

Test-Driven Development: Extensive
Tutorial

Grzegorz Gałęzowski

This book is for sale at http://leanpub.com/tdd-ebook

This version was published on 2016-07-16

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools
and many iterations to get reader feedback, pivot until you have the right book and build
traction once you do.

This work is licensed under a Creative Commons Attribution 3.0 Unported License

http://leanpub.com/tdd-ebook
http://leanpub.com
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by/3.0/deed.en_US
http://creativecommons.org/licenses/by/3.0/deed.en_US

Tweet This Book!
Please help Grzegorz Gałęzowski by spreading the word about this book on Twitter!

The suggested hashtag for this book is #tddebookxt.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#tddebookxt

http://twitter.com
https://twitter.com/search?q=%23tddebookxt
https://twitter.com/search?q=%23tddebookxt

Contents

Front Matter . 1

Dedications . 2

Thanks! . 3

Part 1: Just the basics . 4

Motivation – the first step to learning TDD . 5
Let’s get it started! . 7

The essential tools . 8
Test framework . 8
Mocking framework . 13
Anonymous values generator . 19
Summary . 22

It’s not (only) a test . 23
When a test becomes something more . 23
Taking it to the software development land . 24
A Specification rather than a test suite . 25
The differences between executable and “traditional” specifications 26

Statement-first programming . 27
What’s the point of writing a specification after the fact? 27
“Test-First” means seeing a failure . 29
“Test-After” often ends up as “Test-Never” . 34
“Test-After” often leads to design rework . 34
Summary . 35

Practicing what we have already learned . 36
Let me tell you a story . 36
Act 1: The Car . 36
Act 2: The Customer’s Site . 37
Act 3: Test-Driven Development . 41
Epilogue . 54

Sorting out the bits . 55

CONTENTS

How to start? . 56
Start with a good name . 56
Start by filling the GIVEN-WHEN-THEN structure with the obvious 60
Start from the end . 63
Start by invoking a method if you have one . 65
Summary . 68

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 69
Is there really a commonality between analysis and TDD? 69
Gherkin . 70
TODO list… again! . 72

Developing a TDD style and Constrained Non-Determinism 77
A style? . 77
Principle: Tests As Specification . 77
First technique: Anonymous Input . 78
Second technique: Derived Values . 79
Third technique: Distinct Generated Values . 80
Fourth technique: Constant Specification . 82
Summary of the example . 83
Constrained non-determinism . 84
Summary . 84
What is the scope of a unit-level Statement in TDD? 84
Specifying Boundaries and Conditions . 88

Triangulation . 97

Part 2: Test-DrivenDevelopment inObject-Oriented
World . 107

On Object Composability . 109

Telling, not asking . 117

The need for mock objects . 124

Why do we need composability? . 125

Web, messages and protocols . 134
Alarms, again! . 136
Summary . 139

Composing a web of objects . 140
A preview . 140

Interfaces . 171
Classes vs interfaces . 171
Events/callbacks vs interfaces – few words on roles 172

CONTENTS

Small interfaces . 174

Protocols . 179
Protocols exist . 179
Protocol stability . 181
Craft messages to reflect sender’s intention . 181
Model interactions after the problem domain . 182
Message recipients should be told what to do, instead of being asked for information . 184
Most of the getters should be removed, return values should be avoided 187
Protocols should be small and abstract . 194
Summary . 194

Classes . 195
Single Responsibility Principle . 195
Static recipients . 199
Summary . 202

Object Composition as a Language . 203
More readable composition root . 203
Refactoring for readability . 205
Composition as a language . 215
The significance of higher-level language . 216
Some advice . 217
Summary . 223

Value Objects . 224
What is a value? . 224
Example: money and names . 224

Value object anatomy . 230
Hidden data . 231
Hidden constructor . 231
String conversion methods . 237
Equality members . 238
The return of investment . 239
Summary . 241

THIS IS ALL I HAVE FOR NOW. WHAT FOLLOWS IS RAW, UNORDERED MATE-
RIAL THAT’S NOT YET READY TO BE CONSUMEDAS PARTOF THIS TUTORIAL242

Aspects of value objects design . 243
Immutability . 243
Implicit vs. explicit handling of variability (TODO check vs with or without a dot) . . 246
Special values . 249
Value types and Tell Don’t Ask . 250
Summary . 251

An object-oriented approach summary . 252

CONTENTS

Where are we now? . 252
So, tell me again, why are we here? . 253

Mock Objects as a testing tool . 254
A backing example . 254
Specifying protocols . 255
Using a mock destination . 256
Mocks as yet another context . 257
Summary . 258

Further Reading . 259
Motivation – the first step to learning TDD . 259
The Essential Tools . 259
Value Objects . 259

Front Matter

1

Dedications
Ad Deum qui laetificat iuventutem meam.

To my beloved wife Monika.

2

Thanks!
I would like to thank the following people (listed alphabetically by name) for valuable feedback,
suggestions, typo fixes and other contributions:

• Brad Appleton
• Borysław Bobulski
• Chris Kucharski
• Daniel Dec
• Daniel Żołopa (cover image)
• Donghyun Lee
• Marek Radecki
• Martin Moene
• Michael Whelan
• Polina Kravchenko
• Rafał Bigaj
• Reuven Yagel
• Rémi Goyard
• Robert Pająk
• Wiktor Żołnowski

This book is not original at all. It presents various topics that others invented and I just picked
up. Thus, I would also like to thank my mentors and authorities on test-driven development and
object-oriented design that I gained most of my knowledge from (listed alphabetically by name):

• Amir Kolsky
• Dan North
• Emily Bache
• Ken Pugh
• Kent Beck
• Mark Seemann
• Martin Fowler
• Nat Pryce
• Philip Schwarz
• Robert C. Martin
• Scott Bain
• Steve Freeman

3

Part 1: Just the basics

In this part I introduce the basic TDD philosophy and practices, without going much into ad-
vanced aspects like applying TDD to object-oriented systems where multiple objects collaborate
(which is a topic of part 2). In terms of design, most of the examples will be about methods of
a single object being exercised. The goal is to focus on the core of TDD before going into its
specific applications and to slowly introduce some concepts in an easy to grasp manner.

After reading part 1, you will be able to quite effectively develop classes that have no
dependencies on other classes (and on operating system resources) using TDD.

4

Motivation – the first step to
learning TDD
I’m writing this book because I’m a TDD enthusiast. I believe TDD is a huge improvement over
other software development methodologies I have used to deliver quality software. I believe this
is true not only for me, but for many other software developers. Which makes me question, why
don’t more people learn and use TDD as their software delivery methodology of choice? In my
professional life, I haven’t seen the adoption rate to be big enough to justify the claim that TDD
is currently in the mainstream.

You already have my respect for deciding to pick up a book, rather than building your
understanding of TDD on the foundation of urban legends and your own imagination. I am
honored and happy you chose this one, no matter if this is your first book on TDD or one of
many you have opened up in your learning endeavors. As much as I really hope you will read
this book from cover to cover, I am aware it doesn’t always happen. That makes me want to ask
you an important question that may help you determine whether you really want to read on:
why do you want to learn TDD?

By questioning your motivation, I’m not trying to discourage you from reading this book. Rather,
I’d like you to reconsider the goal you want to achieve by reading it. A few years ago, I had an
apprentice who wanted to learn TDD. Together we started working on a small project to let him
grasp the necessary skills through practice, with me sitting next to him, providing guidance. He
showed up three or four times, then he resigned, having “more urgent things to do” and “no
time”. Since then, he has not progressed in his understanding or utilization of TDD at all. Even
today, I sometimes wonder what was his motivation and why it somehow burned out.

Over time, I have noticed that some of us (myself included)may thinkwe need to learn something
(as opposed to wanting to learn something) for whatever reasons, e.g. getting a promotion at
work, gaining a certificate, adding something to CV, or just “staying up to date” with recent
hypes. Unfortunately, Test-Driven Development tends to fall into this category for many people.
Such motivation may be difficult to sustain over the long term.

Another source of motivation may be imagining TDD as something it really is not. Some of us
may only have a vague knowledge of what the real costs and benefits of TDD are. Knowing
that TDD is valued and praised by others, we may draw conclusions that it has to be good for
us as well. We may have a vague understanding of the reasons, such as “the code will be more
tested” for example. As we don’t know the real “why” of TDD, we may make up some reasons
to practice test-first development, like “to ensure tests are written for everything”. Don’t get me
wrong, these statements might be partially true, however, they miss a lot of the essence of TDD.
If TDD does not bring the benefits we imagine it might bring, dissapointment may creep in.
I heard such disappointed practitioners saying “I don’t really need TDD, because I need tests
that give me confidence on a broader scope” or “Why do I need unit tests¹ when I already have

¹By the way, TDD is not only about unit tests, which we will get to eventually.

5

Motivation – the first step to learning TDD 6

integration tests, smoke tests, sanity tests, exploration tests, etc…?”. Many times, I saw TDD
getting abandoned before even being understood.

Is learning TDD a high priority for you? Are you determined to try it out and really learn it?
If you’re not, hey, I heard the new series of Game Of Thrones is on TV, why don’t you check it
out instead? Ok, I’m just teasing, however, as some say, TDD is “easy to learn, hard to master”²,
so without some guts to move on, it will be hard. Especially since my plan is to introduce the
content slowly and gradually, so that you can get better explanation of some of the practices and
techniques.

What TDD feels like

My brother and I liked to play video games in our childhood – one of the most memorable being
Tekken 3 – a Japanese tournament beat’em up for Sony Playstation. Beating the game with all
the warriors and unlocking all hidden bonuses, mini-games etc. took about a day. Some could
say the game had nothing to offer since then. Why is it then that we spent more than a year on
it?

Tekken3

It is because each fighter in the game had a lot of combos, kicks and punches that could be
mixed in a variety of ways. Some of them were only usable in certain situations, others were

²I don’t know who said it first, I searched the web and found it in few places where none of the writers gave credit to anyone else for it, so
I decided just to mention that I’m not the one that coined this phrase.

Motivation – the first step to learning TDD 7

something I could throw at my opponent almost anytime without a big risk of being exposed to
counterattacks. I could side-step to evade enemy’s attacks and, most of all, I could kick another
fighter up in the air where they could not block my attacks and I was able to land some nice
attacks on them before they fell down. These in-the-air techniques were called “juggles”. There
were magazines that published lists of new juggles each month and the hype has stayed in the
gaming community for well over a year.

Yes, Tekken was easy to learn – I could put one hour into training the core moves of a character
and then be able to “use” this character, but I knew that what would make me a great fighter
was the experience and knowledge on which techniques were risky and which were not, which
ones could be used in which situations, which ones, if used one after another, gave the opponent
little chance to counterattack etc. No wonder that soon many tournaments sprang, where players
could clash for glory, fame and rewards. Even today, you can watch some of those old matches
on youtube.

TDD is like Tekken. You probably heard the mantra “red-green-refactor” or the general advice
“write your test first, then the code”, maybe you even did some experiments on your own where
you were trying to implement a bubble-sort algorithm or other simple stuff by starting with
a test. But that is all like practicing Tekken by trying out each move on its own on a dummy
opponent, without the context of real-world issues that make the fight really challenging. And
while I think such exercises are very useful (in fact, I do a lot of them), I find an immense benefit
in understand the bigger picture of real-world TDD usage as well.

Some people I talk to about TDD sum up what I say to them as, “This is really demotivating –
there are so many things I have to watch out for, that it makes me never want to start!”. Easy,
don’t panic – remember the first time you tried to ride a bike – you might have been really far
back then from knowing traffic regulations and following road signs, but that didn’t really keep
you away, did it?

I find TDD very exciting and it makes me excited about writing code as well. Some guys of my
age already think they know all about coding, are bored with it and cannot wait until they move
to management or requirements or business analysis, but hey! I have a new set of techniques that
makes my coding career challenging again! And it is a skill that I can apply to many different
technologies and languages, making me a better developer overall! Isn’t that something worth
aiming for?

Let’s get it started!

In this chapter, I tried to provoke you to rethink your attitude and motivation. If you are still
determined to learn TDD with me by reading this book, which I hope you are, then let’s get to
work!

The essential tools
Ever watched Karate Kid, either the old version or the new one? The thing they have in common
is that when the “kid” starts learning karate (or kung-fu) from his master, he is given a basic,
repetitive task (like taking off a jacket, and putting it on again), not knowing yet where it would
lead him. Or look at the first Rocky film (yeah, the one starring Sylvester Stallone), where Rocky
chases a chicken in order to train agility.

When I first tried to learn how to play guitar, I found two pieces of advice on the web: the first
was to start by mastering a single, difficult song. The second was to play with a single string,
learn how to make it sound in different ways and try to play some melodies by ear just with this
one string. Do I have to tell you that the second advice worked better?

Honestly, I could dive right into the core techniques of TDD, but I feel this would be like putting
you on a ring with a demanding opponent – you would most probably be discouraged before
gaining the necessary skills. So, instead of explaining how to win a race, in this chapter we will
take a look at what shiny cars we will be driving.

In other words, I will give you a brief tour of the three tools we will use throughout this book.

In this chapter, I will oversimplify some things just to get you up and running without getting
into the philosophy of TDD yet (think: physics lessons in primary school). Don’t worry about it
:-), I will make up for it in the coming chapters!

Test framework

The first tool we’ll use is a test framework. A test framework allows us to specify and execute
our tests.

Let’s assume for the sake of this introduction that we have an application that accepts two
numbers from commandline, multiplies them and prints the result on the console. The code
is pretty straightforward:

1 public static void Main(string[] args)

2 {

3 try

4 {

5 int firstNumber = Int32.Parse(args[0]);

6 int secondNumber = Int32.Parse(args[1]);

7

8 var result =

9 new Multiplication(firstNumber, secondNumber).Perform();

10

11 Console.WriteLine("Result is: " + result);

8

The essential tools 9

12 }

13 catch(Exception e)

14 {

15 Console.WriteLine("Multiplication failed because of: " + e);

16 }

17 }

Now, let’s assume we want to check whether this application produces correct results. The most
obvious way would be to invoke it from the command line manually with some exemplary
arguments, then check the output to the console and compare it with what we expected to see.
Such testing session could look like this:

1 C:\MultiplicationApp\MultiplicationApp.exe 3 7

2 21

3 C:\MultiplicationApp\

As you can see, our application produces a result of 21 for the multiplication of 3 by 7. This is
correct, so we assume the application has passed the test.

Now, what if the application also performed addition, subtraction, division, calculus etc.? How
many times would we have to invoke the application manually to make sure every operation
works correctly? Wouldn’t that be time-consuming? But wait, we are programmers, right? So
we can write programs to do the testing for us! For example, here is a source code of a program
that uses the Multiplication class, but in a slightly different way then the original application:

1 public static void Main(string[] args)

2 {

3 var multiplication = new Multiplication(3,7);

4

5 var result = multiplication.Perform();

6

7 if(result != 21)

8 {

9 throw new Exception("Failed! Expected: 21 but was: " + result);

10 }

11 }

Looks simple, right? Now, let’s use this code as a basis to build a very primitive test framework,
just to show the pieces that such frameworks consist of. As a step in that direction, we can extract
the verification of the result into a reusable method – after all, we will be adding division in a
second, remember? So here goes:

The essential tools 10

1 public static void Main(string[] args)

2 {

3 var multiplication = new Multiplication(3,7);

4

5 var result = multiplication.Perform();

6

7 AssertTwoIntegersAreEqual(expected: 21, actual: result);

8 }

9

10 //extracted code:

11 public static void AssertTwoIntegersAreEqual(

12 int expected, int actual)

13 {

14 if(actual != expected)

15 {

16 throw new Exception(

17 "Failed! Expected: "

18 + expected + " but was: " + actual);

19 }

20 }

Note that I started the name of this extracted method with “Assert” – we will get back to the
naming soon, for now just assume that this is a good name for a method that verifies that a result
matches our expectation. Let’s take one last round and extract the test itself so that its code is in
a separate method. This method can be given a name that describes what the test is about:

1 public static void Main(string[] args)

2 {

3 Multiplication_ShouldResultInAMultiplicationOfTwoPassedNumbers();

4 }

5

6 public void

7 Multiplication_ShouldResultInAMultiplicationOfTwoPassedNumbers()

8 {

9 //Assuming...

10 var multiplication = new Multiplication(3,7);

11

12 //when this happens:

13 var result = multiplication.Perform();

14

15 //then the result should be...

16 AssertTwoIntegersAreEqual(expected: 21, actual: result);

17 }

18

19 public static void AssertTwoIntegersAreEqual(

20 int expected, int actual)

The essential tools 11

21 {

22 if(actual != expected)

23 {

24 throw new Exception(

25 "Failed! Expected: " + expected + " but was: " + actual);

26 }

27 }

And we’re done. Now if we need another test, e.g. for division, we can just add a new
method call to the Main() method and implement it. Inside this new test, we can reuse
the AssertTwoIntegersAreEqual() method, since the check for division would also be about
comparing two integer values.

As you see, we can easily write automated checks like this, using our primitive methods.
However, this approach has some disadvantages:

1. Every time we add a new test, we have to update the Main() method with a call to the
new test. If we forget to add such a call, the test will never be run. At first it isn’t a big
deal, but as soon as we have dozens of tests, an omission will become hard to notice.

2. Imagine your system consists of more than one application – you would have some
problems trying to gather summary results for all of the applications that your system
consists of.

3. Soon you’ll need to write a lot of other methods similar to AssertTwoIntegersAreEqual()
– the one we already have compares two integers for equality, but what if we wanted
to check a different condition, e.g. that one integer is greater than another? What if we
wanted to check equality not for integers, but for characters, strings, floats etc.? What if
we wanted to check some conditions on collections, e.g. that a collection is sorted or that
all items in the collection are unique?

4. Given a test fails, it would be hard to navigate from the commandline output to the
corresponding line of the source in your IDE. Wouldn’t it be easier if you could click
on the error message to take you immediately to the code where the failure occurred?

For these and other reasons, advanced automated test frameworks were created such as CppUnit
(for C++), JUnit (for Java) or NUnit (C#). Such frameworks are in principle based on the very
idea that I sketched above, plus they make up for the deficiencies of our primitive approach. They
derive their structure and functionality from Smalltalk’s SUnit and are collectively referred to as
xUnit family of test frameworks.

To be honest, I can’t wait to show you how the test we just wrote looks like when a test
framework is used. But first let’s recapwhat we’ve got in our straightforward approach to writing
automated tests and introduce some terminology that will help us understand how automated
test frameworks solve our issues:

1. The Main() method serves as a Test List – a place where it is decided which tests to run.
2. The Multiplication_ShouldResultInAMultiplicationOfTwoPassedNumbers()method is

a Test Method.

The essential tools 12

3. The AssertTwoIntegersAreEqual()method is an Assertion – a condition that, when not
met, ends a test with failure.

To our joy, those three elements are present as well when we use a test framework. Moreover,
they are far more advanced than what we have. To illustrate this, here is (finally!) the same test
we wrote above, now using the xUnit.Net³ test framework:

1 [Fact] public void

2 Multiplication_ShouldResultInAMultiplicationOfTwoPassedNumbers()

3 {

4 //Assuming...

5 var multiplication = new Multiplication(3,7);

6

7 //when this happens:

8 var result = multiplication.Perform();

9

10 //then the result should be...

11 Assert.Equal(21, result);

12 }

Looking at the example, we can see that the test method itself is the only thing that’s left – the
two methods (the test list and assertion) that we previously had are gone now. Well, to tell you
the truth, they are not literally gone – it’s just that the test framework offers replacements that
are far better, so we used them instead. Let’s reiterate the three elements of the previous version
of the test that I promised would be present after the transition to the test framework:

1. The Test List is now created automatically by the framework from all methods marked
with a [Fact] attribute. There’s no need to maintain one or more central lists anymore, so
the Main() method is no more.

2. The Test Method is present and looks almost the same as before.
3. The Assertion takes the form of a call to the static Assert.Equal() method – the

xUnit.NET framework is bundled with a wide range of assertion methods, so I used one of
them. Of course, no one stops you from writing your own custom assertion if the built-in
assertion methods don’t offer what you are looking for.

Phew, I hope I made the transition quite painless for you. Now the last thing to add – as there
is no Main() method anymore in the last example, you surely must wonder how we run those
tests, right? Ok, the last big secret unveiled – we use an external application for this (we will
refer to it using the term Test Runner) – we tell it which assemblies to run and then it loads
them, runs them, reports the results etc. A Test Runner can take various forms, e.g. it can be a
console application, a GUI application or a plugin for an IDE. Here is an example of a test runner
provided by a plugin for Visual Studio IDE called Resharper:

³http://xunit.github.io/

http://xunit.github.io/
http://xunit.github.io/

The essential tools 13

Resharper test runner docked as a window in Visual Studio 2015 IDE

Mocking framework

This introduction is written for those who are not proficient with using mocks. Even
though, I accept the fact that the concept may be too difficult for you to grasp. If, while
reading this section, you find youreslf lost, please skip it. We won’t be dealing with
mock objects until part 2, where I offer a richer and more accurate description of the
concept.

When we want to test a class that depends on other classes, we may think it’s a good idea to
include those classes in the test as well. This, however, does not allow us to test a single object or a

The essential tools 14

small cluster of objects in isolation, where we would be able to verify that just a small part of the
application works correctly. Thankfully, if we make our classes depend on interfaces rather than
other classes, we can easily implement those interfaces with special “fake” classes that can be
crafted in a way that makes our testing easier. For example, objects of such classes may contain
pre-programmed return values for some methods. They can also record the methods that are
invoked on them and allow the test to verify whether the communication between our object
under test and its dependencies is correct.

Nowadays, we can rely on tools to generate such a “fake” implementation of a given interface
for us and let us use this generated implementation in place of a real object in tests. This happens
in a different way, depending on a language. Sometimes, the interface implementations can be
generated at runtime (like in Java or C#), sometimes we have to rely more on compile-time
generation (e.g. in C++).

Narrowing it down to C# – a mocking framework is just that – a mechanism that allows us
to create objects (called “mock objects” or just “mocks”), that adhere to a certain interface, at
runtime. It works like this: the type of the interface we want to have implemented is usually
passed to a special method which returns a mock object based on that interface (we’ll see an
example in a few seconds). Aside from the creation of mock objects, such framework provides
an API to configure the mocks on how they behave when certain methods are called on them and
allows us to inspect which calls they received. This is a very powerful feature, because we can
simulate or verify conditions that would be difficult to achieve or observe using only production
code. Mocking frameworks are not as old as test frameworks so they haven’t been used in TDD
since the very beginning.

I’ll give you a quick example of a mocking framework in action now and defer further
explanation of their purpose to later chapters, as the full description of mocks and their place in
TDD is not so easy to convey.

Let’s pretend that we have a class that allows placing orders and then puts these orders into a
database (using an implementation of an interface called OrderDatabase). In addition, it handles
any exception that may occur, by writing it into a log. The class itself does not do any important
stuff, but let’s try to imagine really hard that this is some serious domain logic. Here’s the code
for this class:

1 public class OrderProcessing

2 {

3 OrderDatabase _orderDatabase; //OrderDatabase is an interface

4 Log _log;

5

6 //we get the database object from outside the class:

7 public OrderProcessing(

8 OrderDatabase database,

9 Log log)

10 {

11 _orderDatabase = database;

12 _log = log;

13 }

The essential tools 15

14

15 //other code...

16

17 public void Place(Order order)

18 {

19 try

20 {

21 _orderDatabase.Insert(order);

22 }

23 catch(Exception e)

24 {

25 _log.Write("Could not insert an order. Reason: " + e);

26 }

27 }

28

29 //other code...

30 }

Now, imagine we need to test it – how do we do that? I can already see you shake your head and
say: “Let’s just create a database connection, invoke the Place() method and see if the record is
added properly into the database”. If we did that, the first test would look like this:

1 [Fact] public void

2 ShouldInsertNewOrderToDatabaseWhenOrderIsPlaced()

3 {

4 //GIVEN

5 var orderDatabase = new MySqlOrderDatabase(); //uses real database

6 orderDatabase.Connect();

7 orderDatabase.Clean(); //clean up after potential previous tests

8 var orderProcessing = new OrderProcessing(orderDatabase, new FileLog());

9 var order = new Order(

10 name: "Grzesiek",

11 surname: "Galezowski",

12 product: "Agile Acceptance Testing",

13 date: DateTime.Now,

14 quantity: 1);

15

16 //WHEN

17 orderProcessing.Place(order);

18

19 //THEN

20 var allOrders = orderDatabase.SelectAllOrders();

21 Assert.Contains(order, allOrders);

22 }

At the beginning of the test we open a connection to the database and clean all existing orders
in it (more on that shortly), then create an order object, insert it into the database and query the

The essential tools 16

database for all orders it contains. At the end, we make an assertion that the order we tried to
insert is among all orders in the database.

Why dowe clean up the database at the beginning of the test? Remember that a database provides
persistent storage. If we don’t clean it up before executing the logic of this test, the database may
already contain the item we are trying to add, e.g. from previous executions of this test. The
database might not allow us to add the same item again and the test would fail. Ouch! It hurts
so bad, because we wanted our tests to prove something works, but it looks like it can fail even
when the logic is coded correctly. Of what use would be such a test if it couldn’t reliably tell us
whether the implemented logic is correct or not? So, to make sure that the state of the persistent
storage is the same every time we run this test, we clean up the database before each run.

Now that the test is ready, did we get what we wanted from it? I would be hesitant to answer
“yes”. There are several reasons for that:

1. The test will most probably be slow, because accessing database is relatively slow. It is not
uncommon to have more than a thousand tests in a suite and I don’t want to wait half an
hour for results every time I run them. Do you?

2. Everyone who wants to run this test will have to set up a special environment, e.g. a local
database on their machine. What if their setup is slightly different from ours? What if the
schema gets outdated – will everyone manage to notice it and update the schema of their
local databases accordingly? Should we re-run our database creation script only to ensure
we have got the latest schema available to run your tests against?

3. There may be no implementation of the database engine for the operating system running
on our development machine if our target is an exotic or mobile platform.

4. Note that the test we wrote is only one out of two.We still have to write another one for the
scenario where inserting an order ends with an exception. How do we setup the database
in a state where it throws an exception? It is possible, but requires significant effort (e.g.
deleting a table and recreating it after the test, for use by other tests that might need it to
run correctly), which may lead some to the conclusion that it is not worth writing such
tests at all.

Now, let’s try to approach this problem in a different way. Let’s assume that the MySqlOrder-
Database that queries a real database query is already tested (this is because I don’t want to
get into a discussion on testing database queries just yet - we’ll get to it in later chapters) and
that the only thing we need to test is the OrderProcessing class (remember, we’re trying to
imagine really hard that there is some serious domain logic coded here). In this situation we can
leave the MySqlOrderDatabase out of the test and instead create another, fake implementation
of the OrderDatabase that acts as if it was a connection to a database but does not write to a real
database at all – it only stores the inserted records in a list in memory. The code for such a fake
connection could look like this:

The essential tools 17

1 public class FakeOrderDatabase : OrderDatabase

2 {

3 public Order _receivedArgument;

4

5 public void Insert(Order order)

6 {

7 _receivedArgument = order;

8 }

9

10 public List<Order> SelectAllOrders()

11 {

12 return new List<Order>() { _receivedOrder };

13 }

14 }

Note that the fake order database is an instance of a custom class that implements the same
interface as MySqlOrderDatabase. Thus, if we try, we can make the tested code use our fake
without knowing.

Let’s replace the real implementation of the order database by the fake instance in the test:

1 [Fact] public void

2 ShouldInsertNewOrderToDatabaseWhenOrderIsPlaced()

3 {

4 //GIVEN

5 var orderDatabase = new FakeOrderDatabase();

6 var orderProcessing = new OrderProcessing(orderDatabase, new FileLog());

7 var order = new Order(

8 name: "Grzesiek",

9 surname: "Galezowski",

10 product: "Agile Acceptance Testing",

11 date: DateTime.Now,

12 quantity: 1);

13

14 //WHEN

15 orderProcessing.Place(order);

16

17 //THEN

18 var allOrders = orderDatabase.SelectAllOrders();

19 Assert.Contains(order, allOrders);

20 }

Note that we do not clean the fake database object like we did with the real database, since we
create a fresh object each time the test is run and the results are stored in a memory location
different for each instance. The test will also be much quicker now, because we are not accessing
the database anymore. What’s more, we can now easily write a test for the error case. How? Just
make another fake class, implemented like this:

The essential tools 18

1 public class ExplodingOrderDatabase : OrderDatabase

2 {

3 public void Insert(Order order)

4 {

5 throw new Exception();

6 }

7

8 public List<Order> SelectAllOrders()

9 {

10 }

11 }

Ok, so far so good, but now we have two classes of fake objects to maintain (and chances are we
will need even more). Any method added to the OrderDatabase interface must also be added to
each of these fake classes. We can spare some coding by making our mocks a bit more generic
so that their behavior can be configured using lambda expressions:

1 public class ConfigurableOrderDatabase : OrderDatabase

2 {

3 public Action<Order> doWhenInsertCalled;

4 public Func<List<Order>> doWhenSelectAllOrdersCalled;

5

6 public void Insert(Order order)

7 {

8 doWhenInsertCalled(order);

9 }

10

11 public List<Order> SelectAllOrders()

12 {

13 return doWhenSelectAllOrdersCalled();

14 }

15 }

Now, we don’t have to create additional classes for new scenarios, but our syntax becomes
awkward. Here’s how we configure the fake order database to remember and yield the inserted
order:

1 var db = new ConfigurableOrderDatabase();

2 Order gotOrder = null;

3 db.doWhenInsertCalled = o => {gotOrder = o;};

4 db.doWhenSelectAllOrdersCalled = () => new List<Order>() { gotOrder };

And if we want it to throw an exception when anything is inserted:

The essential tools 19

1 var db = new ConfigurableOrderDatabase();

2 db.doWhenInsertCalled = o => {throw new Exception();};

Thankfully, some smart programmers created libraries that provide further automation in such
scenarios. One such a library is NSubstitute⁴. It provides an API in a form of C# extension
methods, which is why it might seem a bit magical at first, especially if you’re not familiar with
C#. Don’t worry, you’ll get used to it.

Using NSubstitute, our first test can be rewritten as:

1 [Fact] public void

2 ShouldInsertNewOrderToDatabaseWhenOrderisPlaced()

3 {

4 //GIVEN

5 var orderDatabase = Substitute.For<OrderDatabase>();

6 var orderProcessing = new OrderProcessing(orderDatabase, new FileLog());

7 var order = new Order(

8 name: "Grzesiek",

9 surname: "Galezowski",

10 product: "Agile Acceptance Testing",

11 date: DateTime.Now,

12 quantity: 1);

13

14 //WHEN

15 orderProcessing.Place(order);

16

17 //THEN

18 orderDatabase.Received(1).Insert(order);

19 }

Note that we don’t need the SelectAllOrders() method on the database connection interface
anymore. It was there only to make writing the test easier – no production code used it. We
can delete the method and get rid of some more maintenance trouble. Instead of the call to
SelectAllOrders(), mocks created by NSubstitute record all calls received and allow us to use
a special method called Received() on them (see the last line of this test), which is actually
a camouflaged assertion that checks whether the Insert() method was called with the order
object as parameter.

This explanation of mock objects is very shallow and its purpose is only to get you up and
running. We’ll get back to mocks later as we’ve only scratched the surface here.

Anonymous values generator

Looking at the test data in the previous section we see that many values are specified literally,
e.g. in the following code:

⁴http://nsubstitute.github.io/

http://nsubstitute.github.io/
http://nsubstitute.github.io/

The essential tools 20

1 var order = new Order(

2 name: "Grzesiek",

3 surname: "Galezowski",

4 product: "Agile Acceptance Testing",

5 date: DateTime.Now,

6 quantity: 1);

the name, surname, product, date and quantity are very specific. This might suggest that the
exact values are important from the perspective of the behavior we are testing. On the other
hand, when we look at the tested code again:

1 public void Place(Order order)

2 {

3 try

4 {

5 this.orderDatabase.Insert(order);

6 }

7 catch(Exception e)

8 {

9 this.log.Write("Could not insert an order. Reason: " + e);

10 }

11 }

we can spot that these values are not used anywhere – the tested class does not use or check
them in any way. These values are important from the database point of view, but we already
took the real database out of the picture. Doesn’t it trouble you that we fill the order object with
so many values that are irrelevant to the test logic itself and that clutter the structure of the test
with needless details? To remove this clutter let’s introduce a method with a descriptive name
to create the order and hide the details we don’t need from the reader of the test:

1 [Fact] public void

2 ShouldInsertNewOrderToDatabase()

3 {

4 //GIVEN

5 var orderDatabase = Substitute.For<OrderDatabase>();

6 var orderProcessing = new OrderProcessing(orderDatabase, new FileLog());

7 var order = AnonymousOrder();

8

9 //WHEN

10 orderProcessing.Place(order);

11

12 //THEN

13 orderDatabase.Received(1).Insert(order);

14 }

15

The essential tools 21

16 public Order AnonymousOrder()

17 {

18 return new Order(

19 name: "Grzesiek",

20 surname: "Galezowski",

21 product: "Agile Acceptance Testing",

22 date: DateTime.Now,

23 quantity: 1);

24 }

Now, that’s better. Not only did we make the test shorter, we also provided a hint to the reader
that the actual values used to create an order don’t matter from the perspective of tested order-
processing logic. Hence the name AnonymousOrder().

By the way, wouldn’t it be nice if we didn’t have to provide the anonymous objects ourselves, but
could rely on another library to generate these for us? Susprise, surprise, there is one! It’s called
Autofixture⁵. It is an example of so-called anonymous values generator (although its creator
likes to say that it is also an implementation of Test Data Builder pattern, but let’s skip this
discussion here).

After changing our test to use AutoFixture, we arrive at the following:

1 private Fixture any = new Fixture();

2

3 [Fact] public void

4 ShouldInsertNewOrderToDatabase()

5 {

6 //GIVEN

7 var orderDatabase = Substitute.For<OrderDatabase>();

8 var orderProcessing = new OrderProcessing(orderDatabase, new FileLog());

9 var order = any.Create<Order>();

10

11 //WHEN

12 orderProcessing.Place(order);

13

14 //THEN

15 orderDatabase.Received(1).Insert(order);

16 }

In this test, we use an instance of a Fixture class (which is a part of AutoFixture) to
create anonymous values for us via a method called Create(). This allows us to remove the
AnonymousOrder() method, thus making our test setup shorter.

Nice, huh? AutoFixture has a lot of advanced features, but to keep things simple I like to hide its
use behind a static class called Any. The simplest implementation of such class would look like
this:

⁵https://github.com/AutoFixture/AutoFixture

https://github.com/AutoFixture/AutoFixture
https://github.com/AutoFixture/AutoFixture

The essential tools 22

1 public static class Any

2 {

3 private static any = new Fixture();

4

5 public static T Instance<T>()

6 {

7 return any.Create<T>();

8 }

9 }

In the next chapters, we’ll seemany different methods from the Any type, plus the full explanation
of the philosophy behind it. The more you use this class, the more it grows with other methods
for creating customized objects.

Summary

This chapter introduced the three tools we’ll use in this book that, whenmastered, will make your
test-driven development flow smoother. If this chapter leaves you with insufficient justification
for their use, don’t worry – we will dive into the philosophy behind them in the coming chapters.
For now, I just want you to get familiar with the tools themselves and their syntax. Go on,
download these tools, launch them, try to write something simple with them. You don’t need to
understand their full purpose yet, just go out and play :-).

It’s not (only) a test
Is the role of a test only to “verify” or “check” whether a piece of software works? Surely, this is a
significant part of its runtime value, i.e. the value that we get when we execute the test. However,
when we limit our perspective on tests only to this, it could lead us to a conclusion that the only
thing that is valuable about having a test is to be able to execute it and view the result. Such acts
as designing a test or implementing a test would only have the value of producing something
we can run. Reading a test would only have value when debugging. Is this really true?

In this chapter, I argue that the acts of designing, implementing, compiling and reading a test are
all very valuable activities. And they let us treat tests as something more than just “automated
checks”.

When a test becomes something more

I studied in Łódź, a large city in the center of Poland. As probably all other students in all other
countries, we have had lectures, exercises and exams. The exams were pretty difficult. As my
computer science group was on the faculty of electronic and electric engineering, we had to grasp
a lot of classes that didn’t have anything to do with programming. For instance: electrotechnics,
solid-state physics or electronic and electrical metrology.

Knowing that exams were difficult and that it was hard to learn everything during the semester,
the lecturers would sometimes give us exemplary exams from previous years. The questions were
different from the actual exams that we were to take, but the structure and kinds of questions
asked (practice vs. theory etc.) were similar. We would usually get these exemplary questions
before we started learning really hard (which was usually at the end of a semester). Guess what
happened then? As you might suspect, we did not use the tests we received just to “verify” or
“check” our knowledge after we finished learning. Quite the contrary – examining those tests
was the very first step of our preparation. Why was that so? What use were the tests when we
knew we wouldn’t know most of the answers?

I guess my lecturers would disagree with me, but I find it quite amusing that what we were
really doing back then was similar to “lean software development”. Lean is a philosophy where,
among other things, there is a rigorous emphasis on eliminating waste. Every feature or product
that is produced but is not needed by anyone, is considered a waste. That’s because if something
is not needed, there is no reason to assume it will ever be needed. In that case the entire feature
or product adds no value. Even if it ever will be needed, it very likely will require rework to fit
the customer’s needs at that time. In such case, the work that went into the parts of the original
solution that had to be reworked is a waste – it had a cost, but brought no benefit (I am not
talking about such things as customer demos, but finished, polished features or products).

So, to eliminate waste, we usually try to “pull features from demand” instead of “pushing them”
into a product in hope they can become useful one day. In other words, every feature is there to
satisfy a concrete need. If not, the effort is considered wasted and the money drown.

23

It’s not (only) a test 24

Going back to the exams example, why can the approach of first looking through the exemplary
tests be considered “lean”? That’s because, when we treat passing an exam as our goal, then
everything that does not put us closer to this goal is considered wasteful. Let’s suppose the exam
concerns theory only – why then practice the exercises? It would probably pay off a lot more to
study the theoretical side of the topics. Such knowledge could be obtained from those exemplary
tests. So, the tests were a kind of specification of what was needed to pass the exam. It allowed us
to pull the value (i.e. our knowledge) from the demand (information obtained from realistic tests)
rather that push it from the implementation (i.e. learning everything in a course book chapter
after chapter).

So the tests became something more. They proved very valuable before the “implementation”
(i.e. learning for the exam) because:

1. they helped us focus on what was needed to reach our goal
2. they brought our attention away from what was not needed to reach our goal

That was the value of a test before learning. Note that the tests we would usually receive were
not exactly what we would encounter at the time of the exam, so we still had to guess. Yet, the
role of a test as a specification of a need was already visible.

Taking it to the software development land

I chose this lengthy metaphor to show you that a writing a “test” is really another way of
specifying a requirement or a need and that it’s not counter-intuitive to think about it this way –
it occurs in our everyday lives. This is also true in software development. Let’s take the following
“test” and see what kind of needs it specifies:

1 var reporting = new ReportingFeature();

2 var anyPowerUser = Any.Of(Users.Admin, Users.Auditor);

3 Assert.True(reporting.CanBePerformedBy(anyPowerUser));

(In this example, we used Any.Of() method that returns any enumeration value from the
specified list. Here, we say “give me a value that is either Users.Admin or Users.Auditor”.)

Let’s look at those (only!) three lines of code and imagine that the production code that makes
this “test” pass does not exist yet. What can we learn from these three lines about what this
production code needs to supply? Count with me:

1. We need a reporting feature.
2. We need to support a notion of users and privileges.
3. We need to support a concept of power user, who is either an administrator or an auditor.
4. Power users need to be allowed to use the reporting feature (note that it does not specify

which other users should or should not be able to use this feature – we would need a
separate “test” for that).

Also, we are already after the phase of designing an API (because the test is already using it) that
will fulfill the need. Don’t you think this is already quite some information about the application
functionality from just three lines of code?

It’s not (only) a test 25

A Specification rather than a test suite

I hope you can see now that what we called “a test” can also be seen as a kind of specification.
This is also the answer to the question I raised at the beginning of this chapter.

In reality, the role of a test, if written before production code, can be broken down even further:

• designing a scenario - is when we specify our requiremnts by giving concrete examples of
behaviors we expect

• writing the test code - is when we specify an API through which we want to use the code
that we are testing

• compiling - is when we get feedback on whether the production code has the classes and
methods required by the specification we wrote. If it doesn’t, the compilation will fail.

• execution - is where we get feedback on whether the production code exhibits the
behaviors that the specification describes

• reading - is where we use the already written specification to obtain knowledge about the
production code.

Thus, the name “test” seems like narrowing down what we are doing here too much. My feelings
is that maybe a different name would be better - hence the term specification.

The discovery of tests’ role as a specification is quite recent and there is no uniform terminology
connected to it yet. Some like to call the process of using tests as specifications Specification By
Example to say that the tests are examples that help specify and clarify the functionality being
developed. Some use the term BDD (Behavior-Driven Development) to emphasize that writing
tests is really about analysing and describing behaviors. Also, you might encounter different
names for some particular elements of this approach, for example, a “test” can be referred to as
a “spec”, or an “example”, or a “behavior description”, or a “specification statement” or “a fact
about the system” (as you already saw in the chapter on tools, the xUnit.NET framework marks
each “test” with a [Fact] attribute, suggesting that by writing it, we are stating a single fact
about the developed code. By the way, xUnit.NET also allows us to state ‘theories’ about our
code, but let’s leave this topic for another time).

Given this variety in terminology, I’d like to make a deal: to be consistent throughout this book,
I will establish a naming convention, but leave you with the freedom to follow your own if you
so desire. The reason for this naming convention is pedagogical – I am not trying to create a
movement to change established terms or to invent a new methodology or anything – my hope
is that by using this terminology throughout the book, you’ll look at some things differently⁶.
So, let’s agree that for the sake of this book:

Specification Statement (or simply Statement, with a capital ‘S’)
will be used instead of the words “test” and “test method”

Specification (or simply Spec, also with a capital ‘S’)
will be used instead of the words “test suite” and “test list”

⁶besides, this book is open source, so if you don’t like the terminology, you are free to create a fork and change it to your liking!

It’s not (only) a test 26

False Statement
will be used instead of “failing test”

True Statement
will be used instead of “passing test”

From time to time I’ll refer back to the “traditional” terminology, because it is better established
and because you may have already heard some other established terms and wonder how they
should be understood in the context of thinking of tests as a specification.

The differences between executable and
“traditional” specifications

You may be familiar with requirements specifications or design specifications that are written in
plain English or other spoken language. However, our Specifications differ from them in at least
few ways. In particular, the kind of Specification that we create by writing tests:

1. Is not completely written up-front like many of such “traditional” specs have been written
(which doesn’t mean it’s written after the code is done - more on this in the next chapters).

2. Is executable – you can run it to see whether the code adheres to the specification or not.
This lowers the risk of inaccuracies in the Specification and falling our of sync with the
production code.

3. Is written in source code rather than in spoken language – which is both good, as the
structure and formality of code leave less room for misunderstanding, and challenging, as
great care must be taken to keep such specification readable.

Statement-first programming
What’s the point of writing a specification after the
fact?

One of the best known thing about TDD is that a failing test for a behavior of a piece of code is
written before this behavior is implemented. This concept is often called “test-first development”
and seems controversial to many.

In the previous chapter, I said that in TDD a “test” takes an additional role – one of a statement
that is part of a specification. If we put it this way, then the whole controversial concept of
“writing a test before the code” does not pose a problem at all. Quite the contrary – it only
seems natural to specify what we expect from a piece of code to do before we attempt to write
it. Does the other way round even make sense? A specification written after completing the
implementation is nothing more than an attempt at documenting the existing solution. Sure,
such attempts can provide some value when done as a kind of reverse-engineering (i.e. writing
the specification for something that was implemented long ago and for which we uncover the
previously implicit business rules or policies as we document the existing solution) – it has an
excitement of discovery in it, but doing so just after we made all the decisions ourselves doesn’t
seem to me like a productive way to spend my time, not to mention that I find it dead boring (you
can check whether you’re like me on this one. Try implementing a simple calculator app and then
write specification for it just after it is implemented and manually verified to work). Anyway,
I hardly find specifying how something should work after it works creative. Maybe that’s the
reason why, throughout the years, I have observed the specifications written after a feature is
implemented to be much less complete than the ones written before the implementation.

Oh, and did I tell you that without a specification of any kind we don’t really know whether
we are done implementing our changes or not? This is because in order to determine if the
change is complete, we need to compare the implemented functionality to “something”, even if
this “something” is only in the customer’s head. in TDD, we “compare” it to expectations set by
a suite of automated tests.

Another thing I mentioned in the previous chapter is that we approach writing a Specification of
executable Statements differently from writing a textual design or requirements specification:
even though a behavior is implemented after its Specification is ready, we do not write the
Specification entirely up-front. The usual sequence is to specify a bit first and then code a bit,
repeating it one Statement at a time. When doing TDD, we are traversing repeatedly through a
few phases that make up a cycle. We like these cycles to be short, so that we get feedback early
and often. This is essential, because it allows us to move forward, confident that what we already
have works as we intended. It also enables us to make the next cycle more efficient thanks to the
knowledge we gained in the previous cycle (if you don’t believe me that fast feedback matters,
ask yourself a question: “how many times a day do I compile the code I’m working on?”).

27

Statement-first programming 28

Reading so much about cycles, it is probably no surprise that the traditional illustration of the
TDD process is modeled visually as a circular flow:

Basic TDD cycle

Note that the above form uses the traditional terminology of TDD, so before I explain the steps,
here’s a similar illustration that uses our terms of Specification and Statements:

Basic TDD cycle with changed terminology

The second version seemsmore like common sense than the first one – specifying how something
should behave before putting that behavior in place is way more intuitive than testing something
that does not yet exist.

Anyway, these three steps deserve some explanation. In the coming chapters I’ll give you some
examples of how this process works in practice and introduce an expanded version, but in the
meantime it suffices to say that:

Write a Statement you wish were true but is not
means that the Statement evaluates to false. In the test list it appears as failing, which most
xUnit frameworks mark with red color.

Add code to make it true
means that we write just enough code to make the Statement true. In the test list it appears
as passing, which most xUnit frameworks mark with green color. Later in the course of
the book you’ll see how little can be “just enough”.

Refactor
is a step that I have silently ignored so far and will do so for several more chapters. Don’t
worry, we’ll get back to it eventually. For now it’s important to be aware that the executable
Specification can act as a safety net while we are improving the quality of the code without

Statement-first programming 29

changing its externally visible behavior: by running the Specification often, we quickly
discover any mistake we make in the process.

By the way, this process is sometimes referred to as “Red-Green-Refactor”, because of the colors
that xUnit tools display for failing and passing test. I am just mentioning it here for the record –
I will not be using this term further in the book.

“Test-First” means seeing a failure

Explaining the illustration with the TDD process above, I pointed out that we are supposed to
write a Statement that we wish was true but is not. It means that not only do we have to write a
Statement before we provide implementation that makes it true, we also have to evaluate it (i.e.
run it) and watch it fail its assertions before we provide the implementation.

Why is it so important? Isn’t it enough to write the Statement first? Why run it and watch it fail?
There are several reasons and I will try to outline some of them briefly.

The main reason for writing a Statement and watching it fail is that otherwise, I don’t have any
proof that the Statement can ever fail.

Every accurate Statement fails when it isn’t fulfilled and passes when it is. That’s one of the
main reasons why we write it – to see this transition from red to green, which means that what
previously was not implemented (and we had a proof for that) is now working (and we have a
proof). Observing the transition proves that we made progress.

Another thing to note is that, after being fulfilled, the Statement becomes a part of the executable
specification and starts failing as soon as the code stops fulfilling it, for example as a result of a
mistake made during code refactoring.

Seeing a Statement proven as false gives us valuable feedback. If we run a Statement only after
the behavior it describes has been implemented and it is evaluated as true, how do we know
whether it really accurately describes a need? We never saw it failing, so what proof do we have
that it ever will?

The first time I encountered this argument was before I started thinking of tests as executable
specification. “Seriously?” – I thought – “I know what I’m writing. If I make my tests small
enough, it is self-evident that I am describing the correct behavior. This is paranoid”. However,
life quickly verified my claims and I was forced to withdraw my arguments. Let me describe
three of the ways I experienced of how one can write a Statement that is always true, whether
the code is correct or not. There are more ways, however I think giving you three should be an
illustration enough.

Test-first allowed me to avoid the following situations where Statements cheated me into
thinking they were fulfilled even when they shouldn’t be:

1. Accidental omission of including a Statement in a
Specification

It’s usually insufficient to just write the code of a Statement - we also have to let the test runner
know that a method we wrote is really a Statement (not e.g. just a helper method) and it needs

Statement-first programming 30

to be evaluated, i.e. ran by the runner.

Most xUnit frameworks have some kind of mechanism to mark methods as Statements, whether
by using attributes (C#, e.g. [Fact]) or annotations (Java, e.g @Test), or by using macros (C and
C++), or by using a naming convention. We have to use such a mechanism to let the runner
know that it should execute such methods.

Let’s take xUnit.Net as an example. To turn a method into a Statement in xUnit.Net, we have to
mark it with the [Fact] attribute like this:

1 public class CalculatorSpecification

2 {

3 [Fact]

4 public void ShouldDisplayAdditionResultAsSumOfArguments()

5 {

6 //...

7 }

8 }

There is a chance that we forget to decorate a method with the [Fact] attribute - in such case,
this method is never executed by the test runner. However funny it may sound, this is exactly
what happened to me several times. Let’s take the above Statement as an example and imagine
that we are writing this Statement post-factum as a unit test in an environment that has, let’s
say, more than thirty Statements already written and passing. We have written the code and now
we are just creating test after test to ensure the code works. Test – pass, test – pass, test – pass.
When I execute tests, I almost always run more than one at a time, since it’s easier for me than
selecting what to evaluate each time. Besides, I get more confidence this way that I don’t make a
mistake and break something that is already working. Let’s imagine we are doing the same here.
Then the workflow is really: Test – all pass, test – all pass, test – all pass…

Over the time, I have learned to use code snippets mechanism of my IDE to generate a template
body for my Statements. Still, in the early days, I have occasionally written something like this:

1 public class CalculatorSpecification

2 {

3 //... some Statements here

4

5 //oops... forgot to insert the attribute!

6 public void ShouldDisplayZeroWhenResetIsPerformed()

7 {

8 //...

9 }

10 }

As you can see, the [Fact] attribute is missing, which means this Statement will not be executed.
This has happened not only because of not using code generators – sometimes – to create a new
Statement – it made sense to copy-paste an existing Statement, change the name and few lines

Statement-first programming 31

of code⁷. I didn’t always remember to include the [Fact] attribute in the copied source code.
The compiler was not complaining as well.

The reason I didn’t see my mistake was because I was running more than once at a time - when I
got a green bar (i.e. all Statements proven true), I assumed that the Statement I just wrote works
as well. It was unattractive for me to search for each new Statement in the list and make sure it’s
there. The more important reason, however, was that the absence of the [Fact] attribute did not
disturb my work flow: test – all pass, test – all pass, test – all pass… In other words, my process
did not give me any feedback that I made a mistake. So, in such case, what I end up with is a
Statement that not only will never be proven false – it won’t be evaluated at all.

How does treating tests as Statements and evaluating them before making them true help here?
The fundamental difference is that the workflow of TDD is: test – fail – pass, test – fail – pass,
test – fail – pass… In other words, we expect each Statement to be proven false at least once. So
every time we miss the “fail” stage, we get feedback from our process that something suspicious
is happening. This allows us to investigate and fix the problem if necessary.

2. Misplacing test setup

Ok, this may sound even funnier, but it happened to me a couple of times as well, so I assume it
may happen to you one day, especially if you are in a hurry.

Consider the following toy example: we want to validate a simple data structure that models a
frame of data that can arrive via network. The structure looks like this:

1 public class Frame

2 {

3 public int timeSlot;

4 }

and we need to write a Specification for a Validation class that accepts a Frame as an argument
and checks whether the time slot (whatever it is) is above a value specified in a constant called
TimeSlot.MaxAllowed (so it’s a constant defined in a TimeSlot class). If it is, then the validation
returns false, if it’s not, then it returns true.

Let’s take a look at the following Statement which specifies that setting a value higher than
allowed to a field of a frame should make the validation fail:

⁷I know copy-pasting code is considered harmful and we shouldn’t be doing that. When writing unit-level Statements, I make some
exceptions from that rule. This will be explained in part 2.

Statement-first programming 32

1 [Fact]

2 public void ShouldRecognizeTimeSlotAboveMaximumAllowedAsInvalid()

3 {

4 var frame = new Frame();

5 var validation = new Validation();

6 var timeSlotAboveMaximumAllowed = TimeSlot.MaxAllowed + 1;

7 var result = validation.PerformForTimeSlotIn(frame);

8 frame.timeSlot = timeSlotAboveMaximumAllowed;

9 Assert.False(result);

10 }

Note how the method PerformForTimeSlotIn(), which triggers the specified behavior, is
accidentally called before a value of timeSlotAboveMaximumAllowed is set up and thus, this value
is not taken into account at the moment when the validation is executed. If, for example, wemake
a mistake in the implementation of the Validation class so that it returns false for values below
the maximum and not above, such mistake may go unnoticed, because the Statement will always
be true.

Again, this is a toy example - I just used it as an illustration of something that can happen when
dealing with more complex cases.

3. Using static data inside production code

Once in a while, we have to jump in and add some new Statements to an existing Specification
and some logic to the class it describes. Let’s assume that the class and its Specification were
written by someone else than us. Imagine the code we are talking about is a wrapper around our
product XML configuration file. We decide to write our Statements after applying the changes
(“well”, we may say, “we’re all protected by the Specification that is already in place, so we can
make our change without the risk of accidentally breaking existing functionality, and then just
test our changes and it’s all good…”).

We start coding… done. Nowwe start writing this new Statement that describes the functionality
we just added. After examining the Specification class, we can see that it has a member field like
this:

1 public class XmlConfigurationSpecification

2 {

3 XmlConfiguration config = new XmlConfiguration(xmlFixtureString);

4

5 //...

What it does is it sets up an object used by every Statement. So, each Statement uses a config

object initialized with the same xmlConfiguration string value. Another quick examination
leads us to discovering the following content of the xmlFixtureString:

Statement-first programming 33

1 <config>

2 <section name="General Settings">

3 <subsection name="Network Related">

4 <parameter name="IP">192.168.3.2</parameter>

5 <parameter name="Port">9000</parameter>

6 <parameter name="Protocol">AHJ-112</parameter>

7 </subsection>

8 <subsection name="User Related">

9 <parameter name="login">Johnny</parameter>

10 <parameter name="Role">Admin</parameter>

11 <parameter name="Password Expiry (days)">30</parameter>

12 /subsection>

13 <!-- and so on and on and on...-->

14 </section>

15 </config>

The string is already pretty large and messy, since it contains all information that is required by
the existing Statements. Let’s assume we need to write tests for a little corner case that does not
need all this crap inside this string. So, we decide to start afresh and create a separate object of
the XmlConfiguration class with your own, minimal string. Our Statement begins like this:

1 string customFixture = CreateMyOwnFixtureForThisTestOnly();

2 var configuration = new XmlConfiguration(customFixture);

3 ...

And goes on with the scenario. When we execute it, it passes – cool… not. Ok, what’s wrong
with this? At the first sight, everything’s OK, until we read the source code of XmlConfiguration
class carefully. Inside, we can see, how the XML string is stored:

1 private static string xmlText; //note the static keyword!

It’s a static field, which means that its value is retained between instances. What the…? Well,
well, here’s what happened: the author of this class applied a small optimization. He thought:
“In this app, the configuration is only modified by members of the support staff and to do it,
they have to shut down the system, so, there is no need to read the XML file every time an
XmlConfiguration object is created. I can save some CPU cycles and I/O operations by reading
it only once when the first object is created. Later objects will just use the same XML!”. Good
for him, not so good for us. Why? Because, depending on the order in which the Statements are
evaluated, either the original XML string will be used for all Statements or your custom one!
Thus the Statements in this Specification may pass or fail for the wrong reason - because they
accidentally use the wrong XML.

Starting development from a Statement that we expect to fail may help when such a Statement
passes despite the fact that the behavior it describes is not implemented yet.

Statement-first programming 34

“Test-After” often ends up as “Test-Never”

Consider again the question I already asked in this chapter: did you ever have to write a
requirements or design document for something that you already implemented? Was it fun?
Was it valuable? Was it creative? As for me, my answer to these questions is no. I observed that
the same answer applied to writing my executable Specification. By observing myself and other
developers, I came to a conclusion that after we’ve written the code, we have little motivation
to specify what we wrote – some of the pieces of code “we can just see are correct”, other pieces
“we already saw working” when we compiled and deployed our changes and ran a few manual
checks… The design is ready… Specification? Maybe next time… Thus, the Specification may
never get to be written at all and if it is written, I often find that it covers most of the the main
flow of the program, but lacks some Statements saying what should happen in case of errors etc.

Another reason for ending up not writing the Specification might be time pressure, especially
in teams that are not yet mature or not have very strong professional ethics. Many times, I have
seen people reacting to pressure by dropping everything besides writing the code that directly
implements a feature. Among the things that get dropped are design, requirements and tests. And
learning as well. I have seenmany times teams that, when under pressure, stopped experimenting
and learning and reverted to old “safe” behaviors in a mindset of “saving a sinking ship” and
“hoping for the best”. As in such situations I’ve seen pressure raise as the project approached
its deadline or milestone, leaving Specification until the end means that its’s very likely to get
dropped, especially in case when the changes are (to a degree) tested manually later anyway.

On the other hand, when doing TDD (as we will see in the coming chapters) our Specification
grows together with the production code, so there is much less temptation to drop it entirely.
Moreover, In TDD, a written Specification Statement is not an addition to the code, but rather
a reason to write the code. Creating an executable Specification becomes indispensable part of
implementing a feature.

“Test-After” often leads to design rework

I like reading and watching Uncle Bob (Robert C. Martin). One day I was listening to his keynote
at Ruby Midwest 2011, called Architecture The Lost Years⁸. At the end, Robert made some
digressions, one of them about TDD. He said that writing tests after the code is not TDD and
instead called it “a waste of time”.

My initial thought was that the comment was maybe a bit too exaggerated and only about
missing all the benefits that starting with a false Statement brings me: the ability to see the
Statement fail, the ability to do a clean-sheet analysis etc. However, now I feel that there’s much
more to it, thanks to something I learned from Amir Kolsky and Scott Bain – in order to be
able to write a maintainable Specification for a piece of code, the code must have a high level of
testability. We will talk about this quality in part 2 of this book, but for now let’s assume the
following simplified definition: the higher testability of a piece of code (e.g. a class), the easier it
is to write a Statement for its behavior.

⁸http://www.confreaks.com/videos/759-rubymidwest2011-keynote-architecture-the-lost-years

http://www.confreaks.com/videos/759-rubymidwest2011-keynote-architecture-the-lost-years
http://www.confreaks.com/videos/759-rubymidwest2011-keynote-architecture-the-lost-years
http://www.confreaks.com/videos/759-rubymidwest2011-keynote-architecture-the-lost-years

Statement-first programming 35

Now, where’s the waste in writing the Specification after the code is written? To find out, let’s
compare the Statement-first and code-first approaches. In the Statement-first workflow for new
(non-legacy) code, my workflow and approach to testability usually look like this:

1. Write a Statement that is false to start with (during this step, detect and correct testability
issues even before the production code is written).

2. Write code to make the Statement true.

And here’s what I often see programmers do when they write the code first (extra steps marked
with strong text):

1. Write some production code without considering how it will be tested (after this step, the
testability is often suboptimal as it’s usually not being considered at this point).

2. Start writing a unit test (this might not seem like an extra step, since it’s also present in
the previous approach, but once you reach the step 5, you’ll know what I mean).

3. Notice that unit testing the code we wrote is cumbersome and unsustainable and the
tests become looking messy as they try to work around the testability issues.

4. Decide to improve testability by restructuring the code, e.g. to be able to isolate
objects and use techniques such as mock objects.

5. Write unit tests (this time it should be easier as the testability of the tested is better).

What is the equivalent of the marked steps in the Statement-first approach? There is none! Doing
these things is a waste of time! Sadly, this is a waste I encounter a lot.

Summary

In this chapter, I tried to show you that the choice ofwhenwewrite our Specification often makes
a huge difference and that there are numerous benefits of starting with a Statement. When we
consider the Specification as what it really is - not only as a suite of tests that check runtime
correctness - then Statement-first approach becomes less awkward and less counter-intuitive.

Practicing what we have already
learned

And now, a taste of things to come!

– Shang Tsung, Mortal Kombat The Movie

The above quote took place just before a fighting scene⁹ in which a nameless warrior jumped at
Sub-Zero only to be frozen and broken into multiple pieces upon hitting the wall. The scene was
not spectacular in terms of fighting technique or length. Also, the nameless guy didn’t even try
hard – the only thing he did was to jump only to be hit by a freezing ball, which, by the way, he
actually could see coming. It looked a lot like the fight was set up only to showcase Sub-Zero’s
freezing ability. Guess what? In this chapter, we’re ging to do roughly the same thing – set up a
fake, easy scenario just to showcase some of the basic TDD elements!

The previous chapter was filled with a lot of theory and philosophy, don’t you think? I really
hope you didn’t fall asleep while reading it. To tell you the truth, we need to grasp much more
theory until we are really able to write real-world applications using TDD. To compensate for
this somehow, I propose we take a side trip from the trail and try what we already learned on a
quick and easy example. As we go through the example, you might wonder how on earth could
you possibly write real applications the way we will write our simple program. Don’t worry, I
will not show you all the tricks yet, so treat it as a “taste of things to come”. In other words,
the example will be as close to real world problems as the fight between Sub-Zero and nameless
ninja was to real martial arts fight, but will show you some of the elements of TDD process.

Let me tell you a story

Meet Johnny and Benjamin, two developers from Buthig Company. Johnny is quite fluent
in programming and Test-Driven Development, while Benjamin is an intern under Johnny’s
mentorship and is eager to learn TDD. They are on their way to their customer, Jane, who
requested their presence as she wants them to write a small program for her. Along with them,
we will see how they interact with the customer and how Benjamin tries to understand the
basics of TDD. Like you, Benjamin is a novice so his questions may reflect yours. However, if
you find anything explained in not enough details, do not worry – in the next chapters, we will
be expanding on this material.

Act 1: The Car

Johnny: How do you feel about your first assignment?

⁹https://www.youtube.com/watch?v=b0vhGEGJC8g

36

https://www.youtube.com/watch?v=b0vhGEGJC8g
https://www.youtube.com/watch?v=b0vhGEGJC8g

Practicing what we have already learned 37

Benjamin: I am pretty excited! I hope I can learn some of the TDD stuff you promised to teach
me.

Johnny:Not only TDD, but we are also gonna use some of the practices associated with a process
called Acceptance Test-Driven Development, albeit in a simplified form.

Benjamin: Acceptance Test-Driven Development? What is that?

Johnny:While TDD is usually referred to as a development technique, Acceptance Test-Driven
Development (ATDD) is something more of a collaboration method. Both ATDD and TDD have
a bit of analysis in them and work very well together as both use the same underlying principles,
just on different levels. We will need only a small subset of what ATDD has to offer, so don’t get
over-excited.

Benjamin: Sure. Who’s our customer?

Johnny: Her name’s Jane. She runs a small shop nearby and wants us to write an application for
her new mobile. You’ll get the chance to meet her in a minute as we’re almost there.

Act 2: The Customer’s Site

Johnny: Hi, Jane, how are you?

Jane: Thanks, I’m fine, how about you?

Johnny:Me too, thanks. Benjamin, this is Jane, our customer. Jane, this is Benjamin, we’ll work
together on the task you have for us.

Benjamin: Hi, nice to meet you.

Jane: Hello, nice to meet you too.

Johnny: So, can you tell us a bit about the software you need us to write?

Jane: Sure. Recently, I bought a new smartphone as a replacement for my old one. The thing is,
I am really used to the calculator application that ran on my previous phone and I cannot find a
counterpart for my current device.

Benjamin: Can’t you just use another calculator app? There are probably plenty of them
available to download from the web.

Jane: That’s right. I checked them all and none has exactly the same behavior as the one I have
used for my tax calculations. You see, this app was like a right hand to me and it had some really
nice shortcuts that made my life easier.

Johnny: So you want us to reproduce the application to run on your new device?

Jane: Exactly.

Johnny: Are you aware that apart from the fancy features that you were using we will have to
allocate some effort to implement the basics that all the calculators have?

Jane: Sure, I am OK with that. I got used to my calculator application so much that if I use
something else for more than a few months, I will have to pay a psychotherapist instead of you

Practicing what we have already learned 38

guys. Apart from that, writing a calculator app seems like an easy task in my mind, so the cost
isn’t going to be overwhelming, right?

Johnny: I think I get it. Let’s get it going then. We will be implementing the functionality
incrementally, starting with the most essential features. Which feature of the calculator would
you consider the most essential?

Jane: That would be addition of numbers, I guess.

Johnny: Ok, that will be our target for the first iteration. After the iteration, we will deliver this
part of the functionality for you to try out and give us some feedback. However, before we can
even deliver the addition feature, we will have to implement displaying digits on the screen as
you enter them. Is that correct?

Jane: Yes, I need the display stuff to work as well – it’s a prerequisite for other features, so…

Johnny:Ok then, this is a simple functionality, so let me suggest some user stories as I understand
what you already said and you will correct me where I am wrong. Here we go:

1. In order to know that the calculator is turned on, As a tax payer I want to see “0” on the
screen as soon as I turn it on.

2. In order to see what numbers I am currently operating on, As a tax payer, I want the
calculator to display the values I enter

3. In order to calculate the sum of my different incomes,As a tax payer I want the calculator
to enable addition of multiple numbers

What do you think?

Jane: The stories pretty much reflect what I want for the first iteration. I don’t think I have any
corrections to make.

Johnny: Now we’ll take each story and collect some examples of how it should work.

Benjamin: Johnny, don’t you think it is obvious enough to proceed with implementation straight
away?

Johnny: Trust me, Benjamin, if there is one word I fear most in communication, it is “obvious”.
Miscommunication happens most often around things that people consider obvious, simply
because other people do not.

Jane: Ok, I’m in. What do I do?

Johnny: Let’s go through the stories one by one and see if we can find some key examples of
how the features should work. The first story is…

In order to know that the calculator is turned on, As a tax
payer I want to see “0” on the screen as soon as I turn it on.

Jane: I don’t think there’s much to talk about. If you display “0”, I will be happy. That’s all.

Johnny: Let’s write this example down using a table:

Practicing what we have already learned 39

key sequence Displayed output Notes

N/A 0 Initial displayed value

Benjamin: That makes me wonder… what should happen when I press “0” again at this stage?

Johnny: Good catch, that’s what these examples are for – they make our thinking concrete. As
Ken Pugh says¹⁰: “Often the complete understanding of a concept does not occur until someone
tries to use the concept”. Normally, we would put the “pressing zero multiple times” example on
a TODO list and leave it for later, because it’s a part of a different story. However, it looks like
we’re done with the current story, so let’s move straight ahead. The next story is about displaying
entered digits. How about it, Jane?

Jane: Agree.

Johnny: Benjamin?

Benjamin: Yes, go ahead.

In order to see what numbers I am currently operating on, As a
tax payer, I want the calculator to display the values I enter

Johnny: Let’s begin with the case raised by Benjamin. What should happen when I input “0”
multiple times after I only have “0” on the display?

Jane: A single “0” should be displayed, no matter how many times I press “0”.

Johnny: Do you mean this?

key sequence Displayed output Notes

0,0,0 0 Zero is a special case – it is displayed only
once

Jane: That’s right. Other than this, the digits should just show on the screen, like this:

key sequence Displayed output Notes

1,2,3 123 Entered digits are displayed

Benjamin: How about this:

key sequence Displayed output Notes

1,2,3,4,5,6,7,1,2,3,4,5,6 1234567123456? Entered digits are displayed?

Jane: Actually, no. My old calculator app has a limit of six digits that I can enter, so it should be:

key sequence Displayed output Notes

1,2,3,4,5,6,7,1,2,3,4,5,6 123456 Display limited to six digits

¹⁰K. Pugh, Prefactoring, O’Reilly Media, 2005

Practicing what we have already learned 40

Johnny: Another good catch, Benjamin!

Benjamin: I think I’m beginning to understand why you like working with examples!

Johnny: Good. Is there anything else, Jane?

Jane: No, that’s pretty much it. Let’s start working on another story.

In order to calculate sum of my different incomes, As a tax
payer I want the calculator to enable addition of multiple
numbers

Johnny: Is the following scenario the only one we have to support?

key sequence Displayed output Notes

2,+,3,+,4,= 9 Simple addition of numbers

Jane: This scenario is correct, however, there is also a case when I start with “+” without inputting
any number before. This should be treated as adding to zero:

key sequence Displayed output Notes

+,1,= 1 Addition shortcut – treated as 0+1

Benjamin: How about when the output is a number longer than six digits limit? Is it OK that
we truncate it like this?

key sequence Displayed output Notes

9,9,9,9,9,9,+,9,9,9,9,9,9,= 199999 Our display is limited to six digits
only

Jane: Sure, I don’t mind. I don’t add such big numbers anyway.

Johnny: There is still one question we missed. Let’s say that I input a number, then press “+”
and then another number without asking for result with “=”. What should I see?

Jane: Every time you press “+”, the calculator should consider entering current number finished
and overwrite it as soon as you press any other digit:

key sequence Displayed output Notes

2,+,3 3 Digits entered after + operator are treated
as digits of a new number, the previous
one is stored

Jane: Oh, and just asking for result just after the calculator is turned on should result in “0”.

key sequence Displayed output Notes

= 0 Result key in itself does nothing

Practicing what we have already learned 41

Johnny: Let’s sum up our discoveries:

key sequence Displayed output Notes

N/A 0 Initial displayed value
1,2,3 123 Entered digits are displayed
0,0,0 0 Zero is a special case – it is

displayed only once
1,2,3,4,5,6,7 123456 Our display is limited to six digits

only
2,+,3 3 Digits entered after + operator

are treated as digits of a new
number, the previous one is
stored

= 0 Result key in itself does nothing
+,1,= 1 Addition shortcut – treated as

0+1
2,+,3,+,4,= 9 Simple addition of numbers
9,9,9,9,9,9,+,9,9,9,9,9,9,= 199999 Our display is limited to six digits

only

Johnny: The limiting of digits displayed looks like a whole new feature, so I suggest we add it
to the backlog and do it in another sprint. In this sprint, we will not handle such situation at all.
How about that, Jane?

Jane: Fine with me. Looks like a lot of work. Nice that we discovered it up-front. For me, the
limiting capability seemed so obvious that I didn’t even think it would be worth mentioning.

Johnny: See? That’s why I don’t like the word “obvious”. Jane, we will get back to you if any
more questions arise. For now, I think we know enough to implement these three stories for you.

Jane: good luck!

Act 3: Test-Driven Development

Benjamin:Wow, that was cool. Was that Acceptance Test-Driven Development?

Johnny: In a greatly simplified version, yes. The reason I took you with me was to show you the
similarities between working with customer the way we did and working with the code using
TDD process. They are both applying the same set of principles, just on different levels.

Benjamin: I’m dying to see it with my own eyes. Shall we start?

Johnny: Sure. If we followed the ATDD process, wewould start writing what we call acceptance-
level specification. In our case, however, a unit-level specification will be enough. Let’s take the
first example:

Statement 1: Calculator should display 0 on creation

Practicing what we have already learned 42

key sequence Displayed output Notes

N/A 0 Initial displayed value

Johnny: Benjamin, try to write the first Statement.

Benjamin: Oh boy, I don’t know how to start.

Johnny: Start by writing the statement in plain English. What should the calculator do?

Benjamin: It should display “0” when I turn the application on.

Johnny: In our case, “turning on” is creating a calculator. Let’s write it down as a method name:

1 public class CalculatorSpecification

2 {

3

4 [Fact] public void

5 ShouldDisplay0WhenCreated()

6 {

7

8 }

9

10 }

Benjamin:Why is the name of the class CalculatorSpecification and the name of the method
ShouldDisplay0WhenCreated?

Johnny: It is a naming convention. There are many others, but this is the one that I like. In this
convention, the rule is that when you take the name of the class without the Specification part
followed by the name of the method, it should form a legit sentence. For instance, if I apply it to
what we wrote, it would make a sentence: “Calculator should display 0 when created”.

Benjamin: Ah, I see now. So it’s a statement of behavior, isn’t it?

Johnny: That’s right. Now, the second trick I can sell to you is that if you don’t know what code
to start your Statement with, start with the expected result. In our case, we are expecting that
the behavior will end up as displaying “0”, right? So let’s just write it in the form of an assertion.

Benjamin: You mean something like this?

1 public class CalculatorSpecification

2 {

3

4 [Fact] public void

5 ShouldDisplay0WhenCreated()

6 {

7 Assert.Equal("0", displayedResult);

8 }

9

10 }

Practicing what we have already learned 43

Johnny: Precisely.

Benjamin: But that doesn’t even compile. What use is it?

Johnny: The code not compiling is the feedback that you needed to proceed. While before you
didn’t know where to start, now you have a clear goal – make this code compile. Firstly, where
do you get the displayed value from?

Benjamin: From the calculator display, of course!

Johnny: Then write down how you get the value from the display.

Benjamin: Like how?

Johnny: Like this:

1 public class CalculatorSpecification

2 {

3

4 [Fact] public void

5 ShouldDisplay0WhenCreated()

6 {

7 var displayedResult = calculator.Display();

8

9 Assert.Equal("0", displayedResult);

10 }

11

12 }

Benjamin: I see. Now the calculator is not created anywhere. I need to create it somewhere now
or it will not compile - this is how I know that it’s my next step. Is this how it works?

Johnny: Yes, you are catching on quickly.

Benjamin: Ok then, here goes:

1 public class CalculatorSpecification

2 {

3

4 [Fact] public void

5 ShouldDisplay0WhenCreated()

6 {

7 var calculator = new Calculator();

8

9 var displayedResult = calculator.Display();

10

11 Assert.Equal("0", displayedResult);

12 }

13

14 }

Practicing what we have already learned 44

Johnny: Bravo!

Benjamin: The code doesn’t compile yet, because I don’t have the Calculator class defined at
all…

Johnny: Sounds like a good reason to create it.

Benjamin: OK.

1 public class Calculator

2 {

3 }

Benjamin: Looks like the Display() method is missing too. I’ll add it.

1 public class Calculator

2 {

3 public string Display()

4 {

5 return "0";

6 }

7 }

Johnny: Hey hey, not so fast!

Benjamin:What?

Johnny: You already provided an implementation of Display() that will make our current
Statement true. Remember its name? ShouldDisplay0WhenCreated – and that’s exactly what
the code you wrote does. Before we arrive at this point, let’s make sure this Statement can ever
be evaluated as false. You won’t achieve this by providing a correct implementation out of the
box. So for now, let’s change it to this:

1 public class Calculator

2 {

3 public string Display()

4 {

5 return "Once upon a time in Africa";

6 }

7 }

Johnny: Look, now we can run the Specification and watch that Statement evaluate to false,
because it expects “0”, but gets “Once upon a time in Africa”.

Benjamin: Running… Ok, it is false. By the way, do you always use such silly values to make
Statements false?

Johnny: Hahaha, no, I just did it to emphasize the point. Normally, I would write return "";

or something similarly simple. Now we can evaluate the Statement and see it turn false. Hence,
we’re sure that we have not yet implemented what is required for the Statement to be true.

Practicing what we have already learned 45

Benjamin: I think I get it. For now, the Statement shows that we do not have something we need
and gives us a reason to add this “thing”. When we do so, this Statement will show that we do
have what we need. So what do we do now?

Johnny:Write the simplest thing that makes this Statement true.

Benjamin: like this?

1 public class Calculator

2 {

3 public string Display()

4 {

5 return "0";

6 }

7 }

Johnny: Yes.

Benjamin: But that is not a real implementation.What is the value behind putting in a hardcoded
string? The final implementation is not going to be like this for sure!

Johnny: You’re right. The final implementation is most probably going to be different. What we
did, however, is still valuable because:

1. You’re one step closer to implementing the final solution
2. This feeling that this is not the final implementation points you towards writing more

Statements. When there is enough Statements to make your implementation complete, it
usually means that you have a complete Specification of class behaviors as well.

3. If you treat making every Statement true as an achievement, this practice allows you to
evolve your code without losing what you already achieved. If by accident you break any
of the behaviors you’ve already implemented, the Specification is going to tell you because
one of the existing Statements that were previously true will turn false. You can then either
fix it or undo your changes using version control and start over from the point where all
existing Statements were true.

Benjamin: Ok, so it looks like there are some benefits after all. Still, I’ll have to get used to this
kind of working.

Johnny: Don’t worry, this approach is an important part of TDD, so you will grasp it in no
time. Now, before we go ahead with the next Statement, let’s look at what we already achieved.
First, we wrote a Statement that turned out false. Then, we wrote just enough code to make
the Statement true. Time for a step called Refactoring. In this step, we will take a look at the
Statement and the code and remove duplication. Can you see what is duplicated between the
Statement and the code?

Benjamin: both of them contain the literal “0”. The Statement has it here:

Practicing what we have already learned 46

1 Assert.Equal("0", displayedResult);

and the implementation here:

1 return "0";

Johnny: Good, let’s eliminate this duplication by introducing a constant called InitialValue.
The Statement will now look like this:

1 [Fact] public void

2 ShouldDisplayInitialValueWhenCreated()

3 {

4 var calculator = new Calculator();

5

6 var displayedResult = calculator.Display();

7

8 Assert.Equal(Calculator.InitialValue, displayedResult);

9 }

and the implementation:

1 public class Calculator

2 {

3 public const string InitialValue = "0";

4 public string Display()

5 {

6 return InitialValue;

7 }

8 }

Benjamin: The code looks better and having the “0” constant in one place will make it more
maintainable. However, I think the Statement in its current form is weaker than before. I mean,
we can change the InitialValue to anything and the Statement will still be true, since it does
not state that this constant needs to have a value of “0”.

Johnny: That’s right. We need to add it to our TODO list to handle this case. Can you write it
down?

Benjamin: Sure. I will write it as “TODO: 0 should be used as an initial value.”

Johnny: Ok. We should handle it now, especially since it’s part of the story we are currently
implementing, but I will leave it for later just to show you the power of TODO list in TDD –
whatever is on the list, we can forget and get back to when we have nothing better to do. Our
next item from the list is this:

Statement 2: Calculator should display entered digits

Practicing what we have already learned 47

key sequence Displayed output Notes

1,2,3 123 Entered digits are displayed

Johnny: Benjamin, can you come up with a Statement for this behavior?

Benjamin: I’ll try. Here goes:

1 [Fact] public void

2 ShouldDisplayEnteredDigits()

3 {

4 var calculator = new Calculator();

5

6 calculator.Enter(1);

7 calculator.Enter(2);

8 calculator.Enter(3);

9 var displayedValue = calculator.Display();

10

11 Assert.Equal("123", displayedValue);

12 }

Johnny: I see that you’re learning fast. You got the parts about naming ans structuring a
Statement right. There’s one thing we will have to work on here though.

Benjamin:What is it?

Johnny: When we talked to Jane, we used examples with real values. These real values were
extremely helpful in pinning down the corner cases and uncoveringmissing scenarios. Theywere
easier to imagine as well, so they were a perfect suit for conversation. If we were automating
these examples on acceptance level, we would use those real values as well. When we write
unit-level Statements, however, we use a different technique to get this kind of specification
more abstract. First of all, let me enumerate the weaknesses of the approach you just used:

1. Making a method Enter() accept an integer value suggests that one can enter more than
one digit at once, e.g. calculator.Enter(123), which is not what we want. We could
detect such cases and throw exceptions if the value is outside the 0-9 range, but there are
better ways when we know we will only be supporting ten digits (0,1,2,3,4,5,6,7,8,9).

2. The Statement does not clearly show the relationship between input and output. Of course,
in this simple case it’s pretty self-evident that the sum is a concatenation of entered digits.
In general case, however, we don’t want anyone reading our Specification in the future to
have to guess such things.

3. The name of the Statement suggests that what you wrote is true for any value, while in
reality, it’s true only for digits other than “0”, since the behavior for “0” is different (no
matter how many times we enter “0”, the result is just “0”). There are some good ways to
communicate it.

Hence, I propose the following:

Practicing what we have already learned 48

1 [Fact] public void

2 ShouldDisplayAllEnteredDigitsThatAreNotLeadingZeroes()

3 {

4 //GIVEN

5 var calculator = new Calculator();

6 var nonZeroDigit = Any.Besides(DigitKeys.Zero);

7 var anyDigit1 = Any.Of<DigitKeys>();

8 var anyDigit2 = Any.Of<DigitKeys>();

9

10 //WHEN

11 calculator.Enter(nonZeroDigit);

12 calculator.Enter(anyDigit1);

13 calculator.Enter(anyDigit2);

14

15 //THEN

16 Assert.Equal(

17 string.Format("{0}{1}{2}",

18 (int)nonZeroDigit,

19 (int)anyDigit1,

20 (int)anyDigit2

21),

22 calculator.Display()

23);

24 }

Benjamin: Johnny, I’m lost! Can you explain what’s going on here?

Johnny: Sure, what do you want to know?

Benjamin: For instance, what is this DigitKeys type doing here?

Johnny: It is supposed to be an enumeration (note that it does not exist yet, we just assume that
we have it) to hold all the possible digits a user can enter, which are from the range of 0-9. This
is to ensure that the user will not write calculator.Enter(123). Instead of allowing our users
to enter any number and then detecting errors, we are giving them a choice from among only
the valid values.

Benjamin: Now I get it. So how about the Any.Besides() and Any.Of()? What do they do?

Johnny: They are methods from a small utility library I’m using when writing unit-level
Specifications. Any.Besides() returns any value from enumeration besides the one passed as an
argument. Hence, the call Any.Besides(DigitKeys.Zero) means “any of the values contained
in DigitKeys enumeration, but not DigitKeys.Zero”.

The Any.Of() is simpler – it just returns any value in an enumeration.

Note that by saying:

Practicing what we have already learned 49

1 var nonZeroDigit = Any.Besides(DigitKeys.Zero);

2 var anyDigit1 = Any.Of<DigitKeys>();

3 var anyDigit2 = Any.Of<DigitKeys>();

I specify explicitly, that the first value entered must be other than “0” and that this constraint
does not apply to the second digit, the third one and so on.

By the way, this technique of using generated values instead of literals has its own principles
and constraints which you have to know to use it effectively. Let’s leave this topic for now and
I promise I’ll give you a detailed lecture on it later. Agreed?

Benjamin: You better do, because for now, I feel a bit uneasy with generating the values – it
seems like the Statement we are writing is getting less deterministic this way. The last question
– what about those weird comments you put in the code? GIVEN? WHEN? THEN?

Johnny: Yes, this is a convention that I use, not only in writing, but in thinking as well. I like to
think about every behavior in terms of three elements: assumptions (given), trigger (when) and
expected result (then). Using the words, we can summarize the Statement we are writing in the
following way: “Given a calculator,when I enter some digits, the first one being non-zero, then
they should all be displayed in the order they were entered”. This is also something that I will
tell you more about later.

Benjamin: Sure, for now I need just enough detail to be able to keep going – we can talk about
the principles, pros and cons later. By the way, the following sequence of casts looks a little bit
ugly:

1 string.Format("{0}{1}{2}",

2 (int)nonZeroDigit,

3 (int)anyDigit1,

4 (int)anyDigit2

5)

Johnny: We will get back to it and make it “smarter” in a second after we make this statement
true. For now, we need something obvious. Something we know works. Let’s evaluate this
Statement. What is the result?

Benjamin: Failed: expected “351”, but was “0”.

Johnny: Good, now let’s write some code to make this Statement true. First, we’re going to
introduce an enumeration of digits. This enum will contain the digit we use in the Statement
(which is DigitKeys.Zero) and some bogus values:

Practicing what we have already learned 50

1 public enum DigitKeys

2 {

3 Zero = 0,

4 TODO1, //TODO - bogus value for now

5 TODO2, //TODO - bogus value for now

6 TODO3, //TODO - bogus value for now

7 TODO4, //TODO - bogus value for now

8 }

Benjamin: What’s with all those bogus values? Shouldn’t we correctly define values for all the
digits we support?

Johnny: Nope, not yet. We still don’t have a Statement which would say what digits are
supported and which would make us add them, right?

Benjamin: You say you need a Statement for an element to be in an enum?

Johnny: This is a specification we are writing, remember? It should say somewhere which digits
we support, shouldn’t it?

Benjamin: It’s difficult to agree with, I mean, I can see the values in the enum, should I really
test for something when there’s not complexity involved?

Johnny: Again, we’re not only testing, we’re specifying. I will try to give you more arguments
later. For now, just bear with me and note that when we get to specify the enum elements, adding
such Statement will be almost effortless.

Benjamin: OK.

Johnny: Now for the implementation. Just to remind you – what we have so far looks like this:

1 public class Calculator

2 {

3 public const string InitialValue = "0";

4 public string Display()

5 {

6 return InitialValue;

7 }

8 }

This clearly does not support displaying multiple digits (as we just proved, because the Statement
saying they are supported turned out false). So let’s change the code to handle this case:

Practicing what we have already learned 51

1 public class Calculator

2 {

3 public const string InitialValue = "0";

4 private int _result = InitialValue;

5

6 public void Enter(DigitKeys digit)

7 {

8 _result *= 10;

9 _result += (int)digit;

10 }

11

12 public string Display()

13 {

14 return _result.ToString();

15 }

16 }

Johnny: Now the Statement is true so we can go back to it and make it a little bit prettier. Let’s
take a second look at it:

1 [Fact] public void

2 ShouldDisplayAllEnteredDigitsThatAreNotLeadingZeroes()

3 {

4 //GIVEN

5 var calculator = new Calculator();

6 var nonZeroDigit = Any.Besides(DigitKeys.Zero);

7 var anyDigit1 = Any.Of<DigitKeys>();

8 var anyDigit2 = Any.Of<DigitKeys>();

9

10 //WHEN

11 calculator.Enter(nonZeroDigit);

12 calculator.Enter(anyDigit1);

13 calculator.Enter(anyDigit2);

14

15 //THEN

16 Assert.Equal(

17 string.Format("{0}{1}{2}",

18 (int)nonZeroDigit,

19 (int)anyDigit1,

20 (int)anyDigit2

21),

22 calculator.Display()

23);

24 }

Johnny: Remember you said that you don’t like the part where string.Format() is used?

Practicing what we have already learned 52

Benjamin: Yeah, it seems a bit unreadable.

Johnny: Let’s extract this part into a utility method and make it more general – we will need a
way of constructing expected displayed output in many of our future Statements. Here is my go
at this helper method:

1 string StringConsistingOf(params DigitKeys[] digits)

2 {

3 var result = string.Empty;

4

5 foreach(var digit in digits)

6 {

7 result += (int)digit;

8 }

9 return result;

10 }

Note that this is more general as it supports any number of parameters. And the Statement after
this extraction looks like this:

1 [Fact] public void

2 ShouldDisplayAllEnteredDigitsThatAreNotLeadingZeroes()

3 {

4 //GIVEN

5 var calculator = new Calculator();

6 var nonZeroDigit = Any.Besides(DigitKeys.Zero);

7 var anyDigit1 = Any.Of<DigitKeys>();

8 var anyDigit2 = Any.Of<DigitKeys>();

9

10 //WHEN

11 calculator.Enter(nonZeroDigit);

12 calculator.Enter(anyDigit1);

13 calculator.Enter(anyDigit2);

14

15 //THEN

16 Assert.Equal(

17 StringConsistingOf(nonZeroDigit, anyDigit1, anyDigit2),

18 calculator.Display()

19);

20 }

Benjamin: Looks better to me. The Statement is still evaluated as true, which means we got it
right, didn’t we?

Johnny: Not exactly. With moves such as this one, I like to be extra careful and double check
whether the Statement still describes the behavior accurately. To make sure that’s still the case,
let’s comment out the body of the Enter()method and see if this Statement would still turn out
false:

Practicing what we have already learned 53

1 public void Enter(DigitKeys digit)

2 {

3 //_result *= 10;

4 //_result += (int)digit;

5 }

Benjamin: Running… Ok, it is false now. Expected “243”, got “0”.

Johnny:Good, nowwe’re pretty sure it works OK. Let’s uncomment the lines we just commented
out and move forward.

Statement 3: Calculator should display only one zero digit if it
is the only entered digit even if it is entered multiple times

Johnny: Benjamin, this should be easy for you, so go ahead and try it. It is really a variation of
the previous Statement.

Benjamin: Let me try… ok, here it is:

1 [Fact] public void

2 ShouldDisplayOnlyOneZeroDigitWhenItIsTheOnlyEnteredDigitEvenIfItIsEnteredMult\

3 ipleTimes()

4 {

5 //GIVEN

6 var calculator = new Calculator();

7

8 //WHEN

9 calculator.Enter(DigitKeys.Zero);

10 calculator.Enter(DigitKeys.Zero);

11 calculator.Enter(DigitKeys.Zero);

12

13 //THEN

14 Assert.Equal(

15 StringConsistingOf(DigitKeys.Zero),

16 calculator.Display()

17);

18 }

Johnny: Good, you’re learning fast! Let’s evaluate this Statement.

Benjamin: It seems that our current code already fulfills the Statement. Should I try to comment
some code to make sure this Statement can fail just like you did in the previous Statement?

Johnny: That would be a wise thing to do. When a Statement turns out true without requiring
you to change any production code, it’s always suspicious. Just like you said, we have to change
production code for a second to force this Statement to become false, then undo this modification
to make it true again. This isn’t as obvious as previously, so let me do it. I will mark all the added
lines with //+ comment so that you can see them easily:

Practicing what we have already learned 54

1 public class Calculator

2 {

3 public const string InitialValue = "0";

4 private int _result = InitialValue;

5 string _fakeResult = "0"; //+

6

7 public void Enter(DigitKeys digit)

8 {

9 _result *= 10;

10 _result += (int)digit;

11 if(digit == DigitKeys.Zero) //+

12 { //+

13 _fakeResult += "0"; //+

14 } //+

15 }

16

17 public string Display()

18 {

19 if(_result == 0) //+

20 { //+

21 return _fakeResult; //+

22 } //+

23 return _result.ToString();

24 }

25 }

Benjamin:Wow, looks like a lot of code just to make the Statement false! Is it worth the hassle?
We will undo this whole change in a second anyway…

Johnny: Depends on how confident you want to feel. I would say that it’s usually worth it –
at least you know that you got everything right. It might seem like a lot of work, but it only
took me about a minute to add this code and imagine you got it wrong and had to debug it on a
production environment. Now that would be a waste of time.

Benjamin: Ok, I think I get it. Since we saw this Statement turn false, I will undo this change to
make it true again.

Johnny: Sure.

Epilogue

Time to leave Johnny and Benjamin, at least for now. I actually planned to make this chapter
longer, and cover all the other operations, but I fear I would make this too long and bore you.
You should have a feel of how the TDD cycle looks like, especially since Johnny and Benjamin
had a lot of conversations on many other topics in the meantime. I will be revisiting these topics
later in the book. For now, if you felt lost or unconvinced on any of the topics mentioned by
Johnny, don’t worry – I don’t expect you to be proficient with any of the techniques shown in
this chapter just yet. The time will come for that.

Sorting out the bits
In the last chapter, there has been a lively conversation between Johnny and Benjamin. Even in
such a short session, Benjamin, as a TDD novice, had a lot of questions and a lot of things he
needed sorted out. We will pick up all those questions that were not already answered and try
to answer in the coming chapters. Here are the questions:

• How to name a Statement?
• How to start writing a Statement?
• How is TDD about analysis and what does this “GIVEN-WHEN-THEN” mean?
• What exactly is the scope of a Statement? A class, a method, or something else?
• What is the role of TODO list in TDD?
• Why use anonymous generated values instead of literals as input of a specified behavior?
• Why and how to use the Any class?
• What code to extract from a Statement to shared utility methods?
• Why such a strange approach to create enumerated constants?

A lot of questions, isn’t it? It is unfortunate that TDD has this high entry barrier, at least for
someone used to the traditional way of writing code. Anyway, that is what this tutorial is for –
to answer such questions and lower this barrier. Thus, we will try to answer those questions one
by one.

55

How to start?
Whenever I sat down with someone who was about to write code in a Statement-first manner
for the first time, the person would stare at the screen, then at me, then would say: “what now?”.
It’s easy to say: “You know how to write code, you know how to write a test for it, just this time
start with the latter rather than the first”, but for many people, this is something that blocks them
completely. If you are one of them, don’t worry – you’re not alone. I decided to dedicate this
chapter solely to techniques for kicking off a Statement when there is no code.

Start with a good name

I already said that a Statement is a description of a behavior expressed in code. A thought process
leading to creation of such an executable Statement might look like the following sequence of
questions:

1. What is the scope of the behavior I’m trying to specify? Example answer: I’m trying to
specify a behavior of a Calculator class.

2. What is the behavior of a Calculator class I’m trying to specify? Example answer: it
should display all entered digits that are not leading zeroes.

3. How to specify this behavior through code? Example answer: [Fact] public void

ShouldDisplayAllEnteredDigitsThatAreNotLeadingZeroes() ... (i.e. a piece of code).

Note that before writing any code, there are at least two questions that can be answered in
human language. Many times answering these questions first before starting to write the code of
the Statement makes things easier. Even though, this can still be a challenging process. To apply
this advice successfully, some knowledge on how to properly name Statements is required. I
know not everybody pays attention to naming their Statements, mainly because the Statements
are often considered second-level citizens – as long as they run and “prove the code doesn’t
contain defects”, they are considered sufficient. We will take a look at some examples of bad
names and then I’ll go into some rules of good naming.

Consequences of bad naming

I have seen many people not really caring about how their Statements are named. This is
a symptom of treating the Specification as garbage or leftovers – I consider this approach
dangerous, because I have seen it lead to Specifications that are hard to maintain and that
look more like lumps of code put together accidentally in a haste than a kind of “living
documentation”. Imagine that your Specification consists of Statements named like this:

• TrySendPacket()

56

How to start? 57

• TrySendPacket2()

• testSendingManyPackets()

• testWrongPacketOrder1()

• testWrongPacketOrder2()

and try for yourself how difficult it is to answer the following questions:

1. How do you know what situation each Statement describes?
2. How do you know whether the Statement describes a single situation, or several at the

same time?
3. How do you know whether the assertions inside those Statements are really the right ones

assuming each Statement was written by someone else or a long time ago?
4. How do you knowwhether the Statement should stay or be removed from the Specification

when you modify the functionality described by this Statement?
5. If your changes in production codemake a Statement turn false, how do you knowwhether

the Statement is no longer correct or the production code is wrong?
6. How do you know whether you will not introduce a duplicate Statement for a behavior

when adding to a Specification that was originally created by another team member?
7. How do you estimate, by looking at the runner tool report, whether the fix for a failing

Statement will be easy or not?
8. What do you answer new developers in your team when they ask you “what is this

Statement for?”
9. How do you knowwhen your Specification is complete if you can’t tell from the Statement

names what behaviors you already have covered and what not?

What does a good name contain?

To be of any use, the name of a Statement has to describe its expected behavior. At the minimum,
it should describe what happens under what circumstances. Let’s take a look at one of the
names Steve Freeman and Nat Pryce came up with in their great book Growing Object-Oriented
Software Guided By Tests¹¹:

1 notifiesListenersThatServerIsUnavailableWhenCannotConnectToItsMonitoringPort()

Note a few things about the name of the Statement:

1. It describes a behavior of an instance of a specific class. Note that it doesn’t contain the
name of the method that triggers the behavior, because what is specified is not a single
method, but the behavior itself (this will be covered in more detail in the coming chapters).
The Statement name simply tells what an instance does (“notifies listeners that server is
unavailable”) under certain circumstances (“when cannot connect to its monitoring port”).
It is important for me because I can derive such a description from thinking about the
responsibilities of a class without the need to know any of its method signatures or the code
that’s inside the class. Hence, this is something I can come up with before implementing
– I just need to know why I created this class and build on this knowledge.

¹¹http://www.growing-object-oriented-software.com/

http://www.growing-object-oriented-software.com/
http://www.growing-object-oriented-software.com/
http://www.growing-object-oriented-software.com/

How to start? 58

2. The name is relatively long. Really, really, really don’t worry about it. As long as you
are describing a single behavior, I’d say it’s fine. I’ve seen people hesitate to give long
names to Statements, because they tried to apply the same rules to those names as to the
names of methods in production code. In production code, a long method name can be a
sign that the method has too many responsibilities or that insufficient abstraction level is
used to describe a functionality and that the name may needlessly reveal implementation
details. My opinion is that these two reasons don’t apply as much to Statements. In case of
Statements, the methods are not invoked by anyone besides the automatic test runner, so
they will not obfuscate any code that would need to call them with their long names. In
addition, the Statements names need not be as abstract as production code method names
- they can reveal more.

Alternatively, we could put all the information in a comment instead of the Statement
name and leave the name short, like this:

1 [Fact]

2 //Notifies listeners that server

3 //is unavailable when cannot connect

4 //to its monitoring port

5 public void Statement_002()

6 {

7 //...

8 }

however, there are two downsides to this. First, we now have to add an extra piece of
information (Statement_002) only to satisfy the compiler, because every method needs
to have a name anyway – and there is usually no value a human could derive from a
name such as Statement_002. The second downside is that when the Statement turns
false, the test runner shows the following line: Statement_002: FAILED – note that all the
information included in the comment is missing from the failure report. I consider it much
more valuable to receive a report like:

notifiesListenersThatServerIsUnavailableWhenCannotConnectToItsMonitoringPort:

FAILED

because in such case, a lot of information about the Statement that fails is available from
the test runner report.

3. Using a name that describes a single behavior allows me to find out quickly why the
Statement turned false. Let’s say a Statement is true when I start refactoring, but at one
point it turns false and the report in the runner looks like this: TrySendingHttpRequest:
FAILED – it only tells me that an attempt was made to send a HTTP request, but, for
instance, doesn’t tell me whether the object I specified in that Statement is some kind
of sender that should try to send this request under some circumstances, or if it is
a receiver that should handle such a request properly. To learn what went wrong, I
have to go open the source code of the Statement. On the other hand, when I have a
Statement named ShouldRespondWithAnAckWheneverItReceivesAnHttpRequest, then if
it turns false, I know what’s broken – the object no longer responds with an ACK to an
HTTP request. This may be enough to identify which part of the code is at fault and which
of my changes made the Statement false.

How to start? 59

My favourite convention

There are many conventions for naming Statements appropriately. My favorite is the one
developed by Dan North¹², where each Statement name begins with the word Should. So for
example, I would name a Statement:

ShouldReportAllErrorsSortedAlphabeticallyWhenErrorsOccurDuringSearch()

The name of the Specification (i.e. class name) answers the question “who should do it?”, i.e.
when I have a class named SortingOperation and want to say that it “should sort all items in
ascending order when performed”, I say it like this:

1 public class SortingOperationSpecification

2 {

3 [Fact] public void

4 ShouldSortAllItemsInAscendingOrderWhenPerformed()

5 {

6 }

7 }

By writing the above, I say that “Sorting operation (this is derived from the Specification class
name) should sort all items in ascending order when performed (this is derived from the name
of the Statement)”.

The word “should” was introduced by Dan to weaken the statement following it and thus to
allow questioning what you are stating and ask yourself the question: “should it really?”. If this
causes uncertainty, then it is high time to talk to a domain expert and make sure you understand
well what you need to accomplish. If you are not a native English speaker, the “should” prefix
will probably have a weaker influence on you – this is one of the reasons why I don’t insist on
you using it. I like it though¹³.

When devising a name, it’s important to put the main focus on what result or action is expected
from an object, not e.g. from one of its methods. If you don’t do that, it may quickly become
troublesome. As an example, one ofmy colleagues was specifying a class UserId (which consisted
of user name and some other information) and wrote the following name for the Statement about
the comparison of two identifiers:

EqualOperationShouldFailForTwoInstancesWithTheSameUserName().

Note that this name is not written from the perspective of a single object, but rather from
the perspective of an operation that is executed on it. We stopped thinking in terms of object
responsibilities and started thinking in terms of operation correctness. To reflect an object
perspective, this name should be something more like:

ShouldNotBeEqualToAnotherIdThatHasDifferentUserName().

When I find myself having trouble with naming like this, I suspect one of the following may be
the case:

¹²http://dannorth.net/introducing-bdd/
¹³There are also some arguments against using the word “should”, e.g. by Kevlin Henney (see http://www.infoq.com/presentations/testing-

communication).

http://dannorth.net/introducing-bdd/
http://dannorth.net/introducing-bdd/

How to start? 60

1. I am not specifying a behavior of a class, but rather the outcome of a method.
2. I am specifying more than one behavior.
3. The behavior is too complicated and hence I need to change my design (more on this later).
4. I am naming the behavior of an abstraction that is too low-level, putting too many details

in the name. I usually only come to this conclusion when all the previous points fail me.

Can’t the name really become too long?

A few paragraphs ago, I mentioned you shouldn’t worry about the length of Statement names,
but I have to admit that the name can become too long occasionally. A rule I try to follow is
that the name of a Statement should be easier to read than its content. Thus, if it takes me less
time to understand the point of a Statement by reading its body than by reading its name, then
I consider the name too long. If this is the case, I try to apply the heuristics described above to
find and fix the root cause of the problem.

Start by filling the GIVEN-WHEN-THEN structure with
the obvious

This technique can be used as an extension to the previous one (i.e. starting with a good name),
by inserting one more question to the question sequence we followed the last time:

1. What is the scope of the behavior I’m trying to specify? Example answer: I’m trying to
specify a behavior of a Calculator class.

2. What is the behavior of a Calculator class I’m trying to specify? Example answer: it
should display all entered digits that are not leading zeroes.

3. What is the context (“GIVEN”) of the behavior, the action (“WHEN”) that triggers
it and expected reaction (“THEN”) of the specified object? Example answer: Given I
turn on the calculator, when I enter any digit that’s not a 0 followed by any digits,
then they should be visible on the display.

4. How to specify this behavior through code? Example answer: [Fact] public void

ShouldDisplayAllEnteredDigitsThatAreNotLeadingZeroes() ... (i.e. a piece of code).

Alternatively, it can be used without the naming step, when it’s harder to come up with a name
than with a GIVEN-WHEN-THEN structure. In other words, a GIVEN-WHEN-THEN structure
can be easily derived from a good name and vice versa.

This technique is about taking the GIVEN, WHEN and THEN parts and translating them into
code in an almost literal, brute-force way (without paying attention to missing classes, methods
or variables), and then adding all the missing pieces that are required for the code to compile
and run.

Example

Let’s try it out on a simple problem of comparing two users for equality. We assume that two
users should be equal to each other if they have the same name:

How to start? 61

1 Given a user with any name

2 When I compare it to another user with the same name

3 Then it should appear equal to this other user

Let’s start with the translation part. Again, remember we’re trying to make the translation as
literal as possible without paying attention to all the missing pieces for now.

The first line:

1 Given a user with any name

can be translated literally to the following piece of code:

1 var user = new User(anyName);

Note that we don’t have the User class yet and we don’t bother for nowwith what anyName really
is. It’s OK.

Then the second line:

1 When I compare it to another user with the same name

can be written as:

1 user.Equals(anotherUserWithTheSameName);

Great! Again, we don’t care what anotherUserWithTheSameName is yet. We treat it as a
placeholder. Now the last line:

1 Then it should appear equal to this other user

and its translation into the code:

1 Assert.True(usersAreEqual);

Ok, so now that the literal translation is complete, let’s put all the parts together and see what’s
missing to make this code compile:

How to start? 62

1 [Fact] public void

2 ShouldAppearEqualToAnotherUserWithTheSameName()

3 {

4 //GIVEN

5 var user = new User(anyName);

6

7 //WHEN

8 user.Equals(anotherUserWithTheSameName);

9

10 //THEN

11 Assert.True(usersAreEqual);

12 }

Aswe expected, this doesn’t compile. Notably, our compiler might point us towards the following
gaps:

1. Variable anyName is not declared.
2. Object anotherUserWithTheSameName is not declared.
3. Variable usersAreEqual is both not declared and it does not hold the comparison result.
4. If this is our first Statement, we might not even have the User class defined at all.

The compiler created a kind of a small TODO list for us, which is nice. Note that while we don’t
have compiling code, filling the gaps to make it compile boils down to making a few trivial
declarations and assignments:

1. anyName can be defined as:

var anyName = Any.String();

2. anotherUserWithTheSameName can be defined as:

var anotherUserWithTheSameName = new User(anyName);

3. usersAreEqual can be defined as variable which we assign the comparison result to:

var usersAreEqual = user.Equals(anotherUserWithTheSameName);

4. If class User does not yet exist, we can add it by simply stating:

1 public class User

2 {

3 public User(string name) {}

4 }

Putting it all together again, after filling the gaps, gives us:

How to start? 63

1 [Fact] public void

2 ShouldAppearEqualToAnotherUserWithTheSameName()

3 {

4 //GIVEN

5 var anyName = Any.String();

6 var user = new User(anyName);

7 var anotherUserWithTheSameName = new User(anyName);

8

9 //WHEN

10 var usersAreEqual = user.Equals(anotherUserWithTheSameName);

11

12 //THEN

13 Assert.True(usersAreEqual);

14 }

And that’s it – the Statement itself is complete!

Start from the end

This is a technique that I suggest to people that seem to have absolutely no idea how to start.
I got it from Kent Beck’s book Test Driven Development by Example. It seems funny at first
glance, but I found it quite powerful at times. The trick is to write the Statement “backwards”,
i.e. starting with what the result verification (in terms of the GIVEN-WHEN-THEN structure, we
would say that we start with our THEN part).

This works well when we are quite sure of what the outcome of a behavior should be, but not
quite so sure of how to get there.

Example

Imagine we are writing a class containing the rules for granting or denying access to a reporting
functionality. This reporting functionality is based on roles.We have no idea what the API should
look like and how to write our Statement, but we do know one thing: in our domain the access
can be either granted or denied. Let’s take the first case we can think of – the “access granted”
case – and, starting backwards, begin with the following assertion:

1 //THEN

2 Assert.True(accessGranted);

Ok, that part was easy, but did we make any progress with that? Of course we did – we now
have code that does not compile, with the error caused by the variable accessGranted. Now, in
contrast to the previous approach where we translated a GIVEN-WHEN-THEN structure into a
Statement, our goal is not to make this compile as soon as possible. Instead, we need to answer
the question: how do I know whether the access is granted or not? The answer: it is the result
of authorization of the allowed role. Ok, so let’s just write it down in code, ignoring everything
that stands in our way:

How to start? 64

1 //WHEN

2 var accessGranted

3 = access.ToReportingIsGrantedTo(roleAllowedToUseReporting);

For now, try to resist the urge to define a class or variable to make the compiler happy, as that
may throw you off the track and steal your focus from what is important. The key to doing TDD
successfully is to learn to use something that does not exist yet as if it existed and not worry
until really needed.

Note that we don’t knowwhat roleAllowedToUseReporting is, neither do we knowwhat access
object stands for, but that didn’t stop us from writing this line. Also, the ToReportingIsGrant-
edTo()method is just taken off the top of our head. It’s not defined anywhere, it just made sense
to write it like this, because it is the most direct translation of what we had in mind.

Anyway, this new line answers the question about where we take the accessGranted value from,
but it also makes us ask further questions:

1. Where does the access variable come from?
2. Where does the roleAllowedToUseReporting variable come from?

As for access, we don’t have anything specific to say about it other than that it is an object
of a class that is not defined yet. What we need to do now is to pretend that we have such a
class (but let’s not define it yet). How do we call it? The instance name is access, so it’s quite
straightforward to name the class Access and instantiate it in the simplest way we can think of:

1 //GIVEN

2 var access = new Access();

Now for the roleAllowedToUseReporting. The first question that comes to mind when looking
at this is: which roles are allowed to use reporting? Let’s assume that in our domain, this is either
an Administrator or an Auditor. Thus, we know what is going to be the value of this variable.
As for the type, there are various ways we can model a role, but the most obvious one for a type
that has few possible values is an enum¹⁴. So:

1 //GIVEN

2 var roleAllowedToUseReporting = Any.Of(Roles.Admin, Roles.Auditor);

And so, working our way backwards, we have arrived at the final solution (in the code below, I
already gave the Statement a name - this is the last step):

¹⁴This approach of picking a single value out of several ones using Any.From() does not always work well with enums. Sometimes a
parameterized test (a “theory” in XUnit.NET terminology) is better. This topic will be discussed in one of the the coming chapters.

How to start? 65

1 [Fact] public void

2 ShouldAllowAccessToReportingWhenAskedForEitherAdministratorOrAuditor()

3 {

4 //GIVEN

5 var roleAllowedToUseReporting = Any.Of(Roles.Admin, Roles.Auditor);

6 var access = new Access();

7

8 //WHEN

9 var accessGranted

10 = access.ToReportingIsGrantedTo(roleAllowedToUseReporting);

11

12 //THEN

13 Assert.True(accessGranted);

14 }

Using what we learned by formulating the Statement, it was easy to give it a name.

Start by invoking a method if you have one

If preconditions for this approach are met, it’s the most straightforward one and I use it a lot¹⁵.

Many times, we have to add a new class that implements an already existing interface. The
interface imposes what methods the new class must support. If the method signatures are already
decided, we can start our Statement with a call to one of the methods and then figure out the
rest of the context we need to make it run properly.

Example

Imagine we have an application that, among other things, handles importing an existing database
exported from another instance of the application. Given that the database is large and importing
it can be a lengthy process, a message box is displayed each time a user performs the import.
Assuming the user’s name is Johnny, the message box displays the message “Johnny, please sit
down and enjoy your coffee for a few minutes as we take time to import your database.” The
class that implements this looks like:

¹⁵Look for details in chapter 2.

How to start? 66

1 public class FriendlyMessages

2 {

3 public string

4 HoldOnASecondWhileWeImportYourDatabase(string userName)

5 {

6 return string.Format("{0}, "

7 + "please sit down and enjoy your coffee "

8 + "for a few minutes as we take time "

9 + "to import your database",

10 userName);

11 }

12 }

Now, imagine that we want to ship a trial version of the application with some features disabled,
one of which being the database import. One of the things we need to do is display a message
saying that this is a trial version and that the import feature is locked.We can do this by extracting
an interface from the FriendlyMessages class and implement this interface in a new class used
when the application is run as the trial version. The extracted interface looks like this:

1 public interface Messages

2 {

3 string HoldOnASecondWhileWeImportYourDatabase(string userName);

4 }

So our new implementation is forced to support the HoldOnASecondWhileWeImportYourDatabase()
method. Let’s call this new class TrialVersionMessages (but don’t create it yet!) and we can
write a Statement for its behavior. Assuming we don’t know where to start, we just start with
creating an object of the class (we already know the name) and invoking the method we already
know we need to implement:

1 [Fact]

2 public void TODO()

3 {

4 //GIVEN

5 var trialMessages = new TrialVersionMessages();

6

7 //WHEN

8 trialMessages.HoldOnASecondWhileWeImportYourDatabase();

9

10 //THEN

11 Assert.True(false); //to remember about it

12 }

As you can see, we added an assertion that always fails at the end to remind ourselves that the
Statement is not finished yet. As we don’t have any relevant assertions yet, the Statement will

How to start? 67

otherwise be considered as true as soon as it compiles and runs and we may not notice that it’s
incomplete. As it currently stands, the Statement doesn’t compile anyway, because there’s no
TrialVersionMessages class yet. Let’s create one with as little implementation as possible:

1 public class TrialVersionMessages : Messages

2 {

3 public string HoldOnASecondWhileWeImportYourDatabase(string userName)

4 {

5 throw new NotImplementedException();

6 }

7 }

Note that there’s only as much implementation in this class as required to compile this code. Still,
the Statement won’t compile yet. This is because the method HoldOnASecondWhileWeImportY-

ourDatabase() takes a string argument and we didn’t pass any in the Statement. This makes
us ask the question what this argument is and what its role is in the behavior triggered by the
HoldOnASecondWhileWeImportYourDatabase() method It looks like it’s a user name. Thus, we
can add it to the Statement like this:

1 [Fact]

2 public void TODO()

3 {

4 //GIVEN

5 var trialMessages = new TrialVersionMessages();

6 var userName = Any.String();

7

8 //WHEN

9 trialMessages.

10 HoldOnASecondWhileWeImportYourDatabase(userName);

11

12 //THEN

13 Assert.True(false); //to remember about it

14 }

Now, this compiles but is considered false because of the guard assertion that we put at the end.
Our goal is to substitute it with a proper assertion for the expected result. The return value of
the call to HoldOnASecondWhileWeImportYourDatabase is a string message, so all we need to do
is to come up with the message that we expect in case of the trial version:

How to start? 68

1 [Fact]

2 public void TODO()

3 {

4 //GIVEN

5 var trialMessages = new TrialVersionMessages();

6 var userName = Any.String();

7 var expectedMessage =

8 string.Format(

9 "{0}, better get some pocket money and buy a full version!",

10 userName);

11

12 //WHEN

13 var message = trialMessages.

14 HoldOnASecondWhileWeImportYourDatabase(userName);

15

16 //THEN

17

18 Assert.Equal(expectedMessage, message);

19 }

All what is left is to find a good name for the Statement. This isn’t an issue since we already
specified the desired behavior in the code, so we can just summarize it as something like
ShouldCreateAPromptForFullVersionPurchaseWhenAskedForImportDatabaseMessage().

Summary

When I’m stuck and don’t know how to start writing a new failing Statement, the techniques
from this chapter help me push things in the right direction. Note that the examples given are
simplistic and built on an assumption that there is only one object that takes some kind of input
parameter and returns a well defined result. However, this isn’t how most of the object-oriented
world is built. In that world, we often have objects that communicate with other objects, send
messages, invoke methods on each other and these methods often don’t have any return values
but are instead declared as void. Even though, all of the techniques described in this chapter will
still work in such case and we’ll revisit them as soon as we learn how to do TDD in the larger
object-oriented world (after the introduction of the concept of mock objects in Part 2). Here, I
tried to keep it simple.

How is TDD about analysis and what
does “GIVEN-WHEN-THEN” mean?
During the work on the calculator code, Johnny mentioned that TDD is, among other things,
about analysis. This chapter further explores this concept. Let’s start by answering the following
question:

Is there really a commonality between analysis and
TDD?

From Wikipedia¹⁶:

Analysis is the process of breaking a complex topic or substance into smaller parts
to gain a better understanding of it.

Thus, for TDD to be about analysis, it would have to fulfill two conditions:

1. It would have to be a process of breaking a complex topic into smaller parts
2. It would have to allow gaining a better understanding of such smaller parts

In the story about Johnny, Benjamin and Jane, I included a part where they analyze requirements
using concrete examples. Johnny explained that this is a part of process called Acceptance Test-
Driven Development. This process, followed by the three characters, fulfilled both mentioned
conditions for it to be considered analytical. But what about TDD itself?

Although I used parts of the ATDD process in the story to make the analysis part more obvious,
similar things happen at pure technical levels. For example, when starting development with a
failing application-wide Statement (i.e. one that covers a behavior of an application as a whole.
We will talk about levels of granularity of Statements later. For now the only thing you need to
know is that the so called “unit tests level” is not the only level of granularity wewrite Statements
on), we may encounter a situation where we need to call a web method and make an assertion
on its result. This makes us think: how should this method be named? What are the scenarios it
supports? What do I expect to get out of it? How should I, as its user, be notified about errors?
Many times, this leads us to either a conversation (if there is another stakeholder that needs to
be involved in the decision) or rethinking our assumptions. The same applies on “unit level” - if
a class implements a domain rule, there might be some good domain-related questions resulting
from trying to write a Statement for it. If a class implements a technical rule, there might be
some technical questions to discuss with other developers etc. This is how we gain a better

¹⁶https://en.wikipedia.org/wiki/Analysis

69

https://en.wikipedia.org/wiki/Analysis
https://en.wikipedia.org/wiki/Analysis

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 70

understanding of the topic we are analyzing, which makes TDD fulfill the second of the two
requirements for it to be an analysis method.

But what about the first requirement? What about breaking a complex logic into smaller parts?

If you go back to Johnny and Benjamin’s story, you will note that when talking to a customer and
when writing code, they used a TODO list. This list was first filled with whatever scenarios they
came up with, but later, they would add smaller units of work. When doing TDD, I do the same,
essentially decomposing complex topics into smaller items and putting them on the TODO list
(this is one of the practices that serve decomposition. The other one is mocking, but let’s leave
that for now). Thanks to this, I can focus on one thing at a time, crossing off item after item
from the list after it’s done. If I learn something new or encounter a new issue that needs our
attention, I can add it to the TODO list and get back to it later, for now continuing my work on
the current item of focus.

An example TODO list from the middle of an implementation task may look like this (don’t read
through it, I put it here just to give you a glimpse - you’re not supposed to understand what the
list items are about):

1. Create an entry point to the module (top-level abstraction)
2. Implement main workflow of the module
3. Implement Message interface
4. Implement MessageFactory interface
5. Implement ValidationRules interface
6. Implement behavior required from Wrap method in LocationMessageFactory class
7. Implement behavior required from ValidateWith method in LocationMessage class for

Speed field
8. Implement behavior required fromValidateWithmethod in LocationMessage class for Age

field
9. Implement behavior required from ValidateWith method in LocationMessage class for

Sender field

Note that some of the items are already crossed off as done, while others remain pending and
waiting to be addressed. All these items are what the article on Wikipedia calls “smaller parts” -
a result of breaking down a bigger topic.

For me, the arguments that I gave you are enough to think that TDD is about analysis. The next
question is: are there any tools we can use to aid and inform this analysis part of TDD? The
answer is yes and you already saw both of them in this book, so now we’re going to have a
closer look.

Gherkin

Hungry? Too bad, because the Gkerkin I am going to tell you about is not edible. It is a notation
and a way of thinking about behaviors of the specified piece of code. It can be applied on different
levels of granularity – any behavior, whether of awhole system or a single class, may be described
using Gherkin.

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 71

In fact we already used this notation, we just didn’t name it so. Gherkin is the GIVEN-WHEN-
THEN structure that you can see everywhere, even as comments in the code samples. This time,
we are stamping a name on it and analyzing it further.

In Gherkin, a behavior description consists mostly of three parts:

1. Given – a context
2. When – a cause
3. Then – an effect

In other words, the emphasis is on causality in a given context. There’s also a fourth keyword:
And¹⁷ – we can use it to add more context, more causes or more effects. You’ll have a chance to
see an example in a few seconds

As I said, there are different levels you can apply this. Here is an example for such a behavior
description from the perspective of its end user (this is called acceptance-level Statement):

1 Given a bag of tea costs $20

2 And there is a discount saying "pay half for a second bag"

3 When I buy two bags

4 Then I should be charged $30

And here is one for unit-level (note again the line starting with “And” that adds to the context):

1 Given a list with 2 items

2 When I add another item

3 And check items count

4 Then the count should be 3

While on acceptance level we put such behavior descriptions together with code as a single
whole (If this doesn’t ring a bell, look at tools such as SpecFlow or Cucumber or FIT to get
some examples), on the unit level the description is usually not written down in a literal way,
but rather it is translated and written only in form of source code. Still, the structure of GIVEN-
WHEN-THEN is useful when thinking about behaviors required from an object or objects, as we
saw when we talked about starting from Statement rather than code. I like to put the structure
explicitly in my Statements – I find that it helps make them more readable¹⁸. So most of my
unit-level Statements follow this template:

¹⁷Some claim there are other keywords, like But and Or. However, we won’t need to resort to them so I decided to ignore them in this
description.

¹⁸Seb Rose wrote a blog post where he suggests against the //GIVEN //WHEN //THEN comments and states that he only uses empty lines to
separate the three sections, see http://claysnow.co.uk/unit-tests-are-your-specification/

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 72

1 [Fact]

2 public void Should__BEHAVIOR__()

3 {

4 //GIVEN

5 ...context...

6

7 //WHEN

8 ...trigger...

9

10 //THEN

11 ...assertions etc....

12 }

Sometimes the WHEN and THEN sections are not so easily separable – then I join them, like
in case of the following Statement specifying that an object throws an exception when asked to
store null:

1 [Fact]

2 public void ShouldThrowExceptionWhenAskedToStoreNull()

3 {

4 //GIVEN

5 var safeList = new SafeList();

6

7 //WHEN - THEN

8 Assert.Throws<Exception>(

9 () => safeList.Store(null)

10);

11 }

By thinking in terms of these three parts of behavior, we may arrive at different circumstances
(GIVEN) at which the behavior takes place, or additional ones that are needed. The same goes
for triggers (WHEN) and effects (THEN). If anything like this comes to our mind, we add it to
the TODO list to revisit it later.

TODO list… again!

As I wrote earlier, a TODO list is a repository for our deferred work. This includes anything that
comes to our mind when writing or thinking about a Statement, but is not a part of the current
Statement we are writing. On one hand, we don’t want to forget it, on the other - we don’t want
it to haunt us and distract us from our current task, so we write it down as soon as possible and
continue with our current task. When we’are finished with it, we take another item from TODO
list and start working on it.

Imagine we’re writing a piece of logic that allows users access when they are employees of a zoo,
but denies access if they are merely guests of the zoo. Then, after starting writing a Statement we

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 73

realize that employees can be guests as well – for example, theymight choose to visit the zoowith
their families during their vacation. Still, the two previous rules hold, so to avoid being distracted
by this third scenario, we can quickly add it as an item to the TODO list (like “TODO: what if
someone is an employee, but comes to the zoo as a guest?”) and finish the current Statement.
When we’re finished, you can always come back to the list of deferred items and pick next item
to work on.

There are two important questions related to TODO lists: “what exactly should we add as a
TODO list item?” and “How to efficiently manage the TODO list?”. We will take care of these
two questions now.

What to put on a TODO list?

Everything that we need addressed but is out of scope of the current Statement. Those items may
be related to implementing unimplemented methods, to add whole functionalities (such items
are usually broken further into more fine-grained sub tasks as soon as we start implementing
them), they might be reminders to take a better look at something (e.g. “investigate what is this
component’s policy for logging errors”) or questions about the domain that need to get answered.
If we ten to get carried away too much in coding and miss our lunch, we can even add a reminder
(“TODO: eat lunch!”). I never encountered a case where I needed to share this TODO list with
anyone else, so I treat it as my personal sketchbook. I recommend the same to you - the list is
yours!

How to pick items from a TODO list?

Which item to choose from a TODO list when we have several of them? I have no clear rule,
although I tend to take into account the following factors:

1. Risk – if what I learn by implementing or discussing a particular item from the list can
have a big impact on design or behavior of the system, I tend to pick such items first. An
example of such item is when I start implementing validation of a request that arrives to
my application and want to return different error depending on which part of the request
is wrong. Then, during the development, I may discover that more than one part of the
request can be wrong at the same time and I have to answer a question: which error code
should be returned in such case? Or maybe the return codes should be accumulated for all
validations and then returned as a list?

2. Difficulty – depending on my mental condition (how tired I am, how much noise is
currently around my desk etc.), I tend to pick items with difficulty that best matches this
condition. For example, after finishing an item that requires a lot of thinking and figuring
things out, I tend to take on some small and easy items to feel wind blowing in my sails
and to rest a little bit.

3. Completeness – in simplest words, when I finish test-driving an “if” case, I usually pick up
the “else” next. For example, after I finish implementing a Statement saying that something
should return true for values less than 50, then the next item to pick up is the “greater or
equal to 50” case. Usually, when I start test-driving a class, I take items related to this class
until I run out of them, then go on to another one.

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 74

Where to put a TODO list?

I encountered two ways of maintaining a TODO list. The first one is on a sheet of paper. The
drawback is that every time I need to add something to the list, I need to take my hands off the
keyboard, grab a pen or a pencil and then get back to coding. Also, the only way a TODO item
written on a sheet of paper can tell me which place in my code it is related to, is (obviously) by
its text. The good thing about paper is that it is by far one of the best tools for sketching, so when
my TODO item is best stored as a diagram or a drawing (which doesn’t happen too often, but
sometimes does) , I use pen and paper.

The second alternative is to use a TODO list functionality built-in into an IDE. Most IDEs, such
as Visual Studio (and Resharper plugin has its own enhanced version), Xamarin Studio, IntelliJ
or eclipse-based IDEs have such functionality. The rules are simple – I insert special comments
(e.q. //TODO do something) in the code and a special view in my IDE aggregates them for me,
allowing me to navigate to each item later. This is my primary way of maintaining a TODO list,
because:

1. They don’t force me to take my hands off my keyboard to add an item to the list.
2. I can put a TODO item in a certain place in the code where is makes sense and then

navigate back to it later with a click of a mouse. This, apart from other advantages, allows
writing shorter notes than if I had to do it on paper. For example, a TODO item saying
“TODO: what if it throws an exception?” looks out of place on a sheet of paper, but when
added as a comment to my code in the right place, it’s sufficient.

3. Many TODO lists automatically add items for certain things that happen in the code. E.g.
in C#, when I’m yet to implement a method that was automatically generated the IDE, its
body usually consists of a line that throws a NotImplementedException exception. Guess
what – NotImplementedException occurences are added to the TODO list automatically,
so I don’t have to manually add items to the TODO list for implementing the methods
where they occur.

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 75

Resharper TODO Explorer docked as a window in Visual Studio 2015 IDE

The TODO list maintained in the source code has one minor drawback - we have to remember
to clear the list when we finish working with it or we may end up pushing the TODO items to
the source control repository along with the rest of the source code. Such leftover TODO items
may accumulate in the code, effectively reducing the ability to navigate through the items that
were only added by a specific developer. There are several strategies of dealing with this:

1. For greenfield projects, I found it relatively easy to set up a static analysis check that
runs when the code is built and doesn’t allow the automatic build to pass unless all TODO
items are removed. This helps ensure that whenever a change is pushed to a version control
system, it’s stripped of the unaddressed TODO items.

2. In some other cases, it’s possible to use a strategy of removing all TODO items from a
project before starting working with it. Sometimes it may lead to conflicts between people
when TODO items are used for something else than a TDD task list and someone for
whatever reason wants them to stay in the code longer. Even though I’m of opinion that
such cases of leaving TODO items for longer should be extremely rare at best, however,
others may have different opinions.

3. Most modern IDEs offer support markers other than //TODO for placing items on a TODO
list, for example, //BUG. In such case, I can use the //BUG marker to mark just my items

How is TDD about analysis and what does “GIVEN-WHEN-THEN” mean? 76

and then I can filter other items out based on that marker. Bug markers are commonly not
intended to be left in the code, so it’s much less risky for them to accumulate.

4. As a last resort technique, I can usually define my own markers to be placed on TODO
list and, again, use filters to see only the items that were defined by me (plus usually
NotImplementedExceptions).

TDD process expanded with a TODO list

In one of the previous chapters, I introduced you to the basic TDD process that contained three
steps: write false Statement you wish was true, change the production code so that the Statement
is true and then refactor the code. TODO list adds new steps to this process leading to the
following expanded list:

1. Examine TODO list and pick an item that makes most sense to implement next.
2. Write false Statement you wish was true.
3. See it reported as false for the right reason.
4. Change the production code to make the Statement true and make sure all already true

Statements remain true.
5. Cross off the item from the TODO list.
6. Repeat steps 1-5 until no item is left on the TODO list.

Of course, we can (and should) add new items to the TODO list as we make progress with the
existing ones and at the beginning of each cycle the list should be re-evaluated to choose the
most important item to implement next, also taking into account the things that were added
during the previous cycle.

Potential issues with TODO lists

There are also some issues one may run into when using TODO lists. I already mentioned the
biggest of them - that I often saw people add TODO items for means other than to support TDD
and they never went back to these items. Some people joke that a TODO comment left in the
code means “There was a time when I wanted to do …”. Anyway, such items may pollute our
TDD-related TODO list with so much cruft that your own items are barely findable.

Another downside is that when you work with multiple workspaces/solutions, your IDE will
gather TODO items only from a single solution/workspace, so there may be times when several
TODO lists will need to be maintained – one per workspace or solution. Fortunately, this isn’t
usually a big deal.

Developing a TDD style and
Constrained Non-Determinism
In one of the first chapters, I introduced to you the idea of anonymous values generator idea,
which I have wrapped in a static class called Any. Throughout the next chapters, you have seen
me using it quite extensively in many of the Statements I wrote.

The time has come to explain a little bit more carefully what principles lie under this technique
and tool. I will also use this technique as a case study to show you how one develops a style of
Test-Driven Development.

A style?

Yep.Why am Iwasting your timewriting about style instead of giving you the hardcore technical
details? The answer is simple. Before I started writing this tutorial, I read four or five books
solely on TDD and maybe two others that contain chapters on TDD. All of this sums up to about
two or three thousands of paper pages, plus numerous posts on many blogs. And you know
what I noticed? No two authors use exactly the same sets of techniques for test-driving their
code! I mean, sometimes, when you look at the techniques they are suggesting, two authorities
contradict each other. As each authority has their followers, it is not uncommon to observe and
take part in discussions about whether this or that technique is better than a competing one or
which one leads to trouble in the long run.

I did this, too. I also tried to understand how come people praise techniques I KNEWwere wrong
and led to disaster. Then, Finally, I got it. I understood that it is not a “technique A vs. technique
B” debate. There are certain sets of techniques that work together and choosing one technique
leaves us with issues we have to resolve by adopting other techniques. This is how a style is
created.

Developing a style starts with a set of problems to solve and an underlying set of principles we
consider important. These principles lead us to adopt our first technique, which makes us adopt
another one and, ultimately, a coherent style emerges. Using Constrained Non-Determinism as
an example, I will try to show you how part of a style gets derived from a technique that is
derived from a principle.

Principle: Tests As Specification

As I already stressed, I strongly believe that unit tests constitute an executable specification.
Thus, they should not only pass input values to an object and assert on the output, they should
also convey to their reader the rules according to which objects and functions work. The
following oversimplified example shows a Statement where it is not explicitly stated what is
the relationship between input and output:

77

Developing a TDD style and Constrained Non-Determinism 78

1 [Fact] public void

2 ShouldCreateBackupFileNameContainingPassedHostName()

3 {

4 //GIVEN

5 var fileNamePattern = new BackupFileNamePattern();

6

7 //WHEN

8 var name = fileNamePattern.ApplyTo("MY_HOST_NAME");

9

10 //THEN

11 Assert.Equal("backup_MY_HOST_NAME.zip", name);

12 }

Although the relationship can be guessed quite easily, remember it is just an example. Also,
seeing code like that makes me ask questions like: is the “backup_” prefix always applied? What
if I pass the prefix itself instead of “MY_HOST_NAME”?Will the name be “backup_backup_.zip”,
or just “backup_.zip”? Also, is this object responsible for any validation of passed string?

This makes me invent a first technique to provide my Statements with better support for the
principle I believe in.

First technique: Anonymous Input

I can wrap the actual value “MY_HOST_NAME” with a method and give it a name that better
documents the constraints imposed on it by the specified functionality. In our case, we can pass
whatever string we want (the object is not responsible for input validation), so we will name our
method AnyString():

1 [Fact] public void

2 ShouldCreateBackupFileNameContainingPassedHostName()

3 {

4 //GIVEN

5 var hostName = AnyString();

6 var fileNamePattern = new BackupFileNamePattern();

7

8 //WHEN

9 var name = fileNamePattern.ApplyTo(hostName);

10

11 //THEN

12 Assert.Equal("backup_MY_HOST_NAME.zip", name);

13 }

14

15 public string AnyString()

16 {

17 return "MY_HOST_NAME";

18 }

Developing a TDD style and Constrained Non-Determinism 79

By using anonymous input, we provide a better documentation of the input value. Here, I
wrote AnyString(), but of course, there can be a situation where I use more constrained data,
e.g. AnyAlphaNumericString() when I need a string that does not contain any characters other
than letters and digits. Note that this technique is applicable only when the particular value
of the variable is not important, but rather its “trait”. Taking authorization as an example,
when a certain behavior occurs only when the input value is Users.Admin, there is no sense
making it anonymous. On the other hand, for a behavior that occurs for all values other than
Users.Admin, it makes sense to use a method like AnyUserOtherThan(Users.Admin) or even
AnyNonAdminUser().

Now that the Statement itself is freed from the knowledge of the concrete value of hostName
variable, the concrete value of “backup_MY_HOST_NAME.zip” looks kind of weird. There is no
clear indication of the kind of relationship between input and output and whether there is any
at all (one may reason whether the output is always the same string or maybe it depends on the
string length). It is unclear which part is added by the production code and which part depends
on the input we pass to the method. This leads us to another technique.

Second technique: Derived Values

To better document the relationship between input and output, we have to simply derive the
expected value we assert on from the input value. Here is the same Statement with the assertion
changed:

1 [Fact] public void

2 ShouldCreateBackupFileNameContainingPassedHostName()

3 {

4 //GIVEN

5 var hostName = AnyString();

6 var fileNamePattern = new BackupFileNamePattern();

7

8 //WHEN

9 var name = fileNamePattern.ApplyTo(hostName);

10

11 //THEN

12 Assert.Equal(

13 string.Format("backup_{0}.zip", hostName),

14 name);

15 }

16 public string AnyString()

17 {

18 return "MY_HOST_NAME";

19 }

This looks more like a part of specification, because we are documenting the format of the backup
file name and showwhich part of the format is variable andwhich part is fixed. This is something

Developing a TDD style and Constrained Non-Determinism 80

you would probably find documented in a paper specification for the application you are writing
– it would probably contain a sentence saying: “The format of a backup file should be backup_-
H.zip, where H is the current local host name”.

Derived values are about defining expected output in terms of the input that was passed to
provide a clear indication on what is the “transformation” of the input required of the specified
production code.

Third technique: Distinct Generated Values

Let’s assume that some time after our initial version is shipped, we are asked to make the backup
feature applied locally per user only for this user’s data. As the customer does not want to confuse
files from different users, we are asked to add name of the user doing backup to the backup file
name. Thus, the new format is “backup_H_U.zip”, where H is still the host name and U is the
user name. Our Statement for the pattern must change as well to include this information. Of
course, we are trying to use the anonymous input again as a proven technique and we end up
with:

1 [Fact] public void

2 ShouldCreateBackupFileNameContainingPassedHostNameAndUserName()

3 {

4 //GIVEN

5 var hostName = AnyString();

6 var userName = AnyString();

7 var fileNamePattern = new BackupFileNamePattern();

8

9 //WHEN

10 var name = fileNamePattern.ApplyTo(hostName, userName);

11

12 //THEN

13 Assert.Equal(string.Format(

14 "backup_{0}_{1}.zip", hostName, userName),

15 name);

16 }

17

18 public string AnyString()

19 {

20 return "MY_HOST_NAME";

21 }

Now, we can clearly see that there is something wrong with this Statement. AnyString() is used
twice and each time it returns the same value, which means that evaluating the Statement does
not give us any guarantee, that both values are applied and that they are applied in the correct
places. For example, the Statement will be evaluated to true when user name is used instead of
host name in specified production code. This means that if we still want to use the anonymous
input effectively, we have to make the two values distinct, e.g. like this:

Developing a TDD style and Constrained Non-Determinism 81

1 [Fact] public void

2 ShouldCreateBackupFileNameContainingPassedHostNameAndUserName()

3 {

4 //GIVEN

5 var hostName = AnyString();

6 var userName = AnyString2();

7 var fileNamePattern = new BackupFileNamePattern();

8

9 //WHEN

10 var name = fileNamePattern.ApplyTo(hostName, userName);

11

12 //THEN

13 Assert.Equal(string.Format(

14 "backup_{0}_{1}.zip", hostName, userName),

15 name);

16 }

17

18 public string AnyString()

19 {

20 return "MY_HOST_NAME";

21 }

22

23 public string AnyString2()

24 {

25 return "MY_USER_NAME";

26 }

We solved the problem (for now) by introducing another helper method. However, this, as you
can see, is not a very scalable solution. Thus, let’s try to reduce the amount of helper methods
for string generation to one and make it return a different value each time:

1 [Fact] public void

2 ShouldCreateBackupFileNameContainingPassedHostNameAndUserName()

3 {

4 //GIVEN

5 var hostName = AnyString();

6 var userName = AnyString();

7 var fileNamePattern = new BackupFileNamePattern();

8

9 //WHEN

10 var name = fileNamePattern.ApplyTo(hostName, userName);

11

12 //THEN

13 Assert.Equal(string.Format(

14 "backup_{0}_{1}.zip", hostName, userName),

15 name);

Developing a TDD style and Constrained Non-Determinism 82

16 }

17

18 public string AnyString()

19 {

20 return Guid.NewGuid.ToString();

21 }

This time, we are not returning an understandable string, but rather a guid, which gives
us the fairly strong guarantee of generating distinct value each time. The string not being
understandable (contrary to something like “MY_HOST_NAME”) may leave you worried that
maybe we are losing something, but hey, didn’t we say AnyString()?

Distinct generated values means that each time we need a value of a particular type, we get
something different (if possible) than the last time and each value is generated automatically
using some kind of heuristics.

Fourth technique: Constant Specification

Let’s consider another modification that we are requested to make – this time, the backup file
name needs to contain version number of our application as well. Remembering that we want
to use Derived Values, we will not hardcode the version number into our Statement. Instead, we
are going to use a constant that is already defined somewhere else in the application (this way
we also avoid duplication of this version number across the application):

1 [Fact] public void

2 ShouldCreateBackupFileNameContainingPassedHostNameAndUserNameAndVersion()

3 {

4 //GIVEN

5 var hostName = AnyString();

6 var userName = AnyString();

7 var fileNamePattern = new BackupFileNamePattern();

8

9 //WHEN

10 var name = fileNamePattern.ApplyTo(hostName, userName);

11

12 //THEN

13 Assert.Equal(

14 string.Format(

15 "backup_{0}_{1}_{2}.zip",

16 hostName, userName, Version.Number),

17 name);

18 }

19

20 public string AnyString()

21 {

Developing a TDD style and Constrained Non-Determinism 83

22 return Guid.NewGuid.ToString();

23 }

Note that I didn’t use the literal constant value, but rather, the value inside the Version.Number
constant. This allows us to use derived value, but leaves us a little worried about whether the
value of the constant is correct – after all, we are using it for creation of our expected value, but
it is a part of production code – i.e. is something that should be specified itself!

To keep everyone happy, we write a single Statement just for the constant to specify what the
value should be:

1 [Fact] public void

2 ShouldContainNumberEqualTo1_0()

3 {

4 Assert.Equal("1.0", Version.Number);

5 }

By doing so, we make the value in the production code just echo what is in our executable
Specification, which we can fully trust.

Summary of the example

In this example, I tried to show you how a style can evolve from the principles you value when
doing TDD. I did so for two reasons:

1. To introduce to you a set of techniques I personally use and recommend and to do it in a
fluent and logical way.

2. To help you better communicate with people that are using different styles. Instead of just
throwing “you are doing it wrong” at them, try to understand their principles and how
their techniques of choice support those principles.

Now, let’s take a quick summary of all the techniques introduced in example:

Anonymous Input
moving the output out of the Statement code and hide it behind amethod that to emphasize
the constrain on the data used rather than what is its value

Derived Values
defining expected output in terms of the input to document the relationship between input
and output

Distinct Generated Values
When using Anonymous Input, generate a distinct value each time (in case of types that
have very few values, like boolean, try at least not to generate the same value twice in a
row) to make the Statement more reliable.

Constant Specification
Write a separate Statement for a constant and use the constant instead of its literal value
in all other Statements to create a Derived Value.

Developing a TDD style and Constrained Non-Determinism 84

Constrained non-determinism

When we combine anonymous input together with distinct generated values, we get something
that is called Constrained Non-Determinism. This is a term coined by Mark Seemann and
basically means three things:

1. Values are anonymous i.e. we do not know the actual value we are using
2. The values are generated in as distinct as possible sequence (which means that, whenever

possible, no two values generated one after another hold the same value)
3. The non-determinism in generation of the values is constrained, which means that the

algorithms for generating values are carefully picked in order to provide values that are
not special in any way (e.g. when generating integers, we do not allow generating ‘0’ as it
is usually a special-case-value) and that are not “evil” (e.g. for integers, we generate small
positive values first and go with bigger numbers only when we run out of those small
ones).

There are multiple ways to implement constrained non-determinism. Mark Seemann himself has
invented the AutoFixture library for C# that is freely available to download¹⁹. Here is a shortest
possible snippet to generate an anonymous integer using AutoFixture:

1 Fixture fixture = new Fixture();

2 var anonymousInteger = fixture.Create<int>();

I, after Amir Kolsky and Scott Bain, like to use Any class as seen in the previous chapters of this
book. Any takes a slightly different approach than AutoFixture (although it uses AutoFixture
internally). My implementation of Any class is available to download as well²⁰.

Summary

That was a long ride, wasn’t it? I hope that this chapter gave you some understanding of how
different TDD styles came into existence and why I use some of the techniques I do (and how
these techniques are not just a series of random choices). In the next chapters, I will try to
introduce some more techniques to help you grow a bag of neat tricks – a coherent style.

What is the scope of a unit-level Statement in TDD?

Ha, now I have to admit that I deferred for a long time to answer a pretty fundamental question:
what should be the scope of a single Statement? If I put the whole system together, can I write
a Statement for its behavior? Or maybe the other way round – there should be a Statement for
each method of each class, including the private ones? Well, first thing I want to explain is that

¹⁹https://github.com/AutoFixture/AutoFixture
²⁰https://github.com/grzesiek-galezowski/tdd-toolkit

https://github.com/AutoFixture/AutoFixture
https://github.com/grzesiek-galezowski/tdd-toolkit
https://github.com/AutoFixture/AutoFixture
https://github.com/grzesiek-galezowski/tdd-toolkit

Developing a TDD style and Constrained Non-Determinism 85

there are multiple levels we can write our Statements on. This varies depending on the TDD
authority, but in this book, we will cover two of such levels – unit level and acceptance level.
For now, let’s stick to the unit level, which is what we have done so far anyway. The time will
come for the rest. This is, however, a good moment to stop and consider the “scope” of a single
unit-level Statement in TDD. Is it method scope? Class scope? Feature scope?

Let’s try to answer the question by examining some TDD unit-level Statements:

Is it class scope?

Let’s see the first example and try to answer this question:

1 [Fact] public void

2 ShouldThrowValidationExceptionWithFatalErrorLevelWhenValidatedStringIsEmpty()

3 {

4 //GIVEN

5 var emptyString = string.Empty;

6 var validation = new Validation();

7

8 //WHEN

9 var exceptionThrown = Assert.Throws<CustomException>(

10 () => validation.Perform(emptyString)

11);

12

13 //THEN

14 Assert.True(exceptionThrown.IsFatalError);

15 }

This is an example of a well-written unit-level Statement. Ok, so let’s see… howmany real classes
take part in this spec? Three: a string, an exception and the validation. So the class scope is not
the most accurate description.

Or a method scope?

So, maybe the scope covers a single method, meaning a Statement always exercises one method
of a specified object?

Let’s consider the following example:

Developing a TDD style and Constrained Non-Determinism 86

1 [Fact] public void

2 ShouldBeFulfilledWhenEventOccursThreeTimes()

3 {

4 //GIVEN

5 var rule = new FullQueueRule();

6 rule.Queued();

7 rule.Queued();

8

9 //WHEN

10 rule.Queued();

11

12 //THEN

13 Assert.True(rule.IsFulfilled());

14 }

Count with me: howmany methods are called? Depending on how we count, it is two (Queued()
and IsFulfilled()) or four (Queued(), Queued(), Queued(), IsFulfilled()). In any case,
not one. So it is not method scope either.

It is the scope of class behavior!

The proper answer is: behavior! Each TDD Statement specifies a single behavior. I like howAmir
Kolsky and Scott Bain²¹ phrase it, by saying that each unit-level Statement should “introduce a
behavioral distinction not existing before”.

It may look that “behavior” scope is broader than method or class-level scope, since such
Statement can span multiple classes and multiple methods. This is only partially true. That is
because e.g. Statements with method scope can span multiple behaviors (which, by the way, is
a sign of poorly written Statement). Let’s take a look at an example:

1 [Fact] public void

2 ShouldReportItCanHandleStringWithLengthOf3ButNotOf4AndNotNullString()

3 {

4 //GIVEN

5 var bufferSizeRule = new BufferSizeRule();

6

7 //WHEN

8 var resultForLength3

9 = bufferSizeRule.CanHandle(Any.StringOfLength(3));

10 //THEN

11 Assert.True(resultForLength3);

12

13 //WHEN again?

14 var resultForLength4

²¹http://www.sustainabletdd.com/

http://www.sustainabletdd.com/
http://www.sustainabletdd.com/
http://www.sustainabletdd.com/

Developing a TDD style and Constrained Non-Determinism 87

15 = bufferSizeRule.CanHandle(Any.StringOfLength(4))

16 //THEN again?

17 Assert.False(resultForLength4);

18

19 //WHEN again??

20 var resultForNull = bufferSizeRule.CanHandle(null);

21 //THEN again??

22 Assert.False(resultForNull);

23 }

Note that it specifies three (or two – depending on how you count) behaviors: acceptance of
string of allowed size, refusal of handling string above the allowed size and a special case of null
string. As I said – this is an antipattern and is sometimes called a “check-it-all test”. The issue
with this kind of Statement is that it can be evaluated to false for at least two reasons – when the
allowed string size changes and when null handling is done in another way. Also, xUnit tools by
default stop execution on first error, so, assuming that the first assertion fails, we will not know
the outcome of the next assertion unless we fix the previous one (does that mean we have to use
a single Assert per Statement? We will take care of this question later. For now, let the answer
be: “not necessarily”).

On the other hand, Statements with behavior scope do not necessary have to be broader than
those with class scope. Let’s take the following example that proves it:

1 [Fact] public void

2 ShouldReportItIsStartedAndItDoesNotYetTransmitVoiceWhenItStarts()

3 {

4 //GIVEN

5 var call = new DigitalCall();

6 call.Start();

7

8 //WHEN

9 var callStarted = call.IsStarted;

10

11 //THEN

12 Assert.True(callStarted);

13

14 //WHEN-THEN

15 Assert.Throws<Exception>(

16 () => call.Transmit(Any.InstanceOf<Frame>())

17);

18 }

Again, there are two behaviors here: reporting the call status after start and not being able to
transmit frames after start. That is why this test should be split into two.

How to catch that you are writing a Statement about two or more behaviors rather than one?
First, take a look at the test name – if it looks strange and contains some “And” or “Or” words,

Developing a TDD style and Constrained Non-Determinism 88

it may (but does not have to) be about more than one behavior. Another way is to write the
description of a behavior in a Given-When-Then way. If you have more than one item in the
“When” section or the structure is not Given-When-Then, but rather a “Given-When-Then-
When-Then” – that is also a signal.

Specifying Boundaries and Conditions

A Disclaimer
Before I begin, I have to admit that this chapter is mostly based on the material from
a series of posts by Scot Bain and Amir Kolsky from the blog Sustainable Test-Driven
Development and their upcoming book by the same title. I like their idea of boundaries
so much that I just follow the guidelines they outlined. This chapter is going to be a
rephrase of these guidelines. I placed it here so that you have all the important topics
covered in one place, but I encourage you to read the original blog posts on this subject
on http://www.sustainabletdd.com/ (and the upcoming book).

Sometimes, anonymous value is not enough

When we specify a behavior, there are times when this behavior should be the same no matter
what arguments we pass to the constructor or invoked methods. An example would be an
addition of two numbers – whatever numbers we would supply, the answer would always be a
sum of those numbers:

1 [Fact] public void

2 ShouldCalculateTheSumOfTwoNumbers()

3 {

4 //GIVEN

5 var a = Any.Integer();

6 var b = Any.Integer();

7

8 //WHEN

9 var result = new Sum().Of(a, b);

10

11 //THEN

12 Assert.Equal(a + b, result);

13 }

In this case, the integer numbers can really be “any” – the described relationship between input
and output is independent of the actual values we use. As indicated in one of the previous
chapters, this is the canonical case where Constrained Non-Determinism applies.

Sometimes, however, objects exhibit different behaviors based on what is passed to their
constructor and to their methods (OK, we also have static methods and singletons. Longer

Developing a TDD style and Constrained Non-Determinism 89

discussion on those will be included in one of the next chapters – for now we can safely ignore
them). For example, in our application we may have a licensing policy where a feature is allowed
to use only if the license is valid, and denied after it has expired. Another example would be that
some shops are open from 10:00 to 18:00, so if we had a query in our application whether the
shop is currently open, we would expect it to be answered differently based on what the current
time is.

In such cases, Scott and Amir offer us other guidelines for choosing input values.

Exceptions to the rule

There are times, when a Statement is true for every value except one (ormore) explicitly specified.
For example, in Poland, high school students are graded for exams between “mediocre” and “very
good”. Every grade means the exam is passed except for “mediocre” grade which means the exam
is failed. If we imaginewe have to specify an object that decides whether the exam is passed based
on rating, we would have to write two Statements: one for the mediocre rating and other for all
the others.

Here is the Statement for mediocre grade (let’s imagine that all grades are members of an enum):

1 [Fact] public void

2 ShouldNotPassTheExamWhenGradeIsMediocre()

3 {

4 //GIVEN

5 var decision = new PassOrNotDecision();

6

7 //WHEN

8 var examPassed = decision.MakeBasedOn(Grades.Mediocre);

9

10 //THEN

11 Assert.False(examPassed);

12 }

Note that here, we used the literal value of Grades.Mediocre. This is because no other value
gives the same behavior as this one, so generating the value would not make any sense.

The second Statement is for all the other cases. Here, we are going to use another method of the
Any class for generating any enum member other than specified:

Developing a TDD style and Constrained Non-Determinism 90

1 [Fact] public void

2 ShouldPassTheExamWhenGradeIsOtherThanMediocre()

3 {

4 //GIVEN

5 var decision = new PassOrNotDecision();

6

7 //WHEN

8 var examPassed

9 = decision.MakeBasedOn(Any.Besides(Grades.Mediocre));

10

11 //THEN

12 Assert.True(examPassed);

13 }

Here, Any.Besides() takes care of the enum value generation, producing a nice, readable code
as a side effect.

The example shown above assumes there is only one exception to the rule (the mediocre grade).
However, this concept can be scaled up to more values, as long as it is a finished, discrete set.
If there are multiple exceptional values that produce the same behavior, a single Statement
is sufficient to cover them all (using Any class and making the following call for exception
Statement: Any.Of(value1, value2) and the following for the rest: Any.OtherThan(value1,
value2)). However, when there are multiple exceptions to the rule and each one triggers a
different behavior, each one deserves its own Statement.

Rules valid within boundaries

Sometimes, a behavior varies around a numerical boundary. The simplest example would be a
set of rules on how to calculate an absolute value of a number:

1. for any X less than 0, the result is -X (e.g. absolute value of -1.5 is 1.5)
2. for any X greater or equal to 0, the result is X (e.g. absolute value of 3 is 3).

As you can see, there is a boundary between the two behaviors and the right edge of the boundary
is 0. Why do I say “right edge”? That is because the boundary always has two edges and there’s a
length between them. If we assumewe are talking about thementioned absolute value calculation
and that our numerical domain is that of integer numbers, we can as well use -1 as edge value
and say that:

1. for any X less or equal to -1, the result is -X (e.g. absolute value of -1.5 is 1.5)
2. for any X greater than -1, the result is X (e.g. absolute value of 3 is 3).

So a boundary is not a single number – it always has a length – the length between last value of
the previous behavior and the first value of the next behavior. In case of our example, the length
between -1 (left edge – last negated number) and 0 (right edge – first non-negated) is 1.

Developing a TDD style and Constrained Non-Determinism 91

Now, imagine that we are not talking about integer values anymore, but about floating point
values. Then the right edge value would still be 0. But what about left edge? It would not be
possible for it to stay -1, because the rule applies to e.g. -0.9 as well. So what is the correct right
edge value and the correct length of the boundary? Would the length be 0.1? Or 0.001? Or maybe
0.00000001? This is harder to answer and depends heavily on the context, but it is something
that must be answered for each particular case – this way we know what kind of precision is
expected of us. In our Specification, we have to document the boundary length somehow.

So the next topic is: how to describe the boundary length with Statements? To illustrate this, I
want to show you two Statements assuming we’re implementing the mentioned absolute value
calculation for integers. The first Statement is for values smaller than 0 and we want to use the
left edge value here like this:

1 [Fact] public void

2 ShouldNegateTheNumberWhenItIsLessThan0()

3 {

4 //GIVEN

5 var function = new AbsoluteValueCalculation();

6 var lessThan0 = 0 - 1;

7

8 //WHEN

9 var result = function.PerformFor(lessThan0);

10

11 //THEN

12 Assert.Equal(-lessThan0, result);

13 }

And the next Statement for values at least 0 and we want to use the right edge value:

1 [Fact] public void

2 ShouldNotNegateTheNumberWhenItIsGreaterOrEqualTo0()

3 {

4 //GIVEN

5 var function = new AbsoluteValueCalculation();

6 var moreOrEqualTo0 = 0;

7

8 //WHEN

9 var result = function.PerformFor(moreOrEqualTo0);

10

11 //THEN

12 Assert.Equal(moreOrEqualTo0, result);

13 }

There are two things to note about these examples. The first one is that we don’t use any kind of
Anymethods. We explicitly take the edges, because they’re the numbers that most strictly define
the boundary. This way we document the boundary length.

Developing a TDD style and Constrained Non-Determinism 92

It is important to understandwhywe are not usingmethods like Any.IntegerGreaterOrEqualTo(0),
even though we do use Any in case when we have no boundary. This is because in the latter
case, no value is better than the other in any particular way. In case of boundaries, however,
the edge values are better in that they more strictly define the boundary and drive the right
implementation.

The second thing to note is the usage of literal constant 0 in the above example. In one of the
previous chapter, I showed you a technique called Constant Specification, where we write an
explicit Statement about the value of the named constant and use the named constant everywhere
else instead of its literal. So why did i not use this technique?

The only reason is that this might have looked a little bit silly with such extremely trivial example
as calculating absolute value. In reality, I should have used the named constant in both Statements
and it would show the boundary length even more clearly. Let’s perform this exercise now and
see what happens.

First, let’s document the named constant with the following Statement:

1 [Fact] public void

2 ShouldIncludeSmallestValueNotToNegateSetToZero()

3 {

4 Assert.Equal(0, Constants.SmallestValueNotToNegate);

5 }

Now we have got everything we need to rewrite the two Statements we wrote earlier. The first
would look like this:

1 [Fact] public void

2 ShouldNegateTheNumberWhenItIsLessThanSmallestValueNotToNegate()

3 {

4 //GIVEN

5 var function = new AbsoluteValueCalculation();

6 var lastNumberToNegate

7 = Constants.SmallestValueNotToNegate - 1;

8

9 //WHEN

10 var result = function.PerformFor(lastNumberToNegate);

11

12 //THEN

13 Assert.Equal(-lastNumberToNegate, result);

14 }

And the second Statement for values at least 0:

Developing a TDD style and Constrained Non-Determinism 93

1 [Fact] public void

2 ShouldNotNegateNumberWhenItIsGreaterOrEqualToSmallestValueNotToNegate()

3 {

4 //GIVEN

5 var function = new AbsoluteValueCalculation();

6

7 //WHEN

8 var result = function.PerformFor(

9 Constants.SmallestValueNotToNegate

10);

11

12 //THEN

13 Assert.Equal(

14 Constants.SmallestValueNotToNegate, result);

15 }

As you can see, the first Statement contains the following expression: Constants.SmallestValueNotToNegate
- 1, where 1 is the exact length of the boundary. Like I said, the situation is so trivial that it may
look silly and funny, however, in real life scenarios, this is a great technique to apply anytime,
anywhere.

Boundaries may look like they apply only to integer input, but they occur at many other places.
There are boundaries associated with date/time (e.g. an action is performed again when time
from last action is at least 30 seconds – the decision would need to be made whether we need
precision in seconds or maybe in ticks), to strings (e.g. validation of user name where it must be
at least 2 characters, or password that must contain at least 2 special characters) etc.

Combination of boundaries – ranges

So, what about a behavior that is valid in a range? Let’s assume that we live in a country where
a citizen can get a driving license only after their 17th birthday, but before 65th (the government
decided that people after 65 have worse sight and it’s safer not to give them new driving licenses).
Let’s also assume that we try to develop a class that answers the question whether we can apply
for driving license and the return values of this query are as follows:

1. Age < 17 – returns enum value QueryResults.TooYoung
2. 17 <= age >= 65 – returns enum value QueryResults.AllowedToApply
3. Age > 65 – returns enum value QueryResults.TooOld

Now, remember I told you that we specify the behaviors near boundaries? This, however, when
applied to the situation I just described, would give us the following Statements:

1. Age = 17, should yield result QueryResults.TooYoung
2. Age = 18, should yield result QueryResults.AllowedToApply
3. Age = 65, should yield result QueryResults.AllowedToApply

Developing a TDD style and Constrained Non-Determinism 94

4. Age = 66, should yield result QueryResults.TooOld

thus, we would describe the behavior where the query should return AllowedToApply value
twice, which effectively means that we would copy-paste the Statement and change just one
value. How do we deal with this? Thankfully, we have a solution available:

Most xUnit frameworks provide some kind of data-driven test functionality, which we can use
to write parameterized Statements. The functionality basically means that we can write the code
of the Statement once, but make the xUnit framework invoke it twice with different sets of input
values. Let’s see an example in XUnit.net:

1 [Theory]

2 [InlineData(17, QueryResults.TooYoung)]

3 [InlineData(18, QueryResults.AllowedToApply)]

4 [InlineData(65, QueryResults.AllowedToApply)]

5 [InlineData(66, QueryResults.TooOld)]

6 public void ShouldYieldResultForAge(int age, QueryResults expectedResult)

7 {

8 //GIVEN

9 var query = new DrivingLicenseQuery();

10

11 //WHEN

12 var result = query.ExecuteFor(age);

13

14 //THEN

15 Assert.Equal(expectedResult, result);

16 }

This way, there is only one Statement executed four times. The case of AllowedToApply is still
evaluated twice for both edge cases (so there is more time spent on executing it, which for small
cases is not an issue), but the code maintenance issue is gone – we don’t have to copy-paste the
code to specify both edges of the behavior.

Note that we’re quite lucky because the specified logic is strictly functional (i.e. returns different
results based on different inputs). Thanks to this, we could parameterize input values together
with expected results. This is not always the case. For example, let’s imagine that we have a
clock class where we can set alarm time. The class allows us to set hour between 0 and 24, but
otherwise throws an exception.

While some xUnit frameworks, like NUnit, allow us to handle both cases with one Statement by
writing something like this:

Developing a TDD style and Constrained Non-Determinism 95

1 //NOTE: this is an example in NUnit framework!

2 [TestCase(Hours.Min, Result=Hours.Min)]

3 [TestCase(Hours.Max, Result=Hours.Max)]

4 [TestCase(Hours.Min-1, ExpectedException = typeof(OutOfRangeException))]

5 [TestCase(Hours.Max+1, ExpectedException = typeof(OutOfRangeException))]

6 public int

7 ShouldBeAbleToSetHourBetweenMinAndMaxButNotOutsideThatRange(

8 int inputHour)

9 {

10 //GIVEN

11 var clock = new Clock();

12 clock.SetAlarmHour(inputHour);

13

14 //WHEN

15 var setHour = clock.GetAlarmHour();

16

17 //THEN

18 return setHour;

19 }

Others, like XUnit.NET, don’t (not that it’s a defect of the framework, it’s just that the philosophy
behind those two is a little bit different and that some features have hidden price attached to their
usage which some frameworks are willing to pay, while others aren’t). Thus, we have to solve it
by writing two parameterized Statements – one where a value is returned (for valid cases) and
one where exception is thrown (for invalid cases). The first would look like this:

1 [Theory]

2 [InlineData(Hours.Min)]

3 [InlineData(Hours.Max)]

4 public void

5 ShouldBeAbleToSetHourBetweenMinAndMax(int inputHour)

6 {

7 //GIVEN

8 var clock = new Clock();

9 clock.SetAlarmHour(inputHour);

10

11 //WHEN

12 var setHour = clock.GetAlarmHour();

13

14 //THEN

15 Assert.Equal(inputHour, setHour);

16 }

and the second:

Developing a TDD style and Constrained Non-Determinism 96

1 [Theory]

2 [InlineData(Hours.Min-1)]

3 [InlineData(Hours.Max+1)]

4 public void

5 ShouldThrowOutOfRangeExceptionWhenTryingToSetAlarmHourOutsideValidRange(

6 int inputHour)

7 {

8 //GIVEN

9 var clock = new Clock();

10

11 //WHEN - THEN

12 Assert.Throws<OutOfRangeException>(

13 ()=> clock.SetAlarmHour(inputHour)

14);

15 }

Summary

In this chapter, we covered specifying numerical boundaries with a minimal amount of code, so
that the Specification is more maintainable and runs fast. There is one more kind of situation left:
when we have compound conditions (e.g. a password must be at least 10 characters and contain
at least 2 special characters) – we’ll get back to those when we introduce mocks.

Triangulation

A disclaimer
The first occurrence of the term triangulation I know about is in Kent Beck’s book
Test-Driven Development: By Example²².

As one of the last topics of the core TDD techniques that do not require us to delve into the
object-oriented world, I’d like to show you triangulation.

Triangulation is often described as the most conservative of three approaches of test-driving
implementation. These approaches are:

1. Type the obvious implementation
2. Fake it (‘til you make it)
3. Triangulate

All of these techniques are simple (triangulation being a little more complex), so I’ll show you
all of them one by one, putting more emphasis on triangulation:

Type the obvious implementation

The first of the three techniques is just writing an obvious implementation in response to a
Statement. If the implementation is simple, this approach makes a lot of sense. Let’s take a trivial
example of adding two numbers:

1 [Fact] public void

2 ShouldAddTwoNumbersTogether()

3 {

4 //GIVEN

5 var sum = new Sum();

6

7 //WHEN

8 var result = sum.Of(3,5);

9

10 //THEN

11 Assert.Equal(8, result);

12 }

You may remember I told you that usually we write the simplest production code that would
make the Statement true. This rule would encourage us to just return 8 from the Of method,
because it would be sufficient to make the Statement true. Instead, we can decide that the logic
is so obvious, that we can just write it based on this one Statement:

²²http://www.pearsonhighered.com/educator/product/Test-Driven-Development-By-Example/9780321146533.page

97

http://www.pearsonhighered.com/educator/product/Test-Driven-Development-By-Example/9780321146533.page
http://www.pearsonhighered.com/educator/product/Test-Driven-Development-By-Example/9780321146533.page

Triangulation 98

1 public class Sum

2 {

3 public int Of(int a, int b)

4 {

5 return a+b;

6 }

7 }

and this is it.

Note that I didn’t use Constrained Non-Determinism here, because its use enforces using “Just
write obvious implementation” technique. In fact, most (if not all) Statements we wrote so far
in previous chapters, uses this approach because of this fact. Let’s take a look at how the above
Statement would look if we used Constrained Non-Determinism:

1 [Fact] public void

2 ShouldAddTwoNumbersTogether()

3 {

4 //GIVEN

5 var a = Any.Integer();

6 var b = Any.Integer();

7 var sum = new Sum();

8

9 //WHEN

10 var result = sum.Of(a,b);

11

12 //THEN

13 Assert.Equal(a + b, result);

14 }

Here, we don’t have any choice. The most obvious implementation that would make this
Statement true is the correct implementation. We are unable to return some constant value as
we previously could (but we did not), because we just don’t know what the expected result is
and it is strictly dependent on the input values which we don’t know as well.

Fake it (‘til you make it)

This technique is kind of funny. I do not recall myself ever using it, but it is so interesting I want
to show it to you anyway. It is so simple you will not regret these few minutes even if just for
broadening your horizons.

There are two core things that we need to pay attention when using these technique:

1. Start with the simplest implementation possible (i.e. fake it), which usually is returning a
literal constant. Then gradually transform the code of both Statement and implementation
using variables.

Triangulation 99

2. When doing it, rely on your sense of duplication between Statement and (fake) implemen-
tation.

Let’s apply Fake It to the same addition example as before (I promise, for triangulation, I will
give you better one). The Statement looks the same as before:

1 [Fact] public void

2 ShouldAddTwoNumbersTogether()

3 {

4 //GIVEN

5 var sum = new Sum();

6

7 //WHEN

8 var result = sum.Of(3,5);

9

10 //THEN

11 Assert.Equal(8, result);

12 }

Only this time, we are going to use the simplest implementation possible. As I wrote, this simplest
implementation is almost always to return a constant:

1 public class Sum

2 {

3 public int Of(int a, int b)

4 {

5 return 8;

6 }

7 }

The Statement evaluates to true (green) now, though the implementation is obviously wrong.
BUT, the TDD cycle is not over yet. Remember that as soon as the Statement is true, refactoring
phase kicks in. This is something we were ignoring silently for now (and here we will only
slightly lick it). We can use the refactoring phase to remove duplication between the Statement
and it’s implementing code.

First, let’s note that the number 8 is duplicated between Statement and implementation – the
implementation returns it and the Statement asserts on it. To reduce this duplication, let’s break
the 8 in the implementation into a sum:

Triangulation 100

1 public class Sum

2 {

3 public int Of(int a, int b)

4 {

5 return 3 + 5;

6 }

7 }

Note the smart trick I did. I changed duplication between implementation and expected result to
duplication between implementation and input values of the Statement. After all, 3 and 5 are the
exact values I used in the Statement, right? This kind of duplication is different in that it can be
removed using variables (this applies not only to input variables, but basically anything we have
access to prior to triggering specified behavior – constructor parameters, fields etc. in contrast to
result which we normally do not know until we invoke the behavior). The duplication of number
3 can be eliminated this way:

1 public class Sum

2 {

3 public int Of(int a, int b)

4 {

5 return a + 5;

6 }

7 }

and we have just the number 5 duplicated, because we used variable to transfer the value of 3
from Statement method to the Of implementation, so we have it in one place now. let’s do the
same with 5:

1 public class Sum

2 {

3 public int Of(int a, int b)

4 {

5 return a + b;

6 }

7 }

And that’s it. I used a trivial example, since I don’t want to spend too much time on this, but you
can find more advanced ones in Kent Beck’s book if you like.

Triangulate

As I wrote, triangulation is the most conservative technique, because following it involves
the tiniest possible steps to arrive at the right solution. The technique is called triangulation
by analogy to radar triangulation²³ where outputs from at least two radars must be used to

²³http://encyclopedia2.thefreedictionary.com/radar+triangulation

http://encyclopedia2.thefreedictionary.com/radar+triangulation
http://encyclopedia2.thefreedictionary.com/radar+triangulation

Triangulation 101

determine the position of a unit. Also, in radar triangulation, the position is measured indirectly,
by combining the following data: range (not position!) between two radars, measurement done by
each radar and the positions of the radars (which we know, because we are the ones who put the
radars there). From this data, we can derive a triangle, so we can use trigonometry to calculate
the position of the third point of the triangle, which is the desired position of the unit (two
remaining points are the positions of radars). Such measurement is indirect in nature, because
we do not measure the position directly, but calculate it from other helper measurements.

These two characteristics: indirect measurement and using at least two sources of information
are at the core of TDD triangulation. Basically, it says:

1. Indirect measurement: derive the design from few known examples of its desired external
behavior by looking at what varies in these examples and making this variability into
something more general

2. Using at least two sources of information: start with the simplest possible implementa-
tion and make it more general only when you have two or more different examples (i.e.
Statements that describe the desired functionality for specific inputs). Then new examples
can be added and generalization can be done again. This process is repeated until we reach
the desired implementation. Robert C. Martin developed a maxim on this, saying that “As
the tests get more specific, the code gets more generic.

Usually, when TDD is showcased on simple examples, triangulation is the primary technique
used, somany novices mistakenly believe TDD is all about triangulation. This isn’t true, although
triangulation is important.

Example

Suppose we want to write a logic that creates an aggregate sum of the list. Let’s assume that we
have no idea how to design the internals of our custom list class so that it fulfills its responsibility.
Thus, we start with the simplest example of calculating a sum of 0 elements:

1 [Fact] public void

2 ShouldReturn0AsASumOfNoElements()

3 {

4 //GIVEN

5 var listWithAggregateOperations

6 = new ListWithAggregateOperations();

7

8 //WHEN

9 var result = listWithAggregateOperations.SumOfElements();

10

11 //THEN

12 Assert.Equal(0, result);

13 }

Remember we want to write just enough code to make the Statement true. We can achieve it
with just returning 0 from the SumOfElements method:

Triangulation 102

1 public class ListWithAggregateOperations

2 {

3 public int SumOfElements()

4 {

5 return 0;

6 }

7 }

This is not yet the implementation we are happy with, which makes us add another Statement
– this time for a single element:

1 [Fact] public void

2 ShouldReturnTheSameElementAsASumOfSingleElement()

3 {

4 //GIVEN

5 var singleElement = Any.Integer();

6 var listWithAggregateOperations

7 = new ListWithAggregateOperations(singleElement);

8

9 //WHEN

10 var result = listWithAggregateOperations.SumOfElements();

11

12 //THEN

13 Assert.Equal(singleElement, result);

14 }

The naive implementation can be as follows:

1 public class ListWithAggregateOperations

2 {

3 int _element = 0;

4

5 public ListWithAggregateOperations()

6 {

7 }

8

9 public ListWithAggregateOperations(int element)

10 {

11 _element = element;

12 }

13

14 public int SumOfElements()

15 {

16 return _element;

17 }

18 }

Triangulation 103

We have two examples, so let’s check whether we can generalize now. We could try to get rid of
the two constructors now, but let’s wait just a little bit longer and see if this is the right path to
go (after all, I told you that we need at least two examples).

Let’s add third example then. What would be the next more complex one? Note that the choice
of next example is not random. Triangulation is about considering the axes of variability. If
you carefully read the last example, you probably noticed that we already skipped one axis of
variability – the value of the element. We used Any.Integer() where we could use a literal
value and add a second example with another value to make us turn it into variable. This time,
however, I decided to type the obvious implementation. The second axis of variability is the
number of elements. The third example will move us further along this axis – so it will use two
elements instead of one or zero. This is how it looks like:

1 [Fact] public void

2 ShouldReturnSumOfTwoElementsAsASumWhenTwoElementsAreSupplied()

3 {

4 //GIVEN

5 var firstElement = Any.Integer();

6 var secondElement = Any.Integer();

7 var listWithAggregateOperations

8 = new ListWithAggregateOperations(firstElement, secondElement);

9

10 //WHEN

11 var result = listWithAggregateOperations.SumOfElements();

12

13 //THEN

14 Assert.Equal(firstElement + secondElement, result);

15 }

And the naive implementation will look like this:

1 public class ListWithAggregateOperations

2 {

3 int _element1 = 0;

4 int _element2 = 0;

5

6 public ListWithAggregateOperations()

7 {

8 }

9

10 public ListWithAggregateOperations(int element)

11 {

12 _element1 = element;

13 }

14

15 //added

Triangulation 104

16 public ListWithAggregateOperations(int element1, int element2)

17 {

18 _element1 = element1;

19 _element2 = element2;

20 }

21

22 public int SumOfElements()

23 {

24 return _element1 + _element2; //changed

25 }

26 }

After adding and implementing the third example, the variability of elements count becomes
obvious. Now that we have three examples, we see even more clearly that we have redundant
constructors and redundant fields for each element in the list and if we added a fourth example
for three elements, we’d have to add another constructor, another field and another element of
the sum computation. Time to generalize!

How do we encapsulate the variability of the element count so that we can get rid of this
redundancy? A collection! How do we generalize the addition of multiple elements? A foreach
loop through the collection! Thankfully, C# supports params keyword, so let’s use it to remove
the redundant constructor like this:

1 public class ListWithAggregateOperations

2 {

3 int[] _elements;

4

5 public ListWithAggregateOperations(params int[] elements)

6 {

7 _elements = elements;

8 }

9

10 public int SumOfElements()

11 {

12 //changed

13 int sum = 0;

14 foreach(var element in _elements)

15 {

16 sum += element;

17 }

18 return sum;

19 }

20 }

While the first Statement (“no elements”) seems like a special case, the remaining two – for one
and two elements – seem to be just two variations of the same behavior (“some elements”). Thus,

Triangulation 105

it is a good idea to make a more general Statement that describes this logic to replace the two
examples. After all, we don’t want more than one failure for the same reason. So as the next step,
I will write a Statement to replace these examples (I leave them in though, until I get this one to
evaluate to true).

1 [Fact]

2 public void

3 ShouldReturnSumOfAllItsElementsWhenAskedForAggregateSum()

4 {

5 //GIVEN

6 var firstElement = Any.Integer();

7 var secondElement = Any.Integer();

8 var thirdElement = Any.Integer();

9 var listWithAggregateOperations

10 = new ListWithAggregateOperations(

11 firstElement,

12 secondElement,

13 thirdElement);

14

15 //WHEN

16 var result = listWithAggregateOperations.SumOfElements();

17

18 //THEN

19 Assert.Equal(

20 firstElement +

21 secondElement +

22 thirdElement, result);

23 }

This Statement uses three values rather than zero, one or two as in the examples we had. When
I need to use collections with deterministic size (and I do prefer to do it everywhere where using
collection with non-deterministic size would force me to use a for loop in my Statement), I
pick 3, which is the number I got from Mark Seemann and the rationale is that 3 is the smallest
number that has distinct head, tail and middle element. One or two elements seem like a special
case, while three sounds generic enough.

One more thing we can do is to ensure that we didn’t write a false positive, i.e. a Statement that
is always true due to being badly written. In other words, we need to ensure that the Statement
we just wrote will ever evaluate to false if the implementation is wrong. As we wrote it after the
implementation is in place, we do not have this certainty.

What we will do is to modify the implementation slightly to make it badly implemented and see
how our Statement will react (we expect it to evaluate to false):

Triangulation 106

1 public int SumOfElements()

2 {

3 //changed

4 int sum = 0;

5 foreach(var element in _elements)

6 {

7 sum += element;

8 }

9 return sum + 1; //modified with "+1"!

10 }

When we do this, we can see our last Statement evaluate to false with a message like “expected
21, got 22”. We can now undo this one little change and go back to correct implementation.

The examples (“zero elements”, “one element” and “two elements”) still evaluate to true, but it’s
now safe to remove the last two, leaving only the Statement about a behavior we expect when
we calculate sum of no elements and the Statement about N elements we just wrote.

And voilà! We have arrived at the final, generic solution. Note that the steps we took were
tiny – so you might get the impression that the effort was not worth it. Indeed, this example
was only to show the mechanics of triangulation – in real life, if we encountered such simple
situation we’d know straight away what the design would be and we’d start with the general
Statement straight away and just type in the obvious implementation. Triangulation shows its
power in more complex problems with multiple design axes and where taking tiny steps helps
avoid “analysis paralysis”.

Summary

As I stated before, triangulation is most useful when you have no idea how the internal design
of a piece of functionality will look like (e.g. even if there are work-flows, they cannot be easily
derived from your knowledge of the domain) and it’s not obvious along which axes your design
must provide generality, but you are able to give some examples of the observable behavior of
that functionality given certain inputs. These are usually situations where you need to slow down
and take tiny steps that slowly bring you closer to the right design and functionality – and that’s
what triangulation is for!

Part 2: Test-Driven Development in
Object-Oriented World

Most of the examples in the previous part were about a single object that did not have
dependencies on other objects (with an exception of some values – strings, integers, enums etc.).
This is not how a real OO systems are built. In this part, we are finally going to look at scenarios
where multiple objects work together as a system.

This brings about some issues that need to be discussed. One of them is the approach to object
oriented design and how it influences the tools we use to test-drive our code. You probably heard
something about a tool called mock objects (at least from one of the introductory chapters of this
book) or, in a broader sense, test doubles. If you open your web browser and type “mock objects
break encapsulation”, you will find a lot of different opinions – some saying that mocks are great,
others blaming them for everything bad in the world, and a lot of opinions in between those.
The discussions are still heated, even though mocks were introduced more than ten years ago.
My goal in this chapter is to outline the context and forces that lead to adoption of mocks and
how to use them for your benefit, not failure.

Steve Freeman, one of the godfathers of using mock objects with TDD, wrote²⁴: “mocks
arise naturally from doing responsibility-driven OO. All these mock/not-mock arguments are
completely missing the point. If you’re not writing that kind of code, people, please don’t give
me a hard time”. I am going to introduce mocks in a way that will not give Steve a hard time, I
hope.

To do this, I need to cover some topics of object-oriented design. That is why not all chapters
in this part are specifically about TDD, but some are about object oriented techniques, practices
and qualities you need to know to use TDD effectively in the object-oriented world. The key
quality that we will focus on is object composability.

²⁴https://groups.google.com/d/msg/growing-object-oriented-software/rwxCURI_3kM/2UcNAlF_Jh4J

107

https://groups.google.com/d/msg/growing-object-oriented-software/rwxCURI_3kM/2UcNAlF_Jh4J
https://groups.google.com/d/msg/growing-object-oriented-software/rwxCURI_3kM/2UcNAlF_Jh4J

108

Teaching one thing at a time
For several next chapters, you will see me do a lot of code and design examples without
writing any test. This maymake you wonder whether you are still reading a TDD book.

I want to make it very clear that by omitting tests in these chapters I am not advocating
writing code or refactoring without tests. The only reason I am doing this is that
teaching and learning several things at the same time makes everything harder, both
for the teacher and for the student. So, while explaining the necessary object oriented
design topics, I want you to focus only on them.

Don’t worry. After I’ve layed the groundwork for mock objects, I’ll re-introduce TDD
and write lots of tests. Please trust me and be patient.

After reading part 2, you will understand how mocks fit into test-driving object-oriented code,
how to make Statements using mocks maintainable and how some of the practices I introduced
in the chapters of part 1 apply to mocks. You will also be able to test-drive simple object-oriented
systems.

On Object Composability
In this chapter, I will try to outline briefly why object composability is a goal worth achieving
and how it can be achieved. I am going to start with an example of unmaintainable code and will
gradually fix its flaws in the next chapters. For now, we are going to fix just one of the flaws, so
the code we will end up will not be perfect by any means, still, it will be better by one quality.

In the coming chapters, we will learn more valuable lessons resulting from changing this little
piece of code.

Another task for Johnny and Benjamin

Remember Johnny and Benjamin? Looks like they managed their previous task and are up to
something else. Let’s listen to their conversation as they are working on another project…

Benjamin: So, what’s this assignment about?

Johnny: Actually, it’s nothing exciting – we’ll have to add two features to a legacy application
that’s not prepared for the changes.

Benjamin:What is the code for?

Johnny: It is a C# class that implements company policies. As the company has just started using
this automated system and it was started recently, there is only one policy implemented: yearly
incentive plan. Many corporations have what they call incentive plans. These plans are used to
promote good behaviors and exceeding expectations by employees of a company.

Benjamin: You mean, the project has just started and is already in a bad shape?

Johnny: Yep. The guys writing it wanted to “keep it simple”, whatever that means, and now it
looks pretty bad.

Benjamin: I see…

Johnny: By the way, do you like riddles?

Benjamin: Always!

Johnny: So here’s one: how do you call a development phase when you ensure high code quality?

Benjamin: … … No clue… So what is it called?

Johnny: It’s called “now”.

Benjamin: Oh!

Johnny: Getting back to the topic, here’s the company incentive plan.

Every employee has a pay grade. An employee can be promoted to a higher pay grade, but the
mechanics of how that works is something we will not need to deal with.

Normally, every year, everyone gets a raise by 10%. But to encourage behaviors that give an
employee a higher pay grade, such employee cannot get raises indefinitely on a given pay grade.

109

On Object Composability 110

Each grade has its associated maximum pay. If this amount of money is reached, an employee
does not get a raise anymore until they reach a higher pay grade.

Additionally, every employee on their 5th anniversary of working for the company, gets a special,
one-time bonus which is twice their current payment.

Benjamin: Looks like the source code repository just finished synchronizing. Let’s take a bite at
the code!

Johnny: Sure, here you go:

1 public class CompanyPolicies : IDisposable

2 {

3 readonly SqlRepository _repository

4 = new SqlRepository();

5

6 public void ApplyYearlyIncentivePlan()

7 {

8 var employees = _repository.CurrentEmployees();

9

10 foreach(var employee in employees)

11 {

12 var payGrade = employee.GetPayGrade();

13 //evaluate raise

14 if(employee.GetSalary() < payGrade.Maximum)

15 {

16 var newSalary

17 = employee.GetSalary()

18 + employee.GetSalary()

19 * 0.1;

20 employee.SetSalary(newSalary);

21 }

22

23 //evaluate one-time bonus

24 if(employee.GetYearsOfService() == 5)

25 {

26 var oneTimeBonus = employee.GetSalary() * 2;

27 employee.SetBonusForYear(2014, oneTimeBonus);

28 }

29

30 employee.Save();

31 }

32 }

33

34 public void Dispose()

35 {

36 _repository.Dispose();

On Object Composability 111

37 }

38 }

Benjamin: Wow, there is a lot of literal constants all around and functional decomposition is
barely done!

Johnny: Yeah. We won’t be fixing all of that today. Still, we will follow the boy scout rule and
“leave the campground cleaner than we found it”.

Benjamin:What’s our assignment?

Johnny: First of all, we need to provide our users a choice between an SQL database and a
NoSQL one. To achieve our goal, we need to be somehow able to make the CompanyPolicies

class database type-agnostic. For now, as you can see, the implementation is coupled to the
specific SqlRepository, because it creates a specific instance itself:

1 public class CompanyPolicies : IDisposable

2 {

3 readonly SqlRepository _repository

4 = new SqlRepository();

Now, we need to evaluate the options we have to pick the best one. What options do you see,
Benjamin?

Benjamin: Well, we could certainly extract an interface from SqlRepository and introduce an
if statement to the constructor like this:

1 public class CompanyPolicies : IDisposable

2 {

3 readonly Repository _repository;

4

5 public CompanyPolicies()

6 {

7 if(...)

8 {

9 _repository = new SqlRepository();

10 }

11 else

12 {

13 _repository = new NoSqlRepository();

14 }

15 }

Johnny: True, but this option has few deficiencies. First of all, remember we’re trying to follow
the boy scout rule and by using this option we introduce more complexity to the CommonPolicies
class. Also, let’s say tomorrow someone writes another class for, say, reporting and this class will
also need to access the repository – they will need to make the same decision on repositories in

On Object Composability 112

their code as we do in ours. This effectively means duplicating code. Thus, I’d rather evaluate
further options and check if we can come up with something better. What’s our next option?

Benjamin: Another option would be to change the SqlRepository itself to be just a wrapper
around the actual database access, like this:

1 public class SqlRepository : IDisposable

2 {

3 readonly Repository _repository;

4

5 public SqlRepository()

6 {

7 if(...)

8 {

9 _repository = new RealSqlRepository();

10 }

11 else

12 {

13 _repository = new RealNoSqlRepository();

14 }

15 }

16

17 IList<Employee> CurrentEmployees()

18 {

19 return _repository.CurrentEmployees();

20 }

Johnny: Sure, this is an approach that could work and would be worth considering for very
serious legacy code, as it does not force us to change the CompanyPolicies class at all. However,
there are some issues with it. First of all, the SqlRepository name would be misleading. Second,
look at the CurrentEmployees() method – all it does is delegating a call to the implementation
chosen in the constructor. With every new method required of the repository, we’ll need to add
new delegating methods. In reality, it isn’t such a big deal, but maybe we can do better than that?

Benjamin: Let me think, let me think… I evaluated the option where CompanyPolicies class
makes the choice between repositories. I also evaluated the option where we hack the SqlRepos-
itory to makes this choice. The last option I can think of is leaving this choice to another, “3rd
party” code, that would choose the repository to use and pass it to the CompanyPolicies via
constructor, like this:

On Object Composability 113

1 public class CompanyPolicies : IDisposable

2 {

3 private readonly Repository _repository;

4

5 public CompanyPolicies(Repository repository)

6 {

7 _repository = repository;

8 }

This way, the CompanyPolicies won’t know what exactly is passed to it via constructor and we
can pass whatever we like – either an SQL repository or a NoSQL one!

Johnny: Great! This is the option we’re looking for! For now, just believe me that this approach
will lead us to many good things – you’ll see why later.

Benjamin:OK, so let me just pull the SqlRepository instance outside the CompanyPolicies class
and make it an implementation of Repository interface, then create a constructor and pass the
real instance through it…

Johnny: Sure, I’ll go get some coffee.

… 10 minutes later

Benjamin: Ha ha! Look at this! I am SUPREME!

1 public class CompanyPolicies : IDisposable

2 {

3 //_repository is now an interface

4 readonly Repository _repository;

5

6 // repository is passed from outside.

7 // We don't know what exact implementation it is.

8 public CompanyPolicies(Repository repository)

9 {

10 _repository = repository;

11 }

12

13 public void ApplyYearlyIncentivePlan()

14 {

15 //... body of the method. Unchanged.

16 }

17

18 public void Dispose()

19 {

20 _repository.Dispose();

21 }

22 }

Johnny: Hey, hey, hold your horses! There is one thing wrong with this code.

On Object Composability 114

Benjamin: Huh? I thought this is what we were aiming at.

Johnny: Yes, with the exception of the Dispose()method. Look closely at the CompanyPolicies
class. it is changed so that it is not responsible for creating a repository for itself, but it still
disposes of it. This is could cause problems because CompanyPolicies instance does not have any
right to assume it is the only object that is using the repository. If so, then it cannot determine
the moment when the repository becomes unnecessary and can be safely disposed of.

Benjamin: Ok, I get the theory, but why is this bad in practice? Can you give me an example?

Johnny: Sure, let me sketch a quick example. As soon as you have two instances of Company-
Policies class, both sharing the same instance of Repository, you’re cooked. This is because
one instance of CompanyPolicies may dispose of the repository while the other one may still
want to use it.

Benjamin: So who is going to dispose of the repository?

Johnny: The same part of the code that creates it, for example the Main method. Let me show
you an example of how this may look like:

1 public static void Main(string[] args)

2 {

3 using(var repo = new SqlRepository())

4 {

5 var policies = new CompanyPolicies(repo);

6

7 //use above created policies

8 //for anything you like

9 }

10 }

This way the repository is created at the start of the program and disposed of at the end. Thanks
to this, the CompanyPolicies has no disposable fields and it itself does not have to be disposable
– we can just delete the Dispose() method:

1 //not implementing IDisposable anymore:

2 public class CompanyPolicies

3 {

4 //_repository is now an interface

5 readonly Repository _repository;

6

7 //New constructor

8 public CompanyPolicies(Repository repository)

9 {

10 _repository = repository;

11 }

12

13 public void ApplyYearlyIncentivePlan()

On Object Composability 115

14 {

15 //... body of the method. No changes

16 }

17

18 //no Dispose() method anymore

19 }

Benjamin: Cool. So, what now? Seems we have the CompanyPolicies class depending on
repository abstraction instead of an actual implementation, like SQL repository. My guess is
that we will be able to make another class implementing the interface for NoSQL data access
and just pass it through the constructor instead of the original one.

Johnny: Yes. For example, look at CompanyPolicies component. We can compose it with a
repository like this:

1 var policies

2 = new CompanyPolicies(new SqlRepository());

or like this:

1 var policies

2 = new CompanyPolicies(new NoSqlRepository());

without changing the code of CompanyPolicies. Thismeans that CompanyPolicies does not need
to know what Repository exactly it is composed with, as long as this Repository follows the
required interface and meets expectations of CompanyPolicies (e.g. does not throw exceptions
when it is not supposed to do so). An implementation of Repositorymay be itself a very complex
and composed of another set of classes, for example something like this:

1 new SqlRepository(

2 new ConnectionString("..."),

3 new AccessPrivileges(

4 new Role("Admin"),

5 new Role("Auditor")

6),

7 new InMemoryCache()

8);

but the CompanyPolicies neither knows or cares about this, as long as it can use our new
Repository implementation just like other repositories.

Benjamin: I see… So, getting back to our task, shall we proceed with making a NoSQL
implementation of the Repository interface?

Johnny: First, show me the interface that you extracted while I was looking for the coffee.

Benjamin: Here:

On Object Composability 116

1 public interface Repository

2 {

3 IList<Employee> CurrentEmployees();

4 }

Johnny: Ok, so what we need is to create just another implementation and pass it through the
constructor depending on what data source is chosen and we’re finished with this part of the
task.

Benjamin: You mean there’s more?

Johnny: Yeah, but that’s something for tomorrow. I’m exhausted today.

A Quick Retrospective

In this chapter, Benjamin learned to appreciate composability of an object, i.e. the ability to
replace its dependencies, providing different behaviors, without the need to change the code
of the object class itself. Thus, an object, given replaced dependencies, starts using the new
behaviors without noticing that any change occurred at all.

As I said, the code mentioned has some serious flaws. For now, Johnny and Benjamin did not
encounter a desperate need to address those flaws, but this is going to change in the next chapter.

Also, after we part again with Johnny and Benjamin, we are going to reiterate the ideas they
stumble upon in a more disciplined manner.

Telling, not asking
In this chapter, we’ll get back to Johnny and Benjamin as they introduce another change in the
code they are working on. In the process, they discover the impact that return values and getters
have on composability of objects.

Contractors

Johnny: G’morning. Ready for another task?

Benjamin: Of course! What’s next?

Johnny: Remember the code we worked on yesterday? It contains a policy for regular employees
of the company. But the company wants to start hiring contractors as well and needs to include
a policy for them in the application.

Benjamin: So this is what we will be doing today?

Johnny: That’s right. The policy is going to be different for contractors. While, just as regular
employees, they will be receiving raises and bonuses, the rules will be different. I made a small
table to allow comparing what we have for regular employees and what we want to add for
contractors:

Employee Type Raise Bonus

Regular Employee +10% of current salary if not
reached maximum on a
given pay grade

+200% of current salary one
time after five years

Contractor +5% of average salary
calculated for last 3 years of
service (or all previous years
of service if they have
worked for less than 3 years

+10% of current salary when
a contractor receives score
more than 100 for the
previous year

So while the workflow is going to be the same for both a regular employee and a contractor:

1. Load from repository
2. Evaluate raise
3. Evaluate bonus
4. Save

the implementation of some of the steps will be different for each type of employee.

Benjamin: Correct me if I am wrong, but these “load” and “save” steps do not look like they
belong with the remaining two – they describe something technical, while the other steps
describe something strictly related to how the company operates…

117

Telling, not asking 118

Johnny: Good catch, however, this is something we’ll deal with later. Remember the boy scout
rule – just don’t make it worse. Still, we’re going to fix some of the design flaws today.

Benjamin: Aww… I’d just fix all of it right away.

Johnny: Ha ha, patience, Luke. For now, let’s look at the code we have now before we plan
further steps.

Benjamin: Let me just open my IDE… OK, here it is:

1 public class CompanyPolicies

2 {

3 readonly Repository _repository;

4

5 public CompanyPolicies(Repository repository)

6 {

7 _repository = repository;

8 }

9

10 public void ApplyYearlyIncentivePlan()

11 {

12 var employees = _repository.CurrentEmployees();

13

14 foreach(var employee in employees)

15 {

16 var payGrade = employee.GetPayGrade();

17

18 //evaluate raise

19 if(employee.GetSalary() < payGrade.Maximum)

20 {

21 var newSalary

22 = employee.GetSalary()

23 + employee.GetSalary()

24 * 0.1;

25 employee.SetSalary(newSalary);

26 }

27

28 //evaluate one-time bonus

29 if(employee.GetYearsOfService() == 5)

30 {

31 var oneTimeBonus = employee.GetSalary() * 2;

32 employee.SetBonusForYear(2014, oneTimeBonus);

33 }

34

35 employee.Save();

36 }

37 }

38 }

Telling, not asking 119

Benjamin: Look, Johnny, the class in fact contains all the four steps you mentioned, but they
are not named explicitly – instead, their internal implementation for regular employees is just
inserted in here. How are we supposed to add the variation of the employee type?

Johnny: Time to consider our options. We have few of them. Well?

Benjamin: For now, I can see two. The first one would be to create another class similar to
CompanyPolicies, called something like CompanyPoliciesForContractors and implement the
new logic there. This would let us leave the original class as is, but we would have to change
the places that use CompanyPolicies to use both classes and choose which one to use somehow.
Also, we would have to add a separate method to repository for retrieving the contractors.

Johnny: In addition, we would miss our chance to communicate through the code that the
sequence of steps is intentionally similar in both cases. Others who read this code in the future
will see that the implementation for regular employees follows the steps: load, evaluate raise,
evaluate bonus, save. When they look at the implementation for contractors, they will see the
same order of steps, but they will be unable to tell whether the similarity is intentional, or is it
there by pure accident.

Benjamin: So our second option is to put an if statement into the differing steps inside the
CompanyPolicies class, to distinguish between regular employees and contractors. The Employee
class would have an isContractor()method and depending on what it would return, we would
either execute the logic for regular employees or for contractors. Assuming that the current
structure of the code looks like this:

1 foreach(var employee in employees)

2 {

3 //evaluate raise

4 ...

5

6 //evaluate one-time bonus

7 ...

8

9 //save employee

10 }

the new structure would look like this:

1 foreach(var employee in employees)

2 {

3 if(employee.IsContractor())

4 {

5 //evaluate raise for contractor

6 ...

7 }

8 else

9 {

10 //evaluate raise for regular

Telling, not asking 120

11 ...

12 }

13

14 if(employee.IsContractor())

15 {

16 //evaluate one-time bonus for contractor

17 ...

18 }

19 else

20 {

21 //evaluate one-time bonus for regular

22 ...

23 }

24

25 //save employee

26 ...

27 }

this way we would show that the steps are the same, but the implementation is different. Also,
this would mostly require us to add code and not move the existing code around.

Johnny: The downside is that we would make the class even uglier than it was when we started.
So despite initial easiness, we’ll be doing a huge disservice to future maintainers. We have at
least one another option. What would that be?

Benjamin: Let’s see… we could move all the details concerning the implementation of the steps
from CompanyPolicies class into the Employee class itself, leaving only the names and the order
of steps in CompanyPolicies:

1 foreach(var employee in employees)

2 {

3 employee.EvaluateRaise();

4 employee.EvaluateOneTimeBonus();

5 employee.Save();

6 }

Then, we could change the Employee into an interface, so that it could be either a RegularEm-

ployee or ContractorEmployee – both classes would have different implementations of the steps,
but the CompanyPolicies would not notice, since it would not be coupled to the implementation
of the steps anymore – just the names and the order.

Johnny: This solution would have one downside – we would need to significantly change the
current code, but you know what? I’m willing to do it, especially that I was told today that the
logic is covered by some tests which we can run to see if a regression was introduced.

Benjamin: Cool, what do we start with?

Johnny: The first thing that is between us and our goal are these getters on the Employee class:

Telling, not asking 121

1 GetSalary();

2 GetGrade();

3 GetYearsOfService();

They just expose too much information specific to the regular employees. It would be impossible
to use different implementations when these are around. These setters don’t help much:

1 SetSalary(newSalary);

2 SetBonusForYear(year, amount);

While these are not as bad, we’d better give ourselves more flexibility. Thus, let’s hide all of this
behind more abstract methods that hide what actually happens, but reveal our intention.

First, take a look at this code:

1 //evaluate raise

2 if(employee.GetSalary() < payGrade.Maximum)

3 {

4 var newSalary

5 = employee.GetSalary()

6 + employee.GetSalary()

7 * 0.1;

8 employee.SetSalary(newSalary);

9 }

Each time you see a block of code separated from the rest with blank lines and starting with a
comment, you see something screaming “I want to be a separate method that contains this code
and has a name after the comment!”. Let’s grant this wish and make it a separate method on the
Employee class.

Benjamin: Ok, wait a minute… here:

1 employee.EvaluateRaise();

Johnny: Great! Now, we’ve got another example of this species here:

1 //evaluate one-time bonus

2 if(employee.GetYearsOfService() == 5)

3 {

4 var oneTimeBonus = employee.GetSalary() * 2;

5 employee.SetBonusForYear(2014, oneTimeBonus);

6 }

Benjamin: This one should be even easier… Ok, take a look:

Telling, not asking 122

1 employee.EvaluateOneTimeBonus();

Johnny: Almost good. I’d only leave out the information that the bonus is one-time from the
name.

Benjamin:Why? Don’t we want to include what happens in the method name?

Johnny: Actually, no. What we want to include is our intention. The bonus being one-time is
something specific to the regular employees and we want to abstract away the details about this
or that kind of employee, so that we can plug in different implementations without making the
method name lie. The names should reflect that we want to evaluate a bonus, whatever that
means for a particular type of employee. Thus, let’s make it:

1 employee.EvaluateBonus();

Benjamin: Ok, I get it. No problem.

Johnny: Now let’s take a look at the full code of the EvaluateIncentivePlan method to see
whether it is still coupled to details specific to regular employees. Here’s the code:

1 public void ApplyYearlyIncentivePlan()

2 {

3 var employees = _repository.CurrentEmployees();

4

5 foreach(var employee in employees)

6 {

7 employee.EvaluateRaise();

8 employee.EvaluateBonus();

9 employee.Save();

10 }

11 }

Benjamin: It seems that there is no coupling to the details about regular employees anymore.
Thus, we can safelymake the repository return a combination of regulars and contractors without
this code noticing anything. Now I think I understand what you were trying to achieve. If we
make interactions between objects happen on a more abstract level, then we can put in different
implementations with less effort.

Johnny: True. Can you see another thing related to the lack of return values on all of employee’s
methods in the current implementation?

Benjamin: Actually, no. Does it matter?

Johnny: Well, if Employee methods had return values and this code depended on them, all
subclasses of Employee would be forced to supply return values as well and these return values
would need to match the expectations of the code that calls these methods, whatever these
expectations were. This would make introducing other kinds of employees harder. But now that
there are no return values, we can, for example:

Telling, not asking 123

• introduce a TemporaryEmployee that has no raises, by leaving its EvaluateRaise()method
empty, and the code that uses employees will not notice.

• introduce a ProbationEmployee that has no bonus policy, by leaving its EvaluateBonus()
method empty, and the code that uses employees will not notice.

• introduce an InMemoryEmployee that has empty Save() method, and the code that uses
employees will not notice.

As you see, by asking the objects less, and telling it more, we get greater flexibility to create
alternative implementations and the composability, which we talked about yesterday, increases!

Benjamin: I see… So telling objects what to do instead of asking them for their data makes
the interactions between objects more abstract, and so, more stable, increasing composability of
interacting objects. This is a valuable lesson – it is the first time I hear this and it seems a pretty
powerful concept.

A Quick Retrospective

In this chapter, Benjamin learned that the composability of an object (not to mention clarity) is
reinforced when interactions between it and its peers are: abstract, logical and stable. Also, he
discovered, with Johnny’s help, that it is further strengthened by following a design style where
objects are told what to do instead of asked to give away information to somebody who then
makes the decision on their behalf. This is because if an API of an abstraction is built around
answering to specific questions, the clients of the abstraction tend to ask it a lot of questions and
are coupled to both those questions and some aspects of the answers (i.e. what is in the return
values). This makes creating another implementation of abstraction harder, because each new
implementation of the abstraction needs to not only provide answers to all those questions, but
the answers are constrained to what the client expects. When abstraction is merely told what its
client wants it to achieve, the clients are decoupled from most of the details of how this happens.
This makes introducing new implementations of abstraction easier – it often even lets us define
implementations with all methods empty without the client noticing at all.

These are all important conclusions that will lead us towards TDD with mock objects.

Time to leave Johnny and Benjamin for now. In the next chapter, I’m going to reiterate on their
discoveries and put them in a broader context.

The need for mock objects
We already experienced mock objects in the chapter about tools, although at that point, I gave
you an oversimplified and deceiving explanation of what a mock object is, promising that I will
make up for it later. Now is the time.

Mock objects were made with specific goal in mind. My hope is that when you understand the
real goal, you will probably understand the means to the goal far better.

In this chapter, we will explore the qualities of object-oriented design which make mock objects
a viable tool.

Composability… again!

In the two previous chapters, we followed Johnny and Benjamin in discovering the benefits of
and prerequisites for composability of objects. Composability is the number one quality of the
design we’re after. After reading Johhny and Benjamin’s story, you might have some questions
regarding composability. Hopefully, they are among the ones answered in the next few chapters.
Ready?

124

Why do we need composability?
It might seem stupid to ask this question here – if you have managed to stay with me this long,
then you’re probably motivated enough not to need a justification? Well, anyway, it’s still worth
discussing it a little. Hopefully, you’ll learn as much reading this back-to-basics chapter as I did
writing it.

Pre-object-oriented approaches

Back in the days of procedural programming²⁵, whenwewanted to execute a different code based
on some factor, it was usually achieved using an ‘if’ statement. For example, if our application
was in need to be able to use different kinds of alarms, like a loud alarm (that plays a loud
sound) and a silent alarm (that does not play any sound, but instead silently contacts the police)
interchangeably, then usually, we could achieve this using a conditional like in the following
function:

1 void triggerAlarm(Alarm* alarm)

2 {

3 if(alarm->kind == LOUD_ALARM)

4 {

5 playLoudSound(alarm);

6 }

7 else if(alarm->kind == SILENT_ALARM)

8 {

9 notifyPolice(alarm);

10 }

11 }

The code above makes decision based on the alarm kind which is embedded in the alarm
structure:

1 struct Alarm

2 {

3 int kind;

4 //other data

5 };

²⁵I am simplifying the discussion on purpose, leaving out e.g. functional languages and assuming that “pre-object-oriented” means procedural
or structural. While this is not true in general, this is how the reality looked like for many of us. If you are good at functional programming, you
already understand the benefits of composability.

125

Why do we need composability? 126

If the alarm kind is the loud one, it executes behavior associated with loud alarm. If this is a
silent alarm, the behavior for silent alarms is executed. This seems to work. Unfortunately, if we
wanted to make a second decision based on the alarm kind (e.g. we needed to disable the alarm),
we would need to query the alarm kind again. This would mean duplicating the conditional
code, just with a different set of actions to perform, depending on what kind of alarm we were
dealing with:

1 void disableAlarm(Alarm* alarm)

2 {

3 if(alarm->kind == LOUD_ALARM)

4 {

5 stopLoudSound(alarm);

6 }

7 else if(alarm->kind == SILENT_ALARM)

8 {

9 stopNotifyingPolice(alarm);

10 }

11 }

Do I have to say why this duplication is bad? Do I hear a “no”? My apologies then, but I’ll tell you
anyway. The duplication means that every time a new kind of alarm is introduced, a developer
has to remember to update both places that contain ‘if-else’ – the compiler will not force this.
As you are probably aware, in the context of teams, where one developer picks up work that
another left and where, from time to time, people leave to find another job, expecting someone
to “remember” to update all the places where the logic is duplicated is asking for trouble.

So, we see that the duplication is bad, but can we do something about it? To answer this question,
let’s take a look at the reason the duplication was introduced. And the reason is: We have two
things we want to be able to do with our alarms: triggering and disabling. In other words, we
have a set of questions we want to be able to ask an alarm. Each kind of alarm has a different
way of answering these questions – resulting in having a set of “answers” specific to each alarm
kind:

Alarm Kind Triggering Disabling

Loud Alarm playLoudSound() stopLoudSound()

Silent Alarm notifyPolice() stopNotifyingPolice()

So, at least conceptually, as soon as we know the alarm kind, we already know which set of
behaviors (represented as a row in the above table) it needs. We could just decide the alarm kind
once and associate the right set of behaviors with the data structure. Then, we would not have
to query the alarm kind in few places as we did, but instead, we could say: “execute triggering
behavior from the set of behaviors associated with this alarm, whatever it is”.

Unfortunately, procedural programming does not let’s bind behaviors with data. As a matter
of fact, the whole paradigm of procedural programming is about separating behaviors and
data! Well, honestly, they had some answers to those concerns, but these answers were mostly
awkward (for those of you that still remember C language: I’m talking about macros and function

Why do we need composability? 127

pointers). So, as data and behaviors are separated, we need to query the data each time we want
to pick a behavior based on it. That’s why we have the duplication.

Object-oriented programming to the rescue!

On the other hand, object-oriented programming has for a long time made available two
mechanisms that enable what we didn’t have in procedural languages:

1. Classes – that allow binding behavior together with data.
2. Polymorphism – allows executing behavior without knowing the exact class that holds

them, but knowing only a set of behaviors that it supports. This knowledge is obtained
by having an abstract type (interface or an abstract class) define this set of behaviors,
with no real implementation. Then we can make other classes that provide their own
implementation of the behaviors that are declared to be supported by the abstract type.
Finally, we can use the instances of those classes where an instance of the abstract type is
expected. In case of statically-typed languages, this requires implementing an interface or
inheriting from an abstract class.

So, in case of our alarms, we could make an interface with the following signature:

1 public interface Alarm

2 {

3 void Trigger();

4 void Disable();

5 }

and then make two classes: LoudAlarm and SilentAlarm, both implementing the Alarm interface.
Example for LoudAlarm:

1 public class LoudAlarm : Alarm

2 {

3 public void Trigger()

4 {

5 //play very loud sound

6 }

7

8 public void Disable()

9 {

10 //stop playing the sound

11 }

12 }

Now, we can make parts of code use the alarm, but by knowing the interface only instead of the
concrete classes. This makes the parts of the code that use alarm this way not having to check
which alarm they are dealing with. Thus, what previously looked like this:

Why do we need composability? 128

1 if(alarm->kind == LOUD_ALARM)

2 {

3 playLoudSound(alarm);

4 }

5 else if(alarm->kind == SILENT_ALARM)

6 {

7 notifyPolice(alarm);

8 }

becomes just:

1 alarm.Trigger();

where alarm is either LoudAlarm or SilentAlarm, but seen polymorphically as Alarm, so there’s
no need for ‘if-else’ anymore.

But hey, isn’t this cheating? Even provided I can execute the trigger behavior on an alarmwithout
knowing the actual class of the alarm, I still have to decide which class it is in the place where I
create the actual instance:

1 // we must know the exact type here:

2 alarm = new LoudAlarm();

so it looks like I am not eliminating the ‘else-if’ after all, just moving it somewhere else! This
may be true (we will talk more about it in future chapters), but the good news is that I eliminated
at least the duplication by making our dream of “picking the right set of behaviors to use with
certain data once” come true.

Thanks to this, I create the alarm once, and then I can take it and pass it to ten, a hundred or a
thousand different places where I will not have to determine the alarm kind anymore to use it
correctly.

This allows writing a lot of classes that have no knowledge whatsoever about the real class of the
alarm they are dealing with, yet are able to use the alarm just fine only by knowing a common
abstract type – Alarm. If we are able to do that, we arrive at a situation where we can add more
alarms implementing Alarm and watch existing objects that are already using Alarm work with
these new alarms without any change in their source code! There is one condition, however –
the creation of the alarm instances must be moved out of the classes that use them. That’s
because, as we already observed, to create an alarm using a new operator, we have to know
the exact type of the alarm we are creating. So whoever creates an instance of LoudAlarm or
SilentAlarm, loses its uniformity, since it is not able to depend solely on the Alarm interface.

The power of composition

Moving creation of alarm instances away from the classes that use those alarms brings up an
interesting problem – if an object does not create the objects it uses, then who does it? A solution

Why do we need composability? 129

is to make some special places in the code that are only responsible for composing a system from
context-independent objects²⁶. We saw this already as Johnny was explaining composability to
Benjamin. He used the following example:

1 new SqlRepository(

2 new ConnectionString("..."),

3 new AccessPrivileges(

4 new Role("Admin"),

5 new Role("Auditor")

6),

7 new InMemoryCache()

8);

We can do the same with our alarms. Let’s say that we have a secure area that has three buildings
with different alarm policies:

• Office building – the alarm should silently notify guards during the day (to keep office
staff from panicking) and loud during the night, when guards are on patrol.

• Storage building – as it is quite far and the workers are few, we want to trigger loud and
silent alarms at the same time.

• Guards building – as the guards are there, no need to notify them. However, a silent alarm
should call police for help instead, and a loud alarm is desired as well.

Note that besides just triggering loud or silent alarm, we have a requirement for a combination
(“loud and silent alarms at the same time”) and a conditional (“silent during the day and loud
during the night”). we could just hardcode some fors and if-elses in our code, but instead, let’s
factor out these two operations (combination and choice) into separate classes implementing the
alarm interface.

Let’s call the class implementing the choice between two alarms DayNightSwitchedAlarm. Here
is the source code:

1 public class DayNightSwitchedAlarm : Alarm

2 {

3 private readonly Alarm _dayAlarm;

4 private readonly Alarm _nightAlarm;

5

6 public DayNightSwitchedAlarm(

7 Alarm dayAlarm,

8 Alarm nightAlarm)

9 {

10 _dayAlarm = dayAlarm;

11 _nightAlarm = nightAlarm;

12 }

²⁶More on context-independence and what these “special places” are, in the next chapters.

Why do we need composability? 130

13

14 public void Trigger()

15 {

16 if(/* is day */)

17 {

18 _dayAlarm.Trigger();

19 }

20 else

21 {

22 _nightAlarm.Trigger();

23 }

24 }

25

26 public void Disable()

27 {

28 _dayAlarm.Disable();

29 _nightAlarm.Disable();

30 }

31 }

Studying the above code, it is apparent that this is not an alarm per se, e.g. it does not raise any
sound or notification, but rather, it contains some rules on how to use other alarms. This is the
same concept as power splitters in real life, which act as electric devices but do not do anything
other than redirecting the electricity to other devices.

Next, let’s use the same approach and model the combination of two alarms as a class called
HybridAlarm. Here is the source code:

1 public class HybridAlarm : Alarm

2 {

3 private readonly Alarm _alarm1;

4 private readonly Alarm _alarm2;

5

6 public HybridAlarm(

7 Alarm alarm1,

8 Alarm alarm2)

9 {

10 _alarm1 = alarm1;

11 _alarm2 = alarm2;

12 }

13

14 public void Trigger()

15 {

16 _alarm1.Trigger();

17 _alarm2.Trigger();

18 }

Why do we need composability? 131

19

20 public void Disable()

21 {

22 _alarm1.Disable();

23 _alarm2.Disable();

24 }

25 }

Using these two classes along with already existing alarms, we can implement the requirements
by composing instances of those classes like this:

1 new SecureArea(

2 new OfficeBuilding(

3 new DayNightSwitchedAlarm(

4 new SilentAlarm("222-333-444"),

5 new LoudAlarm()

6)

7),

8 new StorageBuilding(

9 new HybridAlarm(

10 new SilentAlarm("222-333-444"),

11 new LoudAlarm()

12)

13),

14 new GuardsBuilding(

15 new HybridAlarm(

16 new SilentAlarm("919"), //call police

17 new LoudAlarm()

18)

19)

20);

Note that the fact that we implemented combination and choice of alarms as separate objects
implementing the Alarm interface allows us to define new, interesting alarm behaviors using the
parts we already have, but composing them together differently. For example, we might have, as
in the above example:

1 new DayNightSwitchAlarm(

2 new SilentAlarm("222-333-444"),

3 new LoudAlarm());

which would mean triggering silent alarm during a day and loud one during night. However,
instead of this combination, we might use:

Why do we need composability? 132

1 new DayNightSwitchAlarm(

2 new SilentAlarm("222-333-444"),

3 new HybridAlarm(

4 new SilentAlarm("919"),

5 new LoudAlarm()

6)

7)

Which would mean that we use silent alarm to notify the guards during the day, but a
combination of silent (notifying police) and loud during the night. Of course, we are not limited
to combining a silent alarm with a loud one only. We can as well combine two silent ones:

1 new HybridAlarm(

2 new SilentAlarm("919"),

3 new SilentAlarm("222-333-444")

4)

Additionally, if we suddenly decided that we do not want alarm at all during the day, we could
use a special class called NoAlarm that would implement Alarm interface, but have both Trigger

and Disable methods do nothing. The composition code would look like this:

1 new DayNightSwitchAlarm(

2 new NoAlarm(), // no alarm during the day

3 new HybridAlarm(

4 new SilentAlarm("919"),

5 new LoudAlarm()

6)

7)

And, last but not least, we could completely remove all alarms from the guards building using
the following NoAlarm class (which is also an Alarm):

1 public class NoAlarm : Alarm

2 {

3 public void Trigger()

4 {

5 }

6

7 public void Disable()

8 {

9 }

10 }

and passing it as the alarm to guards building:

Why do we need composability? 133

1 new GuardsBuilding(

2 new NoAlarm()

3)

Noticed something funny about the last few examples? If not, here goes an explanation: in the
last few examples, we have twisted the behaviors of our application in wacky ways, but all of
this took place in the composition code! We did not have to modify any other existing classes!
True, we had to write a new class called NoAlarm, but did not need to modify any other code than
the composition code to make objects of this new class work with objects of existing classes!

This ability to change the behavior of our application just by changing the way objects are
composed together is extremely powerful (although you will always be able to achieve it only
to certain extent), especially in evolutionary, incremental design, where we want to evolve some
pieces of code with as little as possible other pieces of code having to realize that the evolution
takes place. This ability can be achieved only if our system consists of composable objects, thus
the need for composability – an answer to a question raised at the beginning of this chapter.

Summary – are you still with me?

We started with what seemed to be a repetition from basic object-oriented programming course,
using a basic example. It was necessary though to make a fluent transition to the benefits of
composability we eventually introduced at the end. I hope you did not get overwhelmed and can
understand now why I am putting so much stress on composability.

In the next chapter, we will take a closer look at composing objects itself.

Web, messages and protocols
In the previous chapter, we talked a little bit about why composability is valuable, now let’s flesh
a little bit of terminology to get more precise understanding.

So, again, what does it mean to compose objects?

Basically it means that an object has obtained a reference to another object and is able to invoke
methods on it. By being composed together, two objects form a small system that can be expanded
with more objects as needed. Thus, a bigger object-oriented system forms something similar to
a web:

134

Web, messages and protocols 135

Web of objects – the circles are the objects and the arrows are methods invocations from one object on
another

If we take the web metaphor a little bit further, we can note some similarities to e.g. a TCP/IP
network:

1. An object can send messages to other objects (i.e. call methods on them – arrows on the
above diagram) via interfaces. Each message has a sender and at least one recipient.

2. To send amessage to a recipient, a sender has to acquire an address of the recipient, which,
in object-oriented world, we call a reference (and in languages such as C++, references are
just that – addresses in memory).

3. A communication between sender and recipients has to obey certain protocol. For
example, a sender usually cannot invoke amethod passing nulls as all arguments, or should
expect an exception if it does so. Don’t worry if you do not see the analogy now – I’ll follow
up with more explanation of this topic later).

Web, messages and protocols 136

Alarms, again!

Let’s try to apply this terminology to an example. Imagine that we have an anti-fire alarm system
in an office that, when triggered, makes all lifts go to bottom floor, opens them and then disables
them. Among others, the office contains automatic lifts, that contain their own remote control
systems and mechanical lifts, that are controlled from the outside by a special custom-made
mechanism.

Let’s try to model this behavior in code. As you might have guessed, we will have some objects
like alarm, automatic lift and mechanical lift. The alarm will control the lifts when triggered.

First, we do not want the alarm to have to distinguish between an automatic and amechanical lift
– this would only add complexity to alarm system, especially that there are plans to add a third
kind of lift – a more modern one, so if we made the alarm aware of the different kinds, we would
have to modify it each time a new kind of lift is introduced. Thus, we need a special interface
(let’s call it Lift) to communicate with both AutoLift and MechanicalLift (and ModernLift in
the future). Through this interface, an alarm will be able to send messages to both types of lifts
without having to know the difference between them.

1 public interface Lift

2 {

3 ...

4 }

5

6 public class AutoLift : Lift

7 {

8 ...

9 }

10

11 public class MechanicalLift : Lift

12 {

13 ...

14 }

Next, to be able to communicate with specific lifts through the Lift interface, an alarm object
has to acquire “addresses” of the lift objects (i.e. references to them). We can pass them e.g.
through a constructor:

Web, messages and protocols 137

1 public class Alarm

2 {

3 private readonly IEnumerable<Lift> _lifts;

4

5 //obtain "addresses" through here

6 public Alarm(IEnumerable<Lift> lifts)

7 {

8 //store the "addresses" for later use

9 _lifts = lifts;

10 }

11 }

Then, the alarm can send three kinds of messages: GoToBottomFloor(), OpenDoor(), and
DisablePower() to any of the lifts through the Lift interface:

1 public interface Lift

2 {

3 void GoToBottomFloor();

4 void OpenDoor();

5 void DisablePower();

6 }

and, as a matter of fact, it sends all these messages when triggered. The Trigger() method on
the alarm looks like this:

1 public void Trigger()

2 {

3 foreach(var lift in _lifts)

4 {

5 lift.GoToBottomFloor();

6 lift.OpenDoor();

7 lift.DisablePower();

8 }

9 }

By the way, note that the order in which the messages are sent does matter. For example, if we
disabled the power first, asking the powerless lift to go anywhere would be impossible. This is a
first sign of a protocol existing between the Alarm and a Lift.

In this communication, Alarm is a sender – it knows what it is sending (controlling lifts), it
knows why (because the alarm is triggered), but does not know what exactly are the recipients
going to do when they receive the message – it only knows what it wants them to do, but
does not know how they are going to achieve it. The rest is left to objects that implement Lift
(namely, AutoLift and MechanicalLift). They are recipients – they do not know who they got
the message from (unless they are told in the content of the message somehow – but even then

Web, messages and protocols 138

they can be cheated), but they know how to react, based on who they are (AutoLift has its own
way of reacting and MechanicalLift has its own), what kind of the message they received (a lift
does a different thing when asked to go to bottom floor than when it is asked to open its door)
and what’s the message content (i.e. method arguments – in this simplistic example there are
none).

To illustrate that this separation between a sender and a recipient does, in fact, exist, it is sufficient
to say that we could even write an implementation of Lift interface that would just ignore the
messages it got from the Alarm (or fake that it did what it was asked for) and the Alarm will not
even notice. We sometimes say that this is not the Alarm’s responsibility.

Sender, interface, and recipient

Ok, I hope we got that part straight. Time for some new requirements. It has been decided
that whenever any malfunction happens in the lift when it is executing the alarm emergency
procedure, the lift object should report this by throwing an exception called LiftUnopera-

tionalException. This affects both Alarm and implementations of Lift:

1. The Lift implementations need to know that when a malfunction happens, they should
report it by throwing the exception.

2. The Alarm must be ready to handle the exception thrown from lifts and act accordingly
(e.g. still try to secure other lifts).

Here is an exemplary code of Alarm handling the malfunction reports in its Trigger() method:

1 public void Trigger()

2 {

3 foreach(var lift in _lifts)

4 {

5 try

6 {

7 lift.GoToBottomFloor();

8 lift.OpenDoor();

9 lift.DisablePower();

10 }

11 catch(LiftUnoperationalException e)

12 {

13 report.ThatCannotSecure(lift);

14 }

15 }

16 }

Web, messages and protocols 139

This is a second example of a protocol existing between Alarm and Lift that must be adhered
to by both sides.

Summary

Each of the objects in the web can receive messages and most of them send messages to other
objects. Throughout the next chapters, I will refer to an object sending a message as sender and
an object receiving a message as recipient.

For now, it may look unjustified to introduce this metaphor of webs, protocols, interfaces etc.
but:

• This is the way object-oriented programming inventors²⁷ have thought about object-
oriented systems,

• It will prove useful as I explain making connections between objects and achieving strong
composability in the next chapters.

²⁷http://c2.com/cgi/wiki?AlanKayOnMessaging

http://c2.com/cgi/wiki?AlanKayOnMessaging
http://c2.com/cgi/wiki?AlanKayOnMessaging

Composing a web of objects
Three important questions

Ok, I told you that such a thing as a web of objects exists, that there are connections, protocols
and such, but there is one thing I left out: how does a web of objects come into existence?

This is, of course, a fundamental question, because if we are not able to build a web, we do not
have a web. In addition, this is a question that is a little more tricky that you may think and it
contains three other questions that we need to answer:

1. When are objects composed (i.e. when connections are made)?
2. How does an object obtain a reference to another one in the web (i.e. how connections

made)?
3. Where are objects composed (i.e. where connections are made)?

For now, you may have some trouble understanding the difference between those questions, but
the good news is that they are the topic of this chapter, so I hope we will have that cleared shortly.
Let’s go!

A preview

Before we take a deep dive, let’s try to answer these three questions for a really simple example
code of a console application:

1 public static void Main(string[] args)

2 {

3 var sender = new Sender(new Recipient());

4

5 sender.Work();

6 }

And here are the answers to our questions:

1. When are objects composed? Answer: up-front, during application startup.
2. How does an object (Sender) obtain a reference to another one (Recipient)? Answer: the

reference is obtained as a constructor parameter.
3. Where are objects composed? Answer: at application entry point (Main() method)

Depending on circumstances, we have different sets of best answers. To find them, let’s take the
questions on one by one.

140

Composing a web of objects 141

When are objects composed?

The quick answer to this question is: as early as possible. Now, that wasn’t too helpful, was it?
So here goes a clarification.

Many of the objects we use in our applications can be created and connected up-front when the
application starts and can stay this way until the application finishes executing (unless we are
doing a web app – then most of the important stuff happens “per request”). Let’s call this part
the static part of the web.

Apart from that, there’s a dynamic part – a part that undergoes constant changes – objects are
created, destroyed, connected temporarily, and then disconnected. There are at least two reasons
this dynamic part exists:

1. Some objects represent requests or user actions that arrive during the application runtime,
are processed and then discarded. These objects cannot be composed up-front (because
they do not exist yet), but only as early as the events they represent occur. Also, these
objects do not live until the application is terminated, but are discarded as soon as the
processing of a request is finished. Other objects represent e.g. items in cache that live
for some time and then expire, so, again, we do not have these objects up-front and they
often do not live as long as the application itself. All of these objects come and go, making
temporary connections.

2. There are objects that have a life span as long as the application itself, but are connected
only for the needs of a single interaction (e.g. when one object is passed to a method of
another as an argument) or at some point during the application runtime.

It is perfectly possible for an object to be part of both static and dynamic part – some of its
connections may be made up-front, while others may be created later, e.g. when it is passed
inside a message sent to another object (i.e. passed as method parameter).

How does a sender obtain a reference to a recipient (i.e. how
connections are made)?

There are few ways this can happen, each of them useful in certain circumstances. These ways
are:

1. Receive as constructor parameter
2. Receive inside a message (i.e. as a method parameter)
3. Receive in response to message (i.e. as method return value)
4. Register a recipient with already created sender

Let’s have a closer look at what each of them is about and which one to choose in what
circumstances.

Receive as constructor parameter

Two objects can be composed by passing one into the constructor of another:

Composing a web of objects 142

1 sender = new Sender(recipient);

A sender that receives the recipient then saves a reference to it in a private field for later, like
this:

1 private Recipient _recipient;

2

3 public Sender(Recipient recipient)

4 {

5 _recipient = recipient;

6 }

Starting from this point, the Sender may send messages to Recipient at will:

1 public void DoSomething()

2 {

3 //... other code

4

5 _recipient.DoSomethingElse();

6

7 //... other code

8 }

Advantage: “what you hide, you can change”

Composing using constructors has one significant advantage. By separating object use from
construction, we end up with the code that creates a Sender being in a totally different place
than the code that uses it. And, as Recipient is passed to Sender during its creation, it is the
only place external to the Sender that needs to know that Sender uses Recipient. The part of
code that uses Sender is not aware at all that Sender stores a reference to Recipient inside it.
This basically means that when Sender is used, e.g. like this:

1 sender.DoSomething();

the Sender may then react by sending message to Recipient, but the code invoking the
DoSomething()method is completely unaware of that – it is hidden. This is good, because “what
you hide, you can change”²⁸ – e.g. if we decide that the Sender needs not use the Recipient to
do its duty, the code that uses Sender does not need to change at all – it still looks the same as
before:

1 sender.DoSomething();

All we have to change is the composition code to remove the Recipient:

²⁸I got this saying from Amir Kolsky and Scott Bain

Composing a web of objects 143

1 //no need to pass a reference to Recipient anymore

2 new Sender();

and the Sender class itself will work in a different way.

Communication of intent: required recipient

Another advantage of the constructor approach is that if a reference to Recipient is required for
a Sender to work correctly and it does not make sense to create a Sender without a Recipient,
the signature of the constructor makes it explicit – the compiler will not let us create a Sender
without passing something as a Recipient.

Where to apply

Passing into constructor is a great solution in cases we want to compose sender with a recipient
permanently (i.e. for the lifetime of Sender). To be able to do this, a Recipient must, of
course, exist before a Sender does. Another less obvious requirement for this composition is
that Recipientmust be usable at least as long as Sender is usable. In other words, the following
is nonsense:

1 sender = new Sender(recipient);

2 recipient.Dispose(); //but sender is unaware of it

3 //and may still use recipient in:

4 sender.DoSomething();

Receive inside a message (i.e. as a method parameter)

Another common way of composing objects together is passing one object as a parameter of
another object’s method call:

1 sender.DoSomethingWithHelpOf(recipient);

In such case, the objects are most often composed temporarily, just for the time of execution of
this single method:

1 public void DoSomethingWithHelpOf(Recipient recipient)

2 {

3 //... perform some logic

4

5 recipient.HelpMe();

6

7 //... perform some logic

8 }

Composing a web of objects 144

Where to apply

Contrary to the constructor approach, where a Sender could hide from its user the fact that
it needs Recipient, in this case the user of Sender is explicitly responsible for supplying a
Recipient. It may look like the coupling of user to Recipient is a disadvantage, but there are
scenarios where it is actually required for code using Sender to be able to provide its own
Recipient – it lets us use the same sender with different recipients at different times (most often
from different parts of the code):

1 //in one place

2 sender.DoSomethingWithHelpOf(recipient);

3

4 //in another place:

5 sender.DoSomethingWithHelpOf(anotherRecipient);

6

7 //in yet another place:

8 sender.DoSomethingWithHelpOf(yetAnotherRecipient);

If this ability is not required, the constructor approach is better as it removes the then unnecessary
coupling between code using Sender and a Recipient.

Receive in response to a message (i.e. as method return value)

This method of composing objects relies on an intermediary object – often an implementation
of a factory pattern²⁹ – to supply recipients on request. To simplify things, I will use factories
in examples presented in this section, although what I tell you is true for some other creational
patterns³⁰ as well (also, later in this chapter, I’ll cover some aspects of factory pattern in depth).

To be able to ask a factory for recipients, the sender needs to obtain a reference to it first.
Typically, a factory is composed with a sender through constructor (an approach we already
discussed). For example:

1 var sender = new Sender(recipientFactory);

The factory can then be used by the Sender at will to get a hold of new recipients:

²⁹http://www.netobjectives.com/PatternRepository/index.php?title=TheAbstractFactoryPattern
³⁰http://en.wikipedia.org/wiki/Creational_pattern

http://www.netobjectives.com/PatternRepository/index.php?title=TheAbstractFactoryPattern
http://en.wikipedia.org/wiki/Creational_pattern
http://en.wikipedia.org/wiki/Creational_pattern
http://www.netobjectives.com/PatternRepository/index.php?title=TheAbstractFactoryPattern
http://en.wikipedia.org/wiki/Creational_pattern

Composing a web of objects 145

1 public class Sender

2 {

3 //...

4

5 public void DoSomething()

6 {

7 //ask the factory for a recipient:

8 var recipient = _recipientFactory.CreateRecipient();

9

10 //use the recipient:

11 recipient.DoSomethingElse();

12 }

13 }

Where to apply

This kind of composition is beneficial when a new recipient is needed each time DoSomething()
is called. In this sense it may look much like in case of previously discussed approach of receiving
a recipient inside a message. There is one difference, however. Contrary to passing a recipient
inside a message, where the code using the Sender passed a Recipient “from outside” of the
Sender, in this approach, we rely on a separate object that is used by a Sender “from the inside”.

To be more clear, let’s compare the two approaches. Passing recipient inside a message looks like
this:

1 //Sender gets a Recipient from the "outside":

2 public void DoSomething(Recipient recipient)

3 {

4 recipient.DoSomethingElse();

5 }

and obtaining from factory:

1 //a factory is used "inside" Sender

2 //to obtain a recipient

3 public void DoSomething()

4 {

5 var recipient = _factory.CreateRecipient();

6 recipient.DoSomethingElse();

7 }

So in the first example, the decision on which Recipient is used is made by whoever calls
DoSomething(). In the factory example, whoever calls DoSomething() does not know at all about
the Recipient and cannot directly influence which Recipient is used. The factory makes this
decision.

Composing a web of objects 146

Factories with parameters

So far, all the factories we considered had creation methods with empty parameter list, but this is
not a requirement of any sort - I just wanted to make the examples simple, so I left out everything
that was not helpful in making my point. As the factory remains the decision maker on which
Recipient is used, it can rely on some external parameters passed to the creation method to help
it make the decision.

Not only factories

Throughout this section, we have used a factory as our role model, but the approach of obtaining
a recipient in response to a message is wider than that. Other types of objects that fall into this
category include, among others: repositories³¹, caches³², builders³³, collections³⁴. While they are
all important topics (which you can look up on the web if you like), they are not required to
progress through this chapter so I won’t go in depth on them.

Register a recipient with already created sender

This means passing a recipient to an already created sender (contrary to passing as constructor
parameter where recipient was passed during creation) as a parameter of a method that stores
the reference for later use. This may be a “setter” method, although I do not like naming it
according to the convention “setWhatever()” – after Kent Beck³⁵ I find this convention too much
implementation-focused instead of purpose-focused. Thus, I pick different names based on what
domain concept is modeled by the registration method or what is its purpose.

Note that there is one similarity to the “passing inside a message” approach – in both, a recipient
is passed inside a message. The difference is that this time, contrary to “pass inside a message”
approach, the passed recipient is not immediately used (and then forgotten), but rather only
remembered (registered) for later use.

I hope I can clear up the confusion with a quick example.

Example

Suppose we have a temperature sensor that can report its current and historically mean value to
whoever subscribes with it. If no one subscribes, the sensor still does its job, because it still has
to collect the data for calculating a history-based mean value in case anyone subscribes later.

We may solve the problem by introducing an observer³⁶ registration mechanism in the sensor
implementation. If no observer is registered, the values are not reported (in other words, a
registered observer is not required for the object to function, but if there is one, it can take
advantage of the reports). For this purpose, let’s make our sensor depend on an interface called
TemperatureObserver that could be implemented by various concrete observer classes. The
interface declaration looks like this:

³¹http://martinfowler.com/eaaCatalog/repository.html
³²http://en.wikipedia.org/wiki/Cache_(computing)
³³http://www.blackwasp.co.uk/Builder.aspx
³⁴If you never used collections before and you are not a copy-editor, then you are probably reading the wrong book :-)
³⁵Kent Beck, Implementation Patterns
³⁶http://www.oodesign.com/observer-pattern.html

http://martinfowler.com/eaaCatalog/repository.html
http://en.wikipedia.org/wiki/Cache_(computing)
http://www.blackwasp.co.uk/Builder.aspx
http://www.oodesign.com/observer-pattern.html
http://martinfowler.com/eaaCatalog/repository.html
http://en.wikipedia.org/wiki/Cache_(computing)
http://www.blackwasp.co.uk/Builder.aspx
http://www.oodesign.com/observer-pattern.html

Composing a web of objects 147

1 public interface TemperatureObserver

2 {

3 void NotifyOn(

4 Temperature currentValue,

5 Temperature meanValue);

6 }

Now we are ready to look at the implementation of the temperature sensor itself and how it uses
this TemperatureObserver interface. Let’s say that the class representing the sensor is called
TemperatureSensor. Part of its definition could look like this:

1 public class TemperatureSensor

2 {

3 private TemperatureObserver _observer

4 = new NullObserver(); //ignores reported values

5

6 private Temperature _meanValue

7 = Temperature.Celsius(0);

8

9 // + maybe more fields related to storing historical data

10

11 public void Run()

12 {

13 while(/* needs to run */)

14 {

15 var currentValue = /* get current value somehow */;

16 _meanValue = /* update mean value somehow */;

17

18 _observer.NotifyOn(currentValue, _meanValue);

19

20 WaitUntilTheNextMeasurementTime();

21 }

22 }

23 }

As you can see, by default, the sensor reports its values to nowhere (NullObserver), which is a
safe default value (using a null for a default value instead would cause exceptions or force us to
put an ugly null check inside the Run()method). We have already seen such “null objects”³⁷ a few
times before (e.g. in the previous chapter, whenwe introduced the NoAlarm class) – NullObserver

is just another incarnation of this pattern.

Registering observers

Still, we want to be able to supply our own observer one day, when we start caring about
the measured and calculated values (the fact that we “started caring” may be indicated to our

³⁷This pattern has a name and the name is… Null Object (surprise!). You can read more on this pattern at
http://www.cs.oberlin.edu/∼jwalker/nullObjPattern/ and http://www.cs.oberlin.edu/∼jwalker/refs/woolf.ps (a little older document)

Composing a web of objects 148

application e.g. by a network message or an event from the user interface). This means we need
to have a method inside the TemperatureSensor class to overwrite this default “do-nothing”
observer with a custom one after the TemperatureSensor instance is created. As I said, I do not
like the “SetXYZ()” convention, so I will name the registrationmethod FromNowOnReportTo() and
make the observer an argument. Here are the relevant parts of the TemperatureSensor class:

1 public class TemperatureSensor

2 {

3 private TemperatureObserver _observer

4 = new NullObserver(); //ignores reported values

5

6 //...

7

8 public void FromNowOnReportTo(TemperatureObserver observer)

9 {

10 _observer = observer;

11 }

12

13 //...

14 }

This lets us overwrite the observer with a new one should we ever need to do it. Note that, as I
mentioned, this is the place where registration approach differs from the “pass inside a message”
approach, where we also received a recipient in a message, but for immediate use. Here, we don’t
use the recipient (i.e. the observer) when we get it, but instead we save it for later use.

Communication of intent: optional dependency

Allowing registering recipients after a sender is created is a way of saying: “the recipient is
optional – if you provide one, fine, if not, I will do my work without it”. Please, do not use this
kind of mechanism for required recipients – these should all be passed through a constructor,
making it harder to create invalid objects that are only partially ready to work. Placing a recipient
in a constructor signature is effectively saying that “I will not work without it”. Let’s practice –
just look at how the following class members signatures talk to you:

1 public class Sender

2 {

3 //"I will not work without a Recipient1"

4 public Sender(Recipient1 recipient1) {...}

5

6 //"I will do fine without Recipient2 but you

7 //can overwrite the default here to take advantage

8 //of some features"

9 public void Register(Recipient2 recipient2) {...}

10 }

Composing a web of objects 149

More than one observer

Now, the observer API we just skimmed over gives us the possibility to have a single observer
at any given time. When we register a new observer, the reference to the old one is overwritten.
This is not really useful in our context, is it? With real sensors, we often want them to report
their measurements to multiple places (e.g. we want the measurements printed on screen, saved
to database, used as part of more complex calculations). This can be achieved in two ways.

The first way would be to just hold a collection of observers in our sensor, and add to this
collection whenever a new observer is registered:

1 private IList<TemperatureObserver> _observers

2 = new List<TemperatureObserver>();

3

4 public void FromNowOnReportTo(TemperatureObserver observer)

5 {

6 _observers.Add(observer);

7 }

In such case, reporting would mean iterating over the observers list:

1 ...

2 foreach(var observer in _observers)

3 {

4 observer.NotifyOn(currentValue, meanValue);

5 }

6 ...

Another, more flexible option, is to use something like we did in the previous chapter with a
HybridAlarm (remember? It was an alarm aggregating other alarms) – i.e. instead of introducing
a collection in the sensor, we can create a special kind of observer – a “broadcasting observer”
that would itself hold collection of other observers (hurrah composability!) and broadcast the
values to them every time it itself receives those values:

1 public class BroadcastingObserver

2 : TemperatureObserver

3 {

4 private readonly

5 TemperatureObserver[] _observers;

6

7 public BroadcastingObserver(

8 params TemperatureObserver[] observers)

9 {

10 _observers = observers;

11 }

12

Composing a web of objects 150

13 public void NotifyOn(

14 Temperature currentValue,

15 Temperature meanValue)

16 {

17 foreach(var observer in _observers)

18 {

19 observer.NotifyOn(currentValue, meanValue);

20 }

21 }

22 }

This BroadcastingObserver could be instantiated and registered like this:

1 //instantiation:

2 var broadcastingObserver

3 = new BroadcastingObserver(

4 new DisplayingObserver(),

5 new StoringObserver(),

6 new CalculatingObserver());

7

8 ...

9

10 //registration:

11 sensor.FromNowOnReportTo(broadcastingObserver);

The additional benefit of modeling broadcasting as an observer is that it would let us change
the broadcasting policy without touching either the sensor code or the other observers. For
example, we might introduce ParallelBroadcastObserver that would notify each observer
asynchronously instead of sequentially and put it to use by changing the composition code only:

1 //now using parallel observer

2 var broadcastingObserver

3 = new ParallelBroadcastObserver(//change here!

4 new DisplayingObserver(),

5 new StoringObserver(),

6 new CalculatingObserver());

7

8 sensor.FromNowOnReportTo(broadcastingObserver);

Anyway, as I said, use registering instances very wisely and only if you specifically need it.
Also, if you do use it, evaluate how allowing changing observers at runtime is affecting your
multithreading scenarios. This is because a collection of observers might potentially be modified
by two threads at the same time.

Composing a web of objects 151

Where are objects composed?

Ok, we went through some ways of passing a recipient to a sender. We did it from the “internal”
perspective of a sender that is given a recipient.Whatwe left out for themost part is the “external”
perspective, i.e. who should pass the recipient into the sender?

For almost all of the approaches described above there is no limitation – you pass the recipient
from where you need to pass it.

There is one approach, however, that is more limited, and this approach ispassing as constructor
parameter.

Why is that? Because, we are trying to be true to the principle of “separating objects creation
from use” and this, in turn, is a result of us striving for composability.

Anyway, if an object cannot both use and create another object, we have to make special objects
just for creating other objects (there are some design patterns for how to design such objects, but
the most popular and useful is a factory) or defer the creation up to the application entry point
(there is also a pattern for this, called composition root).

So, we have two cases to consider. I’ll start with the second one.

Composition Root

let’s assume, just for fun, that we are creating a mobile game where a player has to defend a
castle. This game has two levels. Each level has a castle to defend. When we manage to defend
the castle long enough, the level is considered completed and we move to the next one. So, we
can break down the domain logic into three classes: a Game that has two Levels and each of
them that contain a Castle. Let’s also assume that the first two classes violate the principle of
separating use from construction, i.e. that a Game creates its own levels and each Level creates
its own castle.

A Game class is created in the Main() method of the application:

1 public static void Main(string[] args)

2 {

3 var game = new Game();

4

5 game.Play();

6 }

The Game creates its own Level objects of specific classes implementing the Level interface and
stores them in an array:

Composing a web of objects 152

1 public class Game

2 {

3 private Level[] _levels = new[] {

4 new Level1(), new Level2()

5 };

6

7 //some methods here that use the levels

8 }

And the Level implementations create their own castles and assign them to fields of interface
type Castle:

1 public class Level1

2 {

3 private Castle _castle = new SmallCastle();

4

5 //some methods here that use the castle

6 }

7

8 public class Level2

9 {

10 private Castle _castle = new BigCastle();

11

12 //some methods here that use the castle

13 }

Now, I said (and I hope you see it in the code above) that the Game, Level1 and Level2 classes
violate the principle of separating use from construction. We don’t like this, do we? So now we
will try to make them more compliant with the principle.

Achieving separation of use from construction

First, let’s refactor the Level1 and Level2 according to the principle by moving instantiation of
their castles out. As existence of a castle is required for a level to make sense at all – we will say
this in code by using the approach of passing a castle through a Level’s constructor:

1 public class Level1

2 {

3 private Castle _castle;

4

5 //now castle is received as

6 //constructor parameter

7 public Level1(Castle castle)

8 {

9 _castle = castle;

Composing a web of objects 153

10 }

11

12 //some methods here that use the castle

13 }

14

15 public class Level2

16 {

17 private Castle _castle;

18

19 //now castle is received as

20 //constructor parameter

21 public Level2(Castle castle)

22 {

23 _castle = castle;

24 }

25

26 //some methods here that use the castle

27 }

This was easy, wasn’t it? The only problem is that if the instantiations of castles are not in Level1
and Level2 anymore, then they have to be passed by whoever creates the levels. In our case, this
falls on the shoulders of Game class:

1 public class Game

2 {

3 private Level[] _levels = new[] {

4 //now castles are created here as well:

5 new Level1(new SmallCastle()),

6 new Level2(new BigCastle())

7 };

8

9 //some methods here that use the levels

10 }

But remember – this class suffers from the same violation of not separating objects use from
construction as the levels did. Thus, to make this class compliant to the principle as well, we
have to do the same to it that we did to the level classes – move the creation of levels out of it:

Composing a web of objects 154

1 public class Game

2 {

3 private Level[] _levels;

4

5 //now levels are received as

6 //constructor parameter

7 public Game(Level[] levels)

8 {

9 _levels = levels;

10 }

11

12 //some methods here that use the levels

13 }

There, we did it, but again, the levels now must be supplied by whoever creates the Game. Where
do we put them? In our case, the only choice left is the Main()method of our application, so this
is exactly what we are going to do:

1 public static void Main(string[] args)

2 {

3 var game =

4 new Game(

5 new Level[] {

6 new Level1(new SmallCastle()),

7 new Level2(new BigCastle())

8 });

9

10 game.Play();

11 }

By the way, the Level1 and Level2 are differed only by the castle types and this difference
is no more as we refactored it out, so we can make them a single class and call it e.g.
TimeSurvivalLevel (because such level is considered completed when we manage to defend
our castle for a specific period of time). After this move, now we have:

1 public static void Main(string[] args)

2 {

3 var game =

4 new Game(

5 new Level[] {

6 new TimeSurvivalLevel(new SmallCastle()),

7 new TimeSurvivalLevel(new BigCastle())

8 });

9

10 game.Play();

11 }

Composing a web of objects 155

Looking at the code above, we might come to another funny conclusion – this violates the
principle of separating use from construction as well! First, we create and connect the web of
objects and then send the Play() message to the game object. Shouldn’t we fix this as well?

The answer is “no”, for two reasons:

1. There is no further place we can defer the creation. Sure, we could move the creation of the
Game object and its dependencies into a separate object responsible only for the creation
(we call such object a factory, as you already know), but it’s a dead end, because it would
leave us with the question: where do we create the factory?

2. The whole point of the principle we are trying to apply is decoupling, i.e. giving ourselves
the ability to change one thing without having to change another. When we think of it,
there is no point of decoupling the entry point of the application from the application itself,
since this is the most application-specific and non-reusable part of the application we can
imagine.

What is important is that we reached a placewhere theweb of objects is created using constructor
approach and we have no place left to defer the creation of the web (in other words, it is as close
as possible to application entry point). Such a place is called a composition root³⁸.

We say that composition root is “as close as possible” to application entry point, because there
may be different frameworks in control of your application and you will not always have the
Main() method at your service³⁹.

Apart from the constructor invocations, the composition root may also contain, e.g., registrations
of observers (see registration approach to passing recipients) if such observers are already known
at this point. It is also responsible for disposing of all objects it created that require explicit
disposal after the application finishes running. This is because it creates them and thus it is the
only place in the code that can safely determine when they are not needed.

The composition root above looks quite small, but you can imagine it growing a lot in bigger
applications. There are techniques of refactoring the composition root to make it more readable
and cleaner – we will explore such techniques in a dedicated chapter.

Factories

As I previously said, it is not always possible to pass everything through the constructor. One of
the approaches we discussed that we can use in such cases is a factory.

When we previously talked about factories, we focused on it being just a source of objects. This
time we will have a much closer look at what factory is and what are its benefits.

But first, let’s look at an example of a factory emerging in code that was not using it, as a mere
consequence of trying to follow the principle of separating objects use from construction.

Emerging factory – example

Consider the following code that receives a frame from the network (as raw data), then packs it
into an object, validates and applies to the system:

³⁸http://blog.ploeh.dk/2011/07/28/CompositionRoot/
³⁹For details, check Dependency Injection in .NET by Mark Seemann.

http://blog.ploeh.dk/2011/07/28/CompositionRoot/
http://blog.ploeh.dk/2011/07/28/CompositionRoot/

Composing a web of objects 156

1 public class MessageInbound

2 {

3 //...initialization code here...

4

5 public void Handle(Frame frame)

6 {

7 // determine the type of message

8 // and wrap it with an object

9 ChangeMessage change = null;

10 if(frame.Type == FrameTypes.Update)

11 {

12 change = new UpdateRequest(frame);

13 }

14 else if(frame.Type == FrameTypes.Insert)

15 {

16 change = new InsertRequest(frame);

17 }

18 else

19 {

20 throw

21 new InvalidRequestException(frame.Type);

22 }

23

24 change.ValidateUsing(_validationRules);

25 _system.Apply(change);

26 }

27 }

Note that this code violates the principle of separating use from construction. The change is first
created, depending on the frame type, and then used (validated and applied) in the same method.
On the other hand, if we wanted to separate the construction of change from its use, we have to
note that it is impossible to pass an instance of the ChangeMessage through the MessageInbound
constructor, because this would require us to create the ChangeMessage before we create the
MessageInbound. Achieving this is impossible, because we can create messages only as soon as
we know the frame data which the MessageInbound receives.

Thus, our choice is to make a special object that we would move the creation of new messages
into. It would produce the new instances when requested, hence the name factory. The factory
itself can be passed through constructor, since it does not require a frame to exist – it only needs
one when it is asked to create a message.

Knowing this, we can refactor the above code to the following:

Composing a web of objects 157

1 public class MessageInbound

2 {

3 private readonly

4 MessageFactory _messageFactory;

5 private readonly

6 ValidationRules _validationRules;

7 private readonly

8 ProcessingSystem _system;

9

10 public MessageInbound(

11 //this is the factory:

12 MessageFactory messageFactory,

13 ValidationRules validationRules,

14 ProcessingSystem system)

15 {

16 _messageFactory = messageFactory;

17 _validationRules = validationRules;

18 _system = system;

19 }

20

21 public void Handle(Frame frame)

22 {

23 var change = _messageFactory.CreateFrom(frame);

24 change.ValidateUsing(_validationRules);

25 _system.Apply(change);

26 }

27 }

This way we have separated message construction from its use.

By the way, the factory itself looks like this:

1 public class InboundMessageFactory

2 : MessageFactory

3 {

4 ChangeMessage CreateFrom(Frame frame)

5 {

6 if(frame.Type == FrameTypes.Update)

7 {

8 return new UpdateRequest(frame);

9 }

10 else if(frame.Type == FrameTypes.Insert)

11 {

12 return new InsertRequest(frame);

13 }

14 else

Composing a web of objects 158

15 {

16 throw

17 new InvalidRequestException(frame.Type);

18 }

19 }

20 }

And this is it. We have a factory now and the way we got to this point is by trying to be true to
the principle of separating use from construction.

Now that we are through with the example, we are ready for some more general explanation on
factories.

Reasons to use factories

As you saw in the example, factories are objects responsible for creating other objects. They are
used to achieve the separation of object constructions from their use when not all of the context
necessary to create an object is known up-front. We pass the part of the context we know up-
front (so called global context) in the factory via its constructor and supply the rest that becomes
available later (so called local context) in a form of factory method parameters when it becomes
available:

1 var factory = new Factory(globalContextKnownUpFront);

2

3 //...

4

5 factory.CreateInstance(localContext);

Another case for using a factory is when we need to create a new object each time some kind of
request is made (a message is received from the network or someone clicks a button):

1 var factory = new Factory(globalContext);

2

3 //...

4

5 //we need a fresh instance

6 factory.CreateInstance();

7

8 //...

9

10 //we need another fresh instance

11 factory.CreateInstance();

In the above example, two independent instances are created, even though both are created in
an identical way (there is no local context that would differ them).

Both these reasons were present in our example:

1. We were unable to create a ChangeMessage before knowing the actual Frame.
2. For each Frame received, we needed to create a new ChangeMessage instance.

Composing a web of objects 159

Simplest factory

The simplest possible example of a factory object is something along the following lines:

1 public class MyMessageFactory

2 {

3 public MyMessage CreateMyMessage()

4 {

5 return new MyMessage();

6 }

7 }

Even in this primitive shape the factory already has some value (e.g. we can make MyMessage an
abstract type and return instances of its subclasses from the factory, and the only place impacted
by the change is the factory itself⁴⁰). More often, however, when talking about simple factories,
we think about something like this:

1 //Let's assume MessageFactory

2 //and Message are interfaces

3 public class XmlMessageFactory : MessageFactory

4 {

5 public Message CreateSessionInitialization()

6 {

7 return new XmlSessionInitialization();

8 }

9 }

Note the two things that the factory in the second example has that the one in the first example
does not:

• it implements an interface (a level of indirection is introduced)
• its CreateSessionInitialization() method declares a return type to be an interface
(another level of indirection is introduced)

In order for you to use factories effectively, I need you to understand why and how these levels
of indirection are useful, especially when I talk with people, they often do not understand the
benefits of using factories, “because we already have the new operator to create objects”. So, here
are these benefits:

Factories allow creating objects polymorphically (encapsulation of type)

Each time we invoke a new operator, we have to put a name of a concrete type next to it:

⁴⁰

A. Shalloway et al., Essential Skills For The Agile Developer.

Composing a web of objects 160

1 new List<int>(); //OK!

2 new IList<int>(); //won't compile...

This means that whenver we want to use the class that does this instantiation with another
concrete object (e.g. a sorted list), we have to either change the code to delete the old type name
and put new type name, or provide some kind of conditional (if-else).

Factories do not have this defficiency. Because we get objects from factories by invoking a
method, not by saying explicitly which class we want to get instantiated, we can take advantage
of polymorphism, i.e. our factory may have a method like this:

1 IList<int> CreateContainerForData() {...}

which returns any instance of a real class that implements IList<int> (say, List<int>):

1 public IList<int> /* return type is interface */

2 CreateContainerForData()

3 {

4 return new List<int>(); /* instance of concrete class */

5 }

Of course, it makes little sense for the return type of the factory to be a library class or interface
like in the above example (rather, we use factories to create instances of our own classes), but
you get the idea, right?

Anyway, it is typical for a return type of a factory to be an interface or, at worst, an abstract
class. This means that whoever uses the factory, it knows only that it receives an object of a class
that is implementing an interface or is derived from abstract class. But it does not know exactly
what concrete type it is. Thus, a factory may return objects of different types at different times,
depending on some rules only it knows.

Time to look at some more realistic example of how to apply this. Let’s say we have a factory of
messages like this:

1 public class Version1ProtocolMessageFactory

2 : MessageFactory

3 {

4 public Message NewInstanceFrom(MessageData rawData)

5 {

6 switch(rawData.MessageType)

7 {

8 case Messages.SessionInit:

9 return new SessionInit(rawData);

10 case Messages.SessionEnd:

11 return new SessionEnd(rawData);

12 case Messages.SessionPayload:

Composing a web of objects 161

13 return new SessionPayload(rawData);

14 default:

15 throw new UnknownMessageException(rawData);

16 }

17 }

18 }

The factory can create many different types of messages depending on what is inside the raw
data, but from the perspective of the user of the factory, this is irrelevant. All that it knows is that
it gets a Message, thus, it (and the rest of the code operating on messages in the whole application
for that matter) can be written as general-purpose logic, containing no “special cases” dependent
on type of message:

1 var message = _messageFactory.NewInstanceFrom(rawData);

2 message.ValidateUsing(_primitiveValidations);

3 message.ApplyTo(_sessions);

Note that the above code does not need to change in case we want to add a new type of message
that is compatible with the existing flow of processing messages⁴¹. The only place we need to
modify in such case is the factory. For example, imagine we decided to add a session refresh
message. The modified factory would look like this:

1 public class Version1ProtocolMessageFactory

2 : MessageFactory

3 {

4 public Message NewInstanceFrom(MessageData rawData)

5 {

6 switch(rawData.MessageType)

7 {

8 case Messages.SessionInit:

9 return new SessionInit(rawData);

10 case Messages.SessionEnd:

11 return new SessionEnd(rawData);

12 case Messages.SessionPayload:

13 return new SessionPayload(rawData);

14 case Messages.SessionRefresh: //new message type!

15 return new SessionRefresh(rawData);

16 default:

17 throw new UnknownMessageException(rawData);

18 }

19 }

20 }

⁴¹although it does need to change when the rule “first validate, then apply to sessions” changes

Composing a web of objects 162

and the rest of the code could remain untouched.

Using the factory to hide the real type of message returned makes maintaining the code easier,
because there is less code to change when adding new types of messages to the system or
removing existing ones (in our example – in case when we do not need to initiate a session
anymore) ⁴² – the factory hides that and the rest of the application is coded against the general
scenario.

The above example demonstrated how a factory can hide that many classes can play the same
role (i.e. different messages could play the role of Message), but we can as well use factories
to hide that the same class plays many roles. An object of the same class can be returned from
different factory method, each time as a different interface and clients cannot access the methods
it implements from other interfaces.

Factories are themselves polymorphic (encapsulation of rule)

Another benefit of factories over inline constructors is that they are composable. This allows re-
placing the rule used to create objects with another one, by replacing one factory implementation
with another.

In the example from the previous section, we examined a situation where we extended the
existing factory with a SessionRefreshmessage. This was done with assumption that we do not
need the previous version of the factory. But consider a situation where we need both versions
of the behavior and want to be able to use the old version sometimes, and other times the new
one. The “version 1” of the factory (the old one) would look like this:

1 public class Version1ProtocolMessageFactory

2 : MessageFactory

3 {

4 public Message NewInstanceFrom(MessageData rawData)

5 {

6 switch(rawData.MessageType)

7 {

8 case Messages.SessionInit:

9 return new SessionInit(rawData);

10 case Messages.SessionEnd:

11 return new SessionEnd(rawData);

12 case Messages.SessionPayload:

13 return new SessionPayload(rawData);

14 default:

15 throw new UnknownMessageException(rawData);

16 }

17 }

18 }

and the “version 2” (the new one) would be:

⁴²Note that this is an application of Gang of Four guideline: “encapsulate what varies”.

Composing a web of objects 163

1 //note that now it is a version 2 protocol factory

2 public class Version2ProtocolMessageFactory

3 : MessageFactory

4 {

5 public Message NewInstanceFrom(MessageData rawData)

6 {

7 switch(rawData.MessageType)

8 {

9 case Messages.SessionInit:

10 return new SessionInit(rawData);

11 case Messages.SessionEnd:

12 return new SessionEnd(rawData);

13 case Messages.SessionPayload:

14 return new SessionPayload(rawData);

15 case Messages.SessionRefresh: //new message type!

16 return new SessionRefresh(rawData);

17 default:

18 throw new UnknownMessageException(rawData);

19 }

20 }

21 }

Depending on what the user chooses in the configuration, we give them either a version 1
protocol support which does not support session refreshing, or a version 2 protocol support that
does. Assuming the configuration is only read once during the application start, we may have
the following code in our composition root:

1 MessageFactory messageFactory = configuration.Version == 1 ?

2 new Version1ProtocolMessageFactory() :

3 new Version2ProtocolMessageFactory() ;

4

5 var messageProcessing = new MessageProcessing(messageFactory);

The above code composes a MessageProcessing instancewith either a Version1ProtocolMessageFactory
or a Version2ProtocolMessageFactory, depending on the configuration.

This example shows something I like calling “encapsulation of rule”. The logic inside the factory
is a rule on how, when and which objects to create. Thus, if we make our factory implement an
interface and have other objects depend on this interface, we will be able to switch the rules of
object creation without having to modify these objects.

Factories can hide some of the created object dependencies (encapsulation
of global context)

Let’s consider another simple example. We have an application that, again, can process messages.
One of the things that is done with those messages is saving them in a database and another is

Composing a web of objects 164

validation. The processing of message is, like in previous examples, handled by a MessagePro-

cessing class, which, this time, does not use any factory, but creates the messages based on the
frame data itself. Let’s look at this class:

1 public class MessageProcessing

2 {

3 private DataDestination _database;

4 private ValidationRules _validation;

5

6 public MessageProcessing(

7 DataDestination database,

8 ValidationRules validation)

9 {

10 _database = database;

11 _validation = validation;

12 }

13

14 public void ApplyTo(MessageData data)

15 {

16 //note this creation:

17 var message =

18 new Message(data, _database, _validation);

19

20 message.Validate();

21 message.Persist();

22

23 //... other actions

24 }

25 }

There is one noticeable thing about the MessageProcessing class. It depends on both DataDes-

tination and ValidationRules interfaces, but does not use them. The only thing it needs those
interfaces for is to supply them as parameters to the constructor of a Message. As a number of
Message constructor parameters grows, the MessageProcessingwill have to change to take more
parameters as well. Thus, the MessageProcessing class gets polluted by something that it does
not directly need.

We can remove these dependencies from MessageProcessing by introducing a factory that would
take care of creating the messages in its stead. This way, we only need to pass DataDestination
and ValidationRules to the factory, because MessageProcessing never needed them for any
reason other than creating messages. This factory may look like this:

Composing a web of objects 165

1 public class MessageFactory

2 {

3 private DataDestination _database;

4 private ValidationRules _validation;

5

6 public MessageFactory(

7 DataDestination database,

8 ValidationRules validation)

9 {

10 _database = database;

11 _validation = validation;

12 }

13

14 public Message CreateFrom(MessageData data)

15 {

16 return

17 new Message(data, _database, _validation);

18 }

19 }

Now, note that the creation of messages was moved to the factory, along with the dependencies
needed for this. The MessageProcessing does not need to take these dependencies anymore, and
can stay more true to its real purpose:

1 public class MessageProcessing

2 {

3 private MessageFactory _factory;

4

5 //now we depend on the factory only:

6 public MessageProcessing(

7 MessageFactory factory)

8 {

9 _factory = factory;

10 }

11

12 public void ApplyTo(MessageData data)

13 {

14 //no need to pass database and validation

15 //since they already are inside the factory:

16 var message = _factory.CreateFrom(data);

17

18 message.Validate();

19 message.Persist();

20

21 //... other actions

Composing a web of objects 166

22 }

23 }

So, instead of DataDestination and ValidationRules interfaces, the MessageProcessing de-
pends only on the factory. This may not sound as a very attractive tradeoff (taking away
two dependencies and introducing one), but note that whenever the MessageFactory needs
another dependency that is like the existing two, the factory is all that will need to change.
The MessageProcessing will remain untouched and still coupled only to the factory.

The last thing that needs to be said is that not all dependencies can be hidden inside a factory.
Note that the factory still needs to receive the MessageData fromwhoever is asking for a Message,
because the MessageData is not available when the factory is created. You may remember that
I call such dependencies a local context (because it is specific to a single use of a factory). On
the other hand, what a factory accepts through its constructor can be called a global context
(because it is the same throughout the factory lifetime). Using this terminology, the local context
cannot be hidden from users of the factory, but the global context can. Thanks to this, the classes
using the factory do not need to know about the global context and can stay cleaner, coupled to
less things and more focused.

Factories can help increase readability and reveal intention (encapsulation
of terminology)

Let’s assume we are writing an action-RPG game which consists of many game levels (not to
be mistaken with experience levels). Players can start a new game or continue a saved game.
When they choose to start a new game, they are immediately taken to the first level with empty
inventory and no skills. Otherwise, when they choose to continue an old game, they have to
select a file with a saved state (then the game level, skills and inventory are loaded from the file).
Thus, we have two separate workflows in our game that end up with two different methods
being invoked: OnNewGame() for new game mode and OnContinue() for resuming a saved game:

1 public void OnNewGame()

2 {

3 //...

4 }

5

6 public void OnContinue(PathToFile savedGameFilePath)

7 {

8 //...

9 }

In each of these methods, we have to somehow assemble a Game class instance. The constructor
of Game allows composing it with a starting level, character’s inventory and a set of skills the
character can use:

Composing a web of objects 167

1 public class FantasyGame : Game

2 {

3 public FantasyGame(

4 Level startingLevel,

5 Inventory inventory,

6 Skills skills)

7 {

8 }

9 }

There is no special class for “new game” or for “resumed game” in our code. A new game is just
a game starting from the first level with empty inventory and no skills:

1 var newGame = new FantasyGame(

2 new FirstLevel(),

3 new BackpackInventory(),

4 new KnightSkills());

In other words, the “new game” concept is expressed by a composition of objects rather than by
a single class, called e.g. NewGame.

Likewise, when we want to create a game object representing resumed game, we do it like this:

1 try

2 {

3 saveFile.Open();

4

5 var loadedGame = new FantasyGame(

6 saveFile.LoadLevel(),

7 saveFile.LoadInventory(),

8 saveFile.LoadSkills());

9 }

10 finally

11 {

12 saveFile.Close();

13 }

Again, the concept of “resumed game” is represented by a composition rather than a single class,
just like in case of “new game”. On the other hand, the concepts of “new game” and “resumed
game” are part of the domain, so we must make them explicit somehow or we loose readability.

One of the ways to do this is to use a factory⁴³. We can create such factory and put inside two
methods: one for creating a new game, another for creating a resumed game. The code of the
factory could look like this:

⁴³There are simple ways, yet none is as flexible as using factories.

Composing a web of objects 168

1 public class FantasyGameFactory : GameFactory

2 {

3 public Game NewGame()

4 {

5 return new FantasyGame(

6 new FirstLevel(),

7 new BackpackInventory(),

8 new KnightSkills());

9 }

10

11 public Game GameSavedIn(PathToFile savedGameFilePath)

12 {

13 var saveFile = new SaveFile(savedGameFilePath);

14 try

15 {

16 saveFile.Open();

17

18 var loadedGame = new FantasyGame(

19 saveFile.LoadLevel(),

20 saveFile.LoadInventory(),

21 saveFile.LoadSkills());

22

23 return loadedGame;

24 }

25 finally

26 {

27 saveFile.Close();

28 }

29 }

30 }

Now we can use the factory in the place where we are notified of the user choice. Remember?
This was the place:

1 public void OnNewGame()

2 {

3 //...

4 }

5

6 public void OnContinue(PathToFile savedGameFilePath)

7 {

8 //...

9 }

When we fill the method bodies with the factory usage, the code ends up like this:

Composing a web of objects 169

1 public void OnNewGame()

2 {

3 var game = _gameFactory.NewGame();

4 game.Start();

5 }

6

7 public void OnContinue(PathToFile savedGameFilePath)

8 {

9 var game = _gameFactory.GameSavedIn(savedGameFilePath);

10 game.Start();

11 }

Note that using factory helps make the code more readable and intention-revealing. Instead of
using a nameless set of connected objects, the two methods shown above ask using terminology
from the domain (explicitly requesting either NewGame() or GameSavedIn(path)). Thus, the
domain concepts of “new game” and “resumed game” become explicit. This justifies the first part
of the name I gave this section (i.e. “Factories can help increase readability and reveal intention”).

There is, however, the second part of the section name: “encapsulating terminology” which I need
to explain. Here’s an explanation: note that the factory is responsible for knowing what exactly
the terms “new game” and “resumed game” mean. As the meaning of the terms is encapsulated
in the factory, we can change the meaning of these terms throughout the application merely
by changing the code inside the factory. For example, we can say that new game starts with
inventory that is not empty, but contains a basic sword and a shield, by changing the NewGame()
method of the factory to this:

1 public Game NewGame()

2 {

3 return new FantasyGame(

4 new FirstLevel(),

5 new BackpackInventory(

6 new BasicSword(),

7 new BasicShield()),

8 new KnightSkills());

9 }

Putting it all together, factories allow giving names to some specific object compositions to
increase readability and introducing terminology that can be changed by changing code inside
the factory methods.

Factories help eliminate redundancy

Redundancy in code means that at least two things need to change for the same reason in the
same way⁴⁴. Usually it is understood as code duplication, but I consider “conceptual duplication”

⁴⁴

A. Shalloway et al., Essential Skills For The Agile Developer.

Composing a web of objects 170

a better term. For example, the following two methods are not redundant, even though the
code seems duplicated (by the way, the following is not an example of good code, just a simple
illustration):

1 public int MetersToCentimeters(int value)

2 {

3 return value*100;

4 }

5

6 public int DollarsToCents(int value)

7 {

8 return value*100;

9 }

As I said, this is not redundancy, because the twomethods represent different concepts that would
change for different reasons. Even if we were to extract “common logic” from the two methods,
the only sensible name we could come up with would be something like MultiplyBy100()which
wouldn’t add any value at all.

Note that up to now, we considered four things factories encapsulate about creation of objects:

1. Type
2. Rule
3. Global context
4. Terminology

Thus, if factories didn’t exist, all these concepts would leak to surrounding classes (we saw an
example when we were talking about encapsulation of global context). Now, as soon as there is
more than one class that needs to create instances, these things leak to all of these classes, creating
redundancy. In such case, any change to how instances are created would mean a change to all
classes needing those instances.

Thankfully, by having a factory – an object that takes care of creating other objects and nothing
else, we can reuse the ruleset, the global context and the type-related decisions across many
classes without any unnecessary overhead. All we need to do is reference the factory and ask it
for an object.

There are more benefits to factories, but I hope I already convinced you that this is a pretty darn
beneficial concept for such a reasonably low cost.

Summary

In this chapter, I tried to show you a variety of ways of composing objects together. Do not worry
if you feel overwhelmed, for the most part, just remember to follow the principle of separating
use from construction and you will be fine.

The rules outlined here apply to the overwhelming part of the objects in our application.Wait, did
I say overwhelming? Not all? So there are exceptions? Yes, there are and we’ll talk about them
shortly, but first, we need to further examine the influence composability has on our object-
oriented design approach.

Interfaces
Some objects are harder to compose with other objects, others are easier. Of course, we are
striving for the higher composability. There are numerous factors influencing this. I already
discussed some of them indirectly, so time to sum things up and fill in the gaps. This chapter
will deal with the role interfaces play in achieving high composability and the next one will deal
with the concept of protocols.

Classes vs interfaces

As we said, a sender is composed with a recipient by obtaining a reference to it. Also, we said
that we want our senders to be able to send messages to many different recipients. This is, of
course, done using polymorphism.

So, one of the questions we have to ask ourselves in our quest for high composability is: on
what should a sender depend on to be able to work with as many recipients as possible? Should
it depend on classes or interfaces? In other words, when we plug in an object as a message
receipient like this:

1 public Sender(Recipient recipient)

2 {

3 this._recipient = recipient;

4 }

Should the Recipient be a class or an interface?

If we assume that Recipient is a class, we can get the composability wewant by deriving another
class from it and implementing abstract methods or overriding virtual ones. However, depending
on a class as a base type for a recipient has the following disadvantages:

1. The recipient class may have some real dependencies. For example, if our Recipient

depends onWindows Communication Foundation (WCF) stack, then all classes depending
directly on Recipient will indirectly depend on WCF, including our Sender. The more
damaging version of this problem is where such a Recipient class does something like
opening a network connection in a constructor – the subclasses are unable to prevent it,
no matter if they like it or not, because a subclass has to call a superclass’ constructor.

2. Recipient’s constructor must be invoked by any class deriving from it, which may be
smaller or bigger trouble, depending on what kind of parameters the constructor accepts
and what it does.

3. In languages that support single inheritance only, deriving from Recipient class uses up
the only inheritance slot, constraining our design.

171

Interfaces 172

4. We must make sure to mark all the methods of Recipient class as virtual to enable
overriding them by subclasses. otherwise, we won’t have full composability. Subclasses
will not be able to redefine all of the Recipient behaviors, so they will be very constrained
in what they can do.

As you see, there are some difficulties using classes as “slots for composability”, even if
composition is technically possible this way. Interfaces are far better, just because they do not
have the above disadvantages.

It is decided then that if a sender wants to be composable with different recipients, it has to accept
a reference to a recipient in a form of interface reference. We can say that, by being lightweight
and behaviorless, interfaces can be treated as “slots” or “sockets” for plugging in different
objects.

As a matter of fact, on UML diagrams, one way to depict a a class implementing an interface is
by drawing it with a plug. Thus, it seems that the “interface as slot for pluggability” concept is
not so unusual.

ConcreteRecipient class implementing three interfaces in UML. The interfaces are shown as “plugs” exposed
by the class meaning it can be plugged into anything that uses any of the three interfaces

As you may have already guessed from the previous chapters, we are taking the idea of
pluggability and composability to the extreme, making it one of the top priorities.

Events/callbacks vs interfaces – few words on roles

Did I just say that composability is “one of the top priorities” in our design approach?Wow, that’s
quite a statement, isn’t it? Unfortunately for me, it also lets you raise the following argument:
“Hey, interfaces are not the most extreme way of achieving composability! What about e.g. C#
events feature? Or callbacks that are supported by some other languages? Wouldn’t it make the
classes even more context-independent and composable, if we connected them through events
or callbacks, not interfaces?”

Actually, it would, but it would also strip us from another very important aspect of our design
approach that I did not mention explicitly until now. This aspect is: roles.Whenwe use interfaces,

Interfaces 173

we can say that each interface stands for a role for a real object to play. When these roles are
explicit, they help design and describe the communication between objects.

Let’s look at an example of how not defining explicit roles removes some clarity from the design.
This is a sample method that sends some messages to two recipients held as interfaces:

1 //role players:

2 private readonly Role1 recipient1;

3 private readonly Role2 recipient2;

4

5 public void SendSomethingToRecipients()

6 {

7 recipient1.DoX();

8 recipient1.DoY();

9 recipient2.DoZ();

10 }

and we compare it with similar effect achieved using callback invocation:

1 //callbacks:

2 private readonly Action DoX;

3 private readonly Action DoY;

4 private readonly Action DoZ;

5

6 public void SendSomethingToRecipients()

7 {

8 DoX();

9 DoY();

10 DoZ();

11 }

We can see that in the second case we are losing the notion of which message belongs to which
recipient – each callback is standalone from the point of view of the sender. This is unfortunate,
because in our design approach, we want to highlight the roles each recipient plays in the
communication, to make it readable and logical. Also, ironically, decoupling using events or
callbacks can make composability harder. This is because roles tell us which sets of behaviors
belong together and thus, need to change together. If each behavior is triggered using a separate
event or callback, an overhead is placed on us to remember which behaviors should be changed
together, and which ones can change independently.

This does not mean that events or callbacks are bad. It’s just that they are not fit for replacing
interfaces – in reality, their purpose is a little bit different. We use events or callbacks not ?tell
somebody to do something?, but to indicate what happened (that’s why we call them events,
after all…). This fits well the observer pattern we already talked about in the previous chapter.
So, instead of using observer objects, we may consider using events or callbacks instead (as
in everything, there are some tradeoffs for each of the solutions). In other words, events and

Interfaces 174

callbacks have their use in the composition, but they are fit for a case so specific, that they cannot
be treated as a default choice. The advantage of interfaces is that they bind together messages
that represent a coherent abstractions and convey roles in the communication. This improves
readability and clarity.

Small interfaces

Ok, so we said that he interfaces are “the way to go” for reaching the strong composability we’re
striving for. Does merely using interfaces guarantee us that the composability will be strong?
The answer is “no” – while using interfaces as “slots” is a necessary step in the right direction, it
alone does not produce the best composability.

One of the other things we need to consider is the size of interfaces. Let’s state one thing that is
obvious in regard to this:

All other things equal, smaller interfaces (i.e. with less methods) are easier to implement
than bigger interfaces.

The obvious conclusion from this is that if we want to have really strong composability, our
“slots”, i.e. interfaces, have to be as small as possible (but not smaller – see previous section on
interfaces vs events/callbacks). Of course, we cannot achieve this by blindly removing methods
from interfaces, because this would break classes that use these methods e.g. when someone is
using an interface implementation like this:

1 public void Process(Recipient recipient)

2 {

3 recipient.DoSomething();

4 recipient.DoSomethingElse();

5 }

It is impossible to remove either of the methods from the Recipient interface, because it would
cause a compile error saying that we are trying to use a method that does not exist.

So, what do we do then? We try to separate groups of methods used by different senders and
move them to separate interfaces, so that each sender has access only to the methods it needs.
After all, a class can implement more than one interface, like this:

1 public class ImplementingObject

2 : InterfaceForSender1,

3 InterfaceForSender2,

4 InterfaceForSender3

5 { ... }

This notion of creating a separate interface per sender instead of a single big interface for all
senders is known as the Interface Segregation Principle⁴⁵.

⁴⁵http://docs.google.com/a/cleancoder.com/viewer?a=v&pid=explorer&chrome=true&srcid=0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi&hl=en

Interfaces 175

A simple example: separation of reading from writing

Let’s assume we have a class in our application that represents enterprise organizational
structure. This application exposes two APIs. The first one serves for notifications about changes
of organizational structure by an administrator (so that our class can update its data). The
second one is for client-side operations on the organizational data, like listing all employees.
The interface for the organizational structure class may contain methods used by both these
APIs:

1 public interface

2 OrganizationStructure

3 {

4 //////////////////////

5 //used by administrator:

6 //////////////////////

7

8 void Make(Change change);

9 //...other administrative methods

10

11 //////////////////////

12 //used by clients:

13 //////////////////////

14

15 void ListAllEmployees(

16 EmployeeDestination destination);

17 //...other client-side methods

18 }

However, the administrative API handling is done by a different code than the client-side API
handling. Thus, the administrative part has no use of the knowledge about listing employees and
vice-versa – the client-side one has no interest in making administrative changes. We can use
this knowledge to split our interface into two:

1 public interface

2 OrganizationalStructureAdminCommands

3 {

4 void Make(Change change);

5 //... other administrative methods

6 }

7

8 public interface

9 OrganizationalStructureClientCommands

10 {

11 void ListAllEmployees(

12 EmployeeDestination destination);

Interfaces 176

13 //... other client-side methods

14 }

Note that this does not constrain the implementation of these interfaces – a real class can still
implement both of them if this is desired:

1 public class InMemoryOrganizationalStructure

2 : OrganizationalStructureAdminCommands,

3 OrganizationalStructureClientCommands

4 {

5 //...

6 }

In this approach, we create more interfaces (which some of you may not like), but that shouldn’t
bother us much, because in return, each interface is easier to implement (because the number of
methods to implement is smaller than in case of one big interface). This means that composability
is enhanced, which is what we want the most.

It pays off. For example, one day, we may get a requirement that all writes to the organizational
structure (i.e. the admin-related operations) have to be traced. In such case, all we have to do is
to create a proxy class implementing OrganizationalStructureAdminCommands interface, which
wraps the original class’ methods with a notification to an observer (that can be either the trace
that is required or anything else we like):

1 public class NotifyingAdminComands : OrganizationalStructureAdminCommands

2 {

3 public NotifyingCommands(

4 OrganizationalStructureAdminCommands wrapped,

5 ChangeObserver observer)

6 {

7 _wrapped = wrapped;

8 _observer = observer;

9 }

10

11 void Make(Change change)

12 {

13 _wrapped.Make(change);

14 _observer.NotifyAbout(change);

15 }

16

17 //...other administrative methods

18 }

Note that when defining the above class, we only had to implement one interface: Organi-
zationalStructureAdminCommands, and could ignore the existence of OrganizationalStruc-

tureClientCommands. This is because of the interface split we did before. If we had not

Interfaces 177

separated interfaces for admin and client access, our NotifyingAdminComands class would have
to implement the ListAllEmployees method (and others) and make it delegate to the original
wrapped instance. This is not difficult, but it’s unnecessary effort. Splitting the interface into two
smaller ones spared us this trouble.

Interfaces should model roles

In the above example, we split the one bigger interface into two smaller, in reality exposing that
the InMemoryOrganizationalStructure class objects can play two roles.

Considering roles is another powerful way of separating interfaces. For example, in the organi-
zational structure we mentioned above, we may have objects of class Employee, but that does
not mean this class has to implement an interface called IEmployee or EmployeeIfc of enything
like that. Honestly speaking, this is a situation that we may start of with, when we don’t have
better ideas yet, but would like to get away from as soon as we can through refactoring. What
we would like to do as soon as we can is to recognize valid roles. In our example, from the
point of view of the structure, the employee might play a Node role. If it has a parent (e.g. an
organization unit) it belongs to, from its perspective it might play a ChildUnit role. Likewise, if it
has any children in the structure (e.g. employees he manages), he can be considered their Parent
or DirectSupervisor. All of these roles should bemodeled using interfaces which Employee class
implements:

1 public class Employee : Node, ChildUnit, DirectSupervisor

2 {

3 //...

and each of those interfaces should be given only the methods that are needed from the point of
view of objects interacting with a role modeled with this interface.

Interfaces should depend on abstractions, not implementation details

It is tempting to think that every interface is an abstraction by definition. I believe otherwise –
while interfaces abstract away the concrete type of the class that implements it, they may still
contain some other things not abstracted that are basically implementation details. Let’s look at
the following interface:

1 public interface Basket

2 {

3 void WriteTo(SqlConnection sqlConnection);

4 bool IsAllowedToEditBy(SecurityPrincipal user);

5 }

See the arguments of those methods? SqlConnection is a library object for interfacing directly
with SQL Server database, so it is a very concrete dependency. SecurityPrincipal is one of the
core classes of .NET’s authorization library that works with users database on local system or
Active Directory. So again, a very concrete dependency. With dependencies like that, it will be

Interfaces 178

very hard to write other implementations of this interface, because we will be forced to drag
around concrete dependencies and mostly will not be able to work around that if we want
something different. Thus, we may say that these concrete types I mentioned are implementation
details exposed in the interface. Thus, this interface is a failed abstraction. It is essential to abstract
these implementation details away, e.g. like this:

1 public interface Basket

2 {

3 void WriteTo(ProductOutput output);

4 bool IsAllowedToEditBy(BasketOwner user);

5 }

This is better. For example, as ProductOutput is a higher level abstraction (most probably an
interface, as we discussed earlier) no implementation of the WriteTomethod must be tied to any
particular storage kind. This means that we are more free to develop different implementations
of this method. In addition, each implementation of the WriteTomethod is more useful as it can
be reused with different kinds of ProductOutputs.

Another example might be a data interface, i.e. an interface with getters and setters only. Looking
at this example:

1 public interface Employee

2 {

3 HumanName Name { get; set; }

4 HumanAge Age { get; set; }

5 Address Address { get; set; }

6 Money Pay { get; set; }

7 EmploymentStatus EmploymentStatus { get; set; }

8 }

in howmany different ways can we implement such interface? Not many – the only question we
can answer differently in different implementations of Employee is: “what is the data storage?”.
Everything besides this question is exposed, making this a very poor abstraction. As a matter of
fact, this is similar to what Johnny and Benjamin were battling in the payroll system, when they
wanted to introduce another kind of employee – a contractor employee. Thus, most probably, a
better abstraction would be something like this:

1 public interface Employee

2 {

3 void Sign(Document document);

4 void Send(PayrollReport payrollReport);

5 void Fire();

6 void GiveRaiseBy(Percentage percentage);

7 }

So the general rule is: make interfaces real abstractions by abstracting away the implementation
details from them. Only then are you free to create different implementations of the interface
that are not constrained by dependencies they do not want or need.

Protocols
You already know that objects are connected (composed) together and communicate through
interfaces, just as in IP network. There is one more similarity, that’s as important. It’s protocols.
In this section, we will look at protocols between objects and their place on our design approach.

Protocols exist

I do not want to introduce any scientific definition, so let’s just establish an understanding that
protocols are sets of rules about how objects communicate with each other.

Really? Are there any rules? Is it not enough the the objects can be composed together through
interfaces, as I explained in previous sections? Well, no, it’s not enough and let me give you a
quick example.

Let’s imagine a class Sender that, in one of its methods, asks Recipient (let’s assume Recipient
is an interface) to extract status code from some kind of response object and makes a decision
based on that code whether or not to notify an observer about an error:

1 if(recipient.ExtractStatusCodeFrom(response) == -1)

2 {

3 observer.NotifyErrorOccured();

4 }

This design is a bit simplistic, but never mind. Its role is to make a certain point. Whoever the
recipient is, it is expected to report error by returning a value of -1. Otherwise, the Sender

(which is explicitly checking for this value) will not be able to react to the error situation
appropriately. Similarly, if there is no error, the recipient must not report this by returning
-1, because if it does, the Sender will be mistakenly recognize this as error. So for example
this implementation of Recipient, although implementing the interface required by Sender, is
wrong, because it does not behave as Sender expects it to:

1 public class WrongRecipient : Recipient

2 {

3 public int ExtractStatusFrom(Response response)

4 {

5 if(/* success */)

6 {

7 return -1; // but -1 is for errors!

8 }

9 else

10 {

179

Protocols 180

11 return 1; // -1 should be used!

12 }

13 }

14 }

So as you see, we cannot just write anything in a class implementing an interface, because of a
protocol that imposes certain constraints on both a sender and a recipient.

This protocol may not only determine the return values necessary for two objects to interact
properly, it can also determine types of exceptions thrown, or the order of method calls. For
example, anybody using some kind of connection object would imagine the following way of
using the connection: first open it, then do something with it and close it when finished, e.g.

1 connection.Open();

2 connection.Send(data);

3 connection.Close();

Assuming the above connection is an implementation of Connection interface, if we were to
implement it like this:

1 public class WrongConnection : Connection

2 {

3 public void Open()

4 {

5 // imagine implementation

6 // for *closing* the connection is here!!

7 }

8

9 public void Close()

10 {

11 // imagine implementation for

12 // *opening* the connection is here!!

13 }

14 }

it would compile just fine, but fail badly when executed. This is because the behavior would
be against the protocol set between Connection abstraction and its user. All implementations of
Connection must follow this protocol.

So, again, there are certain rules that restrict the way two objects can communicate. Both sender
and recipient of a message must adhere to the rules, or the they will not be able to work together.

The good news is that, most of the time, we are the ones who design these protocols, along
with the interfaces, so we can design them to be either easier or harder or to follow by different
implementations of an interface. Of course, we are wholeheartedly for the “easier” part.

Protocols 181

Protocol stability

Remember the last story about Johnny and Benjamin when they had to make a design change to
add another kind of employees (contractors) to the application? To do that, they had to change
existing interfaces and add new ones. This was a lot of work.We don’t want to do this muchwork
every time we make a change, especially when we introduce a new variation of a concept that is
already present in our design (e.g. Johnny and Benjamin already had the concept of “employee”
and they were adding a new variation of it, called “contractor”).

To achieve this, we need the protocols to be more stable, i.e. less prone to change. By drawing
some conclusions from experiences of Johnny and Benjamin, we can say that they had problems
with protocols stability because the protocols were:

1. complicated rather than simple
2. concrete rather than abstract
3. large rather than small

Based on analysis of the factors that make the stability of the protocols bad, we can come up
with some conditions under which these protocols could be more stable:

1. protocols should be simple
2. protocols should be abstract
3. protocols should be logical
4. protocols should be small

And there are some heuristics that let us get closer to these qualities:

Craft messages to reflect sender’s intention

The protocols are simpler if they are designed from the perspective of the object that sends the
message, not the one that receives it. In other words, methods should reflect the intention of
senders rather than capabilities of recipients.

As an example, let’s look at a code for logging in that uses an instance of an AccessGuard class:

1 accessGuard.SetLogin(login);

2 accessGuard.SetPassword(password);

3 accessGuard.Login();

In this little snippet, the sender must send three messages to the accessGuard object: SetLogin(),
SetPassword() and Login(), even though there is no real need to divide the logic into three steps
– they are all executed in the same place anyway. The maker of the AccessGuard class might
have thought that this division makes the class more “general purpose”, but it seems this is a
“premature optimization” that only makes it harder for the sender to work with the accessGuard
object. Thus, the protocol that is simpler from the perspective of a sender would be:

Protocols 182

1 accessGuard.LoginWith(login, password);

Naming by intention

Another lesson learned from the above example is: setters (like SetLogin and SetPassword in our
example) rarely reflect senders’ intentions – more often they are artificial “things” introduced
to directly manage object state. This may also have been the reason why someone introduced
three messages instead of one – maybe the AccessGuard class was implemented to hold two
fields (login and password) inside, so the programmer might have thought someone would
want to manipulate them separately from the login step… Anyway, setters should be either
avoided or changed to something that reflects the intention better. For example, when dealing
with observer pattern, we don’t want to say: SetObserver(screen), but rather something like
FromNowOnReportCurrentWeatherTo(screen).

The issue of naming can be summarized as this: a name of an interface should be assigned after
the role that its implementations play and methods should be named after the responsibilities
we want the role to have. I love the example that Scott Bain gives in his Emergent Design
book⁴⁶: if I told you “give me your driving license number”, you might’ve reacted differently
based on whether the driving license is in your pocket, or your wallet, or your bag, or in your
house (in which case you would need to call someone to read it for you). The point is: I, as a
sender of this “give me your driving license number” message, do not care how you get it. I say
RetrieveDrivingLicenseNumber(), not OpenYourWalletAndReadTheNumber().

This is important, because if the name represents the sender’s intention, the method will not
have to be renamed when new classes are created that fulfill this intention in a different way.

Model interactions after the problem domain

Sometimes at work, I am asked to conduct a design workshop. The example I often give to my
colleagues is to design a system for order reservations (customers place orders and shop deliverers
can reserve who gets to deliver which order). The thing that struck me the first few times I did
this workshop was that even though the application was all about orders and their reservation,
nearly none of the attendees introduced any kind of Order interface or class with Reserve()

method on it. Most of the attendees assume that Order is a data structure and handle reservation
by adding it to a “collection of reserved items” which can be imagined as the following code
fragment:

1 // order is just a data structure,

2 // added to a collection

3 reservedOrders.Add(order)

While this achieves the goal in technical terms (i.e. the application works), the code does not
reflect the domain.

⁴⁶Scott Bain, Emergent Design

Protocols 183

If roles, responsibilities and collaborations between objects reflect the domain, then any change
that is natural in the domain is natural in the code. If this is not the case, then changes that seem
small from the perspective of the problem domain end up touching many classes and methods
in highly unusual ways. In other words, the interactions between objects becomes less stable
(which is exactly what we want to avoid).

On the other hand, let’s assume that we have modeled the design after the domain and have
introduced a proper Order role. Then, the logic for reserving an order may look like this:

1 order.ReserveBy(deliverer);

Note that this line is as stable as the domain itself. It needs to change e.g. when orders are not
reserved anymore, or someone other than deliverers starts reserving the orders. Thus, I’d say the
stability of this tiny interaction is darn high.

Even in cases when the understanding of the domain evolves and changes rapidly, the stability
of the domain, although not as high as usually, is still one of the highest the world around us has
to offer.

Another example

Let’s assume that we have a code for handling alarms. When an alarm is triggered, all gates are
closed, sirens are turned on and a message is sent to special forces with the highest priority to
arrive and terminate the intruder. Any error in this procedure leads to shutting down power in
the building. If this workflow is coded like this:

1 try

2 {

3 gates.CloseAll();

4 sirens.TurnOn();

5 specialForces.NotifyWith(Priority.High);

6 }

7 catch(SecurityFailure failure)

8 {

9 powerSystem.TurnOffBecauseOf(failure);

10 }

Then the risk of this code changing for other reasons than the change of how domain works (e.g.
we do not close the gates anymore but activate laser guns instead) is small. Thus, interactions
that use abstractions and methods that directly express domain rules are more stable.

So, to sum up – if a design reflects the domain, it is easier to predict how a change of domain
rules will affect the design. This contributes to maintainability and stability of the interactions
and the design as a whole.

Protocols 184

Message recipients should be told what to do,
instead of being asked for information

Let’s say we are paying an annual income tax yearly and are too busy (i.e. have too many
responsibilities) to do this ourselves. Thus, we hire a tax expert to calculate and pay the taxes for
us. He is an expert on paying taxes, knows how to calculate everything, where to submit it etc.
but there is one thing he does not know – the context. In other word, he does not know which
bank we are using or what we have earned this year that we need to pay the tax for. This is
something we need to give him.

Here’s the deal between us and the tax expert summarized as a table:

Who? Needs Can provide

Us The tax paid context (bank, income
documents)

Tax Expert context (bank, income
documents)

The service of paying the tax

It is us who hire the expert and us who initiate the deal, so we need to provide the context, as
seen in the above table. If we were to model this deal as an interaction between two objects, it
could e.g. look like this:

1 taxExpert.PayAnnualIncomeTax(

2 ourIncomeDocuments,

3 ourBank);

One day, our friend, Joan, tells us she needs a tax expert as well. We are happy with the one
we hired, so we recommend him to Joan. She has her own income documents, but they are
functionally similar to ours, just with different numbers here and there andmaybe some different
formatting. Also, Joan uses a different bank, but interacting with any bank these days is almost
identical. Thus, our tax expert knows how to handle her request. If we model this as interaction
between objects, it may look like this:

1 taxExpert.PayAnnualIncomeTax(

2 joansIncomeDocuments,

3 joansBank);

Thus, when interacting with Joan, the tax expert can still use his abilities to calculate and pay
taxes the same way as in our case. This is because his skills are independent of the context.

Another day, we decide we are not happy anymore with our tax expert, so we decide to make a
deal with a new one. Thankfully, we do not need to know how tax experts do their work – we
just tell them to do it, so we can interact with the new one just as with the previous one:

Protocols 185

1 //this is the new tax expert,

2 //but no change to the way we talk to him:

3

4 taxExpert.PayAnnualIncomeTax(

5 ourIncomeDocuments,

6 ourBank);

This small example should not be taken literally. Social interactions are far more complicated and
complex than what objects usually do. But I hope I managed to illustrate with it an important
aspect of the communication style that is preferred in object-oriented design: the Tell Don’t Ask
heuristic.

Tell Don’t Ask basically means that each object, as an expert in its job, is not doing what is not
its job, but instead relying on other objects that are experts in their respective jobs and provide
them with all the context they need to achieve the tasks it wants them to do as parameters of the
messages it sends to them.

This can be illustrated with a generic code pattern:

1 recipient.DoSomethingForMe(allTheContextYouNeedToKnow);

This way, a double benefit is gained:

1. Our recipient (e.g. taxExpert from the example) can be used by other senders (e.g. pay
tax for Joan) without needing to change. All it needs is a different context passed inside a
constructor and messages.

2. We, as senders, can easily use different recipients (e.g. different tax experts that do the task
they are assigned with differently) without learning how to interact with each new one.

If you look at it, as much as bank and documents are a context for the tax expert, the tax expert is
a context for us. Thus, we may say that a design that follows the Tell Don’t Ask principle creates
classes that are context-independent.

This has very profound influence on the stability of the protocols. Asmuch as objects are context-
independent, they (and their interactions) do not need to change when context changes.

Again, quoting Scott Bain, “what you hide, you can change”. Thus, telling an object what to do
requires less knowledge than asking for data and information. Again using the driver license
metaphor: I may ask another person for a driving license number to make sure they have the
license and that it is valid (by checking the number somewhere). I may also ask another person
to provide me with the directions to the place I want the first person to drive. But isn’t it easier to
just tell “buy me some bread and butter”? Then, whoever I ask, has the freedom to either drive,
or walk (if they know a good store nearby) or ask yet another person to do it instead. I don’t care
as long as tomorrow morning, I find the bread and butter in my fridge.

All of these benefits are, by the way, exactly what Johnny and Benjamin were aiming at when
refactoring the payroll system. They went from this code, where they asked employee a lot of
questions:

Protocols 186

1 var newSalary

2 = employee.GetSalary()

3 + employee.GetSalary()

4 * 0.1;

5 employee.SetSalary(newSalary);

to this design that told employee do do its job:

1 employee.EvaluateRaise();

This way, they were able to make this code interact with both RegularEmployee and Contrac-

torEmployee the same way.

This guideline should be treated very, very seriously and applied in almost an extreme way.
There are, of course, few places where it does not apply and we’ll get back to them later.

Oh, I almost forgot one thing! The context that we are passing is not necessarily data. It is even
more frequent to pass around behavior than to pass data. For example, in our interaction with
the tax expert:

1 taxExpert.PayAnnualIncomeTax(

2 ourIncomeDocuments,

3 ourBank);

Bank is probably not a piece of data. Rather, I would imagine Bank to implement an interface
that looks like this:

1 public interface Bank

2 {

3 void TransferMoney(

4 Amount amount,

5 AccountId sourceAccount,

6 AccountId destinationAccount);

7 }

So as you can see, this Bank is a piece of behavior, not data, and it itself follows the Tell Don’t
Ask style as well (it does something well and takes all the context it needs from outside).

Where Tell Don’t Ask does not apply

As I already said, there are places where Tell Don’t Ask does not apply. Here are some examples
from the top of my head:

1. Factories – these are objects that produce other objects for us, so they are inherently “pull-
based” – they are always asked to deliver objects.

Protocols 187

2. Collections – they are merely containers for objects, so all we want from them is adding
objects and retrieving objects (by index, by predicate, using a key etc.). Note however, that
when we write a class that wraps a collection inside, we want this class to expose interface
shaped in a Tell Don’t Ask manner.

3. Data sources, like databases – again, these are storage for data, so it is more probable that
we will need to ask for this data to get it.

4. Some APIs accessed via network –while it is good to use as much Tell Don’t Ask as we can,
web APIs have one limitation – it is hard or impossible to pass behaviors as polymorphic
objects through them. Usually, we can only pass data.

5. So called “fluent APIs”, also called “internal domain-specific languages”⁴⁷

Even in cases where we obtain other objects from a method call, we want to be able to apply Tell
Don’t Ask to these other objects. For example, we want to avoid the following chain of calls:

1 Radio radio = radioRepository().GetRadio(12);

2 var userName = radio.GetUsers().First().GetName();

3 primaryUsersList.Add(userName);

This way we make the communication tied to the following assumptions:

1. Radio has many users
2. Radio must have at least one user
3. Each user must have a name
4. The name is not null

On the other hand, consider this implementation:

1 Radio radio = radioRepository().GetRadio(12);

2 radio.AddPrimaryUserNameTo(primaryUsersList);

It does not have any of the weaknesses of the previous example. Thus, it is more stable in face
of change.

Most of the getters should be removed, return
values should be avoided

The above stated guideline of “Tell Don’t Ask” has a practical implication of getting rid of (almost)
all the getters. We did say that each object should stick to its work and tell other objects to do
their work, passing context to them, didn’t we? If so, then why should we “get” anything from
other objects?

⁴⁷This topic is outside the scope of the book, but you can take a look at: M. Fowler, Domain-Specific Languages, Addison-Wesley 2010

Protocols 188

For me the idea of “no getters” was very extreme at first, but in a short time I learned that
this is in fact how I am supposed to write object-oriented code. You see, I started learning
programming using structural languages such as C, where a programwas divided into procedures
or functions and data structures. Then I moved on to object-oriented languages that had far better
mechanisms for abstraction, but my style of coding didn’t really change much. I would still have
procedures and functions, just divided into objects. I would still have data structures, but now
more abstract, e.g. objects with setters, getters and some other query methods.

But what alternatives do we have?Well, I already introduced Tell Don’t Ask, so you should know
the answer. Even though you should, I want to show you another example, this time specifically
about getters and setters.

Let’s say that we have a piece of software that handles user sessions. A session is represented
in code using a Session class. We want to be able to do three things with our sessions: display
them on the GUI, send them through the network and persist them. In our application, we want
each of these responsibilities handled by a separate class, because we think it is good if they are
not tied together.

So, we need three classes dealing with data owned by the session. This means that each of these
classes should somehow obtain access to the data. Otherwise, how can this data be e.g. persisted?
It seems we have no choice and we have to expose it using getters.

Of course, we might re-think our choice of creating separate classes for sending, persistence
etc. and consider a choice where we put all this logic inside a Session class. If we did that,
however, we would make a core domain concept (a session) dependent on a nasty set of third-
party libraries (like a particular GUI library), which would mean that e.g. every time some GUI
displaying concept changes, we will be forced to tinker in core domain code, which is pretty
risky. Also, if we did that, the Session would be hard to reuse, because every place we would
want to reuse this class, we would need to take all these heavy libraries it depends on with us.
Plus, we would not be able to e.g. use Session with different GUI or persistence libraries. So,
again, it seems like our (not so good, as we will see) only choice is to introduce getters for the
information pieces stored inside a session, like this:

1 public interface Session

2 {

3 string GetOwner();

4 string GetTarget();

5 DateTime GetExpiryTime();

6 }

So yeah, in a way, we have decoupled Session from these third-party libraries and we may even
say that we have achieved context-independence as far as Session itself is concerned – we can
now pull all its data e.g. in a GUI code and display it as a table. The Session does not know
anything about it. Let’s see that:

Protocols 189

1 // Display sessions as a table on GUI

2 foreach(var session in sessions)

3 {

4 var tableRow = TableRow.Create();

5 tableRow.SetCellContentFor("owner", session.GetOwner());

6 tableRow.SetCellContentFor("target", session.GetTarget());

7 tableRow.SetCellContentFor("expiryTime", session.GetExpiryTime());

8 table.Add(tableRow);

9 }

It seems we solved the problemr by separating the data from the context it is used in and pulling
data to a place that has the context, i.e. knows what to do with this data. Are we happy? We may
be unless we look at how the other parts look like – remember that in addition to displaying
sessions, we also want to send them and persist them. The sending logic looks like this:

1 //part of sending logic

2 foreach(var session in sessions)

3 {

4 var message = SessionMessage.Blank();

5 message.Owner = session.GetOwner();

6 message.Target = session.GetTarget();

7 message.ExpiryTime = session.GetExpiryTime();

8 connection.Send(message);

9 }

and the persistence logic like this:

1 //part of storing logic

2 foreach(var session in sessions)

3 {

4 var record = Record.Blank();

5 dataRecord.Owner = session.GetOwner();

6 dataRecord.Target = session.GetTarget();

7 dataRecord.ExpiryTime = session.GetExpiryTime();

8 database.Save(record);

9 }

See anything disturbing here? If no, then imagine what happens when we add another piece of
information to the Session, say, priority. We now have three places to update and we have to
remember to update all of them every time. This is called “redundancy” or “asking for trouble”.
Also, composability of these three classes is pretty bad, because they will have to change a lot
just because data in a session changes.

The reason for this is that we made the Session class effectively a data structure. It does not
implement any domain-related behaviors, just exposes data. There are two implications of this:

Protocols 190

1. This forces all users of this class to define session-related behaviors on behalf of the
Session, meaning these behaviors are scattered all over the place⁴⁸. If one is tomake change
to the session, they must find all related behaviors and correct them.

2. As a set of object behaviors is generally more stable than its internal data (e.g. a session
might have more than one target one day, but we will always be starting and stopping
sessions), this leads to brittle interfaces and protocols – certainly the opposite of what we
are striving for.

Bummer, this solution is pretty bad, but we seem to be out of options. Should we just accept that
there will be problems with this implementation and move on? Thankfully, we don’t have to. So
far, we have found the following options to be troublesome:

1. The Session class containing the display, store and send logic, i.e. all the context needed
– too much coupling to heavy dependencies.

2. The Session class to expose its data via getters, so that we may pull it where we have
enough context to know how to use it – communication is too brittle and redundancy
creeps in (by the way, this design will also be bad for multithreading, but that’s something
for another time).

Thankfully, we have a third alternative, which is better than the two we already mentioned.
We can just pass the context into the Session class. “Isn’t this just another way to do what we
outlined in point 1? If we pass the context in, isn’t Session still coupled to this context?”, you
may ask. The answer is: not necessarily, because we canmake Session class depend on interfaces
only instead of the real thing to make it context-independent enough.

Let’s see how this plays out in practice. First let’s remove those ugly getters from the Session and
introduce newmethod called DumpInto() that will take a Destination interface implementation
as a parameter:

1 public interface Session

2 {

3 void DumpInto(Destination destination);

4 }

The implementation of Session, e.g. a RealSession can pass all fields into this destination like
so:

⁴⁸This is sometimes called Feature Envy. It means that a class is more interested in other class’ data than in its own.

Protocols 191

1 public class RealSession : Session

2 {

3 //...

4

5 public void DumpInto(Destination destination)

6 {

7 destination.AcceptOwner(this.owner);

8 destination.AcceptTarget(this.target);

9 destination.AcceptExpiryTime(this.expiryTime);

10 destination.Done();

11 }

12

13 //...

14 }

And the looping through sessions now looks like this:

1 foreach(var session : sessions)

2 {

3 session.DumpInto(destination);

4 }

In this design, RealSession itself decides which parameters to pass and in what order (if that
matters) – no one is asking for its data. This DumpInto() method is fairly general, so we can use
it to implement all three mentioned behaviors (displaying, persistence, sending), by creating a
implementation for each type of destination, e.g. for GUI, it might look like this:

1 public class GuiDestination : Destination

2 {

3 private TableRow _row;

4 private Table _table;

5

6 public GuiDestination(Table table, TableRow row)

7 {

8 _table = table;

9 _row = row;

10 }

11

12 public void AcceptOwner(string owner)

13 {

14 _row.SetCellContentFor("owner", owner);

15 }

16

17 public void AcceptTarget(string target)

18 {

Protocols 192

19 _row.SetCellContentFor("target", target);

20 }

21

22 public void AcceptExpiryTime(DateTime expiryTime)

23 {

24 _row.SetCellContentFor("expiryTime", expiryTime);

25 }

26

27 public void Done()

28 {

29 _table.Add(_row);

30 }

31 }

The protocol is nowmore stable as far as the consumers of session data are concerned. Previously,
when we had the getters in the Session class:

1 public class Session

2 {

3 string GetOwner();

4 string GetTarget();

5 DateTime GetExpiryTime();

6 }

the getters had to return something. So what if we had sessions that could expire and decided
we want to ignore them when they do (i.e. do not display, store, send or do anything else with
them)? In case of the “getter approach” seen in the snippet above, we would have to add another
getter, e.g. called IsExpired() to the session class and remember to update each consumer the
same way – to check the expiry before consuming the data… you see where this is going, don’t
you? On the other hand, with the current design of the Session interface, we can e.g. introduce
a feature where the expired sessions are not processed at all in a single place:

1 public class TimedSession : Session

2 {

3 //...

4

5 public void DumpInto(Destination destination)

6 {

7 if(!IsExpired())

8 {

9 destination.AcceptOwner(this.owner);

10 destination.AcceptTarget(this.target);

11 destination.AcceptExpiryTime(this.expiryTime);

12 destination.Done();

13 }

Protocols 193

14 }

15

16 //...

17 }

and there is no need to change any other code to get this working⁴⁹.

Another advantage of designing/making Session to not return anything from its methods is
that we have more flexibility in applying patterns such as proxy and decorator to the Session
implementations. For example, we can use proxy pattern to implement hidden sessions that are
not displayed/stored/sent at all, but at the same time behave like another session in all the other
cases. Such a proxy forwards all messages it receives to the original, wrapped Session object,
but discards the DumpInto() calls:

1 public class HiddenSession : Session

2 {

3 private Session _innerSession;

4

5 public HiddenSession(Session innerSession)

6 {

7 _innerSession = innerSession;

8 }

9

10 public void DoSomethig()

11 {

12 // forward the message to wrapped instance:

13 _innerSession.DoSomething();

14 }

15

16 //...

17

18 public void DumpInto(Destination destination)

19 {

20 // discard the message - do nothing

21 }

22

23 //...

24 }

The clients of this code will not notice this change at all. When we are not forced to return
anything, we are more free to do as we like. Again, “Tell, don’t ask”.

⁴⁹We can even further refactor this into a state machine using a Gang of Four State pattern. There would be two states in such a state
machine: started and expired.

Protocols 194

Protocols should be small and abstract

I already said that interfaces should be small and abstract, so am I not just repeating myself here?
The answer is: there is a difference between the size of protocols and the size of interfaces. As
an extreme example, let’s take the following interface:

1 public interface Interpreter

2 {

3 public void Execute(string command);

4 }

Is the interface small? Of course! Is it abstract? Well, kind of, yes. Tell Don’t Ask? Sure! But let’s
see how it’s used by one of its collaborators:

1 public void RunScript()

2 {

3 _interpreter.Execute("cd dir1");

4 _interpreter.Execute("copy *.cs ../../dir2/src");

5 _interpreter.Execute("copy *.xml ../../dir2/config");

6 _interpreter.Execute("cd ../../dir2/");

7 _interpreter.Execute("compile *.cs");

8 _interpreter.Execute("cd dir3");

9 _interpreter.Execute("copy *.cs ../../dir4/src");

10 _interpreter.Execute("copy *.xml ../../dir4/config");

11 _interpreter.Execute("cd ../../dir4/");

12 _interpreter.Execute("compile *.cs");

13 _interpreter.Execute("cd dir5");

14 _interpreter.Execute("copy *.cs ../../dir6/src");

15 _interpreter.Execute("copy *.xml ../../dir6/config");

16 _interpreter.Execute("cd ../../dir6/");

17 _interpreter.Execute("compile *.cs");

18 }

The point is: the protocol is neither abstract nor small. Thus, making implementations of interface
that is used as such can be pretty painful.

Summary

In this lengthy chapter I tried to show you the often underrated value of designing communi-
cation protocols between objects. They are not a “nice thing to have”, but rather a fundamental
part of the design approach that makes mock objects useful, as you will see when finally we get
to them. But first, I need you to swallow few more object-oriented design ideas. I promise it will
pay off.

Classes
We already covered interfaces and protocols. In our quest for composability, We need to look at
classes as well. Classes:

• implement interfaces (i.e. play roles)
• communicate through interfaces to other services
• follow protocols in this communication

So in away, what is “inside” a class is a byproduct of how objects of this class acts on the “outside”.
Still, it does not mean there is nothing to say about classes themselves that contributes to better
composability.

Single Responsibility Principle

I already said that we want our system to be a web of composable objects. Obviously, an object
is a granule of composability – we cannot e.g. unplug a half of an object and plug in another
half. Thus, a valid question to ask is: how big should an object be to make the composability
comfortable – to let us unplug as much logic as we want, leaving the rest untouched and ready
to work with the new recipients we plug in?

The answer comes with a Single Responsibility Principle (in short: SRP) for classes⁵⁰, which
basically says⁵¹:

A code of a Class should have only one reason to change.

There has been a lot written about the principle on the web, so I am not going to be wiser than
your favourite web search engine (my recent search yielded over 74 thousands results). Still, I
believe it is useful to explain this principle in terms of composability.

Usually, the hard part about this principle is how to understand “a reason to change”. Robert C.
Martin explains⁵² that this is about a single source of entropy that generates changes to the class.
Which leads us to another trouble of defining a “source of entropy”. So I think it’s better to just
give you an example.

⁵⁰This principle can be applied to methods as well, but we are not going to cover this part, because it is not directly tied to the notion of
composability and this is not a design book ;-).

⁵¹http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.
⁵²https://stackoverflow.fogbugz.com/default.asp?W29030

195

Classes 196

Separating responsibilities

Remember the code Johnny and Benjamin used to apply incentive plans to employees? In case
you don’t, here it is (it’s just a single method, not a whole class, but it should be enough for our
needs):

1 public void ApplyYearlyIncentivePlan()

2 {

3 var employees = _repository.CurrentEmployees();

4

5 foreach(var employee in employees)

6 {

7 employee.EvaluateRaise();

8 employee.EvaluateBonus();

9 employee.Save();

10 }

11 }

So… how many reasons to change does this piece of code have? If we weren’t talking about
“reason to change” but simply a “change”, the answer would be “many”. For example, someone
may decide that we are not giving raises anymore and the employee.EvaluateRaise() line
would be gone. Likewise, a decision could be made that we are not giving bonuses, then the
employee.EvaluateBonus() line would have to be removed. So, there are undoubtedly many
ways this method could change. But would it be for different reasons? Actually, no. The reason
in both cases would be (probably) that the CEO approved a new incentive plan. So, there is one
“source of entropy” for these two changes, although there are many ways the code can change.
Hence, the two changes are for the same reason.

Now the more interesting part of the discussion: what about saving the employees – is the reason
for changing how we save employees the same as for the bonuses and pays? For example, we
may decide that we are not saving each employee separately, because it would cause a huge
performance load on our data store, but instead, we will save them together in a single batch
after we finish processing the last one. This causes the code to change, e.g. like this:

1 public void ApplyYearlyIncentivePlan()

2 {

3 var employees = _repository.CurrentEmployees();

4

5 foreach(var employee in employees)

6 {

7 employee.EvaluateRaise();

8 employee.EvaluateBonus();

9 }

10

11 //now all employees saved once

12 _repository.SaveAll(employees);

13 }

Classes 197

So, as you might’ve already guessed, the reason for this change is different as for changing
incentive plan, thus, it is a separate responsibility and the logic for reading and storing employees
should be separated from this class. The method after the separation would look something like
this:

1 public void ApplyYearlyIncentivePlanTo(IEnumerable<Employee> employees)

2 {

3 foreach(var employee in employees)

4 {

5 employee.EvaluateRaise();

6 employee.EvaluateBonus();

7 }

8 }

In the example above, we moved reading and writing employees out, so that it is handled by
different code – thus, the responsibilities are separated. Do we now have a code that adheres to
Single Reponsibility Principle? We may, but consider this situation: the evaluation of the raises
and bonuses begins getting slow and, instead of doing this for all employees in a sequential for
loop, we would rather parallelize it to process every employee at the same time in a separate
thread. After applying this change, the code could look like this (This uses C#-specific API for
parallel looping, but I hope you get the idea):

1 public void ApplyYearlyIncentivePlanTo(IEnumerable<Employee> employees)

2 {

3 Parallel.ForEach(employees, employee =>

4 {

5 employee.EvaluateRaise();

6 employee.EvaluateBonus();

7 });

8 }

Is this a new reason to change? Of course it is! Decisions on parallelizing processing come from
different source than incentive plan modifications. So, we may say we encountered another
responsibility and separate it. The code that remains in the ApplyYearlyIncentivePlanTo()

method looks like this now:

1 public void ApplyYearlyIncentivePlanTo(Employee employee)

2 {

3 employee.EvaluateRaise();

4 employee.EvaluateBonus();

5 }

The looping, which is a separate responsibility, is now handled by a different class.

Classes 198

How far do we go?

The above example begs some questions:

1. Can we reach a point where we have separated all responsibilities?
2. If we can, how can we be sure we have reached it?

The answer to the first question is: probably no.While some reasons to change are common sense,
and others can be drawn from our experience as developers or knowledge about the domain of
the problem, there are always some that are unexpected and until they surface, we cannot foresee
them. Thus, the answer for the second question is: “there is no way”. Which does not mean we
should not try to separate the different reasons we see – quite the contrary. We just don’t get
overzealous trying to predict every possible change.

I like the comparison of responsibilities to our usage of time in real life. Brewing time of black
tea is usually around three to five minutes. This is what is usually printed on the package we
buy: “3 — 5 minutes”. Nobody gives the time in seconds, because such granularity is not needed.
If seconds made a noticeable difference in the process of brewing tea, we would probably be
given time in seconds. But they don’t. When we estimate tasks in software engineering, we also
use different time granularity depending on the need⁵³ and the granularity becomes finer as we
reach a point where the smaller differences matter more.

Likewise, a simplest software program that prints “hello world” on the screenmay fit into a single
“main” method and we will probably not see it as several responsibilities. But as soon as we get
a requirement to write “hello world” in a native language of the currently running operating
system, obtaining the text becomes a separate responsibility from putting it on the screen. It all
depends on what granularity we need at the moment (which, as I said, may be spotted from code
or, in some cases, known up-front from our experience as developers or domain knowledge).

The mutual relationship between Single Responsibility
Principle and composability

The reason I am writing all this is that responsibilities are the real granules of composability. The
composability of objects that I have talked about a lot already is a mean to achieve composability
of responsibilities. So, this is what our real goal is. If we have two collaborating objects, each
having a single responsibility, we can easily replace the way our application achieves one of
these responsibilities without touching the other. Thus, objects conforming to SRP are the most
comfortably composable and the right size.⁵⁴.

A good example from another playground where single responsibility goes hand in hand with
composability is UNIX. UNIX is famous for its collection of single-purpose command-line tools,
like ls, grep, ps, sed etc. The single-purposeness of these utilities along with the ability of UNIX
commandline to pass output stream of one command to the input stream of another by using the
| (pipe) operator. For example, we may combine three commands: ls (lists contents of directory),
sort (sorts passed input) and more (allows comfortably viewing on the screen input that takes
more than one screen) into a pipeline:

⁵³Provided we are not using a measure such as story points.
⁵⁴Note that I am talking about responsibilities the way SRP talks about them, not the way they are understood by e.g. Responsibility Driven

Design. Thus, I am talking about responsibilities of a class, not responsibilities of its API.

Classes 199

1 ls | sort | more

Which displays sorted content of current directory for comfortable view. This philosophy of
composing a set of single-purpose tools into a more complex and more useful whole is what
we are after, only that in object-oriented software development, we’re using objects instead of
executables. We will talk more about it in the next chapter.

Static recipients

While static fields in a class body may sometimes seem like a good idea of “sharing” recipient
references between its instances and a smart way to make the code more “memory efficient”,
they actually hurt composability more often than not. Let’s take a look at a simple example to
get a feeling of how static fields constraint our design.

SMTP Server

Imagine we need to implement an e-mail server that receives and sends SMTP messages⁵⁵. We
have an OutboundSmtpMessage class which symbolizes SMTP messages we send to other parties.
To send the message, we need to encode it. For now, we always use an encoding called Quoted-
Printable, which is declared in a separate class called QuotedPrintableEncoding and the class
OutboundSmtpMessage declares a private field of this type:

1 public class OutboundSmtpMessage

2 {

3 //... other code

4

5 private Encoding _encoding = new QuotedPrintableEncoding();

6

7 //... other code

8 }

Note that each message has its own encoding objects, so when we have, say, 1000000 messages
in memory, we also have the same amount of encoding objects.

Premature optimization

One day we notice that it is a waste for each message to define its own encoding object, since
an encoding is pure algorithm and each use of this encoding does not affect further uses in any
way – so we can as well have a single instance and use it in all messages – it will not cause any
conflicts. Also, it may save us some CPU cycles, since creating an encoding each time we create
a new message has its cost in high throughput scenarios.

⁵⁵SMTP stands for SimpleMail Transfer Protocol and is a standard protocol for sending and receiving e-mail. You can readmore onWikipedia.

http://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

Classes 200

But how we make the encoding shared between all instances? Out first thought – static fields! A
static field seems fit for the job, since it gives us exactly what we want – a single object shared
across many instances of its declaring class. Driven by our (supposedly) excellent idea, wemodify
our OutboundSmtpMessage message class to hold QuotedPrintableEncoding instance as a static
field:

1 public class OutboundSmtpMessage

2 {

3 //... other code

4

5 private static Encoding _encoding = new QuotedPrintableEncoding();

6

7 //... other code

8 }

There, we fixed it! But didn’t our mommies tell us not to optimize prematurely? Oh well…

Welcome, change!

One day it turns out that in ourmessages, we need to support not onlyQuoted-Printable encoding
but also another one, called Base64. With our current design, we cannot do that, because, as a
result of using a static field, a single encoding is shared between all messages. Thus, if we change
the encoding for message that requires Base64 encoding, it will also change the encoding for the
messages that require Quoted-Printable. This way, we constraint the composability with this
premature optimization – we cannot compose each message with the encoding we want. All of
the message use either one encoding, or another. A logical conclusion is that no instance of such
class is context-independent – it cannot obtain its own context, but rather, context is forced on
it.

So what about optimizations?

Are we doomed to return to the previous solution to have one encoding per message? What if
this really becomes a performance or memory problem? Is our observation that we don’t need
to create the same encoding many times useless?

Not at all. We can still use this observation and get a lot (albeit not all) of the benefits of static
field. How do we do it? How do we achieve sharing of encodings without the constraints of
static field? Well, we already answered this question few chapters ago – give each message an
encoding through its constructor. This way, we can pass the same encoding to many, many
OutboundSmtpMessage instances, but if wewant, we can always create amessage that has another
encoding passed. Using this idea, we will try to achieve the sharing of encodings by creating a
single instance of each encoding in the composition root and have it passed it to a message
through its constructor.

Let’s examine this solution. First, we need to create one of each encoding in the composition
root, like this:

Classes 201

1 // We are in a composition root!

2

3 //...some initialization

4

5 var base64Encoding = new Base64Encoding();

6 var quotedPrintableEncoding = new QuotedPrintableEncoding();

7

8 //...some more initialization

Ok, encodings are created, but we still have to pass them to the messages. In our case, we need
to create new OutboundSmtpMessage object at the time we need to send a new message, i.e. on
demand, so we need a factory to produce the message objects. This factory can (and should) be
created in the composition root. When we create the factory, we can pass both encodings to its
constructor as global context (remember that factories encapsulate global context?):

1 // We are in a composition root!

2

3 //...some initialization

4

5 var messageFactory

6 = new StmpMessageFactory(base64Encoding, quotedPrintableEncoding);

7

8 //...some more initialization

The factory itself can be used for the on-demand message creation that we talked about. As the
factory receives both encodings via its constructor, it can store them as private fields and pass
whichever one is appropriate to a message object it creates:

1 public class SmtpMessageFactory : MessageFactory

2 {

3 private Encoding _quotedPrintable;

4 private Encoding _base64;

5

6 public SmtpMessageFactory(

7 Encoding quotedPrintable,

8 Encoding base64)

9 {

10 _quotedPrintable = quotedPrintable;

11 _base64 = base64;

12 }

13

14 public Message CreateFrom(string content, MessageLanguage language)

15 {

16 if(language.IsLatinBased)

17 {

Classes 202

18 //each message gets the same instance of encoding:

19 return new StmpMessage(content, _quotedPrintable);

20 }

21 else

22 {

23 //each message gets the same instance of encoding:

24 return new StmpMessage(content, _base64);

25 }

26 }

27 }

The performance and memory saving is not exactly as big as when using a static field (e.g. each
OutboundSmtpMessage instance must store a separate reference to the received encoding), but it
is still a huge improvement over creating a separate encoding object per message.

Where statics work?

What I wrote does not mean that statics do not have their uses. They do, but these uses are very
specific. I will show you one of such uses in the next chapters after I introduce value objects.

Summary

In this chapter, I tried to give you some advice on designing classes that does not come so
naturally from the concept of composability and interactions as those described in previous
chapters. Still, as I hope I was able to show, they enhance composability and are valuable to
us.

Object Composition as a Language
While most of the earlier chapters talked a lot about viewing object composition as a web, this
one will take a different view – one of a language. These two views are remarkably similar in
nature and complement each other in guiding design.

It might surprise you that I am comparing object composition to a language, but, as I hope you’ll
see, there are many similarities. Don’t worry, we’ll get there step by step, the first step being
taking a second look at the composition root.

More readable composition root

When describing object compositon and composition root in particular, I promised to get back
to the topic of making the composition code cleaner and more readable.

Before I do this, however, we need to get one important question answered…

Why bother?

By now you have to be sick and tired of how I stress the importance of composability. I do so,
however, because I believe it is one of the most important aspect of well-designed classes. Also, I
said that to reach high composability of a class, it has to be context-independent. To explain how
to reach this independence, I introduced the principle of separating object use from construction,
pushing the construction part away into specialized places in code. I also said that a lot can be
contributed to this quality by making the interfaces and protocols abstract and having them
expose as small amount of implementation details as possible.

All of this has its cost, however. Striving for high context-independence takes away from us the
ability to look at a single class and determine its context just by reading its code. Such class
knows very little about the context it operates in. For example, few chapters back we dealt with
dumping sessions and I showed you that such dump method may be implemented like this:

1 public class RealSession : Session

2 {

3 //...

4

5 public void DumpInto(Destination destination)

6 {

7 destination.AcceptOwner(this.owner);

8 destination.AcceptTarget(this.target);

9 destination.AcceptExpiryTime(this.expiryTime);

10 destination.Done();

11 }

203

Object Composition as a Language 204

12

13 //...

14 }

Here, the session knows that whatever the destination is, Destination it accepts owner, target
and expiry time and needs to be told when all information is passed to it. Still, reading this code,
we cannot tell where the destination leads to, since Destination is an interface that abstracts
away the details. It is a role that can be played by a file, a network connection, a console screen
or a GUI widget. Context-independence enables composability.

On the other hand, as much as context-independent classes and interfaces are important, the
behavior of the application as a whole is important as well. Didn’t I say that the goal of
composability is to be able to change the behavior of application more easily? But how can
we consciously make decision about changing application behavior when we do not understand
it? And no longer than a paragraph ago we came to conclusion that just reading a class after
class is not enough. We have to have a view of how these classes work together as a system. So,
where is the overall context that defines the behavior of the application?

The context is in the composition code – the code that connects objects together, passing a real
collaborators to each object and showing the connected parts make a whole.

Example

I assume you barely remember the alarms example I gave you in one of the first chapters of this
part of the book to explain changing behavior by changing object composition. Anyway, just to
remind you, we ended with a code that looked like this:

1 new SecureArea(

2 new OfficeBuilding(

3 new DayNightSwitchedAlarm(

4 new SilentAlarm("222-333-444"),

5 new LoudAlarm()

6)

7),

8 new StorageBuilding(

9 new HybridAlarm(

10 new SilentAlarm("222-333-444"),

11 new LoudAlarm()

12)

13),

14 new GuardsBuilding(

15 new HybridAlarm(

16 new SilentAlarm("919"), //call police

17 new LoudAlarm()

18)

19)

20);

Object Composition as a Language 205

So we had three buildings all armed with alarms. The nice property of this code was that we
could read the alarm setups from it, e.g. the following part of the composition:

1 new OfficeBuilding(

2 new DayNightSwitchedAlarm(

3 new SilentAlarm("222-333-444"),

4 new LoudAlarm()

5)

6),

meant that we were arming an office building with an alarm that calls number 222-333-444
when triggered during the day, but plays loud sirens when activated during the night. We could
read this straight from the composition code, provided we knew what each object added to the
overall composite behavior. So, again, composition of parts describes the behavior of the whole.
There is, however, one more thing to note about this piece of code: it describes the behavior
without explicitly stating its control flow (if, else, for, etc.). Such description is often called
declarative – by composing objects, we write what we want to achieve without writing how to
achieve it – the control flow itself is hidden inside the objects.

Let’s sum up these two conclusions with the following statement:

The composition code is a declarative description of the overall behavior of our
application.

Wow, this is quite a statement, isn’t it? But, as we already noticed, it is true. There is, however,
one problem with treating the composition code as overall application description: readability.
Even though the composition is the description of the system, it doesn’t read naturally. We want
to see the description of behavior, but most of what we see is: new, new, new, new, new… There
is a lot of syntactic noise involved, especially in real systems, where composition code is much
longer than this tiny example. Can’t we do something about it?

Refactoring for readability

The declarativeness of composition code goes hand in hand with an approach of defining so
called fluent interfaces. A fluent interface is an API made with readability and flow-like reading
in mind. It is usually declarative and targeted towards specific domain, thus another name:
internal domain specific languages, in short: DSL.

There are some simple patterns for creating such domain-specific languages. One of them that
can be applied to our situation is called nested function⁵⁶, which, in our context, means wrapping
a call to new with a more descriptive method. Don’t worry if that confuses you, we’ll see how it
plays out in practice in a second. We will do this step by step, so there will be a lot of repeated
code, but hopefully, you will be able to closely watch the process of improving the readability of
composition code.

Ok, Let’s see the code again before making any changes to it:

⁵⁶M. Fowler, Domain-Specific Languages, Addison-Wesley 2010.

Object Composition as a Language 206

1 new SecureArea(

2 new OfficeBuilding(

3 new DayNightSwitchedAlarm(

4 new SilentAlarm("222-333-444"),

5 new LoudAlarm()

6)

7),

8 new StorageBuilding(

9 new HybridAlarm(

10 new SilentAlarm("222-333-444"),

11 new LoudAlarm()

12)

13),

14 new GuardsBuilding(

15 new HybridAlarm(

16 new SilentAlarm("919"), //call police

17 new LoudAlarm()

18)

19)

20);

Note that we have few places where we create SilentAlarm. Let’s move creation of these objects
into a separate method:

1 public Alarm Calls(string number)

2 {

3 return new SilentAlarm(number);

4 }

This step may look silly, (after all, we are introducing a method wrapping a single line of code),
but there is a lot of sense to it. First of all, it lets us reduce the syntax noise – when we need to
create a silent alarm, we do not have to say new anymore. Another benefit is that we can describe
the role a SilentAlarm instance plays in our composition (I will explain later why we are doing
it using passive voice).

After replacing each invocation of SilentAlarm constructor with a call to this method, we get:

Object Composition as a Language 207

1 new SecureArea(

2 new OfficeBuilding(

3 new DayNightSwitchedAlarm(

4 Calls("222-333-444"),

5 new LoudAlarm()

6)

7),

8 new StorageBuilding(

9 new HybridAlarm(

10 Calls("222-333-444"),

11 new LoudAlarm()

12)

13),

14 new GuardsBuilding(

15 new HybridAlarm(

16 Calls("919"), //police number

17 new LoudAlarm()

18)

19)

20);

Next, let’s do the same with LoudAlarm, wrapping its creation with a method:

1 public Alarm MakesLoudNoise()

2 {

3 return new LoudAlarm();

4 }

and the composition code after applying this method looks like this:

1 new SecureArea(

2 new OfficeBuilding(

3 new DayNightSwitchedAlarm(

4 Calls("222-333-444"),

5 MakesLoudNoise()

6)

7),

8 new StorageBuilding(

9 new HybridAlarm(

10 Calls("222-333-444"),

11 MakesLoudNoise()

12)

13),

14 new GuardsBuilding(

15 new HybridAlarm(

Object Composition as a Language 208

16 Calls("919"), //police number

17 MakesLoudNoise()

18)

19)

20);

Note that we have removed some more news in favor of something that’s more readable. This is
exactly what I meant by “reducing syntax noise”.

Now let’s focus a bit on this part:

1 new GuardsBuilding(

2 new HybridAlarm(

3 Calls("919"), //police number

4 MakesLoudNoise()

5)

6)

and try to apply the same trick of introducing factorymethod to HybridAlarm creation. You know,
we are always told that class names should be nouns and that’s why HybridAlarm is named like
this. But it does not act well as a description of what the system does. Its real functionality is
to trigger both alarms when it is triggered itself. Thus, we need to come up with a better name.
Should we name the method TriggersBothAlarms()? Naah, it’s too much noise – we already
know it’s alarms that we are triggering, so we can leave the “alarms” part out. What about
“triggers”? It says what the hybrid alarm does, which might seem good, but when we look at the
composition, Calls() and MakesLoudNoise() already say what is being done. The HybridAlarm
only says that both of those things happen simultaneously.We could leave Trigger if we changed
the names of the other methods in the composition to look like this:

1 new GuardsBuilding(

2 TriggersBoth(

3 Calling("919"), //police number

4 LoudNoise()

5)

6)

But that would make the names Calling() and LoudNoise() out of place everywhere it is not
being nested as TriggersBoth() arguments. For example, if we wanted to make another building
that would only use a loud alarm, the composition would look like this:

1 new OtherBuilding(LoudNoise());

or if we wanted to use silent one:

Object Composition as a Language 209

1 new OtherBuilding(Calling("919"));

Instead, let’s try to name the method wrapping construction of HybridAlarm just Both() – it is
simple and communicates well the role hybrid alarms play – after all, they are just a kind of
combining operators, not real alarms. This way, our composition code is now:

1 new GuardsBuilding(

2 Both(

3 Calls("919"), //police number

4 MakesLoudNoise()

5)

6)

and, by the way, the Both() method is defined as:

1 public Alarm Both(Alarm alarm1, Alarm alarm2)

2 {

3 return new HybridAlarm(alarm1, alarm2);

4 }

Remember that HybridAlarm was also used in the StorageBuilding instance composition:

1 new StorageBuilding(

2 new HybridAlarm(

3 Calls("222-333-444"),

4 MakesLoudNoise()

5)

6),

which now becomes:

1 new StorageBuilding(

2 Both(

3 Calls("222-333-444"),

4 MakesLoudNoise()

5)

6),

Now the most difficult part – finding a way to make the following piece of code readable:

Object Composition as a Language 210

1 new OfficeBuilding(

2 new DayNightSwitchedAlarm(

3 Calls("222-333-444"),

4 MakesLoudNoise()

5)

6),

The difficulty here is that DayNightSwitchedAlarm accepts two alarms that are used alternatively.
We need to invent a term that:

1. Says it’s an alternative.
2. Says what kind of alternative it is (i.e. that one happens at day, and the other during the

night).
3. Says which alarm is attached to which condition (silent alarm is used during the day and

loud alarm is used at night).

If we introduce a single name, e.g. FirstDuringDayAndSecondAtNight(), it will feel awkward
and we will loose the flow. Just look:

1 new OfficeBuilding(

2 FirstDuringDayAndSecondAtNight(

3 Calls("222-333-444"),

4 MakesLoudNoise()

5)

6),

It just doesn’t feel well… We need to find another approach to this situation. There are two
approaches we may consider:

Approach 1: use named parameters

Named parameters are a feature of languages like Python or C#. In short, whenwe have amethod
like this:

1 public void DoSomething(int first, int second)

2 {

3 //...

4 }

we can call it with the names of its arguments stated explicitly, like this:

1 DoSomething(first: 12, second: 33);

We can use this technique to refactor the creation of DayNightSwitchedAlarm into the following
method:

Object Composition as a Language 211

1 public Alarm DependingOnTimeOfDay(

2 Alarm duringDay, Alarm atNight)

3 {

4 return new DayNightSwitchedAlarm(duringDay, atNight);

5 }

This lets us write the composition code like this:

1 new OfficeBuilding(

2 DependingOnTimeOfDay(

3 duringDay: Calls("222-333-444"),

4 atNight: MakesLoudNoise()

5)

6),

which is quite readable. Using named parameters has this small added benefit that it lets us pass
the arguments in different order they were declared, thanks to their names stated explicitly. This
makes both following invocations valid:

1 //this is valid:

2 DependingOnTimeOfDay(

3 duringDay: Calls("222-333-444"),

4 atNight: MakesLoudNoise()

5)

6

7 //arguments in different order,

8 //but this is valid as well:

9 DependingOnTimeOfDay(

10 atNight: MakesLoudNoise(),

11 duringDay: Calls("222-333-444")

12)

Now, on to the second approach.

Approach 2: use method chaining

This approach is better translatable to different languages and can be used e.g. in Java and C++.
This time, before I show you the implementation, let’s look at the final result we want to achieve:

Object Composition as a Language 212

1 new OfficeBuilding(

2 DependingOnTimeOfDay

3 .DuringDay(Calls("222-333-444"))

4 .AtNight(MakesLoudNoise())

5)

6),

So as you see, this is very similar in reading, the main difference being that it’s more work. It
might not be obvious from the start how this kind of parameter passing works:

1 DependingOnTimeOfDay

2 .DuringDay(...)

3 .AtNight(...)

so, let’s decipher it. First, DependingOnTimeOfDay. This is just a class:

1 public class DependingOnTimeOfDay

2 {

3 }

which has a static method called DuringDay():

1 //note: this method is static

2 public static

3 DependingOnTimeOfDay DuringDay(Alarm alarm)

4 {

5 return new DependingOnTimeOfDay(alarm);

6 }

7

8 //The constructor is private:

9 private DependingOnTimeOfDay(Alarm dayAlarm)

10 {

11 _dayAlarm = dayAlarm;

12 }

Now, this method seems strange, doesn’t it? It is a static method that returns an instance of its
enclosing class (not an actual alarm!). Also, the private constructor stores the passed alarm inside
for later… why?

The mystery resolves itself when we look at another method defined in the DependingOnTime-
OfDay class:

Object Composition as a Language 213

1 //note: this method is NOT static

2 public Alarm AtNight(Alarm nightAlarm)

3 {

4 return new DayNightSwitchedAlarm(_dayAlarm, nightAlarm);

5 }

This method is not static and it returns the alarm that we were trying to create. To do so, it uses
the first alarm passed through the constructor and the second one passed as its parameter. So if
we were to take this construct:

1 DependingOnTimeOfDay //class

2 .DuringDay(dayAlarm) //static method

3 .AtNight(nightAlarm) //non-static method

and assign a result of each operation to a separate variable, it would look like this:

1 DependingOnTimeOfDay firstPart = DependingOnTimeOfDay.DuringDay(dayAlarm);

2 Alarm alarm = firstPart.AtNight(nightAlarm);

Now, we can just chain these calls and get the result we wanted to:

1 new OfficeBuilding(

2 DependingOnTimeOfDay

3 .DuringDay(Calls("222-333-444"))

4 .AtNight(MakesLoudNoise())

5)

6),

The advantage of this solution is that it does not require your programming language of choice
to support named parameters. The downside is that the order of the calls is strictly defined. The
DuringDay returns an object on which AtNight is invoked, so it must come first.

Discussion continued

For now, I will assume we have chosen approach 1 because it is simpler.

Our composition code looks like this so far:

Object Composition as a Language 214

1 new SecureArea(

2 new OfficeBuilding(

3 DependingOnTimeOfDay(

4 duringDay: Calls("222-333-444"),

5 atNight: MakesLoudNoise()

6)

7),

8 new StorageBuilding(

9 Both(

10 Calls("222-333-444"),

11 MakesLoudNoise()

12)

13),

14 new GuardsBuilding(

15 Both(

16 Calls("919"), //police number

17 MakesLoudNoise()

18)

19)

20);

There are few more finishing touches we need to make. First of all, let’s try and extract these
dial numbers like 222-333-444 into constants. When we do so, then, for example, this code:

1 Both(

2 Calls("919"), //police number

3 MakesLoudNoise()

4)

becomes

1 Both(

2 Calls(Police),

3 MakesLoudNoise()

4)

And the last thing is to hide creation of the following classes: SecureArea, OfficeBuilding,
StorageBuilding, GuardsBuilding and we have this:

Object Composition as a Language 215

1 SecureAreaContaining(

2 OfficeBuildingWithAlarmThat(

3 DependingOnTimeOfDay(

4 duringDay: Calls(Guards),

5 atNight: MakesLoudNoise()

6)

7),

8 StorageBuildingWithAlarmThat(

9 Both(

10 Calls(Guards),

11 MakesLoudNoise()

12)

13),

14 GuardsBuildingWithAlarmThat(

15 Both(

16 Calls(Police),

17 MakesLoudNoise()

18)

19)

20);

And here it is – the real, declarative description of our application! The composition reads better
than when we started, doesn’t it?

Composition as a language

Written this way, object composition has another important property – it is extensible and can
be extended using the same terms that are already used (of course we can add new ones as well).
For example, using the methods we invented to make the composition more readable, we may
write something like this:

1 Both(

2 Calls(Police),

3 MakesLoudNoise()

4)

but, using the same terms, we may as well write this:

Object Composition as a Language 216

1 Both(

2 Both(

3 Calls(Police),

4 Calls(Security)),

5 Both(

6 Calls(Boss),

7 MakesLoudNoise()))

8)

to obtain different behavior. Note that we have invented something that has these properties:

1. It defines some kind of vocabulary – in our case, the following “words” are form part
of the vocabulary: Both, Calls, MakesLoudNoise, DependingOnTimeOfDay, atNight, dur-
ingDay, SecureAreaContaining, GuardsBuildingWithAlarmThat, OfficeBuildingWith-
AlarmThat.

2. It allows combining the words from the vocabulary. These combinations have meaning,
which is based solely on the meaning of used words and the way they are combined. For
example: Both(Calls(Police), Calls(Guards)) has the meaning of “calls both police
and guards when triggered” – thus, it allows us to combine words into sentences.

3. Although we are quite liberal in defining behaviors for alarms, there are some rules as
what can be composed with what (for example, we cannot compose guards building with
an office, but each of them can only be composed with alarms). Thus, we can say that the
sentences we write have to obey certain rules that look a lot like a grammar.

4. The vocabulary is constrained to the domain of alarms. On the other hand, it is more
powerful and expressive as a description of this domain than a combination of if

statements, for loops, variable assignments and other elements of a general-purpose
language. It is tuned towards describing rules of a domain on a higher level of abstraction.

5. The sentences written define a behavior of the application – so by writing sentences
like this, we still write software! Thus, what we do by combining words into sentences
constrained by a grammar is still programming!

All of these points suggest that we have created a Domain-Specific Language⁵⁷, which, by
the way, is a higher-level language, meaning we describe our software on a higher level of
abstraction.

The significance of higher-level language

So.. why do we need a higher-level language to describe the behavior of our application? After
all, expressions, statements, loops and conditions (and objects and polymorphism) are our daily
bread and butter. Why invent something that moves us away from this kind of programming
into something “domain-specific”?

My main answer is: to deal with with complexity more effectively.

⁵⁷M. Fowler, Domain-Specific Languages, Addison-Wesley 2010.

Object Composition as a Language 217

What’t complexity? For our purpose we can approximate it as a number of different decisions
our application needs to make. As we add new features and fix errors or implement missed
requirements, the complexity of our software grows. What can we do when it grows so larger
than we are able to manage? We have the following choices:

1. Remove some decisions – i.e. remove features from our application. This is very cool when
we can do this, but there are times when this might be unacceptable from the business
perspective.

2. Optimize away redundant decisions – this is about making sure that each decision is made
once in the code base – I already showed you some examples how polymorphism can help
with that.

3. Use 3rd party component or a library to handle some of the decisions for us – while this is
quite easy for “infrastructure” code and utilities, it is very, very hard (impossible?) to find
a library that will describe our “domain rules” for us. So if these rules are where the real
complexity lies (and often they are), we are still left alone with our problem.

4. Hide the decisions by programming on higher level of abstraction – this is what we did in
this chapter so far. The advantage is that it allows us to reduce complexity of our domain,
by creating a bigger building blocks from which a behavior description can be created.

So, as you see, only the last of the above points really helps in reducing domain complexity. This is
where the idea of domain-specific languages falls in. If we carefully craft our object composition
into a set of domain-specific languages (one is often too little in all but simplest cases), one day
we may find that we are adding new features by writing new sentences in these languages in
a declarative way rather than adding new imperative code. Thus, if we have a good language
and a firm understanding of its vocabulary and grammar, we can program on a higher level of
abstraction which is more expressive and less complex.

This is very hard to achieve – it requires, among others:

1. A huge discipline across a develoment team.
2. A sense of direction of how to structure the composition and where to lead the language

designs as they evolve.
3. Merciless refactoring.
4. Some minimal knowledge of language design and experience in doing so.
5. Knowledge of some techniques (like the ones we used in our example) that make constructs

written in general-purpose language look like another language.

Of course, not all parts of the composition make a good material to being structured like a
language. Despite these difficulties, I think it’s well worth the effort. Programming on higher
level of abstraction with declarative code rather than imperative is where I place my hope for
writing maintainable and understandable systems.

Some advice

So, eager to try this approach? Let me give you a few pieces of advice first:

Object Composition as a Language 218

Evolve the language as you evolve code

At the beginning of this chapter, we achieved our higher-level language by refactoring already
existing object composition. This does not at all mean that in real projects we need to wait for a
lot of composition code to appear and then try to wrap all of it. It is true that I did just that in
the alarm example, but this was just an example and its purpose was mainly didactical.

In reality, the language is better off evolving along the composition it describes. One reason for
this is because there is a lot of feedback about the composability of the design gained by trying
to put a language on top of it. As I said in the chapter on single responsibility, if objects are not
comfortably composable, something is probably wrong with the distribution of responsibilities
between them (for comparison of wrongly placed responsibilities, imagine a general-purpose
language that would not have a separate if and for constructs but only a combination of them
called forif :-)). Don’t miss out on this feedback!

The second reason is because even if you can safely refactor all the code because you have an
executable Specification protecting you from making mistakes, it’s just too many decisions to
handle at once (plus it takes a lot of time and your colleagues keep adding new code, don’t
they?). Good language grows and matures organically rather than being created in a big bang
effort. Some decisions take time and a lot of thought to be made.

Composition is not a single DSL, but a series of mini DSLs⁵⁸

I already briefly noted this. While it may be tempting to invent a single DSL to describe whole
application, in practice it is hardly possible, because our applications have different subdomains
that often use different sets of terms. Rather, it pays off to hunt for such subdomains and create
smaller languages for them. The alarm example shown above would probably be just a small
part of a real composition. Not all parts would lend themselves to shape this way, at least not
instantly. What starts off as a single class might become a subdomain with its own vocabulary at
some point. We need to pay attention. Hence, we still want to apply some of the DSL techniques
even to those parts of the composition that are not easily turned into DSLs and hunt for an
occasion when we are able to do so.

As Nat Pryce puts it⁵⁹, it’s all about:

(…) clearly expressing the dependencies between objects in the code that composes
them, so that the system structure can easily be refactored, and aggressively
refactoring that compositional code to remove duplication and express intent, and
thereby raising the abstraction level at which we can program (…). The end goal is
to need less and less code to write more and more functionality as the system grows.

For example, a mini-DSL for setting up handling of an application configuration updates might
look like this:

⁵⁸A reader noted that the ideas in this section are remarkably similar to the notion of Bounded Contexts in a book: E. Evans, Domain-Driven
Design: Tackling Complexity in the Heart of Software, Prentice Hall 2003.

⁵⁹http://www.natpryce.com/articles/000783.html

http://www.natpryce.com/articles/000783.html
http://www.natpryce.com/articles/000783.html

Object Composition as a Language 219

1 return ConfigurationUpdates(

2 Of(log),

3 Of(localSettings),

4 OfResource(Departments()),

5 OfResource(Projects()));

Reading this code should not be difficult, especially when we know what each term in the
sentence means. This code returns an object handling configuration updates of four things:
application log, local settings, and two resources (in this subdomain, resources mean things that
can be added, deleted and modified). These two resources are: departments and projects (e.g. we
can add a new project or delete an existing one).

Note that the constructs of this language make sense only in a context of creating configuration
update handlers. Thus, they should be restricted to this part of composition. Other parts that
have nothing to do with configuration updates, should not need to know these constructs.

Do not use an extensive amount of DSL tricks

In creating internal DSLs, one can use a lot of neat tricks, some of them being very “hacky” and
twisting the general-purpose language in many ways to achieve “flluent” syntax. But remember
that the composition code is to be maintained by your team. Unless each and every member of
your team is an expert on creating such DSLs, do not show off with too many, too sophisticated
tricks. Stick with a few of the proven ones that are simple to use and work, like the ones I have
used in the alarm example.

Martin Fowler⁶⁰ describes a lot of tricks for creating such DSLs and at the same time warns
against using too many of them in the same language.

Factory method nesting is your best friend

One of the DSL techniques, the one I have used the most, is factory method nesting. Basically,
it means wrapping a constructor (or constructors – no one said each factory method must wrap
exactly one new) invocation with a method that has a name more fitting for a context it is used
in (and which hides the obscurity of the new keyword). This technique is what makes this:

1 new HybridAlarm(

2 new SilentAlarm("222-333-444"),

3 new LoudAlarm()

4)

look like this:

⁶⁰M. Fowler, Domain-Specific Languages, Addison-Wesley 2010.

Object Composition as a Language 220

1 Both(

2 Calls("222-333-444"),

3 MakesLoudNoise()

4)

As you probably remember, in this case each method wraps a constructor, e.g. Calls() is defined
as:

1 public Alarm Calls(string number)

2 {

3 return new SilentAlarm(number);

4 }

This technique is great for describing any kind of tree and graph-like structures as each method
provides a natural scope for its arguments:

1 Method1(//beginning of scope

2 NestedMethod1(),

3 NestedMethod2()

4); //end of scope

Thus, it is a natural fit for object composition, which is a graph-like structure.

This approach looks great on paper but it’s not like everything just fits in all the time. There are
two issues with factory methods that we need to address.

Where to put these methods?

In the usual case, we want to be able to invoke these methods without any qualifier before
them, i.e. we want to call MakesLoudNoise() instead of alarmsFactory.MakesLoudNoise() or
this.MakesLoudNoise() or anything.

If so, where do we put such methods?

There are two options⁶¹:

1. Put the methods in the class that performs the composition.
2. Put the methods in superclass.

Apart from that, we can choose between:

1. Making the factory methods static.
2. Making the factory methods non-static.

⁶¹In some languages, there is a third way: Java lets us use static imports which are part of C# as well starting with version 6.0. C++ has
always supported bare functions, so it’s not a topic there.

Object Composition as a Language 221

First, let’s consider the dilemma of putting in composing class vs having a superclass to inherit
from. This choice is mainly determined by reuse needs. The methods that we use in one
composition only and do not want to reuse are mostly better off as private methods in the
composing class. On the other hand, the methods that we want to reuse (e.g. in other applications
or services belonging to the same system), are better put in a superclass which we can inherit
from. Also, a combination of the two approaches is possible, where superclass contains a more
general method, while composing class wraps it with another method that adjusts the creation
to the current context. By the way, remember that in most languages, we can inherit from a
single class only – thus, putting methods for each language in a separate superclass forces us
to distribute compositiion code across several classes, each inheriting its own set of methods
and returning an object or several objects. This is not bad at all – quite the contrary, this is
something we’d like to have, because it enables us to evolve a language and sentences written in
this language in an isolated context.

The second choice between static and non-static is one of having access to instance fields –
instance methods have this access, while static methods do not. Thus, if the following is an
instance method of a class called AlarmComposition:

1 public class AlarmComposition

2 {

3 //...

4

5 public Alarm Calls(string number)

6 {

7 return new SilentAlarm(number);

8 }

9

10 //...

11 }

and I need to pass an additional dependency to SilentAlarm that I do not want to show in the
main composition code, I am free to change the Calls method to:

1 public Alarm Calls(string number)

2 {

3 return new SilentAlarm(

4 number,

5 _hiddenDependency) //field

6 }

and this new dependency may be passed to the AlarmComposition via constructor:

Object Composition as a Language 222

1 public AlarmComposition(

2 HiddenDependency hiddenDependency)

3 {

4 _hiddenDependency = hiddenDependency;

5 }

This way, I can hide it from the main composition code. This is freedom I do not have with static
methods.

Use implicit collections instead of explicit ones

Most object-oriented languages support passing variable argument lists (e.g. in C# this is achieved
with the params keyword, while Java has ... operator). This is valuable in composition, because
we often want to be able to pass arbitrary number of objects to some places. Again, coming back
to this composition:

1 return ConfigurationUpdates(

2 Of(log),

3 Of(localSettings),

4 OfResource(Departments()),

5 OfResource(Projects()));

the ConfigurationUpdates() method is using variable argument list:

1 public ConfigurationUpdates ConfigurationUpdates(

2 params ConfigurationUpdate[] updates)

3 {

4 return new MyAppConfigurationUpdates(updates);

5 }

Note that we could, of course, pass the array of ConfigurationUpdate instances using explicit
definition: new ConfigurationUpdate[] {...}, but that would greatly hinder readability and
flow of this composition. See for yourself:

1 return ConfigurationUpdates(

2 new [] { //explicit definition brings noise

3 Of(log),

4 Of(localSettings),

5 OfResource(Departments()),

6 OfResource(Projects())

7 }

8);

Not so pretty, huh? This is why we like the ability to pass variable argument lists as it enhances
readability.

Object Composition as a Language 223

A single method can create more than one object

No one said each factory method must create one and only one object. For example, take a look
again at this method creating configuration updates:

1 public ConfigurationUpdates ConfigurationUpdates(

2 params ConfigurationUpdate[] updates)

3 {

4 return new MyAppConfigurationUpdates(updates);

5 }

Now, let’s assume we need to trace each invocation on the instance of ConfigurationUpdates
class and we want to achieve this by wrapping the MyAppConfigurationUpdates instance with
a tracing proxy (a wrapping object that passes the calls along to a real object, but writes some
trace messages before and after it does). For this purpose, we can reuse the method we already
have, just adding the additional object creation there:

1 public ConfigurationUpdates ConfigurationUpdates(

2 params ConfigurationUpdate[] updates)

3 {

4 //now two objects created instead of one:

5 return new TracedConfigurationUpdates(

6 new MyAppConfigurationUpdates(updates)

7);

8 }

Note that the TracedConfigurationUpdates is not important from the point of view of compo-
sition – it is pure infrastructure code, not a new domain rule. Because of that, it may be a good
idea to hide it inside the factory method.

Summary

In this chapter, I tried to convey to you a vision of object composition as a language, with its
own vocabulary, its own grammar, keywords and arguments. We can compose the words from
the vocabulary in different sentences to create new behaviors on higher level of abstraction.

This area of object-oriented design is something I am still experimenting with, trying to catch up
with what authorities on this topic share. Thus, I am not as fluent in it as in other topics covered
in this book. Expect this chapter to grow (maybe into several chapters) or to be clarified in the
future. For now, if you feel you need more information, please take a look at the video by Steve
Freeman and Nat Pryce called “Building on SOLID foundations”⁶².

⁶²https://vimeo.com/105785565

https://vimeo.com/105785565
https://vimeo.com/105785565

Value Objects
I spent several chapters talking about composing objects in a web where real implementation
was hidden and only interfaces were exposed. These objects exchanged messages and modeled
roles in our domain.

However, this is just one part of object-oriented design approach that I’m trying to explain.
Another part of the object-oriented world, complementary to what we have been talking about,
are values. They have their own set of design constraints and ideas, so most of the concepts from
the previous chapters do not apply to them,or apply in a different way.

What is a value?

In short, values are usually seen as immutable quantities, measurements⁶³ or other objects that
are compared by their content, not their identity. There are some examples of values in the
libraries of our programming languages. For example, String class in Java or C# is a value,
because it is immutable and every two strings are considered equal when they contain the same
data. Other examples are the primitive types that are built-in into most programming languages,
like numbers or characters.

Most of the values that are shipped with general-purpose libraries are quite primitive or general.
There are many times, however, when we want to model a domain abstraction as a value. Some
examples include: date and time (which nowadays is usually a part of standard library, because it
is usable in so many domains), money, temperature, but also things such as file paths or resource
identifiers.

As you may have already spotted when reading this book, I’m really bad at explaining things
without examples, so here is one:

Example: money and names

Imagine we are developing a web store for a customer. There are different kinds of products sold
and the customer wants to have the ability to add new products.

Each product has at least two important attributes: name and price (there are others like quantity,
but let’s leave them alone for now).

Now, imagine how you would model these two things - would the name be modeled as a mere
string and price be a double or a decimal type?

Let’s say that we have indeed decided to use a decimal to hold a price, and a string to hold a
name. Note that both are generic library types, not connected to any domain. Is it a good choice
to use “library types” for domain abstractions? We shall soon find out…

⁶³S. Freeman, N. Pryce, Growing Object-Oriented Software Guided by Tests, Addison-Wesley Professional, 2009

224

Value Objects 225

Time passes…

One day, it turns out that these values must be shared across a few subdomains of the system.
For example:

1. The website needs to display them
2. They are used in income calculations
3. They are taken into account when defining and checking discount rules (e.g. “buy three,

pay for two”)
4. They must be supplied when printing invoices

etc.

The code grows larger and larger and, as the concepts of product name and price are among the
main concepts of the application, they tend to land in many places.

Change request

Now, imagine that one of the following changes must make its way into the system:

1. The product name must be compared as case insensitive, since the names of the products
are always printed in uppercase on the invoice. Thus, creating two products that differ
only in a letter case (eg. “laptop” and “LAPTOP”) would confuse the customers as both
these products look the same on the invoice. Also, the only way one would create two
products that differ by letter case only is by mistake and we want to avoid that.

2. The product name is not enough to differentiate a product. For example, a notebook
manufacturers have the same models of notebooks in different configurations (e.g.
different amount of RAM or different processor models inside). So each product will
receive additional identifier that will have to be taken into account during comparisons.

3. To support customers from different countries, new currencies must be supported.

In current situation, these changes are really painful to make. Why? It’s because we used
primitive types to represent the things that would need to change, which means we’re coupled
in multiple places to a particular implementation of product name (string) and a particular
implementation of money (e.g. decimal). This wouldn’t be so bad, if not for the fact that we’re
coupled to implementation we cannot change!

Are we sentnced to live with issues like that in our code and cannot do anything about it? Let’s
find out by exploring the options we have.

From now on, let’s put the money concept aside and focus only on the product name, as both
name and price are similar cases with similar solutions, so it’s sufficient for us to consider just
one of them.

Value Objects 226

What options do we have to address product name changes?

To support new requirements, we have to find all places where we use the product name (by
the way, an IDE will not help us much in this search, because we would be searching for all the
occurences of type string) and make the same change. Every time we need to do something like
this (i.e. we have to make the same change in multiple places an there is a non-zero possibility
we’ll miss at least one of those places), it means that we have introduced redundancy. Remember?
We talked about redundancy when discussing factories and mentioned that redundancy is about
conceptual duplication that forces us to make the same change (not literally, but conceptually)
in several places.

Al Shalloway coined a humouristic “law” regarding redundancy, called The Shalloway’s Law,
which says:

Whenever the same change needs to be applied in N places and N > 1, Shalloway
will find at most N-1 such places.

An example of an application of this law would be:

Whenever the same change needs to be applied in 4 places, Shalloway will find at
most 3 such places.

While making fun of himself, Al described something that I see common of myself and some
other programmers - that conceptual duplication makes us vulnerable and when dealing with it,
we have no advanced tools to help us - just our memory and patience.

Thankfully, there are multiple ways to approach this redundancy. Some of them are better and
some are worse⁶⁴.

Option one - just modify the implementation in all places

This option is about leaving the redundancy where it is and just making the change in all places,
hoping that this is the last time we change anything related to product name.

So let’s say we want to add comparison with letter case ignored. Using this option would lead
us to find all places where we do something like this:

1 if(productName == productName2)

2 {

3 ..

or

⁶⁴All engineering decisions are trade offs anyway, so I should really say “some of them make better trade-offs in our context, and some make
worse”.

Value Objects 227

1 if(String.Equals(productName, productName2))

2 {

3 ..

And change them to a comparisong that ignores case, e.g.:

1 if(String.Equals(productName, productName2,

2 StringComparison.OrdinalIgnoreCase))

3 {

4 ..

This deals with the problem, at least for now, but in the long run, it can cause some trouble:

1. It will be very hard⁶⁵ to find all these places and chances are you’ll miss at least one. This
is an easy way for a bug to creep in.

2. Even if this time you’ll be able to find and correct all the places, every time the domain
logic for product name comparisons changes (e.g. we’ll have to use InvariantIgnoreCase
option instead of OrdinalIgnoreCase for some reasons, or handle the case I mentioned
earlier where comparison includes an identifier of a product), you’ll have to do it over.
And Shalloway’s Law applies the same every time. In other words, you’re not making
things better.

3. Everyone who adds new logic that needs to compare product names in the future, will
have to remember that character case is ignored in such comparisons. Thus, they will
need to keep in mind that they should use OrdinalIgnoreCase option whenever they add
new comparisons somewhere in the code. If you want to know my opinion, accidental
violation of this convention in a team that has either a fair size or more than minimal staff
turnover rate is just a matter of time.

4. Also, there are other changes that will be tied to the concept of product name equality in
a different way (for example, hash sets and hash tables determine equality based on hash
code, not plain comparisons of data) and you’ll need to find those places and make changes
there as well.

So, as you can see, this approach does not make things any better. In fact, it is this approach that
led us to the trouble we are trying to get away in the first place.

Option two - use a helper class

We can address the issues #1 and #2 of the above list (i.e. the necessity to change multiple places
when the comparison logic of product names changes) by moving this comparison into a static
helper method of a helper class, (let’s simply call it ProductNameComparison) and make this
method a single place that knows how to compare product names. This would make each of the
places in the code when comparison needs to be made look like this:

⁶⁵http://www.netobjectives.com/blogs/shalloway%E2%80%99s-law-and-shalloway%E2%80%99s-principle

http://www.netobjectives.com/blogs/shalloway%E2%80%99s-law-and-shalloway%E2%80%99s-principle
http://www.netobjectives.com/blogs/shalloway%E2%80%99s-law-and-shalloway%E2%80%99s-principle

Value Objects 228

1 if(ProductNameComparison.AreEqual(productName, productName2))

2 {

3 ..

Note that the details of what it means to compare two product names is now hidden inside
the newly created static AreEqual() method. This method has become the only place that has
knowledge of these details and each time the comparison needs to be changed, we have to modify
this method alone. The rest of the code just calls this method without knowing what it does, so
it won’t need to change. This frees us from having to search and modify this code each time the
comparison logic changes.

However, while it protects us from the change of comparison logic indeed, it’s still not enough.
Why? Because the concept of a product name is still not encapsulated - a product name is still
a string and it allows us to do everything with it that we can do with any other string, even
when it does not make sense for product names. This is because in the domain of the problem,
product names are not sequences of characters (which stringss are), but an abstraction with a
special set of rules applicable to it. By failing to model this abstraction appropriately, we can run
into a situation where another developer who starts adding some new code may not even notice
that product names need to be compared differently than other strings and just use the default
comparison of a string type.

Other deficiencies of the previous approach apply as well (as I said, except from the issues #1
and #2).

Option three - encapsulate the domain concept and create a “value object”

I think it’s more than clear now that a product name is a not “just a string”, but a domain concept
and as such, it deserves its own class. Let us introduce such a class then, and call it ProductName.
Instances of this class will have Equals()method overridden⁶⁶ with the logic specific to product
names. Given this, the comparison snippet is now:

1 // productName and productName2

2 // are both instances of ProductName

3 if(productName.Equals(productName2))

4 {

5 ..

How is it different from the previous approach where we had a helper class, called Product-

NameComparison? Previously the data of a product name was publicly visible (as a string) and we
used the helper class only to store a function operating on this data (and anybody could create
their own functions somewhere else without noticing the ones we already added). This time, the
data of the product name is hidden⁶⁷ from the outside world. The only available way to operate

⁶⁶and, for C#, overriding equality operators (== and !=) is probably a good idea as well, not to mention GetHashCode() (See
https://msdn.microsoft.com/en-us/library/vstudio/7h9bszxx(v=vs.100).aspx)

⁶⁷In reality this is only partially true. For example, we will have to override ToString() somewhere anyway to ensure interoperability with
3rd party libraries that don’t know about our ProductName type, but will accept string arguments. Also, one can always use reflection to get
private data. I hope you get the point though :-).

Value Objects 229

on this data is through the ProductName’s public interface (which exposes only those methods
that we think make sense for product names and no more). In other words, whereas before we
were dealing with a general-purpose type we couldn’t change, now we have a domain-specific
type that’s completely under our control. This means we can freely change the meaning of two
names being equal and this change will not ripple throughout the code.

In the following chapters, I will further explore this example of product name to show you some
properties of value objects.

Value object anatomy
In the previous chapter, we saw a value object - ProductName in action. In this chapter, we’ll study
its anatomy - line by line, field by field, method after method. After doing this, you’ll hopefully
have a better feel of some of the more general properties of value objects.

Let’s begin our examination by taking a look at the definition of the type ProductName from the
previous chapter (the code I will show you is not legal C# - I omitted method bodies, putting ;

after each method declaration. I did this because it would be a lot of code to grasp otherwise and
I don’t necessary want to delve into the code of each method). Each section of the ProductName
class definition is marked with a comment. These comments mark the topics we’ll be discussing
throughout this chapter.

So here is the promised definition of ProductName:

1 //This is the class we created and used

2 //in the previous chapter

3 public class ProductName

4 : IEquatable<ProductName>

5 {

6 // Hidden data:

7 private string _value;

8

9 // Constructor - hidden as well:

10 private ProductName(string value);

11

12 // Static method for creating new instances:

13 public static ProductName For(string value);

14

15 // Overridden version of ToString()

16 // from Object class

17 public override string ToString();

18

19 // Non-standard version of ToString().

20 // I will explain its purpose later

21 public string ToString(Format format);

22

23 // For value types, we need to implement all the equality

24 // methods and operators, plus GetHashCode():

25 public override bool Equals(Object other);

26 public bool Equals(ProductName other);

27 public override int GetHashCode();

28 public static bool operator ==(ProductName a, ProductName b);

230

Value object anatomy 231

29 public static bool operator !=(ProductName a, ProductName b);

30 }

Using the comments, I divided the class into sections and will describe them in order.

Hidden data

The actual data is private:

1 private string _value;

Only the methods we publish can be used to operate on the state. This is useful for three things:

1. To restrict allowed operations to what we think makes sense to do with a product name.
Everything else (i.e. what we think does not make sense to do) is not allowed.

2. To achieve immutability of ProductName instances (more on why we want the type to be
immutable later), which means that when we create an instance, we cannot modify it. If
the _value field was public, everyone could modify the state of ProductName instance by
writing something like: csharp productName.data = "something different";

3. To protect against creating a product name with an invalid state. When creating a product
name, we have to pass a string with containing a name through a static For()method that
can perform the validation (more on this later). If there are no other ways we can set the
name, we can rest assured that the validation will happen every time someone wants to
create a ProductName

Hidden constructor

Note that the constructor is made private as well:

1 private ProductName(string value)

2 {

3 _value = value;

4 }

and you probably wonder why. I’d like to decompose the question further decomposed into two
others:

1. How should we create new instances then?
2. Why private and not public?

Let’s answer them one by one.

Value object anatomy 232

How should we create new instances?

The ProductName class contains a special static factory method, called For(). It invokes the
constructor and handles all input parameter validations⁶⁸. An example implementation could
be:

1 public static ProductName For(string value)

2 {

3 if(string.IsNullOrWhiteSpace(value))

4 {

5 //validation failed

6 throw new ArgumentException(

7 "Product names must be human readable!");

8 }

9 else

10 {

11 //here we call the constructor

12 return new ProductName(value);

13 }

14 }

There are several reasons for not exposing a constructor directly, but use a static factory method
instead. Below, I briefly describe some of them.

Explaining intention

Just like factories, static factory methods help explaining intention, because, unlike constructors,
they can have names, while constructors have the constraint of being named after their class⁶⁹.
One can argue that the following:

1 ProductName.For("super laptop X112")

is not that more readable than:

1 new ProductName("super laptop X112");

but note that in our example, we have a single, simple factory method. The benefit would be
more visible when we would need to support an additional way of creating a product name.
Let’s assume that in above example of “super laptop X112”, the “super laptop” is a model
and “X112” is a specific configuration (since the same laptop models are often sold in several
different configurations, with more or less RAM, different operating systems etc.) and we find it
comfortable to pass these two pieces of information as separate arguments in some places (e.g.
because we may obtain them from different sources) and let the ProductName combine them. If
we used a constructor for that, we would write:

⁶⁸By the way, the code contains a call to IsNullOrEmpty(). There are several valid arguments against using this method, e.g. by Mark
Seemann (http://blog.ploeh.dk/2014/11/18/the-isnullorwhitespace-trap/), but in this case, I put it in to make the code shorter as the validation
logic itself is not that important at the moment.

⁶⁹This is literally true for languages like Java, C# or C++. There are other languages (like Ruby), with different rules regarding object
construction. Still, the original argument - that the naming of methods responsible for object creation is constrained - holds.

Value object anatomy 233

1 // assume model is "super laptop"

2 // and configuration is "X112"

3 new ProductName(model, configuration)

On the other hand, we can craft a factory method and say:

1 ProductName.CombinedOf(model, configuration)

which reads more fluently. Or, if we like to be super explicit:

1 ProductName.FromModelAndConfig(model, configuration)

which is not my favourite way of writing code, because I don’t like repeating the same
information in method name and argument names. I wanted to show you that we can do this if
we want though.

I met a lot developers that find using factory methods somehow unfamiliar, but the good news is
that factory methods for value objects are getting more and more mainstream. Just to give you
two examples, TimeSpan type in C# uses them (e.g. we can write TimeSpan.FromSeconds(12)

and Period type in Java (e.g. Period.ofNanos(2222)).

Ensuring consistent initialization of objects

In case where we have different ways of initializing an object that share a common part (i.e.
whichever way we choose, part of the initialization must always be done the same), having
several constructors that delegate to one common seems like a good idea. For example, we can
have two constructors, one delegating to the other, that holds a common initialization logic:

1 // common initialization logic

2 public ProductName(string value)

3 {

4 _value = value;

5 }

6

7 //another constructo that uses the common initialization

8 public ProductName(string model, string onfiguration)

9 : this(model + " " + configuration) //delegation to "common" constructor

10 {

11 }

Thanks to this, the field _value is initialized in a single place and we have no duplication.

The issue with this approach is this binding between constructors is not enforced - we can use
it if we want, otherwise we can skip it. For example, we can as well use a totally separate set of
fields in each constructor:

Value object anatomy 234

1 public ProductName(string value)

2 {

3 _value = value;

4 }

5

6 public ProductName(string model, string onfiguration)

7 //oops, no delegation to the other constructor

8 {

9 }

which leaves room for mistakes - we might forget to initialize all the fields all the time and allow
creating objects with invalid state.

I argue that using several static factory methods while leaving just a single constructor is safer
in that it enforces every object creation to pass through this single constructor. This constructor
can then ensure all fields of the object are properly initialized. There is no way in such case that
we can bypass this constructor in any of the static factory methods, e.g.:

1 public ProductName CombinedOf(string model, string configuration)

2 {

3 // no way to bypass the constructor here,

4 // and to avoid initializing the _value field

5 return new ProductName(model + " " + configuration);

6 }

What I wrote above might seem an unnecessary complication as the example of product names
is very simple and we are unlikely to make a mistake like the one I described above, however:

1. There are more complex cases when we can indeed forget to initialize some fields in
multiple constructors.

2. It is always better to be protected by the compiler than not when the price for the protection
is considerably low. At the very least, when something happens, we’ll have one place less
to search for bugs.

Better place for input validation

Let’s look again at the For() factory method:

Value object anatomy 235

1 public static ProductName For(string value)

2 {

3 if(string.IsNullOrWhiteSpace(value))

4 {

5 //validation failed

6 throw new ArgumentException(

7 "Product names must be human readable!");

8 }

9 else

10 {

11 //here we call the constructor

12 return new ProductName(value);

13 }

14 }

and note that it contains some input validation, while the constructor did not. Is it a wise decision
to move the validation to such a method and leave constructor for just assigning fields? The
answer to this questions depends on the answer to another one: are there cases where we do not
want to validate constructor arguments? If no, then the validation should go to the constructor,
as its purpose is to ensure an object is properly initialized.

Apparently, there are cases when we want to keep validations out of the constructor. Consider
the following case: we want to create bundles of two product names as one. For this purpose,
we introduce a new method on ProductName, called BundleWith(), which takes another product
name:

1 public ProductName BundleWith(ProductName other)

2 {

3 return new ProductName(

4 "Bundle: " + _value + other._value);

5 }

Note that the BundleWith() method doesn’t contain any validations but instead just calls the
constructor. It is safe to do so in this case, because we know that:

1. The string will be neither null nor empty, since we are appending values of both product
names to the constant value of "Bundle: ". The result of such append operation will never
give us an empty string or a null.

2. The _value fields of both this and the other product name components must be valid,
because if they were not, thease the two product names that contain those values would
fail to be created in the first place.

This was a case where we didn’t need the validation because we were sure the input was valid.
There may be another case - when it is more convenient for a static factory method to provide
a validation on its own. Such validation may be more detailed and helpful as it is in a factory
method made for specific case and knows more about what this case is. For example, let’s look
at the method we already saw for combining the model and configuration into a product name.
If we look at it again (it does not contain any validations yet):

Value object anatomy 236

1 public ProductName CombinedOf(string model, string configuration)

2 {

3 return ProductName.For(model + " " + configuration);

4 }

We may argue that this method would benefit from a specialized set of validations, because
probably both model and configuration need to be validated separately (by the way, is sometimes
may be a good idea would be to create value objects for model and configuration as well - it
depends on where we get them and how we use them). We could then go as far as to throw a
different exception for each case, e.g.:

1 public ProductName CombinedOf(string model, string configuration)

2 {

3 if(!IsValidModel(model))

4 {

5 throw new InvalidModelException(model);

6 }

7

8 if(!IsValidConfiguration(configuration))

9 {

10 throw new InvalidConfigurationException(configuration);

11 }

12

13 return ProductName.For(model + " " + configuration);

14 }

What if we need the default validation in some cases? We can still put them in a common
factory method and invoke it from other factory methods. This looks a bit like going back to
the problem with multiple constructors, but I’d argue that this issue is not as serious - in my
mind, the problem of validations is easier to spot than mistakenly missing a field assignment as
in the case of constructors. You maye have different preferences though.

Remember we asked two questions and I have answered just one of them. Thankfully, the other
one - why the constructor is private not public - is much easier to answer now.

Why private and not public?

My personal reasons for it are: validation and separating use from construction.

Validation

Looking at the constructor of ProductName - we already discussed that it does not validate
its input. This is OK when the constructor is used internally inside ProductName (as I just
demonstrated in the previous section), because it can only be called by the code we, as creators
of ProductName class, can trust. On the other hand, there probably is a lot of code that will create
instances of ProductName. Some of this code is not even written yet, most of it we don’t know, so
we cannot trust it. For such code, want it to use the only the “safe” methods that validate input
and raise errors, not the constructor.

Value object anatomy 237

Separating use from construction⁷⁰

I already mentioned that most of the time, we do not want to use polymorphism for values, as
they do not play any roles that other objects can fill. Even though, I consider it wise to reserve
some degree of flexibility to be able to change our decision more easily in the future, especially
when the cost of the flexibility is very low.

Static factory methods provide more flexibility when compared to constructors. For example,
when we have a static factory method like this:

1 public static ProductName For(string value)

2 {

3 //validations skipped for brevity

4 return new ProductName(value);

5 }

and all our code depends on it for creating product names rather than on the constructor, we are
free to make the ProductName class abstract at some point and have the For() method return
an instance of a subclass of ProductName. This change would impact just this static method, as
the constructor is hidden and accessible only from inside the ProductName class. Again, this is
something I don’t recommend doing by default, unless there is a very strong reason. But if there
is, the capability to do so is here.

String conversion methods

The overridden version of ToString() usually returns the internally held value or its string
representation. It can be used to interact with third party APIs or other code that does not
know about our ProductName type. For example, if we want to save the product name inside
the database, the database API has no idea about ProductName, but rather accepts library types
such as strings, numbers etc. In such case, we can use ToString() to make passing the product
name possible:

1 // let's assume that we have a variable

2 // productName of type ProductName.

3

4 var dataRecord = new DataRecord();

5 dataRecord["Product Name"] = productName.ToString();

6

7 //...

8

9 database.Save(dataRecord);

⁷⁰

A. Shalloway et al., Essential Skills For The Agile Developer.

Value object anatomy 238

Things get more complicated when a value object has multiple fields or when it wraps another
type like DateTime or an int - we may have to implement other accessor methods to obtain this
data. ToString() can then be used for diagnostic purposes to allow printing user-friendly data
dump.

Apart from the overridden ToString(), our ProductName type has an overload witj signature
ToString(Format format). This version of ToString() is not inherited from any other class, so
it’s a method we made to fit our goals. The ToString() name is used only out of convenience, as
the name is good enough to describe what the method does and it feels familiar. Its purpose
is to be able to format the product name differently for different outputs, e.g. reports and
on-screen printing. True, we could introduce a special method for each of the cases (e.g.
ToStringForScreen() and ToStringForReport()), but that could make the ProductName know
too much about how it is used - we would have to extend the type with new methods every
time we wanted to print it differently. Instead, the ToString() accepts a Format (which is an
interface, by the way) which gives us a bit more flexibility.

When we need to print the product name on screen, we can say:

1 var name = productName.ToString(new ScreenFormat());

and for reports, we can say:

1 var name = productName.ToString(new ReportingFormat());

Nothing forces us to call this method ToString() - we can use another name if we want to.

Equality members

For values such as ProductName, we need to implement all equality operations plus GetHash-
Code(). The purpose of equality operations to give product names value semantics and allow the
following expressions:

1 ProductName.For("a").Equals(ProductName.For("a"));

2 ProductName.For("a") == ProductName.For("a");

to return true, since the state of the compared objects is the same despite them being separate
instances in terms of references. In Java, of course, we can only override equals() method -
we are unable to override equality operators as their behavior is fixed to comparing references
(with the exception of primitive types), but Java programmers are so used to this, that it’s rarely
a problem.

One thing to note about the implementation of ProductName is that it implements IEquat-

able<ProductName> interface. In C#, overriding this interface when we want to have value
semantics is considered a good practice. The IEquatable<T> interface is what forces us to create
a strongly typed Equals() method:

Value object anatomy 239

1 public bool Equals(ProductName other);

while the one inherited from object accepts an object as a parameter. The use and existence of
IEquatable<T> interface is mostly C#-specific, so I won’t go into the details here, but you can
always look it up in the documentation⁷¹.

When we override Equals(), the GetHashCode() method needs to be overridden as well. The
rule is that all objects that are considered equal should return the same hash code and all objects
considered not equal should return different hash codes. The reason is that hash codes are used
to intentify objects in hash tables or hash sets - these data structures won’t work properly with
values if GetHashCode() is not properly implemented. That would be too bad, because values
are often used as keys in various hash-based dictionaries.

The return of investment

There are some more aspects of values that are not visible on the ProductName example, but
before I explain them in the next chapter, I’d like to consider one more thing.

Looking into the ProductName anatomy, it may seem like it’s a lot of code just to wrap a single
string. Is it worth it? Where is the return of investment?

To answer that, I’d like to get back to our original problem with product names and remind
you that I introduced a value object to limit the impact of some changes that could occur to the
codebase where product names are used. As it’s been a long time, here are the changes that we
wanted to impact our code as little as possible:

1. Changing the comparison of product names to case-insensitive
2. Changing the comparison to take into account not only a product name, but also a

configuration in which a product is sold.

Let’s find out whether introducing a value object would pay off in these cases.

First change - case-insensitivity

This one is easy to perform - we just have to modify the equality operators, Equals() and
GetHashCode() operations, so that they treat names with the same content in different letter
case equal. I won’t go over the code now as it’s not too interesting, I hope you imagine how that
implementation would look like. We would need to change all comparisons between strings to
use an option to ignore case, e.g. OrdinalIgnoreCase. This would need to happen only inside the
ProductName class as it’s the only one that knows how what it means for two product names to
be equal. This means that the encapsulation we’ve introduced with out ProductName class has
paid off.

⁷¹https://msdn.microsoft.com/en-us/library/vstudio/ms131187%28v=vs.100%29.aspx

https://msdn.microsoft.com/en-us/library/vstudio/ms131187%28v=vs.100%29.aspx
https://msdn.microsoft.com/en-us/library/vstudio/ms131187%28v=vs.100%29.aspx

Value object anatomy 240

Second change - additional identifier

This change is more complex, but having a value object in place makes it much easier anyway
over the raw string approach. To make this change, we need to modify the creation of
ProductName class to take an additional parameter, called config:

1 private ProductName(string value, string config)

2 {

3 _value = value;

4 _config = config;

5 }

Note that this is an example wementioned earlier. There is one difference, however.While earlier
we assumed that we don’t need to hold value and configuration separately inside a ProductName
instance and concatenated them into a single string when creating an object, this time we assume
that we will need this separation between name and configuration later.

After modifying the constructor, the next thing is to to add additional validations to the factory
method:

1 public static ProductName CombinedOf(string value, string config)

2 {

3 if(string.IsNullOrWhiteSpace(value))

4 {

5 throw new ArgumentException(

6 "Product names must be human readable!");

7 }

8 else if(string.IsNullOrWhiteSpace(config))

9 {

10 throw new ArgumentException(

11 "Configs must be human readable!");

12 }

13 else

14 {

15 return new ProductName(value, config);

16 }

17 }

Note that this modification requires changes all over the code base (because additional argument
is needed to create an object), however, this is not the kind of change that we’re afraid of too
much. That’s because changing the signature of the method will trigger compiler errors. Each of
these errors will need to be fixed before the compilation can pass (we can say that the compiler
creates a nice TODO list for us and makes sure we address each and every item on that list). This
means that we don’t fall into the risk of forgetting to make one of the places where we need to
make a change. This greatly reduces the risk of violating the Shalloway’s Law.

Value object anatomy 241

The last part of this change is to modify equality operators, Equals() and GetHashCode(), to
compare instances not only by name, but also by configuration. And again, I will leave the code
of those methods as an exercise to the reader. I’ll just briefly note that this modification won’t
require any changes outside the ProductName class.

Summary

So far, we have talked about value objects using a specific example of product names. I hope
you now have a feel of how such objects can be useful. The next chapter will complement the
description of value objects by explaining some of their general properties.

THIS IS ALL I HAVE FOR NOW. WHAT
FOLLOWS IS RAW, UNORDERED
MATERIAL THAT’S NOT YET READY
TO BE CONSUMED AS PART OF THIS
TUTORIAL

242

Aspects of value objects design
There are few aspects of design of value objects that I still need to talk about.

Immutability

I already said that value objects are usually immutable. Some say immutability is the core part
of something being a value (e.g. Kent Beck goes as far as to say that 1 is always 1 and will never
become 2), while others don’t consider it as hard constraint. One way or another, immutability
makes an awful lot of sense for value objects. Allow me to outline just three reasons I think
immutability is a key constraint for value objects.

Accidental change of hash code

Many times, values are used as keys in hash maps (.e.g .NET’s Dictionary<K,V> is essentially
a hash map). Not that many people are aware of how hash maps work. the thing is that we act
as if we were indexing something using an object, but the truth is, we are using hash codes in
such cases. Let’s imagine we have a dictionary indexed by instances of some elusive type, called
ValueObject:

1 Dictionary<ValueObject, AnObject> _objects;

and that we are allowed to change the state of its object, e.g. by using a method SetName(). Now,
it is a shame to admit, but there was a time when I thought that doing this:

1 ValueObject val = ValueObject.With("name");

2 _objects[val] = new SomeObject();

3

4 // we are mutating the state:

5 val.SetName("name2");

6

7 var objectIAddedTwoLinesAgo = _objects[val];

would give me access to the original object I put into the dictionary with val as a key. The
impression was caused by the code _objects[val] = new SomeObject(); looking as if I indexed
the dictionary with an object, where in reality, the dictionary was merely taking the val to
calculate its hash code and use this as a real key.

This is the reason why the above code would throw an exception, because by changing the
state of the val with the statement: val.SetName("name2");, I also changed its calculated hash
code, so the second time I did _objects[val], I was accessing an entirely different index of the
dictionary than when I did it the first time.

As it is quite common situation that value objects end up as keys inside dictionaries, it is better
to leave them immutable to avoid nasty surprises.

243

Aspects of value objects design 244

Accidental modification by foreign code

If you have ever programmed in Java, you have to remember its Date class, that did behave like
a value, but was mutable (with methods like setMonth(), setTime(), setHours() etc.).

Now, value objects are different from normal objects in that they tend to be passed a lot to
many subroutines or accessed from getters. Many Java programmers did this kind of error when
allowing access to a Date field:

1 public class ObjectWithDate {

2

3 private final Date _date = new Date();

4

5 //...

6

7 public Date getDate() {

8 //oops...

9 return _date;

10 }

11 }

It was so funny, because every user of such objects could modify the internal data like this:

1 ObjectWithDate o = new ObjectWithDate();

2

3 o.getDate().setTime(10000);

The reason this was happening was that the method getDate() returned a reference to a mutable
object, so by calling the getter, we would get access to internal field.

As it was most of the time against the intention of the developers, it forced them to manually
creating a copy each time they were returning a date:

1 public Date getDate() {

2 return (Date)_date.clone();

3 }

which was easy to forget and may have introduced a performance penalty on cloning objects
each time, even when the code that was calling the getter had no intention of modifying the date.

And that’s not all, folks - after all, I said to avoid getters, so we should not have this problem,
right? Well, no, because the same applies when our class passes the date somewhere like this:

Aspects of value objects design 245

1 public void dumpInto(Destination destination) {

2 return destination.write(_date);

3 }

In case of this dumpInto() method, the Destination is allowed to modify the date it receives
anyway it likes, which, again, was usually against developers’ intention.

I saw many, many issues in production code caused by the mutability of Java Date type alone.
That’s one of the reasons the new time library in Java 8 (java.time) contains immutable types for
time and date. When a type is immutable, you can safely return its instance or pass it somewhere
without having to worry that someone will overwrite your local state against your intention.

Thread safety

Mutable values cause issues when they are shared by threads, because such objects can be
changed by few threads at the same time, which can cause data corruption. I stressed a few
times already that value objects tend to be created many times in many places and passed along
inside methods or returned as results a lot. Thus, this is a real danger. Sure, we could lock each
method such a mutable value object, but then, the performance penalty could be severe.

On the other hand, when an object is immutable, there are no multithreading concerns. After
all, no one is able to modify the state of an object, so there is no possibility for concurrent
modifications causing data corruption. This is one of the reasons why functional languages,
where data is immutable by default, gain a lot of attention in domains where running many
threads is necessary.

If not mutability, then what?

There, I hope I convinced you that immutability is a great choice for value objects and nowadays,
when we talk about values, we mean immutable ones. But one question remains unanswered:
what about a situation when I really want to have:

• a number that is greater by three than another number?
• a date that is later by five days than another date?
• a path to a file in a directory that I already have?

If I cannot modify an existing value, how can I achieve such goals?

The answer is simple - value objects have operations that instead ofmodifying the existing object,
return a new one, with state we are expecting. The old value remains unmodified.

Just to give you three examples, when I have an existing string and want to replace every
occurence of letter r with letter l:

Aspects of value objects design 246

1 string oldString = "rrrr";

2 string newString = oldString.Replace('r', 'l');

3 //oldString is still "rrrr", newString is "llll"

When I want to have a date later by five days than another date:

1 string oldDate = DateTime.Now;

2 string newString = oldDate + TimeSpan.FromDays(5);

3 //oldDate is unchanged, newDate is later by 5 days

When I want to make a path to a file in a directory from a path to the directory⁷²:

1 AbsoluteDirectoryPath oldPath

2 = AbsoluteDirectoryPath.Value(@"C:\Directory");

3 AbsoluteFilePath newPath = oldPath + FileName.Value("file.txt");

4 //oldPath is "C:\Directory", newPath is "C:\Directory\file.txt"

So, again, any time we want to have a value based on a previous value, instead of modifying the
previous object, we create a new object with desired state.

Implicit vs. explicit handling of variability (TODO
check vs with or without a dot)

As in ordinary objects, there can be some variability in values. For example, we can have money,
which includes dollars, pounds, zlotys (Polish money), euros etc. Another example of something
that can be modelled as a value are paths (you know, C:\Directory\file.txt or /usr/bin/sh)
- here, we can have absolute paths, relative paths, paths to files and paths pointing to directories.

Contrary to ordinary objects, however, where we solved variability by using interfaces and
different implementations (e.g. we had Alarm interface with implementing classes like LoudAlarm
or SilentAlarm), in values we do it differenly. This is because the variability of values is not
behavioral. Whereas the different kinds of alarms varied in how they fulfilled the responsibility
of signaling they were turned on (we said they responded to the same message with, sometimes
entirely different, behaviors), the diffenrent kinds of currencies differ in what exchange rates are
applied to them (e.g. “how many dollars do I get from 10 Euros and how many from 10 Punds?”),
which is not a behavioral distinction. Likewise, paths differ in what kinds of operations can be
applied to them (e.g. we can imagine that for paths pointing to files, we can have an operation
called GetFileName(), which does not make sense for a path pointing to a directory).

So, assuming the differences are important, how do we handle them? There are two basic
approaches that I like calling implicit and explicit. Both are useful in certain contexts, depending
on what exactly we want to model, so both demand an explanation.

⁷²this example uses a library called Atma Filesystem: TODO hyperlink to nuget

Aspects of value objects design 247

Implicit variability

Let’s imagine we want to model money using value objects⁷³. Money can have different
currencies, but we don’t want to treat each currency in a special way. The only things that
are impacted by currency are exhange rtates to other currencies. Other than this, we want every
part of logic that works with money to work with each currency.

This leads us to making the differencies between currencies implicit, i.e. we will have a single
type called Money, which will not expose its currency at all. We only have to tell the currency
when we create an instance:

1 Money tenPounds = Money.Pounds(10);

2 Money tenBucks = Money.Dollars(10);

3 Money tenYens = Money.Yens(10);

and when we want to know the concrete amount in a given currency:

1 decimal amountOfDollarsOnMyAccount = mySavings.AmountOfDollars();

other than that, we are allowed to mix different currencies whenever and wherever we like⁷⁴:

1 Money mySavings =

2 Money.Dollars(100) +

3 Money.Euros(200) +

4 Money.Zlotys(1000);

And this is good, assuming all of our logic is common for all kinds of money and we do not have
any special logic just for Pounds or just for Euros that we don’t want to pass other currencies
into by mistake.

Here, the variability of currency is implicit - most of the code is simply unaware of it and it is
gracefully handled under the hood inside the Money class.

Explicit variability

There are times, however, whenwewant the variability to be explicit, i.e. modeled usnig different
types. Filesystem paths are a good example. Let’s imagine the following method for creating a
backup archives that accepts a destination path (for now as a string) as its input parameter:

1 void Backup(string destinationPath);

⁷³This example is loosely based on Kent Beck’s book Test-Driven Development By Example. based on TODO add reference to Kent’s book
⁷⁴I could use extension methods to make the example even more idiomatic, e.g. to be able to write 5.Dollars(), but I don’t want to go to far

in the land of idioms specific to any language, because my goal is an audience wider than just C# programmers.

Aspects of value objects design 248

This method has one obvious drawback - its signature does not tell anything about the
characteristics of the destination path - is it an absolute path, or a relative path (and if relative,
then relative to what?)? Should the path contain a file name for the backup file, or should it
be just a directory path and file name is given according to some pattern (e.g. given on current
date)? Or maybe file name in the path is optional and if none is given, then a default name is
used? A lot of questions, isn’t it?

We can try to work around it by changing the name of the parameter to hint the constraints, like
this:

1 void Backup(string absoluteFilePath);

but the effectiveness of that is based solely on someone reading the argument name and besides,
before a path reaches this method, it is usually passed around several times and it’s very hard
to keep track of what is inside this string, so it’s easy to mess things up and pass e.g. a relative
path where an absolute one is expected. The compiler does not enforce any constraints. Besides
that, one can pass an argument that’s not even a path inside, because a string can contain any
arbitrary content.

Looks like this is a good situation to introduce a value object, but what kind of type or types
should we introduce? Surely, we could create a single type called Path that would have methods
like IsAbsolute(), IsRelative(), IsFilePath() and IsDirectoryPath() (i.e. it would handle
the variability implicitly), which would solve (only - we’ll see that shortly) one part of the
problem - the signature would be:

1 void Backup(Path absoluteFilePath);

and we would not be able to pass an arbitrary string, only an instance of a Path, which may
expose a factory method that checks whether the string passed is a proper path:

1 //the following throws exception because string is not proper path

2 Path path = Path.Value(@"C:\C:\C:\C:\//\/\/");

and throws an exception in place of path creation. This is important - previously, when we did
not have the value object, we could assign garbage to a string, pass it between several objects
and get an exception from the Backup() method. Now, when we have a value object, there is
a high probability thet it will be used as early as possible in the chain of calls, and if we try to
create a path with wrong arguments, we will get an exception much closer to the place where
the mistake was made, not at the end of the call chain.

So yeah, introducing a general Path value object might solve some problems, but not all of them.
Still, the signature of the Backup() method does not signal that the path expected must be an
absolute path to a file, so one may pass a relative path or a path to a directory.

In this case, the varying properties of paths are not just an obstacle, a problem to solve, like in case
of money. They are they key differentiating factor in choosing whether a behavior is appropriate
for a value or not. In such case, it makes a lot of sense to create several different value types for
path, each representing a different set of constraints.

Thus, we may decide to introduce types like⁷⁵:

⁷⁵for reference, please take a look at TODO hyperlink

Aspects of value objects design 249

• AbsoluteFilePath - representing an absolute path containing a file name, e.g. C:\Dir\file.txt
• RelativeFilePath - representing a relative path containing a file name, e.g. Dir\file.txt
• AbsoluteDirPath - representing an absolute path not containing a file name, e.g. C:\Dir\
• RelativeDirPath - representing a relative path not containing a file name, e.g. Dir\

Having all these types, we can now change the signature of the Backup() method to:

1 void Backup(AbsoluteFilePath path);

Note that we do not have to explain the constraints in the argument name - we can just call it
path, because the type already says what needs to be said. And by the way, no one will be able
to pass e.g. a RelativeDirPath now by accident, not to mention a string.

Another property of making variability among values explicit is that some methods for conver-
sions should be provided. For example, when all we’ve got is an AbsoluteDirPath, but we still
want to invoke the Backup() method, we need to convert our path to an AbsoluteFilePath by
adding a file name, that can be represented by a value objects itself (let’s call it a FileName). The
code that does the conversion then looks like this:

1 //below dirPath is an instance of AbsoluteDirPath:

2 AbsoluteFilePath filePath = dirPath + FileName.Value("backup.zip");

Of course, we create conversion methods only where a conversion makes sense.

And that’s it for the path example.

Summing up the implicit vs. explicit discussion

Note that while in the previous example (the one with money), making the variability (in
currency) among values implicit helped us achieve our design goals, in this example it made
more sense to do exactly the opposite - to make the variability (in both absolute/relative and to
file/to directory axes) as explicit as to create a separate type for each combination of constraints.

If we choose the implicit path, we can treat all variations the same, since they are all of the same
type. If we decide on the explicit path, we end up with several types that are usually incompatible
and we allow conversions between them where such conversions make sense.

Special values

Some value types has values that are so specific asto have their own name. For example, a string
value consisting of "" is called an empty string. A XXXXXXXX (TODO put a maximum 32 bit
integer here) is called “maximum 32 bit integer value”.

For example, in C#, we have Int32.Max and Int32.Min which are constants representing a
maximum and minimum value of 32 bit integer. string.Empty representing an empty string.

Aspects of value objects design 250

In Java, we have things like Duration.ZERO to represent a zero duration or DayOfWeek.MONDAY to
represent a specific day of week.

For such values, is makes a lot of sense to make them globally accessible from the value object
classes, as is done in all the above examples from C# and Java library. This is because they are
immutable, so the global accessibility does not cause any hurt. For example, we can imagine
string.Empty implemented like this:

1 public class string

2 {

3 //...

4 public const string Empty = "";

5 //...

6 }

The additional constmodifier ensures no one will assign any new value to the Empty field. By the
way, we can use const only for types that have literal values, like a string. For many others, we
will have to use a static readonly (or final static in case of Java) modifier. To demonstrate
it, let’s go back to the money example from this chapter and imagine we want to have a special
value called None to symbolize no money in any currency. As our Money type has no literals, we
cannot use the const modifier, so instead we have to do this:

1 public class Money

2 {

3 //...

4

5 public static readonly

6 Money None = new Money(0, Currencies.Whatever);

7

8 //...

9 }

This idiom is the only exception I know from the rule I gave you several chapters ago about not
using static fields at all. Anyway, now that we have this None value, we can use it like this:

1 if(accountBalance == Money.None)

2 {

3 //...

4 }

Value types and Tell Don’t Ask

When talking about the web of objects metaphor, I stressed that objects should be told what to
do, not asked for information. I also said that if a responsibility is too big for a single object to

Aspects of value objects design 251

handle, it does not try to achieve it alone, but rather distribute the work further to other objects
by sending messages to them. I said that preferrably (TODO check spelling) we would like to
have mostly void methods that accept their context as arguments.

What about values? Does that metaphor apply to them? And if so, then how? And what about
Tell Don’t Ask?

First of all, values do not belong to the web of objects metaphor, alhough in almost all
object-oriented languages, values are implemented using the same mechanism as objects - a
class[ˆcsharpstructs]. Values can be passed between objects in messages, but we don’t talk about
values sending messages.

A conclusion from this is that values cannot be composed of objects. Values can be composed of
values (as our Path type had a string inside), which ensures their immutability. Also, they can
occasionally can objects as parameters of their methods (remember the ProductName class from
previous chapters? I had a method ToString() accepting a Format interface), but this is more of
an exception than a rule.

If the above statements about values are true, then it means values simply cannot be expected to
conform to Tell Don’t Ask. Sure, we want them to be encapsulate domain concepts, to provide
higher-level interface etc., so we do not want values to become plain data structures like the
ones we know from C, but the nature of values is to transfer pieces of data.

As such, we expect values to contain a lot of query methods (although, as I said, we strive for
something more abstract and more useful than mere “getter” methods most of the time). For
example, you might like the idea of having a set of path-related classes (like AbsoluteFilePath),
but in the end, you will have to somehow interact with a host of third party APIs that don’t
know anything about those classes. Then, a ToString()method that just returns internally held
value will come in handy.

Summary

[ˆcsharpstructs] C# has structs, which can sometimes come in handy when implementing values,
especially starting from C# 5.0 where they got a bit more powerful.

TODO check whether the currencies are written uppercase in Kent’s book

An object-oriented approach
summary
Where are we now?

So far, we talked a lot about the object-oriented world, consisting of objects, that:

• send messages to each other using interfaces and according to protocols. Thanks to this,
objects could send messages, without knowing who exactly is on the other side to handle
the message

• are built around the Tell Don’t Ask heuristic, so that each object has its own responsibility
and handles it when its told, without conveying to anyone how it is handling the
responsibility

• are built around the quality of composaibility, which lets us compose them as we would
compose parts of sentences, creating higher-level languages, so that we can reuse the
objects we already have as our “vocabulary” and add new functionality by combining
them into new “sentences”.

• are created in places well separated from the places that use those objects, depending on
their lifecycle, e.g. factories and composition root.

and of values that:

• represent quantities, measurements and other discrete pieces of data that wewant to name,
combine with each other, transform and pass along. Examples are: dates, strings, money,
time durations, path values, numbers, etc.

• are compared based on their data, not their references. Two values containing the same
data are considered equal.

• are immutable - when we want to have a value like another one, but with one aspect
changed, we create another value based on the previous value and the previous value
remains unchanged.

• do not rely on polymorphism - if we have several value types that need to be used
interchangeably, the usual strategy is to provide explicit conversion methods between
those types.

There are times when choosing whether something should be an object or a value poses
a problem, so there is no strict rule on how to choose and different people have different
preferences.

This is the world we are going to fit mock objects and other TDD practices into.

252

An object-oriented approach summary 253

So, tell me again, why are we here?

I hope you’re not mad at me because we put aside TDD for such a long time. Believe me that
understanding the concepts from all the chapters from part 2 up to now is crucial to getting
mocks right.

Mock objects are not a new tool, however, there is still a lot of misunderstanding of what their
nature is and where and how they fit best into the TDD approach. Some opinions went as far as
to say that there are two styles of TDD: one that uses mocks (called “mockist TDD” or “London
style TDD”) and another without them (called “cassic TDD” or “Chicago style TDD”). Personally,
I don’t support this division. I like very much what Nat Pryce said about it⁷⁶:

(…) I argue that there are not different kinds of TDD. There are different design
conventions, and you pick the testing techniques and tools most appropriate for the
conventions you’re working in.

I hope now you understand why i put you through so many pages talking about a specific view
on object-oriented design. This is the view that mock objects as a tool and as a technique were
chosen to support. Talking about mock objects out of the context of this view would not make
too much sense.

⁷⁶TODO add reference and change it into a url instead of footnote.

Mock Objects as a testing tool
Remember the beginning of this book, where I introduced mock objects and said that I lied to you
about their true purpose and nature? Now that we have a lot more knowledge about the view
on object-oriented design, we can truly understand where mocks come from and what thay are
for.

In this chapter, I will not yet say anything about the role of mock objects in test-driving object-
oriented code, just justify their place in the context of testing objects.

A backing example

Believe me I tried to write this chapter without leaning on any particular example, but the
outcome was so dry and abstract, that I decided it could really use a backing example.

So for the needs of this chapter, I will use a single class, called DataDispatch, which has the
responsibility of sending data to a destination (modeled using a Destination interface) which
needs to be opened before the sending operation and closed after sending. Its design is very naive,
but that’s the purpose - to not let the example itself get in the way of explaining mock objects.

Anyway, the DataDispatch class is defined like this:

1 public class DataDispatch

2 {

3 Destination _destination;

4

5 public DataDispatch(Destination destination)

6 {

7 _destination = destination;

8 }

9

10 public void Dispatch(byte[] data)

11 {

12 _destination.Open();

13 _destination.Send(data);

14 _destination.Close();

15 }

16 }

And the Destination interface is defined like this:

254

Mock Objects as a testing tool 255

1 public interface Destination

2 {

3 void Open();

4 void Send(byte[] data);

5 void Close();

6 }

Now we are ready to introduce mocks! Let’s go!

Specifying protocols

I hope in previous chapters, I succeeded in making my point that protocols are very important.
Our goal is to design them so that we can reuse them in different contexts. Thus, it makes a lot of
sense to specify (remember, that’s the word we are using for “test”) whether an object adheres to
its part of the protocol. For example, our DataDispatch must first open a destination, then send
the data and at last, close the connection. If we rely on these calls being made in this order when
we write our implementations of the Destination interface, we’d better specify what calls they
expect to receive from DataDispatch and in which order, using executable Statements.

Remember from the previous chapters then I told you that we strive for context-independence
when designing objects? This is true, however, it’s impossible most of the time to attain complete
context-independence. In case of DataDispatch, it knows very little of its context, which id
a Destination, but nevertheless, it needs to know something about it. Thus, when writing a
Statement, we need to pass an object of a class implementing Destination into DataDispatch.
But which context should we use?

In other words, we can express our problem with the following, unfinished Statement (I marked
all the unknowns with a double question mark: ??):

1 [Fact] public void

2 ShouldSendDataToOpenedDestinationThenCloseWhenAskedToDispatch()

3 {

4 //GIVEN

5 var destination = ??;

6 var dispatch = new DataDispatch(destination);

7 var data = Any.Array<byte>();

8

9 //WHEN

10 dispatch.ApplyTo(data);

11

12 //THEN

13 ??

14 }

As you see, we need to pass a Destination to a DataDispatch, but we don’t know what that
destination should be. Likewise, we have no good idea of how to specify the expected calls and
their orders.

Mock Objects as a testing tool 256

From the perspective of DataDispatch, it is designed to work with different destinations, so no
context is more appropriate than other. This means that we can pick and choose the one we like.
Ideally, we’d like to pass a context that best fulfills the following requirements:

1. Does not add side effects of its own - when we are specifying a protocol of an object, we
want to be sure that what we are making assertions on are the actions of this object itself,
not its context. This is a requirement of trust - you want to trust your specifications that
they are specifying what they say they do.

2. Is easy to control - so that we can easily make it trigger different behaviors in the object we
are specifying, Also, we want to be able to easily verify how the specified object interacts
with its context. This is a requirement of convenience.

3. Is quick to create and easy to maintain - because we want to focus on the behaviors we
specify, not on maintaining or creating helper context. Also, we don’t want to write special
Statements for the behaviors of this context. This is a requirement of low friction.

There is a tool that fulfills these three requirements - you guessed it - mock objects!

Using a mock destination

I hope you remember the NSubstitute library for creating mocks objects that we introduce way
back at the beginning of the book. We can use it now to quickly create an implementation of
Destination that behaves the way we like, allows easy verification of protocol and between
Dispatch and Destination and introduces as minimal number of side effects as possible.

Filling the gap, this is what we get:

1 [Fact] public void

2 ShouldSendDataToOpenedDestinationThenCloseWhenAskedToDispatch()

3 {

4 //GIVEN

5 var destination = Substitute.For<Destination>;

6 var dispatch = new DataDispatch(destination);

7 var data = Any.Array<byte>();

8

9 //WHEN

10 dispatch.ApplyTo(data);

11

12 //THEN

13 Received.InOrder(() =>

14 {

15 destination.Open();

16 destination.Send(data);

17 destination.Close();

18 };

19 }

Mock Objects as a testing tool 257

There, it did the trick!⁷⁷ The only thing that might seem new to you is this:

1 Received.InOrder(() =>

2 {

3 destination.Open();

4 destination.Send(data);

5 destination.Close();

6 };

What it does is checking whether the Destination got the messages (remember? Objects send
messages to each other) in the right order. If we changed the implementation of the ApplyTo()
method from this one:

1 public void Dispatch(byte[] data)

2 {

3 _destination.Open();

4 _destination.Send(data);

5 _destination.Close();

6 }

to this one (note the changed call order):

1 public void Dispatch(byte[] data)

2 {

3 _destination.Send(data);

4 _destination.Open();

5 _destination.Close();

6 }

The Statement will turn false (i.e. will fail).

Mocks as yet another context

What we have done in the above example was to put our DataDispatch in a context that was
most convenient for us to use in our Statement.

Some say that specifying object interactions in a context consisting of mocks is “specifying in
isolation” and that providing such mock context is “isolating”. I don’t like this point of view very
much. From the point of view of a specified object, mocks are just another context - they are
not better, nor worse, not more or less real than other contexts we want to put our Dispatch in.
Sure, this is not the context in which it runs in production, but we may have other situations
than mere production work - e.g. we may have a special context for demos, where we count sent
packets and show the throughput on a GUI screen. We may also have a debugging context that
in each method, before passing the control to a production code, writes a trace message to a log.

⁷⁷By the way, note that this protocol we are specifying is very naive, since we assume that sending data through destination will never throw
any exception.

Mock Objects as a testing tool 258

Summary

Now, wasn’t this a painless introduction to mock objects! In the next chapters, we will examine
how mock objects help in test-driven development.

Further Reading
Motivation – the first step to learning TDD

• Fearless Change: Patterns for Introducing New Ideas by Mary Lynn Manns Ph.D. and
Linda Rising Ph.D. is worth looking at.

• Resistance Is Not to Change⁷⁸ by Al Shalloway

The Essential Tools

• GerardMeszaros has written a long book about using the XUnit family of test frameworks,
called XUnit Test Patterns⁷⁹. This book also explains a lot of philosophy behind these tools.

Value Objects

• Ken Pugh has a chapter devoted to value objects in his book Prefactoring (the name of the
chapter is Abstract Data Types).

• Growing Object Oriented Software Guided By Tests contains some examples of using value
objects and some strategies on refactoring towards them.

• Value object discussion⁸⁰ on C2 wiki.
• Martin Fowler’s bliki mentions⁸¹ value objects. They are also one of the patterns in his
book Patterns of Enterprise Application Architecture⁸²

• Arlo Beshele describes⁸³ how he uses value objects (described under the name of Whole
Value) much more than I do in this book, presenting an alternative design style that is
closer to functional that the one I write about.

• Implementation Patterns⁸⁴ book by Kent Beck includes value object as one of the patterns.

⁷⁸http://www.netobjectives.com/blogs/resistance-not-change
⁷⁹http://xunitpatterns.com/
⁸⁰http://c2.com/cgi/wiki?ValueObject
⁸¹http://martinfowler.com/bliki/ValueObject.html
⁸²http://martinfowler.com/books/eaa.html
⁸³http://arlobelshee.com/the-no-mocks-book/
⁸⁴http://www.isbnsearch.org/isbn/0321413091

259

http://www.netobjectives.com/blogs/resistance-not-change
http://xunitpatterns.com/
http://c2.com/cgi/wiki?ValueObject
http://martinfowler.com/bliki/ValueObject.html
http://martinfowler.com/books/eaa.html
http://arlobelshee.com/the-no-mocks-book/
http://www.isbnsearch.org/isbn/0321413091
http://www.netobjectives.com/blogs/resistance-not-change
http://xunitpatterns.com/
http://c2.com/cgi/wiki?ValueObject
http://martinfowler.com/bliki/ValueObject.html
http://martinfowler.com/books/eaa.html
http://arlobelshee.com/the-no-mocks-book/
http://www.isbnsearch.org/isbn/0321413091

	Table of Contents
	Front Matter
	Dedications
	Thanks!

	Part 1: Just the basics
	Motivation – the first step to learning TDD
	Let's get it started!

	The essential tools
	Test framework
	Mocking framework
	Anonymous values generator
	Summary

	It's not (only) a test
	When a test becomes something more
	Taking it to the software development land
	A Specification rather than a test suite
	The differences between executable and ``traditional'' specifications

	Statement-first programming
	What's the point of writing a specification after the fact?
	``Test-First'' means seeing a failure
	``Test-After'' often ends up as ``Test-Never''
	``Test-After'' often leads to design rework
	Summary

	Practicing what we have already learned
	Let me tell you a story
	Act 1: The Car
	Act 2: The Customer's Site
	Act 3: Test-Driven Development
	Epilogue

	Sorting out the bits
	How to start?
	Start with a good name
	Start by filling the GIVEN-WHEN-THEN structure with the obvious
	Start from the end
	Start by invoking a method if you have one
	Summary

	How is TDD about analysis and what does ``GIVEN-WHEN-THEN'' mean?
	Is there really a commonality between analysis and TDD?
	Gherkin
	TODO list… again!

	Developing a TDD style and Constrained Non-Determinism
	A style?
	Principle: Tests As Specification
	First technique: Anonymous Input
	Second technique: Derived Values
	Third technique: Distinct Generated Values
	Fourth technique: Constant Specification
	Summary of the example
	Constrained non-determinism
	Summary
	What is the scope of a unit-level Statement in TDD?
	Specifying Boundaries and Conditions

	Triangulation

	Part 2: Test-Driven Development in Object-Oriented World
	On Object Composability
	Telling, not asking
	The need for mock objects
	Why do we need composability?
	Web, messages and protocols
	Alarms, again!
	Summary

	Composing a web of objects
	A preview

	Interfaces
	Classes vs interfaces
	Events/callbacks vs interfaces – few words on roles
	Small interfaces

	Protocols
	Protocols exist
	Protocol stability
	Craft messages to reflect sender's intention
	Model interactions after the problem domain
	Message recipients should be told what to do, instead of being asked for information
	Most of the getters should be removed, return values should be avoided
	Protocols should be small and abstract
	Summary

	Classes
	Single Responsibility Principle
	Static recipients
	Summary

	Object Composition as a Language
	More readable composition root
	Refactoring for readability
	Composition as a language
	The significance of higher-level language
	Some advice
	Summary

	Value Objects
	What is a value?
	Example: money and names

	Value object anatomy
	Hidden data
	Hidden constructor
	String conversion methods
	Equality members
	The return of investment
	Summary

	THIS IS ALL I HAVE FOR NOW. WHAT FOLLOWS IS RAW, UNORDERED MATERIAL THAT’S NOT YET READY TO BE CONSUMED AS PART OF THIS TUTORIAL
	Aspects of value objects design
	Immutability
	Implicit vs. explicit handling of variability (TODO check vs with or without a dot)
	Special values
	Value types and Tell Don't Ask
	Summary

	An object-oriented approach summary
	Where are we now?
	So, tell me again, why are we here?

	Mock Objects as a testing tool
	A backing example
	Specifying protocols
	Using a mock destination
	Mocks as yet another context
	Summary

	Further Reading
	Motivation – the first step to learning TDD
	The Essential Tools
	Value Objects

