
Ten Steps to Linux Survival

Bash for Windows People

Jim Lehmer

2015



Steps

List of Figures 5

-1 Introduction 13
Batteries Not Included . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Please, Give (Suggestions) Generously . . . . . . . . . . . . . . . . . . . . . . 15
Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Caveat Administrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
How to Get There from Here . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

0 Some History 21
Why Does This Matter? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Panic at the Distro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Get Embed With Me . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Cygwin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1 Come Out of Your Shell 29
bash Built-Ins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Everything You Know is (Almost) Wrong . . . . . . . . . . . . . . . . . . . . . 32
You’re a Product of Your Environment (Variables) . . . . . . . . . . . . . . . . 35

Who Am I? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Paths (a Part of Any Balanced Shrubbery) . . . . . . . . . . . . . . . . . . . . 37
Open Your Shell and Interact . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Getting Lazy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 File Under ”Directories” 43
Looking at Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A Brief Detour Around Parameters . . . . . . . . . . . . . . . . . . . . . . . . 46
More Poking at Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Sorting Things Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Rearranging Deck Chairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Making Files Disappear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2



touch Me . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Navigating Through Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
May I? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
”I’ll Send You a Tar Ball” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Let’s link Up! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

I Said ”Go Away!”, Dammit! . . . . . . . . . . . . . . . . . . . . . . . . . 71
mount It? I Don’t Even Know It’s Name! . . . . . . . . . . . . . . . . . . . 73
I’m Seeing Double . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

What’s the diff? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3 Finding Meaning 79
What’s With the Backslashes? . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Useful find Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Useful find Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4 Grokking grep 85
Expressing Yourself Regularly . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Groveling With grep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Gawking at awk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 “Just a Series of Pipes” 93
All Magic is Redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Everyone Line Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 vi 101
Command Me . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Undo Me . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Circumnavigating vi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Insert Tab A Into Slot B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Ctrl-X, Ctrl-C, Ctrl-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Change Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
”X” Marks the Spot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Executing External Commands . . . . . . . . . . . . . . . . . . . . . . . . . . 112
The Unseen World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Let’s Get Small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Editing on the Command Line . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 The Whole Wide World 117
sudo Make Me a Sandwich . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Surfin’ the Command Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
It’s Nice to Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
You’ve Got Mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Let’s Connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



Network Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8 The Man Behind the Curtain 133
All Part of the Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
When All You Have is a Hammer . . . . . . . . . . . . . . . . . . . . . . . . . 136
Sawing Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
It’s All Temporary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9 How Do You Know What You Don’t Know, man? 143
man, is that info apropos? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
How Do You Google, man? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Books and Stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

10And So On 151
One-Stop Shopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Service Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Package Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Other Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Which which is Which? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Over and Over and Over . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Start Me Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Turn on Your Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Exit, Smiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
The End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A Appendices 167
Cheat Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Conditional Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Special Files and Directories . . . . . . . . . . . . . . . . . . . . . . . . 168
System Directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
System Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Keep It Simple, Stupid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Chain Gangs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Simple Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

C Colophon 179
About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Index 181

4



List of Figures

-1.1 Sample command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
-1.2 First ssh connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

0.1 ps on Linux in bash . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
0.2 ps on FreeBSD in csh . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.1 Built-in commands in bash . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2 bash ”shebang” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.3 Script with ‘dash‘ ”shebang” . . . . . . . . . . . . . . . . . . . . . . . 31
1.4 ”Shebang” error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.5 Hello, World! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.6 set command in bash . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.7 SET command in CMD.EXE . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.8 echo the HOME environment variable in bash . . . . . . . . . . . . . . . . 34
1.9 echo the HOMEPATH environment variable in CMD.EXE . . . . . . . . . . . . 34
1.10 Assign FOO environment variable before executing script . . . . . . . . 35
1.11 Set multiple environment variables at once . . . . . . . . . . . . . . . 36
1.12 Set environment variable to output from a command . . . . . . . . . 36
1.13 Hiding commands from command history . . . . . . . . . . . . . . . . 36
1.14 USER environment variable . . . . . . . . . . . . . . . . . . . . . . . . 37
1.15 whoami command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.16 PATH environment variable in bash . . . . . . . . . . . . . . . . . . . . 37
1.17 PATH environment variable in CMD.EXE . . . . . . . . . . . . . . . . . . . 37
1.18 PATH environment variable in Cygwin . . . . . . . . . . . . . . . . . . 38
1.19 List some files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.20 Lots of typing and escape characters . . . . . . . . . . . . . . . . . . 39
1.21 Tab expansion magic . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.22 ls command showing hidden files . . . . . . . . . . . . . . . . . . . . 40

2.1 Listing of the root directory . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Listing directory contents . . . . . . . . . . . . . . . . . . . . . . . . 44
2.3 Listing a home directory showing hidden ”dotfiles” . . . . . . . . . . 44



2.4 Detailed listing of home directory . . . . . . . . . . . . . . . . . . . . 45
2.5 Detailed listing of home directory with ”dotfiles” . . . . . . . . . . . . 45
2.6 Short parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.7 Alternate short parameter syntax . . . . . . . . . . . . . . . . . . . . 47
2.8 Long parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.9 cat command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.10 tail command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.11 Display last 15 lines of a file with tail -n . . . . . . . . . . . . . . . . 49
2.12 tail -f command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.13 file command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.14 Show contents of one file . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.15 Show contents of all three files . . . . . . . . . . . . . . . . . . . . . 51
2.16 sort command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.17 Sort by the second ”key” column . . . . . . . . . . . . . . . . . . . . 52
2.18 Sort by the third column . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.19 Sort by third column, numerically . . . . . . . . . . . . . . . . . . . . 53
2.20 Top three most expensive items . . . . . . . . . . . . . . . . . . . . . 53
2.21 Sort and show only unique rows . . . . . . . . . . . . . . . . . . . . . 54
2.22 Sort unique rows using long parameter names . . . . . . . . . . . . . 54
2.23 cp command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.24 Copying directories recursively . . . . . . . . . . . . . . . . . . . . . 55
2.25 cp command with long parameter names . . . . . . . . . . . . . . . . 55
2.26 mv command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.27 rm command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.28 Oops! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.29 First make sure we are dealing with the right files . . . . . . . . . . . 57
2.30 touch command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.31 A second touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.32 Set file modified date to a specific date and time . . . . . . . . . . . . 58
2.33 mkdir command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.34 mkdir error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.35 Make multiple intervening directories at once . . . . . . . . . . . . . 59
2.36 cd command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.37 Change to home directory . . . . . . . . . . . . . . . . . . . . . . . . 60
2.38 Alternative way to change to home directory . . . . . . . . . . . . . . 60
2.39 Change to the home directory of another user . . . . . . . . . . . . . 60
2.40 Relative paths exercise . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.41 Another ls -l example, this time on FreeBSD . . . . . . . . . . . . . 62
2.42 Listing the /etc/init.d directory . . . . . . . . . . . . . . . . . . . . . 63
2.43 Change file ownership . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.44 chgrp command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.45 chmod command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



2.46 chmod with lots of typing . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.47 chmod with octal like a boss . . . . . . . . . . . . . . . . . . . . . . . . 65
2.48 Marking a file as executable . . . . . . . . . . . . . . . . . . . . . . . 66
2.49 zip command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.50 unzip command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.51 Creating a tarball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.52 tar parameter styles . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.53 One-step tarball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.54 Extracting a tarball . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.55 Soft links example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.56 Hard links example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.57 Broken soft links example . . . . . . . . . . . . . . . . . . . . . . . . 71
2.58 Many hard links, one inode . . . . . . . . . . . . . . . . . . . . . . . . 72
2.59 Deleting a file with many hard links . . . . . . . . . . . . . . . . . . . 72
2.60 df command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.61 du command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.62 Soft links and relative paths . . . . . . . . . . . . . . . . . . . . . . . 74
2.63 diff example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.64 orig.conf file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.65 new.conf file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.66 Using diff on config files . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1 Simplest find example . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2 More complicated find example . . . . . . . . . . . . . . . . . . . . . 80
3.3 More complicated find example, explained . . . . . . . . . . . . . . . 81
3.4 Using find as a simple reporting tool . . . . . . . . . . . . . . . . . . 83

4.1 grep example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 A string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.3 Complex regular expression . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Invoices file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Trying to find tractors . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.6 Trying to find tractors, part two . . . . . . . . . . . . . . . . . . . . . 87
4.7 Let’s be insensitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.8 Spelling out our insensitivity . . . . . . . . . . . . . . . . . . . . . . . 88
4.9 Print the line numbers of matches . . . . . . . . . . . . . . . . . . . . 88
4.10 Extended regular expressions . . . . . . . . . . . . . . . . . . . . . . 88
4.11 Find lines ending with 400 . . . . . . . . . . . . . . . . . . . . . . . . 89
4.12 Recursive grep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.13 Recursive grep is faster than find ... -exec grep . . . . . . . . . . . . 90
4.14 A better example of when to use find ... -exec grep . . . . . . . . . . 90
4.15 awk example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



5.1 stdin and stdout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2 Hello, world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3 Redundant redirection . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Default stderr behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 Get rid of the errors in the first place . . . . . . . . . . . . . . . . . . 96
5.6 Redirecting stderr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.7 Redirecting both stdout and stderr to a file . . . . . . . . . . . . . . . 96
5.8 Redirecting stdout one way stderr another . . . . . . . . . . . . . . . 97
5.9 Overwriting a file with redirection . . . . . . . . . . . . . . . . . . . . 97
5.10 Appending to a file with redirection . . . . . . . . . . . . . . . . . . . 97
5.11 Piping output between programs . . . . . . . . . . . . . . . . . . . . 98

6.1 Deleting a ”word” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 After deleting the ”word” . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Deleting multiple words . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 Replace three characters with ”x” . . . . . . . . . . . . . . . . . . . . 103
6.5 Three ”x” characters . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6 Garbage characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.7 Deleting a line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.8 After the line is gone . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.9 After pasting the line above the current line . . . . . . . . . . . . . . 106
6.10 Sample text file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.11 Changing ”this” to ”that” . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.12 What happened? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.13 Changing ”this” to ”that”, redux . . . . . . . . . . . . . . . . . . . . . 107
6.14 Closer, but not quite . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.15 Changing ”this” to ”that”, one more time! . . . . . . . . . . . . . . . 108
6.16 Finally! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.17 Memorize this - No, really . . . . . . . . . . . . . . . . . . . . . . . . 108
6.18 But what about capitalization? . . . . . . . . . . . . . . . . . . . . . . 109
6.19 Regular expression for the start of a line . . . . . . . . . . . . . . . . 109
6.20 Voila! Capitals! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.21 Regular expression for the end of a line . . . . . . . . . . . . . . . . . 110
6.22 That with a full stop . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.23 Say what? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.24 Nicely punctuated . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.25 Simple file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.26 Sort a whole file in vi . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.27 Sorting a range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.28 Change all tabs to four spaces as God meant them to be . . . . . . . . 113
6.29 Editing a file in nano . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.30 Editing a file with sed . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



7.1 ping command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 traceroute command . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3 dig command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.4 Make me a sandwich . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.5 sudo Make me a sandwich . . . . . . . . . . . . . . . . . . . . . . . . 120
7.6 Words to live by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.7 Browsing like it’s 1994 . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.8 wget in an install script . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.9 curl in an install script . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.10 Check out what that script is doing first! . . . . . . . . . . . . . . . . 123
7.11 Got a good script, so execute it . . . . . . . . . . . . . . . . . . . . . 123
7.12 Copying multiple files from a Windows machine with ‘mget‘ . . . . . . 124
7.13 Sending email from the command line . . . . . . . . . . . . . . . . . 125
7.14 Using telnet to diagnose HTTP . . . . . . . . . . . . . . . . . . . . . 126
7.15 Using telnet to diagnose SMTP . . . . . . . . . . . . . . . . . . . . . 127
7.16 ssh command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.17 scp command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.18 Sample ssh session . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.19 Using rsync to mirror directories between servers . . . . . . . . . . . 129
7.20 Using rsync to mirror local directories . . . . . . . . . . . . . . . . . . 130
7.21 ifconfig command . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.22 DNS servers in resolv.conf . . . . . . . . . . . . . . . . . . . . . . . . 131
7.23 hosts file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.1 ps command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2 Showing all processes . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.3 Hunting down and killing vi sessions . . . . . . . . . . . . . . . . . . 134
8.4 top command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
8.5 /proc file system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.6 Detailed listing of the /proc file system . . . . . . . . . . . . . . . . . 137
8.7 Looking inside one of the /proc process directories . . . . . . . . . . . 138
8.8 How much I/O has process 1 done? . . . . . . . . . . . . . . . . . . . 138
8.9 Looking at CPU info in /proc/cpuinfo . . . . . . . . . . . . . . . . . . . 139
8.10 Looking at logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.11 Kernel errors when booting . . . . . . . . . . . . . . . . . . . . . . . 140

9.1 man command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.2 Ambiguous man passwd command default to lowest documentation section145
9.3 Specifying a specific section with man 5 passwd . . . . . . . . . . . . . 145
9.4 Running info find command . . . . . . . . . . . . . . . . . . . . . . . 146
9.5 apropos command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.6 Refining output from apropos . . . . . . . . . . . . . . . . . . . . . . . 148



9.7 Looking for specific parameter names in a man page . . . . . . . . . . 149

10.1 /etc directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.2 init.d directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.3 Stopping and starting services . . . . . . . . . . . . . . . . . . . . . . 153
10.4 apt-get update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
10.5 Upgrading installed packages . . . . . . . . . . . . . . . . . . . . . . 155
10.6 Installing a package . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.7 Installing a package with dpkg . . . . . . . . . . . . . . . . . . . . . . 157
10.8 which command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.9 locate command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.10 Command not found - but it’s right there! . . . . . . . . . . . . . . . . 159
10.11 Using a fully qualified path to execute a command . . . . . . . . . . . 159
10.12 Specifying the command in the current directory . . . . . . . . . . . . 160
10.13 Looking at default crontab file . . . . . . . . . . . . . . . . . . . . . . 160
10.14 Editing another user’s crontab file . . . . . . . . . . . . . . . . . . . . 161
10.15 reboot command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.16 Shutdown and power off . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.17 Terminating a process with extreme prejudice . . . . . . . . . . . . . 162
10.18 Even shorter way to kill the process . . . . . . . . . . . . . . . . . . 162
10.19 A more verbose killer . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
10.20 Examining exit codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.21 Using && to chain commands together . . . . . . . . . . . . . . . . . . 163
10.22 Using || to execute the first and possibly the second command . . . . 164
10.23 With && the second command won’t execute if the first fails . . . . . . 164
10.24 One more example with || . . . . . . . . . . . . . . . . . . . . . . . . 164
10.25 true and false commands . . . . . . . . . . . . . . . . . . . . . . . . . 165

A.1 Some Markdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
A.2 Searching through the Markdown for mismatched brackets . . . . . . 176
A.3 Make a bunch of files and directories at once . . . . . . . . . . . . . . 176
A.4 Make a bunch of files the long way . . . . . . . . . . . . . . . . . . . 177
A.5 A simple install script . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



Merv sez, ”Don’t panic.”



TEN STEPS TO LINUX SURVIVAL

By James Lehmer

v1.0

Ten Steps to Linux Survival - Bash for Windows People by James Lehmer is licensed
under a Creative Commons Attribution-ShareAlike 4.0 International License1.

Dedicated to my first three technical mentors

• Jim Proffer, who taught me digging deeper was fun and let me do so, often in
production!

• Jerry Wood, who taught me to stop and think, and once called me an ”inveterate
toolmaker” in a review, a badge I still wear with pride.

• Kim Manchak, who allowed me to be more than he hired me to be, and continues
to be a great chess opponent.

Thank you, gentlemen. I’ve tried to pay it forward. This book is part of that.

1http://creativecommons.org/licenses/by-sa/4.0/

12

http://creativecommons.org/licenses/by-sa/4.0/


Step -1

Introduction

”And you may ask yourself, ’Well, how did I get here?’” - Talking Heads
(Once in a Lifetime)

This is my little ”Linux and Bash in 10 steps” guide. It’s based on what I consider the
essentials for floundering around acting like I know what I’m doing in Linux, BSD and
”UNIX-flavored” systems and looking impressive among people who have only worked
on Windows in the GUI. Your ”10 steps” may be different than mine and that’s fine, but
this list is mine.

I said ten things, but I lied, because history is really important, so we will start at step
#0. And since this is before even that I guess that means this is a 12-step program...

Here is what we’ll cover in the rest of this book:

0. Some History – UNIX vs. BSD, System V vs. BSD, Linux vs. BSD, POSIX, “UNIX-
like,” Cygwin, and why any of this matters now, “Why does this script off the
internet work on this system and not on that one?”

1. Come Out of Your Shell – sh vs. ash vs. bash vs. everything else, ”REPL”,
interactive vs. scripts, command history, tab expansion, environment variables
and ”A path! A path!”

2. File Under ”Directories” – ls, mv, cp, rm (-rf *), cat, chmod/chgrp/chown and every-
one’s favorite, touch.

3. Finding Meaning – the find command in all its glory. Probably the single most
useful command in ”UNIX” (I think).

13



TEN STEPS TO LINUX SURVIVAL

4. Grokking grep – and probably gawking at awk while we are at it, which means
regular expressions, too. Now we have two problems.

5. “Just a Series of Pipes” – stdin/stdout/stderr, redirects, piping between com-
mands.

6. vi (had to be #6, if you think about it) – how to stay sane for 10 minutes in vi.
Navigation, basic editing, find, change/change-all, cut and paste, undo, saving
and canceling. Plus easier alternatives like nano, and why vi still matters.

7. The Whole Wide World – curl, wget, ifconfig, ping, ssh, telnet, /etc/hosts and
email before Outlook.

8. The Man Behind the Curtain - /proc, /dev, ps, /var/log, /tmp and other things
under the covers.

9. How Do You Know What You Don’t Know, man? – man, info, apropos, Linux
Documentation Project, Debian and Arch guides, StackOverflow and the dangers
of searching for “man find” or “man touch” on the internet.

10. And So On - /etc, starting and stopping services, apt-get/rpm/yum, and more.

Plus some stuff at the end to tie the whole room together.

The most current release of the book should always be available for download in dif-
ferent formats on GitHub1.

Batteries Not Included

It should be obvious that there is plenty that is not covered:

• System initialization - besides, the whole ”UNIX” world is in flux right now over
system initialization architecture and the shift from ”init”2 scripts to systemd3.

• Scripting logic - scripting, logic constructs (if/fi, while/done, and the like).

• Desktops - X Windows and the plethora of desktop environments like GNOME,
KDE, Cinnamon, Mate, Unity and on and on. This is where ”UNIX” systems get
the farthest apart in terms of interoperability, settings and customization.

1https://github.com/dullroar/ten-steps-to-linux-survival/releases
2https://en.wikipedia.org/wiki/Init
3https://en.wikipedia.org/wiki/Systemd

14

https://github.com/dullroar/ten-steps-to-linux-survival/releases
https://en.wikipedia.org/wiki/Init
https://en.wikipedia.org/wiki/Systemd


STEP -1. INTRODUCTION

• Servers - setting up or configuring web servers like Apache or node, email
servers like dovecot, Samba servers for file shares, and so on.

• Security - other than the simple basics of the file system security model.

Plus so much more. Again, this is not meant to be exhaustive, but to help someone
whose system administration experience has been limited to Windows.

Please, Give (Suggestions) Generously

That said, if you find something amiss in here - a typo, a misconception or mistake, or a
command or parameter you really, really, really think should be in here even though
I said I am not trying to be exhaustive, feel free to clone it from GitHub4, make your
changes and send me a git pull request. Or you can try to file it as an issue5 and I’ll
see how I feel that day.

Why?

Because I work in a primarily Windows-oriented shop, and I seem to be ”the guy” that
everyone comes to when they need help on a Linux or related system. I don’t count
myself a Linux guru (at all), but I have been running it since 1996 (Slackware on a
laptop with 8MB of memory!), and have worked on or run at home various ports and
flavors and and versions and distros of ”UNIX” over the years, including:

• AIX

• FreeBSD

• HP/UX

• Linux - literally more distros than I can count or remember, but at least Debian,
Fedora, Yellow Dog, Ubuntu/Kubuntu/Xubuntu, Mint, Raspbian, Gentoo, Red Hat
and of course the venerable Slackware.

• Solaris

• SunOS
4https://github.com/dullroar/ten-steps-to-linux-survival
5https://github.com/dullroar/ten-steps-to-linux-survival/issues

15

https://github.com/dullroar/ten-steps-to-linux-survival
https://github.com/dullroar/ten-steps-to-linux-survival/issues


TEN STEPS TO LINUX SURVIVAL

All on various machines and machine architectures frommighty Sun servers to generic
”Intel” VMs down to Raspberry Pis, plus an original ”wedge” iMac running as a kitchen
kiosk long after its ”Best by” date and OS/9’s demise, thanks to Yellow Dog Linux.

All that while also working on MVS, VSE, OS/2, DOS since 3.x, Windows since 1.x, etc.,
etc. I don’t think I am special when I list all that - there are lots of people with my level
of experience and better, especially in commercial software engineering. I am just
one of them.

But for some reason there are many places, especially in small and medium business
(SMB) environments, where the ”stack” tends to be more purely Microsoft because it
keeps things simpler and cheaper for the smaller staff. I work in such a place. The
technical staff is quite competent, but when they bump up against systems whose pri-
mary ”user interface” for system administration is a bash command prompt and some
scripts, they panic.

This is my attempt to help my co-workers by saying:

”Don’t panic.” - Douglas Adams (Hitchhiker’s Guide to the Galaxy)

It started out as a proposal I made a while ago to develop a ”lunch and learn” session
of about 60-90 minutes of what I considered to be ”a Linux survival guide.” The list in
the Introduction above is based on my original email proposal. The audience is entirely
technical, primarily ”IT” (Windows/Cisco/VMWare/Exchange/SAN admins).

My goal is not to get into scripting, or system setup and hardening, or the thousand
different ways to slice a file. Instead, the scenario I see in my head is for one of the
participants in that ”lunch and learn,” armed with that discussion and having glanced
through this book, to be better able to survive if dropped into the jungle with:

”The main www site is down, and all the people who know about it are
out. It’s running on some sort of Linux, I think, and the credentials and IP
address are scrawled on this sticky note. Can you get in and poke around
and see if you can figure it out?” - your boss (next Tuesday morning)

As I started to type out my notes of what I considered to be ”essential,” they just kept
growing and growing. Many nights, weekends and lunch hours later, this is the result.
The slides were much easier to prepare now that I have the ”notes”!

Note: - The slides are included in the same GitHub repository as this book6.

6https://github.com/dullroar/ten-steps-to-linux-survival/releases

16

https://github.com/dullroar/ten-steps-to-linux-survival/releases


STEP -1. INTRODUCTION

Caveat Administrator

Even so, anything like this is incomplete. Anyone truly knowledgable of Linux will
splutter their coffee into their neckbeard7 at least once a chapter because I don’t men-
tion a parameter on a command or an entire subject at all! And that’s right - because
this ”survival guide” is already long enough.

This book is not meant to be an authoritative source, but instead a ”fake book”8 for
getting up and running quickly with the sheer basics, plus knowing where to go for
help. I modeled it explicitly after ”short and opinionated” tech books such as Douglas
Crockford’s Javascript: The Good Parts9 and especially those licensed under Creative
Commons10, such as the books from Green Tea Press11. If you like those big tech books
that are priced by the kilogram, this is not the book for you.

It is also not a replacement for reading the real documentation and doing research and
testing, especially in production! But hopefully it will help get you through that ”Can
you get in and poke around and see if you can figure it out?” scenario above. And if
Linux should start becoming more of your job, maybe this will help as a gentle push
toward ”RTFM” along with thinking in ”The UNIX Way.”

WARNING:Many of the commands in this book can alter your system and pos-
sibly damage it.

Obvious candidates include the file system commands like rm, the vi editor (obviously),
and some of the ”system admin” commands mentioned later, including system and
service restarts. Use your common sense plus the various resources for documentation
mentioned in this book to make sure you aren’t doing anything destructive to your
system, especially in production.

YOU HAVE BEEN WARNED!

Conventions

If a command, file name or other ”computer code” is shown in-line in a sentence, it will
appear in a fixed-width font, e.g., ls --recursive *.txt.

If a command and its output, script code or something else is shown in a block, it will
appear like this:

7Stereotype intentional.
8https://en.wikipedia.org/wiki/Fake_book
9http://shop.oreilly.com/product/9780596517748.do
10http://creativecommons.org/licenses/by-sa/4.0/
11http://greenteapress.com/

17

https://en.wikipedia.org/wiki/Fake_book
http://shop.oreilly.com/product/9780596517748.do
http://creativecommons.org/licenses/by-sa/4.0/
http://greenteapress.com/


TEN STEPS TO LINUX SURVIVAL

Figure -1.1: Sample command

~ $ ps -AH

PID TTY TIME CMD

2 ? 00:00:00 kthreadd

3 ? 00:00:00 ksoftirqd/0

5 ? 00:00:00 kworker/0:0H

7 ? 00:00:06 rcu_sched

8 ? 00:00:02 rcuos/0

9 ? 00:00:01 rcuos/1

10 ? 00:00:03 rcuos/2

11 ? 00:00:01 rcuos/3

12 ? 00:00:00 rcuos/4

13 ? 00:00:00 rcuos/5

14 ? 00:00:00 rcuos/6

15 ? 00:00:00 rcuos/7

16 ? 00:00:00 rcu_bh

17 ? 00:00:00 rcuob/0

18 ? 00:00:00 rcuob/1

19 ? 00:00:00 rcuob/2

20 ? 00:00:00 rcuob/3

21 ? 00:00:00 rcuob/4

22 ? 00:00:00 rcuob/5

23 ? 00:00:00 rcuob/6

24 ? 00:00:00 rcuob/7

...and so on...

All such blocks have been normalized to only show a maximum of 80x24 characters.
This is intentional. While most modern ”UNIX” systems and terminal windows like ssh

can handle any geometry, there are still systems and situations where you get the same
terminal size that your grandfather would’ve used. It is best to learn how to deal with
these by using less, redirection and the like.

The examples in this book typically show something like ~ $ before the command, or ~
# (when logged in as root) or % (when running under csh). These ”command prompts”
are set in bash via the PS1 environment variable12 and are not meant to be typed in as
part of the command.

In the few places where a ”UNIX” command is shown in comparison to a ”DOS” com-
mand run under CMD.EXE, the latter is shown in all uppercase to help distinguish it from

12https://www.linux.com/learn/docs/ldp/443-bash-prompt-howto

18

https://www.linux.com/learn/docs/ldp/443-bash-prompt-howto


STEP -1. INTRODUCTION

the ”UNIX” equivalent, even though CMD.EXE is case-insensitive. In other words, set will
be shown for bash and SET for CMD.EXE.

How to Get There from Here

Before we get too far, let’s talk about how to connect to a ”UNIX” system in the first
place. If you have an actual physical machine you can use the console. If you are
running VMs you can use the VM software’s console mechanism as well. But most such
systems run OpenSSH13, a ”secure shell” service (sshd14), which creates an encrypted
terminal connection via TCP/IP over port 22 (so obviously, if you are connecting off-
premise the appropriate firewall holes will have to be in place on both sides). This
allows you to connect from anywhere you want to work, like from your laptop sitting
on the couch watching TV.

On Windows there are generally two ways to establish SSH sessions with ”UNIX” sys-
tems:

1. PuTTY15 - this is a Windows program and is pretty self-explanatory. Just give it
the remote system’s address and connect.

2. ssh16 - if you are running Cygwin17 on Windows or own a Mac, you can simply
use the ssh command from the Cygwin or Mac command prompt:

~ $ ssh remotehost

~ $ ssh myuser@remotehost

~ $ ssh myuser%mypassword@remotehost

With either PuTTY or ssh, you typically must supply credentials. On PuTTY you can
specify them in advance in the Windows UI, or answer the userid and password
prompts when the terminal window opens. With the ssh command you can answer
the prompts or specify them on the command line, although it is not recommended to
pass the password via the command line unless you have your bash history file set to
not record the ssh command (covered later).

Note: There are also ways to connect using public/private key pairs, but that is beyond
the scope of this book.
13http://www.openssh.com/
14http://linux.die.net/man/8/sshd
15http://www.chiark.greenend.org.uk/~sgtatham/putty/
16http://linux.die.net/man/1/ssh
17http://cygwin.com/

19

http://www.openssh.com/
http://linux.die.net/man/8/sshd
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://linux.die.net/man/1/ssh
http://cygwin.com/


TEN STEPS TO LINUX SURVIVAL

The first time you connect to a remote system via SSH you are going to see a prompt
similar to the following:

Figure -1.2: First ssh connection

~ $ ssh myuser@remotehost

The authenticity of host 'remotehost (192.168.123.1)' can't be established.

ECDSA key fingerprint is 11:c4:c5:dd:75:b0:26:83:dc:94:34:ef:10:f5:d9:c7.

Are you sure you want to continue connecting (yes/no)?

Simply answer yes and the remote host’s key fingerprint will be stored so you don’t
have to answer it again. However, if you’ve already answered that prompt and you see
it again for the same machine, that means the remote machine’s IP address or other
configuration has changed. That is often OK if you know that happened - changing the
hosting provider for your public web server will trigger it for sure. However, if you
know of no such changes, it may be indication of a compromise, and you should abort
the login and ask around first.

Acknowledgments

Thanks to Ken Astl for reading an early draft of this book, and to Jason Koopmans for
passing it around his work. I appreciate the detailed and thoughtful discussions I had
with Margaret Devere around designing good indexes. I received excellent advice and
promotion from Professor Allen Downey. My boss, Bryan Henderson, was supportive
of the original ”lunch-and-learn” concept and listened to me ramble about this book.
Thanks to my coworkers who attended those lunch-and-learn sessions, asked questions
and helped me refine this book - Aaron Vandegriff, Rob Harvey, Jason Walters, Carmen
Samson, JohnWieland, PatrickMistler and our CIO, Rick Derks. And finally, I owemore
than I can repay (as usual) to my wife Leslie for putting up with me while I obsessed
over this project.

20



Step 0

Some History

UNIX vs. BSD, System V vs. BSD, Linux vs. BSD, POSIX, “UNIX-like,” Cygwin,
and why any of this matters now. “Why does this script off the internet work
on this system and not on that one?”

”That men do not learn very much from the lessons of history is the most
important of all the lessons of history.” - Aldous Huxley

UNIX and its successors such as Linux have a long history reaching into the depths of
time:

• Prehistory - late 1960s, Nixon, Vietnam, Woodstock, Moon landing, Multics1 at
MIT, GE and Bell Labs.

• In the beginning - early 1970s, Nixon drags on, Watergate, Bell Labs, Thomp-
son2 & Ritchie3, UNIX4 is born.

• More trouble from Berkeley - late 1970s, Carter, disco, Iran hostages, UC
Berkeley releases the Berkeley Software Distribution5 (BSD), a port based on
the Bell Labs UNIX. Let the forking begin!

1https://en.wikipedia.org/wiki/Multics
2https://en.wikipedia.org/wiki/Ken_Thompson
3https://en.wikipedia.org/wiki/Dennis_Ritchie
4https://en.wikipedia.org/wiki/History_of_Unix
5https://en.wikipedia.org/wiki/Berkeley_Software_Distribution

21

https://en.wikipedia.org/wiki/Multics
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Dennis_Ritchie
https://en.wikipedia.org/wiki/History_of_Unix
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution


TEN STEPS TO LINUX SURVIVAL

• UNIX goes commercial - 1980s, Reagan, Iran Contra, E.T., AT&T releases Sys-
tem V6 as first commercial UNIX. From the same background as Bell Labs UNIX,
System V evolved with subtle and not so subtle differences in approaches to
command syntax, networking and much more. It is this release and AT&T’s copy-
rights that are the basis of all the SCO-vs-Linux lawsuits 2-3 decades later.

• Explosion of ”UNIX” - late 1980s/early 1990s, Bush I, Berlin Wall falls, Gulf
War I, proliferation of proprietary (and different) ”UNIX” platforms:

– HP HP-UX

– Sun SunOS - BSD flavor.

– Sun Solaris - System V flavor. Now Oracle Solaris.

– IBM AIX

– SGI IRIX

– ...and many, many more! - although mostly all that’s left now is HP-UX,
AIX and Solaris.

• Linux - 1991+, Clinton I, grunge, Titanic, Linus Torvalds7 releases a project
called Linux8 based on MINIX9 (and hence why Linus says Linux is pronounced
like ”MINIX” and not like ”Linus”).

• Proliferation of the BSDs - mid-to-late 1990s, still Clinton I, Monicagate,
Kosovo, various ports of BSD including NetBSD10, FreeBSD11 and OpenBSD12.
All happen in the same time frame as Linux. Like Linux distros, each has its own
focus and prejudices, some of which are distinctly ”anti-Linux.” The ”big three”
are all still in heavy use today, especially among ISPs. The perception is still out
there among a generation of sysadmins that Linux is for the desktop and BSDs
for servers, but that reality shifted a long time ago.

• Ports of call - 2000+, Bush II & Obama, Afghanistan & Gulf War II, lots of cross-
porting of everything open source. However, licenses matter13, and there sure
are a lot of them14. While things have settled down some with the dismissal of
the SCO lawsuit, intellectual property remains a problem area in open source,
even as the use of open source software (OSS) has exploded.

6https://en.wikipedia.org/wiki/UNIX_System_V
7https://en.wikipedia.org/wiki/Linus_Torvalds
8https://en.wikipedia.org/wiki/Linux
9https://en.wikipedia.org/wiki/MINIX
10https://en.wikipedia.org/wiki/NetBSD
11https://en.wikipedia.org/wiki/FreeBSD
12https://en.wikipedia.org/wiki/OpenBSD
13https://en.wikipedia.org/wiki/Open-source_license
14https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses

22

https://en.wikipedia.org/wiki/UNIX_System_V
https://en.wikipedia.org/wiki/Linus_Torvalds
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/MINIX
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Comparison_of_free_and_open-source_software_licenses


STEP 0. SOME HISTORY

Q: So, what’s Linux? Or BSD? Or even UNIX?

A: Depends on who you’re asking and in what context!

Hence, for the rest of this text I will tend to talk somewhat interchangeably about
”Linux” and ”UNIX” and the like. When it matters, I will mention which OS I am dis-
cussing by name, but often I will use ”UNIX” (in quotes) to mean anything in the ”family
tree” of the original Bell Labs offspring, or that ”acts like,” well, UNIX.

To further muddy the waters, there have been multiple attempts to ”standardize” what-
ever it is this thing is called:

• POSIX15 - a de jure set of standards created in the 1980s and 1990s to try to bring
order to the chaos that was commercial UNIX-flavored operating systems of the
time. It worked. Sorta. Especially once the US government started wanting
systems to be ”POSIX-compliant.”

Note: No system runs POSIX. All POSIX-compliant system are ”similar but different.”
Even Windows can claim to be POSIX-compliant in some respects (and has an instal-
lable POSIX subsystem) but that doesn’t mean POSIX-compliant code will run there
unchanged.

• GNU Project16 - Richard Stallman17 founded the Free Software Foundation18
(FSF) and GNU project in the mid-1980s, long before Linux (GNU = ”GNU’s
Not Unix”). The GNU project delivers a suite of programs and tools19, many of
which are used in both Linux and BSD variants as de facto standards.

• Various Linux Efforts - there have also been various movements over the years,
somemore successful than others, to ”standardize” Linux or some part of it, such
as the file system layout, the init system, documentation, and now even what is
part of the most basic ”core OS” for things like better containerization.

Why Does This Matter?

Because there are various ”flavors” of commands and tools, based on whether you’re
dealing with a System V (Linux) or BSD (Free/Net/Open) descendant. Some of the
OS versions are strong in security, or networking, or as a desktop. Certain things are
15https://en.wikipedia.org/wiki/POSIX
16https://en.wikipedia.org/wiki/GNU_Project
17https://en.wikipedia.org/wiki/Richard_Stallman
18https://en.wikipedia.org/wiki/Free_Software_Foundation
19https://www.gnu.org/software/software.html

23

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/GNU_Project
https://en.wikipedia.org/wiki/Richard_Stallman
https://en.wikipedia.org/wiki/Free_Software_Foundation
https://www.gnu.org/software/software.html


TEN STEPS TO LINUX SURVIVAL

”built-in” to the operating system but most are installed as packages, and depending on
the source of the package it may or may not work correctly on another ”UNIX” system
without effort.

It is similar to the history and relationship between COMMAND.EXE in DOS and CMD.EXE in
Windows 10, where this would work in both:

COPY A.TXT B.TXT

But only the later, long file name and network-aware CMD.EXE could handle:

COPY "My 2015 Tax Returns.pdf" \\MyServer\Finances\.

In UNIX-land over time these differences seem to be getting better, but there are still
”gotchas,” often involving the differences in open source licenses in the underlying
code. There are fundamental differences and assumptions between the ”GNU” and
”GPL” licenses on the one side and ”MIT” and ”BSD” licenses on the other. I am not a
lawyer, but I would summarize:

• FSF/GNU/GPL - mostly concerned with keeping open source ”open,” that is
sharable and modifiable by all.

• BSD & MIT - more focused on letting anyone do anything to the code as long as
the original author is acknowledged and liability released.

The best thing is to be vaguely aware of this history and licenses and if something isn’t
available on a certain platform or if a command isn’t taking a specific parameter to
search for variants.

For example, note the difference in output between showing all processes with the ps20

(process) command on a Linux system, in this case Linux Mint under bash:

Figure 0.1: ps on Linux in bash

~ $ ps -a

PID TTY TIME CMD

4508 pts/3 00:00:00 su

4516 pts/3 00:00:00 bash

4594 pts/3 00:00:00 ps

20http://linux.die.net/man/1/ps

24

http://linux.die.net/man/1/ps


STEP 0. SOME HISTORY

Versus the ”same” command on a FreeBSD system at my ISP, where csh is the default
shell:

Figure 0.2: ps on FreeBSD in csh

%ps -a

PID TT STAT TIME COMMAND

5073 p0 Ss 0:00.02 -csh (csh)

5115 p0 RN+ 0:00.00 ps -a

To make things even more confusing, the Linux version of ps has been written to un-
derstand the BSD-style syntax and flags, too!

Panic at the Distro

Remember that ”Linux,” FreeBSD, OpenBSD and NetBSD are all really just OS kernels,
boot loaders, drivers and enough functionality to get a computer up and running. Most
functionality comes via other ”packages.” From almost the beginning there have been
alternative approaches to both what packages should (and should not) be included, as
well as how to best manage the installing, updating and removal of those packages.

In the BSD world each major port has its own approach. In the Linux world the job of
deciding all this and putting it all together falls to distributions or ”distros.” These have
evolved over time into a series of ”families”21 based in large part around the package
management tool22 predominantly used:

• apt-get, dpkg and .deb files - Debian23 flavors, such as Ubuntu24 andMint25. Mint
is currently my desktop Linux of choice and Debian my preferred server OS, both
based on familiarity.

• pacman - Arch26 flavors.

21https://en.wikipedia.org/wiki/Linux_distribution#Popular_distributions
22https://en.wikipedia.org/wiki/Package_manager
23https://en.wikipedia.org/wiki/Debian
24https://en.wikipedia.org/wiki/Ubuntu_%28operating_system%29
25https://en.wikipedia.org/wiki/Linux_Mint
26https://en.wikipedia.org/wiki/Arch_Linux

25

https://en.wikipedia.org/wiki/Linux_distribution#Popular_distributions
https://en.wikipedia.org/wiki/Package_manager
https://en.wikipedia.org/wiki/Debian
https://en.wikipedia.org/wiki/Ubuntu_%28operating_system%29
https://en.wikipedia.org/wiki/Linux_Mint
https://en.wikipedia.org/wiki/Arch_Linux


TEN STEPS TO LINUX SURVIVAL

• rpm, yum and .rpm files - Red Hat flavors,such as Fedora27, Red Hat Enterprise28
and CentOS29.

• Source code - Gentoo30 tends to be a ”compile from scratch” environment, much
like FreeBSD31.

• ”Tar balls” - source code or binaries delivered via archived and zipped directo-
ries. Common on Slackware32, some others.

Get Embed With Me

A lot of firmware in embedded devices is based on some sort of ”UNIX” flavor. Net-
working gear at both the consumer and enterprise level, storage devices and so on
all tend to run something that ”looks like” UNIX at some level. BusyBox33 is a good
example of a ”UNIX-like” shell (command prompt) used by many embedded systems.
Of course, as to what’s actually available, who knows? If you can get shell open, the
best thing to do is see what works.

Cygwin

Cygwin34 is an interesting beast. It is a DLL for Windows that implements most of the
POSIX and related UNIX-like ”system API calls” for programming, and then is also a
series of ported open source packages, including shells, utilities and even desktop envi-
ronments, all recompiled to run on Windows as long as the Cygwin DLL is accessible.
Like a Linux distro it has an installer that is a ”package manager,” and if a package
isn’t available, you can usually recompile the source code using Cygwin.

You cannot run Linux or BSD binaries on Cygwin without recompiling them first. How-
ever, you can often run scripts from a Linux environment on Cygwin with little or no
tweaking. Which means you can then take advantage of a lot of excellent open source
tools simply by installing their packages in Cygwin and running scripts against them.

Ultimately, though, Cygwin is of limited use, basically for getting to some open source
tools on Windows without having to set up a Linux box. You can do a lot of amazing
27https://en.wikipedia.org/wiki/Fedora_%28operating_system%29
28https://en.wikipedia.org/wiki/Red_Hat_Enterprise_Linux
29https://en.wikipedia.org/wiki/CentOS
30https://en.wikipedia.org/wiki/Gentoo_Linux
31https://en.wikipedia.org/wiki/FreeBSD_Ports
32https://en.wikipedia.org/wiki/Slackware
33https://en.wikipedia.org/wiki/BusyBox
34http://cygwin.com/

26

https://en.wikipedia.org/wiki/Fedora_%28operating_system%29
https://en.wikipedia.org/wiki/Red_Hat_Enterprise_Linux
https://en.wikipedia.org/wiki/CentOS
https://en.wikipedia.org/wiki/Gentoo_Linux
https://en.wikipedia.org/wiki/FreeBSD_Ports
https://en.wikipedia.org/wiki/Slackware
https://en.wikipedia.org/wiki/BusyBox
http://cygwin.com/


STEP 0. SOME HISTORY

things with Cygwin with enough effort (including running X and a desktop environment
like GNOME!), but at some point why not expend that effort in standing up a ”real”
Linux (virtual) machine anyway?

27



TEN STEPS TO LINUX SURVIVAL

28



Step 1

Come Out of Your Shell

sh vs. ash vs. bash vs. everything else, ”REPL”, interactive vs. scripts, command
history, tab expansion, environment variables and ”A path! A path!”

”If you hold a shell up to your ear, you can hear the OS.” - me

To avoid getting all pedantic, I am just going to define a shell as an environment in
which you can execute commands. People tend to think of a shell as a ”command
prompt,” but you can run a shell without running a command prompt, but not vice
versa - an interactive command prompt is an instance of a shell environment almost
by definition.

Examples of shells:

• CMD.EXE1 - yes, Windows has a shell.

• PowerShell.exe2 - in fact, it has at least two!

In UNIX-land:

• sh3 - the ”original” Bourne shell in UNIX, which spawned:

– ash4 - Almquist shell.
1https://technet.microsoft.com/en-us/library/cc754340.aspx
2https://technet.microsoft.com/en-us/library/ms714469%28v=VS.85%29.aspx
3https://en.wikipedia.org/wiki/Bourne_shell
4https://en.wikipedia.org/wiki/Almquist_shell

29

https://technet.microsoft.com/en-us/library/cc754340.aspx
https://technet.microsoft.com/en-us/library/ms714469%28v=VS.85%29.aspx
https://en.wikipedia.org/wiki/Bourne_shell
https://en.wikipedia.org/wiki/Almquist_shell


TEN STEPS TO LINUX SURVIVAL

* dash - Debian Almquist shell (replaced ash in Debian).

– bash5 - Bourne-again shell (get it?), the ”standard” Linux shell (as much as
anything is standard across Linux distros).

– ksh6 - Korn shell.

– zsh7 - Z shell.

• csh8 - C shell, historically it is the default shell on BSD systems (although there
are arguments on why you should never use it9).

• ...and many more! - tons, really10.

Most Linux distros use bash, but the BSDs are all over the place. We’re going to assume
bash for the rest of this tutorial. With few modifications, anything in the sh hierarchy
above can usually run in the other members of the same tree.

bash Built-Ins

Every shell has some ”built-in” commands that are implemented as part of the shell and
not as an external command or program, and bash has its share, as shown by running
the help11 command in a bash terminal:

Figure 1.1: Built-in commands in bash

~ $ help

GNU bash, version 4.3.11(1)-release (x86_64-pc-linux-gnu)

These shell commands are defined internally. Type `help' to see this list.

Type `help name' to find out more about the function `name'.

Use `info bash' to find out more about the shell in general.

Use `man -k' or `info' to find out more about commands not in this list.

A star (*) next to a name means that the command is disabled.

5https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
6https://en.wikipedia.org/wiki/Korn_shell
7https://en.wikipedia.org/wiki/Z_shell
8https://en.wikipedia.org/wiki/C_shell
9http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
10https://en.wikipedia.org/wiki/Unix_shell#Shell_categories
11http://linux.die.net/man/1/help

30

https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
https://en.wikipedia.org/wiki/Korn_shell
https://en.wikipedia.org/wiki/Z_shell
https://en.wikipedia.org/wiki/C_shell
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
https://en.wikipedia.org/wiki/Unix_shell#Shell_categories
http://linux.die.net/man/1/help


STEP 1. COME OUT OF YOUR SHELL

job_spec [&] history [-c] [-d offset] [n] or hist>

(( expression )) if COMMANDS; then COMMANDS; [ elif C>

. filename [arguments] jobs [-lnprs] [jobspec ...] or jobs >

: kill [-s sigspec | -n signum | -sigs>

[ arg... ] let arg [arg ...]

[[ expression ]] local [option] name[=value] ...

alias [-p] [name[=value] ... ] logout [n]

bg [job_spec ...] mapfile [-n count] [-O origin] [-s c>

bind [-lpsvPSVX] [-m keymap] [-f file> popd [-n] [+N | -N]

break [n] printf [-v var] format [arguments]

builtin [shell-builtin [arg ...]] pushd [-n] [+N | -N | dir]

caller [expr] pwd [-LP]

case WORD in [PATTERN [| PATTERN]...)> read [-ers] [-a array] [-d delim] [->

cd [-L|[-P [-e]] [-@]] [dir] readarray [-n count] [-O origin] [-s>

...and so on...

Why does this matter? Because if you are in an environment and something as funda-
mental as echo isn’t working, you may not be working in a shell that is going to act like
a ”sh” shell. In general, sh, ash, bash, dash and ksh all act similarly enough that you
don’t care, but sometimes you may have to care. Knowing if you are on a csh variant
or even something more esoteric can be key.

Pay attention to the first line in script files, which will typically have a ”shebang”12 line
that looks like this:

Figure 1.2: bash ”shebang”

#!/bin/bash

In this case we know the script is expecting to be executed by bash, and in fact should
throw an error if /bin/bash doesn’t exist. For example, on the FreeBSD system I have
access to, dash is not installed. So consider the following hello.sh script:

Figure 1.3: Script with ‘dash‘ ”shebang”

#!/bin/dash

echo Hello, World!

12https://en.wikipedia.org/wiki/Shebang_%28Unix%29

31

https://en.wikipedia.org/wiki/Shebang_%28Unix%29


TEN STEPS TO LINUX SURVIVAL

When I try to run it on FreeBSD, I get:

Figure 1.4: ”Shebang” error

% ./hello.sh

./hello.sh: Command not found.

This is confusing, because it seems to be saying that hello.sh is not found! But in reality
it is complaining about missing dash. If I change the script to point to bash (which is
installed on that FreeBSD system), it works as expected:

Figure 1.5: Hello, World!

% ./hello.sh

Hello, World!

Note that on some systems #!/bin/sh points to an alias of bash, and on some it is a
different implementation of the original sh command, such as ash or dash. Now you know
what to search for if you hit problems as simple as an expected ”built-in” command not
being found.

Everything You Know is (Almost) Wrong

CMD.EXE has a lineage that is a mish-mash of CP/M and UNIX excreted through three
decades of backwards compatibility to that devil’s spawn we call DOS. It has gotten
even muddier over the years as Microsoft has added more commands, PowerShell,
POSIX subsystems, etc.

But even so, there are some similarities between CMD.EXE and a Linux shell like bash.
In both bash and CMD.EXE the set13 command shows you all environment variables that
have been set. Here’s bash:

Figure 1.6: set command in bash

13http://linux.die.net/man/1/set

32

http://linux.die.net/man/1/set


STEP 1. COME OUT OF YOUR SHELL

~ $ set

BASH=/bin/bash

BASHOPTS=checkwinsize:cmdhist:complete_fullquote:expand_aliases:extglob:extquote

:force_fignore:histappend:interactive_comments:login_shell:progcomp:promptvars:s

ourcepath

BASH_ALIASES=()

BASH_ARGC=()

BASH_ARGV=()

BASH_CMDS=()

BASH_COMPLETION_COMPAT_DIR=/etc/bash_completion.d

BASH_LINENO=()

BASH_SOURCE=()

BASH_VERSINFO=([0]="4" [1]="3" [2]="11" [3]="1" [4]="release" [5]="x86_64-pc-lin

ux-gnu")

BASH_VERSION='4.3.11(1)-release'

COLORTERM=gnome-terminal

COLUMNS=80

DIRSTACK=()

DISPLAY=:0

EUID=1003

GROUPS=()

HISTCONTROL=ignoreboth

HISTFILE=/home/myuser/.bash_history

...and so on...

And CMD.EXE:

Figure 1.7: SET command in CMD.EXE

C:\Users\myuser>SET

ALLUSERSPROFILE=C:\ProgramData

APPDATA=C:\Users\myuser\AppData\Roaming

CommonProgramFiles=C:\Program Files\Common Files

CommonProgramFiles(x86)=C:\Program Files (x86)\Common Files

CommonProgramW6432=C:\Program Files\Common Files

COMPUTERNAME=JLEHMER650

ComSpec=C:\Windows\system32\cmd.exe

FP_NO_HOST_CHECK=NO

HOMEDRIVE=C:

HOMEPATH=\Users\myuser

33



TEN STEPS TO LINUX SURVIVAL

LOCALAPPDATA=C:\Users\myuser\AppData\Local

LOGONSERVER=\\JLEHMER650

NUMBER_OF_PROCESSORS=4

OS=Windows_NT

Path=C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\system32

\config\systemprofile\.dnx\bin;C:\Program Files\Microsoft DNX\Dnvm\;C:\Program F

iles (x86)\nodejs\;C:\Program Files\Microsoft\Web Platform Installer\;C:\Program

Files\Microsoft SQL Server\130\Tools\Binn\;C:\Program Files (x86)\Microsoft SQL

Server\130\DTS\Binn\;C:\Program Files\Microsoft SQL Server\120\Tools\Binn\;C:\P

rogram Files (x86)\Microsoft SDKs\Azure\CLI\wbin;C:\Windows\System32\WindowsPowe

rShell\v1.0\

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.MSC

...and so on...

Similarly, the echo14 command can be used to show you the contents of an environment
variable like HOME on bash:

Figure 1.8: echo the HOME environment variable in bash

~ $ echo $HOME

/home/myuser

Versus the HOMEPATH variable under CMD.EXE:

Figure 1.9: echo the HOMEPATH environment variable in CMD.EXE

C:\> ECHO %HOMEPATH%

\Users\myuser

This example shows some valuable differences between shells. Even though both have
the concept of environment variables and displaying their contents using the ”same”
echo command, note that:

1. The syntax for accessing an environment variable is $variable in bash and %vari-

able% in CMD.EXE.

14http://linux.die.net/man/1/echo

34

http://linux.die.net/man/1/echo


STEP 1. COME OUT OF YOUR SHELL

2. bash is case-sensitive and so echo $HOME works but echo $home does not. CMD.EXE

is not case-sensitive, so either echo %homedrive% or echo %HOMEDRIVE% (or EcHo

%hOmEdRiVe%) would work.

One final note of caution. You can set up command aliases in bash and other shells that
allow you to define a CMD.EXE-style dir command as a substitute for the ls command in
bash, or copy for cp, del for rm, and so on. I recommend you don’t do this for at least two
reasons:

1. It is difficult to get these right in terms of being able to map all the various
parameters from the bash command to the appropriate parameters for a CMD.EXE-
style command. Most people don’t go that far, which means you then end up with
a ”toy” substitute for the CMD.EXE command, and have to fall back to the native
commands anyway.

2. It simply delays you actually learning about the ”UNIX” environment. You end
up relying on a crutch that then must be replicated on every system you touch.
In my opinion it is better to just learn the native commands, because then you
are instantly productive at any shell window.

You’re a Product of Your Environment (Variables)

It is much more common to set up environment variables to control run-time execution
in Linux than in Windows. In fact, it is quite common to assign a given environment
variable for the single execution of a program, to the point that bash has built-in ”one-
line” support for it:

Figure 1.10: Assign FOO environment variable before executing script

~ $ FOO=myval /home/myuser/myscript

This sets the environment variable FOO to ”myval” but only for the duration and scope
of running myscript.

By convention, environment variables are named all uppercase, whereas all scripts
and programs tend to be named all lowercase. Remember, almost without exception
”UNIX” is case-sensitive and Windows is not.

You can assign multiple variables for a single command or script execution simply by
separating them with spaces:

35



TEN STEPS TO LINUX SURVIVAL

Figure 1.11: Set multiple environment variables at once

~ $ FOO=myval BAR=yourval BAZ=ourvals /home/myuser/myscript

Note that passing in values in this way does not safeguard sensitive information from
other users on the system who can see the values at least while the script is running
using the ps -x command. In addition, the entire command will be written to your
.bash_history file, too. Theoretically that should be safe, but if you are using this to
pass in a password to a command, for example, and your id gets compromised, your
.bash_history will be just as exposed as if you had the password saved in a script file.

You can also set the value of environment variables to the output of another command
by surrounding it with paired ‘ (”back ticks”, or ”grave accents”):

Figure 1.12: Set environment variable to output from a command

~ $ FILETYPE=`file --brief --mime-type header.tex`

~ $ echo $FILETYPE

text/plain

Sometimes you want to keep certain sensitive commands from being records in your
.bash_history file, since it is a simple text file and if you ever got hacked, the attacker
could peruse it. For example, some commands take userids and passwords as param-
eters. To keep a command like that from being recorded in your command history,
export the following, preferably in the .profile or .bashrc scripts in your home direc-
tory:

Figure 1.13: Hiding commands from command history

export HISTIGNORE="*smbclient*"

Who Am I?

When writing scripts that can be run by any user, it may be helpful to know their user
name at run-time. There are at least two different ways to determine that. The first is
via the USER environment variable:

36



STEP 1. COME OUT OF YOUR SHELL

Figure 1.14: USER environment variable

~ $ echo $USER

myuser

The second is with a command with one of the best names, ever - whoami15:

Figure 1.15: whoami command

~ $ whoami

myuser

Some environments set the USER environment variable, some set a USERNAME variable,
and some like Mint set both. I think it is better to use whoami, which tends to be on
almost all systems.

Paths (a Part of Any Balanced Shrubbery)

The concept of a ”path” for finding executables is almost identical between ”UNIX”
and Windows, and Windows lifted it from UNIX (or CP/M, which lifted it from UNIX).
Look at the output of the PATH environment variable under bash:

Figure 1.16: PATH environment variable in bash

~ $ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

Echoing the PATH environment variable under CMD.EXE works, too:

Figure 1.17: PATH environment variable in CMD.EXE

C:\Users\myuser>ECHO %PATH%

15http://linux.die.net/man/1/whoami

37

http://linux.die.net/man/1/whoami


TEN STEPS TO LINUX SURVIVAL

C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\system32\conf

ig\systemprofile\.dnx\bin;C:\Program Files\Microsoft DNX\Dnvm\;C:\Program Files

(x86)\nodejs\;C:\Program Files\Microsoft\Web Platform Installer\;C:\Program File

s\Microsoft SQL Server\130\Tools\Binn\;C:\Program Files (x86)\Microsoft SQL Serv

er\130\DTS\Binn\;C:\Program Files\Microsoft SQL Server\120\Tools\Binn\;C:\Progra

m Files (x86)\Microsoft SDKs\Azure\CLI\wbin;C:\Windows\System32\WindowsPowerShel

l\v1.0\

Note the differences and similarities. Both the paths are evaluated left to right. Both
use separators between path components, a ; for DOS and Windows, a : for Linux.
Both delimit their directory names with slashes, with \ for DOS and Windows and /

for Linux. But Linux has no concept of a ”drive letter” like C: in Windows, and instead
everything is mounted in a single namespace hierarchy starting at the root /. We’ll be
talking more about directories, paths and file systems in the next chapter.

Just to muddy the waters further, notice how Cygwin under Windows shows the PATH

environment variable with bash syntax but a combination of both Cygwin and Windows
directories, and Windows drive letters like C: mapped to /cygdrive/c:

Figure 1.18: PATH environment variable in Cygwin

$ echo $PATH

/usr/local/bin:/usr/bin:/cygdrive/c/Windows/system32:/cygdrive/c/Windows:/cygdri

ve/c/Windows/System32/Wbem:/cygdrive/c/Windows/system32/config/systemprofile/.dn

x/bin:/cygdrive/c/Program Files/Microsoft DNX/Dnvm:/cygdrive/c/Program Files (x8

6)/nodejs:/cygdrive/c/Program Files/Microsoft/Web Platform Installer:/cygdrive/c

/Program Files/Microsoft SQL Server/130/Tools/Binn:/cygdrive/c/Program Files (x8

6)/Microsoft SQL Server/130/DTS/Binn:/cygdrive/c/Program Files/Microsoft SQL Ser

ver/120/Tools/Binn:/cygdrive/c/Program Files (x86)/Microsoft SDKs/Azure/CLI/wbin

:/cygdrive/c/Windows/System32/WindowsPowerShell/v1.0

Open Your Shell and Interact

The actual ”command prompt” is when you run a shell in an ”interactive session” in
a terminal window. This might be from logging into the console of a Linux VM, or
starting a terminal window in a X window manager like GNOME or KDE, or ssh’ing
into an interactive session of a remote machine, or even running a Cygwin command
prompt under Windows.

38



STEP 1. COME OUT OF YOUR SHELL

Command prompts allow you to work in a so-called ”REPL” environment (Read, Evalu-
ate, Print, Loop). You can run a series of commands once, or keep refining a command
or commands until you get them working the way you want, then transfer their se-
quence to a script file to capture it.

Real wizards at using the shell can often show off their magic with an incredible one-
liner typed from memory with lots of obscure commands piped together and invoked
with cryptic options.

I am not a real shell wizard. See chapter 9 for how you can fake it like I do.

Getting Lazy

Most modern interactive shells like bash and CMD.EXE allow for tab expansion and com-
mand history, at least for the current session of the shell.

Tab expansion is ”auto-complete” for the command prompt. Let’s say you have some
files in a directory:

Figure 1.19: List some files

~/Documents $ ls

Disabled User Accounts.csv elsewhere LOLcatz.jpg MyResume.md

Without tab expansion, typing out something like this is painful:

Figure 1.20: Lots of typing and escape characters

~/Documents $ mv Disabled\ User\ Accounts.csv elsewhere/.

But with tab expansion, we can simply type mv Dˆt, where ˆt represents hitting the Tab

key, and since there is only one file that starts with a ”D”, tab expansion will fill in the
rest of the file name for us:

Figure 1.21: Tab expansion magic

39



TEN STEPS TO LINUX SURVIVAL

~/Documents $ mv Disabled\ User\ Accounts.csv

Then we can go about our business of finishing our command.

One place tab completion in bash is different than CMD.EXE is that in bash if you hit Tab
and there are multiple candidates, it will expand as far as it can and then show you a
list of files that match up to that point and allow you to type in more characters and
hit Tab again to complete it. Whereas in CMD.EXE it will ”cycle” between the multiple
candidates, showing you each one as the completion option in turn. Both are useful, but
each is subtly different and can give you fits when moving between one environment
and another.

Pro Tip: Remember, UNIX was built by people on slow, klunky teletypes and terminals,
and they hated to type! Tab expansion is your friend and you should use it as often as
possible. It gives at least three benefits:

1. Saves you typing.

2. Helps eliminate misspellings in a long file or command name.

3. Acts as an error checker, because if the tab doesn’t expand, chances are you are
specifying something else (the beginning part of the file name) wrong.

The other thing to remember about the interactive shell is command history. Again,
both CMD.EXE and bash give you command history, but CMD.EXE only remembers it for the
session, while bash stores it in one of your hidden ”profile” or ”dot” files in your home
directory called .bash_history, which you can display with ls -a:

Figure 1.22: ls command showing hidden files

~ $ ls -a

. .config .gconf .mozilla Templates

.. .dbus .gnome2 Music Videos

.bash_history Desktop .gnome2_private Pictures .xsession-errors

.bash_logout .dmrc .ICEauthority .profile

.cache Documents .linuxmint Public

.cinnamon Downloads .local .ssh

Inside, .bash_history is just a text file, with the most recent commands at the bottom.

The bash shell supports a rich interactive environment for searching for, editing and
saving command history. However, the biggest thing you need to remember to fake it

40



STEP 1. COME OUT OF YOUR SHELL

is simply that the up and down arrows work in the command prompt and bring back
your recent commands so you can update them and re-execute them.

Note: If you start multiple sessions under the same account, the saved history will be
of the last login to successfully write back out .bash_history.

41



TEN STEPS TO LINUX SURVIVAL

42



Step 2

File Under ”Directories”

ls, mv, cp, rm (-rf *), cat, chmod/chgrp/chown and everyone’s favorite, touch.

”I’m in the phone book! I’m somebody now!” - Navin Johnson (The Jerk)

Typically in Linux we are scripting and otherwise moving around files. The file system
under the covers may be one of any number of supported formats, including:

• btrfs1

• ext22

• ext33

• ext44,

• ReiserFS5

• ZFS6

• ...and so many more! - NTFS, FAT, CDFS, etc.

1https://en.wikipedia.org/wiki/Btrfs
2https://en.wikipedia.org/wiki/Ext2
3https://en.wikipedia.org/wiki/Ext3
4https://en.wikipedia.org/wiki/Ext4
5https://en.wikipedia.org/wiki/ReiserFS
6https://en.wikipedia.org/wiki/ZFS

43

https://en.wikipedia.org/wiki/Btrfs
https://en.wikipedia.org/wiki/Ext2
https://en.wikipedia.org/wiki/Ext3
https://en.wikipedia.org/wiki/Ext4
https://en.wikipedia.org/wiki/ReiserFS
https://en.wikipedia.org/wiki/ZFS


TEN STEPS TO LINUX SURVIVAL

Each has its strengths and weaknesses. While Linux tends to treat the ext* file systems
as preferred, it can write to a lot of file systems and can read even more.

As mentioned before, the biggest differences between Linux and Windows is that the
Linux environments do not have a concept of ”drive letters.” Instead everything is
”mounted” under a single hierarchy that starts at the ”root directory” or /:

Figure 2.1: Listing of the root directory

~ $ ls /

bin dev home lib64 mnt Other run sys var

boot Docs initrd.img lost+found Music proc sbin tmp vmlinuz

cdrom etc lib media opt root srv usr

The root file system may be backed by a disk device, memory or even the network.
It will have one or more directories under it. Multiple physical drives and network
locations can be ”mounted” virtually anywhere, under any directory or subdirectory in
the hierarchy.

Note: Dynamically mounted devices like USB drives and DVDs are often mounted
automatically under either a /mnt or /media directory.

Looking at Files

As we’ve already seen, the command to list the contents of a directory is ls7:

Figure 2.2: Listing directory contents

~ $ ls

Desktop Documents Downloads Music Pictures Public Templates Videos

Remember, ”UNIX” environments think of files that start with a . as ”hidden.” If you
want to see all these ”dotfiles”8, you can use ls -a, in this case on an average ”home”
directory:

Figure 2.3: Listing a home directory showing hidden ”dotfiles”

7http://linux.die.net/man/1/ls
8https://en.wikipedia.org/wiki/Hidden_file_and_hidden_directory#Unix_and_Unix-like_environments

44

http://linux.die.net/man/1/ls
https://en.wikipedia.org/wiki/Hidden_file_and_hidden_directory#Unix_and_Unix-like_environments


STEP 2. FILE UNDER ”DIRECTORIES”

~ $ ls -a

. .config .gconf .mozilla Templates

.. .dbus .gnome2 Music Videos

.bash_history Desktop .gnome2_private Pictures .xsession-errors

.bash_logout .dmrc .ICEauthority .profile

.cache Documents .linuxmint Public

.cinnamon Downloads .local .ssh

Wow! That’s a lot of dotfiles!

If you want to see some details for each file, use ls -l:

Figure 2.4: Detailed listing of home directory

~ $ ls -l

total 32

drwxr-xr-x 2 myuser mygroup 4096 Dec 13 18:18 Desktop

drwxr-xr-x 3 myuser mygroup 4096 Dec 13 18:22 Documents

drwxr-xr-x 2 myuser mygroup 4096 Dec 13 18:18 Downloads

drwxr-xr-x 2 myuser mygroup 4096 Dec 13 18:18 Music

drwxr-xr-x 2 myuser mygroup 4096 Dec 13 18:18 Pictures

drwxr-xr-x 2 myuser mygroup 4096 Dec 13 18:18 Public

drwxr-xr-x 2 myuser mygroup 4096 Dec 13 18:18 Templates

drwxr-xr-x 2 myuser mygroup 4096 Dec 13 18:18 Videos

And of course parameters can be combined, as with the two above:

Figure 2.5: Detailed listing of home directory with ”dotfiles”

~ $ ls -al

total 112

drwxr-xr-x 21 myuser mygroup 4096 Dec 13 18:19 .

drwxr-xr-x 6 root root 4096 Dec 13 14:24 ..

-rw------- 1 myuser mygroup 287 Dec 13 18:19 .bash_history

-rw-r--r-- 1 myuser mygroup 220 Dec 13 14:24 .bash_logout

drwx------ 5 myuser mygroup 4096 Dec 13 18:18 .cache

drwxr-xr-x 3 myuser mygroup 4096 Dec 13 18:18 .cinnamon

drwxr-xr-x 12 myuser mygroup 4096 Dec 13 18:18 .config

drwx------ 3 myuser mygroup 4096 Dec 13 18:18 .dbus

45



TEN STEPS TO LINUX SURVIVAL

drwxr-xr-x 2 myuser mygroup 4096 Dec 13 18:18 Desktop

-rw------- 1 myuser mygroup 29 Dec 13 18:18 .dmrc

drwxr-xr-x 3 myuser mygroup 4096 Dec 13 18:22 Documents

drwxr-xr-x 2 myuser mygroup 4096 Dec 13 18:18 Downloads

drwx------ 3 myuser mygroup 4096 Dec 13 18:18 .gconf

drwx------ 3 myuser mygroup 4096 Dec 13 18:18 .gnome2

drwx------ 2 myuser mygroup 4096 Dec 13 18:18 .gnome2_private

-rw------- 1 myuser mygroup 668 Dec 13 18:18 .ICEauthority

drwxr-xr-x 3 myuser mygroup 4096 Dec 13 18:18 .linuxmint

drwxr-xr-x 3 myuser mygroup 4096 Dec 13 18:18 .local

drwxr-xr-x 4 myuser mygroup 4096 Dec 13 18:18 .mozilla

drwxr-xr-x 2 myuser mygroup 4096 Dec 13 18:18 Music

drwxr-xr-x 2 myuser mygroup 4096 Dec 13 18:18 Pictures

...and so on...

A Brief Detour Around Parameters

In bash and many Linux commands in general, there are old, ”short” (terse) parameter
names, like ls -a, and newer, longer, descriptive parameter names like ls --all that
mean the same thing. It is typically good to use the shorter version during interactive
sessions and testing, but I prefer long parameter names in scripts, because when I
come back and look at it in two years, I may not remember what rm -rf * means (in
the ”UNIX” world it means you’re toast if you run it by mistake), thus rm --recursive

--force * seems a bit more ”intuitive.”

The behind you save in the future by describing things well today
may well be your own. - me

The older style parameters are typically preceded by a single hyphen or ”switch” char-
acter:

Figure 2.6: Short parameter

~ $ ls -r

Some commands support parameters with no ”switch” character at all, as with xvf

(eXtract, Verbose, input File name) in the following tar example:

46



STEP 2. FILE UNDER ”DIRECTORIES”

Figure 2.7: Alternate short parameter syntax

~ $ tar xvf backup.tar

The newer ”GNU-style” parameters are preceded by two hyphens and usually are quite
”verbose”:

Figure 2.8: Long parameters

~ $ ls --recursive --almost-all --ignore-backups

Again, it is highly recommended that you take the time to use the GNU-style param-
eters in scripts as self-documenting code.

More Poking at Files

If we suspect the file is a text file, we can echo it to the console with the cat9 (concate-
nate) command:

Figure 2.9: cat command

~ $ cat installrdp

#!/bin/bash

sudo apt-get -y install git

cd ~

git clone git://github.com/FreeRDP/FreeRDP.git

cd FreeRDP

sudo apt-get -y install build-essential git-core cmake libssl-dev libx11-dev lib

xext-dev libxinerama-dev \

libxcursor-dev libxdamage-dev libxv-dev libxkbfile-dev libasound2-dev libcups2

-dev libxml2 libxml2-dev \

libxrandr-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libxi-dev

libgstreamer-plugins-base1.0-dev

sudo apt-get -y install libavutil-dev libavcodec-dev

9http://linux.die.net/man/1/cat

47

http://linux.die.net/man/1/cat


TEN STEPS TO LINUX SURVIVAL

sudo apt-get -y install libcunit1-dev libdirectfb-dev xmlto doxygen libxtst-dev

cmake -DCMAKE_BUILD_TYPE=Debug -DWITH_SSE2=ON .

make

sudo make install

sudo echo "/usr/local/lib/freerdp" > /etc/ld.so.conf.d/freerdp.conf

sudo echo "/usr/local/lib64/freerdp" >> /etc/ld.so.conf.d/freerdp.conf

sudo echo "/usr/local/lib" >> /etc/ld.so.conf.d/freerdp.conf

sudo ldconfig

which xfreerdp

xfreerdp --version

In this example when we cat installrdp we can determine it is a bash shell script (be-
cause the ”shebang” is pointing to bash ) that looks to install and configure FreeRDP10

on a Debian-style system:

1. apt-get - Debian-style package manager.

2. git clone - cloning package from GitHub11.

3. cmake and make - configuring and building software from source.

A better way to display a longer file is to use the less12 command (which is a derivative
of the original more13, hence the name). less is a paginator, where the Space, Page Down

or down arrow keys scroll down and the Page Up or up arrow keys scrolls up. Q quits.

Note: The vi search (/, ?, n and p) and navigation (G, 0) keys work within less, too. In
general less is a great lightweight way to motor around in a text file without editing it.

We can also look at just the end or tail of a file (often the most interesting when looking
at log files and troubleshooting a current problem) with the tail14 command. The next
example shows the last 10 lines of the kernel dmesg log:

Figure 2.10: tail command

10https://github.com/FreeRDP/FreeRDP
11http://github.com
12http://linux.die.net/man/1/less
13http://linux.die.net/man/1/more
14http://linux.die.net/man/1/tail

48

https://github.com/FreeRDP/FreeRDP
http://github.com
http://linux.die.net/man/1/less
http://linux.die.net/man/1/more
http://linux.die.net/man/1/tail


STEP 2. FILE UNDER ”DIRECTORIES”

/var/log $ tail dmesg

[ 3.913318] Bluetooth: BNEP socket layer initialized

[ 3.914888] Bluetooth: RFCOMM TTY layer initialized

[ 3.914895] Bluetooth: RFCOMM socket layer initialized

[ 3.914900] Bluetooth: RFCOMM ver 1.11

[ 3.935772] init: failsafe main process (732) killed by TERM signal

[ 4.046700] init: cups main process (896) killed by HUP signal

[ 4.046710] init: cups main process ended, respawning

[ 4.186239] init: samba-ad-dc main process (919) terminated with status 1

[ 4.328999] r8169 0000:02:00.0 eth0: link down

[ 4.329037] IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready

To show a specific number of lines use the -n parameter with tail:

Figure 2.11: Display last 15 lines of a file with tail -n

/var/log $ tail -n 15 dmesg

[ 3.899169] Bluetooth: HCI socket layer initialized

[ 3.899170] Bluetooth: L2CAP socket layer initialized

[ 3.899179] Bluetooth: SCO socket layer initialized

[ 3.913306] Bluetooth: BNEP (Ethernet Emulation) ver 1.3

[ 3.913309] Bluetooth: BNEP filters: protocol multicast

[ 3.913318] Bluetooth: BNEP socket layer initialized

[ 3.914888] Bluetooth: RFCOMM TTY layer initialized

[ 3.914895] Bluetooth: RFCOMM socket layer initialized

[ 3.914900] Bluetooth: RFCOMM ver 1.11

[ 3.935772] init: failsafe main process (732) killed by TERM signal

[ 4.046700] init: cups main process (896) killed by HUP signal

[ 4.046710] init: cups main process ended, respawning

[ 4.186239] init: samba-ad-dc main process (919) terminated with status 1

[ 4.328999] r8169 0000:02:00.0 eth0: link down

[ 4.329037] IPv6: ADDRCONF(NETDEV_UP): eth0: link is not ready

You can also use tail to with the -f parameter to follow an open file and continuously
display any new output at the end, which is useful for monitoring log files in real time:

Figure 2.12: tail -f command

49



TEN STEPS TO LINUX SURVIVAL

/var/log $ tail -f syslog

Dec 13 19:23:40 MtLindsey dhclient: DHCPACK of 192.168.0.8 from 192.168.0.1

Dec 13 19:23:40 MtLindsey dhclient: bound to 192.168.0.8 -- renewal in 1423 seco

nds.

Dec 13 19:23:40 MtLindsey NetworkManager[960]: <info> (eth0): DHCPv4 state chang

ed renew -> renew

Dec 13 19:23:40 MtLindsey NetworkManager[960]: <info> address 192.168.0.8

Dec 13 19:23:40 MtLindsey NetworkManager[960]: <info> prefix 24 (255.255.255.0

)

Dec 13 19:23:40 MtLindsey NetworkManager[960]: <info> gateway 192.168.0.1

Dec 13 19:23:40 MtLindsey NetworkManager[960]: <info> nameserver '97.64.168.12

'

Dec 13 19:23:40 MtLindsey NetworkManager[960]: <info> nameserver '192.119.194.

131'

Dec 13 19:23:40 MtLindsey dbus[689]: [system] Activating service name='org.freed

esktop.nm_dispatcher' (using servicehelper)

Dec 13 19:23:40 MtLindsey dbus[689]: [system] Successfully activated service 'or

g.freedesktop.nm_dispatcher'

Use Ctrl-C to cancel following the file.

If we know nothing about a file, we can use the file15 command to help us guess:

Figure 2.13: file command

~ $ file installrdp

installrdp: Bourne-Again shell script, ASCII text executable

That’s straightforward enough! The file command isn’t always 100% accurate, but it
is pretty good and uses an interesting set of heuristics and a text file ”database” of
”magic” number definitions16 to define how it figures out what type of file it is examin-
ing.

Remember: File extensions have no real meaning per se in Linux (although some are
used especially for media and document formats), so a file name with no extension like
installrdp is perfectly valid. Hence the utility of the file command.

15http://linux.die.net/man/1/file
16http://linux.die.net/man/5/magic

50

http://linux.die.net/man/1/file
http://linux.die.net/man/5/magic


STEP 2. FILE UNDER ”DIRECTORIES”

Sorting Things Out

Let’s say we have three files, and want to display the contents of one of them. We know
we can do that with cat:

Figure 2.14: Show contents of one file

~ $ cd Invoices/

~/Invoices $ ls

ElevatorTrucks FarmCombines FarmTractors

~/Invoices $ cat ElevatorTrucks

Truck brakes 200

Truck tires 400

Truck tires 400

Truck tires 400

Truck winch 100

But what if we wanted to process all the lines in all the files in alphabetical order? Just
directing the files into a program won’t do it, because the file names will be sorted
by the shell and the lines will be processed in file name order, not the ultimate sorted
order of all the file contents.

Figure 2.15: Show contents of all three files

~/Invoices $ cat *

Truck brakes 200

Truck tires 400

Truck tires 400

Truck tires 400

Truck winch 100

Combine motor 1500

Combine brakes 400

Combine tires 2500

Tractor motor 1000

Tractor brakes 300

Tractor tires 2000

The sort17 command to the rescue! We will see that the sort command can be used to
not just sort files, but also to merge them and remove duplicates.
17http://linux.die.net/man/1/sort

51

http://linux.die.net/man/1/sort


TEN STEPS TO LINUX SURVIVAL

Figure 2.16: sort command

~/Invoices $ sort *

Combine brakes 400

Combine motor 1500

Combine tires 2500

Tractor brakes 300

Tractor motor 1000

Tractor tires 2000

Truck brakes 200

Truck tires 400

Truck tires 400

Truck tires 400

Truck winch 100

What if we want to sort by the parts column? Well, it is the second ”key” field delimited
by whitespace, so:

Figure 2.17: Sort by the second ”key” column

~/Invoices $ sort -k 2 *

Truck brakes 200

Tractor brakes 300

Combine brakes 400

Tractor motor 1000

Combine motor 1500

Tractor tires 2000

Combine tires 2500

Truck tires 400

Truck tires 400

Truck tires 400

Truck winch 100

What about by the third column, the amount?

Figure 2.18: Sort by the third column

52



STEP 2. FILE UNDER ”DIRECTORIES”

~/Invoices $ sort -k 3 *

Truck winch 100

Tractor motor 1000

Combine motor 1500

Truck brakes 200

Tractor tires 2000

Combine tires 2500

Tractor brakes 300

Combine brakes 400

Truck tires 400

Truck tires 400

Truck tires 400

That’s not what we expected because it is sorting numbers alphabetically. Let’s fix that
by telling it to sort numerically:

Figure 2.19: Sort by third column, numerically

~/Invoices $ sort -k 3 -n *

Truck winch 100

Truck brakes 200

Tractor brakes 300

Combine brakes 400

Truck tires 400

Truck tires 400

Truck tires 400

Tractor motor 1000

Combine motor 1500

Tractor tires 2000

Combine tires 2500

Maybe we care about the top three most expensive items. We haven’t talked about
pipes yet, but check this out:

Figure 2.20: Top three most expensive items

~ $ sort -k 3 -n * | tail -n 3

Combine motor 1500

53



TEN STEPS TO LINUX SURVIVAL

Tractor tires 2000

Combine tires 2500

Finally, what if we want only unique rows?

Figure 2.21: Sort and show only unique rows

~/Invoices $ sort -k 3 -n -u *

Truck winch 100

Truck brakes 200

Tractor brakes 300

Truck tires 400

Tractor motor 1000

Combine motor 1500

Tractor tires 2000

Combine tires 2500

Just to reinforce long parameters, the last example is equivalent to:

Figure 2.22: Sort unique rows using long parameter names

~/Invoices $ sort --key 3 --numeric-sort --unique *

Truck winch 100

Truck brakes 200

Tractor brakes 300

Truck tires 400

Tractor motor 1000

Combine motor 1500

Tractor tires 2000

Combine tires 2500

If you read that command in a script file, there would be little confusion as to what it
was doing.

54



STEP 2. FILE UNDER ”DIRECTORIES”

Rearranging Deck Chairs

We can copy, move (or rename - same thing) and delete files and directories. To copy,
simply use the cp18 command:

Figure 2.23: cp command

~ $ cp diary.txt diary.bak

You can copy entire directories recursively:

Figure 2.24: Copying directories recursively

~ $ cp -r thisdir thatdir

Or, if we want to be self-documenting in a script, we can use those long parameter
names again:

Figure 2.25: cp command with long parameter names

~ $ cp --recursive thisdir thatdir

To move use mv19:

Figure 2.26: mv command

~ $ mv thismonth.log lastmonth.log

Note: There is no semantic difference between ”move” and ”rename.” However, there
are some really cool renaming scenarios that the rename20 command can take care of
beyond mv, like renaming all file extensions from .htm to .html.

18http://linux.die.net/man/1/cp
19http://linux.die.net/man/1/mv
20http://linux.die.net/man/1/rename

55

http://linux.die.net/man/1/cp
http://linux.die.net/man/1/mv
http://linux.die.net/man/1/rename


TEN STEPS TO LINUX SURVIVAL

Making Files Disappear

To delete or remove a file you use rm21:

Figure 2.27: rm command

~ $ rm desktop.ini

Pro Tip: There is no ”Are you sure?” prompt when removing a single file specified
with no wildcards, or even all files with a wildcard, and there is no ”Recycle Bin” or
”Trash Can” when working from the command prompt, so BE CAREFUL!

The following scenario can happen way too often, even to experienced system admin-
istrators. Note the accidental space between * and .bak on the rm command:

Figure 2.28: Oops!

~ $ cd MyDissertation/

~/MyDissertation $ ls

Bibliography.bak Bibliography.doc Dissertation.bak Dissertation.doc

~/MyDissertation $ rm * .bak

rm: cannot remove ‘.bak’: No such file or directory

~/MyDissertation $ ls

~/MyDissertation $

So, in order, our hapless user:

1. Changed to directory MyDissertation.

2. Listed the directory contents with ls, saw the combination of .doc and .bak files.

3. Decided to delete the .bak files with rm, but accidentally typed in a space between
the wildcard * and the .bak. Note ominous warning message.

4. Presto! ls shows everything is gone, not just the backup files! The user’s priori-
ties just got rearranged as they go hunting for another copy of their dissertation.

21http://linux.die.net/man/1/rm

56

http://linux.die.net/man/1/rm


STEP 2. FILE UNDER ”DIRECTORIES”

So be careful out there! This is an example where tab completion can be an extra error
check. Many times I use command history in these cases by changing the ls to look
for just the files I want to delete:

Figure 2.29: First make sure we are dealing with the right files

~ $ ls *.bak

Citations.bak Dissertation.bak

Then I use the ”up arrow” to bring back the ls command and change ls to rm before
running it. Safer that way.

touch Me

We just learned how to make a file disappear. We can also make a file magically appear,
just by touch22:

Figure 2.30: touch command

~ $ touch NewEmptyDissertation.doc

~ $ ls -l

total 0

-rw-rwxr--+ 1 myuser mygroup 0 Oct 19 14:12 NewEmptyDissertation.doc

Notice the newly created file is zero bytes long.

Interestingly enough, we can also use touch just to update the ”last modified date” of
an existing file, as you can see in time change in the following listing after running
touch on the same file again:

Figure 2.31: A second touch

~ $ touch NewEmptyDissertation.doc

~ $ ls -l

total 0

-rw-rwxr--+ 1 myuser mygroup 0 Oct 19 14:14 NewEmptyDissertation.doc

22http://linux.die.net/man/1/touch

57

http://linux.die.net/man/1/touch


TEN STEPS TO LINUX SURVIVAL

It can be useful (but also distressing from a forensics point of view) to set the last
modified date of a file to a specific date and time, which touch also allows you to do, in
this case to the night before Christmas:

Figure 2.32: Set file modified date to a specific date and time

~ $ touch -t 201412242300 NewEmptyDissertation.doc

~ $ ls -l

total 0

-rw-rwxr--+ 1 myuser mygroup 0 Dec 24 2014 NewEmptyDissertation.doc

To make a directory you use mkdir23:

Figure 2.33: mkdir command

~ $ cd Foo

~/Foo $ ls -l

total 4

-rw-r--r-- 1 myuser mygroup 0 Dec 14 05:49 a

-rw-r--r-- 1 myuser mygroup 0 Dec 14 05:49 b

-rw-r--r-- 1 myuser mygroup 0 Dec 14 05:49 c

drwxr-xr-x 2 myuser mygroup 4096 Dec 14 05:49 d

~/Foo $ mkdir Bar

~/Foo $ ls -l

total 8

-rw-r--r-- 1 myuser mygroup 0 Dec 14 05:49 a

-rw-r--r-- 1 myuser mygroup 0 Dec 14 05:49 b

drwxr-xr-x 2 myuser mygroup 4096 Dec 14 14:49 Bar

-rw-r--r-- 1 myuser mygroup 0 Dec 14 05:49 c

drwxr-xr-x 2 myuser mygroup 4096 Dec 14 05:49 d

Typically you need to create all intervening directories before creating a ”child” direc-
tory:

Figure 2.34: mkdir error

23http://linux.die.net/man/1/mkdir

58

http://linux.die.net/man/1/mkdir


STEP 2. FILE UNDER ”DIRECTORIES”

~ $ mkdir Xyzzy/Something

mkdir: cannot create directory ‘Xyzzy/Something’: No such file or directory

But of course you can override that behavior:

Figure 2.35: Make multiple intervening directories at once

~/Foo $ mkdir --parents Xyzzy/Something

~/Foo $ ls

a b Bar c d Xyzzy

~/Foo $ ls Xyzzy

Something

Navigating Through Life

Ever notice that ”life” is an anagram for ”file”? Spooky, eh?

Given that the UNIX-style file systems are hierarchical in nature they are similar to
navigate as with CMD.EXE. The biggest difference is the absense of drive letters and the
direction of the slashes.

To change directories, simply use cd24 much like in Windows:

Figure 2.36: cd command

~ $ cd /etc

~ $ pwd

/etc

pwd25 simply prints the working (current) directory. If whoami tells you who you are, pwd
tells you where you are.

In Linux, users can have ”home” directories (similar to Windows profiles), typically
located under /home/<username> for normal users, and /root for the ”root” (admin) id. To
change to a user’s ”home” directory, simply use cd with no parameters:

24http://linux.die.net/man/1/cd
25http://linux.die.net/man/1/pwd

59

http://linux.die.net/man/1/cd
http://linux.die.net/man/1/pwd


TEN STEPS TO LINUX SURVIVAL

Figure 2.37: Change to home directory

/etc $ cd

~ $ pwd

/home/myuser

The tilde (~) character is an alias for the current user’s home directory. The following
example is equivalent to above:

Figure 2.38: Alternative way to change to home directory

/etc $ cd ~

~ $ pwd

/home/myuser

More useful is that the tilde can be combined with a user name to specify the home
directory of another user:

Figure 2.39: Change to the home directory of another user

~ # cd ~myuser

myuser # pwd

/home/myuser

Note: The above assumes you have permissions to cd into /home/myuser. See the up-
coming section on file permissions for more info.

In addition, you need to know the difference between ”absolute” and ”relative” paths:

• Absolute path - always ”goes through” or specifies the ”root” (/) directory, e.g.
regardless of the current working directory, cd /etc will change it to /etc.

• Relative path - does not specify the root directory, and expects to start the nav-
igation at the current directory with all path components traversed from there,
e.g., cd Dissertations changes the current directory to a subdirectory called
Dissertations.

60



STEP 2. FILE UNDER ”DIRECTORIES”

Windows inherited the concept of . for the current directory and .. for the parent
directory directly from UNIX. Consider the following examples that combine all of the
above about relative paths and see if it makes sense:

Figure 2.40: Relative paths exercise

~/Foo $ ls

~/Foo $ mkdir Bar Baz

~/Foo $ ls

Bar Baz

~/Foo $ cd Bar

~/Foo/Bar $ touch a b c

~/Foo/Bar $ ls

a b c

~/Foo/Bar $ cd ../Baz

~/Foo/Baz $ touch d e f

~/Foo/Baz $ ls

d e f

~/Foo/Baz $ ls ..

Bar Baz

~/Foo/Baz $ ls ../Bar

a b c

Did you notice how both mkdir and touch allow for specifying multiple directory and file
names in the same command?

May I?

Most ”UNIX” file systems come with a set of nine permissions that can be thought of
as a ”grid” of 3x3 showing ”who has what?” The ”who” is known as ”UGO”:

• User - the user that is the ”owner” of the file or directory.

• Group - the group that is the ”owner” of the file or directory.

• Other - everyone else.

The ”what” is:

61



TEN STEPS TO LINUX SURVIVAL

• Read

• Write

• Execute - for files, for directories this means ”navigate” or ”list contents”.

The combination of ”who has what?” is usually shown in detailed directory listings by
a set of ten characters, with the first one determining whether an entry is a directory
(d) or a file (-):

Figure 2.41: Another ls -l example, this time on FreeBSD

% ls -l /etc

total 1876

drwxr-xr-x 2 root wheel 512 Jan 15 2009 X11

-rw-r--r-- 1 root wheel 0 Sep 3 2013 aliases

-rw-r--r-- 1 root wheel 16384 Sep 3 2013 aliases.db

-rw-r--r-- 1 root wheel 210 May 6 2009 amd.map

-r--r--r-- 1 root wheel 233 Feb 15 2007 amd.map.snap

-rw-r--r-- 1 root wheel 1234 May 6 2009 apmd.conf

-rw-r--r-- 1 root wheel 231 May 6 2009 auth.conf

drwxr-xr-x 2 root wheel 512 May 6 2009 bluetooth

-rw-r--r-- 1 root wheel 737 Mar 19 2015 crontab

-rw-r--r-- 1 root wheel 108 May 6 2009 csh.cshrc

-rw-r--r-- 1 root wheel 617 Apr 15 2009 csh.login

-rw-r--r-- 1 root wheel 110 May 6 2009 csh.logout

-rw-r--r-- 1 root wheel 565 May 6 2009 ddb.conf

drwxr-xr-x 2 root wheel 512 May 6 2009 defaults

-rw-r--r-- 1 root wheel 9779 May 6 2009 devd.conf

-rw-r--r-- 1 root wheel 2071 May 6 2009 devfs.conf

-rw-r--r-- 1 root wheel 267 May 6 2009 dhclient.conf

-rw-r--r-- 1 root wheel 5704 May 6 2009 disktab

-rw-rw-r-- 1 root operator 0 Nov 3 2005 dumpdates

drwxr-xr-x 6 root staff 512 Nov 12 2014 fail2ban

-rw-r--r-- 1 root wheel 142 May 6 2009 fbtab

...and so on...

In the above, for example, we can see that the user root owns the file aliases while
the wheel group is the primary group for it. root can both read and write the file (rw-)
while any user in the wheel group can only read it (r--). Any other id will also have read
access (r--).

62



STEP 2. FILE UNDER ”DIRECTORIES”

Similarly we see that defaults is a directory (d) that can be read, written (new files
created) and listed by root (rwx), and read and listed by the group wheel and all other
ids (r-xr-x).

Back on Linux, if we look in /etc/init.d where many services store their startup scripts
we see:

Figure 2.42: Listing the /etc/init.d directory

~ $ ls -l /etc/init.d

total 276

-rwxr-xr-x 1 root root 2243 Apr 3 2014 acpid

-rwxr-xr-x 1 root root 2014 Feb 19 2014 anacron

-rwxr-xr-x 1 root root 4596 Apr 24 2015 apparmor

-rwxr-xr-x 1 root root 2401 Dec 30 2013 avahi-daemon

-rwxr-xr-x 1 root root 1322 Mar 30 2014 binfmt-support

-rwxr-xr-x 1 root root 4474 Sep 4 2014 bluetooth

-rwxr-xr-x 1 root root 2125 Mar 13 2014 brltty

-rwxr-xr-x 1 root root 4651 Apr 9 2014 casper

-rwxr-xr-x 1 root root 425 Jun 26 09:11 cinnamon

-rwxr-xr-x 1 root root 1919 Jan 18 2011 console-setup

-rwxr-xr-x 1 root root 2489 May 6 2012 cpufrequtils

lrwxrwxrwx 1 root root 21 Sep 7 04:00 cron -> /lib/init/upstart-job

-rwxr-xr-x 1 root root 938 Nov 1 2013 cryptdisks

-rwxr-xr-x 1 root root 896 Nov 1 2013 cryptdisks-early

-rwxr-xr-x 1 root root 3184 Apr 3 2014 cups

-rwxr-xr-x 1 root root 1961 Apr 7 2014 cups-browsed

-rwxr-xr-x 1 root root 2813 Nov 25 2014 dbus

-rwxr-xr-x 1 root root 1217 Mar 7 2013 dns-clean

lrwxrwxrwx 1 root root 21 Sep 7 04:00 friendly-recovery -> /lib/init/upstart-

job

-rwxr-xr-x 1 root root 1105 May 13 2015 grub-common

...and so on...

In this case all the scripts are readable, writable and executable (rwx) by the root user,
and readable and executable by the root group and all other users (r-xr-x). Later on I
will explain linked files (those that start with an l instead of a - in the detailed listing
above).

To change the owning user of a file or directory (assuming you have permissions to do
so), use the chown26 command:
26http://linux.die.net/man/1/chown

63

http://linux.die.net/man/1/chown


TEN STEPS TO LINUX SURVIVAL

Figure 2.43: Change file ownership

# ls -l

total 4

-rwxr--r-- 1 root root 17 Oct 20 10:07 foo

# chown git foo

# ls -l

total 4

-rwxr--r-- 1 git root 17 Oct 20 10:07 foo

To change the primary group, use the chgrp27 command:

Figure 2.44: chgrp command

# chgrp git foo

# ls -l

total 4

-rwxr--r-- 1 git git 17 Oct 20 10:07 foo

To change the various permissions or mode bits, you use the chmod28 command. It uses
mnemonics of ”ugo” for user, group and ”other,” respectively. It also uses mnemonics
of ”rwx” for read, write and execute, and + to add a permission and - to remove it. For
example, to add the execute permission for the group and remove read permission for
”other”:

Figure 2.45: chmod command

# chmod g+x,o-r foo

# ls -l

total 4

-rwxr-x--- 1 git git 17 Oct 20 10:07 foo

Pro Tip: To look like an old-hand UNIX hacker, you can also convert any set of ”rwx”
permissions into an octal number from 0 (no permissions) to 7 (all permissions). It
helps to think of the three permissions as ”binary places”:
27http://linux.die.net/man/1/chgrp
28http://linux.die.net/man/1/chmod

64

http://linux.die.net/man/1/chgrp
http://linux.die.net/man/1/chmod


STEP 2. FILE UNDER ”DIRECTORIES”

• r = 22= 4

• w = 21= 2

• x = 20= 1

• - = 0

Some examples:

• --- = 0 + 0 + 0 = 0

• r-- = 22+ 0 + 0 = 4

• r-x = 22+ 0 + 20= 5

• rw- = 22+ 21+ 0 = 6

• rwx = 22+ 21+ 20= 7

Now to use octal with chmod, we think of the overall result we want for a file. For
example, if we want the foo file to be readable, writable and executable by both its
owning user and group, and not accessible at all by anyone else, we could use:

Figure 2.46: chmod with lots of typing

# chmod u+rwx,g+rwx,o- foo

# ls -l

total 4

-rwxrwx--- 1 git git 17 Oct 20 10:07 foo

Or we could simply convert those permissions into octal in our head and:

Figure 2.47: chmod with octal like a boss

# chmod 770 foo

# ls -l

total 4

-rwxrwx--- 1 git git 17 Oct 20 10:07 foo

Now you know the answer to that ”How will we ever use octal in real life?” question
you asked in school!

For a script or executable file to be allowed to run, it must be marked as executable
for one of the user, group or other entries. The following should be insightful:

65



TEN STEPS TO LINUX SURVIVAL

Figure 2.48: Marking a file as executable

# echo "echo Hello world" > foo

# ls -l

total 4

-rw-r--r-- 1 root root 17 Oct 20 10:07 foo

# ./foo

-bash: ./foo: Permission denied

# chmod u+x foo

# ls -l

total 4

-rwxr--r-- 1 root root 17 Oct 20 10:07 foo

# ./foo

Hello world

”I’ll Send You a Tar Ball”

In the Windows world, we are used to compressing and sending directories around as
.zip files. In Linux you can also deal with .zip files, although they don’t tend to be the
most common, using the zip29 and unzip30 commands:

Figure 2.49: zip command

~ $ cd Foo

~/Foo $ touch a b c

~/Foo $ mkdir d

~/Foo $ touch d/e

~/Foo $ cd ..

~ $ zip -r Foo Foo

adding: Foo/ (stored 0%)

adding: Foo/c (stored 0%)

adding: Foo/b (stored 0%)

adding: Foo/d/ (stored 0%)

adding: Foo/d/e (stored 0%)

adding: Foo/a (stored 0%)

29http://linux.die.net/man/1/zip
30http://linux.die.net/man/1/unzip

66

http://linux.die.net/man/1/zip
http://linux.die.net/man/1/unzip


STEP 2. FILE UNDER ”DIRECTORIES”

~ $ ls -l Foo.zip

-rw-r--r-- 1 myuser mygroup 854 Dec 14 15:31 Foo.zip

Figure 2.50: unzip command

~ $ unzip Foo

Archive: Foo.zip

replace Foo/c? [y]es, [n]o, [A]ll, [N]one, [r]ename: A

extracting: Foo/c

extracting: Foo/b

extracting: Foo/d/e

extracting: Foo/a

Not too exciting, but you get the drift. There is typically support for other compression
algorithms, such as the gzip31, bzip232 and 7z33 (7-zip) commands.

However, the ”native” way to ”archive” a directory’s contents in ”UNIX” is with tar34,
which is so old that tar stands for ”tape archive.” Its purpose is to take virtually any di-
rectory structure and create a single output ”stream” or file of it. That is then typically
ran through a compression command and the result is called a ”tarball”:

Figure 2.51: Creating a tarball

~ $ tar cvf Foo.tar Foo/*

Foo/a

Foo/b

Foo/c

Foo/d/

Foo/d/e

~ $ ls -l Foo.tar

-rw-r--r-- 1 myuser mygroup 10240 Dec 19 07:52 Foo.tar

~ $ gzip Foo.tar

~ $ ls -l Foo.tar.gz

-rw-r--r-- 1 myuser mygroup 193 Dec 19 07:52 Foo.tar.gz

31http://linux.die.net/man/1/gzip
32http://linux.die.net/man/1/bzip2
33http://linux.die.net/man/1/7z
34http://linux.die.net/man/1/tar

67

http://linux.die.net/man/1/gzip
http://linux.die.net/man/1/bzip2
http://linux.die.net/man/1/7z
http://linux.die.net/man/1/tar


TEN STEPS TO LINUX SURVIVAL

In the tar command above, the parameters are c (create a new archive), v (turn on
”verbose” output) and f followed by the file name of the new .tar file.

Note: tar supports POSIX-style parameters (-c), GNU-style (--create), as well as the
older style (c with no hyphens at all), as shown in these examples. So both of the
following are also equivalent to the above:

Figure 2.52: tar parameter styles

~ $ tar -c -v -f Foo.tar Foo/*

~ $ tar --create --verbose --file=Foo.tar Foo/*

The use of compression commands along with tar is so prevalent that they’ve been
built into tar itself now as optional parameters:

Figure 2.53: One-step tarball

~ $ tar cvzf Foo.tgz Foo

Foo/

Foo/c

Foo/b

Foo/d/

Foo/d/e

Foo/a

~ $ ls -l Foo.tgz

-rw-r--r-- 1 myuser mygroup 197 Dec 19 07:54 Foo.tgz

In this case the z parameter says to use gzip compression, and the .tgz file suffix means
basically ”tarred and gzipped”, or the equivalent to .tar.gz in the first example.

tar is used to both create and read .tar files. So to extract something like the above,
you can change the create (c) parameter to extract (x), like this:

Figure 2.54: Extracting a tarball

~ $ tar xvf Foo.tgz

Foo/

Foo/c

68



STEP 2. FILE UNDER ”DIRECTORIES”

Foo/b

Foo/d/

Foo/d/e

Foo/a

Let’s link Up!

In Windows there are ”shortcuts,” which are simply special files that the OS knows to
interpret as ”go open this other file over there.” There are also ”hard links” that allow
for different directory entries in the same file system to point to the same physical
file.

UNIX file systems also have both these types of links (which isn’t surprising, given that
Microsoft got the ideas from UNIX). Both are created with the ln35 command. A ”soft
link” is equivalent to a Windows shortcut, and can point to a file or a directory, and can
point to anything on any mounted file system:

Figure 2.55: Soft links example

~ $ ls -l

total 4

-rw-r--r-- 1 myuser mygroup 0 Oct 24 15:53 a

-rw-r--r-- 1 myuser mygroup 0 Oct 24 15:53 b

-rw-r--r-- 1 myuser mygroup 0 Oct 24 15:53 c

drwxr-xr-x 2 myuser mygroup 4096 Oct 24 16:00 d

~ $ cd d

~ $ pwd

/tmp/foo/d

~ $ cd ..

~ $ ln -s a MyThesis.doc

~ $ ln -s d Dee

~ $ ls -l

total 4

-rw-r--r-- 1 myuser mygroup 0 Oct 24 15:53 a

-rw-r--r-- 1 myuser mygroup 0 Oct 24 15:53 b

-rw-r--r-- 1 myuser mygroup 0 Oct 24 15:53 c

drwxr-xr-x 2 myuser mygroup 4096 Oct 24 16:00 d

35http://linux.die.net/man/1/ln

69

http://linux.die.net/man/1/ln


TEN STEPS TO LINUX SURVIVAL

lrwxrwxrwx 1 myuser mygroup 1 Oct 24 16:40 Dee -> d

lrwxrwxrwx 1 myuser mygroup 1 Oct 24 16:40 MyThesis.doc -> a

~ $ cd Dee

~ $ pwd

/tmp/foo/Dee

The things to notice about this example:

1. The -s parameter indicates ”create a soft link.”

2. Instead of a - or d, a soft link is shown in a ls listing as l regardless of whether
the target is a file or directory. This is because a soft link doesn’t ”know” what
the target is - it is just a file in a directory pointing to another location. What
that location is will be determined after the link is traversed.

A ”hard link” is a bit different. It can only be made between files and the two files
must be on the same file system. That is because hard links are actually directory
entries (as opposed to files in directories) that point to the same ”inode”36 on disk.
From within a single directory it is impossible to tell if there are other directories with
pointers to the same files (inodes) on disk.

Figure 2.56: Hard links example

~ $ ls

a b c d Dee MyThesis.doc

~ $ ln b B

~ $ cd d

~ $ ln ../b .

~ $ ls -l

total 0

-rw-r--r-- 3 myuser mygroup 0 Oct 24 15:53 b

-rw-r--r-- 1 myuser mygroup 0 Oct 24 15:54 e

~ $ cd ..

~ $ ls -l

total 4

-rw-r--r-- 1 myuser mygroup 0 Oct 24 15:53 a

-rw-r--r-- 3 myuser mygroup 0 Oct 24 15:53 b

-rw-r--r-- 3 myuser mygroup 0 Oct 24 15:53 B

36https://en.wikipedia.org/wiki/Inode

70

https://en.wikipedia.org/wiki/Inode


STEP 2. FILE UNDER ”DIRECTORIES”

-rw-r--r-- 1 myuser mygroup 0 Oct 24 15:53 c

drwxr-xr-x 2 myuser mygroup 4096 Oct 24 16:49 d

lrwxrwxrwx 1 myuser mygroup 1 Oct 24 16:40 Dee -> d

lrwxrwxrwx 1 myuser mygroup 1 Oct 24 16:40 MyThesis.doc -> a

The ”net net” of all the above is that now b, B and d/b all point to exactly the same inode,
or disk location, i.e., the exact same physical file.

I Said ”Go Away!”, Dammit!

So what can possibly go wrong with links? With soft links the answer is easy - the
”remote” location being pointed to goes away or is renamed:

Figure 2.57: Broken soft links example

~ $ ls -l

total 4

-rw-r--r-- 1 myuser mygroup 0 Oct 24 15:53 a

-rw-r--r-- 3 myuser mygroup 0 Oct 24 15:53 b

-rw-r--r-- 3 myuser mygroup 0 Oct 24 15:53 B

-rw-r--r-- 1 myuser mygroup 0 Oct 24 15:53 c

drwxr-xr-x 2 myuser mygroup 4096 Oct 24 16:49 d

lrwxrwxrwx 1 myuser mygroup 1 Oct 24 16:40 Dee -> d

lrwxrwxrwx 1 myuser mygroup 1 Oct 24 16:40 MyThesis.doc -> a

~ $ rm a

~ $ ls -l

total 4

-rw-r--r-- 3 myuser mygroup 0 Oct 24 15:53 b

-rw-r--r-- 3 myuser mygroup 0 Oct 24 15:53 B

-rw-r--r-- 1 myuser mygroup 0 Oct 24 15:53 c

drwxr-xr-x 2 myuser mygroup 4096 Oct 24 16:49 d

lrwxrwxrwx 1 myuser mygroup 1 Oct 24 16:40 Dee -> d

lrwxrwxrwx 1 myuser mygroup 1 Oct 24 16:40 MyThesis.doc -> a

~ $ cat MyThesis.doc

cat: MyThesis.doc: No such file or directory

So even though the soft link MyThesis.doc is still in the directory, the actual underly-
ing file a is now gone, and trying to access it via the soft link leads to the somewhat

71



TEN STEPS TO LINUX SURVIVAL

confusing ”No such file or directory” error message (splutter ”I can see it! It’s right
there!”)

With hard links, it isn’t so much a problem because of the nature of the beast. Since
each hard link is a directory (metadata) entry pointing to an inode, deleting one simply
deletes that directory entry. As long as the file has other hard links pointing to it, it
”exists.” Only when the last remaining hard link is removed has it been ”deleted.” Let’s
play:

Figure 2.58: Many hard links, one inode

~ $ echo "This is b." > b

~ $ cat b

This is b.

~ $ cat B

This is b.

~ $ cat d/b

This is b.

So, that makes sense. We created an original file b by placing ”This is b.” in it, and
then created two hard links to it, B and d/b. We see that it has the same contents no
matter how we access it, because it is pointing to the same inode.

Can you guess how many rm commands it will take to delete the file containing ”This
is b.”?

Figure 2.59: Deleting a file with many hard links

~ $ rm b

~ $ cat b

cat: b: No such file or directory

~ $ cat B

This is b.

~ $ cat d/b

This is b.

~ $ rm B

~ $ cat d/b

This is b.

~ $ rm d/b

Ultimately, it takes a rm for every hard link to permanently delete a file.

72



STEP 2. FILE UNDER ”DIRECTORIES”

mount It? I Don’t Even Know It’s Name!

With all this talk that a hard link can only be on the same file system, how do you
know whether two directories are on the same file system? In Windows it’s easy -
that’s exactly what the drive letters are telling you. But in Linux, where everything
is ”mounted” under a single hierarchy starting at /, how do I know that /var/something
and var/or/other are on the same file system?

There are multiple ways to tell, actually. The easiest is with the df37 command:

Figure 2.60: df command

~ $ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/mapper/mint--vg-root 118647068 28847464 83749608 26% /

none 4 0 4 0% /sys/fs/cgroup

udev 1965068 4 1965064 1% /dev

tmpfs 396216 1568 394648 1% /run

none 5120 0 5120 0% /run/lock

none 1981068 840 1980228 1% /run/shm

none 102400 24 102376 1% /run/user

/dev/sda1 240972 50153 178378 22% /boot

The ones of interest are the /dev entries, and we see that everything mounted under /
is on one file system, except for whatever happens to be on the file system mounted
under /boot. So outside of /boot, on this system we could hard link away to our heart’s
content.

df is a good command to see the disk space utilization of each file system. If you want
to see the space used by a directory and its subdirectories, use du38:

Figure 2.61: du command

/tmp $ du

4 ./icedteaplugin-mdm-EMmQCt

4 ./ssh-IaP0RC1l4XCL

4 ./hsperfdata_mdm

37http://linux.die.net/man/1/df
38http://linux.die.net/man/1/du

73

http://linux.die.net/man/1/df
http://linux.die.net/man/1/du


TEN STEPS TO LINUX SURVIVAL

4 ./.ICE-unix

4 ./VSCode Crashes

4 ./.X11-unix

8 ./mintUpdate

4 ./orbit-myuser

4 ./pulse-PKdhtXMmr18n

84 .

The default size unit for du is 1,024 bytes, but that can be changed. So in the above,
/tmp and its children are taking 84KB of disk space.

Note: - It is (barely) beyond the scope of this book to cover the mount39 command. I
wanted to, really bad, but with all the different file systems and device types and all
the options for both it can get so complex so fast that I decided not to. Maybe if you
ask, real nice...

I’m Seeing Double

So, both hard and soft links can have some interesting side effects if you think about
them. For one, if you are backing things up, then youmay get duplicates in your backup
set. In fact, with hard links you will, by definition, unless the backup software is very
smart and doing things like de-duplication.

But even with soft links if everything just blindly followed them you could also get
duplicates where you didn’t want them, or even circular references. Also, the pointers
in the soft link files are not evaluated until a command references them. Note that
the following is perfectly legal with soft links, but may not give the results you expect -
think about the current working directory shown by pwd in the following, and the effects
of the relative paths as the sample progresses:

Figure 2.62: Soft links and relative paths

~ $ cd Foo

~/Foo $ rm -rf *

~/Foo $ cd ..

~ $ cd Foo

~/Foo $ pwd

/home/myuser/Foo

~/Foo $ rm -rf *

39http://linux.die.net/man/8/mount

74

http://linux.die.net/man/8/mount


STEP 2. FILE UNDER ”DIRECTORIES”

~/Foo $ mkdir d

~/Foo $ touch a b c d/e

~/Foo $ ln -s . d/f

~/Foo $ ls d/f

e f

~/Foo $ ln -s .. d/g

~/Foo $ ls d/g

a b c d

Many commands that deal with files and file systems, like find, have parameters specif-
ically telling the command whether to follow soft links or not (by default, find does not
- see the next chapter for more).

What’s the diff?

Most people think of diff40 as a tool only programmers find useful, but that is short-
sighted. The whole purpose of diff is to show differences between files. For example,
I backed up this document (which is a text file) before starting this section, then typed
this introduction to diff. This is what diff showed after I added the new paragraph:

Figure 2.63: diff example

~ $ diff Step02.bak Step02.md

1285a1286,1291

> Most people think of [`diff`](http://linux.die.net/man/1/diff) as a tool

> only programmers find useful, but that is short-sighted. The whole purpose

> of `diff` is to show differences between files. For example, I backed up

> this document (which is a text file) before starting this chapter, then

> typed this introduction to `diff`. This is what `diff` shows:

In other words, the ”arrows” are pointing to the ”new” file (by convention the file
specified on the left is the ”old” file and the file on the right is the ”new” file), showing
five lines were inserted, starting at line 1285. Pretty meta, but not real exciting.

Let’s look at something else, say a configuration file for an application. We have an
original file, orig.conf:

40http://linux.die.net/man/1/diff

75

http://linux.die.net/man/1/diff


TEN STEPS TO LINUX SURVIVAL

Figure 2.64: orig.conf file

~ $ cat orig.conf

FOO=1

SOME=THINGS

STAY=THE

SAME=ALWAYS

BAR=Xyzzy

Then we have a new file, new.conf:

Figure 2.65: new.conf file

~ $ cat new.conf

FOO=2

SOME=THINGS

STAY=THE

SAME=ALWAYS

Now if we diff them:

Figure 2.66: Using diff on config files

~ $ diff orig.conf new.conf

1c1

< FOO=1

---

> FOO=2

7d6

< BAR=Xyzzy

Now we can more easily see that line #1 changed (1c1) from FOO=1 on the ”left” file to
FOO=2 on the ”right,” and that line #7 was deleted (7d6) from the ”left” file to form the
”right.” Again, not too interesting, but imagine that both files were thousands of lines

76



STEP 2. FILE UNDER ”DIRECTORIES”

long, and there were only a few changes, and you were trying to detect and recover an
accidentally-deleted line. Now you can see why diff can be handy, as long as you keep
around a prior version either in a backup file or version control system to compare
against.

diff is your friend. It really comes into play with a version control system like git41,
but again, that is beyond the scope of this book.

41http://linux.die.net/man/1/git

77

http://linux.die.net/man/1/git


TEN STEPS TO LINUX SURVIVAL

78



Step 3

Finding Meaning

The find command in all its glory. Probably the single most useful command
in ”UNIX” (I think)

”If we had bacon, we could have bacon and eggs, if we had eggs.” - old
joke

Different people will have different answers to ”What is the single most useful ”UNIX”
command?” There certainly are many to consider. But I keep coming back to find1. It
can be intimidating to figure out from the documentation, especially at first, but once
you start mastering it, you end up using it over and over again.

The main concepts of find are simple:

1. Starting at location X...

2. Recursively find all files or directories (or ”file system entries” to be more pre-
cise) that successfully match one or more tests...

3. And for each match execute one or more actions.

The simplest example is ”starting in the current directory, recursively list all files you
find”:

Figure 3.1: Simplest find example

1http://linux.die.net/man/1/find

79

http://linux.die.net/man/1/find


TEN STEPS TO LINUX SURVIVAL

~ $ find

.

./Agenda.md

./Bad and Corrupted Test Files

./Bad and Corrupted Test Files/.DS_Store

./Bad and Corrupted Test Files/2008 Letter of Understanding.TIF

./Bad and Corrupted Test Files/3948175.dat

./Bad and Corrupted Test Files/3948176.dat

./Bad and Corrupted Test Files/3948178.dat

./Bad and Corrupted Test Files/3948180.dat

./Bad and Corrupted Test Files/3948182.dat

./Bad and Corrupted Test Files/3948186.dat

./Bad and Corrupted Test Files/3948190.dat

./Bad and Corrupted Test Files/3948193.dat

./Bad and Corrupted Test Files/3948195.dat

./Bad and Corrupted Test Files/3948197.dat

./Bad and Corrupted Test Files/3948259.dat

...and so on...

In this case find is just shorthand for find . -true -print.

That’s not really that interesting. Let’s poke around and ”find” (pun intended) some
better examples of using find. It is better to show than tell in this case. Let’s dive into
a semi-complicated one and pick it apart:

Figure 3.2: More complicated find example

~ $ find //myserver/myshare/logs/000[4-9] -name \*.dat -newer logchecker.csv \

-exec /home/myuser/Sandbox/FileCheckers/logchecker \{\} \;

How does this all work? Remembering the three steps at the beginning:

1. Starting at location //myserver/myshare/logs/000[4-9] - in this case a CIFS/SMB
share running under Cygwin2 (this won’t work on Linux). Note the regular ex-
pression (which we will cover later), in this case saying to look only in directories
0004 through 0009.

2. Recursively find file system entries that match one or more tests - the tests
in this example are:

2In fact, find is one of the main reasons I use Cygwin on Windows.

80



STEP 3. FINDING MEANING

a. All files that have a name that ends in .dat - the only thing to note here
is the \ preceding the wildcard *. This prevents ”shell expansion,” which
would allow the bash process interpreting the command to expand it to the
list of files present in the current directory only, not recursively across all
directories.

b. That are newer (created or modified after) the file logchecker.csv - pre-
sumably this file gets created by running logchecker or some related process.
This is an optimization condition check to only look at files that have been
updated since the last time the script ran.

3. For each match, execute logchecker - and pass in the name of the currently
found (matching) file.

What’s With the Backslashes?

Reconsider this example:

Figure 3.3: More complicated find example, explained

~ $ find //myserver/myshare/logs/000[4-9] -name \*.dat -newer logchecker.csv \

-exec /home/myuser/Sandbox/FileCheckers/logchecker \{\} \;

There are five (5) backslash (\) characters in the above. In each case, the backslash is
preventing shell expansion3:

1. \*.dat - preserves the * for find to use as it recursively searches through direc-
tories, instead of the shell expanding it to all files that end in .dat in the current
directory.

2. \ - the \ at the end of the first line tells the shell that the command continues on
the next line.

3. \{\} \; - these three prevent the shell from trying to expand the braces into
an environment variable or the semicolon (which is meant to tell find when the
command being ran via -exec and its parameters end), otherwise ; is normally
used to separate independent commands on the same line in the shell.

That last point bears repeating. Any time you -exec in a find command (which will be
a lot), just get used to typing \{\} \; (the space between the ending brace and the \;

is required).
3http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_03_04.html

81

http://www.tldp.org/LDP/Bash-Beginners-Guide/html/sect_03_04.html


TEN STEPS TO LINUX SURVIVAL

Useful find Options

The find4 documentation gives a bewildering number of options. Here are the ones
you may ”find” the most useful:

• -executable - the file is executable or the directory is searchable (in other words,
the file or directory’s x mode bit is set true for user, group or other (”ugo”), per
the file permissions discussion above), and the user executing the find command
falls into one of the categories for which it is set.

• -group <gname> - file belongs to group gname.

• -iname <pattern> - case-insensitive name search. Any wildcard characters should
be escaped.

• -maxdepth <number> - limits the number of directory levels to recurse into.

• -mindepth <number> - sets a starting directory level below the current one to recurse
into.

• -name <pattern> - case-sensitive name search. Any wildcard characters should be
escaped.

• -newer <file> - each file is tested to see if it is newer than file.

• -size <n> - file uses n units of space, which can be specified in various measures
like 512-byte blocks (b) through gigabytes (G).

• -type <c> - file is of type c, with the two most common being d (directory) or f

(file).

• -user <uname> - file is owned by uname.

Useful find Actions

Similarly, you are going to keep coming back to just a handful of find actions:

• -delete - deletes any files matched so far. Note that actions are also tests (pred-
icates), so as the find documentation says, ”Don’t forget that the find command
line is evaluated as an expression, so putting -delete first will make find try to
delete everything below the starting points you specified.” In other words, plac-
ing -delete too early in the expression is going to yield behavior distressingly
similar to rm -r *.

4http://linux.die.net/man/1/find

82

http://linux.die.net/man/1/find


STEP 3. FINDING MEANING

• -exec and -execdir - executes a command or script, typically passing in the name
of the file or directory found. You will use this all the time. The difference
between the two is that -execdir changes the working directory to that of the
item found before invoking the program or script, whereas -exec simply passes
in the fully-qualified path of the found item.

• -print - prints the full path of the found file or directory. This is the default action.

• -printf - prints a formatted string, useful for reports.

The -printf action allows you to do some interesting things when producing output.
For example, if for some reason we wanted a report where for each file we wanted
three lines with the name, owner and created date and time in ISO 8601 format, all
followed by a blank line, we could use the following find command:

Figure 3.4: Using find as a simple reporting tool

~ $ touch a b c

~ $ ls -l

total 0

-rw-rwxr--+ 1 myuser mygroup 0 Oct 21 11:02 a

-rw-rwxr--+ 1 myuser mygroup 0 Oct 21 11:02 b

-rw-rwxr--+ 1 myuser mygroup 0 Oct 21 11:02 c

~ $ find . -type f -printf "%p\n%u\n%TY-%Tm-%TdT%TT\n\n"

./a

myuser

2015-10-21T11:02:51.7014527000

./b

myuser

2015-10-21T11:02:51.7035423000

./c

myuser

2015-10-21T11:02:51.7048997000

That -printf format string "%p\n%u\n%TY-%Tm-%TdT%TT\n\n" breaks down into:

• " - prevent shell expansion on the format string.
• %p - file name.
• \n - new line.

83



TEN STEPS TO LINUX SURVIVAL

• %u - owning user name.
• \n - new line.
• %TY - the last modification date of the file expressed as a year.
• - - a literal hyphen.
• %Tm - the last modification date of the file expressed as a month.
• - - a literal hyphen.
• %Td - the last modification date of the file expressed as a day.
• T - a literal ’T’.
• %TT - the time expressed in hh:mm:ss.hhhhhh format.
• \n\n - two new lines.
• " - prevent shell expansion on the format string.

84



Step 4

Grokking grep

And probably gawking at awk while we are at it, which means regular expres-
sions, too. Now we have two problems.

”Some people, when confronted with a problem, think ’I know, I’ll use reg-
ular expressions.’ Now they have two problems.” - Jamie Zawinski

If the file command is useful for finding file system entries based on their attributes,
the grep1 command is good for finding files whose contents match a regular expres-
sion2. You already know at least one regular expression, the wildcard * character from
the CMD.EXE prompt and Windows Explorer. It means ”match zero or more characters.”
We’ll cover more on regular expressions, or ”regexes,” in a moment.

First, an example of grep, showing all files in a directory with the pattern ”is” in them:

Figure 4.1: grep example

~ $ touch a b c

~ $ echo This sequence of characters is called a \"string\". > d

~ $ cat d

This sequence of characters is called a "string".

~ $ ls

a b c d

1http://linux.die.net/man/1/grep
2https://en.wikipedia.org/wiki/Regular_expression

85

http://linux.die.net/man/1/grep
https://en.wikipedia.org/wiki/Regular_expression


TEN STEPS TO LINUX SURVIVAL

~ $ grep is *

d:This sequence of characters is called a "string".

Expressing Yourself Regularly

So what are ”regular expressions?” Simply, they are patterns for matching ”strings,”
which are sequences of ”characters,” e.g.:

Figure 4.2: A string

This sequence of characters is called a "string".

That is a string. So is, ”That is a string.” And ”That” and ”T” and so on. In general
(with many exceptions), the UNIX world view is that everything is composed of text (or
”strings”), and that creating, changing, finding and passing around text is the primary
mode of operation.

In the grep example, we can see a regular expression can be as simple as ”is”. It can
also be as complicated as:

Figure 4.3: Complex regular expression

(?bhttp://[-A-Za-z0-9+&@#/%?=~_()|!:,.;]*[-A-Za-z0-9+&@f

That shows at least one attempt at being a very complete parser of valid HTTP URLs3.
Wow! What is all that? Now you see why you have two problems. Even if you get
that all figured out, or if you actually sit and create something like that from scratch
yourself (and it works!), imagine coming back six months later and trying to decipher
it again.

There are literally whole web sites4 and books just on regular expressions. With vari-
ations they are used in all ”UNIX” shells, Perl, Python, Javascript, Java, C# and more.
So obviously (a) they are really useful, and (b) we’re not going to cover all of regexes
here.
3http://blog.codinghorror.com/the-problem-with-urls/
4http://www.regular-expressions.info/

86

http://blog.codinghorror.com/the-problem-with-urls/
http://www.regular-expressions.info/


STEP 4. GROKKING GREP

There are so many things you can do, the only thing to remember is ”regular expres-
sions” when you think ”I need to find things based on a pattern” and then research
what it will take to define the pattern you want.

In the mean time, following are a few simple regex examples. Consider the file
invoices:

Figure 4.4: Invoices file

~ $ cat invoices

Combine brakes 400

Combine motor 1500

Combine tires 2500

Tractor brakes 300

Tractor motor 1000

Tractor tires 2000

Truck brakes 200

Truck tires 400

Truck tires 400

Truck tires 400

Truck winch 100

Let’s find all lines with ”tractor”:

Figure 4.5: Trying to find tractors

~ $ grep tractor invoices

Huh, nothing was found. But this is UNIX-land, so we know it is sensitive - about case
anyway:

Figure 4.6: Trying to find tractors, part two

~ $ grep Tractor invoices

Tractor brakes 300

Tractor motor 1000

Tractor tires 2000

87



TEN STEPS TO LINUX SURVIVAL

Or we could just tell grep we are insensitive (to case, anyway):

Figure 4.7: Let’s be insensitive

~ $ grep -i tractor invoices

Tractor brakes 300

Tractor motor 1000

Tractor tires 2000

And just to remind you about long-style parameters:

Figure 4.8: Spelling out our insensitivity

~ $ grep --ignore-case tractor invoices

Tractor brakes 300

Tractor motor 1000

Tractor tires 2000

But what lines are those on?

Figure 4.9: Print the line numbers of matches

~ $ grep -i -n tractor invoices

1:Tractor motor 1000

2:Tractor brakes 300

3:Tractor tires 2000

To get more complicated, we can pass the -E parameter (for extended regular expres-
sions) and start doing some really fun stuff. Let’s look for lines with either ”Tractor”
or ”Truck”:

Figure 4.10: Extended regular expressions

~ $ grep -E "Tractor|Truck" invoices

Tractor brakes 300

Tractor motor 1000

88



STEP 4. GROKKING GREP

Tractor tires 2000

Truck brakes 200

Truck tires 400

Truck tires 400

Truck tires 400

Truck winch 100

For me, the following keep coming up when using regular expressions:

• one|other - find one pattern or the other.

• ˆ - pattern for the beginning of a line.

• $ - pattern for the end of a line.

• ? - match exactly one character.

• * - match zero or more characters.

• + - match one or more characters.

• [A-Z] - match any character in a range (in this case any uppercase Latin alpha-
betic character).

• [n|y] - match one character or another (such as n or y here).

For example, to find the lines that end in 400:

Figure 4.11: Find lines ending with 400

$ grep -E "^*400$" invoices

Combine brakes 400

Truck tires 400

Truck tires 400

Truck tires 400

Groveling With grep

To recursively find all files that contain the string ”pdfinfo”:

Figure 4.12: Recursive grep

89



TEN STEPS TO LINUX SURVIVAL

~ $ grep -R -i pdfinfo *

./FileCheckers/otschecker:# pdfinfo, too. If pdfinfo thinks it's junk, ...

./FileCheckers/otschecker: pdfinfo=`pdfinfo -opw foo "$1" 2>&1 1...

./FileCheckers/otschecker: if [ $rc != 0 -a "$pdfinfo" != "Comma...

./FileCheckers/pdfchecker: # pdfinfo, too. If pdfinfo thinks it'...

./FileCheckers/pdfchecker: pdfinfo=`pdfinfo "$1" > /dev/...

./FileCheckers/pdfpwdchecker:# pdfinfo, too. If pdfinfo thinks it's jun...

./FileCheckers/pdfpwdchecker: pdfinfo=`pdfinfo -opw foo "$1" 2>&...

./FileCheckers/pdfpwdchecker: if [ $rc != 0 -a "$pdfinfo" = "Com...

./FileCheckers/README.md:* ***[pdfinfo(1)](http://linux.die.net/man/1/p...

The above is functionally equivalent butmuch quicker than:

Figure 4.13: Recursive grep is faster than find ... -exec grep

~ $ find . -type f -exec grep -H -i pdfinfo \{\} \;

Note: In general, if a command has its own ”recursive” option (such as -R with grep), it
is quicker to use that rather than to invoke the command repeatedly using find instead.

However, sometimes you can use find to filter down files to be checked before having
grep read through them, and have that result in much quicker results.

For example, if you only wanted to check files that contain ”pdfinfo” that have been cre-
ated or modified since the last time you checked, it could be quicker to run something
like:

Figure 4.14: A better example of when to use find ... -exec grep

~ $ find . ! -name pdfinfo.log -newer pdfinfo.log -type f -exec grep -H \

-i pdfinfo \{\} \; > pdfinfo.log

This says to ignore files named pdfinfo.log (! -name pdfinfo.log) and otherwise look for
files (-type f) containing ”pdfinfo” (-exec grep -H -i pdfinfo) that haven’t been checked
since the last time pdfinfo.log was modified (-newer pdfinfo.log). In my tests the first
run (which initially creates the pdfinfo.log file) ran in 30 seconds but subsequents runs
took just a few seconds. This was because the number of files to be searched through
all directories was big enough it paid to pre-filter the results with find before handing
them to grep.

90



STEP 4. GROKKING GREP

Gawking at awk

I don’t have much to say about awk5 other than:

1. It is named after its three authors, Aho, Weinberger and Kernighan6, all three of
whom are computer science greats from Bell Labs. The GNU version is called
gawk, of course!

2. It is a ”data driven scripting language.” That’s a fancy way of saying it was writ-
ten specifically with slicing and dicing text in mind.

3. It generally is broken out when the typical ”UNIX” commands and shell features
like pipes and redirection aren’t enough.

4. Usually, if I start thinking of awk, I start thinking of a way to program the answer
in another language such as Python, or reframe the question to get an answer
not requiring awk.

That said, it is a powerful knife in the tool belt, and you should be aware it exists. If you
are searching the internet and find an answer using awk that you can quickly adapt to
your needs, use it.

To whet your taste, here is the type of ”one-liner” for which awk is famous, in this case
formatting and printing a report on user ids7 from /etc/passwd:

Figure 4.15: awk example

~ $ awk -F":" '{ print "username: " $1 "\t\tuid:" $3 }' /etc/passwd

username: root uid:0

username: daemon uid:1

username: bin uid:2

username: sys uid:3

username: sync uid:4

username: games uid:5

username: man uid:6

username: lp uid:7

username: mail uid:8

username: news uid:9

5http://linux.die.net/man/1/awk
6https://en.wikipedia.org/wiki/AWK
7http://www.ibm.com/developerworks/library/l-awk1/

91

http://linux.die.net/man/1/awk
https://en.wikipedia.org/wiki/AWK
http://www.ibm.com/developerworks/library/l-awk1/


TEN STEPS TO LINUX SURVIVAL

username: uucp uid:10

...and so on...

92



Step 5

“Just a Series of Pipes”

stdin/stdout/stderr, redirects and piping between commands.

”Ceci n’est pas une pipe.” - René Magritte

The ”UNIX philosophy”1 tends to be to have a bunch of small programs that each do
one thing very well, and then to combine them together in interesting ways. The ”glue”
for combining them together is often the ”piping” or redirection of ”streams” of data
(typically text) between programs, each doing one small change to the stream until it
is finally emitted on the console or saved to a file or sent over the Internet.

The first thing to note is there are three ”file I/O streams” that are open by default in
every ”UNIX” process:

• stdin - input, typically from the console in an interactive session. In the under-
lying C file system APIs, this is file descriptor 0.

• stdout - ”normal” output, typically to the console in an interactive session. This
is file descriptor 1.

• stderr - ”error” output, typically to the console in an interactive session (so it
can be hard to distinguish when intermingled with stdout output). This is file
descriptor 2.

Note: Those numeric file descriptors will go from being trivia to important in just a
bit.
1https://en.wikipedia.org/wiki/Unix_philosophy

93

https://en.wikipedia.org/wiki/Unix_philosophy


TEN STEPS TO LINUX SURVIVAL

When a program written in C calls printf, it is writing to stdout. When a bash script
calls echo, it too is writing to stdout. When a command writes an error message, it
is writing to stderr. If a command or program accepts input from the console, it is
reading from stdin.

In this example, cat is started with no file name, so it will read from stdin (a quite
common ”UNIX” command convention), and echo each line typed by the user to stdout
until the ”end of file,” which in an interactive session can be emulated with Ctrl-D,
shown as ˆD in the example below but not seen on the console in real life:

Figure 5.1: stdin and stdout

~ $ cat

This shows reading from stdin

This shows reading from stdin

and writing to stdout.

and writing to stdout.

^D

In the above I typed in ”This shows reading from stdin” and hit Enter (which send a
linefeed and hence marks the ”end of the line”) and cat echoed that line to stdout.
Then I typed ”and writing to stdout.” and hit Enter and that line was echoed to stdout
as well. Finally I hit Ctrl-D, which ended the process.

All Magic is Redirection

One way to string things together in ”the UNIX way” is with file redirection. This is a
concept that also works in CMD.EXE and even with the same syntax.

Let’s create a file with a single line of text in it. One way would be to vi newfilename,
edit the file, save it, and exit vi. A quicker way is to simply use file redirection:

Figure 5.2: Hello, world

~ $ echo Hello, world > hw

~ $ ls -l

total 1

-rw-rwxr--+ 1 myuser mygroup 13 Oct 22 10:40 hw

94



STEP 5. “JUST A SERIES OF PIPES”

~ $ cat hw

Hello, world

In this case the > hw tells bash to take the output that echo sends to stdout and send it
to the file hw instead.

As mentioned above many ”UNIX” commands are set up to take one or more file names
from the command line as parameters, and if there aren’t any, to read from stdin. The
cat command does that. While it doesn’t save us anything over the above example, the
following example using < is illustrative of redirecting a file to stdin for a command or
program:

Figure 5.3: Redundant redirection

~ $ cat < hw

Hello, world

Finally, we need to deal with stderr. By convention it is sent to the console just like
stdout, and that can make output confusing:

Figure 5.4: Default stderr behavior

~ $ echo This is a > a

~ $ echo This is b > b

~ $ echo This is c > c

~ $ mkdir d

~ $ echo This is e > d/e

~ $ find . -exec cat \{\} \;

cat: .: Is a directory

This is a

This is b

This is c

cat: ./d: Is a directory

This is e

In the above, between echoing the contents of the a, b, c and e files, we see two error
messages from cat complaining that . and d are directories. These are being emitted
on stderr, but there is no good way of visually telling that. One way to get rid of them
would be to change find to filter for only files:

95



TEN STEPS TO LINUX SURVIVAL

Figure 5.5: Get rid of the errors in the first place

~ $ find . -type f -exec cat \{\} \;

This is a

This is b

This is c

This is e

But let’s say the example is not so trivial, and we want to capture and log the error
messages separately for later analysis. While we’ve seen < used to represent redirect-
ing stdin and > used for redirecting stdout, how do we tell the shell we want to redirect
stderr? Remember the discussion about file handles above? That’s where those eso-
teric numbers come in handy! To redirect stderr we recall it is always file descriptor
2, and then we can use:

Figure 5.6: Redirecting stderr

~ $ find . -exec cat \{\} \; 2>/tmp/finderrors.log

This is a

This is b

This is c

This is e

~ $ cat /tmp/finderrors.log

cat: .: Is a directory

cat: ./d: Is a directory

The 2>/tmp/finderrors.log is the magic that is redirecting file descriptor 2 (stderr) to
the log file /tmp/finderrors.log.

A very common paradigm is to capture both stdout and stderr to the same file. Here
is how that is done, again using file descriptors:

Figure 5.7: Redirecting both stdout and stderr to a file

~ $ find . -exec cat \{\} \; >/tmp/find.log 2>&1

~ $ cat /tmp/find.log

cat: .: Is a directory

This is a

96



STEP 5. “JUST A SERIES OF PIPES”

This is b

This is c

cat: ./d: Is a directory

This is e

Now we see stdout being redirected to /tmp/find.log with >/tmp/find.log, and stderr
(file descriptor 2) being sent to the same place as stdout (file descriptor 1) with 2>&1.
Note that this works in CMD.EXE, too!

If we want to send stdout to one file and stderr to another, you can do it like this:

Figure 5.8: Redirecting stdout one way stderr another

~ $ find . -exec cat \{\} \; >/tmp/find.log 2>/tmp/finderrors.log

~ $ cat /tmp/find.log

This is a

This is b

This is c

This is e

~ $ cat /tmp/finderrors.log

cat: .: Is a directory

cat: ./d: Is a directory

One final note with redirection is the difference between creating or re-writing a file
versus appending. The following creates a new /tmp/find.log file every time it runs
(there is no need to rm it first):

Figure 5.9: Overwriting a file with redirection

~ $ find . -exec cat \{\} \; >/tmp/find.log

However, the next sample using >> creates a new /tmp/find.log file if it doesn’t exist,
but otherwise appends to it:

Figure 5.10: Appending to a file with redirection

97



TEN STEPS TO LINUX SURVIVAL

~ $ find . -exec cat \{\} \; >>/tmp/find.log

Note: There is also a variation on input redirection using <<, but it is used mostly in
scripting and is outside the scope of this book.

Everyone Line Up

So we can see that we could pass things between programs by redirecting stdout to a
file and then redirecting that file to stdin on the next program, and so on. But ”UNIX”
environments take it a bit further with the concept of a command ”pipeline” that allows
directly sending stdout from one program into stdin of another using the ”pipe” (|):

Figure 5.11: Piping output between programs

~ $ cat *.txt | tr '\\' '/' | while read line ; do ./mycmd "$line" ; done

This little one-liner starts showing off the usefulness of chaining several small pro-
grams, each doing one thing. In this case:

1. cat echos the contents of all .txt files in alphabetical order by their file name to
stdout, which is piped to...

2. tr2 ”translates” (replaces) any backslash characters (here ”escaped” as '\\' be-
cause the backslash character is a special character) to forward slashes (/) be-
fore sending it into...

3. A while loop that reads each line into a variable called $line and then calls...

4. Some custom script or program called ./mycmd passing in the value of each $line.

Think about the power of that. cat didn’t know there were multiple .txt files or not -
the shell expansion of the *.txt wildcard did that. It read all those files and echoed
them to stdout which in this case was a pipeline sending each line in order to another
command to transform the data, before sending each line to the custom code in mycmd,
that only expects a single line or value each time it is run. It has no idea about the .txt

files or the transformation or the pipeline!
2http://linux.die.net/man/1/tr

98

http://linux.die.net/man/1/tr


STEP 5. “JUST A SERIES OF PIPES”

That is the ”UNIX philosophy” at work.

There are some nice performance benefits for this approach, too. In general Linux &
Co. will overlap the processing by starting all the commands in the pipeline, with the
ones on the right getting data from the ones further ”upstream” to the left as soon as
it is written, instead of using file redirection where one program would have to finish
completely running and writing out to a file before the next program could start and
read in that file as input.

Finally, if you want to capture something to a file and see it on the console at the same
time, that is where the tee3 command comes in:

~ $ find . -name error.log | tee > errorlogs.txt

This would write the results of finding all files names error.log to the console and also
to errorlogs.txt. This is useful when you are manually running things and want to see
the results immediately, but also want a log of what you did.

3http://linux.die.net/man/1/tee

99

http://linux.die.net/man/1/tee


TEN STEPS TO LINUX SURVIVAL

100



Step 6

vi

How to stay sane for 10 minutes in vi. Navigation, basic editing, find,
change/change-all, cut and paste, undo, saving and canceling. Plus easier
alternatives like nano, and why vi still matters.

”You’re too young to know.” - Vi (Grease)

vi1 stands for visual editor (as well as the Roman numeral for 6, which is why it is this
chapter), and once you use it you will understand what editing from the command line
must’ve been like for vi to seem both ”visual” and a step forward.

Many Linux clones don’t use vi proper, but a port called vim2 (”vi improved”), that is
then accessed via the alias vi. The differences tend to be minor, with vim being more
customizable.

vi and a similar editor, emacs3, both tend to trip up users from GUI operating systems
such as Windows or OS X that have editors like Notepad that are always ready for user
input.

Instead, vi typically starts in ”command mode,” where keystrokes execute various nav-
igation and editing commands. To actually insert text requires a keystroke such as i

while in command mode, which then causes vi to go into ”insert mode.” Insert mode is
what most Windows users expect from an editor, i.e., when you type the line changes.
The ESC key exits insert mode.

1http://linux.die.net/man/1/vi
2http://www.vim.org/
3http://linux.die.net/man/1/emacs

101

http://linux.die.net/man/1/vi
http://www.vim.org/
http://linux.die.net/man/1/emacs


TEN STEPS TO LINUX SURVIVAL

It is as hard to get used to as it sounds, and you will execute text you were meaning to
insert as commands, and commands that you were meaning to execute you will insert
as text, and sooner or later you will enter vi commands into Notepad. I guarantee it.
That will be the day you know you’ve become truly tainted.

We will not even begin to scratch the surface of vi, when there are many books and web
sites just on wielding it to its full potential. In the hands of someone who has mastered
it, vi can do some really remarkable feats of editing way beyond the capability of most
modern GUI programming environments.

Command Me

Again, when you first open vi it is in ”command mode.” That means any keystrokes you
enter will ”do something.” The ”something” to be done may be navigating around the
file, inserting, deleting or changing text, manipulating lines, ”undoing” or ”redoing,”
writing the changes to disk and the like.

What are commands? Well, for example d means ”delete.” We’ll talk about how to
specify what to delete next. i tells vi to enter ”insert mode” at the point where the
cursor is. 0 (zero) navigates to the start of the current line, and so on.

Commands can have modifiers preceding and following them. Consider the ”delete”
command, d. If we follow with w as in dw while in command mode, it will delete a
whitespace-delimited ”word” starting at where the cursor is through (including) the
next whitespace character.

If the | in the following represents the cursor:

Figure 6.1: Deleting a ”word”

This is a wo|rd and so is this.

Then typing dw will delete from the cursor position the characters r, d and the space,
leaving the following:

Figure 6.2: After deleting the ”word”

This is a wo|and so is this.

102



STEP 6. VI

We can also specify the number of times we want to perform a command by prefixing it
to the command. So now if we wanted to delete three words from the cursor position
in the above, we’d use 3dw and end up with:

Figure 6.3: Deleting multiple words

This is a wo|this.

Again, in all these examples the | represents the cursor.

There is a little bit of nuance in using command modifiers. Consider the r (replace)
command. It is typically used to change the single character under the cursor. You
may be tempted to think you can do something like rw for ”replace word,” but it is actu-
ally going to simply replace the current character with a w, whereas the real command
for doing that is cw (”change word”). In addition, you can use repeaters as above, just
be sure you understand r means ”replace a single character,” so 3rx executed on:

Figure 6.4: Replace three characters with ”x”

This is a wo|this.

...results in:

Figure 6.5: Three ”x” characters

This is a woxx|xs.

To quit without saving enter :q. To write any file changes to disk use :w. To save and
quit, type :wq.

Undo Me

u is the ”undo” command. It ”undoes” or reverts the last change. You can undo the
last n changes just as you’d expect, e.g., 3u undoes the last three changes.

If you want to just cancel out of the file without writing any changes to disk, use :q!

(the ! means to force the quit without saving).

103



TEN STEPS TO LINUX SURVIVAL

If you want to protect yourself from inadvertent changes to a file you can always open
it using view4, the alias for vi invoked in read-only mode.

Circumnavigating vi

In modern implementations of vi (like vim) running under modern shells the arrow and
page keys will work as you expect, in general. However, you may want to be aware
that when in insert mode, while the left and right arrows may work for navigation,
often the up and down arrows can introduce ”garbage” characters into the file (since
you are in insert mode). This is because the keymappings for those keys aren’t being
interpreted correctly. I usually just swear, exit insert mode, hit u and try again.

As an example, under Cygwin I went into vi, went into insert mode after the first line,
typed in ”This is a new line” and then hit the up arrow five times, yielding this:

Figure 6.6: Garbage characters

This is a word and so is this.

A

A

A

A

A

This is a new line

When in command mode, there are multiple ways to jump around in the file besides
using the arrow and page keys:

• 0 - jumps to the beginning of the current line.

• $ -jumps to the end of the current line.

• w - jumps forward a whitespace-delimited ”word” on the current line (and of
course 3w would jump forward three ”words”).

• b - jumps back a whitespace-delimited ”word” on the current line.

• G - jumps to end of the file.

• :0 - jumps to start of the file (note the preceding :).
4http://linux.die.net/man/1/view

104

http://linux.die.net/man/1/view


STEP 6. VI

• /foo - find ”foo” going forward toward the end of the file.

• ?foo - find ”foo” going backward toward the front of the file.

• n - find the next instance of the search text specified by the last / or ?.

Insert Tab A Into Slot B

There are multiple ways to enter insert mode, but only one way to escape it (pun in-
tended - ESC, get it?)

• i - enters insert mode at the current cursor position.

• I - enters insert mode at the beginning of the current line.

• A - enters insert mode (appends) at the end of the current line.

• o - inserts a new line under (lowercase o = ”lower” or ”below”) the current line
and puts the cursor on it in insert mode.

• O - inserts a new line over (uppercase O = ”upper” or ”above”) the current line
and puts the cursor on it in insert mode.

Ctrl-X, Ctrl-C, Ctrl-V

When you copy or cut/delete it, it goes into a ”buffer.” There are ways to access multiple
buffers, but mostly you want the very last thing to be put in the buffer, especially for
copying (or cutting) and pasting. Note that ”cutting” and ”deleting” are synonymous,
since deleting puts the deleted text in the buffer.

Another thing to understand is that a command ”doubled” or repeated typically means
”the whole line.” So dd means ”delete the whole line the cursor is currently on.”

So if deleting is synonymous with cutting, and the cursor is on the second line:

Figure 6.7: Deleting a line

This is a word and so is this.

This is a new line.|

105



TEN STEPS TO LINUX SURVIVAL

Then executing dd leaves:

Figure 6.8: After the line is gone

|This is a word and so is this.

We know ”This is a new line.” went into the buffer. We can paste it back above the
current line with P(uppercase P = ”upper” or ”above”), which would result in:

Figure 6.9: After pasting the line above the current line

|This is a new line.

This is a word and so is this.

Here are some more examples:

• p - paste the buffer into the current line starting after the cursor location.

• 3dd - delete (cut) three lines into the buffer.

• 5yw - ”yank” (copy) five words starting at the current cursor position into the
buffer.

Change Machine

The hardest thing to get down in vi is the substitute (change or replace) command, :s.
Its syntax is esoteric, but once you’ve memorized it, it becomes intuitive.

The most common scenario is the ”change all” command. Given the following file:

Figure 6.10: Sample text file

This is a new line

This is a word

and so is this

This and thus

This and this and this

106



STEP 6. VI

Let’s change all ”this” to ”that” by using:

Figure 6.11: Changing ”this” to ”that”

:0,$s/this/that/

We’ll get into the details in a bit, but the results are interesting, and not what we’d
expect:

Figure 6.12: What happened?

This is a new line

This is a word

and so is that

This and thus

This and that and this

It only changed the ”that” at the end of the third line, and the middle ”that” on the last.
Why? Two reasons:

1. The substitute command is case sensitive, just like everything else in Linux, un-
less you tell it to be insensitive.

2. The substitute command only makes one change per line unless you tell it to
change globally.

So let’s hit u to reset (undo) the change, and try again with this:

Figure 6.13: Changing ”this” to ”that”, redux

:0,$s/this/that/i

Results in:

Figure 6.14: Closer, but not quite

107



TEN STEPS TO LINUX SURVIVAL

that is a new line

that is a word

and so is that

that and thus

that and this and this

That’s better. There is at least one ”that” on every line that had a ”this,” so passing
the i (”insensitive”) switch at the end of the s (substitute) command helped with that.
But we still didn’t get all the ”this” words changed, as the last line shows. Hit u and
try one more time with this:

Figure 6.15: Changing ”this” to ”that”, one more time!

:0,$s/this/that/gi

Results in:

Figure 6.16: Finally!

that is a new line

that is a word

and so is that

that and thus

that and that and that

That’s what we wanted! Well, sort of. If we wanted to keep the capitalization we’d
have more work to do. See below.

In general, if you are looking for a case insensitive ”change all” like in Windows
Notepad, the magic string to remember is:

Figure 6.17: Memorize this - No, really

:0,$s/from/to/gi

Picking that apart, we have:

108



STEP 6. VI

• : - tells vi a special command is coming.

• 0,$ - specifies a line range, in this case from the first (0 - zero-relative) line to
last ($) line in the file. You can of course use other line numbers to restrict the
range, and there are other ways to create ranges as well (see about marking
lines, below).

• s - substitute (change) command.

• /from - ”from” pattern (regular expression).

• /to - ”to” (results).

• /gi - optional switches, g means ”global” (change all instances on a line, not just
the first one), i means (case) ”insensitive.”

Regular expressions you say! ”Now we have two problems.” But consider where we
left off:

Figure 6.18: But what about capitalization?

that is a new line

that is a word

and so is that

that and thus

that and that and that

First, let’s capitalize all t characters, but only where they are at the beginning of the
line:

Figure 6.19: Regular expression for the start of a line

:0,$s/^t/T/

Yields:

Figure 6.20: Voila! Capitals!

109



TEN STEPS TO LINUX SURVIVAL

That is a new line

That is a word

and so is that

That and thus

That and that and that

Now let’s change all instances of ”that” at the end of a line to be ”that.”

Figure 6.21: Regular expression for the end of a line

:0,$s/that$/that./

Ends up with:

Figure 6.22: That with a full stop

That is a new line

That is a word

and so is that.

That and thus

That and that and that.

And finally as a fun exercise for the reader, using the full power of regular expressions
see if you can figure out how this is adding commas to the end of lines that don’t already
have a period:

Figure 6.23: Say what?

:0,$s/\([^.]$\)/\1,/

Renders this:

Figure 6.24: Nicely punctuated

110



STEP 6. VI

That is a new line,

That is a word,

and so is that.

That and thus,

That and that and that.

Hint: While trying to figure that out, search the Internet for regular expression ”cap-
turing groups.”

”X” Marks the Spot

You can ”mark” lines in vi for use in ”ranges” like the ”substitute” (change) command
above. Let’s say you have a file like the following:

Figure 6.25: Simple file

This is a line

This is also a line

This, too

This is next

This is last

Maybe we want to change the ”This” on the first three lines to ”That,” but not the last
two (imagine this is a much more complex example). We could do it by hand with the
r command, but that’s tedious and error prone. Instead, we can ”mark” a range.

1. Place the cursor on the first line and use the m command followed by a one-
character ”label” like x (I typically use m so I don’t have to move my fingers,
e.g., mm).

2. Place the cursor on the third line and again use the m command, but with a
different label character (I usually use n so my fingers don’t travel far, so mn).

3. Now you can use the ' character followed by a label to denote the beginning and
end of the range in all kinds of vi commands. In our case we want to change
”This” on the first three lines, so:

111



TEN STEPS TO LINUX SURVIVAL

:'m,'ns/This/That/

Try doing that in Notepad!

Note: We could have done that with line ranges, too (:0,2s/This/That/), but figuring
out the beginning and ending lines in a large range is a pain. It is much easier to just
mark them and go.

Executing External Commands

Sometimes in vi it would be great to run the contents of the file through an external
command (sort is a favorite) without saving and exiting the file, sorting it, and then
re-editing it. We can do that with !, which works a lot like the ”substitute” (change)
command.

To sort the whole file in place:

Figure 6.26: Sort a whole file in vi

:0,$!sort

To sort a marked range:

Figure 6.27: Sorting a range

:'m,'n!sort

Another handy command to check out for this kind of thing, especially for formatting
written text, is the fmt5 command.

The Unseen World

Any technical person knows that all the binary permutations of possible values for a
byte aren’t mapped to visible characters. Some are ”control characters”6 that range
5http://linux.die.net/man/1/fmt
6https://en.wikipedia.org/wiki/Control_character

112

http://linux.die.net/man/1/fmt
https://en.wikipedia.org/wiki/Control_character


STEP 6. VI

back to the teletype days. For example, a tab character is hexadecimal 9 (0x09), but is
often represented as \t in many programming languages, regular expressions and the
like.

Similarly, the ”end of line” is marked by a control character. Or in the case of Windows,
two control characters. And this causes no end of problems when editing files that can
be opened on both ”UNIX” systems and Windows.

On ”UNIX,” the line feed control character (0x0a, or \n) is all that marks the end of a line.
For historical reasons (CP/M), Windows ends each line with two control characters,
carriage return (0x0d, or \r) and line feed. The two together are often referred to as
”CRLF.”

This difference manifests in two ways:

1. If you’ve ever opened a file on Windows in Notepad and all the lines ”flow” even
though they’re supposed to be individual lines, that means it is probably using
”UNIX” end-of-lines (\n) only. Use a line feed aware editor such as Notepad++7

instead.

2. If you open a file in vi and it has a ˆM at the end of every line and/or at the bottom
you see something like:

"Agenda.md" [dos format] 16 lines, 1692 characters

Either of those mean the file lines each end with ”CRLF” (\r\n). To change it in
vi you can override the ff (file format) setting:

:set ff=unix

Since regular expressions have syntax for expressing control codes in either shorthand
(\t) or as hexadecimal, you can alter control codes in vi easily. For example, to change
all tab characters to four spaces:

Figure 6.28: Change all tabs to four spaces as God meant them to be

:0,$s/\t/ /g

7https://notepad-plus-plus.org/

113

https://notepad-plus-plus.org/


TEN STEPS TO LINUX SURVIVAL

Let’s Get Small

So, vi is the best we can do? No. On many Linux systems an alternative terminal-based
editor will be installed, often several. There may be emacs8, which willmake you yearn
for the simplicity of vi.

Here are two jokes that are only funny once you’ve used emacs:

”’emacs’ stands for ’escape’, ’meta’, ’alt’, ’control’, ’shift’.”

”’emacs’ is a good operating system, but it could use an editor.”

If those are funny to you, then you have already been infected by emacs. The prognosis
is grim.

But there may also be others, notably pico9 and its successor, nano10. You can see the
difference the second you see a file open in nano - in this case, the generated Github-
flavored Markdown of this document:

Figure 6.29: Editing a file in nano

GNU nano 2.2.6 File: TenStepsToLinuxSurvival.md

|![Merv sez, "Don't panic."](./images/Merv.jpg "Merv sez, 'Don't panic.'")

Merv sez, "Don't panic."

By James Lehmer

v0.7

![](./images/cc-by-sa.png "Creative Commons Attribution-ShareAlike 4.0 Internat$

*Jim's Ten Steps to Linux Survival* by James Lehmer is licensed under a [Creati$

**Dedicated to my first three technical mentors** - Jim Proffer, who taught me $

Introduction

============

8http://linux.die.net/man/1/emacs
9http://linux.die.net/man/1/pico
10http://linux.die.net/man/1/nano

114

http://linux.die.net/man/1/emacs
http://linux.die.net/man/1/pico
http://linux.die.net/man/1/nano


STEP 6. VI

> *"And you may ask yourself, 'Well, how did I get here?'"* - Talking Heads (*O$

This is my little "Linux and Bash in 10 steps" guide. It's based around what I $

[ Read 3627 lines ]

^G Get Help ^O WriteOut ^R Read File ^Y Prev Page ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where Is ^V Next Page ^U UnCut Text^T To Spell

Two things to note about the above:

1. The cursor (represented above by |) is already in ”insert mode” like you would
expect in a ”normal” editor such as Notepad.

2. Those lines at the bottom are commands that can be invoked by shortcuts. For
example, ˆO means Ctrl-O and stands for ”WriteOut” or ”Save.” That’s probably
easier to remember than :w in vi, especially since it is reminding you of it right
there on the screen!

So why not always use nano? Why does this book harp on and on vi? Why do I insist
on keeping all this arcane vi nonsense loaded in my head (and I do!)? Because often,
like in the nightmare scenario I posed in the Introduction, you may not have control
over the system, no ability to install packages - you have to take what the system has.
And it’s a pretty sure bet it is going to have vi. So if you have nano (or pico), use it! You
can find out simply by typing in nano <filename> on what you want to edit and see if it
works. But if nano or pico aren’t installed, grit your teeth, remember ”insert mode” vs.
”command mode”, and use vi.

And if you have the opportunity to use emacs...don’t.

Editing on the Command Line

Sometimes you want to script an edit, typically something similar to a ”replace all”
that needs to occur on a file without human intervention. The sed11 (stream editor)
command to the rescue! sed has a similar syntax to the ”substitute” commands in vi

(in fact, the latter got its syntax from the former).

Here is a real-world example. A MySQL12 database backup is in reality a text file
containing a large number of SQL statements - the DROP, CREATE and INSERT statements
11http://linux.die.net/man/1/sed
12https://www.mysql.com/

115

http://linux.die.net/man/1/sed
https://www.mysql.com/


TEN STEPS TO LINUX SURVIVAL

necessary to recreate the database from scratch. Let’s say you have two Wordpress
sites, www.mysite.com for production, and dev.mysite.com for a testing environment. When
Wordpress is configured, it puts its site address, e.g., www.mysite.com, in multiple places
in the database. If you want to refresh your dev site from production, you would backup
the MySQL database to a file like mysqlbak.sql. But before loading it in the dev site’s
database, you would like to change all those www.mysite.com references to dev.mysite.com.
sed to the rescue! Behold:

Figure 6.30: Editing a file with sed

~ $ cat mysqlbak.sql | sed 's/www.mysite.com/dev.mysite.com/g' > devbak.sql

How cool is that? If you remember the ”substitute” command examples for vi, above,
it should be perfectly clear what is going on here.

116



Step 7

The Whole Wide World

curl, wget, ifconfig, ping, ssh, telnet, /etc/hosts and email before Outlook.

”Gopher, Everett?” - Delmar O’Donnell (O Brother, Where Are Thou?)

If Sun’s motto ”The network is the computer” is correct, then of course Linux and
similar systems must be able to access the network from the command line and scripts.

For example, our friend ping1 is there:

Figure 7.1: ping command

# ping www.yahoo.com

PING fd-fp3.wg1.b.yahoo.com (98.138.253.109) 56(84) bytes of data.

64 bytes from ir1.fp.vip.ne1.yahoo.com (98.138.253.109): icmp_req=1 ttl=...

64 bytes from ir1.fp.vip.ne1.yahoo.com (98.138.253.109): icmp_req=2 ttl=...

64 bytes from ir1.fp.vip.ne1.yahoo.com (98.138.253.109): icmp_req=3 ttl=...

64 bytes from ir1.fp.vip.ne1.yahoo.com (98.138.253.109): icmp_req=4 ttl=...

64 bytes from ir1.fp.vip.ne1.yahoo.com (98.138.253.109): icmp_req=5 ttl=...

64 bytes from ir1.fp.vip.ne1.yahoo.com (98.138.253.109): icmp_req=6 ttl=...

64 bytes from ir1.fp.vip.ne1.yahoo.com (98.138.253.109): icmp_req=7 ttl=...

64 bytes from ir1.fp.vip.ne1.yahoo.com (98.138.253.109): icmp_req=8 ttl=...

64 bytes from ir1.fp.vip.ne1.yahoo.com (98.138.253.109): icmp_req=9 ttl=...

64 bytes from ir1.fp.vip.ne1.yahoo.com (98.138.253.109): icmp_req=10 ttl...

1http://linux.die.net/man/8/ping

117

http://linux.die.net/man/8/ping


TEN STEPS TO LINUX SURVIVAL

^C

--- fd-fp3.wg1.b.yahoo.com ping statistics ---

10 packets transmitted, 10 received, 0% packet loss, time 9004ms

rtt min/avg/max/mdev = 59.933/62.581/70.935/3.191 ms

One difference with ping is that by default in Linux ping doesn’t stop until the user
presses Ctrl-C (which sends the SIGINT interrupt2 to the program). In this way it acts
more like ping -t in CMD.EXE Also, be aware that on Cygwin ping is still the system
(Windows) ping.

traceroute3 works, too (although for once its name is longer than the CMD.EXE counter-
part).

Figure 7.2: traceroute command

~ $ traceroute google.com

traceroute to google.com (216.58.216.78), 30 hops max, 60 byte packets

1 192.168.0.1 (192.168.0.1) 3.623 ms 3.978 ms 7.231 ms

2 * * *

3 * * *

4 * * *

5 * * *

6 * * *

7 72.14.215.212 (72.14.215.212) 26.205 ms 27.502 ms 27.648 ms

8 209.85.242.133 (209.85.242.133) 31.547 ms 31.550 ms 31.548 ms

9 72.14.237.231 (72.14.237.231) 29.516 ms 29.556 ms 29.657 ms

10 ord30s21-in-f78.1e100.net (216.58.216.78) 30.313 ms 33.138 ms 28.092 ms

You can do some digging in DNS with dig4:

Figure 7.3: dig command

~ $ dig yahoo.com

; <<>> DiG 9.9.5-3ubuntu0.6-Ubuntu <<>> yahoo.com

;; global options: +cmd

2https://en.wikipedia.org/wiki/Unix_signal
3http://linux.die.net/man/8/traceroute
4http://linux.die.net/man/1/dig

118

https://en.wikipedia.org/wiki/Unix_signal
http://linux.die.net/man/8/traceroute
http://linux.die.net/man/1/dig


STEP 7. THE WHOLE WIDE WORLD

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 46478

;; flags: qr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 4096

;; QUESTION SECTION:

;yahoo.com. IN A

;; ANSWER SECTION:

yahoo.com. 605 IN A 98.138.253.109

yahoo.com. 605 IN A 206.190.36.45

yahoo.com. 605 IN A 98.139.183.24

;; Query time: 23 msec

;; SERVER: 127.0.1.1#53(127.0.1.1)

;; WHEN: Tue Dec 22 09:46:26 CST 2015

;; MSG SIZE rcvd: 86

And whois5:

~ $ whois yahoo.com

Whois Server Version 2.0

Domain names in the .com and .net domains can now be registered

with many different competing registrars. Go to http://www.internic.net

for detailed information.

Server Name: YAHOO.COM.ACCUTAXSERVICES.COM

IP Address: 98.136.43.32

IP Address: 66.196.84.168

Registrar: WILD WEST DOMAINS, LLC

Whois Server: whois.wildwestdomains.com

Referral URL: http://www.wildwestdomains.com

Server Name: YAHOO.COM.ANGRYPIRATES.COM

IP Address: 8.8.8.8

Registrar: NAME.COM, INC.

Whois Server: whois.name.com

5http://linux.die.net/man/1/whois

119

http://linux.die.net/man/1/whois


TEN STEPS TO LINUX SURVIVAL

Referral URL: http://www.name.com

Server Name: YAHOO.COM.AU

Registrar: WILD WEST DOMAINS, LLC

...and so on...

sudo Make Me a Sandwich

It may not be the best place to discuss it, but we’ve finally come to a point where your
normal user account may not have access to these tools. On many systems network
commands are considered ”system” or privileged commands and are restricted.

One way to run restricted commands is to log in as an ”elevated” or privileged user,
such as root. But this is frowned on, and many distros today rely on the sudo6 command
to act as a way for a normal user to signal they want to escalate their privileges tem-
porarily, presuming they are allowed to do so, which is usually indicated by being a
member of the sudo group or similar.

In a sense, sudo is similar to Windows User Access Control (UAC) prompts. They ensure
a human is in control, in the case of sudo by prompting for the user’s password. If
multiple commands are invoked by sudo within a short time period, you will not be
reprompted for a password each time, (unlike UAC).

Here is a really common example on Debian-based systems:

Figure 7.4: Make me a sandwich

~ $ apt-get update

E: Could not open lock file /var/lib/apt/lists/lock - open (13: Permission denie

d)

E: Unable to lock directory /var/lib/apt/lists/

E: Could not open lock file /var/lib/dpkg/lock - open (13: Permission denied)

E: Unable to lock the administration directory (/var/lib/dpkg/), are you root?

The error message, especially the last line, is pretty clear. Let’s try it again with sudo:

Figure 7.5: sudo Make me a sandwich

6http://linux.die.net/man/8/sudo

120

http://linux.die.net/man/8/sudo


STEP 7. THE WHOLE WIDE WORLD

~ $ sudo apt-get update

Ign http://packages.linuxmint.com rafaela InRelease

Ign http://extra.linuxmint.com rafaela InRelease

Hit http://extra.linuxmint.com rafaela Release.gpg

Hit http://packages.linuxmint.com rafaela Release.gpg

Ign http://archive.ubuntu.com trusty InRelease

Hit http://security.ubuntu.com trusty-security InRelease

Hit http://packages.linuxmint.com rafaela Release

Hit http://extra.linuxmint.com rafaela Release

Hit http://archive.ubuntu.com trusty-updates InRelease

Hit http://security.ubuntu.com trusty-security/main amd64 Packages

Hit http://packages.linuxmint.com rafaela/main amd64 Packages

Hit http://extra.linuxmint.com rafaela/main amd64 Packages

Ign http://archive.canonical.com trusty InRelease

Hit http://archive.ubuntu.com trusty Release.gpg

Hit http://security.ubuntu.com trusty-security/restricted amd64 Packages

Hit http://extra.linuxmint.com rafaela/main i386 Packages

Hit http://packages.linuxmint.com rafaela/upstream amd64 Packages

Hit http://security.ubuntu.com trusty-security/universe amd64 Packages

Hit http://archive.ubuntu.com trusty-updates/main amd64 Packages

Hit http://packages.linuxmint.com rafaela/import amd64 Packages

Hit http://security.ubuntu.com trusty-security/multiverse amd64 Packages

Hit http://archive.canonical.com trusty Release.gpg

...and so on...

Now you should get the punchline to this comic7, and hence the title of this section.

NOTE: The first time you ever run sudo on a machine, you will probably see the follow-
ing. They are good words to live by:

Figure 7.6: Words to live by

We trust you have received the usual lecture from the local System

Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.

#2) Think before you type.

#3) With great power comes great responsibility.

7https://xkcd.com/149/

121

https://xkcd.com/149/


TEN STEPS TO LINUX SURVIVAL

Surfin’ the Command Prompt

You can browse the web from the command prompt using something like lynx8. A
text-based browser isn’t too exciting, but it can have its purposes (like quickly testing
network access from a command prompt). For example, lynx http://google.com yields:

Figure 7.7: Browsing like it’s 1994

Google

Search Images Maps Play YouTube News Gmail Drive More »

Web History | Settings | Sign in

Google

_______________________________________________________

Google Search I'm Feeling Lucky Advanced search

Language tools

Advertising Programs Business Solutions +Google About

Google

© 2015 - Privacy - Terms

(NORMAL LINK) Use right-arrow or <return> to activate.

Arrow keys: Up and Down to move. Right to follow a link; Left to go back.

H)elp O)ptions P)rint G)o M)ain screen Q)uit /=search [delete]=history list

There are two other commands that are used to pull down web resources and save
them locally - curl9 and wget10. Both support HTTP(S) and FTP, but curl supports even
more protocols and options and tends to be the simplest to just ”grab a file and go.”

8http://linux.die.net/man/1/lynx
9http://linux.die.net/man/1/curl
10http://linux.die.net/man/1/wget

122

http://linux.die.net/man/1/lynx
http://linux.die.net/man/1/curl
http://linux.die.net/man/1/wget


STEP 7. THE WHOLE WIDE WORLD

You see both used often in install scripts that download bits from the internet and then
execute them by piping them to bash:

Figure 7.8: wget in an install script

wget -O - http://foocorp.com/installs/install.sh | bash

Or:

Figure 7.9: curl in an install script

curl http://foocorp.com/installs/install.sh | bash

Note: As always, you should be cautious when downloading and executing arbitrary
bits, and this technique doesn’t lessen your responsibility there. It is often better to
use something like curl to download the script but instead of piping it to bash to be
executed, redirect it to a file and look at what the script is doing first:

Figure 7.10: Check out what that script is doing first!

~ $ curl http://foocorp.com/installs/install.sh > install.sh

~ $ cat install.sh

#!/bin/bash

# I'm a script from a bad guy, check out the next line!

rm -rf /*

Now, aren’t you glad you didn’t just execute that without checking?

But if the script looks right, then you can chmod it and run it:

Figure 7.11: Got a good script, so execute it

~ $ curl http://foocorp.com/installs/install.sh > install.sh

~ $ cat install.sh

#!/bin/bash

# I'm a script from a good guy.

123



TEN STEPS TO LINUX SURVIVAL

# Do some stuff...

~ $ chmod 770 install.sh

~ $ ./install.sh

It’s Nice to Share

Linux boxes can be set up to share files to Windows machines using the SMB/CIFS
protocols via a system called Samba11. However, that is beyond the scope of this book,
since the intended audience will not likely need to do that.

However, there is often a need in the scenarios I envision the reader has been thrust
into, where they have to share files back and forth between a local *IX box and a
Windows machine. Maybe it’s to pull files over to Windows to be backed up by the
shop’s normal backup mechanisms. Or it could be to bring over log files for forensics.
It could even be to copy files from Windows to the Linux machine.

For example, in my company we keep copies of our Windows servers application con-
figuration files (such as various web.config files) in Git, specifically on a GitLab12 server.
There is a cron job (coming up later) that copies the files every day from the Windows
servers and then commits them to GitLab if there are any changes. It’s a nice way to
keep track of environment changes over time.

How do you copy files from Windows to Linux or vice versa? With the smbclient13

command. It works somewhat similarly to the ftp14 (but again, if you’re going to copy
using the FTP protocol, I think curl or wget are better). Here is an example of smbclient
to get you started.

Figure 7.12: Copying multiple files from a Windows machine with ‘mget‘

~ $ smbclient //winbox/myshare -U myuser%mypassword -W mywindomain \

-c "prompt;cd configs;mget *.config;exit"

To understand the above:

• //winbox/myshare - is theWindows share. Note in this case you use forward slashes
(/), not the typical backslashes (\) that Windows uses.

11https://www.samba.org/
12https://about.gitlab.com/
13http://linux.die.net/man/1/smbclient
14http://linux.die.net/man/1/ftp

124

https://www.samba.org/
https://about.gitlab.com/
http://linux.die.net/man/1/smbclient
http://linux.die.net/man/1/ftp


STEP 7. THE WHOLE WIDE WORLD

• -U myuser%mypassword - userid and password. If you don’t specify them, you will
be prompted, but if you are using this command in a script you either have to
specify them or have the share set up with guest permissions. It is a good idea
to make sure the script file is locked down, and that the smbclient command is
not recorded in your .bash_history file (covered later).

• -W mywindomain - the Active Directory domain the Windows machine is a member
of (or often WORKGROUP if it is a standalone machine).

• -c "prompt;cd configs;mget *.config;exit" - the remote commands to execute, in
this case turning the smbclient prompting off (useful for scripts), changing to the
settings directory on the remote Windows machine with cd, then getting multi-
ple (mget) files using the wildcard *.config, and then exit to end the command
sequence and disconnect.

Note: You can send files to a Windows machine by using mput rather than mget.

You’ve Got Mail

You can send and receive email from the command prompt. Reading email will be rare,
but if the system has pine15 installed, that’s probably the most intuitive from a non-
UNIX perspective (although it is still obviously a terminal program). Otherwise look
for mutt16.

Sending email is more interesting, especially from shell scripts. There are multiple
ways, but email17 is straightforward enough:

Figure 7.13: Sending email from the command line

~ $ email --blank-mail --subject "Possibly corrupted files found..." \

--smtp-server smtp --attach badfiles.csv --from-name NoReply \

--from-addr noreply@mycorp.com alert@mycorp.com

15http://linux.die.net/man/1/pine
16http://linux.die.net/man/1/mutt
17http://linux.die.net/man/1/email

125

http://linux.die.net/man/1/pine
http://linux.die.net/man/1/mutt
http://linux.die.net/man/1/email


TEN STEPS TO LINUX SURVIVAL

Let’s Connect

There are two primary ways to get an interactive ”shell” session on a remote machine.
The first is the venerable telnet18 command. It isn’t used very often for actual interac-
tive sessions any more (for one, because it sends credentials in plain text on the wire).
However, because you can specify the port number, it is still handy for testing and de-
bugging text-based protocols such as SMTP or HTTP. In the following, after opening a
telnet connection on port 80 to Google, I simply entered the HTTP protocol sequence
GET / HTTP/1.1 followed by a blank line to get Google to return its home page:

Figure 7.14: Using telnet to diagnose HTTP

~ $ telnet google.com 80

Trying 216.58.216.78...

Connected to google.com.

Escape character is '^]'.

GET / HTTP/1.1

HTTP/1.1 200 OK

Date: Tue, 22 Dec 2015 15:58:47 GMT

Expires: -1

Cache-Control: private, max-age=0

Content-Type: text/html; charset=ISO-8859-1

P3P: CP="This is not a P3P policy! See https://www.google.com/support/accounts/a

nswer/151657?hl=en for more info."

Server: gws

X-XSS-Protection: 1; mode=block

X-Frame-Options: SAMEORIGIN

Set-Cookie: NID=74=nqD9y_pSQudbaw6obB94Ngw6lsn4t_S8Z3NbZcUJ5HB4qUXCpu988A5QG3EQD

kwqgOdGapsUSmsi91yHAa9_LU9JeP4pKop-1p5w7LlrdMyGrGojwoaX58ML6PSH5nGLsdZV0Z5vBqNTh

A; expires=Wed, 22-Jun-2016 15:58:47 GMT; path=/; domain=.google.com; HttpOnly

Accept-Ranges: none

Vary: Accept-Encoding

Transfer-Encoding: chunked

...and so on...

The SMTP protocol can also be diagnosed this way:

18http://linux.die.net/man/1/telnet

126

http://linux.die.net/man/1/telnet


STEP 7. THE WHOLE WIDE WORLD

Figure 7.15: Using telnet to diagnose SMTP

~ $ telnet smtp 25

Trying 10.1.1.8...

Connected to mail.mydomain.com.

Escape character is '^]'.

220 MAIL.MYDOMAIN.COM

HELO

250 MAIL.MYDOMAIN.COM Hello [10.1.1.8]

MAIL FROM:<myuser@mydomain.com>

250 2.1.0 Sender OK

RCPT TO:<youruser@yourdomain.com>

250 2.1.5 Recipient OK

DATA

354 Start mail input; end with <CRLF>.<CRLF>

This is an email. A single period terminates it.

.

250 2.6.0 <ea43bfd5-5f3f-4335-9c3e-e739f196c56f@MAIL.MYDOMAIN.COM>

Queued mail for delivery

In the above, after entering telnet smtp 25 (our internal email DNS CNAME is smtp), I
entered:

• HELO - the starting command for the protocol.

• MAIL FROM:<myuser@mydomain.com> - the ”from” email address.

• RCPT TO:<youruser@yourdomain.com> - the ”to” email address.

• DATA - indicating I am ready to start the email body, which is This is an email,

a single period terminates it. And you will notice there is a single period on
the following line, which tells the SMTP server the body is done and to send the
email. If all is successful, then an email should shortly show up in the inbox of
youruser@yourdomain.com.

NOTE: - diagnosing SMTP connectivity like this can be very handy sometimes. It is a
good tool to have in your toolchest, and you can do it under Cygwin or a PuTTY Telnet
session on a Windows box just as easily as from a Linux machine.

To get a modern, secure shell to a remote machine over an encrypted connection, use
ssh19, passing in the userid and server like this:
19http://linux.die.net/man/1/ssh

127

http://linux.die.net/man/1/ssh


TEN STEPS TO LINUX SURVIVAL

Figure 7.16: ssh command

ssh myuser@remoteserver

You will be prompted for credentials (or you can use certificates, but that isway beyond
this text’s goals). Once logged in, you will be presented with a command prompt to
the remote system.

You can also use the SSH protocol to securely copy files between systems with the scp20

command. It works like this for a recursive directory copy:

Figure 7.17: scp command

scp -r myfiles/* myuser@remoteserver:/home/myuser/.

In this case we are copying the files in myfiles and its subdirectories to /home/myuser/

on remoteserver logged in as myuser.

Note: The first time you log into a remote server with ssh or scp you will be asked to
accept the remote server’s ”fingerprint.” You can usually just say ”yes”:

Figure 7.18: Sample ssh session

~# ssh myuser@remotehost

The authenticity of host '[remotehost] ([10.0.2.3]:22)' can't be established.

ECDSA key fingerprint is 98:bb:17:38:ee:d0:16:ee:b2:93:08:4e:30:25:14:70.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '[remotehost],[10.0.2.3]:22' (ECDSA) to the list

of known hosts.

myuser@remotehost's password:

Linux remotehost 3.2.0-4-amd64 #1 SMP Debian 3.2.65-1+deb7u2 x86_64

The programs included with the Debian GNU/Linux system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

20http://linux.die.net/man/1/scp

128

http://linux.die.net/man/1/scp


STEP 7. THE WHOLE WIDE WORLD

permitted by applicable law.

Last login: Tue Oct 20 09:37:10 2015 from otherhost

$

The scp command does a naive copy, that is, it simply copies everything from the source
to the target. But what if you want to ”mirror” the source to the target, meaning that
if you delete something on the source side, it will get deleted on the target as well? scp

won’t help you with that. You could delete the target directory completely each time
before copying, but that may not be safe (what happens if the copy fails after you’ve
deleted the target?) Another problem with scp is it copies every byte of every file every
time, even if the files haven’t changed. That can be really slow and inefficient when
copying a large, complex directory containing gigabytes of files over the Internet.

This is where the rsync21 command comes in handy. rsync does three things well:

1. It copies using the ssh protocol by default, just like scp, so it is secure. And it uses
the scp commands compression capabilities by default to increase efficiency. You
can turn that behavior off via a parameter when copying files that are already
compressed, such as JPEGs.

2. It copies only the changed blocks (not even just the changed files), whichmeans
if there are no or few changes, it is very fast.

3. It deletes files on the target if they’ve been deleted from the source, which allows
you to mirror all changes between the two servers or sites.

NOTE: For rsync to work, it has to be installed on both servers.

Figure 7.19: Using rsync to mirror directories between servers

~ $ rsync --delete --progress --recursive --verbose --exclude '.git' \

--exclude '.bak' ~/dev/website/ myuser@mysite.com:public_html

This invokes rsync as follows:

• --delete - deletes files on the target server.

• --progress - shows progress as it copies.

21http://linux.die.net/man/1/rsync

129

http://linux.die.net/man/1/rsync


TEN STEPS TO LINUX SURVIVAL

• --recursive - does a recursive copy.

• --verbose - shows verbose output.

• --exclude '.git' - exclude any directory or file named .git.

• --exclude '.bak' - also exclude any directory or file named .bak.

• ~/dev/website/ - copy from this directory on the local machine, including all files
under it (trailing slash).

• myuser@mysite.com:public_html - copy to the public_html directory under the home
directory of myuser on the mysite.com server.

NOTE: rsync can be used to efficiently mirror directories even on the local server. If
there are two large and complex directories on a single server you want to keep syn-
chronized, you can simply use local addresses for both directories:

Figure 7.20: Using rsync to mirror local directories

~ $ rsync --delete --progress --recursive --verbose --exclude '.git' \

--exclude '.bak' ~/dev/website/ /var/nginx/staging/website

Network Configuration

We won’t dive too deep into configuring a network, but there are a few things you
should know about right away. The first is the ifconfig22 command. In some ways
is similar to ipconfig in CMD.EXE. While you can use ifconfig to alter your networking
settings, it is most commonly used to get a quick display of them:

Figure 7.21: ifconfig command

# ifconfig

eth0 Link encap:Ethernet HWaddr 00:00:56:a3:35:fe

inet addr:10.0.2.3 Bcast:10.0.2.255 Mask:255.255.252.0

inet6 addr: fe80::255:56ff:fea3:35fe/64 Scope:Link

UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

22http://linux.die.net/man/8/ifconfig

130

http://linux.die.net/man/8/ifconfig


STEP 7. THE WHOLE WIDE WORLD

RX packets:364565022 errors:0 dropped:386406 overruns:0 frame:0

TX packets:35097654 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:1000

RX bytes:34727642861 (32.3 GiB) TX bytes:195032017498 (181.6 GiB)

lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0

inet6 addr: ::1/128 Scope:Host

UP LOOPBACK RUNNING MTU:16436 Metric:1

RX packets:111207 errors:0 dropped:0 overruns:0 frame:0

TX packets:111207 errors:0 dropped:0 overruns:0 carrier:0

collisions:0 txqueuelen:0

RX bytes:6839306 (6.5 MiB) TX bytes:6839306 (6.5 MiB)

To see what DNS servers the system is using, you can look in /etc/resolv.conf:

Figure 7.22: DNS servers in resolv.conf

# cat /etc/resolv.conf

domain mydomain.com

search mydomain.com

nameserver 10.0.2.1

nameserver 10.0.2.2

And to see any local overrides of network names or aliases, look in /etc/hosts:

Figure 7.23: hosts file

# cat /etc/hosts

127.0.0.1 localhost

Note: The UNIX /etc/hosts file is the basis for the Windows version located at
C:\Windows\System32\drivers\etc\hosts, and has similar syntax.

131



TEN STEPS TO LINUX SURVIVAL

132



Step 8

The Man Behind the Curtain

/proc, /dev, ps, /var/log, /tmp and other things under the covers.

”As always, should any member of your team be caught or killed, the Sec-
retary will disavow all knowledge of your actions.” - voice on tape (Mission:
Impossible)

This section will cover some ”background” techniques that are valuable for system
monitoring, problem determination and the like. Depending on your role and access
levels, some of these commands may not be available to you, or may require sudo or
root access.

All Part of the Process

To see what processes you are running, use ps1:

Figure 8.1: ps command

# ps

PID TTY TIME CMD

14691 pts/0 00:00:00 bash

25530 pts/0 00:00:00 ps

1http://linux.die.net/man/1/ps

133

http://linux.die.net/man/1/ps


TEN STEPS TO LINUX SURVIVAL

To show processes from all users in a process hierarchy (child processes indented
under parents) use ps -AH:

Figure 8.2: Showing all processes

~ $ ps -AH

PID TTY TIME CMD

2 ? 00:00:00 kthreadd

3 ? 00:00:00 ksoftirqd/0

5 ? 00:00:00 kworker/0:0H

7 ? 00:00:06 rcu_sched

8 ? 00:00:02 rcuos/0

9 ? 00:00:01 rcuos/1

10 ? 00:00:03 rcuos/2

11 ? 00:00:01 rcuos/3

12 ? 00:00:00 rcuos/4

13 ? 00:00:00 rcuos/5

14 ? 00:00:00 rcuos/6

15 ? 00:00:00 rcuos/7

16 ? 00:00:00 rcu_bh

17 ? 00:00:00 rcuob/0

18 ? 00:00:00 rcuob/1

19 ? 00:00:00 rcuob/2

20 ? 00:00:00 rcuob/3

21 ? 00:00:00 rcuob/4

22 ? 00:00:00 rcuob/5

23 ? 00:00:00 rcuob/6

24 ? 00:00:00 rcuob/7

...and so on...

You can kill a process using the kill2 command, which takes a process id and optionally
a ”signal”. Here is an example looking for any running instance of vi and sending it a
kill command:

Figure 8.3: Hunting down and killing vi sessions

2http://linux.die.net/man/1/kill

134

http://linux.die.net/man/1/kill


STEP 8. THE MAN BEHIND THE CURTAIN

ps -A | grep vi | kill `cut -f2 -d" "`

That’s:

• ps -A - list all running processes.

• | - pipe stdout from ps to next command.

• grep vi - find all instances of vi (be careful, because that would include view and
anything else containing the string vi, too).

• | - pipe stdout from grep to next command.

• kill - send a SIGINT signal to a process specified by:

• `cut -f2 -d" "` - execute the cut3 command and take the second space-delimited
field (in this case the process id - the first ”field” is just leading spaces), and place
the results of the command execution as the parameter to the kill command.

To monitor the ongoing CPU, memory and other resource utilization of the top pro-
cesses, you use the top4 command, which unlike most in this book updates dynamically
every second by default:

Figure 8.4: top command

top - 14:11:26 up 106 days, 5:24, 2 users, load average: 0.11, 0.05, ...

Tasks: 95 total, 1 running, 94 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.2 us, 0.8 sy, 0.0 ni, 99.0 id, 0.0 wa, 0.0 hi, 0.0 si, ...

KiB Mem: 2061136 total, 1909468 used, 151668 free, 151632 buffers

KiB Swap: 4191228 total, 287620 used, 3903608 free, 654900 cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

9715 git 20 0 525m 230m 4376 S 0.7 11.4 10:11.44 ruby

9171 git 20 0 520m 229m 4672 S 0.3 11.4 10:27.97 ruby

22899 root 20 0 0 0 0 S 0.3 0.0 0:30.16 kworker/1:0

1 root 20 0 10648 584 560 S 0.0 0.0 1:02.60 init

2 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kthreadd

3 root 20 0 0 0 0 S 0.0 0.0 0:38.05 ksoftirqd/0

5 root 20 0 0 0 0 S 0.0 0.0 0:00.00 kworker/u:0

3http://linux.die.net/man/1/cut
4http://linux.die.net/man/1/top

135

http://linux.die.net/man/1/cut
http://linux.die.net/man/1/top


TEN STEPS TO LINUX SURVIVAL

6 root rt 0 0 0 0 S 0.0 0.0 0:12.23 migration/0

7 root rt 0 0 0 0 S 0.0 0.0 0:24.83 watchdog/0

8 root rt 0 0 0 0 S 0.0 0.0 0:13.01 migration/1

10 root 20 0 0 0 0 S 0.0 0.0 0:34.55 ksoftirqd/1

12 root rt 0 0 0 0 S 0.0 0.0 0:21.38 watchdog/1

13 root 0 -20 0 0 0 S 0.0 0.0 0:00.00 cpuset

...and so on...

Note: Use Q or Ctrl-C to exit top.

When All You Have is a Hammer

Remember that one of the primary UNIX philosophies is that everything is a file or can
be made to look like a file, including network streams, device output and the like. This
is a really powerful concept, because it allows you to access things with tools that have
no idea what they are working on, as long as it ”looks like” a file (or stream of text).

One of the places this has become really handy is in the /proc ”file system.” On modern
Linux systems, there is typically a /proc directory that looks like directories and files:

Figure 8.5: /proc file system

~ $ ls /proc

1 1566 2607 299 4549 53 75 cmdline mtrr

10 1587 2617 3 4579 54 754 consoles net

100 16 2627 300 4589 55 760 cpuinfo pagetypeinfo

1022 17 2629 301 46 56 762 crypto partitions

1030 18 2699 3029 4602 575 764 devices sched_debug

1035 1803 27 31 4612 61 77 diskstats schedstat

1038 19 2712 3111 47 6146 79 dma scsi

11 2 2799 3112 48 6153 8 driver self

12 20 28 3116 49 6199 8167 execdomains slabinfo

1295 2073 2802 3117 4955 62 8168 fb softirqs

1297 2077 2811 3150 4958 6212 8200 filesystems stat

13 21 2815 32 4960 63 822 fs swaps

1304 22 2820 324 4976 640 8296 interrupts sys

1305 23 2823 326 5 642 9 iomem sysrq-trigger

1306 2324 2825 329 50 645 9266 ioports sysvipc

1308 2349 2829 33 5005 6463 927 irq timer_list

136



STEP 8. THE MAN BEHIND THE CURTAIN

1311 2356 2831 330 5012 647 939 kallsyms timer_stats

14 24 2836 34 5033 649 9465 kcore tty

1408 2494 2846 36 5045 661 9613 keys uptime

1468 25 2847 37 51 665 9796 key-users version

147 2507 2848 3713 511 676 9850 kmsg version_signature

148 2518 2850 374 5122 686 99 kpagecount vmallocinfo

...and so on...

What is all that? Well, look a little closer:

Figure 8.6: Detailed listing of the /proc file system

~ $ ls -l /proc

total 0

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1

dr-xr-xr-x 9 root root 0 Dec 22 06:06 10

dr-xr-xr-x 9 root root 0 Dec 22 06:06 100

dr-xr-xr-x 9 myuser mygroup 0 Dec 22 10:17 10035

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1022

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1030

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1035

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1038

dr-xr-xr-x 9 root root 0 Dec 22 06:06 11

dr-xr-xr-x 9 root root 0 Dec 22 06:06 12

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1295

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1297

dr-xr-xr-x 9 root root 0 Dec 22 06:06 13

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1304

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1305

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1306

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1308

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1311

dr-xr-xr-x 9 root root 0 Dec 22 06:06 14

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1408

dr-xr-xr-x 9 root root 0 Dec 22 06:06 1468

...and so on...

We can see that the entries with numeric names are directories. Let’s look in one of
those directories:

137



TEN STEPS TO LINUX SURVIVAL

Figure 8.7: Looking inside one of the /proc process directories

~ # ls -l /proc/1

total 0

dr-xr-xr-x 2 root root 0 Dec 22 10:18 attr

-rw-r--r-- 1 root root 0 Dec 22 10:18 autogroup

-r-------- 1 root root 0 Dec 22 10:18 auxv

-r--r--r-- 1 root root 0 Dec 22 06:06 cgroup

--w------- 1 root root 0 Dec 22 10:18 clear_refs

-r--r--r-- 1 root root 0 Dec 22 06:06 cmdline

-rw-r--r-- 1 root root 0 Dec 22 10:18 comm

-rw-r--r-- 1 root root 0 Dec 22 10:18 coredump_filter

-r--r--r-- 1 root root 0 Dec 22 10:18 cpuset

lrwxrwxrwx 1 root root 0 Dec 22 10:18 cwd -> /

-r-------- 1 root root 0 Dec 22 06:06 environ

lrwxrwxrwx 1 root root 0 Dec 22 06:06 exe -> /sbin/init

dr-x------ 2 root root 0 Dec 22 10:18 fd

dr-x------ 2 root root 0 Dec 22 10:18 fdinfo

-rw-r--r-- 1 root root 0 Dec 22 10:18 gid_map

-r-------- 1 root root 0 Dec 22 10:18 io

-r--r--r-- 1 root root 0 Dec 22 06:06 limits

-rw-r--r-- 1 root root 0 Dec 22 10:18 loginuid

dr-x------ 2 root root 0 Dec 22 10:18 map_files

-r--r--r-- 1 root root 0 Dec 22 10:18 maps

-rw------- 1 root root 0 Dec 22 10:18 mem

...and so on...

This contains a lot of information on the process with process id (PID) #1. If the direc-
tory listing shows the entry as a file, it can be examined and holds current statistics
for whatever the file name implies:

Figure 8.8: How much I/O has process 1 done?

~ # cat /proc/1/io

rchar: 803882767

wchar: 152731542

syscr: 201510

syscw: 57855

read_bytes: 663872512

138



STEP 8. THE MAN BEHIND THE CURTAIN

write_bytes: 113012736

cancelled_write_bytes: 3072000

If it is a directory it will hold other entries (files or directories) with yet more statistics.

In addition, there are system-wide statistics, such as /proc/cpuinfo:

Figure 8.9: Looking at CPU info in /proc/cpuinfo

~ # cat /proc/cpuinfo

processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 69

model name : Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz

stepping : 1

microcode : 0x14

cpu MHz : 895.023

cache size : 3072 KB

physical id : 0

siblings : 4

core id : 0

cpu cores : 2

apicid : 0

initial apicid : 0

fpu : yes

fpu_exception : yes

cpuid level : 13

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov

pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pd

pe1gb rdtscp lm constant_tsc arch_perfmon pebs bts rep_good nopl xtopol

ogy nonstop_tsc ap

...and so on...

Sawing Logs

Many Linux components and subsystems log to /var/log. Here is a pretty standard
directory listing for it on a Linux Mint system:

139



TEN STEPS TO LINUX SURVIVAL

Figure 8.10: Looking at logs

~ # ls /var/log

alternatives.log dmesg.4.gz pm-suspend.log.1

alternatives.log.1 dpkg.log pm-suspend.log.2.gz

alternatives.log.2.gz dpkg.log.1 pm-suspend.log.3.gz

alternatives.log.3.gz dpkg.log.2.gz pycentral.log

apt dpkg.log.3.gz samba

aptitude faillog speech-dispatcher

aptitude.1.gz fontconfig.log syslog

aptitude.2.gz fsck syslog.1

auth.log gpu-manager.log syslog.2.gz

auth.log.1 hp syslog.3.gz

auth.log.2.gz installer syslog.4.gz

auth.log.3.gz kern.log syslog.5.gz

auth.log.4.gz kern.log.1 syslog.6.gz

boot.log kern.log.2.gz syslog.7.gz

bootstrap.log kern.log.3.gz udev

btmp kern.log.4.gz unattended-upgrades

btmp.1 lastlog upstart

ConsoleKit mdm wtmp

cups mintsystem.log wtmp.1

dmesg pm-powersave.log Xorg.0.log

dmesg.0 pm-powersave.log.1 Xorg.0.log.old

dmesg.1.gz pm-powersave.log.2.gz Xorg.20.log

...and so on...

Some, like samba are their own subdirectories with log files under that. Others are
log files that get ”rotated” from the most current (no suffix) through ever older ones
(increasing suffix number, e.g., mail.log.2).

If you are pursuing a problem with a specific subsystem (like samba), it is good to start
in its log files. The two log files of general interest are dmesg, which holds kernel-level
debug messages and usually is useful for debugging things like device driver issues. It
can also be displayed directly with the dmesg5 command. The other is messages, which
holds more general ”system” messages.

Let’s look for kernel errors when booting:

Figure 8.11: Kernel errors when booting

5http://linux.die.net/man/8/dmesg

140

http://linux.die.net/man/8/dmesg


STEP 8. THE MAN BEHIND THE CURTAIN

~ # cat /var/log/dmesg | grep -i error

[ 15.828463] EXT4-fs (dm-1): re-mounted. Opts: errors=remount-ro

It’s All Temporary

By convention, temporary files are written to /tmp . You can place your own temporary
or ”work” files there, too. It’s a great place to unzip install bits, for example. Just note
that the temporariness is enforced in that when the system reboots, /tmp is reset to
empty.

141



TEN STEPS TO LINUX SURVIVAL

142



Step 9

How Do You Know What You
Don’t Know, man?

man, info, apropos, Linux Documentation Project, Debian and Arch guides, Stack-
Overflow and the dangers of searching for “man find” or “man touch” on the inter-
net.

”You’re soaking in it.” - Palmolive commercial

The biggest issue with bootstrapping into ”UNIX” is not the lack of documentation but
almost the surplus of it, coupled with a severe ”RTFM” attitude by most old-timers
toward newbies. Besides the typical ”Google” and ”StackOverflow”1 answers, there
are actually lots of very reliable places to turn to for information

man, is that info apropos?

There are three commands that are the basis for reading ”UNIX” documentation within
”UNIX” itself - man2, info3 and apropos4.

man is short for manual pages, and is used to display the main help for most ”UNIX”
commands. For example, man ls shows:
1http://unix.stackexchange.com/
2http://linux.die.net/man/1/man
3http://linux.die.net/man/1/info
4http://linux.die.net/man/1/apropos

143

http://unix.stackexchange.com/
http://linux.die.net/man/1/man
http://linux.die.net/man/1/info
http://linux.die.net/man/1/apropos


TEN STEPS TO LINUX SURVIVAL

Figure 9.1: man command

LS(1) User Commands LS(1)

NAME

ls - list directory contents

SYNOPSIS

ls [OPTION]... [FILE]...

DESCRIPTION

List information about the FILEs (the current directory by default).

Sort entries alphabetically if none of -cftuvSUX nor --sort is speci�

fied.

Mandatory arguments to long options are mandatory for short options

too.

-a, --all

do not ignore entries starting with .

-A, --almost-all

do not list implied . and ..

--author

Manual page ls(1) line 1 (press h for help or q to quit)

Note: man uses less as a paginator, with all that means, including the same navigation
and search keys, and most important to remember - Q to quit. How do I know this?
Because of course you can man man!

Notice the LS(1) part. The UNIX manual was originally divided into multiple sections
by AT&T. Section 1 is normal user commands. Section 5 is file formats (like for config
files), and section 8 is for system administration commands. You usually don’t care,
and can man ls or man ifconfig to your heart’s content.

But sometimes there are duplicate names in the different sections. For example, there
is both a passwd5 command and a passwd file format (for /etc/passwd). By default, man
passwdwill show you the documentation from the lowest numbered section with amatch,

5http://linux.die.net/man/1/passwd

144

http://linux.die.net/man/1/passwd


STEP 9. HOW DO YOU KNOW WHAT YOU DON’T KNOW, MAN?

in this case section 1, usually referred to as passwd(1) to disambiguate which thingwe’re
talking about:

Figure 9.2: Ambiguous man passwd command default to lowest documentation section

PASSWD(1) User Commands PASSWD(1)

NAME

passwd - change user password

SYNOPSIS

passwd [options] [LOGIN]

DESCRIPTION

The passwd command changes passwords for user accounts. A normal user

may only change the password for his/her own account, while the

superuser may change the password for any account. passwd also changes

the account or associated password validity period.

Password Changes

The user is first prompted for his/her old password, if one is present.

This password is then encrypted and compared against the stored

password. The user has only one chance to enter the correct password.

The superuser is permitted to bypass this step so that forgotten

passwords may be changed.

After the password has been entered, password aging information is

checked to see if the user is permitted to change the password at this

Manual page passwd(1) line 1 (press h for help or q to quit)

To see the man page for the passwd file format, we have to explicitly specify the section,
in this case by using man 5 passwd:

Figure 9.3: Specifying a specific section with man 5 passwd

PASSWD(5) File Formats and Conversions PASSWD(5)

NAME

passwd - the password file

145



TEN STEPS TO LINUX SURVIVAL

DESCRIPTION

/etc/passwd contains one line for each user account, with seven fields

delimited by colons (“:”). These fields are:

· login name

· optional encrypted password

· numerical user ID

· numerical group ID

· user name or comment field

· user home directory

· optional user command interpreter

Manual page passwd(5) line 1 (press h for help or q to quit)

man pages can be long and sometimes obscure to a beginner, but it is recommended
you get used to reading them, especially any warnings. There is a great quote that
explains why:

”Unix will give you enough rope to shoot yourself in the foot. If you didn’t
think rope would do that, you should have read the man page.” - unknown

Note: If you know who originally said the above and can send proof, let me know and
I will give them credit.

Besides man, many GNU tools come with help in info format, which is originally from
emacs. Here are the results of info find:

Figure 9.4: Running info find command

File: find.info, Node: Invoking find, Next: Invoking locate, Up: Reference

7.1 Invoking 'find'

===================

146



STEP 9. HOW DO YOU KNOW WHAT YOU DON’T KNOW, MAN?

find [-H] [-L] [-P] [-D DEBUGOPTIONS] [-OLEVEL] [FILE...] [EXPRESSION]

'find' searches the directory tree rooted at each file name FILE by

evaluating the EXPRESSION on each file it finds in the tree.

The command line may begin with the '-H', '-L', '-P', '-D' and '-O'

options. These are followed by a list of files or directories that

should be searched. If no files to search are specified, the current

directory ('.') is used.

This list of files to search is followed by a list of expressions

describing the files we wish to search for. The first part of the

expression is recognised by the fact that it begins with '-' followed by

some other letters (for example '-print'), or is either '(' or '!'. Any

arguments after it are the rest of the expression.

If no expression is given, the expression '-print' is used.

--zz-Info: (find.info.gz)Invoking find, 44 lines --Top-------------------------

Welcome to Info version 5.2. Type h for help, m for menu item.

While info is much better at enabling complex help files with navigation I am not a
fan because I tend not to hold all the keystrokes in my head. The biggest thing to
remember if you do something like info find is that q quits the info command.

Finally, what if you don’t know the name of the command? Well, each ”man page” has
a title and brief description, e.g., ”passwd - change user password” in the man passwd

output above. The apropos command can simply search those titles and descriptions
for a word or phrase and show you all the results:

Figure 9.5: apropos command

~ $ apropos edit

atobm (1) - bitmap editor and converter utilities for the X Window...

bitmap (1) - bitmap editor and converter utilities for the X Window...

bmtoa (1) - bitmap editor and converter utilities for the X Window...

cinnamon-menu-editor (1) - Editor for the panel menu

desktop-file-edit (1) - Installation and edition of desktop files

desktop-file-install (1) - Installation and edition of desktop files

ed (1) - line-oriented text editor

edit (1) - execute programs via entries in the mailcap file

147



TEN STEPS TO LINUX SURVIVAL

editdiff (1) - fix offsets and counts of a hand-edited diff

editkeep (8) - frontend for deborphan

editor (1) - Nano's ANOther editor, an enhanced free Pico clone

editres (1) - a dynamic resource editor for X Toolkit applications

elfedit (1) - Update the ELF header of ELF files.

ex (1) - Vi IMproved, a programmers text editor

fix-qdf (1) - repair PDF files in QDF form after editing

gedit (1) - text editor for the GNOME Desktop

gnome-desktop-item-edit (1) - tool to edit .desktop file

gnome-text-editor (1) - text editor for the GNOME Desktop

Gnome2::DateEdit (3pm) - wrapper for GnomeDateEdit

grub-editenv (1) - edit GRUB environment block

jfs_debugfs (8) - shell-type JFS file system editor

mintsources (1) - Software Sources List editor

...and so on...

Note the man section numbers after each command name. Also note that apropos is not
sophisticated - it is simply searching for the exact string you give it in the very limited
”brief descriptions” from the man pages. That’s all. But a lot of time that’s all you need
to remember, ”Ah, yes, nano is the other editor I was thinking about and like better than
vi.”

Note: man, info and apropos are just normal ”UNIX” commands like all the others, so
while they may default to displaying with a paginator on an interactive terminal, you
can run their output through other commands, just like any other. For example, maybe
we remember only that the command had something with ”edit” and was a system
administration (”section 8”) command:

Figure 9.6: Refining output from apropos

~ $ apropos edit | grep "(8)"

editkeep (8) - frontend for deborphan

jfs_debugfs (8) - shell-type JFS file system editor

pdbedit (8) - manage the SAM database (Database of Samba Users)

samba-regedit (8) - ncurses based tool to manage the Samba registry

sudoedit (8) - execute a command as another user

vigr (8) - edit the password, group, shadow-password or shadow-gr...

vipw (8) - edit the password, group, shadow-password or shadow-gr...

visudo (8) - edit the sudoers file

Or maybe you can’t remember whether it’s -r, -R or --recursive to copy subdirectories

148



STEP 9. HOW DO YOU KNOW WHAT YOU DON’T KNOW, MAN?

recursively with cp:

Figure 9.7: Looking for specific parameter names in a man page

$ man cp | grep -i "recurs"

copy contents of special files when recursive

-R, -r, --recursive

copy directories recursively

What do you know, it can be any of the three.

And yes, you can man man, man info, info info and info man, for that matter!

How Do You Google, man?

You can often search the internet for ”UNIX” documentation, and the man pages have
long been online. A site I like (and link to a lot here) is http://linux.die.net/man/. Often,
though, you can just google ”man ls”6 and the top hits will be what you want.

However, there are times you need to be careful. Searching the internet for either man
touch or man tail, for example, will probably not give you the results you seek and may
set off filters at work, so be careful out there and remember to bookmark a couple of
actual man page sites so that you can go there directly and look up a command.

Books and Stuff

There are several consistently high-quality free sources of information on various parts
of Linux and related systems on the internet.

• The Linux Documentation Project (LDP)7 - has fallen a bit behind over the
years, but still has two of the best bash scripting books out there, Bash Guide for
Beginners8 and Advanced Bash-Scripting Guide9. I continue to use the latter all
the time.

6https://www.google.com/#q=man+ls
7http://www.tldp.org/guides.html
8http://www.tldp.org/LDP/Bash-Beginners-Guide/html/index.html
9http://www.tldp.org/LDP/abs/html/index.html

149

http://linux.die.net/man/
https://www.google.com/#q=man+ls
http://www.tldp.org/guides.html
http://www.tldp.org/LDP/Bash-Beginners-Guide/html/index.html
http://www.tldp.org/LDP/abs/html/index.html


TEN STEPS TO LINUX SURVIVAL

• Arch Linux Wiki10 - you may not think this would be useful if you are running
Debian or Fedora or something else, but remember most ”UNIX” systems are all
very similar, and often the best documentation on a package or setting something
up in Linux is in the Arch wiki.

• Debian documentation11 - again, even if you are not running a Debian-based
distro, this can be handy because it describes how to administer Linux in a
way that often transcends distro specifics (and at least explains how Debian ap-
proaches the differences). The best books in the series are The Debian Admin-
istrator’s Handbook12 and the Debian Reference13, which is a lot more formal
attempt at the same type of territory this guide covers.

Ubuntu, Mint and some other distros have quite active message fora, and of course
StackOverflow and its family are also very useful.

Besides the above, if you are dealing with a package that is not part of the ”core”
OS, such as Samba14 for setting up CIFS shares on Linux, you should always look at
the package site’s documentation15 as well as any specific info you can find about the
distro you are running.

10https://wiki.archlinux.org/
11https://www.debian.org/doc/
12https://www.debian.org/doc/manuals/debian-handbook/
13https://www.debian.org/doc/manuals/debian-reference/
14https://www.samba.org/samba/
15https://www.samba.org/samba/docs/

150

https://wiki.archlinux.org/
https://www.debian.org/doc/
https://www.debian.org/doc/manuals/debian-handbook/
https://www.debian.org/doc/manuals/debian-reference/
https://www.samba.org/samba/
https://www.samba.org/samba/docs/


Step 10

And So On

/etc, starting and stopping services, apt-get/rpm/yum, and more.

”Et cetera, et cetera, et cetera!” - The King (The King and I)

This step is a grab bag of stuff that didn’t seem to directly belong anywhere else, but
I still think needs to be known, or at least brushed up against.

One-Stop Shopping

In UNIX-like systems, most (not all) system configuration is stored in directories and
text files under /etc.

Note: In Linux /etc is almost universally pronounced ”slash-et-see,”not ”forward slash
et cetera.”

Figure 10.1: /etc directory

~ $ ls /etc

acpi hosts pki

adduser.conf hosts.allow pm

adjtime hosts.deny pnm2ppa.conf

alternatives hp polkit-1

anacrontab icedtea-web ppp

151



TEN STEPS TO LINUX SURVIVAL

apg.conf ifplugd printcap

apm ImageMagick profile

apparmor init profile.d

apparmor.d init.d protocols

apport initramfs-tools pulse

apt inputrc purple

at-spi2 insserv python

avahi insserv.conf python2.7

bash.bashrc insserv.conf.d python3

bash_completion inxi.conf python3.4

bash_completion.d iproute2 rc0.d

bindresvport.blacklist issue rc1.d

blkid.conf issue.dpkg-old rc2.d

blkid.tab issue.net rc3.d

bluetooth issue.net.dpkg-old rc4.d

bonobo-activation java-7-openjdk rc5.d

brlapi.key kbd rc6.d

...and so on...

Depending on what you are trying to configure, you may need to be in one or many
files in /etc. This is a very short list of files and directories you may need to examine
there:

• fstab - a listing of the file systems currently mounted and their types.

• group - the security groups on the system.

• hosts - network aliases (overrides DNS, takes effect immediately).

• init.d - startup and shutdown scripts for ”services.”

• mtab - list of current ”mounts.”

• passwd - ”shadow” file containing all the user accounts on the system.

• resolv.conf - DNS settings.

• samba - file sharing settings for CIFS-style shares.

There are lots of other interesting files under /etc, but I keep returning to the above
again and again. On most of them you can run the man command against section 5 to
see their format and documentation, e.g., man 5 hosts.

152



STEP 10. AND SO ON

Service Station

We are going to ignore system initialization and ”stages,” and assume most of the time
you are running on a well-functioning system. Even so sometimes you want to restart
a specific system service without rebooting the whole system, often to force re-reading
changed configuration files. First check if the service has a script in /etc/init.d:

Figure 10.2: init.d directory

~ $ ls /etc/init.d

acpid dbus ondemand single

anacron dns-clean pppd-dns skeleton

apparmor friendly-recovery procps smbd

avahi-daemon grub-common pulseaudio speech-dispatcher

binfmt-support halt rc sudo

bluetooth hddtemp rc.local udev

brltty irqbalance rcS umountfs

casper kerneloops README umountnfs.sh

cinnamon killprocs reboot umountroot

console-setup kmod resolvconf unattended-upgrades

cpufrequtils lm-sensors rsync urandom

cron loadcpufreq rsyslog virtualbox-guest-utils

cryptdisks mdm samba virtualbox-guest-x11

cryptdisks-early mintsystem samba-ad-dc x11-common

cups networking saned

cups-browsed nmbd sendsigs

If so, then chances are it will respond to a fairly standard set of commands, such as
the following samples with samba:

Figure 10.3: Stopping and starting services

~ # /etc/init.d/samba stop

[ ok ] Stopping Samba daemons: nmbd smbd.

~ # /etc/init.d/samba start

[ ok ] Starting Samba daemons: nmbd smbd.

~ # /etc/init.d/samba restart

[ ok ] Stopping Samba daemons: nmbd smbd.

[ ok ] Starting Samba daemons: nmbd smbd.

153



TEN STEPS TO LINUX SURVIVAL

Note: The above examples were run as root, otherwise they would probably have
required execution using sudo.

Package Management

Almost all Linux distros have the concept of ”packages” which are used to install, up-
date and uninstall software. There are different package managers, including dpkg and
apt-get on Debian-based distros, rpm on Fedora descendants, etc. For the rest of this
section we will use Debian tools, but in general the concepts and problems are similar
for the other toolsets.

One of the nicest things about Linux-style package managers (as opposed to traditional
Windows installers) is that they can satisfy all a packages ”dependencies” (other pack-
ages that are required for a package to run) and automatically detect and install those,
too. See Chocolately1 for an attempt to build a similar ecosystem in Windows.

One thing Linux distros do is define the ”repositories” (servers and file structures)
that serve the various packages. In addition, there are usually multiple versions of
packages, typically matching different releases of the distro. We won’t go into setting
up a system to point to these here.

In Debian flavors, apt-get2 is usually the tool of choice for package management. An-
other option is aptitude3.

There are three common apt-get commands that get used over and over. The first
downloads and updates the local metadata cache for the repositories:

Figure 10.4: apt-get update

~ $ sudo apt-get update

[sudo] password for myuser:

Ign http://packages.linuxmint.com rafaela InRelease

Ign http://extra.linuxmint.com rafaela InRelease

Hit http://extra.linuxmint.com rafaela Release.gpg

Hit http://packages.linuxmint.com rafaela Release.gpg

Hit http://security.ubuntu.com trusty-security InRelease

Hit http://extra.linuxmint.com rafaela Release

Hit http://packages.linuxmint.com rafaela Release

1https://chocolatey.org/
2http://linux.die.net/man/8/apt-get
3http://linux.die.net/man/8/aptitude

154

https://chocolatey.org/
http://linux.die.net/man/8/apt-get
http://linux.die.net/man/8/aptitude


STEP 10. AND SO ON

Hit http://security.ubuntu.com trusty-security/main amd64 Packages

Hit http://packages.linuxmint.com rafaela/main amd64 Packages

Hit http://extra.linuxmint.com rafaela/main amd64 Packages

Hit http://security.ubuntu.com trusty-security/restricted amd64 Packages

Hit http://extra.linuxmint.com rafaela/main i386 Packages

Hit http://packages.linuxmint.com rafaela/upstream amd64 Packages

Ign http://archive.canonical.com trusty InRelease

Ign http://archive.ubuntu.com trusty InRelease

Hit http://security.ubuntu.com trusty-security/universe amd64 Packages

Hit http://packages.linuxmint.com rafaela/import amd64 Packages

Hit http://security.ubuntu.com trusty-security/multiverse amd64 Packages

Hit http://packages.linuxmint.com rafaela/main i386 Packages

Hit http://archive.canonical.com trusty Release.gpg

Hit http://archive.ubuntu.com trusty-updates InRelease

...and so on...

Note: apt-get is an administrative command and usually requires sudo.

The second common command upgrades all the packages in the system to the latest
release in the repository (which may not be the latest and greatest release of the pack-
age):

Figure 10.5: Upgrading installed packages

~ $ sudo apt-get dist-upgrade

Reading package lists... Done

Building dependency tree

Reading state information... Done

Calculating upgrade... Done

0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

In this case there was nothing to upgrade.

Note: In the example above I used apt-get dist-upgrade. There is also an apt-get upgrade

command. apt-get dist-upgrade will resolve any new dependencies and download new
packages if needed, but it may also remove packages it considers no longer
needed. apt-get upgrade simply performs an in-place upgrade of already-installed pack-
ages and in no case will install new or remove unneeded packages. Which is appropri-
ate for you will depend on your circumstances. You can use the --simulate parameter
with either to have apt-get show you what it would do without actually doing it.

And the final common command is obviously to install a package:

155



TEN STEPS TO LINUX SURVIVAL

Figure 10.6: Installing a package

~ $ sudo apt-get install traceroute

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following NEW packages will be installed:

traceroute

0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.

Need to get 0 B/45.0 kB of archives.

After this operation, 176 kB of additional disk space will be used.

Selecting previously unselected package traceroute.

(Reading database ... 307895 files and directories currently installed.)

Preparing to unpack .../traceroute_1%3a2.0.20-0ubuntu0.1_amd64.deb ...

Unpacking traceroute (1:2.0.20-0ubuntu0.1) ...

Processing triggers for man-db (2.6.7.1-1ubuntu1) ...

Setting up traceroute (1:2.0.20-0ubuntu0.1) ...

update-alternatives: using /usr/bin/traceroute.db to provide /usr/bin/traceroute

(traceroute) in auto mode

update-alternatives: using /usr/bin/lft.db to provide /usr/bin/lft (lft) in auto

mode

update-alternatives: using /usr/bin/traceproto.db to provide /usr/bin/traceproto

(traceproto) in auto mode

update-alternatives: using /usr/sbin/tcptraceroute.db to provide /usr/sbin/tcptr

aceroute (tcptraceroute) in auto mode

You can also apt-get remove or apt-get purge packages. See the apt-get man page for
details.

This all looks very convenient, and it is. The problems arise because some distros are
better at tracking current versions of packages in their repositories than others. In
fact, some distros purposefully stay behind cutting edge for system stability purposes.
Debian itself is a good example of this, as are many ”LTS” (long term support) releases
in other distros.

Other Sources

Besides the distribution’s repositories, you can install packages and other software
from a variety of places. It may be an ”official” site for the package, GitHub, a ”personal

156



STEP 10. AND SO ON

package archive” (PPA) or whatever. The package may be in a binary installable format
(.deb files for Debian systems), in source format requiring it to be built, in a zipped
”tarball,” and more.

If you want the latest and greatest version of a package you often have to go to its
”official” site or GitHub repository. There, you may find a .deb file, in which case you
could install it with dpkg:

Figure 10.7: Installing a package with dpkg

sudo dpkg -i somesoftware.deb

There is, however, a problem. You now have to remember that you installed that pack-
age by hand and keep it up to date by hand (or not). apt-get upgrade isn’t going to
help you here. This is true no matter what way you get the alternative package - .deb
file, tarball, source code, or whatever (although apt-get can work with PPAs in a more
automated manner).

The second problem with third-party package sources is how do you know whether to
trust them or not? If something is in an ”official” distro repository, chances are it has
been vetted to a certain degree. But otherwise, it is caveat administrator.

The final problem with package managers is that they’re such a good idea that every-
thing has them now. Not just the operating systems like Linux, but languages like
Python have pip4 and execution environments like node have npm5. So now you end up
with having to keep track of what you have installed on a system across two or three
or more package managers at different levels of abstraction. It can be a mess!

Add into this that many of these language and environment package managers allow
setting up ”global” (system-wide) or ”local” (current directory) versions of a package
to allow different versions of the same package to exist on the same system, where
different applications may be relying on the different versions to work. Do you keep
good notes? You’d better!

Which which is Which?

Now that we’ve seen that we can have multiple versions of the same command or
executable on the system, an interesting question arises. Which foo command am I
going to call if I just type foo at the command prompt? In other words, after taking the
4https://pypi.python.org/pypi/pip/
5https://www.npmjs.com/

157

https://pypi.python.org/pypi/pip/
https://www.npmjs.com/


TEN STEPS TO LINUX SURVIVAL

$PATH variable into consideration and searching for the program through that from left
to right, which version in which directory is going to be called?

Luckily we have the which6 command for just that!

Figure 10.8: which command

~ $ which curl

/usr/bin/curl

How can you tell if you have multiple versions of something installed? One way is with
the locate7 command:

Figure 10.9: locate command

~ $ locate md5

/boot/grub/i386-pc/gcry_md5.mod

/lib/modules/3.16.0-38-generic/kernel/drivers/usb/gadget/amd5536udc.ko

/usr/bin/md5pass

/usr/bin/md5sum

/usr/bin/md5sum.textutils

/usr/include/libavutil/md5.h

/usr/include/openssl/md5.h

/usr/lib/casper/casper-md5check

/usr/lib/grub/i386-pc/gcry_md5.mod

/usr/lib/i386-linux-gnu/sasl2/libcrammd5.so

/usr/lib/i386-linux-gnu/sasl2/libcrammd5.so.2

/usr/lib/i386-linux-gnu/sasl2/libcrammd5.so.2.0.25

/usr/lib/i386-linux-gnu/sasl2/libdigestmd5.so

/usr/lib/i386-linux-gnu/sasl2/libdigestmd5.so.2

/usr/lib/i386-linux-gnu/sasl2/libdigestmd5.so.2.0.25

/usr/lib/python2.7/md5.py

/usr/lib/python2.7/md5.pyc

/usr/lib/ruby/1.9.1/x86_64-linux/digest/md5.so

/usr/lib/x86_64-linux-gnu/sasl2/libcrammd5.so

/usr/lib/x86_64-linux-gnu/sasl2/libcrammd5.so.2

/usr/lib/x86_64-linux-gnu/sasl2/libcrammd5.so.2.0.25

6http://linux.die.net/man/1/which
7http://linux.die.net/man/1/locate

158

http://linux.die.net/man/1/which
http://linux.die.net/man/1/locate


STEP 10. AND SO ON

/usr/lib/x86_64-linux-gnu/sasl2/libdigestmd5.so

...and so on...

The locate command, if installed, is basically a database of all of the file names on the
system (collected periodically - not in real time). You are simply searching the database
for a pattern. It is a quicker way to look than find / -name \*pattern*\.

One final note on which thing gets executed. Unlike in Windows, ”UNIX” environments
do not consider the local directory (the current directory you are sitting at the com-
mand prompt, i.e., what pwd8 shows) as part of the path unless . is explicitly listed in
$PATH (and that is typically a bad idea). This is for security purposes. So it can be a bit
unnerving to try and execute foo in the current directory and get:

Figure 10.10: Command not found - but it’s right there!

~ $ ls -l foo

-rwxrwx--- 1 myuser mygroup 16 Oct 23 19:03 foo

~ $ foo

No command 'foo' found, did you mean:

Command 'fgo' from package 'fgo' (universe)

Command 'fop' from package 'fop' (main)

Command 'fog' from package 'ruby-fog' (universe)

Command 'fox' from package 'objcryst-fox' (universe)

Command 'fio' from package 'fio' (universe)

Command 'zoo' from package 'zoo' (universe)

Command 'xoo' from package 'xoo' (universe)

Command 'goo' from package 'goo' (universe)

foo: command not found

Instead, to invoke foo, you can either fully qualify the path as shown by pwd:

Figure 10.11: Using a fully qualified path to execute a command

~ $ /home/myuser/foo

Or you can prepend the ./ relative path to it, to indicate ”the foo in the current directory
(.)”:

8http://linux.die.net/man/1/pwd

159

http://linux.die.net/man/1/pwd


TEN STEPS TO LINUX SURVIVAL

Figure 10.12: Specifying the command in the current directory

~ $ ./foo

Over and Over and Over

The function of scheduled tasks in Windows is performed by cron9 in Linux. It reads in
the various crontab(5)10 files on the system and executes the commands in them at the
specified times. You use the crontab(1)11 command to view and edit the crontab files for
your user (and other users if you have admin privileges).

The sample given in the comments of the crontab when initially opened using crontab

-e give a fine example of the syntax of the crontab file:

Figure 10.13: Looking at default crontab file

# Edit this file to introduce tasks to be run by cron.

#

# Each task to run has to be defined through a single line

# indicating with different fields when the task will be run

# and what command to run for the task

#

# To define the time you can provide concrete values for

# minute (m), hour (h), day of month (dom), month (mon),

# and day of week (dow) or use '*' in these fields (for 'any').#

# Notice that tasks will be started based on the cron's system

# daemon's notion of time and timezones.

#

# Output of the crontab jobs (including errors) is sent through

# email to the user the crontab file belongs to (unless redirected).

#

# For example, you can run a backup of all your user accounts

# at 5 a.m every week with:

# 0 5 * * 1 tar -zcf /var/backups/home.tgz /home/

#

9http://linux.die.net/man/8/cron
10http://linux.die.net/man/5/crontab
11http://linux.die.net/man/1/crontab

160

http://linux.die.net/man/8/cron
http://linux.die.net/man/5/crontab
http://linux.die.net/man/1/crontab


STEP 10. AND SO ON

# For more information see the manual pages of crontab(5) and cron(8)

#

# m h dom mon dow command

If you have sudo privileges you can edit the crontab file for another user with:

Figure 10.14: Editing another user’s crontab file

$ sudo crontab -e -u otheruser

This can be useful to do things like run backup jobs as the user that is running the web
server, say, so it has access rights to all the necessary files to back up the web server
installation by definition.

The only other thing I have to add about cron is when it runs the commands from each
crontab, they are typically not invoked with that particular user’s environment settings,
so it is best to fully specify the paths to files both in the crontab file itself and in any
scripts or parameters to scripts it calls. Depending on the system and whether $PATH

is set at all when a ”cron job” runs, you may have to specify the full paths to binaries
in installed packages or even what you would consider ”system” libraries! The which

command comes in handy here for finding out where each command is installed.

Start Me Up

If you need to reboot the system the quickest way is with the reboot12 command:

Figure 10.15: reboot command

$ sudo reboot

You can also use the shutdown13 command with the -r option, but why? The handier use
for shutdown is to tell a system to halt and power off after shutting down:

Figure 10.16: Shutdown and power off

12http://linux.die.net/man/8/reboot
13http://linux.die.net/man/8/shutdown

161

http://linux.die.net/man/8/reboot
http://linux.die.net/man/8/shutdown


TEN STEPS TO LINUX SURVIVAL

$ sudo shutdown -h now

Turn on Your Signals

One of the basic concepts in UNIX program is that of ”signals”14. You are probably
already familiar with one way to send signals to a program, which is via Ctrl-C at the
command prompt, which sends the SIGINT (”interrupt”) signal to the program. Typically
this will cause a program to terminate.

However, most signals can be ”caught” by a program and coded around. There is one
”uninterruptable” signal, however - SIGKILL. We can send SIGKILL to a process and cause
it to terminate immediately with:

Figure 10.17: Terminating a process with extreme prejudice

kill -s 9 14302

The -s 9 is for signal #9, which is the SIGKILL signal (it is the tenth signal in the signal
list, which is 0-relative, hence #9).

You can also use the following ”shorthand” for SIGKILL:

Figure 10.18: Even shorter way to kill the process

kill -9 14302

Or if you want to get all verbose:

Figure 10.19: A more verbose killer

kill -s SIGKILL 14302

Note: SIGKILL should be used as a last resort, because a program is not allowed to
catch it or be notified of it and hence can perform no closing logic or cleanup and that
may lead to data corruption. It is for getting rid of ”hung” processes when nothing
else will work. Always try to stop a program with a more ”normal” method, which can
include sending SIGINT to it first.
14https://en.wikipedia.org/wiki/Unix_signal

162

https://en.wikipedia.org/wiki/Unix_signal


STEP 10. AND SO ON

Exit, Smiling

Sometimes a command runs and there isn’t a good way to tell if it worked or not.
”UNIX” programs are supposed to set an ”exit status” when they end that by convention
is 0 if the program exited successfully and a non-zero, (typically) positive number if
there was an error. The exit status for the last executed command or program can be
shown at the command line using the $? environment variable. Consider if the file foo

exists and bar does not:

Figure 10.20: Examining exit codes

~ $ ls foo

foo

~ $ echo $?

0

~ $ ls bar

ls: cannot access bar: No such file or directory

~ $ echo $?

2

Note: In many cases the exit codes come from the ANSI Standard C library’s errno.h

file15. All of this is much handier when handling errors in scripts, but we’re not going
to go into script logic here.

However, sometimes even at the command line we want to be able to conditionally
control a sequence of commands, and continue (or not) based on the success (or failure)
of a previous command. In bash we have && and || to the rescue!

• a && b - execute a and b, i.e., execute b only if a is successful.

• a || b - execute a or b, that is execute b whether or not a is successful.

Our example of file foo (which exists) and file bar (which does not) and the effect on
the exit code of ls can be illustrative here, too:

Figure 10.21: Using && to chain commands together

15http://mazack.org/unix/errno.php

163

http://mazack.org/unix/errno.php


TEN STEPS TO LINUX SURVIVAL

~ $ ls foo && ls bar

foo

ls: cannot access bar: No such file or directory

~ $ echo $?

2

Both ls commands execute because the first successfully found foo, but the second
emits its error and sets the exit code to 2 (failure).

Figure 10.22: Using || to execute the first and possibly the second command

~ $ ls foo || ls bar

foo

~ $ echo $?

0

Note in this case the ls bar command did not execute because the logical ”or” condi-
tion was already satisfied by the successful execution of the first ls. The exit code is
obviously 0 (success).

Figure 10.23: With && the second command won’t execute if the first fails

~ $ ls bar && ls foo

ls: cannot access bar: No such file or directory

~ $ echo $?

2

Obviously if the first command fails, the ”and” condition as a whole fails and the ex-
pression exits with a code of 2. And finally, while the first command failed the second
still can execute because of the ”or”, and the whole expression returns 0.

Figure 10.24: One more example with ||

~ $ ls bar || ls foo

ls: cannot access bar: No such file or directory

foo

~ $ echo $?

0

164



STEP 10. AND SO ON

Note: There is actually a true16 command whose purpose is to ”do nothing, success-
fully.” All it does is return a 0 (success) exit code. This can be useful in scripting and
also sometimes when building ”and” and ”or” clauses like above.

And yes, of course, that means there is also a false17 command to ”do nothing, unsuc-
cessfully!”

Figure 10.25: true and false commands

~ $ true

~ $ echo $?

0

~ $ false

~ $ echo $?

1

The End

Now you know what I know. Or at least what I keep loaded in my head vs. what I
simply search for when I need to know it, and you know how to do that searching, too.

Good luck, citizen!

16http://linux.die.net/man/1/true
17http://linux.die.net/man/1/false

165

http://linux.die.net/man/1/true
http://linux.die.net/man/1/false


TEN STEPS TO LINUX SURVIVAL

166



A

Appendices

”That rug really tied the room together, did it not?” - Walter Sobchak (The
Big Lebowski)

Cheat Sheet

This list outlines all the commands, files and other UNIX items of interest brought up
in this book. Use man or other methods outlined in the book to find more information
on them.

Environment Variables

• $?1 - the exit code for the last command or program executed.

• $HISTIGNORE2 - a colon-separated list of patterns to keep from being recorded in
the command history file.

• $PATH3 - the execution search path.

1http://linux.die.net/abs-guide/exit-status.html
2http://linux.die.net/man/1/sh
3http://linux.die.net/Bash-Beginners-Guide/sect_03_02.html

167

http://linux.die.net/abs-guide/exit-status.html
http://linux.die.net/man/1/sh
http://linux.die.net/Bash-Beginners-Guide/sect_03_02.html


TEN STEPS TO LINUX SURVIVAL

Conditional Execution

See ”logical operators”4.

• && - execute the second command only if the first command succeeds.

• || - execute the second command even if the first command fails.

Redirection

See ”I/O Redirection”5.

• stderr - file descriptor 2, always open for writing from a process, defaults to the
screen on a terminal session.

• stdin - file descriptor 0, always open for reading in a process, defaults to the
keyboard input on a terminal session.

• stdout - file descriptor 1, always open for writing from a process, defaults to the
screen on a terminal session.

• < - redirect a file to stdin.

• > - redirect stdout to a file.

• 2> - redirect stderr to a file.

• | - pipe stdout from one process into stdin in another process.

Special Files and Directories

• ~6 - shortcut for current user’s home directory.

• .bash_history - history of commands entered at the command prompt (also a nice
example of a hidden ”dotfile”).

4http://linux.die.net/abs-guide/ops.html
5http://linux.die.net/abs-guide/io-redirection.html
6http://linux.die.net/Bash-Beginners-Guide/sect_03_04.html

168

http://linux.die.net/abs-guide/ops.html
http://linux.die.net/abs-guide/io-redirection.html
http://linux.die.net/Bash-Beginners-Guide/sect_03_04.html


A. APPENDICES

System Directories

See Important System Directories7.

• /etc - configuration files location.

• /home - ”home” or user profile directories.

• /proc - system run-time information.

• /root - ”home” directory for ”root” user (system admin).

• /tmp - temporary files location.

• /var/log - log files location.

Commands

These are ”section 1” commands, i.e., normal user commands that typically don’t re-
quire any special privileges beyond permissions to access files and the like.

• 7z8 - compress and uncompress files and directories using the 7-zip algorithm.

• apropos9 - search for help on commands by pattern.

• awk10 - language for processing streams of data.

• bash11 - the Bourne-again shell.

• bzip212 - compress and uncompress files using the bzip2 algorithm.

• cat13 - concatenate the input files to stdout.

• cd14 - change the current directory.

• chgrp15 - change the primary group of a file or directory.
7http://linux.die.net/abs-guide/systemdirs.html
8http://linux.die.net/man/1/7z
9http://linux.die.net/man/1/apropos
10http://linux.die.net/man/1/awk
11http://linux.die.net/man/1/bash
12http://linux.die.net/man/1/bzip2
13http://linux.die.net/man/1/cat
14http://linux.die.net/man/1/cd
15http://linux.die.net/man/1/chgrp

169

http://linux.die.net/abs-guide/systemdirs.html
http://linux.die.net/man/1/7z
http://linux.die.net/man/1/apropos
http://linux.die.net/man/1/awk
http://linux.die.net/man/1/bash
http://linux.die.net/man/1/bzip2
http://linux.die.net/man/1/cat
http://linux.die.net/man/1/cd
http://linux.die.net/man/1/chgrp


TEN STEPS TO LINUX SURVIVAL

• chmod16 - change the permissions (mode bits) of a file or directory.

• chown17 - change the owner of a file or directory.

• cmake18 - configure makefiles.

• cp19 - copy files or directories.

• crontab20 - display or edit tasks to be run by cron.

• curl21 - download files from the internet.

• cut22 - remove (cut) sections from lines.

• df23 - show space utilization by file system.

• diff24 - show the differences between files.

• dig25 - look up DNS info on an address.

• dpkg26 - package manager for Debian flavors.

• du27 - estimate disk usage.

• echo28 - display passed parameters to stdout.

• emacs29 - great operating system, but it could use an editor.

• email30 - send email.

• false31 - do nothing, unsuccessfully.

• file32 - give best guess as to type of file.
16http://linux.die.net/man/1/chmod
17http://linux.die.net/man/1/chown
18http://linux.die.net/man/1/cmake
19http://linux.die.net/man/1/cp
20http://linux.die.net/man/1/crontab
21http://linux.die.net/man/1/curl
22http://linux.die.net/man/1/cut
23http://linux.die.net/man/1/df
24http://linux.die.net/man/1/diff
25http://linux.die.net/man/1/dig
26http://linux.die.net/man/1/dpkg
27http://linux.die.net/man/1/du
28http://linux.die.net/man/1/echo
29http://linux.die.net/man/1/emacs
30http://linux.die.net/man/1/email
31http://linux.die.net/man/1/false
32http://linux.die.net/man/1/file

170

http://linux.die.net/man/1/chmod
http://linux.die.net/man/1/chown
http://linux.die.net/man/1/cmake
http://linux.die.net/man/1/cp
http://linux.die.net/man/1/crontab
http://linux.die.net/man/1/curl
http://linux.die.net/man/1/cut
http://linux.die.net/man/1/df
http://linux.die.net/man/1/diff
http://linux.die.net/man/1/dig
http://linux.die.net/man/1/dpkg
http://linux.die.net/man/1/du
http://linux.die.net/man/1/echo
http://linux.die.net/man/1/emacs
http://linux.die.net/man/1/email
http://linux.die.net/man/1/false
http://linux.die.net/man/1/file


A. APPENDICES

• find33 - find files based on various conditions and execute actions against the
results.

• fmt34 - simple text formatter.

• grep35 - search for a pattern (regular expression) in files.

• gzip36 - compression program.

• help37 - help for built-in commands in bash.

• if38 - conditionally execute a program.

• info39 - an alternative for man, especially for GNU programs. Remember q quits.

• latex40 - process LaTeX document markup.

• less41 - display the file one page at a time on stdout.

• ln42 - create hard or soft (shortcut) links.

• locate43 - locate files by name.

• ls44 - list directory contents.

• lynx45 - command line web browser.

• make46 - run programs according to ”recipes” in makefiles.

• man47 - display manual pages. Remember q quits.

• mkdir48 - make a new directory.

33http://linux.die.net/man/1/find
34http://linux.die.net/man/1/fmt
35http://linux.die.net/man/1/grep
36http://linux.die.net/man/1/gzip
37http://linux.die.net/man/1/help
38http://linux.die.net/man/1/if
39http://linux.die.net/man/1/info
40http://linux.die.net/man/1/latex
41http://linux.die.net/man/1/less
42http://linux.die.net/man/1/ln
43http://linux.die.net/man/1/locate
44http://linux.die.net/man/1/ls
45http://linux.die.net/man/1/lynx
46http://linux.die.net/man/1/make
47http://linux.die.net/man/1/man
48http://linux.die.net/man/1/mkdir

171

http://linux.die.net/man/1/find
http://linux.die.net/man/1/fmt
http://linux.die.net/man/1/grep
http://linux.die.net/man/1/gzip
http://linux.die.net/man/1/help
http://linux.die.net/man/1/if
http://linux.die.net/man/1/info
http://linux.die.net/man/1/latex
http://linux.die.net/man/1/less
http://linux.die.net/man/1/ln
http://linux.die.net/man/1/locate
http://linux.die.net/man/1/ls
http://linux.die.net/man/1/lynx
http://linux.die.net/man/1/make
http://linux.die.net/man/1/man
http://linux.die.net/man/1/mkdir


TEN STEPS TO LINUX SURVIVAL

• more49 - display the file one page at a time on stdout.

• mutt50 - email client.

• mv51 - move files or directories.

• nano52 - small, intuitive text editor.

• pandoc53 - markup converter. The primary tool used to create this book in multiple
formats including PDF, EPUB, HTML and Markdown.

• pdflatex54 - create PDF files.

• pico55 - small, intuitive text editor.

• pine56 - email client.

• ps57 - list running processes.

• pwd58 - print the current (working) directory name.

• rename59 - rename files in more complex ways than mv can.

• rm60 - delete (remove) files or directories.

• rsync61 - efficiently and securely ”mirror” directories between local and remote
locations.

• scp62 - file copy over secure shell protocol.

• sed63 - stream editor for editing from the command line.

• set64 - set an environment variable, or display all environment variables.

49http://linux.die.net/man/1/more
50http://linux.die.net/man/1/mutt
51http://linux.die.net/man/1/mv
52http://linux.die.net/man/1/nano
53http://pandoc.org/README.html
54http://linux.die.net/man/1/pdflatex
55http://linux.die.net/man/1/pico
56http://linux.die.net/man/1/pine
57http://linux.die.net/man/1/ps
58http://linux.die.net/man/1/pwd
59http://linux.die.net/man/1/rename
60http://linux.die.net/man/1/rm
61http://linux.die.net/man/1/rsync
62http://linux.die.net/man/1/scp
63http://linux.die.net/man/1/sed
64http://linux.die.net/man/1/set

172

http://linux.die.net/man/1/more
http://linux.die.net/man/1/mutt
http://linux.die.net/man/1/mv
http://linux.die.net/man/1/nano
http://pandoc.org/README.html
http://linux.die.net/man/1/pdflatex
http://linux.die.net/man/1/pico
http://linux.die.net/man/1/pine
http://linux.die.net/man/1/ps
http://linux.die.net/man/1/pwd
http://linux.die.net/man/1/rename
http://linux.die.net/man/1/rm
http://linux.die.net/man/1/rsync
http://linux.die.net/man/1/scp
http://linux.die.net/man/1/sed
http://linux.die.net/man/1/set


A. APPENDICES

• smbclient65 - copy files to and from Windows using the SMB/CIFS (Windows file
share) protocol.

• sort66 - sort stdin or a file to stdout.

• ssh67 - secure shell terminal progam and protocol.

• tail68 - display the last lines of a file.

• tar69 - ”tape archive”, a way to combine directories into a single flat file.

• tee70 - write to a file and stdout at the same time.

• telnet71 - ancient terminal program and protocol.

• top72 - list processes by resource utilization (CPU).

• touch73 - create an empty file or change the last-modified time of an existing file.

• tr74 - translate (map, convert) characters.

• true75 - do nothing, successfully.

• uname76 - print system info.

• unzip77 - uncompress .zip files.

• vi78 - ”visual” editor, a file editor.

• view79 - read-only version of vim.

• vim80 - vi Improved, another implementation of vi allowing more customization.

65http://linux.die.net/man/1/smbclient
66http://linux.die.net/man/1/sort
67http://linux.die.net/man/1/ssh
68http://linux.die.net/man/1/tail
69http://linux.die.net/man/1/tar
70http://linux.die.net/man/1/tee
71http://linux.die.net/man/1/telnet
72http://linux.die.net/man/1/top
73http://linux.die.net/man/1/touch
74http://linux.die.net/man/1/tr
75http://linux.die.net/man/1/true
76http://linux.die.net/man/1/uname
77http://linux.die.net/man/1/unzip
78http://linux.die.net/man/1/vi
79http://linux.die.net/man/1/view
80http://linux.die.net/man/1/vim

173

http://linux.die.net/man/1/smbclient
http://linux.die.net/man/1/sort
http://linux.die.net/man/1/ssh
http://linux.die.net/man/1/tail
http://linux.die.net/man/1/tar
http://linux.die.net/man/1/tee
http://linux.die.net/man/1/telnet
http://linux.die.net/man/1/top
http://linux.die.net/man/1/touch
http://linux.die.net/man/1/tr
http://linux.die.net/man/1/true
http://linux.die.net/man/1/uname
http://linux.die.net/man/1/unzip
http://linux.die.net/man/1/vi
http://linux.die.net/man/1/view
http://linux.die.net/man/1/vim


TEN STEPS TO LINUX SURVIVAL

• wget81 - download files from the internet.

• which82 - determine the path of a program.

• while83 - perform a command multiple times.

• whoami84 - the answer to life’s most existential question.

• whois85 - look up DNS ownership info on an address.

• xfreerdp86 - RDP protocol client.

• zip87 - compress files and directories using the PKZip algorithm.

System Commands

Most of these are ”section 8” commands, and may require special privileges such as
sudo to run, depending on the system. Yes, some systems restrict the use of ping!

• apt-get88 - package manager for Debian flavors.

• aptitude89 - package manager for Debian flavors.

• cron90 - system for running ”scheduled tasks.”

• dmesg91 - display kernel log messages.

• ifconfig92 - display network (interface) configuration.

• kill93 - terminate a process.

• mount94 - mount a file system to a specific location.

81http://linux.die.net/man/1/wget
82http://linux.die.net/man/1/which
83http://linux.die.net/man/1/while
84http://linux.die.net/man/1/whoami
85http://linux.die.net/man/1/whois
86http://linux.die.net/man/1/xfreerdp
87http://linux.die.net/man/1/zip
88http://linux.die.net/man/8/apt-get
89http://linux.die.net/man/8/aptitude
90http://linux.die.net/man/8/cron
91http://linux.die.net/man/8/dmesg
92http://linux.die.net/man/8/ifconfig
93http://linux.die.net/man/1/kill
94http://linux.die.net/man/8/mount

174

http://linux.die.net/man/1/wget
http://linux.die.net/man/1/which
http://linux.die.net/man/1/while
http://linux.die.net/man/1/whoami
http://linux.die.net/man/1/whois
http://linux.die.net/man/1/xfreerdp
http://linux.die.net/man/1/zip
http://linux.die.net/man/8/apt-get
http://linux.die.net/man/8/aptitude
http://linux.die.net/man/8/cron
http://linux.die.net/man/8/dmesg
http://linux.die.net/man/8/ifconfig
http://linux.die.net/man/1/kill
http://linux.die.net/man/8/mount


A. APPENDICES

• pacman95 - package manager for Arch Linux. 96

• passwd97 - change password.

• ping98 - test for network connectivity to an IP address.

• reboot99 - restart the system.

• rpm100 - package manager for Fedora flavors.

• shutdown101 - shutdown or restart the system.

• sudo102 - execute a command with elevated privileges.

• traceroute103 - trace the route to an IP address.

• yum104 - package manager for CentOS, originally created for Yellow Dog Linux
(”Yellow dog Updater, Modified”).

Examples

The following are meant to be simple, mostly ”one-liner” type samples to reinforce
the concepts here and continue to show you ”the UNIX philosophy” of approaching
solutions in multiple small steps.

Keep It Simple, Stupid

Here’s a good example. During the debugging of this book I kept having problems with
internal links to other parts of the generated PDF not working. Some did, some didn’t.
And they all worked in epub and HTML outputs.

I had a suspicion it was because I was wrapping links from one line to the next in
Markdown (trying to keep below a certain column count), so I wanted to find all lines

95https://www.archlinux.org/pacman/pacman.8.html
96Not to be confused with the game. http://linux.die.net/man/1/pacman
97http://linux.die.net/man/1/passwd
98http://linux.die.net/man/8/ping
99http://linux.die.net/man/8/reboot
100http://linux.die.net/man/8/rpm
101http://linux.die.net/man/8/shutdown
102http://linux.die.net/man/8/sudo
103http://linux.die.net/man/8/traceroute
104https://www.centos.org/docs/4/html/yum/

175

https://www.archlinux.org/pacman/pacman.8.html
http://linux.die.net/man/1/pacman
http://linux.die.net/man/1/passwd
http://linux.die.net/man/8/ping
http://linux.die.net/man/8/reboot
http://linux.die.net/man/8/rpm
http://linux.die.net/man/8/shutdown
http://linux.die.net/man/8/sudo
http://linux.die.net/man/8/traceroute
https://www.centos.org/docs/4/html/yum/


TEN STEPS TO LINUX SURVIVAL

that had an opening square bracket but not a closing one, e.g., I wanted to catch the
first line in the following:

Figure A.1: Some Markdown

See [Important System

Directories.](http://linux.die.net/abs-guide/systemdirs.html)

Now you could spend a long time with regular expressions trying to figure out how to
do negative matching on that closing ]. Good luck!

Or you could do something as simple as this:

Figure A.2: Searching through the Markdown for mismatched brackets

$ grep '\[' *.md | grep -v ']'

Step01.md: (( expression )) if COMMANDS; then COMMANDS; [ elif C>

Step01.md: : kill [-s sigspec | -n signum | -sigs>

Step04.md:./FileCheckers/otschecker: [ $rc != 0 -a "$pdfinfo" != "Comma...

Step04.md:./FileCheckers/pdfpwdchecker: if [ $rc != 0 -a "$pdfinfo" = "C...

What makes this simple? Finding [ with the first grep and then simply piping it to a
second grep and inverting the match logic (-v) on ].

Chain Gangs

Remembering that && only executes the next command if the prior one is successful,
we can do things like set up a sample directory and (empty) files for playing around
with files and directories in one fell swoop:

Figure A.3: Make a bunch of files and directories at once

~ $ mkdir -p /tmp/foo/d && cd /tmp/foo && touch a b c d/e

~ $ ls

a b c d

176



A. APPENDICES

That is roughly equivalent to:

Figure A.4: Make a bunch of files the long way

~ $ cd /tmp

~ $ mkdir -p foo

~ $ cd foo

~ $ mkdir -p d

~ $ touch a b c d/e

~ $ ls

a b c d

Simple Scripts

I said I wasn’t going to cover scripting, especially logical constructs like if/fi. But
simple scripts that just ”do things” in a certain order are within scope, and the follow-
ing, which installs freerdp105, is a good example of simply taking the guesswork out
of doing something repetitive across multiple machines. I keep this installrdp script
in Dropbox so I can run it quickly and easily on any new machine I set up (once I get
Dropbox set up on the machine!)

Figure A.5: A simple install script

#!/bin/bash

sudo apt-get -y install git

cd ~

git clone git://github.com/FreeRDP/FreeRDP.git

cd FreeRDP

sudo apt-get -y install build-essential git-core cmake libssl-dev \

libx11-dev libxext-dev libxinerama-dev libxcursor-dev libxdamage-dev \

libxv-dev libxkbfile-dev libasound2-dev libcups2-dev libxml2 \

libxml2-dev libxrandr-dev libgstreamer0.10-dev \

libgstreamer-plugins-base0.10-dev libxi-dev \

libgstreamer-plugins-base1.0-dev libavutil-dev libavcodec-dev \

libcunit1-dev libdirectfb-dev xmlto doxygen libxtst-dev

cmake -DCMAKE_BUILD_TYPE=Debug -DWITH_SSE2=ON .

make

105https://github.com/freerdp/freerdp

177

https://github.com/freerdp/freerdp


TEN STEPS TO LINUX SURVIVAL

sudo make install

sudo echo "/usr/local/lib/freerdp" > /etc/ld.so.conf.d/freerdp.conf

sudo echo "/usr/local/lib64/freerdp" >> /etc/ld.so.conf.d/freerdp.conf

sudo echo "/usr/local/lib" >> /etc/ld.so.conf.d/freerdp.conf

sudo ldconfig

which xfreerdp

xfreerdp --version

You should be able to understand all of the above now, or know where to look to figure
it out. The only nuance we may not have covered is that at the shell prompt and in
scripts both you can put a \ at the end of a line and it will ”escape” the newline (\r)
so you can continue the same command on the next line. This is useful because some
interactive terminals don’t ”wrap” well, and it makes more readable script files, too.

And yes, in the section on package management I talked about the dangers of installing
packages directly from source. In this case, though, freerdp in the Mint repositories is
lagging far enough behind the new RDP protocol version 8 support that I want to use
the latest and greatest freerdp from GitHub for performance reasons. But now it’s up
to me to track and update the software (if I care).

178



C

Colophon

”I can’t come back, I don’t know how it works! Good-bye, folks!” - The
Wizard of Oz

This document was produced in the environments it discusses, including (with their
uname -rv1 results):

• Cygwin2 - 2.2.1(0.289/5/3) 2015-08-20 11:42

• Debian3 - 3.2.0-4-amd64 #1 SMP Debian 3.2.65-1+deb7u2

• FreeBSD4 - 7.3-RELEASE-p2 FreeBSD 7.3-RELEASE-p2 #0: Tue Nov 4 22:08:52 EST 2014

• Linux Mint5 - 3.16.0-38-generic #52~14.04.1-Ubuntu SMP Fri May 8 09:43:57 UTC

2015

I could have done something with my Raspberry Pi, too, but that would just be showing
off.

Written in pandoc-flavoredMarkdown6 using vi7 and Visual Studio Code8, among others.

1http://linux.die.net/man/1/uname
2https://cygwin.com/
3http://www.debian.org/
4http://www.freebsd.org/
5http://linuxmint.com/
6http://pandoc.org/README.html#pandocs-markdown
7http://linux.die.net/man/1/vi
8https://github.com/Microsoft/vscode

179

http://linux.die.net/man/1/uname
https://cygwin.com/
http://www.debian.org/
http://www.freebsd.org/
http://linuxmint.com/
http://pandoc.org/README.html#pandocs-markdown
http://linux.die.net/man/1/vi
https://github.com/Microsoft/vscode


TEN STEPS TO LINUX SURVIVAL

Output produced using pandoc9, TeX Live10, pdflatex11, make12, originally based on the
@evangoer’s pandoc ebook template13 but long since modified so don’t blame him.

Source code control is provided by git14. You can view the files used to create this
book15 on GitHub.

The fonts used are DejaVu16 Serif for the body text, DejaVu Sans for headers, and
Ubuntu Mono17 for code (because it is nicely condensed).

The cover photo is of our dog, Merv, who is reminding you, ”Don’t panic!” Photo by
Gloria Anderson, used with permission.

About the Author

Jim is son to Barb and Lou; husband to Leslie; father to Meghann (and Jeremy), Mor-
gann, Erin, Gloria and Jon; grandfather to Ryan, Lindsay, Logan and Hannah; and alpha
wolf to Merv. He has been ”in computers” since 1980. His hobbies include reading,
running, hiking, climbing and apparently writing books.

9http://pandoc.org/
10http://www.tug.org/texlive/
11http://linux.die.net/man/1/pdflatex
12http://linux.die.net/man/1/make
13https://github.com/evangoer/pandoc-ebook-template
14http://linux.die.net/man/1/git
15https://github.com/dullroar/ten-steps-to-linux-survival
16https://en.wikipedia.org/wiki/DejaVu_fonts
17https://en.wikipedia.org/wiki/Ubuntu_%28typeface%29

180

http://pandoc.org/
http://www.tug.org/texlive/
http://linux.die.net/man/1/pdflatex
http://linux.die.net/man/1/make
https://github.com/evangoer/pandoc-ebook-template
http://linux.die.net/man/1/git
https://github.com/dullroar/ten-steps-to-linux-survival
https://en.wikipedia.org/wiki/DejaVu_fonts
https://en.wikipedia.org/wiki/Ubuntu_%28typeface%29


Index

Symbols
! (vi invoke external command), 112
* (match zero or more characters), 85, 89
* (wildcard), 81
+ (match one or more characters), 89
.. (parent directory), 61
. (current directory), 61
/ (vi find forward), 105
/ (path separator), 38
/ (root directory), 44, 60, 73
2> (stderr redirection), 96, 168
; (command separator), 81
< (input redirection), 95, 168
>> (output redirection, appending), 97
> (output redirection), 95, 168
? (vi find backward), 105
? (exit status environment variable), 163,

167
? (match one character), 89
[A-Z] (match a character in range), 89
[n|y] (match one character or other), 89
#! (shebang), 31, 48
$ (vi jump to end of line), 104
$ (end of line), 89
% (format), 83
&& (logical and operator), 163, 168, 176
ˆ (beginning of line), 89
\ (escape character), 81
˜ (home directory), 60
|| (logical or operator), 163, 168
| (match zero or more characters), 89

| (pipe), 53, 98, 168
7z (compression command), 67, 169

A
AIX (operating system), 15, 22
apropos (documentation command), 143,

147, 169
apt-get (package management), 25, 48,

120, 154–157, 174
aptitude (package management), 154, 174
Arch (Linux distro), 25, 150
archive files (tar command), 46, 67, 173
ash (shell), 29
awk (scripting), 91, 169

B
bash (scripting), 123, 169
bash (shell), 18, 24, 30, 32, 48, 149
BSD (operating system), 15, 21, 22, 25, 26,

31, 62, 179
build by recipes (make command), 48, 171,

180
BusyBox (shell), 26
BusyBox (UNIX-like environment), 26
bzip2 (compression command), 67, 169

C
cat (text processing), 47, 51, 94, 169
cd (change directory command), 59, 60,

169
CentOS (Linux distro), 26, 175
chgrp (file permissions), 64, 169

181



TEN STEPS TO LINUX SURVIVAL

chmod (file permissions), 64, 170
chown (file permissions), 63, 170
cmake (configure makefiles command), 48,

170
CMD.EXE (shell), 19, 24, 29, 32, 39, 40,

59, 85, 94, 97, 118, 130
COMMAND.EXE (shell), 24
commands

7z (compression), 67, 169
apropos (documentation), 143, 147,

169
apt-get (package management), 25,

48, 120, 154–157, 174
aptitude (package management), 154,

174
awk (scripting), 91, 169
bash (scripting), 123, 169
bzip2 (compression), 67, 169
cat (text processing), 47, 51, 94, 169
cd (change directory), 59, 60, 169
chgrp (file permissions), 64, 169
chmod (file permissions), 64, 170
chown (file permissions), 63, 170
cmake (configure makefiles), 48, 170
cp (copy), 35, 55, 149, 170
cron (run scheduled jobs), 160, 174
crontab (edit scheduled jobs), 160,

170
curl (network), 123, 170
cut (text processing), 135, 170
df (display file system disk space), 73,

170
diff (show differences between files),

75, 170
dig (network), 118, 170
dmesg (display kernel log), 140, 174
dpkg (package management), 25, 154,

157, 170
du (disk use by directory), 73, 170
echo (text processing), 31, 34, 94, 170
emacs (editor), 101, 114, 170
email (network), 125, 170

false (scripting), 165, 170
file (detect file type), 50, 170
find (find files), 75, 79, 82, 90, 171
fmt (text processing), 112, 171
ftp (network), 124
git (distributed version control), 48,

77, 180
grep (search files), 85, 135, 171
gzip (compression), 67, 68, 171
help (documentation), 30, 171
if (scripting), 171, 177
ifconfig (network), 130, 174
info (documentation), 143, 146, 171
kill (terminate process), 134, 174
latex (text processing), 171, 180
less (text processing), 18, 48, 144,

171
ln (link), 69, 171
locate (locate files), 158, 171
ls (list directory contents), 44, 171
lynx (network), 122, 171
make (build by recipes), 48, 171, 180
man (documentation), 143, 144, 171
mkdir (make directory), 58, 61, 171
more (text processing), 48, 172
mount (mount file system), 74, 174
mutt (network), 125, 172
mv (move files), 55, 172
nano (editor), 114, 172
pacman (package management), 25,

175
pandoc (markup converter), 172, 180
passwd (change password), 145, 175
pdflatex (create PDF files), 172, 180
pico (editor), 114, 172
pine (network), 125, 172
ping (network), 117, 175
ps (list processes), 24, 36, 133, 172
PuTTY (network), 19
pwd (print working directory), 59, 74,

159, 172
reboot (reboot system), 161, 175

182



INDEX

rename (rename file), 55, 172
rm (remove file), 17, 46, 56, 72, 172
rpm (package management), 26, 154,

175
rsync (network), 129, 172
scp (network), 128, 172
sed (editor), 115, 172
set (set shell options), 32, 172
shutdown (shutdown or reboot system),

161, 175
smbclient (network), 124, 173
sort (text processing), 51, 112, 173
ssh (network), 18, 19, 38, 127, 173
sshd (network), 19
sudo (execute as another user), 120,

175
tail (text processing), 48, 173
tar (archive files), 46, 67, 173
tee (text processing), 99, 173
telnet (network), 126, 173
top (list processes by resource use),

135, 173
touch (change modified date or create

file), 57, 61, 173
tr (text processing), 98, 173
traceroute (network), 118, 175
true (scripting), 165, 173
uname (system info), 173, 179
unzip (compression), 66, 173
vi (editor), 17, 48, 94, 101, 173, 179
vi, see also vi Commands
view (editor), 104, 173
vim (editor), 101, 173
wget (network), 123, 174
which (find program), 158, 174
while (scripting), 98, 174
whoami (existential question), 37, 174
whois (network), 119, 174
xfreerdp (network), 48, 174, 177
yum (package management), 26, 175
zip (compression), 66, 174

compression

7z command, 67, 169
bzip2 command, 67, 169
gzip command, 67, 68, 171
.tgz files, 68
unzip command, 66, 173
zip command, 66, 174
.zip files, 66

configure makefiles (cmake command), 48,
170

cp (copy command), 35, 55, 149, 170
CP/M (operating system), 32, 37, 113
create PDF files (pdflatex command), 172,

180
cron (run scheduled jobs command), 160,

174
crontab (edit scheduled jobs command),

160, 170
crontab (file), 160
csh (shell), 18, 25, 30, 31
curl (network command), 123, 170
cut (text processing), 135, 170
Cygwin (UNIX-like environment), 19, 26,

38, 179

D
dash (shell), 30
Debian (Linux distro), 15, 25, 150, 179
df (display file system disk space com-

mand), 73, 170
diff (show differences between files com-

mand), 75, 170
dig (network command), 118, 170
distributed version control (git command),

48, 77, 180
dmesg (display kernel log command), 140,

174
documentation

Advanced Bash-Scripting Guide, 149
apropos command, 143, 147, 169
Arch wiki, 150
Bash Guide for Beginners, 149

183



TEN STEPS TO LINUX SURVIVAL

Debian Administrator’s Handbook,
150

Debian Reference, 150
help command, 30, 171
http://linux.die.net/man/, 149
http://unix.stackexchange.com/, 143
info command, 143, 146, 171
Linux Documentation Project, 149
man command, 143, 144, 171

DOS (operating system), 32
dpkg (package management), 25, 154, 157,

170
du (disk use by directory command), 73,

170

E
echo (text processing), 31, 34, 94, 170
editors

emacs, 101, 114, 170
nano, 114, 172
pico, 114, 172
sed, 115, 172
vi, 17, 48, 94, 101, 173, 179
view, 104, 173
vim, 101, 173

emacs (editor), 101, 114, 170
email (network command), 125, 170
environment variables

$? (exit status code), 163, 167
assigning, 35
displaying

echo command, 34
set command, 32

$HISTIGNORE (commands to ignore in
command history), 36, 167

$HOME (current user’s home directory),
34

$PATH (execution search path), 37, 38,
158, 161, 167

$PS1 (command prompt string), 18
syntax, 34
$USER (current user), 36

$USERNAME (current user), 37
existential question (whoami command), 37,

174

F
false (scripting), 165, 170
Fedora (Linux distro), 15, 26, 175
file (detect file type command), 50, 170
file permissions

chgrp, 64, 169
chmod, 64, 170
chown, 63, 170

files and directories
absolute path, 60
change directory (cd command), 59,

60, 169
change modified date or create file

(touch command), 57, 61, 173
compare files (diff command), 75
copy (cp command), 35, 55, 149, 170
current directory (.), 61
.deb package files, 25, 157
.rpm package files, 26
detect file type (file command), 50,

170
disk use by directory (du command),

73, 170
display (cat command), 47
display (tail command), 48
display file system disk space (df com-

mand), 73, 170
find files (find command), 75, 79, 82,

90, 171
hard links, 70, 74
hidden (dotfiles), 44
home (/home/), 169
home (˜), 59, 60, 168
inodes, 70
link (ln command), 69, 171
list directory contents (ls command),

44, 171

184



INDEX

locate files (locate command), 158,
171

make directory (mkdir command), 58,
61, 171

move files (mv command), 55, 172
paginate

less command, 18, 48, 144, 171
more command, 48, 172

parent directory (..), 61
permissions, 61

chgrp command, 64, 169
chmod command, 64, 170
chown command, 63, 170

print working directory (pwd com-
mand), 59, 74, 159, 172

redirection, 53
relative path, 60
remove file (rm command), 17, 46, 56,

72, 172
rename file (rename command), 55,

172
root (/), 44, 60, 73
root home (/root/), 169
search files (grep command), 85, 135,

171
show differences between files (diff

command), 75, 170
soft links, 69, 74
special

.bash_history, 40, 168
crontab, 160
/etc/, 151, 169
/etc/fstab, 152
/etc/group, 152
/etc/hosts, 131, 152
/etc/init.d/, 63, 152, 153
/etc/mtab, 152
/etc/passwd, 145, 152
/etc/resolv.conf, 131, 152
/etc/samba/, 152
/proc/, 136, 169
/tmp/, 141, 169

/var/log/, 139, 169
/var/log/dmesg, 48, 140
/var/log/messages, 140

.tar archive files, 68

.tgz archive files, 68

.zip files, 66
find (find files command), 75, 79, 82, 90,

171
find program (which command), 158, 174
fmt (text processing), 112, 171
FreeBSD (operating system), 15, 22, 25,

26, 31, 62, 179
ftp (network command), 124

G
Gentoo (Linux distro), 15, 26
git (distributed version control command),

48, 77, 180
GNU (UNIX-like environment), 23
grep (search files command), 85, 135, 171
gzip (compression command), 67, 68, 171

H
help (documentation command), 30, 171
HP-UX (operating system), 22
HP/UX (operating system), 15

I
I/O

redirection
error (2>), 96, 168
input (<), 95, 168
output (>), 95, 168
output, appending (>>), 97
pipe (|), 98, 168

streams
stderr, 93, 95, 96, 168
stdin, 93, 95, 98, 168, 173
stdout, 93–96, 98, 135, 168–173

if (scripting), 171, 177
ifconfig (network command), 130, 174
info (documentation command), 143, 146,

171

185



TEN STEPS TO LINUX SURVIVAL

IRIX (operating system), 22

K
kill (terminate process command), 134,

174
ksh (shell), 30
Kubuntu (Linux distro), 15

L
latex (text processing), 171, 180
less (text processing), 18, 48, 144, 171
Linux (operating system), 22, 25
Linux distros, 25

Arch, 25, 150
CentOS, 26, 175
Debian, 15, 25, 150, 179
Fedora, 15, 26, 175
Gentoo, 15, 26
Kubuntu, 15
Mint, 15, 25, 179
Raspbian, 15
Red Hat, 15, 26, 175
Red Hat Enterprise Linux (RHEL), 26
Slackware, 15, 26
Ubuntu, 15, 25
Xubuntu, 15
Yellow Dog, 15, 16, 175

ln (link command), 69, 171
locate (locate files command), 158, 171
ls (list directory contents command), 44,

171
lynx (network command), 122, 171

M
make (build by recipes command), 48, 171,

180
man (documentation command), 143, 144,

171
markup converter (pandoc command), 172,

180
MINIX (operating system), 22
Mint (Linux distro), 15, 25, 179

mkdir (make directory command), 58, 61,
171

more (text processing), 48, 172
mount (mount file system command), 74,

174
Multics (operating system), 21
mutt (network command), 125, 172
mv (move files command), 55, 172

N
nano (editor), 114, 172
NetBSD (operating system), 22, 25
network commands

curl, 123, 170
dig, 118, 170
email, 125, 170
ftp, 124
ifconfig, 130, 174
lynx, 122, 171
mutt, 125, 172
pine, 125, 172
ping, 117, 175
PuTTY, 19
rsync, 129, 172
scp, 128, 172
smbclient, 124, 173
ssh, 18, 19, 38, 127, 173
sshd, 19
telnet, 126, 173
traceroute, 118, 175
wget, 123, 174
whois, 119, 174
xfreerdp, 48, 174, 177

O
OpenBSD (operating system), 22, 25
operating systems

AIX, 15, 22
BSD, 15, 21, 22, 25, 26, 31, 62, 179
CP/M, 32, 37, 113
DOS, 32
FreeBSD, 15, 22, 25, 26, 31, 62, 179

186



INDEX

HP-UX, 22
HP/UX, 15
IRIX, 22
Linux, 22, 25
MINIX, 22
Multics, 21
NetBSD, 22, 25
OpenBSD, 22, 25
Solaris, 15, 22
SunOS, 15, 22
System V, 22
UNIX, 21
Windows, 23, 29, 44

P
package management

apt-get, 25, 48, 120, 154–157, 174
aptitude, 154, 174
dpkg, 25, 154, 157, 170
pacman, 25, 175
rpm, 26, 154, 175
yum, 26, 175

pacman (package management), 25, 175
pagination

less command, 18, 48, 144, 171
more command, 48, 172

pandoc (markup converter command), 172,
180

passwd (change password command), 145,
175

pdflatex (create PDF files command), 172,
180

pico (editor), 114, 172
pine (network command), 125, 172
ping (network command), 117, 175
POSIX (UNIX-like environment), 23
Powershell (shell), 29
ps (list processes command), 24, 36, 133,

172
PuTTY (network command), 19
pwd (print working directory command),

59, 74, 159, 172

R
Raspbian (Linux distro), 15
reboot (reboot system command), 161, 175
Red Hat (Linux distro), 15, 26, 175
Red Hat Enterprise Linux (RHEL) (Linux

distro), 26
regular expressions, 85, 86, 109

* (match zero or more characters), 89
+ (match one or more characters), 89
? (match one character), 89
[A-Z] (match a character in range), 89
[n|y] (match one character or other),

89
$ (end of line), 89
ˆ (beginning of line), 89
| (or), 89

rename (rename file command), 55, 172
rm (remove file command), 17, 46, 56, 72,

172
rpm (package management), 26, 154, 175
rsync (network command), 129, 172

S
scp (network command), 128, 172
scripting

awk, 91, 169
bash, 123, 169
false, 165, 170
if, 171, 177
true, 165, 173
while, 98, 174

sed (editor), 115, 172
set (set shell options command), 32, 172
set shell options (set command), 32, 172
sh (shell), 29
shells

ash, 29
bash, 18, 24, 30, 32, 48, 149
BusyBox, 26
CMD.EXE, 19, 24, 29, 32, 39, 40, 59,

85, 94, 97, 118, 130
COMMAND.EXE, 24

187



TEN STEPS TO LINUX SURVIVAL

csh, 18, 25, 30, 31
dash, 30
ksh, 30
Powershell, 29
sh, 29
zsh, 30

shutdown (shutdown or reboot system com-
mand), 161, 175

signals, 118, 134, 135, 162
Slackware (Linux distro), 15, 26
smbclient (network command), 124, 173
Solaris (operating system), 15, 22
sort (text processing), 51, 112, 173
sorting

sort command, 51
ssh (network command), 18, 19, 38, 127,

173
sshd (network command), 19
stderr (stream), 93, 95, 96, 168
stdin (stream), 93, 95, 98, 168, 173
stdout (stream), 93–96, 98, 135, 168–173
streams

stderr, 93, 95, 96, 168
stdin, 93, 95, 98, 168, 173
stdout, 93–96, 98, 135, 168–173

sudo (execute as another user command),
120, 175

SunOS (operating system), 15, 22
system commands

change password (passwd command),
145, 175

display kernel log (dmesg command),
140, 174

edit scheduled jobs (crontab com-
mand), 160, 170

execute as another user (sudo com-
mand), 120, 175

list processes (ps command), 24, 36,
133, 172

list processes by resource use (top
command), 135, 173

mount file system (mount command),

74, 174
reboot system (reboot command),

161, 175
run scheduled jobs (cron command),

160, 174
shutdown or reboot system (shutdown

command), 161, 175
system info (uname command), 173,

179
terminate process (kill command),

134, 174
System V (operating system), 22

T
tail (text processing), 48, 173
tar (archive files command), 46, 67, 173
tee (text processing), 99, 173
telnet (network command), 126, 173
text processing

cat, 47, 51, 94, 169
cut, 135, 170
echo, 31, 34, 94, 170
fmt, 112, 171
latex, 171, 180
less, 18, 48, 144, 171
more, 48, 172
sort, 51, 112, 173
tail, 48, 173
tee, 99, 173
tr, 98, 173

top (list processes by resource use com-
mand), 135, 173

touch (change modified date or create file
command), 57, 61, 173

tr (text processing), 98, 173
traceroute (network command), 118, 175
true (scripting), 165, 173

U
Ubuntu (Linux distro), 15, 25
uname (system info command), 173, 179
UNIX (operating system), 21

188



INDEX

UNIX-like environments
BusyBox, 26
Cygwin, 19, 26, 38, 179
GNU, 23
POSIX, 23

unzip (compression command), 66, 173

V
/var/log/dmesg (kernel log), 48, 140
/var/log/messages (general log), 140
vi (editor), 17, 48, 94, 101, 173, 179
vi commands

! (invoke external command), 112
' (reference a mark), 111
:0 (jump to beginning of file), 104
:q (quit without saving), 103
:q! (quit without saving (force)), 103
:s (change), 106
:w (write to disk), 103
:wq (write to disk and quit), 103
$ (jump to end of line), 104
/ (find forward), 105
? (find backward), 105
0 (jump to beginning of line), 102, 104
A (append at end of line), 105
b (jump back a word), 104
c (change), 103
cw (change word), 103
d (delete), 102
dd (delete entire line), 105
dw (delete word), 102
ESC (exit insert mode), 101
G (jump to end of file), 104
I (insert mode at beginning of line),

105
i (insert mode), 101, 102, 105
m (mark), 111
n (find next), 105
O (insert new line above current line),

105
o (insert new line under current line),

105

P (paste above current line), 106
p (paste after cursor), 106
r (replace character), 103
u (undo), 103, 104, 107
w (jump forward a word), 104
y (copy), 106

view (editor), 104, 173
vim (editor), 101, 173

W
wget (network command), 123, 174
which (find program command), 158, 174
while (scripting), 98, 174
whoami (existential question command), 37,

174
whois (network command), 119, 174
Windows (operating system), 23, 29, 44

X
xfreerdp (network command), 48, 174, 177
Xubuntu (Linux distro), 15

Y
Yellow Dog (Linux distro), 15, 16, 175
yum (package management), 26, 175

Z
zip (compression command), 66, 174
zsh (shell), 30

189


	List of Figures
	Introduction
	Batteries Not Included
	Please, Give (Suggestions) Generously
	Why?
	Caveat Administrator
	Conventions
	How to Get There from Here
	Acknowledgments

	Some History
	Why Does This Matter?
	Panic at the Distro
	Get Embed With Me
	Cygwin

	Come Out of Your Shell
	bash Built-Ins
	Everything You Know is (Almost) Wrong
	You're a Product of Your Environment (Variables)
	Who Am I?

	Paths (a Part of Any Balanced Shrubbery)
	Open Your Shell and Interact
	Getting Lazy

	File Under "Directories"
	Looking at Files
	A Brief Detour Around Parameters
	More Poking at Files
	Sorting Things Out
	Rearranging Deck Chairs
	Making Files Disappear
	touch Me
	Navigating Through Life
	May I?
	"I'll Send You a Tar Ball"
	Let's link Up!
	I Said "Go Away!", Dammit!
	mount It? I Don't Even Know It's Name!
	I'm Seeing Double

	What's the diff?

	Finding Meaning
	What's With the Backslashes?
	Useful find Options
	Useful find Actions

	Grokking grep
	Expressing Yourself Regularly
	Groveling With grep
	Gawking at awk

	“Just a Series of Pipes”
	All Magic is Redirection
	Everyone Line Up

	vi
	Command Me
	Undo Me
	Circumnavigating vi
	Insert Tab A Into Slot B
	Ctrl-X, Ctrl-C, Ctrl-V
	Change Machine
	"X" Marks the Spot
	Executing External Commands
	The Unseen World
	Let's Get Small
	Editing on the Command Line

	The Whole Wide World
	sudo Make Me a Sandwich
	Surfin' the Command Prompt
	It's Nice to Share
	You've Got Mail
	Let's Connect
	Network Configuration

	The Man Behind the Curtain
	All Part of the Process
	When All You Have is a Hammer
	Sawing Logs
	It's All Temporary

	How Do You Know What You Don’t Know, man?
	man, is that info apropos?
	How Do You Google, man?
	Books and Stuff

	And So On
	One-Stop Shopping
	Service Station
	Package Management
	Other Sources
	Which which is Which?
	Over and Over and Over
	Start Me Up
	Turn on Your Signals
	Exit, Smiling
	The End

	Appendices
	Cheat Sheet
	Environment Variables
	Conditional Execution
	Redirection
	Special Files and Directories
	System Directories
	Commands
	System Commands

	Examples
	Keep It Simple, Stupid
	Chain Gangs
	Simple Scripts


	Colophon
	About the Author

	Index

