A Byte of Python
Table of Contents
	
	1. Welcome
		Who reads A Byte of Python?
	Academic Courses
	License
	Read Now
	Buy The Book
	Download
	Read the book in your native language

	Preface
		Who This Book Is For
	History Lesson
	Status Of The Book
	Official Website
	Something To Think About

	2. Introduction
		Features of Python
	Python 2 versus 3
	What Programmers Say

	3. Installation
		Installation on Windows
		DOS Prompt
	Running Python prompt on Windows

	Installation on Mac OS X
	Installation on GNU/Linux
	Summary

	4. First Steps
		Using The Interpreter Prompt
	Choosing An Editor
	Light Table
	Vim
	Emacs
	Using A Source File
	Getting Help
	Summary

	5. Basics
		Comments
	Literal Constants
	Numbers
	Strings
		Single Quote
	Double Quotes
	Triple Quotes
	Strings Are Immutable
	The format method
	Escape Sequences
	Raw String

	Variable
	Identifier Naming
	Data Types
	Object
	How to write Python programs
	Example: Using Variables And Literal Constants
	Logical And Physical Line
	Indentation
	Summary

	6. Operators and Expressions
		Operators
	Shortcut for math operation and assignment
	Evaluation Order
	Changing the Order Of Evaluation
	Associativity
	Expressions
	Summary

	7. Control Flow
		The if statement
	The while Statement
	The for loop
	The break Statement
	The continue Statement
	Summary

	8. Functions
		Function Parameters
	Local Variables
	The global statement
	Default Argument Values
	Keyword Arguments
	VarArgs parameters
	The return statement
	DocStrings
	Summary

	9. Modules
		Byte-compiled .pyc files
	The from … import statement
	A module’s __name__
	Making Your Own Modules
	The dir function
	Packages
	Summary

	10. Data Structures
		List
	Quick Introduction To Objects And Classes
	Tuple
	Dictionary
	Sequence
	Set
	References
	More About Strings
	Summary

	11. Problem Solving
		The Problem
	The Solution
	Second Version
	Third Version
	Fourth Version
	More Refinements
	The Software Development Process
	Summary

	12. Object Oriented Programming
		The self
	Classes
	Methods
	The __init__ method
	Class And Object Variables
	Inheritance
	Summary

	13. Input and Output
		Input from user
		Homework exercise

	Files
	Pickle
	Unicode
	Summary

	14. Exceptions
		Errors
	Exceptions
	Handling Exceptions
	Raising Exceptions
	Try … Finally
	The with statement
	Summary
	Standard Library
	sys module
	logging module
	Module of the Week Series
	Summary

	15. More
		Passing tuples around
	Special Methods
	Single Statement Blocks
	Lambda Forms
	List Comprehension
	Receiving Tuples and Dictionaries in Functions
	The assert statement
	Decorators
	Differences between Python 2 and Python 3
	Summary
	Next Projects
	Example Code
	Advice
	Videos
	Questions and Answers
	Tutorials
	Discussion
	News
	Installing libraries
	Creating a Website
	Graphical Software
	Summary of GUI Tools
	Various Implementations
	Functional Programming (for advanced readers)
	Summary

	16. Appendix: FLOSS
	17. Appendix: Revision History
	18. Translations
		Arabic
	Brazilian Portuguese
	Catalan
	Chinese
	Chinese Traditional
	French
	German
	Greek
	Indonesian
	Italian
	Japanese
	Mongolian
	Norwegian (bokmål)
	Polish
	Portuguese
	Romanian
	Russian
	Ukranian
	Serbian
	Slovak
	Spanish
	Swedish
	Turkish

	19. Translation Howto

A Byte of Python

Swaroop C H
<swaroop@swaroopch.com>

Dedication

To Kalyan Varma and many other seniors at PESIT
who introduced us to GNU/Linux and the world of open source.

To the memory of Atul Chitnis, a friend and
guide who shall be missed greatly.

To the pioneers who made the Internet happen. This book
was first written in 2003. It still remains popular, thanks to the nature of sharing knowledge on
the Internet as envisioned by the pioneers.

"A Byte of Python" is a free book on programming using the Python language. It serves as a tutorial
or guide to the Python language for a beginner audience. If all you know about computers is how to
save text files, then this is the book for you.

Chapter 1. Welcome

Who reads A Byte of Python?

Here are what people are saying about the book:

	 	This is the best beginner’s tutorial I’ve ever seen! Thank you for your effort.
	
	 	--

 Walt Michalik

	 	The best thing i found was "A Byte of Python", which is simply a brilliant book for a
beginner. It’s well written, the concepts are well explained with self evident examples.
	
	 	--

 Joshua Robin

	 	Excellent gentle introduction to programming #Python for beginners
	
	 	--

 Shan Rajasekaran

	 	Best newbie guide to python
	
	 	--

 Nickson Kaigi

	 	start to love python with every single page read
	
	 	--

 Herbert Feutl

	 	perfect beginners guide for python, will give u key to unlock magical world of python
	
	 	--

 Dilip

	 	I should be doing my actual "work" but just found "A Byte of Python". A great guide with great
examples.
	
	 	--

 Biologist John

	 	Recently started reading a Byte of python. Awesome work. And that too for free. Highly recommended
for aspiring pythonistas.
	
	 	--

 Mangesh

	 	A Byte of Python, written by Swaroop. (this is the book I’m currently reading). Probably the best
to start with, and probably the best in the world for every newbie or even a more experienced user.
	
	 	--

 Apostolos

	 	Thank you so much for writing A Byte Of Python. I just started learning how to code two days ago
and I’m already building some simple games. Your guide has been a dream and I just wanted to let
you know how valuable it has been.
	
	 	--

 Franklin

	 	I’m from Dayanandasagar College of Engineering (7th sem, CSE). Firstly i want to say that your book
"The byte of python" is too good a book for a beginner in python like me.The concepts are so well
explained with simple examples that helped me to easily learn python. Thank you so much.
	
	 	--

 Madhura

	 	I am a 18 year old IT student studying at University in Ireland. I would like to express my
gratitude to you for writing your book "A Byte of Python", I already had knowledge of 3 programming
langagues - C, Java and Javascript, and Python was by far the easiest langague I have ever learned,
and that was mainly because your book was fantastic and made learning python very simple and
interesting. It is one of the best written and easy to follow programming books I have ever
read. Congratulations and keep up the great work.
	
	 	--

 Matt

	 	Hi, I’m from Dominican Republic. My name is Pavel, recently I read your book A Byte of Python and
I consider it excellent!! :). I learnt much from all the examples. Your book is of great help for
newbies like me…
	
	 	--

 Pavel Simo

	 	I am a student from China, Now ,I have read you book A byte of Python, Oh it’s beautiful. The book
is very simple but can help all the first learnners. You know I am interesting in Java and cloud
computing many times, i have to coding programm for the server, so i think python is a good choice,
finish your book, i think its not only a good choice its must use the Python. My English is not
very well, the email to you, i just wanna thank you! Best Wishes for you and your family.
	
	 	--

 Roy Lau

	 	I recently finished reading Byte of Python, and I thought I really ought to thank you. I was very
sad to reach the final pages as I now have to go back to dull, tedious oreilly or etc. manuals for
learning about python. Anyway, I really appreciate your book.
	
	 	--

 Samuel Young

	 	Dear Swaroop, I am taking a class from an instructor that has no interest in teaching. We are using
Learning Python, second edition, by O’Reilly. It is not a text for beginner without any programming
knowledge, and an instructor that should be working in another field. Thank you very much for your
book, without it I would be clueless about Python and programming. Thanks a million, you are able
to break the message down to a level that beginners can understand and not everyone can.
	
	 	--

 Joseph Duarte

	 	I love your book! It is the greatest Python tutorial ever, and a very useful reference. Brilliant,
a true masterpiece! Keep up the good work!
	
	 	--

 Chris-André Sommerseth

	 	I’m just e-mailing you to thank you for writing Byte of Python online. I had been attempting
Python for a few months prior to stumbling across your book, and although I made limited success
with pyGame, I never completed a program.
Thanks to your simplification of the categories, Python actually seems a reachable goal. It seems
like I have finally learned the foundations and I can continue into my real goal, game development.
…
Once again, thanks VERY much for placing such a structured and helpful guide to basic programming
on the web. It shoved me into and out of OOP with an understanding where two text books had
failed.
	
	 	--

 Matt Gallivan

	 	I would like to thank you for your book A Byte of Python which i myself find the best way to
learn python. I am a 15 year old i live in egypt my name is Ahmed. Python was my second programming
language i learn visual basic 6 at school but didn’t enjoy it, however i really enjoyed learning
python. I made the addressbook program and i was sucessful. i will try to start make more programs
and read python programs (if you could tell me source that would be helpful). I will also start on
learning java and if you can tell me where to find a tutorial as good as yours for java that would
help me a lot. Thanx.
	
	 	--

 Ahmed Mohammed

	 	A wonderful resource for beginners wanting to learn more about Python is the 110-page PDF tutorial
A Byte of Python by Swaroop C H. It is well-written, easy to follow, and may be the best
introduction to Python programming available.
	
	 	--

 Drew Ames

	 	Yesterday I got through most of Byte of Python on my Nokia N800 and it’s the easiest and most
concise introduction to Python I have yet encountered. Highly recommended as a starting point for
learning Python.
	
	 	--

 Jason Delport

	 	Byte of Vim and Python by @swaroopch is by far the best works in technical writing to me. Excellent
reads #FeelGoodFactor
	
	 	--

 Surendran

	 	"Byte of python" best one by far man
(in response to the question "Can anyone suggest a good, inexpensive resource for learning the
basics of Python? ")
	
	 	--

 Justin LoveTrue

	 	The Book Byte of python was very helpful ..Thanks bigtime :)
	
	 	--

 Chinmay

	 	Always been a fan of A Byte of Python - made for both new and experienced programmers.
	
	 	--

 Patrick Harrington

	 	I started learning python few days ago from your book..thanks for such a nice book. it is so well
written, you made my life easy..so you found a new fan of yours..thats me :) tons of thanks.
	
	 	--

 Gadadhari Bheem

	 	Thank you ever so much for this book!!
This book cleared up many questions I had about certain aspects of Python such as object oriented
programming.
I do not feel like an expert at OO but I know this book helped me on a first step or two.
I have now written several python programs that actually do real things for me as a system
administrator. They are all procedural oriented but they are small by most peoples standards.
Again, thanks for this book. Thank you for having it on the web.
	
	 	--

 Bob

	 	I just want to thank you for writing the first book on programming I’ve ever really read. Python is
now my first language, and I can just imagine all the possibilities. So thank you for giving me the
tools to create things I never would have imagined I could do before.
	
	 	--

 The Walrus

	 	I wanted to thank you for writing A Byte Of Python (2 & 3 Versions). It has been invaluable to
my learning experience in Python & Programming in general.
Needless to say, I am a beginner in the programming world, a couple of months of self study up to
this point. I had been using youtube tutorials & some other online tutorials including other free
books. I decided to dig into your book yesterday, & I’ve learned more on the first few pages than
any other book or tutorial. A few things I had been confused about, were cleared right up with a
GREAT example & explanation. Can’t wait to read (and learn) more!!
Thank you so much for not only writing the book, but for putting it under the creative commons
license (free). Thank goodness there are unselfish people like you out there to help & teach the
rest of us.
	
	 	--

 Chris

	 	I wrote you back in 2011 and I was just getting into Python and wanted to thank you for your
tutorial "A Byte of Python". Without it, I would have fallen by the wayside. Since then I have
gone on to program a number of functions in my organization with this language with yet more on the
horizon. I would not call myself an advanced programmer by any stretch but I notice the occasional
request for assistance now from others since I started using it. I discovered, while reading
"Byte" why I had ceased studying C and C++ and it was because the book given to me started out with
an example containing an augmented assignment. Of course, there was no explanation for this
arrangement of operators and I fell on my head trying to make sense of what was on the written
page. As I recall it was a most frustrating exercise which I eventually abandoned. Doesn’t mean C
or C++ is impossible to learn, or even that I am stupid, but it does mean that the documentation I
worked my way through did not define the symbols and words which is an essential part of any
instruction. Just as computers will not be able to understand a computer word or computer symbol
that is outside the syntax for the language being used, a student new to any field will not grasp
his subject if he encounters words or symbols for which there are no definitions. You get a "blue
screen" as it were in either case. The solution is simple, though: find the word or symbol and get
the proper definition or symbol and lo and behold,the computer or student can proceed. Your book
was so well put together that I found very little in it I couldn’t grasp. So, thank you. I
encourage you to continue to include full definitions of terms. The documentation with Python is
good, once you know, (the examples are its strength from what I see) but in many cases it seems
that you have to know in order to understand the documentation which to my mind is not what
should be. Third party tutorials express the need for clarification of the documentation and their
success largely depends on the words that are used to describe the terminology. I have recommended
your book to many others. Some in Australia, some in the Caribbean and yet others in the US. It
fills a niche no others do. I hope you are doing well and wish you all the success in the future.
	
	 	--

 Nick

	 	hey, this is ankush(19). I was facing a great difficulty to start with python. I tried a lot of
books but all were bulkier and not target oriented; and then i found this lovely one, which made me
love python in no time. Thanks a lot for this "beautiful piece of book".
	
	 	--

 Ankush

	 	I would like to thank you for your excellent guide on Python. I am a molecular biologist (with
little programming background) and for my work I need to handle big datasets of DNA sequences and
to analyse microscope images. For both things, programming in python has been useful, if not
essential to complete and publish a 6-years project.
That such a guide is freely available is a clear sign that the forces of evil are not yet ruling
the world! :)
	
	 	--

 Luca

	 	Since this is going to be the first language you learn, you should use A Byte of Python. It really
gives a proper introduction into programming in Python and it is paced well enough for the average
beginner. The most important thing from then on will be actually starting to practice making your
own little programs.
	
	 	--

 "{unregistered}"

	 	Just to say a loud and happy thank you very much for publishing "A Byte of Python" and "A Byte of
Vim". Those books were very useful to me four or five years ago when I starting learning
programming. Right now I’m developing a project that was a dream for a long, long time and just
want to say thank you. Keep walking. You are a source of motivation. All the best.
	
	 	--

 Jocimar

	 	Finished reading A byte of Python in 3 days. It is thoroughly interesting. Not a single page was
boring. I want to understand the Orca screen reader code. Your book has hopefully equipped me
for it.
	
	 	--

 Dattatray

The book is even used by NASA! It is being used in their
Jet Propulsion
Laboratory with their Deep Space Network project.

Academic Courses

This book is/was being used as instructional material in various educational institutions:

	
Principles of Programming Languages course at
Vrije Universiteit, Amsterdam

	
Basic Concepts of Computing course at
University of California, Davis

	
Programming With Python course at
Harvard University

	
Introduction to Programming course at University of
Leeds

	
Introduction to Application Programming course at
Boston University

	
Information Technology Skills for Meteorology course at
University of Oklahoma

	
Geoprocessing course at Michigan State
University

	
Multi Agent Semantic Web Systems course at the
University of Edinburgh

	
Introduction to Computer Science and Programming at
MIT
OpenCourseWare

License

This book is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

This means:

	
You are free to Share i.e. to copy, distribute and transmit this book

	
You are free to Remix i.e. to make changes to this book (especially translations)

	
You are free to use it for commercial purposes

Please note:

	
Please do not sell electronic or printed copies of the book unless you have clearly and
prominently mentioned in the description that these copies are not from the original author of
this book.

	
Attribution must be shown in the introductory description and front page of the document by
linking back to http://swaroopch.com/notes/python and clearly indicating that the original text can be fetched from this
location.

	
All the code/scripts provided in this book is licensed under the
3-clause BSD License unless otherwise noted.

Read Now

You can read the book online at http://swaroopch.com/notes/python

Buy The Book

A printed hardcopy of the book can be purchased at http://swaroopch.com/buybook for your offline reading pleasure, and to
support the continued development and improvement of this book.

Download

	
PDF

	
EPUB

	
GitHub

If you wish to support the continued development of this book, please consider
buying a hardcopy.

Read the book in your native language

If you are interested in reading or contributing translations of this book to other human
languages, please see Translations.

Preface

Python is probably one of the few programming languages which is both simple and powerful. This is
good for beginners as well as for experts, and more importantly, is fun to program with. This book
aims to help you learn this wonderful language and show how to get things done quickly and
painlessly - in effect The Anti-venom to your programming problems.

Who This Book Is For

This book serves as a guide or tutorial to the Python programming language. It is mainly targeted
at newbies. It is useful for experienced programmers as well.

The aim is that if all you know about computers is how to save text files, then you can learn
Python from this book. If you have previous programming experience, then you can also learn Python
from this book.

If you do have previous programming experience, you will be interested in the differences between
Python and your favorite programming language - I have highlighted many such differences. A little
warning though, Python is soon going to become your favorite programming language!

History Lesson

I first started with Python when I needed to write an installer for software I had written called
Diamond so that I could make the installation easy. I had to choose between Python and Perl
bindings for the Qt library. I did some research on the web and I came across
an article by Eric S. Raymond, a famous and respected
hacker, where he talked about how Python had become his favorite programming language. I also found
out that the PyQt bindings were more mature compared to Perl-Qt. So, I decided that Python was the
language for me.

Then, I started searching for a good book on Python. I couldn’t find any! I did find some O’Reilly
books but they were either too expensive or were more like a reference manual than a guide. So, I
settled for the documentation that came with Python. However, it was too brief and small. It did
give a good idea about Python but was not complete. I managed with it since I had previous
programming experience, but it was unsuitable for newbies.

About six months after my first brush with Python, I installed the (then) latest Red Hat 9.0 Linux
and I was playing around with KWord. I got excited about it and suddenly got the idea of writing
some stuff on Python. I started writing a few pages but it quickly became 30 pages long. Then, I
became serious about making it more useful in a book form. After a lot of rewrites, it has
reached a stage where it has become a useful guide to learning the Python language. I consider
this book to be my contribution and tribute to the open source community.

This book started out as my personal notes on Python and I still consider it in the same way,
although I’ve taken a lot of effort to make it more palatable to others :)

In the true spirit of open source, I have received lots of constructive suggestions, criticisms and
feedback from enthusiastic readers which has helped me improve this book a lot.

Status Of The Book

	
Latest update of this book was in Mar-Apr 2014, converted to
Asciidoc using
Emacs 24 and
adoc-mode.

	
In Dec 2008, the book was updated for the Python 3.0 release (one of the first books to do
so). But now, I have converted the book back for Python 2 language because readers would often
get confused between the default Python 2 installed on their systems vs. Python 3 which they had
to separately install and all the tooling, esp. editors would assume Python 2 as well. I had a
hard time justifying why I had to aggravate readers and make them go through all this when the
fact is that they can learn either one and it would be just as useful. So, Python 2 it is.

The book needs the help of its readers such as yourselves to point out any parts of the book which
are not good, not comprehensible or are simply wrong. Please write to the main author or
the respective translators with your comments and suggestions.

Official Website

The official website of the book is http://swaroopch.com/notes/python where you can read the whole book online, download
the latest versions of the book, buy a printed hard copy and also send me feedback.

Something To Think About

	 	There are two ways of constructing a software design: one way is to make it so simple that there
are obviously no deficiencies; the other is to make it so complicated that there are no obvious
deficiencies.
	
	 	--

 C. A. R. Hoare

	 	Success in life is a matter not so much of talent and opportunity as of concentration and
perseverance.
	
	 	--

 C. W. Wendte

Chapter 2. Introduction

Python is one of those rare languages which can claim to be both simple and powerful. You will
find yourself pleasantly surprised to see how easy it is to concentrate on the solution to the
problem rather than the syntax and structure of the language you are programming in.

The official introduction to Python is:

Python is an easy to learn, powerful programming language. It has efficient high-level data
structures and a simple but effective approach to object-oriented programming. Python’s elegant
syntax and dynamic typing, together with its interpreted nature, make it an ideal language for
scripting and rapid application development in many areas on most platforms.

I will discuss most of these features in more detail in the next section.

Story behind the name

Guido van Rossum, the creator of the Python language, named the language after the BBC show "Monty
Python’s Flying Circus". He doesn’t particularly like snakes that kill animals for food by winding
their long bodies around them and crushing them.

Features of Python

	Simple
	
Python is a simple and minimalistic language. Reading a good Python program feels almost like
reading English, although very strict English! This pseudo-code nature of Python is one of its
greatest strengths. It allows you to concentrate on the solution to the problem rather than the
language itself.

	Easy to Learn
	
As you will see, Python is extremely easy to get started with. Python has an extraordinarily simple
syntax, as already mentioned.

	Free and Open Source
	
Python is an example of a FLOSS (Free/Libré and Open Source Software). In simple terms, you can
freely distribute copies of this software, read its source code, make changes to it, and use pieces
of it in new free programs. FLOSS is based on the concept of a community which shares
knowledge. This is one of the reasons why Python is so good - it has been created and is constantly
improved by a community who just want to see a better Python.

	High-level Language
	
When you write programs in Python, you never need to bother about the low-level details such as
managing the memory used by your program, etc.

	Portable
	
Due to its open-source nature, Python has been ported to (i.e. changed to make it work on) many
platforms. All your Python programs can work on any of these platforms without requiring any
changes at all if you are careful enough to avoid any system-dependent features.

You can use Python on GNU/Linux, Windows, FreeBSD, Macintosh, Solaris, OS/2, Amiga, AROS, AS/400,
BeOS, OS/390, z/OS, Palm OS, QNX, VMS, Psion, Acorn RISC OS, VxWorks, PlayStation, Sharp Zaurus,
Windows CE and PocketPC!

You can even use a platform like Kivy to create games for your computer and for
iPhone, iPad, and Android.

	Interpreted
	
This requires a bit of explanation.

A program written in a compiled language like C or C++ is converted from the source language
i.e. C or C++ into a language that is spoken by your computer (binary code i.e. 0s and 1s) using a
compiler with various flags and options. When you run the program, the linker/loader software
copies the program from hard disk to memory and starts running it.

Python, on the other hand, does not need compilation to binary. You just run the program directly
from the source code. Internally, Python converts the source code into an intermediate form called
bytecodes and then translates this into the native language of your computer and then runs it. All
this, actually, makes using Python much easier since you don’t have to worry about compiling the
program, making sure that the proper libraries are linked and loaded, etc. This also makes your
Python programs much more portable, since you can just copy your Python program onto another
computer and it just works!

	Object Oriented
	
Python supports procedure-oriented programming as well as object-oriented programming. In
procedure-oriented languages, the program is built around procedures or functions which are
nothing but reusable pieces of programs. In object-oriented languages, the program is built
around objects which combine data and functionality. Python has a very powerful but simplistic way
of doing OOP, especially when compared to big languages like C++ or Java.

	Extensible
	
If you need a critical piece of code to run very fast or want to have some piece of algorithm not
to be open, you can code that part of your program in C or C\++ and then use it from your Python
program.

	Embeddable
	
You can embed Python within your C/C\++ programs to give scripting capabilities for your
program’s users.

	Extensive Libraries
	
The Python Standard Library is huge indeed. It can help you do various things involving regular
expressions,documentation generation, unit testing, threading, databases, web browsers, CGI, FTP,
email, XML, XML-RPC, HTML, WAV files, cryptography, GUI (graphical user interfaces), and other
system-dependent stuff. Remember, all this is always available wherever Python is installed. This
is called the Batteries Included philosophy of Python.

Besides the standard library, there are various other high-quality libraries which you can find at
the Python Package Index.

	Summary
	
Python is indeed an exciting and powerful language. It has the right combination of performance and
features that make writing programs in Python both fun and easy.

Python 2 versus 3

You can ignore this section if you’re not interested in the difference between Python 2 and
Python 3. But please do be aware of which version you are using.

Remember that once you have properly understood and learn to use either of them, you can easily
learn the changes between the two versions and adapt easily. The hard part is learning programming
and understanding the core Python language itself. That is our goal in this book, and once you have
achieved that goal, you can easily use Python 2 or Python 3 depending on your situation.

For details on differences between Python 2 to Python 3, see:

	
The future of Python 2

	
Python/3 page on the Ubuntu wiki

What Programmers Say

You may find it interesting to read what great hackers like ESR have to say about Python:

	
Eric S. Raymond is the author of "The Cathedral and the Bazaar" and is also the person who
coined the term Open Source. He says that Python has
become his favorite programming language. This article was the real inspiration for my first brush
with Python.

	
Bruce Eckel is the author of the famous Thinking in Java and Thinking in C++ books. He says
that no language has made him more productive than Python. He says that Python is perhaps the only
language that focuses on making things easier for the programmer. Read the
complete interview for more details.

	
Peter Norvig is a well-known Lisp author and Director of Search Quality at Google (thanks to
Guido van Rossum for pointing that out). He says that
writing Python is like writing in pseudocode. He says
that Python has always been an integral part of Google. You can actually verify this statement by
looking at the Google Jobs page which lists Python knowledge
as a requirement for software engineers.

Chapter 3. Installation

When we refer to "Python 2" in this book, we will be referring to any version of Python equal to or
greater than version 2.7.

Installation on Windows

Visit https://www.python.org/downloads/ and download the latest version. The installation is just
like any other Windows-based software.

Caution

When you are given the option of unchecking any "optional" components, don’t uncheck any.

DOS Prompt

If you want to be able to use Python from the Windows command line i.e. the DOS prompt, then you
need to set the PATH variable appropriately.

For Windows 2000, XP, 2003 , click on Control Panel → System → Advanced → Environment
Variables. Click on the variable named PATH in the System Variables section, then select
Edit and add ;C:\Python27 (please verify that this folder exists, it will be different for
newer versions of Python) to the end of what is already there. Of course, use the appropriate
directory name.

For older versions of Windows, open the file C:\AUTOEXEC.BAT and add the line
PATH=%PATH%;C:\Python33 and restart the system. For Windows NT, use the AUTOEXEC.NT file.

For Windows Vista:

	
Click Start and choose Control Panel

	
Click System, on the right you’ll see "View basic information about your computer"

	
On the left is a list of tasks, the last of which is Advanced system settings. Click that.

	
The Advanced tab of the System Properties dialog box is shown. Click the Environment
Variables button on the bottom right.

	
In the lower box titled System Variables scroll down to Path and click the Edit button.

	
Change your path as need be.

	
Restart your system. Vista didn’t pick up the system path environment variable change until I
restarted.

For Windows 7:

	
Right click on Computer from your desktop and select Properties or click Start and choose
Control Panel → System and Security → System. Click on Advanced system settings on the
left and then click on the Advanced tab. At the bottom click on Environment Variables and under
System variables, look for the PATH variable, select and then press Edit.

	
Go to the end of the line under Variable value and append ;C:\Python33.

	
If the value was %SystemRoot%\system32; It will now become %SystemRoot%\system32;C:\Python33

	
Click OK and you are done. No restart is required.

Running Python prompt on Windows

For Windows users, you can run the interpreter in the command line if you have set the
PATH variable appropriately.

To open the terminal in Windows, click the start button and click Run. In the dialog box, type
cmd and press enter key.

Then, type python and ensure there are no errors.

Installation on Mac OS X

For Mac OS X users, Python must be installed already.

To verify, open the terminal by pressing Command+Space keys (to open Spotlight search),
type Terminal and press enter key. Now, run python and ensure there are no errors.

Installation on GNU/Linux

For GNU/Linux users, Python must be installed already.

To verify, open the terminal by opening the Terminal application or by pressing Alt+F2
and entering gnome-terminal. If that doesn’t work, please refer the documentation of your
particular GNU/Linux distribution. Now, run python and ensure there are no errors.

You can see the version of Python on the screen by running:

$ python -V
Python 2.7.6

Note

$ is the prompt of the shell. It will be different for you depending on the settings of the
operating system on your computer, hence I will indicate the prompt by just the $ symbol.

Caution

Output may be different on your computer, depending on the version of Python software
installed on your computer.

Summary

From now on, we will assume that you have Python installed on your system.

Next, we will write our first Python program.

Chapter 4. First Steps

We will now see how to run a traditional Hello World program in Python. This will teach you how
to write, save and run Python programs.

There are two ways of using Python to run your program - using the interactive interpreter prompt
or using a source file. We will now see how to use both of these methods.

Using The Interpreter Prompt

Open the terminal in your operating system (as discussed previously in the
Installation chapter) and then open the Python prompt by typing python and
pressing enter key.

Once you have started Python, you should see >>> where you can start typing stuff. This is called
the Python interpreter prompt.

At the Python interpreter prompt, type:

print "Hello World"

followed by the enter key. You should see the words Hello World printed to the screen.

Here is an example of what you should be seeing, when using a Mac OS X computer. The details about
the Python software will differ based on your computer, but the part from the prompt (i.e. from
>>> onwards) should be the same regardless of the operating system.

$ python
Python 2.7.6 (default, Feb 23 2014, 16:08:15)
[GCC 4.2.1 Compatible Apple LLVM 5.0 (clang-500.2.79)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> print "hello world"
hello world
>>>

Notice that Python gives you the output of the line immediately! What you just entered is a single
Python statement. We use print to (unsurprisingly) print any value that you supply to it. Here,
we are supplying the text hello world and this is promptly printed to the screen.

How to Quit the Interpreter Prompt

If you are using a GNU/Linux or OS X shell, you can exit the interpreter prompt by pressing
ctrl+d or entering exit() (note: remember to include the parentheses, ()) followed by
the enter key.

If you are using the Windows command prompt, press ctrl+z followed by the enter key.

Choosing An Editor

We cannot type out our program at the interpreter prompt every time we want to run something, so we
have to save them in files and can run our programs any number of times.

To create our Python source files, we need an editor software where you can type and save. A good
programmer’s editor will make your life easier in writing the source files. Hence, the choice of an
editor is crucial indeed. You have to choose an editor as you would choose a car you would buy. A
good editor will help you write Python programs easily, making your journey more comfortable and
helps you reach your destination (achieve your goal) in a much faster and safer way.

One of the very basic requirements is syntax highlighting where all the different parts of your
Python program are colorized so that you can see your program and visualize its running.

If you have no idea where to start, I would recommend using Light Table
software which is available on Windows, Mac OS X and GNU/Linux. Details in the next section.

If you are using Windows, do not use Notepad - it is a bad choice because it does not do syntax
highlighting and also importantly it does not support indentation of the text which is very
important in our case as we will see later. Good editors will automatically do this.

If you are an experienced programmer, then you must be already using Vim or
Emacs. Needless to say, these are two of the most powerful
editors and you will benefit from using them to write your Python programs. I personally use both
for most of my programs, and have even written an entire book on
Vim.

In case you are willing to take the time to learn Vim or Emacs, then I highly recommend that you do
learn to use either of them as it will be very useful for you in the long run. However, as I
mentioned before, beginners can start with Light Table and focus the learning on Python rather than
the editor at this moment.

To reiterate, please choose a proper editor - it can make writing Python programs more fun and
easy.

Light Table

Light Table is a free editor which you can use for writing Python
programs.

Click on File → New file, type the following:

print "hello world"

Click on File → Save and call it hello.py.

Click on View → Console.

Now, place your cursor at the end of the above line and press command+enter to evaluate
the line and you’ll see the output in the console.

Do watch the videos in the LightTable for Python
tutorial to understand how to use Light Table.

Figure 4.1.

 [image: Screenshot of Light Table]

Vim

	
Install Vim

	
Mac OS X users should install macvim package via HomeBrew

	
Windows users should download the "self-installing executable" from
http://www.vim.org/download.php

	
GNU/Linux users should get Vim from their distribution’s software repositories, e.g. Debian and
Ubuntu users can install the vim package.

	
Read the Vim as Python
IDE article by John M Anderson.

	
Install jedi-vim plugin for autocompletion.

Emacs

	
Install Emacs 24.

	
Mac OS X users should get Emacs from http://emacsformacosx.com

	
Windows users should get Emacs from http://ftp.gnu.org/gnu/emacs/windows/

	
GNU/Linux users should get Emacs from their distribution’s software repositories, e.g. Debian
and Ubuntu users can install the emacs24 package.

	
Install ELPY

	
Read ELPY wiki for details.

	
Also recommended is the Emacs Prelude distribution.

Using A Source File

Now let’s get back to programming. There is a tradition that whenever you learn a new programming
language, the first program that you write and run is the Hello World program - all it does is
just say Hello World when you run it. As Simon Cozens [1] says, it is the "traditional incantation to the programming gods to help you
learn the language better."

Start your choice of editor, enter the following program and save it as hello.py.

If you are using Light Table, click on File → New file, type the lines:

print "hello world"

In Light Table, click on File → Save to save a file called hello.py.

Where should you save the file? To any folder for which you know the location of the folder. If you
don’t understand what that means, create a new folder and use that location to save and run all
your Python programs:

	
/tmp/py on Mac OS X

	
/tmp/py on GNU/Linux

	
C:\\py on Windows

To create the above folder (for the operating system you are using), use the mkdir command in the
terminal, for example, mkdir /tmp/py.

Important

Always ensure that you give it the file extension of .py, for example, foo.py.

To run your Python program:

	
Open a terminal window (see the previous Installation chapter on how to do that)

	
Change directory to where you saved the file, for example, cd /tmp/py

	
Run the program by entering the command python hello.py. The output is as shown below.

$ python hello.py
hello world

Figure 4.2.

 [image: Screenshot of running program in terminal]

If you got the output as shown above, congratulations! - you have successfully run your first
Python program. You have successfully crossed the hardest part of learning programming, which is,
getting started with your first program!

In case you got an error, please type the above program exactly as shown above and run the
program again. Note that Python is case-sensitive i.e. print is not the same as Print - note
the lowercase p in the former and the uppercase P in the latter. Also, ensure there are no
spaces or tabs before the first character in each line - we will see why this is
important later.

How It Works.
A Python program is composed of statements. In our first program, we have only one statement. In
this statement, we call the print statement to which we supply the text "hello world".

[1] the author of the amazing
Beginning Perl book

Getting Help

If you need quick information about any function or statement in Python, then you can use the
built-in help functionality. This is very useful especially when using the interpreter
prompt. For example, run help('len') - this displays the help for the len function which is
used to count number of items.

Tip

Press q to exit the help.

Similarly, you can obtain information about almost anything in Python. Use help() to learn more
about using help itself!

In case you need to get help for operators like return, then you need to put those inside quotes
such as help('return') so that Python doesn’t get confused on what we’re trying to do.

Summary

You should now be able to write, save and run Python programs at ease.

Now that you are a Python user, let’s learn some more Python concepts.

Chapter 5. Basics

Just printing hello world is not enough, is it? You want to do more than that - you want to take
some input, manipulate it and get something out of it. We can achieve this in Python using
constants and variables, and we’ll learn some other concepts as well in this chapter.

Comments

Comments are any text to the right of the # symbol and is mainly useful as notes for the reader
of the program.

For example:

print 'hello world' # Note that print is a statement

or:

Note that print is a statement
print 'hello world'

Use as many useful comments as you can in your program to:

	
explain assumptions

	
explain important decisions

	
explain important details

	
explain problems you’re trying to solve

	
explain problems you’re trying to overcome in your program, etc.

Code tells
you how, comments should tell you why.

This is useful for readers of your program so that they can easily understand what the program is
doing. Remember, that person can be yourself after six months!

Literal Constants

An example of a literal constant is a number like 5, 1.23, or a string like 'This is a
string' or "It's a string!".

It is called a literal because it is literal - you use its value literally. The number 2 always
represents itself and nothing else - it is a constant because its value cannot be changed. Hence,
all these are referred to as literal constants.

Numbers

Numbers are mainly of two types - integers and floats.

An examples of an integer is 2 which is just a whole number.

Examples of floating point numbers (or floats for short) are 3.23 and 52.3E-4. The E
notation indicates powers of 10. In this case, 52.3E-4 means 52.3 * 10-4.

Note for Experienced Programmers

There is no separate long type. The int type can be an integer of any size.

Strings

A string is a sequence of characters. Strings are basically just a bunch of words.

You will be using strings in almost every Python program that you write, so pay attention to the
following part.

Single Quote

You can specify strings using single quotes such as 'Quote me on this'.

All white space i.e. spaces and tabs, within the quotes, are preserved as-is.

Double Quotes

Strings in double quotes work exactly the same way as strings in single quotes. An example is
"What's your name?".

Triple Quotes

You can specify multi-line strings using triple quotes - (""" or '''). You can use single
quotes and double quotes freely within the triple quotes. An example is:

'''This is a multi-line string. This is the first line.
This is the second line.
"What's your name?," I asked.
He said "Bond, James Bond."
'''

Strings Are Immutable

This means that once you have created a string, you cannot change it. Although this might seem like
a bad thing, it really isn’t. We will see why this is not a limitation in the various programs that
we see later on.

Note for C/C++ Programmers

There is no separate char data type in Python. There is no real need for it and I am sure you
won’t miss it.

Note for Perl/PHP Programmers

Remember that single-quoted strings and double-quoted strings are the same - they do not differ in
any way.

The format method

Sometimes we may want to construct strings from other information. This is where the format()
method is useful.

Save the following lines as a file str_format.py:

age = 20
name = 'Swaroop'

print '{0} was {1} years old when he wrote this book'.format(name, age)
print 'Why is {0} playing with that python?'.format(name)

Output:

$ python str_format.py
Swaroop was 20 years old when he wrote this book
Why is Swaroop playing with that python?

How It Works.
A string can use certain specifications and subsequently, the format method can be called to
substitute those specifications with corresponding arguments to the format method.

Observe the first usage where we use {0} and this corresponds to the variable name which is the
first argument to the format method. Similarly, the second specification is {1} corresponding to
age which is the second argument to the format method. Note that Python starts counting from 0
which means that first position is at index 0, second position is at index 1, and so on.

Notice that we could have achieved the same using string concatenation:

name + ' is ' + str(age) + ' years old'

but that is much uglier and error-prone. Second, the conversion to string would be done
automatically by the format method instead of the explicit conversion to strings needed in this
case. Third, when using the format method, we can change the message without having to deal with
the variables used and vice-versa.

Also note that the numbers are optional, so you could have also written as:

age = 20
name = 'Swaroop'

print '{} was {} years old when he wrote this book'.format(name, age)
print 'Why is {} playing with that python?'.format(name)

which will give the same exact output as the previous program.

What Python does in the format method is that it substitutes each argument value into the place
of the specification. There can be more detailed specifications such as:

decimal (.) precision of 3 for float '0.333'
print '{0:.3f}'.format(1.0/3)
fill with underscores (_) with the text centered
(^) to 11 width '___hello___'
print '{0:_^11}'.format('hello')
keyword-based 'Swaroop wrote A Byte of Python'
print '{name} wrote {book}'.format(name='Swaroop',
 book='A Byte of Python')

Output:

0.333
___hello___
Swaroop wrote A Byte of Python

Since we are discussing formatting, note that print always ends with an invisible "new line"
character (\n) so that repeated calls to print will all print on a separate line each. To
prevent this newline character from being printed, you can end the statement with a comma:

print "a",
print "b",

Output is:

a b

Escape Sequences

Suppose, you want to have a string which contains a single quote ('), how will you specify this
string? For example, the string is "What's your name?". You cannot specify 'What's your name?'
because Python will be confused as to where the string starts and ends. So, you will have to
specify that this single quote does not indicate the end of the string. This can be done with the
help of what is called an escape sequence. You specify the single quote as \' : notice the
backslash. Now, you can specify the string as 'What\'s your name?'.

Another way of specifying this specific string would be "What's your name?" i.e. using double
quotes. Similarly, you have to use an escape sequence for using a double quote itself in a double
quoted string. Also, you have to indicate the backslash itself using the escape sequence \\.

What if you wanted to specify a two-line string? One way is to use a triple-quoted string as shown
previously or you can use an escape sequence for the newline character - \n to
indicate the start of a new line. An example is:

'This is the first line\nThis is the second line'

Another useful escape sequence to know is the tab: \t. There are many more escape sequences but I
have mentioned only the most useful ones here.

One thing to note is that in a string, a single backslash at the end of the line indicates that the
string is continued in the next line, but no newline is added. For example:

"This is the first sentence. \
This is the second sentence."

is equivalent to

"This is the first sentence. This is the second sentence."

Raw String

If you need to specify some strings where no special processing such as escape sequences are
handled, then what you need is to specify a raw string by prefixing r or R to the string. An
example is:

r"Newlines are indicated by \n"

Note for Regular Expression Users

Always use raw strings when dealing with regular expressions. Otherwise, a lot of backwhacking may
be required. For example, backreferences can be referred to as '\\1' or r'\1'.

Variable

Using just literal constants can soon become boring - we need some way of storing any information
and manipulate them as well. This is where variables come into the picture. Variables are exactly
what the name implies - their value can vary, i.e., you can store anything using a
variable. Variables are just parts of your computer’s memory where you store some
information. Unlike literal constants, you need some method of accessing these variables and hence
you give them names.

Identifier Naming

Variables are examples of identifiers. Identifiers are names given to identify something. There
are some rules you have to follow for naming identifiers:

	
The first character of the identifier must be a letter of the alphabet (uppercase ASCII or
lowercase ASCII or Unicode character) or an underscore (_).

	
The rest of the identifier name can consist of letters (uppercase ASCII or lowercase ASCII or
Unicode character), underscores (_) or digits (0-9).

	
Identifier names are case-sensitive. For example, myname and myName are not the same. Note
the lowercase n in the former and the uppercase N in the latter.

	
Examples of valid identifier names are i, __my_name, name_23. Examples of invalid
identifier names are 2things, this is spaced out, my-name and >a1b2_c3.

Data Types

Variables can hold values of different types called data types. The basic types are numbers and
strings, which we have already discussed. In later chapters, we will see how to create our own
types using classes.

Object

Remember, Python refers to anything used in a program as an object. This is meant in the generic
sense. Instead of saying "the something"', we say "the object".

Note for Object Oriented Programming users

Python is strongly object-oriented in the sense that everything is an object including numbers,
strings and functions.

We will now see how to use variables along with literal constants. Save the following example and
run the program.

How to write Python programs

Henceforth, the standard procedure to save and run a Python program is as follows:

	
Open your editor of choice, such as Light Table.

	
Type the program code given in the example.

	
Save it as a file with the filename mentioned.

	
Run the interpreter with the command python program.py to run the program.

Example: Using Variables And Literal Constants

Type and run the following program:

Filename : var.py
i = 5
print i
i = i + 1
print i

s = '''This is a multi-line string.
This is the second line.'''
print s

Output:

5
6
This is a multi-line string.
This is the second line.

How It Works.
Here’s how this program works. First, we assign the literal constant value 5 to the variable i
using the assignment operator (=). This line is called a statement because it states that
something should be done and in this case, we connect the variable name i to the value 5. Next,
we print the value of i using the print statement which, unsurprisingly, just prints the value
of the variable to the screen.

Then we add 1 to the value stored in i and store it back. We then print it and expectedly, we
get the value 6.

Similarly, we assign the literal string to the variable s and then print it.

Note for static language programmers

Variables are used by just assigning them a value. No declaration or data type definition is
needed/used.

Logical And Physical Line

A physical line is what you see when you write the program. A logical line is what Python sees
as a single statement. Python implicitly assumes that each physical line corresponds to a
logical line.

An example of a logical line is a statement like print 'hello world' - if this was on a line by
itself (as you see it in an editor), then this also corresponds to a physical line.

Implicitly, Python encourages the use of a single statement per line which makes code more
readable.

If you want to specify more than one logical line on a single physical line, then you have to
explicitly specify this using a semicolon (;) which indicates the end of a logical
line/statement. For example:

i = 5
print i

is effectively same as

i = 5;
print i;

which is also same as

i = 5; print i;

and same as

i = 5; print i

However, I strongly recommend that you stick to writing a maximum of a single logical line on
each single physical line. The idea is that you should never use the semicolon. In fact, I have
never used or even seen a semicolon in a Python program.

There is one kind of situation where this concept is really useful: if you have a long line of
code, you can break it into multiple physical lines by using the backslash. This is referred to as
explicit line joining:

s = 'This is a string. \
This continues the string.'
print s

Output:

This is a string. This continues the string.

Similarly,

print \
i

is the same as

print i

Sometimes, there is an implicit assumption where you don’t need to use a backslash. This is the
case where the logical line has a starting parentheses, starting square brackets or a starting
curly braces but not an ending one. This is called implicit line joining. You can see this in
action when we write programs using lists in later chapters.

Indentation

Whitespace is important in Python. Actually, whitespace at the beginning of the line is
important. This is called indentation. Leading whitespace (spaces and tabs) at the beginning of
the logical line is used to determine the indentation level of the logical line, which in turn is
used to determine the grouping of statements.

This means that statements which go together must have the same indentation. Each such set of
statements is called a block. We will see examples of how blocks are important in later chapters.

One thing you should remember is that wrong indentation can give rise to errors. For example:

i = 5
Error below! Notice a single space at the start of the line
 print 'Value is ', i
print 'I repeat, the value is ', i

When you run this, you get the following error:

 File "whitespace.py", line 5
 print 'Value is ', i
 ^
IndentationError: unexpected indent

Notice that there is a single space at the beginning of the second line. The error indicated by
Python tells us that the syntax of the program is invalid i.e. the program was not properly
written. What this means to you is that you cannot arbitrarily start new blocks of statements
(except for the default main block which you have been using all along, of course). Cases where you
can use new blocks will be detailed in later chapters such as the Control Flow.

How to indent.
Use four spaces for indentation. This is the official Python language recommendation. Good editors
will automatically do this for you. Make sure you use a consistent number of spaces for
indentation, otherwise your program will show errors.

Note to static language programmers

Python will always use indentation for blocks and will never use braces. Run from __future__
import braces to learn more.

Summary

Now that we have gone through many nitty-gritty details, we can move on to more interesting stuff
such as control flow statements. Be sure to become comfortable with what you have read in this
chapter.

Chapter 6. Operators and Expressions

Most statements (logical lines) that you write will contain expressions. A simple example of an
expression is 2 + 3. An expression can be broken down into operators and operands.

Operators are functionality that do something and can be represented by symbols such as + or by
special keywords. Operators require some data to operate on and such data is called operands. In
this case, 2 and 3 are the operands.

Operators

We will briefly take a look at the operators and their usage.

Note that you can evaluate the expressions given in the examples using the interpreter
interactively. For example, to test the expression 2 + 3, use the interactive Python interpreter
prompt:

>>> 2 + 3
5
>>> 3 * 5
15
>>>

Here is a quick overview of the available operators:

	+ (plus)
	
Adds two objects

3 + 5 gives 8. 'a' + 'b' gives 'ab'.

	- (minus)
	
Gives the subtraction of one number from the other; if the first operand is absent it is assumed to
be zero.

-5.2 gives a negative number and 50 - 24 gives 26.

	* (multiply)
	
Gives the multiplication of the two numbers or returns the string repeated that many times.

2 * 3 gives 6. 'la' * 3 gives 'lalala'.

	** (power)
	
Returns x to the power of y

3 ** 4 gives 81 (i.e. 3 * 3 * 3 * 3)

	/ (divide)
	
Divide x by y

13 / 3 gives 4.333333333333333.

	// (floor division)
	
Returns the floor of the quotient

13 // 3 gives 4.

	% (modulo)
	
Returns the remainder of the division

13 % 3 gives 1. -25.5 % 2.25 gives 1.5.

	<< (left shift)
	
Shifts the bits of the number to the left by the number of bits specified. (Each number is
represented in memory by bits or binary digits i.e. 0 and 1)

2 << 2 gives 8. 2 is represented by 10 in bits.

Left shifting by 2 bits gives 1000 which represents the decimal 8.

	>> (right shift)
	
Shifts the bits of the number to the right by the number of bits specified.

11 >> 1 gives 5.

11 is represented in bits by 1011 which when right shifted by 1 bit gives 101`which is the
decimal `5.

	& (bit-wise AND)
	
Bit-wise AND of the numbers

5 & 3 gives 1.

	| (bit-wise OR)
	
Bitwise OR of the numbers

5 | 3 gives 7

	^ (bit-wise XOR)
	
Bitwise XOR of the numbers

5 ^ 3 gives 6

	~ (bit-wise invert)
	
The bit-wise inversion of x is -(x+1)

~5 gives -6. More details at http://stackoverflow.com/a/11810203

	< (less than)
	
Returns whether x is less than y. All comparison operators return True or False. Note the
capitalization of these names.

5 < 3 gives False and 3 < 5 gives True.

Comparisons can be chained arbitrarily: 3 < 5 < 7 gives True.

	> (greater than)
	
Returns whether x is greater than y

5 > 3 returns True. If both operands are numbers, they are first converted to a common
type. Otherwise, it always returns False.

	<= (less than or equal to)
	
Returns whether x is less than or equal to y

x = 3; y = 6; x <= y returns True.

	>= (greater than or equal to)
	
Returns whether x is greater than or equal to y

x = 4; y = 3; x >= 3 returns True.

	== (equal to)
	
Compares if the objects are equal

x = 2; y = 2; x == y returns True.

x = 'str'; y = 'stR'; x == y returns False.

x = 'str'; y = 'str'; x == y returns True.

	!= (not equal to)
	
Compares if the objects are not equal

x = 2; y = 3; x != y returns True.

	not (boolean NOT)
	
If x is True, it returns False. If x is False, it returns True.

x = True; not x returns False.

	and (boolean AND)
	
x and y returns False if x is False, else it returns evaluation of y

x = False; y = True; x and y returns False since x is False. In this case, Python will not
evaluate y since it knows that the left hand side of the and expression is False which implies
that the whole expression will be False irrespective of the other values. This is called
short-circuit evaluation.

	or (boolean OR)
	
If x is True, it returns True, else it returns evaluation of y

x = True; y = False; x or y returns True. Short-circuit evaluation applies here as well.

Shortcut for math operation and assignment

It is common to run a math operation on a variable and then assign the result of the operation back
to the variable, hence there is a shortcut for such expressions:

a = 2
a = a * 3

can be written as:

a = 2
a *= 3

Notice that var = var operation expression becomes var operation= expression.

Evaluation Order

If you had an expression such as 2 + 3 * 4, is the addition done first or the multiplication? Our
high school maths tells us that the multiplication should be done first. This means that the
multiplication operator has higher precedence than the addition operator.

The following table gives the precedence table for Python, from the lowest precedence (least
binding) to the highest precedence (most binding). This means that in a given expression, Python
will first evaluate the operators and expressions lower in the table before the ones listed higher
in the table.

The following table, taken from the
Python reference manual,
is provided for the sake of completeness. It is far better to use parentheses to group operators
and operands appropriately in order to explicitly specify the precedence. This makes the program
more readable. See Changing the Order of Evaluation below for
details.

	lambda
	
Lambda Expression

	if - else
	
Conditional expression

	or
	
Boolean OR

	and
	
Boolean AND

	not x
	
Boolean NOT

	in, not in, is, is not, <, <=, >, >=, !=, ==
	
Comparisons, including membership tests and identity tests

	|
	
Bitwise OR

	^
	
Bitwise XOR

	&
	
Bitwise AND

	<<, >>
	
Shifts

	+, -
	
Addition and subtraction

	*, /, //, %
	
Multiplication, Division, Floor Division and Remainder

	+x, -x, ~x
	
Positive, Negative, bitwise NOT

	**
	
Exponentiation

	x[index], x[index:index], x(arguments...), x.attribute
	
Subscription, slicing, call, attribute reference

	(expressions...), [expressions...], {key: value...}, {expressions...}
	
Binding or tuple display, list display, dictionary display, set display

The operators which we have not already come across will be explained in later chapters.

Operators with the same precedence are listed in the same row in the above table. For example,
+ and - have the same precedence.

Changing the Order Of Evaluation

To make the expressions more readable, we can use parentheses. For example, 2 + (3 * 4) is
definitely easier to understand than 2 + 3 * 4 which requires knowledge of the operator
precedences. As with everything else, the parentheses should be used reasonably (do not overdo it)
and should not be redundant, as in (2 + (3 * 4)).

There is an additional advantage to using parentheses - it helps us to change the order of
evaluation. For example, if you want addition to be evaluated before multiplication in an
expression, then you can write something like (2 + 3) * 4.

Associativity

Operators are usually associated from left to right. This means that operators with the same
precedence are evaluated in a left to right manner. For example, 2 + 3 + 4 is evaluated as (2 +
3) + 4. Some operators like assignment operators have right to left associativity i.e. a = b = c
is treated as a = (b = c).

Expressions

Example (save as expression.py):

length = 5
breadth = 2

area = length * breadth
print 'Area is', area
print 'Perimeter is', 2 * (length + breadth)

Output:

$ python expression.py
Area is 10
Perimeter is 14

How It Works.
The length and breadth of the rectangle are stored in variables by the same name. We use these to
calculate the area and perimeter of the rectangle with the help of expressions. We store the result
of the expression length * breadth in the variable area and then print it using the print
function. In the second case, we directly use the value of the expression 2 * (length + breadth)
in the print statement.

Also, notice how Python pretty-prints the output. Even though we have not specified a space
between 'Area is' and the variable area, Python puts it for us so that we get a clean nice
output and the program is much more readable this way (since we don’t need to worry about spacing
in the strings we use for output). This is an example of how Python makes life easy for the
programmer.

Summary

We have seen how to use operators, operands and expressions - these are the basic building blocks
of any program. Next, we will see how to make use of these in our programs using statements.

Chapter 7. Control Flow

In the programs we have seen till now, there has always been a series of statements faithfully
executed by Python in exact top-down order. What if you wanted to change the flow of how it works?
For example, you want the program to take some decisions and do different things depending on
different situations, such as printing Good Morning or Good Evening depending on the time of
the day?

As you might have guessed, this is achieved using control flow statements. There are three control
flow statements in Python - if, for and while.

The if statement

The if statement is used to check a condition: if the condition is true, we run a block of
statements (called the if-block), else we process another block of statements (called the
else-block). The else clause is optional.

Example (save as if.py):

number = 23
guess = int(raw_input('Enter an integer : '))

if guess == number:
 # New block starts here
 print 'Congratulations, you guessed it.'
 print '(but you do not win any prizes!)'
 # New block ends here
elif guess < number:
 # Another block
 print 'No, it is a little higher than that'
 # You can do whatever you want in a block ...
else:
 print 'No, it is a little lower than that'
 # you must have guessed > number to reach here

print 'Done'
This last statement is always executed,
after the if statement is executed.

Output:

$ python if.py
Enter an integer : 50
No, it is a little lower than that
Done

$ python if.py
Enter an integer : 22
No, it is a little higher than that
Done

$ python if.py
Enter an integer : 23
Congratulations, you guessed it.
(but you do not win any prizes!)
Done

How It Works.
In this program, we take guesses from the user and check if it is the number that we have. We set
the variable number to any integer we want, say 23. Then, we take the user’s guess using the
raw_input() function. Functions are just reusable pieces of programs. We’ll read more about them
in the next chapter.

We supply a string to the built-in raw_input function which prints it to the screen and waits for
input from the user. Once we enter something and press enter key, the raw_input() function
returns what we entered, as a string. We then convert this string to an integer using int and
then store it in the variable guess. Actually, the int is a class but all you need to know
right now is that you can use it to convert a string to an integer (assuming the string contains a
valid integer in the text).

Next, we compare the guess of the user with the number we have chosen. If they are equal, we print
a success message. Notice that we use indentation levels to tell Python which statements belong to
which block. This is why indentation is so important in Python. I hope you are sticking to the
"consistent indentation" rule. Are you?

Notice how the if statement contains a colon at the end - we are indicating to Python that a
block of statements follows.

Then, we check if the guess is less than the number, and if so, we inform the user that they must
guess a little higher than that. What we have used here is the elif clause which actually
combines two related if else-if else statements into one combined if-elif-else statement. This
makes the program easier and reduces the amount of indentation required.

The elif and else statements must also have a colon at the end of the logical line followed by
their corresponding block of statements (with proper indentation, of course)

You can have another if statement inside the if-block of an if statement and so on - this is
called a nested if statement.

Remember that the elif and else parts are optional. A minimal valid if statement is:

if True:
 print 'Yes, it is true'

After Python has finished executing the complete if statement along with the associated elif
and else clauses, it moves on to the next statement in the block containing the if
statement. In this case, it is the main block (where execution of the program starts), and the next
statement is the print 'Done' statement. After this, Python sees the ends of the program and
simply finishes up.

Even though this is a very simple program, I have been pointing out a lot of things that you should
notice. All these are pretty straightforward (and surprisingly simple for those of you from C/C++
backgrounds). You will need to become aware of all these things initially, but after some practice
you will become comfortable with them, and it will all feel natural to you.

Note for C/C++ Programmers

There is no switch statement in Python. You can use an if..elif..else statement to do the same
thing (and in some cases, use a dictionary to do it quickly)

The while Statement

The while statement allows you to repeatedly execute a block of statements as long as a condition
is true. A while statement is an example of what is called a looping statement. A while
statement can have an optional else clause.

Example (save as while.py):

number = 23
running = True

while running:
 guess = int(raw_input('Enter an integer : '))

 if guess == number:
 print 'Congratulations, you guessed it.'
 # this causes the while loop to stop
 running = False
 elif guess < number:
 print 'No, it is a little higher than that.'
 else:
 print 'No, it is a little lower than that.'
else:
 print 'The while loop is over.'
 # Do anything else you want to do here

print 'Done'

Output:

$ python while.py
Enter an integer : 50
No, it is a little lower than that.
Enter an integer : 22
No, it is a little higher than that.
Enter an integer : 23
Congratulations, you guessed it.
The while loop is over.
Done

How It Works.
In this program, we are still playing the guessing game, but the advantage is that the user is
allowed to keep guessing until he guesses correctly - there is no need to repeatedly run the
program for each guess, as we have done in the previous section. This aptly demonstrates the use of
the while statement.

We move the raw_input and if statements to inside the while loop and set the variable
running to True before the while loop. First, we check if the variable running is True and
then proceed to execute the corresponding while-block. After this block is executed, the
condition is again checked which in this case is the running variable. If it is true, we execute
the while-block again, else we continue to execute the optional else-block and then continue to the
next statement.

The else block is executed when the while loop condition becomes False - this may even be the
first time that the condition is checked. If there is an else clause for a while loop, it is
always executed unless you break out of the loop with a break statement.

The True and False are called Boolean types and you can consider them to be equivalent to the
value 1 and 0 respectively.

Note for C/C++ Programmers

Remember that you can have an else clause for the while loop.

The for loop

The for..in statement is another looping statement which iterates over a sequence of objects
i.e. go through each item in a sequence. We will see more about sequences in detail in
later chapters. What you need to know right now is that a sequence is just an ordered collection of
items.

Example (save as for.py):

for i in range(1, 5):
 print i
else:
 print 'The for loop is over'

Output:

$ python for.py
1
2
3
4
The for loop is over

How It Works.
In this program, we are printing a sequence of numbers. We generate this sequence of numbers
using the built-in range function.

What we do here is supply it two numbers and range returns a sequence of numbers starting from
the first number and up to the second number. For example, range(1,5) gives the sequence [1, 2,
3, 4]. By default, range takes a step count of 1. If we supply a third number to range, then
that becomes the step count. For example, range(1,5,2) gives [1,3]. Remember that the range
extends up to the second number i.e. it does not include the second number.

Note that range() generates a sequence of numbers, but it will generate only one number at a
time, when the for loop requests for the next item. If you want to see the full sequence of numbers
immediately, use list(range()). Lists are explained in the data structures
chapter.

The for loop then iterates over this range - for i in range(1,5) is equivalent to for i in [1,
2, 3, 4] which is like assigning each number (or object) in the sequence to i, one at a time, and
then executing the block of statements for each value of i. In this case, we just print the
value in the block of statements.

Remember that the else part is optional. When included, it is always executed once after the
for loop is over unless a break statement is encountered.

Remember that the for..in loop works for any sequence. Here, we have a list of numbers generated
by the built-in range function, but in general we can use any kind of sequence of any kind of
objects! We will explore this idea in detail in later chapters.

Note for C/C++/Java/C# Programmers

The Python for loop is radically different from the C/C++ for loop. C# programmers will note
that the for loop in Python is similar to the foreach loop in C#. Java programmers will note
that the same is similar to for (int i : IntArray) in Java 1.5.

In C/C++, if you want to write for (int i = 0; i < 5; i++), then in Python you write just for i
in range(0,5). As you can see, the for loop is simpler, more expressive and less error prone in
Python.

The break Statement

The break statement is used to break out of a loop statement i.e. stop the execution of a
looping statement, even if the loop condition has not become False or the sequence of items has
not been completely iterated over.

An important note is that if you break out of a for or while loop, any corresponding loop
else block is not executed.

Example (save as break.py):

while True:
 s = raw_input('Enter something : ')
 if s == 'quit':
 break
 print 'Length of the string is', len(s)
print 'Done'

Output:

$ python break.py
Enter something : Programming is fun
Length of the string is 18
Enter something : When the work is done
Length of the string is 21
Enter something : if you wanna make your work also fun:
Length of the string is 37
Enter something : use Python!
Length of the string is 11
Enter something : quit
Done

How It Works.
In this program, we repeatedly take the user’s input and print the length of each input each
time. We are providing a special condition to stop the program by checking if the user input is
'quit'. We stop the program by breaking out of the loop and reach the end of the program.

The length of the input string can be found out using the built-in len function.

Remember that the break statement can be used with the for loop as well.

Swaroop’s Poetic Python

The input I have used here is a mini poem I have written:

 Programming is fun

When the work is done

if you wanna make your work also fun:

 use Python!

The continue Statement

The continue statement is used to tell Python to skip the rest of the statements in the current
loop block and to continue to the next iteration of the loop.

Example (save as continue.py):

while True:
 s = raw_input('Enter something : ')
 if s == 'quit':
 break
 if len(s) < 3:
 print 'Too small'
 continue
 print 'Input is of sufficient length'
 # Do other kinds of processing here...

Output:

$ python continue.py
Enter something : a
Too small
Enter something : 12
Too small
Enter something : abc
Input is of sufficient length
Enter something : quit

How It Works.
In this program, we accept input from the user, but we process the input string only if it is at
least 3 characters long. So, we use the built-in len function to get the length and if the length
is less than 3, we skip the rest of the statements in the block by using the continue
statement. Otherwise, the rest of the statements in the loop are executed, doing any kind of
processing we want to do here.

Note that the continue statement works with the for loop as well.

Summary

We have seen how to use the three control flow statements - if, while and for along with
their associated break and continue statements. These are some of the most commonly used parts
of Python and hence, becoming comfortable with them is essential.

Next, we will see how to create and use functions.

Chapter 8. Functions

Functions are reusable pieces of programs. They allow you to give a name to a block of statements,
allowing you to run that block using the specified name anywhere in your program and any number of
times. This is known as calling the function. We have already used many built-in functions such
as len and range.

The function concept is probably the most important building block of any non-trivial software
(in any programming language), so we will explore various aspects of functions in this chapter.

Functions are defined using the def keyword. After this keyword comes an identifier name for
the function, followed by a pair of parentheses which may enclose some names of variables, and by
the final colon that ends the line. Next follows the block of statements that are part of this
function. An example will show that this is actually very simple:

Example (save as function1.py):

def say_hello():
 # block belonging to the function
 print 'hello world'
End of function

say_hello() # call the function
say_hello() # call the function again

Output:

$ python function1.py
hello world
hello world

How It Works.
We define a function called say_hello using the syntax as explained above. This function takes no
parameters and hence there are no variables declared in the parentheses. Parameters to functions
are just input to the function so that we can pass in different values to it and get back
corresponding results.

Notice that we can call the same function twice which means we do not have to write the same code
again.

Function Parameters

A function can take parameters, which are values you supply to the function so that the function
can do something utilising those values. These parameters are just like variables except that the
values of these variables are defined when we call the function and are already assigned values
when the function runs.

Parameters are specified within the pair of parentheses in the function definition, separated by
commas. When we call the function, we supply the values in the same way. Note the terminology
used - the names given in the function definition are called parameters whereas the values you
supply in the function call are called arguments.

Example (save as function_param.py):

def print_max(a, b):
 if a > b:
 print a, 'is maximum'
 elif a == b:
 print a, 'is equal to', b
 else:
 print b, 'is maximum'

directly pass literal values
print_max(3, 4)

x = 5
y = 7

pass variables as arguments
print_max(x, y)

Output:

$ python function_param.py
4 is maximum
7 is maximum

How It Works.
Here, we define a function called print_max that uses two parameters called a and b. We find
out the greater number using a simple if..else statement and then print the bigger number.

The first time we call the function print_max, we directly supply the numbers as arguments. In
the second case, we call the function with variables as arguments. print_max(x, y) causes the
value of argument x to be assigned to parameter a and the value of argument y to be assigned
to parameter b. The printMax function works the same way in both cases.

Local Variables

When you declare variables inside a function definition, they are not related in any way to other
variables with the same names used outside the function - i.e. variable names are local to the
function. This is called the scope of the variable. All variables have the scope of the block
they are declared in starting from the point of definition of the name.

Example (save as function_local.py):

x = 50

def func(x):
 print 'x is', x
 x = 2
 print 'Changed local x to', x

func(x)
print 'x is still', x

Output:

$ python function_local.py
x is 50
Changed local x to 2
x is still 50

How It Works.
The first time that we print the value of the name x with the first line in the function’s
body, Python uses the value of the parameter declared in the main block, above the function
definition.

Next, we assign the value 2 to x. The name x is local to our function. So, when we change
the value of x in the function, the x defined in the main block remains unaffected.

With the last print statement, we display the value of x as defined in the main block, thereby
confirming that it is actually unaffected by the local assignment within the previously called
function.

The global statement

If you want to assign a value to a name defined at the top level of the program (i.e. not inside
any kind of scope such as functions or classes), then you have to tell Python that the name is not
local, but it is global. We do this using the global statement. It is impossible to assign a
value to a variable defined outside a function without the global statement.

You can use the values of such variables defined outside the function (assuming there is no
variable with the same name within the function). However, this is not encouraged and should be
avoided since it becomes unclear to the reader of the program as to where that variable’s
definition is. Using the global statement makes it amply clear that the variable is defined in an
outermost block.

Example (save as function_global.py):

x = 50

def func():
 global x

 print 'x is', x
 x = 2
 print 'Changed global x to', x

func()
print 'Value of x is', x

Output:

$ python function_global.py
x is 50
Changed global x to 2
Value of x is 2

How It Works.
The global statement is used to declare that x is a global variable - hence, when we assign a
value to x inside the function, that change is reflected when we use the value of x in the main
block.

You can specify more than one global variable using the same global statement e.g. global x, y,
z.

Default Argument Values

For some functions, you may want to make some parameters optional and use default values in case
the user does not want to provide values for them. This is done with the help of default argument
values. You can specify default argument values for parameters by appending to the parameter name
in the function definition the assignment operator (=) followed by the default value.

Note that the default argument value should be a constant. More precisely, the default argument
value should be immutable - this is explained in detail in later chapters. For now, just remember
this.

Example (save as function_default.py):

def say(message, times=1):
 print message * times

say('Hello')
say('World', 5)

Output:

$ python function_default.py
Hello
WorldWorldWorldWorldWorld

How It Works.
The function named say is used to print a string as many times as specified. If we don’t supply a
value, then by default, the string is printed just once. We achieve this by specifying a default
argument value of 1 to the parameter times.

In the first usage of say, we supply only the string and it prints the string once. In the second
usage of say, we supply both the string and an argument 5 stating that we want to say the
string message 5 times.

Caution

Only those parameters which are at the end of the parameter list can be given default argument
values i.e. you cannot have a parameter with a default argument value preceding a parameter without
a default argument value in the function’s parameter list.

This is because the values are assigned to the parameters by position. For example,def func(a,
b=5) is valid, but def func(a=5, b) is not valid.

Keyword Arguments

If you have some functions with many parameters and you want to specify only some of them, then you
can give values for such parameters by naming them - this is called keyword arguments - we use
the name (keyword) instead of the position (which we have been using all along) to specify the
arguments to the function.

There are two advantages - one, using the function is easier since we do not need to worry about
the order of the arguments. Two, we can give values to only those parameters to which we want to,
provided that the other parameters have default argument values.

Example (save as function_keyword.py):

def func(a, b=5, c=10):
 print 'a is', a, 'and b is', b, 'and c is', c

func(3, 7)
func(25, c=24)
func(c=50, a=100)

Output:

$ python function_keyword.py
a is 3 and b is 7 and c is 10
a is 25 and b is 5 and c is 24
a is 100 and b is 5 and c is 50

How It Works.
The function named func has one parameter without a default argument value, followed by two
parameters with default argument values.

In the first usage, func(3, 7), the parameter a gets the value 3, the parameter b gets the
value 7 and c gets the default value of 10.

In the second usage func(25, c=24), the variable a gets the value of 25 due to the position of
the argument. Then, the parameter c gets the value of 24 due to naming i.e. keyword
arguments. The variable b gets the default value of 5.

In the third usage func(c=50, a=100), we use keyword arguments for all specified values. Notice
that we are specifying the value for parameter c before that for a even though a is defined
before c in the function definition.

VarArgs parameters

Sometimes you might want to define a function that can take any number of parameters,
i.e. variable number of arguments, this can be achieved by using the stars (save as
function_varargs.py):

def total(initial=5, *numbers, **keywords):
 count = initial
 for number in numbers:
 count += number
 for key in keywords:
 count += keywords[key]
 return count

print total(10, 1, 2, 3, vegetables=50, fruits=100)

Output:

$ python function_varargs.py
166

How It Works.
When we declare a starred parameter such as *param, then all the positional arguments from that
point till the end are collected as a tuple called param.

Similarly, when we declare a double-starred parameter such as **param, then all the keyword
arguments from that point till the end are collected as a dictionary called param.

We will explore tuples and dictionaries in a later chapter.

The return statement

The return statement is used to return from a function i.e. break out of the function. We can
optionally return a value from the function as well.

Example (save as function_return.py):

def maximum(x, y):
 if x > y:
 return x
 elif x == y:
 return 'The numbers are equal'
 else:
 return y

print maximum(2, 3)

Output:

$ python function_return.py
3

How It Works.
The maximum function returns the maximum of the parameters, in this case the numbers supplied to
the function. It uses a simple if..else statement to find the greater value and then returns
that value.

Note that a return statement without a value is equivalent to return None. None is a special
type in Python that represents nothingness. For example, it is used to indicate that a variable has
no value if it has a value of None.

Every function implicitly contains a return None statement at the end unless you have written
your own return statement. You can see this by running print some_function() where the function
some_function does not use the return statement such as:

def some_function():
 pass

The pass statement is used in Python to indicate an empty block of statements.

Tip

There is a built-in function called max that already implements the find maximum
functionality, so use this built-in function whenever possible.

DocStrings

Python has a nifty feature called documentation strings, usually referred to by its shorter name
docstrings. DocStrings are an important tool that you should make use of since it helps to
document the program better and makes it easier to understand. Amazingly, we can even get the
docstring back from, say a function, when the program is actually running!

Example (save as function_docstring.py):

def print_max(x, y):
 '''Prints the maximum of two numbers.

 The two values must be integers.'''
 # convert to integers, if possible
 x = int(x)
 y = int(y)

 if x > y:
 print x, 'is maximum'
 else:
 print y, 'is maximum'

print_max(3, 5)
print print_max.__doc__

Output:

$ python function_docstring.py
5 is maximum
Prints the maximum of two numbers.

 The two values must be integers.

How It Works.
A string on the first logical line of a function is the docstring for that function. Note that
DocStrings also apply to modules and classes which we will learn about in the
respective chapters.

The convention followed for a docstring is a multi-line string where the first line starts with a
capital letter and ends with a dot. Then the second line is blank followed by any detailed
explanation starting from the third line. You are strongly advised to follow this convention for
all your docstrings for all your non-trivial functions.

We can access the docstring of the print_max function using the __doc__ (notice the double
underscores) attribute (name belonging to) of the function. Just remember that Python treats
everything as an object and this includes functions. We’ll learn more about objects in the
chapter on classes.

If you have used help() in Python, then you have already seen the
usage of docstrings! What it does is just fetch the __doc__
attribute of that function and displays it in a neat manner for
you. You can try it out on the function above - just include help(print_max) in your
program. Remember to press the q key to exit help.

Automated tools can retrieve the documentation from your program in this manner. Therefore, I
strongly recommend that you use docstrings for any non-trivial function that you write. The
pydoc command that comes with your Python distribution works similarly to help() using
docstrings.

Summary

We have seen so many aspects of functions but note that we still haven’t covered all aspects of
them. However, we have already covered most of what you’ll use regarding Python functions on an
everyday basis.

Next, we will see how to use as well as create Python modules.

Chapter 9. Modules

You have seen how you can reuse code in your program by defining functions once. What if you wanted
to reuse a number of functions in other programs that you write? As you might have guessed, the
answer is modules.

There are various methods of writing modules, but the simplest way is to create a file with a .py
extension that contains functions and variables.

Another method is to write the modules in the native language in which the Python interpreter
itself was written. For example, you can write modules in the C
programming language and when compiled, they can be used from your Python code when using the
standard Python interpreter.

A module can be imported by another program to make use of its functionality. This is how we can
use the Python standard library as well. First, we will see how to use the standard library
modules.

Example (save as module_using_sys.py):

import sys

print('The command line arguments are:')
for i in sys.argv:
 print i

print '\n\nThe PYTHONPATH is', sys.path, '\n'

Output:

$ python module_using_sys.py
The command line arguments are:
module_using_sys.py
we
are
arguments

The PYTHONPATH is ['/tmp/py',
many entries here, not shown here
'/Library/Python/2.7/site-packages',
'/usr/local/lib/python2.7/site-packages']

How It Works.
First, we import the sys module using the import statement. Basically, this translates to us
telling Python that we want to use this module. The sys module contains functionality related to
the Python interpreter and its environment i.e. the system.

When Python executes the import sys statement, it looks for the sys module. In this case, it is
one of the built-in modules, and hence Python knows where to find it.

If it was not a compiled module i.e. a module written in Python, then the Python interpreter will
search for it in the directories listed in its sys.path variable. If the module is found, then
the statements in the body of that module are run and the module is made available for you
to use. Note that the initialization is done only the first time that we import a module.

The argv variable in the sys module is accessed using the dotted notation i.e. sys.argv. It
clearly indicates that this name is part of the sys module. Another advantage of this approach is
that the name does not clash with any argv variable used in your program.

The sys.argv variable is a list of strings (lists are explained in detail in a
later chapter. Specifically, the sys.argv contains the list of command line
arguments i.e. the arguments passed to your program using the command line.

If you are using an IDE to write and run these programs, look for a way to specify command line
arguments to the program in the menus.

Here, when we execute python module_using_sys.py we are arguments, we run the module
module_using_sys.py with the python command and the other things that follow are arguments
passed to the program. Python stores the command line arguments in the sys.argv variable for us
to use.

Remember, the name of the script running is always the first argument in the sys.argv list. So,
in this case we will have 'using_sys.py' as sys.argv[0], 'we' as sys.argv[1], 'are' as
sys.argv[2] and 'arguments' as sys.argv[3]. Notice that Python starts counting from 0 and
not 1.

The sys.path contains the list of directory names where modules are imported from. Observe that
the first string in sys.path is empty - this empty string indicates that the current directory is
also part of the sys.path which is same as the PYTHONPATH environment variable. This means that
you can directly import modules located in the current directory. Otherwise, you will have to place
your module in one of the directories listed in sys.path.

Note that the current directory is the directory from which the program is launched. Run import
os; print os.getcwd() to find out the current directory of your program.

Byte-compiled .pyc files

Importing a module is a relatively costly affair, so Python does some tricks to make it faster. One
way is to create byte-compiled files with the extension .pyc which is an intermediate form that
Python transforms the program into (remember the introduction section on how Python
works?). This .pyc file is useful when you import the module the next time from a different
program - it will be much faster since a portion of the processing required in importing a module
is already done. Also, these byte-compiled files are platform-independent.

Note

These .pyc files are usually created in the same directory as the corresponding .py
files. If Python does not have permission to write to files in that directory, then the .pyc
files will not be created.

The from … import statement

If you want to directly import the argv variable into your program (to avoid typing the sys.
everytime for it), then you can use the from sys import argv statement.

In general, you should avoid using this statement and use the import statement instead since
your program will avoid name clashes and will be more readable.

Example:

from math import sqrt
print "Square root of 16 is", sqrt(16)

A module’s __name__

Every module has a name and statements in a module can find out the name of their module. This is
handy for the particular purpose of figuring out whether the module is being run standalone or
being imported. As mentioned previously, when a module is imported for the first time, the code it
contains gets executed. We can use this to make the module behave in different ways depending on
whether it is being used by itself or being imported from another module. This can be achieved
using the __name__ attribute of the module.

Example (save as module_using_name.py):

if __name__ == '__main__':
 print 'This program is being run by itself'
else:
 print 'I am being imported from another module'

Output:

$ python module_using_name.py
This program is being run by itself

$ python
>>> import module_using_name
I am being imported from another module
>>>

How It Works.
Every Python module has its __name__ defined. If this is '__main__', that implies that the
module is being run standalone by the user and we can take appropriate actions.

Making Your Own Modules

Creating your own modules is easy, you’ve been doing it all along! This is because every Python
program is also a module. You just have to make sure it has a .py extension. The following
example should make it clear.

Example (save as mymodule.py):

def say_hi():
 print 'Hi, this is mymodule speaking.'

__version__ = '0.1'

The above was a sample module. As you can see, there is nothing particularly special about it
compared to our usual Python program. We will next see how to use this module in our other Python
programs.

Remember that the module should be placed either in the same directory as the program from which we
import it, or in one of the directories listed in sys.path.

Another module (save as mymodule_demo.py):

import mymodule

mymodule.say_hi()
print 'Version', mymodule.__version__

Output:

$ python mymodule_demo.py
Hi, this is mymodule speaking.
Version 0.1

How It Works.
Notice that we use the same dotted notation to access members of the module. Python makes good
reuse of the same notation to give the distinctive Pythonic feel to it so that we don’t have to
keep learning new ways to do things.

Here is a version utilising the from..import syntax (save as mymodule_demo2.py):

from mymodule import say_hi, __version__

say_hi()
print 'Version', __version__

The output of mymodule_demo2.py is same as the output of mymodule_demo.py.

Notice that if there was already a __version__ name declared in the module that imports mymodule,
there would be a clash. This is also likely because it is common practice for each module to
declare it’s version number using this name. Hence, it is always recommended to prefer the import
statement even though it might make your program a little longer.

You could also use:

from mymodule import *

This will import all public names such as sayhi but would not import __version__ because it
starts with double underscores.

Warning

Remember that you should avoid using import-star, i.e. from mymodule import *.

Zen of Python

One of Python’s guiding principles is that "Explicit is better than Implicit". Run import this in
Python to learn more and see this
StackOverflow discussion which lists examples for each of the principles.

The dir function

You can use the built-in dir function to list the identifiers that an object defines. For
example, for a module, the identifiers include the functions, classes and variables defined in that
module.

When you supply a module name to the`dir()` function, it returns the list of the names defined in
that module. When no argument is applied to it, it returns the list of names defined in the current
module.

Example:

$ python
>>> import sys

get names of attributes in sys module
>>> dir(sys)
['__displayhook__', '__doc__',
'argv', 'builtin_module_names',
'version', 'version_info']
only few entries shown here

get names of attributes for current module
>>> dir()
['__builtins__', '__doc__',
'__name__', '__package__']

create a new variable 'a'
>>> a = 5

>>> dir()
['__builtins__', '__doc__', '__name__', '__package__', 'a']

delete/remove a name
>>> del a

>>> dir()
['__builtins__', '__doc__', '__name__', '__package__']

How It Works.
First, we see the usage of dir on the imported sys module. We can see the huge list of
attributes that it contains.

Next, we use the dir function without passing parameters to it. By default, it returns the list
of attributes for the current module. Notice that the list of imported modules is also part of this
list.

In order to observe the dir in action, we define a new variable a and assign it a value and
then check dir and we observe that there is an additional value in the list of the same name. We
remove the variable/attribute of the current module using the del statement and the change is
reflected again in the output of the dir function.

A note on del - this statement is used to delete a variable/name and after the statement has
run, in this case del a, you can no longer access the variable a - it is as if it never existed
before at all.

Note that the dir() function works on any object. For example, run dir('print') to learn
about the attributes of the print function, or dir(str) for the attributes of the str class.

There is also a vars() function which can
potentially give you the attributes and their values, but it will not work for all cases.

Packages

By now, you must have started observing the hierarchy of organizing your programs. Variables
usually go inside functions. Functions and global variables usually go inside modules. What if you
wanted to organize modules? That’s where packages come into the picture.

Packages are just folders of modules with a special __init__.py file that indicates to Python
that this folder is special because it contains Python modules.

Let’s say you want to create a package called world with subpackages asia, africa, etc. and
these subpackages in turn contain modules like india, madagascar, etc.

This is how you would structure the folders:

- <some folder present in the sys.path>/
 - world/
 - __init__.py
 - asia/
 - __init__.py
 - india/
 - __init__.py
 - foo.py
 - africa/
 - __init__.py
 - madagascar/
 - __init__.py
 - bar.py

Packages are just a convenience to hierarchically organize modules. You will see many instances of
this in the standard library.

Summary

Just like functions are reusable parts of programs, modules are reusable programs. Packages are
another hierarchy to organize modules. The standard library that comes with Python is an example of
such a set of packages and modules.

We have seen how to use these modules and create our own modules.

Next, we will learn about some interesting concepts called data structures.

Chapter 10. Data Structures

Data structures are basically just that - they are structures which can hold some data
together. In other words, they are used to store a collection of related data.

There are four built-in data structures in Python - list, tuple, dictionary and set. We will see
how to use each of them and how they make life easier for us.

List

A list is a data structure that holds an ordered collection of items i.e. you can store a
sequence of items in a list. This is easy to imagine if you can think of a shopping list where
you have a list of items to buy, except that you probably have each item on a separate line in your
shopping list whereas in Python you put commas in between them.

The list of items should be enclosed in square brackets so that Python understands that you are
specifying a list. Once you have created a list, you can add, remove or search for items in the
list. Since we can add and remove items, we say that a list is a mutable data type i.e. this type
can be altered.

Quick Introduction To Objects And Classes

Although I’ve been generally delaying the discussion of objects and classes till now, a little
explanation is needed right now so that you can understand lists better. We will explore this topic
in detail in a later chapter.

A list is an example of usage of objects and classes. When we use a variable i and assign a value
to it, say integer 5 to it, you can think of it as creating an object (i.e. instance) i of
class (i.e. type) int. In fact, you can read help(int) to understand this better.

A class can also have methods i.e. functions defined for use with respect to that class only. You
can use these pieces of functionality only when you have an object of that class. For example,
Python provides an append method for the list class which allows you to add an item to the end
of the list. For example, mylist.append('an item') will add that string to the list
mylist. Note the use of dotted notation for accessing methods of the objects.

A class can also have fields which are nothing but variables defined for use with respect to that
class only. You can use these variables/names only when you have an object of that class. Fields
are also accessed by the dotted notation, for example, mylist.field.

Example (save as ds_using_list.py):

This is my shopping list
shoplist = ['apple', 'mango', 'carrot', 'banana']

print 'I have', len(shoplist), 'items to purchase.'

print 'These items are:',
for item in shoplist:
 print item,

print '\nI also have to buy rice.'
shoplist.append('rice')
print 'My shopping list is now', shoplist

print 'I will sort my list now'
shoplist.sort()
print 'Sorted shopping list is', shoplist

print 'The first item I will buy is', shoplist[0]
olditem = shoplist[0]
del shoplist[0]
print 'I bought the', olditem
print 'My shopping list is now', shoplist

Output:

$ python ds_using_list.py
I have 4 items to purchase.
These items are: apple mango carrot banana
I also have to buy rice.
My shopping list is now ['apple', 'mango', 'carrot', 'banana', 'rice']
I will sort my list now
Sorted shopping list is ['apple', 'banana', 'carrot', 'mango', 'rice']
The first item I will buy is apple
I bought the apple
My shopping list is now ['banana', 'carrot', 'mango', 'rice']

How It Works.
The variable shoplist is a shopping list for someone who is going to the market. In shoplist,
we only store strings of the names of the items to buy but you can add any kind of object to a
list including numbers and even other lists.

We have also used the for..in loop to iterate through the items of the list. By now, you must
have realised that a list is also a sequence. The speciality of sequences will be discussed in a
later section.

Notice the use of the trailing comma in the print statement to indicate that we want to end the
output with a space instead of the usual line break. Think of the comma as telling Python that we
have more items to print on the same line.

Next, we add an item to the list using the append method of the list object, as already discussed
before. Then, we check that the item has been indeed added to the list by printing the contents of
the list by simply passing the list to the print statement which prints it neatly.

Then, we sort the list by using the sort method of the list. It is important to understand that
this method affects the list itself and does not return a modified list - this is different from
the way strings work. This is what we mean by saying that lists are mutable and that strings are
immutable.

Next, when we finish buying an item in the market, we want to remove it from the list. We achieve
this by using the del statement. Here, we mention which item of the list we want to remove and
the del statement removes it from the list for us. We specify that we want to remove the first
item from the list and hence we use del shoplist[0] (remember that Python starts counting from
0).

If you want to know all the methods defined by the list object, see help(list) for details.

Tuple

Tuples are used to hold together multiple objects. Think of them as similar to lists, but without
the extensive functionality that the list class gives you. One major feature of tuples is that they
are immutable like strings i.e. you cannot modify tuples.

Tuples are defined by specifying items separated by commas within an optional pair of parentheses.

Tuples are usually used in cases where a statement or a user-defined function can safely assume
that the collection of values i.e. the tuple of values used will not change.

Example (save as ds_using_tuple.py):

I would recommend always using parentheses
to indicate start and end of tuple
even though parentheses are optional.
Explicit is better than implicit.
zoo = ('python', 'elephant', 'penguin')
print 'Number of animals in the zoo is', len(zoo)

new_zoo = 'monkey', 'camel', zoo
print 'Number of cages in the new zoo is', len(new_zoo)
print 'All animals in new zoo are', new_zoo
print 'Animals brought from old zoo are', new_zoo[2]
print 'Last animal brought from old zoo is', new_zoo[2][2]
print 'Number of animals in the new zoo is', \
 len(new_zoo)-1+len(new_zoo[2])

Output:

$ python ds_using_tuple.py
Number of animals in the zoo is 3
Number of cages in the new zoo is 3
All animals in new zoo are ('monkey', 'camel', ('python', 'elephant', 'penguin'))
Animals brought from old zoo are ('python', 'elephant', 'penguin')
Last animal brought from old zoo is penguin
Number of animals in the new zoo is 5

How It Works.
The variable zoo refers to a tuple of items. We see that the len function can be used to get
the length of the tuple. This also indicates that a tuple is a sequence as well.

We are now shifting these animals to a new zoo since the old zoo is being closed. Therefore, the
new_zoo tuple contains some animals which are already there along with the animals brought over
from the old zoo. Back to reality, note that a tuple within a tuple does not lose its identity.

We can access the items in the tuple by specifying the item’s position within a pair of square
brackets just like we did for lists. This is called the indexing operator. We access the third
item in new_zoo by specifying new_zoo[2] and we access the third item within the third item in
the new_zoo tuple by specifying new_zoo[2][2]. This is pretty simple once you’ve understood the
idiom.

Tuple with 0 or 1 items

An empty tuple is constructed by an empty pair of parentheses such as myempty = (). However, a
tuple with a single item is not so simple. You have to specify it using a comma following the first
(and only) item so that Python can differentiate between a tuple and a pair of parentheses
surrounding the object in an expression i.e. you have to specify singleton = (2 ,) if you mean
you want a tuple containing the item 2.

Note for Perl programmers

A list within a list does not lose its identity i.e. lists are not flattened as in Perl. The same
applies to a tuple within a tuple, or a tuple within a list, or a list within a tuple, etc. As far
as Python is concerned, they are just objects stored using another object, that’s all.

Dictionary

A dictionary is like an address-book where you can find the address or contact details of a person
by knowing only his/her name i.e. we associate keys (name) with values (details). Note that the
key must be unique just like you cannot find out the correct information if you have two persons
with the exact same name.

Note that you can use only immutable objects (like strings) for the keys of a dictionary but you
can use either immutable or mutable objects for the values of the dictionary. This basically
translates to say that you should use only simple objects for keys.

Pairs of keys and values are specified in a dictionary by using the notation d = {key1 : value1,
key2 : value2 }. Notice that the key-value pairs are separated by a colon and the pairs are
separated themselves by commas and all this is enclosed in a pair of curly braces.

Remember that key-value pairs in a dictionary are not ordered in any manner. If you want a
particular order, then you will have to sort them yourself before using it.

The dictionaries that you will be using are instances/objects of the dict class.

Example (save as ds_using_dict.py):

'ab' is short for 'a'ddress'b'ook

ab = { 'Swaroop' : 'swaroop@swaroopch.com',
 'Larry' : 'larry@wall.org',
 'Matsumoto' : 'matz@ruby-lang.org',
 'Spammer' : 'spammer@hotmail.com'
 }

print "Swaroop's address is", ab['Swaroop']

Deleting a key-value pair
del ab['Spammer']

print '\nThere are {} contacts in the address-book\n'.format(len(ab))

for name, address in ab.items():
 print 'Contact {} at {}'.format(name, address)

Adding a key-value pair
ab['Guido'] = 'guido@python.org'

if 'Guido' in ab:
 print "\nGuido's address is", ab['Guido']

Output:

$ python ds_using_dict.py
Swaroop's address is swaroop@swaroopch.com

There are 3 contacts in the address-book

Contact Swaroop at swaroop@swaroopch.com
Contact Matsumoto at matz@ruby-lang.org
Contact Larry at larry@wall.org

Guido's address is guido@python.org

How It Works.
We create the dictionary ab using the notation already discussed. We then access key-value pairs
by specifying the key using the indexing operator as discussed in the context of lists and
tuples. Observe the simple syntax.

We can delete key-value pairs using our old friend - the del statement. We simply specify the
dictionary and the indexing operator for the key to be removed and pass it to the del
statement. There is no need to know the value corresponding to the key for this operation.

Next, we access each key-value pair of the dictionary using the items method of the dictionary
which returns a list of tuples where each tuple contains a pair of items - the key followed by the
value. We retrieve this pair and assign it to the variables name and address correspondingly
for each pair using the for..in loop and then print these values in the for-block.

We can add new key-value pairs by simply using the indexing operator to access a key and assign
that value, as we have done for Guido in the above case.

We can check if a key-value pair exists using the in operator.

For the list of methods of the dict class, see help(dict).

Keyword Arguments and Dictionaries

If you have used keyword arguments in your functions, you have already used dictionaries! Just
think about it - the key-value pair is specified by you in the parameter list of the function
definition and when you access variables within your function, it is just a key access of a
dictionary (which is called the symbol table in compiler design terminology).

Sequence

Lists, tuples and strings are examples of sequences, but what are sequences and what is so special
about them?

The major features are membership tests, (i.e. the in and not in expressions) and indexing
operations, which allow us to fetch a particular item in the sequence directly.

The three types of sequences mentioned above - lists, tuples and strings, also have a slicing
operation which allows us to retrieve a slice of the sequence i.e. a part of the sequence.

Example (save as ds_seq.py):

shoplist = ['apple', 'mango', 'carrot', 'banana']
name = 'swaroop'

Indexing or 'Subscription' operation
print 'Item 0 is', shoplist[0]
print 'Item 1 is', shoplist[1]
print 'Item 2 is', shoplist[2]
print 'Item 3 is', shoplist[3]
print 'Item -1 is', shoplist[-1]
print 'Item -2 is', shoplist[-2]
print 'Character 0 is', name[0]

Slicing on a list
print 'Item 1 to 3 is', shoplist[1:3]
print 'Item 2 to end is', shoplist[2:]
print 'Item 1 to -1 is', shoplist[1:-1]
print 'Item start to end is', shoplist[:]

Slicing on a string
print 'characters 1 to 3 is', name[1:3]
print 'characters 2 to end is', name[2:]
print 'characters 1 to -1 is', name[1:-1]
print 'characters start to end is', name[:]

Output:

$ python ds_seq.py
Item 0 is apple
Item 1 is mango
Item 2 is carrot
Item 3 is banana
Item -1 is banana
Item -2 is carrot
Character 0 is s
Item 1 to 3 is ['mango', 'carrot']
Item 2 to end is ['carrot', 'banana']
Item 1 to -1 is ['mango', 'carrot']
Item start to end is ['apple', 'mango', 'carrot', 'banana']
characters 1 to 3 is wa
characters 2 to end is aroop
characters 1 to -1 is waroo
characters start to end is swaroop

How It Works.
First, we see how to use indexes to get individual items of a sequence. This is also referred to as
the subscription operation. Whenever you specify a number to a sequence within square brackets as
shown above, Python will fetch you the item corresponding to that position in the
sequence. Remember that Python starts counting numbers from 0. Hence, shoplist[0] fetches the
first item and shoplist[3] fetches the fourth item in the `shoplist`sequence.

The index can also be a negative number, in which case, the position is calculated from the end of
the sequence. Therefore, shoplist[-1] refers to the last item in the sequence and shoplist[-2]
fetches the second last item in the sequence.

The slicing operation is used by specifying the name of the sequence followed by an optional pair
of numbers separated by a colon within square brackets. Note that this is very similar to the
indexing operation you have been using till now. Remember the numbers are optional but the colon
isn’t.

The first number (before the colon) in the slicing operation refers to the position from where the
slice starts and the second number (after the colon) indicates where the slice will stop at. If the
first number is not specified, Python will start at the beginning of the sequence. If the second
number is left out, Python will stop at the end of the sequence. Note that the slice returned
starts at the start position and will end just before the end position i.e. the start position
is included but the end position is excluded from the sequence slice.

Thus, shoplist[1:3] returns a slice of the sequence starting at position 1, includes position 2
but stops at position 3 and therefore a slice of two items is returned. Similarly, shoplist[:]
returns a copy of the whole sequence.

You can also do slicing with negative positions. Negative numbers are used for positions from the
end of the sequence. For example, shoplist[:-1] will return a slice of the sequence which
excludes the last item of the sequence but contains everything else.

You can also provide a third argument for the slice, which is the step for the slicing (by
default, the step size is 1):

>>> shoplist = ['apple', 'mango', 'carrot', 'banana']
>>> shoplist[::1]
['apple', 'mango', 'carrot', 'banana']
>>> shoplist[::2]
['apple', 'carrot']
>>> shoplist[::3]
['apple', 'banana']
>>> shoplist[::-1]
['banana', 'carrot', 'mango', 'apple']

Notice that when the step is 2, we get the items with position 0, 2,… When the step size is 3, we
get the items with position 0, 3, etc.

Try various combinations of such slice specifications using the Python interpreter interactively
i.e. the prompt so that you can see the results immediately. The great thing about sequences is
that you can access tuples, lists and strings all in the same way!

Set

Sets are unordered collections of simple objects. These are used when the existence of an object
in a collection is more important than the order or how many times it occurs.

Using sets, you can test for membership, whether it is a subset of another set, find the
intersection between two sets, and so on.

>>> bri = set(['brazil', 'russia', 'india'])
>>> 'india' in bri
True
>>> 'usa' in bri
False
>>> bric = bri.copy()
>>> bric.add('china')
>>> bric.issuperset(bri)
True
>>> bri.remove('russia')
>>> bri & bric # OR bri.intersection(bric)
{'brazil', 'india'}

How It Works.
The example is pretty much self-explanatory because it involves basic set theory mathematics taught
in school.

References

When you create an object and assign it to a variable, the variable only refers to the object and
does not represent the object itself! That is, the variable name points to that part of your
computer’s memory where the object is stored. This is called binding the name to the object.

Generally, you don’t need to be worried about this, but there is a subtle effect due to references
which you need to be aware of:

Example (save as ds_reference.py):

print 'Simple Assignment'
shoplist = ['apple', 'mango', 'carrot', 'banana']
mylist is just another name pointing to the same object!
mylist = shoplist

I purchased the first item, so I remove it from the list
del shoplist[0]

print 'shoplist is', shoplist
print 'mylist is', mylist
Notice that both shoplist and mylist both print
the same list without the 'apple' confirming that
they point to the same object

print 'Copy by making a full slice'
Make a copy by doing a full slice
mylist = shoplist[:]
Remove first item
del mylist[0]

print 'shoplist is', shoplist
print 'mylist is', mylist
Notice that now the two lists are different

Output:

$ python ds_reference.py
Simple Assignment
shoplist is ['mango', 'carrot', 'banana']
mylist is ['mango', 'carrot', 'banana']
Copy by making a full slice
shoplist is ['mango', 'carrot', 'banana']
mylist is ['carrot', 'banana']

How It Works.
Most of the explanation is available in the comments.

Remember that if you want to make a copy of a list or such kinds of sequences or complex objects
(not simple objects such as integers), then you have to use the slicing operation to make a
copy. If you just assign the variable name to another name, both of them will 'refer' to the same
object and this could be trouble if you are not careful.

Note for Perl programmers

Remember that an assignment statement for lists does not create a copy. You have to use slicing
operation to make a copy of the sequence.

More About Strings

We have already discussed strings in detail earlier. What more can there be to know? Well, did you
know that strings are also objects and have methods which do everything from checking part of a
string to stripping spaces!

The strings that you use in program are all objects of the class str. Some useful methods of
this class are demonstrated in the next example. For a complete list of such methods, see
help(str).

Example (save as ds_str_methods.py):

This is a string object
name = 'Swaroop'

if name.startswith('Swa'):
 print 'Yes, the string starts with "Swa"'

if 'a' in name:
 print 'Yes, it contains the string "a"'

if name.find('war') != -1:
 print 'Yes, it contains the string "war"'

delimiter = '_*_'
mylist = ['Brazil', 'Russia', 'India', 'China']
print delimiter.join(mylist)

Output:

$ python ds_str_methods.py
Yes, the string starts with "Swa"
Yes, it contains the string "a"
Yes, it contains the string "war"
Brazil_*_Russia_*_India_*_China

How It Works.
Here, we see a lot of the string methods in action. The startswith method is used to find out
whether the string starts with the given string. The in operator is used to check if a given
string is a part of the string.

The find method is used to locate the position of the given substring within the string; find
returns -1 if it is unsuccessful in finding the substring. The str class also has a neat method
to join the items of a sequence with the string acting as a delimiter between each item of the
sequence and returns a bigger string generated from this.

Summary

We have explored the various built-in data structures of Python in detail. These data structures
will be essential for writing programs of reasonable size.

Now that we have a lot of the basics of Python in place, we will next see how to design and write a
real-world Python program.

Chapter 11. Problem Solving

We have explored various parts of the Python language and now we will take a look at how all these
parts fit together, by designing and writing a program which does something useful. The idea is
to learn how to write a Python script on your own.

The Problem

The problem we want to solve is:

I want a program which creates a backup of all my important files.

Although, this is a simple problem, there is not enough information for us to get started with the
solution. A little more analysis is required. For example, how do we specify which files are to
be backed up? How are they stored? Where are they stored?

After analyzing the problem properly, we design our program. We make a list of things about how
our program should work. In this case, I have created the following list on how I want it to
work. If you do the design, you may not come up with the same kind of analysis since every person
has their own way of doing things, so that is perfectly okay.

	
The files and directories to be backed up are specified in a list.

	
The backup must be stored in a main backup directory.

	
The files are backed up into a zip file.

	
The name of the zip archive is the current date and time.

	
We use the standard zip command available by default in any standard GNU/Linux or Unix
distribution. Note that you can use any archiving command you
want as long as it has a command line interface.

For Windows users

Windows users can install the zip command from
the GnuWin32 project page and add C:\Program
Files\GnuWin32\bin to your system PATH environment variable, similar to what we did
for recognizing the python command itself.

The Solution

As the design of our program is now reasonably stable, we can write the code which is an
implementation of our solution.

Save as backup_ver1.py:

import os
import time

1. The files and directories to be backed up are
specified in a list.
Example on Windows:
source = ['"C:\\My Documents"', 'C:\\Code']
Example on Mac OS X and Linux:
source = ['/Users/swa/notes']
Notice we had to use double quotes inside the string
for names with spaces in it.

2. The backup must be stored in a
main backup directory
Example on Windows:
target_dir = 'E:\\Backup'
Example on Mac OS X and Linux:
target_dir = '/Users/swa/backup'
Remember to change this to which folder you will be using

3. The files are backed up into a zip file.
4. The name of the zip archive is the current date and time
target = target_dir + os.sep + \
 time.strftime('%Y%m%d%H%M%S') + '.zip'

Create target directory if it is not present
if not os.path.exists(target_dir):
 os.mkdir(target_dir) # make directory

5. We use the zip command to put the files in a zip archive
zip_command = "zip -r {0} {1}".format(target,
 ' '.join(source))

Run the backup
print "Zip command is:"
print zip_command
print "Running:"
if os.system(zip_command) == 0:
 print 'Successful backup to', target
else:
 print 'Backup FAILED'

Output:

$ python backup_ver1.py
Zip command is:
zip -r /Users/swa/backup/20140328084844.zip /Users/swa/notes
Running:
 adding: Users/swa/notes/ (stored 0%)
 adding: Users/swa/notes/blah1.txt (stored 0%)
 adding: Users/swa/notes/blah2.txt (stored 0%)
 adding: Users/swa/notes/blah3.txt (stored 0%)
Successful backup to /Users/swa/backup/20140328084844.zip

Now, we are in the testing phase where we test that our program works properly. If it doesn’t
behave as expected, then we have to debug our program i.e. remove the bugs (errors) from the
program.

If the above program does not work for you, copy the line printed after the Zip command is line
in the output, paste it in the shell (on GNU/Linux and Mac OS X) / cmd (on Windows), see what the
error is and try to fix it. Also check the zip command manual on what could be wrong. If this
command succeeds, then the problem might be in the Python program itself, so check if it exactly
matches the program written above.

How It Works.
You will notice how we have converted our design into code in a step-by-step manner.

We make use of the os and time modules by first importing them. Then, we specify the files and
directories to be backed up in the source list. The target directory is where we store all the
backup files and this is specified in the target_dir variable. The name of the zip archive that
we are going to create is the current date and time which we generate using the time.strftime()
function. It will also have the .zip extension and will be stored in the target_dir directory.

Notice the use of the os.sep variable - this gives the directory separator according to your
operating system i.e. it will be '/' in GNU/Linux and Unix, it will be '\\' in Windows and
':' in Mac OS. Using os.sep instead of these characters directly will make our program portable
and work across all of these systems.

The time.strftime() function takes a specification such as the one we have used in the above
program. The %Y specification will be replaced by the year with the century. The %m
specification will be replaced by the month as a decimal number between 01 and 12 and
so on. The complete list of such specifications can be found in the
Python Reference Manual.

We create the name of the target zip file using the addition operator which concatenates the
strings i.e. it joins the two strings together and returns a new one. Then, we create a string
zip_command which contains the command that we are going to execute. You can check if this
command works by running it in the shell (GNU/Linux terminal or DOS prompt).

The zip command that we are using has some options and parameters passed. The -r option
specifies that the zip command should work recursively for directories i.e. it should include
all the subdirectories and files. The two options are combined and specified in a shortcut as
-qr. The options are followed by the name of the zip archive to create followed by the list of
files and directories to backup. We convert the source list into a string using the join method
of strings which we have already seen how to
use.

Then, we finally run the command using the os.system function which runs the command as if it
was run from the system i.e. in the shell - it returns 0 if the command was successfully, else
it returns an error number.

Depending on the outcome of the command, we print the appropriate message that the backup has
failed or succeeded.

That’s it, we have created a script to take a backup of our important files!

Note to Windows Users

Instead of double backslash escape sequences, you can also use raw strings. For example, use
'C:\\Documents' or r'C:\Documents'. However, do not use 'C:\Documents' since you end up
using an unknown escape sequence \D.

Now that we have a working backup script, we can use it whenever we want to take a backup of the
files. This is called the operation phase or the deployment phase of the software.

The above program works properly, but (usually) first programs do not work exactly as you
expect. For example, there might be problems if you have not designed the program properly or if
you have made a mistake when typing the code, etc. Appropriately, you will have to go back to the
design phase or you will have to debug your program.

Second Version

The first version of our script works. However, we can make some refinements to it so that it can
work better on a daily basis. This is called the maintenance phase of the software.

One of the refinements I felt was useful is a better file-naming mechanism - using the time as
the name of the file within a directory with the current date as a directory within the main
backup directory. The first advantage is that your backups are stored in a hierarchical manner and
therefore it is much easier to manage. The second advantage is that the filenames are much
shorter. The third advantage is that separate directories will help you check if you have made a
backup for each day since the directory would be created only if you have made a backup for
that day.

Save as backup_ver2.py:

import os
import time

1. The files and directories to be backed up are
specified in a list.
Example on Windows:
source = ['"C:\\My Documents"', 'C:\\Code']
Example on Mac OS X and Linux:
source = ['/Users/swa/notes']
Notice we had to use double quotes inside the string
for names with spaces in it.

2. The backup must be stored in a
main backup directory
Example on Windows:
target_dir = 'E:\\Backup'
Example on Mac OS X and Linux:
target_dir = '/Users/swa/backup'
Remember to change this to which folder you will be using

Create target directory if it is not present
if not os.path.exists(target_dir):
 os.mkdir(target_dir) # make directory

3. The files are backed up into a zip file.
4. The current day is the name of the subdirectory
in the main directory.
today = target_dir + os.sep + time.strftime('%Y%m%d')
The current time is the name of the zip archive.
now = time.strftime('%H%M%S')

The name of the zip file
target = today + os.sep + now + '.zip'

Create the subdirectory if it isn't already there
if not os.path.exists(today):
 os.mkdir(today)
 print 'Successfully created directory', today

5. We use the zip command to put the files in a zip archive
zip_command = "zip -r {0} {1}".format(target,
 ' '.join(source))

Run the backup
print "Zip command is:"
print zip_command
print "Running:"
if os.system(zip_command) == 0:
 print 'Successful backup to', target
else:
 print 'Backup FAILED'

Output:

$ python backup_ver2.py
Successfully created directory /Users/swa/backup/20140329
Zip command is:
zip -r /Users/swa/backup/20140329/073201.zip /Users/swa/notes
Running:
 adding: Users/swa/notes/ (stored 0%)
 adding: Users/swa/notes/blah1.txt (stored 0%)
 adding: Users/swa/notes/blah2.txt (stored 0%)
 adding: Users/swa/notes/blah3.txt (stored 0%)
Successful backup to /Users/swa/backup/20140329/073201.zip

How It Works.
Most of the program remains the same. The changes are that we check if there is a directory with
the current day as its name inside the main backup directory using the os.path.exists
function. If it doesn’t exist, we create it using the os.mkdir function.

Third Version

The second version works fine when I do many backups, but when there are lots of backups, I am
finding it hard to differentiate what the backups were for! For example, I might have made some
major changes to a program or presentation, then I want to associate what those changes are with
the name of the zip archive. This can be easily achieved by attaching a user-supplied comment to
the name of the zip archive.

Warning

The following program does not work, so do not be alarmed, please follow along because
there’s a lesson in here.

Save as backup_ver3.py:

import os
import time

1. The files and directories to be backed up are
specified in a list.
Example on Windows:
source = ['"C:\\My Documents"', 'C:\\Code']
Example on Mac OS X and Linux:
source = ['/Users/swa/notes']
Notice we had to use double quotes inside the string
for names with spaces in it.

2. The backup must be stored in a
main backup directory
Example on Windows:
target_dir = 'E:\\Backup'
Example on Mac OS X and Linux:
target_dir = '/Users/swa/backup'
Remember to change this to which folder you will be using

Create target directory if it is not present
if not os.path.exists(target_dir):
 os.mkdir(target_dir) # make directory

3. The files are backed up into a zip file.
4. The current day is the name of the subdirectory
in the main directory.
today = target_dir + os.sep + time.strftime('%Y%m%d')
The current time is the name of the zip archive.
now = time.strftime('%H%M%S')

Take a comment from the user to
create the name of the zip file
comment = raw_input('Enter a comment --> ')
Check if a comment was entered
if len(comment) == 0:
 target = today + os.sep + now + '.zip'
else:
 target = today + os.sep + now + '_' +
 comment.replace(' ', '_') + '.zip'

Create the subdirectory if it isn't already there
if not os.path.exists(today):
 os.mkdir(today)
 print 'Successfully created directory', today

5. We use the zip command to put the files in a zip archive
zip_command = "zip -r {0} {1}".format(target,
 ' '.join(source))

Run the backup
print "Zip command is:"
print zip_command
print "Running:"
if os.system(zip_command) == 0:
 print 'Successful backup to', target
else:
 print 'Backup FAILED'

Output:

$ python backup_ver3.py
 File "backup_ver3.py", line 39
 target = today + os.sep + now + '_' +
 ^
SyntaxError: invalid syntax

How This (does not) Work.
This program does not work! Python says there is a syntax error which means that the script does
not satisfy the structure that Python expects to see. When we observe the error given by Python, it
also tells us the place where it detected the error as well. So we start debugging our program
from that line.

On careful observation, we see that the single logical line has been split into two physical lines
but we have not specified that these two physical lines belong together. Basically, Python has
found the addition operator (+) without any operand in that logical line and hence it doesn’t
know how to continue. Remember that we can specify that the logical line continues in the next
physical line by the use of a backslash at the end of the physical line. So, we make this
correction to our program. This correction of the program when we find errors is called bug
fixing.

Fourth Version

Save as backup_ver4.py:

import os
import time

1. The files and directories to be backed up are
specified in a list.
Example on Windows:
source = ['"C:\\My Documents"', 'C:\\Code']
Example on Mac OS X and Linux:
source = ['/Users/swa/notes']
Notice we had to use double quotes inside the string
for names with spaces in it.

2. The backup must be stored in a
main backup directory
Example on Windows:
target_dir = 'E:\\Backup'
Example on Mac OS X and Linux:
target_dir = '/Users/swa/backup'
Remember to change this to which folder you will be using

Create target directory if it is not present
if not os.path.exists(target_dir):
 os.mkdir(target_dir) # make directory

3. The files are backed up into a zip file.
4. The current day is the name of the subdirectory
in the main directory.
today = target_dir + os.sep + time.strftime('%Y%m%d')
The current time is the name of the zip archive.
now = time.strftime('%H%M%S')

Take a comment from the user to
create the name of the zip file
comment = raw_input('Enter a comment --> ')
Check if a comment was entered
if len(comment) == 0:
 target = today + os.sep + now + '.zip'
else:
 target = today + os.sep + now + '_' + \
 comment.replace(' ', '_') + '.zip'

Create the subdirectory if it isn't already there
if not os.path.exists(today):
 os.mkdir(today)
 print 'Successfully created directory', today

5. We use the zip command to put the files in a zip archive
zip_command = "zip -r {0} {1}".format(target,
 ' '.join(source))

Run the backup
print "Zip command is:"
print zip_command
print "Running:"
if os.system(zip_command) == 0:
 print 'Successful backup to', target
else:
 print 'Backup FAILED'

Output:

$ python backup_ver4.py
Enter a comment --> added new examples
Zip command is:
zip -r /Users/swa/backup/20140329/074122_added_new_examples.zip /Users/swa/notes
Running:
 adding: Users/swa/notes/ (stored 0%)
 adding: Users/swa/notes/blah1.txt (stored 0%)
 adding: Users/swa/notes/blah2.txt (stored 0%)
 adding: Users/swa/notes/blah3.txt (stored 0%)
Successful backup to /Users/swa/backup/20140329/074122_added_new_examples.zip

How It Works.
This program now works! Let us go through the actual enhancements that we had made in version 3. We
take in the user’s comments using the input function and then check if the user actually entered
something by finding out the length of the input using the len function. If the user has just
pressed enter without entering anything (maybe it was just a routine backup or no special changes
were made), then we proceed as we have done before.

However, if a comment was supplied, then this is attached to the name of the zip archive just
before the .zip extension. Notice that we are replacing spaces in the comment with underscores -
this is because managing filenames without spaces is much easier.

More Refinements

The fourth version is a satisfactorily working script for most users, but there is always room for
improvement. For example, you can include a verbosity level for the program where you can specify
a -v option to make your program become more talkative or a -q to make it quiet.

Another possible enhancement would be to allow extra files and directories to be passed to the
script at the command line. We can get these names from the sys.argv list and we can add them to
our source list using the extend`method provided by the `list class.

The most important refinement would be to not use the os.system way of creating archives and
instead using the zipfile or
tarfile built-in modules to create these
archives. They are part of the standard library and available already for you to use without
external dependencies on the zip program to be available on your computer.

However, I have been using the os.system way of creating a backup in the above examples purely
for pedagogical purposes, so that the example is simple enough to be understood by everybody but
real enough to be useful.

Can you try writing the fifth version that uses the
zipfile module instead of the os.system call?

The Software Development Process

We have now gone through the various phases in the process of writing a software. These phases
can be summarised as follows:

	
What (Analysis)

	
How (Design)

	
Do It (Implementation)

	
Test (Testing and Debugging)

	
Use (Operation or Deployment)

	
Maintain (Refinement)

A recommended way of writing programs is the procedure we have
followed in creating the backup script: Do the analysis and
design. Start implementing with a simple version. Test and debug
it. Use it to ensure that it works as expected. Now, add any features that you want and continue to
repeat the Do It-Test-Use cycle as many times as required.

Remember:

	 	Software is grown, not built.
	
	 	--

 Bill de hÓra

Summary

We have seen how to create our own Python programs/scripts and the various stages involved in
writing such programs. You may find it useful to create your own program just like we did in this
chapter so that you become comfortable with Python as well as problem-solving.

Next, we will discuss object-oriented programming.

Chapter 12. Object Oriented Programming

In all the programs we wrote till now, we have designed our program around functions i.e. blocks of
statements which manipulate data. This is called the procedure-oriented way of programming. There
is another way of organizing your program which is to combine data and functionality and wrap it
inside something called an object. This is called the object oriented programming paradigm. Most
of the time you can use procedural programming, but when writing large programs or have a problem
that is better suited to this method, you can use object oriented programming techniques.

Classes and objects are the two main aspects of object oriented programming. A class creates a
new type where objects are instances of the class. An analogy is that you can have variables
of type int which translates to saying that variables that store integers are variables which are
instances (objects) of the int class.

Note for Static Language Programmers

Note that even integers are treated as objects (of the int class). This is unlike C++ and Java
(before version 1.5) where integers are primitive native types.

See help(int) for more details on the class.

C# and Java 1.5 programmers will find this similar to the boxing and unboxing concept.

Objects can store data using ordinary variables that belong to the object. Variables that belong
to an object or class are referred to as fields. Objects can also have functionality by using
functions that belong to a class. Such functions are called methods of the class. This
terminology is important because it helps us to differentiate between functions and variables which
are independent and those which belong to a class or object. Collectively, the fields and methods
can be referred to as the attributes of that class.

Fields are of two types - they can belong to each instance/object of the class or they can belong
to the class itself. They are called instance variables and class variables respectively.

A class is created using the class keyword. The fields and methods of the class are listed in an
indented block.

The self

Class methods have only one specific difference from ordinary
functions - they must have an extra first name that has to be added to
the beginning of the parameter list, but you do not give a value
for this parameter when you call the method, Python will provide
it. This particular variable refers to the object itself, and by convention, it is given the name
self.

Although, you can give any name for this parameter, it is strongly recommended that you use the
name self - any other name is definitely frowned upon. There are many advantages to using a
standard name - any reader of your program will immediately recognize it and even specialized IDEs
(Integrated Development Environments) can help you if you use self.

Note for C++/Java/C# Programmers

The self in Python is equivalent to the this pointer in C++ and the this reference in Java
and C#.

You must be wondering how Python gives the value for self and why you don’t need to give a value
for it. An example will make this clear. Say you have a class called MyClass and an instance of
this class called myobject. When you call a method of this object as myobject.method(arg1,
arg2), this is automatically converted by Python into MyClass.method(myobject, arg1, arg2) -
this is all the special self is about.

This also means that if you have a method which takes no arguments, then you still have to have one
argument - the self.

Classes

The simplest class possible is shown in the following example (save as oop_simplestclass.py).

class Person:
 pass # An empty block

p = Person()
print(p)

Output:

$ python oop_simplestclass.py
<__main__.Person instance at 0x10171f518>

How It Works.
We create a new class using the class statement and the name of the class. This is followed by an
indented block of statements which form the body of the class. In this case, we have an empty block
which is indicated using the pass statement.

Next, we create an object/instance of this class using the name of the class followed by a pair of
parentheses. (We will learn more about instantiation in the next section). For our
verification, we confirm the type of the variable by simply printing it. It tells us that we have
an instance of the Person class in the __main__ module.

Notice that the address of the computer memory where your object is stored is also printed. The
address will have a different value on your computer since Python can store the object wherever it
finds space.

Methods

We have already discussed that classes/objects can have methods just like functions except that we
have an extra self variable. We will now see an example (save as oop_method.py).

class Person:
 def say_hi(self):
 print('Hello, how are you?')

p = Person()
p.say_hi()
The previous 2 lines can also be written as
Person().say_hi()

Output:

$ python oop_method.py
Hello, how are you?

How It Works.
Here we see the self in action. Notice that the say_hi method takes no parameters but still has
the self in the function definition.

The __init__ method

There are many method names which have special significance in Python classes. We will see the
significance of the __init__ method now.

The __init__ method is run as soon as an object of a class is instantiated. The method is useful
to do any initialization you want to do with your object. Notice the double underscores both at
the beginning and at the end of the name.

Example (save as oop_init.py):

class Person:
 def __init__(self, name):
 self.name = name
 def say_hi(self):
 print 'Hello, my name is', self.name

p = Person('Swaroop')
p.say_hi()
The previous 2 lines can also be written as
Person('Swaroop').say_hi()

Output:

$ python oop_init.py
Hello, my name is Swaroop

How It Works.
Here, we define the __init__ method as taking a parameter name (along with the usual self).
Here, we just create a new field also called name. Notice these are two different variables even
though they are both called name. There is no problem because the dotted notation self.name
means that there is something called "name" that is part of the object called "self" and the other
name is a local variable. Since we explicitly indicate which name we are referring to, there is
no confusion.

Most importantly, notice that we do not explicitly call the __init__ method but pass the
arguments in the parentheses following the class name when creating a new instance of the
class. This is the special significance of this method.

Now, we are able to use the self.name field in our methods which is demonstrated in the sayHi
method.

Class And Object Variables

We have already discussed the functionality part of classes and objects (i.e. methods), now let us
learn about the data part. The data part, i.e. fields, are nothing but ordinary variables that are
bound to the namespaces of the classes and objects. This means that these names are valid
within the context of these classes and objects only. That’s why they are called name spaces.

There are two types of fields - class variables and object variables which are classified
depending on whether the class or the object owns the variables respectively.

Class variables are shared - they can be accessed by all instances of that class. There is only
one copy of the class variable and when any one object makes a change to a class variable, that
change will be seen by all the other instances.

Object variables are owned by each individual object/instance of the class. In this case, each
object has its own copy of the field i.e. they are not shared and are not related in any way to the
field by the same name in a different instance. An example will make this easy to understand (save
as oop_objvar.py):

class Robot:
 """Represents a robot, with a name."""

 # A class variable, counting the number of robots
 population = 0

 def __init__(self, name):
 """Initializes the data."""
 self.name = name
 print "(Initializing {})".format(self.name)

 # When this person is created, the robot
 # adds to the population
 Robot.population += 1

 def die(self):
 """I am dying."""
 print "{} is being destroyed!".format(self.name)

 Robot.population -= 1

 if Robot.population == 0:
 print "{} was the last one.".format(self.name)
 else:
 print "There are still {:d} robots working.".format(
 Robot.population)

 def say_hi(self):
 """Greeting by the robot.

 Yeah, they can do that."""
 print "Greetings, my masters call me {}.".format(self.name)

 @classmethod
 def how_many(cls):
 """Prints the current population."""
 print "We have {:d} robots.".format(cls.population)

droid1 = Robot("R2-D2")
droid1.say_hi()
Robot.how_many()

droid2 = Robot("C-3PO")
droid2.say_hi()
Robot.how_many()

print "\nRobots can do some work here.\n"

print "Robots have finished their work. So let's destroy them."
droid1.die()
droid2.die()

Robot.how_many()

Output:

$ python oop_objvar.py
(Initializing R2-D2)
Greetings, my masters call me R2-D2.
We have 1 robots.
(Initializing C-3PO)
Greetings, my masters call me C-3PO.
We have 2 robots.

Robots can do some work here.

Robots have finished their work. So let's destroy them.
R2-D2 is being destroyed!
There are still 1 robots working.
C-3PO is being destroyed!
C-3PO was the last one.
We have 0 robots.

How It Works.
This is a long example but helps demonstrate the nature of class and object variables. Here,
population belongs to the`Robot` class and hence is a class variable. The name variable belongs
to the object (it is assigned using self) and hence is an object variable.

Thus, we refer to the population class variable as Robot.population and not as
self.population. We refer to the object variable name using self.name notation in the methods
of that object. Remember this simple difference between class and object variables. Also note that
an object variable with the same name as a class variable will hide the class variable!

Instead of Robot.population, we could have also used self.__class__.population because every
object refers to it’s class via the self.__class__ attribute.

The how_many is actually a method that belongs to the class and not to the object. This means we
can define it as either a classmethod or a staticmethod depending on whether we need to know
which class we are part of. Since we refer to a class variable, let’s use classmethod.

We have marked the how_many method as a class method using a decorator.

Decorators can be imagined to be a shortcut to calling a wrapper function, so applying the
@classmethod decorator is same as calling:

how_many = classmethod(how_many)

Observe that the __init__ method is used to initialize the Robot instance with a name. In this
method, we increase the population count by 1 since we have one more robot being added. Also
observe that the values of self.name is specific to each object which indicates the nature of
object variables.

Remember, that you must refer to the variables and methods of the same object using the self
only. This is called an attribute reference.

In this program, we also see the use of docstrings for classes as well as methods. We can access
the class docstring at runtime using Robot.__doc__ and the method docstring as
Robot.say_hi.__doc__

In the die method, we simply decrease the Robot.population count by 1.

All class members are public. One exception: If you use data members with names using the double
underscore prefix such as __privatevar, Python uses name-mangling to effectively make it a
private variable.

Thus, the convention followed is that any variable that is to be used only within the class or
object should begin with an underscore and all other names are public and can be used by other
classes/objects. Remember that this is only a convention and is not enforced by Python (except for
the double underscore prefix).

Note for C++/Java/C# Programmers

All class members (including the data members) are public and all the methods are virtual in
Python.

Inheritance

One of the major benefits of object oriented programming is reuse of code and one of the ways
this is achieved is through the inheritance mechanism. Inheritance can be best imagined as
implementing a type and subtype relationship between classes.

Suppose you want to write a program which has to keep track of the teachers and students in a
college. They have some common characteristics such as name, age and address. They also have
specific characteristics such as salary, courses and leaves for teachers and, marks and fees for
students.

You can create two independent classes for each type and process them but adding a new common
characteristic would mean adding to both of these independent classes. This quickly becomes
unwieldy.

A better way would be to create a common class called SchoolMember and then have the teacher and
student classes inherit from this class i.e. they will become sub-types of this type (class) and
then we can add specific characteristics to these sub-types.

There are many advantages to this approach. If we add/change any functionality in SchoolMember,
this is automatically reflected in the subtypes as well. For example, you can add a new ID card
field for both teachers and students by simply adding it to the SchoolMember class. However,
changes in the subtypes do not affect other subtypes. Another advantage is that if you can refer to
a teacher or student object as a SchoolMember object which could be useful in some situations
such as counting of the number of school members. This is called polymorphism where a sub-type
can be substituted in any situation where a parent type is expected i.e. the object can be treated
as an instance of the parent class.

Also observe that we reuse the code of the parent class and we do not need to repeat it in the
different classes as we would have had to in case we had used independent classes.

The SchoolMember class in this situation is known as the base class or the superclass. The
Teacher and Student classes are called the derived classes or subclasses.

We will now see this example as a program (save as oop_subclass.py):

class SchoolMember:
 '''Represents any school member.'''
 def __init__(self, name, age):
 self.name = name
 self.age = age
 print '(Initialized SchoolMember: {})'.format(self.name)

 def tell(self):
 '''Tell my details.'''
 print 'Name:"{}" Age:"{}"'.format(self.name, self.age),

class Teacher(SchoolMember):
 '''Represents a teacher.'''
 def __init__(self, name, age, salary):
 SchoolMember.__init__(self, name, age)
 self.salary = salary
 print '(Initialized Teacher: {})'.format(self.name)

 def tell(self):
 SchoolMember.tell(self)
 print 'Salary: "{:d}"'.format(self.salary)

class Student(SchoolMember):
 '''Represents a student.'''
 def __init__(self, name, age, marks):
 SchoolMember.__init__(self, name, age)
 self.marks = marks
 print '(Initialized Student: {})'.format(self.name)

 def tell(self):
 SchoolMember.tell(self)
 print 'Marks: "{:d}"'.format(self.marks)

t = Teacher('Mrs. Shrividya', 40, 30000)
s = Student('Swaroop', 25, 75)

prints a blank line
print

members = [t, s]
for member in members:
 # Works for both Teachers and Students
 member.tell()

Output:

$ python oop_subclass.py
(Initialized SchoolMember: Mrs. Shrividya)
(Initialized Teacher: Mrs. Shrividya)
(Initialized SchoolMember: Swaroop)
(Initialized Student: Swaroop)

Name:"Mrs. Shrividya" Age:"40" Salary: "30000"
Name:"Swaroop" Age:"25" Marks: "75"

How It Works.
To use inheritance, we specify the base class names in a tuple following the class name in the
class definition. Next, we observe that the __init__ method of the base class is explicitly
called using the self variable so that we can initialize the base class part of the object. This
is very important to remember - Python does not automatically call the constructor of the base
class, you have to explicitly call it yourself.

We also observe that we can call methods of the base class by prefixing the class name to the
method call and then pass in the self variable along with any arguments.

Notice that we can treat instances of Teacher or Student as just instances of the
SchoolMember when we use the tell method of the SchoolMember class.

Also, observe that the tell method of the subtype is called and not the tell method of the
SchoolMember class. One way to understand this is that Python always starts looking for methods
in the actual type, which in this case it does. If it could not find the method, it starts looking
at the methods belonging to its base classes one by one in the order they are specified in the
tuple in the class definition.

A note on terminology - if more than one class is listed in the inheritance tuple, then it is
called multiple inheritance.

The trailing comma is used at the end of the print statement in the superclass’s tell() method
to print a line and allow the next print to continue on the same line. This is a trick to make
print not print a \n (newline) symbol at the end of the printing.

Summary

We have now explored the various aspects of classes and objects as well as the various
terminologies associated with it. We have also seen the benefits and pitfalls of object-oriented
programming. Python is highly object-oriented and understanding these concepts carefully will help
you a lot in the long run.

Next, we will learn how to deal with input/output and how to access files in Python.

Chapter 13. Input and Output

There will be situations where your program has to interact with the user. For example, you would
want to take input from the user and then print some results back. We can achieve this using the
raw_input() function and print statement respectively.

For output, we can also use the various methods of the str (string) class. For example, you can
use the rjust method to get a string which is right justified to a specified width. See
help(str) for more details.

Another common type of input/output is dealing with files. The ability to create, read and write
files is essential to many programs and we will explore this aspect in this chapter.

Input from user

Save this program as io_input.py:

def reverse(text):
 return text[::-1]

def is_palindrome(text):
 return text == reverse(text)

something = raw_input("Enter text: ")
if is_palindrome(something):
 print "Yes, it is a palindrome"
else:
 print "No, it is not a palindrome"

Output:

$ python io_input.py
Enter text: sir
No, it is not a palindrome

$ python io_input.py
Enter text: madam
Yes, it is a palindrome

$ python io_input.py
Enter text: racecar
Yes, it is a palindrome

How It Works.
We use the slicing feature to reverse the text. We’ve already seen how we can make
slices from sequences using the seq[a:b] code starting from position a to position
b. We can also provide a third argument that determines the step by which the slicing is
done. The default step is 1 because of which it returns a continuous part of the text. Giving a
negative step, i.e., -1 will return the text in reverse.

The raw_input() function takes a string as argument and displays it to the user. Then it waits
for the user to type something and press the return key. Once the user has entered and pressed the
return key, the raw_input() function will then return that text the user has entered.

We take that text and reverse it. If the original text and reversed text are equal, then the text
is a palindrome.

Homework exercise

Checking whether a text is a palindrome should also ignore punctuation, spaces and case. For
example, "Rise to vote, sir." is also a palindrome but our current program doesn’t say it is. Can
you improve the above program to recognize this palindrome?

If you need a hint, the idea is that… [2]

[2] Use a tuple (you can find a list of all
punctuation marks here) to hold all the
forbidden characters, then use the membership test to determine whether a character should be
removed or not, i.e. forbidden = (!, ?, ., …).

Files

You can open and use files for reading or writing by creating an object of the file class and
using its read, readline or write methods appropriately to read from or write to the
file. The ability to read or write to the file depends on the mode you have specified for the file
opening. Then finally, when you are finished with the file, you call the close method to tell
Python that we are done using the file.

Example (save as io_using_file.py):

poem = '''\
Programming is fun
When the work is done
if you wanna make your work also fun:
 use Python!
'''

Open for 'w'riting
f = open('poem.txt', 'w')
Write text to file
f.write(poem)
Close the file
f.close()

If no mode is specified,
'r'ead mode is assumed by default
f = open('poem.txt')
while True:
 line = f.readline()
 # Zero length indicates EOF
 if len(line) == 0:
 break
 # The `line` already has a newline
 # at the end of each line
 # since it is reading from a file.
 print line,
close the file
f.close()

Output:

$ python io_using_file.py
Programming is fun
When the work is done
if you wanna make your work also fun:
 use Python!

How It Works.
First, open a file by using the built-in open function and specifying the name of the file and
the mode in which we want to open the file. The mode can be a read mode ('r'), write mode ('w')
or append mode ('a'). We can also specify whether we are reading, writing, or appending in text
mode ('t') or binary mode ('b'). There are actually many more modes available and help(open)
will give you more details about them. By default, open() considers the file to be a 't’ext file
and opens it in 'r’ead mode.

In our example, we first open the file in write text mode and use the write method of the file
object to write to the file and then we finally close the file.

Next, we open the same file again for reading. We don’t need to specify a mode because read text
file is the default mode. We read in each line of the file using the readline method in a
loop. This method returns a complete line including the newline character at the end of the
line. When an empty string is returned, it means that we have reached the end of the file and we
break out of the loop.

In the end, we finally `close`the file.

Now, check the contents of the poem.txt file to confirm that the program has indeed written to
and read from that file.

Pickle

Python provides a standard module called pickle using which you can store any plain Python
object in a file and then get it back later. This is called storing the object persistently.

Example (save as io_pickle.py):

import pickle

The name of the file where we will store the object
shoplistfile = 'shoplist.data'
The list of things to buy
shoplist = ['apple', 'mango', 'carrot']

Write to the file
f = open(shoplistfile, 'wb')
Dump the object to a file
pickle.dump(shoplist, f)
f.close()

Destroy the shoplist variable
del shoplist

Read back from the storage
f = open(shoplistfile, 'rb')
Load the object from the file
storedlist = pickle.load(f)
print storedlist

Output:

$ python io_pickle.py
['apple', 'mango', 'carrot']

How It Works.
To store an object in a file, we have to first open the file in write binary mode and
then call the dump function of the pickle module. This process is called pickling.

Next, we retrieve the object using the load function of the pickle module which returns the
object. This process is called unpickling.

Unicode

So far, when we have been writing and using strings, or reading and writing to a file, we have used
simple English characters only. If we want to be able to read and write other non-English
languages, we need to use the unicode type, and it all starts with the character u:

>>> "hello world"
'hello world'
>>> type("hello world")
<type 'str'>
>>> u"hello world"
u'hello world'
>>> type(u"hello world")
<type 'unicode'>

We use the unicode type instead of strings to make sure that we handle non-English languages in
our programs. However, when we read or write to a file or when we talk to other computers on the
Internet, we need to convert our unicode strings into a format that can be sent and received, and
that format is called "UTF-8". We can read and write in that format, using a simple keyword
argument to our standard open function:

encoding=utf-8
import io

f = io.open("abc.txt", "wt", encoding="utf-8")
f.write(u"Imagine non-English language here")
f.close()

text = io.open("abc.txt", encoding="utf-8").read()
print text

How It Works.
You can ignore the import statement for now, we’ll explore that in detail in the modules
chapter.

Whenever we write a program that uses Unicode literals like we have used above, we have to make
sure that Python itself is told that our program uses UTF-8, and we have to put # encoding=utf-8
comment at the top of our program.

We use io.open and provide the "encoding" and "decoding" argument to tell Python that we are
using unicode, and in fact, we have to pass in a string in the form of u"" to make it clear that
we are using Unicode strings.

You should learn more about this topic by reading:

	
"The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets"

	
Python Unicode Howto

	
Pragmatic Unicode talk by Nat Batchelder

Summary

We have discussed various types of input/output, about file handling, about the pickle module and
about Unicode.

Next, we will explore the concept of exceptions.

Chapter 14. Exceptions

Exceptions occur when exceptional situations occur in your program. For example, what if you are
going to read a file and the file does not exist? Or what if you accidentally deleted it when the
program was running? Such situations are handled using exceptions.

Similarly, what if your program had some invalid statements? This is handled by Python which
raises its hands and tells you there is an error.

Errors

Consider a simple print function call. What if we misspelt print as Print? Note the
capitalization. In this case, Python raises a syntax error.

>>> Print "Hello World"
 File "<stdin>", line 1
 Print "Hello World"
 ^
SyntaxError: invalid syntax
>>> print "Hello World"
Hello World

Observe that a SyntaxError is raised and also the location where the error was detected is
printed. This is what an error handler for this error does.

Exceptions

We will try to read input from the user. Press ctrl-d and see what happens.

>>> s = raw_input('Enter something --> ')
Enter something --> Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
EOFError

Python raises an error called EOFError which basically means it found an end of file symbol
(which is represented by ctrl-d) when it did not expect to see it.

Handling Exceptions

We can handle exceptions using the try..except statement. We basically put our usual statements
within the try-block and put all our error handlers in the except-block.

Example (save as exceptions_handle.py):

try:
 text = raw_input('Enter something --> ')
except EOFError:
 print 'Why did you do an EOF on me?'
except KeyboardInterrupt:
 print 'You cancelled the operation.'
else:
 print 'You entered {}'.format(text)

Output:

Press ctrl + d
$ python exceptions_handle.py
Enter something --> Why did you do an EOF on me?

Press ctrl + c
$ python exceptions_handle.py
Enter something --> ^CYou cancelled the operation.

$ python exceptions_handle.py
Enter something --> No exceptions
You entered No exceptions

How It Works.
We put all the statements that might raise exceptions/errors inside the try block and then put
handlers for the appropriate errors/exceptions in the except clause/block. The except clause
can handle a single specified error or exception, or a parenthesized list of errors/exceptions. If
no names of errors or exceptions are supplied, it will handle all errors and exceptions.

Note that there has to be at least one except clause associated with every try
clause. Otherwise, what’s the point of having a try block?

If any error or exception is not handled, then the default Python handler is called which just
stops the execution of the program and prints an error message. We have already seen this in action
above.

You can also have an else clause associated with a try..except block. The else clause is
executed if no exception occurs.

In the next example, we will also see how to get the exception object so that we can retrieve
additional information.

Raising Exceptions

You can raise exceptions using the raise statement by providing the name of the error/exception
and the exception object that is to be thrown.

The error or exception that you can raise should be a class which directly or indirectly must be a
derived class of the Exception class.

Example (save as exceptions_raise.py):

class ShortInputException(Exception):
 '''A user-defined exception class.'''
 def __init__(self, length, atleast):
 Exception.__init__(self)
 self.length = length
 self.atleast = atleast

try:
 text = raw_input('Enter something --> ')
 if len(text) < 3:
 raise ShortInputException(len(text), 3)
 # Other work can continue as usual here
except EOFError:
 print 'Why did you do an EOF on me?'
except ShortInputException as ex:
 print ('ShortInputException: The input was ' + \
 '{0} long, expected at least {1}')\
 .format(ex.length, ex.atleast)
else:
 print 'No exception was raised.'

Output:

$ python exceptions_raise.py
Enter something --> a
ShortInputException: The input was 1 long, expected at least 3

$ python exceptions_raise.py
Enter something --> abc
No exception was raised.

How It Works.
Here, we are creating our own exception type. This new exception type is called
ShortInputException. It has two fields - length which is the length of the given input, and
atleast which is the minimum length that the program was expecting.

In the except clause, we mention the class of error which will be stored as the variable name
to hold the corresponding error/exception object. This is analogous to parameters and arguments in
a function call. Within this particular except clause, we use the`length` and atleast fields of
the exception object to print an appropriate message to the user.

Try … Finally

Suppose you are reading a file in your program. How do you ensure that the file object is closed
properly whether or not an exception was raised? This can be done using the finally block.

Save this program as exceptions_finally.py:

import sys
import time

f = None
try:
 f = open("poem.txt")
 # Our usual file-reading idiom
 while True:
 line = f.readline()
 if len(line) == 0:
 break
 print line,
 sys.stdout.flush()
 print "Press ctrl+c now"
 # To make sure it runs for a while
 time.sleep(2)
except IOError:
 print "Could not find file poem.txt"
except KeyboardInterrupt:
 print "!! You cancelled the reading from the file."
finally:
 if f:
 f.close()
 print "(Cleaning up: Closed the file)"

Output:

$ python exceptions_finally.py
Programming is fun
Press ctrl+c now
^C!! You cancelled the reading from the file.
(Cleaning up: Closed the file)

How It Works.
We do the usual file-reading stuff, but we have arbitrarily introduced sleeping for 2 seconds after
printing each line using the time.sleep function so that the program runs slowly (Python is very
fast by nature). When the program is still running, press ctrl + c to interrupt/cancel the
program.

Observe that the KeyboardInterrupt exception is thrown and the program quits. However, before the
program exits, the finally clause is executed and the file object is always closed.

Note that we use sys.stdout.flush() after print so that it prints to the screen immediately.

The with statement

Acquiring a resource in the try block and subsequently releasing the resource in the finally
block is a common pattern. Hence, there is also a with statement that enables this to be done in
a clean manner:

Save as exceptions_using_with.py:

with open("poem.txt") as f:
 for line in f:
 print line,

How It Works.
The output should be same as the previous example. The difference here is that we are using the
open function with the with statement - we leave the closing of the file to be done
automatically by with open.

What happens behind the scenes is that there is a protocol used by the with statement. It fetches
the object returned by the open statement, let’s call it "thefile" in this case.

It always calls the thefile.__enter__ function before starting the block of code under it and
always calls thefile.__exit__ after finishing the block of code.

So the code that we would have written in a finally block should be taken care of automatically
by the __exit__ method. This is what helps us to avoid having to use explicit try..finally
statements repeatedly.

More discussion on this topic is beyond scope of this book, so please refer
PEP 343 for a comprehensive explanation.

Summary

We have discussed the usage of the try..except and try..finally statements. We have seen how to
create our own exception types and how to raise exceptions as well.

Next, we will explore the Python Standard Library.

Standard Library

The Python Standard Library contains a huge number of useful modules and is part of every standard
Python installation. It is important to become familiar with the Python Standard Library since many
problems can be solved quickly if you are familiar with the range of things that these libraries
can do.

We will explore some of the commonly used modules in this library. You can find complete details
for all of the modules in the Python Standard Library in the
Library Reference section of the documentation that comes with
your Python installation.

Let us explore a few useful modules.

Caution

If you find the topics in this chapter too advanced, you may skip this chapter. However, I
highly recommend coming back to this chapter when you are more comfortable with programming using
Python.

sys module

The sys module contains system-specific functionality. We have already seen that the sys.argv
list contains the command-line arguments.

Suppose we want to check the version of the Python software being used, the sys module gives us
that information.

$ python
>>> import sys
>>> sys.version_info
sys.version_info(major=2, minor=7, micro=6, releaselevel='final', serial=0)
>>> sys.version_info.major == 2
True

How It Works.
The sys module has a version_info tuple that gives us the version information. The first entry
is the major version. We can pull out this information to use it.

logging module

What if you wanted to have some debugging messages or important messages to be stored somewhere so
that you can check whether your program has been running as you would expect it? How do you "store
somewhere" these messages? This can be achieved using the logging module.

Save as stdlib_logging.py:

import os, platform, logging

if platform.platform().startswith('Windows'):
 logging_file = os.path.join(os.getenv('HOMEDRIVE'),
 os.getenv('HOMEPATH'),
 'test.log')
else:
 logging_file = os.path.join(os.getenv('HOME'),
 'test.log')

print "Logging to", logging_file

logging.basicConfig(
 level=logging.DEBUG,
 format='%(asctime)s : %(levelname)s : %(message)s',
 filename = logging_file,
 filemode = 'w',
)

logging.debug("Start of the program")
logging.info("Doing something")
logging.warning("Dying now")

Output:

$ python stdlib_logging.py
Logging to /Users/swa/test.log

$ cat /Users/swa/test.log
2014-03-29 09:27:36,660 : DEBUG : Start of the program
2014-03-29 09:27:36,660 : INFO : Doing something
2014-03-29 09:27:36,660 : WARNING : Dying now

If you do not have the cat command, then you can just open the test.log file in a text editor.

How It Works.
We use three modules from the standard library - the os module for interacting with the operating
system, the platform module for information about the platform i.e. the operating system and the
logging module to log information.

First, we check which operating system we are using by checking the string returned by
platform.platform() (for more information, see import platform; help(platform)). If it is
Windows, we figure out the home drive, the home folder and the filename where we want to store the
information. Putting these three parts together, we get the full location of the file. For other
platforms, we need to know just the home folder of the user and we get the full location of the
file.

We use the os.path.join() function to put these three parts of the location together. The reason
to use a special function rather than just adding the strings together is because this function
will ensure the full location matches the format expected by the operating system.

We configure the logging module to write all the messages in a particular format to the file we
have specified.

Finally, we can put messages that are either meant for debugging, information, warning or even
critical messages. Once the program has run, we can check this file and we will know what happened
in the program, even though no information was displayed to the user running the program.

Module of the Week Series

There is much more to be explored in the standard library such as
debugging,
handling command line options,
regular expressions and so
on.

The best way to further explore the standard library is to read Doug Hellmann’s excellent
Python Module of the Week series (also available as a
book) and reading the Python documentation.

Summary

We have explored some of the functionality of many modules in the Python Standard Library. It is
highly recommended to browse through the Python Standard Library
documentation to get an idea of all the modules that are available.

Next, we will cover various aspects of Python that will make our tour of Python more complete.

Chapter 15. More

So far we have covered a majority of the various aspects of Python that you will use. In this
chapter, we will cover some more aspects that will make our knowledge of Python more well-rounded.

Passing tuples around

Ever wished you could return two different values from a function? You can. All you have to do is
use a tuple.

>>> def get_error_details():
... return (2, 'details')
...
>>> errnum, errstr = get_error_details()
>>> errnum
2
>>> errstr
'details'

Notice that the usage of a, b = <some expression> interprets the result of the expression as a
tuple with two values.

This also means the fastest way to swap two variables in Python is:

>>> a = 5; b = 8
>>> a, b
(5, 8)
>>> a, b = b, a
>>> a, b
(8, 5)

Special Methods

There are certain methods such as the __init__ and __del__ methods which have special
significance in classes.

Special methods are used to mimic certain behaviors of built-in types. For example, if you want to
use the x[key] indexing operation for your class (just like you use it for lists and tuples),
then all you have to do is implement the __getitem__() method and your job is done. If you think
about it, this is what Python does for the list class itself!

Some useful special methods are listed in the following table. If you
want to know about all the special methods,
see the manual.

	__init__(self, ...)
	
This method is called just before the newly created object is returned for usage.

	__del__(self)
	
Called just before the object is destroyed (which has unpredictable timing, so avoid using this)

	__str__(self)
	
Called when we use the print statement or when str() is used.

	__lt__(self, other)
	
Called when the less than operator (<) is used. Similarly, there are special methods for all
the operators (+, >, etc.)

	__getitem__(self, key)
	
Called when x[key] indexing operation is used.

	__len__(self)
	
Called when the built-in len() function is used for the sequence object.

Single Statement Blocks

We have seen that each block of statements is set apart from the rest by its own indentation
level. Well, there is one caveat. If your block of statements contains only one single statement,
then you can specify it on the same line of, say, a conditional statement or looping statement. The
following example should make this clear:

>>> flag = True
>>> if flag: print 'Yes'
...
Yes

Notice that the single statement is used in-place and not as a separate block. Although, you can
use this for making your program smaller, I strongly recommend avoiding this short-cut method,
except for error checking, mainly because it will be much easier to add an extra statement if you
are using proper indentation.

Lambda Forms

A lambda statement is used to create new function objects. Essentially, the lambda takes a
parameter followed by a single expression only which becomes the body of the function and the value
of this expression is returned by the new function.

Example (save as more_lambda.py):

points = [{ 'x' : 2, 'y' : 3 },
 { 'x' : 4, 'y' : 1 }]
points.sort(key=lambda i : i['y'])
print points

Output:

$ python more_lambda.py
[{'y': 1, 'x': 4}, {'y': 3, 'x': 2}]

How It Works.
Notice that the sort method of a list can take a key parameter which determines how the list
is sorted (usually we know only about ascending or descending order). In our case, we want to do a
custom sort, and for that we need to write a function but instead of writing a separate def block
for a function that will get used in only this one place, we use a lambda expression to create a
new function.

List Comprehension

List comprehensions are used to derive a new list from an existing list. Suppose you have a list of
numbers and you want to get a corresponding list with all the numbers multiplied by 2 only when the
number itself is greater than 2. List comprehensions are ideal for such situations.

Example (save as more_list_comprehension.py):

listone = [2, 3, 4]
listtwo = [2*i for i in listone if i > 2]
print listtwo

Output:

$ python more_list_comprehension.py
[6, 8]

How It Works.
Here, we derive a new list by specifying the manipulation to be done (2*i) when some condition is
satisfied (if i > 2). Note that the original list remains unmodified.

The advantage of using list comprehensions is that it reduces the amount of boilerplate code
required when we use loops to process each element of a list and store it in a new list.

Receiving Tuples and Dictionaries in Functions

There is a special way of receiving parameters to a function as a tuple or a dictionary using the
* or ** prefix respectively. This is useful when taking variable number of arguments in the
function.

>>> def powersum(power, *args):
... '''Return the sum of each argument raised to the specified power.'''
... total = 0
... for i in args:
... total += pow(i, power)
... return total
...
>>> powersum(2, 3, 4)
25
>>> powersum(2, 10)
100

Because we have a * prefix on the args variable, all extra arguments passed to the function are
stored in args as a tuple. If a ** prefix had been used instead, the extra parameters would be
considered to be key/value pairs of a dictionary.

The assert statement

The assert statement is used to assert that something is true. For example, if you are very sure
that you will have at least one element in a list you are using and want to check this, and raise
an error if it is not true, then assert statement is ideal in this situation. When the assert
statement fails, an AssertionError is raised.

>>> mylist = ['item']
>>> assert len(mylist) >= 1
>>> mylist.pop()
'item'
>>> assert len(mylist) >= 1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError

The assert statement should be used judiciously. Most of the time, it is better to catch
exceptions, either handle the problem or display an error message to the user and then quit.

Decorators

Decorators are a shortcut to applying wrapper functions. This is helpful to "wrap" functionality
with the same code over and over again. For example, I created a retry decorator for myself that
I can just apply to any function and if any exception is thrown during a run, it is retried again,
till a maximum of 5 times and with a delay between each retry. This is especially useful for
situations where you are trying to make a network call to a remote computer:

from time import sleep
from functools import wraps
import logging
logging.basicConfig()
log = logging.getLogger("retry")

def retry(f):
 @wraps(f)
 def wrapped_f(*args, **kwargs):
 MAX_ATTEMPTS = 5
 for attempt in range(1, MAX_ATTEMPTS + 1):
 try:
 return f(*args, **kwargs)
 except:
 log.exception("Attempt %s/%s failed : %s",
 attempt,
 MAX_ATTEMPTS,
 (args, kwargs))
 sleep(10 * attempt)
 log.critical("All %s attempts failed : %s",
 MAX_ATTEMPTS,
 (args, kwargs))
 return wrapped_f

counter = 0

@retry
def save_to_database(arg):
 print "Write to a database or make a network call or etc."
 print "This will be automatically retried if exception is thrown."
 global counter
 counter += 1
 # This will throw an exception in the first call
 # And will work fine in the second call (i.e. a retry)
 if counter < 2:
 raise ValueError(arg)

if __name__ == '__main__':
 save_to_database("Some bad value")

Output:

$ python more_decorator.py
Write to a database or make a network call or etc.
This will be automatically retried if exception is thrown.
ERROR:retry:Attempt 1/5 failed : (('Some bad value',), {})
Traceback (most recent call last):
 File "more_decorator.py", line 14, in wrapped_f
 return f(*args, **kwargs)
 File "more_decorator.py", line 39, in save_to_database
 raise ValueError(arg)
ValueError: Some bad value
Write to a database or make a network call or etc.
This will be automatically retried if exception is thrown.

How It Works.
See:

	
http://www.ibm.com/developerworks/linux/library/l-cpdecor.html

	
http://toumorokoshi.github.io/dry-principles-through-python-decorators.html

Differences between Python 2 and Python 3

See:

	
Porting to Python 3 Redux by Armin

	
Python 3 experience by PyDanny

	
Official Django Guide to Porting to Python 3

Summary

We have covered some more features of Python in this chapter and yet we haven’t covered all the
features of Python. However, at this stage, we have covered most of what you are ever going to use
in practice. This is sufficient for you to get started with whatever programs you are going to
create.

Next, we will discuss how to explore Python further.

If you have read this book thoroughly till now and practiced writing a lot of programs, then you
must have become comfortable and familiar with Python. You have probably created some Python
programs to try out stuff and to exercise your Python skills as well. If you have not done it
already, you should. The question now is What Next?.

I would suggest that you tackle this problem:

Create your own command-line address-book program using which you can browse, add, modify, delete
or search for your contacts such as friends, family and colleagues and their information such as
email address and/or phone number. Details must be stored for later retrieval.

This is fairly easy if you think about it in terms of all the various stuff that we have come
across till now. If you still want directions on how to proceed, then here’s a hint
[3].

Once you are able to do this, you can claim to be a Python programmer. Now, immediately
send me an email thanking me for this great book ;-). This step is
optional but recommended. Also, please consider buying a printed
copy to support the continued development of this book.

If you found that program easy, here’s another one:

Implement the replace command. This command will
replace one string with another in the list of files provided.

The replace command can be as simple or as sophisticated as you wish, from simple string
substitution to looking for patterns (regular expressions).

[3] Create a class to represent the person’s information. Use a dictionary to store person
objects with their name as the key. Use the pickle module to store the objects persistently on your
hard disk. Use the dictionary built-in methods to add, delete and modify the persons.

Next Projects

If you found above programs easy to create, then look at this comprehensive list of projects and
try writing your own programs: https://github.com/thekarangoel/Projects#numbers (the list is also
at Martyr2’s Mega
Project List).

Also see Intermediate Python
Projects.

Example Code

The best way to learn a programming language is to write a lot of code and read a lot of code:

	
Python Cookbook is an extremely valuable
collection of recipes or tips on how to solve certain kinds of problems using Python. This is a
must-read for every Python user.

	
Python Module of the Week is another excellent must-read guide
to the Standard Library.

Advice

	
The Hitchhiker’s Guide to Python!

	
Python Big Picture

	
"Writing Idiomatic Python" ebook (paid)

Videos

	
PyVideo

Questions and Answers

	
Official Python Dos and Don’ts

	
Official Python FAQ

	
Norvig’s list of Infrequently Asked Questions

	
Python Interview Q & A

	
StackOverflow questions tagged with python

Tutorials

	
Hidden features of Python

	
What’s the one code snippet/python trick/etc did you wish you knew when you learned python?

	
Awaretek’s comprehensive list of Python tutorials

Discussion

If you are stuck with a Python problem, and don’t know whom to ask, then the
python-tutor list is the best place to ask your
question.

Make sure you do your homework by trying to solving the problem yourself first and
ask smart questions.

News

If you want to learn what is the latest in the world of Python, then follow the
Official Python Planet.

Installing libraries

There are a huge number of open source libraries at the Python Package
Index which you can use in your own programs.

To install and use these libraries, you can use pip.

Creating a Website

Learn Flask to create your own website. Some resources to get started:

	
Flask Official Quickstart

	
The Flask Mega-Tutorial

	
Example Flask Projects

Graphical Software

Suppose you want to create your own graphical programs using Python. This can be done using a GUI
(Graphical User Interface) library with their Python bindings. Bindings are what allow you to write
programs in Python and use the libraries which are themselves written in C or C++ or other
languages.

There are lots of choices for GUI using Python:

	Kivy
	
http://kivy.org

	PyGTK
	
This is the Python binding for the GTK+ toolkit which is the foundation upon which GNOME is
built. GTK+ has many quirks in usage but once you become comfortable, you can create GUI apps
fast. The Glade graphical interface designer is indispensable. The documentation is yet to
improve. GTK+ works well on GNU/Linux but its port to Windows is incomplete. You can create both
free as well as proprietary software using GTK+. To get started, read the
PyGTK tutorial.

	PyQt
	
This is the Python binding for the Qt toolkit which is the foundation upon which the KDE is
built. Qt is extremely easy to use and very powerful especially due to the Qt Designer and the
amazing Qt documentation. PyQt is free if you want to create open source (GPL’ed) software and you
need to buy it if you want to create proprietary closed source software. Starting with Qt 4.5 you
can use it to create non-GPL software as well. To get started, read about
PySide.

	wxPython
	
This is the Python bindings for the wxWidgets toolkit. wxPython has a learning curve associated
with it. However, it is very portable and runs on GNU/Linux, Windows, Mac and even embedded
platforms. There are many IDEs available for wxPython which include GUI designers as well such as
SPE (Stani’s Python Editor) and the wxGlade
GUI builder. You can create free as well as proprietary software using wxPython. To get started,
read the wxPython tutorial.

Summary of GUI Tools

For more choices, see the GuiProgramming wiki
page at the official python website.

Unfortunately, there is no one standard GUI tool for Python. I suggest that you choose one of the
above tools depending on your situation. The first factor is whether you are willing to pay to use
any of the GUI tools. The second factor is whether you want the program to run only on Windows or
on Mac and GNU/Linux or all of them. The third factor, if GNU/Linux is a chosen platform, is
whether you are a KDE or GNOME user on GNU/Linux.

For a more detailed and comprehensive analysis, see Page 26 of the
The Python Papers, Volume 3, Issue 1.

Various Implementations

There are usually two parts a programming language - the language and the software. A language is
how you write something. The software is what actually runs our programs.

We have been using the CPython software to run our programs. It is referred to as CPython because
it is written in the C language and is the Classical Python interpreter.

There are also other software that can run your Python programs:

	Jython
	
A Python implementation that runs on the Java platform. This means you can use Java libraries and
classes from within Python language and vice-versa.

	IronPython
	
A Python implementation that runs on the .NET platform. This means you can use .NET libraries and
classes from within Python language and vice-versa.

	PyPy
	
A Python implementation written in Python! This is a research project to make it fast and easy to
improve the interpreter since the interpreter itself is written in a dynamic language (as opposed
to static languages such as C, Java or C# in the above three implementations)

There are also others such as CLPython - a Python
implementation written in Common Lisp and Brython which is an implementation
on top of a JavaScript interpreter which could mean that you can use Python (instead of JavaScript)
to write your web-browser ("Ajax") programs.

Each of these implementations have their specialized areas where they are useful.

Functional Programming (for advanced readers)

When you start writing larger programs, you should definitely learn more about a functional
approach to programming as opposed to the class-based approach to programming that we learned in
the object oriented programming chapter:

	
Functional Programming Howto by A.M. Kuchling

	
Functional programming chapter in Dive Into Python book

	
Functional Programming with Python presentation

Summary

We have now come to the end of this book but, as they say, this is the the beginning of the
end!. You are now an avid Python user and you are no doubt ready to solve many problems using
Python. You can start automating your computer to do all kinds of previously unimaginable things or
write your own games and much much more. So, get started!

Chapter 16. Appendix: FLOSS

Note

Please note that this section was written in 2003, so some of this might sound quaint to you
:-)

"Free/Libre and Open Source Software", in short, FLOSS is based
on the concept of a community, which itself is based on the concept of sharing, and particularly
the sharing of knowledge. FLOSS are free for usage, modification and redistribution.

If you have already read this book, then you are already familiar with FLOSS since you have been
using Python all along and Python is an open source software!

Here are some examples of FLOSS to give an idea of the kind of things that community sharing and
building can create:

	Linux
	
This is a FLOSS OS kernel used in the GNU/Linux operating system. Linux, the kernel, was started by
Linus Torvalds as a student. Android is based on Linux. Any website you use these days will mostly
be running on Linux.

	Ubuntu
	
This is a community-driven distribution, sponsored by Canonical and it is the most popular
GNU/Linux distribution today. It allows you to install a plethora of FLOSS available and all this
in an easy-to-use and easy-to-install manner. Best of all, you can just reboot your computer and
run GNU/Linux off the CD! This allows you to completely try out the new OS before installing it on
your computer. However, Ubuntu is not entirely free software; it contains proprietary drivers,
firmware, and applications.

	LibreOffice
	
This is an excellent community-driven and developed office suite with a writer, presentation,
spreadsheet and drawing components among other things. It can even open and edit MS Word and MS
PowerPoint files with ease. It runs on almost all platforms and is entirely free, libre and open
source software.

	Mozilla Firefox
	
This is the best web browser. It is blazingly fast and has gained critical acclaim for its
sensible and impressive features. The extensions concept allows any kind of plugins to be used.

	Mono
	
This is an open source implementation of the Microsoft .NET platform. It allows .NET applications
to be created and run on GNU/Linux, Windows, FreeBSD, Mac OS and many other platforms as well.

	Apache web server
	
This is the popular open source web server. In fact, it is the most popular web server on the
planet! It runs nearly more than half of the websites out there. Yes, that’s right - Apache handles
more websites than all the competition (including Microsoft IIS) combined.

	VLC Player
	
This is a video player that can play anything from DivX to MP3 to Ogg to VCDs and DVDs to … who
says open source ain’t fun? ;-)

This list is just intended to give you a brief idea - there are many more excellent FLOSS out
there, such as the Perl language, PHP language, Drupal content management system for websites,
PostgreSQL database server, TORCS racing game, KDevelop IDE, Xine - the movie player, VIM editor,
Quanta+ editor, Banshee audio player, GIMP image editing program, … This list could go on
forever.

To get the latest buzz in the FLOSS world, check out the following websites:

	
OMG! Ubuntu!

	
Web Upd8

	
DistroWatch

	
Planet Debian

Visit the following websites for more information on FLOSS:

	
GitHub Explore

	
Code Triage

	
SourceForge

	
FreshMeat

So, go ahead and explore the vast, free and open world of FLOSS!

Appendix: Colophon

Almost all of the software that I have used in the creation of this book are FLOSS.

Birth of the Book

In the first draft of this book, I had used Red Hat 9.0 Linux as the foundation of my setup and in
the sixth draft, I used Fedora Core 3 Linux as the basis of my setup.

Initially, I was using KWord to write the book (as explained in the history
lesson in the preface).

Teenage Years

Later, I switched to DocBook XML using Kate but I found it too tedious. So, I switched to
OpenOffice which was just excellent with the level of control it provided for formatting as well as
the PDF generation, but it produced very sloppy HTML from the document.

Finally, I discovered XEmacs and I rewrote the book from scratch in DocBook XML (again) after I
decided that this format was the long term solution.

In the sixth draft, I decided to use Quanta+ to do all the editing. The standard XSL stylesheets
that came with Fedora Core 3 Linux were being used. However, I had written a CSS document to give
color and style to the HTML pages. I had also written a crude lexical analyzer, in Python of
course, which automatically provides syntax highlighting to all the program listings.

For the seventh draft, I’m using MediaWiki as the basis of my setup. I
used to edit everything online and the readers can directly read/edit/discuss within the wiki
website, but I ended up spending more time fighting spam than writing.

For the eight draft, I used Vim,
Pandoc, and Mac OS X.

Now

For the ninth draft, I switched to AsciiDoc format
and used Emacs 24.3,
tomorrow theme,
Fira Mono
font and adoc-mode to write.

About the Author

See http://swaroopch.com/about/

Chapter 17. Appendix: Revision History

	
3.0

	
31 Mar 2014

	
Rewritten using AsciiDoc and
adoc-mode.

	
2.1

	
03 Aug 2013

	
Rewritten using Markdown and Jason Blevins'
Markdown Mode

	
2.0

	
20 Oct 2012

	
Rewritten in Pandoc format, thanks to my wife
who did most of the conversion from the Mediawiki format

	
Simplifying text, removing non-essential sections such as nonlocal and metaclasses

	
1.90

	
04 Sep 2008 and still in progress

	
Revival after a gap of 3.5 years!

	
Rewriting for Python 3.0

	
Rewrite using MediaWiki (again)

	
1.20

	
13 Jan 2005

	
Complete rewrite using Quanta+ on
Fedora Core 3 with lot of corrections and updates. Many new
examples. Rewrote my DocBook setup from scratch.

	
1.15

	
28 Mar 2004

	
Minor revisions

	
1.12

	
16 Mar 2004

	
Additions and corrections

	
1.10

	
09 Mar 2004

	
More typo corrections, thanks to many enthusiastic and helpful readers.

	
1.00

	
08 Mar 2004

	
After tremendous feedback and suggestions from readers, I have made significant revisions to
the content along with typo corrections.

	
0.99

	
22 Feb 2004

	
Added a new chapter on modules. Added details about variable number of arguments in functions.

	
0.98

	
16 Feb 2004

	
Wrote a Python script and CSS stylesheet to improve XHTML output, including a
crude-yet-functional lexical analyzer for automatic VIM-like syntax highlighting of the
program listings.

	
0.97

	
13 Feb 2004

	
Another completely rewritten draft, in DocBook XML (again). Book has improved a lot - it is
more coherent and readable.

	
0.93

	
25 Jan 2004

	
Added IDLE talk and more Windows-specific stuff

	
0.92

	
05 Jan 2004

	
Changes to few examples.

	
0.91

	
30 Dec 2003

	
Corrected typos. Improvised many topics.

	
0.90

	
18 Dec 2003

	
Added 2 more chapters. OpenOffice format with
revisions.

	
0.60

	
21 Nov 2003

	
Fully rewritten and expanded.

	
0.20

	
20 Nov 2003

	
Corrected some typos and errors.

	
0.15

	
20 Nov 2003

	
Converted to DocBook XML with XEmacs.

	
0.10

	
14 Nov 2003

	
Initial draft using KWord.

Chapter 18. Translations

There are many translations of the book available in different human languages, thanks to many
tireless volunteers!

If you want to help with these translations, please see the list of volunteers and languages below
and decide if you want to start a new translation or help in existing translation projects.

If you plan to start a new translation, please read the Translation Howto.

Arabic

Below is the link for the Arabic version. Thanks to Ashraf Ali Khalaf for translating the book, you
can read the whole book online at http://www.khaledhosny.org/byte-of-python/index.html or you can
download it from
sourceforge.net for
more info see http://itwadi.com/byteofpython_arabi.

Brazilian Portuguese

There are two translations:

Samuel Dias Neto
(samuel.arataca@gmail.com) made the first Brazilian Portuguese translation of this book when Python
was in 2.3.5 version.

Samuel’s translation is available at
aprendendopython.

Rodrigo Amaral (rodrigoamaral@gmail.com) has volunteered to translate the
book to Brazilian Portuguese.

Catalan

Moises Gomez (moisesgomezgiron@gmail.com) has volunteered to translate the book to Catalan. The
translation is in progress.

Moisès Gómez - I am a developer and also a teacher of programming (normally for people without any
previous experience).

Some time ago I needed to learn how to program in Python, and Swaroop’s work was really
helpful. Clear, concise, and complete enough. Just what I needed.

After this experience, I thought some other people in my country could take benefit from
it too. But English language can be a barrier.

So, why not try to translate it? And I did for a previous version of BoP.

I my country there are two official languages. I selected the Catalan language assuming that others
will translate it to the more widespread Spanish.

Chinese

Translations are available at http://woodpecker.org.cn/abyteofpython_cn/chinese/ and
http://zhgdg.gitcafe.com/static/doc/byte_of_python.html.

Juan Shen (orion_val@163.com) has volunteered to translate the book to Chinese.

I am a postgraduate at Wireless Telecommunication Graduate School,
Beijing University of Technology, China PR. My current research
interest is on the synchronization, channel estimation and
multi-user detection of multicarrier CDMA system. Python is my major
programming language for daily simulation and research job, with the
help of Python Numeric, actually. I learned Python just half a year
before, but as you can see, it’s really easy-understanding,
easy-to-use and productive. Just as what is ensured in Swaroop’s
book, It’s my favorite programming language now.

A Byte of Python is my tutorial to learn Python. It’s clear and
effective to lead you into a world of Python in the shortest time.
It’s not too long, but efficiently covers almost all important
things in Python. I think A Byte of Python should be strongly
recommendable for newbies as their first Python tutorial. Just
dedicate my translation to the potential millions of Python users in
China.

Chinese Traditional

Fred Lin (gasolin@gmail.com) has volunteered to translate the book to Chinese Traditional.

It is available at http://code.google.com/p/zhpy/wiki/ByteOfZhpy.

An exciting feature of this translation is that it also contains the executable chinese python
sources side by side with the original python sources.

Fred Lin - I’m working as a network firmware engineer at Delta Network, and I’m also a contributor
of TurboGears web framework.

As a python evangelist (:-p), I need some material to promote python language. I found A Byte of
Python hit the sweet point for both newbies and experienced programmers. A Byte of Python
elaborates the python essentials with affordable size.

The translation are originally based on simplified chinese version, and soon a lot of rewrite were
made to fit the current wiki version and the quality of reading.

The recent chinese traditional version also featured with executable chinese python sources, which
are achieved by my new zhpy (python in chinese) project (launch from Aug 07).

zhpy(pronounce (Z.H.?, or zippy) build a layer upon python to translate or interact with python in
chinese(Traditional or Simplified). This project is mainly aimed for education.

French

Gregory (coulix@ozforces.com.au) has volunteered to translate the book to French.

Gérard Labadie (gerard.labadie@gmail.com) has completed to translate the book to French.

German

Lutz Horn (lutz.horn@gmx.de), Bernd Hengelein (bernd.hengelein@gmail.com) and Christoph Zwerschke
(cito@online.de) have volunteered to translate the book to German.

Their translation is located at http://abop-german.berlios.de.

Lutz Horn says:

I’m 32 years old and have a degree of Mathematics from University of Heidelberg, Germany. Currently
I’m working as a software engineer on a publicly funded project to build a web portal for all
things related to computer science in Germany.The main language I use as a professional is Java,
but I try to do as much as possible with Python behind the scenes. Especially text analysis and
conversion is very easy with Python. I’m not very familiar with GUI toolkits, since most of my
programming is about web applications, where the user interface is build using Java frameworks like
Struts. Currently I try to make more use of the functional programming features of Python and of
generators. After taking a short look into Ruby, I was very impressed with the use of blocks in
this language. Generally I like the dynamic nature of languages like Python and Ruby since it
allows me to do things not possible in more static languages like Java.I’ve searched for some kind
of introduction to programming, suitable to teach a complete non-programmer. I’ve found the book
How to Think Like a Computer Scientist: Learning with Python, and Dive into Python. The first
is good for beginners but to long to translate. The second is not suitable for beginners. I think
A Byte of Python falls nicely between these, since it is not too long, written to the point, and
at the same time verbose enough to teach a newbie. Besides this, I like the simple DocBook
structure, which makes translating the text a generation the output in various formats a charm.

Bernd Hengelein says:

Lutz and me are going to do the german translation together. We just started with the intro and
preface but we will keep you informed about the progress we make. Ok, now some personal things
about me. I am 34 years old and playing with computers since the 1980’s, when the "Commodore C64"
ruled the nurseries. After studying computer science I started working as a software
engineer. Currently I am working in the field of medical imaging for a major german
company. Although C++ is the main language I (have to) use for my daily work, I am constantly
looking for new things to learn.Last year I fell in love with Python, which is a wonderful
language, both for its possibilities and its beauty. I read somewhere in the net about a guy who
said that he likes python, because the code looks so beautiful. In my opinion he’s absolutly
right. At the time I decided to learn python, I noticed that there is very little good
documentation in german available. When I came across your book the spontaneous idea of a german
translation crossed my mind. Luckily, Lutz had the same idea and we can now divide the work.I am
looking forward to a good cooperation!

Greek

The Greek Ubuntu Community translated the book in
Greek, for use in our on-line asynchronous Python lessons that take place in our forums. Contact
@savvasradevic for more information.

Indonesian

Daniel (daniel.mirror@gmail.com) is translating the book to Indonesian at
http://python.or.id/moin.cgi/ByteofPython.

Wisnu Priyambodo (cibermen@gmail.com) also has volunteered to translate the book to Indonesian.

Also, Bagus Aji Santoso (baguzzzaji@gmail.com) has volunteered.

Italian

Enrico Morelli (mr.mlucci@gmail.com) and Massimo Lucci (morelli@cerm.unifi.it) have volunteered to
translate the book to Italian.

The Italian translation is present at http://www.gentoo.it/Programmazione/byteofpython.

Massimo Lucci and Enrico Morelli - we are working at the University of Florence (Italy) -
Chemistry Department. I (Massimo) as service engineer and system administrator for Nuclear Magnetic
Resonance Spectrometers; Enrico as service engineer and system administrator for our CED and
parallel / clustered systems. We are programming on python since about seven years, we had
experience working with Linux platforms since ten years. In Italy we are responsible and
administrator for www.gentoo.it web site for Gentoo/Linux distrubution and www.nmr.it (now under
construction) for Nuclear Magnetic Resonance applications and Congress Organization and
Managements.That’s all! We are impressed by the smart language used on your Book and we think this
is essential for approaching the Python to new users (we are thinking about hundred of students and
researcher working on our labs).

Japanese

Shunro Dozono (dozono@gmail.com) is translating the book to Japanese.

Mongolian

Ariunsanaa Tunjin (luftballons2010@gmail.com) has volunteered to translate the book to Mongolian.

Update on Nov 22, 2009 : Ariunsanaa is on the verge of completing the translation.

Norwegian (bokmål)

Eirik Vågeskar is a high school student at
Sandvika videregående skole in
Norway, a blogger and currently translating the book to Norwegian
(bokmål).

Eirik Vågeskar: I have always wanted to program, but because I speak a small language, the
learning process was much harder. Most tutorials and books are written in very technical English,
so most high school graduates will not even have the vocabulary to understand what the tutorial is
about. When I discovered this book, all my problems were solved. "A Byte of Python" used simple
non-technical language to explain a programming language that is just as simple, and these two
things make learning Python fun. After reading half of the book, I decided that the book was worth
translating. I hope the translation will help people who have found themself in the same situation
as me (especially young people), and maybe help spread interest for the language among people with
less technical knowledge.

Polish

Dominik Kozaczko (dominik@kozaczko.info) has volunteered to translate the book to
Polish. Translation is in progress and it’s main page is available here:
Ukąś Pythona.

Update : The translation is complete and ready as of Oct 2, 2009. Thanks to Dominik, his two
 students and their friend for their time and effort!

Dominik Kozaczko - I’m a Computer Science and Information Technology teacher.

Portuguese

Fidel Viegas (fidel.viegas@gmail.com) has volunteered to translate the book to Portuguese.

Romanian

Paul-Sebastian Manole (brokenthorn@gmail.com) has volunteered to translate this book to Romanian.

Paul-Sebastian Manole - I’m a second year Computer Science student at Spiru Haret University,
here in Romania. I’m more of a self-taught programmer and decided to learn a new language,
Python. The web told me there was no better way to do so but read 'A Byte of Python'. That’s how
popular this book is (congratulations to the author for writing such an easy to read book). I
started liking Python so I decided to help translate the latest version of Swaroop’s book in
Romanian. Although I could be the one with the first initiative, I’m just one volunteer so if you
can help, please join me.

Russian

Vladimir Smolyar (v_2e@ukr.net) has completed a Russian translation at
http://wombat.org.ua/AByteOfPython/.

Ukranian

Averkiev Andrey (averkiyev@ukr.net) has volunteered to translate the book to Russian, and perhaps
Ukranian (time permitting).

Serbian

"BugSpice" (amortizerka@gmail.com) has completed a Serbian translation:

You can download it from http://www.sendspace.com/filegroup/DlNY1mF7DFqNt4e61LvVug (Latin and
Cyrillic serbian (and similar languages) version.

More details at http://forum.ubuntu-rs.org/Thread-zagrljaj-pitona.

Slovak

Albertio Ward (albertioward@gmail.com) has translated the book to Slovak at
http://www.fatcow.com/edu/python-swaroopch-sl/ :

We are a non-profit organization called "Translation for education". We represent a group of
people, mainly students and professors, of the Slavonic University. Here are students from
different departments: linguistics, chemistry, biology, etc. We try to find interesting
publications on the Internet that can be relevant for us and our university colleagues. Sometimes
we find articles by ourselves; other times our professors help us choose the material for
translation. After obtaining permission from authors we translate articles and post them in our
blog which is available and accessible to our colleagues and friends. These translated publications
often help students in their daily study routine.

Spanish

Alfonso de la Guarda Reyes (alfonsodg@ictechperu.net), Gustavo Echeverria
(gustavo.echeverria@gmail.com), David Crespo Arroyo (davidcrespoarroyo@hotmail.com) and Cristian
Bermudez Serna (crisbermud@hotmail.com) have volunteered to translate the book to Spanish.

Gustavo Echeverria says:

I work as a software engineer in Argentina. I use mostly C# and .Net technologies at work but
strictly Python or Ruby in my personal projects. I knew Python many years ago and I got stuck
inmediately. Not so long after knowing Python I discovered this book and it helped me to learn the
language. Then I volunteered to translate the book to Spanish. Now, after receiving some requests,
I’ve begun to translate "A Byte of Python" with the help of Maximiliano Soler.

Cristian Bermudez Serna says:

I am student of Telecommunications engineering at the University of Antioquia (Colombia). Months
ago, i started to learn Python and found this wonderful book, so i volunteered to get the Spanish
translation.

Swedish

Mikael Jacobsson (leochingkwake@gmail.com) has volunteered to translate the book to Swedish.

Turkish

Türker SEZER (tsezer@btturk.net) and Bugra Cakir (bugracakir@gmail.com) have volunteered to
translate the book to Turkish. "Where is Turkish version? Bitse de okusak."

Chapter 19. Translation Howto

	
The full source of the book is available from https://github.com/swaroopch/byte_of_python.

	
Please fork the repository.

	
Then, fetch the repository to your computer. You need to know how to use
Git to do that.

	
Read AsciiDoc syntax quick
reference.

	
Start editing the .asciidoc files to translate to your local language.

	
Run source commands.bash and use make_html, make_pdf, etc. to generate output from the
AsciiDoc sources.

OEBPS/light_table_screenshot.png
Light Table

Welcome test.py

print "Hello World"|[¢

swaroopch [stdout]: Hello World

OEBPS/terminal_screenshot.png
[20:33:32][/tmp/py]
$ python hello.py
hello world

[Zg :33:36][/tmp/py]
$

