,

) ,
COMP_INCR=_F (

RELATION=’VMIS_ISOT_TRAC’ , #U4.51.11 para 4.3.1.3
DEFORMATION=’SIMO_MIEHE’ , #U4.51.11 para 4.5.3

) ,
INCREMENT=_F (LIST_INST=linst ,) ,
NEWTON=_F (

PREDICTION=’TANGENTE’ ,
MATRICE=’TANGENTE’ ,
REAC_ITER=1 ,

) ,
CONVERGENCE=_F (RESI_GLOB_RELA=1e−4,ITER_GLOB_MAXI= 3 0 0 ,) ,

200 Introducing plastic analysis, and more...

) ;

Here, we specify the non-linear material behavior as well as the
geometric non-linear behavior under the key word COMP_INCR,
VMIS_ISOT_TRAC stands for non-linear isotropic von Mises law.

resulin=CALC_CHAMP (
reuse =resulin ,
RESULTAT=resulin ,
CONTRAINTE=’SIEF_ELNO’ ,
FORCE=’REAC_NODA’ ,
CRITERES=(
’SIEQ_ELNO’ ,
’SIEQ_NOEU’ ,

) ,
) ;

resunl=CALC_CHAMP (
reuse =resunl ,
RESULTAT=resunl ,
CONTRAINTE=’SIEF_ELNO’ ,
FORCE=’REAC_NODA’ ,
CRITERES=(

’SIEQ_ELNO’ ,
’SIEQ_NOEU’ ,

) ,
) ;

Print the key values in .resu file.

#printing a .resu file to hold some minimum and maximum values
#of some fields and components
IMPR_RESU (
FORMAT=’RESULTAT’ ,
RESU=(
_F (

RESULTAT=resulin ,NOM_CHAM=’DEPL’ ,
NOM_CMP=(’DZ’ ,) ,VALE_MAX=’OUI’ ,VALE_MIN=’OUI’ ,

) ,
_F (

RESULTAT=resunl ,NOM_CHAM=’DEPL’ ,
NOM_CMP=(’DZ’ ,) ,VALE_MAX=’OUI’ ,VALE_MIN=’OUI’ ,

) ,
_F (

RESULTAT=resulin ,
NOM_CHAM=’SIEQ_NOEU’ ,
NOM_CMP=(’VMIS’ ,) ,
VALE_MAX=’OUI’ ,

) ,
_F (

RESULTAT=resunl ,
NOM_CHAM=’SIEQ_NOEU’ ,

14.1 Running an Elasto-plastic analysis 201

NOM_CMP=(’VMIS’ ,) ,
VALE_MAX=’OUI’ ,

) ,
) ,

) ;

And printing the .med file.

IMPR_RESU (
FORMAT=’MED’ ,
RESU=(

_F (
RESULTAT=resulin ,
MAILLAGE=mesh1 ,
NOM_CHAM=(’DEPL’ ,’SIEF_ELNO’ ,’SIEQ_NOEU’ ,) ,

) ,
_F (
RESULTAT=resulin ,
MAILLAGE=mesh1 ,
NOM_CHAM=’SIEQ_NOEU’ ,NOM_CMP=’VMIS’ ,
NOM_CHAM_MED=’vmislin’

) ,
_F (
RESULTAT=resunl ,
MAILLAGE=mesh1 ,
NOM_CHAM=(’DEPL’ ,’SIEF_ELNO’ ,’SIEQ_NOEU’ ,) ,

) ,
_F (
RESULTAT=resunl ,
MAILLAGE=mesh1 ,
NOM_CHAM=’SIEQ_NOEU’ ,NOM_CMP=’VMIS’ ,
NOM_CHAM_MED=’vmisnl’

) ,
) ,

) ;

FIN () ;

We print the maximum values and minimum values of some fields
and components as a useful check of the values displayed in the post-
processing viewers.

We should always do that to ensure that we are displaying the values
calculated by Code_Aster.

202 Introducing plastic analysis, and more...

14.1.5 Looking at the results

After the calculation we can look at the results.

Although the maximum vertical displacement, from 1.6mm to
60.5mm, is multiplied by almost 40; the maximum stress, from 1408

to 416N/mm2, is actually divided by around 3.4 and the distribution is
rather different!

Just a few Gmsh hints about how ro produce the screen caps in figures
14.3 and 14.2

• the view are moved around with: in the Options - View[x] win-
dow, Transfo Coordinate transformation: , the values are in model
units, in the model global coordinate system;

• the scalar bars are moved around with: in the Options - View[x]
window, Axis 2D axes/value scale position , et to manual, fore exam-
ple with the proper values in the four fields, the values are in pixel,
in the screen coordinate system;

• elements outlines are obtained with: in the Options - View[x]
window, Visibility Draw element outlines ;

• we may also shrink the elements with: in the Options - View[x]
window, Aspect Element shrinking factor , for example 0.8 in the top
view of figure 14.2.

14.1 Running an Elasto-plastic analysis 203

FIGURE 14.2: Compared von Mises stress

204 Introducing plastic analysis, and more...

FIGURE 14.3: Compared displacement

14.2 Replacing volumes by beams 205

14.2 Replacing volumes by beams

We may simplify meshing and reduce calculation time by substituting
some areas of the 3D mesh by an equivalent beam section. This can be
done in the previous example for some length of the part in between the
grounding and the eye.

For this, we use the LIAISON_ELEM command described in U4.44.01
in paragraph 4.19, with the first basic points:

• with this we cannot use the trick of the symmetry anymore;

• the cross section of the 3D elements across the joint and the cross
section of the beam must be geometrically strictly identical;

• because of the beam we carry an elastic analysis1.

14.2.1 Meshing

Here is the modified script for creating the geometry and mesh, with the
complete model and the beam elements.

cl1=2.5 ; //characteristic length, for meshing
t1=5; //thickness of half part
r1=10.0; //radius of pin
r2=17.0; //outside radius of eye
Point (1) = {0 , −t1 , 0 , cl1 } ; //base point
Point (11) = {0 , −t1 , −r1 , cl1 } ;
Point (12) = {r1*Sin (2 *Pi / 3) , −t1 , r1+r1*Cos (2 *Pi / 3) , cl1 } ;
Point (13) = {r1*Sin (4 *Pi / 3) , −t1 , r1+r1*Cos (4 *Pi / 3) , cl1 } ;
Point (21) = {Sqrt (r2*r2−r1*r1) , −t1 , r1 , cl1 } ;
Point (22) = {−r2 , −t1 , 0 , cl1 } ;
Point (23) = {Sqrt (r2*r2−r1*r1) , −t1 , −r1 , cl1 } ;
Point (24) = {(4−2)*r2 , −t1 , r1 , cl1 } ;
Point (25) = {(4−2)*r2 , −t1 , −r1 , cl1 } ;

Circle (1) = {11 , 1 , 12 } ;
Circle (2) = {12 , 1 , 13 } ;
Circle (3) = {13 , 1 , 11 } ;
Circle (4) = {21 , 1 , 22 } ;
Circle (5) = {22 , 1 , 23 } ;
Line (6) = {21 , 24 } ;
Line (7) = {23 , 25 } ;

1 If we switch to a beam model a plastic analysis is still possible but require a more com-
plex input. Moreover the LIAISON_ELEM with OPTION=’3D_POU’ is not valid in large
displacements.

206 Introducing plastic analysis, and more...

Line (8) = {25 , 24 } ;
fix1s [] = { Extrude {0 , t1 , 0} {Line { 8 } ; } } ;
pin1s [] = { Extrude {0 , −1.5*t1 , 0} {Line{−1, −2, −3};} } ;
Line Loop (33) = {2 , 3 , 1 } ;
Plane Surface (34) = { 3 3 } ;
Line Loop (35) = {6 , −8, −7, −5, −4};
Plane Surface (36) = {33 , 35 } ;
part1v [] = { Extrude {0 , t1 , 0} {Surface {34 , 36 } ; } } ;
pin1v [] = { Extrude {0 , −1.5*t1 , 0} {Surface { 3 4 } ; } } ;

//line to replace the volume on the right
//beam end point slightly offset from the joining surface
Point (201) = {(4−2)*r2+0.1 , 0 , 0 , cl1 } ;
Point (203) = {4*r2 , 0 , 0 , cl1 } ;
Line (201) = {201 ,203} ;
Physical Point ("fixp") = { 2 0 3 } ;
Physical Point ("linkp") = { 2 0 1 } ;
Physical Line ("beaml") = { 2 0 1 } ;

//symmetry of 3D part
newfix1s [] = {

Symmetry {0 , 1 , 0 , 0}
{Duplicata { Surface {fix1s [] } ; } }

} ;
new1v [] = {
Symmetry {0 , 1 , 0 , 0}
{Duplicata { Volume {part1v [] , pin1v [] } ; } }

} ;

Physical Point ("load1p") = { 3 3 } ;
Physical Surface ("bear1s") = { 3 6 } ;
Physical Surface ("sym1s") = { 9 5 } ;
Physical Surface ("pin1s") = {pin1s [] } ;
Physical Surface ("fix1s") = {fix1s [] , newfix1s [] } ;
Physical Surface ("load1s") = {112 ,295} ;
Physical Volume ("part1v") = {part1v [] , pin1v [] , new1v [] } ;
//all surfaces in Cyan
Color Cyan {
Surface {12 , 16 , 20 , 24 , 34 , 36 , 44 , 48 , 52 , 53 ,
78 , 82 , 86 , 94 , 95 , 102 , 112} ;

}
//then
Color Orange { Surface { 3 6 } ; }
Color Black { Surface {53 , 102} ; }
Color Green { Surface { 9 5 } ; }
Color Red { Surface {pin1s [] } ; }
Color Blue { Surface {fix1s [] } ; }
Color Magenta { Volume {part1v [] , pin1v [] } ; }

The beam end is slightly offset, in the X direction, from the joining
surface, this is not required at all, it just makes the meshing view more
explicit. However, we must realize that this short length behaves as a
rigid body, so it should not be too long! Code_Aster raises a warning

14.2 Replacing volumes by beams 207

about this at run time. Also the geometry is built in such a way that there
is not necessarily a node on the face just facing the end of the beam, it is
not necessary.

We make a quadratic mesh out of this geometry, but this creates SEG3
on the lines, which is not suitable for the beam elements, this is to be
solved in the command file.

14.2.2 Commanding

Here is the command file.

DEBUT () ;

mesh0=LIRE_MAILLAGE (UNITE=20 ,FORMAT=’MED’ ,) ;

mesh0=DEFI_GROUP (
reuse =mesh0 ,
MAILLAGE=mesh0 ,
CREA_GROUP_MA=_F (NOM=’TOUT’ ,TOUT=’OUI’ ,) ,

) ;

mesh0=MODI_MAILLAGE (
reuse =mesh0 ,
MAILLAGE=mesh0 ,
ORIE_PEAU_3D=(_F (GROUP_MA=’fix1s’ ,) ,) ,

) ;

qmesh=CREA_MAILLAGE (
MAILLAGE=mesh1 ,
QUAD_LINE=_F (GROUP_MA=(’beaml’ ,) ,) ,

) ;

We revert to a linear mesh on the beam group as beams are only sup-
ported by linear elements.

qmesh=DEFI_GROUP (
reuse =qmesh ,MAILLAGE=qmesh ,
CREA_GROUP_NO=(

_F (GROUP_MA=’linkp’ ,) ,
_F (GROUP_MA=’fix1s’ ,) ,
_F (GROUP_MA=’fixp’ ,) ,

) ,
) ;

lmesh=CREA_MAILLAGE (
MAILLAGE=mesh0 ,
LINE_QUAD=_F (GROUP_MA=(’TOUT’ ,) ,) ,

) ;

208 Introducing plastic analysis, and more...

IMPR_RESU (FORMAT=’MED’ , UNITE=71 , RESU=_F (MAILLAGE=lmesh ,) ,) ;
IMPR_RESU (FORMAT=’MED’ , UNITE=72 , RESU=_F (MAILLAGE=qmesh ,) ,) ;

We create a model ’qmod’ on the quadratic mesh ’qmesh’ and another
one ’lmod’ on the linear mesh ’lmesh’.

qmod=AFFE_MODELE (
MAILLAGE=qmesh ,
AFFE=(

_F (
GROUP_MA=(’part1v’ ,’fix1s’ ,’load1s’ ,) ,
PHENOMENE=’MECANIQUE’ ,MODELISATION=’3D’ ,

) ,
_F (

GROUP_MA=’beaml’ ,
PHENOMENE=’MECANIQUE’ ,MODELISATION=’POU_D_T’ ,

) ,
) ,

) ;

lmod=AFFE_MODELE (
MAILLAGE=lmesh ,
AFFE=(

_F (
GROUP_MA=(’part1v’ ,’fix1s’ ,’load1s’ ,) ,
PHENOMENE=’MECANIQUE’ ,MODELISATION=’3D’ ,

) ,
_F (

GROUP_MA=’beaml’ ,
PHENOMENE=’MECANIQUE’ ,MODELISATION=’POU_D_T’ ,

) ,
) ,

) ;

steel=DEFI_MATERIAU (
ELAS=_F (E=210000 ,NU= 0 . 3 ,) ,

) ;

mate=AFFE_MATERIAU (
MAILLAGE=qmesh ,
AFFE=_F (TOUT=’OUI’ ,MATER=steel ,) ,

) ;

elemcar=AFFE_CARA_ELEM (
MODELE=qmod ,
POUTRE=_F (

GROUP_MA=(’beaml’ ,) ,SECTION=’RECTANGLE’ ,
CARA=(’HY’ ,’HZ’) ,VALE=(10 , 2 0 ,) ,

) ,
) ;

#joining the beam to the solid part
#U4.44.01 par 4.19

14.2 Replacing volumes by beams 209

link=AFFE_CHAR_MECA (
MODELE=qmod ,
LIAISON_ELEM=_F (

OPTION=’3D_POU’ ,
GROUP_MA_1=’fix1s’ ,
GROUP_NO_2=’linkp’ ,

) ,
) ;

The beam is a rectangle of exactly the same dimension as the solid part.

The LIAISON_ELEM:

• uses the OPTION=’3D_POU’, as we are joining a beam to a solid
part;

• with GROUP_MA_1, we give the name of the element group of the
joint on the 3D side;

• with GROUP_NO_2, the name of the group of nodes, in fact only
one single node, at the end of the beam on the joint.

fix1=AFFE_CHAR_MECA (
MODELE=qmod ,
DDL_IMPO=(

#symmetry is not used for this calculation,
#the beam does not allow it
#_F(GROUP_MA=(’sym1s’,’load1s’,),DY=0.0,),
_F (

GROUP_MA=’fixp’ ,
DX= 0 . 0 ,DY= 0 . 0 ,DZ= 0 . 0 ,
DRX= 0 . 0 ,DRY= 0 . 0 ,DRZ= 0 . 0 ,

) ,
) ,

) ;

load=AFFE_CHAR_MECA (
MODELE=qmod ,
FORCE_FACE=_F (GROUP_MA=’load1s’ ,FZ= −25.0 ,) ,

) ;

Here, we perform the analysis with the linear behavior.

#only one single step linear calculation
resulin=MECA_STATIQUE (

MODELE=qmod ,
CHAM_MATER=mate ,
CARA_ELEM=elemcar ,
EXCIT=(

210 Introducing plastic analysis, and more...

_F (CHARGE=fix1 ,) ,

_F (CHARGE=link ,) ,

_F (CHARGE=load ,) ,
) ,

) ;

resulin=CALC_CHAMP (
reuse =resulin ,
RESULTAT=resulin ,
CONTRAINTE=(’SIEF_ELNO’ ,’SIPM_ELNO’ ,) ,
FORCE=’REAC_NODA’ ,
CRITERES=(’SIEQ_NOEU’ ,) ,

) ;

STANLEY () ;

A call to STANLEY here would process and display results on the
quadratic mesh. And we do some post-processing to be printed in the
.resu file.

sr1=POST_RELEVE_T (
ACTION=_F (

INTITULE=’reac1’ ,
GROUP_NO=(’fixp’ ,) ,RESULTAT=resulin ,
NOM_CHAM=’REAC_NODA’ ,TOUT_ORDRE=’OUI’ ,
RESULTANTE=(’DX’ ,’DY’ ,’DZ’) ,
OPERATION=’EXTRACTION’ ,

) ,
) ;
IMPR_TABLE (TABLE=sr1 ,)

IMPR_RESU (
FORMAT=’RESULTAT’ ,
#a print ou in .resu file of Min and Max values
#so as to check the viewer’s displayed values
#against the calculated ones
RESU=(

_F (RESULTAT=resulin ,NOM_CHAM=’DEPL’ ,
NOM_CMP=(’DZ’ ,) ,VALE_MAX=’OUI’ ,VALE_MIN=’OUI’ ,

) ,
_F (

RESULTAT=resulin ,
NOM_CHAM=’SIEQ_NOEU’ ,
NOM_CMP=(’VMIS_SG’ ,) ,
VALE_MAX=’OUI’ ,

) ,
_F (

RESULTAT=resulin ,
NOM_CHAM=’SIPM_ELNO’ ,
GROUP_MA=’beaml’ ,
NOM_CMP=(’SIXX’ ,) ,

14.2 Replacing volumes by beams 211

VALE_MAX=’OUI’ ,VALE_MIN=’OUI’ ,

) ,

) ,
) ;

To finish by projecting the results on the linear mesh and printing them
in the .med file.

resulinp=PROJ_CHAMP (
RESULTAT=resulin ,
MODELE_1=qmod ,MODELE_2=lmod ,
PROL_ZERO=’OUI’

) ;

IMPR_RESU (
FORMAT=’MED’ ,
RESU=(
#the result for 3D is from the-projected results

_F (
RESULTAT=resulinp ,
NOM_CHAM=(’DEPL’ ,’SIEQ_NOEU’ ,) ,

) ,
_F (

RESULTAT=resulinp ,
NOM_CHAM=’SIEQ_NOEU’ ,NOM_CMP=’VMIS_SG’ ,
NOM_CHAM_MED=’vmislin’

) ,
#the results for beams are from
#the non-projected results
_F (

RESULTAT=resulin ,
GROUP_MA=’beaml’ ,
NOM_CHAM=’SIPM_ELNO’ ,
NOM_CMP=’SIXX’ ,NOM_CHAM_MED=’sipmsixx’

) ,
_F (

RESULTAT=resulin ,
GROUP_MA=’beaml’ ,
NOM_CHAM=’DEPL’ ,
NOM_CHAM_MED=’beamdepl’

) ,
) ,

) ;

FIN () ;

In the med file, the result for the beam are from the non-projected results
as the beam has not been converted to quadratic.

212 Introducing plastic analysis, and more...

14.2.3 Viewing results

After quite a bit of mixing, DEPL from the ’resulinp’ and ’resulin’ for
the beam, and homogenizing the scales, we can display a deformed shape
looking like figure 14.4 in Gmsh.

And the same for von Mises criteria in the 3D elements, and maximum
normal stress, ’sipmsixx’, for beam elements in figure 14.5. In which we
use VON_MISES_SG, which the value of the von Mises criteria signed
by the trace of the stress tensor, that is the sum of the principal stress to
give a better picture of the tension and compression areas1.

FIGURE 14.4: 3D + beam, displacement

1 In simpler words: it is positive if there is traction and negative if there is compression.

14.2 Replacing volumes by beams 213

If we compare these values with the results of the linear analysis of the
solid model just above:

• the maximum displacement is 1.66mm in the beam+3D model
while it is 1.6mm in the solid model;

• and the maximum stress, at the ground fixation,
SIPM_ELNO...SIXX is 1582N/mm2 in the beam+3D model
which compares favorably with the SIEQ_ELNO...VMIS of
1408N/mm2 in the solid model;

• also the SIPM_ELNO...SIXX is 747N/mm2 in the beam at
the junction with the solid part which shows a very similar
SIEQ_ELNO...VMIS of 792N/mm2 in the solid part.

FIGURE 14.5: 3D + beam, stresses

CHAPTER 15

Buckling and modal analysis

In the first part of this chapter, we introduce the modal analysis of a
very simple structure.

We compare the results with analytical methods and see how some
information like generalized mass or effective mass can be extracted

In the second part, we perform the Eulerian elastic critical buckling
load analysis on a simple column example.

We finally go into some hints to calculate the buckling load of a
structure made of beams and plates.

15.1 Modal analysis

In this section, we analyze the modal behavior of a very simple structure,
very like an inverted pendulum, 1 meter long with a mass of one kilogram
at the free end, the circular object in figure 15.1. The other end is fixed in

215

216 Buckling and modal analysis

all three directions, translations and rotations, and carries a mass of one
kilogram which cannot move at all, shown as the black rectangle1. The
section is rectangular, a×2a, such the mass of the stem is also 1 kg, which
gives a = 7.9mm, calculated by Code_Aster.

FIGURE 15.1: Inverted pendulum for modal analysis

The first natural frequency can be calculated with the following for-
mula2:

f =
1

2π

√
EI

L3(M + 0.24Mb)

Where L is the length of the beam, Mb its mass and M the end mass, all
this in a consistent set of unit (kg, m, s). The end mass is supposed to be
a point mass with no rotational inertia.

In addition the mode shape is:

y(
x

L
) = (

x

L
)3 − 3

x

L
+ 2

With the above figures3 the first two frequencies, respectively in the Y
and X directions come out at 2.79 and 5.59Hz.

1 In true life this mass could be the structure holding the stem and resting on the ground.
2 Which can be found in [Blevins].
3 I is calculated from a, I = a4

12
.

15.1 Modal analysis 217

15.1.1 Gmsh geometry and mesh

Here is the Gmsh file for geometry.

cl1=100;
Point (1) = {0 , 0 , 0 , cl1 } ;
Point (2) = {0 , 0 , 1000 , cl1 } ;
Line (1) = {2 , 1 } ;
Physical Line ("stem") = { 1 } ;
Physical Point ("endmass") = { 2 } ;
Physical Point ("fix") = { 1 } ;

One remark here: the mode shape calculation will only be true for a
number of antinode lower than the number of element along the length,
this governs the chosen meshing density, this remark holds true for the
buckling analysis as well.

15.1.2 Command file, preliminaries

The first part of the command file is straightforward and is given here
without any comment.

DEBUT (PAR_LOT=’OUI’ ,) ;

mesh=LIRE_MAILLAGE (INFO=1 ,UNITE=20 ,FORMAT=’MED’ ,) ;

mesh=DEFI_GROUP (
reuse =mesh ,MAILLAGE=mesh ,
CREA_GROUP_NO=(_F (TOUT_GROUP_MA=’OUI’ ,) ,) ,

) ;

model=AFFE_MODELE (
MAILLAGE=mesh ,
AFFE=(

_F (
GROUP_MA=(’stem’ ,) ,
PHENOMENE=’MECANIQUE’ ,MODELISATION=’POU_D_T’ ,

) ,
_F (

GROUP_MA=(’endmass’ ,’fix’ ,) ,
PHENOMENE=’MECANIQUE’ ,MODELISATION=’DIS_T’ ,

) ,
) ,

) ;

steel=DEFI_MATERIAU (ELAS=_F (E=210000 . ,NU= 0 . 3 ,RHO=8.0e−9) ,) ;

material=AFFE_MATERIAU (

218 Buckling and modal analysis

MAILLAGE=mesh ,
AFFE=_F (GROUP_MA=(’stem’ ,) ,MATER=steel ,) ,

) ;

#dimension for mass 1 kg
a= (1 . 0 / 8 / 1 0 / 2) * * 0 . 5 * 1 0 0 ;
elemcar=AFFE_CARA_ELEM (

MODELE=model ,
POUTRE =_F (

GROUP_MA=(’stem’ ,) ,
SECTION=’RECTANGLE’ ,CARA=(’HY’ ,’HZ’ ,) ,VALE=(a , 2*a) ,

) ,
DISCRET=_F (

GROUP_MA=(’endmass’ ,’fix’ ,) ,
CARA=’M_T_D_N’ ,VALE= 1 . 0 / 1 0 0 0 ,

) ,
) ;

ground=AFFE_CHAR_MECA (
MODELE=model ,
DDL_IMPO=_F (

GROUP_NO=(’fix’ ,) ,
DX=0 ,DY=0 ,DZ=0 ,DRX=0 ,DRY=0 ,DRZ=0 ,

) ,
) ;

massin=POST_ELEM (
MODELE=model ,CHAM_MATER=material ,CARA_ELEM=elemcar ,
MASS_INER=_F (TOUT=’OUI’ ,) ,
TITRE= ’massin’ ,

) ;
IMPR_TABLE (TABLE=massin ,)

The line a=(1.0/8/10/2)**0.5*100; calculates the dimension
of the rectangular section.

One should write 1.0 -a floating number- and not just simply 1 -an
integer- as the result ’a’ would not then be a floating number but an integer
equal to 0 1.

Note also how we calculate the total mass model without having per-
formed a statical analysis beforehand. If we look in the .resu file we can
see that the computed mass , ’massin’, is 3.0E− 03 (metric) tons, includ-
ing the 1 kilogram mass on the top and the other 1 kilogram mass on the
ground.

1 In Gmsh any number is handled by default as a floationg point number.

15.1 Modal analysis 219

#massin
LIEU ENTITE MASSE
mesh TOUT 3 .00000E−03

15.1.3 Command file, analysis

Then follows the modal analysis itself.

#modal analysis
#MACRO_MATR_ASSE(#in version 10.8
ASSEMBLAGE (# in version 11.2 and later

MODELE=model ,
CHAM_MATER=material ,
CARA_ELEM=elemcar ,
CHARGE=ground ,
NUME_DDL=CO (’NUMEDDL’) ,
MATR_ASSE=(

_F (MATRICE=CO (’rigidity’) ,OPTION=’RIGI_MECA’ ,) ,
_F (MATRICE=CO (’masse’) ,OPTION=’MASS_MECA’ ,) ,

) ,
) ;

modes=MODE_ITER_SIMULT (
#MATR_A=rigidity, #in version 10.8
#MATR_B=masse, #in version 10.8
MATR_RIGI=rigidity , #version 11.3
MATR_MASS=masse , #version 11.3
CALC_FREQ=_F (

OPTION=’PLUS_PETITE’ ,
#DIM_SOUS_ESPACE=12,
NMAX_FREQ=8 ,

) ,
#some of the lines in the following VERI_MODE
#may have to be uncommented
VERI_MODE=_F (

#PREC_SHIFT=5.0000000000000001E-3,
#STOP_ERREUR=’NON’,
#STURM=’OUI’,
#SEUIL=9.9999999999999995E-07,

) ,
) ;

One remark, for the modal analysis only boundary conditions are taken
into account, the analysis is performed with the mass as assigned with

220 Buckling and modal analysis

RHO for the materials and the masses values assigned to discrete elements,
like M_T_D_N1.

Another remark, once Code_Aster has calculated the modes it performs
by default a check of the modes. This check may fail even if the modes
are properly calculated. A workaround is to specify in the .comm the key
word VERI_MODE with some parameters, a choice of which is proposed
and commented in the block of code just above2. The error messages in
the .mess file gives here some hints about the strategy to follow. Once
again one has to be very careful before taking for granted the calculated
values.

#printing of the mode shapes in a med file
IMPR_RESU (

MODELE=model ,FORMAT=’MED’ ,UNITE=80 ,
RESU=_F (RESULTAT=modes ,NOM_CHAM=’DEPL’ ,) ,

) ;

#printing the values in the .resu file
#for the RESU "modes"
IMPR_RESU (

MODELE=model , #raises an error in 11.2
FORMAT=’RESULTAT’ ,
RESU=_F (

RESULTAT=modes ,
#this prints all the info relative to modal analysis
TOUT_CHAM=’NON’ , #with this we do not print DEPL
TOUT_PARA=’OUI’ ,#prints all the parameter
#next lines print only the specified parameter
#NOM_PARA=(
#’FREQ’,’MASS_GENE’,
#’MASS_EFFE_DX’,’MASS_EFFE_DY’,
#),
#FORM_TABL=’OUI’, #optional

) ,
) ;

Note: the MODE_ITER_SIMULT produces a ’data structure’ which
holds a collection of DEPL fields, these are the Eigen modes and they
are indexed by ascending FREQ which is the Eigen frequency.

1 This is not strictly true as a modal analysis can be performed on a pre-loaded structure, for
this general instructions are given at chapter 15.1.9 .

2 Temporarily uncommenting STOP_ERREUR=’NON’, it is set by default to
STOP_ERREUR=’OUI’, helped me to identify some problems in a few cases, changing
SEUIL value with STURM=’OUI’ is somewhat more refined.

15.1 Modal analysis 221

15.1.4 First results

Here is the print out, of all the parameters, restricted to the first three
modes.

ASTER 1 1 . 0 4 . 0 0 CONCEPT modes

CALCULE LE 0 5 / 0 8 / 2 0 1 3 A 0 7 : 4 4 : 0 4 DE TYPE MODE_MECA

NUMERO_ORDRE NUME_MODE FREQ AMOR_GENE AMOR_REDUIT

FACT_PARTICI_DX FACT_PARTICI_DY FACT_PARTICI_DZ MASS_EFFE_DX

MASS_EFFE_DY MASS_EFFE_DZ MASS_GENE OMEGA2

RIGI_GENE CARAELEM CHAMPMAT MODELE

NOEUD_CMP TYPE_DEFO TYPE_MODE

EXCIT NORME

1 1 2 .89797D+00 0 .00000D+00 0 .00000D+00
5 .72277D−17 1 .11285D+00 −1.90428D−25 4 .05564D−36
1 .53363D−03 4 .49062D−53 1 .23836D−03 3 .31548D+02
4 .10575D−01 elemcar material model

MODE_DYN

SANS_CMP : LAGR

2 2 5 .79544D+00 0 .00000D+00 0 .00000D+00
1 .11284D+00 −9.82865D−17 −6.81417D−17 1 .53364D−03
1 .19631D−35 5 .75021D−36 1 .23839D−03 1 .32596D+03
1 .64206D+00 elemcar material model

MODE_DYN

SANS_CMP : LAGR

3 3 3 .02328D+01 0 .00000D+00 0 .00000D+00
−6.29580D−17 7 .25491D−01 9 .25319D−22 1 .83407D−36

2 .43544D−04 3 .96184D−46 4 .62716D−04 3 .60841D+04
1 .66967D+01 elemcar material model

MODE_DYN

We can see the first 2 frequencies, at 2.898Hz and 5.795Hz, in agree-
ment with the analytical calculation. However there is here a very large
amount of information and we may restrict even more the printed param-
eters as it is suggested in the commented code lines, we then get the fol-
lowing output, a bit easier to read.

NUMERO_ORDRE FREQ MASS_GENE MASS_EFFE_DX MASS_EFFE_DY

1 2 .89797D+00 1 .23836D−03 4 .05564D−36 1 .53363D−03
2 5 .79544D+00 1 .23839D−03 1 .53364D−03 1 .19631D−35
3 3 .02328D+01 4 .62716D−04 1 .83407D−36 2 .43544D−04
4 6 .04188D+01 4 .62871D−04 2 .43615D−04 4 .55821D−33
5 9 .46502D+01 4 .48592D−04 3 .15069D−32 7 .79235D−05
6 1 .88910D+02 4 .48749D−04 7 .79878D−05 1 .81477D−29
7 1 .95518D+02 4 .59906D−04 3 .58949D−29 3 .78823D−05
8 3 .32870D+02 4 .67511D−04 1 .70046D−30 2 .22815D−05

222 Buckling and modal analysis

The MASS_GENE at 1.238kg for the first two modes seems in
good agreement with the theory. So are the MASS_EFFE_DX or
MASS_EFFE_DY at 1.533kg1.

15.1.5 More results

Here is a bit of code normalizing the modes for the MASS_GENE param-
eter, extract the MASS_EFFE_UN parameter and print on the fly.

#here we normalize the mode for ’MASS_GENE’, generalized mass
normode2=NORM_MODE (

MODE=modes ,
MASSE=masse ,
NORME=’MASS_GENE’ ,

) ;

extrnor2=EXTR_MODE (
FILTRE_MODE=_F (

MODE=normode2 ,
CRIT_EXTR=’MASS_EFFE_UN’ ,
SEUIL=1 .E−3,

) ,
IMPRESSION=_F (

CUMUL=’OUI’ ,
CRIT_EXTR=’MASS_EFFE_UN’ ,

) ,
) ;

Giving the following print out:

ASTER 1 0 . 0 6 . 0 0 CONCEPT normode2
CALCULE LE 2 6 / 0 2 / 2 0 1 2 A 1 5 : 1 1 : 1 9 DE TYPE
MODE_MECA

NUMERO_ORDRE FREQ MASS_GENE RIGI_GENE

1 2 .89797D+00 1 .00000D+00 3 .31548D+02
2 5 .79544D+00 1 .00000D+00 1 .32596D+03
3 3 .02328D+01 1 . 0 : 0 0 0 0D+00 3 .60841D+04
4 6 .04188D+01 1 .00000D+00 1 .44113D+05
5 9 .46502D+01 1 .00000D+00 3 .53673D+05
6 1 .88910D+02 1 .00000D+00 1 .40887D+06

1 A rule of thumb here would be 1/3 of the stem mass + the end mass.

15.1 Modal analysis 223

7 1 .95518D+02 1 .00000D+00 1 .50916D+06

8 3 .32870D+02 1 .00000D+00 4 .37432D+06

One remark here: frequencies may happen to be negative, but with a
very low value, this is usually due a rigid body mode, it is the same with
positive very low values.

Another remark: with a model made of many beam elements, like a
large frame, we may find many values corresponding to the local mode of
a single element, before finding global modes, whether these local modes
should be considered or not is the choice of the engineer1!

And one last remark: if the model is showing symmetry or cyclic sym-
metry there may be several modes with almost the same Eigen frequencies
and shapes due to symmetry, and this is normal, for example an hexahe-
dral section tube submitted to a compressive end load shows 6 local modes
with exactly the same shape repeating on each of the six faces.

15.1.6 Estimating (roughly) the natural frequency

Before starting a modal analysis we should always have a rough idea of
the value of the first fundamental, e.g. is it 0.1 Hz, 1 Hz, 10 Hz or 100 Hz!

Here comes quite useful a formula relating the value of the first, natural,
frequency and the deflection produced by the action of gravity2 acting in
the same direction:

f =
1

2π

√
g

δs

where

• g is the gravity acceleration, 9.81m/s2;

• δs is the deflection of the structure due to the sole action of g3.
1 And here looking at the values of MASS_GENE or MASS_EFFE_UN may help.
2 Real or dummy!
3 More details about the proof of this formula in [Blevins].

224 Buckling and modal analysis

15.1.7 Viewing mode shapes

Figure 15.2 shows four modes on a single screen, with a scale of 200,
from left to right:

• the far left, is the first mode in the YOZ plane at 2.898Hz;

• the middle left, is the second mode in the XOZ plane at 5.795Hz;

• the middle right, is the third “quarter wave” in the YOZ plane at
30.23Hz;

• the far right, is the high order mode number 8 in the YOZ plane at
322.87Hz;

FIGURE 15.2: Four modes in Gmsh

15.1 Modal analysis 225

15.1.8 What to read in the documentation

U4.52.03 concerns the operator MODE_ITER_SIMULT.

U4.52.11 concerns the operator NORM_MODE.

U4.52.12 concerns the operator EXTR_MODE.

While R5.01.03 gives a good background to the theory and explains the
way Code_Aster names the concepts.

15.1.9 Modal analysis on an pre-loaded model

The rough guide lines to preform aModal analysis on an pre-loaded model
are as such:

• make a linear elastic analysis with the pre-load, for example here, a
tension in the stem;

• extract the geometrical stiffness matrix ’Kg’ associated to this de-
formed shape;

• add this geometrical stiffness matrix to the mechanical stiffness ma-
trix, ’K + Kg’;

• perform the modal analysis.

226 Buckling and modal analysis

15.2 Checking buckling

Here, we use the same mesh as for the modal analysis to calculate its
critical buckling load, precisely its Eulerian linear buckling load. Full
description may be found in U2.08.04.

The first critical buckling load can be calculated with the well known
Euler’s formula

Pcr =
kπ2EI

L2

Where L is the length of the beam, I the quadratic moment in the buck-
ling plane and L the length of the beam all this in a consistent set of unit
(kg, m, s).

k is a coefficient whose value is one when both ends are pinned, free to
rotate as it is the case here.

In the following example the beam section is a rectangle of 7.91mm

by 2× 7.91mm, the buckling critical values coming out of the preceding
formula are:

• Pcr = 1349N in the plane of lowest moment of inertia;

• Pcr = 5397N in the plane of highest moment of inertia;

This formula gives only the value of the first mode, with a single anti-
node, higher modes are calculated by Code_Aster.

As far as Code_Aster is concerned what is calculated is a coefficient
which is the ratio of the critical load, as seen above, by the applied vari-
able load. Variable because Code_Aster allows to make the calculation
with a fixed load and a variable load and the coefficient is applied to this
second variable load. In the following example the fixed load is only the
boundary conditions and no forces, except a commented line which can
be un-commented in a second run to see what it does.

15.2 Checking buckling 227

15.2.1 Buckling solving

In the .comm file we may eliminate what is related to the discrete ele-
ments as we do not use them here.

We change the boundary conditions so the bottom is fully pinned and
the top fixed along X and Z, but able to move in the Z direction, to avoid
instability, we prevent rotation around the beam axis by setting DRZ=0.

DEBUT () ;

mesh=LIRE_MAILLAGE (INFO=2 ,UNITE=20 ,FORMAT=’MED’ ,) ;

mesh=DEFI_GROUP (
reuse =mesh ,MAILLAGE=mesh ,
CREA_GROUP_NO=(_F (TOUT_GROUP_MA=’OUI’ ,) ,) ,

) ;

model=AFFE_MODELE (
MAILLAGE=mesh ,
AFFE=_F (

GROUP_MA=(’stem’ ,) ,
PHENOMENE=’MECANIQUE’ ,MODELISATION=’POU_D_T’ ,

) ,
) ;

steel=DEFI_MATERIAU (ELAS=_F (E=210000 . ,NU= 0 . 3 ,RHO=8.0e−9) ,) ;

material=AFFE_MATERIAU (
MAILLAGE=mesh ,
AFFE=_F (GROUP_MA=(’stem’ ,) ,MATER=steel ,) ,

) ;

a= (1 . 0 / 8 / 1 0 / 2) * * 0 . 5 * 1 0 0 ;
elemcar=AFFE_CARA_ELEM (

MODELE=model ,
POUTRE =_F (

GROUP_MA=(’stem’ ,) ,
SECTION=’RECTANGLE’ ,CARA=(’HY’ ,’HZ’ ,) ,VALE=(a , 2*a) ,

) ,
) ;

ground=AFFE_CHAR_MECA (
MODELE=model ,
DDL_IMPO=(

_F (GROUP_NO=(’fix’ ,) ,DX=0 ,DY=0 ,DZ=0 ,DRZ= 0 ,) ,
_F (GROUP_NO=(’endmass’ ,) ,DX=0 ,DY=0 ,DRZ= 0 ,) ,

) ,
#uncomment in a second run
#to see the behavior with a fixed force
#FORCE_NODALE=_F(GROUP_NO=(’endmass’,),FZ=-1000,),

) ;

228 Buckling and modal analysis

load=AFFE_CHAR_MECA (
MODELE=model ,
FORCE_NODALE=_F (GROUP_NO=(’endmass’ ,) ,FZ=−1000 ,) ,

) ;

At first, we make a linear static analysis, for the fixed and variable loads.

#for variable load
resc11p1=MECA_STATIQUE (

MODELE=model ,CHAM_MATER=material ,CARA_ELEM=elemcar ,
EXCIT=(

_F (CHARGE=ground ,) ,
_F (CHARGE=load ,) ,

) ,
OPTION =’SIEF_ELGA’ ,

) ;

#for fixed load
resc12p1=MECA_STATIQUE (

MODELE=model ,
CHAM_MATER=material ,
CARA_ELEM=elemcar ,
EXCIT=_F (CHARGE=ground ,) ,
OPTION =’SIEF_ELGA’ ,

) ;

Then, we compute the internal forces related to the two previous cal-
culations, using this field to compute the associated geometrical stiffness
matrix.

#stress fields for variable load
sigc11p1=CREA_CHAMP (

TYPE_CHAM = ’ELGA_SIEF_R’ ,
OPERATION = ’EXTR’ ,
RESULTAT =resc11p1 ,
NOM_CHAM =’SIEF_ELGA’ ,
TYPE_MAXI = ’MINI’ ,
TYPE_RESU=’VALE’ ,

) ;

#geometrical stiffness matrix for variable load
regc11p1=CALC_MATR_ELEM (

OPTION = ’RIGI_GEOM’ ,
MODELE=model ,
CARA_ELEM=elemcar ,
SIEF_ELGA=sigc11p1 ,

) ;

#stress fields for fixed load
sigc12p1=CREA_CHAMP (

TYPE_CHAM = ’ELGA_SIEF_R’ ,

15.2 Checking buckling 229

OPERATION = ’EXTR’ ,
RESULTAT =resc12p1 ,
NOM_CHAM =’SIEF_ELGA’ ,
TYPE_MAXI = ’MINI’ ,
TYPE_RESU=’VALE’ ,

) ;

#geometrical stiffness matrix for fixed load
regc12p1=CALC_MATR_ELEM (

OPTION = ’RIGI_GEOM’ ,
MODELE=model ,
CARA_ELEM=elemcar ,
SIEF_ELGA=sigc12p1 ,

) ;

And, we compute the material stiffness matrix for the total load, and
proceed at the assembly of all the matrix.

#material stiffness matrix for both loads
remep1=CALC_MATR_ELEM (

OPTION = ’RIGI_MECA’ ,
MODELE=model ,
CHAM_MATER=material ,
CARA_ELEM=elemcar ,
CHARGE = (ground , load ,) ,

) ;

#matrix assemblies
nup1=NUME_DDL (MATR_RIGI=remep1 ,) ;

ramc1p1=ASSE_MATRICE (MATR_ELEM=remep1 ,NUME_DDL=nup1 ,) ;

ragep1=ASSE_MATRICE (MATR_ELEM=regc11p1 ,NUME_DDL=nup1 ,) ;

ragc12p1=ASSE_MATRICE (MATR_ELEM=regc12p1 ,NUME_DDL=nup1 ,) ;

#addition
ramep1=COMB_MATR_ASSE (
COMB_R=(
_F (MATR_ASSE=ramc1p1 ,COEF_R= 1 . 0 ,) ,
_F (MATR_ASSE=ragc12p1 ,COEF_R= 1 . 0 ,) ,

) ,
) ;

#here we set the mini and maxi value of the modes with STURM
#the calculation fails if there are no modes in this range
#it is then necessary to adjust
#sturm u45201
#then we calculate in the range
mini=−100;
maxi=100;

INFO_MODE (
MATR_RIGI=ramep1 ,

230 Buckling and modal analysis

MATR_RIGI_GEOM=ragep1 ,
TYPE_MODE=’MODE_FLAMB’ ,
CHAR_CRIT=(mini , maxi ,) ,

) ;

flamb=MODE_ITER_SIMULT (
MATR_RIGI=ramep1 ,
MATR_RIGI_GEOM=ragep1 ,
TYPE_RESU=’MODE_FLAMB’ ,
CALC_CHAR_CRIT=_F (

OPTION=’BANDE’ ,
CHAR_CRIT=(mini , maxi) ,
#alternatice option
#OPTION=’PLUS_PETITE’,
#NMAX_CHAR_CRIT=12,

) ,
) ;

flamb=NORM_MODE (
reuse=flamb ,
MODE=flamb ,
NORME=’TRAN’ ,

) ;

We may have to make several runs changing the values ’mini’ for
CHAR_CRIT_MIN and ’maxi’ for CHAR_CRIT_MAX, until finding val-
ues, without forgetting some in the lower range, which really are the
critical ones! It may be a better idea to use the alternative option with
OPTION=’PLUS_PETITE’ and NMAX_CHAR_CRIT=12.

In version 10.8 INFO_MODE is replaced by IMPR_STURM with the
same syntax and use, with TYPE_MODE being replaced by TYPE_RESU.

IMPR_RESU (
FORMAT=’MED’ ,
UNITE=80 ,
RESU=_F (

RESULTAT=flamb ,
NOM_CHAM=’DEPL’ ,

) ,
) ;

IMPR_RESU (
MODELE=model ,FORMAT=’RESULTAT’ ,
RESU=_F (

RESULTAT=flamb ,
#INFO_RESU=’OUI’,
TOUT_PARA=’OUI’ ,
FORM_TABL=’OUI’ ,

) ,
) ;

15.2 Checking buckling 231

FIN () ;

15.2.2 Calculating in version 10.8

In these previous versions the syntax was quite different:

#the following block is for version 10.8 only
#instead of INFO_MODE
IMPR_STURM (

MATR_A=ramep1 ,
MATR_B=ragep1 ,
TYPE_RESU=’MODE_FLAMB’ ,
CHAR_CRIT_MIN=mini ,
CHAR_CRIT_MAX=maxi ,

) ;

flamb=MODE_ITER_SIMULT (
MATR_A=ramep1 ,
MATR_B=ragep1 ,
TYPE_RESU=’MODE_FLAMB’ ,
CALC_FREQ=_F (

OPTION=’BANDE’ ,
CHAR_CRIT=(mini ,maxi ,) ,
DIM_SOUS_ESPACE=80 ,
#NMAX_ITER_SOREN=80,

) ,
) ;

15.2.3 Looking at results

This buckling analysis can be carried out for only one load case. For the
results in ASCII format the quickest place where to look is the .mess
file, after the summary of the flamb=MODE_ITER_SIMULT command
we can find a table looking like that:

−−

LES CHARGES CRITIQUES CALCULEES INF . ET SUP . SONT :
CHARGE_CRITIQUE_INF : −8.58123E+01
CHARGE_CRITIQUE_SUP : −1.34914E+00

−−
CALCUL MODAL : METHODE D ’ITERATION SIMULTANEE

METHODE DE SORENSEN

NUMERO CHARGE CRITIQUE NORME D’ERREUR

232 Buckling and modal analysis

1 −8.58123E+01 5 .56318E−14
2 −8.55143E+01 5 .14016E−13
3 −6.57550E+01 6 .63348E−14
4 −4.83596E+01 1 .21279E−13
5 −4.83040E+01 2 .09636E−12
6 −3.36203E+01 3 .14336E−13
7 −2.15401E+01 7 .77622E−13
8 −2.15350E+01 6 .39568E−12
9 −1.21277E+01 1 .78573E−12

10 −5.39407E+00 9 .63044E−12
11 −5.39399E+00 1 .82194E−10
12 −1.34914E+00 1 .28157E−10

NORME D ’ERREUR MOYENNE: 0 .27676E−10

−−

VERIFICATION A POSTERIORI DES MODES

DANS L ’INTERVALLE (−8.62414E+01 ,−1.34240E+00)
IL Y A BIEN 12 CHARGE (S) CRITIQUE (S)

−−

Note: the table must be read from the bottom up the most critical load
being number 12 in the list, at -1.349, in agreement with the hand calcu-
lated value.

The CHARGE CRITIQUE is the opposite factor by which the load case
has to be multiplied to obtain buckling.

As stated in U2.08.04 we have

µ = −λ

with λ =Eigen value and µ =multiplying coefficient of the variable load.

• The value of -1.349 means than the structure buckles for 1.394
times the applied variable load, the structure may be considered
as safe1;

• A value of -0.5 would mean than the structure would buckle for half
the applied variable load, the structure may be considered as ruined;

• A value of +0.5 would mean than the structure would buckle for
half the reversed applied variable load, e.g. changed of sign. The
structure may be considered as ruined if the load can change sign,

1 The value of the safe coefficient is the engineer’s, or code of practice choice.

15.2 Checking buckling 233

for example a wind action, or safe if the load cannot change sign,
for example the gravity;

• A value of 1.349 would mean than the structure would buckle for
1.394 times the reversed applied variable load1.

Looking at the results with Gmsh we can see in figure 15.32:

• with NUMERO 12, we have the lowest mode in the plane YOZ, the
plane of lowest moment of inertia with one anti-node for a value of
Pcr = 1349N , it is shown in the figure with the thicker line;

• with NUMERO 11, we have the next one in the plane XOZ, the
plane of highest moment of inertia with one anti-node for a value
of Pcr = 5393.99N , it is shown in the figure with the intermediate
line thickness;

• and with NUMERO 10, we have the third one in the plane YOZ, the
plane of lowest moment of inertia with two anti-nodes for a value
of Pcr = 5394.09N , it is shown in the figure with the thinner line.

We can see that NUMERO 11 and 10 having the same
CHARGE_CRITIQUE of 5.394 are quite different: 1 antinode, in
XOZ plane for NUMERO 11; and 2 antinodes, in YOZ plane for NUMERO
10. This is exactly what could be expected with 1/2 ratio rectangular
section!

1 We would get this result if we applied FZ=1000, a traction load, in AFFE_CHAR_MECA.
2 How to superimpose views is explained in chapter 11.3 .

234 Buckling and modal analysis

FIGURE 15.3: Third critical load

15.3 Buckling analysis with plates and beams, or rods 235

15.3 Buckling analysis with plates and beams, or rods

Note: for a buckling analysis with plates, like the example frame3, ele-
ments DKT must be replaced by COQUE_3D not to raise an error.

This can be done in several steps:

1. In Gmsh, we do the meshing in the normal manner then Mesh

Set order 2 .

2. First, in the command file:

meshini=LIRE_MAILLAGE (UNITE=20 ,FORMAT=’MED’ ,) ;

mesh1=CREA_MAILLAGE (
MAILLAGE=meshini ,
MODI_MAILLE=_F (

GROUP_MA=(’panelN’ ,’panelS’ ,) ,
OPTION=’TRIA6_7’ ,
#next line may have to be used
#PREF_NOEUD=’NS’,

) ,
) ;

to transform the TRIA6 element into TRIA71.

3. Second, in the command file:

mesh=CREA_MAILLAGE (
MAILLAGE=mesh1 ,
QUAD_LINE=_F (

GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,’hinge’) ,
#next line may have to be used

#PREF_NOEUD=’m’,
) ,

) ;

to transform the SEG3 line element back into SEG2 so as to support
beam elements, and hinge elements.

4. And finally, in the command file:

1 Triangle with 6 nodes, to triangle with seven nodes, the seventh one in the center, or
QUAD8_9 for quadrangular elements.

236 Buckling and modal analysis

model=AFFE_MODELE (
MAILLAGE=mesh ,
AFFE=(

.
_F (
GROUP_MA=(’panel’ ,) ,
PHENOMENE=’MECANIQUE’ ,MODELISATION=’COQUE_3D’ ,

) ,
. .

) ;

to apply MODELISATION=’COQUE_3D’to the shell elements.

All this because second order is set to the whole mesh in Gmsh and a
modal or buckling analysis in Code_Aster requires COQUE_3D for plates.

We should note also the cascading naming of meshes from the initial
meshini to the intermediate mesh1 and to the final mesh. Also the use
of PREF_NOEUD may be required, it can take any argument, for its use
reading U4.23.02 is required.

Finally, as some post processing viewer seem to be in trouble when
displaying quadratic mesh, it is a wise idea to project the med results on a
linear mesh, just as we did in 13.1.1 .

In a similar way a model with rod, BARRE, elements has to be modified
to analyzed in buckling:

• each rod must be replaced by a fair number of beam elements to
allow for the buckling mode shape;

• these beam elements must be given a mechanical properties in
agreement with the element section;

• one K_TR_D_L element, with relaxed rotational DOF, must be pro-
vided at each end of the rod.

Just as with modal analysis, if a model with plates is showing symmetry
or cyclic symmetry there may be several modes with almost the same
buckling loads.

15.4 Some remarks about buckling 237

15.4 Some remarks about buckling

In true life a structure should not survive the application of the first global
critical load. The reason for seeking more values is to detect some local
buckling which could endanger the structure well before the first global
one.

An Eulerian buckling analysis in a structure holding beam elements is a
rather simple assumption of its behavior1. At least too simple for most
construction codes calling for more sophisticated check-up needing in
turn an extensive use of Python: to extract the desired values and build
up some results with the required formulas2.

Code_Aster allows also to make non linear buckling analysis which
comes particularly useful for space frames, this is described in the test
case ssnl135.

1 As it does not take into account: flexural-torsional buckling, web buckling, local flange
buckling and a few other oddities.

2 It may sometimes be easier to justify by hand, with a spreadsheet, the few “dangerous”
members.

CHAPTER 16

Pre-processing topics

In this chapter, we introduce some pre-processing topics:

• what are the different beam elements available in Code_Aster;

• how a call to MACR_CARA_POUTRE can calculate the properties
of a beam section if we provide a mesh;

• what are the various plate and shell elements available in
Code_Aster;

• why, or why not, using a quadratic mesh;

• how to create groups from scratch on a mesh.

16.1 Various type of beams, from Euler-Bernoulli to,
multifiber....

Code_Aster provides various types of elements for beam, it is wise to use
the type best suited to a given problem.

239

240 Pre-processing topics

In the naming the first three characters POU stand for ’poutre’, beam in
french. The fifth character determines the support. D stands for ’droite’,
lying along a straight line, C stands for ’courbe’, lying along a circular
arc.

POU_D_E is a beam in agreement with Euler-Bernoulli hypothesis, the
action of the shear forces on the rotation of cross sections are neglected.

POU_D_T is a beam in agreement with Timoshenko hypothesis, the
action of the shear forces may change the cross-section orientation, this is
the general type for most cases.

POU_D_TG is the same as POU_D_T. In addition the warping of the
section is taken into account, this can be useful in non-linear calculation
when an important warping is expected. This is described in U3.11.04.
However, if the warping influence is taken into account, i.e. the deformed
shape of the structure is correct and the SIEF_* are properly calculated,
the calculated SIPO and SIPO do not take into account the warping re-
strain influence1. This has to be hand calculated from the DEPL...GRX
and SIPO_ELNO...BX components, more information in R3.08.04 and
[Roark], precisely in TABLE 21 & 22.

POU_D_T_GD is a beam element based on Timoshenko theory able to
model large displacements and rotations in linear elasticity.

Finally the last character M, in the name of the elements (e.g.
POU_D_EM) stands for a Multifiber beam section which is quite compli-
cated an affair, outside the scope of this book, some details can be found
in R3.08.08.

For all these types of elements, we have to feed Code_Aster with a large
set of properties for the beam section. The built-in presets are limited to
circular and rectangular sections, hollowed or not. We have to calculate
these properties for any other type of section.

• The first way is to hard code these values in the .comm file with
SECTION=’GENERALE’, the values being calculated beforehand
with the formulas available in numerous text books2.

1 There is just simply not enough information in AFFE_CARA_ELEM to do that!
2 Not all of them provide the formula to calculate, for example the warping constant of an

unusual section, as far as I am concerned I have a few spreadsheets for this task, derived
from [Roark].

16.2 Using MACR_CARA_POUTRE to calculate section properties 241

• Another way is to have the Code_Aster macro command
MACR_CARA_POUTRE calculate these properties from a given
mesh of the section, this is explained in the next section.

16.2 Using MACR_CARA_POUTRE to calculate section
properties

The macro command MACR_CARA_POUTRE1 allows to calculate within
Code_Aster the geometrical and mechanical properties of any section for
which a mesh is provided. However this requires some care.

Here is the example of a parametric Gmsh script providing a mesh for
any H section.

d1 = 3; //element size
h = 96; //overall height
b = 100; //overall width
tw = 5; //web thickness
tf = 8; //flange thickness
r = 12; //web to flange radius

Point (1) = { 0 , 0 , 0 . , d1 } ;
Point (101) = {tw / 2 , 0 , 0 . , d1 } ;
Point (102) = { tw / 2 , h/2−tf−r , 0 . , d1 } ;
Point (103) = { tw /2+r , h/2−tf , 0 . , d1 } ;
Point (110) = { tw /2+r , h/2−tf−r , 0 . , d1 } ;
Point (104) = { b / 2 , h/2−tf , 0 . , d1 } ;
Point (105) = { b / 2 , h / 2 , 0 . , d1 } ;
Point (106) = { 0 , h / 2 , 0 . , d1 } ;

Line (101) = {101 , 102} ;
Circle (102) = {102 , 110 , 103} ;
Line (103) = {103 , 104} ;
Line (104) = {104 , 105} ;
Line (105) = {105 , 106} ;
Symmetry {−1, 0 , 0 , 0} {

Duplicata { Line{−101, −102, −103, −104, −105}; }
}
Symmetry {0 , −1, 0 , 0} {
Duplicata { Line {

−110, −109, −108, −107, −106, −105,
−104, −103, −102, −101};

}
}
Line Loop (121) = {

101 , 102 , 103 , 104 , 105 , 110 , 109 , 108 , 107 , 106 ,

1 In U4.42.02.

242 Pre-processing topics

115 , 114 , 113 , 112 , 111 , 116 , 117 , 118 , 119 , 120
} ;
Plane Surface (122) = { 1 2 1 } ;

Physical Line ("myborder") = {101 :120 } ;
//here there should be some close lines bordering
//the inside for an hollow section
//Physical Line("int") = {};
Physical Surface ("mysect") = { 1 2 2 } ;
Physical Point ("noderef") = { 1 } ;

FIGURE 16.1: Orientation of line elements in yellow

• There should be one group of lines following the outside of the
contour, here ’myborder’, this contour should be closed and all the
lines part of it should be in the same direction: if one walks along
the border, one is walking on lines always in the same direction
shown by the yellow arrows in figure 16.1. There is a more detailed
explanation about how to achieve this in appendix B 2.3 . This

16.2 Using MACR_CARA_POUTRE to calculate section properties 243

group name ’myborder’ is at the user’s choice, and has to be use
used again in the .comm file.

• Likewise there should be one1 group of lines following the border
of the hollow for an hollowed section.

• There should be a Physical holding one single Point to enable the
calculation of shear coefficients, here it is named ’noderef’.

• It is not mandatory to name the surface group.

Once properly meshed and saved in a .med file the following bit of
code allows to compute and print the section properties.

#PAR_LOT=’NON’ if we use the Python bits
DEBUT (PAR_LOT=’NON’ ,) ;
. .
mhea100=LIRE_MAILLAGE (

UNITE=21 ,
FORMAT=’MED’ ,
#NOM_MED=’hea100’,
#INFO_MED=2,
#INFO=2,

) ;

#next command creates the node on ’no’
mhea100=DEFI_GROUP (

reuse =mhea100 ,MAILLAGE=mhea100 ,
CREA_GROUP_NO=(_F (GROUP_MA=’noderef’ ,) ,) ,

) ;

#prefix s stands for section
shea100=MACR_CARA_POUTRE (

MAILLAGE=mhea100 ,
GROUP_MA_BORD=’MYBORDER’ ,
#GROUP_MA_INTE=’int’, #if there is an hollow
GROUP_NO=’noderef’ ,
INFO=2 ,
ORIG_INER = (0 . 0 , 0 . 0) ,
#comment next 2 lines in 10.8 versions
TABLE_CARA=’OUI’ ,
NOM=’hea100’ ,
’hea100’ is at the user’s choice

) ;

#this prints out the table
IMPR_TABLE (

TABLE=shea100 ,
FORMAT=’TABLEAU’ ,

1 Or several, for multiple hollows sections.

244 Pre-processing topics

UNITE=8 ,
SEPARATEUR=’ * ’ ,
TITRE=’hea100’ ,
INFO=2 ,

) ;

#next section is not mandatory
#and is obsolete with version 11.3
#just to look at what we have done
#here we extract some values in Python variables
lieu=shea100 [’LIEU’ , 1]
a=shea100 [’AIRE_M’ , 1]
#..................
#and print them in a separate file
file=open (’our_fullpath_file_name.txt’ ,’w’)
file .write (’hea100 section properties \n’)
file .write (’LIEU = %s \n’ % lieu)
file .write (’AIRE_M = %s \n’ % a)
#..................
file .close ()
#we could then build up the AFFE_CARA_ELEM arguments

Unfortunately there was no simple way to introduce the section’s calcu-
lated values in AFFE_CARA_ELEM, up to version 10.71.

For version 11.2 and later, we can proceed as follows, after un-
commenting the previous TABLE_CARA=’OUI’,.

#here we extract some values in Python variables
lieu=shea100 [’LIEU’ , 1] #lieu has to be extracted!
. .
elemcar=AFFE_CARA_ELEM (

MODELE=model ,
#next line to print the values used for the
#section properties
INFO=2 ,
POUTRE=(

.
_F (

GROUP_MA=(’topbeam’ ,) ,SECTION=’GENERALE’ ,
TABLE_CARA=shea100 ,
#next line with the section name defined above
NOM_SEC=’hea100’ ,

) ,
.

) ,
.
) ;

And the properties of the section ’shea100’ are used in the calculation.

1 However a few Python lines would do it.

16.3 Various types of plates and shells.... 245

In real life problems we may have many sections calculated this way as
long as they have different NOM_SEC.

16.3 Various types of plates and shells....

Just like the beam elements, plates and shells come in various flavors. It
is useful to know the basics about their differences, more details may be
found in U2.02.01.

These elements exist either as triangles or quadrangles as we have seen
in the frame3 example. Middle nodes may be created by Code_Aster
using commands like

MODI_MAILLAGE / MODI_MAILLE ...OPTION=’TRIA6_7’.

16.3.1 Plates

A plate element, “plaque” in french, lies in a plane, there is no curvature
in the element, which means that the 4 nodes of a quadrangular element
must lie in a plane1. The plate elements come in various flavors:

• DKT2 , which we use in this book, does not support transverse shear;

• DST3, does support transverse shear;

• Q4G also supports transverse shear, but usually requires a more re-
fined mesh than DKT, see U2.02.01.

16.3.2 Shells

Unlike plates, shells, “coque” in french, admit a curvature, and have a
middle node along the edges. Only them are supported for a buckling
analysis in Code _Aster.

1 If this is not the case Code_Aster emits a warning in the .mess file, telling how much the
element is distorted and leaving to the engineer the choice of altering the mesh or not.

2 Strictly speaking a DKT, is a triangle, DKQ being a quadrangle, but the call of DKT is enough
in a command file.

3 Strictly speaking a DST, is a triangle, DSQ being a quadrangle, but the call of DST is enough
in a command file.

246 Pre-processing topics

The element here is COQUE_3D1.

16.4 Using quadratic mesh or not

Except when it is a mandatory requirement, like in a buckling analysis for
plates, as explained in chapter 15.3 2, the question arises whether or not
to use a quadratic mesh. But first of all what is a quadratic mesh ?

Taking the examples of a 3 node triangular shell element its quadratic
extension is a 6 node element where the nodes situated at the middle of
the edges sit on the geometrical curve joining the corner nodes.

Now let’s take the example of a ring, 100 in diameter, 50 in depth.
Figure 16.2 shows the parent geometry and a rather crude linear mesh
with 8 faces around the circumference.

FIGURE 16.2: Parent geometry and 8 faces linear mesh

Figure 16.3 shows the same 8 faces mesh but interpolated, by the
mesher, in quadratic3 and a linear mesh produced when dividing the char-

1 Elements COQUE_C_PLAN, COQUE_D_PLAN and COQUE_AXIS are outside the scope of
this book.

2 Where we ask Code_Aster to create an extra node at the barycenter of the element.
3 The meshes here are produced by Gmsh, but Salome or any mesher would produce a similar

result.

16.4 Using quadratic mesh or not 247

acteristic length by two (50 instead of 100). The curvature of the ring is
better reproduced in both cases.

FIGURE 16.3: 8 faces quadratic mesh and 16 faces linear mesh

Figure 16.4 shows the original 8 faces linear mesh and how it is
transformed in a quadratic mesh by a simple CREA_MAILLAGE ...

LINE_QUAD command, the curvature is no better represented1.

It comes obvious that the CREA_MAILLAGE ... LINE_QUAD

Code_Aster command cannot produce such as good a quadratic mesh as
a mesher, or a higher node density linear mesh, for the simple reason that
it does know nothing about the geometrical curvature at the refinement
time2.

The calculated results may improve dramatically with a better meshed
geometry, from the mesher, versus a command line transformed mesh.
Let’s think of the behavior of the previous meshes under internal pressure,
or buckling under external pressure!

1 In the pictures the corner nodes, created in the linear command, are depicted in blue, while
the intermediate nodes, created either in Gmsh or in Code_Aster show in pink, and the mesh
’Element shrinking factor’ is set to 0.95.

2 The mesh file does not hold any such information!

248 Pre-processing topics

FIGURE 16.4: 8 faces linear mesh and the same transformed byCode_Aster

16.5 Creating groups from scratch

It is possible to create groups in a mesh which does not contain any with
the CREA_GROUP command. This is fully documented in U4.22.01.

The following excerpt, inserted in the .comm, file creates two of the
required groups in the ’part2’ mesh of the 3D spring.

part2=DEFI_GROUP (
reuse =part2 ,
MAILLAGE=part2 ,
CREA_GROUP_MA=(
#group for fixation
_F (

NOM=’fx2s’ ,
TYPE_MAILLE=’2D’ ,
OPTION=’BANDE’ ,
POINT=(−68 , −5.5 ,105 ,) ,
VECT_NORMALE= (1 , 0 , 0 ,) ,
DIST= 0 . 5 ,

) ,
_F (

NOM=’hole2s-1’ ,
TYPE_MAILLE=’2D’ ,
OPTION=’CYLINDRE’ ,
POINT= (0 , 0 , 0 ,) ,
VECT_NORMALE= (0 , 1 , 0 ,) ,
RAYON= 1 0 . 6 ,

) ,

16.5 Creating groups from scratch 249

_F (
NOM=’hole2s-2’ ,
TYPE_MAILLE=’2D’ ,
OPTION=’FACE_NORMALE’ ,
VECT_NORMALE= (0 , 1 , 0 ,) ,
VERI_SIGNE=’NON’ ,

) ,
_F (
NOM=’hole2s’ ,
TYPE_MAILLE=’2D’ ,
DIFFE=(’hole2s-1’ ,’hole2s-2’ ,) ,

) ,
) ,

) ;

The first instance creates a group with all the 2D elements:

• lying in a plane, OPTION=’BANDE’;

• this plane passing through the point situated at one of the corner of
’part2’, POINT=(-68,-5.5,105,);

• this plane is normal to the vector VECT_NORMALE=(1,0,0,);

• the group retains all the elements at a distance less than 0.5 of the
plane, DIST=0.5.

The second instance creates a group, ’hole2s-1’, of the element lying in
a cylinder, as described.

The third creates a group, ’hole2s-2’, with all the elements lying in the
XOZ plane.

The last one, a boolean difference between the two previous, creates the
group ’hole2s’ as required.

These powerful tools allow to use a mesh without any predefined
groups. This may be an efficient way to proceed with mesh built from
CAD drawings, .iges, .step even .stl format.

And more than ever the next line helps to view the groups on the screen
and check that everything is as expected.

IMPR_RESU (FORMAT=’MED’ , UNITE=71 , RESU=_F (MAILLAGE=part2 ,) ,) ;

CHAPTER 17

Gathering more information before processing

In this chapter, we explain how to gather some information from a
study without actually solving the problem:

• how to color a mesh according to various properties;

• how to display vectors along the element’s local axis;

• how to display the applied load;

• how to calculate length or area of elements, with Python.

17.1 Coloring mesh and model according to properties

We have seen how to color the mesh by groups in Gmsh, however this
feature is limited only to the mesh. When a model is made from this mesh
in Code_Aster there is many more valuable information we would like to
view, like for example material, plate thickness, beam properties, etc. The
following lines of code, within the .comm file of our frame3 example,
creates a med file in which some concepts are given a color.

251

252 Gathering more information before processing

IMPR_RESU (
FORMAT=’MED’ ,UNITE=82 ,
CONCEPT=(

_F (CHAM_MATER = material ,) ,
_F (CARA_ELEM= elemcar ,REPERE_LOCAL=’OUI’ , MODELE=model ,) ,
_F (CHARGE= ground) ,
_F (CHARGE= selfwght) ,
_F (CHARGE= cc ,) ,
_F (CHARGE= cv ,) ,

) ,
) ;

If we open the .med file we can find a field ’selfwgt#CHMEPESAN’1

whose details can be seen in figure 17.1:

• almost everything is colored in dark red, with a numeric value of
10000, which is the value we specified for gravity acceleration;

• only the tiny discrete elements joining the top structure to the ver-
tical masts are colored in blue, with a numeric value of O, and thus
not subject to gravity;

which is exactly what is expected from the load specification in the com-
mand file.

The same can be done with concept ’elemcar#CARCOQUE’ to display
the different thickness like in figure 17.2.

Note: we specified a Logical Unit 82 to save the .med file file used to
display the results. This file must be specified in the ASTK setup. Also
this IMPR_RESU may be done without any call to a solver which allows
to ensure the properties are what we expect without launching any lengthy
solver step.

1 Where: selfwgt is the name we gave to the AFFE_CHAR_MECA, CHME stands for CHarge-
Meca and PESAN is a short cut of PESANteur, the type of load.

17.2 Showing element orientation 253

FIGURE 17.1: Coloring concept for gravity load

17.2 Showing element orientation

In addition the line:

_F (CARA_ELEM= elemcar ,REPERE_LOCAL=’OUI’ , MODELE=model ,) ,

allows to display the local axis of the elements.

Figure 17.3 shows what it looks like for:

• local y axis, view[9] elemcar.REPLO_2, as a green arrow;

• line elements drawn in black;

• nodes drawn in dark blue.

This view shows also some of the Gmsh settings, in the dialog boxes, used
to obtain it.

With a bit more tweaking we can get the picture just like 17.4 with the
CAD coloring, x local axis in red, y in green and z in blue.

254 Gathering more information before processing

FIGURE 17.2: Coloring concept for plate thickness

FIGURE 17.3: Local y axis of beams and discret element

17.2 Showing element orientation 255

FIGURE 17.4: Local coordinate system of beams and discrete elements

256 Gathering more information before processing

17.3 Showing the applied load

Another way to display the applied load on a model, for a given load
case is to run a static calculation under this load case with ALL the nodes
of the model fixed in all three directions1 and to compute and display
the reactions, which in this case are exactly the opposite of the applied
loads to every node2. The following code segment does it for our example
frame3:

Firstly setting the load multiplier for this particular solving with the pre-
fix “f”. Note the minus one multiplier.

#code for printing a vector print out
#of applied forces
#fix all nodes
fixall=AFFE_CHAR_MECA (

MODELE=model ,
DDL_IMPO=_F (GROUP_NO=(’TOUT’ ,) ,DX=0 ,DY=0 ,DZ= 0 ,) ,

) ;
#multiplier value is -1 for each load case
fsw_m=DEFI_FONCTION (

NOM_PARA=’INST’ ,VALE=(0 ,−1 , 1 , 0 ,) ,
PROL_DROITE=’CONSTANT’ ,

) ;
fcc_m=DEFI_FONCTION (

NOM_PARA=’INST’ ,VALE= (0 , 0 , 1 ,−1 , 2 , 0) ,
) ;
fcv_m=DEFI_FONCTION (

NOM_PARA=’INST’ ,VALE= (0 , 0 , 1 , 0 , 2 , −1 ,) ,
) ;

listf=DEFI_LIST_REEL (
DEBUT= 0 . 0 ,INTERVALLE=_F (JUSQU_A=2 ,PAS= 1 . 0 ,) ,

) ;

Secondly make the static analysis with all the individual load cases, and
calculate the reactions.

#solving for the individual loads
force=MECA_STATIQUE (

MODELE=model ,CHAM_MATER=material ,CARA_ELEM=elemcar ,
EXCIT=(

_F (CHARGE=fixall ,) ,

1 In some case it may be necessary to fix some rotations as well.
2 In this case a distributed load is shared between the nodes of the elements.

17.3 Showing the applied load 257

_F (

CHARGE=selfwght ,

TYPE_CHARGE=’FIXE’ ,FONC_MULT=fsw_m ,
) ,
_F (CHARGE=cc ,TYPE_CHARGE=’FIXE’ ,FONC_MULT=fcc_m ,) ,
_F (CHARGE=cv ,TYPE_CHARGE=’FIXE’ ,FONC_MULT=fcv_m ,) ,

) ,
LIST_INST=listf ,

) ;

force=CALC_CHAMP (
reuse =force ,
RESULTAT=force ,
CONTRAINTE=’SIEF_ELNO’ ,
FORCE=(’REAC_NODA’) ,

) ;

Thirdly computes the sum of the reactions of each individual load case
an print the tables in the .resu file.

s_reac=POST_RELEVE_T (
ACTION=_F (

INTITULE=’sum forces’ ,
TOUT_ORDRE=’OUI’ ,
GROUP_NO=(’TOUT’) ,
RESULTAT=force ,
NOM_CHAM=’REAC_NODA’ ,
RESULTANTE=(’DX’ ,’DY’ ,’DZ’) ,
OPERATION=’EXTRACTION’ ,

) ,
) ;

IMPR_TABLE (TABLE=s_reac ,)

Fourthly make a .med file.

IMPR_RESU (
FORMAT=’MED’ , UNITE=82 ,
RESU=(

_F (
GROUP_MA=(’TOUT’ ,) ,
RESULTAT=force ,
NOM_CHAM=’DEPL’ ,

) ,
_F (

GROUP_NO=(’TOUT’ ,) ,
RESULTAT=force ,
NOM_CHAM=’REAC_NODA’ ,
NOM_CHAM_MED=’applied force’ ,

258 Gathering more information before processing

) ,

) ,

) ;
#end of load printout

We apply all the individual load cases, actually changed of sign, to
view a reaction in the same direction as the force, and in the same
time, print out in the .resu file the sum of these individual load cases.
NOM_CHAM_MED=’applied force’ is used to rename the field in
the med file1.

Opening the file in Gmsh, choosing the dialog box Options with:

• ’applied force’ as selected, with View[0] ;

• then in the tab Visibility , Force Vector in the left-hand lower pull
down list;

• then in the General tab pull the list Range mode to Custom ;

• and push the Min and Max buttons to refresh the display with the
proper component values;

• then in the Aspect tab, 3D arrow in the Vector display pull down list;

• and Vertex in the Glyph location one2.

gives the following view with Lines ticked in the Mesh tab so as to see
the background mesh. Which is shown the figure 17.5 for the distributed
wind load on the ’panel’ group3.

1 This method cannot give a print out of externally applied moments, nor can it give a print of
AFFE_CHAR_CINE.

2 Choosing Barycenter displays the sum of the distributed load on every element, at the
barycenter of the element, instead of the nodal reactions at end nodes.

3 For such a surface, load the length of the arrow is proportional to the element area, yet not
constant!

17.4 Calculating length and area of mesh elements 259

FIGURE 17.5: Applied load vector superimposed on a mesh view, limited to group
’panel’

17.4 Calculating length and area of mesh elements

This could also be called “reading and manipulating mesh data”.

It may be very helpful to get some statistics about the mesh such as
element’s length or area by groups1, the following Python code can do
this, and we use it on our frame3 example. Modify the beginning of the
command file as follows:

DEBUT (PAR_LOT=’NON’ ,) ;

#import the necessary libraries
import sys
from Utilitai import partition
import string
import numpy as N

meshf=LIRE_MAILLAGE (
.

) ;

1 Maybe just simply to prepare a bill of material in a beam model, or to retrieve the number of
nodes along a beam, together with the beam length so as to exactly compute the nodal forces
equivalent to a distributed load.

260 Gathering more information before processing

meshf=DEFI_GROUP (
.

) ;

mesh = partition .MAIL_PY ()
mesh .FromAster (’meshf’)

#two methods to define output file
#first,
#hard code path + file name
#file=open(’/dedalus/arbeit/2012/jpa/
#tutorial/redaktion/port3/statistics.txt’,’w’)
#second
#an entry in ASTK with LU=38 for example

DEFI_FICHIER (UNITE=38 , FICHIER=’./REPE_OUT/stati2.txt’)
statis=open (’fort.38’ ,’w’)

listgm1D=[’topbeam’ ,’vertb’ ,’mast’ ,]
listgm2D=[’panel’ ,]

#next part to call a comm file that
#calculate length and area of elements
INCLUDE (UNITE=2 , INFO=2)
#end of call

DEBUT(PAR_LOT=’NON’,) is used since we are going to explore
Code_Aster data structures1. Then the import lines to import the nec-
essary libraries. The two mesh = partition.MAIL_PY() and
mesh.FromAster(’meshf’) lines import the mesh object 2.

Afterward, we define a file statis where to write the results, of course
there should be a matching entry in the ASTK window, with LU=38 and
’R’ ticked. We define the groups of element on which we want to perform
the calculation.

And finally INCLUDE another .comm file, which also needs an entry
in ASTK, with LU=2 and ’D’ ticked.

This method with INCLUDE uses a rather portable .comm file for the
intended job and makes the main command file shorter and easier to read.

And now this is the code for this “included” file, doing the job of com-
puting lengths and areas:

1 U1.03.02 is a must be read when one wants to manipulate Code_Aster data objects.
2 Using the same word for ’meshf’ and ’mesh’ would have raised a runtine error, since here

’mesh’ is an instance of the MAIL.PY class.

17.4 Calculating length and area of mesh elements 261

#length and surface of elements
#intialize the list for coordinates
xcoor=[None] * (4) ;
ycoor=[None] * (4) ;
zcoor=[None] * (4) ;
#first for 1D elements
nbgm =len (listgm1D)
for i in range (0 , nbgm) :

beamgm=mesh .gma .get (listgm1D [i])
totlong=0;
lgth=len (beamgm)
for j in range (lgth) :

beamid=beamgm [j]
for k in range (0 , 2) :
nodeid= mesh .co [beamid] [k]
nodecoord= mesh .cn [nodeid]

xcoor [k]=int (mesh .cn [nodeid , 0])
ycoor [k]=int (mesh .cn [nodeid , 1])
zcoor [k]=int (mesh .cn [nodeid , 2])

lxyz= ((xcoor[1]−xcoor [0]) * * 2 + (ycoor[1]−ycoor [0]) * * 2
+(zcoor[1]−zcoor [0]) * * 2)) * * 0 . 5
totlong=totlong+lxyz

avlong=totlong /lgth
statis .write (’group 1D : %s\n’ % listgm1D [i])
statis .write (’number of element : %d\n’ % lgth)
statis .write (’total length : %d\n’ % totlong)
statis .write (’average length : %d\n’ % avlong)
statis .write (’\n’)

In this code abstarct:

• beamgm[j] holds the id of the jth beam in the group beam gm;

• mesh.co[beamid][k] gives the id of the nodes belonging to
element id beamid;

• and mesh.cn[nodeid,0] contains the x coordinate of the node,
(1 for y and 2 for z)1.

The same can be done with 2D elements,

nbgm =len (listgm2D)
for i in range (0 , nbgm) :

plategm=mesh .gma .get (listgm2D [i])
totsurf=0;
triacount=0;
quadcount=0;
lgth=len (plategm)

1 In Python a loop like for k in range (0, 2): is executed for the value 0 and 1 but
not 2! The same rule applies to initialization of lists

262 Gathering more information before processing

for j in range (lgth) :
plateid=plategm [j]
tria=len (mesh .co [plateid])
if tria==3:

for k in range (0 , 3) :
nodeid= mesh .co [plateid] [k]
nodecoord= mesh .cn [nodeid]
xcoor [k]=int (mesh .cn [nodeid , 0])
ycoor [k]=int (mesh .cn [nodeid , 1])
zcoor [k]=int (mesh .cn [nodeid , 2])

a= ((xcoor[1]−xcoor [0]) * * 2 + (ycoor[1]−ycoor [0]) * * 2
+(zcoor[1]−zcoor [0]) * * 2) * * 0 . 5
b= ((xcoor[2]−xcoor [1]) * * 2 + (ycoor[2]−ycoor [1]) * * 2
+(zcoor[2]−zcoor [1]) * * 2) * * 0 . 5
c= ((xcoor[2]−xcoor [0]) * * 2 + (ycoor[2]−ycoor [0]) * * 2
+(zcoor[2]−zcoor [0]) * * 2) * * 0 . 5
p=(a+b+c) / 2
r= ((p−a) * (p−b) * (p−c) / p) * * 0 . 5
surf=p*r
totsurf=totsurf+surf
triacount=triacount+1

Calculating the area is a matter of straightforward mathematics with
triangles, just below we split the quadrangles into two triangles.

elif tria==4:
for k in range (0 , 4) :

nodeid= mesh .co [plateid] [k]
nodecoord= mesh .cn [nodeid]
xcoor [k]=int (mesh .cn [nodeid , 0])
ycoor [k]=int (mesh .cn [nodeid , 1])
zcoor [k]=int (mesh .cn [nodeid , 2])

a1= ((xcoor[1]−xcoor [0]) * * 2 + (ycoor[1]−ycoor [0]) * * 2
+(zcoor[1]−zcoor [0]) * * 2) * * 0 . 5
b1= ((xcoor[2]−xcoor [1]) * * 2 + (ycoor[2]−ycoor [1]) * * 2
+(zcoor[2]−zcoor [1]) * * 2) * * 0 . 5
c1= ((xcoor[2]−xcoor [0]) * * 2 + (ycoor[2]−ycoor [0]) * * 2
+(zcoor[2]−zcoor [0]) * * 2) * * 0 . 5
p1=(a1+b1+c1) / 2
r1= ((p1−a1) * (p1−b1) * (p1−c1) / p1) * * 0 . 5
surf1=p1*r1
a2=c1
b2= ((xcoor[3]−xcoor [2]) * * 2 + (ycoor[3]−ycoor [2]) * * 2
+(zcoor[3]−zcoor [2]) * * 2) * * 0 . 5
c2= ((xcoor[3]−xcoor [0]) * * 2 + (ycoor[3]−ycoor [0]) * * 2
+(zcoor[3]−zcoor [0]) * * 2) * * 0 . 5
p2=(a2+b2+c2) / 2
r2= ((p2−a2) * (p2−b2) * (p2−c2) / p2) * * 0 . 5
surf2=p2*r2
totsurf=totsurf+surf1+surf2
quadcount=quadcount+1

avsurf=totsurf / (triacount+quadcount)
statis .write (’group 2D : %s\n’ % listgm2D [i])
statis .write (’number of TRIA3 elem : %d\n’ % triacount)

17.4 Calculating length and area of mesh elements 263

statis .write (’number of QUAD4 elem : %d\n’ % quadcount)
statis .write (’total area : %d\n’ % totsurf)
statis .write (’average area : %d\n’ % avsurf)
statis .write (’\n’)

#in Python it is not strictly necessary to close a file
#however
statis .close ()

The print out in the file looks like this:

group 1D : topbeam
number of element : 160
total length : 3960
average length : 24

group 1D : vertb
number of element : 32
total length : 800
average length : 25

group 1D : mast
number of element : 80
total length : 2000
average length : 25

group 2D : panel
number of TRIA3 elem : 689
number of QUAD4 elem : 371
total area : 386000
average area : 364

This example applies only to line elements with 2 nodes, on a SEG2
or to TRIA3 and QUAD4 elements, however it can easily be adapted to
another geometry1.

1 Any experienced programmer may find this bit of code not very much optimized, and he
will be right, I left it this way so the underlying data structure is more easily understood!

CHAPTER 18

Getting more from post-processing

In this chapter, we give some hints about how to to get more from a
result:

• how to manipulate tables to get new result values;

• how to rename components fields;

• how to add node coordinates to a result;

• how to print a cleaner ASCII result file

• how to create a mesh from a displacement field;

• how to read a result and enhance it;

• how to calculate forces, stresses and reactions in version 10.

265

266 Getting more from post-processing

18.1 Manipulating results with TABLE

Using tables allows to extract some values from a result, order them, com-
bine them and more, to finally print them either as ASCII result or in .med
format. Here we do some examples with the files of frame3.

18.1.1 Printing only a few parameters

In the previous examples we requested the print out of the mass of the
model. We printed the default set of data which includes: position of
barycenter, quadratic moments and many, more or less useful values.
Adding a single line, NOM_PARA, in the command file restricts the print
out, for example1:

IMPR_TABLE (
TABLE=masse ,
NOM_PARA=(’LIEU’ ,’MASSE’ ,) ,
FORMAT_R=’1PE12.3’ ,

)

gives the following print out, with only the group names and their re-
spective mass:

#masse
LIEU MASSE
topbeam 2 .736E−03
mast 2 .736E−03
massN 1 .000E−02

18.1.2 Getting the maximum value of a field

In this first example, we extract the minimum value of the force field
SIEF_ELNO component N in all the beam groups (individually for each
group). In addition, we print all the other SIEF_ELNO components for
this element in the .resu file:

#declare the tuple which contain the group name
#note index 0 is not used
#nvar number of items in vari
nvar=3;

1 We get the actual name of the parameters from a full printout.

18.1 Manipulating results with TABLE 267

vari=[None] * (nvar+ 1) ;
#specify the group name
vari [1] =’topbeam’ ;
vari [2] =’vertb’ ;
vari [3] =’mast’ ;
#intialize a group name which holds the element
#where the value is minimum
mailncr = [] ;

We first build a table containing the elements where N is extreme, i.e.
maximum or minimum.

for i in range (1 ,nvar+ 1) :
var=vari [i] ;
#build a table containing the elements where N is extreme
#maximum or minimum
tabminN=POST_RELEVE_T (

ACTION=_F (
INTITULE=’extreme_N’ ,
OPERATION=’EXTREMA’ ,
GROUP_MA=(var ,) ,
RESULTAT=stat ,
NOM_CHAM=’SIEF_ELNO’ ,
NOM_CMP=(’N’ ,) ,
LIST_INST=(liste ,) ,

) ,
) ;
#eventually print the table to check
#IMPR_TABLE (TABLE=tabminN,)

Then, we order this table in ascending order.

#order this table in increasing order
#U.4.33.03
tabminN=CALC_TABLE (

TABLE=tabminN ,
reuse=tabminN ,
ACTION=(
_F (

OPERATION=’FILTRE’ ,
NOM_PARA=’EXTREMA’ ,
VALE_K=’MAX’ ,

) ,
_F (

OPERATION=’TRI’ ,
NOM_PARA=’VALE’ ,
ORDRE=’CROISSANT’ ,

) ,
) ,

) ;
#eventually print the table to check
#IMPR_TABLE (TABLE=tabminN,)

268 Getting more from post-processing

Now, in this table we select the element in which N is minimum, of
course it is the first one after the ordering.

#select the element where N is minimum
#the first one in the table
thiselem = tabminN [’MAILLE’ , 1] ;
#add it the group of element
mailncr .append (thiselem) ;
#thisorder is the order at which this value occurs
thisorder = tabminN [’NUME_ORDRE’ , 1]
#print all the values of ’SIEF_ELNO’ for the element
#where N is minimum
IMPR_RESU (
MODELE=model ,
FORMAT=’RESULTAT’ ,
UNITE=8 ,
RESU=_F (
RESULTAT=stat ,
NOM_CHAM=’SIEF_ELNO’ ,
MAILLE=thiselem ,
NUME_ORDRE=thisorder ,
SOUS_TITRE=(
’groupe : ’ , var , ’ -
numero ordre : ’ ,str (thisorder) ,’
N maximum’

) ,
) ,

) ;
#destroy the concept for the next use of it in the loop
DETRUIRE (CONCEPT=_F (NOM= tabminN) ,) ;
#end of the Python loop

Finally, we create a group in the mesh holding this element and print the
result on this group in the .med file.

#create the group in the mesh
mesh=DEFI_GROUP (

reuse =mesh ,
MAILLAGE=mesh ,
CREA_GROUP_MA=(
_F (

NOM=’mailncr’ ,
MAILLE=mailncr ,

) ,
) ,

) ;

#print the result in the .med file
IMPR_RESU (,

18.1 Manipulating results with TABLE 269

MAILLAGE = mesh ,

FORMAT=’MED’ ,

UNITE=80 ,
RESU=_F (
RESULTAT=stat ,
GROUP_MA=’mailncr’ ,
NOM_CHAM=(’SIEF_ELNO’ ,) ,
NOM_CMP=(’N’ ,) ,
NOM_CHAM_MED=(’minN’ ,) ,

) ,
) ;

It is a wise idea to print the intermediate tables when prototyping the
problem, this helps in debugging.

With this code, we get the minimum value of N and the INST when this
occurs for each group.

Putting the group definition outside a loop produces a result for any
element in all the groups.

18.1.3 Getting values within a range

Now, we extract values lying within a range, a minimum and a max-
imum. In the previous examples we created the first table with
POST_RELEVE_T. In this example we extract the table directly from the
result concept. We extract the component SIXX of the field SIPM_ELNO

#create the table from the resu ’stat’
#U4.33.02
tab01=CREA_TABLE (

RESU=_F (
RESULTAT=stat ,
GROUP_MA=(’vpot2’) ,
NOM_CHAM=’SIPM_ELNO’ ,
NOM_CMP=’SIXX’ ,

) ,
) ;

#if we print it we can see that it contains many information
IMPR_TABLE (TABLE=tab01 ,)

And, we can see it contains a lot of information so we reduce its content.

#we reduce its content
#U.4.33.03
tab01=CALC_TABLE (

270 Getting more from post-processing

TABLE=tab01 ,
reuse=tab01 ,
ACTION=_F (
OPERATION=’EXTR’ ,
#restricted list of wanted components
NOM_PARA=(’NOM_CHAM’ ,’INST’ ,’NUME_ORDRE’ ,’MAILLE’ ,’SIXX’ ,) ,

) ,
) ;

Finally, we create a new table where the value of SIXX is less than 50
from which we extract the values greater than -50.

#create a new table where the value of SIXX is less than 50
tab02=CALC_TABLE (
TABLE=tab01 ,
ACTION=_F (
OPERATION=’FILTRE’ ,
NOM_PARA=(’SIXX’) ,
#LT means Less Than
CRIT_COMP=’LT’ ,
VALE=50 ,

) ,
) ;
#IMPR_TABLE (TABLE=tab02,)

#in this table we extract only the values greater than -50
tab02=CALC_TABLE (
TABLE=tab02 ,
reuse=tab02 ,
ACTION=_F (
OPERATION=’FILTRE’ ,
NOM_PARA=(’SIXX’) ,
#GT means Greater Than
CRIT_COMP=’GT’ ,
VALE=−50,

) ,
) ;
IMPR_TABLE (TABLE=tab02 ,)

18.2 Renaming field’s components in a result

Using NOM_CHAM_MED gives a powerful way to rename the fields so as to
get nicer and maybe more explicit names, there is also a feature to rename
the components in an ASCII file. For example the following bit of code:

1. puts the reaction in a table, in the standard manner;

18.3 Adding node coordinates in a result 271

2. changes the name of the components in the table, it looks nicer to
have R for reactions instead of D which reminds of a displacement!

rea_sol=POST_RELEVE_T (
ACTION=_F (

INTITULE=’reactions sol’ ,
RESULTAT=stat ,
TOUT_ORDRE=’OUI’ ,
GROUP_NO=(’sol’ ,) ,
NOM_CHAM=’REAC_NODA’ ,
RESULTANTE=(’DX’ ,’DY’ ,’DZ’) ,
OPERATION=’EXTRACTION’ ,

) ,
) ;
IMPR_TABLE (TABLE=rea_sol ,) #just to see the difference
rea_sol=CALC_TABLE (

reuse =rea_sol ,
TABLE=rea_sol ,
ACTION=(

_F (OPERATION=’RENOMME’ ,NOM_PARA=(’DX’ ,’RX’ ,) ,) ,
_F (OPERATION=’RENOMME’ ,NOM_PARA=(’DY’ ,’RY’ ,) ,) ,
_F (OPERATION=’RENOMME’ ,NOM_PARA=(’DZ’ ,’RZ’ ,) ,) ,

) ,
) ;
IMPR_TABLE (TABLE=rea_sol ,)

18.3 Adding node coordinates in a result

The following lines add the nodes coordinates to a result of reactions, this
may help a third party1 to better understand the results.

IMPR_RESU (
MODELE=model , FORMAT=’RESULTAT’ ,
RESU=_F (

NOM_CHAM=’REAC_NODA’ ,
GROUP_NO=(’sol’ ,) ,
RESULTAT=stat ,
NOM_CMP = ("DX" ,"DY" ,"DZ") ,
IMPR_COOR=’OUI’ ,

) ,
) ;

1 For example the concrete engineer in charge of the ground connection for a steel frame
building.

272 Getting more from post-processing

18.4 Printing a cleaner ASCII result file

Throughout the examples we use this command:

IMPR_RESU (
MODELE=model , FORMAT=’RESULTAT’ ,
RESU=_F (

.
) ,

) ;

to print the .resu file directly on LU=8, it is very quick, but in this case
the file contains a lot of information, including warnings.

Redirecting to a different file like:

IMPR_RESU (
MODELE=model , FORMAT=’RESULTAT’ ,
UNITE=12 ,
RESU=_F (

.
) ,

) ;

produces much cleaner a file with just only the results, with no warnings1.

18.5 Creating a mesh on a deformed shape

The following piece of code allows to write in a med file a deformed mesh
resulting from a previous calculation. This new mesh can be used as an
entry in any subsequent calculation.

Used this way it would, of course, be considered as a stress free mesh!

statnl=STAT_NON_LINE (
.

) ;
#extract the displacements from statnl calculation
defshape=CREA_CHAMP (

RESULTAT=statnl ,
INST=6 ,
OPERATION=’EXTR’ ,
NOM_CHAM=’DEPL’ ,
TYPE_CHAM=’NOEU_DEPL_R’ ,

) ;

1 The same applies to IMPR_TABLE.

18.6 Reading (and enhancing) a result 273

#make the new mesh
meshdef=MODI_MAILLAGE (

reuse=mesfdef ,
MAILLAGE=mesh , #the original mesh
DEFORME=_F (

OPTION = ’TRAN’ ,
DEPL = DEPL ,

) ,
) ;
#save it
IMPR_RESU (

FORMAT=’MED’ ,
UNITE=71 ,
RESU=_F (MAILLAGE=meshdef ,) ,

) ;

18.6 Reading (and enhancing) a result

There is an alternative to using POURSUITE in order to enhance results.
In this section, we see how to read a MED result file created in a previous
calculation.

Taking the example of frame1, we start by modifying the command file
like this: we comment the line containing SIPM_ELNO in CALC_CHAMP
and IMPR_RESU ... FORMAT=’MED’ so the calculated concept
’stat’ is saved without this option1, we can check this by running the cal-
culation and opening the .med file.

Then, we create the following command file reading the med result file
just created and enhance the results.

DEBUT () ;

#we read the mesh of the study
#this mesh concept is used in the subsequent CALC_CHAMP
mesh=LIRE_MAILLAGE (

INFO=1 ,
UNITE=20 ,FORMAT=’MED’ ,

) ;

#we need also the MODELE concept
model=AFFE_MODELE (

MAILLAGE=mesh ,
AFFE=(

_F (
GROUP_MA=(’topbeam’ ,’mast’ ,) ,PHENOMENE=’MECANIQUE’ ,

1 Just like we had forgotten these options at first!

274 Getting more from post-processing

MODELISATION=’POU_D_T’ ,
) ,
_F (

GROUP_MA=(’massN’ ,) ,PHENOMENE=’MECANIQUE’ ,
MODELISATION=’DIS_T’ ,

) ,
) ,

) ;

#and the field CHAM_MATER concept
steel=DEFI_MATERIAU (ELAS=_F (E=210000 . ,NU= 0 . 3 ,RHO=8e−9) ,) ;
material=AFFE_MATERIAU (

MAILLAGE=mesh ,
AFFE=_F (GROUP_MA=(’topbeam’ ,’mast’ ,) , MATER=steel ,) ,

) ;

#and the element characteristics
elemcar=AFFE_CARA_ELEM (

MODELE=model ,
POUTRE=(

_F (
GROUP_MA=(’mast’ ,) ,SECTION=’RECTANGLE’ ,
CARA=(’HY’ ,’HZ’ ,’EP’ ,) ,VALE=(40 , 20 , 1 . 5 ,) ,

) ,
_F (

GROUP_MA=(’topbeam’ ,) ,SECTION=’RECTANGLE’ ,
CARA=(’HY’ ,’HZ’ ,’EP’ ,) ,VALE=(40 , 20 , 1 . 5 ,) ,

) ,
) ,
DISCRET=_F (GROUP_MA=’massN’ , CARA=’M_T_D_N’ ,VALE = (. 0 1) ,) ,

) ;

And, now the bit of code producing the results.

#here we read the EVOL_ELAS result concept
#from the previous calculation
#giving it the name "resur" for result read
resur=LIRE_RESU (

TYPE_RESU=’EVOL_ELAS’ ,
UNITE=21 ,
FORMAT=’MED’ ,
MODELE=model ,
#MAILLAGE=mesh,
FORMAT_MED=(

_F (NOM_CHAM=’DEPL’ ,NOM_RESU=’stat’) ,
_F (NOM_CHAM=’SIEF_ELNO’ ,NOM_RESU=’stat’) ,

) ,
TOUT_ORDRE=’OUI’ ,

) ;

#here we create a new result concept name resu
#based on "resur" read above
resu=CALC_CHAMP (

#with LIRE_RESU next line is not necessary

18.6 Reading (and enhancing) a result 275

#as we create a new resu
#reuse =resu,
#with LIRE_RESU next line is mandatory
MODELE=model ,CHAM_MATER=material , CARA_ELEM=elemcar ,
RESULTAT=resur ,
CONTRAINTE=(

’SIEF_ELNO’ ,
’SIPO_ELNO’ ,
’SIPM_ELNO’ ,

) ,
FORCE=(’REAC_NODA’) ,

) ;

#print new med resu
IMPR_RESU (

MODELE=model , FORMAT=’MED’ , UNITE=80 ,
RESU=_F (

GROUP_MA=(’topbeam’ ,’mast’ ,) ,
RESULTAT=resu ,
NOM_CHAM=(

’DEPL’ ,
’SIEF_ELNO’ ,
’SIPO_ELNO’ ,
’SIPM_ELNO’ ,
’REAC_NODA’ ,

) ,
) ,

) ;

FIN ()

In LIRE_RESU, we comment the MAILLAGE=mesh line, as the ELNO
type field needs only the MODELE concept, some other results may need
a MAILLAGE concept.

We need to carefully study what is done in CALC_CHAMPwith the name
of the concepts:

• we do not use reuse, as there is no previously calculated result
and we have to use the lines:

MODELE=model,CHAM_MATER=material,

CARA_ELEM=elemcar,.

• we add SIPM_ELNO in CALC_CHAMP to calculate this option and
in IMPR_RESU ... FORMAT=’MED’, to print in a med file.

We now create in Astk a study looking like figure 18.1.

276 Getting more from post-processing

FIGURE 18.1: Astk example for LIRE_RESU study

Note: the file frame1r.med is set as data D as we are using it as an
input.

After running the study and opening the lirer.med file, we find an entry
for SIPM_ELNO.

With this method, we have to reload all the data relevant to the study,
mesh, model, material and so on, to be able to perform a calculation,
the only omitted step is the call to the solver, MECA_STATIQUE, or
STAT_NON_LINE, or any other.

This is not as easy, or immediate, as a POURSUITE to handle large
studies.

On the other hand it allows to read result concepts produced by IDEAS
or ENSIGHT for example. All this is described in the U7.02.01 documen-
tation. Finally, we should notice that it is not not possible to read ALL
the concepts produced by Code_Aster.

18.7 Post-processing in version 10

For the versions older than 11, commands to calculate stresses and forces
were a bit different, operators CALC_ELEM and CALC_NO were used.

18.7 Post-processing in version 10 277

Here follows how the command file of the example frame3 in chapter
8.2 should be written to get the same results:

stat=CALC_ELEM (
RESULTAT=stat ,
reuse =stat ,
OPTION=(

’SIEF_ELNO’ ,’SIPO_ELNO’ ,’SIPM_ELNO’ ,
’SIGM_ELNO’ ,
#’SICO_ELNO’, #SICO en non linear

) ,
) ;

stat=CALC_NO (
RESULTAT=stat ,
reuse =stat ,
OPTION=(’REAC_NODA’ ,) ,

) ;

Keyword SIGM_ELNO is here to calculate the stress in the plate ele-
ment, but only in the neutral plane. To calculate them on one of the faces
we use a new concept statsup with CALC_ELEM:

statsup=CALC_ELEM (
RESULTAT=stat ,
GROUP_MA=(’panel’ ,) ,
REPE_COQUE=_F (

GROUP_MA=(’panel’ ,) ,
NIVE_COUCHE=’SUP’ ,

) ,
OPTION=(’SIGM_ELNO’ ,) ,

) ;

statsup=CALC_NO (
RESULTAT=statsup ,

reuse =statsup ,
OPTION=(’SIGM_NOEU’ ,) ,

) ;

CHAPTER 19

Handling Code_Aster, bits and pieces

In this chapter, we review some hints for a better use of Code_Aster :

• how to deal with multiple FORCE_POUTRE;

• how to convert a mesh to or from another format;

• how to launch a study from a terminal;

• how to use multiple instances of ASTK;

• why not to alarm when there is an “alarm”;

• how to benefit from the use of the keyword INFO.

19.1 Dealing with multiple FORCE_POUTRE

As we have discussed earlier the following attempt of using two instances
of FORCE_POUTRE in two different AFFE_CHAR_MECA

279

280 Handling Code_Aster, bits and pieces

selfwght=AFFE_CHAR_MECA (
MODELE=model ,
PESANTEUR =_F (

GRAVITE=13500 ,
DIRECTION=(0 ,0 , −1) ,
GROUP_MA=(’topbeam’ ,’mast’ ,’massN’ ,) ,

) ,
) ;
.
cr=AFFE_CHAR_MECA (

MODELE=model ,
FORCE_POUTRE=_F (GROUP_MA=(’topbeam’ ,) ,FZ= −0.1 ,) ,

) ;

raises the following error:

! !
! <S> Exception utilisateur levee mais pas interceptee . !
! Les bases sont fermees . !
! Type de l ’ e x c e p t i o n : e r r o r !
! !
! Le cha rgemen t c o n t i e n t p l u s d ’une charge repartie . !
! Le calcul n ’ e s t pas p o s s i b l e pour l e s modeles de p o u t r e . !
! !

Code_Aster fails despite the fact that the displacements are calculated1.

However the following gives a result with forces and stresses. The load
cases are named inst_x, where x takes the same value as the INST of
example frame1.comm, in chapter 4.9

inst_3=AFFE_CHAR_MECA (
MODELE=model ,
PESANTEUR =_F (

GRAVITE=10000*1 .35 ,DIRECTION=(0 ,0 , −1) ,
GROUP_MA=(’topbeam’ ,’mast’ ,’massN’ ,) ,

) ,
) ;
.
inst_5=AFFE_CHAR_MECA (

MODELE=model ,
PESANTEUR =_F (
GRAVITE=10000*1 .35 ,DIRECTION=(0 ,0 , −1) ,
GROUP_MA=(’topbeam’ ,’mast’ ,’massN’ ,) ,

) ,
FORCE_NODALE=_F (GROUP_NO=(’loadS’ ,) ,FZ=−135 ,) ,
FORCE_POUTRE=_F (GROUP_MA=(’topbeam’ ,) ,FZ= −0 .1*1 .5 ,) ,

) ;

1 In fact writing OPTION=’SANS’, in MECA_STATIQUE allows to print a result containing
only the displacements.

19.2 Converting mesh 281

.
stat_3=MECA_STATIQUE (

MODELE=model ,
CHAM_MATER=material ,
CARA_ELEM=elemcar ,
EXCIT=(

_F (CHARGE=ground ,) ,
_F (CHARGE=inst_3 ,) ,

) ,
) ;
.
stat_5=MECA_STATIQUE (

MODELE=model ,
CHAM_MATER=material ,
CARA_ELEM=elemcar ,
EXCIT=(

_F (CHARGE=ground ,) ,
_F (CHARGE=inst_5 ,) ,

) ,
) ;

This method uses several MECA_STATIQUE1 with the following draw-
backs:

• there are as many solving of the problem as there are
MECA_STATIQUE which increases the calculation time;

• FONC_MULT cannot be used at best anymore and the multiplica-
tions, if any must be made in the individual AFFE_CHAR_MECA.

This method is quite cumbersome but may help if CPU time is not critical
and a true precise FORCE_POUTRE is required.

19.2 Converting mesh

It is very easy to convert a mesh to another format. To do this, in ASTK:

• set the Base path to the directory where the mesh to be converted is
sitting;

• write a line entry with the mes file to be converted;

• go to menu item Tools Mesh converter ;
1 Which could easily included in a Python loop, including as well all the post-processing

commands.

282 Handling Code_Aster, bits and pieces

• choose the directory where yo want the new mesh to be created in
Result mesh ;

• optionally set a name;

• select the Format ;

• push Ok ;

and after a few more clicks the new mesh is created, figure 19.1 shows the
ASTK window.

FIGURE 19.1: ASTK set to convert a mesh

There is no witchcraft in this tool and the next lines in a .comm file will
do the same:

19.3 Launching from terminal 283

mesh=LIRE_MAILLAGE (UNITE=20 , FORMAT=’MED’ ,) ;

IMPR_RESU (
FORMAT=’OUTPUT_FORMAT’ ,
UNITE=71 ,
RESU=_F (MAILLAGE=mesh ,) ,

) ;

19.3 Launching from terminal

It is possible to launch a study just simply from a terminal.

When we launch a study from ASTK a file named study_name.export
is created. If we open this file in a text editor we can see that it contains,
first a series of parameters, some paths and at the end a list of the files of
the study with the LU and R, C or RC state of each file.

The following command typed in a terminal launches this study:

/opt/aster/bin/as_run /my_directory/frame3.export

• assuming /opt/aster is the Code_Aster installation directory;

• assuming my_directory is the study directory name;

• assuming frame3 is the study name.

Creating a new .export file by hand in a text editor with the right param-
eter for the new study is just enough to run a study. Detailed explanation
about this matter can be found in U1.04.00 or more generally in the whole
U1.* documentation.

More! Writing a script like this:

#!/bin/sh
/opt /aster /bin /as_run /directory_study_1 /study_1 .export
/opt /aster /bin /as_run /directory_study_2 /study_2 .export
.
/opt /aster /bin /as_run /directory_study_43 /study_43 .export

saving it somewhere, making it executable and launching it from a ter-
minal would mimic a batch behavior and solve 43 studies one after the
other!

284 Handling Code_Aster, bits and pieces

19.4 Multiple ASTK configurations

The following command:

/opt /aster /bin /astk −−rcdir \$HOME / . astkrc−114

launches ASTK with a configuration described in the directory
$HOME/.astkrc-114.

This allows to have several configurations for each of the ASTK in-
stances in case of multiple Code_Aster installations, for example. If
the $HOME/.astkrc-114 does not exist it will created, with default
options, on the first launch. The default ASTK configuration file is
$HOME/.astkrc1.

19.5 Alarming about ’alarme’?

Very often we can see many items like this one in the .mess file:

<A> <here a name>
.
Ceci est une alarme . Si vous ne comprenez pas le sens de cette
alarme , vous pouvez obtenir des resultats inattendus !

Whose translation is “This is a warning. If you do not understand the
meaning of this warning, you may get unexpected results”. This means
that we should know what we are doing here.

In fact, in this context, the exact translation of the french word “alarm”
is warning, thus the alarm is not so alarming!

Yet we should always tend towards zero warnings by making the neces-
sary changes suggested by these messages.

1 In the Unix world, he leading “dot” in a file name means a hidden file or directory, it thus
may not be visible at fist with the default settings of a graphical window manager.

19.6 Keeping informed with INFO 285

19.6 Keeping informed with INFO

Almost any Code_Aster command supports the keyword INFO, it can take
two values:

• with INFO=1, a standard set of information is printed in the .mess
file1;

• with INFO=2, a more comprehensive set of information is printed
in the .mess file.

It is always a wise idea to have a look at what is printed in the .mess file
for a given command.

For any command, in addition to the keywords stated by the user in the
.comm file, Code_Aster adds a few other keywords considered as default.
Looking at what has been added is useful in two ways:

• at the learning stage (for a given command) is helps to understand
what Code_Aster uses as parameter for the command;

• with more experience it gives a good hint of what could be altered
to produce the expected, or a better, result.

For example setting INFO=2 within a LIAISON_* command allows
to see the equations and the eliminated DOF actually used!

Another example is with the commands LIRE_MAILLAGE,

MODI_MAILLAGE, CREA_MAILLAGE, DEFI_GROUP... With
INFO=1 a decent set of information is printed in the .mess file which
help to check that:

• the read mesh is what we expect;

• the expected groups do exist, with their expected number of ele-
ments and their right name;

• and much more information.
1 INFO=1 is the default value and it is not possible to print no information!

286 Handling Code_Aster, bits and pieces

With INFO=2 the level of information goes more into the details:

• for every node, its coordinates;

• for every element its connectivity;

• and so on.

Here is a example of the LIRE_MAILLAGE with INFO=1 for frame3
example:

Commande No : 0002
Concept de type : maillage_sdaster

mesh = LIRE_MAILLAGE (INFO=1 ,

FORMAT= ’MED’ ,
UNITE=20 ,
INFO_MED=1 ,
VERI_MAIL=_F (APLAT=1 .E−3,

VERIF= ’OUI ’ ,) ,
)

====== VERIFICATION DU MAILLAGE ======

MAILLE POI1 M1 INCLUSE DANS UNE AUTRE
MAILLE POI1 M2 INCLUSE DANS UNE AUTRE
MAILLE POI1 M3 INCLUSE DANS UNE AUTRE
MAILLE POI1 M4 INCLUSE DANS UNE AUTRE
MAILLE POI1 M5 INCLUSE DANS UNE AUTRE

−−−−−−−−−−−− MAILLAGE mesh − IMPRESSIONS NIVEAU 1 −−−−−−−−−−−

MED file generated by Gmsh

NOMBRE DE NOEUDS 907

NOMBRE DE MAILLES 1439
POI1 5
SEG2 224
TRIA3 842
QUAD4 368

NOMBRE DE GROUPES DE MAILLES 12
loadS 1
massN 1
groundS 1
groundN 1
oripanel 1
topbeam 160
hinge 4
vertb 40
mast 20
panelS 842

19.6 Keeping informed with INFO 287

panelN 368
pan 40

−−−

Fin commande No : 0002 user+syst:
0.03s (syst: 0.00s, elaps: 0.03s)

This valuable information should be read at first if something goes
wrong.

In the same manner one may use DEBUT (IMPR_MACRO=’OUI’) to
print in details what is happening inside each macro command.

APPENDIX A

Living with good practice

When all else fails, read the directions.

Allen’s axiom.

Before moving to some technical appendixes we review now a few ad-
vices of good practice:

1. Put all the files related to a given study in a single directory a.

2. In this directory, do NOT allow file names with special charac-
ter, like space or blank, which may prevent reading other files
in the directory.

3. In the source files, command, Gmsh or Salome script, write
more comment than we think necessary, as we will probably
have forgotten why we did “this like that” when we re-open the
file in a few months. And even more if somebody else has to
use them.

4. When working with Gmsh, keep an eye on the ’Message Con-
sole’, some strange behaviors are probably traced in it.

a In which we have read, write, execute permissions.

289

290 Living with good practice

5. Check the geometry overall dimensions, with CAD imported file
there maybe a confusion between meter and millimeter.

6. Check the mesh for double nodes or double elements.

7. Use a coherent system of units throughout the study.

8. As much as possible do some hand calculation to guess [and
check] some of the result’s key values.

9. Check the Code_Aster output results for mass, of the whole
model, or group by group, with the expected values.

10. Check the coherence of the sum of the reactions with the sup-
posed applied external loads for the various load cases.

11. Always read carefully the .mess file output:

• if things went wrong, hints for the solution are lying in it;

• if we got a result, the explanation why it may be meaning-
less often lies in it;

• more generally, check all the warning messages lines,
they begin with <A>.

12. Do not take for granted the colorful pictures and the associated
scalar bars produced by the post-processing tool, always print
in the .resu file the VALE_MAX and VALE_MIN for the same
field and component, as we expect the post-processing tool to
show the Code_Aster calculated valuesa. If it does not, at first
try to find out how and why the post-processor is misused.

13. Make sure that the .mess, .resu files we are reading in a text
editor, and the .med file we are viewing in the Post-pro module
really belongs to the same analysis of the same problem.

14. Before blaming the software, try to find out where and why
things went wrong.

15. And if a bug is suspectedb report it on the Code_Aster forums.

16. Be patient and obstinate.

a And experience shows it is not always the case!
b Yes it happens! A bug is commonly described as a “feature” by many developers.

APPENDIX B

Using Gmsh, tips and tricks

This appendix reviews some hints for a better use of Gmsh:

• how to really view what we want;

• how to use powerful Gmsh Plugins, to create a view of a com-
posite result or to animate a mode shape;

• how to properly create and orient surfaces;

• a quick introduction to the legacy .pos Post-pro file.

2.1 Viewing the right results

We may get puzzled by the many mouse clicks necessary to view what we
want in Gmsh Post-processing module, here are some hints.

First of all it is a good idea to go in Tools Options Mesh Visibility

and un-check everything so the post-processing view is not be polluted by

291

292 Using Gmsh, tips and tricks

some mesh views1. Pushing Alt + M is also useful to hide the mesh (or
click the M in the status bar).

In the Gmsh window only the checked views, numbered from [0] up
are visible, for example in figure B.1 only view [2], named ’stat___DEPL’
is checked and visible in the main window.

In the window Tools Options all the options chosen in the right tab
apply to the View[x] highlighted in the left-hand list.

2.1.1 Viewing ELNO type fields

To view one specific component in an ELNO type field (like forces or
stresses) the following sequence must be followed:

1. in the Visibility tab pull the lower left list to Force scalar ;

2. in the box immediately to the right type in the field Id (for a
SIPO_ELNO field Id is 0 for SN, 4 is for SMFY for example);

3. in the General tab pull the list Range mode to Custom ;

4. and push the Min and Max buttons to refresh the display with the
proper component values.

We should not forget the Min and Max buttons to be sure that the dis-
played field and the scalar bar are matched.

2.1.2 Viewing vector type fields

To view the deformed shape:

1. in the Visibility tab pull the lower left list to Force vector ;

2. in the Aspect tab pull the Vector display list to Displacement ;

3. choose a significant value for Displacement factor .

And to view reactions as vector arrows:
1 Though sometimes it is useful to see the mesh or some groups in it.

2.1 Viewing the right results 293

1. in the Visibility tab pull the lower left list to Force vector ;

2. in the Aspect tab pull the Vector display list to Arrow ;

3. pull the Glyph location list to Vertex to display the arrow on the
nodes.

2.1.3 Viewing scalar fields on deformed shapes

FIGURE B.1: Bending stress on deformed shape

The use of Data source list to View[x] allows to draw on the specified
selected view a field coming from the Data source view, for example a
stress field on a deformed shape. For example view B.1 shows as active
view View[2] which contains a field of DEPL type with a large displace-
ment factor, to show the deformed shape, Data source is View[2] which

294 Using Gmsh, tips and tricks

is smfy bending stress. The Show scalar value is unchecked for View[2]

and in addition in Tools Visibility the view is restricted to some groups of
elements.

2.2 Using Plugins

2.2.1 For creating and viewing a composite result

In this section, we see how Gmsh plugins can be used to view new results
calculated from the existing ones. We create a result which is the vector
of the displacement in the horizontal plane only, for our example frame4.

First of all, we add this in the command file so as to create a view for
displacement component DX and another one for DY.

IMPR_RESU (
MODELE=model , FORMAT=’MED’ , UNITE=80 ,
RESU=(
_F (
GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,’panel’ ,) ,
RESULTAT=stat ,NOM_CHAM=(’DEPL’ ,) ,

) ,
_F (
NOM_CHAM=’DEPL’ ,NOM_CMP=(’DX’ ,) ,NOM_CHAM_MED=’dx’ ,
RESULTAT=stat ,

) ,
_F (
NOM_CHAM=’DEPL’ ,NOM_CMP=(’DY’ ,) ,NOM_CHAM_MED=’dy’ ,
RESULTAT=stat ,

) ,
. .

Once the calculation is made, we open the med result file in Gmsh

In the tree of the Gmsh window, we RMB click on the view named
dx Plugins ,

• then in the pull down list, select MathEval ,

• on the right-hand side frame, go down to the View field, we type
0, which is the number of the view where the component DX is
displayed1,

1 It could well be a different number.

2.2 Using Plugins 295

• and for OtherView field we choose 1, where the component DZ is
displayed

• in the top field write the following equation Sqrt(v0^2+w0^2)
which stands for

√
DX2 +DY 2 where DX in the ’View’

v0=View[1], DY in the ’OtherView’ w0=View[2].

then Run 1 .

FIGURE B.2: MathEval Gmsh plugin in action

A new View, number [10], is created at the end of the list, it contains a
field with the value we have specified, we can change its name in Options

View general View name .

1 We left the other fields by default, -1 means all, -1 for TimeStep means making the evaluation
for all the existing values of TimeStep.

296 Using Gmsh, tips and tricks

The same result could be obtained by typing View[0], using DEPL as
data source and the formula Sqrt(v0^2+v1^2).

Figure B.2 sums all this up with the result displayed.

If we tick the check box Record in the Plugins window a new file
is created in the study directory named like the .med file with the extra
extension .opt . Every time we open the med file in Gmsh the Plugin is
run so as to enhance the result. This .opt file may be edited if we want to
get rid of some results, or create new ones1.

This was just a simple example of Gmsh Plugins the list and the possi-
bilities are large2.

Maybe just one note: this kind of .opt file may be appended to a .geo
file to pass any valid Gmsh set of instruction to the main file, they will be
executed on the fly when the file is read.

2.2.2 For animating a mode shape

A modal analysis result is a displacement result related to time, it would
be good to view the deformed shape as an animated view, this is possible
in Gmsh. We do it now, for mode 7, at 196 Hz, of the pendulum example
of chapter 15.1 .

In Gmsh all the mode shape are saved in a single view, we first extract
the right view, due to Gmsh numbering it happens to be at ’Time step 6’.
We extract this ’Time step’ in a new view using Plugin ’Extract Elements’:

• setting TimeStep to 6;

• setting Visible to 1;

• setting Dimension to -1;

• setting View to 0, as we extract from view [0],

and we rename this newly created view [1] ’modes-extract 7’.
1 If we open this file we can see that it contains the instructions we have just entered in the

Gmsh GUI windows, which mean we can tailor the Plugins or create new ones juts by editing
this .opt file.

2 There is an Help tab in the Gmsh Plugins window briefly describing the Plugin functions
and the syntax.

2.2 Using Plugins 297

FIGURE B.3: HarmonicToTime setup with a snapshot of animation

And now, we RMB click on the view named [1] modes-extract 7

Plugins ,

• then in the pull down list, select HarmonicToTime ;

• on the right-hand side frame, set the values as below:

– RealPart =0;

– ImaginaryPart =01;

– NumSteps =20 to set the number of views of the animation;

– View =-1 to run the plugin on the current view;

1 We are taking the real part of view 0 and the imaginary part of view 0 as well, mixing up the
view numbers would lead to meaningless result display.

298 Using Gmsh, tips and tricks

• pushing Run creates a new view1.

Making this view active and pushing the little Play button at the bottom
of the window runs the animation as long as Force Vector is selected in
Visibility and a large enough Displacement value2 is set in the Aspect tab.

Figure B.3 shows the plugin’s dialog box setup together with a snap shot
of the animation.

2.3 Orienting Surfaces

We have stressed earlier the fact that a proper orientation of surface ele-
ments is needed, otherwise the loads may not be what expected and/or
the stress results may be meaningless. Let’s take the example of the
frame3.geo of example frame3 to illustrate the way surfaces are ori-
ented in Gmsh as shown on figure B.43.

Surface 311 is defined this way:

Line Loop (310) = {201 , 110 , −210, −10};
Plane Surface (311) = { 3 1 0 } ;

The Line Loop describes the surface’s borders in a sequential way4

just like we were walking along the border:

• 201 is the first Line;

• 110 is the second one, this couple sets the surface Normals , shown
here in red;

• 210 and 10 are the next lines, they are changed of sign because
they are walked on the reverse way when describing the border, the
orientation of the lines, the Tangents are here shown in yellow.

The next Line Plane Surface creates the plane from the loop.

1 We may explore the Help tag to fully understand the meaning of the parameters.
2 In this very example a value of 100 provides a sensible view.
3 On the figure the Gmsh tree is teared off to a proper box with Window

Attach/Detach Menu .
4 It may not be the order in which we clicked on the Lines in the GUI.

2.3 Orienting Surfaces 299

FIGURE B.4: Surface orientation

300 Using Gmsh, tips and tricks

A loop made with RMB on the lines in the GUI produces a valid surface.
On the contrary when we do so in a script, directly in the text editor, it is
very easy to create an inverted loop, upon reading by Gmsh this causes an
annoying crash!

Hollowed Surface 325 and the little inside surface 335 are created like
this:

Line Loop (320) = {210 , 120 , −220, −20};
Line Loop (321) = {280 , 270 , −260, −250};
Plane Surface (325) = {320 , 321} ;
Plane Surface (335) = {−321};

The first loop is just as before, it sets the normal to the surface, the loop
321 sets an inner border for the hollow, and Plane Surface sets the
surface1.

The surface 335 is created from the second loop, reverting the loop num-
ber, with the minus sign to keep a consistent normal with surface 325, this
because the loop 321 is walked along in the direction opposite to loop 320.

We must point here that an extreme care must be taken in orienting the
normals to the surfaces, we must choose one policy consistent with the
problem and the way the .comm file is written.

In fact it is somewhat easier to do in practice than to explain!

And, as we stated in chapter 8 it is a good practice to reorient the sur-
faces within the MODI_MAILLAGE operator.

2.4 Using the legacy Gmsh Post-pro files

When using STANLEY we have seen result windows popping out named
fort33.pos, this is the legacy Gmsh graphical Post-pro format. The next
code abstract would print such a file in LU 37 if appended to the command
file of example frame3.

IMPR_RESU (
FORMAT=’GMSH’ ,
UNITE=37 ,
RESU=(

1 There may be more inner loops than a single one

2.4 Using the legacy Gmsh Post-pro files 301

_F (

GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,’panel’ ,) ,

RESULTAT=stat ,NOM_CHAM=(’DEPL’ ,) ,
#next 2 lines to be able to view the deformed shape
#and or arrow vectors
#this maybe applied to REAC_NODA,
#and all vector fields as well
NOM_CMP=(’DX’ ,’DY’ ,’DZ’ ,) ,
TYPE_CHAM=’VECT_3D’ ,

) ,
_F (

GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,’panel’ ,) ,
RESULTAT=stat ,NOM_CHAM=(’DEPL’ ,) ,
#to print all individual components

) ,
_F (

GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,) ,
#if no CMP are specified they are all printed
#and this can lead to very large files
RESULTAT=stat ,NOM_CHAM=(’SIPO_ELNO’ ,) ,

) ,
_F (

GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,) ,
RESULTAT=stat ,NOM_CHAM=(’SIPO_ELNO’ ,) ,
NOM_CMP=(’SMFY’ ,) ,

) ,
_F (

GROUP_MA=(’topbeam’ ,’vertb’ ,’mast’ ,’panel’ ,) ,
RESULTAT=stat ,NOM_CHAM=(’SIPM_ELNO’ ,) ,
NOM_CMP=(’SIXX’ ,) ,

) ,
_F (

GROUP_MA=(’panel’ ,) ,RESULTAT=statsup ,
NOM_CHAM=’SIEQ_NOEU’ ,NOM_CMP=’VMIS’ ,

) ,
_F (

GROUP_MA=(’panel’ ,) ,RESULTAT=statsup ,
NOM_CHAM=’SIEQ_NOEU’ ,

) ,
) ,

) ;

The main advantage of this file format is, it can be scripted at will, “à la
Gmsh”.

Its disadvantage: no group selection for viewing can be done within the
GUI, it has to be specified in the command file, or scripted.

302 Using Gmsh, tips and tricks

2.5 Importing Nastran® and other alien files

If we import a Nastran® created data file, .bdf or .dat , we may find that
the groups created do not seem to exist any more. In fact all the properties
related to groups are described as “Elementary Entity”.

The code given below allows to restore the groups. If we open it in
Gmsh we can see at the end of the translation a .msh file appearing on the
screen as well as being saved, with all the groups restored.

Merge "/my_problem.bdf" ;

vols [] = Volume "*" ;
For i In {0 : #vols [] − 1}
Physical Volume (vols [i]) = vols [i] ;

EndFor

surfs [] = Surface "*" ;
For i In {0 : #surfs [] − 1}

Physical Surface (surfs [i]) = surfs [i] ;
EndFor

lines [] = Line "*" ;
For i In {0 : #lines [] − 1}

Physical Line (lines [i]) = lines [i] ;
EndFor

Save "/my_problem.msh" ;

Restored groups, but without names, only Ids! Next bit of code added
at the beginning of the .msh file will name the groups. Then it is just a
matter of saving it as a .med file

\$MeshFormat
2.2 0 8
\$EndMeshFormat
\$PhysicalNames //example for ’frame3’
11 //number of groups
0 7 "groundS" //0 for point group, 7 is the Id, "group_name"
0 8 "groundN"
0 9 "loadS"
0 10 "massN"
0 11 "oripanel"
1 1 "topbeam" //1 for line group
1 2 "hinge"
1 3 "mast"
1 4 "vertb"
2 5 "panelN" //2 for surface group
2 6 "panelS"

2.6 Customizing Gmsh 303

\$EndPhysicalNames
\$Nodes
.

http://laurent.champaney.free.fr/perso/outils.

html provides a few perl scripts converting fea files. I found the utility
dxf2geo, converting .dxf to .geo quite handy. There also are scripts for
NASTRAN®, CAST3M®, SAMCEF®, UNV®, ABAQUS®.

2.6 Customizing Gmsh

Menu File Save Model Options saves a file with the current file name plus
the extensions .opt containing all the options of the current file. Opening
again current_file_name loads the options with it.

Menu File Save Options A default saves the current options as default
Gmsh options in $HOME/.gmsh-options.

The file $HOME/.gmshrc holds the options specific to a session when
$HOME/.gmsh-options holds wider scope options, in these files, with
the help of the manual we can configure Gmsh just as we want.

http://laurent.champaney.free.fr/perso/outils.html
http://laurent.champaney.free.fr/perso/outils.html

APPENDIX C

Using discrete elements

This appendix reviews how to use and set the proper values of the
discrete stiffness and mass elements, point and line.

3.1 Stiffness matrix

When using discrete element to mimic end release at the end of a beam it
is best to use the right1 values for the stiffness matrix coefficients. This
is particularly true if one wants to retrieve the lateral shear force on a lug
and pin assembly, for example.

1 Or as right as possible!

305

306 Using discrete elements

3.1.1 K_TR_D_L element

Here are some formulae to calculate the coefficients for a K_TR_D_L

element.
Kx = K1n =

EAx
s

Ky = K1z =
12

βs3
EIz

Kz = K1y =
12

αs3
EIy

KRx = K1x =
GIx
s

KRy = K3y =
3 + α

αs
EIy

KRz = K3z =
3 + β

βs
EIz

where

Kx,Ky, ...KRx, ... are the notations used in #U4.42.01.

α = 1 +
12EIy
GAzs2

β = 1 +
12EIz
GAys2

s being the length of the element, E the Young modulus and G the
Coulomb modulus1.

This, applied to a rectangular section, HY = 10, HZ = 100, yields the
following value:

Ax = HY.HZ = 1000

Ay = Az '
2Ax

3
= 667

Ix =
HY 3.HZ

3
= 333332

1 The above formulae and the notation are extracted from [Tuma].
2 HY 3 as HY << HZ, this value is more and more false as HY gets closer to HZ to

become 2.25×H4 when H = HY = HZ.

3.1 Stiffness matrix 307

Iy =
HY.HZ3

12
= 833333

Iz =
HY 3.HZ

12
= 8333

When one wants to relax a rotation around an axis the KR* should be set
to zero or a very small value.

We can print the SIEF_ELNO for these elements and make the proper
dimensioning of lugs and pins by hand.

We should be careful for the choice of the length “s” in calculating the
stiffness matrix values, as too high a value may give wrong results, not
only in the discrete elements but in the surrounding ones.

This is due to the fact that the stiffness matrix is diagonal as reflected in
the D of its name. This means that a shear force (or a lateral displacement)
at the left end of the element is transmitted as a shear force at the right end
but does not produce a bending moment at the right end, neither does it
produce a rotation of the left end.

To solve this issue we have to use K_TR_L elements.

3.1.2 K_TR_L element

With this element we mimic exactly the behavior of of beam element. The
drawback is: we have to fill the full matrix with 78 terms!

First of all, we need to compute the terms linking left shear force to right
bending moment:

K2y =
6

αs2
EIy

K2z =
6

βs2
EIy

K4y =
3− α
αs

EIz

K4z =
3− β
βs

EIz

Then fill the matrix like this:

308 Using discrete elements

#numerical value for a rod section, diam 10 mm, length 100 mm
k1n=1.65e5 ;
k1z=1.23e3 ;
k1y=1.23e3 ;
k1x=7.93e5 ;
k3y=4.06e6 ;
#k3y=0; #release rotation about local y
k3z=4.06e6 ;
k2z=6.05e4 ;
k2y=6.05e4 ;
#k2y=0; #release rotation about local y
k4y=2.00e6 ;
#k4y=0; #release rotation about local y
k4z=2.00e6 ;
elemcar=AFFE_CARA_ELEM (

MODELE=model ,
DISCRET=(
_F (

GROUP_MA=(’kt’ ,) ,
CARA=’K_TR_L’ ,
VALE=(

k1n ,
0 . 0 , k1z ,
0 . 0 , 0 . 0 , k1y ,
0 . 0 , 0 . 0 , 0 . 0 , k1x ,
0 . 0 , 0.0 ,−k2y , 0 . 0 , k3y ,
0 . 0 , k2z , 0 . 0 , 0 . 0 , 0 . 0 , k3z ,

−k1n , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , k1n ,
0.0 ,−k1z , 0 . 0 , 0 . 0 , 0.0 ,−k2z , 0 . 0 , k1z ,
0 . 0 , 0.0 ,−k1y , 0 . 0 , k2y , 0 . 0 , 0 . 0 , 0 . 0 , k1y ,
0 . 0 , 0 . 0 , 0.0 ,−k1x , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , k1x ,
0 . 0 , 0.0 ,−k2y , 0 . 0 , k4y , 0 . 0 , 0 . 0 , 0 . 0 , k2y , 0 . 0 , k3y ,
0 . 0 , k2z , 0 . 0 , 0 . 0 , 0 . 0 , k4z , 0.0 ,−k2z , 0 . 0 , 0 . 0 , 0 . 0 , k3z ,

) ,
SYME=’OUI’ ,
REPERE=’LOCAL’ ,

) ,
#here for a ’K_TR_D_L’ element
#_F(

#GROUP_MA=(’ktd’,),
#CARA=’K_TR_D_L’,
#VALE=(k1n, k1z, k1y, k1x, k3y, k3z,),
#REPERE=’LOCAL’,

#),
) ,

) ;

With this quite lengthy input, the element can be any length and behaves
just like a short beam, except on the relaxed DOF, or DOFs. The fancy
layout just above tries to display the lower half of the symmetrical ma-

3.2 Mass matrix 309

trix in a clean manner. We could even input an unsymmetrical matrix if
needed, more about this in U4.21.011.

3.2 Mass matrix

In the simpler case we use discrete element, M_T_D_N, to model a point
mass, this is quite straightforward and is explained in chapter 4.6 . Fur-
thermore the mass may be given an offset, which is useful in some dy-
namic calculation, this is fully explained in #U4.42.01.

3.3 Combining both

If one single discrete line element carries at the same time a mass and a
stiffness it needs two entries in AFFE_CARA_ELEM. Here is an abstract
of code allowing to give a mass to the stiffness line element of frame2
example:

elemcar=AFFE_CARA_ELEM (
MODELE=model ,
. .
DISCRET=(

_F (
GROUP_MA=(’hinge’ ,) ,
CARA=’K_TR_D_L’ ,
#the values used in the previous calculation
#VALE=(1.00e6,1.00e6,1.00e6,1.00e9,0,1.00e9,),
#the values calculated with this chapter’s formula
VALE= (3 . 5 9e6 , 6 . 3 2e5 , 3 , 2 2e5 , 2 . 1 6e8 , 0 , 2 . 5 8e8 ,) ,
REPERE=’LOCAL’ ,

) ,
_F (

GROUP_MA=(’hinge’ ,) ,
CARA=’M_TR_D_L’ ,
VALE=(M1 ,M2 ,M3 ,M4) ,
REPERE=’LOCAL’ ,) ,

) ,
) ,
. .

) ;

Where:
1 The slightest error in the indexing of the matrix components produces, of course, wrong

results.

310 Using discrete elements

• M1 is half the mass of the element1;

• M2 is the rotational moment of inertia of the element about its own
axis;

• M3 and M4 are the rotational moments of inertia of the element
about the perpendicular axis.

Which gives for a prismatic element:

M1 =
m

2

M2 =
m.r3

3

M3 = M4 =
m.s2

12

m being the mass of the element, s its length and r the radius of gyration
of the element cross section2.

In most practical static problems giving the value of M1 is enough.

1 Yes, half the mass here, don’t ask me why!
2 For more complete computing of the mass matrix we, again refer to [Tuma].

APPENDIX D

Drawing and meshing with Salome

Given the most inappropriate time for something to go wrong, that’s
when it will occur.

9th Murphy’s law.

This appendix gives an initiation to the use of Salome Geometry and
Mesh modules.

For this:

• with frame1 example:

– we create the geometry and mesh it, in the GUI;

– we alter the .comm file to take into account Salome fea-
tures;

– we see how we can “dump” the study to a python script;

• with frame3 example:

– we create the geometry from script and in the GUI;

– we review some hints about group creation;

– we mesh the geometry;

311

312 Drawing and meshing with Salome

– and take a look at how to view beam sections and plate
thickness with Eficas;

• we draw and mesh ’part2’ of the solid example, using the
“NoteBook”;

• we review the basic differences between Gmsh and Salome;

• to finish with some hints on how to to mesh an imported CAD
file.

4.1 First example with beams

4.1.1 Creating geometry and meshing

At first it is better once Salome is open to go to File New to create a new
study and to save it in a working directory with File Save As... . Then in
the pull down list of Salome we choose Geometry .

FIGURE D.1: Create a point

In the menu New Entity Basic Point , we fill the dialog box like in
figure D.1, with (x=0, y=-1000, z=0), click on Apply , repeat for the points
(0, -1000, 1000), (0, -500, 1000), (0, 0, 1000) and click Apply and close .

4.1 First example with beams 313

In the menu New Entity Basic Line , LMB click on the points to create
the three lines, click on Apply after each line is created and Apply and close

after the third one.

As we go along we can see the newly created objects in the Object
Browser window.

FIGURE D.2: Create a plane

Now, we add two construction points at (0, 0, 0), (1000, 0, 0), create
a plane with these two points and the point on top of the frame, with
New Entity Basic Plane like in figure D.2

314 Drawing and meshing with Salome

And in Operations Transformation Mirror Image , select the 3 lines (with
+ LMB), the mirror plane and Apply and close .

In the Object browser we may RMB click on Plane_1 Hide to
get a view restricted to the significant entities. In New Entity Build

Compound , we select, in the Object Browser, or in the graphical win-
dow the 6 lines previously created, this creates an object named ’Com-
pound_1’1. The creation of this Compound is mandatory as it behaves
as a container for the sub entities and the groups, and can be meshed at
once2.

In New Entity Group Create , in the dialog box:

• in Shape Type LMB click on the line radio button;

• in Group Name Name type the name, here ’mast’;

• in Main Shape And Sub-shapes :

– in Main Shape add Compound_1;

– in Main Shape Selection restriction select No restriction ;

– select one of the mast in the geometry window, push Add , its
Id appears in the selection box, like in figure D.3;

– select the second one, push Add ;

– push Apply and close .

Repeat this for

• a group ’topbeam’ for the four top line;

• a group ’groundS’ for the point (0, -1000, 0);

• a group ’loadS’ for the point (0, -500, 1000).

1 We could have changed its name.
2 After building an object it is a wise idea to unroll it in the Object Browser to check it is

built as we expect.

4.1 First example with beams 315

FIGURE D.3: Create group ’mast’ in Compound_1

Now is the time to create the mesh, in the Object Browser, we go
in the module Mesh through the pull down list of Salome, then Mesh

Create Mesh in the dialog box popping up we do as follows:

• in Geometry , we select ’Compound_1’ in the Object Browser;

• in the 1D tab:

– Algorithm to Wire discretisation ;

– we click in the gear wheel like icon right of Hypothesis and
choose Max Size which we set at 200 in the following box;

316 Drawing and meshing with Salome

• push Apply and close .

We RMB click in the Mesh_1 just appeared in the Object Browser, with

a yellow “!” triangle icon , by it1, and we select Compute . A box
named Mesh computation succeed should appear with the summary of the
mesh and the icon on the left of Mesh_1 turns to something like a little

mesh, 2.

FIGURE D.4: Create mesh groups from geometry groups

And now it is time to create group, for this, we go to Mesh

Create groups from geometry and fill the dialog box like in figure D.4 to
create a group from the geometry line groups ’mast’ and ’topbeam’ and
repeat this for the geometry point groups ’groundS’ and ’loadS’.

1 Which means, take care, this object is not meshed yet!
2 A valid meshed exist.

4.1 First example with beams 317

The job is not really finished as we have no mesh groups for ’massN’
and ’groundN’. To create these ones we go to Mesh Create Group and
fill the dialog box like in figure D.5 to create a group for the node at (0,
500, 1000) named ’masseN’ and ’groundN’ on node (0, 1000, 0).

FIGURE D.5: Create mesh groups from mesh entities

318 Drawing and meshing with Salome

At this stage as we just create groups within a given mesh it is not neces-
sary to compute or update the mesh.
We have created groups, in the first place from a geometry entity, on the
second place from a mesh entity, obviously the first solution is the more
flexible and should always be preferred.
We should note forget to do Modification Transformation Merge Nodes to
remove the duplicate nodes, figure D.61. In any more complicated mesh a
Modification Transformation Merge Elements might be useful 2.
RMB click in the browser Mesh_1 Export MED File saves a med file of
this mesh for later use, for example a Code_Aster analysis!

FIGURE D.6: Merge nodes

4.1 First example with beams 319

4.1.2 Modifying the command file

At the time Salome does not seem to be able to create properly 0D element
such as the one we need at ’massN’, we tell Code_Aster to create this 0D
element with the following modification at the beginning of the command
file.

DEBUT () ;

#read the Salome created mesh in an intermediate concept
meshinit=LIRE_MAILLAGE (

INFO=1 ,
INFO_MED=2 ,
UNITE=20 ,FORMAT=’MED’ ,

) ;

#create a new mesh with all the infos of ’meshinit’
#plus the ’massN’ element created on the same node
mesh=CREA_MAILLAGE (
MAILLAGE=meshinit ,
CREA_POI1=_F (
NOM_GROUP_MA=’massN’ ,
GROUP_NO=’massN’ ,

) ,
) ;

This is self explanatory and we may continue command editing and
solving the problem just as explained in chapter 4.2 .

4.1.3 Dumping and replaying the study

With File Dump Study... we can save a file, which is a Python script of
all the commands created in the Salome GUI, Geometry and Mesh. With
File Load Script... this study can be loaded in a new Salome study.

Dumping a study and replaying the file is also, at the time, the only
way to modify data, like vertex coordinates, in the geometry. With a bit
more Python knowledge, this Python file may be modified to change the
geometry, the groups and more...

And with more knowledge of Python, and perseverance, a study can be
created from scratch as a Python script in Salome TUI. There is a com-
prehensive documentation in the online help or on the Salome website.

320 Drawing and meshing with Salome

4.2 Example with beams and plates

4.2.1 Geometry

And this is exactly what we are going to do, to draw the beams of the
example frame3. With a text editor, we prepare the following Python
script. It starts with some generic Salome initialization:

-*- coding: iso-8859-1 -*-
#this very first line sets the coding of the file
#it is generic
#and has nothing to do with Salome
#it is not mandatory either
#it helps for reading in some text editor

import salome
import GEOM
import geompy

Then the initialization for our study:

a = 500
ly = 2000
dly=10
hz = 2000
hz1=200
#we do not use Point or Line number greater than 300
Point=[None] * (3 0 0) ;
Line=[None] * (3 0 0) ;

Followed by the definition of the points and lines:

Point [1] = geompy .MakeVertex (0 , 0 , hz)
Point [1 0 1] = geompy .MakeVertex (0 , 0 , hz−hz1)
for i in (0 , 2) :
Point [10+i] = geompy .MakeVertex (0 ,ly / 2 * (i−1) , hz)
Point [20+i] = geompy .MakeVertex (0 , (ly−dly) * (i−1) , hz)
Point [30+i] = geompy .MakeVertex (0 ,ly*(i−1) , hz)
Point [40+i] = geompy .MakeVertex (0 ,ly*(i−1) , hz−hz1)
Point [50+i] = geompy .MakeVertex (0 ,ly*(i−1) , 0)
Point [60+i] = geompy .MakeVertex (0 ,ly / 4 * (i−1) , hz−hz1 / 2)
Point [110+i] = geompy .MakeVertex (0 ,ly / 2 * (i−1) , hz−hz1)
Point [120+i] = geompy .MakeVertex (0 , (ly−dly) * (i−1) , hz−hz1)
Point [210+i] = geompy .MakeVertex (0 ,ly / 2 * (i−1)*1.4 , hz−hz1 / 4)
Point [220+i] = geompy .MakeVertex (0 ,ly / 2 * (i−1)*1.6 , hz−hz1 / 4)
Point [230+i] = geompy .MakeVertex (0 ,ly / 2 * (i−1)*1.4 , hz−hz1* 3 / 4)
Point [240+i] = geompy .MakeVertex (0 ,ly / 2 * (i−1)*1.6 , hz−hz1* 3 / 4)

for i in (0 , 2) :
Line [10+i]= geompy .MakeLineTwoPnt (Point [1] , Point [10+i])

4.2 Example with beams and plates 321

Line [20+i]= geompy .MakeLineTwoPnt (Point [10+i] , Point [20+i])
Line [110+i]= geompy .MakeLineTwoPnt (Point [1 0 1] , Point [110+i])
Line [120+i]= geompy .MakeLineTwoPnt (Point [110+i] , Point [120+i])
Line [30+i]= geompy .MakeLineTwoPnt (Point [20+i] , Point [30+i])
Line [130+i]= geompy .MakeLineTwoPnt (Point [120+i] , Point [40+i])
Line [40+i]= geompy .MakeLineTwoPnt (Point [30+i] , Point [40+i])
Line [50+i]= geompy .MakeLineTwoPnt (Point [40+i] , Point [50+i])
Line [210+i]= geompy .MakeLineTwoPnt (Point [10+i] , Point [110+i])
Line [220+i]= geompy .MakeLineTwoPnt (Point [20+i] , Point [120+i])
Line [250+i]= geompy .MakeLineTwoPnt (Point [210+i] , Point [230+i])
Line [260+i]= geompy .MakeLineTwoPnt (Point [230+i] , Point [240+i])
Line [270+i]= geompy .MakeLineTwoPnt (Point [220+i] , Point [240+i])
Line [280+i]= geompy .MakeLineTwoPnt (Point [210+i] , Point [220+i])

#next line outside of the loop
Line [201]= geompy .MakeLineTwoPnt (Point [1] , Point [1 0 1])

To finally add these entities to the study:

geompy .addToStudy (Point [1] ,’Point_%02g’ %(1))
geompy .addToStudy (Point [1 0 1] ,’Point_%02g’ %(101))
for i in (0 , 2) :
for j in range (1 , 7) :

geompy .addToStudy (Point [10*j+i] ,’Point_%02g’ %(10*j+i))
geompy .addToStudy (Point [110+i] ,’Point_%02g’ %(110+i))
geompy .addToStudy (Point [120+i] ,’Point_%02g’ %(120+i))
for j in range (1 , 5) :
geompy .addToStudy (Point [200+10*j+i] ,’Point_%02g’ %(200+10*j+i))

for i in (0 , 2) :
for j in range (1 , 6) :

geompy .addToStudy (Line [10*j+i] ,’Line_%02g’ %(10*j+i))
for j in range (1 , 4) :
geompy .addToStudy (Line [100+10*j+i] ,’Line_%02g’ %(100+10*j+i))

for j in range (1 , 3) :
geompy .addToStudy (Line [200+10*j+i] ,’Line_%02g’ %(200+10*j+i))

for j in range (5 , 9) :
geompy .addToStudy (Line [200+10*j+i] ,’Line_%02g’ %(200+10*j+i))

geompy .addToStudy (Line [2 0 1] , ’Line_%02g’ %(201)

And display them in the Salome graphic window if it exists. These two
lines should be the last ones of the script as they command to display in
the Object Browser of the Salome window all the object which have
been created above! Although if they were not there, the ’Geometry’ tab
would allow to display the geometry as a whole without access to the
individual entities.

if salome .sg .hasDesktop () :
salome .sg .updateObjBrowser (1)

322 Drawing and meshing with Salome

This script is similar to the one used in the Gmsh definition of the same
geometry, it uses the same numbering for points and lines. I just find it
more verbose than the Gmsh one, it however is undoubtedly less tiresome
than using Salome GUI.

FIGURE D.7: Script loaded in Geometry module

Opening Salome, going in Geometry module and to File Load Script...

a Geometry tab appears in Object Browser. RMB Show in this tab
displays something like figure D.7 in the Salome window1.

To create the leftmost hollowed surface: go to the menu New Entity

Build Face , and select the four outer lines of the surface outer border

1 However it is a wise idea to look in the Python Console window at the bottom of the
Salome window to check there are no error messages, and if there are, put the script right
until everything loads fine.

4.2 Example with beams and plates 323

and the four lines of the inner border while keeping the pushed and
finally click Apply just like in figure D.8.

We keep going on for the other faces. As we want ’Point_60’ to be
a node in the face of ’Face_3 we’ create a ’Partition’ on this face with
Operations Partition .

Once all the basic geometric entities are created, we put all of them in a
compound with New Entity Build Compound .

Within this compound, we create group with New Entity Group Create

for all the faces, lines and points as required.

FIGURE D.8: Creating the first Face

324 Drawing and meshing with Salome

All these geometric operations result in the following dumped Python
file1. I had to include an end of line character \, as some of the lines were
longer than this page width.

At first some initialization2:

-*- coding: iso-8859-1 -*-

###
This file is generated automatically by SALOME v6.6.0 \
with dump python functionality
###

import sys
import salome

salome .salome_init ()
theStudy = salome .myStudy

import salome_notebook
notebook = salome_notebook .notebook
#here is the directory of the sutdy
sys .path .insert (0 , r’/........../salomemodel’)

###
GEOM component
###

import GEOM
import geompy
import math
import SALOMEDS

geompy .init_geom (theStudy)

O = geompy .MakeVertex (0 , 0 , 0)
OX = geompy .MakeVectorDXDYDZ (1 , 0 , 0)
OY = geompy .MakeVectorDXDYDZ (0 , 1 , 0)
OZ = geompy .MakeVectorDXDYDZ (0 , 0 , 1)
O_1 = geompy .MakeVertex (0 , 0 , 0)
OX_1 = geompy .MakeVectorDXDYDZ (1 , 0 , 0)
OY_1 = geompy .MakeVectorDXDYDZ (0 , 1 , 0)
OZ_1 = geompy .MakeVectorDXDYDZ (0 , 0 , 1)
O_2 = geompy .MakeVertex (0 , 0 , 0)
OX_2 = geompy .MakeVectorDXDYDZ (1 , 0 , 0)
OY_2 = geompy .MakeVectorDXDYDZ (0 , 1 , 0)
OZ_2 = geompy .MakeVectorDXDYDZ (0 , 0 , 1)
O_3 = geompy .MakeVertex (0 , 0 , 0)

1 Once dumped, the loops and all the programming features of the geometry input script are
lost.

2 Including the vectors of the coordinates.

4.2 Example with beams and plates 325

OX_3 = geompy .MakeVectorDXDYDZ (1 , 0 , 0)
OY_3 = geompy .MakeVectorDXDYDZ (0 , 1 , 0)
OZ_3 = geompy .MakeVectorDXDYDZ (0 , 0 , 1)
O_4 = geompy .MakeVertex (0 , 0 , 0)
OX_4 = geompy .MakeVectorDXDYDZ (1 , 0 , 0)
OY_4 = geompy .MakeVectorDXDYDZ (0 , 1 , 0)
OZ_4 = geompy .MakeVectorDXDYDZ (0 , 0 , 1)
O_5 = geompy .MakeVertex (0 , 0 , 0)
OX_5 = geompy .MakeVectorDXDYDZ (1 , 0 , 0)
OY_5 = geompy .MakeVectorDXDYDZ (0 , 1 , 0)
OZ_5 = geompy .MakeVectorDXDYDZ (0 , 0 , 1)

Followed by the frame3 definition points and lines:

Point_01 = geompy .MakeVertex (0 , 0 , 2000)
Point_101 = geompy .MakeVertex (0 , 0 , 1800)
Point_10 = geompy .MakeVertex (0 , −1000, 2000)
Point_20 = geompy .MakeVertex (0 , −1990, 2000)
Point_30 = geompy .MakeVertex (0 , −2000, 2000)
Point_40 = geompy .MakeVertex (0 , −2000, 1800)
Point_50 = geompy .MakeVertex (0 , −2000, 0)
Point_60 = geompy .MakeVertex (0 , −500, 1900)
Point_110 = geompy .MakeVertex (0 , −1000, 1800)
Point_120 = geompy .MakeVertex (0 , −1990, 1800)
Point_210 = geompy .MakeVertex (0 , −1400, 1950)
Point_220 = geompy .MakeVertex (0 , −1600, 1950)
Point_230 = geompy .MakeVertex (0 , −1400, 1850)
Point_240 = geompy .MakeVertex (0 , −1600, 1850)
Point_12 = geompy .MakeVertex (0 , 1000 , 2000)
Point_22 = geompy .MakeVertex (0 , 1990 , 2000)
Point_32 = geompy .MakeVertex (0 , 2000 , 2000)
Point_42 = geompy .MakeVertex (0 , 2000 , 1800)
Point_52 = geompy .MakeVertex (0 , 2000 , 0)
Point_62 = geompy .MakeVertex (0 , 500 , 1900)
Point_112 = geompy .MakeVertex (0 , 1000 , 1800)
Point_122 = geompy .MakeVertex (0 , 1990 , 1800)
Point_212 = geompy .MakeVertex (0 , 1400 , 1950)
Point_222 = geompy .MakeVertex (0 , 1600 , 1950)
Point_232 = geompy .MakeVertex (0 , 1400 , 1850)
Point_242 = geompy .MakeVertex (0 , 1600 , 1850)
Line_10 = geompy .MakeLineTwoPnt (Point_01 , Point_10)
Line_20 = geompy .MakeLineTwoPnt (Point_10 , Point_20)
Line_110 = geompy .MakeLineTwoPnt (Point_101 , Point_110)
Line_120 = geompy .MakeLineTwoPnt (Point_110 , Point_120)
Line_30 = geompy .MakeLineTwoPnt (Point_20 , Point_30)
Line_130 = geompy .MakeLineTwoPnt (Point_120 , Point_40)
Line_40 = geompy .MakeLineTwoPnt (Point_30 , Point_40)
Line_50 = geompy .MakeLineTwoPnt (Point_40 , Point_50)
Line_210 = geompy .MakeLineTwoPnt (Point_10 , Point_110)
Line_220 = geompy .MakeLineTwoPnt (Point_20 , Point_120)
Line_250 = geompy .MakeLineTwoPnt (Point_210 , Point_230)
Line_260 = geompy .MakeLineTwoPnt (Point_230 , Point_240)
Line_270 = geompy .MakeLineTwoPnt (Point_220 , Point_240)
Line_280 = geompy .MakeLineTwoPnt (Point_210 , Point_220)

326 Drawing and meshing with Salome

Line_12 = geompy .MakeLineTwoPnt (Point_01 , Point_12)
Line_22 = geompy .MakeLineTwoPnt (Point_12 , Point_22)
Line_112 = geompy .MakeLineTwoPnt (Point_101 , Point_112)
Line_122 = geompy .MakeLineTwoPnt (Point_112 , Point_122)
Line_32 = geompy .MakeLineTwoPnt (Point_22 , Point_32)
Line_132 = geompy .MakeLineTwoPnt (Point_122 , Point_42)
Line_42 = geompy .MakeLineTwoPnt (Point_32 , Point_42)
Line_52 = geompy .MakeLineTwoPnt (Point_42 , Point_52)
Line_212 = geompy .MakeLineTwoPnt (Point_12 , Point_112)
Line_222 = geompy .MakeLineTwoPnt (Point_22 , Point_122)
Line_252 = geompy .MakeLineTwoPnt (Point_212 , Point_232)
Line_262 = geompy .MakeLineTwoPnt (Point_232 , Point_242)
Line_272 = geompy .MakeLineTwoPnt (Point_222 , Point_242)
Line_282 = geompy .MakeLineTwoPnt (Point_212 , Point_222)
Line_201 = geompy .MakeLineTwoPnt (Point_01 , Point_101)

Building the five top surfaces:

Face_1 = geompy .MakeFaceWires ([Line_20 , Line_120 , Line_220 , \
Line_260 , Line_280 , Line_210 , Line_250 , Line_270] , 1)
Face_2 = geompy .MakeFaceWires ([Line_260 , Line_280 , Line_250 , \
Line_270] , 1)
Face_3 = geompy .MakeFaceWires ([Line_10 , Line_110 , Line_210 , \
Line_201] , 1)
Face_4 = geompy .MakeFaceWires ([Line_112 , Line_12 , Line_212 , \
Line_201] , 1)
Face_5 = geompy .MakeFaceWires ([Line_272 , Line_22 , Line_122 , \
Line_212 , Line_222 , Line_252 , Line_262 , Line_282] , 1)

Making a Partition with ’Face_5’ and ’Point_60’ so that there is a node
at this point:

Partition_1 = geompy .MakePartition ([Face_3] , [Point_60] , [] , [] , \
geompy .ShapeType ["FACE"] , 0 , [] , 0)

Building a compound with all the geometric entities:

Compound_1 = geompy .MakeCompound ([O_5 , OX_5 , OY_5 , OZ_5 , Point_01 , \
Point_101 , Point_10 , Point_20 , Point_30 , Point_40 , Point_50 , \
Point_60 , Point_110 , Point_120 , Point_210 , Point_220 , Point_230 , \
Point_240 , Point_12 , Point_22 , Point_32 , Point_42 , Point_52 , \
Point_62 , Point_112 , Point_122 , Point_212 , Point_222 , Point_232 , \
Point_242 , Line_10 , Line_20 , Line_110 , Line_120 , Line_30 , Line_130 , \
Line_40 , Line_50 , Line_210 , Line_220 , Line_250 , Line_260 , Line_270 , \
Line_280 , Line_12 , Line_22 , Line_112 , Line_122 , Line_32 , Line_132 , \
Line_42 , Line_52 , Line_212 , Line_222 , Line_252 , Line_262 , Line_272 , \
Line_282 , Line_201 , Face_1 , Face_2 , Face_3 , Face_4 , Face_5 , \
Partition_1])

Creating the required geometric groups:

4.2 Example with beams and plates 327

mast = geompy .CreateGroup (Compound_1 , geompy .ShapeType ["EDGE"])
geompy .UnionIDs (mast , [4 5 , 44 , 59 , 5 8])
panelS = geompy .CreateGroup (Compound_1 , geompy .ShapeType ["FACE"])
geompy .UnionIDs (panelS , [6 7 , 70 , 7 9])
panelN = geompy .CreateGroup (Compound_1 , geompy .ShapeType ["FACE"])
geompy .UnionIDs (panelN , [7 4 , 7 6])
topbeam = geompy .CreateGroup (Compound_1 , geompy .ShapeType ["EDGE"])
geompy .UnionIDs (topbeam , [3 9 , 40 , 41 , 55 , 52 , 38 , 53 , 5 4])
vertb = geompy .CreateGroup (Compound_1 , geompy .ShapeType ["EDGE"])
geompy .UnionIDs (vertb , [4 7 , 46 , 88 , 60 , 6 1])
hinge = geompy .CreateGroup (Compound_1 , geompy .ShapeType ["EDGE"])
geompy .UnionIDs (hinge , [4 2 , 56 , 43 , 5 7])
groundS = geompy .CreateGroup (Compound_1 , \
geompy .ShapeType ["VERTEX"])
geompy .UnionIDs (groundS , [1 8])
groundN = geompy .CreateGroup (Compound_1 , \
geompy .ShapeType ["VERTEX"])
geompy .UnionIDs (groundN , [3 0])
massN = geompy .CreateGroup (Compound_1 , \
geompy .ShapeType ["VERTEX"])
geompy .UnionIDs (massN , [2 6])
loadS = geompy .CreateGroup (Compound_1 , \
geompy .ShapeType ["VERTEX"])
geompy .UnionIDs (loadS , [1 4])
oripanel = geompy .CreateGroup (Compound_1 , \
geompy .ShapeType ["VERTEX"])
geompy .UnionIDs (oripanel , [1 9])

Adding the coordinate system vectors to the study:

geompy .addToStudy (O , ’O’)
geompy .addToStudy (OX , ’OX’)
geompy .addToStudy (OY , ’OY’)
geompy .addToStudy (OZ , ’OZ’)
geompy .addToStudy (O_1 , ’O’)
geompy .addToStudy (OX_1 , ’OX’)
geompy .addToStudy (OY_1 , ’OY’)
geompy .addToStudy (OZ_1 , ’OZ’)
geompy .addToStudy (O_2 , ’O’)
geompy .addToStudy (OX_2 , ’OX’)
geompy .addToStudy (OY_2 , ’OY’)
geompy .addToStudy (OZ_2 , ’OZ’)
geompy .addToStudy (O_3 , ’O’)
geompy .addToStudy (OX_3 , ’OX’)
geompy .addToStudy (OY_3 , ’OY’)
geompy .addToStudy (OZ_3 , ’OZ’)
geompy .addToStudy (O_4 , ’O’)
geompy .addToStudy (OX_4 , ’OX’)
geompy .addToStudy (OY_4 , ’OY’)
geompy .addToStudy (OZ_4 , ’OZ’)
geompy .addToStudy (O_5 , ’O’)
geompy .addToStudy (OX_5 , ’OX’)
geompy .addToStudy (OY_5 , ’OY’)

328 Drawing and meshing with Salome

geompy .addToStudy (OZ_5 , ’OZ’)

Adding the points to the study:

geompy .addToStudy (Point_01 , ’Point_01’)
geompy .addToStudy (Point_101 , ’Point_101’)
geompy .addToStudy (Point_10 , ’Point_10’)
geompy .addToStudy (Point_20 , ’Point_20’)
geompy .addToStudy (Point_30 , ’Point_30’)
geompy .addToStudy (Point_40 , ’Point_40’)
geompy .addToStudy (Point_50 , ’Point_50’)
geompy .addToStudy (Point_60 , ’Point_60’)
geompy .addToStudy (Point_110 , ’Point_110’)
geompy .addToStudy (Point_120 , ’Point_120’)
geompy .addToStudy (Point_210 , ’Point_210’)
geompy .addToStudy (Point_220 , ’Point_220’)
geompy .addToStudy (Point_230 , ’Point_230’)
geompy .addToStudy (Point_240 , ’Point_240’)
geompy .addToStudy (Point_12 , ’Point_12’)
geompy .addToStudy (Point_22 , ’Point_22’)
geompy .addToStudy (Point_32 , ’Point_32’)
geompy .addToStudy (Point_42 , ’Point_42’)
geompy .addToStudy (Point_52 , ’Point_52’)
geompy .addToStudy (Point_62 , ’Point_62’)
geompy .addToStudy (Point_112 , ’Point_112’)
geompy .addToStudy (Point_122 , ’Point_122’)
geompy .addToStudy (Point_212 , ’Point_212’)
geompy .addToStudy (Point_222 , ’Point_222’)
geompy .addToStudy (Point_232 , ’Point_232’)
geompy .addToStudy (Point_242 , ’Point_242’)

Adding the lines to the study:

geompy .addToStudy (Line_10 , ’Line_10’)
geompy .addToStudy (Line_20 , ’Line_20’)
geompy .addToStudy (Line_110 , ’Line_110’)
geompy .addToStudy (Line_120 , ’Line_120’)
geompy .addToStudy (Line_30 , ’Line_30’)
geompy .addToStudy (Line_130 , ’Line_130’)
geompy .addToStudy (Line_40 , ’Line_40’)
geompy .addToStudy (Line_50 , ’Line_50’)
geompy .addToStudy (Line_210 , ’Line_210’)
geompy .addToStudy (Line_220 , ’Line_220’)
geompy .addToStudy (Line_250 , ’Line_250’)
geompy .addToStudy (Line_260 , ’Line_260’)
geompy .addToStudy (Line_270 , ’Line_270’)
geompy .addToStudy (Line_280 , ’Line_280’)
geompy .addToStudy (Line_12 , ’Line_12’)
geompy .addToStudy (Line_22 , ’Line_22’)
geompy .addToStudy (Line_112 , ’Line_112’)
geompy .addToStudy (Line_122 , ’Line_122’)
geompy .addToStudy (Line_32 , ’Line_32’)
geompy .addToStudy (Line_132 , ’Line_132’)

4.2 Example with beams and plates 329

geompy .addToStudy (Line_42 , ’Line_42’)
geompy .addToStudy (Line_52 , ’Line_52’)
geompy .addToStudy (Line_212 , ’Line_212’)
geompy .addToStudy (Line_222 , ’Line_222’)
geompy .addToStudy (Line_252 , ’Line_252’)
geompy .addToStudy (Line_262 , ’Line_262’)
geompy .addToStudy (Line_272 , ’Line_272’)
geompy .addToStudy (Line_282 , ’Line_282’)
geompy .addToStudy (Line_201 , ’Line_201’)

Adding the faces, partition, compound and groups to the study:

geompy .addToStudy (Face_1 , ’Face_1’)
geompy .addToStudy (Face_2 , ’Face_2’)
geompy .addToStudy (Face_3 , ’Face_3’)
geompy .addToStudy (Face_4 , ’Face_4’)
geompy .addToStudy (Face_5 , ’Face_5’)
geompy .addToStudy (Partition_1 , ’Partition_1’)
geompy .addToStudy (Compound_1 , ’Compound_1’)
geompy .addToStudyInFather (Compound_1 , mast , ’mast’)
geompy .addToStudyInFather (Compound_1 , panelS , ’panelS’)
geompy .addToStudyInFather (Compound_1 , panelN , ’panelN’)
geompy .addToStudyInFather (Compound_1 , topbeam , ’topbeam’)
geompy .addToStudyInFather (Compound_1 , vertb , ’vertb’)
geompy .addToStudyInFather (Compound_1 , hinge , ’hinge’)
geompy .addToStudyInFather (Compound_1 , groundS , ’groundS’)
geompy .addToStudyInFather (Compound_1 , groundN , ’groundN’)
geompy .addToStudyInFather (Compound_1 , massN , ’massN’)
geompy .addToStudyInFather (Compound_1 , loadS , ’loadS’)
geompy .addToStudyInFather (Compound_1 , oripanel , ’oripanel’)

4.2.2 Hints about creating groups

The dump script for creating the group ’mast’ looks like this:

mast = geompy .CreateGroup (Compound_1 , geompy .ShapeType ["EDGE"])
geompy .UnionIDs (mast , [4 5 , 44 , 59 , 5 8])

Where we can see the list [45, 44, 59, 58], how do we know where these
numbers come from?

They are internal, inside ’Compound_1’, identification numbers “Id”
of the lines, which we know to be lines Line_40, Line_42, Line_50,
Line_521. Then the following script would build the group ’mast’:

1 That’s how we built the script.

330 Drawing and meshing with Salome

mast = geompy .CreateGroup (Compound_1 , geompy .ShapeType ["EDGE"])
Id1 = geompy .GetSubShapeID (Compound_1 , Line_40)
Id2 = geompy .GetSubShapeID (Compound_1 , Line_42)
Id3 = geompy .GetSubShapeID (Compound_1 , Line_50)
Id4 = geompy .GetSubShapeID (Compound_1 , Line_52)
geompy .UnionIDs (mast , [Id1 , Td2 , Id3 , Id4])

Of course the list of Id could better be built inside a loop.

’geompy.AddObject’ could be used instead of ’geompy.UnionIDs’, I do
not understand why New entity Group Create calls ’UnionIDs’1.

4.2.3 Meshing

We first create ’Mesh_1’ on ’Compound_1’, without any hypothesis,
it acts just as a container for the following sub meshes, one for each
group. We have seen in the previous example frame1 how to mesh a
line, figure D.9 shows how to proceed to mesh the group ’panelN’.

And the meshing section of the dump file:

####
SMESH component
####

import smesh , SMESH , SALOMEDS

smesh .SetCurrentStudy (theStudy)
import StdMeshers
import NETGENPlugin
Mesh_1 = smesh .Mesh (Compound_1)

Last line is the creation of ’Mesh_1’ on ’Compound_1’. And now we
create the sub mesh ’mesh-mast’ on group ’mast’ with:

• ’Regular_1D’ as internal mesh Id

• ’Mesh_1.Segment’ algorithm as we are meshing a line;

• ’geom=mast’, on geometry group ’mast’;

• ’Local_Length_1’ with a value of 100 as size of the element.

1 This is one of the numerous mysteries of Salome.

4.2 Example with beams and plates 331

FIGURE D.9: Meshing hypothesis for ’panelN’ with Allow quadrangle ticked

Regular_1D = Mesh_1 .Segment (geom=mast)
Local_Length_1 = Regular_1D .LocalLength (1 0 0 , [] , 1e−07)

Followed by the sub mesh ’mesh-topbeam” on group ’topbeam’ with:

• ’Regular_1D_1’ as internal mesh Id

• ’Mesh_1.Segment’ algorithm as we are meshing a line;

• ’geom=topbeam’, on geometry group ’topbeam’;

• ’Local_Length_2’ with a value of 25 as size of the element.

Regular_1D_1 = Mesh_1 .Segment (geom=topbeam)
Local_Length_2 = Regular_1D_1 .LocalLength (2 5 , [] , 1e−07)

And we repeat the operation for group ’vertb’, reusing ’Lo-
cal_Length_2’.

332 Drawing and meshing with Salome

Regular_1D_2 = Mesh_1 .Segment (geom=vertb)
status = Mesh_1 .AddHypothesis (Local_Length_2 ,vertb)

Group ’hinge’ owes a special treatment as we want only one single ele-
ment along the geometry line.

Regular_1D_3 = Mesh_1 .Segment (geom=hinge)
Nb_Segments_1 = Regular_1D_3 .NumberOfSegments (1 , [] , [])
Nb_Segments_1 .SetDistrType (0)

Then ’mesh-panelS’.

• first the parameters along the edges

• ’algo=smesh.NETGEN_2D’ on the surface;

• ’SetMaxSize(25)’ for the size of the element;

• ’SetQuadAllowed(0)’ as we want only triangles;

• ’SetSecondOrder(0)’ as we want a linear mesh.

Regular_1D_4 = Mesh_1 .Segment (geom=panelS)
status = Mesh_1 .AddHypothesis (Local_Length_2 ,panelS)
mesh_panelS = Mesh_1 .GetSubMesh (panelS , ’NETGEN_2D_ONLY’)
NETGEN_2D_ONLY = Mesh_1 .Triangle (algo=smesh .NETGEN_2D ,geom=panelS)
NETGEN_2D_Parameters = NETGEN_2D_ONLY .Parameters ()
NETGEN_2D_Parameters .SetMaxSize (25)
NETGEN_2D_Parameters .SetSecondOrder (1)
NETGEN_2D_Parameters .SetOptimize (1)
NETGEN_2D_Parameters .SetFineness (2)
NETGEN_2D_Parameters .SetMinSize (15)
NETGEN_2D_Parameters .SetQuadAllowed (0)
NETGEN_2D_Parameters .SetSecondOrder (0)

We repeat this on group ’panelN’ with the same hypothesis but
’SetQuadAllowed(1)’ as we want quadrangles in this area1.

Regular_1D_5 = Mesh_1 .Segment (geom=panelN)
status = Mesh_1 .AddHypothesis (Local_Length_2 ,panelN)
mesh_panelN = Mesh_1 .GetSubMesh (panelN , ’NETGEN_2D_ONLY’)
NETGEN_2D_ONLY_1 = Mesh_1 .Triangle (algo=smesh .NETGEN_2D ,geom=panelN)
NETGEN_2D_Parameters_1 = NETGEN_2D_ONLY_1 .Parameters ()
NETGEN_2D_Parameters_1 .SetMaxSize (25)

1 ’SetSecondOrder(1)’ would be used to create a quadratic mesh.

4.2 Example with beams and plates 333

NETGEN_2D_Parameters_1 .SetSecondOrder (1)

NETGEN_2D_Parameters_1 .SetOptimize (1)

NETGEN_2D_Parameters_1 .SetFineness (2)
NETGEN_2D_Parameters_1 .SetMinSize (15)
NETGEN_2D_Parameters_1 .SetQuadAllowed (1)
NETGEN_2D_Parameters_1 .SetSecondOrder (0)

Next section creates the groups.

mast_1 = Mesh_1 .GroupOnGeom (mast ,’mast’ ,SMESH .EDGE)
panelS_1 = Mesh_1 .GroupOnGeom (panelS ,’panelS’ ,SMESH .FACE)
panelN_1 = Mesh_1 .GroupOnGeom (panelN ,’panelN’ ,SMESH .FACE)
topbeam_1 = Mesh_1 .GroupOnGeom (topbeam ,’topbeam’ ,SMESH .EDGE)
vertb_1 = Mesh_1 .GroupOnGeom (vertb ,’vertb’ ,SMESH .EDGE)
hinge_1 = Mesh_1 .GroupOnGeom (hinge ,’hinge’ ,SMESH .EDGE)
groundS_1 = Mesh_1 .GroupOnGeom (groundS ,’groundS’ ,SMESH .NODE)
groundN_1 = Mesh_1 .GroupOnGeom (groundN ,’groundN’ ,SMESH .NODE)
massN_1 = Mesh_1 .GroupOnGeom (massN ,’massN’ ,SMESH .NODE)
loadS_1 = Mesh_1 .GroupOnGeom (loadS ,’loadS’ ,SMESH .NODE)
oripanel_1 = Mesh_1 .GroupOnGeom (oripanel ,’oripanel’ ,SMESH .NODE)

Next section actually sets the sub-meshes, together with the one on
nodes used as BC and loads.

mesh_mast = Regular_1D .GetSubMesh ()
mast_topbeam = Regular_1D_1 .GetSubMesh ()
mesh_vertb = Regular_1D_2 .GetSubMesh ()
mesh_hinge = Regular_1D_3 .GetSubMesh ()
mesh_panelS = Regular_1D_4 .GetSubMesh ()
mesh_panelN = Regular_1D_5 .GetSubMesh ()
mesh_groundS = Mesh_1 .GetSubMesh (groundS , ’mesh-groundS’)
mesh_groundN = Mesh_1 .GetSubMesh (groundN , ’mesh-groundN’)
mesh_massN = Mesh_1 .GetSubMesh (massN , ’mesh-massN’)
mesh_loadS = Mesh_1 .GetSubMesh (loadS , ’mesh-loadS’)
mesh_oripanel = Mesh_1 .GetSubMesh (oripanel , ’mesh-oripanel’)

Next bit names the various objects.

set object names
smesh .SetName (Mesh_1 .GetMesh () , ’Mesh_1’)
smesh .SetName (Regular_1D .GetAlgorithm () , ’Regular_1D’)
smesh .SetName (Local_Length_1 , ’Local Length_1’)
smesh .SetName (Local_Length_2 , ’Local Length_2’)
smesh .SetName (Nb_Segments_1 , ’Nb. Segments_1’)
smesh .SetName (mesh_panelS , ’mesh-panelS’)
smesh .SetName (NETGEN_2D_ONLY .GetAlgorithm () , ’NETGEN_2D_ONLY’)
smesh .SetName (NETGEN_2D_Parameters , ’NETGEN 2D Parameters’)
smesh .SetName (mesh_panelN , ’mesh-panelN’)
smesh .SetName (NETGEN_2D_Parameters_1 , ’NETGEN 2D Parameters’)
smesh .SetName (mesh_mast , ’mesh-mast’)
smesh .SetName (mast_topbeam , ’mast-topbeam’)

334 Drawing and meshing with Salome

smesh .SetName (mesh_vertb , ’mesh-vertb’)
smesh .SetName (mesh_hinge , ’mesh-hinge’)
smesh .SetName (mesh_groundS , ’mesh-groundS’)
smesh .SetName (mesh_groundN , ’mesh-groundN’)
smesh .SetName (mesh_massN , ’mesh-massN’)
smesh .SetName (mesh_loadS , ’mesh-loadS’)
smesh .SetName (mesh_oripanel , ’mesh-oripanel’)

Finally making it visible

if salome .sg .hasDesktop () :
salome .sg .updateObjBrowser (1)

We should not forget to perform Modification Transformation

Merge Nodes , not printed in the above dump. And export the mesh in
.med file to be able to run the study in Code_Aster.

This example shows how verbose Salome is, there are a mere 350 lines
to describe the geometry and build the mesh while Gmsh do the same in
a little above a hundred lines.

4.2.4 View 3D with Eficas in Salome-Meca

If we run this script in a Salome-Meca study and import in this study the
fram3.comm file created previously we can get a 3D view of the beam
section and plate thickness like D.10. For this:

• run the script to load the geometry and mesh;

• run Eficas from the pull down list;

• open frame3.comm in the Eficas window;

• on the list at the left hand side in the Eficas window RMB click on
AFFE_CARA_ELEM View3D .

The ability to produce this kind of view is an interesting advantage of
Salome-Meca. However:

• a geometry must exist, with the groups defined in it;

• a command file must exist;

4.3 3D Example 335

• and the view of the beam section is restricted to the sections avail-
able in the catalog, i.e. circle and rectangle, hollow or not, which is
short of many sections used in actual buildings.

FIGURE D.10: View 3D of the top north end of frame3 model in Salome with
Eficas

4.3 3D Example

Now, we are going to draw and mesh the ’part2’ of the 3D example leaf
spring. We retain the same groups as in the Gmsh mesh, so the produced
.med file is fully exchangeable in the Code_Aster analysis. We also keep
the same parameter names as within the Gmsh script.

To define these parameters, we use the NoteBook tool of Salome, avail-
able through the File NoteBook menu. Once filled the NoteBook should
look like D.11. The parameters ’r1’, ’r2’, ’t1’, ’off1’, are the same as in
Gmsh while ’b1z’, ’b2x’, ’b2y’, ’b2z’ are the results of mathematical ex-
pressions.

336 Drawing and meshing with Salome

FIGURE D.11: Salome NoteBook for ’part2’

If we, later on, change one or several of the variables it is just a matter
of pushing the Update Study to change the geometry and the mesh. This
makes a kind of parametric tool.

Then follows the step by step geometry creation:

1. create a point, ’Vertex_1’ with coordinates (0, "off1", 0), this is the
base point for the cylinder;

2. create a vector, ’Vector_1’ with coordinates Dx=0, Dy=-10, Dz=0;

3. create the outer cylinder, ’Cylinder_1’ with New Entity Primitive

Cylinder with:

• left most button ticked;

• Base Point = "Vertex"_1’;

4.3 3D Example 337

• Vector = "Vector1_1";

• Radius = "r2"";

• Height= "t1";

4. create the inner cylinder, ’Cylinder_2’ in the same way with Radius
= "r1", Height = "t1";

5. create a point named ’p1’, with coordinates (0, "off1", "b1z"), this
is for one corner of the box;

6. create another point named ’p2’, with coordinates ("b2x", "b2y",
"b2z"), this is the other corner of the box;

7. create a box, ’Box_1’ with New Entity Primitive Box with the two
points ’p1’ and ’p2’;

8. create a new volume entity, ’Fuse_1’, with Operations Boolean

Fuse with ’Cylinder_1’ and ’Box_1’;

9. and finally remove the inner cylinder with Operations Boolean

Cut with ’Fuse_1’ and ’Cylinder_2’, creating final entity ’Cut_1’,
looking like figure D.12.

A bit of work is necessary on this CAD like geometry so as to be able
to produce a workable mesh.

In the tree select ’Cut_1’ then menu New Entity Explode to create
’Shell_1’ containing all the boundary surfaces of ’Cut_1’.

In the tree select the newly created ’Shell_1’ then menu New Entity

Explode to create 12 ’Face_xx’ which are the individual boundary sur-
faces of ’Cut_1’. This is necessary, as we have to create groups and
boundary conditions on some of them.

If we created the part with a script along the previous path it is not trivial
at all to identify the faces Ids, and creating groups directly in a Code_Aster
command file, like explained in chapter 16.5 , may well prove the best way
here.

Create mesh on ’Cut_1’ with:

338 Drawing and meshing with Salome

FIGURE D.12: Geometric volume created

• Algo NetGen 1D-2D-3D 1;

• Hypothesis NETGEN 3D Simple Parameters with Local length set to
2.

Mesh object, ’Mesh_1’ is created, RMB click and Compute actually
creates the mesh in it.

Navigating through the surface list we Create group ’fix2s’, ’bear2s’ and
’hole2s’ to hold the necessary boundary conditions and load. After this
we have to compute again or Update the mesh.

Meshing is finished!

1 Or something similar as Salome naming seems to change every new version, and to make
things even more complicated to understand the name in the dump script is also different
here, NETGEN_2D3D.

4.4 Further reading 339

Oops? NO! as we forgot to create the group ’move2p’ containing the
node where to extract displacement.

We have to identify a Face on which this node is, at one corner, and then
explode this Face, Explode Sub Shape Type Vertex .

Then Create group Node Enable Manual Selection pick the node and
name the group ’move2p’.

4.4 Further reading

This chapter is a little bit short to cover all the capabilities of Salome and I
can only advise the reader to go through the Help (module) User’s Guide

menu in the Salome window, to find an instant help on a given topic.

The http://www.salome-platform.org/user-section/

salome-tutorials section of the web site provides many useful ex-
ercises.

4.5 Salome setup and preferences

Salome preferences are numerous and can be accessed in the menu File

Preferences .

Particularly useful is the ability to recover the appearance from one ses-
sion to the other this is done in the module SALOME , general tab with the
Store positions of windows or Store/restore last GUI state check boxes.

4.6 Differences between Gmsh and Salome

In Gmsh, Points must be defined to draw Lines, Lines must be defined
to draw Surfaces, Surfaces must be defined to finally draw Volumes, the
groups can be created along. GMSH is not a 3D modeler and does not
have 3D primitives.

http://www.salome-platform.org/user-section/salome-tutorials
http://www.salome-platform.org/user-section/salome-tutorials

340 Drawing and meshing with Salome

Salome follows a CAD modeler behavior, as just only a few Vertex
are necessary to draw volume primitives. Boolean operations can be per-
formed on these primitives, but necessary surfaces must be extracted from
the volume shapes1, the lines or points from the surfaces, if necessary2.

Salome may have an unpredictable behavior, for example crash-
ing, at the worst time of course3! In addition to the auto save
mechanism, available through File Preferences SALOME General

Auto-save interval (min) it is a wise idea to, at strategic time:

1. File Dump Study... as a re-playable Python file;

2. File Save the study in .hdf format.

We should not forget that dumping a study in a Python script destroys
all the structure that was in the original script if any4. And a wise idea is
to split the script in several ones (geometry, group building, meshing...)
which can be loaded one after the other.

Summing it all up, as far as professional everyday studies are concerned,
I use Gmsh, with imported CAD files in case of complex solid parts.

4.7 Meshing imported CAD file

Here are some hints on how to produce a valid mesh, with groups, from a
.step file in Salome and Gmsh.

The file must first be exported from the CAD software, I have had the
best result by exporting in .step with preference “AP214”5.

In the Geometry module of Salome, we import the file with File

Import... STEP Files . Upon importing the .step CAD file Salome asks
if one want to convert the units from mm to m, the answer depends upon
how the CAD file was created6. It is wise to check the dimensions with

1 Retrieving their Ids, to create groups, in a script is not a trivial operation!
2 Salome can also be used in a point -> line -> surface -> volume manner.
3 In this respect Salome follows some Murphy’s laws!
4 Likewise in Gmsh saving as ’Gmsh Unrolled GEO’ destroys the structure of the script.
5 Additionally, for Rhinoceros ®, the volume should be enclosed by a “Closed Polysurface”.
6 Most CAD software propose an option upon exporting the file.

4.7 Meshing imported CAD file 341

Measures Point Coordinates on a known point or Measures Dimensions

Bounding Box .

We can now create groups on this geometry, in Salome:

• RMB click on the geometry name, select Create Group ;

• push one of the radio button in agreement with the type of group:
node, line, face, volume;

• name the group;

• move the mouse pointer over the geometry until the desired object
is highlighted;

• push the left button;

• push the button Create Group to add the object to the group;

• once the selection is finished push the button Apply to create the
group.

Once this is done the job is no different of what we have seen before.

In Gmsh the way of proceeding is similar.

We have to save the file in a .geo format to save the group creation
which has been done. This can be done just after importing the step file.

A few remarks about step format and Gmsh:

• The only line type known, in the .step file is BSpline or NURBS,
and the controls points are shown as points in Gmsh, thus a straight
line shows many control points along its length. Once meshed
nodes do not necessarily sit on these control points!

• One BSpline may describe one circle arc equal to or larger than π,
then very strange things are going to happen at mesh time. The
source CAD file should use only circle arc smaller than π1.

1 A full circle needs at least three arcs

342 Drawing and meshing with Salome

And some other general remarks about CAD files.

CAD systems are much more tolerant than any mesher, quite often one
fails to mesh a surface because it is not closed, the surface is considered
closed by the CAD software because of a rather tolerant precision. This
has to be corrected before meshing.

Sometimes CAD systems do not mind to have several similar entities
piled one on top of each other, at the same place, describing the very
same physical object, the mesher may fail here, or worst, create several
layers of the same entity, which, if undetected may produce a very stiff
model in this area!

Many detailed features drawn in CAD file, like fillets or chamfers and
so on, end up with a mesh larger than necessary, while in some other
cases they are the very object of the study, the engineer must make clever
choices here!

One should always have a very critical look at the mesh built from a
CAD file.

APPENDIX E

Installing and maintaining, tips

A web page is only a page until its printed. Then it can be any number
of pages.

Kent’s Law.

How to install, update, maintain Code_Aster, Gmsh, Salome and
Salome-Meca.

In the next sections we, quite often, find the sequence: download an
archive, unpack it... It is a wise idea to perform, before anything else, a
“md5sum”1 checkup to ensure the archive integrity, any archive failing
this checkup should be immediately discarded!

5.1 Code_Aster installation

For a stand alone version of Code_Aster go to this link:

1 If this package is not installed by default in our distribution, we have to install it (in open-
SUSE it is in coreutils package).

343

344 Installing and maintaining, tips

http://www.code-aster.org

Look for the download area, once it is found, download the archive that
suits.

For the installation, strictly follow the instructions given on the page.

I make the installation in / opt/asterxxx, where xxx is the aster ver-
sion number1. Of course I change the ownership of this directory so
that I own this file (not root) with read and write access. The line
ASTER_ROOT=’/opt/asterxxx’ has also to be changed in the
setup.cfg file, sitting in the unpacked archive directory.

This installation is somewhat long, about 30 minutes, as it is a true
compilation, not installation of binaries.

In the grand old days there was, somewhere in the installation directory
a sub-directory with a substantial set of documentation. This is no longer
the case and the documentation must be read online, thankfully it is .pdf
files which can be downloaded for a more comfortable local reading.

The full set can also be downloaded, it’s an archive of over 300 Mb.

And finally the English version is an excellent demonstration of what
machine translation can do, in good, and in bad2. But it is much better
than nothing.

In addition Code_Aster comes with a bundle of test cases, lying in
$ASTER_ROOT/11.x/share/aster/tests these tests maybe studied and
run to understand unusual commands.

5.2 Code_Aster versions

On the Code_Aster download page one can see several versions available.
Here are some hints about their naming, helping to choose the one that
suits3:

1 With this method i keep a working installation of previous versions, just in case.
2 Not to say “worst”!
3 This description is abstracted from Pronet website

http://www.code-aster.org

5.2 Code_Aster versions 345

• stable

This release is the version of exploitation validated by EDF on the
basis a complete documentation and tests of validation put on line.
This version is the object independently of a qualification by EDF
for its internal needs. During two years, it is put up to date every
six months, by integrating only bug fixes, without modification of
the user interface or documentation.

• stable-updates

This refers to the intermediate states between two stable versions.
They contain only bug fixes and are updated each month. That cor-
responds to the increments of versions 10.s.y, which constitute at
the end of six months the new “stable” version 10.s+1.

• unstable

This version is weekly updated with the new features and bug fixes.
That refers to the updates numbered 11.x.y.

• testing

That version is a frozen state, each six months, of the “unstable”
version. It is updated every six months.

At the time of this writing, October 2013, we have:

• stable, 11.4.

• stable-updates, none yet.

• unstable, the same as testing.

• testing, 12.0.

346 Installing and maintaining, tips

5.3 Code_Aster setup

The following is a summary of how I solved some issues, with quite a bit
of trial and error, but, there may be other ways, or my advices may not
work.

Once we get working with Code_Aster graphical tools, like STANLEY,
the tool may not launch at all with nasty messages in the .mess file. Here
is the usual workaround:

In the ASTK window, menu Configuration Preferences Network :

• the Client machine name field should be the machine name, which
can be obtained by typing the command ’hostname’ in a terminal;

• the Domain name can be left empty;

• Forced DISPLAY variable can be set to :0.0 ;

• and button ssh and scp pushed on.

And STANLEY should then launch itself on request.

Some other issues may need to apply the following recipes:

In the ASTK window, menu Configuration Servers... the Server name

maybe changed from localhost to the machine name as above.

If nothing happens when we push TRACER in STANLEY window, de-
spite a green light, lets try the following:

In the STANLEY window, menu Parametres Editer , in the pull down
list right off Mode choose Gmsh/Xmgrace , push OK it should then work
in this mode.

We may also choose Salome mode, if Stanley is ran from a Salome-
Meca study. To make it run from stand alone Code_Aster I suppose we
need a stand alone version of Salome and a bit of tinkering around with
Port de Salome and Chemin de RunSalomeScript , though I have never used
STANLEY this way.

When the setup is right the interactive follow-up box in ASTK may be
checked and when pushing Run a terminal window opens telling us all

5.4 Code_Aster update 347

what’s going on, in fact it is almost a copy of what is written in the .mess
file, quite useful in case of longish problems, we know where we are.

Some of these advices are worth only for a single machine setup, the
same machine acting as client and calculation server.

5.4 Code_Aster update

If we choose to install the “testing” version of Code_Aster it is possible to
create an “unstable” version in the same install directory and update it1.

As its name implies this version is the last out of the box development
version, it may be buggy, and should not be used for production work.

How to build and update this version is fully described on Code_Aster
web site, particularly on the “Download” tab.

5.5 Code_Aster directories maintenance

Every time a study is launched:

• a directory is created in /tmp, its name maybe something like user-
machine-xxxx-user 2 where:

– user is user’s name;

– machine is machine name;

– xxxx is a randomly created number.

this directory is created with user permissions, after the study is
successfully finished it contains almost only xxxx-user.export ;

• a few files are created in $HOME/flasheur , they are named, for
example frame3-oxxxx-user 3. File frame3-oxxxx-user contains
full information about the calculation run, a bit more than the .mess
file.

1 Updates come about every week.
2 This naming convention changed from time to time.
3 There are also files with preceding letter o, i, u ,e ,p.

348 Installing and maintaining, tips

These directories and files are never automatically deleted 1 2, we have to
delete them at times otherwise Code_Aster may run out of disk space, in
which case the study may stop abruptly without any clear error message.

5.6 Salome-Meca Installation

To get Salome-Meca go to this link:

http://www.code-aster.org

Look for the download area, once found download the archive that suits.

For the installation, strictly follow the instructions given on the page.

For this, I make the installation in /opt , owned by regular user with read
write access or $HOME/opt .

5.7 Salome Installation

To get Salome go to this link:

http://www.salome-plaform.org

Look for the download area, once found download the archive that
suits3.

For the installation, strictly follow the instructions given on the page.

As openSuSE, which I use, is not listed under the officially supported
binaries list, I use the Universal binaries and I am happy with this, just
like for Gmsh I never made a compilation from sources.

For this, I make the installation in /opt , owned by regular user with read
write access or $HOME/opt .

1 At least on my openSuSE distribution.
2 However a study /tmp directory and the files in $HOME/flasheur can be deleted in the

ASJOB window.
3 You have to register and log to be able to download.

http://www.code-aster.org
http://www.salome-plaform.org

5.8 Salome or Salome-Meca Installation Problems 349

5.8 Salome or Salome-Meca Installation Problems

If Salome or Salome-Meca fails to launch with the following lines printed
in the terminal:

runSalome running on dedalus
Searching f o r a free port f o r naming service : 2810 2811 2812 − OK
Searching Naming Service+++++++++++++++++++++++++++++++++++..

we should have a look at the file /etc/hosts it should contain, amongst
some others, two lines like these ones:

1 2 7 . 0 . 0 . 1 localhost
.
1 2 7 . 0 . 0 . 2 machine_name .domain_name machine_name

The first one is the main loop back IP-Address. In the second one:

• 127.0.0.2 is a second loop back IP-Address1;

• machine_name.domain_name, given by typing hostname

-f in a terminal is the Full-Qualified-Hostname ;

• machine_name is the Short-Hostname given by typing
hostname in a terminal.

If this second line is not present we have to add it2, without altering the
first line.

Finally one should NEVER try to make a first run of Salome or Salome-
Meca as root, as this seems to upset many of the configuration files 3, that
is why I strongly advise to install as regular user.

1 It could just as well be 127.0.10.1 or 127.0.10.2.
2 With su privileges.
3 I bet this comes from omniORB.

350 Installing and maintaining, tips

5.9 Gmsh Installation

To get Gmsh go to this link:

http://geuz.org/gmsh/

Download the “Current stable release”, which is a .tgz archive. Unpack
it somewhere, I do that in /opt , again as regular user.

The executable is then /opt/gmsh/bin/gmsh. Run it any way, command
line, launching script or window manager menu entry1.

There is no real need to compile anything from source for an everyday
use, I have never done it2!

On the same link under Documentation the Reference manual is also
a very useful mine of information.

5.10 A word about CAELinux

There is a very easy way to try out all these programs, it comes under the
shape of a live CD containing all of them, plus much more. This is called
CAELinux.

It can be downloaded from: http://caelinux.com

I have started this way!

The site contains also a wiki, a forum and many useful information.

In the Wiki among may useful sections I must quote the ones by:

• Claws Andersen: http://www.caelinux.org/wiki/

index.php/Contrib:Claws;

• Kees Wouters: http://www.caelinux.org/wiki/

index.php/Contrib:KeesWouters;

which contain many information, hints and examples.

1 It is always a good idea to try launching any software from a terminal for the first time as
there is then a clear warning of what is missing or what is going wrong.

2 Except for fun!

http://geuz.org/gmsh/
http://caelinux.com
http://www.caelinux.org/wiki/index.php/Contrib:Claws
http://www.caelinux.org/wiki/index.php/Contrib:Claws
http://www.caelinux.org/wiki/index.php/Contrib:KeesWouters
http://www.caelinux.org/wiki/index.php/Contrib:KeesWouters

5.11 About the forums 351

5.11 About the forums

Code_Aster web site hosts some forums which are very helpful in solving
many issues. It’s like a potluck. What’s available is what people have
brought. And the forums must not be confused with a commercial soft-
ware hot line help.

The same applies to Salome or Gmsh forums or mailing lists.

5.12 Distribution, window manager and more

Since 1998 I have used the openSUSE distribution1, having started a few
years before with a Slackware, I found life to be easy with it. The web
site is:

http://software.opensuse.org

To make things a little bit more difficult I use "FVWM" as a window
manager, it can be heavily customized through hand written configuration
files, the look and behavior can be almost anything one likes2. The web
site is:

http://www.fvwm.org

And, of course, this book is made with LATEX, what else?

1 At the time it was named S.u.S.E Linux, and that was version 5.2.
2 Like the left-hand side tittle bar in the screen shot of this book.

http://software.opensuse.org
http://www.fvwm.org

Bibliography

[Roark] ROARK, Raymond J. and YOUNG, Warren C. (1976). Formulas
for Stress and Strain. New York: McGraw-Hill Book Company.

First published in 1938, many times updated, has been, and still is,
the reference handbook for a few generations of engineers all over the
world!

[Blevins] BLEVINS, Robert D. (2001). Formulas for Natural Frequency
and Mode Shape. Malabar: Krieger Publishing Company.

A comprehensive set about anything that can vibrate.

[Tuma] TUMA, Jean J. (1988). Handbook of Structural and Mechanical
Matrices. New York: McGraw-Hill Book Company.

[Donaldson] DONALDSON, Toby (2009).Visual Quickstart Guide
Python. Berkeley: Peachpit Press.

Very short, 185 pages, yet comprehensive introduction to Python.

353

Index

.dxf, 303

.iges, 249

.step, 249, 340

.stl, 249
/flasheur, 72, 347
/tmp, 347
AFFE_CARA_ELEM, 30, 207,

218, 244, 308
AFFE_CHAR_MECA, 32, 73,

98, 116, 141, 169,
198, 218, 256, 279

AFFE_MATERIAU, 30, 86, 96,
129, 140, 168, 198,
207, 217, 274

AFFE_MODELE, 29, 73, 79, 86,
96, 116, 127, 139,
168, 196, 208, 217,
235, 273

AFFE_VARC, 129, 141
ANGL_VRIL, 66, 141
ARCHIVAGE, 143
ASSE_MAILLAGE, 167

ASSE_MATRICE, 229
BARRE, 116
CABLE, 141
CALC_CHAMP, 36, 63, 100,

144, 178, 200, 256,
274

CALC_ELEM, 276
CALC_MATR_ELEM, 228
CALC_NO, 276
CALC_TABLE, 148, 156, 267
CARA_ELEM, 35, 100, 130,

143, 199, 209, 228,
252, 256, 275

CHAM_MATER, 100, 130, 143,
199, 209, 228, 252,
256, 275

CHARGE CRITIQUE, 232
CHAR_CRIT, 230
COMB_MATR_ASSE, 229
COMP_ELAS, 131, 144
COMP_INCR, 131, 144
CONCEPT, 185, 252

354

INDEX 355

CONTACT, 174
CONVERGENCE, 131, 144, 175,

199
COPIER(CONCEPT=...),

168
COQUE_3D, 235, 245
COURBE, 149, 184
CREA_CHAMP, 127, 140, 228,

272
CREA_GROUP, 28, 95, 139,

168, 196, 243, 248,
268

CREA_MAILLAGE, 168, 319
CREA_POI1, 319
CREA_RESU, 128, 140
CREA_TABLE, 269
DDL_IMPO, 32, 98, 116, 141,

169, 198, 209, 218,
256

DDL_MAIT(ESCL), 169
DEBUT, 26, 95, 130, 139, 143,

167, 174, 196, 207,
217, 243, 260, 273,
287, 319

DEFI_CONTACT, 170
DEFI_FICHIER, 260
DEFI_FONCTION, 34, 99, 142,

172, 196, 256
DEFI_GROUP, 28, 95, 139,

168, 217, 243, 248
DEFI_LIST_INST, 198
DEFI_LIST_REEL, 34, 99,

130, 143, 174, 198,
256

DEFI_MATERIAU, 29, 96, 129,
140, 168, 198, 207,
274

DEFI_MATERIAU, elastoplas-
tic, 196

DETRUIRE, 185, 268
DISCRET, 31, 79, 97, 218, 274,

308
DIS_TR, 86, 96
DIS_T, 29, 86, 217, 274
DKT, 96, 235, 245
DST, 245
EFGE_ELNO, 63
EXTR_COQUE, 100, 132
EXTR_MODE, 221
FIN, 41, 102, 150, 176, 185,

201, 211, 230, 275
FORCE_COQUE, 99
FORCE_FACE, 172, 198, 209
FORCE_NODALE, 33, 74, 99,

142, 227
FORCE_POUTRE, 33, 77, 99,

279
FORMULATION, 170
FORMULE, 148, 180
FROTTEMENT, 171
GROUP_MA_MAIT(ESCL),

169
IMPRESSION, 222
IMPR_FONCTION, 184
IMPR_MACRO, 287
IMPR_RESU, 28, 38, 41, 58,

102, 111, 116, 145,
178, 200, 207, 230,
252, 294, 300

IMPR_STURM, 231

356 INDEX

IMPR_TABLE, 37, 38, 58, 145,
179, 181, 218, 266,
267

INCLUDE, 260
INCREMENT, 131, 174, 199
INFO_MODE, 229
INFO, 285
K_TR_D_L, 79, 86, 97, 306
K_TR_L, 307
K_T_D_N, 31
LIAISON_ELEM, 205
LIAISON_MAIL, 169
LINE_QUAD, 246
LIRE_MAILLAGE, 27, 95, 139,

167, 196, 207, 217,
235, 243, 259, 273,
286, 319

LIRE_RESU, 274, 275
MACRO_MATR_ASSE, 219
MACR_CARA_POUTRE, 241
MASS_EFFE, 221
MASS_GENE, 221
MASS_INER, 37, 101, 218
MECA_STATIQUE, 35, 100,

173, 199, 209, 228,
256, 281

MODE_ITER_SIMULT, 219,
225, 230

MODI_MAILLAGE, 167
MODI_MAILLE, 235
MOMENT, 37
M_TR_D_L, 309
M_T_D_N, 31, 86, 97, 218, 274,

309
NEWTON, 131, 144, 174, 199
NIVE_COUCHE, 100, 277

NIV_COUCHE, 132
NOM_CHAM_MED, 102, 111,

116, 201, 211, 258,
270, 294

NORM_MODE, 221, 230
NUME_COUCHE, 100, 132
NUME_DDL, 219, 229
N_INIT, 130, 141
ORIENTATION, 31, 66, 141
ORIE_LIGNE, 78
ORIE_NORM_COQUE, 95
ORIE_PEAU_3D, 167, 196,

207
PAR_LOT, 73, 139, 178, 217,

243, 260
PESANTEUR, 32, 99, 141
POST_CHAMP, 100
POST_ELEM, 37
POST_RELEVE_T, 37, 144,

156, 179, 181, 210,
267

POURSUITE, 161, 177, 273
POUTRE, 30, 86, 97, 141, 207,

235, 274
PREF_NOEU, 235
PROJ_CHAMP, 180, 211
QUAD_LINE, 168, 196, 207,

235
REAC_NODA, 37, 100, 131,

144, 178, 200, 210,
257, 271, 275, 277

RECU_FONCTION, 148, 183
SEPARATEUR, 38, 58, 244
SICO_ELNO, 277
SIEF_ELGA, 63–64, 228

INDEX 357

SIEF_ELNO, 36, 63–64, 100,
116, 144, 200, 210,
257, 267, 275, 277

SIEQ_ELNO, 100, 132, 178,
200, 277

SIEQ_NOEU, 100, 132, 178,
200, 210, 277

SIGM_ELNO, 131, 178, 277
SIPM_ELNO, 36, 63–277
SIPO_ELNO, 36, 63–277
STAT_NON_LINE, 130, 143,

174, 199
TABLE_CARA, 243
TABLE, 37, 58, 148, 156, 181,

266
TEMP, 127
UNION, 28, 95
VECTEUR, 97
VECT_NORMALE, 248
VECT_NORM, 95
VECT_TANG, 78
VECT_Y, 66
reuse, 28, 36, 78, 95, 100,

131, 144, 167, 180,
275

“Overwriting” rule (Surcharge),
73, 140

ABAQUS®, 303
Alarme, 284
Alias, view in Gmsh, 150
as_run, 283
ASTER .mail, 27
ASTK, 28, 117–118, 152, 176,

185, 252, 260, 275,
283, 346

base (result database), 47, 117,
176, 177

CAD, 249, 340
CAST3M®, 303

Division, integer and float, 218

Eficas, 42, 334

Gmsh .msh, 27

IDEAS ® .UNV, 27, 303

NASTRAN®, 302

Preload, 127
Python, 25, 33, 42, 58, 139, 143,

150, 173, 177, 259,
319, 340

SAMCEF®, 303
STANLEY, 119–123, 149, 176,

300, 346

XmGrace, 146, 152–154, 156,
180

	Preface
	Introduction
	Foreword
	How to read
	What this book is
	What this book is not
	What is Code_Aster
	What is Gmsh
	What are Salome and Salome-Meca
	Typographic
	Software version

	Beginning with...
	Preparing the geometry and mesh
	Preparing the command file
	Launching the calculation
	Viewing the results

	Drawing and meshing a simple frame
	Drawing the frame with Gmsh
	Meshing with Gmsh
	Drawing and meshing it with Salome-Meca
	Calculating it with Salome-Meca

	Creating the command file
	Beginning with DEBUT()
	Reading and modifying the mesh
	Making a finite element model from the mesh
	Defining materials
	Assigning materials to elements
	Giving properties to elements
	Setting boundary conditions
	Setting loadings
	Stepping for the load case
	Stepping for the solution
	Analysing it
	Calculating results
	Calculating and printing the mass of the model
	Printing the reactions
	Printing some key values
	Printing some others results in ASCII file .resu
	Printing results for graphical viewing, MED file
	Ending the command file with FIN()
	Preparing the command file with Eficas

	Solving in Salome-Meca
	Putting it together
	Viewing the results with Salome-Meca
	Sophisticating the display
	Looking at ASCII results
	Printing RESULTAT
	Printing results in TABLE

	Verifying the results
	Spotting a mistake?

	Understanding some details
	Dealing with units
	Understanding SIEF, SIPO, SIPM...
	Orienting beam elements
	Finding it out when things go wrong
	Understanding the ``Overwriting'' rule

	Adding end release to the top bar
	Using parametric scripting in Gmsh
	Modifying the .comm file
	Solving
	Viewing the results in the ParaVis module
	Looking at ASCII results
	Using an alternative option with beam elements

	Making an highway sign
	Creating geometry and mesh in Gmsh
	Commanding for plate elements
	Printing the results
	Viewing the results in ParaVis
	Viewing the results in Gmsh
	Displaying displacement
	Displaying stress in beam element
	Displaying stress in plate element
	Displaying stress of a named field
	Displaying more...

	Stiffening it with rods
	Modifying in Gmsh
	Enhancing the command file
	Introducing ASTK for the analysis
	Using STANLEY, a quick approach to post-processing

	Replacing rods, by cables, first step in non-linear
	Replacing rod by cables
	Switching to non-linear analysis
	Printing results
	A variation in CREA_RESU

	Cycling on a cable
	Replacing the top bar by a cable
	Cycling on the cable, like a clown!
	Commanding for solution
	Commanding for results
	Creating time dependent plots
	Concluding about this command file

	Viewing results
	Plotting results with XmGrace
	Verifying some results
	Working with tables

	Going solid, with contact, a bi-linear spring
	Introducing the study
	Meshing 'part1'
	Meshing 'part2'
	Commanding for the solution
	Reading and manipulating the meshes
	Setting the boundary conditions
	Gluing the two parts around the pin
	Relieving rotation around the pin
	Setting the contact conditions around the pin
	Setting the contact conditions around the pin, with friction
	Setting the vertical load
	Setting for the five solutions

	Running the study

	Post-processing the spring
	Commanding for Post-processing
	Preliminaries
	Creating the MED result file
	Creating a plot of some results

	Running the post processing
	Viewing deformed shape for all cases
	Numerical results
	Checking the results
	Looking at some plots

	Introducing plastic analysis, and more...
	Running an Elasto-plastic analysis
	Initializing the mesh
	Creating the non-linear material
	Setting model and BC
	Solving
	Looking at the results

	Replacing volumes by beams
	Meshing
	Commanding
	Viewing results

	Buckling and modal analysis
	Modal analysis
	Gmsh geometry and mesh
	Command file, preliminaries
	Command file, analysis
	First results
	More results
	Estimating (roughly) the natural frequency
	Viewing mode shapes
	What to read in the documentation
	Modal analysis on an pre-loaded model

	Checking buckling
	Buckling solving
	Calculating in version 10.8
	Looking at results

	Buckling analysis with plates and beams, or rods
	Some remarks about buckling

	Pre-processing topics
	Various type of beams, from Euler-Bernoulli to, multifiber....
	Using MACR_CARA_POUTRE to calculate section properties
	Various types of plates and shells....
	Plates
	Shells

	Using quadratic mesh or not
	Creating groups from scratch

	Gathering more information before processing
	Coloring mesh and model according to properties
	Showing element orientation
	Showing the applied load
	Calculating length and area of mesh elements

	Getting more from post-processing
	Manipulating results with TABLE
	Printing only a few parameters
	Getting the maximum value of a field
	Getting values within a range

	Renaming field's components in a result
	Adding node coordinates in a result
	Printing a cleaner ASCII result file
	Creating a mesh on a deformed shape
	Reading (and enhancing) a result
	Post-processing in version 10

	Handling Code_Aster, bits and pieces
	Dealing with multiple FORCE_POUTRE
	Converting mesh
	Launching from terminal
	Multiple ASTK configurations
	Alarming about 'alarme'?
	Keeping informed with INFO

	Living with good practice
	Using Gmsh, tips and tricks
	Viewing the right results
	Viewing ELNO type fields
	Viewing vector type fields
	Viewing scalar fields on deformed shapes

	Using Plugins
	For creating and viewing a composite result
	For animating a mode shape

	Orienting Surfaces
	Using the legacy Gmsh Post-pro files
	Importing Nastran® and other alien files
	Customizing Gmsh

	Using discrete elements
	Stiffness matrix
	K_TR_D_L element
	K_TR_L element

	Mass matrix
	Combining both

	Drawing and meshing with Salome
	First example with beams
	Creating geometry and meshing
	Modifying the command file
	Dumping and replaying the study

	Example with beams and plates
	Geometry
	Hints about creating groups
	Meshing
	View 3D with Eficas in Salome-Meca

	3D Example
	Further reading
	Salome setup and preferences
	Differences between Gmsh and Salome
	Meshing imported CAD file

	Installing and maintaining, tips
	Code_Aster installation
	Code_Aster versions
	Code_Aster setup
	Code_Aster update
	Code_Aster directories maintenance
	Salome-Meca Installation
	Salome Installation
	Salome or Salome-Meca Installation Problems
	Gmsh Installation
	A word about CAELinux
	About the forums
	Bibliography

	Index

