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It is well-known that, after decades of non-interest in the theme, economics has experienced
a proper surge in inequality research in recent years. In addition to numerous research articles in
scientific journals, this has brought to us publications such as Thomas Piketty’s Capital in the 21st
Century and Tony Atkinson’s Inequality: What can be done?, which are highly visible in the public domain.
As in many other fields of the discipline, the analysis of inequality poses both interesting theoretical
and statistical problems. The present Special Issue of Econometrics is a collection of 15 excellent papers
that address some of these issues.

The articles range from purely methodological contributions on the measurement of inequality
to questions of statistical inference and to substantive empirical contributions in various fields of
empirical inequality research. Starting with contributions to the pure measurement of inequality,
“From the Classical Gini Index of Income Inequality to a New Zenga-Type Relative Measure
of Risk: A Modeller’s Perspective” by Francesca Greselin and Ricardas Zitikis provides a
fascinating theoretical treatment that unifies theoretical inequality indices and various measures
of risk. Further contributions to the pure theory of inequality measurement come from “On the
Decomposition of the Esteban and Ray Index by Income Sources” by Elena Barcena-Martin
and Jacques Silber and from “Decomposing the Bonferroni Inequality Index by Subgroups:
Shapley Value and Balance of Inequality” by Giovanni M. Giorgi and Alessio Guandalini.
Both contributions consider decomposability properties of inequality and polarization measurement
procedures, an important topic with a long tradition in the literature. The paper “Inequality and
Poverty When Effort Matters” by Martin Ravaillion tackles another long-standing question in the
inequality literature, namely the incorporation of income differences due to differential effort. One of
the many highlights of this Special Issue is the paper “Decomposing Wage Distributions Using
Recentered Influence Function Regressions” by Sergio P. Firpo, Nicole M. Fortin, and Thomas
Lemieux. This paper works out the so-called “hybrid” Re-centered Influence Function (RIEF-) regression
decomposition, which enjoys enormous popularity among applied researchers. The paper has already
received a lot of citations as a working paper and we hope that it continues to do so as a part of this
Special Issue.

An important part of the Special Issue deals with problems of statistical inference. As in
other fields, statistical inference is a necessity when carrying out inequality analyses. Unfortunately,
due to their usually complex and nonstandard nature, working out statistical inference procedures
for methods of inequality measurement is often challenging. The article “Statistical Inference
on the Canadian Middle Class” by Russell Davidson develops distribution-free methods for the
measurement of middle-income shares and applies them in order to measure the size of the Canadian
Middle Class. The paper “Parametric Inference for Index Functionals” by Stéphane Guerrier,
Samuel Orso, and Maria-Pia Victoria-Feser proposes an inference procedure for inequality index
functionals, based on a Generalized Method of Moment estimator for parametric data generating
mechanisms, and evaluates its finite sample performance. In their article “A Hybrid MCMC Sampler

Econometrics 2018, 6,42; doi:10.3390/econometrics6040042 1 www.mdpi.com/journal /econometrics



Econometrics 2018, 6,42

for Unconditional Quantile Based on Influence Function”, El Moctar Laghlal and Abdoul Aziz
Junior Ndoye develop a Bayesian estimation method for the unconditional RIF-regression that has
a superior performance in the presence of heavy-tailed distributions. “Using the GB2 Income
Distribution” by Duangkamon Chotikapanich, William E. Griffiths, Gholamreza Hajargasht,
Wasana Karunarathne, and D. S. Prasada Rao is a highly useful survey article on the estimation and
inference problems for the generalized beta distribution of the second kind (GB2). This distribution
enjoys high levels of popularity among inequality researchers due to its flexibility and good fit in
empirical applications.

The Special Issue contains two interesting papers on the popular topic of measuring top incomes.
Such top incomes have been known to be on the rise in many advanced countries, so much so
that adequate statistical estimation and inference procedures are of high interest. “Top Incomes,
Heavy Tails, and Rank-Size Regressions” by Christian Schluter studies rank-size regressions of
tail exponents. This method still represents the most popular estimation technique of this kind in
applied studies in economics. The author shows, both theoretically and empirically, based on UK
data, that the method may lead to size distortions that undermine statistical inference in practice.
Another study focusing on the very top of the distribution is “Incomes and Inequality Measurement:
A Comparative Analysis of Correction Methods Using the EU SILC Data” by Vladimir Hlasny and
Paolo Verme. Based on data for European countries, the paper provides an analysis of reweighting
and replacing methods to correct inequality measure for top-income biases generated by data issues
such as unit or item nonresponse. The authors show that income inequality may be substantially
underestimated if no correction techniques are used.

Finally, this Special Issue contains a number of substantive empirical studies in a wide range
of relevant settings. “Polarization and Rising Wage Inequality: Comparing the U.S. and Germany”
by Dirk Antonczyk, Thomas DeLeire, and Bernd Fitzenberger provides an in-depth analysis of
the differences in wage polarization trends in the US and Germany. The authors find that their
evidence is consistent with a technology-driven polarization of the labor market, but that there are
important country-specific factors, such as cohort effects. “The Wall’s Impact in the Occupied West
Bank: A Bayesian Approach to Poverty Dynamics Using Repeated Cross-Sections” by Tareq Sadeq
and Michel Lubrano applies a sophisticated Bayesian modelling strategy to investigate the effect
of the wall in occupied West Bank on poverty persistence for the affected population. The paper
“Income Inequality, Cohesiveness, and Commonality in the Euro Area: A Semi-Parametric
Boundary-Free Analysis” by Gordon Anderson, Maria Grazia Pittau, Roberto Zelli, and Jasmin
Thomas studies the question of income cohesiveness in the Euro area using an approach based on
mixture distributions. The authors conclude that the Eurozone is best described by a four-class,
increasingly unequal polarizing structure with income growth in all four classes. Finally, in “Foreign
Workers and the Wage Distribution: What Does the Influence Function Reveal?”, Chung Choe
and Philippe Van Kerm study the impact of Foreign Workers on Wage Distribution in Luxembourg.
The case of Luxembourg is particularly interesting because of its extremely high share of foreign
workers. The paper also makes a methodological contribution related to the RIF-methodology,
thus nicely connecting to other papers in the Special Issue.
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We are very grateful to all contributing authors, who have made considerable efforts to meet the
standards of the journal. We believe that this Special Issue has been very successful in attracting topical
and high-quality contributions, many from very well-known scholars in the field, proving that open
access-publishing is a realistic option for our discipline. We also would like to thank the numerous
reviewers who have greatly contributed to the quality of the published papers. Last but not least,
we thank the editor-in-chief, Marc Paolella, and the team of assistant editors, Vera Zhu, Lu Liao,
and Michele Cardani, for their excellent support.

® © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).
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Abstract: The underlying idea behind the construction of indices of economic inequality is based
on measuring deviations of various portions of low incomes from certain references or benchmarks,
which could be point measures like the population mean or median, or curves like the hypotenuse of
the right triangle into which every Lorenz curve falls. In this paper, we argue that, by appropriately
choosing population-based references (called societal references) and distributions of personal
positions (called gambles, which are random), we can meaningfully unify classical and contemporary
indices of economic inequality, and various measures of risk. To illustrate the herein proposed
approach, we put forward and explore a risk measure that takes into account the relativity of large
risks with respect to small ones.

Keywords: economic inequality; reference measure; personal gamble; inequality index; risk measure; relativity

JEL Classification: D63; D81; C46

1. Introduction

The Gini mean difference and its normalized version, known as the Gini index, have
aided decision makers since their introduction by Corrado Gini more than a hundred years ago
(Gini 1912, 1914, 1921); see also (Giorgi 1990, 1993, 1921); Ceriani and Verme 2012; and references
therein). In particular, the Gini index has been widely used by economists and sociologists to
measure economic inequality. Measures inspired by the index have been employed to assess the
equality of opportunity (e.g., Weymark 2003; Kovacevic 2010; Roemer 2013) and estimate income
mobility (e.g., Shorrocks 1978). Policymakers have used the Gini index in quantitative development
policy analysis (e.g., Sadoulet and de Janvry 1995) and in particular for assessing the impact of
carbon tax on income distribution (e.g., Oladosu and Rose 2007). The index has been employed
for analysing inequality in the use of natural resources (e.g., Thompson 1976) and for developing
informed policies for sustainable consumption and social justice (e.g., Druckman and Jackson 2008).
Various extensions and generalizations of the index have been used to evaluate social welfare programs
(e.g., Duclos 2000; Kenworthy and Pontusson 2005; Korpi and Palme 1998; Ostry et al. 2014) and
to improve the knowledge of tax-base and tax-rate effects, as well as of temporal repercussions of
distinct patterns of taxation and public finance on the society (e.g., Pfahler 1990; Slemrod 1992;
Yitzhaki 1994; Van De Ven et al. 2001). Furthermore, Denneberg (1990) has advocated the use of the
Gini mean difference as a safety loading for insurance premiums, with recent developments in the
area by Furman and Zitikis (2017), and Furman et al. (2017).

Naturally, a multitude of interpretations, mathematical expressions, and generalizations of the
index have manifested in the literature. As noted by Ceriani and Verme (2012), Corrado Gini
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himself proposed no less than thirteen formulations of his original index. Yitzhaki (1998, 2003),
and Yitzhaki and Schechtman (2013) have discussed a great variety of interpretations of the Gini
index. Many monographs and handbooks have been written on measuring economic inequality,
where the Gini index and its various extensions and generalizations have played prominent roles:
Amiel and Cowell (1999), Atkinson and Bourguignon (2000, 2015), Atkinson and Piketty (2007),
Banerjee and Duflo (2011), Champernowne and Cowell (1998), Cowell (2011), Kakwani (1980a),
Lambert (2001), Nygéard and Sandstrom (1981), Ostry et al. (2014), Piketty (2014), Sen (1997),
Silber (1999), Yitzhaki and Schechtman (2013), to name a few.

Given the diversity, one naturally wonders if there is one underlying thread that unifies all these
indices. The population Lorenz function, as well as its various distances from the hypotenuse of
the right triangle into which every Lorenz function falls, have traditionally provided such a thread.
However, recent developments in the area of measuring economic inequality (e.g., Palma 2006;
Zenga 2007; Greselin 2014; Gastwirth 2014; Kosny and Yalonetzky 2015) have highlighted the need
for departure from the population mean, which is inherent in the definition of the Lorenz function as
the benchmark, or reference point, for measuring economic inequality. The newly developed indices
have deviated from the aforementioned unifying thread and thus initiated a fresh rethinking of the
problem of measuring inequality.

Bennett and Zitikis (2015) ventured in this direction by suggesting a way to bridge the
Harsanyi (1953) and Rawls (1971) conceptual frameworks via a spectrum of random societal positions.
In this paper, we make a further step by developing a mathematically rigorous approach for unifying
and interpreting numerous classical and contemporary indices of economic inequality, as well as those
of risk. Briefly, the approach we have developed is based on appropriately chosen

1. societal references such as the population mean, median, or some population distribution-tail
based measures, and

2. distributions of random personal positions, or gambles, that determine person’s position on a
certain population-based function.

Certainly, the literature is permeated by discussions related to points 1 and 2. Relativity issues
have been explored in virtually every work, empirical and theoretical, due to the simple reason
that they are a fact of life (e.g., Amiel and Cowell 1997, 1999). Naturally, fundamental measures of
inequality, such as the Lorenz function, are also relative quantities, e.g., with respect to the population
mean income. For discussions of various choices of reference measures and inherent relativity issues,
we refer to, e.g., Sen (1983, 1998); Amiel and Cowell (1997, 1999); Zoli (1999, 2012); Duclos (2000);
and references therein. To illustrate the point, which will become pivotal in our following deliberations,
we recall a remark by Claudio Zoli, who wrote:

In particular, Amiel and Cowell (1997, 1999) find evidence that “the appropriate inequality
equivalence concept depends on the income levels at which inequality comparisons are
made.” Moreover, they show that, as income increases, the equivalence concept moves
from the relative attitude to the absolute one, a pattern consistent with our intuition
(Zoli 2012, p. 4).

This remark leads us towards the use of what we call relative-value functions, which, as we shall see
later in this paper, offer a flexible way for coupling fundamental measures of economic inequality,
or risk, with appropriate reference points, such as the mean (e.g., Equation (7) below). This is very
much in the spirit of Definition 3 by Cowell (2003). We shall come back to the latter work in the second
half of Section 4.

Finally, we note that the construction of distributions that govern personal random positions
on population-based functions have been explored within the dual or rank-dependent utility
theory (Quiggin 1982, 1993; Schmeidler 1986, 1989; Yaari 1987), other non-expected
utility theories (e.g., Puppe 1991; Machina 1987, 2008; and references therein), distortion
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risk measures (Wang 1995,1998), and weighted insurance premium calculation principles
(Furman and Zitikis 2008, 2009).

The rest of the paper is organized as follows. In Section 2, we revisit the classical Gini
index and, in particular, express it in two ways—absolute and relative—within the framework of
expected utility theory using appropriately chosen gambles and societal functions (i.e., Lorenz and
Bonferroni). In Section 3, we step aside from the Lorenz and Bonferroni functions and, crucially
for this paper, suggest using a (financial) average value at risk as the underlying societal function
on which various personal gambles are played; however, the reference measure remains the mean
income yr. In Section 4, we depart from the latter reference and introduce a general index that
accommodates any population-based reference measure. In Sections 5 and 6, we show how the
Donaldson-Weymark-Kakwani index and the Wang (or distortion) risk measure, as well as their
generalizations, fall into the expected utility framework with collective mean-income references and
appropriately chosen personal gambles. In Section 7, we argue for the need for incorporating personal
preferences into reference measures, and, in Section 8, we demonstrate how this yields a new measure
of risk that takes into account the relativity of large risks with respect to smaller ones. Section 9 finishes
the paper with a general index of inequality and risk.

2. The Classical Gini Index Revisited

Naturally, we begin our arguments with the classical index of Gini (1914). Let X be a random
variable (think of ‘income’) with non-negatively supported cdf F(x) and finite mean pr = E[X].
The Gini index, which we denote by G, is usually interpreted as twice the area between the actual
population Lorenz function (Lorenz 1905; Pietra 1915; Gastwirth 1971)

1 P
Le(p) = - | E @

and the egalitarian Lorenz function Lg(p) = p, 0 < p < 1, which is the hypotenuse of the right
triangle that we have alluded to in the abstract. For parametric expressions of Lr(p), we refer to
Gastwirth (1971), Kakwani and Podder (1973), as well as to more recent works of Sarabia (2008),
Sarabia et al. (2010), and references therein. Hence, the Gini index is

1
Gr = 2/0 (Le(p) — Le(p)) dp
= 2E[Lg(m) — Le(7)],

M

where the gamble 7 follows the uniform density on the unit interval [0,1], thatis, f(p) = 1 for all
p € [0,1]. Intuitively, 7t governs person’s position in terms of income percentiles, and we thus call it
personal gamble. In other words, barring the normalizing constant 2, the Gini index Gr is the expected
absolute-deviation of person’s position 7t on the actual Lorenz function Lg(p) from his/her position on
the reference (egalitarian) Lorenz function Lg (p). Naturally, the position 7 is random, and we have
already seen in the case of the Gini index that it follows the uniform on [0, 1] distribution. This means
that the person has an equal chance of receiving any income among all the available incomes which
are, in terms of percentiles, identified with the unit interval [0, 1].

In general, the personal gamble 7t can follow various distributions on [0, 1], and we shall see a
variety of examples throughout this paper. The choice of distribution of 7t carries information about
person’s probable positions and is thus inevitably subjective, but many of the examples that we have
encountered in the literature follow the beta distribution

_pta-p)ft
feta(p | &, B) = T/ﬁ)

for 0<p<1,
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which we have visualized in Figure 1. We succinctly write 77 ~ Beta(«, ) and so, for example, the Gini
index (cf. Equation (1)) is based on 7t ~ Beta(1,1). For illuminating statistical and historical notes
on the beta and other related distributions in the context of measuring economic inequality, we refer
to Kleiber and Kotz (2003). For very general yet remarkably tractable beta-generated families of
distributions for greater modeling flexibility, we refer to Alexander et al. (2012), and references therein.
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Figure 1. Beta densities of gambles 7t for various values of « and .

Importantly for our following discussion, the Gini index GF can also be viewed as the expected
relative-deviation of person’s position 7t on the actual Lorenz function Lg(p) from his/her position on
the reference Lorenz function Lg(p), as seen from the equations:

Ge = [ (1-E55 v
—sfi- 0],

where m ~ Beta(2,1), which is a considerable change from 7 ~ Beta(1,1) used in the
absolute-deviation based representation (1) of the Gini index. Note that the right-hand side of
Equation (2) can be succinctly written as E[Bg(7r)], where

Le(p) _ 4 Le(p)

 Le(p) p

is the Bonferroni function of inequality (cf. Bonferroni 1930), which is also known in the literature
as the Gini function of inequality because it appeared in Gini (1914). For details on the Bonferroni
function and the corresponding Bonferroni index, we refer to Tarsitano (1990) and references therein.

In addition to its role when studying income and poverty, the Bonferroni function Br(p) has
also found many uses in other fields such as reliability, demography, insurance, and medicine
(e.g., Giorgi and Crescenzi 2001; and references wherein). For detailed historical notes and references
with explicit expressions of the Lorenz and Bonferroni functions, as well as of the Gini and Bonferroni
indices, for many parametric distributions, we refer to Giorgi and Nadarajah (2010). The role of

@

Br(p) =

©)
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the Bonferroni function within the framework of L-functions for measuring economic inequality and
actuarial risks can be found in Tarsitano (2004), and Greselin et al. (2009).

3. From Egalitarian Lorenz to the Mean Reference

Not only the classical Gini index but also a multitude of other indices of economic inequality
can be viewed as deviation measures (e.g., functional distances) between the actual and egalitarian
Lorenz functions (cf., e.g., Zitikis 2002). Note, however, that the actual Lorenz function Lr(p) itself
is a relative measure that compares p x 100% lowest incomes with the population mean income yir.
This two-stage relativity—first with respect to the egalitarian Lorenz function and then with the mean
income—warrants a rethinking of the inequality measurement.

Toward this end, we next rephrase the definition of the Gini index Gr by first rewriting the
Bonferroni function Bg(p) as follows:

Br(p) = 1- %ﬁ“p) @

where

P
AV@Rp(p) = %/0 F1(t)dt

is the (financial) average value at risk of X. Indeed, with a little mathematical caveat, AV@Rf(p) is
the conditional expectation E[X | X < F~1(p)], which is the mean income of those who are below the
‘poverty line’ F~!(p). In summary, Equation (2) becomes

®)

Gr—E [1 B AV@Rp(n)}

HF

with the gamble 7t ~ Beta(2,1). If, instead of the latter gamble, we use 7t ~ Beta(1,1) on the right-hand
side of Equation (5), then the expectation turns into the Bonferroni index

b=/ (1 - %ﬁf“’))dn ©)

For details on the Bonferroni index, we refer to Tarsitano (1990) and references therein.
For a comparison of the two weighting schemes, that is, of the gambles 77 employed in the Gini
and Bonferroni cases, we refer to De Vergottini (1940). Implications of using the Bonferroni
index on welfare measurement have been studied by, e.g., (Benedetti 1986; Aaberge 2000;
Chakravarty 2007). Nygérd and Sandstrom (1981) give a wide-ranging discussion of the use of
Bonferroni-type concepts in the measurement of economic inequality. Giorgi and Crescenzi (2001),
and Chakravarty and Muliere (2004) propose poverty measures based on the fact that the Bonferroni
index exhibits greater sensitivity on lower levels of the income distribution than the Gini index.
A general class of inequality measures inspired by the Bonferroni index has been explored by
Imedio-Olmedo et al. (2011). Giorgi (1998) provides a list of Bonferroni’s publications.
Equations (5) and (6) suggest that the Gini and Bonferroni indices are members of the following
general class of indices
A = E[o(AV@R (1), jir)], )

where v(x,y) can be any function for which the expectation is well-defined and finite. In the case of
the Gini and Bonferroni indices (e.g., Greselin 2014), we have v(x,y) = 1 — x/y, which is the relative
value of x with respect to y. We call any function v(x,y) used in expressions like (7) a relative-value
function throughout this paper. Hence, we can view the index A as the expected utility of being in
the society whose income distribution is depicted by the function AV@Rg(p) and compared with the
reference mean income jr using an appropriately chosen relative-value function v(x, y). We should
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note at this point that even though the class of relative-value functions v(x,y) may look large, it is
nevertheless prudent to restrict our attention to those that are of the form

o(x,y) = £(x/y) ®)

for some function £(t). Indeed, under the natural assumption of positive homogeneity, which means

that the equation v(Ax, A\y) = v(x,y) holds for all A > 0, Euler’s classical theorem says that we must

have Equation (8) for some function ¢(t). The Gini and Bonferroni indices give rise to £(t) =1 —¢.
Another example of the function /(t) arises from the E-Gini index of Chakravarty (1988):

cra=2( 1<t—LF<t>>“dt)1/“

B 1 AV@Ry(m)\* . \*
72</0 <1_T> tdt) )

2 1/a
:W(E[U(AV@RF(n),yF)]) ,
where the reference-value function is v(x,y) = (1 — x/y)%, that is, £(t) = (1 — t)*, and the gamble
7T ~ Beta(a +1,1). Zitikis (2002) suggests using (a + 1)1/# instead of 2 in the definition of the E-Gini
index (see also Zitikis (2003) for additional notes) in which case the right-hand side of Equation (9)
turns into the index

~ 1/«
Cra = (E[U(AV@RF(n),yF)]) .

In either case, note from the expressions of Cr , and C o that it is sometimes useful to transform the
index Af by some function w(x). We shall elaborate on this point in the next section.

Coming now back to the index Af, we note that, with the generic relative-value function v(x, y) =
{(x/y), the index can be rewritten as E[¢(Bg(7))], where ¢(t) = ¢(1 — t). Hence, we are dealing with
the distorted Bonferroni function ?(Br(p)), 0 < p < 1, which is analogous to the distorted Lorenz
function upon which Sordo et al. (2014) have built their research (see Aaberge (2000) for earlier
results on the topic). We do not pursue this research venue in the present paper because the Bonferroni
function, just like that of Lorenz, incorporates a pre-specified reference measure, which is the mean
income yr. In what follows, we argue in favour of more flexibility when choosing reference measures,
which may even include personal preferences in addition to those of the entire population.

4. From the Mean to Generic Societal References

We now extend the index Af to arbitrary references, which we denote by 6. Namely, let

By = w(Elo(AVOR; (1), 65)]),

where w(x) is a normalizing function whose main role is to fit the index into the unit interval [0, 1],
with the value 0 meaning perfect equality (i.e., everybody has the same amount) and 1 meaning
extreme inequality (i.e., only one person has something, and thus everything, with the others having
nothing). Having the flexibility to manipulate references is important due to a variety of reasons. For
example, the use of the mean yr can become questionable when population skewness increases, and
this has already been noted by, e.g., Gastwirth (2014) who, in his research on the changing income
inequality in the U.S. and Sweden, has suggested replacing the mean yr by the median mp = F~1(0.5).

Another example of 6y that differs from pr is provided by the Palma index; we refer to
Cobham and Sumner (2013a, 2013b, 2014) for details. Namely, let r be the average of the top 10% of
the population incomes, that is, 0 = % fol oF ~1(t)dt. Furthermore, let the normalizing function be
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w(x) = x, the relative-value function v(x,y) = y/x, and the (deterministic) gamble 77 = 0.4. Under
these specifications, the index Br becomes the Palma index of economic inequality:

pAOS0 _ o j}giFfl(t)dt.
a1 Jo Fl(t)dt
Instead of the underlying random variable (e.g., income) X, the researcher might be primarily
interested in its transformation (e.g., utility of income) u(X). To tackle this situation, we first
incorporate the transformed incomes into our framework by extending the definition of the (financial)
average value at risk as follows:

4

AV@R;, (p) = - [/ @)y

pJo

Note that AV@Rf (1) = E[u(X)], which we can view as the expected utility of X. We have
arrived at the extension

Cr = w(E[o(AV@R, (), 0r)]) 10

of the index Bf.

The index Cr appears to be a minor generalization of the extended intermediate index of
Cowell (2003) (see Equation (12) therein), which has been shown to include a large number of
well-known indices (in particular, the Generalized Entropy class of indices) and far-reaching new ones.
Namely, Cr reduces to the index of Cowell (2003), which for referencing purposes we denote by Cr ,
by choosing w(x) = Ax(x — 1) for a certain constant Ay, u(x) = ¢ (x) for a certain function ¢ (x), the
reference O = u(yur), the relative-value function v(x) = x/y, and the (deterministic) gamble 7 = 1;
here are the aforementioned quantities that we have not yet specified:

14 k2 1
A= —5—— = = — Xk
k a% —ay ap =+ Pk, Pp(x) e (x + k),

where v € (—o0,00), > 0, and k > 0 are parameters. Hence, even though the reason for our use
of the letter C for index (10) is alphabetical, it would only be natural to call Cr the Cowell general
intermediate index, whose special case, called extended intermediate index, appears in Cowell (2003).

The Atkinson (1970) index, which we denote by Af,, is a special case of Cr. (For many
other special cases, we refer to Cowell (2003).) Namely, let the utility function be u(x) = x? for
some v € (0,1). Furthermore, let the (deterministic) gamble be 7= = 1, the reference 6 = u(ur),
and the relative-value function v(x, ) = 1 — x/y. Under these specifications, the index Cr turns into
1 — E[X"]/u}, which after the transformation with the function w(x) = 1 — (1 — x)/7 becomes the
Atkinson index

(E[XT)!/

pE

This index has been highly influential in measuring economic inequality (e.g., Cowell (2011),
and references therein) and inspired a variety of extensions and generalization of the Gini index.
In addition, Mimoto and Zitikis (2008) have found the Atkinson index useful for developing a
statistical inference theory for testing exponentiality, which has been a prominent problem in life-time
analysis and, particularly, in reliability engineering.

Ap,=1-

5. The Donaldson-Weymark-Kakwani Index Revisited and Extended

The Donaldson-Weymark-Kakwani index (Donaldson and Weymark 1980, 1983; Kakwani 1980a, 1980b;
Weymark 1981)

10
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DWKE = (e 1) [ (1= p)*2(p ~ Le(p))dp,

which is also known as the S-Gini index, has arisen following Atkinson (1970) observation that the
Gini index G does not take into account social preferences. Via the parameter & > 1, the index
DWKF, can reflect different social preferences, with the classical Gini index arising by setting & = 2.
We note in this regard that a justification for a family of indices to be based on the theory of relative
deprivation has been provided by Yitzhaki (1979, 1982).

Just like the Gini index G, the index DWKE , can also be placed within the framework of expected
relative value. Indeed, using Equations (3) and (4), we have

DWKF,A = ./Ol <l - LFTEp))fBeta(p ‘ 20— 1)dp
= [ (1 2D fop 2 1) an
Elo(AV@Ry (), )

with the relative-value function v(x,y) = 1 — x/y and the gamble 77, ~ Beta(2,« — 1), whose density
is visualized in Figure 2.

T T T T T T
0.0 0.2 04 06 0.8 1.0

Figure 2. The density of 71, for various values of a.

We next introduce a more flexible index than DWKp , that allows us to employ more general
gambles than 71,. For this, we first introduce a class of generating functions:

(H) Let i : [0,1] — [0,1] be any twice differentiable and convex function (i.e., i/ (p) > 0 for all
p € (0,1)) that satisfies the boundary conditions #(0) = 0 and /(1) = 1, and such that 4’ (0) # 1.

Let 71, denote the gamble whose density f(p) is given by the formula

flp) = % (12)

11
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forall p € (0,1),and f(p) = 0 elsewhere. With the relative-value function v(x,y) = 1 — x/y, we have
(details in Appendix A)

DWKG, := E[v(AV@RE(713), i)

1 1 /v ,

= 1—1(0) <1_ﬁ o F 1(P)h (1—P)dlﬂ> (13)
1 1

:1—7}1’(0)<17ﬁ,0 h(lfF(x))dx).

To illustrate, we choose the function h(p) = p* with any & > 1, in which case the gamble 7,
follows the density a(a —1)p(1 — p)"‘*z; that is, 7t;, ~ Beta(2,a« — 1), which means that 77;, has the
same distribution as the earlier noted gamble 77,. Consequently, DWKp ;, reduces to DWKF 4, and thus
Equation (13) reduce to the following expressions of the Donaldson-Weymark-Kakwani index:

DWKp, =1 - /1 FoH(p) (1= p)*dp
IllF 000 (14)
:1—11:/0 (1 - F(x))%dx

(cf. Donaldson and Weymark (1980, 1983); Yitzhaki (1983); Muliere and Scarsini (1989)).

6. The Wang Risk Measure Revisited and Extended

The index DWKp, is based on gambles generated by convex functions h. A similar index but
based on concave generating functions g is called the Wang (or distortion) risk measure, which has been
used in actuarial science and financial mathematics for measuring risks. In detail, the risk measure is
defined by the formula

Wr, = /Ow ¢(1— F(x)) dx,

where g : [0,1] — [0,1] is a distortion function, meaning that it is non-decreasing and satisfies the
boundary conditions g(0) = 0 and g(1) = 1.

Hence, unlike in the previous section, we now work with concave distortion functions, denoted
by g, under which the risk measure Wg ¢ is coherent (Wang et al. 1997, Wang and Young 1998;
Wirch and Hardy 1999; see Artzner et al. (1999) for a general discussion). A classical example of such
a distortion function is g(p) = p* for any a € (0,1), in which case the Wang risk measure W ¢ reduces
to the proportional-hazards-transform risk measure (Wang 1995)

PHT}, = /O°°(1 — F(x))%dx.

For more information on concave versus convex distortion functions in the context of
measuring risks, their variability and orderings, we refer to Sordo and Sudarez-Llorens (2011),
Giovagnoli and Wynn (2012), and references therein.

We next show that the Wang risk measure Wr ; can be placed within the framework of expected
relative value. When compared with the index DWKp ,, there are two major changes: First, the function
of interest is now the (insurance) average value at risk:

AVaRi (p) = —— [
VaRp(p) = ——

1=pJyp
(Note that when p = 0, then AVaRg(p) is equal to the mean pir.) Second, the function g that generates
the distribution of the random position is concave. Specifically, we introduce the following class of
generating functions:

F(t)dt.

12
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(G) Letg:[0,1] — [0,1] be twice differentiable and concave function (i.e., ¢’ (p) < 0forall p € (0,1))
that satisfies the boundary conditions ¢(0) = 0 and g(1) = 1, and such that g’(1) # 1.

Any such function g generates the density f(p) of the gamble 77, given by the formula
_—(1-pg"1-p)

forall p € (0,1), and f(p) = 0 elsewhere. With the relative-value function v(x,y) = y/x — 1, we have

(details in Appendix)

1

Blo(us, AVaRs ()] = 1 (o [ F )50 - pap 1)

:%ﬂn(i/owg(l—lf(x))dx—l>.

Consequently, the Wang risk measure Wplg can be expressed in terms of the expected relative value
E[o(pr, AVaRp(7y))] as follows:

(16)

Wi = e (Elo(e, AVaR(g))] (1 - g'(1) +1). (17)

When the generating function is g(t) = t* for any a € (0,1), then the gamble 774 follows Beta(1, a)
whose density function a(1 — p)*~! is depicted in Figure 3.
From Equation (16), we have

Efo(jur, AVaRF (7)) = % (;TlF /O'°°(1 F(x)) dx — 1). (18)

Finally, we note the following expression for the proportional-hazards-transform risk measure:

PHTE,, = jir (E[U(HF/AVaRF("g))] (1—a)+ 1)'

T T T T T T
0.0 0.2 0.4 06 0.8 1.0

Figure 3. The density of 7ty when g(p) = p* for various values of a.
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7. From Collective to Individual References

So far, we have worked with collective references. They do not depend on the outcomes of personal
gambles and thus apply to all members of the society. Such references may not, however, be always
desirable or justifiable. For example, given the outcome 0.4 of the gamble 77, meaning that the person is
considered to be among the 40% lowest income earners, the person may wish to compare the current
position with the hypothetical one of being among the 60% highest income earners. In such situations,
we are dealing with individual references: their values may depend on outcomes of the personal gamble 7.

Hence, for example, the mean yr and the median mp = F -1 (0.5) are collective references,
but 8r = F~1(7r) is an individual reference because its value depends on the outcome of 7. Would
the quantile F~!(7r) be a good reference? There are at least two major reasons against the use of the
quantile, which is known in the risk literature as the value-at-risk:

1. The quantile F~!(p) is not robust with respect to realized values p of the random gamble 7, in the
sense that the quantile may change drastically even for very small changes of p.

2. For a realized value p of 7, the quantile F~!(p) is not informative about the values of F~(g) for
g > p- Indeed, we may have the same value of F~1(p) irrespective of whether the cdf F is heavy-
or light-tailed.

These are serious issues when constructing sound measures of economic inequality and risk. In the
risk literature (cf., e.g., McNeil et al. (2005); Meucci (2007); Pflug and Rémisch (2007); Cruz (2009);
Sandstrom (2010); Cannata and Quagliariello (2011); and references therein), the problem with
quantiles has been overcome by using AVaRr(p) whose definition was given in the previous section.
For example, adopting AVaRp(p) as our (individual) reference 6 and using the normalizing function
w(x) = x, the earlier introduced index B turns into the Zenga (2007) index

0= L(-5)e

= E[v(AV@R (), AVaRp(7r))]

(19)

with the relative-value function v(x,y) = 1 — x/y and the gamble 7 ~ Beta(1,1). Hence, the Zenga
index Zr is the average with respect to all percentiles p € (0,1) of the relative deviations of the
mean income of the poor (i.e., those whose incomes are below the poverty line F~!(p)) from the
corresponding mean income of the rich, that is, of those whose incomes are above the poverty line
F1 (p). We refer to Greselin et al. (2013) for a more detailed discussion of the relative nature of the
Gini and Zenga indices, and their comparison.

8. Relative Measure of Risk

Many risk measures that we find in the literature are designed to measure absolute heaviness of
the right-hand tail of the underlying loss distribution. Suppose now that we wish to measure the
severity of large (e.g., insurance) losses relative to small ones. Note that this problem is very similar to
that tackled by Zenga (2007) in the context of economic inequality. Hence, following the same path
but now using the relative-value function v(x,y) = y/x — 1 and generic gamble 71, we arrive at the
relative measure of risk

Rr = E[v(AV@Rg(7r), AVaRp(7))], (20)

which, in the spirit of expected utility, can be rewritten as
RF = E[RI:(T[)], (21)
where the role of utility function is played by the risk function

_ AVaRg(p)

Re(p) = AV@R;(p) 1.

14
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In what follows, we explore properties of this risk measure, using the notation Ry instead of Rr to
simplify the presentation.

Proposition 1. We have the following statements:

1. Ifthe risk X is constant, that is, X = d for some constant d > 0, then Rx = 0.
2. Multiplying X by any constant d > 0 does not change the relative measure of risk, that is, Ryjx = Rx.
3. Adding any constant d > 0 to the risk X decreases the relative measure of risk, that is, Rx 4 < Rx.

We have relegated the proof of Proposition 1 to Appendix. We next comment on the meaning
of the three properties spelled out in the proposition. First, given that we are dealing with a relative
measure of risk, properties 1 and 2 are self-explanatory. As to property 3, it says that lifting up the
risk by any positive constant decreases its riskiness. This is natural because lifting up diminishes
the relative variability of the risk. This, in turn, suggests that ordering of the relative risk measures
should be done, for example, in terms of the Lorenz ordering, which is one of the most used tools for
comparing the variability of economic-size distributions. This leads to the following property:

Proposition 2. If risks X and Y follow the Lorenz ordering X <y Y, then Rx < Ry.

The proof of Property 2 is provided in Appendix, where the basic definition of Lorenz ordering
can also be found. It is related to the notion of ordering based on the generalized, also called absolute,
Lorenz curve (e.g., Ramos et al. 2000; Sriboonchita et al. 2010; and references therein). This leads
us directly to a closely related property called the Pigou-Dalton principle of transfers. In the context
of economic inequality, the principle says that progressive (i.e., from rich to poor) rank-order and
mean-preserving transfers should decrease the value of inequality measures. Hence, in the context
of risk, the transfers should be risk decreasing. Formally (cf., Vergnaud 1997), X is less risk-unequal
than Y in the Pigou-Dalton sense, denoted by X <pp Y, if and only if yx = py and X <p, Y. Hence,
X <pp Y is sometimes denoted by X <y _ Y (cf. Denuit et al. 2005). The following property is
now obvious.

Proposition 3. Ifa Pigou-Dalton risk-increasing transfer turns risk X into Y so that X <pp Y, then Rx < Ry.

To have an idea of how the Pigou-Dalton transfers act, we recall (e.g., Shaked and Shanthikumar 2007;
Sriboonchita et al. 2010) that given X and Y with densities fx and fy, respectively, and assuming that
their means are equal, if the sign of the difference fx — fy changes twice according to the pattern
(4, —,+), then X <y, Y. Examples of parametric distributions with such pdf’s can be found in, e.g.,
Kleiber and Kotz (2003); see also references therein.

In what follows, we discuss an example based on the Zenga (2010) distribution that has shown
remarkably good performance in terms of goodness-of-fit on a number of real income data sets. It is a
very flexible three-parameter distribution with Pareto-type right-hand tail and whose density is

-15
1 x YH ar05-1 0-2
2 Beta(a, 0) (;) ./0 t (1—t)"=dt, x<up,

15
1 B WX 05-1 92
N ! B -
214 Beta(w, 0) (x> /0 £ (1—-1)"72dt, x>y,

fZenga(x ‘ Hoa,0) =

where j1 is the scale parameter, which also happens to be the mean of the distribution, and 6 and « are
two shape parameters that affect, respectively, the center and the tails of the distribution. We have
depicted the Zenga density in Figure 4. For further details on this distribution and its uses, we refer to
Zenga (2010), Zenga et al. (2011), Zenga et al. (2012), and Arcagni and Zenga (2013).
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Figure 4. Zenga(2,2,0) density for various values of 6.

To see the effects of the Pigou-Dalton transfers in the case of the Zenga distribution, the following
theorem is particularly useful.

Theorem 1 (Arcagni and Porro 2013). Assume X ~ Zenga(ux,ax,0x) and Y ~ Zenga(puy,ay,0y),
where all the parameters are positive. When ax > ay and 0x < 6y, then X <pp Y.

9. Conclusions: A General Index of Inequality and Risk

The right-hand sides of Equations (19) and (20), which are identical, barring their different
relative-value functions v(x, i), give rise to a very general measure of inequality:

E[0(AV@Rf (1), AVaRg (7"))],

where 77 and 71* are two gambles, which could be dependent or independent, degenerate or not.
Obviously, when 7t = 71*, then we have either the Zenga index of economic inequality or the relative
measure of risk, depending on the choice of the relative-value function. Furthermore, if 7* = 0,
then we have AVaRp(71*) = ur and thus E[v(AV@Rg(7), jip)], which is the Bonferroni index Bp.
By appropriately choosing relative-value functions and personal gambles, we can reproduce a number
of other measures of economic inequality and risk, but the Chakravarty and Atkinson indices require
some little extension:

& =w (E [0(AV@Rg, (77), AVaRg (7)) ) 22)

where 1 and u* are two utility functions, and

1 1
AVaRp (p) = —— / uw* (F1(t))dt.
T=pJp
Note that AVaRp - (0) = E[u*(X)]. All the examples that we have mentioned in this paper, and also
many other ones that appear in the literature, are special cases of the just introduced index £r. Table 1
provides a summary.
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Table 1. Special cases of index (22) with u*(x) = x in all the rows.

T T* w(x) v(x,y) u(x)
Atkinson Af 1 0 1—(1-x)7 1—x/y x7
Bonferroni Bp Beta(1,1) 0 x 1-x/y x
Chakravarty Cr , Beta(a +1,1) 0 2(a 4 1)~ Vaxl/w (1—x/y)" x
Inequality index Cr Beta(a +1,1) 0 xl/e (1—x/y) x
Cowell Cp 1 0 Ap(x—1) x/y ¢ (x)
Cowell’s Generalized Entropy class 1 0 linear x/y ¢(x)
Donaldson-Weymark-Kakwani DWKp,  Beta(2,a —1) 0 x 1-x/y x
Inequality index DWKp , T 0 x 1-x/y x
Gini Gp Beta(2,1) 0 x 1—-x/y x
Palma PP>% 0.4 09 x y/x x
Risk measure Rp Any =7 x y/x—1 x
Wang W ¢ 1 Ty up(x(1—¢'(1)+1)  y/x—1 x
Proportional hazards transform PHT , 1 Beta(1,a) up(x(1—a)+1) y/x—1 x
Zenga Zp Beta(1,1) =7 x 1-x/y x

We conclude with the note that, in the examples throughout this paper, the gambles 77 and 7*
have been such that either they are identical (i.e., 71 = 77¥) or one of them is degenerate (e.g., 7 = 1 or
7 = 0). There is no reason why this should always be the case: the two gambles can be dependent
but not necessarily identical or degenerate. This suggests that, in general, modeling probability
distributions of the pair (7, ©*) can be conveniently achieved by, for example, specifying marginal
distributions of the gambles 7t and 77*, as well as dependence structures between them using, e.g.,
appropriately chosen copulas. For methodological and applications-driven developments related to
copulas, we refer to the monographs of Nelsen (2006), Jaworski et al. (2010), Jaworski et al. (2013),
and references therein.
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Appendix A. Technicalities

Proof of Equation (13). Since the relative-value function is v(x,y) = 1 — x/y, we have

1 1
DW= 1 [ AV@R (p) (p) dp, (A1)

where f(p) is the density function of the gamble 7r;, defined by Equation (12). The following are
straightforward calculations:

/01 AV@R(p)f(p) dp — /01 %(/Op FL() dt>f(P) dp

= [ ([ 5 rwap) a

= % ./01 N6 (W (1~ 1) — 1 (0)) dt

~ = ([ P Ora - a- o ).
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Combining this result with Equation (A1), we obtain the first equation of (13). Since

/01 F U0 (1— ) dt = '/Ow (/01 HF () > (1 - 1) dt)dx

o0 1
- / (/ 1{t > F(x)}i'(1— 1) dt>dx
0 0l (A2)
- / (/ W - t)dt)dx
JO JF(x)
. /°°h(1 — P(x)) dx,
0
we have the second equation of (13). [
Proof of Equation (16). Since the relative-value function is v(x,y) = y/x — 1, we have
1 /1
Elo(ur, AVaR (7)) = - [ AVaRe(p)f (p) dp —1, (A3)

where f(p) is the density function of the gamble 77, defined by Equation (15). The following are
straightforward calculations:

1 1 1
[ Avarepspar = [F ([ o) s
- "t fp)
,/O F 1(t)< i mazp) dt.
Applying definition (15) of the density function f(p), we obtain
! 1 ! -1 / /
) AVaR(f (P = gy [ F O (00— g/ (1)

o ([P oga-na-g ).

Combining Equations (A3) and (A4), we obtain the first equation of (16). Using Equation (A2) with ¢
instead of 1, we arrive at the second equation of (16). [

(A4)

Remark A1l. From the mathematical point of view, Equation (A4) is elementary, but it was a pivotal
observation that allowed Jones and Zitikis (2003) to initiate the development of statistical inference
for the Wang (or distortion) risk measure. Since then, numerous statistical results have appeared
on risk measures: parametric and non-parametric, light- and heavy-tailed cases have been explored
in great detail by many authors. To illustrate the challenges that arise in the heavy-tailed context,
we refer to Necir and Meraghni (2009), and Necir et al. (2007) for the proportional hazards transform;
Necir et al. (2010), and Rassoul (2013) for the tail conditional expectation; and Brahimi et al. (2012)
for general distortion risk measures.

Proof of Proposition 1. Property 1 follows from the fact that, if X = d for any constant d > 0, then
Fx 1(p) = d and so AVaRx(p) = AV@R(p) for every p € (0,1). Property 2 follows from the fact that
if d > 0, then F,} (p) = dFy ' (p) and so AVaR,x(p)/AV@R,x (p) = AVaRx(p)/AV@Rx(p) for every
p € (0,1). Property 3 follows from the fact that Fg}r 4(p) =Fx 1(p) + d for every d, and so the bound
AV@Ryx(p) < AVaRy(p) together with the assumed positivity of d imply

AVaRy,4(p) _ AVaRx(p)+d _ AVaRy(p)
AV@Ry 4(p) ~ AV@Rx(p) +d ~ AV@Rx(p)
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The latter bound is equivalent to Ry 4(p) < Rx(p) for every p € (0,1), which establishes the bound
Ry s <Rx. O

Proof of Proposition 2. We first recall (Arnold 1987; Aaberge 2000) that the Lorenz ordering X <y Y
means the bound Ly (p) > Ly(p) forall p € [0, 1]. Since

_1-Ix(p) p
RxP) =" 1op !
p Py

T (-pix(p) 1-p

the Lorenz ordering X < Y is equivalent to the R-ordering X <g Y, which means Rx(p) < Ry(p) for
all p € (0,1). The latter bound and Equation (21) conclude the verification of Proposition 2. [

Remark A2. With the above introduced notion of R-ordering, we can rephrase Proposition 2 as follows:
if X <r Y, then Ry < Ry. For detailed treatments of various notions of stochastic orders, we refer to
Shaked and Shanthikumar (2007); Li and Li (2013); and Sriboonchita et al. (2010).
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Abstract: This paper proposes a simple algorithm based on a matrix formulation to compute the
Esteban and Ray (ER) polarization index. It then shows how the algorithm introduced leads to quite
a simple decomposition of polarization by income sources. Such a breakdown was not available
hitherto. The decomposition we propose will thus allow one to determine the sign, as well as the
magnitude, of the impact of the various income sources on the ER polarization index. A simple
empirical illustration based on EU data is provided.
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1. Introduction

During the past 25 years, many studies attempted to measure the extent of the middle class and
stressed the link between the concept of bipolarization and the importance of the middle class. Another
strand of the economic literature emphasized the concept of polarization (or multi-polarization).
The basic contribution here is that of Esteban and Ray (1994) who linked the concept of polarization
to the notions of identification, alienation, and potential social conflict. Identification refers to the
idea that an individual feels some degree of identification with those who are ‘close’ to him/her.
Identification is thus an increasing function of the number of individuals who are in the same income
class as that individual. The alienation function on the contrary characterizes the antagonism caused
by income differences so that an individual will feel alienated from those who are ‘far away’ from
him/her. While Esteban and Ray (1994), as well as Esteban et al. (2007), assumed that the number
of groups was determined ex ante, Duclos et al. (2004) extended the analysis of polarization to the
continuous case, letting the data determine the number of relevant groups and poles.

The focus of most empirical studies of bi-polarization and polarization was on the distribution of
total income. There have however been a few attempts to decompose bipolarization and polarization
indices by income sources (e.g., Araar 2008; Deutsch and Silber 2010) but the procedures are not
very simple. More recently, Barcena-Martin et al. (2017) proposed a simple matrix formulation to
decompose the Foster and Wolfson bi-polarization index by income sources.

The main contribution of the present paper is to introduce a simple algorithm to compute
the Esteban and Ray (1994) polarization index. We derive this algorithm from the simple matrix
formulation suggested by Silber (1989) to compute the Gini index. We then show that, with such an
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approach, it is easy to derive the contribution of various income sources (or explanatory variables in
the case of an earnings function) to the degree of polarization of the distribution of total income.
Section 2 describes the algorithm allowing the simple computation of the ER index polarization
index while Section 3 shows how such a formulation simplifies the decomposition of this index by
income sources. Section 4 presents a simple empirical illustration and Section 5 concludes the paper.

2. Matrix Representation of the Esteban and Ray (1994) ER Polarization Index

The Esteban and Ray (1994) polarization index ER is expressed as

ER =Y, Yoy ofojlui = (1)

where vy is the relative population frequency of population subgroup k, 4 the mean income! of group
k and B a parameter which varies between 2 and 2.6 (see, Esteban and Ray 1994).
We can also write expression (1) as

n

" i—1 8 8 " 8 i—1 n
ER=Y mvi(ze s ) ST (va— 3 ) o
=1 1 =1

j=i+ j=i+1

where the mean incomes y; are ranked by increasing values.
More generally, assuming n population subgroups, expression (2) becomes

ER =+t'Gs + v'Gr = ER? + ER® 3)
In (3), ER and ERP are the two components of the ER index, # is a (1 by 1) row vector, written
as t' = [vf Ug ... ZJ’S], sis a (n by 1) column vector which, as row vector, would be written as

s’ = [u101 w202 ... pnvy), v’ is a (1 by n) row vector written as v’ = [v] v3...v,] and ris a (n by 1)
column vector which, as a row vector would be expressed as v’ = [( ylv/f ) ( yzvg ) . (ynvﬁﬂ .Gis
a square n by n matrix, called G-matrix, whose typical element g;; is equal to 0 if i = j, to —1if j > i
and to +1 if i > j (see, Silber 1989, for more details on this G-matrix?). It is important to stress that the
elements y;v; in vector s” and the elements (yiv? ) in vector 7" have both to be ranked by decreasing
values of the mean incomes ;.
B B P
Let 7" be a (1 by n) row vector, written as T = K l ﬂ> ( Ui ﬁ> ( Yn ﬁ)} Let also
i1 i1 i1 v

i=1"%

6 be a (1 by 1) column vector of the income shares (%) . In other words, if we call (%
i1 i) i v

the ‘identification modified population share” of population subgroup i, the expression 7'G# is a kind
of Gini index comparing a priori shares which are the ‘identification modified population shares’
with a posteriori shares which are the actual income shares of the various population subgroups,
the comparison being made via the linear operator G, the G-matrix.

Similarly, let 7" be a (n by 1) row vector whose typical element 7; is written as 77; = <Z””X7?ivﬁ) .
17; will be labeled the ‘identification modified income share” of population subgroup i. The ex’};;‘essxion
v'Gy is then a kind of Gini index, comparing a priori shares, the actual population shares, with a
posteriori shares, the ‘identification modified income shares” of the various population subgroups.
This comparison is made again via the linear operator G, the G-matrix.

Esteban and Ray (1994) refer to the natural logarithm of income rather than to income. We will make a somehow similar
assumption by stating that the mean income of a given group refers in fact to its mean income relative to the mean income
in the whole population. To simplify the notations, we do not introduce the population mean income in the formulations.
As stressed already in Silber (1989), the first matrix formulation of the Gini index was proposed by Pyatt (1976).
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Expression (3) is then rewritten as

ER = <Z?:1 vlﬁ) (E?Zl wivi) [7'GO] + (Z?:l yivlﬁ) [¢v'Gn] (4)

In other words, the polarization index is equal to the corrected sum of two Gini-related indices.
The first one compares the ‘identification modified population shares” with the actual income shares
of the different population subgroups. The second one compares the actual population shares with
the ‘identification modified income shares’ of the different population subgroups. The first correction

B

i

product (2;‘:1 ,“iv,'ﬁ> (T o) = (2?:1 .”i”iﬂ)

factor is equal to the product <Z?:1 v ) (X7 piv;) while the second correction factor is equal to the

3. Decomposing the ER Index by Income Sources

Assume there are | income sources. The average income y;, in population subgroup i, may then
be expressed as
J
Hi =) g Hij 5)

so that expression (3) may also be written as
_ J ) / J )
ER=1tG D =1 s']} +0 G{ -1 r‘]] 6)

where s ; is a (n by 1) column vector whose typical element s;; is equal to v;p;; while 7 ; is a (n by 1)

column vector whose typical element r;; is equal to vf p;j- Note that the elements s;; in vector s ; and
the elements r;; in vector  j have to be ranked by decreasing mean incomes ;.
We may then rewrite (6) as

ER=Y D (7)

where Dj, the contribution of income source j to the ER index, is expressed as

D; = [t'Gs‘j + v'Gr']-} 8)
We could also express (8) as
, . t'Gs; , . VGr;
D] = |t GS‘]' @ +v G?‘]WF] (9)

where s is a (n by 1) column vector whose typical elements s;;, which are equal to v;};;, are ranked
in descending order of y;;, while 7 is a (1 by 1) column vector whose typical elements r;j, which are
equal to vf.; #ij, are ranked also in descending order of ;.

Note however that
(¥Gsj+9'Grj) = ER* + ER} = ER; (10)

where ER; is the Esteban and Ray polarization index for income source j, E R]A and ER}3 being its two
components.
Let us also define two correlation measures, COR}L‘ and COR]B, with

corA = 1G5 1
I T ¥Gs; an
corp = U6 12
1T VGry (12)

These correlation measures may evidently be positive or negative.
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Combining expressions (7)-(12) we derive that
) A A B B
ER = 2].:1{ {ER]. COR! } + [ERj COR! ] } (13)
We therefore conclude that, ceteris paribus,

- The higher ER#, the higher the degree of polarization of the distribution of total income.
- The higher ER]B , the higher the degree of polarization of the distribution of total income.

- If COR# is positive, the higher this correlation measure, the higher the degree of polarization of
the distribution of total income. However, if it is negative, it will have a negative impact on the
overall Esteban and Ray index ER.

- Similarly, if COR]B is positive, the higher this correlation measure, the higher the degree of
polarization of the distribution of total income. However, if it is negative, it will have a negative
impact on the overall Esteban and Ray index ER®.

4. A Short Empirical Illustration

In this section, we present a simple empirical illustration, based on EU data from the European
Union Statistics on Income and Living Conditions (EU-SILC) data set for the 2016 wave (EUROSTAT
2016). EU-SILC is an international database that consists of comparable, country-specific data.
We analyze polarization in the 17 countries with data available for 2016: AT (Austria), BE (Belgium),
BG (Bulgaria), EE (Estonia), EL (Greece), ES (Spain), FR (France), HR (Croatia), HU (Hungary),
LT (Lithuania), LV (Latvia), PL (Poland), PT (Portugal), RO (Romania), RS (Serbia), SE (Sweden), and
SI (Slovenia). The units of analysis are the individuals and the unit of measurement is the household.
The measure of income is the total disposable household income. Since a given level of household
income corresponds to a different standard of living, depending on the size and composition of the
household, we adjust incomes for differences in household size and composition using the “modified
OECD” equivalence scale?. The latter assigns a value of 1 to the first adult in the household, 0.5 to
each remaining adult, and 0.3 to each person younger than 14.

Disposable income includes net income from work, other private income not related to work,
pensions and other social transfers. Net money income includes all income sources received by the
household and by each of its current members in the year preceding the survey. Social insurance
contributions, pay-as-you-earn taxes, and non-money income are not included in this definition
of income.

The decomposition of the ER polarization index by income sources is based on three
income sources:

1. Benefits (benefits) that include: old-age and survivor’ benefits, unemployment benefits, sickness
benefits, disability benefits, education-related allowances, family/children related allowances,
social exclusion not classified elsewhere, housing allowances

2. Income from rental of a property or land, interest, dividends, profit from capital investments in
unincorporated business (property and interest)

3. Income available before including sources 1 and 2 (income before)

Expression (13) reminds us of the decomposition of the Gini index by income sources (see, Lerman and Yitzhaki 1985)
where the contribution of an income source to the overall Gini index is a function of the share of this source in total income,
of the Gini index of this source and of the Gini-correlation between this source and total income. In (13) the contribution
of an income source to the overall ER index is a function of the two components of the ER index for this source, and of
two correlation measures. However the share of the source does not appear. In Appendix A, we provide a more detailed
decomposition where the parallel with the traditional decomposition of the Gini index by income sources becomes evident.
For a survey of equivalence scales and related income distribution issues, and some comparisons of scale relativities,
see Coulter et al. (1992).
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Table Al in the Appendix A gives, for each of these countries, the average value of these income
sources, the average total income and the population size.

Table 1 refers to data in Euros. We give there the value of the ER index when the parameter
is equal to 2.5 and when it is equal to 1 (Gini related measure®). We also computed, as suggested by
Esteban and Ray (1994), the ER index with these two values of the parameter B, for the case where
the logarithm of income rather than income was the variable under study. Table 1 gives also, when
income and not the logarithm of income is used, the relative contributions of the different income
sources, to the ER index. It appears that the most important (relative) contribution to the value of the
ER index is that of income before transfer (62.4%) while this source has a share in total income of 70.7%.
On the contrary, benefits and ‘property income and interest” have a higher relative contribution to the
ER index (respectively 25.4% and 12.2%) than their share in total income (23.2% and 6.1%). We may
also observe that the contributions of these sources to the Gini-related index (parameter  equal to 1) is
quite similar to their contributions to the ER index (65.6, 24.9, and 9.5%). They actually lie between
their contributions to the average total income and to the ER index.

When introducing the logarithm of income into the formulation of the ER index with 8 = 2.5, we
observe that this index is quite small (0.045) when compared to its value (0.577) when = 1.

Table 1. Contributions of the income sources to the ER index (based on income data in Euros).

Value for Relative Relative Re'latn'/e
I o Contribution of
Measure Computed Total Contribution of  Contribution of
. Property Income
Income Income Before Benefits
and Interest
Avera.ge J.ncomej with absolute 15,634 11,060 3626 948
contribution of income sources
Average income with relative 100% 70.70% 23.20% 6.10%
contribution of income sources
ER with parameter § equal to
2.5 computed on basis of 0.038 62.4% 25.4% 12.2%
relative incomes (relative
contributions of income sources)
ER with parameter 8 equal to 1
computed on basis of relative 0.645 65.6% 24.9% 9.5%
incomes (relative contributions
of income sources)
ER with parameter f equal to 0.045
2.5 and logarithms of incomes '
ER with parameter  equal to 1
(like Gini) and logarithms 0.577

of incomes

Table 2 is similar to Table 1 but here all the computations are derived from PPP income data.
While the relative contributions of the three income sources to the average EU PPP income (on the
basis of the countries for which data were available) are quite similar to those presented in Table 1,
the computation of the ER index and of the contributions of the income sources to this index show
a somehow different picture. When the parameter g is equal to 2.5, it appears that the ER index
is lower than in Table 1, whether this index is derived from income data or from the logarithm of
incomes. What is more interesting is that there is an important decrease in the relative contribution

5 When, in expression (1), we divide the income data by the average income and assume that § = 1, ER will equal to twice the
traditional Gini index. What is called the absolute Gini index, is actually the product of the Gini index by the mean, so that

when g =1 and we use absolute incomes and not relative incomes in (1) ER will be equal to twice the absolute Gini index.
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of income before transfer (from 62.4% to 54.4%) when B = 2.5 and from 65.6% to 59.6% when 8 = 1.
On the contrary, there is an increase in the relative contribution of benefits: from 25.4% to 28.6% when
B =2.5 and from 24.9% to 27.7% when = 1. A similar increase is observed for property income and
interest since the relative contribution rises from 12.2% to 17.0% when g = 2.5 and from 9.5% to 12.8%
when § = 1. In short, when using PPP rather than current data, polarization and inequality turn out to
be smaller, but the relative contribution of benefits and property income and interest to polarization
and inequality rises.

Table 2. Contributions of the income sources to the ER index (based on PPP income data).

Value for Relative Relative Conl:rei}:)al:lt‘i,;n of
Measure Computed Total Contribution of Contribution of
. Property Income
Income Income Before Benefits
and Interest

Avera}ge income with absolute 17,048 12,233 3892 94
contribution of income sources
Average income with relative 100% 71.7% 22.8% 5.4%
contribution of income sources
ER with parameter  equal to
2.5 computed on basis of o o o

. . 0.024 54.4% 28.6% 17.0%
relative incomes (relative
contributions of income sources)
ER with parameter 8 equal to 1
computed on basis of relative 0413 59.6% 27.7% 12.8%
incomes (relative contributions
of income sources)
ER with parameter f equal to 0.026
2.5 and logarithms of incomes '
ER with parameter 8 equal to 1
(like Gini) and logarithms 0.478

of incomes

5. Concluding Comments

This paper has shown how it is possible to express the Esteban and Ray (1994) ER index in
matrix form. Such a formulation greatly simplifies the decomposition of this index by income sources.
We gave a simple empirical illustration showing that this breakdown gives useful information as
to the impact of the different income sources on the polarization of incomes. This illustration was
based first on income data in Euros and then on PPP income data. We could also apply the proposed
breakdown to an analysis of the polarization of the distribution of wages or earnings. If we estimate a
traditional earnings function, we could then easily derive the contribution to the polarization of wages
of the explanatory variables of such a function. Indeed, we intend to explore these issues in future
empirical work.
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Appendix A. The Similarity between the Decomposition by Income Sources of the Gini Index
and of the ER Index

Remember that expression (4) is written as

ER = <Z?:1 U?) (i i) [T'GO] + (Z?:l y,-vf) [v'Gn] (AD)

B B B
where 7’ is a (1 by 1) row vector, written as v = [( ”vl /;) ( ”v‘ ﬂ) ( f“ ﬁ>], 0a(nby1)
i=1 Y i=1Yi i=1Yi
column vector of the income shares (EQ% , 1" a (n by 1) row vector whose typical element 7; is
B
Hiv;

——+— | and v’ a row vector of the population shares.
Tiy 1iv]
We can rewrite (A1) as

ER = (Z?:l vf) (i pioi) [T/G< ]]':1 9]')] + (Z:’:l vaf) [Z’IG< }:1 ’71'” (A2)

written as 7; = (

where
0. — ( Hiji ) _ Hijvi ((2?:1 P‘z‘/%‘)) (A3)
PN (S pivi) (T mijoi) )\ (g pivi)
- < pijot > _ ( pijo? > (Z?_l Vijvf> (Ad)
i=\ o = .
Yita llfvf-; Y F‘z‘jviﬁ Y MiU?

Given that the G-matrix is a linear operator we then derive that

ER = (Z?:l U?) (X i) [Z}:l T/Gei} + (Z?:l Viv?) [Z][:I U,GVJ']
o ER = (2 of) (i o [ofes 76 (ot ) (i) Y+
awatare{ () (G2
o B = (o) oo [21 (i )0 (i )} +

n B B
n . ﬂ ] Yilq Hijv; 'G Mijv;
(ks ol { {Zle ( S )v (m m,-vf‘ﬂ }

If instead of ranking the incomes y;; by decreasing values of the incomes y;, we rank them by
decreasing values of the incomes y;;, and call ji;; this re-ordered vector, we end up with

ER = (i of ) (S mon { [T (s ) [0 (o) 1] (&5 / () }

n B ~ B P ~ P
n B ] K=t / Hij0; il Hijt;
(g ned) { {Zle < s ik ) {” ¢ <z;-;l wf‘) H ((z;’:l wf’) / <z:;1 mv?)) }

< ER = ( 1 U?) (X mivi) Z]I':l ®jBivi + (2?:1 Plivf) 211:1 Ajvip;

with

e <(27:1 Vijvi)>
! (Xig pivi)

Hijvi
i=TG| e
Py (( im1 F‘ijvi)>

o Hif0i Hijoi
K ((( i1 Hij0i) > / ((2?1 Hijoi) ))
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(T
M=\ F
i=1 HiV;

ﬁijvf

T

o Vz'/vf3 / ﬁijv?
Pi= 0 B n B
Yl mijv; i=1 Hijl;

where a; and A]- are similar to income shares, /S]- and v; are components of the ER index for income
source j and 1y; and p; are ‘correlation measures’.

)
vj—vG

In other words, we have here quite a similar decomposition to that proposed by
Lerman and Yitzhaki (1985) for the Gini index.

Table A1l. Database.

Mean Total Income . Property and Total
Country Income Before % Benefits % Inferez’t % Population
AT 26,662.48 70.0% 27.3% 2.7% 7,963,391
BE 24,520.2 74.0% 24.6% 1.3% 9,319,177
BG 4164.49 76.4% 21.9% 1.7% 6,235,715
EE 11,043.97 82.3% 16.6% 1.1% 1,113,681
EL 9161.76 75.7% 19.8% 4.5% 8,092,137
ES 16,370.34 71.9% 24.4% 3.6% 42,446,793
FR 25,730.84 65.1% 24.4% 10.5% 55,793,599
HR 6663.01 80.3% 18.3% 1.4% 3,225,726
HU 5474.74 75.6% 23.2% 1.2% 8,332,493
LT 7742.34 81.6% 16.6% 1.8% 2,417,930
Lv 8135.06 80.3% 18.6% 1.2% 1,708,676
PL 6912.37 80.9% 18.2% 0.9% 32,623,207
PT 10,892.61 79.1% 17.7% 3.2% 8,183,986
RO 2850.82 82.4% 17.5% 0.1% 15,991,057
RS 3214.21 74.2% 25.0% 0.8% 5,432,579
SE 29,761.2 77.6% 17.6% 4.8% 7,647,944
SI 13,678.07 73.8% 23.5% 2.7% 1,794,388

Country codes: AT (Austria), BE (Belgium), BG (Bulgaria), EE (Estonia), EL (Greece), ES (Spain), FR (France),
HR (Croatia), HU (Hungary), LT (Lithuania), LV (Latvia), PL (Poland), PT (Portugal), RO (Romania), RS (Serbia),
SE (Sweden), SI (Slovenia).
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Abstract: Additive decomposability is an interesting feature of inequality indices which, however,
is not always fulfilled; solutions to overcome such an issue have been given by Deutsch and Silber
(2007) and by Di Maio and Landoni (2017). In this paper, we apply these methods, based on the
“Shapley value” and the “balance of inequality” respectively, to the Bonferroni inequality index.
We also discuss a comparison with the Gini concentration index and highlight interesting properties
of the Bonferroni index.
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1. Introduction

Carlo Emilio Bonferroni (1930) proposed the inequality index B as an alternative to the Gini index
R, also referred to as the concentration ratio (Gini 1914). For about half a century, B remained
almost forgotten because it was ostracized by Corrado Gini and his followers, who tried to
prevent any measures of inequality from overshadowing the concentration ratio R (Giorgi 1998).
De Vergottini (1950) proposed an interesting and general formula that nests Bonferroni and Gini
indices as special cases.

In the last two decades, B has been revalued and studied for its interesting features. Piesch (1975)
and Nygard and Sandstrom (1981) were the first to investigate B in depth. New and interesting
interpretations and extensions of B have been just recently proposed: its welfare implications have been
studied by Benedetti (1986), Aaberge (2000), Chakravarty (2007) and Barcena-Martin and Silber (2013).
Giorgi and Crescenzi (2001c) proposed a poverty measure based on B, while other socio-economic
aspects have been studied by Barcena-Martin and Olmedo (2008), Silber and Son (2010), Barcena-Martin
and Silber (2011, 2013), and Imedio Olmedo et al. (2012). The Bonferroni index has also been
investigated in fuzzy and reliability frameworks (Giordani and Giorgi 2010; Giorgi and Crescenzi
2001b) and, in particular cases, a Bayesian estimation is followed (Giorgi and Crescenzi 2001a).

An important topic in the literature on inequality measures entails their decomposability. Many
contributions are related to the decomposition of R (for a deep investigation see, e.g., Kakwani 1980;
Nygard and Sandstrom 1981; Giorgi 2011a). Tarsitano (1990) introduced several standard results that
can be used for the decomposition of B, while Barcena-Martin and Silber (2013) derived an algorithm
that greatly simplifies such a decomposition.

Econometrics 2018, 6, 18; doi:10.3390/econometrics6020018 33 www.mdpi.com/journal /econometrics
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In this field, two main lines of research can be distinguished: decomposition by income sources
and by population subgroups. The former has been widely treated, while less attention has been
paid to the latter (Giorgi 2011a). The reason lies in the difficulties we face when trying to additively
decompose (as in the analysis of variance) inequality indices, including R and B. To overcome such a
drawback when R is entailed, Deutsch and Silber (2007) used the so-called “Shapley value”, while
Di Maio and Landoni (2017) suggested the “balance of inequality” (BOI).

In the present paper, we detail how the Bonferroni index can be decomposed using these methods.
We further discuss interesting similarities and differences between R and B and propose a deeper
investigation of some properties of B.

The paper is organized as follows: in Section 2, the main properties of Gini and Bonferroni indices
are discussed. A brief overview on the inequality indices” decomposition is given in Section 3, while
the so-called “Shapley method” and “balance of inequality” (BOI) are detailed in Sections 4 and 5,
respectively. We also extend the BOI to provide a decomposition of B. In Section 6, R and B are
compared on income data drawn from the 2015 Italian component of the European Survey on Income
and Living Conditions (It-SILC). The differences between the two decompositions and the two indices
are highlighted in Section 7.

2. The Gini and the Bonferroni Inequality Index

2.1. The Gini Concentration Index

The Gini concentration ratio (Gini 1914), also referred to as the Gini coefficient or the Gini index,
is probably the most used index to measure inequality in income distributions. Simplicity, fulfillment
of general properties, useful decompositions, the links with the Lorenz curve (Lorenz 1905) and the
mean difference (Gini 1912) are just few of the reasons of its widespread use and longevity (see, e.g.,
Giorgi (1990, 1993, 1998, 1999, 2005, 2011b)).

Among the several ways we may use to define the Gini index (see Giorgi 1992; Yitzhaki 1998), the
most useful, for the present purpose, is

23 x(-1)

“Tw-v, @
0<R<1

23 (N+1) @)

TWN-Dt, (N-1)

where N is the population size, and i is the rank, within the observed population, for the generic
recipient, arranged in non-decreasing income values. Furthermore, x; is the income earned by the i-th
recipient and ¢ty = Zfi 1 X is the total income in the whole population.

The Gini concentration index is linked to the Lorenz curve (Figure 1). In the discrete case, the
Lorenz curve is the polygonal line connecting points with coordinates given by the cumulative
proportion of recipients, arranged in non-decreasing values of income, p; = i/N, and the
corresponding share of income, g; = Z;Zl xj/ty. In the case of perfect equality, the Lorenz curve
corresponds to the egalitarian line. In the case of maximum concentration, the Lorenz curve is defined
by linking coordinate points (0,0), ( %,O), (1,1).
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(0,1) (1,1)

qi

(0,0) pi (1,0)

Figure 1. An example of the Lorenz curve in the continuous case (i.e., N goes to infinity).

The Gini concentration index is equal to the ratio between the Lorenz area—the area between the
Lorenz curve and the egalitarian line—and the Lorenz area in case of maximum concentration—the
area of the triangle defined by the points (0,0), (%,O), (1,1), (Nygard and Sandstrom 1981, pp. 266-71).
As N goes to infinity, the quantity % goes to 1 and the Lorenz area in the case of maximum
concentration approaches 1/2. Then, R is twice the area between the Lorenz curve and the egalitarian

line (Nygard and Sandstrom 1981, p. 240).

2.2. The Bonferroni Inequality Index

Bonferroni (1930) defined the inequality index as a function of partial means:

where 0 < B <1, and
1 1 .
‘u:ﬁi lxi ]’li:?];xj lZl,Z,...,N

™=

denote the general and the partial means for units sorted in non-decreasing order with respect to the
variable of interest, X.!

The B index gives a higher weight to units with lower income (see, e.g., De Vergottini 1950,
pp- 318-19; Pizzetti 1951, p. 302). For this reason, B is more sensitive to lower levels in the distribution
(see, e.g., Giorgi and Mondani 1995).

The Bonferroni index is linked to the Bonferroni curve (Figure 2) which is obtained by plotting
the cumulative proportion of recipients, arranged in non-decreasing values of income, versus the
corresponding ratio between partial mean and total mean (y; /).

1 Inexpression (3) the summation is limited to N — 1 and then divided by N — 1. This formulation is different from the one

used in other papers mentioned in the Introduction (where the summation is up to N the division by N is used). Of course,
increasing N, 1/ (N —1) = 1/N and the last term in the summation is null.
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egalitarian line

(0,1) (1,1)

=|

(0,0) i (1,0)

Figure 2. An example of the Bonferroni curve in the continuous case (i.e., N goes to infinity).

The polygonal line joining the points (p;,u;/ ) is the Bonferroni curve. If all the recipients
in the population have the same income (i.e., equal to p), the Bonferroni curve coincides with the
egalitarian line that joins the coordinate points (0,1), (1,1). If just a recipient owns the total amount of
X, the Bonferroni curve is the broken line joining the points (0,0), (%,0), (%,1).

The value of the Bonferroni index is equal to the ratio between the Bonferroni area—the area
between the Bonferroni curve and the egalitarian line—and the Bonferroni area in the case of maximum
concentration—the area of the quadrangle defined by the points (0,0), (%,O), (%,1), 0,1). As N
goes to infinity, the quantity % goes to 1 and the Bonferroni area in case of maximum concentration
is equal to 1. Then, the value of B coincides with the Bonferroni area (Giorgi and Crescenzi 2001b,
pp- 572-73).

3. A Brief Overview on Inequality Index Decomposition

When we consider the decomposition of inequality indices, two main lines of research can be
distinguished: decomposition by income sources and by population subgroups (for a comprehensive
survey on the subject see, e.g., Giorgi 2011a).

The decomposition by income sources is based on the hypothesis that the total income is the sum
of several components, such as wages, salaries, capital incomes, etc. Therefore, the contribution of each
source to the overall inequality can be identified. The decomposition by income sources is appealing
since the inequality indices can be exactly decomposed into separate components, each one referring
to a given factor. Fields (1979a, 1979b) derived the contribution of each source to R via so called Factor
Inequality Weight (FIW). With slight changes, this method can be adapted to decompose B as follows:

B=

on

Il
-

hjw;B;
]

where y;, hj = p;/p and B; are, respectively, the mean income, the share and the value of B computed
for the j-th factor (see, e.g., Tarsitano 1990, p. 236). The wj is the weight of the j-th source which can be
referred to as the Bonferroni correlation. In fact, it has the same meaning of the Gini correlation in FIW
decomposition. The Bonferroni correlation reflects the degree of concordance between the log-rank
ordering of units with respect to the j-th income source and the corresponding log-rank order for the
total income. In other words, the overall inequality, measured through B, depends on the degree of
inequality in the distribution of each factor (B;), the importance of the factor on the total income (/)
and the amount of agreement between the different rankings (w;).

The decomposition by population subgroups aims at exploring the contribution of individual
features such as age, sex, level of education, geographical area, etc., to total inequality (for a deeper
investigation on this topic seeDeutsch and Silber 1999; Mussard et al. 2006). A first attempt has been
proposed by Bhattacharya and Mahalanobis (1967), who tried to decompose R by subgroups via an
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approach based on the analysis of variance. However, R cannot be additively decomposed into the
sum of between and within components. Mehran (1975) showed that R can be decomposed into the
sum of within and across components. The difference between the across and the between components
is in the interaction component; this is “a measure of the extent of income domination of one group
over the other apart from the differences between their mean incomes” (see also Ferrari and Rigo 1987).
As the concentration ratio R, the Bonferroni index B can be completely decomposed by the sum

of three terms:
B =By + B, + B; 4

where By, is the within component, B, is the between component and B; is the interaction component
that accounts for the degree of overlap between the income distributions in the different subgroups
(for this reason it is also referred to as the overlapping component)?. Therefore, also B cannot be
additively decomposed (see, e.g., Shorrocks 1980).

4. The Shapley Decomposition

Deutsch and Silber (2007) used the Shapley decomposition introduced, in this field, by
Shorrocks (1999), to solve the problem of additive decomposition of R by population subgroups.
They derived the impact of four components: inequality within subgroups (w), inequality between
subgroups (b), ranking (r) and relative size in each subgroup ().

The Shapley decomposition is based on the well-known concept of Shapley value in cooperative
game theory (Shapley 1953). The idea of the Shapley value is to compute the value of a function
considering all the possible combinations of factors. When such a decomposition is applied to
inequality indices, and the factors are considered as symmetrical, it allows to derive the expected
marginal contribution of each factor to inequality. Moreover, the contributions sum exactly to the
amount of the inequality index considered (Shorrocks (1999, 2013)). To decompose B, we consider the
same factors (i.e., w, b, r, n), used by Deutsch and Silber (2007) for R.

Let us assume that a population P is partitioned into | subgroups s; (j = 1,...,]) where
xj; is the income of the i-th recipient (i = 1,...,N;) in subgroup j = 1,...,]. A given
inequality measure I (for instance, R or B) can be seen as a function of the observed incomes,
I :f<x11,..., X1N; - ...,le,...,x]-N/,,..,xn,...,x]N,).

In the general case, we may consider within subgroups inequality (x;; # ;), between subgroups
inequality (y; # p) and differences in both the size among the subgroups (f; # 1/], where f; = %)
and the rank of recipients (r = r;j). Therefore, the overall inequality can be written as a function of
such factors:

I((xi # mj), ( # 1), (f; # 1/)), (r =1i)))

The Shapley decomposition may help us derive the marginal impact of each factor measuring
the difference in the value of the inequality index corresponding to the observed situation and the
reference one, where the income does not change with the factor. Just to give an example, the impact
of within subgroups inequality (w), is derived by comparing the situations where the incomes of
recipients in a given subgroup are different (x;; # p;), to the case when all the recipients in that
subgroup have the same income (x;; = ;). To compute the impact of inequality between subgroups
(b), we compare the case when the mean of incomes is different between subgroups (y; # u) and
the case when the average income is constant across subgroups (y; = ). To obtain j; = p a kind of
standardization is applied and x;; is replaced by x;; %
(n), we compare the case when the subgroups have different sizes ( f] # 1/]) to the case when the sizes
are equal (f; = 1/]). To make the subgroups have the same size, the least common multiple (Icm) is

. To measure the effect of the differences in size

2 For the expressions of By, B, and B in the case of income classes, see Tarsitano (1990), while for the matrix decomposition

of B see Barcena-Martin and Silber (2013).
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calculated for the sizes of the analyzed subgroups and the values x;; are repeated Icm times; this leads
to equality in size between the subgroups. When applying such an approach to B, the objection is
usually raised that B, as opposed to R, does not satisfy the Dalton (1925) principle of being replication
invariant. However, using the simulation study reported in Appendix A, we may show that the effect
of replications becomes negligible for B when the population size is greater than 1000 units. According
to this feature, B can be defined as being an “asymptotically replication invariant’.

Finally, to derive the effect of ranking (r), we compare the case when the recipients are sorted
by their income (r = r,-j) to the case when we first sort the subgroups on the basis of their average
income, 1, and then the recipients by their income within each subgroup (r = r;;).

The marginal impact (SV) of each factor on the generic index I (either R or B) can be derived
by computing the following weighted means of the index when, from time to time, the effect of
components is removed.

SV = %(I —Iw) + L7.[( = Lup) + (In = Twn) + (Ir = Lur)]

©)
i2[(11)71 - Iwbn) + (Ibr - Iwbr) (Iﬂl — Lorn ] + Ibnr Iwhnr)

SVy = 1 (I = Ip) +45[(Lo = Lp) + (In = Ipn) + (I — 1) ]SV ©)
%[(Iw" - Iwhn) + (IZUY - Iwbr) + (Im - Ibnr)} + %(Iwnr - Iwhnr)

SV, = %(I - In) “'%[(I - Iwn) (Ib - Ibn) + (IV - IW)]SV” (7)

+

%[(I b Iwbn) + (Iwr - Iw"f) + (Ibr - Ibnr)] + %(Iwbr - wbnr)
SV = 3= 1) +43[(ko = kor) + (Ip = Ioy) + (In — Lur) SV
+i2[(lwb Iwbr) + (Iw?l - I‘WW) + (Ibn - Ibnr)] + %(Iwbn - Iwbnr)

In expressions (5)-(8) by the subscript of I we denote the factor that has been removed.
For instance, I is the index computed when the component of within inequality (w)
has been removed, that is [, = I((x], = ), (yj #u), (f] #1/]), (r= r,-]-)). Furthermore,
Lope = 1( (x5 = pj), (i = 1), (f; Z1/1), (r =7 )) is the index computed when component of within
inequality (w), between 1nequahty (b) have been removed and the recipients are ranked first by the

average income of the subgroup they belong and then with respect to their income?.

®)

A Numerical lllustration

To illustrate, we consider a population composed by 10 recipients with income 2, 6, 10, 18, 20, 25,
30, 50, 55, and 84. Let us assume that recipients with income 2, 6 and 25 belong to subgroup A, those
with income 10, 20 and 84 to subgroup B and, last, those with income 18, 30, 50 and 55 to subgroup C.

Since this is just an illustrative example of the application of the Shapley decomposition, the
replication invariance principle is overlooked. We should remark that, in some cases, when we remove
w, the corresponding value of B can be negative. It occurs when there is a negative correlation between
mean income and mean rank (Frick and Goebel 2007, p. 10). In fact, in these extreme cases, when
sorting the income distribution in decreasing order, as shown by Rao (1969, p. 245), R is equal to —R,
and the same occurs for B.

Table 1 shows all the scenarios obtained by removing factors separately, in pairs, in set of three
and all together. Furthermore, the corresponding income distribution and the values of R and B are
also presented. We report in Table 2 the marginal contributions for each factor (SV) derived using
expressions (5)—(8).

5 In expressions (5)—~(8), Lyp,» = 0 because all the inequality factors have been removed.
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Table 1. Gini concentration ratio (R) and Bonferroni inequality index (B) in different scenarios according

to factors that have been removed. Illustrative example on the income of 10 recipients from three
different subgroups: A = {2, 6, 25} and B = {10, 20, 84}, C = {18, 30, 50, 55}.

E:?;‘ve'd Income Distribution
R B
1 — 2,6,10,18,20, 25,30, 50, 55, 84 0490 0.609
2w 11,11,38,3825,38, 11, 38.25, 38.25, 38.25, 38 0.151 0252
3 b 545,1636,7.89, 1412, 1579, 68.18, 23.53, 39.22, 43.14, 66.32 0360 0475
s . 2222666610,10,1010,18 18 18,20,20,20,20,25,25,25,25,30,30,30,50, . o
50, 50, 55, 55, 55, 84, 84, 84, 84 ' :
5 r 2,625 10,2084 18,30, 50, 55 0333 0481
6 wb  30,30,30,30,30,30, 30,30, 30, 30, 30, 30 0.000  0.000
> wy 1L ALILILIL LTI 11, 11,38 38 38,3825, 3825, 38.2538,38,38,38, 11, 11,11, | o (oo
11, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25, 38, 38, 38
8  wr 11,11, 11,38, 38 38 38.25, 38.25, 38.25, 38.25 0212 0331
5.45, 5.45, 5.45, 5.45, 1636, 16.36, 16.36, 16.36, 27.27, 7.89, 7.89, 7.89, 14.12, 14.12, 14.12,
9 bn 1579,15.79,15.79, 15.79, 68.18, 68.18, 68.18, 68.18, 23.53, 23.53, 23.53,39.22,39.22, 0334 0466
39.22, 43.14, 43.14, 43.14, 65.88, 66.32, 66.32, 66.32
10 br 5451636, 68.18,7.89, 15.79, 6632, 14.12, 23.53, 39.22, 43,14 0128 0233
H o 2222666602525252510,10,10,10,20,20,20,20, 84, 84, 84,84, 18, 18,18, . (.
30,30, 30, 50, 50, 50, 55, 55, 55
30,30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30,
12 wbn 5030, 30,30, 30, 30, 30, 30, 30, 30, 30 DL e
13 wbr  30,30,30,30, 30,30, 30, 30, 30, 30, 30, 30 0.000 0.000
4w 1LIL1L1111,11,11,11,11,11, 11, 11,38, 35, 35, 35, 38, 38, 38, 38,38,38,38,38, o (..o
38.25, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25, 38.25
5.45, 5.45, 5.45, 5.45, 1636, 16.36, 16.36, 16.36, 68.18, 68.18, 68.18, 68.18, 7.89, 7.89, 7.89,
15 bar 789,1579,15.79, 1579, 1579, 66.32, 66.32, 66.32, 66.32, 14.12, 14.12, 1412, 2353, 0127 0259
23.53, 23,53, 39.22, 39.22, 39.22, 43.14, 43.14, 43.14
6 wpne 30,30,30,30,30,30,30,30, 30, 30, 30, 30, 30, 30, 30, 30,30, 30, 30,30,30,30,30,30,30, 000 0,000

30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30

Note: w = inequality within; b = inequality between; n = size; r = ranking.

Table 2. Marginal impact of factors on Gini concentration ratio (R) and Bonferroni inequality index

(B). Ilustrative example on the income of 10 recipients from three different population subgroups:
A =1{2,6,25}and B = {10, 20, 84}, C = {18, 30, 50, 55}.

Contribution to R Contribution to B

Factor

SV % % %

within inequality 0.230 47.02 0.305 50.07
between inequality 0.176 35.90 0.244 40.13
size 0.005 1.00 —0.007 -1.22
ranking 0.079 16.07 0.067 11.02
Total 0.490 100.00 0.609 100.00

5. The Balance of Inequality Approach

The Balance of Inequality, proposed by Di Maio and Landoni (2017), is an alternative approach
that, as in the Shapley method, helps solve the problem of additive decomposition of R by population
subgroups. They use the center mass (or barycenter) to derive a measure of inequality, thus giving a

physical interpretation to the inequality measure.

The barycenter of the income distribution, in which in abscissa is the income x; and in ordinate is

the ranking minus one (i — 1), is defined by the following expression

):,zil xi(i—1)

b=
R N
Yilq xi
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Tt is equal to (N — 1) /2 in the case of perfect equality, while it is equal to N — 1 in the case of
maximum inequality. Di Maio and Landoni (2017, p. 12) proceeded to normalize the barycenter and
obtained, after a little algebra, the BOI:

i x(i-1)  N-1
}:,{\i] Xj 2
(N—1) - N

BOI =

C2yNiixy N+1

E(N-1) N-1_ ®POT ©

Expression (9) corresponds to the Gini concentration index (1) and, for this reason, we will refer to
expression (9) as ; BOI in the following. They show that  BOI (9), and therefore the Gini concentration
ratio, can be decomposed by considering four factors. Besides those already seen in the previous
paragraph—the inequality within and between population subgroups—BOI helps derive the impact
on the inequality value due to asymmetry and irregularity of subgroups*. A population (or a subgroup)
is symmetrical if the distribution of the analyzed variable is symmetrical with respect to its center.
Furthermore, it is regular if the distance between two adjacent individuals in the population or in the
subgroup is constant. A regular population (or a subgroup) is also symmetrical.

The BOI for the Gini index can therefore be decomposed as

i bei b*l Rb*O It b*0
-y U Y Xj | R
j=1"x 7 j=1 "% 2

ty

/ j
Z?

where ty; is the total income in the j-th subgroup; equivalently, we may define the BOI in the j-th
subgroup via the following expression

(RAE;) Zt—f

2

|: b*l Rb*o 7 [ b *1 Rb*o
2

} (rIE)) (10)

2Zissjkxi N;j+1

RBOL = ¢ (N—1) N1

where k is the rank of the i-th recipient in subgroup j. Furthermore, Rb}*1 = maxi € s; — 1 is the

barycenter of the subgroup in the population in case of perfect inequality, and Rb]’fo = N% Y (i—1)
i€sj

is the barycenter of the subgroup in the population in the case of perfect equality. In this context,

RAE; = RBOI — rBOIZ, , represents the asymmetry effect and RIE; = pgBOI*,  — rBOI; the

irregularity effect where

j sym j sym

1 . 1 :
f(/_Zies/- in*ﬁjZies/-z

BOI' =
R . 1 .
! maleS/*ﬁjZiesjl

is the , BOI index for the j-th subgroup, while

2 mini € s; + maxi € s;
RBOI]*sym = . T 1— / 3 / X;
t"i (maxz € sj —mini € s]-) i'es

is the  BOI index for the j-th subgroup, in the case of symmetrical subgroups.

4 Di Maio and Landoni (2017) consider the asymmetry and the irregularity as a unique factor but, to investigate the differences

between R and B, it could be useful to consider them separately.
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The first component in expression (10) is the weighted average of the within subgroup inequality,
the second is the inequality between subgroups, the third and the fourth are the weighted average of
the effects of asymmetry and irregularity of the distribution in each subgroup, respectively.®

The extension of the BOI methodology to the Bonferroni inequality index (B) requires that we
consider a different representation of the income distribution. Let us consider the couple with the
income on the abscissa and ( ) on the ordinate, where [; = Z 17 Land ):N i = N. The barycenter
of this distribution is

N oy (12h
b= Yiiq%i ( 7 )
pgb=—cy— "
Z, 1Xi
It is zero in the case of perfect equality and equal to (N — 1) /t, in the case of maximum inequality.

Normalizing the barycenter, as before, and using a little algebra we obtain the expression of B in

expression (3).

T xi(1—1h) ) (11)
u(N-1)

This enable us to apply the BOI approach also to B. Expression (11) can be written as

3BOI =

] bei Bb*l b*O ¢ b*O
_ V| BT j txj B B7j

pBOI =) T {N BOI+§1 4
=1 l‘x

tx

+) N ](BIE]-) :

- B
(BAE/) + Z N—1
] tx j tx The

j=1 x

1 0
Lt [07 = g0}
—1 Ix

1
I W{Bb; b0

Equivalently
CR (1 - k)
pBOI; = ==1 N1
K (Nj—1)
Nl Nl
denotes the BOI for the j-th subgroup with size Nj, #; = ¥ x¢/Nj, [y = ¥ % and ) I = N; where
i€s; k=1

k is the rank of recipients in subgroup j. Furthermore,

Al max

where T ] i is the value of I; corresponding to the recipients with the highest income in subgroup
j

sj, and sb#! denotes the barycenter of the subgroup in the population in case of perfect inequality. The

barycenter of the subgroup in the case of perfect equality is

Yies li
%0 __ _ ]
pb0 = (1 N )/

5 For more detail on grBOI see Di Maio and Landoni (2017).
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As above, pAE; = pBOIf — pBOIY,  represents the effect of asymmetry while pIE; =

m
pBOI ]* sym — 8BOJ; denotes the effect of irregularity on B. The BOI index for subgroup s; is equal to
Li Ie\;j li _ Li es; x; I
—
BOIf = — -
BP0 7y es; i max
N; i€ S;

while the BOI index for a symmetrical subgroup is given by

min max
2 i €s; i+ i €s;
] ]
BBOI]*sym = ) Ziesj )
min max
b ( ! z-)

- li Xi .
. i~ .
1 € Sj 1€ S]‘

A Numerical Illustration

Let us consider the same population of 10 recipients we have already discussed in Section 4.
We report in Table 3 the contribution of each factor obtained via the balance inequality approach.

Table 3. Balance of inequality decomposition for the Gini concentration ratio (R) and the Bonferroni
inequality index (B). Illustrative example on the income of 10 recipients from three different population
subgroups: A = {2, 6, 25} and B = {10, 20, 84}, C = {18, 30, 50, 55}.

Contribution to R Contribution to B
Factor
rBOI % gBOI %
within inequality 0.256 52.38 0.365 59.95
between inequality 0.151 30.86 0.252 41.42
asymmetry —0.007 —1.35 —0.025 —4.10
irregularity 0.010 2.05 0.017 2.73
Total 0.490 100.00 0.609 100.00

By looking at this illustrative example, some preliminary results can be derived. In both cases,
the higher contribution to the overall inequality corresponds to the within factor, followed by the
between one and other factors. However, we may observe some differences when comparing the
current decomposition to the Shapley decomposition in Table 2. The impact of between inequality on
R is lower when measured with the BOI (30.86% vs. 35.90%), while the impact of within inequality is
higher (52.38% vs. 47.02%). On the other hand, when we consider B, the values of between inequality
are very similar (41.42% vs. 40.13%), while the difference for the within inequality is substantial
(59.95% vs. 50.07%). For both indices, asymmetry reduces inequality: this issue is more evident when
looking at the decomposition of R rather than the one of B.

6. An Application to the Italian Income Distribution

The Shapley decomposition of the Gini concentration ratio (R) and the Bonferroni index (B) has
been applied to income data collected in 2015 by the Italian component of the European Survey on
Income and Living Conditions (It-SILC, Istat 2015). The Eu-SILC is a yearly survey carried out by
European countries according to the European Regulation n. 1177/2003. Its main aim is to provide
data on income, poverty and social exclusion. The 2015 Italian sample is a two-stage sample of
municipalities, stratified by population size, and households. The sample size is composed by 17,985
household and 36,602 individuals.
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We consider the Italian households as divided into three subgroups, represented by the main
geographical areas: North, Center and South. Table 4 shows some explanatory statistics on the
distribution of household income for the whole population and the subgroups.

The inequality measures have been computed on the distribution of household income.
The incomes have not been equivalized to account for the different households’ size. The values
of R have been estimated using the expression of the sampling estimator defined by Osier (2009,
p- 169), while B has been estimated using the expression of the sampling estimator derived in
Giorgi and Guandalini (2013, p. 154). The BOI values, for R and B, have been computed through a
plug-in estimator.

Looking at Table 4, we observe that R = 0.367 and B = 0.462 for the whole population. North and
Center have quite a similar situation. While in South the incomes are lower, and the inequality is higher.
In the three subgroups, but also at the national level, there is a strong positive asymmetry in the income
distribution. The asymmetry is greater in the South when compared to the other geographical areas.

In Table 5, R has been decomposed using the Shapley decomposition (as shown in Section 4) and
the balance of inequality (as shown in Section 5). As for the Shapley decomposition, it is important to
point out that the sample size for all the subgroups is larger than 4000; therefore, the Dalton principle
of replication invariance can be considered as (at least approximately) satisfied also for B.

The impact of the different factors obtained by the decomposition methods are reported in
Table 5. For each component and decomposition, the corresponding confidence interval, estimated via
nonparametric bootstrap (M = 500 samples), are reported.

The plug-in estimators based on BOI are biased. The bias is negligible for  BOI, while it is more
evident for ;BOI. However, this does not affect the comparison between the decomposition methods
and the two indices, since, in any case, the bias does not change the balance of power between factors
considered obtained via the balance of inequality.

Table 4. Some explanatory statistics on average Italian household income distribution by three
subgroups (North, Center and South). Source: It-SILC, Italy 2015.

Geographical Households Fil’Sf' Median  Mean Thirfi Fisher Asymmetry B
Area Sample Size  Population Size ~ Quartile Quartile Coefficient
North 8922 12,294,699 25,809 39,180 47,621 59,749 4.273 0.346  0.439
Center 4223 5,295,623 23,114 36,459 44,626 56,524 2.379 0.360 0.457
South 4840 8,185,550 16,939 26,617 32,561 40,400 10.861 0.372  0.482
Ttaly 17,985 25,775,872 22,007 34,199 42,223 53,480 5.143 0.367 0.462

Both decompositions identify the within inequality as a very important factor. Under the Shapley
decomposition, it accounts for more than 60% of the whole inequality, both for R and B. Ranking is more
important than between inequality (20% versus 14%), since the subgroups are strongly overlapped.
Finally, subgroup size plays a minor role. Under the Shapley decomposition, the magnitude of factors
is similar for both the analyzed indices. However, when we consider B the impact of within inequality
is higher while that of ranking is lower than for R. The importance of differences among subgroups
in size is negligible when we consider R, since it is population size independent, while the same is
different from zero in B, even if not that high.

Under the BOI decomposition, within inequality accounts for more than 80% of the whole
inequality for both the analyzed indices, even if its role is slightly more evident in R. Unlike the
Shapley decomposition, the two indices show a different “hierarchy” of factors when we look at the
corresponding impact. When we consider R, the most important factor is the within inequality followed
by the between inequality. The contribution of asymmetry and irregularity is almost negligible. On the
contrary, when we look at B, the asymmetry is the most important factor followed by the within
inequality and the irregularity (with a negative sign). Between inequality plays a minor role.

It is important to point out that the combined effect of asymmetry and irregularity has opposite
signs on the two indices (0.55 — 2.07 = —1.52% for R and 89.13 — 78.00 = 11.13% for B). This is probably
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due to the indices’ sensitivity to different levels of the income distribution. As remarked above, B is
more sensitive to lower values (left tail of the distribution), while R is more sensitive to the central
values of the distribution. Moreover, the high value for the impact of asymmetry and irregularity
when we consider B can be due to the asymmetry in the income distribution, as already stated, but also
to an indirect effect of population size. In fact, as opposed to the numerical illustration in Section 5,
the contribution of asymmetry and irregularity to B is higher in the It-SILC data due to the larger
population size and asymmetry.

The two decomposition methods are deeply different. The Shapley decomposition represents a
more general tool which can be used to decompose not only inequality measures and not only by the
four factors we have considered here. It can be modified by considering a different (lower or higher)
number of factors. The BOI is more similar to a standard decomposition approach, since it is less
customizable. In fact it is possible to decompose the index by within inequality, between inequality,
asymmetry and irregularity only.

Table 5. Shapley and Balance of inequality decompositions for the Gini concentration ratio (R) and
the Bonferroni inequality index (B). Application to Italian household income distribution by three
population subgroups (North, Center and South). Source: It-SILC, Italy 2015.

Contribution to R Contribution to B
Factor
Absolute Value % Absolute Value %
Shapley decomposition
within inequality 0.2348 63.99 0.3065 66.30
[0.2281, 0.2415] [62.16, 65.80] [0.2956, 0.3174] [63.94, 68.66]
between inequality 0.0530 14.44 0.0626 13.55
[0.0439, 0.0621] [11.95,16.93] [0.0522, 0.0730] [11.28, 15.80]
. —0.0002 —0.05 0.0090 1.95
size [—0.0037, 0.0033] [—1.00, 0.89] [0.0046, 0.0134] [0.99, 2.90]
ranking 0.0793 21.62 0.0841 18.20
[0.0700, 0.0886] [19.08, 24.13] [0.0757, 0.0925] [16.37,20.01]
0.3670 100.00 0.4623 100.00
Total [0.3568, 0.3772] [0.4505, 0.4741]
Balance of Inequality (BOI)
within inequality 0.3483 94.98 0.4007 81.07
[0.3384, 0.3582] [94.89, 95.02] [0.3908, 0.4106] [79.07, 83.09]
between inequality 0.0239 6.54 0.0385 7.79
[0.0182, 0.0296] [5.11, 7.85] [0.0293, 0.0477] [6.05, 9.65]
asymmetry 0.0020 0.55 0.4405 89.13
[0.0008, 0.0032] [0.24, 0.84] [0.4393, 0.4417] [90.78, 89.36]
irregularity —0.0076 —2.07 —0.3855 —78.00
[—0.0095, —0.0057]  [—2.65,—1.52]  [—0.3874, —0.3836]  [—80.04, —77.62]
0.3668 100.00 0.4942 100.00
Total [0.3566, 0.3770] [0.3908, 0.4106]

Note: Bootstrap confidence interval at 95% in squared brackets.

Some Considerations on the Shapley Decomposition and the Balance of Inequality

The numerical examples and the application to real data show that the two decomposition
methods point out different aspects of the inequality indices. The Shapley decomposition is more
sensitive to the ranking in the income distribution, while the BOI decomposition is more influenced
by the shape of the distribution.

Looking at the behavior of the two indices with respect to the adopted decomposition, it is possible
to draw some interesting conclusions. Since R and B adopt a similar ranking system, we cannot observe
substantial differences when considering the Shapley decomposition; however, since the indices have
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different sensitivity to different portions of the distribution, asymmetry and irregularity often play a
crucial role in the BOI decomposition, and this may lead to different results.

Finally, as using more synthetic indices can help us highlight differences between socio-economic
reality and political significance of inequality (Piketty 2014, p. 156); using more than one decomposition
may help focus on different aspects and factors of inequality.

7. Conclusions and Further Research

An important topic on inequality measures is their decomposability. Two main lines of research
can be identified: decomposition by income sources and by population subgroups. Some indices, such
as the Gini concentration ratio R (Gini 1914) and the Bonferroni inequality index B (Bonferroni 1930)
are not additively decomposable by population subgroups. To overcome this drawback, Deutsch and
Silber (2007) proposed the so-called “Shapley value”, and Di Maio and Landoni (2017) suggested the
“balance of inequality” (BOI) approach to decompose the Gini concentration ratio (R).

In this paper, we have discussed the Shapley decomposition for the Bonferroni inequality index (B).
Furthermore, we also show how the balance of inequality can be extended to B. The two indices have
been estimated on real data from the 2015 Italian component of the European Survey on Income and
Living Conditions (It-SILC) and the two decomposition methods have been considered in this context.

The results of the application highlights that the features of each subpopulation, such as
homogeneity within (denoted by the component of within inequality), and the difference in
subpopulation size, have higher influence on B than on R. Furthermore, B seems to be more sensitive
to asymmetry and irregularity in the observed distribution and the population size.

The two decomposition methods focus on different aspects of the distribution. The Shapley
value reflects the ranking in the income distribution, while the BOI is mainly influenced by the
shape of the distribution. For these reasons, the two indices have a similar behavior under the
Shapley decomposition, as their ranking system is similar, while they may show a completely different
“hierarchy” of factors under the balance of inequality decomposition.

The results of our research also suggest the possibility of supplementing the measure of overall
inequality through indices with different sensitivity to different parts of the income distribution,
trying to answer, at least in part, the possible disadvantages in using a single index (Osberg 2017).
This follows, in our view, the path suggested by Piketty (2014, p. 156). Piketty proposed to use different
indices to account for the differences between socio-economic reality and political significance of
inequality in different parts of the income distribution. In the same way, the use of different kinds of
decompositions can help to focus on different aspects and factors of inequality. In this perspective,
further studies could focus on the extension of the BOI approach to other indices.
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Appendix A

Let us assume to have a population with a vector of income x = (x1,x,x3). Furthermore,
let us assume to repeat a finite number of times the income in x and define a vector y =
(x1,...,%1,%2,..., X2,X3,...,x3). If Ris computed on x and on y, R(x) = R(y), that is, R satisfies the
Dalton principle of replication invariance.

When computing B on x and y, usually B(x) # B(y). Therefore, this is generally intended to
show that B does not satisfy the Dalton principle of replication invariance. However, this holds for
small population sizes (i.e., dimension of x). In fact, it is possible to prove that the difference between
B(y) and B(x) becomes quickly negligible as the population size increases.
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The departure of B from the Dalton principle of replication invariance can be influenced by three
factors: population size, level of concentration and number of replication.

In Table A1, we present the results of a small simulation study. The income for units belonging
to twelve populations which differ by size and level of concentration of the corresponding income
distribution have been generated from a log-normal distribution. We have considered four values for
the population sizes (10, 100, 1000 and 10,000) and three levels of concentration for the corresponding
income: low, medium and high, that is about R = 0.20, 0.50 and 0.80 respectively.

For each population, the B index has been computed. Then, the incomes have been replicated 2,
10 and 100 times and B has been computed also for the populations with the replicated incomes.

Looking at Table A1, it is clear that B does not satisfy the Dalton principle of replication invariance.
In fact, the relative differences the value of B for populations without replicated incomes and for
population with replicated incomes are all non-zero. However, it is possible to note that, generally,
the differences are larger when the replications refer to a population with a higher concentration of
income distribution. Furthermore, increasing the times of replications contributes to increase the
difference between the values of B, while, instead, increasing the population size leads to differences
going quickly to 0. In all the cases, the differences are negligible to the third decimal place when 7 is
greater than 1000. Therefore, it is possible to state that B is asymptotically replication invariant.

Table Al. Values and relative differences of the Bonferroni index (B) computed for a population with
incomes generated by a log-normal distribution and for the same population with incomes replicated 2,
10 and 100 times. For different population sizes (10, 100, 1000, 10,000) and for different concentration of
incomes (R =2 0.20, 0.50 and 0.80).

B Relative Difference
Population Size Number of Replications Number of Replications
No Replication 2 10 100 2 10 100
(a) (b) (c) (d) (b — a)/a (c —a)la (d — a)/a
Low level of concentration (R 22 0.20)
10 0.30789 0.30394 0.30183 0.30147 —0.01285 —0.01971 —0.02085
100 0.29684 0.29692 0.29700 0.29702 0.00025 0.00054 0.00061
1000 0.29289 0.29291 0.29292 0.29292 0.00006 0.00011 0.00012
10,000 0.28858 0.28859 0.28860 0.28860 0.00002 0.00004 0.00004
Medium level of concentration (R = 0.50)
10 0.68310 0.67073 0.66296 0.66145 —0.01812 —0.02949 —0.03170
100 0.64458 0.64382 0.64323 0.64310 —0.00119 —0.00210 —0.00230
1000 0.63418 0.63411 0.63405 0.63404 —0.00011 —0.00019 —0.00021
10,000 0.62732 0.62732 0.62731 0.62731 —0.00001 —0.00002 —0.00002
High level of concentration (R == 0.80)
10 0.94323 0.91843 0.90107 0.89744 —0.02630 —0.04470 —0.04855
100 0.88648 0.88452 0.88298 0.88263 —0.00221 —0.00395 —0.00434
1000 0.88150 0.88131 0.88116 0.88113 —0.00022 —0.00039 —0.00043
10,000 0.87653 0.87651 0.87649 0.87649 —0.00002 —0.00004 —0.00004

References

Aaberge, Rolf. 2000. Characterizations of Lorenz Curves and Income Distributions. Social Choice and Welfare
17: 639-53. [CrossRef]

Barcena-Martin, Elena, and Luis J. Imedio Olmedo. 2008. The Bonferroni, Gini and De Vergottini Indices.
Inequality, Welfare and Deprivation in the European Union in 2000. Research on Economic Inequality 16:
231-57.

Barcena-Martin, Elena, and Jacques Silber. 2011. On the Concepts of Bonferroni Segregation Index Curve.
Rivista Italiana di Economia, Demografia e Statistica 62: 57-74.

Barcena-Martin, Elena, and Jacques Silber. 2013. On the Generalization and Decomposition of the Bonferroni
Index. Social Choice and Welfare 41: 763-87. [CrossRef]

46



Econometrics 2018, 6,18

Benedetti, Carlo. 1986. Sulla Interpretazione Benesseriale di Noti Indici di Concentrazione e di altri. Metron 45:
421-29.

Bhattacharya, N., and B. Mahalanobis. 1967. Regional Disparities in Household Consumption in India. Journal of
the American Statistical Association 62: 143-61. [CrossRef]

Bonferroni, Carlo E. 1930. Elementi Di Statistica Generale. Firenze: Libreria Seber.

Chakravarty, Satya R. 2007. A Deprivation-Based Axiomatic Characterization of the Absolute Bonferroni Index of
Inequality. Journal of Economic Theory 5: 339-51. [CrossRef]

Dalton, Hugh D. 1925. Some Aspects of the Inequality of Incomes in Modern Communities. London: Routledge.

De Vergottini, Mario. 1950. Sugli Indici di Concentrazione. Statistica 10: 445-54.

Deutsch, Joseph, and Jacques Silber. 1999. Inequality Decomposition by Population Subgroups and the Analysis
of Interdistributional Inequality. In Handbook on Income Inequality Measurement. Edited by Silber Jacques.
Boston: Kluwer Academic Publisher, vol. 71, pp. 363-97.

Deutsch, Joseph, and Jacques Silber. 2007. Decomposing Income Inequality by Population Subgroups:
A Generalization. In Research on Economic Inequality: Inequality and Poverty. Edited by Bishop John and
Amiel Yoram. Berlin: Springer, vol. 14, pp. 237-53.

Di Maio, Giorgio, and Paolo Landoni. 2017. The Balance of Inequality: A Rediscovery of The Gini’s R
Concentration Ratio and a New Inequality Decomposition by Population Subgroups Based on Physical
Rationale. Paper presented at Seventh Meeting of The Society for the Study of Economic Inequality (Ecineq),
New York City, NY, USA, July 17-19.

Ferrari, Guido, and Pietro Rigo. 1987. Sulla Scomposizione del Rapporto di Concentrazione di Gini.
In La Distribuzione Personale del Reddito: Problemi di Formazione, di Ripartizione e di Misurazione. Edited by
Zenga Michele. Milano: Vita e Pensiero, pp. 347-63.

Fields, Gary S. 1979a. Income Inequality in Urban Colombia: A Decomposition Analysis. Review of Income and
Wealth 25: 327-41. [CrossRef]

Fields, Gary S. 1979b. Decomposing LDC Inequality. Oxford Economic Papers 31: 437-59. [CrossRef]

Frick, Joachim R., and Jan Goebel. 2007. Regional Income Stratification in Unified Germany Using a Gini
Decomposition Approach. Discussion paper. Berlin, Germany: Germany Institute for Economich Research,
1-32.

Gini, Corrado. 1912. Studi Economico-Giuridici della Facolta di Giurisprudenza della Regia Universita di Cagliari.
In Variabilita e Mutabilita: Contributo Allo Studio Delle Distribuzioni e Delle Relazioni Statistiche. Bologna:
Cuppini, vol. 3.

Gini, Corrado. 1914. Sulla Misura della Concentrazione e della Variabilita dei Caratteri. Atti Del Reale Istituto
Veneto Di Scienze, Lettere ed Arti 73: 120348, English Translation In Metron 2005, 63: 3-38.

Giordani, Paolo, and Giovanni M. Giorgi. 2010. A Fuzzy Logic Approach to Poverty Analysis Based on the Gini
and Bonferroni Inequality Indices. Statistical Methods and Applications 19: 587-607. [CrossRef]

Giorgi, Giovanni M. 1990. Bibliographic Portrait of the Gini Concentration Ratio. Metron 48: 183-221.

Giorgi, Giovanni M. 1992. Il Rapporto di Concentrazione di Gini. Genesi, Evoluzione ed una Bibliografia Commentata.
Siena: Libreria Editrice Ticci.

Giorgi, Giovanni M. 1993. A Fresh Look at the Topical Interest of the Gini Concentration Ratio. Metron 51: 83-98.

Giorgi, Giovanni M. 1998. Concentration Index, Bonferroni. In Encyclopedia of Statistical Sciences. Updated Series;
Edited by Kotz Samuel, Read Campbell B. and Banks David L. New York: Wiley-Intersciences, vol. 2,
pp. 141-46.

Giorgi, Giovanni M. 1999. Income Inequality Measurement: The Statistical Approach. In Handbook on Income
Inequality Measurement. Edited by Silber Jacques. Boston: Kluwer Academic Publishers, pp. 245-60.

Giorgi, Giovanni M. 2005. Gini’s Scientific Work: An Evergreen. Metron 63: 299-315.

Giorgi, Giovanni M. 2011a. The Gini Inequality Index Decomposition, an Evolutionary Study. In The Measurement of
Individual Well-Being and Group Inequality: Essay In Memory Of Z.M. Berrebi. London: Routledge, pp. 185-218.

Giorgi, Giovanni M. 2011b. Corrado Gini: The Man and the Scientist. Metron 69: 1-28. [CrossRef]

Giorgi, Giovanni M., and Michele Crescenzi. 2001a. Bayesian Estimation of the Bonferroni Index in a Pareto-Type
I Population. Statistical Methods and Applications 10: 41-48. [CrossRef]

Giorgi, Giovanni M., and Michele Crescenzi. 2001b. A Look at the Bonferroni Inequality Measure in a Reliability
Framework. Statistica 61: 571-83.

47



Econometrics 2018, 6,18

Giorgi, Giovanni M., and Michele Crescenzi. 2001c. A Proposal of Poverty Measures Based on the Bonferroni
Inequality Index. Metron 59: 3-15.

Giorgi, Giovanni M., and Alessio Guandalini. 2013. A Sampling Estimator of the Bonferroni Inequality Index.
Rivista Italiana di Economia, Demografia e Statistica 67: 151-58.

Giorgi, Giovanni M., and Riccardo Mondani. 1995. Sampling Distribution of Bonferroni Inequality Index from an
Exponential Population. Sankhya 57: 10-18.

Imedio Olmedo, Luis J., Elena Barcena-Martin, and Encarnacién M. Parrado-Gallardo. 2012. Income Inequality
Indices Interpreted as Measures of Relative Deprivation/Satisfaction. Social Indicator Research 109: 471-91.
[CrossRef]

Istat. 2015. Indagine Sulle Condizioni di Vita (UDB IT—SILC). Available online: https:/ /www.istat.it/it/archivio/
4152 (accessed on 4 December 2017).

Kakwani, Nanak C. 1980. Income Inequality and Poverty: Methods of Estimation and Policy Applications. Oxford:
Oxford University Press.

Lorenz, Max O. 1905. Method of Measuring the Concentration of Wealth. Publication of the American Statistical
Association 9: 209-19. [CrossRef]

Mehran, Farhad. 1975. A Statistical Analysis of Income Inequality Based on a Decomposition of the Gini Index.
Bulletin of the International Statistical Institute 46: 145-50, Contributed Paper, 40th Session, Warsaw, Poland.

Mussard, Stéphane, Francoise Seyte, and Michel Terrazza. 2006. La Décomposition de 1'Indicateur de Gini
en Sous Groupes: Une Revue de la Littérature. GREDI Working paper 06-11. Sherbrooke, QC, Canada:
Université De Sherbrooke.

Nygard, Fredrik, and Arne Sandstrom. 1981. Measuring Income Inequality. Stockholm: Almqvist & Wiksell International.

Osberg, Lars. 2017. On the Limitations of Some Current Usages of the Gini Index. Review of Income and Wealth 63:
574-84. [CrossRef]

Osier, Guillaume. 2009. Variance Estimation for Complex Indicators of Poverty and Inequality Using Linearization
Techniques. Survey Research Methods 3: 167-95.

Piesch, Walter. 1975. Statistische Konzentrationsmasse. Tiibingen: J.B.C. Mohr (Paul Siebeck).

Piketty, Thomas. 2014. Capital in the Twenty-First Century. Cambridge: Harvard University Press.

Pizzetti, Ernesto. 1951. Relazioni fra Indici di Concentrazione. Statistica 11: 294-316.

Rao, V. 1969. Two Decompositions of Concentration Ratio. Journal of the Royal Statistical Society 132: 418-25.
[CrossRef]

Shapley, Lloyd. 1953. A Value for N-Person Games. In Contributions to the Theory of Games (AM-28). Edited by
Kuhn Harold W. and Tucker Albert W. Princeton: Princeton University Press, vol. 2, pp. 307-18.

Shorrocks, Anthony E. 1980. The Class of Additively Decomposable Measures. Econometrica 48: 613-25. [CrossRef]

Shorrocks, Anthony F. 1999. Decomposition Procedures for Distributional Analysis: A Unified Framework Based
on the Shapley Value. Essex, UK: Department of Economics, University of Essex.

Shorrocks, Anthony F. 2013. Decomposition Procedures for Distributional Analysis: A Unified Framework Based
on the Shapley Value. The Journal of Economic Inequality 11: 99-126. [CrossRef]

Silber, Jacques, and Hyun Son. 2010. On the Link between the Bonferroni Index and the Measurement of Inclusive
Growth. Economics Bulletin 30: 421-28.

Tarsitano, Agostino. 1990. The Bonferroni Index of Income Inequality. In Income and Wealth Distribution,
Inequality and Poverty. Edited by Dagum Camilo and Zenga Michele. Berlin: Springer, pp. 228-42.

Yitzhaki, Shlomo. 1998. More than a dozen alternative ways of spelling Gini. Research on Economic Inequality 8:

13-30.
® © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

48



VOAN cconometrics ﬁw\b\l’y
— P

Article

Inequality and Poverty When Effort Matters

Martin Ravallion
Department of Economics, Georgetown University, Washington, DC 20057, USA; mr1185@georgetown.edu
Received: 25 August 2017; Accepted: 23 October 2017; Published: 6 November 2017

Abstract: On the presumption that poorer people tend to work less, it is often claimed that standard
measures of inequality and poverty are overestimates. The paper points to a number of reasons to
question this claim. It is shown that, while the labor supplies of American adults have a positive
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1. Introduction

Disparities in levels of living reflect, to some degree, differences in personal efforts. While views
that many people believe that effort plays a role. In a 2014 opinion poll of the American public,
about one third of respondents viewed poverty as stemming from a lack of effort by poor people
while a similar proportion believed that the rich were rich simply because they worked harder
(Pew Research Center 2014). Though it is not often made explicit, it is at least implicit in these views
that the differences in effort reflect differences in personal aversion to work—differences in preferences
over effort versus consumption. In the simplest expression of this view, poor people are deemed to be
poor because they are lazy.

The standard model of consumption-leisure choice does not imply that a person with lower
income will chose to work less, although certain restricted forms of the model do have that property.!
If poorer people do tend to work less, then it is theoretically possible that there is equality of welfare
even when there is considerable inequality based on observed incomes.? While that theoretical
possibility may be dismissed as unlikely, there appears to be a widely accepted view that there is less
inequality and poverty than suggested by observed incomes. For example, Bourguignon (2015, p. 61)
writes that “ ... correcting inequality in standards of living for disparities in hours worked between
households would result in lower estimates of inequality”.

This paper aims to assess the validity of that claim. One can say that “effort matters” in this
context when it affects welfare (negatively) and it varies at given income. The paper explores the
implications for the measurement of inequality and poverty amongst adults.> The starting point is to

As is well known, a source of ambiguity is that there are opposing income and substitution effects of higher wage rates on
labor supply (assuming that leisure is a normal good). Higher unearned income will reduce work effort. The direction of
the relationship with total income is unclear on theoretical grounds.

See, for example, Allingham (1972) comment on Atkinson (1970).

Of course, effort is only one aspect of the debates about inequality numbers; for example, there are also issues about price
indices and equivalence scales. Note also that practitioners are on safer ground in measuring inequality amongst children
for whom personal effort is not yet an issue. Here the concern is about inequality among adults.
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note that some concept of individual welfare is implicit in any assessment of whether one person is
better off than another. This is taken for granted in measuring “real income”, such as when deflating
nominal incomes for cost-of-living differences or adjusting for demographic heterogeneity using
equivalence scales. But it is no less compelling when welfare depends on effort. While there may be
constraints (such as labor-market frictions) on the scope for freely choosing one’s effort, a significant
degree of choice can be exercised by most people. Presumably the reason people who think that income
inequality is largely due to different efforts are not so troubled by that inequality is that they think
there is little or no underlying inequality in welfare; the inequality reflects personal choices.*

The nub of the matter then is that the way inequality is being assessed in practice does not
use a valid money-metric of welfare when effort matters. As long as people care about effort and
it varies, observed incomes do not identify how welfare varies and so they are a questionable basis
for assessing inequality of outcomes or opportunities. Nor is the use of predicted income based on
circumstances (as has become popular in the recent literature on measuring inequality of opportunity)
welfare consistent, as will be explained later. Recognizing that people take responsibility for their
efforts, given their circumstances, leads one to ask how a true money-metric of welfare—reflecting
the disutility of effort—varies. It has long been known that one can in principle measure income in a
welfare-consistent way, as the monetary equivalent of utility.> However, the implications for inequality
are far from obvious. Those who claim that high (low) incomes largely reflect high (low) effort will
expect to see a systematic positive relationship between effort and income, which will attenuate the
welfare disparities suggested by observed incomes, as Bourguignon (2015) claims in the quote above.
Against this view, people in disadvantaged circumstances may be encouraged to make greater effort
to compensate.

However, a key message of this paper is that, when effort matters, these vertical differences in
how effort varies with income are not sufficient to predict the impact on inequality. Alongside the
vertical differences, there is also heterogeneity in work effort at given income, reflecting differences
in (inter alia) wage rates (or skills) and preferences. While there may be a tendency for poorer people
to work less (although that is an empirical question), that is unlikely to always be true; anecdotal
observations can point to both hard working poor people and the “idle rich”. When two people with
the same observed income make different efforts to derive that income, adjusting for the disutility of
effort implies higher inequality between them. This horizontal effect mitigates the systematic effect on
welfare inequality of vertical differences stemming from a positive relationship between income and
mean effort. Heterogeneity in preferences can either magnify this horizontal effect, to the extent that
people who work more value leisure more, or mitigate it, if work and leisure preferences are related in
the opposite way.

A related issue arises in the context of measuring poverty. Here an appealing principle is that one
should set the poverty line consistently with the metric used to assess who is poor. For example, if one
uses total income or consumption expenditure one would not want the poverty line to exclude any
major component of consumption, such as non-food goods.® Similarly, if one allows for the disutility of
work in assessing welfare by adding the imputed value of leisure then one should include an allowance
for leisure as a basic need when setting the poverty line. It would surely make little sense to say that,
on allowing for effort, the poverty rate has fallen if one has used the same poverty line as for observed
incomes ignoring effort.

This is an instance of a more general point that is well understood in welfare economics, namely that inequality of income
need not imply inequality of welfare. Heterogeneity in preferences further complicates matters.

There have been a number of applications of the idea of money-metric utility to distributional analysis, including King (1983),
Jorgenson and Slesnick (1984), Blundell et al. (1988), Apps and Savage (1989), Kanbur and Keen (1989). Also see the
discussions in Slesnick (1998).

The economic arguments for assuring such consistency are reviewed in Ravallion (2016, Part 2).

5
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The upshot is that even if it is in fact true that higher income people tend to work harder it
does not follow that there is less inequality or poverty than observed incomes suggest. The paper
elaborates the above points and illustrates their relevance to assessments of the extent of inequality and
poverty in the U.S. in 2013. To abstract from the thorny issues of setting demographic scales and other
issues of interpersonal comparisons of welfare, the paper focuses on single adults without disabilities.
This could well be biasing the study’s results toward underestimating the effects on inequality measures
of ignoring heterogeneity in effort, on the presumption that allowing for demographic differences
between households would add to the heterogeneity.

The paper’s principle finding is that the claim that inequality and poverty measures are being
overstated given that higher-income workers tend to work more (which is confirmed empirically) is
not robust to allowing for heterogeneity in work effort at given income. Allowing for heterogeneity
consistently with the data and assuming full optimization suggest that there is higher inequality,
though largely among the three or four upper-income deciles. This finding is sensitive to a number of
methodological choices. A seemingly plausible regression-based trimming of the extremes in the data
used to infer the preferences suggests that standard inequality measures are quite robust to adjusting
for effort using welfare-consistent equivalent incomes that respect individual preferences.

Poverty measures are less robust, but the impact of allowing for heterogeneity goes in the opposite
direction to the arguments often made. As long as one includes a modest allowance for leisure in
the poverty bundle—to assure consistency between how the line is measured and how welfare is
assessed—poverty measures rise on adjusting for effort. With the trimmed series, it takes only a very
small allowance for leisure as a basic need to overturn the claim that allowing for effort implies less
poverty in terms of welfare than raw income data suggest.

Three responses can be anticipated. First, the concern identified here applies to any situation
in which income is used to measure welfare, which also depends on personal choices that matter
independently of income. That is true. The present focus is nonetheless justified given that effort
has been so widely acknowledged as a source of inequality that needs to be treated differently to
inequalities stemming from circumstances.

Second, one might be uncomfortable with the welfarist perspective, in which personal utilities
are the basis for judgements about inequality and social welfare. However, it would surely be hard to
defend a view that (on the one hand) people take responsibility for their effort but (on the other hand)
the degree of their effort has no bearing on how their welfare should be assessed. Rejecting the view
that utility is the sole metric of welfare does not justify ignoring the differences in the efforts taken to
make a living.

Third, it may be argued that one can still be justifiably interested in measuring inequality in
terms of incomes, ignoring the disutility of the effort in deriving those incomes. Such inequality is a
well-recognized parameter in how we assess social progress. Without disputing this point, it seems that
measurement practices should take seriously the concerns that have been raised about the relevance of
such measures when efforts and preferences vary. It remains an empirical question just how much
these concerns matter.

The next section discusses how effort has been treated in the literature. Section 3 draws out some
theoretical implications of behavioral responses for measuring inequality of outcomes or opportunities,
allowing better circumstances to either encourage or discourage effort. Section 4 outlines at a simple
parametric model, which is implemented on U.S. data, and discusses the results. A concluding
discussion is found in Section 5.

2. Antecedents in the Literature

It has been argued in some quarters that inequalities stemming from effort do not have the same
ethical salience as those stemming from circumstances beyond an individual’s control. For example,
Checchi and Peragine (2010, p. 430) argue that “ ... existing surveys show that most people judge
income inequalities arising from different levels of effort as less objectionable than those due to
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exogenous circumstances”. This view has influenced social policy making. For example, antipoverty
policies in America and elsewhere have often identified the “undeserving poor” as those who are
judged to be poor for lack of effort.” “Bad behaviors” creating “choice-based poverty” are also
seen by some observers as a source of exaggerated concerns about inequality.® Those who take the
alternative view—that it is really differing circumstances that divide the “rich” from the “poor”—tend
to find the inequality far more troubling, and are more demanding of a policy response. (In the
same PEW Research Center poll mentioned in the Introduction, about 50% of respondents felt that
circumstances/advantages were the main reason for poverty and inequality.)

Prevailing measures of inequality and poverty largely ignore differences in effort. The measures
found in practice treat two people with the same income (or consumption) equally even if one of
them must work hard to obtain that income while the other is idle. Nor are differences in preferences
addressed by standard measures, recognizing that the disutility of effort almost surely depends on
personal circumstances. Thus, there is a disconnection between the social-policy debates on poverty
and inequality and prevailing measurement practices.

While the vast bulk of the applied literature on measuring inequality has ignored effort
heterogeneity, one can find exceptions in three distinct places in the literature. All three will have a
role in this paper’s subsequent analysis.

First, there is the idea of a “potential wage” (Champernowne and Cowell 1998), also called
“full-time equivalent income” and “standard income” (Kanbur and Keen 1989).° I will use the term
“full income”.!® The idea is that one measures income as if every able-bodied adult worked some
standard number of hours, such as a full-time job. Assuming that everyone is free to work as much
or as little as they like, if someone has an observed income below the poverty line but could in
principle avoid this by working full time then she is not deemed to be poor by the full income
approach. (Of course, the welfare interpretation is different if the person is physically unable to work
full time, or is rationed in the labor market such that she cannot find the stipulated standard amount
of work.) While full income is often used in business and labor studies when comparing full-time
and part-time workers, it has only rarely been used in measuring inequality (an example is found
in Salverda et al. 2014). The concept can be useful in quantifying the contribution of different levels of
employment by income group to inequality.

Second, there is a strand of the literature that uses the concept of a money-metric of utility.
An example is the concept of “equivalent income” (King 1983), given by the income that yields the
actual utility level (dependent on the person’s own effort, income and preferences) at fixed reference
values. Unlike full income, this delivers a valid welfare metric.!! Empirical contributions in the
context of labor supply include Blundell et al. (1988) and Apps and Savage (1989). Bargain et al. (2013)
and Decoster and Haan (2015) use somewhat different monetary measures of welfare in making

comparisons across countries.!?

This is an old idea, but in modern times it became prominent in Katz (1987) critique of American antipoverty policy.
See Ravallion (2016, Part 1) on the history of economic thought on antipoverty policy. Also see Gans (1995, chp. 1) discussion
of the history of derogatory labels for poor people.

For example, with reference to the U.S., Stein (2014) argues that: “There is an immense amount of income inequality here
and everywhere. I am not sure why that is a bad thing. Some people will just be better students, harder working, more
clever, more ruthless than other people”. Stein goes on to claim that long-term poverty reflects “poor work habits”. Also see
the debate between Eichelberger (2014) and Williamson (2014) on the proposition that “poor people are lazy”.
Champernowne and Cowell (1998) only give passing reference to the idea, and do not develop its implications.
Kanbur and Keen (1989) discuss its use in the context of inequality and taxation. The concept of “full-time equivalent
income” is found in business and labor studies; see, for example, the online Business Dictionary.

This is not the same concept of full income found in Becker (1965), which includes the imputed value of the entire
time endowment.

This is shown by Kanbur and Keen (1989) in the context of heterogeneous effort though the point is more general.

The measures include Pencavel (1977) real wage metric, given by wage rate equivalent of the actual utility level at fixed
values of other factors, including unearned income, and an analogous “rent metric” given by the unearned income equivalent
of utility. A useful overview of the various measures possible can be found in Preston and Walker (1999). An earlier empirical
application of the real wage index idea can be found in Coles and Harte-Chen (1985).
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The third relevant strand of the literature focuses on inequality of opportunities (IOP). There is a
(rapidly expanding) literature on measuring IOP, giving an explicit recognition of the role of effort
in determining incomes. The usual theoretical starting point is Roemer (1998) argument that income
depends on both circumstances and personal efforts, such as labor supply. (Examples of relevant
circumstances are parental income and parental education.) Income inequalities due to differing
efforts are not seen as having ethical or policy salience although it is arguably a big step to say
that we should not be concerned about inequalities stemming from different efforts if only because
such inequalities today can generate troubling inequalities of opportunity tomorrow. Motivated by
Roemer’s formulation, there have been many attempts to measure IOP.!> However, while “effort”
figures prominently in the theory of IOP, it has been largely ignored in the empirical studies of
IOP. Equality of opportunity is deemed to prevail if observed incomes do not vary with observed
circumstances.'* The main empirical approach to IOP measurement in the literature focuses on an
estimate of the reduced-form equation for income, solving out effort.!> As we will see, the predicted
values from this reduced-form for income as a function of observed circumstances is not a valid
welfare-metric when effort is a matter of personal choice.

3. Inequality of What? Observed versus Equivalent Incomes

In motivating existing measures of income inequality (whether in outcomes or opportunities) one
might start by assuming that utility depends solely on income, and is some inter-personally constant
function of income. Effort may matter for income, but there will be no interior solution for effort;
everyone will work as hard as is humanly possible. While circumstances may still influence a person’s
maximum effort, this model is clearly unrealistic. It is also too simple to capture the way effort has
been widely seen as a matter of personal choice and responsibility in policy debates.

Instead, following the long-standing approach in labor economics, utility is taken to be a function
of effort (denoted x; for person I =1, ... ,n) as well as total personal income (y;), entering negatively
and positively respectively.!® (The relevant income concept for welfare is normally taken to be net of
taxes. Here we can “solve out” taxes by treating them as a function of gross income.) There are two
sources of heterogeneity. The first is in the circumstances relevant to income, denoted c;. Second there
is also heterogeneity in preferences, represented by an indexing of utility functions. We can write the
utility function as u;(y;, x;) while income is:

yi = y(xici) M
The function y is taken to be increasing in both arguments. Define:

i (x;,¢i) = uily(x;, i), %]

Contributions include Bourguignon et al. (2007), Barros et al. (2009), Checchi and Peragine (2010), Trannoy et al. (2010),
Ferreira and Gignoux (2011), Ferreira et al. (2011), Hassine (2012), Marrero and Rodriguez (2012), Singh (2012) and
Brunori et al. (2013). Also see the broader discussions in Pignataro (2011), Roemer (2014), Roemer and Trannoy (2015) and
Ferreira and Peragine (2015).

This is sometimes called “ex-ante” equality; “ex-post” equality requires equal reward for equal effort; see the discussion
in Fleurbaey and Peragine (2013). For example, if someone starting out with a disadvantage in terms of her ability to
generate income can make up the difference by hard work then one would surely be reluctant to say that there is no
remaining inequality of opportunity; while the income difference according to circumstances may have vanished (no ex
ante inequality), the difference in welfare remains (ex post inequality).

This is explicit in Bourguignon et al. (2007), Trannoy et al. (2010) and Ferreira and Gignoux (2011), but implicit in most of
the literature. Ferreira and Peragine (2015) claim that the method has been applied to at least 40 countries.

Effort is bounded, but this is not made explicit for now since attention is confined to interior solutions for effort. (In the
parametric model in Section 4 a time constraint will be explicit.)
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It is assumed that:1”
e (Xi, ;) = UyYsx + Yoty + 2Yxilyx + Uzy < 0

Effort is taken to be a matter of personal choice. The interior solution requires that:

iy (xi, ¢i) = wy (yi, %)y (i, ¢i) + ux(yi, %) =0 2

The chosen effort (solving (1) and (2)) depends on circumstances and preferences, which we can write

as x; = x;(c;).!® The reduced-form equation for income can be written as:!°

yi(ei) = ylxi(ci), el (€}
The corresponding regression specification in the literature typically takes the form:

yi=Po+Pici+¢; 4)

where ¢ is treated as a zero-mean error term uncorrelated with circumstances (E(g;lc;) = 0).
Heterogeneity in preferences is relegated to the error term.?

When measuring inequality (or poverty) we typically aim to assure that the monetary metric
of welfare is “real”, which is normally identified by consistency with a model of utility. This is
implemented using cost-of-living indices and equivalence scales or (more generally) equivalent income
functions. The appeal of welfare consistency is no less obvious when effort matters. We are presumably
concerned with how welfare varies with circumstances. However, on noting that utility is u;(¥;(c;), x;)
it is immediately evident that 7;(c;) is only a valid monetary metric of welfare if effort is constant or
does not matter to welfare. These must be deemed extremely strong assumptions. Similar comments
apply to full income. Re-write (1) in the usual separable form:

y(xi,¢i) = w(c;)x;i + 7(ci) @)

The notation recognizes explicitly that circumstances determine the wage rate and unearned income,
denoted w(c;) and 7(c;) respectively. Suppose that all those working less than the stipulated standard
hours (x°) are able to make up the gap at their current average wage rate; there is no change for those
working at or above x°. Then full income is:

y; = wimax(x*, x;) + 71; (6)

It can be readily shown that y$ is not a valid welfare metric (Kanbur and Keen 1989).2!

Subscripts for person i are dropped in places to simplify the notation. Twice differentiability is assumed when convenient.
Subscripts are used for partial derivatives, in obvious notation. When convenient for the exposition, c and x are treated
as continuous scalars (such as parental income and labor supply respectively), but they are vectors in reality and with
discrete elements.

Notice that this model is static, in that all effort is a current choice. In extending to a dynamic model one might postulate
that there are also current gains from past efforts, which are taken as exogenous to choices about current effort. (An example
is past effort at school versus current labor supply given schooling.)

This is explicit in Bourguignon et al. (2007), Trannoy et al. (2010) and Ferreira and Gignoux (2011), but implicit in most of
the literature.

Of course, in practice ¢ also includes unobserved circumstances and measurement errors. A discussion of the econometric
issues in specifying and estimating Equation (4) can be found in Ramos and Van de gaer (2016).

A similar comment applies to the use of the wage rate as a metric of welfare.
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We are after a money metric of utility, i.e., an income metric for a given person with given
preferences that is a strictly increasing function of that person’s attained utility, as judged by that
person. The required concept is the equivalent income,y;, defined by:

ui(y;, %) = wi(¥i(ci), x;) @)

Thus, the equivalent income is the money income one would need to attain one’s actual utility at
a fixed reference level of effort, X. The implied value of y; is a monotonic increasing function of
utility, although the precise function differs according to idiosyncratic preferences. By this approach,
one measures the income inequality between two people, A and B, by comparing the income that A
needs to attain A’s actual utility, as judged by A’s preferences, with that needed by B, judged by B’s
preferences, when both make the same level of effort. In general, the value of yz‘ will depend on the
choice of the reference level of effort, X. The empirical work will examine sensitivity to that choice.

On inverting the utility function (with the inverse w.r.t. income denoted u~") it is evident
from (7) that:??

v =y  wi (@), xi(e)); %] = filer) ®)
It is readily verified that better circumstances (meaning that y. > 0) yield higher equivalent income.
(Applying the envelope theorem, f. = y uy/uy > 0.)

Whether there is more or less inequality in the equivalent income space than for observed incomes
depends on the properties of the utility function and how both efforts and preferences vary across the
population. We cannot determine the outcome solely by looking at how effort varies with observed
income. One might find that mean effort (forming an expectation over the distribution of the preference
parameters) rises with income, yet the variance in effort and preferences entails higher inequality of
equivalent income than observed income. Indeed, one can readily construct examples in which mean
effort is a non-decreasing function of income but the horizontal heterogeneity in effort at given income
implies unambiguously higher inequality in the welfare space.

To illustrate, suppose that there are three income levels, y = (1, 1,2), with corresponding efforts
x = (0,1,1) and that welfare is y — ax for a preference parameter « with 0 < « < 1. Then the Lorenz
curve for y — ax shifts out relative to that for y for the poorest two-thirds, but is unchanged for the
top third.?® For all measures satisfying the usual transfer axiom, inequality is higher (or no-lower) for
welfare over this range of the preference parameter.”* Higher poverty rates are also possible for some
poverty lines and parameter values; for example, if the poverty line is 0.9 then nobody is income poor
but 1/3 are welfare poor for all « > 0.1.2° While this is only one example, it suffices to disprove that
welfare inequality is necessarily lower than income inequality when richer people tend to work harder.

Since nothing very general can be said in theory, the effect on measured inequality of adjusting
for effort will be treated as an empirical question to be taken up in the next section.

4. An Empirical Analysis

The following example only aims to illustrate the sensitivity of inequality and poverty measures
to addressing the concerns raised above. The empirical example will suffice to show that the kind of
example given above—whereby welfare inequality is even higher than income inequality even when
effort tends to rise with income—can be found in reality. And it will also illustrate that allowing for
effort in a welfare-consistent way implies higher poverty measures. The discussion focuses solely

22
23

In obvious notation and subsuming X in the definition of the equivalent-income function f.

The interior points on the income Lorenz curve, L(p), are L(1/3) = 0.25 and L(2/3) = 0.5, while those for the welfare Lorenz
curve are L(1/3) = (1 — o) /(4 — 2x) < 0.25 and L(2/3) = 0.5. (Note that the two people with lowest incomes are re-ranked
when one switches to the welfare space.)

This claim uses the well-known Lorenz dominance condition (Atkinson 1970).

This assumes a common poverty line; the empirical work will relax this to allow for leisure as a basic need.
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on effort through labor supply. To keep things simple, the utility function is assumed to have the
Cobb-Douglas functional form.

Any direct welfare effects of circumstances that are not evident in income or labor supply are
ignored. This limitation is likely to be especially salient for disabilities and demographic effects
on welfare due to differing numbers of children and family sizes.2® In recognition of this concern,
the analysis here is only done for a specific family type, namely single-person households, and
excludes those with any (self-reported) disability. Thus a number of thorny issues of inter-household
distribution, setting equivalence scales and making inter-personal welfare comparisons between those
with and without disabilities are swept aside for the present purpose.

Data: The data are from the Annual Social and Economic Supplement of the Current Population
Survey (CPS) for the U.S. for 2014 (with reference to incomes for 2013).>” The analysis is confined to
the roughly 6000 single-person households in the 2014 CPS.

Labor supply is measured by average hours of work per week in 2013.28 The mean is 39 h (with a
median is 40 h). The range in hours worked is from nearly zero to 99 h. Table 1 provides some key
summary statistics and Figure 1 plots log hours worked per week in the last year against log total
pre-tax income.?? Mean labor supply for those with an income under $20,000 (the poorest 16%) is 30 h,
while it falls to 26 h for those living under $15,000 (the poorest 8%) (Table 1). We see that mean (log)
labor supply rises with income up to a certain point then levels off for the upper 30% or so (Figure 1).

Table 1. Summary statistics.

% of Income Gap Extra Hours
Income % of Mean Hours of Mean Wage Rate Mean Income Covered by Working l];er V}\"e;[k t‘:l
Cut-off (z) Sample Work per Week (71.) ($/Hour) (@) ($/Week) (7.) Average Huuripir eIac e
Weel (W25 Tow:)  ncome
(1048267 (TVZ)
10,000 4.03 23.66 5.62 119.15 9.44 165.32
15,000 8.31 26.35 7.10 177.20 10.52 122.68
20,000 15.11 29.56 8.26 244.96 9.97 97.25
25,000 22.67 31.64 9.38 304.60 9.61 79.28
30,000 29.66 33.00 10.28 354.90 9.28 67.45
35,000 38.20 34.50 11.40 411.69 8.52 55.84
Median 50.00 35.81 12.92 487.84 7.95 43.38
Maximum 100.00 39.26 24.09 1048.26 n.a. 0.00

Note: The median is $42,010. Means are calculated for all sample points up to z.

2 This relates to the long-standing problem of inferring welfare from observed demand or supply behavior across

demographically heterogeneous households (Pollak and Wales 1979; Browning 1992).
27 The CPS data were accessed through the University of Minnesota’s IPUMS-CPS site.
28 This is obtained by multiplying reported weeks of work in the last year by reported average hours of work per week then
dividing by 52.
Recall that pre-tax income () is the relevant concept in the model in Section 2 in which taxes are solved-out, assuming
that they are some function of y. Also note that the CPS does not ask for taxes paid so imputations of uncertain reliability
are required.
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Log labor supply

Log observed total income

Figure 1. Labor supply plotted against total income for U.S. single adults in 2013. Note:
The regression line is the “nearest neighbor” smothered scatter plot using a locally-weighted
quadratic function. The overall quadratic regression (with White standard errors in parentheses)

is: Inx; = —6.873 + 1.712 Iny; — 0.069 Iny? + &R2 = 0.206; n = 5863.
(0.994)  (0.143) (0.009)

While there is an income gradient in labor supplies, it does not appear to be large enough to
plausibly account for much of the income disparities. For example, the average hourly wage rate
of those with income less than $20,000 is $8.26. Ten hours extra work at this wage rate would only
make up 10% of the gap between the average income of this group and the overall mean income.3
Looked at a different way, this group of workers would have to work almost 100 h per week extra to
reach mean income—equivalent to three full-time jobs. (Table 1 gives these calculations for various
income cut-offs.)

While the income gradient in hours worked based on the regression function in Figure 1 does
not seem especially steep, the pattern suggests that the partial effect of adjusting for effort as forgone
leisure will go some way toward attenuating overall inequality in observed incomes. However, the
large variance in labor supply at given income, especially at middle income levels evident in Figure 1
also comes into play. This “horizontal” effect is inequality increasing.

To see the net effect, consider first the measure of full income in which the standard for labor
supply is set at 39 h. The assumption that the current wage can be maintained is questionable; to make
up the hours, some may well have to switch to lower-paying jobs or incur prohibitively high personal
costs of supplying the extra effort. So this simulation could well over-estimate the impact.

Figure 2 plots the full income against observed income (both in logs). There are some large
proportionate gains, although they are spread through the income range. The first two rows of
Table 2 give inequality measures for observed incomes and the full incomes. The full-time worker
simulation brings down all three inequality measures. Figure 3 gives the Lorenz curves; there is not
strict dominance, although the overlap does not happen until the 98th percentile.

When we come to incorporate effort in a welfare-consistent measure of income, this horizontal
effect will again become important although then it will also interact with preferences. The net effect
on measured inequality is thus an empirical issue to which we turn after describing the parametric
model to be used.

30 The overall mean weekly income of the sample is $1048, while the mean weekly income of those living below $20,000 per
annum is $245.
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Table 2. Inequality measures for U.S. working singles without disabilities.

Income Concept Gini Index Mean Log Deviation (MLD) Robin Hood Index
Observed income 0.402 0.296 0.284
Full income 0.387 0.262 0.275
Equivalent income
without trimming 0.421 0.310 0.299

extreme values
Equivalent income

L 0.385 0.272 0.272
trimming extreme values

Note: Full incomes are calculated by assuming that all those working less than the mean hours of 39 per week were
to work those hours at the same wage rate as at present. The equivalent incomes are explained in the text. The Gini
index is half the average absolute difference between all pairs of incomes, expressed as a proportion of the mean.
MLD is given by the mean of the log of the ratio of the overall mean income to individual income. Robin Hood
index is the maximum vertical difference between the diagonal and the Lorenz curve, interpretable as the fraction
of total income that one would need to take away from the richer half and give to the poorer half to assure equality.

Log full income

Log observed income

Figure 2. Plot of full incomes against observed incomes. Note: The full incomes are calculated by
assuming that all those working less than average hours were to work average hours at the same wage
rate as at present.

— Observed incomes
0.9 ~-—- Fullincomes
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Figure 3. Lorenz curves for observed incomes and “full-employment” incomes.
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Parametric model: In implementing an empirical model of income as a function of circumstances
and effort the literature has often assumed a functional form that is additively-separable between effort
and circumstances. However, it would clearly be questionable to assume that the marginal returns
to circumstances are independent of effort. Indeed, in thinking about the economics one is drawn
to postulate that the returns to effort (the wage rate when effort is simply labor supply) depend on
circumstances—creating a natural interaction effect.

To consider the implications further, let us again write Equation (1) in the form of Equation (5).
The values of w(c;) and 7t(c;) are the key parameters of effort choice. There are many possible
assumptions one might make about preferences, and the results may well depend on the choice made.
For the purpose of this example, a simple Cobb-Douglas representation is assumed, such that effort
maximizes a utility function of the form:

u(yi, xi, ;) = Iny; + o In(t — x;) )

where £ is the total time available (so that ¢ — x; is leisure time). The heterogeneity in preferences is
taken to be fully captured by the differences in the a;’s. The (log) equivalent income is:

t—xi
t—f) 10

Iny; =1Iny; +1Jziln<

Note that y} > (<)y; as x; < (>)%. Optimal labor supply requires a; = w(c;)(t — x;) /y;; the latter is
called here the leisure ratio (the ratio of the imputed value of leisure to income). Mean labor supply of
39 h per week is used as the reference, though sensitivity to this choice is discussed below.

Comparison of the empirical income inequality measures: There are a number of possible scenarios
of interest for the parameters and data. It may be expected that the presence of the relatively few low
labor supplies in Figure 1 will exaggerate the extent of inequality in equivalent incomes. To address this
concern the following analysis is restricted to those households who worked for money at least one day
(8 h) per week on average over 2013. This cuts out about 200 households.3! The available time for work
or leisure is set at 100, leaving out about 10 h per day. This seems reasonable.

In allowing the preference parameter to vary, one possibility is to assume that everyone in the
survey has freely chosen their ideal labor supply, and to set a; = w(c;)(t — x;) /y; for all i. Results are
given for this case, but it is questionable given the existence of labor-market frictions, whereby some
survey respondents had too little leisure, and some too much, relative to their ideals. Setting the
parameter to accord exactly with the leisure ratios in the survey data may be considered to produce
an implausibly large variance. The spread of leisure ratios is evident in Figure 4. While the spread of
empirical leisure ratios undoubtedly reflects labor-market frictions, measurement errors are also likely
to be playing a role.

As an alternative, some degree of smoothing of the empirical leisure ratios is considered. For this
purpose, the idiosyncratic preferences are set at the predicted values based on a regression of
In[w(c;)(t — x;)/y;] on a quadratic function of the log wage rate, log unearned income (+$1) (with their
interactions) and a vector of observed circumstances from the CPS related to gender, age, race, place of
birth, whether parents were born in the U.S. (Unfortunately, the data source does not include other
information about parents, such as their education.) Age enters as the deviation from the median of
49 years. The left-out group for the dummy variables comprises white, native-born, males of 49 years
of age with parents born in the U.S.; 25% of the sample is in this group. The Appendix A Table A1l
gives the regression for the leisure ratio. Figure 4 gives the densities of the predicted leisure ratio,
showing how this trims the extreme values.

31 As noted, those reporting any disability affecting work or any difficulty (seeing, hearing, remembering, mobility, personal

care) are excluded from the main analysis reported here. 5% of the sample reported a disability affecting their work.
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Figure 4. Kernel densities of the log leisure ratio.

We can now calculate the equivalent incomes. Figure 5 gives the kernel density functions for log
observed income and log equivalent income, using both the actual leisure ratios and the trimmed
ratios (using the aforementioned predicted values). Using the trimmed preferences, the effect of the
adjustment for effort is to attenuate both tails, and bring the mode down slight. Without the trimming
(using actual leisure ratios) we only see the attenuation at the bottom tail (roughly speaking implying
less poverty), though we still see the fall in the mode.

8 4
—— Observed incomes
7 | —— Equivalentincomes (predicted leisure ratios)
—— Equivalentincomes (actual leisure ratios)
6 - 2
5 4
2
2 44
@
a
3 4
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Log income

Figure 5. Kernel density functions for log incomes.

The effect of trimming the extremes in the preference parameter can be seen in Figure 6, which
plots (log) equivalent income using the predicted leisure shares against those using the actual shares.
As expected (based on Figure 4) there is a marked increase in the variance, especially around the
middle. The Gini index rises to 0.421 (Table 2).
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Figure 6. Effect of trimming the preference parameters.

Figure 7 plots log equivalent income (using predicted leisure ratios) against log observed income.
The Figure also gives the regression lines, which have slopes that are significantly less than unity.>
In other words, the adjustment for effort tends to raise (lower) equivalent incomes for the poor (rich).
Equivalent incomes are also highly correlated with full incomes, again using a full-time job as the
standard; in logs one finds that r = 0.924.

14 __Equal
#~ __Regression

Log equivalentincome

4 T T T T T
5 6 7 8 9 10 11 12 13 14
Log observed income

Figure 7. Plot of log equivalent income against log observed income. Note: Equivalent incomes based
on predicted leisure ratios.

Table 2 also provides the same inequality indices for equivalent incomes and Figure 8 gives the
Lorenz curves. On adjusting for effort without trimming the extremes of the preference parameters, the
variance in the latter generates a marked outward shift in the Lorenz curve for the upper half; for the
lower half the Lorenz curves are virtually indistinguishable, although there is not Lorenz dominance
(so the ranking is not robust to the choice of inequality measure). The level of inequality falls when one
adjusts for effort using the trimmed preference parameters. However, the effect is clearly very small.

32 The regression coefficient is 0.856 (White s.e. = 0.006).
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Figure 8. Lorenz curves for observed and equivalent incomes.

As already noted, the choice of reference alters equivalent income. Lowering (increasing) the
reference level of effort increases (reduces) measured inequality. For example, using X = 30 h per
week (instead of the mean of 39) yields a Gini index for the equivalent incomes with trimming of 0.389.
Using ¥ = 50 h per week one gets a Gini index of 0.378.

Poverty measures: Table 3 gives poverty rates based on observed incomes for two illustrative
income poverty lines, namely $15,000 and $20,000 per year. The poverty rates are 8% and 17%
respectively. The table also gives the poverty rates using full income and equivalent income (with and
without the trimming). Using the same nominal line, the poverty rates fall by similar amounts for full
income and equivalent income without trimming, but bounce back to values very close to those for
unadjusted incomes when the data are smoothed.

Table 3. Poverty measures for U.S. working singles without disabilities.

Income Poverty Line

$15,000 $20,000
Observed income 0.083 0.165
Full income 0.046 0.115
Equivalent income without trimming extreme values
No basic need for leisure 0.045 0.103
Basic need = 10 h/week 0.081 0.155
Basic need = 20 h/week 0.129 0.216
Equivalent income trimming extreme values

No basic need for leisure 0.082 0.158
Basic need = 10 h/week 0.133 0.219
Basic need =20 h/week 0.191 0.283

Note: The basic need for leisure is valued at $7 per hour. The poverty lines allowing for a basic need for leisure of
10 h per week are $18,640 (for the $15,000 income poverty line) and $23,640 (for $20,000). Allowing for a basic need
for leisure of 20 h per week the corresponding lines are $22,280 and $27,280. (Also see notes to Table 2.)
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However, to calculate poverty rates based on equivalent incomes it is compelling to adjust the
poverty line consistently with that metric of welfare (as discussed in the introduction). Table 3 also
gives poverty rates for two indicative allowances for leisure as a basic need, namely 10 and 20 h per
week, each valued at $7 per hour (the average wage of those with incomes under $15,000 per year).
These are not particularly generous allowances; on average (in 2015), the U.S. population over 15 years
spent 36 h per week in leisure activities (Bureau of Labor Statistics 2016). So the figure of 20 h is only
a little more than half the mean. However, while these choices can be questioned, the aim here is to
assess sensitivity to allowing for leisure as a basic need. Using the unsmoothed data, one finds that
even a seemingly modest allowance for leisure as a basic need of a little over 10 h per week is enough
to obtain higher poverty rates using equivalent incomes; at a basic need of 20 h of leisure per week, the
poverty rates rise to 26% and 35% for basic lines of $15,000 and $20,000 respectively. For the smoothed
data, even a very small allowance for leisure of two hours per week is sufficient to yield a higher
poverty rate for equivalent incomes than observed incomes.33

Covariates of income: To throw some light on implications for the structure of inequality and
poverty, Table 4 gives regressions of log observed income and log equivalent income (with and
without trimming the preference parameters using the predicted leisure ratios) against the same
set of variables describing circumstances used in predicting the leisure share. The regressions are
very similar. The female income differential is halved when one adjusts for labor supply, though it
remains significant.3* There are small differences in the effects of race and place of birth.*> Some of
these effects may well be confounded by differences in unemployment rates by gender or race, and
labor-market discrimination.

Table 4. Testing for inequality of opportunity for U.S. working singles without disabilities.

@ (2) (3)

Log Equivalent Income Log Equivalent Income

Log Observed Income (Predicted Leisure Ratios) (Actual Leisure Ratios)
Coeff. s.e. Prob. Coeff. s.e. Prob. Coeff. s.e. Prob.
Constant 10.842 0.019 0.000 10.727 0.019 0.000 10.847 0.018 0.000
Female —0.107 0.021 0.000 —0.053 0.020 0.007 —0.054 0.019 0.005
Age-49 * 0.007 0.001 0.000 0.008 0.001 0.000 0.008 0.001 0.000
(Age-49) squared * 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.057
Race: Black —0.224 0.026 0.000 —0.182 0.024 0.000 —0.189 0.024 0.000
Race: Black mixed —0.142 0.117 0.223 —0.083 0.105 0.427 —0.108 0.109 0.321
Race: Am. Indian —0.261 0.086 0.002 —0.227 0.079 0.004 —0.221 0.081 0.007
Race: Asian 0.152 0.069 0.028 0.149 0.063 0.019 0.198 0.065 0.002
Race: Other —0.083 0.097 0.389 —0.106 0.087 0.225 —0.103 0.089 0.251
Hispanic —0.162 0.037 0.000 —0.134 0.036 0.000 —0.127 0.034 0.000
Born US Oth.Terr. —0.138 0.247 0.577 —0.145 0.223 0.514 —0.284 0.206 0.168
Born Central Am. —0.724 0.197 0.000 —0.668 0.176 0.000 —0.667 0.157 0.000
Born Caribbean —0.435 0.203 0.032 —0.430 0.183 0.019 —0.474 0.166 0.004
Born S. America —0.311 0.215 0.149 —0.342 0.196 0.082 —0.438 0.178 0.014
Born N. Eur. 0.229 0.235 0.331 0.186 0.209 0.375 0.066 0.192 0.731
Born Western Eur. —0.052 0.276 0.850 —0.118 0.248 0.633 —0.120 0.241 0.618
Born C-East Eur. —0.249 0.206 0.226 —0.300 0.184 0.103 —0.410 0.163 0.012
Born East Asia —0.314 0.212 0.139 —0.284 0.190 0.134 —0.309 0.175 0.078
Born SE Asia —0.548 0.228 0.016 —0.594 0.212 0.005 —0.655 0.191 0.001
Born SW Asia —0.143 0.226 0.526 —0.210 0.213 0.326 —0.299 0.186 0.108
Born Middle East 0.096 0.267 0.719 —0.021 0.246 0.932 0.088 0.244 0.717
Born Africa —0.185 0.204 0.365 —0.283 0.185 0.127 —0.302 0.171 0.077
Foreign born 0.260 0.187 0.165 0.289 0.167 0.084 0.332 0.148 0.025
Foreign: Dad 0.106 0.059 0.073 0.087 0.056 0.117 0.083 0.058 0.152

33 With two hours per week of leisure the poverty rate using the smoothed data is 9.1% using the $15,000 income line and

16.9% using $20,000.
34 The data do not include work done within the home, though this is probably similar by gender in the sample of single adults.
35 For example, the negative income effects of being born in South America or Center-Eastern Europe become somewhat larger
(and statistical significant) using equivalent incomes based on the actual leisure ratios.

63



Econometrics 2017, 5, 50

Table 4. Cont.

@ (2) (3)

Log Equivalent Income Log Equivalent Income
Log Observed Income (Pre:giic?ed Leisure Ratios) (Az(c;tugl Leisure Ratios)
Coeff. s.e. Prob. Coeff. s.e. Prob. Coeff. s.e. Prob.
Foreign: Mom 0.158 0.074 0.034 0.173 0.062 0.006 0.228 0.068 0.001
Foreign: Both 0.132 0.056 0.018 0.119 0.051 0.020 0.087 0.050 0.083
N 5633 5633 5633
R? 0.088 0.077 0.068
S.E. of regression 0.750 0.714 0.698
Mean dep. var. 10.610 10.569 10.724
F-statistic 21.740 18.600 16.373
Prob (F-statistic) 0.000 0.000 0.000

Note: White standard errors (s.e.). * coefficients scaled up by 100.

5. Conclusions

One often hears that high incomes are simply the reward for greater effort, and poverty reflects
laziness, with the implication that there is less inequality and poverty than we think. Accepting that
effort choice is a key factor in assessing inequality and that richer people tend to work more, this paper
has shown that it is far from obvious that allowing for the disutility of effort implies less inequality
or poverty.

If one takes seriously the idea that effort comes at a cost to welfare then it is clear that prevailing
approaches are not using a valid monetary measure of welfare. While this much is obvious enough, the
likely heterogeneity in effort must also be brought into the picture. Then the distributional outcome is
far from obvious. It may be granted that average effort rises with income, but there is also a variance
in effort at given income. The implications for measuring inequality and poverty stem from both the
vertical differences (in how mean effort varies with income) and the horizontal differences (in how
effort varies at given income).

It is unclear on a priori grounds what effect adjusting for effort in a welfare-consistent way will
have on standard measures. There are both empirical and conceptual issues. The implications for
measurement of taking effort seriously depend crucially on the behavioral responses to unequal
opportunities, and not all of those responses are readily observable. Measures with a clearer
welfare-economic interpretation call for data on efforts, for which existing surveys are limited to
a subset of the dimensions of effort.

While acknowledging these limitations, the paper has provided illustrative calculations for
American working singles without disabilities. A positive income gradient in labor supply is evident
in the data. This gradient accounts for very little of the income gap between the poorest third (say)
and the overall mean. The fact that poorer workers work less appears to contribute rather little to
overall inequality in observed incomes. However, the considerable heterogeneity in effort at given
incomes imparts a large horizontal element to inequality measures that adjust for effort consistently
with behavior. On calculating distributions of welfare-consistent equivalent incomes to allow for this
heterogeneity, the paper finds higher measures of inequality than for observed (unadjusted) incomes.
Contrary to the common view, the prevailing practice of ignoring differences in effort understates
inequality. It can be acknowledged, however, that some of the apparent heterogeneity in leisure
preferences seen in the data is deceptive given likely rationing and measurement errors. When one
smooths using predicted leisure shares based on covariates one finds a modest drop in the measured
levels of inequality on adjusting for effort. Adjusting for effort does not appear to make much difference
in the structure of inequality, as indicated by regressions using a set of circumstances related to gender,
age, race and place of birth.

The implications for measures of poverty depend crucially on whether one sets the poverty
line consistently with the welfare metric. If one does not do so, then poverty rates are lower using
equivalent incomes although this essentially vanishes when one smooths the data. However, these
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comparisons are arguably deceptive since one is not setting the poverty line consistently with how one
is assessing welfare. To correct for this, one needs to include a normative allowance for leisure as a
basic need in setting the poverty line. On introducing even a modest allowance valued at a low wage
rate, one finds higher poverty rates when one adjusts for effort. If half the average amount of leisure
taken by American adults is deemed to be a basic need then the poverty rate based on equivalent
incomes, adjusted for effort, is nearly twice as high as that based on observed incomes.

Whether one accepts all the assumptions underlying these calculations is an open question.
However, it is clear from this study that it should not be presumed that allowing for effort in a way
that is broadly consistent with behavior would substantially attenuate the disparities suggested by
standard data sources on income inequality or poverty.
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Appendix A

Table Al. Regression used to predict the leisure ratio to trim the extremes in allowing for
idiosyncratic preferences.

Log Leisure Ratio

Coeff. SE Prob.
Constant 0.256 0.056 0.000
Log wage rate 0.150 0.031 0.000
Log wage rate squared —0.046 0.005 0.000
Log unearned income (+1) —0.073 0.009 0.000
Log unearned income squared —0.007 0.001 0.000
Log wage x log unearned income 0.036 0.002 0.000
Female 0.087 0.015 0.000
Age-49 * 0.000 0.058 0.992
(Age-49) squared * 0.024 0.003 0.000
Race: Black 0.075 0.019 0.000
Race: Black mixed 0.087 0.084 0.303
Race: American Indian 0.061 0.066 0.355
Race: Asian 0.020 0.052 0.705
Race: Other —0.008 0.058 0.885
Hispanic 0.063 0.026 0.015
Born US Other Territories —0.114 0.152 0.452
Born Central America 0.037 0.123 0.762
Born Caribbean —0.042 0.128 0.746
Born South America —0.107 0.138 0.438
Born Northern Europe —0.161 0.164 0.325
Born Western Europe —0.108 0.153 0.480
Born Central or Eastern Europe —0.126 0.136 0.352
Born East Asia 0.036 0.136 0.789
Born SE Asia —0.055 0.142 0.698
Born SW Asia —0.144 0.150 0.337
Born Middle East —0.136 0.170 0.423
Born Africa —0.174 0.133 0.192
Foreign born 0.084 0.116 0.472
Foreign: Dad —0.028 0.048 0.569
Foreign: Mom 0.023 0.051 0.660
Foreign: Both —0.042 0.039 0.282

N 5633

R? 0.122

S.E. of regression 0.529

Mean dep. var. 0.348

F-statistic 25.962

Prob (F-statistic) 0.000

Note: White standard errors (SE). * coefficients scaled up by 100.
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Abstract: This paper provides a detailed exposition of an extension of the Oaxaca-Blinder
decomposition method that can be applied to various distributional measures. The two-stage
procedure first divides distributional changes into a wage structure effect and a composition effect
using a reweighting method. Second, the two components are further divided into the contribution
of each explanatory variable using recentered influence function (RIF) regressions. We illustrate the
practical aspects of the procedure by analyzing how the polarization of U.S. male wages between the
late 1980s and the mid 2010s was affected by factors such as de-unionization, education, occupations,
and industry changes.
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1. Introduction

The ongoing growth in wage inequality in the United States and several other countries over
the past thirty-five years has generated a resurgence of interest for distributional issues and methods
to analyze these issues. There is also a sizeable literature looking at wages differentials between
subgroups that goes beyond simple mean comparisons. More generally, there is increasing interest
in distributional impacts of various programs or interventions. In all these cases, the key question of
economic interest is which factors account for changes (or differences) in distributions. For example,
did wage inequality increase because education or other wage setting factors became more unequally
distributed, or because the return to these factors changed over time?

In response to these important questions, several decomposition procedures have been suggested
to untangle the sources of changes or differences in wage distributions. In Fortin et al. (2011),
we reviewed the traditional Oaxaca-Blinder (OB) decomposition method and several of its extensions
in the context of the treatment effect literature to highlight the advantages and disadvantages of
different methodologies. The goal of the current paper is to provide a detailed and updated exposition
of an extension to the OB decomposition that relies on recentered influence function (RIF) regressions
(Firpo et al. 2009) [FFL, thereafter] to estimate the effect of covariates on inequality measures, such
as percentile differences and ratios, the variance of log wages, or the Gini coefficient.! Relative to
several procedures proposed recently (Machado and Mata 2005; Melly 2005; Chernozhukov et al. 2013)
[CEM, thereafter], this method has the advantage of allowing general distributional measures to be

1 Recentered influence functions have since been derived for a host of inequality measures by Essama-Nssah and Lambert (2012).
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decomposed non-sequentially in the same way means can be decomposed using the conventional
OB method. The methodology has been applied in a number of different settings where the object of
interest is the unconditional distribution of outcomes.?

As is well known, the OB procedure provides a way of: (1) decomposing changes or differences in
mean wages into a wage structure effect and a composition effect; and (2) further dividing these two
components into the contribution of each covariate. The main problem with sequential decomposition
methods is that they cannot be used to divide the composition effect into the role of each covariate in a
way that is independent of the order of the decomposition. Thus, while it is natural to ask to what
extent changes in the distribution of education have contributed to the growth in wage inequality,
this particular question has not been answered in the literature for lack of available decomposition
methods. In contrast, this question is straightforward to answer in the case of the mean using a
OB decomposition.

In this paper, we focus on a two-stage procedure that can be used to perform OB type
decompositions on any distributional measure, and not only the mean. The first stage consists of
decomposing the distributional statistic of interest into a wage structure and a composition component
using a reweighting approach, where the weights are either parametrically or non-parametrically
estimated. As in the related program evaluation literature, we show that ignorability and common
support are key assumptions required to identify separately the wage structure and composition
effects. Provided that these assumptions are satisfied, the underlying wage setting model can be as
general as possible. The idea of the first stage is thus very similar to DiNardo et al. (1996). Here,
we clarify the assumptions required for the identification of distributional statistics besides the mean
by drawing a parallel with the program evaluation (treatment effect) literature.

In the second stage, we further divide the wage structure and composition effects into the
contribution of each covariate, just as in the usual OB decomposition. This is done using the
regression-based method proposed by FFL to estimate the effect of changes in covariates on any
distributional statistics such as inter-quartile ranges, the variance, or the Gini coefficient.

The method developed in FFL replaces the dependent variable of a regression by the
corresponding recentered influence function (RIF) for the distributional statistics of interest.
The influence function, also known as Gateaux (1913) derivative, is a widely used concept in robust
statistics and is easy to compute. Using the fact that the expected value of the influence function is
equal to zero and the law of iterated expectations, we can express the distributional statistic of interest
as the average of the conditional expectation of the RIF given the covariates. As in FFL, we call these
conditional expectations RIF-regressions.

Average derivatives computed using the RIF-regressions yield the partial effect of a small location
shift in the distribution of covariates on the distributional statistic of interest. FFL call this parameter
Unconditional Partial Effect (UPE), which for the special case of quantiles become the Unconditional
Quantile Partial Effect (UQPE). By approximating the conditional expectations by linear functions,
the coefficients of these RIF-regressions indicate by how much the functional (e.g., the quantile) of the
marginal outcome distribution is affected by an infinitesimal shift to the right in the distribution of
the regressors.

Because the UPE parameter corresponds to the effect of infinitesimal shift in the distribution
of regressors, it approximates well small changes in that distribution, but not necessarily large
changes. For known changes in the distribution of covariates (e.g., between two time periods),
one can easily compute the associated total change in the functional of the outcome distribution

Eeckhout et al. (2014) compare the CFM approach to the RIF-regressions approach to decompose the skill distributions
across large and small cities in terms of education, occupations, and industries, focusing on the bottom and top decile.
Bento et al. (2017) provide a useful comparison of local kernel regressions, conditional quantile regressions, and RIF
regressions in the context of a Monte-Carlo simulation of the effect of fuel economy standards on the distribution of
vehicle weight.
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of interest. Rothe (2012) proposes statistical inference for that case.> Both Rothe (2012) and CFM
compute the conditional CDF (cumulative distribution function) of the outcome given covariates in
the first step. This adds a computationally intensive layer of estimation, since one needs to calculate
the entire conditional CDF, even if only interested in one single quantile of the marginal outcome
distribution. By contrast, our approach requires only one OLS regression, which is very attractive from
a computational standpoint. Finally, even though we end up performing bootstrap-based inference in
our empirical application, we show in the Appendix B that the analytical formulas for the standard
errors of the reweighting estimates can be derived.

The main advantage of using the RIF-regression method in a Oaxaca-Blinder type decomposition
is that it provides a linear approximation of highly non-linear functionals, such as the quantiles or
the Gini coefficient. Nevertheless, its simplicity comes at a cost. As pointed out by Rothe (2015),
the impact of changes in the distribution of covariates on some non-linear functionals may be poorly
approximated by RIF-regressions. Thus, approximation errors are a by-product of the method and
they should always be reported in the decomposition results, as we do in our empirical analysis below.

We illustrate how our procedure works in practice by looking at changes in the distribution
of male wages in the United States between the late 1980s and the mid 2010s. This period is quite
interesting from a distributional point of view as inequality increased in the top end of the wage
distribution, but decreased in the low end of the distribution, a phenomenon that Autor et al. (2006)
referred to as the polarization of the U.S. labor market. We use our method to investigate the source of
change in the wage distribution by decomposing the changes at various wage quantiles. The results
indicate that no single factor appears to be able to fully explain the polarization of the wage distribution.
De-unionization accounts for some of the decreasing wage inequality at the low end and increasing
inequality at the top end. The continuing growth in returns to education, especially at a level
above high school, is the most important source of growth in top-end inequality. Changes in the
occupational structure of the workforce helps account for the polarization of wages, but these wage
changes are mostly offset by changes in the effect of industry at the upper end of the distribution.
This explains why, despite convincing evidence that the “routinization of jobs” had substantial impact
of the polarization of employment, its effects of wage polarization has been more difficult to identify
directly (e.g., Autor and Dorn 2013). Our results suggest that the wage decline in “routine occupations”
(Autor et al. 2003), such as production jobs in the manufacturing sector, has been compensated by
increases in the primary sector (e.g., mining, oil and gas, etc.), the distribution sector (transportation
and wholesale) and in the services sector. Potentially offsetting effects underline the need for the
proposed approach that can “run horse races" between different sets of factors. However, increases at
the lower end appear to be attributable to changes in minimum wages, which we do not model here.*

The remainder of the paper is organized as follows. Section 2 discusses the decomposition
problem and reviews the strengths and weaknesses of existing procedures. The identification of
the proposed decomposition procedure is presented in Section 3. Section 4 discusses estimation
and inference, and illustrates how the decomposition methodology works in the case of quantiles,
the variance, and the Gini coefficient. Section 5 provides an empirical application of the methodology
to the changes in the distribution of male wages in the United States between the late 1980s and the
mid 2000s.

2. The Decomposition Problem and Shortcomings of Existing Methods

Before presenting our method in detail, it is useful to first review the case of the mean for which
the standard OB method is very well known. To simplify the exposition, we will work with the case

3 See also Rothe (2010).

The federal minimum wage has declined substantially (in real terms) over time and is now superseeded by higher state
minimum wages in most states. As a result, the effect of state and federal minimum wages would need to be modeled over
of a range of wages. This task is beyond the scope of the current paper.
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where the outcome variable, Y, is the wage, although our approach can be used for any other outcome
variable. The OB method can be used to divide a difference in mean wages between two groups,
or overall mean wage gap, into a composition effect linked to differences in covariates between the
two groups, and a wage structure effect linked to differences in the return to these covariates between
the two groups. The two groups are labeled as t = 0,1. In the original papers by Oaxaca (1973)
and Blinder (1973), the two groups used were either men and women, or blacks and whites. More
generally, the two groups can be a control and a treatment group, or similar groups of individuals at
two points in time, as in the wage inequality literature.

We first review how the OB decomposition provides a straightforward way of dividing up the
contribution of each covariate in a composition and a wage structure effect. Focusing on differences
in the wage distributions of two groups, 1 and 0, for a worker 7, let Y3; be the wage that would be
paid in Group 1, and Y{; the wage that would be paid in Group 0. Since a given individual i is only
observed in one of the two groups, we either observe Yj; or Yy;, but never both. Therefore, for each
i, we can define the observed wage, Y, as Y; = Yy; - T; + Yy, - (1 — T;), where T; = 1 if individual i
is observed in Group 1, and T; = 0 if individual i is observed in group 0. There is also a vector of
covariates X € X C RX that we can observe in both groups.

In the standard OB decomposition, one assumes a linear functional form. In other words,
one writes

Yy = XiBt + €4, for t=0,1,

where E[e;;|X;, T =t] = 0.

Define the overall mean wage gap as A}y = E[Y|T = 1] — E[Y|T = 0], and consider dividing the
overall mean gap into a wage structure effect and a composition effect. Averaging over X, the mean
wage gap Ag can be written as

A = E[Y|T=1]-E[Y|T =0
E[E(Y|X, T =1)|T = 1] - E[E(Y|X, T = 0)|T = 0]
= IE[X|T:1}’;51+IE[51|T:1]—<E[X|T:0]'ﬁo+]E[so\T:0}),

where E [¢;|T = ] = 0 because E [¢;|X, T = ] = 0, so the expression reduces to A", = E[X|T = 1)’
— E[X|T = 0]’ Bo. Thus, by adding and subtracting E [X|T = 1]’ By we get

. EXIT=1(f1—po) (EX|IT=1]-E[X|T=0])po.
Al = +

4 4
AS/OB AX,OB

The first term in the equation is the wage structure effect, Ag,OB' while the second term is the
composition effect, Ag(,OB' Note that the reference group used to compute the wage structure effect
here is the Group 0, though the decomposition could also be performed using Group 1 instead as the
reference group. The wage structure and composition effects can also be written in terms of sums over
the explanatory variables

K
Noop = k; E [Xk|T = 1] (Brk = Bok),
Aoy = ké [E[XIT = 1] —E [x¥T = 0] ] Box,

where X¥ and B  represent the kth element of X and f;, respectively. This provides a simple way of
dividing Ag op and A’;( op into the contribution of a single covariate or a group of covariates as needed.
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Because of the linearity assumption, the OB decomposition is very easy to compute in practice.
It can be estimated by replacing the parameter vectors f; by their OLS estimates, and replacing the
expected value of the covariates E [X | T = t] by the sample averages.

There are nonetheless some important limitations to the standard OB decomposition.
A well-known difficulty discussed by Oaxaca and Ransom (1999) and Gardeazabal and Ugidos (2004)
is that the contribution of each covariate to the wage structure effect, E [Xk\T = 1] [Bix — Boxls

is sensitive to the choice of the base group.’

A second limitation discussed by Barsky et al. (2002) is that the OB decomposition provides
consistent estimates of the wage structure and composition effect only under the assumption that the
conditional expectation is linear.® One possible solution to the problem is to estimate the conditional
expectation using non-parametric methods. Another solution proposed by Barsky et al. (2002) is to use
a (non-parametric) reweighting approach as in DiNardo et al. (1996) to perform the decomposition.”
The advantage of this solution is that it can be applied to more general distributional statistics.
The disadvantage of both solutions, however, is that they do not provide direct ways, in general, of
further dividing the contribution of each covariate to the wage structure and composition effects.®

Currently available methods, such as DiNardo et al. (1996), can be used to compute the overall
wage structure and composition effects for various distributional statistics. We build on this in the
current paper by suggesting to estimate these two overall effects using a reweighting procedure.
Available methods are much more limited, however, when it comes to further dividing the wage
structure and, especially, the composition effect into the contribution each covariate. The main
contribution of the paper is to explain how a simple regression-based procedure to remedy this
shortcoming building on recent work by FFL.

3. Identification of General Composition and Structure Effects

3.1. Wage Structure and Composition Effects

Following the treatment effect literature (Rosenbaum and Rubin 1983, Heckman 1990, Heckman
and Robb 1985, 1986), we focus on differences in the wage distributions between two groups, 1 and
0. Suppose we could observe a random sample of N = Nj + Nj individuals, where N; and Ny
are the number of individuals in each group and we index individuals by i = 1,..., N. We define
the probability that an individual i is in Group 1 as p, whereas the conditional probability that an
individual i is in Group 1 given X = x, is p(x) = Pr[T = 1|X = x], sometimes simply called the
propensity score.

o

Consider, for instance, the contribution of increasing returns to education to changes in mean wages over time in the case
where workers are either high school graduates or college graduates. In the case where high school is the base group, X; «
is a dummy variable indicating that the worker is a college graduate, and B and B x are the effect of college on wages
in years t = 0 and 1. If returns to college increase over time (814 — Box > 0), then the contribution of education to the
wage structure effect, X7 x [B1x — Po], is positive, where X i is the share of college graduates. If we use instead college as
the base group, then X ; [B1x — Bo| is negative, where X; \ represents the share of high school (X;; = 1 — X; ) and B
represents the effect of high school (B¢x = — B¢x)- Thus, whether changes in returns to schooling contribute positively or
negatively to the change in mean wages critically depends on the choice of the base group.

As we show below, our goal is to estimate a counterfactual mean wage that would prevail if workers in Group 1 were paid
under the wage structure of Group 0. Under the linearity assumption, this is equal to E [X | T = 1]’ Bo, a term that appears
in both the wage structure and composition effect. The problem is that, when linearity does not hold, the counterfactual
mean wage is not be equal to E [X | T = 1]’ Bo.

Kline (2011) notes that, if the reweighting factor is linear in the covariates, the OB decomposition will yield a valid estimate
of the counterfactual mean even if the conditional expectation is not linear in the covariates.

We discuss the case of reweighting in more detail below. In the case where the conditional expectation E(Y;|X;, T = t) is
estimated non-parametrically, a whole different procedure would have to be used to separate the wage structure into the
contribution of each covariate. For instance, average derivative methods could be used to estimate an effect akin to the
coefficients used in standard decompositions. Unfortunately, these methods are difficult to use in practice, and would not
be helpful in dividing up the composition effect into the contribution of each individual covariate.
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Wage determination depends on some observed components X; and on some unobserved
components ¢; € R" through the wage structure functions

Yti = gt(Xilsi)r fOI‘ t= 0,1 (1)

where g¢;(+, ) are unknown real-valued mappings: g : X x R"™ — R U {0}. As we are not imposing
any distribution assumption or specific functional form, writing Y7 and Yp in this way does not restrict
the analysis in any sense. We will however assume that (T, X, ¢), or equivalently (Y, T, X), have an
unknown joint distribution but that is far from being restrictive.

From observed data on (Y, T, X), we can non-parametrically identify the distributions of
YT =1 4 F and Yo|T = 0 4 Fy. Without further assumptions, however, we cannot identify
the counterfactual distribution of Yp|T = 1 3 Fc. The counterfactual distribution F¢ is the one that
would have prevailed under the wage structure of Group 0, but with the distribution of observed and
unobserved characteristics of Group 1. For the sake of completeness, we consider also the conditional
distributions Y;|X, T =1 £ Fyy, Yo|X, T =0 £ Fyx and Yo|X, T =1 £ Fey.

We typically analyze the difference in wage distributions between Groups 1 and 0 by looking
at some functionals of these distributions. Let v be a functional of the conditional joint distribution
of (Y1,Yp)|T, thatis v : F~ — R, and F;- is a class of distribution functions such that F € F» if
[lv (F)|| < +o0. The difference in the vs between the two groups is called here the v-overall wage gap,
which is basically the difference in wages measured in terms of the distributional statistic v:°

AL =v(F) —v(F) =v — . (2)

We can use the fact that the distribution of X is not the same across groups to decompose
Equation (2) into two parts:

6:(V1—Vc)+(VC—V0):Ag+A]§( (3)

where the second term A¥, reflects the effect of differences in the distribution of X.

The first term of the sum, A§, will reflect changes in the gt(+,-) functions only if we are able
to fix the distribution of observables and unobservables as the one prevailing for Group 1, that is,
the distribution of (X, ¢)|T = 1. For that to be true, v will be a functional evaluated at that distribution.
This holds under the following assumptions: Ignorability and Overlapping Support.

The Ignorability Assumption has become popular in empirical research following a series of papers
by Rubin and coauthors and by Heckman and coauthors.!? In the program evaluation literature, this
assumption is sometimes called unconfoundedness and allows identification of the treatment effect on
the treated sub-population.

Assumption 1. [Ignorability|: Let (T, X, €) have a joint distribution. For all x in X: ¢ is independent of T
given X = x.

The Ignorability assumption should be analyzed in a case-by-case situation, as it is more plausible
in some cases than in others. In our case, it states that the distribution of the unobserved explanatory
factors in the wage determination is the same across Groups 1 and 0, once we condition on a

9 We sometimes refer to the functional v(F;) simply as vz. In the Oaxaca-Blinder decomposition discussed earlier, the

parameter v equals the mean (v = p) and A, is the total difference in mean wages.
10 See, for instance, Rosenbaum and Rubin (1983, 1984), Heckman et al. (1997) and Heckman et al. (1998).
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vector of observed components.!! Now, consider the following assumption about the support of
the covariates distribution:

Assumption 2. [Overlapping Support): For all x in X, p(x) = Pr[T = 1|X = x| < 1. Furthermore,
Pr[T =1] > 0.

The Overlapping Support assumption requires that there be an overlap in observable characteristics
across groups, in the sense that there is no value of x in X" such that it is only observed among
individuals in Group 1.12 Under these two assumptions, we are able to identify the parameters of the
counterfactual distribution of Yo|T =1 3 Fc. To see how the identification result works, let us define
first three relevant weighting functions:

w(r) =1 wm =1, wemx=({2%) (57):

The first two reweighting functions transform features of the marginal distribution of Y into
features of the conditional distribution of Y; given T = 1, and of Yj given T = 0. The third reweighting
function transforms features of the marginal distribution of Y into features of the counterfactual
distribution of Yy given T = 1. We are now able to state our first identification result:'3

Result 1. [Inverse Probability Weighting]:
Under Assumptions 1 and 2:
(i)
Fi(y) =E[w(T) {Y <y}] t=01

(ii)
Fe (y) = Elwc(T, X) - T{Y < y}]

Identification of Fc implies identification of v (Fc) and therefore of Ag and AY,. Furthermore,
because of the ignorability assumption, we know that differences between the conditional distributions
of (X, ) |T = 1and (X,¢) |T = 0 correspond only to differences in the conditional distributions Fxr_q
and Fyjr—g. Thus, A% will only reflect changes in distribution of X. We state these results more
precisely below.

Result 2. [Identification of Wage Structure and Composition Effects]:
Under Assumptions 1 and 2:

(i) A, A are identifiable from data on (Y, T, X);

(ii) if g1 (-,-) = o (-, -) then A% = 0;*

(iii) if Fxjr—1 = Fx|7—0o, then A% =0

In Result 2, the identification of Ay and A% follows from the fact that these quantities can be
expressed as functionals of the distributions obtained by weighting the observations with the inverse
probabilities of belonging to Group 0 or 1 given T, as stated in Result 1. Note that the non-parametric
identification of either the wage determination functions g1 (-, -) and go(, ), or the distribution function

This rules out selection into Group 1 or 0 based on unobservables.

This is not a restrictive assumption when looking at changes in the wage distribution over time. Problems could arise,
however, in gender wage gap decompositions where some of the detailed occupations are only held by men or by women.
13 See also Firpo and Pinto (2016).

Note that, even if g1 (-, €) = hy(€) and go(+, €) = ho(¢), the result from Result 2 is unaffected. The intuition is that, since (X, €)
have a joint distribution, we can use the available information on that distribution to reweight the effect of the ¢’s on Y.
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of & are not necessary for the effects Ag and Ay to be identified. Therefore, methods based on
conditional mean restrictions (the OB decomposition approach) and methods based on conditional
quantile restrictions (the Machado and Mata (2005) approach) are based on too strong identification
conditions that can be easily relaxed if we are simply interested in the terms A} and AY.

Part (ii) of Result 2 also states that, when there are no group differences in the wage determination
functions, then we should find no wage structure effects. Part (iii) states that, if there are no group
differences in the distribution of the covariates, there will be no composition effects.

Finally, it is interesting to relate these general results to the OB decomposition. Given the
functional form assumptions of OB, the conditional mean zero expectation of ¢ and ignorability
assumption, it follows that E [X|T = 1)’ By equals ji¢, the counterfactual mean or the expectation of Y,
given T = 1:

pe =EMIT=1] = Elgo(X,e)|T =1] = E[E(g0(X,&)|X, T = 1)|T = 1]
= E[E(g0(X,8)|X,T =0)|T =1]
= E[X|T =1)'Bo + E[E(eo|X, T = 0)|T = 1]
= E[X|T=1)B

In the following subsection, we show how one can generalize other features of the OB
decomposition using a regression based approach, the RIF Regression.

3.2. The RIF Regressions

One important goal of the desired approach, as discussed in Section 2, is to apportion the
wage structure and composition effects into the contribution of each individual covariate. To do
so, we use the method proposed by FFL to compute partial effects of changes in distribution of
covariates on a given functional of the distribution of Y;|T. The method works by providing a linear
approximation to a non-linear functional of the distribution. Thus, through collecting the leading term
of a von Mises (1947) expansion, FFL approximate those non-linear functionals by expectations, which
are linear functionals or statistics of the distribution. Finally, that linearization method allows one to
apply the law of iterated expectations to the distributional statistics of interest and thus to compute
approximate partial effects of changes in the distribution of each single covariate on the functional
of interest.

The details of the method are summarized as follows. Consider again a general functional
v = v (F). Recall the definition of the influence function (Hampel 1974), IF, introduced as a measure
of robustness of v to outlier data when F is replaced by the empirical distribution: IF(y;v, F) =
lime_,o (v(Fe) — v(F)) /e, where Fe(y) = (1 — €)F +edy, 0 < € <1 and where J, is a distribution that
only puts mass at the value y. It can be shown that, by definition, [*_IF(y;v, F)dF(y) = 0.

We use a recentered version of the influence function RIF(y; v, F) = v(F) + IF(y; v, F) that has an
expectation equal to the original v :

/RIF(y;v,F)~dF (y) = / (v(F) + IE(y;v, F)) - dF (y) = v(E). @
Letting v; = v(F) and ve = v(Fc), we can therefore write the distributional statistics vy, vp,
and v¢ as the expectations: v; = E[RIF(Y;; v, F) | T=t],t =0,1and vc = E [RIF(Yp; v, Fc) | T =1].

Using the law of iterated expectations, the distributional statistics can also be expressed in terms of
expectations of the conditional recentered influence functions

- /‘JE [RIF(Y; v, F)|X = 1] - dFy (x).
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Letting the so-called RIF-regressions be written as m} (x) = E [RIF(Y; vy, )| X, T =t], fort = 0,1,
and m{- (x) = E [RIF(Yp; ve, Fc)|X, T = 1], we have
v=E[m{(X)|T=t, t=0,1 and ve=E[m:(X) |T=1]. (5)
It follows that Ay and AY can be rewritten as:

A% = E[m{(X)|T=1-Em(X) [ T=1],
Ay = E[mE(X) [T=1]-E[m(X)|T=0].

As is well known, in the case of the mean, the influence function at point y is its deviation from
the mean and, therefore, the recentered influence function of the mean is simply the point y itself

[(I—e)-prte-y—pl

F(y; ue, F) = ?B?) c =Y — MU (6)
RIF(y; e, Fr) = TE(y;pe, Fr) + e = y. )

As a result, the RIF-regression coefficients in the case of the mean are identical to standard
regression coefficients of Y on X used in the OB decomposition (8; above), and we have

2 = (Elw(T)XX']) - Elw(T)XY], t=0,1

7 = (Elwe(T, X)XX']) ™" - Elwe (T, X)XY],
where 'yf = By, and

A = EXT=1" (2 -2t), ®
Ay = EXT=1-E[X|T=0])"-95+R¥, ©)

where R* is an approximation error. When the linearity and zero conditional mean assumption of
the OB decomposition are satisfied, it follows that 'yz = 'yg and R* = 0, as seen in the end of the
previous subsection. Our decomposition is then identical to the OB decomposition. However, when
these conditions are not satisfied the two decompositions are different.

In general, there is no particular reason to expect the conditional expectations m; (X) and m{. (X)
to be linear in X. As a matter of convenience and comparability with OB decompositions, it is
nonetheless useful to consider the case of the linear specification. To be more precise, consider the
linear projections (indexed by L) n} (x)

myp (x) = X'y

Al AV
and  mg; (x) = x'7¢,
where

(E[XX"|T=t])"" E[RIF(Y;v, F)X | T=f, t=0,1,
(E[XX' | T=1])""E[RIE(Yp;ve, Fo)X | T = 1].

7
ite

As is well known, even though linear projections are only an approximation for the true
conditional expectation, the expected approximation error is zero, so that:

B [myy (X) | T=t] {
and E[m¢; (X) [T=1] = E[m¢(X)|T=1].

|
=
3
B
3
I
I
e
—_
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We can thus rewrite Af and A as:

Ay = EXIT=1]" (v —7¢), (10)
Ay = E[X|IT=17¢—E[X|T =0+, (1)

which generalizes the OB decomposition to any distributional statistic through the projection of its
recentered influence function onto the covariates. Note that, under an additional assumption that
my; (-) =mj () and m{. | (-) = m¢ (+), that s, if the conditional expectation is indeed linear in x, then
76 = 7¢- In the case of the mean (v = p), it then follows that the equations above reproduce exactly
the OB decomposition.

It is important to note that the case of the mean is quite unique because the recentered influence
function does not depend on the distribution F, i.e., RIF(y; i, F) = IF(y; u, F) + i = y. The lack of
dependence on F is due to the fact that the influence function is a linear approximation that is exact in
the case of the mean. For other distributional statistics, the approximation (or specification) error R is
due to two separate factors. First, as in the case of the mean the conditional expectation of RIF(y; v, F)
given X may not be linear in X. Second, both the RIF and the projection coefficients 7 depend on
the distribution F. Thus, for more general distributional statistics, v = ¢ will not generally hold
regardless of whether the conditional expectation is linear or not. As a result, we should expect to
have a non-zero approximation error (see Equation (12)) for distributional statistics besides the mean,
although how large the error is remains an empirical question.

3.3. Interpreting the Decomposition

We have just shown that, under a linearity assumption, the decomposition based on
RIF-regressions is similar to a standard OB decomposition. We now go beyond this simple analogy to
define more explicitly what we mean by the contribution of each single covariate to the wage structure
and composition effects.

3.3.1. Composition Effects

FFL show that RIF-regression estimates can either be used to estimate the effect of a “small
change” of the distribution of X on v, or to provide a first-order approximation of a larger change
of the distribution of X on v. The latter effect, that FFL call a “policy effect” , is what concerns us
here. In fact, the composition effect A} exactly corresponds to FFL's policy effect, where the “ policy”
consists of changing the distribution of X from its value at T = 0 to its value at T = 1 (holding the
wage structure constant).

For the sake of simplicity, we continue to work with the linear specification introduced in
Section 3.2. As it turns out, FFL show that, in the case of quantiles, using a linear specification
for RIF-regressions generally yields very similar estimates to more flexible methods allowing for
non-linearities.> We nonetheless discuss below the consequences of the linearity assumption for the
interpretation of the results.

An explicit link with the results of FFL concerning policy effects is obtained by rewriting the
composition effects as

Y =(E[X|T=1-E[X|T=0])'y§ +R". (12)

15 This finding is closely linked to the well-known fact that estimates of marginal effects estimated using a linear probability

model tend to be very similar, in practice, to those obtained using a probit, logit, or another flexible non-linear discrete
response model.
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where RV = E [X|T = 1]’ (7% — 74). The first term in Equation (12) is now similar to the standard OB
type composition effect, and can be rewritten in terms of the contribution of each covariate as

¥ (2[eir =1) - [T = o]) i

Each component of this equation can be interpreted as the “ policy effect” of changing the
distribution of one covariate from its T = 0 to T = 1 level, holding the distribution of the other
covariates unchanged.

As discussed earlier, the second term in Equation (12), RY, is the approximation error linked to the
fact that FFL's regression-based procedure only provides a first-order approximation to the composition
effect A%. In practice, it can be estimated as the difference between the reweighting estimate of the
composition effect, vc — vp, and the estimate of (E [X|T = 1] —E [X|T = 0])"v} obtained using the
RIF-regression approach. When the latter approach provides an accurate (first-order) approximation of
the composition effect, the error should be small. Looking at the magnitude of the error thus provides
a specification test of FFL's regression-based procedure.

Note that using a linear specification for the RIF-regression instead of a general function
m" (X) = E [RIF(Y; 1, F;) | X] simply changes the interpretation of the specification error RY by adding
an error component linked to the fact that a potentially incorrect specification may be used for the
RIF-regression. We nonetheless suggest using the linear specification in practice for three reasons. First,
we get an approximation error anyway since FFL's procedure only gives a first-order approximation
to the impact of “large” changes in the distribution of X. Second, the linear specification does not
affect the overall estimates of the wage structure and composition effects that are obtained using the
reweighting procedure. Third, using a linear specification has the advantage of providing a much
simpler interpretation of the decomposition, as in the OB decomposition. Our suggestion is thus to
use the linear specification but also look at the size of the specification error to make sure that the FFL
approach provides an accurate enough approximation for the problem at hand.!®

3.3.2. Wage Structure Effect

The wage structure effect in Equation (11), A} = E [X|T = 1]’ (7} — 9¢), already looks very much
like the usual wage structure effect in a standard OB decomposition. One important difference relative
to the OB decomposition is that the coefficient ¢ (the regression coefficient when the Group 0 data
are reweighted to have the same distribution of X as Group 1) is used instead of ~ (the unadjusted
regression coefficient for Group 0). The reason for using -y¢{- instead of 7 is that the difference 7§ — ¢
solely reflects differences between the wage structures g1 (-) and go(-), while the difference 7} — f
may be contaminated by differences in the distribution of X between the two groups.

In conventional regression analysis, the main reason why OLS estimates may depend on the
distribution of X is that, when the conditional expectation of Y given X is non-linear, OLS minimizes a
specification error that itself depends on the distribution of X (White 1980). An additional issue in our
context is that for distribution statistics besides the mean, the recentered influence function RIF(Y;v, F)
depends on the distribution of Y (F). Changing the distribution of X changes the distribution of ¥ and,
thus, the value of RIF(Y; v, F) for a given value of Y. This also affects the coefficients in a regression
of RIF(Y; v, F) on X since we are no longer using the same RIF on the left hand side of the regression.
As just discussed, this important problem can be addressed by estimating (- in the reweighted sample,

16 In the case of the mean, another rationale for using a linear model comes from Kline (2011), who notes that the OB

decomposition remains valid even when the regression function is non-linear as long as the reweighting factor wc is well
approximated by a linear odds ratio model. Unfortunately, this property does not hold for distributional statistics besides
the mean.
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which insures that the difference ] — y¢ only reflects differences between the wage structures g1 (-)
and go(-)-

Another limitation of OB decompositions that also applies here is that the contribution of each
covariate to the wage structure effect is sensitive to the choice of a base group. There is, unfortunately,
no simple solution to this problem.!” To see this, rewrite the wage structure effect

Ag = V1 —Vc

[(v1 —vp1) — (ve —vBc)] + (vB1 — vBC) , (13)

where vp; is the distributional statistic in an arbitrary “base group” under the wage structure g; (-, -),
while vpc is the distributional statistic for the same base group under the wage structure go (-, -).
The term vy — vp; represents the “policy effect” of changing the distribution of X from its value in
the base group to its T = 1 value under the wage structure gi(-,-), while vc — vpc represents the
corresponding policy effect under the wage structure go (-, -). Since there is no dispersion in X in a base
group of workers with similar characteristics, switching to the actual distribution of X will typically
result in more wage dispersion. The overall wage structure effect is, thus, equal to the difference in
the dispersion enhancing effect under g1 (-, -) and go(+, -), respectively, plus a “residual” difference in
the distributional statistic in the base group, vp; — vpc. Unless this residual change is invariant to the
choice of the base group, the contribution of each covariate to the wage structure will be sensitive to
the choice of base group.

4. Estimation and Inference

In this section, we discuss how to estimate the different elements of the decomposition introduced
in the previous section: vy, v, V¢, ¥1, Yo and yc. For v1, vp, v1 and 7o, the estimation is very standard
because the distributions Fy, and F, are directly identified from data on (Y, T, X). The distributional
statistic v1, vp can be estimated as their sample analogs in the data, while 7 and 7y can be
estimated using standard least square methods. In contrast, the estimation of vc and ¢ requires
first estimating the weighting function w¢ (T, X). We present two common methods—parametric and
non-parametric—to estimate w¢ (T, X).

We discuss separately the estimation of the first and second stages of the decomposition.
The first stage relies on a reweighting procedure, while the second stage is based on the estimation
of RIF-regressions. We only present the general lines of the estimation procedure in this section.
Proofs and details about the parametric and non-parametric procedure to estimate wc (T, X), and the
asymptotic behavior of these estimators are discussed in the Appendix B and in Firpo and Pinto (2016).
Finally, we show how the estimation procedure can be applied to the specific cases of the quantiles,
interquantile ranges, variance and the Gini coefficient.

4.1. First Stage Estimation

The first step of the estimation procedure consists of estimating the weighting functions wy (T),
wo(T) and wc(T, X). Then, the distributional statistics v, vy, vc are computed directly from the
appropriately reweighted samples. Details of the estimation procedure are presented in the Appendix B
and in Firpo and Pinto (2016).

7" In the case of the mean, several procedures have been suggested as potential solutions to the base group problem.

They typically involve creating an artificial base group with the average observed characteristics in the population (see, e.g.,
Yun 2005). As this choice is as arbitrary as other choices of base group, and arguably harder to interpret, especially across
studies, it does not really solve the base group problem. See Fortin et al. (2011) for a more complete discussion. In Footnote
29, we also discuss some issues with previous attempts (Firpo et al. 2007) using a normalization approach to the base group.
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4.2. Second Stage Estimation

Now, consider estimation of the regression coefficients 97, v, and ¢

N

¥ o= <Z f (T1) XiX; > Z Ty)RIE(Y; v, F)X;, t=0,1
i=1
N , . N -

e = | X @c(T, X)XiX; - Y @E(T;, X;)RIF(Y;ve, Fo) X
i=1 i=1

where fort = 0,1
RIF(y;vi, Fr) = U + [F(y; v, ) and  RIF(y;ve, Fe) = e + F(y;ve, Fe),
and IF(; v, F) is a proper estimator of the influence function. We discuss how to estimate the influence

function for a number of specific cases in Section 4.3.
We can thus decompose the effect of changes from T = 0 to T = 1 on the distributional statistic

vV as:
Ay = < @T(Tz‘)xz)/(ﬂ—%)

) (o)

It is also useful to rewrite the estimate of the composition effect as

o)
><<
Il
- Tt

Il
—

N
Ay = (Z (@1(Ti) = @5 (Ti)) Xi) "6+ R,

i=1

where RV = (Z @07 (Ty) i) "(7& —74) is an estimate of the approximation error previously
discussed. This generalizes the OB decomposition to any distributional statistic, including quantiles,
the variance or the Gini coefficient.

4.3. Examples

We now turn to popular statistics, (unconditional) quantiles, the variance, and the Gini coefficient
to illustrate how the different elements of the decomposition can be computed in these specific cases.

4.3.1. Quantiles and Interquantile Ranges

Quantiles are a set of distributional measures that have been used extensively for the
decomposition of wage distributions. Several methodologies (Machado and Mata 2005; Melly 2005)
use conditional quantiles regressions as primary tools to infer entire distributions and counterfactual
distributions even when the object of interest is the unconditional quantiles. For instance, in
decompositions of the gender wage gap, they are used to address issues such as glass ceilings and
sticky floors.

The 7-th quantile of the distribution F is defined as the functional, Q(F, 1) = inf{y|F(y) > 1},
or as g for short, and its influence function is:

T-T{y <gc}

IF(]/’ qo, F) = fY (qr) (14)
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As shown in FFL, the recentered influence function of the Tth quantile is

1y <
RIE(y; gr, F) = gc + IE(y; e, F) = o + — =T fy{(yq‘) o) _ e T{y > g} + o
T

where ¢1r =1/ fy (9¢), 2 =qr—c1,r- (1 —7),and fy (gr) is the density of Y evaluated at gr. Thus,
E[RIF(Y; g, F)|[ X =x] =c10-Pr[Y > g|X = x] + co1.

and the estimation of conditional mean of the RIF(Y;q., F) can be seen more intuitively as the
estimation of a conditional probability model of being below or above the quantile of interest
qr, rescaled by a factor c¢; . to reflect the relative importance of the quantile to the distribution,
and recentered by a constant c; 7.

The decomposition of (unconditional) quantiles proceeds along the same steps as in the case
of the mean. In the first stage, the estimates of g+, t = 0,1 and gc are obtained by reweighting
as jrt = argming YN, &(Ty) p(Yi —q), t = 0,1, and Grc = argming YN | &c(T;, Xi)- p-(Yi — q).
The function p-(+) is the well known check function, proposed by Koenker and Bassett (1978), where,
forany u in R, p(u) = u- (t — 1{u < 0}). Note that §; and §c can simply be computed using
standard software packages with the appropriate weighting factor.

The estimators for the gaps are computed as:

gg = (1 — Grgs E? ={r; —qrc and Et)](r = Jrc — Jro- (15)

In the second stage, we estimate the linear RIF-regressions. First, the recentered influence function
is computed for each observation by plugging the sample estimate of the quantile, §, and estimating
the density at the sample quantile, f(4;).

For the T quantile of Y;|T = 1, we would use RIE(y;q.1,F) = d71 + <f1 (q}ﬂ) t (t—
T{y < Go1}) where f; () is a consistent estimator for the density of Y1|T = 1, f; (-). For example,
kernel methods can be used to estimate the density, but other simpler alternative methods are also
available. For example, one may dispense with estimation of the density by kernel by noticing that
c1,r = dg./dt. By estimating sufficiently close quantiles, say g and g, where A is a small positive
real number, an estimate of ¢ + is ¢1 + = (§r41 — §¢)/A, which is the inverse of the sparsity density
estimator (Koenker 2005, p. 139). Another interesting alternative method is the recent one suggested
by Cattaneo et al. (2017), which uses local polynomial regressions.

In the example of Y7|T = 1, the RIF-regressions are estimated by replacing the usual dependent
variable, Y, by the estimated value of ﬁﬁ:(y; gr1, F). Standard software packages can be used to do so.
The resulting regression coefficients are therefore

W_(

Similar to the case of the mean, we get:

M=

@f(T,’)X,‘Xf’) Z (/Jt X RIF Y,,qﬂ,Ft) t= 0, 1, (16)

—_

=

1
N
@c(T;, Xi)XiXi/> - Y @c(Ty, Xi) XiRIF(Y;; gec, F). 17)

1 i=1

B = EXT=1 (5 -3F), (18)
AY = (E[X|T=1-E[X|T=0])'5] +R", (19)

where Rt = E[X|T =1]’ ('7? _'737)'
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Interquantile ranges, such as the difference between the 75th and the 25th percentiles, and the
90-10 gap (difference between 90th and the 10th percentiles) are also popular inequality measures that
only depend on quantiles. Because they are simple differences between quantiles, their -y coefficients
are the differences in the 7y coefficients of their respective quantiles. For that reason, we omit the
theoretical discussion about interquantile ranges, but present their estimates in the empirical section.

4.3.2. Variance

There are other applications where it is useful to decompose the impact of covariates on the
variance of the distributions of log wages. Examples include the compression effect of unions and of
public sector wage setting.

The estimators of these gaps can be computed as:

Ay =62-03; AL =02—52 and A§ =02 02, (20)

ety

using the rewelghtmg scheme 32 = YN, @F(Ty) (Y; — ir)%, t = 0,1, and 02 = YN QT X;)
(Y — ],tc) . The influence function of the variance is well-known to be

IF(y; 0%, Fy) = (y - /‘z -dFy (z))2 ~?, 1)

and the recentered influence function is the first term of this expression RIF(y;0% Fy) =

= [z () = (Y = ).
The decomposition in terms of individual covariates, such as union coverage, follows by replacing
RIF(+; g-) by RIF(+; 02, F) in Equations (16)~(19).

4.3.3. The Gini coefficient

Finally, another popular measure of wage inequality is the Gini coefficient. There are a few papers
(Choe and Van Kerm 2014; Gradin 2016) that have begun to use RIF-Gini regressions to investigate
changes in income inequality. Recall that the Gini coefficient is defined as

vO(Fy) =1-2u 'R(Fy) (22)

where R(Fy) fo GL(p; Fy)dp with p(y) = Fy(y) and where GL(p; Fy) is the generalized Lorenz

ordinate of Fy given by GL(p;Fy) = ] o )z dFy(z). The generalized Lorenz curve tracks the
cumulative total of y divided by total populatlon size against the cumulative distribution function.
The generalized Lorenz ordinate can be interpreted as the proportion of earnings going to the 100p%
lowest earners.

Monti (1991) derives the influence function of the Gini coefficient as

IF(y;vC, Fy) = Ay(Fy) + Ba(Fy )y + Co(y; Fy) (23)

= 2u?R(Fy), and Go(y;Fy) = —=2/p 'ly[1—p(y)]

where Ay(Fy) = 2/p"'R(Fy), Ba(Fy)
); Fy) as defined underneath Equation (22). Recentering yields

+GL (p(y); Fy) with R(Fy) and GL(p(y
RIF(y;vC, Fy) = 14 By(Fy)y + Co(y; Fy). (24)
The recentered influence function of the Gini coefficient can also be written as

RIF(V;VG,FY) szc + — (1 ;4 + /ZF )dz,

82



Econometrics 2018, 6,28

which gives a more intuitive expression after integrating by parts

(1+v9)
2

RIF('GF _ Y _ (17VG)_ . G
y;v©, Fy) 2# Fy(y) +2 3 GL(p;Fy)| +v°,
where (1+v6)/2and (1 — v%)/2 correspond, respectively, to the areas above and below the Lorenz
curve. As pointed out by Monti (1991), the first term is unbounded because it increases by the factor
y/u, while the second is bounded between vS —1and 1+ vC. Thus, the RIF(y; VG, Fy) is continuous
and convex in y; its first derivative is equal to 2/ u[Fy (y) — (1 +v%) /2], and it reaches its minimum
when Fy(y) = (1+v%)/2. The function is theoretically unbounded from above, but in practice it
reaches its maximum at the upper bound of the empirical support of the distribution. This implies that
the Gini coefficient is not robust to measurement error in high earnings, as pointed out by Cowell and
Victoria-Feser (1996).

The GL coordinates are estimated using a series of discrete data points y,...yn, where
observations have been ordered so that y; <y, < ... <yy. Consider

Ty @(T) Y @(T) Y

pryi) = ———L  GL(py)) = =~ t=01

pe(vi) Z}ild\)t(T]) H(p(vi) Z}V:lwt(Tj)

- Yoy @c(T;, X;) i Y1 @c(Tj, X)) - Y
i) T oSN A o GL D)= T\N ST X

pcvi) Y ac(T; X,) c(p(vi) Y, @c(T, X;)

where the numerators are the sum of the i ordered values of Y. The R(F), t = 0,1 and R(F¢)
are obtained by numerical integration of E\Lt(p(yi)) over p(y;), and of C?L\C(p(y,-)) over pe(y;).18
The estimates of 7° (F;), t = 0,1 and 7 (F¢) are obtained by substituting R(F;) and R(F¢), as well as
fir and jic, into Equation (22). We can then compute the gaps for the changes in the Gini coefficient as
in Equation (20).

Similar substitutions into Equation (24) allows the estimation of I@(y; th,Ff), t = 0,1 and
R/ﬁ:(y; vg , Fc). As before, the decomposition in terms of individual covariates, follows by replacing
ﬁI\F(ﬁ g+, F) by I@(~;vc, F) in Equations (16)—(19).

5. Empirical Application: Changes in Male Wage Inequality between 1988 and 2016

Our empirical application focuses on changes in wage inequality over the past 30 years. It is
well known that wage inequality increased sharply in the United States since the beginning of the
1980s. Using various distributional methods, Juhn et al. (1993) and DiNardo et al. (1996) showed
that inequality expanded all through the wage distribution during the 1980s. In particular, both the
“90-50 gap” (the difference between the 90th and the 50th quantile of log wages) and the “50-10 gap”
increased during this period.

Since the late 1980s, however, changes in inequality have increasingly been concentrated at the
top end of the wage distribution. In fact, Autor et al. (2006) showed that, while the 90-50 gap kept
expanding after the late 1980s, the 50-10 gap declined during the same period. They refer to these
changes as an increased polarization of the labor market. An obvious question is why wage dispersion
has changed so differently at different points of the distribution. Autor et al. (2006) suggest that
technological change is a possible answer, provided that computerization resulted in a decline in the

18 In practice, we simply use the Stata integ command.
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demand for skilled but “ routine” tasks that used to be performed by workers around the middle of
the wage distribution.!”

Lemieux (2008) reviewed possible explanations for the increased polarization in the labor market,
including the technological-based explanation of Autor, Katz, and Kearney. He suggested that, if this
explanation is an important one, then changes in relative wages by occupation, i.e., the contribution
of occupations to the wage structure effect, should play an important role in changes in the wage
distribution. Furthermore, since it is well known that education wage differentials kept expanding
after the late 1980s (e.g., Acemoglu and Autor 2011), the contribution of education to the wage structure
effect is another leading explanation for inequality changes over this period. More recent studies
have also implicated the role of offshorability and trade (Firpo et al. 2011; Autor et al. 2014) which
may be more salient at the industry level, given that some “local” industries such as the construction,
distribution (wholesale trade, transportation), and personal service sectors are likely less affected by
these economic forces.

Previous studies also show that composition effects played an important role in increasing wage
inequality. Lemieux (2006b) showed that all the growth in residual inequality over this period is due to
composition effects linked to the fact that the workforce became older and more educated, two factors
associated with more wage dispersion. Furthermore, Lemieux (2008) argued that de-unionization,
defined as a composition effect in this paper, still contributed to the changes in the wage distribution
over this period.

These various explanations can all be understood in terms of the respective contributions of
a few broad sets of factors (unions, education, experience, occupations, industries, etc.) to either wage
structure or composition effects. This makes the decomposition method proposed in this paper ideally
suited for estimating the contribution of each of these possible explanations to changes in the wage
distribution. Unlike other procedures, our method allows us to estimate the relative contribution of
each of the factors mentioned above to recent changes in the U.S. wage distribution.?’

Our empirical analysis is based on data for men from the 1988-1990 and 2014-2016 Outgoing
Rotation Group (ORG) Supplements of the Current Population Survey, yielding about a quarter
million observations for each time period. As in Fortin and Lemieux (2016), for conciseness, we focus
exclusively on men. The extent of occupational gender segregation is such that we would have to
perform the analysis and choose the base group separately by gender. Increasing inequality appears
to have worked through different channels and time period for men and women. Autor et al. (2015)
showed that men’s employment was impacted by the automation of production activities in the
manufacturing sector at the beginning of the period, while women suffered employment losses
associated with the impact of computerization of information-processing tasks in non-manufacturing
later in the period.

The data files were processed as in Lemieux (2006b) who provided detailed information on the
relevant data issues. The wage measure used is an hourly wage measure computed by dividing
earnings by hours of work for workers not paid by the hour. For workers paid by the hour, we use
a direct measure of the hourly wage rate. In light of the above discussion, the key set of covariates
on which we focus are education (six education groups), potential experience (nine groups), union
coverage, occupation (17 categories), and industry (14 categories). We also include controls for marital

This technological change explanation was first suggested by Autor et al. (2003). It also implies that the wages of both
skilled (e.g., doctors) and unskilled (e.g., truck drivers) non-routine jobs, at the top and low end of the wage distribution,
increased relative to those of “routine” workers in the middle of the wage distribution.

Autor et al. (2005) used the Machado and Mata (2005) method to decompose changes at each quantile into a “price” (wage
structure) and “quantity” (composition) effect. They did not further consider, however, the contribution of each individual
covariate to the wage structure effect, except for separating the contribution of (all) covariates from the residual change in
inequality. See also Lemieux (2002) for a similar decomposition based on a reweighting procedure.

20
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status and race in all the estimated models. The sample means for all these variables are provided in
Table A1.2!

Before proceeding to the estimation of RIF-regressions, it is important to inspect the density
of wages for unusual features that would challenge the estimation of the RIF at the quantiles of
interest or the wage model that w use. Figure 1 presents kernel density estimates of male wages for
1988-1990 and 2014-2016 estimated using the Epanechnikov kernel and bandwidths of 0.06 and 0.08,
respectively.?? The figure also shows the 1988-1990 density reweighted to have the same distribution
of characteristics as in 2014-2016. The typical issues to look for include cliffs associated with minimum
wage effects at the bottom of the distribution, peaks associated with heaping (the fact that hourly
wage workers, in particular, are more likely to round their wages at next dollar amount) in the middle
of the distribution, and top-coding at the top of the distribution. The impact of minimum wages is
clearly seen in Figure 1 when vertical lines corresponding to the minimum and maximum of federal
and state minimum wages are displayed. Because we do not model minimum wages in the current
paper, the 1988-1990 density and the reweighted density are superimposed in those wage ranges,
showing the wage setting variables that we include are inadequate for modeling the distribution of
wages when minimum wages matter.2? Thus, we remain cautious with regards to the interpretation of
any effect at the bottom of the distribution.

Minimum Wages ~ N
\
<

Density

T
1.5 2 2.5 3 35 4 4.5 5
Log Wages

— — 1988-90 ———1988-90 rwgt 2014-16
——2014-16 top-coded —2014-16

Figure 1. Density of Log Wages ($2010)—Men CPS. Note: The vertical lines show the minimum and
maximum of state and federal minimum wages in each time period.

Heaping and top-coding can be problematic if they imply an unusually high value of the density
at a particular quantile of interest that potentially biases the estimation of the denominator fy (7r) of
the influence function (14). While only 0.7% of workers are top-coded in 1988-1990, this proportion

21 Table A2 gives the details of the occupation and industry categories used.

22 Several cross-validation tools suggested tuning parameters in that range, but the graphs were indistinguishable. In addition
to the reweighting factors discussed in Sections 3 and 4, we also use CPS sample weights throughout the empirical analysis.
In practice, this means that we multiply the relevant reweighting factor with CPS sample weight.

2 See Brochu et al. (2017) for a more precise modeling of the effect of minimum wages on the distribution of wages.
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increases to 3.6% in 2014-2016.2* A standard adjustment for top-coding consists of multiplying
top-coded wages by a fixed adjustment factor. In Figure 1, we use the adjustment factor of 1.4
suggested by Lemieux (2006b). While there is no visual evidence of an impact of top-coding in
1988-1990, there is a clear spike in the 2014-2016 distribution around the point (log wage of about 4.5)
where most top-coded observations lie.”> We deal with this issue using a more sophisticated stochastic
imputation procedure (shown as the solid line) based on a Pareto distribution estimated using tax data
from Alvaredo et al. (2013).

Given our large sample of hourly paid and salaried workers, heaping does not appear to be a
serious issue in Figure 1.2° However, heaping is more visible in Figure 2, which plots the 1988-1990
and 2014-2016 densities of wages for our base group. This group of about 400 workers in each period
consists of non-unionized, white, married, high school educated men with 20 to 25 years of experience,
working as construction workers in the construction industry, but not in the public sector.?’” The figure
shows that the densities have changed very little over time, aside from different positioning of some
local peaks associated with heaping.?® This group was chosen because the economic forces that impact
the overall wage distribution are less likely at play among this non-unionized group of low-educated
workers in non-routine manual jobs with little exposure to international trade.?’

!
—

Minimum Wages
\ N

Density

T T
1.5 2 2.5 3 3.5 4 4.5 5
Log Wages

———1988-90 —2014-16

Figure 2. Density of Log Wages ($2010)—Base Group. Note: The vertical lines show the minimum and
maximum of state and federal minimum wages in each time period.

2% Weekly earnings are top-coded at $1923 in 1988-1990 and $2884 in 2014-2016. The latter is substantially lower in constant
dollars. Furthermore, the top-code is even higher in relative terms because of the substantial growth in real wages at the top
end of the distribution.

25 A large fraction of workers top-coded at $2884 a week work 40 h a week, which yields an hourly wage rate of $72.1.
Applying the 1.4 adjustment factor increases the wage to $100.9, or about $92.5 in dollars of 2010. This precisely matches the
spike in Figure 1 since log(92.5) = 4.53.

2% Deflating wages with monthly CPI while combining several years of data helps mitigate the issue of heaping.

27 There are only 5-6 women in this category, which highlights the need of using different base groups for men and women.

28 In nominal terms, the mode of the distributions is around $10.00/h in 1988-1990 and around $19.00/h in 2014-2016.

In 1988-1990, there is a second local peak around $12.00/h, while, in 2014-2016, the second lower local peak is around

$10.00/h.

In Firpo et al. (2007), we used a mixed approach for the base group normalizing the coefficients of the occupation and

industry dummies. That approach, although superficially attractive, has the important disadvantage of limiting the

explanatory power of the variables whose coefficients are constrained. As a result, in this earlier version of the paper, very
little of the changes in inequality were attributable to occupations and industries.

29
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5.1. RIF-Regressions

Before showing the decomposition results, we first present some estimates from the
RIF-regressions for different wage quantiles, the variance of log wages, and the Gini coefficient.
From Equation (14), we compute IF(y; g, F) for each observation using the sample estimate of g,
and the kernel density estimate of f (g¢).

The RIF-regression coefficients for the 10th, 50th, and 90th quantiles in 1988-1990 and 20142016,
along with bootstrapped standard errors, are reported in Table 1. The RIF-regression coefficients for the
variance and the Gini are reported in Table 2. Detailed estimates for each of the 19 quantiles from the 5th
to the 95th are also reported in Figures 3-5. For several covariates (for example, union status, non-white,
married, clerical, production, and service occupations, transportation and utility, public administration
sectors ). Figure 3 illustrates highly non-monotonic effects across the different quantiles for some
demographics. For instance, in Panel 1, the effect of union status first increases up to around the 40th
quantile in 1988-1990, and up the 50th quantile in 2014-2016, and then declines, even turning negative
for the 90th and 95th quantiles.

As shown by the RIF-regressions for the more global measures of inequality—the variance of log
wages and the Gini coefficient of the wage distribution—displayed in Table 2, the effect of unions on
these measures is negative, although the magnitude of that effect has decreased over time. This is
consistent with the well-known result (e.g., Freeman 1980) that unions tend to reduce the variance of
log wages for men. More importantly, as shown in Table 1, the results also indicate that unions increase
inequality in the lower end of the distribution, but decrease inequality even more in the higher end
of the distribution. As we will see later in the decomposition results, this means that the continuing
decline in the rate of unionization can account for some of the “polarization” of the labor market
(decrease in inequality at the low-end, but increase in inequality at the top end). The results for unions
also illustrate an important feature of RIF regressions for quantiles, namely that they capture both
the between-group effect (arising from union wage premia) and the within-group effect (arising from
wage union compression) of unions on wage dispersion, which go in opposite direction in this case.?

The RIF-regression estimates in Table 1 for other covariates also illustrate this point. Consider,
for instance, the case of college education. Table 1 and Figure 3 show that the effect of college
increases monotonically as a function of percentiles. In other words, increasing the fraction of the
workforce with a college degree has a larger impact on higher than lower quantiles. The reason why
the effect is monotonic is that education increases both the level and the dispersion of wages (see, e.g.,
Lemieux 2006a). As a result, both the within- and the between-group effects go in the same direction
of increasing inequality.

Another clear pattern that emerges in Figures 3 and 4 is that for most inequality enhancing
covariates, i.e., those with a positively sloped curve, the inequality enhancing effect increases over
time. In particular, the slopes for high levels of education (college graduates and post-graduates) and
high-wage occupations (upper management, engineers and computer scientists, doctors, and lawyers)
become steeper over time. This suggests that these covariates make a positive contribution to the wage
structure effect.

There are some changes in the contribution of occupations and industries that are consistent
with technological change and the routine-biased polarization of wages. For example, as shown in
Figures 4 and 5, there are increases in the returns to high-tech service industries at the upper end of the
wage distribution, but decreases in the returns to production and clerical occupations in the middle
of the wage distribution. There are also decreases in the penalties to some low skilled non-routine

30 As argued in FFL, the different relative strength of between and within effects at different quantiles explain the inverse
U-shaped effect of unions. This is in sharp contrast with the effect of unions found estimated using conditional
quantile regressions which captures only within-group effects and declines monotonically over the wage distribution
(Chamberlain 1994).
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occupations and associated industries, such as service occupations and truck driving and the retail
industry, although some increases at the lower end appear to be driven by changes in minimum wages.
On the other hand, there are some offsetting effects in industries that could have compensated the
decline in manufacturing employment, such as the primary (e.g., mining), wholesale and retail trade,
and personal services industries. In summary, the changes in the rewards and penalties associated
with occupations and industries provide a descriptive account of factors potentially offsetting the
wage effects of the polarization of employment. We turn next to the evaluation of the magnitude of
these effects.

Table 1. Unconditional Quantile Regression Coefficients on Log Wages.

Years: 1988/90 2014/16
Quantiles: 10 50 90 10 50 90
Explanatory Variables
Union covered 0.146***  0.343*** —0.025*** 0.058"** 0.240*** —0.008
(0.003)  (0.005)  (0.004) (0.003)  (0.006)  (0.007)
Non-white —0.063*** —0.137*** —0.072*** —0.053"*** —0.106*** —0.041***
(0.006)  (0.005)  (0.005)  (0.004) (0.004) (0.006)
Non-Married —0.111%** —0.109*** —0.031*** —0.046"** —0.107*** —0.064"**

(0.004) (0.003)  (0.004) (0.003) (0.004) (0.005)
Education (High School omitted)

Primary —0.301%* —0.312*** —0.109*** —0.212*** —0.415*** —0.110***
(0.011)  (0.006)  (0.005)  (0.01)  (0.009)  (0.006)
Some HS —0305"% —0.112**  0.005 —0.275"** —0.215"** 0.002
(0.007)  (0.005)  (0.003) (0.008) (0.007)  (0.004)
Some College 0.055*** 0.135** 0.112"* 0.036"** 0.098"** 0.023***
(0.005)  (0.004)  (0.005) (0.004) (0.005)  (0.004)
College 0.143%* 0.343*  0410"* 0.125"** 04097 0.493***
(0.005)  (0.005)  (0.008) (0.004) (0.006)  (0.009)
Post-grad 0.094%** 0.418%% 0.772"* 0.099"** 05027 0.962***

(0.006)  (0.006)  (0.013)  (0.004) (0.008) (0.017)
Potential Experience (20 < Experience < 25 omitted)
Experience < 5 —0.486"* —0.448"** —0.312"** —0.335"** —0.425"** —0.301***
(0.009)  (0.006)  (0.008)  (0.007)  (0.007)  (0.011)
5< Experience <10 —0.056*** —0.270*** —0.278*** —0.067*** —0.285*** —0.306"**
(0.006)  (0.006)  (0.008)  (0.005)  (0.007)  (0.011)
10< Experience <15 —0.005  —0.122*** —0.172*** —0.022*** —0.157*** —0.182***
(0.005)  (0.006)  (0.008)  (0.004)  (0.006) (0.011)
15< Experience < 20 0.002  —0.051"** —0.091***~0.009* ~ —0.051*** —0.034"**
(0.005)  (0.005)  (0.008)  (0.004)  (0.006) (0.012)
25< Experience < 30 0.010 0.033***  0.060*** —0.001 0.020*** 0.036"**
(0.006)  (0.006)  (0.01)  (0.004) (0.006) (0.012)
30< Experience < 35 0.017*  0.048*** 0.071*** 0.008 0.037*** 0.042***
(0.006)  (0.006)  (0.011)  (0.004) (0.007)  (0.012)
35< Experience < 40 0.022**  0.028"** 0.061*** 0.013**  0.054*** 0.062***
(0.007)  (0.008)  (0.012)  (0.004) (0.007)  (0.013)

Experience > 40 0.068*** 0.020** —0.010 0.030*** 0.058*** —0.013

(0.008)  (0.008)  (0.009) (0.005) (0.007)  (0.012)
R—square 0.253 0.359 0.206 0.182 0.353 0.202
No. of observations 268,494 236,296

Note: Linear limited dependent variable model. Bootstrapped standard errors (500 repetitions) are in
parentheses. Statistical signifiance levels: *** p< 0.01, ** p< 0.05, * p<0.1. Also included in the regression are
a public sector dummy, 16 occupation dummies, and 14 industry dummies. The base group is made up of
individuals who are non-unionized (not covered), not in the public sector, white, married, have a high school
degree, work as construction workers in the construction industry.
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Figure 3. Unconditional Quantile Coefficients—Demographics and Human Capital.
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Table 2. RIF Regression of Inequality Measures.

Years:  1988/90 2014/16 1988/90 2014/16

Inequality Measures Variance of Log Wages Gini
Estimated Values: 0.341 0.418 0.330 0.396

Explanatory Variables

Constant 0.203*** 0.205*** 0.261"**  0.290***
(0.004) (0.006) (0.002)  (0.002)

Union covered —0.075**  —0.040***  —0.067*** —0.039***
(0.002) (0.004) (0.001)  (0.001)

Non-white —0.002 0.005 0.006™**  0.005***
(0.003) (0.004) (0.001)  (0.001)

Non-Married 0.039*** 0.001 0.022***  0.008**

(0.002) (0.004) (0.001)  (0.001)
Education (High School omitted)

Primary 0.074*** 0.073*** 0.051***  0.057***
(0.004) (0.006) (0.002)  (0.002)
Some HS 0.104*** 0.129*** 0.048***  0.063***
(0.003) (0.005) (0.001)  (0.001)
Some College 0.028***  —0.001 0.006™** —0.006***
(0.003) (0.003) (0.002)  (0.003)
College 0.121*** 0.166"** 0.053"**  0.061***
(0.005) (0.005) (0.002)  (0.001)
Post-grad 0.301*** 0.407*** 0.157***  0.177***
(0.007) (0.01) (0.003)  (0.002)
Potential Experience(20 < Experience <25 omitted)
Experience < 5 0.047*** 0.027*** 0.031***  0.021***
(0.004) (0.007) (0.002)  (0.002)
5< Experience < 10 —0.098***  —0.093***  —0.036"** —0.030***
(0.005) (0.007) (0.002)  (0.002)
10< Experience < 15 —0.078***  —0.070***  —0.035"** —0.028"**
(0.004) (0.007) (0.002)  (0.002)
15< Experience < 20 —0.050"**  —0.006 —0.026"**  0.003**
(0.005) (0.008) (0.002)  (0.002)
25< Experience < 30 0.023*** 0.024*** 0.012%**  0.014***
(0.006) (0.008) (0.002)  (0.002)
30< Experience < 35 0.0227%** 0.017** 0.008***  0.007***
(0.006) (0.008) (0.002)  (0.002)
35< Experience < 40 0.015** 0.022%** 0.008***  0.008***
(0.007) (0.008) (0.003)  (0.002)
Experience> 40 —0.031***  —0.012 —0.015*** —0.005**

(0.005) (0.008) (0.003)  (0.002)
Occupations (Construction & Repair Occ. omitted)

Upper Management 0.235*** 0.415*** 0.132***  0.203***
(0.007) (0.011) (0.003)  (0.002)
Lower Management 0.090*** 0.200*** 0.027***  0.080***

(0.008) (0.009) (0.003)  (0.002)
Engineers & Computer Occ.  0.107*** 0.202*** 0.013**  0.054***
(0.006) (0.009) (0.003)  (0.002)

Other Scientists 0.081*** 0.134***  0.025** 0.068***
(0.011) (0.027) (0.005)  (0.006)
Social Support Occ. —0.001 0.065***  —0.012**  0.012***
(0.007) (0.009) (0.003)  (0.003)
Lawyers & Doctors 0.524** 0.637*** 0.337***  0.363"**
(0.027) (0.032) (0.010)  (0.008)
Health Treatment Occ. —0.020 0.115***  —0.035***  0.011***
(0.0101) (0.012) (0.005)  (0.005)
Clerical Occ. 0.013** 0.069*** 0.017***  0.044***
(0.004) (0.005) (0.002)  (0.002)
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Table 2. Cont.

Years:  1988/90 2014/16 1988/90 2014/16

Inequality Measures Variance of Log Wages Gini
Estimated Values: 0.341 0.418 0.330 0.396
Explanatory Variables
Occupations (cnt.)
Sales Occ. 0.088*** 0.177*** 0.043***  0.084***
(0.005) (0.008) (0.002)  (0.002)
Insur. & Real Estate Sales 0.208*** 0.197*** 0.152***  0.105***
(0.031) (0.038) (0.011)  (0.010)
Financial Sales 0.525%** 0.409%** 0429 0.219***
(0.06) (0.076) (0.018)  (0.014)
Service Occ. 0.188"** 0.208*** 0.101***  0.107***
(0.004) (0.005) (0.002)  (0.002)
Primary Occ. 0.226*** 0.222%** 0.114***  0.127***
(0.008) (0.015) (0.004)  (0.004)
Production Occ. 0.004 0.020*** 0.011***  0.028***
(0.003) (0.005) (0.001)  (0.002)
Transportation Occ. 0.119*** 0.145*** 0.079***  0.094***
(0.004) (0.006) (0.002)  (0.002)
Truckers 0.015%** 0.0427** 0.030***  0.040"**

(0.004) (0.006) (0.002)  (0.002)
Industries (Construction omitted)

Agriculture, Mining 0.079*** 0.013 0.036*** —0.001
(0.008) (0.012) (0.003)  (0.003)
Hi-Tech Manufac 0.018*** 0.014 —0.001 0.002
(0.005) (0.009) 0.002)  (0.002)
Low-Tech Manufac —0.037***  —0.053***  —0.011*** —0.019***
(0.004) (0.007) 0.002)  (0.002)
Wholesale Trade —0.012 —0.027** 0.001  —0.006*
(0.006) (0.012) (0.002)  (0.003)
Retail Trade 0.060*** 0.016* 0.038***  0.023***
(0.005) (0.007) 0.002)  (0.002)
Transportation & Ultilities 0.013***  —0.029***  —0.005* —0.019***
(0.005) (0.007) (0.002)  (0.002)
Information except Hi-Tech ~ —0.001 0.055***  —0.010***  0.041***
(0.008) (0.019) (0.003)  (0.005)
Financial Activities 0.065*** 0.064*** 0.052***  0.053***
(0.009) (0.013) (0.004)  (0.003)
Hi-Tech Services 0.048*** 0.071*** 0.018**  0.035***
(0.008) (0.01) (0.004)  (0.003)
Business Services 0.018* —0.042%** 0.019*** —0.014***
(0.005) (0.008) 0.002)  (0.002)
Education & Health Services —0.008 —0.064***  —0.001 —0.018"**
(0.006) (0.008) (0.003)  (0.002)
Personal Services 0.136*** 0.054*** 0.051***  0.023***
(0.006) (0.006) 0.002)  (0.002)
Public Admin —0.038***  —0.071***  —0.036™** —0.029***
(0.007) (0.011) (0.003)  (0.003)
Public Sector —0.058***  —0.055"**  —0.030"** —0.048"**
(0.005) (0.007) 0.002)  (0.002)
R-squared 0.115 0.087 0.048 0.025
No. of observations 268,492 236,287 268,492 236,287

Note: Bootstrapped standard errors (500 repetitions) are in parentheses. Statistical signifiance levels:
p <0.01, ¥ p <0.05 * p <0.1. The base group is made up of individuals who are non-unionized
(not covered), not public sector, white, married, have a high school degree, work as construction workers in
the construction industry. Trimmed sample drops 15 observations with hourly wages > $1,636 ($2010).
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5.2. Decomposition Results

The results for the aggregate decomposition are presented in Figure 6. Tables 3 and 4 summarize
the results for the standard measures of top-end (90-50 log wage differential) and low-end (50-10 log
wage differential) wage inequality, as well as for the variance of log wages and the Gini coefficient.
The covariates used in the RIF-regression models are those discussed above and listed in Table A1.
A richer specification with additional interaction terms is used to estimate the logit models used
compute the reweighting factor @&¢(T;, X;).3!

A. Change in Log Wages 2014/16-1988/90 B. Detailed Total Effects
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—4— Wage Structure —s— Education
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Figure 6. Decomposition of Total Change into Composition and Wage Structure Effects.

Figure 6a shows the overall change in (real log) wages at each percentile 7, A%, and decomposes
this overall change into a composition (A';g) and wage structure (AZT) effect computed using the
reweighting procedure of Result 1. Consistent with the pattern first documented in Autor et al. (2006),
the overall change is U-shaped as wage dispersion increases in the top-end of the distribution,
but declines in the lower end.3> Most summary measures of inequality such as the 90-10 gap
nonetheless increase over the 1988-1990 to 2014-2016 period as wage gains in the top-end of the
distribution exceed those at the low-end. In other words, although the curve for overall wage changes
is U-shaped, its slope is positive, on average, suggesting that inequality generally goes up. This overall
increase shows up as positive total changes in the 90-10 gap, the variance of log wages, and the
Gini, reported in Tables 3 and 4. In all cases, the aggregate decomposition of these overall measures
attributes most (from 55% to 66%) of the changes to composition effects.

Figure 6a also shows that, consistent with Lemieux (2006b), composition effects have contributed
to a substantial increase in inequality. In fact, once composition effects are accounted for, the remaining
wage structure effects (estimated using reweighting) follow a “purer” U-shape than overall changes
in wages. The wage declines are now right in the middle of the distribution (20th to 80th percentile),
while wage gains at the top and low end are more similar. By the same token, however, composition
effects cannot account at all for the U-shaped nature of wage changes.

Figure 7 moves to the next step of the decomposition using linear RIF-regressions to attribute the
contribution of each set of covariates to the composition effect.3? Figure 8, which we discuss below,
does the same for the wage structure effect. Figure 6b summarizes the total of the composition and

51 The logit specification also includes a full set of interaction between experience and education, union status and education,
union status and experience, between education and occupations, and experience and industries.

32 This stands in sharp contrast with the situation that prevailed in the 1980s when the corresponding curve was positively
sloped as wage dispersion increased at all points of the distribution (Juhn et al. 1993).

33 The effect of each set of factors is obtained by summing up the contribution of the relevant covariates. For example, the
effect for “education” is the sum of the effect of each of the five education categories shown in Table 1. Showing the effect of
each individual dummy separately would be cumbersome and harder to interpret.
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wage structure effects by the sets of factors of interest. The combination of composition and wage
structure effects shows the strong monotonic effect of education on wage changes, the mild U-shaped
effect of union and occupations, and the offsetting hump-shaped effect of industries.

A. Aggregate Composition Effects B. Detailed Composition Effects
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Figure 7. Decomposition of Composition Effects.

A. Aggregate Wage Structure Effects B. Detailed Wage Structure Effects

—— Total —+— Union
—e— Explained —e— Education

—— Residual —— Oceupations

—=— Industrics
—+  Other

Log Wage Change

0

-05

Ouantile Ouantile

Figure 8. Decomposition of Wage Structure Effects.

Figure 7a compares the overall composition effect obtained by reweighting and displayed
in Figure 6a, A%, to the composition effect explained using the RIF-regressions, (YOC - Xo)'70".
The difference between the two curves is the specification (approximation) error R7z. The error term is
relatively small and does not exhibit much of a systematic pattern. This means that the RIF-regression
model does relatively well at tracking down the composition effect estimated consistently using
the reweighting procedure; however, as we discuss below, in some cases, the specification error is
significantly different from zero.

Figure 7b then divides the composition effect (explained by the RIF-regressions) into the
contribution of five main sets of factors. To simplify the discussion, we focus on the impact of
each factor on overall wage inequality summarized by the 90-10 log wage differential in comparison to
the 50-10 and 90-50 log wage differentials that capture what happened in the lower and upper parts of
the distribution, respectively. The decomposition of the log wage differentials, the log variance, and the
Gini are reported in Tables 3 and 4. Table 3 presents the simple OB type decomposition computed from
RIF-regressions of the five inequality measures, without reweighting. Table 4 applies the complete
two-step procedure described above.

As discussed in Section 4.3, we compute the RIF of the difference between two (log) quantiles
q1 and g, where g, > g1, as RIF(y;; g2 — q1) = RIF(y;;92) — RIF(y;;92), and use these differences

95



Econometrics 2018, 6,28

as dependent variables in the regressions. For the variance of log wages and the Gini, the RIF
are as described above. Using the estimation results from these sets of regressions, we compute
the components of the simple OB-type decomposition for the changes over time, 7; — 7y = K(V)B,
from 1988-1990 (T = 0) to 20142016 (T = 1) as:

— =\~ <y~
. (X1 —Xo0) 7 X1 (M1 —70)-
OB = Av + Av
AX,OB AS,OB

Table 3. Decomposition Results without Reweighting.

. Variance Gini
Inequality Measures 90-10 50-10 90-50 (x100)  (x 100)
Total Change 0.125%**  —0.075"**  0.201***  7.775"** = 6.599***
Composition 0.089***  0.037***  0.052***  4.163"**  1.966"**
Wage Structure 0.037***  —0.112***  0.149***  3.612"**  4.633"**
Composition Effects:

Union 0.016*** —0.019*** 0.035***  0.713***  0.639***
Other 0.019*** 0.008*** 0.011***  0.984***  0.473***
Education 0.009*** 0.013***  —0.005***  0.665***  0.207**
Occupation 0.019*** 0.022***  —0.002** 0.672°**  0.112***
Industry 0.026*** 0.013*** 0.013*** 1.128***  0.536***
Wage Structure Effects:

Union 0.014***  —0.002* 0.015***  0.442***  0.360"**
Other —0.048** —0.034"** —0.014 —0.983 —0.161
Education 0.015** 0.008*** 0.007 1.444*  0.188*
Occupation 0.057***  —0.066™**  0.123***  5.664***  2.423***
Industry —0.079***  —0.048"** —0.031*** —3.212*** —1.044**
Constant 0.079***  0.030** 0.049***  0.257 0.287+**
Total Effects:

Union 0.030***  —0.021*** ~ 0.051***  1.156***  0.998***
Other —0.029**  —0.026"** —0.003 0.001 0.312
Education 0.024***  0.022***  0.002 2.110***  0.395"*
Occupation 0.076***  —0.045"**  0.121***  6.336"**  2.534***
Industry —0.054***  —0.036"** —0.018 —2.084*** —0.508

Note: Other includes non-white, non-married, and five categories of experience. Statistical signifiance levels:
p <0.01, 7 p <0.05,* p < 0.1. Bootstrapped standard errors over the entire procedure (500 replications)
were used to compute the p-value. Trimmed sample for the variance and Gini drops 15 observations with
hourly wages > $1,636 ($2010).

These results are displayed in Table 3 by groups of variables.>* In Table 4, we present the results
of the decomposition that also applies the reweighting procedure

—C — N —c! . N -/ e ~ - —C o~
A (Xo —Xo0)" - 7% N Xo - (FE—78) N X1 - (% —7¢) N (X1 —Xp) e
0= T

v N AV N%
AX,p Al)/(,e AS,p As,e

The four terms in this decomposition are easily obtained by running two OB decompositions
using RIF regressions. First, we perform an OB decomposition using the T = 0 sample and the
counterfactual sample (T = 0 sample reweighted to be as in T = 1) to get the pure composition effect,

34 In practice, we use the popular Jann (2008) “oaxaca" Stata ado file and obtain bootstrapped standard errors over the
entire procedure given the statistics and the RIF are estimated values. We opted for boostrapped instead of analytical
standard errors by simplicity. Computation of analytical standard errors would involve estimation of different functionals,
increasing the degree of complexity of the estimation step, whereas bootstrapped standard errors, although being potentially
computationally more demanding are typically simpler to implement.
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A% o using T = 0 as reference wage structure. The total unexplained effect in this decomposition
corresponds to the specification error, E‘)’(,E, and allows one to assess the importance of departures
from the linearity assumption. Second, we perform the decomposition using the T' = 1 sample and the
counterfactual sample, using the counterfactual wage structure as reference, and obtain the pure wage
structure effect, Kls’,p, in the “unexplained” part of the decomposition. The total explained effect in this
decomposition, KIS’,E, corresponds to the reweighting error which should go to zero in large samples.
It provides an easy way of assessing the quality of the reweighting.3®

Table 4. Decomposition Results with Reweighting.

Variance Gini

Inequality Measures 90-10 50-10 90-50 (x100)  (x100)
Total Change 0.125***  —0.075"** 0.201*** 7.775"*  6.599***
Composition 0.090*** 0.038*** 0.052***  4.193***  1.966"**
Wage Structure 0.030***  —0.105*** 0.135*** 3.149***  4.402%**
Composition Effects:

Union 0.016***  —0.019*** 0.035*** 0.712***  0.638***
Other 0.019*** 0.009*** 0.011%** 1.007***  0.481***
Education 0.007*** 0.013***  —0.005*** 0.600***  0.173
Occupation 0.020***  0.022*** —0.002* 0.719***  0.129***
Industry 0.026***  0.013***  0.014™*  1.155***  0.546"**
Specification Error 0.002 —0.010 0.012***  —0.308***  0.175"**
Wage Structure Effects:

Union 0.012***  —0.005** 0.017**  0.338™**  0.220"**
Other —0.049"**  —0.026"* —0.023 -0.871  —0.068
Education 0.054**  0.010 0.045***  2.303***  1.183***
Occupation 0.018 —0.075*** 0.093*** 2.872%%  1.416***
Industry —0.094*  —0.030"*  —0.064"** —3.852"** —1.306""*
Constant 0.089*** 0.022 0.067*** 2.359*** 2957
Reweighting Error 0.003***  0.002***  0.001***  0.125"**  0.057***
Total Effects:

Union 0.029***  —0.024*** 0.052*** 1.050***  0.857***
Other —0.029**  —0.018* —0.012 0.135 0.413
Education 0.062*** 0.022*** 0.039*** 2.903***  1.356***
Occupation 0.038***  —0.053*** 0.091*** 3.591%*  1.545%**
Industry —0.068***  —0.017 —0.051"**  —2.697*** —0.760*

Note: Other includes non-white, non-married, and five categories of experience.
Statistical signifiance levels: *** p < 0.01, ** p < 0.05, * p < 0.1. Bootstrapped standard
errors over the entire procedure (500 replications) were used to compute the p-value. Trimmed
sample for the variance and Gini drops 15 observations with hourly wages > $1,636 ($2010).

Consistent with Figure 7a, specification errors reported in Table 4 are generally small. As discussed
in Section 3, the specification error reflects departures from non-linearity of the RIF-regressions and
the fact that, except for the mean, the RIF depends on the distribution of Y (and X through its effect
on Y). In Table 4, we formally test whether the specification error is significantly different from
zero. The results are mixed. The specification error is not significantly different from zero for the
90-10 and the 50-10 gaps, but is statistically significant for the 90-50 gap, the variance, and the Gini.
The specification error is nonetheless small relative to the overall changes in the distributional statistics,
which indicates that RIF-regressions provide highly accurate estimates of the overall composition and
wage structure effects in the empirical example being studied here. However, as we discuss below,

% Adding more terms in the specification of the reweighting function helps reducing the reweighting error. This has to be

balanced with issues of common support, as more terms may lead to more perfect predictions, an undesirable outcome.
As we discuss below, the specification we use yields a very small reweighting error.
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although the specification error is small, using the two-step decomposition instead of a standard OB
decomposition matters much more when looking at the contribution of individual covariates to the
wage structure effect.

In both Table 3 and 4, the composition effects linked to factors other than unions go the “wrong
way” in the sense that they account for rising inequality at the bottom end while inequality is rising at
the top end, a point noted earlier by Autor et al. (2005). This applies in particular to education and
occupations effects that are larger for the 50-10 than for the 90-50, while the effects of industry and
other factors (race, marital status, and experience) on the 50-10 and 90-50 are similar. In contrast,
composition effects linked to unions (the impact of de-unionization) reduce inequality at the low
end (effect of —0.019 on the 50-10) but increases inequality at the top end (effect of 0.035 on the
90-50). Note that, just as in an OB decomposition, these effects on the 50-10 and the 90-50 gap can
be obtained directly by multiplying the 9.5 percent decline in the unionization rate (Table Al) by
the relevant union effects in 1988-1990 shown in Table 1. The effect of de-unionization accounts for
about 25 percent of the total change in the 50-10 gap, which is remarkably similar to the relative
contribution of de-unionization to the growth in inequality in the 1980s (see Freeman 1993; Card 1992;
and DiNardo et al. 1996).

Figure 8a divides the wage structure effect, AT, into the part explained by the RIF-regression
models, ZkM:Z('ﬂ,k - '?Ek)yl, and the residual change 77, — 7¢,, (the change in for the base group
captured by the intercepts). The contribution of each set of factors is then shown in Figure 8b. As in
the case of the composition effects, it is easier to discuss the results by focusing on the 90-50 and 50-10
gaps shown in Tables 3 and 4.

Here, we note that the contribution of different covariates to the wage structure effect are quite
different in Tables 3 and 4. This indicates that the OB decomposition of Table 3 is inaccurate because of
differences between the estimated RIF-regression coefficients ¥¢ and 7§. As discussed in Section 3,
the difference between 4] and 7¢. used to compute wage structure effects in Table 4 solely reflects
changes in the wage structure. By contrast, the difference between 4} and 7§ used in Table 3 is
likely contaminated by changes in the distribution of X that are being adjusted for (by reweighting)
when estimating 4¢. The difference is particularly striking in the case of education. As expected,
Table 4 shows that wages structure effects linked to education play an important role in the growth
of the 90-50 gap. By contrast, the effect is small and insignificant when using a conventional OB
decomposition in Table 3. The case of education, a central variable in most studies on the sources of
growing inequality, dramatically illustrates the importance of using the two-step decomposition with
reweighting proposed in this paper.

The wage structure results of Table 4 first show that covariates overexplain —0.127 (sum of the
five effects) of the —0.105 change (decline) in the 50-10 gap, the constant capturing the difference.
Covariates do a less impressive job explaining changes in the 90-50 gap explaining only 0.068 (half) of
the 0.136 change. Occupations are the set of the covariates that best capture the changes in the wage
structure. They account for —0.075 of the —0.105 decline (73%) in the 50-10 gap and 0.088 of the 0.135
increase (68%) in the 90-50 gap. These results justify the increased attention given in the literature to
the role of occupational tasks (Firpo et al. 2011; Fortin and Lemieux 2016). Changes in the returns to
education continue to play an important role at the top of distribution accounting for 0.045 of the 0.135
increase (33%) in the 90-50. This supports Lemieux (2006a)’s conjecture that increases in the return to
post-secondary education contribute to the convexification of the wage distribution.

Finally, the total effect of each covariate (wage structure plus composition effect) is reported in
Figure 6b and the bottom panel of Table 4. Unions and occupations are the two factors that best account
for the differential changes at the bottom and top of the distribution, capturing both a negative effect
on the 50-10 and a positive effect on the 90-50. The total effect of the two factors on the 50-10 gap
corresponds to —0.078 out of —0.105 (74%) of the change, while they account for 0.139 out of 0.136
change in the 90-50 (102%). This goes a substantial way towards explaining the polarization of the
labor market.
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6. Conclusions

We provide a detailed exposition of a two-stage method to decompose changes in the distribution
of wages (or other outcome variables). In Stage 1, distributional changes are divided into a wage
structure effect and a composition effect using a reweighting method. In Stage 2, these two components
are further divided into the contribution of each individual covariate using the recentered influence
function regression technique introduced by FFL. This two-stage procedure generalizes the popular
OB decomposition method by extending the decomposition to any distributional measure (besides the
mean), and allowing for a more flexible wage setting model. Other procedures (Machado and Mata
2005; Melly 2005; Rothe 2012; CEM) have been suggested for performing part of this decomposition
for distributional parameters besides the means. One important advantage of our procedure is that
it is easy to use in practice, as it simply involves estimating a logit model (first stage) and running
least-square regressions (second stage). Another more distinctive advantage is that it can be used
to divide the contribution of each covariate to the composition effect, something that most existing
methods cannot do.

We illustrate the workings of our method by looking at changes in male wage inequality in the
United States between 1988 and 2016. This is an interesting case to study as the wage distribution
changed very differently at different points of the distribution, a phenomenon that cannot be captured
by summary measures of inequality such as the variance of log wages. Our method is particularly
well suited for looking in detail at the source of wage changes at each percentile of the wage
distribution. Our findings indicate that unions, occupations, and education are the most important
factors accounting for the observed changes in the wage distribution over this period.
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Appendix A. Tables

Table Al. Sample Means.

Years: 1988/90 2014/16 Difference

Log wages 2.860 2.901 0.041
Std of log wages 0.579 0.622 0.043
Union covered 0.223 0.127 —0.095
Non-white 0.134 0.186 0.052
Non-Married 0.388 0.457 0.068
Age 36.204  39.882 3.677
Education

Primary 0.059 0.034 —0.025
Some HS 0.118 0.054 —0.064
High School 0.381 0.307 —0.074
Some College 0.202 0.275 0.072
College 0.139 0.218 0.078
Post-grad 0.101 0.113 0.012
Occupations

Upper Management 0.082 0.080 —0.002
Lower Management 0.040 0.068 0.028
Engineers & Computer Occ.  0.061 0.081 0.019
Other Scientists 0.014 0.010 —0.004
Social Support Occ. 0.052 0.061 0.009
Lawyers & Doctors 0.010 0.015 0.005
Health Treatment Occ. 0.010 0.019 0.009
Clerical Occ. 0.066 0.068 0.002
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Table A1. Cont.

Years: 1988/90 2014/16 Difference

Sales Occ. 0.086 0.085 —0.001
Insur. & Real Estate Sales 0.007 0.006 —0.001
Financial Sales 0.003 0.002 —0.001
Service Occ. 0.107 0.149 0.042
Primary Occ. 0.026 0.011 —0.015
Construction & Repair Occ. 0.164 0.155 —0.009
Production Occ. 0.141 0.086 —0.055
Transportation Occ. 0.086 0.060 —0.026
Truckers 0.045 0.041 —0.004
Industries

Agriculture, Mining 0.033 0.026 —0.007
Construction 0.097 0.101 0.005
Hi-Tech Manufac 0.102 0.066 —0.037
Low-Tech Manufac 0.137 0.087 —0.050
Wholesale Trade 0.051 0.033 —0.018
Retail Trade 0.105 0.113 0.008
Transportation & Ultilities 0.086 0.079 —0.008
Information except Hi-Tech 0.018 0.012 —0.006
Financial Activities 0.047 0.058 0.011
Hi-Tech Services 0.035 0.064 0.029
Business Services 0.051 0.065 0.014
Education & Health Services 0.097 0.113 0.016
Personal Services 0.081 0.127 0.046
Public Admin 0.058 0.054 —0.005
Public Sector 0.149 0.126 —0.024

Note: Computed using sample weights. All differences over time are

statistically significant at the p = 0.001 level.

Table A2. Occupation and Industry Definitions.

Code Sources: 2010 Census SOC 1980 SOC

Occupations

Upper Management 10-200, 430 1-13,19

Lower Management 200-950 14-18, 20-37, 473476
Engineers & Computer Occ.  1000-1560 43-68, 213-218, 229

Other Scientists 1600-1960 69-83, 166-173, 223-225, 235

Social Support Occ.
Lawyers & Doctors
Health Treatment Occ.

20002060, 2140-2960
2100-2110, 3010, 3060
3000, 3030-3050, 3110-3540

113-165, 174-177, 183-199, 228, 234
84-85,178-179
86-106, 203-208

Clerical Occ. 5000-5940 303-389

Sales Occ. 47004800, 48304900, 4930-4965 243-252, 256-285
Insur. & Real Estate Sales 4810,4920 253-254
Financial Sales 4820 255

Service Occ. 3600-4650 430-470

Primary Occ. 6000-6130 477-499
Construction & Repair Occ.  6200-7620 503-617, 863-869
Production Occ. 7700-8960 633-799, 873, 233
Transportation Occ. 9000-9120, 9140-9750 803, 808-859, 876-889, 226-227
Truck Drivers 9130 804-806
Industries

Agriculture, Mining 170-490 10-50
Construction 770 60

Hi-Tech Manufac
Low-Tech Manufac
Wholesale Trade
Retail Trade

Transportation & Utilities
Information except Hi-Tech

Financial Activities
Hi-Tech Services
Business Services

Education & Health Services

Personal Services
Public Admin

2170-2390, 3180, 3360-3690, 3960
1070-2090, 2470-3170, 3190-3290, 3770-3890, 3970-3990
4070-4590

4670-5790

570-690, 6070-6390

6470-6480, 65706670, 6770-6780
6870-7190

6490, 6675-6695, 72907460
7270-7280, 7470-7790

7860-8470

8560-9290

9370-9590

180-192, 210-212, 310, 321-322, 340-372
100-162, 200-201,220-301, 311-320, 331-332, 380-392
500-571

580-640, 642-691

400-432, 460-472

171-172, 852

700712

440442, 732-740, 882

721-731, 741-791, 890, 892

812-851, 860-872, 891

641, 750-802, 880881

900-932
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Appendix B. Supplemental Material

Appendix B.1. Details of Weighting Functions Estimation

Appendix B.1.1. Estimating the Weights

We are interested in estimating weights w that are generally functions of the distribution of (T, X).
The three weighting functions under consideration are wq(T), wy(T), and wc (T, X). The first two
weights are trivially estimated as:

where p = N~ Zfil T;.
The weighting function wc(T, X) can be estimated as

_ =T ([ P(X)
aet =55 ()

where p (+) is an estimator of the true probability of being in Group 1 given X. We describe in detail
below the two approaches that we consider, a parametric one and a non-parametric one. In addition,
to have weights summing up to one, we use the following normalization procedures:

g o () T
L()l(Tl) - Z]I\Ll(le(T]) - Nﬁ,
o @o(T;) 1-T;
;) = — = =,
) N, @o(T)  N-(1-p)
So(T. 1-T)- (L5
Qé(Tqu) _ N"JCETI) _ ( ) (1 p(X; )

Appendix B.1.2. Estimating the Distributional Statistics

We are interested in the estimation and inference of vy, 1, and v¢. It can be shown that, under
certain regularity conditions, estimators of these objects will be distributed asymptotically normal. We
now show how to estimate those quantities, and derive their asymptotic distributions below.

The estimation follows a plug-in approach. Replacing the CDF by the empirical distribution
function yields the estimators of interest:

where

N
Fe(y) = 2@?:(Ti,xf) -I{Y; <y}

Note that, in practice, it is not usually necessary to compute these empirical distribution functions
to get estimates of a distributional statistic, . Standard software programs such as Stata can be
used to compute distributional statistics directly from the observations on Y using the appropriate
weighting factor.
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The estimated distributional statistics can then be used to estimate the wage structure and
composition effects as A§ = 1 — V¢ and A% = V¢ — V.

Appendix B.1.3. Parametric Propensity Score Estimation
Suppose that p (X) is correctly specified up to a finite vector of parameters &y. That is, p (X) =

p (X;do) or more formally:

Assumption Al. (Parametric p-score) Pr [T = 1|X = x] = p(x;); where p (-;6) : X — [0,1] isa
known function up to 5 € RY, d < +co.

Estimation of 4 follows by maximum likelihood:
R N
SMLE = arg max Y T;-log (p (Xi;0)) + (1 —T;) - log (1 — p (X;; 6))
i=1

Define the derivative of p (X; ) with respect to é as p (X;J) = dp (X;8) /3. The score function
s(T,X;9)is:

T—-p(X;9)
p(X:0)- (1=p(X;9))

Using a normalization argument, we suppress the entry for § whenever a function of it is evaluated
at the true 4. Therefore,

s(T,X;8) = p(X;90) -

s(T,X;00) =s(T,X) :?(X)'P(X'_ﬂ—%

@c(T, X) = 11T.( p (Xiue) )

p 1-p (X;EMLE)

In particular, in this paper, we assume that the p (x; ) can be modeled as a logit, that is,

and finally

p (x;80) = L(x'do)
where L: R — R, L(z) = (1 +exp(—z)) "

Appendix B.1.4. Nonparametric Propensity Score Estimation

Suppose that p (X) is completely unknown to the researcher. In that case, following
Hirano et al. (2003), we approximate the log odds ratio by a polynomial series. In practice, this is
done by finding a vector 7 that is the solution of the following problem:

7 = arg max é Ti-log (L (Hy (X)) ) + (1= T)) -log (1~ L (Hy (X)) )

where Hj(x) = [Hj,;j(x)] (j=1,..,]),avector of length ] of polynomial functions of x € X satisfying
the following properties: (i) Hy : X — R/; and (ii) H 7,1(x) = 1. More details on this estimation
procedure can be found at Hirano et al. (2003) or in Firpo (2007). The non-parametric feature of
this estimation procedure comes from the fact that such approximation is refined as the sample size
increases, that is, | will be a function of the sample size N, ] = J(N) — 400 as N — +-co.
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In this approach, p(X) is estimated by p(X) = L(H;(X)'#), thus:

N 1-T [ L(H/(X)7)
ae(r0 =15 (o)

Appendix B.2. Asymptotic Distribution

We first show that the plug-in estimators U are asymptotically normal and compute their
asymptotic variances. We then do the same for the density estimators.

Appendix B.2.1. The Asymptotic Distribution of Plug-In Estimators

We start by assuming that the estimators ¥ are asymptotically linear in the following sense:

Assumption A2 (Asymptotic Linearity). Uy and Uc are asymptotically linear, that is,

¢ (T, X;) - IE(Y;; Fr,v) + 0, (1/VN)

=
£

I
—_

v <E> —-v(F) =

c (T, X;) - IE(Y;; Fe,v) + 0p(1/V/N)

Il
=
e

Il
—-

14 (ﬁc) -V (Fc)

Assumption A2 establishes that the estimators are either exactly linear, as those that are based on
sample moments, or they can be linearized and the remainder term will approach zero as the sample
size increases.

An additional technical assumption is that the influence function are square integrable and its
conditional expectation given X is differentiable. To simplify notation, let us write IF(Y}; v, F) = ¢y (Y).

Assumption A3. [Influence Function] For all weighting functions w considered,
G)E [(W (Y;Ft))z] < oo E [(Lpg (y;FC))Z} < coand
(ii) E[! (Y; F) |X = x] E [9& (Y; Fc) |X = x] and are continuously differentiable for all x in X.

Under ignorability, both types of estimators (parametric and non-parametric first step) for 73,
o, and V¢ proposed before will remain asymptotically linear. The theorem below considers both the
parametric and non-parametric cases.

Theorem Al. [Asymptotic Normality of the U Estimators|:
Under Assumptions 1, 2, A2 and A3:

(i) VN - (7 —vr) = o TNy wr(T) - 9 (i Fr) +0p(1) BN@© V), t=01
(iii) (a) if in addition, Assumptzon AT holds, then:

VN - (Ic —ve) = \/—Z‘UC T;, X;) - " (Yi; Fe)

+ (wi(Ti) — we(Ti, Xi)) - ’;(Xi), (B [s(T,X) s (T,X)"]) "

‘E %-E[%(Y;FC) | X, T=0]| +0p(1) 3 N(0,Vp)

(iii) (b) otherwise, if in addition we assume [non-parametricl, then:
VN - (Ic —vc) = \/—Z‘UC T;, X;) - " (Yi; Fe)

+(wi(Ti) —we(Ti, Xi)) - E [ (Y Fe) | X, T = 0] +0p(1) B N0, Venr)
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where
Vi=E [(@i(T) ¢} (GR)], t=01
Vep=E (wc(T, X) 9" (Y5 Fc)
p(x) "y~
+ (@ (1) = we(T, X)) - s (B [s (1,X) 5 (1,X)])
. 2
p(X) vy _
‘E W'wac(yf&) X,T—O}D ]
Vene =E (WC(T/ X) 9" (Y, X; Fe)

2
+ (@(T) — we (T, X)) - E g (Y, X F) |x,T=o1> ]

Appendix B.3. Proofs
Proof of Result 1. A proof can be found in Firpo and Pinto (2016). [

Proof of Result 2. Part (i) is straightforward and follows from identification of the functionals v, vy
and v¢, a direct consequence of identification of F;, Fy and Fc. Part (ii) follows from the fact that

F(y) =E[E[I{g (X&) <y} | T=1X]
_ E[E[I{go (X,e) <y} [T =1,X]
+E[I{g1 (X,¢) <y} —Wgo (X,e) <y} | T =1,X]]

=Fc(y)+F oy

where
Fio(y) = EE[M{g (X&) <y} —T{go (X,e) <y} | T =1,X]]
thus, if g1 (+,-) = go (+,-), thenforall y, F;_¢ (y) = 0and

v =v(F)=v(Fc+F-o) =v(F)=vc.

Part (iii) follows from a similar argument:

Fo (y) /Pr[Y0§y|T:O,X:x]-dFX‘T(x|0)~dx

/Pr[YO <y|T=0X=x] dFyg(x[1) dx
+ /Pr Yo<y|T=0X=x]- (dFX‘T (x[0) — dFy (xu)) dx
Fc (y) +Fa (y)

where
Fa() = [PriYo<y|T=0,X =] -d (Fyr (x|0) ~ Fyr (x|1)) -d

thus if Fyp (-|1) = Fx)r (+|0), then for all x, Fxr (x[1) — Fxj (x[0) = 0 and therefore, for all y,
Fr (y) =0and
vo =v(Fy) =v(Fc+Fa) =v(Fc) =vc.

O
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Proof of Theorem Al. A proof of parts (i), (if) and (iii) (b) can be found in Firpo and Pinto (2016).
A proof of part (iii) (a) can be found in Chen et al. (2008).
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Abstract: Conventional wisdom says that the middle classes in many developed countries have
recently suffered losses, in terms of both the share of the total population belonging to the middle
class, and also their share in total income. Here, distribution-free methods are developed for inference
on these shares, by means of deriving expressions for their asymptotic variances of sample estimates,
and the covariance of the estimates. Asymptotic inference can be undertaken based on asymptotic
normality. Bootstrap inference can be expected to be more reliable, and appropriate bootstrap
procedures are proposed. As an illustration, samples of individual earnings drawn from Canadian
census data are used to test various hypotheses about the middle-class shares, and confidence
intervals for them are computed. It is found that, for the earlier censuses, sample sizes are large
enough for asymptotic and bootstrap inference to be almost identical, but that, in the twenty-first
century, the bootstrap fails on account of a strange phenomenon whereby many presumably different
incomes in the data are rounded to one and the same value. Another difference between the centuries
is the appearance of heavy right-hand tails in the income distributions of both men and women.
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1. Introduction

There has been much discussion in many countries about the fate of the middle class, variously
defined. It appears clearly that middle classes in different developed countries have had rather
different experiences; in particular, the case of the USA, about which a lot has been written, for instance,
Heathcote et al. (2010), is in no way typical or representative. Canada shares a long border with the
USA, and has a culture more similar to the American one than any other country, but it maintains a
separate identity, and differs from the US markedly on matters of social security and immigration.
Nevertheless, a couple of decades ago, it was pointed out by Foster and Wolfson (2010) that, in both
countries, a decline of the middle class had led to a polarisation of the income distribution. In Canada
specifically, the situation is reviewed by Brzozowski et al. (2010), for inequality not only of income,
but also of wealth and consumption. For the USA, an early article by Wolfson (1994) discusses
polarisation, while Wolff (2013) describes the fate of the wealth of the middle class following the crisis
of 2008. Some recent trends in income inequality in different European regions have been analysed by
Castells-Quintana et al. (2015).

The study of income inequality, and its effects on growth, social stability, and many other features
of society, started more than half a century ago, with Kuznets (1955). A landmark contribution
to the measurement of income inequality was Atkinson (1970). A useful article is Cowell (1999),
which appears in the Handbook of Income Inequality Measurement, and contains many chapters
on different aspects of the topic, some purely theoretical, such as the seminal contributions of
Blackorby et al. (1999). An interesting recent paper, Ryu (2013), develops a sort of inverted Gini index
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that emphasises the distribution of the poor, and describes ways of estimating income distributions
based on the principle of maximum entropy.

The Canadian Liberal federal government elected in late 2015 has made a point of trying to
improve the lot of the Canadian middle class, claiming, no doubt with some justice, that the share of
the middle class, however defined, has declined over the last several decades, in terms of both the
share of the population belonging to the middle class, and also its share in total national income.

Beach (2016), in his presidential address to the Canadian Economics Association, drew a
wide-ranging portrait of the evolution of Canadian middle-class fortunes since the 1970s. His analysis
tries to understand the different mechanisms that have shaped the economic environment in which
this evolution has taken place. He provides abundant statistical information on earnings in Canada,
duly separating the two sexes in his analysis, given that their position in the labour market has changed
very considerably in the last fifty years.

The aim of this paper is to bring some formal statistical analysis to bear on the Canadian census
data. The work of Davidson and Duclos’, found in Davidson and Duclos (1997) and Davidson and
Duclos (2000), introduced a set of statistical procedures that permit distribution-free inference on
income data, many of which can be used directly for the analysis in this paper. Some extensions of
their methodology are developed here to deal with the specific problems addressed.

Formal analysis requires a formal definition of the middle class. An ideal definition would have to
be based on all sorts of socioeconomic characteristics of individuals and households, but such a thing is
well outside the scope of this paper. Instead, we consider definitions based solely on individual income.
Usually different segments of the income distribution are defined by use of quantiles, and income
data are sometimes grouped by deciles or vigintiles. Thus, a possible definition of the middle class
could be those households or individuals whose incomes lie between the second decile and the eighth.
Another approach would be to define the upper and lower bounds of middle-class incomes as multiples
of the mean or median income. However, given the stylised fact that the recent changes in income
inequality in most developed countries have favoured the rich and the super-rich, use of the mean as a
criterion for defining income classes is likely to distort inference. It is easy to see that a substantial
increase in the income of the upper 10% of the distribution, with no changes for the lower 90%, leads to
an increase in mean income and no change in the median. Similarly, quantile-based definitions of the
middle class are unaffected by an increase in the income of the rich and only the rich.

If the middle class is defined as the set of individuals with incomes between the p}, quantile of
the income distribution and the p,; quantile, where a possible choice might be p}, = 0.2 and py,; = 0.8,
it is not possible to measure changes in the population share of the middle class, because this share is
always just pp; — p1o- It remains possible to measure changes in the income share.

In the next section, distribution-free plug-in estimators are presented for the population and
income shares of the middle class, according to three different sorts of definition of the middle
class—based on the median income, based on the mean income, and based on quantiles of the income
distribution. These estimators are shown to be consistent and asymptotically normal, and feasible
estimators are given for the asymptotic variance. Then, in Section 3, the evolution over time of the
middle-class shares in Canada is analysed using census data from the 1971 census to that in 2006.
Section 4 concludes.

2. Asymptotic Analysis

We begin with a definition of the middle class as the section of the population with incomes
between a fraction a of median income and a multiple b of it. Typically, we might have 2 = 0.5 and
b = 1.5. It is desired to estimate the size of this section of the population, and also to estimate its share
in total income. Other definitions will be considered later.

1 Currently (December 2017) Minister of Families, Children and Social Development in the Canadian federal government.
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2.1. Definition in Terms of the Median

Let m denote median income. Then, the proportion of the population considered to be middle class
is F(bm) — F(am), where F is the cumulative distribution function (CDF) of income in the population.
To estimate this quantity based on a random sample of size N, it is necessary to have an estimate of F,
i.e., I, from which an estimate of m may be deduced, or else obtained directly using order statistics,
by use of the formula

= d Y+ if N=2n+1 (N odd)
(Y(n) T Y(ns1))/2 if N=2n (N even)

The natural choice for F is the empirical distribution function (EDF):

. 1 &
Fly) =5 L1 <), M

where the y; are the incomes observed in the sample, and I is the indicator function, equal to 1 when its
argument is true, to 0 otherwise. If PS denotes the share of the middle class in the whole population,
then it can be estimated by

PS = E(bin) — E(arm) )
The income share, i.e., IS, that accrues to the middle class is by definition given by

bm
ydF(y)

Jam

divided by the mean income, denoted by y, and equal to fooo ydF(y). The plug-in estimator of  is

. i
5= 1/ ydE(y). 3)

1t
For asymptotic statistical inference, we need estimates of the asymptotic covariance matrix of

(PS,15). Consider first the asymptotic variance of PS, which is by definition the variance of the limit
in distribution as N — co of N'/2(PS — PS). We have

PS — PS = F(bit) — F(bm) — (F(arit) — F(am)). 4)
Now

E(bri) — F(bm) :/O'bmd(ﬁ—F)(y)+/Z;szf(y)Jr/lj'd(F—p)(y).

The first two terms on the right-hand side are of order N ~1/2if as we can reasonably assume,
things are regular enough for both (F — F)(y) and 1% — m to be of that order. The last term, on the other
hand, is of order N~!, and so can be dropped for the purposes of asymptotic analysis. The first term is

1

Z|

% [(y; < bm) — F(bm)], 5)
i=1
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and the second is
bf(bm) (i —m) +O(NY), (6)

where f = F’ is the density function. By the Bahadur (1966) almost-sure representation of quantiles,
we have

N

;< m)— %} +O(N73/4(log N)/?(loglog N)/4). (7)

From (4), (5), (6), and (7), we conclude that
N'Y2(PS — pS) = N~1/2 Z{ [ am < y; < bm) — (F(bm) — F(am))]

bf(bm) —af(am) 1
. {I(yi <m)— E] } +op(1).

It is convenient to make the following definition:

bf(bm) — af(am)
f(m)
Since the y; are IID, as elements of a random sample, so are the u;, so that, to leading order
asymptotically,

wj =I(am < y; < bm) — I(y; < m). ®)

N'/2(PS — PS) 1/22 (u; — 9)

where U denotes a random variable that has the distribution of which the u; are IID realisations.
We may therefore apply the central-limit theorem to show that N'/2(PS — PS) is asymptotically
normal, with expectation zero and variance equal to that of U. If we make the definition

i = arm < y; < o) — LM —af@i) gy,

where the density estimate f could be a kernel density estimate, we can estimate var(U) by

N N 2
N Y- [N YA
i=1 i=1
We now turn to N1/2(IS — IS). From (3), we see that

bift N . bm
. V/A de(y)*u/ ydE(y)
IS — IS = e . (10)
HE
The numerator is clearly of order N~!/2, while the denominator is Op(1), being equal to % +
Op(N /2y To leading order, therefore, we can replace the denominator by its leading term, namely 2.
Make the definition

-1/2

bm
Hap = /m ydF(y).

Now, by arguments like those used above for PS, we have to leading order that
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bift N bm . am brit
~ydF(y) = / ydF(y) + / ydF(y)+ [ ydF(y)
Jai Jam Jaim Jbm (11)
bm .
= [ " ya(y) + m(Ef(om) - a2f(am)) (= m)
am
and
bm R 1 N
ydFf(y) = I [yi I(am < y; < bm)]. (12)
am i=1
Note that
A 1 ¥
p=pty Li—w. (13)
i=1
If we make the definition
1 pm_ o 2
0 = [ < yi < bm) = g = s (67 (o) — a1 < ),
we see that, to leading order,
- N
NY2(IS—1S) = N"V2Y (v; = E(V)), (14)
i=1

with V a random variable whose distribution is that of which the v; are IID realisations. We may once
more apply the central-limit theorem to conclude that N'/2(IS — IS) is asymptotically normal with
variance equal to that of V.

Define
R 1. . . firf YN YN N
0= g [P <y < brht) = fayyi — szr?z) (02F (o) — a2 (@) U(y; < )]
where

N
flap = N1 Yy Wari < y; < biit).
i=1

It is then clear that we can estimate var(V) by

N~ % - [N ﬁ i ’, (15)

N N N
NUY a0 — [N’l ) zzi] {N* ) v,] (16)

Remark 1. In some cases, the sample is not supposed to be completely random. Rather, observation i is associated
with a weight p;, defined such that Y-N.| p; = N. In that case, the empirical distribution function in Equation (1)
should be replaced by

N
Fly) = 5 Lpillyi <) (17)

Similarly, the mean income should be defined as i = N~VYN, pyy;, the expectation of the EDF in
Equation (17), and term i in the sums (9) and (14) should be weighted by p;.
The use of non-uniform weights also has consequences for the bootstrap, as discussed later.
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2.2. Definition in Terms of the Mean

Although, for the current study, it is not very sensible to define the range of middle-class incomes
as delimited by multiples of the mean income, it may be useful in other circumstances to be able
to perform inference on shares thus defined. Let a and b, a2 < b define the middle class as those
individuals that have incomes between ay and by. The population share is then

= F(by) — F(ay), with PS5 = F(bp) — F(ap) = N1 il(uﬁ <y; < bp).

i=1

From this, we see that

PS — PS = F(bp) — F(bp) — (F(ap) — F(ap)).

Now, as usual neglecting terms of order N ~1 we see that

Bbf) = F(bp) = fy" d(F = F)(y) + [, dF(y)
=N1yN I (yz < bp) — F(bp)] + bf (bp) (ft — ) (18)
= NTEN [Iyi < bp) +bf (bp)y; — (F(bp) + bf (bu)p)],

where f = F’ is the density, and the last equality makes use of (13). The terms in (18) clearly have
expectation zero.
It is straightforward now to see that, to leading order,

N
N'2(PS — PS) = N"V2Y " (u; — E(U)),
i=1

with u; = I(ap < y; < bu) + y;(bf (bu) — af (ap)) and U a random variable with the distribution of
which the u; are realisations. The asymptotic variance of N1/2 (PAS — PS) can therefore be estimated by

N N 2
Ny a2 - [N’l 21 121] ,
i=1 i=

where 1; = I(apt < y; < bft) + y;(bf (b)) — af(aft)), with f a kernel density estimator.
For the income share, we have

1 rbu —~ 1 rbn A
IS = f/ ydF(y) with IS= 7/ ydE(y).
M Jap B Jap
Analogously to (10), we have
- 1z de - / ydF(y)
IS—15=—"*

it
Now, as in (11) and (12), to leading order, we have

bt by ap b A
" yaf(y) = [/V * +/b;4 Jvaf(y)
=N 1LY yil(ap < y; < bp) + p(b*f (bp) — a>f(ap)) (f — p)

(

= NN, [yilan < yi < bp) + w (V£ (bp) — @ Flap)) (vi — )|

Here, let us redefine y,, as:
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by
wao = [ ydF().
Jap

Then, N
NVA(I8 — 15) = N"V/2 Y (0 — E(V)),
where :
v = % [11ap < yi < bu) + 12 (BPf (o) — *f(ap)) — | - and
b = % [A1(af <y < bi) + 72 (0PF (b) — 2 F(aft)) — fras)

with obvious definitions of f and f1,,. Except for notational changes, the estimates (15) and (16) hold
for this case as well.

2.3. Definition by Quantiles

Let the two proportions, pj, and py;, with pj, < py;, define the middle class as the set of
individuals whose incomes lie between the quantiles g}, and g, where F(q1,) = p1, and F(pni) = Gni-
Then the share of the population that belongs to the middle class is fixed at py; — pj,. The income
share is

Thi
IS=1/ hde(y),
]’l'qla

and it can be estimated by
—~ 1 9N .
5= [ "ydtw),
7o
where ¢, and g}, are the p}, and py; quantiles of the EDF E.
By an asymptotic argument such as those used in the preceding subsection, it can be seen that

— _ 1 Thi o [n 1
I5-1s=-5 [H'/ﬁo ydE(y) 14/% ydF(y)| +0,(N 7). (19)

Neglecting terms of order N~!, we have

Thi N 9 hi N qlo N Ihi o
/”7 ych(y)=/b7 ydF(y)+ [ ydE(y)+ | ydF(y)
Y Ylo

o 9o /i

N
=N'Y yil(q0 < i < qni) — 910 (P1o — E(910)) + q1i (Pri — E(q1i))
i=1
N
= Phidhi — Plolo + N~ Z[%I(fho <Yi < qni) — qnil(yi < qni) + 9101y < ’710)]-

i=1

Define
qhi

Hin = ydF(y).
10

Since

E(YI(q1, <Y <qni)) =, E(L(Y <4q1)) =pro, and E(I(Y <qni)) = phis

where Y is a random variable that has the distribution of which the y; are realisations, it follows that

T N
. ydP(y) =y + N1 Y (w; — E(W)),
lo i=1
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where

wi = yil(q10 <yi < qni) = 9nil(Yi < gni) + 7101y < q10),
and W is a random variable that has the distribution of which the w; are realisations. From (19), it can
now be seen that

N
NY2(IS—1S) = N2 Y (v; — E(V)),
i=1

where
_ Wi _ Yilwm

1 ]/l ]42 7
the v; being realisations of the distribution of V.
The asymptotic variance of the asymptotically normal random variable N'/2 (15 — I8) is therefore
equal to the variance of V. This variance can be estimated in a distribution-free manner by

1 N 2 1 N2
Ny @ - [Ny e,
i=1 i=1

with 1 N
0= 2 (Tl < yi < ki) — il < ghi) +llyi < g0)} — i,

2.4. Accuracy Measured by Simulation

Since everything in this section is asymptotic, it may be helpful to look briefly at evidence for
finite-sample behaviour as revealed by simulation. For the case in which middle class incomes are
defined as lying between specified multiples of the median income, random samples of different
numbers of observations were drawn from the lognormal distribution, with an underlying standard
normal distribution. The proportions a and b were set equal to 0.5 and 1.5, respectively. The values of
the mean, median, and the population and income shares can be computed analytically, and are:

m=1, u=1648721, PS =0.413324, IS = 0.230863.

For each of 9999 samples, and for each sample size, n = 1,012,015,011,001, the estimates of
these four quantities were obtained. The variances of the estimates of the shares, and their covariance,
were estimated by the sample variances and covariance from the 9999 samples. These were compared
with the estimates of the asymptotic variances and covariances, averaged over the samples. For the
purposes of the comparison, the variances were multiplied by the sample size. Results are in Table 1.

With the middle class defined using the mean income, the proportions a and b were set to 0.4
and 1.6. The mean and median are as before, and the exact shares are

PS =0.495379 and IS = 0.409690.

The results are in Table 2.

Finally, using quantiles, the results in Table 3 are for the middle class contained between the
0.2 quantile and the 0.8 quantile. (Recall that the population share is by definition always 0.8 — 0.2 = 0.6.)

The variances and covariance estimates derived in this section are clearly asymptotically correct,
but are naturally not exact for finite 7.
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Table 1. Comparison of finite-sample and asymptotic variance: median definition.

n var(PS) var(IS) cov(I/’\S, 15

Sample variances 101 0.239325 0.224096  0.176514
Averaged estimates 101  0.261119  0.218908 0.202878
Sample variances 201 0244931 0.222913 0.180768
Averaged estimates 201  0.249148  0.207283 0.189229
Sample variances 501 0245171 0.219862 0.180843

Averaged estimates 501  0.240752  0.200225 0.180011
Sample variances 1001 0.246202 0.218693 0.179762
Averaged estimates 1001  0.236738  0.197485  0.175393

Table 2. Comparison of finite-sample and asymptotic variance: mean definition.

n var(PS) var(IS) cov(l/’\S, 15)

Sample variances 101 0.289240 0.270821 0.251248
Averaged estimates 101  0.269630  0.262705 0.236283
Sample variances 201 0295019  0.270204 0.254169
Averaged estimates 201  0.268601  0.259170 0.234529
Sample variances 501 0290917 0.268718 0.237937

Averaged estimates 501  0.273562  0.259882 0.251659
Sample variances 1001 0.292915  0.268624 0.251931
Averaged estimates 1001  0.279508  0.262628  0.242509

Table 3. Comparison of finite-sample and asymptotic variance: quantile definition.

n var(IS)
Sample variances 101 0.137487
Averaged estimates 101 0.124903
Sample variances 201  0.145837
Averaged estimates 201  0.137819
Sample variances 501  0.147931

Averaged estimates 501  0.149558
Sample variances 1001 0.149601
Averaged estimates 1001  0.154112

3. Inference

The results of the previous section allow us to construct asymptotic confidence intervals for the
population and income shares of the middle class, according to the different definitions considered.
However, because we can also construct asymptotically pivotal functions, it is possible to construct
bootstrap confidence intervals, and to perform bootstrap tests of specific hypotheses about these shares.

3.1. Data

The data used for the empirical analysis in this paper come from Canadian Census Public Use
Microdata Files (PUMF) for Individuals for 1971, 1981, 1991, 2001, and 2006. Beach (2016) used these
data, along with data from other sources, for his comprehensive account of the evolving fate of the
Canadian middle class. In the Census files, the term earnings refers to annual earnings in the full year
before the Census. Although the individuals of the samples provided for each of the census years
are not identified by name, for obvious reasons, they are characterised by age (or age group), sex,
and the number of weeks worked in the year. Income is split into wage income and income from
self-employment. In the census data from 1991 onwards, individuals are assigned weights in order
that the weighted sample should be more representative of the population than the unweighted one.
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However, the weights vary little in the samples, and, indeed, they are all identical in the 2006 data.
They are therefore not taken into account in the subsequent analysis.

It is of interest to compare formally the fates of men and women. Accordingly, for each census
year, two samples are treated separately, one with data on men, the other on women, only. In both
cases, individuals younger than 15 years of age are dropped from the sample, as well as individuals
who did not work in that year, or for whom the information on weeks worked is missing. In addition,
income from wages and salaries and income from self-employment are simply combined to yield the
income variable.

3.2. Confidence Intervals

The confidence intervals given in this section are either asymptotic, using the estimates of
asymptotic variances derived in the previous section, or bootstrap intervals, of the sort usually called
percentile-t, or bootstrap-t; see for instance DiCiccio and Efron (1996), Davison and Hinkley (1997),
and Hall (1992) for a discussion of the relative merits of different types of bootstrap confidence interval.

A bootstrap-t interval is constructed as follows using a resampling bootstrap. For a suitable
number B of bootstrap repetitions, a bootstrap sample is created by resampling from the original
sample. Let the parameter of interest be denoted by 6, its estimate from the original sample by 6,
and its standard error by 0y. If the true, or population, value is 6, an asymptotically pivotal quantity
is T = (8 — 0y) /0. A bootstrap sample yields a parameter estimate 8* and a standard error ay- Then,
the bootstrap counterpart of T is T = (§* — )/ o, since f is the “true” parameter value for the
resampling bootstrap data-generating process (DGP).

If non-uniform weights are associated with the sample observations, then the reampling should
also be non-uniform, whereby observation i is resampled with probability p;/ N, where p; is the weight
associated with the observation. This amounts to generating bootstrap samples from the weighted
EDF (17). Then, each bootstrap sample is to treated as though it were a genuinely random sample,
so that the weights do not appear in the estimation of the shares or in their standard errors. However,
since, in some of the samples analysed here, there are no weights, and, even if they are present, they are
very nearly, if not exactly, uniform, all of the empirical results are computed without use of weighting.

The distribution of 7* is estimated by the empirical distribution of its B realisations. For an
equal-tailed confidence interval of confidence level 1 — &, the a/2 and 1 — a/2 quantiles of the
distribution are estimated by the order statistics a(B +1)/2 and (1 — «/2)(B + 1) of the realisations
of 7*. Let these estimated quantiles be q; ,, and g7, ,,. The bootstrap-t confidence interval is then

[0 — 09931 o /2 0 — 0945 2]

This approach requires (B + 1) /2 to be an integer; see, among many other references, Davidson
and MacKinnon (2006).

Tables 4-8 present point estimates as well as asymptotic and bootstrap confidence intervals,
at nominal confidence level of 95%, of the population and income shares, for the median-based
definition of the middle class in 1971, 1981, 1991, 2001, and 2006.

Table 4. Estimates and confidence intervals: 1971.

Ps I
Male point estimate 0.544 0.492
59,123 obs asymptotic interval  [0.539, 0.549]  [0.488, 0.496]
median $6000  bootstrap interval [0.540, 0.554]  [0.487, 0.497]
Female point estimate 0.399 0.362
32,164 obs asymptotic interval ~ [0.392, 0.407]  [0.355, 0.369]

median $2900  bootstrap interval [0.392, 0.410]  [0.353, 0.377]
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Table 5. Estimates and confidence intervals: 1981.

PS 15
Male point estimate 0.519 0.481
143,248 obs asymptotic interval  [0.515, 0.522]  [0.478, 0.484]
median $15,715  bootstrap interval (0515, 0.522]  [0.477, 0.485]
Female point estimate 0.390 0.335
101,619 obs asymptotic interval  [0.386, 0.394]  [0.331, 0.339]

median $7800 bootstrap interval [0.387, 0.393]  [0.331, 0.339]

Table 6. Estimates and confidence intervals: 1991.

PS I
Male point estimate 0.483 0.436
234,636 obs asymptotic interval  [0.481, 0.486]  [0.434, 0.438]
median $27,000  bootstrap interval [0.481, 0.486] [0.434, 0.439]
Female point estimate 0.390 0.318
196,143 obs asymptotic interval  [0.386, 0.392]  [0.316, 0.321]

median $15,139  bootstrap interval (0.385, 0.391]  [0.314, 0.321]

Table 7. Estimates and confidence intervals: 2001.

Ps 15
Male point estimate 0.437 0.364
227,828 obs asymptotic interval  [0.435, 0.440]  [0.363, 0.366]
median $31,700  bootstrap interval [0.429, 0.440] [0.354, 0.368]
Female point estimate 0.414 0.333
20,2491 obs asymptotic interval ~ [0.411, 0.416]  [0.330, 0.335]

median $20,000 bootstrap interval (0.411, 0.416]  [0.330, 0.335]

Table 8. Estimates and confidence intervals: 2006.

Ps 1s
Male point estimate 0.418 0.302
238,356 obs asymptotic interval  [0.416, 0.420]  [0.300, 0.304]
median $35,000  bootstrap interval [0.400, 0.420] [0.282, 0.305]
Female point estimate 0.415 0.320
202,491 obs asymptotic interval  [0.413, 0.417]  [0.318, 0.322]

median $24,000 bootstrap interval (0.413, 0.445] [0.318, 0.355]

Remark 2. In many cases, the asymptotic and bootstrap intervals very nearly coincide. The bootstrap intervals
are a bit wider for 1971. For 2001 and 2006, however, the bootstrap population-share and income-share intervals
for males extend far to the left of the asymptotic ones. For females, the pattern is different. In 2001, the asymptotic
and bootstrap intervals are very close, but, in 2006, the bootstrap intervals extend far to the right of the
asymptotic ones.

The reason for these phenomena with the 2001 and 2006 data emerges from looking at the distributions of
the bootstrap statistics, of which kernel density plots in 2006 for males and for females are shown in Figures 1
and 2 respectively.

One might expect the plots to resemble roughly a plot of the standard normal density. This would be the case
if the long right-hand tail for men, and the long left-hand tail for women, each with a second mode, are neglected.
It is well known that the resampling bootstrap can give highly misleading results with heavy-tailed data; see for
instance Davidson (2012).
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By looking at kernel density plots in Figure 3 of the sample income distributions for men and women in
2006, one can see evidence of the heavy right-hand tails for both sexes.

0220

02l

012l

.08l

Figure 3. Kernel density plots of income distributions in 2006.

In addition, for all of the twenty-first century data, there is clear evidence of top-coding, since,
in all cases, there are several observations equal to the largest income in the sample, while the next
highest income is much lower. For instance, in the 2006 male sample, out of the 238,356 observations,
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there are 121 equal to the highest income of $1,202,480, while the next highest income in the sample
is $872,522.

However, there is no reason to think that top-coding would have any effect on the estimated
population shares, since their exact values do not matter. They do, of course, for the income
shares, and so these are overestimated with top-coding. It turns out that the reason for the bimodal
distributions of the bootstrap statistics is quite unrelated to top-coding. A closer look at the data for
2006 shows that a phenomenon that we may call “heaping” occurs in the data. What this means is that,
for each recorded income, there are multiple instances, with comparatively large gaps between the
distinct recorded incomes. While there is some measure of a similar heaping in the twentieth-century
data, the phenomenon is much less marked. As an example, there is only one observation in the 1971
male data equal to the maximum value.

The consequences of this heaping are most salient with the 2006 data. For men, the median
income is $35,000, and there are no fewer than 3228 observations of incomes apparently exactly equal
to $35,000. The upper and lower limits for middle-class incomes that have been used in this study are
$52,500 and $17,500, respectively. There are no observations of incomes equal to either of these limits,
and this follows inevitably from the fact that all incomes no greater than $200,000 are recorded as exact
integer multiples of $1000.

The data for women present a different picture, because the limits of $12,000 and $36,000 are
integer multiples of $1000, and all incomes no greater than $100,000 are recorded as integer multiples
of $1000. The maximum income of $310,136 is assigned to 99 observations; the median of $24,000 to
3316 observations; the lower limit of $12,000 to 4282 observations; and the upper limit of $36,000 to
2694 observations. The second highest recorded income is $306,763.

What this has meant for the bootstrap is that, of the 999 bootstrap repetitions with the data
for men, all but 146 had a median of $35,000, the others having a median of $36,000. For the latter,
the limits for middle-class income were $18,000 and $54,000, and including the 2052 observations of
$54,000 in the numbers of the middle class greatly increases the population and income shares in those
bootstrap samples relative to the shares of the 853 samples with a median of $35,000. At the other
end, increasing the limit from $17,500 to $18,000 made no difference to the numbers, since there are no
observations recorded in the interior of the range of the increase.

A similar analysis can be conducted with the data for women, but the reason for the bimodal
distributions of the bootstrap statistics is clear: it arises on account of the data heaping. With the 2001
data, a bimodal distribution might have been expected, but all but five out of 999 bootstrap samples
had a median equal to that of the original data, and, as expected, the distribution of the bootstrap
statistics is unimodal in that case.

The data for years before 2001 have a much lesser amount of heaping and have unimodal bootstrap
distributions. This no doubt implies that the bootstrap results are credible, although this conclusion is
not of much worth since the bootstrap and asymptotic confidence intervals are nearly coincident.

3.3. Smoothing

An obvious remedy for the heaping in the later datasets is to smooth them. The smoothed sample
distribution may well be a better estimate of the population distribution than the heaped estimate, since
the heaping is manifestly an artefact of the way in which the datasets were constructed. As always
with smoothing, a troublesome question is the choice of bandwidth. Since the heaping occurs at
integer multiples of $1000, the bandwidth & should be of a comparable magnitude in order to avoid an
excessively discrete distribution. For & = 1000, the raw EDFs of the 2006 data for men and women
are plotted in Figure 4 along with the smoothed EDFs, for the range of incomes from half the median
to 1.5 times the median. The heaped nature of the data for both sexes is quite evident in the green,
unsmoothed, plots.
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The (cumulative) kernel used for smoothing was the integrated Epanechnikov kernel.
The smoothed estimate of the distribution is

z

Fan(y) = ~ L K( i~ ), (20)

1

Il
—_

where h is the bandwidth, and the cumulative kernel K is defined as

K(z) =1(|z| < \/5)(%(2—23/15) + %) +1(z > V5). (1)

where /1 is the bandwidth. Other choices of & greater than around 500 give qualitatively similar results.
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Figure 4. Smoothed (red) and unsmoothed (green) EDFs for 2006 data.

For bootstrapping, resampling from the unsmoothed EDF is replaced by resampling from
the smoothed EDF. Since the heaping phenomenon is banished by the smoothing, we can expect
dramatically different results, in particular, a unimodal distribution of the bootstrap statistics.
The CDF (20) describes a mixture distribution which assigns a weight of 1/N to the each of the
distributions characterised by the terms in the sum. It is easily checked that K in (21) is a valid CDF,
with support [—+/5, v/5]. The term indexed by i in (20) has support [y; — h\/5,y; + h\/5].

To draw from the distribution (21), one starts from a uniform variate p from the U(0,1) distribution,
and the draw is then K~1(p). The analytic form of K~ is not, I think, well known, and so I give it here
for reference. It is?

K Y(p) = Zﬁcos(% (2 —cos (1 - Zp))).

Thus, to draw from distribution (20), one may first draw the index i from the uniform distribution
on{1,2,...,N}, then draw p from U(0,1), and get the draw

' =yi+hK(p).

The effect is to resample from the unsmoothed distribution and then add some smoothing “noise”
from the Epanechnikov distribution.

2 It can be found, in a somewhat different version, in the documentation of the epandist package for R.
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Although the smoothing preserves the mean of the distribution, it does not preserve the median,
nor the population or income shares. If we accept the argument that the smoothed CDF is a better
estimate of the true distribution than the unsmoothed one, then the smoothed median, and the shares
in the smoothed distribution are also better estimators. In addition, the smoothed shares are the “true”
values for the bootstrap DGP, and so the bootstrap statistics should test the hypothesis that they are
true, not the hypothesis that the unsmoothed shares are true.

With the 2006 data for men, the new estimates of the shares are 0.421 for the population and 0.307
for income, slightly higher than the estimates from the raw data. The bootstrap confidence intervals
are, for the population share, [0.419,0.423] and, for the income share, [0.305,0.310]. They are of roughly
the same width as the asymptotic intervals.

With the data for women, the new share estimates are 0.393 and 0.298, substantially lower than
the unsmoothed estimates, and the confidence interval for the population share is [0.390,0.395], and,
for the income share [0.295,0.301]. Unsurprisingly, the smoothed share estimates are roughly in the
middle of the respective intervals.

In Figures 5 (men) and 6 (women), kernel density plots are shown for the distribution of the
bootstrap statistics. There is no trace of bimodality, and so it seems that smoothing has indeed corrected
the heaping problem.
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Figure 5. Kernel density plots of smoothed bootstrap statistics: 2006 males.
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Figure 6. Kernel density plots of smoothed bootstrap statistics: 2006 females.
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3.4. Hypothesis Tests

In this section, the results of testing various hypotheses are found. All of the test statistics
are asymptotic, as we have seen that when bootstrap inference differs greatly from asymptotic,
the unsmoothed bootstrap, at least, is likely to be unreliable.

First are tests of hypotheses that the population and income shares for each sex did not change
from one census until the next one. For instance, can one reject the hypothesis that the population
share of the male middle class did not change from 1981 to 1991? Next are tests of hypotheses that the
shares of men and women are the same in each census. For instance, can one reject the hypothesis that
the income shares of men and women were the same in 2001?

The test results are expressed as asymptotic t statistics, rather than asymptotic p values, since
in most cases the hypothesis is rejected strongly, and a p value very close to zero does not let one
judge just how strong the rejection is. However, in some cases, the hypotheses are not rejected, and in
some other cases, the sign of the statistic differs from the signs of the other statistics for the same sort
of hypothesis.

For the first group of tests, the results of which are found in Table 9, the sign of the statistic is
positive if the decline in a share from the earlier to the later census is positive. A negative statistic
indicates that the estimated share rose between the two censuses.

Table 9. ¢ statistics for hypothesis of no change in share between consecutive censuses.

Period PS Men) PS (Women) IS (Men) IS (Women)

1971-1981  8.571726 2.299586 4.740735 6.571228
1981-1991  16.702812 0.311744 26.933620 6.875789
1991-2001  26.128047  —12.835861  53.350095  —7.954860
2001-2006  11.322294 —0.752581 43.943449 7.824492

Remark 3. All but two hypotheses of no change between two censuses are strongly rejected. The two exceptions
concern the female population share, which did not change significantly either between 1981 and 1991 or between
2001 and 2006. There are two significantly positive increases, for the female population and income shares from
1991 to 2001.

In Table 10 are found the statistics for testing the hypothesis that the share of men and women is
the same for a given census. A positive statistic means that the estimated male share is greater than
the female.

Table 10. t statistics for hypothesis of equal shares for men and women.

Census PS 1S

1971 32.526094  32.306558
1981 49.137099  60.112426
1991 50.265363  69.768414
2001 12.902812  20.345573
2006 7.824492  —12.143588

4. Conclusions

The main contribution of this paper is probably the theoretical part. The empirical results are
not really surprising, although they do document clearly how the population and income shares of
the male middle class have fallen over the period since 1970. In addition, one sees the results of the
considerable increase in female labour market participation. Although the bootstrap has not shown
itself especially useful for formal inference, the evolution over time of the distribution of the bootstrap
statistics shows very clearly the increasing polarisation of Canadian society, with the growth of a heavy
right-hand tail in the income distributions of both men and women.
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The main obstacle to inference, whether asymptotic or bootstrap, with the twenty-first century
data has been seen to be the problem of heaping, or excessively rounding, the data. The smoothing
technique proposed here appears to lead to more reliable inference, but truly reliable inference would
need better data.
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Abstract: In this paper, we study the finite sample accuracy of confidence intervals for index
functional built via parametric bootstrap, in the case of inequality indices. To estimate the parameters
of the assumed parametric data generating distribution, we propose a Generalized Method of
Moment estimator that targets the quantity of interest, namely the considered inequality index.
Its primary advantage is that the scale parameter does not need to be estimated to perform parametric
bootstrap, since inequality measures are scale invariant. The very good finite sample coverages that
are found in a simulation study suggest that this feature provides an advantage over the parametric
bootstrap using the maximum likelihood estimator. We also find that overall, a parametric bootstrap
provides more accurate inference than its non or semi-parametric counterparts, especially for heavy
tailed income distributions.
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1. Introduction

In this paper, we consider the problem of inference for an index functional T, i.e., quantities of
interest that can be written as a function of the data generating model. Given a sample x;,i =1,...,n
and an associated distribution F such that one can assume that X; ~ F, i = 1,...,n, we are interested in
computing confidence intervals or proceeding with hypothesis testing for T(F). For that, there exists
many different approaches that are based on either T(F(")) or T(F), where F(") is the empirical
distribution (hence leading to a nonparametric approach) and Fy, § € ® C R? is a parametric model
for which 0 needs to be estimated from the sample (hence leading to a parametric approach).

As a leading example, we consider T to be an inequality index and F an income distribution.
Inequality indices are welfare indices which can be very generally written in the following
quasi-additively decomposable form (see Cowell and Victoria-Feser (2002, 2003) for the original
formal setting)

Waan(F) = [ @ (x u(F) dF(x), ®
where ¢ is piecewise differentiable in R. The generalized entropy family of inequality indices given by
4
- /s
I (F) = —— dF(x)—1|, 2
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is obviously obtained by setting

1 x 1%
o () = Hum} —1} ®)

For example, the cases { = 0 and § = 1 are given by

er) = [1og (5 ) drco,
) = [ i85 ) 4, @

with I2; (F) being the Mean Logarithmic Deviation (see Cowell and Flachaire 2015) and It (F) being
the Theil index. A notable exception to the class in (1) is the Gini coefficient which can be expressed in
several forms, such as

1 .
tan(F) =1-2 [ S, G)

M
with C(F;q) = [ F@) yap (x), the cumulative income functional. Inference on T(F) can be done in
several manners:

1. The (nonparametric) bootstrap is a distribution-free approach that allows to derive the sample
distribution of T(F()) from which quantiles (for confidence intervals) and variance (for testing)
can be estimated; for application to inequality indices, see e.g., Mills and Zandvakili (1997) and
Biewen (2002).

2. Another distribution-free approach consists in deriving the asymptotic variance of the index
using the Influence Function (IF) of Hampel (1974) (see also Hampel et al. 1986) as is done in
Cowell and Victoria-Feser (2003) (for different types of data features such as censoring and
truncating) and estimate it directly from the sample (see also Victoria-Feser 1999; Cowell and
Flachaire 2015).

3. A parametric (and asymptotic) approach, given a chosen parametric model Fy for the data
generating model, consists in first consistently estimating 6, say 6, then considering its asymptotic
properties such as its variance var(8) and derive the corresponding asymptotic variance of T(Fy)
using e.g., the delta method (based on a first order Taylor series expansion).

4. Aparametric (finite sample) approach, given a chosen parametric model Fy for the data generating
model, consists in first consistently estimating 6, say 6, then using parametric bootstrap to derive
the sample distribution of T(F;) from which quantiles (for confidence intervals) and variance
(for testing) can be estimated.

5.  Refinements and combinations of these approaches.

While most would agree that the fully parametric and asymptotic approach based on the delta
method cannot provide as accurate inference as the other methods, it is not clear that avoiding the
specification of a parametric model is the way to go. Indeed, for example, Cowell and Flachaire (2015)
notice that nonparametric bootstrap inference on inequality indices is sensitive to the exact nature of
the upper tail of the income distribution, in that bootstrap inference is expected to perform
reasonably well in moderate and large samples, unless the tails are quite heavy. Similar conclusions
are also drawn in Davidson and Flachaire (2007); Cowell and Flachaire (2007); Davidson (2009);
Davidson (2010) and Davidson (2012). This has for example motivated Schluter and van Garderen (2009)
and Schluter (2012), using the results of Hall (1992), to propose normalizing transformations of
inequality measures using Edgeworth expansions, to adjust asymptotic Gaussian approximations.

Alternatively, Davidson and Flachaire (2007) and Cowell and Flachaire (2007) consider a
semi-parametric bootstrap, where bootstrap samples are generated from a distribution which
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combines a parametric estimate of the upper tail, namely the Pareto distribution, with a nonparametric
estimate the other part of the distribution. We note that modelling the upper tail with a parametric
model is common in instances were not only the interest lies in the upper tail itself but also
where the data are sparse. For example, in finance, determination of the value at risk or expected
shortfall is central to portfolio management, and in insurance, it is important to estimate probabilities
associated with given levels of losses. A critical challenge is then to select the threshold from which the
upper tail is modelled parametrically (see for example Danielsson et al. 2001; Guillou and Hall 2001;
Beirlant et al. 2002; Dupuis and Victoria-Feser 2006 and the references therein).

Cowell and Flachaire (2015) propose to use a another type of semi-parametric approach by which a
mixture of lognormal distributions is first considered and then data are generated from the estimated
mixture. A mixture of lognormal distributions to model the data can be thought of as a compromise
between fully parametric and nonparametric estimation. The use of mixtures for income distribution
estimation can be found for example in Flachaire and Nufiez (2007) and the references in Cowell and
Flachaire (2015).

Through a simulation study, Cowell and Flachaire (2015), Table 7, compare the actual coverage
probabilities of 95% confidence intervals for the Theil index, using, as data generating models,
the lognormal distribution and the Singh-Maddala (SM) distribution (Singh and Maddala 1976),
with varying parameters to increase the heaviness of the tail. The different methods cited above are
compared. Cowell and Flachaire (2015) conclude that, in the presence of very heavy-tailed distributions,
even if significant improvements can be obtained on the fully asymptotic and the standard bootstrap
methods, none of the alternative methods provides very good results overall.

Moreover, Cowell and Flachaire (2015) do not consider a parametric bootstrap and this has
motivated the present paper. Namely, we study the behaviour of coverage probabilities associate to
the index functional T(F) using a parametric bootstrap based on samples generated from F;
(i.e., Approach 4). A parametric model introduces a form of smoothness into the inferential procedure
which can lead to more accurate inference. This is for example a fundamental argument for modelling
the upper tail with a Pareto distribution. Specifying a parametric distribution for the data generating
process can be considered as an additional risk of introducing “error” in the inferential procedure.
With income distributions, common wisdom however suggests that some parametric models are
sufficiently flexible to encompass most of the data generating processes observed with real data.
For example, the four parameters generalized beta distribution of second kind (GB2) proposed by
(McDonald 1984), which encompasses the generalized gamma, the Singh-Maddala and Dagum
distribution (Dagum 1977) (see also McDonald and Xu 1995), can be considered as sufficiently general to
model income data. If this is not the case, then one would wonder if the lack of flexibility of a
general four parameter model is not due to a spurious amount of observations, and hence consider a
robust estimation approach as proposed and motivated in Cowell and Victoria-Feser (1996), see also
(Cowell and Victoria-Feser 2000).

In this paper, as an alternative to the classical Maximum Likelihood Estimator (MLE), we propose a
Target Matching Estimator (TME), a member of the class of Generalized Method of Moments (GMM)
estimators (Hansen 1982), where one of the “moments” is the targeted inequality index T. It has
the advantage that for inference on T, the scale parameter does not need to be estimated (and hence
can be set to an arbitrary value), so that the estimation exercise is simpler in that the optimization
is performed in a smaller dimension. We derive its asymptotic properties and compare them to the
MLE when targeting T(Fy). As illustrated in a simulation study, it turns out that the finite sample
coverage probabilities obtained from a parametric bootstrap based on this alternative estimator
are far more accurate than the ones computed with other methods, especially with heavy tailed
income distributions.
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2. A Target Matching Estimator

Recall that we are interested in making inference on an inequality index T and we assume that
the sample data are generated from a (sufficiently general) parametric mode Fy, 6 € @ C RP. We let
v=(T,S,.. .,Sq,l)’ be a vector of statistics of length g, where the first element is the statistic of
interest and the remaining g — 1 elements are additional statistics. We denote by ¥ the sample vector of
statistics and by v, (6) its expectation at the model Fy, for a fixed sample size n. Assuming that the
mapping 6 — v, (0) is bijective, a GMM estimator can be defined as

6 = argmin lo— 1/,1(0)H§) (6)
€O

where () is positive definite g X g matrix of weights, possibly estimated from the sample (in that case
one assumes that it converges to a non-stochastic quantity), used to adjust the statistical efficiency of 6.
If v,,(6) cannot be obtained in an analytically tractable form, one can use instead v(6) = lim;, 00 V4 (6),
or alternatively, use Monte Carlo simulations to approximate v, (), leading to a Simulated Method of
Moments (SMM) estimator (McFadden 1989) given by

6= argmin”l?—ﬁ,,(@)”é (7)
0@

where 7,(0) = % 25:1 Dy and 0, = 7, (Fy) is the b-th vector of statistics obtained on pseudo-values
simulated from Fy. If the number of simulation B is infinite, then the estimators in (6) and (7) are
equivalent, otherwise the latter is (asymptotically) less efficient.

It is computationally advantageous to have an analytic expression for v(#) and thus prefer this
approximation over 7,(6). However, in finite samples, the bias on 0 using v(#) may be more important
than the one resulting from using 7, (0) (see Guerrier et al. 2018). An other approach, considered
for example by Arvanitis and Demos (2015), is to directly approximate v, (0) with expansions on
analytical functions.

Given that the interest here is to make inference about a functional T, one also needs to consider a
suitable choice for the (additional) statistics in v. Obviously one needs to choose a number of
statistics at least as large as the number of parameter in the assumed model, i.e., g > p. If these
statistics are sufficient, then g = p. Moreover, T may depend only on g5 < p of the elements of 0,
and for this purpose, the whole estimation of # maybe an unnecessary burden. Let 8 = (6%,6")/
where 6°, of dimension g5 > 1 is the vector of parameters that (uniquely) determines T whereas 6,
of dimension g, is the vector of “nuisance parameters” that do not influence T. Then, instead of
solving (6) or (7), we propose to consider a Target Matching Estimator (TME) defined as

#° = argmin Hﬁs—v(Gs)H; . ()]
0° €@ CRs

It is known that in an homogeneous system the asymptotic covariance of 6° is not influenced by the
weighting matrix X (supposedly independent from 6) as long as X is a positive-definite matrix. Since
we consider the case when the dimension of the statistics and the parameters of interest are the same,
ie., dim(v) = dim(6°) = ¢°, taking the identity matrix for X, and assuming that the minimum of the
quadratic function is attained in the interior of the parameter space ®°, we then have that (8) can be
equivalently written as
0° = argzero [0° —v(6°)].
0° €@ CRTs

The generalized entropy family of measures and the Gini index are scale invariant whereas
the models Fy usually suggested in the literature (Kleiber and Kotz 2003) are parametrised with a
scale component. Indeed, let §, an element of 6, denote the scale parameter, then with the linear
property of the expectation, IéE(F ) in (2) is invariant to any transformation X. The same statement is
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true for the Gini coefficient. This is not surprising as scale-invariance is indeed one of the required
property of inequality indices. We hence have (9/06)T(Fy) = 0, so that 6° is § without the scale
parameter ¢. Note that (0/95)T(Fy) = 0 may be useful in situations where the analytical form of T(Fy)
is not available.

More generally, suppose we are in the situation where T is such that (9/06°)T(Fy) = 0 and
(0/06°)T(Fy) # 0. Also suppose that the statistics Sy, ..., S;1 are chosen such that (9/06°)S;(F) = 0
and (9/ 895)Sj(F9) #0,j=1,...,9—1,q = p, then (8) provides a suitable estimator for inference on T.
For scale invariant inequality measures T, any statistics of the form

S0 =1 (%), ker p-ly 9
k(x)_ﬁz<ﬁ>’ c R, }l—gzxu ©)

i=1

is also scale-invariant. This is also true with a logarithmic transformation as

Ui(x) = % Y (log(x;) — ), 1€R, 1= % 3 log(x). (10)

i=1 i=1

Finally, for the choice of Fy, one can consider the GB2 (see Section 4) which is sufficiently general to
encompass real data situations with income data (Bandourian et al. 2002). Alternatively, as suggested
for example in Cowell and Flachaire (2015), one can also consider the SM distribution.

In the simulation Section 4 we propose suitable statistics v that are used in (8). Given these
statistics v and an assumed data generating model Fy, inference about T, using the parametric bootstrap,
is obtained using Algorithm 1.

Algorithm 1: TME-percentile confidence interval

Input :A given function v°; its sample version 7°; number of iteration B; a confidence level
1—a.
Output: An interval: [H;-")(a/Z), H%”) (1 —a/2)], where ngn) () =inf{t: F](-n) (t) > al, Fq(-n)
is the empirical distribution function of T, with realizations Ty, ..., Ts.
Compute ° = argminy, ||?° — v(6%)|%.
Fix 0° to an arbitrary value in ©°.
forb < 1to B do
b
Draw a sample X(®) ~ Fo_(és 0c)-

Compute T, on X(1),
end

Compute the percentiles H¥l> (a/2), H(T") (1 —wa/2) onthe values Ty, ..., Tp.

Note that if 7(6°) is used instead of v(6°) in (8), the last step of the optimization leading to 6°
readily delivers (T, ..., Tg).

3. Asymptotic Properties

We now look at the asymptotic distribution of the TME in (8). Since 6¢ is fixed but 6° is estimated
by matching some statistics v, a crucial question is on whether % is more efficient than say éf\,[LE,
the estimator that we would have obtained by the MLE on the whole vector 6. In order to answer
this question consider a setting in which the regular conditions for the MLE @y  to be square root-1
consistent are met. In this case, we let Z denotes the Fisher information matrix evaluated at the point
0y € ©, we have

nt/? (éMLE - 90) ~ N (O,If]> .

130



Econometrics 2018, 6,22

This setting is clearly not the weakest possible in theory for our analysis and may be further
relaxed. We do not attempt to pursue the weakest possible conditions to avoid overly technical
treatments in establishing the theoretical result given in this section.

Theorem 1. Let ® C R be compact. Suppose that the point 63 is in the interior of ®°. Suppose that v(65) is
the expectation of 0° when n is large. If n'/2 (0° —v(65)) satisfies a central limit theorem with covariance
matrix E, the mapping 0 — v is bijective, continuously once differentiable in an open neighborhood of the point
05 € ©° and the derivative v is nonsingular at the point 6, then

n2v(63) (65— 65) ~ N (0,E).

The proof is provided in the Appendix A.

Compared to the MLE, the additional condition that the statistics 7° satisfy a central limit
theorem is mild and generally met in practice for sample moments and the inequality indices
considered here. The results on the delta method and the continuous mapping theorem of
Phillips (2012) may be employed to refine Theorem 1 to the case where the known function v is
replaced by the function evaluated by simulation 7.

The asymptotic covariance matrix of 0%, given in Theorem 1 by [1(63)']'Ev(65) ",
is proportional to the inverse of the derivative of the expectation of the statistics with respect to 6 and
the asymptotic covariance matrix of the statistics. The choice of statistics should then be guided by
their sensitivity to 6 and their variability at the model. The same argument is found in Heggland and
Frigessi (2004).

If the statistics v are sufficient, then the asymptotic covariance matrix of 6° is equivalent to the
asymptotic covariance matrix of the MLE conditionally on 65, . fixed. From the properties of the
normal distribution, we have asymptotically that

n'/2 (éiALE - 9(51) ‘ (éﬁALE = 95) ~ N (0, Vss),

where Vs = Z5' — [Z7YscZee [ es, Zss denotes the partition of Z corresponding to 6°, Z. for 6 and
z _1] sc for the covariances between éls\/[LE and éﬁ/ILE' Thus, the estimator 6° obtained from (8) has a
smaller variance than the unconditional MLE by a factor [Z~']s:Zcc[Z~!]cs > 0. In particular, this gain
could by substantial if ¢ has a large variance. On the other hand, the gain would be null if 6% and 6°
are independent as their covariances [Z~]sc = [Z7!]., = 0.

Choosing “good” statistics 7° remains a difficult task: sufficient statistics with appropriate data
reduction and with the property of being independent (asymptotically) from 6 may be hard to find.
Heggland and Frigessi (2004) suggest a graphical procedure based on simulation to find statistics
“sensitive enough” to the parameter of interest. In a similar context, Gallant and Tauchen (1996)
propose to use the likelihood score function of a model “close” to the one of interest as statistics.
In the present context, it could be a probability model parametrised by 6° only. There are however no
guarantee that such a model exists, and if it does, it might be not unique.

4. Simulation Study

We consider here two parametric distributions, namely the four parameters GB2 and the three
parameters SM distributions. We compare the coverage probabilities provided by the parametric
bootstrap using on the one hand the MLE and on the other hand the TME approach presented in
Section 2 (using Algorithm 1) to the nonparametric bootstrap for the GB2. We also compare the coverage
probabilities assuming a SM data generating process, to a variance stabilizing transform of the index
proposed by Schluter (2012) (Varstab), the semi-parametric approach of Davidson and Flachaire (2007)
and Cowell and Flachaire (2007) (Semip) and when mixtures of lognormal distributions are used to fit
the density as proposed in Cowell and Flachaire (2015).
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The GB2 has density function

axup—l

o) = g B ) (L + /By

x,a,b,p,q >0, (11)

where B is the beta function, b is the scale parameter, 4, p and g are shape parameters. Note that
here we consider a to be positive, yet, the distribution of the inverse may be obtained by allowing a
to be negative (McDonald and Xu 1995). Suppose we are interested in the Theil index defined in (4),
the population index, with 6 = (a,b, p,q)’, is given by

T(Fy) = log(T'(p)) + log(T'(9)) —log (r <$>) “log (r (M))

() (2] ”

where I' is the gamma function and ¢ is the digamma function. Clearly the Theil index is scale
invariant, so that we set 6° = (a,p,q)" and 6° = b.

The population values of the statistics Sy in (9) are given by

S.(F) = [T(p)T(g))'T (“‘77*") r (%*’f) Cx

r(e)r ()

and the ones for U; in (10), for [ = 2,3, are given by

M M
Uk = ¥ (P);;‘l’ ()

@ (p) - p@
Us(Fy) = ¥ (P)aslﬁ (1)

’

’

where lIJ(m> is the polygamma function, i.e., the m-th derivative of the digamma function .
As is done in Cowell and Flachaire (2015), we consider the SM distribution with density

f(x)—L x,a,b,q >0 (12)
o) = it om0

and corresponding population statistics T, Sy and Uj, | = 2, 3, given by

T(Fp) =1+ log(T'(q)) —log (F (?)) ~log <r (ﬂ z 1))
Ap)-e(=)

AT (g) 1T () T (ke

Si(Fp) = ‘ JkER,
x(Fo) F(%)F(”qa’l) €
* + 6y (q)
UZ(FG) - 6“2 ’
— @ (g) —
Us () P (qa)3 25(3),

where ((3) is the Apéry’s constant.
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Under the GB2, for generating the data, we set ° = (a = 3,p = 3.5, = 0.8)’, 6° = (b = 10)
and n = 250,500, 1000. For the TME, we choose the vector of statistics to be v = [T(x), Uz (x), U3 (x)]’
with T(x) the Theil index and U;(x), j = 2,3 given in (10). We fix the value of the scale parameter to
the arbitrary value of one (b = 1) in Algorithm 1. We repeat the experiment 10* times and set the
number of bootstrap replicates to B = 10.

To solve for 6° in (8) or for the MLE, we use the classical quasi-Newton optimization algorithm
with starting values obtained from the differential evolution heuristic (Storn and Price 1997), in order to
mimic a real situation in which the true parameter’s values are unknown.

In Table 1, we report the performances of the three approaches with respect to a nominal
confidence level of 95% for the three sample sizes. As already shown in the literature (see e.g.,
Cowell and Flachaire 2015), we find poor performance for the nonparametric bootstrap (Boot), far
from the nominal confidence level. The parametric bootstrap using the MLE provides reasonable
finite sample coverage that are nevertheless conservatives. On the other hand, the performance of
parametric bootstrap using the TME is overall satisfactory, with enhanced performance when sample
size increases.

Table 1. Finite sample coverage probability with respect to a nominal confidence level (two-sided) of
95% for the Theil Index. Data are simulated under the GB2 with 6° = (a = 3,p = 35,9 = 0.8),
0° = (b = 10). v = [T(x),Up(x),Us(x)]" with T(x) the Theil index. In Algorithm 1, b = 1.
The experiment is repeated 10* times and B = 10°.

Sample Size Boot MLE TME

n = 250 0.708 0.962 0.927
n =500 0.753 0978 0.942
n = 1000 0.790  0.990 0.949

In Table 2, we replicate the simulation study in (Cowell and Flachaire 2015, Table 6.6), and report
the values for Varstab, Semip and Mixture. We have 6° = (a = 2.8,q)’, 6 = (b = 0.193) and set
v = [T(x),Uz(x)]" with T(x) the Theil index and U, (x) given in (10). We fix the value of the scale
parameter to the arbitrary value of one (b = 1) in Algorithm 1. We repeat the experiment 10* times and
set the number of bootstrap replicates to B = 10%. The results reported in Table 2 are also presented
graphically in Figure 1. Both parametric approaches present finite sample coverage probabilities that
are far more accurate than the other approaches, especially in the heavy tail case. As with the GB2,
the parametric bootstrap based on the MLE tends to provide conservative coverage probabilities.

Table 2. Finite sample coverage probability with respect to a nominal confidence level (two-sided) of
95% for the Theil Index. The values for Varstab, Semip and Mixture are directly reported from (Cowell
and Flachaire 2015, Table 6.6). Data are simulated under the Singh-Madalla with n = 500, ° = (a =
2.8,q), 0° = (b = 0.193). The parameter g accounts for the shape of the upper tail of the distribution,
the smaller the heavier the tail. v = [T(x), U(x)]’ with T(x) the Theil index. In Algorithm 1, b = 1.
The experiment is repeated 10* times and B = 10°.

Singh-Madalla Varstab Semip Mixture Boot MLE TME

qg=17 0.933 0.926 0.928 0912 0962 0.952
g=12 0.899 0.905 0.912 0.859 0.979 0.957
qg=07 0.796 0.871 0.789 0.637 0.994 0.939
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Figure 1. Illustration of the coverage probabilities obtained over 10,000 Monte Carlo experiments for
the GB2 (a) (see Table 1) and the Singh-Madalla (b) (see Table 2). Each color represents a different
method. The shade area around each line is the 99.9% asymptotic confidence interval for proportion.
The black line is the nominal confidence level of 95%.

5. Conclusions

In this paper, we study the finite sample accuracy of confidence intervals built via parametric
bootstrap. We also propose a GMM estimator, the TME, that targets the quantity of interest, namely
the considered inequality index. Its primary advantage is that the scale parameter of the assumed
parametric model does not need to be estimated to perform parametric bootstrap, since inequality
measures are scale invariant. The theoretical result and the simulation study suggest that this feature
provides an advantage over the parametric bootstrap using the MLE and also over other established
simulation-based inferential methods.

As noted by an anonymous referee, an important point that has not been directly assessed is the
specification robustness, i.e., the properties of the proposed method when the assumed general model
is not the exact one. This point deserves more (formal) investigation that we leave for further research.

On the more practical side, although this study is limited to two income distributions and one
inequality index, the methodology presented here can be extended to other settings in a relative
straightforward manner. For example, it is possible to extend the TME to include trimmed inequality
indices since it suffices to use the trimmed version of T in v. If trimming is done for robustness
purposes as proposed in Cowell and Victoria-Feser (2003), then the other statistics in 7 should also be
robust (see also Victoria-Feser 2000). This is the case, for example, with trimmed moments.

Author Contributions: All authors contributed equally to the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem 1

Proof. Fix 6 in the interior of ®°. Since ©° is compact, supys s v(6°) is bounded (see Theorem 4.15 in
Rudin 1976). Since the mapping 6 — v is bijective, v(6°) = 0 only if ° = 6. The conditions for
the consistency theorem of a GMM are satisfied (Theorem 2.6 in Newey and McFadden 1994) and 6°
converges in probability to 63.

Now take an open neighborhood around 65, say B. Instead of solving the quadratic form in (8),
it is equivalent to solve its derivative:
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0° = argzerov(6°)'g(6°), g(6°) = 0° —v(6°).
0°eB

By the delta method (see Van der Vaart (1998)), we have
3(6°) = g(85) = 1(65) - (6 — 65) +op (/16" — 5])) - (AD)

Since 0° is consistent, the right-hand side element of (A1) is 0p(1). Now multiplying (A1) by
v(6°) yields
D8 g(0°) — 0(8°) g(65) = 1(8°)'(65) - (6 — 65) + 06 0, ().
By construction, 7(6°)'g(6°) = 0. By the continuity assumption on the mapping 6 ~ v, the

continuous mapping theorem applies (see Van der Vaart (1998)) so v(8°) = v(65) + 0p(1). Next,
multiplying by square-root 1 gives

—0(65)'n'2g(65) + 0p (1) = v(65)'v(65) - n'/* (6" — 65) + 0, (1).

The proof results from the central limit theorem on n1/2g(65), the invertibility of the derivative
v(65) and the Slutsky’s lemma. [
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Abstract: In this study, we provide a Bayesian estimation method for the unconditional quantile
regression model based on the Re-centered Influence Function (RIF). The method makes use of the
dichotomous structure of the RIF and estimates a non-linear probability model by a logistic regression
using a Gibbs within a Metropolis-Hastings sampler. This approach performs better in the presence of
heavy-tailed distributions. Applied to a nationally-representative household survey, the Senegal
Poverty Monitoring Report (2005), the results show that the change in the rate of returns to education
across quantiles is substantially lower at the primary level.

Keywords: hybrid MCMC sampler; quantile regression; influence function; return to education

JEL Classification: C11; C14; C52

1. Introduction

Introduced by Koenker and Bassett (1978), quantile regression models have been increasingly
used in empirical labor market studies! to parsimoniously describe the entire distribution of
an outcome variable. To overcome some limitations? of conditional quantile regression models,
Firpo et al. (2009) propose the Re-centered Influence Function (RIF)-regression. This regression
evaluates the impact of changes in the distribution of covariates on the quantiles of the marginal
distribution of the dependent variable. The two-step estimation of the RIF-regression requires
first an estimation of the density of the RIF function. A “classical” approach consists of estimating
independently the RIF and the regression coefficients (see Firpo et al. 2009). This approach does not
take into account the uncertainty related to the first step of estimation. Lubrano and Ndoye (2014)
provide a Bayesian estimation of the RIF-regression where they consider sequentially the two-steps of
estimation by estimating the density function of the outcome variable by a mixture of normal
distributions. While being consistent® in the presence of heavy tails, their approach makes the
underlying restrictive hypothesis of linearity. However, the estimated RIF function is a binary
dependent variable; the linearity and the normality assumptions are strong and may lead sometimes to
predicted probabilities that are negative or greater than one. In this study, we implement a Bayesian
estimation method for the RIF-regression by considering the dichotomous structure of the RIF
function. The method consists of running a logistic-regression where coefficients are estimated by the
Metropolis-Hastings sampler using Gibbs output in the first step of estimation.

1 (Buchinsky 1994; Chamberlain 1994; Machado and Mata 2001).

Unlike conditional means, conditional quantiles do not average up to their unconditional population counterparts.
Mixture models provide flexible extensions of parametric models, and the Bayesian approach takes into account the
uncertainty related to the first step of the estimation.
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Since the collective agreement in April 2000 to place education at the heart of the development
priorities for eradicating extreme poverty, the last two decades have seen a large increase in the
enrollment rate of primary education in most developing countries, responding also to the second
priority of the Millennium Development Goals (MDGs), “primary education for all”. While education is
increasingly acknowledged as an important dimension of poverty reduction, there remains some
challenges in measuring its return, for example on a household’s welfare. Studies emphasizing
the role of education on poverty reduction have recently exploded, and regression analysis
relying on both household surveys and cross-country data has been widely used in this literature.
These regressions, using reduced-form equations, generally provide a simple, but partial framework
for examining the marginal effect of education on a household’s income*. Since the distribution of
income is generally skewed to the right, the mean regression models do not provide complete and
meaningful information, and then, the analysis of each point of the distribution is of particular interest
to assess changes at these different points.

The proposed approach is employed in the empirical analysis to measure the return to education
and to address the extent to which the rate of the marginal effect of primary education on a household’s
income changes across quantiles compared with those of higher education.

The investment in primary education devotes the largest budget allocation in developing
countries to fulfill development priorities (Psacharopoulos 1994; Psacharopoulos and Patrinos 2002).
In Senegal, the enrollment rate in primary school has climbed from 54 percent in 1994 to 70 percent in
2001 and 82.5 percent in 2005, accompanied by an increase in the female enrollment rate and the rural
sectors enrollment rate®. However, the IMF 2007’s report reveals that 78.51% of Senegalese youth aged
15-19 dropped out before finishing lower secondary school.

The empirical analysis of this paper uses the data from a nationally-representative survey:
the Senegal Poverty Monitoring Report (ESPS, 2005) conducted by the National Agency of Statistics
and Demography (ANSD)®. This survey is largely used by empirical studies, government monitoring
reports, institutional strategic documents and in poverty reduction strategies papers (PRSPs)
in Senegal’.

This study applies the RIF-regression method in a Mincer® equation type, to primarily investigate
the changes in the return to education across quantiles.

The empirical results primarily demonstrate evidence from the heterogeneous pattern of changes
in the rate of return to education across quantiles. The rate of change in the return to primary education
does not vary much between the lower and the upper quantiles (0.50, 0.75, 0.90) compared to those to
secondary and tertiary education. This result supports findings showing that in countries that rapidly
expand access to primary education, the returns to primary education fall, while returns to higher
education rise (Psacharopoulos 1994; Psacharopoulos and Patrinos 2002).

The paper is organized as follows: Section 2 presents the RIF-regression and the different estimation
methods employed. It implements a Bayesian RIF-logit estimation by a Gibbs-Metropolis-Hastings
sampler. Section 3 describes the data. Section 4 discusses the empirical results. Section 5 concludes and
discusses some policy implications.

The consumption expenditure is considered as an indicator of a household’s income.

Source: published reports and papers; see for instance (IMF 2007; Delaunay 2012). These ratios correspond to the number of
students formally registered in primary school.

® ESPS, “Enquéte Suivie de la Pauvreté au Sénégal”, 2005-2006; ANSD, “Agence National de la Statistique et de
la Démographie”.

Among the studies using the ESPS datasets, we can cite Boccanfuso et al. (2008); Boccanfuso et al. (2009); Diawara (2012),
among others, and the national and institutional reports: DSRP 2005; IMF 2007; ANSD 2007.

The standard (Mincer 1974) earnings equation linearly regresses the log of wage on the year of education and the quadratic
function of labor market experience.

e
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2. Unconditional Quantile Regression Models

We consider the following quantile regression model:

Vi = XiBr + Ui, (1

where (y;,x;), i = 1,2,...,n are independent observations, y; being the single-response variable
and x; = (1,x1,---,%;) being the (k + 1) known covariates. fr = (Bro,---,Brx) represents
the (k + 1) unknown regression parameters, and u;;, i = 1,...,n are the error terms, which are
supposed to be independent and identically distributed. The 7-th quantile of u;; is assumed equal to
zero, g (1| X) = 0.

2.1. RIF-Regression Models

Firpo et al. (2009) developed an unconditional quantile regression method based on the
Re-centered Influence Function (RIF) to evaluate the marginal impact of changes in the distribution of
the explanatory variables on the quantiles of the marginal distribution of the dependent variable.

The Influence Function (IF) studies how a change in the distribution of covariates affects a
distributional statistic v(F), where F is a class of distribution functions. It is defined as:

V(Fe,Ay) _V(F) aV(Fe,Ay)

IF(y,v,F) = lim¢_,o c == le=0, 2

where Ay is a perturbation distribution, which puts a mass of one at any point y and Fe s, = (1 —€)F +
€Ay is a mixture model. Firpo et al. (2009) consider the T-th quantile, g, as the distributional statistics
v(F), and show that the IFcan be expressed as:

T —M(y; < q7)
fr(g-) ’

where fy(.) is the density of the variable of interest, Y. A convenient property of IF is that
Ey(IF(Y,v,F)) = 0. Firpo et al. (2009) define the Re-centered Influence Function (RIF) as
RIF(y;,v,F) = IF(y;v,F) 4+ v(F). For quantiles, the RIF can be expressed in the following
convenient way:

IF(yi, qc) =

RIF(yi,qc) =g+ I{(yu qr)
— (yi>q) _ 1-T
=0t 7RG T R ©)
=1, M(y; > q7) + o0,

where ¢ = 1/ fy(g¢) and c2r = g — (1 — T)c17.
The RIF-regression model consists of regressing the function RIF given in (3) on a set of
covariates X.

2.2. Bayesian Estimation of the RIF-Regression

Running the two-step estimation of the RIF-regression remains a challenging problem.
The “classical” approach consists of estimating independently the influence function by kernel
estimation and the regression coefficients (see Firpo et al. 2009). However, the kernel density estimation
in the first step may lead to unreliable inference in the presence of heavy-tailed distributions as
theoretically shown by Bahadur and Savage (1956) and empirically evidenced by Davidson (2012).
The Bayesian estimation method of the RIF consists of choosing a mixture representation for the density
function by solving a data augmentation problem by a Gibbs sampler and then estimating the regression
coefficients. A first MCMC algorithm, which combines the two steps of estimation in a sequential
process in linear RIF-regression, was suggested by Lubrano and Ndoye (2014). However, the estimated
RIF function is a binary dependent variable; the linearity and the normality assumptions are strong
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and may lead sometimes to predicted probabilities that are negative or greater than one. Following the
dichotomous structure of the RIF in (3), a non-linear model can be estimated using a logistic (probit)
regression. We take the opportunity of this requirement to introduce a hybrid MCMC method, which is
called a Gibbs within a Metropolis-Hastings algorithm.

The conditional expectation of the RIF is expressed as:

E[RIF(Y,q0) | X =x] = E[M(Y >q¢)|X=x]+c2r @
=1, PrlY > q¢|X = x] 4+ o7
Since E [RIF(Y, q¢)|X = x] in (4) is linear on Pr[M(y > g)|X = x], the average marginal effect of
covariates is given by:
L OPr[Y > | X = x]
,B’l' =C1t ox ’

where &1, = 1/ f(g-|0) with 8 are the mixture parameters estimated by the Gibbs sampler. The average

marginal effect y; = w

can be consistently estimated by a logit regression considering
the dummy variable y;r = M(y; > ) that is regressed on x; to derive the RIF-regression coefficients, .
A Bayesian estimation of a logit regression can be done by a Metropolis-Hastings sampler where
the starting values are derived from the estimation of the regression coefficients in a linear
probability model.

The average marginal effect from a logit model will be consistent only if:
Pr(y > g X = x) = A(xiy) ¥ (1= Alxiyo))', ©)

where A(.) is the cumulative distribution function of a logistic distribution.
The likelihood of the sample is then given by:

n
L(yely, x) o [TA(xive) ¥ (1= Alxiye))'m .
Pt

For a given prior 71(7y¢), the posterior distribution 7r(7-|y, x) is:

n

(yely, x) & (ye) x TTA (eive) ™Y (1= Alxye)) (6)
i=1

The Gibbs sampler is difficult to implement since conjugate priors do not exist because the
logistic likelihood function does not belong to the exponential family. Therefore, we consider a
Metropolis-Hastings sampler, which can be tuned only with the likelihood function under a flat prior
on z.

The proposed approach for the RIF-logit developed is a Gibbs within a Metropolis-Hastings
sampler algorithm, as it first requires the use of the Gibbs sampler to estimate the mixture of lognormal

gy

densities” for ¢1; = 1/ f(q-|6).

Gibbs within a Metropolis-Hastings sampler algorithm.

—

e  Estimate the density function of y by Gibbs sampling to obtain ¢ = 1/ f(g<|0)
(0)

e Initialization: run a linear probability model to set 71, and compute .
e Iteration: fort=1,---,m

1. Generate ¢ ~ N(yst_l),ﬁ)

The Gibbs sampler for the mixture of lognormal densities was developed in Lubrano and Ndoye (2016); see also
Marin and Robert (2007) for the mixture of normal distributions.
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2. Compute the acceptance probability p('y(rtfl), F7) = min (1, 7{(7;((,7%)
(

3. With probability p(ygfl), Yr), set «#) = 9. otherwise «#) =7

4. Compute B(Tt) = {1 * 'y(Tt)

e  Average B(Tt) to obtain the estimates of the RIF-regression coefficient, .

Without any prior information, the flat prior on yr can be considered, 7t (y7) o 1. For comparison

purposes, we will consider Zellner’s non-informative G-prior:
—(2k-1)/4
7(Be) o det ((x’x)l/Z) T [(2k—1)/4] (5’(x’x);z) k2,

We can notice that the RIF-logit estimation approach makes assumptions about the functional
forms of the P(Y > g.|X = x) in (4). Firpo et al. (2009) suggest the nonparametric-RIF (NP-RIF)
regression method based on polynomial series approximations and show that RIF-logit regression
yields estimates very close to the fully-nonparametric estimator. However, the choice of the
nonparametric estimator is not crucial in large samples as discussed by Newey (1994); if the domain is
unbounded, the polynomial series would also poorly approximate the tails.

3. Empirical Analysis

3.1. Data and Descriptive Statistics

The Senegal Poverty Monitoring Report (ESPS, 2005) is a nationally-representative survey
conducted by the National Agency of Statistics and Demography. The survey is constructed to
provide information related to the evaluation of poverty and to the assessment of the impact of public
policies. The ESPS sample covers 13,500 of households of all social classes and from all geographical
areas of residence.

Table 1 reports descriptive statistics concerning the characteristics of households and information
on the head of the household. It shows that two-thirds of household-heads are illiterate, around
13 percent have reached primary education, 9 percent a secondary education level and less than
5 percent a tertiary level and equivalent. Senegalese families are often extended, nine persons
per household on average, and more than half are between 40 and 65 years old. About 80 percent of
household-heads are employed (self-employed or salaried). More details on the descriptive statistics of
these data are given in the summary reports of the two surveys published by the National Agency of
Demography (ANSD 2007).

The estimation of a given equivalence scale relies on a particular consumption model, which is
rather restrictive and therefore may lead to identification problems. The usual practice consists of
using the per capita income, dividing the household income by the household size. That is what we
use in this study referring to Deaton and Muellbauer (1980) and Deaton (1997) and empirical work by
the World Bank with Ravallion (2001).
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Table 1. Characteristics of heads of households.

Education Level of the Head Age

Tlliterate 71.22  Mean 50.62
Primary 12.63  less 40 21.97
Secondary 11.58  40-65 57.92
Tertiary 4.57 65 and plus 30.11
Gender Occupation of the head

Female 22.55 Employed 70.6
Marital status of the head Size of the household
Monogamy 57.03 Mean 9.01
Polygamy 2539 14 20.13
Single 340 59 49.25
Widower 11.71  10-14 18.33
Divorced 2.39 15, + 12.29

Computations are based on ESPS 2005-2006 after dropping households without any
information on educational attainment of the head or on the total consumption expenditures.

3.2. Real Consumption Expenditure Per Capita Distribution

We consider the annual real consumption expenditure as an indicator of permanent income.
The consumption expenditures are expressed in CFA francs.!” The WAEMU!! Harmonized Consumer
Prices Index (HCPI) was respectively 10.94 in 2001 and 11.3 in 2005, revealing a small inflation rate
of 0.036 points. The total consumption expenditures in the survey are already deflated by sectors
using the national Consumer Prices Index (CPI). The differences in weight in CPI between urban and
rural sectors nicely reflect the consumption expenditure structure. In fact, foods are typically less
expensive in the rural sectors, and urban households are more likely to consume higher quality goods,
which increases their consumption expenditures. The total consumption expenditure in the sample is
the sum of food and non-food expenditures, with self-consumption added.

Table 2 presents the distribution of the real annual consumption expenditure per capita.

Table 2. Real annual consumption expenditure per capita.

90.10 8.89
q0.25 13.54
Median 20.71
Mean 27.11
qJ0.75 3240
40.90 50.07
N 13,326

Gini 0.388

The sample reveals that the largest part of the Senegalese household’s consumption expenditure
is on food (45.6%) and housing (20%); the remainder of the budget is mostly used to cover the clothing
expenditure, health and items expenditure.

Since the distribution of the consumption expenditure is often skewed to the left, we impose a
restriction on the form of the distribution. We estimate the density function by a mixture of normals

10" CFA (Communauté Financiére Africaine (African Financial Community)). CFA franc had a fixed exchange rate with the

Euro (1 euro = 656 CFA) in 2013.

11 West African Economic and Monetary Union.
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using a Gibbs sampler. Figure 1 presents the estimation of the real consumption expenditure per capita
10 by a mixture of two lognormal distributions.

--— Kernel
——  Mixture|

Figure 1. Mixture of two lognormal densities.

4. Empirical Application

In the RIF-regression models, we consider a Mincer type model where the logarithm of the
consumption expenditure per capita is the dependent variable. We estimate returns to education
at different levels by converting the continuous years of the schooling variable into three dummy
variables referring to the completion of the main schooling cycles'?. This return to education refers to
the marginal effect of the level of education on the household’s consumption expenditure per capita.

We consider the following set of covariates: primary, secondary and tertiary as dummies,
which refer to the level of education of the head of household; age and its square!® refer to the
age of the heads of household; the dummy female refers to a female headed-household; the dummy
married refers to a married household’s head; the dummy rural is the rural geographical area of
residence. We restrict the estimations to five quantiles (0.10, 0.25, 0.50, 0.75, 0.90).

In this case, the RIF-regression allows us to evaluate the marginal effect of the changes in the
distribution of covariates on the quantiles of the marginal distribution of the total consumption
expenditure per capita.

Tables 3 and 4 report the RIF-regression estimates. They show the marginal effects of different
covariates on the household’s expenditure consumption per capita and their changes across the five
quantiles. The regression coefficients are estimated by the hybrid MCMC RIF-estimation methods
developed in this paper. The density function of the dependent variable (log of the expenditure
consumption per capita) is estimated by a mixture of normal distributions.

Primary education corresponds to 6 years or less, secondary between 7 and 13 years and tertiary more than 13 years.

We consider the quadratic function of age to capture the fact that on-the-job training investments decline over time in a
standard life-cycle human capital model. This quadratic form of age is implied by a model in which investments decline
linearly over time.
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Table 3. Bayesian RIF estimates on the log-income without using prior B. RIF, Re-centered

Influence Function.

Lowest Lower Middle Median Upper Middle Highest

0.10 0.25 0.50 0.75 0.90
RIF-Logit Regression Using Flat Prior
Intercept 18.321 6.497 2.992 1.250 —4.175
(1.669) (0.571) (0.378) (0.521) (1.421)
primary 0.482 0.465 0.541 0.829 2.175
(0.449) (0.145) (0.093) (0.133) (0.405)
secondary  1.421 1.564 1.391 2.322 6.060
(0.555) (0.182) (0.103) (0.129) (0.346)
tertiary 5.905 4.145 3.653 4.712 11.332
(1.651) (0.554) (0.271) (0.238) (0.490)
age —0.697 —0.412 —0.308 —0.256 0.089
(0.290) (0.099) (0.067) (0.095) (0.273)
age? 0.030 0.017 0.014 0.013 0.001
(0.012) (0.004) (0.003) (0.004) (0.012)
size —0.222 —0.148 —0.167 —0.376 —1.468
(0.020) (0.008) (0.007) (0.013) (0.053)
female 1.460 0.927 0.609 0.735 1.641
(0.469) (0.152) (0.093) (0.126) (0.347)
rural —8.137 —3.251 —2.412 —3.128 —6.341
(0.318) (0.098) (0.071) (0.130) (0.473)
married 1.222 0.688 0.465 0.504 2.183
(0.503) (0.165) (0.103) (0.139) (0.378)

The age variable was divided by 100. age? represents the square of age. Standard errors are indicated in
parentheses. Bold figures correspond to posterior means for which 0 is contained in a 95% HPDinterval.

Table 4. Bayesian RIF estimates on the log-income.

Lowest Lower Middle Median Upper Middle Highest

0.10 0.25 0.50 0.75 0.90
RIF-Logit Regression Using Zellner’s Non-Informative Prior
Intercept 18.272 6.492 3.001 1.204 —4.075
(1.669) (0.571) (0.378) (0.521) (1.421)
primary 0.487 0.470 0.534 0.842 2117
(0.449) (0.145) (0.093) (0.133) (0.405)
secondary  1.391 1.558 1.392 2.317 6.013
(0.555) (0.182) (0.103) (0.129) (0.346)
tertiary 5.984 4.065 3.621 4.686 11.266
(1.651) (0.554) (0.271) (0.238) (0.490)
age —0.701 —0.414 —0.309 —0.251 0.066
(0.290) (0.099) (0.067) (0.095) (0.273)
age2 0.030 0.017 0.014 0.013 0.002
(0.012) (0.004) (0.003) (0.004) (0.012)
size —0.220 —0.148 —0.167 —0.372 —1.455
(0.020) (0.008) (0.007) (0.013) (0.053)
female 1.444 0.915 0.613 0.735 1.606
(0.469) (0.152) (0.093) (0.126) (0.347)
rural —8.127 —3.245 —2.409 —3.104 —6.341
(0.318) (0.098) (0.071) (0.130) (0.473)
married 1.239 0.680 0.476 0.494 2.174
(0.503) (0.165) (0.103) (0.139) (0.378)

The age variable was divided by 100. age? represents the square of age. Standard errors are indicated in
parentheses. Bold figures correspond to posterior means for which 0 is contained in a 95% HPD interval.

Returns to education: For both estimations, the marginal effect of education monotonically increases
with the level of education and with quantiles. The rate of change in the returns to education across
quantiles provides evidence of significant differences between the bottom and the top of the distribution.
For all educational attainment levels, the marginal effects and their rate of change are significantly
larger for upper quantiles (0.5, 0.75, 0.90), especially the secondary and the tertiary levels. The marginal
effects of the secondary and tertiary education largely dominate the upper part of the distribution.
The primary education is significant for all quantiles except the lowest 10 percent; its return increases
from the first quartile to the third quartile and then slightly decreases for the highest quantiles. The rate
of change in the return to primary education is small and much lower than those to secondary and
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tertiary educations (see also Table Al in Appendix A). This result is in line with findings showing
that in countries that rapidly expand access to primary education, the returns to primary education
fall, while returns to higher education rise (see for instance Psacharopoulos 1994; Psacharopoulos and
Patrinos 2002). In contrast, “primary education continues to be the number one investment priority in
developing countries” (Psacharopoulos and Patrinos 2002).

Including age-square, the results show an overall negative effect of age on the household
consumption expenditure. Its marginal effect monotonically increases across the first four quantiles
and is not significant for the 90th quantile. On average, an additional year of age decreases the
household consumption expenditure (in log) by approximately (0.667 0.395 0.294 0.243), respectively.
For each of the quantiles (0.10, 0.25, 0.5, 0.75), these marginal effects also increase with age14.

The marginal effects of the household’s size monotonically decrease, and their rates of change
across quantiles are higher for upper quantiles. Living in rural areas has a negative and significant
effect on the consumption expenditures for all quantiles. Senegal’s rural economy is largely agricultural,
which is seasonal. The marginal effects of living in rural ares are comparatively higher than the other
effects of covariates for poor households. Indeed, the urban labor force is more skilled and earns
higher wages than the rural labor force.

5. Conclusions and Policy Implications

In this study, we provide a Bayesian estimation method for the unconditional quantile regression
model based on the Re-centered Influence Function (RIF). The method makes use of the dichotomous
structure of the RIF and estimates a non-linear probability model by a logistic regression using a Gibbs
within a Metropolis-Hastings sampler. This approach performs better in the presence of heavy-tailed
distributions. Applied to a nationally-representative household survey, the Senegal Poverty Monitoring
Report (2005), the empirical results primarily show evidence from the heterogeneous pattern of
changes in the rate of returns to education across quantiles and across the different levels of education.
The marginal effects of education monotonically increase and are comparatively higher for upper
quantiles (0.50, 0.75, 0.90). The return to primary education does not vary much across quantiles
compared with those to secondary and tertiary education.

In most developing countries, promoting education is not only for development policy and for
eradicating poverty, but it is also an argument to attract institutional financing and other forms of
aid from donors. Senegal witnessed one of the largest increases in the achievement of the second
priority of the MDGs. The rate of primary education in Senegal climbed from 54 percent in 1994 to
over 82 percent in 2005. In Senegal, as well as in most developing countries, the quality of education
in public schools has deteriorated following the increase of enrollment rates. The growing number
of primary schools has partially contributed to the literacy and encouraged the education of girls.
In contrast, the growing number of public primary schools disadvantages children from low-income
families due to the lack of educational resources.
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14 Considering the three age values (30, 50, 65)/100, the following marginal effects for the four quantiles are (—0.679 —0.402
—0.300 —0.2482); (—0.667 —0.395 —0.294 —0.243) and (—0.658 —0.390 —0.290 —0.239), respectively.
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Appendix A. Comparison with Conditional Quantile Regression Model

Table Al presents the estimation results of the conditional quantile regression using Gibbs
sampling!®. The results are in line with those provided by the RIF-regression. The rate of change
in the return to primary education does not vary much between the lower and the upper quantiles
compared with those to secondary and tertiary education.

Table Al. Bayesian conditional quantile regression using Gibbs sampling.

Lowest Lower Middle Median UpperMiddle Highest

0.10 0.25 0.50 0.75 0.90
Intercept 12.046 12.447 12.898 13.368 13.749
(0.180) (0.137) (0.113) (0.141) (0.187)
primary 0.071 0.095 0.101 0.111 0.130
(0.049) (0.036) (0.029) (0.035) (0.047)
secondary  0.234 0.275 0.341 0.377 0.454
(0.049) (0.036) (0.033) (0.035) (0.053)
tertiary 0.648 0.736 0.749 0.845 0.970
(0.079) (0.060) (0.055) (0.062) (0.094)
age —0.034 —0.046 —0.063 —0.082 —0.097
(0.031) (0.024) (0.020) (0.025) (0.034)
age? 0.001 0.002 0.003 0.004 0.004
(0.001) (0.001) (0.001) (0.001) (0.001)
size —0.029 —0.032 —0.035 —0.035 —0.031
(0.004) (0.002) (0.002) (0.002) (0.002)
female 0.097 0.100 0.122 0.090 0.093
(0.050) (0.034) (0.028) (0.031) (0.044)
rural —0.603 —0.512 —0.473 —0.446 —0.415
(0.038) (0.025) (0.022) (0.025) (0.034)
married 0.117 0.102 0.076 0.030 0.006
(0.055) (0.037) (0.031) (0.035) (0.051)

The age variable was divided by 100. age? represents the square of age. Standard errors are indicated in
parentheses. Bold figures correspond to posterior means for which 0 is contained in a 95% HPD interval.
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Abstract: To use the generalized beta distribution of the second kind (GB2) for the analysis of income
and other positively skewed distributions, knowledge of estimation methods and the ability to
compute quantities of interest from the estimated parameters are required. We review estimation
methodology that has appeared in the literature, and summarize expressions for inequality, poverty,
and pro-poor growth that can be used to compute these measures from GB2 parameter estimates.
An application to data from China and Indonesia is provided.
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1. Introduction

Specification and estimation of parametric income distributions has a long history in
economics. Much of the literature on alternative distributions can be accessed through the book by
Kleiber and Kotz (2003), and the papers in Chotikapanich (2008). A series of papers by McDonald and
his coauthors (McDonald 1984; McDonald and Xu 1995; Bordley et al. 1997; McDonald and Ransom 2008;
McDonald et al. 2011) carry details of many of the distributions and the relationships between
them. Our focus in this paper is on the generalized beta distribution of the second kind (GB2).
It is a four-parameter distribution defined over the support (0, c0), and obtained by transforming
a standard beta random variable defined on (0, 1). As described by McDonald and Xu (1995), it
nests many popular three-parameter specifications of income distributions including the generalized
gamma, beta2, Singh-Maddala and Dagum distributions. Two-parameter special cases of these
distributions include the lognormal, gamma, Weibull, Lomax and Fisk distributions.! Parker (1999)
describes a model of firm optimizing behavior that leads to a GB2 distribution for earnings.
Applications have appeared in Butler and McDonald (1986), Cummins et al. (1990), Feng et al. (2006),
Jenkins (2009), Graf and Nedyalkova (2014), and Jones et al. (2014). Biewen and Jenkins (2005) analyze
poverty differences using Singh-Maddala and Dagum distributions, with parameters as functions of
personal household characteristics, and with their choice between the Singh-Maddala and Dagum
distributions based on preliminary estimates of GB2 distributions. Quintano and D’Agostino (2006)

1 McDonald and Xu (1995) and McDonald and Ransom (2008) also consider a five-parameter generalized beta distribution

which nests the GB2 and a GB1 distribution.
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use the Dagum distribution and the Biewen-Jenkins methodology to examine the dependence of
inequality and poverty on personal characteristics. In an extensive study examining global inequality,
Chotikapanich et al. (2012) estimate special case beta2 distributions for 91 countries in 1993 and
2000. In an application involving 10 regions, Hajargasht and Griffiths (2013) find that the GB2
distribution compares favorably with the four-parameter double Pareto-lognormal distribution in
terms of goodness-of-fit.

Estimation of a good-fitting parametric income distribution such as the GB2 facilitates further
analysis. Once important quantities such as mean income, the Gini coefficient, the Lorenz curve, and
the headcount ratio have been expressed in terms of the parameters of the distribution, they can be
readily estimated from those parameters. If interest centers on a region which comprises a collection
of countries or areas, a GB2 distribution can be estimated for each country/area; inequality, poverty
and pro-poor growth for the region can be analyzed by computing estimates of indicators expressed
in terms of the parameters of a regional distribution which will be a population-weighted mixture of
the GB2 distributions. If only grouped data are available, then estimating a distribution such as the
GB2 provides a means for accommodating within-group variation, an important consideration for
assessing inequality and poverty.

The purpose of this paper is to collect results on measures for inequality, poverty, and pro-poor
growth, expressed as functions of the parameters of the GB2 distribution and its mixtures, and to
summarize various methods of estimation that have appeared in the literature for estimating GB2
parameters from single observations or from grouped data. Expressions for the inequality, poverty,
and pro-poor growth measures are given in Section 2. Section 3 contains a description of the various
estimation techniques. The results from an application to 4 years of data for China and Indonesia are
presented in Section 4. Some concluding remarks are offered in Section 5.

2. Inequality and Poverty Measures from the GB2 Distribution

Throughout we assume that income Y for a given country or area, can be represented by a GB2
distribution whose probability density function (pdf) is given by

Il]/ap71
b7B(p,q)(1+ (§)")

f(yla,b,p,q) = oy >0 M

wherea >0, b >0, p > 0and g > 0 are its parameters and B(p,q) = fol t7=1(1 — )77 1dt is the beta
function. The cumulative distribution function (cdf) corresponding to (1) is given by

1 s “1g _
S 0/ 0711 - )" at = Bwlp,q) @

F(yla,b,p,q) =

wherew = (y/b)"/[1+ (y/b)"]. The function B(w|p,q) is the cdf for the normalized beta distribution,
defined on the (0, 1) interval, with parameters p and g, and evaluated at w. It is a convenient
representation because both it, and its inverse, are commonly included as readily-computed functions
in statistical software. Properties of the GB2 distribution and its special cases have been considered
extensively by McDonald (1984) and Kleiber and Kotz (2003). Three-parameter special cases, which
have been popular in the literature, are the Singh-Maddala distribution? where p = 1, the Dagum
distribution where g = 1, and the beta2 distribution where a = 1. Extension to a 5-parameter GB
distribution has been considered by McDonald and Xu (1995) and McDonald and Ransom (2008).
Some further properties of the GB2 distribution are described by Graf and Nedyalkova (2014). In this

2 The Singh-Maddala distribution is also commonly known as the Burr distribution, and has been described using a variety of

other names. See (Kleiber and Kotz 2003, p. 198).
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section, we summarize the main results from the GB2 distribution that are relevant for computing
measures of inequality, poverty and pro-poor growth.

We envisage a scenario where GB2 distributions have been estimated for a number of countries,
or for specific areas within a country such as urban and rural, and the objective is to evaluate inequality
and poverty measures using the estimated parameters of the GB2 distributions. As well as evaluation
of the measures from single GB2 distributions, we are interested in evaluating them for mixtures that
arise when urban and rural GB2 distributions are combined to obtain a distribution for a country,
or when country GB2 distributions are combined to obtain the distribution for a region. In most
instances, we can express measures in terms of quantities such as beta and gamma functions that are
readily computed by available software. Measures whose exact computation proves to be difficult
can usually be written in terms of expectations which can be estimated by averaging values of the
function over simulated draws from one or more of the GB2 distributions. Key quantities that are
used for calculation of many measures, and for estimation of GB2 distributions, are the GB2 moments
and moment distribution functions. We begin by giving expressions for them, as well as indicating
how the GB2 Lorenz curve can be obtained. We then consider measures for inequality, poverty and
pro-poor growth.

The k-th moment of the GB2 exists for —ap < k < ag and is given by

u® = E(Yk) _ VB(ptk/ag—k/a)

B(p.q)
V(T (g /a) €)
T(p)L(q)

where T'(+) is the gamma function. The k-th moment distribution function for the GB2 is given by>

vy
Fe(yla,b,p,q) = %Of t)dt
F(yla,b,p+k/a,q—k/a)

This result—that the GB2’s moment distribution functions can be written in terms of its cdf
evaluated at different parameter values—is particularly useful for deriving the Lorenz curve and
for setting up and computing GMM estimates from grouped data. The Lorenz curve, relating the
cumulative proportion of income 1 to the cumulative proportion of population u is given by

n(u) = F[F(ulab,p,q) 9]
~ b pale ~1/4]
=B[B Y(ulp,q |p+1/aq—1/a} O<u<l

where the function B(-|-, -) is defined in Equation (2).
2.1. Inequality Measures

2.1.1. Gini Coefficient

The most widely used inequality measure is the Gini coefficient. McDonald (1984) and
McDonald and Ransom (2008) use hypergeometric functions to express the Gini coefficient in terms of
the GB2 parameters. An algorithm for computing these functions has been proposed by Graf (2009).
It has been our experience that it is easier computationally to compute the Gini coefficient via numerical
integration than to numerically evaluate the hypergeometric functions. Another alternative is to

3 See, for example, (Butler and McDonald 1989).
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estimate the Gini coefficient by simulating from the GB2 distribution. Specifically, noting that the Gini
coefficient is given by

G - 1+ gofyF(y\q»)f(md»)dy
= —1+ ZE[yF(y|®)]

where u = u(V) = E(y) = b[l(p+1/a)T(q —1/a)]/[[(p)L(q)] and ¢’ = (a,b,p,q), we can draw
observations (y1,¥2,-..,ym) from f(y|d) and estimate G from

G=14+ 2L S F (o)
p']\/Im:l]/m Ym

The number of draws M can be made as large as necessary to achieve the derived level of accuracy.
To draw observations from f(y|¢), we first draw observations (wy, w», ..., wy) from a standard
beta (p, q) distribution, defined on the (0, 1) interval, and then compute y,, = b[w,, /(1 — wm)]l/ “
If interest centers on one of the special case distributions where p = 1, 4 = 1 or a2 = 1, then closed form
expressions in terms of gamma or beta functions are available for the Gini coefficient. They are

G = 2B(2p,2q—1)

Beta2 =1
e ? 2B%(p.q)

. I(q)r(2q—1/
Singh-Maddala p=1 G=1- %

_ T(pr@p+1/a) 1

Dagum =1 G=raprpri/a

Suppose now we have estimated GB2 income distributions for a number of different areas, such as
countries within a region or urban and rural areas within a country, and we are interested in estimating
the Gini coefficient for the combined area. The combined income distribution can be written as a
population-weighted mixture of the individual GB2 distributions. That is,

J
F(1®) = L 4if (v]) @
£

where @ = (b, ¢y,..., b ]), Aj is the proportion of the combined population in area j, and
' i= (u]-,bj, p]-,q/) is the vector of parameters of the distribution for area j. As noted by
Chotikapanich et al. (2007), in this case the Gini coefficient for a combination of | areas can be
estimated from

2 L J
G=-1+ 72 2 )\])\/T]/
Heisiio

where

1 M
e = 31 Y YimF (jm| de)
m=1

He = 211:1 Aj by is the mean of the combined areas, by is the mean for area j, and y; , is the m-th draw

from pdf f (y’ () ]-> . For the empirical work in this paper we estimated separate distributions for rural
and urban areas in China and Indonesia, then combined them.
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2.1.2. Generalized Entropy Measures

Next we consider the generalized entropy (GE) class of inequality measures, whose expressions
in terms of the parameters of the GB2 distribution were provided by Jenkins (2009). The GE index is
given by

I(oc):ﬁ[%fl} foroe #0,1 (5)
where, for the GB2 distribution, p(% fo “f(y|d)dy is givenin (3), and p* = [um] % For large
positive «, the index I(x) is sensitive to large differences at the top of the distribution; for large negative
a, it is sensitive to differences at the bottom end of the distribution. Theoretically, & can range from
—oo to 0o, but values between —1 and 2 are usually considered in applications. Two popular special
cases are obtained by taking limits as « — 0 and o« — 1. The case where o« — 0 is known as the mean
logarithmic deviation or Theil(0) (Theil 1967, p. 127). Its general expression, and the result for the GB2

distribution, are*

=5}

= [10g(4) f(yld)dy

= log(n) — E[log(y)]
=In(u/b) —¥(p)/a+b(q)/a

where P(c) = dlogI'(c)/dc is the digamma function, computable by most software. The index
obtained as « — 1 is known as Theil(1) (Theil 1967, p. 96). Its general expression, and result for the
GB2 distribution, are

(=}

10) = J fog(£) i)y
(

= [E(ylog(y))]/n—logn
=[(p+1/a) =W (q—1/a)]/a+log(b/ )

In the event that software is not available to compute the digamma function, draws (y1,Y2,.-.,Ym)
from f(y|d) can be used to calculate M, log () /M and &M | v, log(ym)/ M as estimators for
E[log(y)] and E[ylog(y)], respectively.

The GE index for a mixture of income distributions and its decomposition into within and between
group inequality has been considered by Sarabia et al. (2017). To obtain the GE index for a region
whose income distribution is a mixture of GB2 distributions, the quantities 1w(®) and p*, defined
in (5) for the GB2 distribution f(y|d), are replaced by the corresponding moments for the mixture
distribution f(y|®) = ij‘:l Aif (y’d)]v) given in (4). For a # 0, 1, the resulting index is

@) = b | ()" o )os 1]

_ 1 1 I/\ o
T afa—1) 712 ‘E'(y )—1 (6)
_ 1 EaA ]u]“) -1

o(a—T1) -(Z]/:1 AJ“I)

4 See McDonald and Ransom (2008) or Jenkins (2009) for derivations. Equation (4) in Jenkins (2009) should read
I(1)v1/p — log p. Sarabia et al. (2017) give details of the Theil indices for a wide range of distributions including the GB2.
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where u](-“)

For the case where o = 0, we have

= Ej(y®) is the c-moment with respect to f (y‘ 0} j) , the distribution of the j-th component.

1e0) = Tog(%5) ¥, 147 (o]0,
= loguc — i AjE;(logy)

where, for the GB2 distribution, E;(logy) = [W(p;) — ¥ (q;)]/aj +1og(b;). For the case where o = 1,

Ic(1)

Il
o3
f<
—_

e Og(@é Aif (v] @)y

]
= H%jg AiEj(ylogy) — log uc
with
Ei(ylogy) = (wi/a;) [ (p;+1/aj) = (g~ 1/a;)] + njlogh;.

An attractive feature of the GE index from a mixture is that it decomposes into a GE measure of
inequality within the components of the mixture and a GE measure of inequality between components.
To establish this decomposition, we write the index for the j-th area as

(o)
()= L

>
= a(a— DIi(e) +1
Hj

and note that

Substituting this expression into (6) yields

Ie(a) = Wl_l){lf Aj(%)a[oc(ocfl)lj(oc) +1] - 1}

1

[0 4
:jél)\j<%)“[j(cx) + a(;l){jil)\j<z> 1}

— Ig)ith((x) + Igetw((x)

where Ié"“‘h (x) = 2]1-:1 A (u// HC) I () is a weighted average of the inequalities for each area with

; ; « betw -1 J x 5 :
weights given by /\]-(u]-/uC) ,and IX(a) = [a(oc—1)] {Zj:1 /\j(uj/uc> - 1} is a discrete
version of the GE index for the | areas, measuring between inequality. Note that, unless « = 0 or 1,
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the weights do not sum to 1. When o = 0, the weights are the population shares A;; when o = 1,
the weights are the income shares A; My / 2}:1 Ajlj. The components for these two cases are

I'Cwifh(o) —

-

il

-

J
0 = La()

]
= log uc — '21 Ajlog
j=

: -
B = R A0

AR Lot
*}TCEI j j(y Ogy)—jg juc 08<Hj>

/ o 0
) = & aytiog(f2)
oy
= ‘21 )‘/Tc log<uj> —log uc
=

2.1.3. Atkinson Index

The Atkinson index is an inequality index that can be viewed as an ordinal special case of a GE

index. It is given by
1/(1-
Ae) =1 ‘H“(H)] V for0<e£1

_ exp{E(log(y)) }
A1) =1-— 2PiECsl

The parameter e reflects the degree of aversion to inequality in a social welfare function. As ¢ — 0, there
is no aversion to inequality, and A(e) — 0. As € — oo, social welfare is increased by redistributing
income towards complete equality; A(e) — 1. To compute A from the parameters of the GB2
distribution, we note that 11~ is given in Equation (3) and E[log(y)] = [W(p) — W (q)]/a — log(b).
Alternatively, and for computing Ac(¢), the Atkinson index for a mixture of GB2 distributions, the
relationship between A(¢) and the GE index I(«x) can be exploited. With x =1 —¢,and ¢ > 0, it is
given by
Ae) =1—[a(a—D)I(e) +1]% for0#a <1

A(0) =1 —exp{-1(0)}

2.1.4. Pietra Index

In contrast to the Gini coefficient, which is equal to twice the area between the Lorenz curve and
the line of perfect equality, the Pietra index is equal to the maximum distance between the Lorenz curve
and the perfect equality line (Kleiber and Kotz 2003), as well as twice the area of the largest triangle
within the area between the Lorenz curve and line of perfect equality (Butler and McDonald 1989).
Details of these results and an extensive analysis of the Pietra index, generally, and in terms of several
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distributions and their mixtures, can be found in Sarabia and Jorda (2014). For a single GB2 distribution,
we have

= ﬁfly ulf(yld)dy
=F(u |d>) Fi(ud)
= F(ula,b,p,q) — F(pla,b,p+1/a,q—1/a)

For a mixture of distributions, it is given by
I 1 J
Pe = YA (cldy) = -3 A (ucld)
j=1 Cj=1
2.1.5. Quintile Share Ratio

Inequality is often also expressed in terms of the ratio of the income share of the richest to the
income share of the poorest in the population. Graf and Nedyalkova (2014) consider the quintile share
ratio (QSR), which is the ratio of the income share of the richest 20% relative to the income share of the
poorest 20%. For the GB2 distribution, it is given by

1-B[B1(08|p,q)|p+1/a,q—1/a]

SR =
Q B[B-1(0.2]p,q)|p + 1/a,q — 1/d]
Noting that,
y
Fi(y|®) :ioff,zﬁf(t]qaj)df
=
i
= ,%C Y Ajib (y‘d)]>

the QSR for a mixture of GB2 distributions can be computed from

I
1= .21 AjwiB(wjos|pj+1/a;,q; —1/a;)
j=
I
'21 /\]'H-]'B(w/',(l2|pj +1/aj,9; - 1/‘1j)
i=

QSRc =

where w5 = (yo.s/bj)"/ [1 + (vos /b]-)”/] and wjo, = (yo2/b;)"/ [1 + (vo2 /bj)”i], with yo, and
Yog being the 20th and 80th percentiles from the mixture distribution. To obtain yg» and yos,
the mixture distribution function needs to be inverted to obtain its corresponding quantile function,
something that is not possible in closed form. As alternatives, one can (1) attempt to solve the required
equation numerically, or (2) generate a large number of observations from each component, combine
and sort these components, choosing the 20th and 80th empirical percentiles as estimates.

2.2. Poverty Measures

Expressions for several poverty measures in terms of the parameters of the GB2 distribution have
been provided by Chotikapanich et al. (2013). The first is the headcount ratio which is simply the
proportion of the population with income less than or equal to a poverty line z

H(z) = F(z|®) = B(v|p.q) @)
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where v = (z/b)"/[1+ (z/b)"]. Setting the poverty line at 0.6 times the median gives what Graf and
Nedyalkova (2014) term the at-risk-poverty rate (ARPR). It can be calculated from (7) after setting the
poverty line at

— 1/a

z= 0.6b<71 ~B1(05)p,q

A second poverty measure used extensively in the literature is the FGT (o) class of measures
(Foster et al. 1984) given by

z

FGT() = [ (59 fyl )y fora>1

For integer values of «, this expression can be written in terms of incomplete moments of the GB2
distribution as well as in terms of the income gap ratio, defined as the average amount of money that
must be given to each of the poor to bring them up to the poverty line, expressed relative to the poverty
line. Working in this direction, we define the k-th incomplete moment for the GB2 distribution, relative
to poverty line z, as

W —E(Hy <z) = ety | VS (vl @)y

n®B(o|p+k/aq—k/a)
B(vlp.q)

(1)

Defining the income gap ratio as g(z) = (z — p,)/z where p, = ul! is mean income of the poor, we

can write
FGT(1) = B(vlp,q) — (w/2)B(vlp+1/a,q9—1/a)
= H(z)g(2)
and
FGT(2) =B(v|p,q) — (2u/z)B(v|p+1/a,q—1/a)
+(u(2)/zz)B(v|p+2/a,q72/a)
= Hz) [[32) + [1 - (=)
2 )

where 02 = ;” — p2 is the variance of the income of the poor. For noninteger values of «, we can
simulate values y1, ¥y, . .. Y from the GB2 distribution and use the estimator

(22) tm <2

Z

1 M
FGT(o) = 123

m=1

where I(+) is an indicator function equal to 1 if its argument is true and zero otherwise.

As an alternative to the income gap ratio g(z) = (z — p,)/z, Graf and Nedyalkova (2014) use a
concept known as the relative median poverty gap (RMPG). It is defined as the relative gap between a
poverty line, which is 0.6 times the median income of the population, and the median income of the
poor. Specifically, with z defined as in (8),

RMPG — = Mpoor

where the median of the poor is defined as

ey = b ~ B LA/2p.4) >“"
v =\ 1= B 1(A72]p,q)

with A being the at-risk-poverty rate (the headcount ratio using the poverty line in (8)).

156



Econometrics 2018, 6,21

Considering the income shortfall in log format leads to the Watts index (Watts 1968), defined as

w :07<1nz—1ny>f(y|¢>dy

=1In(})B(v|p,q)—
1{DyB(v|p,q) — DyB(v|p,q) + B(o|p, )W (p) — ¥(q)]}

©)

where D, B(v|p, q) and DyB(v|p, q) are the derivatives of the beta cdf B(v|p, q) with respect to p and
q, respectively. These derivatives are available in some software (e.g., EViews), otherwise (9) can be
estimated via simulation.

The last poverty measure that we describe is the Sen index (Sen 1976) where the poverty gap is
weighted by a person’s rank in the ordering of the poor. This index is given by

s = 2bf () (HEReD) £yl )y
= H(z)(g(z) + (1 - g(2))G(2))

(10)
where G(z) is the Gini coefficient for the poor given by

G(z)=~1+ %H#Mofﬂ(y\d))f(ylmdy

The last line in (10) shows how the index can be written in terms of the headcount ratio, the aggregate
income gap ratio and the inequality of the poor measured using G(z). Expressing S in terms of the
parameters of the GB2 distribution is more difficult than it was for the other indices. In (10) we can use
H(z) = B(v|p,q) and g(z) = 1 — p,/z, but evaluation of G(z) is more troublesome. If we follow the
simulation approach and draw M observations y,,, m = 1,2, ..., M from f(y|d), it can be estimated
using
G(z) =—-1 2 Ly B I <
(z) = + WL H2(2) Mmgl[ym (wmlp, 9)I(ym < z)]

where wy, = (ym/b)"/[1+ (ym/b)"].

For aggregating poverty over a number of areas each of which has a GB2 distribution, the
headcount ratio, FGT, and Watts indexes are simply population-weighted averages of the indexes for
each area. That is, using obvious notation,

J J
He(z) = LN () = K48 1ri )
= =
M
FGTc(«) = ¥, AFGTj(a)
j=1

M
We = X AW
j=1

This result does not hold for the at-risk-poverty rate and the relative median poverty gap where
the poverty line is endogenous, nor does it hold for the Sen index, which contains the cdf. For ARPR
and RMPG, the median of the mixture is required and RMPG also needs the median of the poor
from the mixture distribution. These values can be estimated by simulating observations from the
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component distributions and ordering them as was suggested for the QSR. For the Sen index for the
mixture, we have

J I z g,
Se =2 FGTC@)]_zugl)\jAéOf(})F(ycbz)f(y)@)dy}
J I
=2|FGTc(1) - ¥ ¥ )\j/\/’Yj/:|
j=1¢=1

The term 1y, = Jo [z=y)/2]F(y|d,) f (y‘ ij) dy can be estimated from

N 1M /2y
Yie = Mm§1 (%)F(y/,ﬂd)()l(yj,m <z)

where the y; ,, are draws from f (y‘ b).

2.3. Measures of Pro-Poor Growth

In addition to examining changes in poverty incidence over time using measures such as the
headcount ratio or refinements of it that take into account the severity of the poverty, it is useful to
examine whether growth has favored the poor relative to others placed at more favorable points in the
income distribution. Following Duclos and Verdier-Chouchane (2010), we consider three such pro-poor
measures, namely, measures attributable to Ravallion and Chen (2003), Kakwani and Pernia (2000),
and a “poverty equivalent growth rate” (PEGR) suggested by Kakwani et al. (2004).

The first step towards the Ravallion-Chen measure is the construction of a “growth incidence
curve” (GIC), which describes the growth-rate of income at each percentile u of the distribution.
Specifically, if F4(y) is the income distribution function at time A, and Fg(y) is the distribution function
for the new income distribution at a later point B, then

GIc() = - A ) 1(2),f(ffl(”)
A

For computing values of GIC(u) from the GB2 distribution, note that

. (B 'ulpg \"*
Fule) 717(1—3*1(14\;7,11))

where B! (u|p, q) is the quantile function of the standardized beta distribution evaluated at u. When
we have a regional distribution or a country distribution, which is a mixture of rural and urban GB2
distributions, it is no longer straightforward to compute the quantile function. In this case, we require
F~1(u|®) which is the inverse function of F(y|®) = Z]]':1 AJF <y’¢ ]-). One needs to either solve

the resulting nonlinear equation numerically or estimate F~!(u|®) using an empirical distribution
function obtained by generating observations from the relevant GB2 distributions in the mixture.
We followed the latter approach in our applications.

The GIC can be used in a number of ways. If GIC(u) > 0 for all u, then the distribution at time B
first-order stochastically dominates the distribution at time A. If GIC(u) > 0 for all u up to the initial
headcount ratio Hy, then growth has been absolutely pro-poor. If GIC(u) > (up — pna)/pa forall u
up to the initial headcount ratio Hy, that is, the growth rate of income of the poor is greater than the
growth rate of mean income (), then growth has been relatively pro-poor.
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For a single measure of pro-poor growth Ravallion and Chen suggest using the average growth
rate of the income of the poor. It can be expressed as

1
RC = H—AO/ GIC(u)du

For a GB2 distribution (not a mixture), this integral can be evaluated numerically. Alternatively, we
can generate observations from a GB2 distribution or a mixture and compute

. 1M
RC=—) GIC(i/N
le_; (i/N)

where N is the total number of observations generated, and Ny = H4N.

The Kakwani-Pernia measure compares the change in a poverty index such as the change in
the headcount ratio, H4 — Hp, with the change that would have occurred with the same growth
rate, but with distribution neutrality, Hy — H 5 Here, B denotes an income distribution that would
be obtained if all incomes changed in the same proportion as the change in mean income that
occurred when moving from distribution A to distribution B. To obtain B in the context of single
GB2 distributions, we can simply change the scale parameter b and leave the parameters a, p and gq
unchanged. The Lorenz curve and inequality measures obtained from a GB2 distribution depend on a,
p and g, but do not depend on b. Thus, we have

a5=ar pg=pa G5=a1 by=(}:)ba

Finding B for a mixture of GB2 distributions—a situation that occurs when we combine rural
and urban distributions to find a country distribution—is less straightforward. In this case, the scale
parameters in all components of the mixture change and the other parameters are left unchanged.
For example, using the superscripts r and u to denote rural and urban, respectively, and (A", A% )
and (A%, A%) to denote the respective population proportions at times A and B, we first compute the
combined means at times A and B as

Ha = ARy + ARG Bp = ARl + Agug
Then, we obtain the distribution function for B as follows
dh=dy th=rh gh=h th= ()0 jour

£l 08) = 35 (o) 2o 0)

Thus, to obtain B we assume that all incomes in the rural and urban sectors increase in the same
proportion as their respective mean incomes, and the distributions of income and the population
proportions in each of the sectors remain the same.

The Kakwani-Pernia measure is
Ha — Hp

KP = i
Assuming the growth in mean income has been positive, a value KP > 0 implies the change in the
distribution has been absolutely pro-poor, and a value KP > 1 implies the change in distribution has
been relatively pro-poor.

The third measure of pro-poor growth is the poverty-equivalent growth rate (PEGR) suggested by
Kakwani et al. (2004). In the context of our description of the Kakwani-Pernia measure, it is the growth
rate used to construct distribution B such that Hy = H - In other words, it is the growth rate necessary
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to achieve the observed change in the headcount ratio when distribution neutrality is maintained.
In terms of the GB2 distribution, it is the value g* that solves the following equation

Hg = B(ulpgp,q5) = B(u*|pa,qa)
where u = (z/bB)“B [l + (z/bB)“B} and

o _[2/(g"+1)ba]™
T+ [2/(g" +1)bal™

Thus, to find g* we have u* = B~1(Hg|pa,q4) and

z (1—u\%
x_ 2 1
g bA( ur )

As was the case with previous calculations, for a mixture of GB2 distributions, this procedure is less
straightforward. As an alternative, to find an approximate g* for a combined rural-urban distribution,
we computed separate growth rates and g;; for the two sectors and found a weighted average of them

using weights from period B.

8§ = Abgr + A58y
If ¢ < g = (up/ma — 1), then, under distribution neutrality, the growth rate required to achieve the
same outcome for the headcount ratio is less than realized growth rate, implying that the change in
the distribution has not favored the poor. Conversely, when g* > g, a higher growth rate is required
under distributional neutrality to equate the two headcount ratios. In this case, the distributional effect
must have favored the poor.

3. Estimation

All the required quantities—the means of the distributions, the density and distribution functions,
the Gini coefficients, the poverty measures, and the pro-poor growth measures—depend on the
unknown parameters ¢; of the GB2 distributions. Potential methods of estimation of these parameters
depend on whether the available data are in the form of single observations or are grouped, and, if they
are grouped, whether information on group means, as well as the number of observations in each
group, is available.

3.1. Estimation with Single Observations

For single observations, say a sample of observations (i1,¥2,...,yr), maximum likelihood
estimation can be used with the log-likelihood given by

T
L(¢p) = glogf(ytld))

For samples where sampling weights are available, a pseudo log-likelihood can be maximized to
provide consistent parameter estimates, and their precision can be assessed with a sandwich covariance
matrix estimator. Details of this estimation procedure are described by Graf and Nedyalkova (2014).
With income equivalized over all household members, and sampling weights w; attached to each
household, their pseudo log-likelihood is given by

i
L(p) = ;wini log f(vild)

where /1 is the number of households and 7; is the number of persons in household i.
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A further estimation method has been suggested by Graf and Nedyalkova (2014). This method
minimizes a weighted sum of squared distance between sample quantities for (ARPR, RMPG,
QSR, Gini), and these quantities are expressed in terms of GB2 parameters. This method has some
similarities to the grouped data methods of estimation we describe in the next subsection, where a
weighted squared distance between empirical and theoretical quantiles and group means is minimized.
One difference is that, for using quantiles and group means, an optimal weight matrix can be derived.
Deriving an optimal weight matrix for the Graf-Nedyalkova proposal would appear to be a more
difficult problem.

3.2. Estimation with Grouped Data

Suppose now that the observations (1,12, . ..,yr,) have been grouped into N income classes
(x0,x1), (x1,x2), -+, (xn—1, xN) With xg = 0 and xy = co. Let ¢; be the proportion of observations in
the i-th group, let i7; be mean income for the i-th group, and let i be overall mean income. In some
instances, where income share data for each group (sy, sy, ... sy) are available, the group means may
need to be calculated from ¥; = s;/c;. Choice of an estimation method depends on how much of
the information just described is available. If the c; and x; are available, but the ¥; are not, then the
multinomial likelihood is a natural choice. In this case the log-likelihood is given by

N
L(d) o ;Ci log[F(x;|d) — F(xi—1|)]

Another possibility is the minimum chi-squared estimator described in McDonald and Ransom (2008).

For the scenario where one also has data for the group means ¥;, and when the group bounds
x; may or may not be available, estimators based on moment conditions have been suggested by
Chotikapanich et al. (2007), Hajargasht et al. (2012) and Griffiths and Hajargasht (2015). To describe
the objective functions that are minimized to obtain these estimators, we need the moments of each
group up to order 2, expressed in terms of ¢ and X' = (x1,xp, ..., xN_1). Working in this direction,
we define

ki = F(xi|®) — F(xi-1|®)
ki = w[F(xid) — Fi(xi1]d)]
b = OBl 0) ~ B(xi|)]

where Fi(x;|¢$) and F(x;|¢$) are the moment distribution functions defined in Section 2. Further,

we define v; = kiufz) — le‘ Then, Hajargasht et al. (2012) show that the GMM estimator that uses
moments for ¢; and ij; = ¢;, and the optimal weight matrix, can be written as

N N N
GMM; (x, &) = Y wii(c; —ki)> + Y wai (i — wi)* — 2 wai(ci — ki) (7 — wi) (11)
= = =

where wy; = ugz) /i, Wo; = ki/v; and ws; = w;/v;. GMM; (x, ¢) can be minimized with respect to
both x and @, or, if observations on x are available, with respect to ¢ only. Because the weights depend
on (x, ), a variety of estimators can be used, depending on whether GMM; (x, ) is minimized
directly or a two-step or iterative procedure is employed. In a two-step procedure, initial estimates
with weights that are not dependent on the parameters are obtained, and then estimates that minimize
GMM; (x, ¢), with weights computed from the initial estimates, are computed. Iterating this process
leads to an iterative estimator.

An estimator that uses weights that do not depend on (x,¢), and which is useful for
obtaining starting values for a two-step or iterative estimator from (11), is that proposed by
Chotikapanich et al. (2007). In contrast to (11), they considered moment conditions for c; and ¥;
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instead of ¢; and ij; = ¢;¥;. Although they focused on the special case beta 2 distribution, their results
also hold for the more general GB2 distribution. The function that they minimized is

N
GMMs (x, &) — Z(%’“) N Z(% wi/ki ) 12)

i=1 i=1 yz

The weights used for this estimator <C;2 and y;z) are not optimal, but they have the intuitive appeal
)

of minimizing the sum of squares of percentage errors. Also, computation of the second moment p;
is not required.

A third GMM estimator is that described by Griffiths and Hajargasht (2015). Like (12), this
estimator considers the moment conditions for ¢; and ¥;, but uses the optimal weight matrix. It is
given by

N
GMMs(x, &) = k; 'Y (ci —ki)* + Ko, 2 — i /k;)? (13)
i=1

Relative to the other optimal weight formulation in (11), this objective function avoids the term with
the cross product of the moment conditions.

4. Applications

A major source of data for the cross-country study of income distributions, inequality and poverty
is from the World Bank PovcalNet website. We used data from China and Indonesia, two Asian
countries with relatively large populations. The years considered were 1999, 2005, 2010 and 2013 for
China and 1999, 2005, 2010 and 2016 for Indonesia®. The data available are in grouped form comprising
population shares and corresponding expenditure shares for a number of classes, together with mean
monthly expenditure that has been reported from surveys, and then converted to purchasing power
parity (PPP) using the World Bank’s 2011 PPP exchange rates for the consumption aggregate for
national accounts. Also available are the data on population size. Throughout the paper we use the
generic term income distributions, although our example distributions are for expenditure. For both
countries, separate data were available for rural and urban populations and so distributions were
estimated for each of these components. Data for China were in the form of 20 groups, with the
exception of China-rural 1999 (19 groups) and 2005 (17 groups), while those for Indonesia were
available in 100 groups. To make the data for both countries relatively consistent for estimation, we
aggregated the Indonesian data into 20 groups. The distributions were estimated by minimizing
the objective function GMMj3(x, ¢) given in (13). Initial estimates were obtained by minimizing
GMM;(x, d), those initial estimates were used to compute the weights for GMM3(x, ¢), the estimates
from were then used to compute a new set of weights, and the process was continued for 10 iterations.
Parameterizing the objective function in terms of (4, W, p, q) instead of (a, b, p, ) facilitated convergence.

Parameter estimates for each of the distributions are presented in Table 1, along with
corresponding estimates for mean income and the populations for each region. The density functions
for China and Indonesia, obtained as mixtures of the urban and rural densities, are plotted in Figures 1
and 2, respectively. A striking feature of the parameter estimates is the very large estimates for p (and
correspondingly small estimates for b) for Indonesia-urban in 2010 and 2016. As p — oo, the GB2
distribution approaches the 3-parameter inverse generalized gamma distribution,” and so the results

It may be better to describe the estimators that minimize GMM) (x, ¢) and GMMS3(x, ¢) as minimum distance estimators
rather than GMM estimators because the “moment condition” for 7; is plim i; = w;/k; not E(7;) = ;/k;. The asymptotic
distribution is the same, however. See, for example, (Greene 2012, chp. 13).

The version of the data that was used was downloaded on 9 March 2018 at http:/ /iresearch.worldbank.org/PovcalNet/
povOnDemand.aspx.

7 See (McDonald and Xu 1995, p. 139).
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suggest this special-case distribution would be adequate for these two cases. Its density function is
given by

aq a
fyla,q,B) = %y’“q’l e><p<—§>

The figures show that, for both countries, there is an improvement over time in the sense that the
distribution shifts to the right, and mean income increases, with the most dramatic improvements
being from 1999 to 2005, and after 2010.

Table 1. Parameter estimates, mean income and population.

Population
Country/Year a b P q o (Millions)
China rural
2013 1.5806 101.3579 3.8613 2.1609 190.23 635.69
2010 1.2063 21.4069 11.6780 2.2025 131.52 697.21
2005 1.3443 32.0352 7.0416 2.3558 100.07 749.35
1999 2.0243 30.1693 3.3733 1.3113 67.78 815.97
China urban
2013 1.6455 261.4467 2.3392 1.9792 373.92 721.69
2010 1.8842 187.8696 2.3745 1.5884 306.81 658.50
2005 1.8294 144.7708 2.4059 1.7919 217.11 554.37
1999 1.6302 95.0994 3.2433 2.5261 134.70 436.77
Indonesia rural
2016 2.0275 55.8739 3.8536 1.3660 129.11 118.90
2010 2.1389 36.6977 4.4602 1.2132 96.63 121.45
2005 2.7720 52.1883 2.5501 1.1926 85.84 122.57
1999 3.0994 49.6466 2.0371 1.2727 67.62 123.52
Indonesia urban
2016 0.7417 0.0010 25,914.0 4.0699 208.00 142.22
2010 0.9107 0.0094 15,488.0 3.2802 156.25 121.08
2005 2.0275 55.8746 3.8535 1.3660 129.11 104.15
1999 2.0737 35.6598 4.7873 1.2719 96.37 85.10
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Figure 1. Income distributions for China.
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Figure 2. Income distributions for Indonesia.

Inequality measures for the rural and urban areas and their combined distributions are presented

in Table 2. We computed the Gini coefficient, the Pietra index, QSR, I(0) and I(1). The within and
between urban and rural components for I-(0) and I-(1) are reported in Table 3. Tables 4 and 5
contain poverty measures and pro-poor growth measures, respectively. For poverty measures, the
headcount, FGT (1), FGT(2) and Sen indices were computed using a poverty line of $57.8 per month,
equivalent to $1.9 per day. Pro-poor growth measures, RC, KP and PEGR were computed for the
combined distributions; the GIC’s for each time interval are depictured in Figures 3-8. From the tables

and figures, we can make the following observations about China.

1.

All inequality measures indicate that inequality increased from 1999 to 2010, and then declined
from 2010 to 2013. The recent decline is attributable to a decline in rural inequality; there was
an increase in urban inequality in the same period. Also, there is no clear conclusion about how
rural inequality changed from 1999 to 2005; the Gini and I(1) suggest a slight decrease, whereas
QSR, I(0) and Pietra suggest a slight increase.

Inequality is much greater in the combined distribution than in its components, reflecting the
large discrepancy in mean incomes between the rural and urban areas. Within inequality remains
greater than between inequality, however.

The changes in inequality have been accompanied by large increases in mean income and large
decreases in poverty. The decline in poverty was particularly dramatic for rural China where the
headcount ratio declined from 57% in 1999 to 3.7% in 2013. Poverty in rural China is uniformly
greater than that in urban China.

The GIC curves show that, from 1999 to 2010, growth has favored the rich more than the poor, but
from 2010 to 2013, growth has strongly favored the poor relative to the rich, a result consistent
with the decline in inequality over this period. The scalar measures of pro-poor growth are also
consistent with this observation. Growth has favured the poor in an absolute sense from 1999 to
2010 (0 < RC < g,0 < KP < 1, PEGR < g), and in a relative sense after 2010 (RC > g, KP > 1,
PEGR > g).
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Examining the results for Indonesia, we find:

1. Urban inequality changed very little from 1999 to 2005, increased dramatically from 2005 to 2010,
and then increased more moderately from 2010 to 2016. Rural inequality increased from 1999
to 2010, but declined thereafter. The combined results reflect these changes, with increasing
inequality overall, but with Gini coefficients approximately the same in 2010 and 2016.

2. Poverty declined from 1999 to 2005, remained roughly constant from 2005 to 2010, when there
were large increases in inequality, and then declined again from 2010 to 2016. From 2005 to 2010 a
decline in urban poverty was offset by an increase in rural poverty.

3. The GIC curves show that growth has favored the rich relative to the poor in all time intervals.
From 2005 to 2010 the poor faired very badly; the growth rate for the bottom 15% of the population
was negative. This period was also one where the growth in mean incomes was low relative
to that in the other two periods. The scalar pro-poor growth measures are in line with the
conclusions from the GIC curves. Growth was absolutely but not relatively pro-poor in the first
and third time intervals; in the second interval it was not absolutely pro-poor according to the
RC measure, and only slightly absolutely pro-poor using the KP measure.

Table 2. Inequality measures.

Country/Year Gini QSR 1(0) I(1) Pietra
China rural
2013 0.3349 5.4526 0.1903 0.2086 0.2424
2010 0.3959 7.1456 0.2664 0.3189 0.2901
2005 0.3519 5.8464 0.2097 0.2375 0.2563
1999 0.3638 5.6579 0.2083 0.2495 0.2545
China urban
2013 0.3735 6.5286 0.2291 0.2454 0.2628
2010 0.3540 5.9757 0.2126 0.2370 0.2545
2005 0.3436 5.7017 0.1992 0.2163 0.2460
1999 0.3185 4.9247 0.1649 0.1731 0.2246
China combined
2013 0.4010 8.1998 0.2659 0.2864 0.2874
2010 0.4323 9.5593 0.3274 0.3451 0.3155
2005 0.4052 6.4547 0.2796 0.2979 0.2959
1999 0.3941 4.5101 0.2495 0.2683 0.2825
Indonesia rural
2016 0.3343 5.2640 0.1912 0.2270 0.2442
2010 0.3502 5.2808 0.1962 0.2412 0.2480
2005 0.2756 3.9165 0.1275 0.1448 0.1980
1999 0.2352 3.3989 0.1002 0.1087 0.1746
Indonesia urban
2016 0.4154 7.9453 0.2920 0.3409 0.3044
2010 0.4070 6.7226 0.2493 0.2930 0.2818
2005 0.3444 5.2640 0.1912 0.2270 0.2442
1999 0.3368 5.2471 0.1939 0.2370 0.2467
Indonesia combined
2016 0.4027 7.6873 0.2737 0.3286 0.2963
2010 0.4042 6.5792 0.2513 0.3013 0.2842
2005 0.3297 4.6841 0.1776 0.2117 0.2357

1999 0.2959 4.0104 0.1539 0.1879 0.2169
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Table 3. Between and within inequality.

Country/Year Ic(0) Ieitho)  qbetw(o) Ic(1) Iwith(1)  phete(q)
China combined
2013 0.2659 0.2109 0.0550 0.2864 0.2340 0.0523
2010 0.3274 0.2399 0.0875 0.3451 0.2622 0.0829
2005 0.2796 0.2053 0.0743 0.2979 0.2244 0.0735
1999 0.2495 0.1932 0.0563 0.2683 0.2101 0.0582
Indonesia combined
2016 0.2737 0.2461 0.0276 0.3286 0.3019 0.0267
2010 0.2513 0.2227 0.0286 0.3013 0.2732 0.0281
2005 0.1776 0.1568 0.0208 0.2117 0.1910 0.0207
1999 0.1539 0.1385 0.0154 0.1879 0.1723 0.0156

Table 4. Poverty measures.

Country/Year HC FGT(1) FGT(2) SEN
China rural
2013 0.0374 0.0070 0.0021 0.0099
2010 0.2042 0.0489 0.0171 0.0713
2005 0.2998 0.0786 0.0296 0.1057
1999 0.5702 0.1907 0.0844 0.2568
China urban
2013 0.0077 0.0017 0.0006 0.0020
2010 0.0085 0.0017 0.0005 0.0023
2005 0.0294 0.0062 0.0021 0.0088
1999 0.1064 0.0233 0.0080 0.0324
China combined
2013 0.0216 0.0042 0.0013 0.0083
2010 0.1079 0.0256 0.0089 0.0496
2005 0.1848 0.0478 0.0179 0.0901
1999 0.4084 0.1324 0.0577 0.2289
Indonesia rural
2016 0.1267 0.0243 0.0073 0.0348
2010 0.3033 0.0700 0.0234 0.0995
2005 0.2917 0.0613 0.0193 0.0883
1999 0.4647 0.1117 0.0385 0.1526
Indonesia urban
2016 0.0649 0.0122 0.0035 0.0174
2010 0.1142 0.0221 0.0065 0.0313
2005 0.1267 0.0243 0.0073 0.0353
1999 0.3031 0.0700 0.0234 0.0941
Indonesia combined
2016 0.0931 0.0177 0.0052 0.0345
2010 0.2089 0.0461 0.0150 0.0863
2005 0.2159 0.0443 0.0138 0.0828
1999 0.3988 0.0947 0.0324 0.1659

166



Econometrics 2018, 6,21

Table 5. Pro-poor growth measures.

Country/Year Growth Rate Growth Rate for the Poor (RC) KP PEGR
China
2010-2013 0.3218 0.6245 1.4251 0.3245
2005-2010 0.4536 0.2331 0.6503 0.2839
1999-2005 0.6446 0.5281 0.8702 0.4504
Indonesia
2010-2016 0.3614 0.2836 0.8622 0.2414
2005-2010 0.1956 -0.0107 0.0709 0.0079
1999-2005 0.3323 0.2449 0.8049 0.2575
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Figure 3. Growth incidence curve, China 1999-2005.
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Figure 4. Growth Incidence Curve, China 2005-2010.
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Figure 5. Growth Incidence Curve, China 2010-2013.
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Figure 6. Growth Incidence Curve, Indonesia 1999-2005.
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Figure 7. Growth Incidence Curve, Indonesia 2005-2010.
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Figure 8. Growth Incidence Curve, Indonesia 2010-2016.

5. Concluding Remarks

Studying income distributions can provide valuable information about important aspects of a
society’s welfare such as the degree of inequality, the incidence of poverty, and whether there have
been improvements in welfare over time. The GB2 is a popular and versatile distribution well suited
to this purpose. We have reviewed some of the common indexes for measuring inequality, poverty
and pro-poor growth, and described how values for these indexes can be computed from estimates of
the parameters of the GB2 distribution. Optimal techniques for estimating the parameters using either
single observations or grouped data are also reviewed. It is our hope that the bringing together of all
these results into a single source will facilitate and promote use of the GB2 distribution.
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Abstract: In economics, rank-size regressions provide popular estimators of tail exponents of
heavy-tailed distributions. We discuss the properties of this approach when the tail of the distribution
is regularly varying rather than strictly Pareto. The estimator then over-estimates the true value in the
leading parametric income models (so the upper income tail is less heavy than estimated), which leads
to test size distortions and undermines inference. For practical work, we propose a sensitivity analysis
based on regression diagnostics in order to assess the likely impact of the distortion. The methods are
illustrated using data on top incomes in the UK.
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1. Introduction

Income distributions exhibit, like many other size distributions in economics and the natural
science, upper tails that decay like power functions (see e.g., Schluter and Trede 2017). The recent and
rapidly growing literature on top incomes focuses on this upper tail, and its presence has important
consequences for the measurement of inequality‘1 However, estimating the heaviness of the upper
tail is challenging, since real world size distributions usually are Pareto-like (i.e., tails are regularly
varying) rather than strictly Pareto.

To be precise, let Xj, ..., X, be a sequence of positive independent and identically distributed
random variables (e.g., incomes) with distribution function F that is regularly varying, so for large x

1—F(x) = xf%l(x), v € (0,00), ¢y

where [ is slowly varying at infinity, i.e., [(tx)/I(x) = 1 as x — co. The parameter 7y, usually referred
to as extreme value index (and 1/ as the tail exponent), is unknown and needs to be estimated.
Many estimators have been proposed in the statistical literature (see e.g., the textbook treatments in
Embrechts et al. 1997 or Beirlant et al. 2004).

An estimator popular among economists is based on a simple ordinary least squares (OLS)
regression of log sizes on log ranks (e.g., Jenkins 2017 and Atkinson 2017, and references therein,
in the income distribution and top incomes literature, this regression is ubiquitous in the city size
literature). The enduring popularity of the OLS estimator is partly due to its simplicity, and partly due

See e.g., Schluter and Trede (2002) in the contexts of Lorenz curves, Davidson and Flachaire (2007) who propose a semi-parametric
bootstrap, Cowell and Flachaire (2007) who advocate semi-parametric methods, or Burkhauser et al. (2012) who seek to reconcile
survey and tax return data. Also observe that the p moment of the income distribution is finite only if p < 1/, so very heavy
tails can directly affect the validity of some standard inequality measurement tools. For instance, statistical inference for the
Generalised Entropy index with parameter 2 requires the existence of the fourth moment (Cowell 1989).
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to a powerful intuition based on a Pareto quantile-quantile (QQ)-plot, the regression estimating its
slope coefficient. However, if the tail of the distribution varies regularly, the Pareto QQ-plot will become
linear only eventually. In particular, (1) can be expressed equivalently, using the tail quantile function
U(x) = inf{t : Pr(X > t) = 1/x} where x > 1, as U(x) = x7I(x) where [(x) is a slowly varying
function. Hence, as x — oo, log U(x) ~ v log(x) since then logI(x) — 0. Replacing these population
quantities with their empirical counterparts gives the Pareto QQ-plot, and 7 is its ultimate slope.
This qualification (usually ignored by practitioners in economics) has important consequences for the
behaviour of the estimator: Since the OLS estimator estimates the slope parameter of this QQ-plot,
deviations from the strict Pareto model -captured by the nuisance function /- will induce distortions.

The empirical importance of this is illustrated in Figure 1, which depicts the Pareto QQ-plot for our
administrative income data for the UK (the subject of our empirical application developed in Section 4
below), using the 1000 largest incomes. The plot exhibits a pronounced kink, and approximate linearity
of the QQ-plot only holds for the very highest upper order statistics. Panel (b) shows the consequences
for the OLS estimates: As we move in the QQ-plot from the right to the left, the departures from
linearity become progressively more severe, and the OLS estimates progressively fall. Based on this
first diagnostic QQ-plot, once the lower upper order statistics have been discarded as a source of
downward bias, the subsequent analysis can then more clearly focus on the approximate linear part,
the remaining distortions, and the choice of the number of order statistics. Figure 2 provides a further
illustration for three Burr (Singh-Maddala) distributions (examined in detail in Section 3 below, being
the leading parametric income distribution model) possessing the same -y. Here, the speed of decay
of the nuisance function / is parametrised by the absolute value of the parameter p. The smaller the
magnitude of p, the greater the initial curvature and steepness of the Pareto QQ-plot, and the larger
the induced positive distortions of the OLS estimator of the slope coefficient.
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Figure 1. Pareto quantile-quantile (QQ)-Plot: Top incomes in the UK. Based on administrative income
tax return for the UK in 2009/10. The Survey of Personal Incomes (SPI) is described in Section 4.
Panel (a): The Pareto QQ-plot (see Section 1.1) is based on the largest 1000 incomes. Panel (b): Estimates
of -y for the k upper order statistics using the OLS regression (solid lines), and pointwise 95% symmetric
confidence intervals (dashed lines). The distributional theory is stated in Equation (8).

173



Econometrics 2018, 6,10

o

— o

hy

T

=

X

=3

S 0 o
o
2 4

-og(i(n+1)) k

(a) (b)

Figure 2. Pareto QQ-Plots: The Burr distribution. Based on the Burr distribution given by
F(W,)(x) =1—(14+x"#/7)/° withy = 2/3,and p € {-2, 0.5, —0.25}. Panel (a): Pareto QQ-plots
for 3 random samples drawn from the Burr distribution. Sample size is 1000. To aid comparison across
cases, the points of each QQ-plot have been connected and rendered as lines. Panel (b): Mean of
estimates § across 1000 Monte Carlo simulations for given p, drawing samples of size 1000 in each
iteration. The faint horizontal line is the population value y = 2/3.

In this paper, we examine the asymptotic distortions of the OLS estimator that arise in these
circumstances, caused by the slow decay of the nuisance function / and modeled here as higher
order regular variation. The theory is presented in Section 2 (proofs are collected in Appendix A),
and numerical illustrations and quantifications of the distortions are provided in Section 3, as well as
of the stark consequence for inference. More specifically, we show formally that the OLS estimator
over-estimates the true value in the leading heavy-tailed model (i.e., the Hall class, which includes
the Burr (Singh-Maddala) distribution, as well as the student, Fréchet, and Cauchy distributions).
An empirical illustration in the context of top incomes in the UK using data on tax returns is the subject
of Section 4.

1.1. The Log-Log Rank-Size Regression

We briefly review the rank size regression. Let X;, < --- < X, denote the order statistics
of Xj,---, Xy, and consider the k upper order statistics. Let ranks be shifted by a constant 17 < 1.
The regression of sizes on ranks leads to the minimisation of the least squares criterion

k X, 2
) (log 7; Itin —glog —kjl) 2)

j=1 n—kn ]—=1

with respect to g, where 7 < 1and 1 < j < k < n. The classic case is 7 = 0. However, since the
OLS estimator of the slope coefficient is not invariant to shifts in the data, it is conceivable that a
purposefully chosen shift could yield an asymptotic refinement (Gabaix and Ibragimov 2011 consider
this in the strict Pareto model 1 — F(x) = cx~1/7). The analysis below allows for this possibility.

The justification of considering regression (2) is based on a Pareto QQ-plot (Beirlant et al. 1996):
For a sufficiently high threshold X,,_;, where k < #, the Pareto quantile plot in model (1) with
coordinates (—log(j/(n +1)),10g Xy j11,1)j=1,. x becomes ultimately linear. The line through point
—log((k+1)/(n+1)), log X,_k,) with slope g is thus given by y = log X,y , + g[x + log((k +
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1)/(n+1))] and the data points are (x,y) = (—1log(j/(n +1)),10g X, j11,1)j=1,. k- The regression
estimator estimates this slope parameter. In particular, the OLS estimator of the slope coefficient g is

}Ejo1log (%) [log X, —j1n =108 Xukn] N,

% Zf:l {log %] ’

n <1 3)

Note that the denominator Dy, is a Riemann approximation to [01 log? xdx = 2. An asymptotic
expansion of the denominator reveals that

2
Dk_2+o<1°i k) @)

From Kratz and Resnick (1996, proof of their Equation 2.4, p. 704) we know that the numerator
N, x converges in probability to 27, hence the estimator is weakly consistent: § —P yask — coand
k/n — 0. We proceed in the next Section to refine this result by obtaining higher order expansions of
the estimator in (3).

The literature contains several variants of regression (2). Rather regressing log sizes on log ranks,
one could regress log ranks on log sizes, thus obtaining the ‘dual’ regression. In view of (3), our
asymptotic analysis of the numerator carries immediately over to this dual regression. Another variant
of (2) includes the additional estimation of a regression constant: log X;,_;1,, is regressed on a constant
and logj. Kratz and Resnick (1996) obtain the distributional theory for this alternative estimator and
show that its asymptotic variance is 2’yz/ k, which exceeds, as will be shown below, the asymptotic
variance of 4 given by (3). Hence this regression variant is less efficient. Schultze and Steinebach (1996)
also prove weak consistency of the estimator in this setting.

2. Asymptotic Expansions and Distributional Theory

2.1. Preliminaries: Higher Order Regular Variation

In order to obtain our asymptotic expansions, we use an equivalent representation of model (1)
based on regular variation and extreme value theory. First we recall the definition of first-order regular
variation, and then proceed to model the slowly varying nuisance function / in (1) by a refinement to
second-order regular variation. We then show that most heavy-tailed distributions of interest (in the
income, finance and urban literature) satisfy this condition.

It is well known that model (1) has the equivalent (first-order regular variation) representation
(e.g., Dekkers et al. 1989)

lim log U(tx) —log U(t)

T Y A ©)

for all x > 0 where a is a positive norming function with the property a(t)/U(t) — 7. The problem
for estimating the extreme value index 7y is the behaviour of the slowly varying function [ in (1). It s,
therefore, common practice in the extreme value literature to model such second-order behaviour, thus
strengthening model (1), by strengthening the first-order regular representation (5) to second-order
regular variation. Following De Haan and Stadtmdiller (1996), we assume that the following refinement

of (5) holds
log U(tx)—log U(t)

—log x
; a(H)/uft) —
Ay A = Hp(x) ©
for all x > 0, where Hyqp<0(x) = %(Xﬂ_l —log x) with p < 0. This parameter p is the so-called

second-order parameter of regular variation, and A(t) is a rate function that is regularly varying with
index p, with A(t) — 0ast — co. As p falls in magnitude, the nuisance part of / in (1) decays more
slowly. Our numerical illustrations will thus consider small magnitudes for p.
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Examples. Most heavy-tailed distributions of interest satisfy representation (6). Consider the
Hall class of distributions (Hall 1982), given by, for large x,

F(x) =1—ax V[1+ bxP 4 o(xP))]

with y,a > 0, b € R, B < 0. In this class, the nuisance function / in model (1) converges to a
constant at a polynomial rate. The Hall class nests, for instance, the Burr (Singh-Maddala), Student,
Fréchet, and Cauchy distributions.? The tail quantile function is U(x) = cx?[1 + dx’ + o(x*)] where
¢ = a7, d = bya". This Hall class satisfies the second order representation (6) with p = v < 0, and
rate function

2
P

A(t) = —dt’.
® Y

Figure 2 illustrates the role of p for the Burr distribution (examined in greater detail in Section 3) in terms
of the Pareto QQ-plot, and the implications for the estimator 4 of its slope parameter. For p = —2 the
plot is close to linear, and the estimates close to the population value. However, as p falls in magnitude,
the initial curvature increases, and the slope estimates consequently becomes more positively distorted
as the number of upper order statistics k entering the estimator increases.

2.2. The Main Results

We first state the higher order asymptotic expansion of the numerator N, ;. We then obtain the
distributional theory for our estimator 4, before returning to the distortions induced by deviations
from the strict Pareto model (captured by second order regular variation).

Asymptotic expansion. In theAppendix A we prove the following higher order expansion of
the numerator N,, ; under the assumption of second-order regular variation (6). Throughout, we will
consider an intermediate sequence k = k; of positive integers such that k, — co and k,/n — 0 as
n — oo. It is then true that, for y > 0and p < 0,

1 k— 1 Zk
Nn,k/'y = 27(%—17)%7(%717) 02gk
1 1 log k
+ 0 (m) +o (i) +or (52 %
ny1[ 2-p logk
" A(%)g{m}ﬂ%( 3 >+0p(A(n/k))

A few comments are in order. The first two lines of this expression characterise the first-order
behaviour of the numerator. It can be seen that setting the regression shift factor 7 to 1/2 eliminates the
second and third term. However, the term O, (log k/k 2) is still present. The asymptotic refinement
due to second-order regular variation is given by the terms of line 3. Although A(t) — 0 as t — oo,
this decay might be slow: A(#) is regularly varying with index p, and as p falls in magnitude the
nuisance part of [ in (1) decays more slowly. A slow decay then introduces a noticeable distortion in
finite samples. We examine these distortions after stating the distributional theory for the estimator.

The Burr distribution F(, ,)(x) = 1—(1+ x~P/7)1/P is a member of the Hall class with parameters y and p < 0, ¢ = 1
and d = 7/p, as is the Student t; distribution with ¢ degrees of freedom where v = 1/9, p = =2/6,d = yBC~27,
B=—0502(6+1)/(6+2),and C = T((6 +1)/2)6@~1/2/(57)1/21(5/2) (valid for § > 2); so is the Fréchet distribution
E,(x) = exp(—=x~/7) withp = —1,c = 1, and d = —.57, and the Cauchy distribution withy =1, p = =2, ¢ = 1/7, and
d=—05m2
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Distributional theory. Beirlant et al.  (1996) observe that our slope estimator 4, given by (3),
is (to first order) a member of the class of kernel estimators discussed in Csorgo et al. (1985) with kernel
K(t) =1 —logt. Since jol K(t)dt = 2 and not unity, a scale correction is required. Since fol K2(t)dt = 5,
the following result obtains as k — co and k/n — 0, and if VkA(11/k) — 0

V(7 =) >N (0, sz) ®)

Higher order distortions. Asymptotically, the estimator is thus unbiased if vkA(n/k) — 0. If this
decay is slow, however, the estimator will suffer from a higher order distortion in finite samples. By (7),
this distortion equals, for y > 0and p < 0,

2-p
a=pp A(n/k) )

In particular, in the Hall model, A(t) = (p?/+)dt. The sign of the higher order distortion of N,
and hence 4 is, since p < 0, then given by -sgn(d). For the Burr (Singh-Maddala), student, Fréchet,
and Cauchy distributions it can be shown that d < 0, leading to a positive higher order distortion.
We conclude that the higher order distortion induced by higher order regular variation is positive for
many popular distribution -i.e., for which the nuisance function / in model (1) converges to a constant
at a polynomial rate- leading to an overestimation of .3

Simulation evidence for these theoretical results is presented next. We also quantify the higher
order distortions and the consequences for statistical inference about 7.

N —
==

by =

3. Numerical Illustrations

We illustrate numerically several of our results in a Monte Carlo study. First, we verify the
distributional theory, then show that most of the empirical distortion is captured by the bias function
by n. At the same time, we show that the distortions can be sizeable, leading to substantial test size
distortions, while a bias correction using by ,, would reconcile nominal and actual test sizes.

Our Monte Carlo study is based on the Burr distribution, a member of the Hall class, parametrised
here as F(, ;) (x) = 1— (1+ x~P/7)V/P with parameters v and p < 0. In the income distribution
and inequality literature, this distribution is also know as the Singh-Maddala distribution, and used
frequently in parametric income models. Specifically, we set v = 2/3, and p = —1/2 to begin
with. Qualitatively similar results are obtained for the student, Fréchet, and Cauchy distributions,
all of which are members of the Hall class, and therefore not reported here. Since 1 < 1/y < 2 we
consider a situation of fairly heavy tails (as second moments of the distribution do not exist). However,
the qualitative insights depend little on the actual choice of . We have chosen p = —1/2 as our
leading example since we are interested in the consequences of deviating from a strict Pareto model.
As p falls in magnitude the nuisance part of [ in (1) decays more slowly. This is illustrated in Figure 2,
where we depict three Pareto QQ-plots for different p. For p = —2, the plot is almost linear throughout.
The deviations from the strict Pareto model become increasingly more pronounced in the left part of
the plot as p falls in magnitude.

For the simulation study, we draw R = 1000 samples of size n = 10,000 at first (then #n = 1000), and
consider the upper k order statistics. In order to choose a particular k, we follow standard practice and

3 De Haan and Ferreira (2006) consider the merit of shifting the tail for tail quantile functions U(t) = cq + c1t7 + c2t7*7 +
o(t777) where cg and ¢, are not zero, ¢; > 0,and ¥ > 0 and 7 < 0. It can then be shown that if T < —1, the second order
parameter satisfies p = —v. A data shift that eliminates cy then results in p = 7, so the post shift second order parameter
has increased in magnitude, leading to a decrease in the induced distortion. However, the reverse reasoning also applies.
In particular, the Hall model is U(x) = cx7[1 + dx” + o(xP)]. A data shift by ¢ yields U(x) +co = cx?[1 + (co/c)x ™7 +
dxP + o(x)], and increases the distortion if y < |p|.
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minimise the theoretical asymptotic Mean Squared Error (AMSE) (e.g., Hall 1982, or Beirlant et al. 1996),
given by b%,n + (1/k)(5/4)+?, trading off distortion and dispersion. The theoretical higher order bias in
4 induced by higher order regular variation in this Burr case is

1 2—p /n\p
bon = 37— 52 (%)
which is, of course, increasing in k. The theoretical AMSE is minimised around k* = 200, which also
corresponds to the minimiser of the empirical AMSE based on the R samples. The mean of 4 at this k*
is 0.739, and exceeds, as predicted by the theory, the population value v = 2/3.

Figure 3 depicts the results. In panel (a) we illustrate the distributional theory, given by (8), for k*,
by plotting a kernel density estimate of Vk*4 (solid line), as well as a normal density with variance
(5/4)7?, centered on the empirical mean of the simulated data. The two are in close agreement.
The figure also implies that any inferential problems are due to location shifts. In panel (b) we contrast
the empirical distortions (solid line) with by, (dashed line). 4 overestimates v, and the distortion
increases in k. It is evident that most of the distortion is captured by by ,,. In panel (c) we illustrate the
consequences of the distortions for statistical inference, by plotting the empirical coverage error rates
of the usual 95% symmetric confidence intervals. The higher order distortions lead to undermining
inference because of the considerable size distortions. For instance, at k*, the empirical coverage error
rate is 30% for a nominal 5% rate. Shifting the estimate by by ,, reduces the coverage error rate to 7%.
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Figure 3. Bias and Inference: Burr. Monte Carlo study for the Burr distribution with parameters
v =2/3and p = —0.5. Based on samples of size n=10,000 and R=1000 repetitions. k* = 200 minimises
the asymptotic Mean Squared Error (AMSE), and is depicted by the vertical lines in panels b and c.
Panel (a): Density plot of Vk*4 (solid line) and shifted normal density with variance (5/ 4)9? (dashed
line). Panel (b): empirical bias (solid line) and higher order bias function by ,, (dashed line). Panel (c):
Coverage error rate of the usual 95% symmetric confidence intervals for nominal rate of 5%, with no
bias correction (solid line) and correction by the theoretical by , (dashed line).

Next, we consider the role of the sample size n. Reducing the sample sizes in the Monte Carlo to
n = 1000 yields results that are in line with the above theory, and therefore not depicted. The bias of 4
increases by a factor predicted by the theory, namely by 1000/ bk 10,000 = 10'/2 = 3.16. The optimal k*
shrinks by a factor of 4, as now k* = 50. The density of Vi 4 is in good agreement with the theory, and
empirical coverage error rates at this k* are 32% for the uncorrected and 11% for the corrected estimator.
The empirical coverage error rate for the uncorrected estimator rises steeply after k*, reaching 64% at
k = 100. Reducing the sample sizes further to 100 results in k* = 20, and an empirical coverage error
rate for the uncorrected estimator of 46% at this k*. Biases are increased by a factor by 100/ bx 10,000 = 10.

Finally, we illustrate the importance of the speed of decay in the nuisance function / of model (1).
As p falls in magnitude, the nuisance function I decays more slowly. For the Burr case with y = 2/3,
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we depict in Figure 4 by, as p falls in magnitude for n = 1,000 and selected k. While for p = —2 the
distortions are negligible (in line with Figure 2, it is evident that for small magnitudes of p the higher
order distortions cannot be ignored).

100

relative distortion [%]
20 40 60 80

0
|

Figure 4. Relative distortions in the Burr model. Burr model with v = 2/3 and n = 1000. Depicted is
100 * by ,, /7y as p varies.

As the purpose of our simulation study is the provision of numerical evidence for our theory,
we have used the theoretical bias function by ,, in the Burr case. When no such external knowledge is
available, estimating the bias function requires non-parametric estimates of the second order parameter
p and the function A(-). However, existing methods perform poorly, yielding excessively volatile
estimates. The theory then informs a sensitivity analysis which is described in Section 4.1 in the context
of our empirical application.

4. Empirical Illustration: Top incomes in the UK

Our empirical application uses administrative income tax return data are from the public-release
files of the Survey of Personal Incomes (SPI) for the year 2009/10 (see e.g., Jenkins 2017 for a detailed
description, and an analysis that includes rank size regressions). The SPI data underlie the UK top
income share estimates in the World Top Incomes Database (WTID), and is a stratified sample of the
universe of tax returns. The unit of taxation is the individual, and we use total taxable income as the
income variable. The file contains 674,715 individuals, and we consider the n largest incomes.

In Figure 1 panel (a), we have depicted the Pareto QQ-plot for the 1000 largest incomes. It is
evident that the data clearly reject a strict Pareto model: The plot exhibits a pronounced kink,
and approximate linearity of the QQ plot only holds for the very highest upper order statistics.
The function [ in (1) captures this significant departure from the strict Pareto model. The Pareto
QQ-plot thus conveys crucial information that is usually ignored by practitioners in economics,
making it a key diagnostic device. For instance, a common mechanical approach is to set k by choosing
‘blindly” (i.e., without reference to the Pareto QQ-plot) e.g., the top 1% or the top 1000 observations.
Since the approximate linearity only obtains for about the 70 largest observations, the estimate of the
slope parameter of the Pareto QQ-plot, i.e., the OLS estimator (3), will be severely biased if k is set
to 1000 or higher. This is illustrated in panel (b) of the figure: The estimates fall for higher values
of k, since the estimation procedure then attributes increasing weights to the left of the kink in the
Pareto QQ-plot.

In the light of these observations, we restrict our subsequent analysis to the range of k in which
the Pareto QQ-plot is approximately linear. We confirm this in Figure 5 panel (a), having restricted
the plot to the n = 70 highest incomes. The plot now appears fairly linear. In panel (b), we depict the
regression estimates § and the 95% symmetric pointwise confidence intervals. One first visual way of
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choosing an estimate is to consider an area of the plot where the estimate is fairly stable (as is done by
inspecting Hill or so-called alternative Hill plots) and picking the largest such k since the variance of
the estimate falls in k. Such subjective choice would be around k = 60 with an estimate of 4 = 1.070
(indicated by the horizontal faint line in the figure).* Overall, the visual method would suggest an
estimate of 7y between 0.9 and 1, implying very heavy tails. Taking into consideration the variability of
the estimate, one cannot reject the hypothesis that the tail index be unity, i.e., Zipf’s law. Returning to
panel (a) we have also plotted the line with slope 1. This line does well in describing the data. We turn
to a method that permits an objective choice of a particular k, and examine the remaining distortions
in the estimate of .

4.1. Sensitivity Analysis, and the Choice of k

The preceding analysis has shown that 7 is likely to suffer from positive higher order distortions,
captured by by ,,. Estimating this bias function requires non-parametric estimates of the second order
parameter p and the function A(-), but existing methods perform poorly, yielding excessively volatile
estimates. Hence we limit ourselves to a sensitivity analysis, taking p as a sensitivity parameter, whose
objective is to gauge plausible values of the potential distortions based on diagnostics of the rank size
regression. This approach is sketched next.

Following Beirlant et al. (1996), we observe that the mean weighted theoretical squared deviation

1 & Xn—j+1n> <k+ ))
=Y w;E|log | ——— vlo
k/':Z] ik < 8 < Xnfk,n & ]

ccVar(9) +di(p)t}, (10)

equals, to first order,

for some coefficients ¢, depending only on k, and d(p) depending on k and p (these are stated explicitly
in the Appendix A). Set w;x = 1. An estimate of the mean theoretical deviation is the mean of the
squared residuals k~'SSR;. of the rank size regression. In view of the usual bias-variance trade-off
for our estimator 4 for fixed 1, we ascribe all the measured deviation k~1SSRy, to the bias, thereby
defining a very conservative bound, and let

B (p) = [k"1SSRy/di(p)]'/?

This conservative sensitivity analysis then consists of examining 4 — by , (o) for a range of values
of p.

Figure 5 panel (c) reports the results of such a sensitivity analysis for k being restricted to the

= 70 highest incomes. Since under this restriction the Pareto QQ-plot is approximately linear,
we expect that the remaining distortions are fairly modest. This is borne out in the sensitivity plot,
as the precise value of p now plays only a minor role.

Should a researcher wish to choose a particular k by minimising an approximation to the AMSE,
Equation (10) is the basis of the procedure proposed in Beirlant et al. (1996): Apply two weighting
schemes ! k (z = 1,2), estimate the corresponding two mean weighted theoretical deviations using the
residuals, and compute a linear combination thereof such that Var(§) + b , obtains. We have carried

out this programme (see Appendix A for further details) for weights w](,,) = 1 and wﬁ) =j/(k+1) for
given p, and Figure 5 panel (d) depicts the results. Minimising this approximation to the AMSE yields
k*(p), which, for p € {—2, -1, —0.5}, resulted in k* = 58 across the selected p, for which ;- = 1.089
obtains. In view of the results depicted in panel (c) it is not surprising that changing p has only a small

4 Alternative estimators lead to similar conclusions. For instance, using the classic Hill estimator, at k = 60 an estimate of 7y of

1.017 is obtained. The plot (not displayed here) is fairly stable around this value for k € [20, 60].
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effect. This estimate of v is very close to the subjective visual choice of 4 of 1.075, reported above,
based on Figure 5b.
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Figure 5. Estimates of 7. Based on Survey of Personal IncomeS (SPI) data for 2009/10. Panel (a) Pareto
QQ plot for the largest 70 incomes. The dashed line has slope 1. Panel (b): Estimates of § (solid line)
and the 95% symmetric pointwise confidence interval (dashed line). The faint horizontal line at 1.075 is
subjectively chosen. Panel (c): Sensitivity analysis. Plot of 4 (solid line) and § — Ek,,, (p) for a different
values of p. Panel (d): Approximation to the AMSE for different values of p. Minimising AMSE yields
k* = 58 (vertical line) across the selected p, for which 4+ = 1.089 obtains.

5. Conclusions

The OLS estimator of the slope coefficient in the rank size regression (shifted or unshifted) can
suffer significant higher order distortions that arise from the slow decay of the nuisance function / in
the model 1 — F(x) = X7l (x) for ¥ > 0. Modeling the tail as second order regular variation, we have
shown that the estimator over-estimates the true value in models in which I converges to a constant
at a polynomial rate (i.e., in the leading heavy-tailed distributions). Our numerical illustrations have
shown that these distortions can be dramatic, leading to test size distortions in which actual error
rates are multiples of nominal error rates. The empirical illustration based on the Pareto QQ-plot has
revealed a further distortion, namely the presence of a pronounced kink. Figure 1 has revealed that
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using the common rule to choose 1% of the observation for tail estimation would lead to a severe
under-estimation of how heavy the tail is.

The higher order distortions are functions of A(-) and the second order regular variation
parameter p. Since existing methods usually result in poor estimates of these, reliable bias corrections
are not feasible. In view of this we have proposed a sensitivity analysis based on diagnostics from the
rank size regression. When applied to our data on top incomes, we still cannot reject the hypothesis «
be unity, a situation often described in several fields as Zipf’s law (e.g., Schluter and Trede 2017).

The simplicity of the regression estimator is undoubtedly the principal reason for its popularity
among practitioners in economics. This paper has shown that in many situations the naive (i.e., ‘blind’)
use of this estimator should be considered with care: Pareto QQ-plot, the sensitivity plot and the
AMSE plot convey jointly important information about the behaviour of the estimator.

Acknowledgments: I thank the referees for their constructive comments that have helped to improve the paper.
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Appendix A. Proofs

Before proving the main result given by (7), we consider first the behaviour of the numerator N, ;
under first-order regular variation (5). We then refine the asymptotic expansion by assuming that the
second-order regular variation (6) holds.

First-order asymptotic expansion of the numerator N, ;. Assume that (5) holds, and consider
an intermediate sequence k = k;, of positive integers such that k, — oo and k,/n — 0asn — co.
It will be shown that

1 log(k — 1 log? k
Nty = 2= () T - (Goy) (A1)

1 1 logk
« 0 () w0 (6) vor (i)
logk

Remark: The term O, <m> dominates (log k) /k, and is not eliminated by setting the shift factor  to
1/2.

In the proof of (A1) we will make use of the following Euler Maclaurin formulae (e.g., Gabaix and
Ibragimov 2011, Equations A.4 and A.5)

. k— k— log? (k — 1
logz(z—ry) = 2+ kﬂlogz(k—q)—Z kﬂlog(k—iy)—i-M—FO(E)

==
-

= 2%
logzk
= 2+log(k—n)(log(k —1) =2) +O [ — (A2)
and
k
%Zlog(ifﬂ) = *1+log(k7q)+<%77>log(k+’7)+o(%) (A3)
i=1

Proof of (A1). We adapt the proofs of Kratz and Resnick (1996) (KR henceforth) of their Equations 2.4
and 2.8. The key is the use of Renyi’s representation of exponential order statistics, which implies (e.g.,
KR, p. 705)

~|m

k
_d
E77*k+i," - En—k,n - Z
j=k—i+1
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where E; (j = 1, - -, n) denote iid unit exponential random variables, and E,, _ ,, denotes the (1 — k)-th
order statistic. We obtain an asymptotic refinement by using, instead of KR’s Lemmas 2.2 and 2.3,
the above Euler Maclaurin formulae, and Lyapunov’s central limit theorem (CLT). Our numerator
is denoted there by A, and the indices are mapped by setting i = k 4 1 — j. From KR (pp. 704-707),
we have

Nug/y =t 2] 2 (1/k)

k
= log(k+1)E %ZE] |:}Elog(i—17) +0p(1/k) (A4)
i=1

where Ex = (1/k) Z}‘ E;

We first show that KR's result (A4) can also be derived from the first order regular variation
condition under the stated assumptions. Let Y denote a standard Pareto random variable, and denote
the (n — k)-th order statistic by Y;,_y ,,. Consider the scaled log excesses

log Xy —iy1,n — logxn—kn
( n— kn)/u( n— kn)

where a(.) and U(.) are defined in representation (5). Then, noting that X;,, =7 U(Y; ), and using (5)
witht =Y, _j,and x = Y,,_i 11, /Y, i the scaled log excesses satisfy as n — coand n/k — oo

loan i+1n_10gxn—kn _d 10gu( n— t+1n) 108U( n— kn)
( n— kn)/u( n— kn) ( n— kn)/u( n— kn)

= log (m) +op(1)
nfk,n

By Renyi’s representation of exponential order statistics, we have Y;,_j11,/ Y,k =d Yi—i+1,k SO

Yn—i+1,n d d d 3 Ei
log v )= log (Yi—it1k) =" Ex—it16 = Z*

n—kn imj 1

since, using Renyi’s representation again, Ex_j 1k = Eqp+ Ei.:jl % = Zf-‘:]- % From Wellner (1978),
we know that %Yn,km —P 1,50 a(Yy_jn)/U(Y;—kn) — 7. Using the definition of N, x, on combining
the results we thus obtain

HM»
—~
I
—_
N2
—
(]
aQ
RS
~.
3]
—_
~

1
Nn,k/'Y =1 |:k

as claimed.
We proceed to examine (A4). Using (A3) yields

Nyi/v = log(k+1)E+ Ex— - ZElog

1 1TE log(i—n) 1& 1
O e
= J=

]
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By Lyapunov’s CLT,

kl/z 1 k i
@ EZ 1)log(j—1n)| —“ N(0,1)

so (1/k) Z}‘Zl Eilog(j—1n) = Op (i/) (1/k) Z;-‘Zl log(j — 7). Using again (A3) and substituting
the result, we obtain

Nyx/v = Ex+1+log(k+1)E; —log(k—1n)
1 log(k —1) 1 logk
- <§"7)T+O §) T ar
1
k

Note that E+1 = 2+ Op(k~*/2) and log(k + 1)(Ec — 1) = Oy (\§85). (1/k) £k, B0~ 5s
a Riemann approximation to the integral k! fl (logx —)/xdx = (log®k)/2k, and (1/k) Z] 15 ]
is a Riemann approximation to the integral k~! flk 1/x)dx = (logk)/k. By Lyapunov’s CLT,
(k/\/i)[(l/k)z 1(Ej )“’g “1] 4 N(0,1), so (1/k)(E; 1)1"g<§;’7> = Op(1/k). Similarly, the
last term is O, (1/k?). Hence

1 log(k — 1 log? k
Nux/y = 2‘(5‘”)#‘(5‘”) 3

1 1 logk
© oy (e) o (1) vo (155,

which is Equation (A1), as claimed.
Before refining the asymptotic expansion, we briefly consider:

Proof of (4). Dy =2+0 <1°g k> . Expanding the quadratic in the definition of Dy

k
Dy = log?(k+1) — 2(logk + 1) Zlog i—7n %Zlogz(i—q)
i=1

and using the Euler Maclaurin formulae yields the stated result.
We are now in a position to examine the behaviour of the numerator N, , under second order
regular variation.

Proof of the higher order expansion (7). Consider the scaled log excesses again, this time
using representation (6) instead of (5). Set againt = Y,,_j, and x = Y,,_i11,/Y,_kn, and recall
Yo—ivin/Yo—in = Yi—it1, Hence we obtain the higher order expression

10an 1+1n710an7kn _d iEi
( n— kn)/u( n— kn)

+  A(Yn—kn)Hyp Yizizax) +0p(1). (A5)
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The role of the first term on the right for N,, ; has already been described above. In what follows,
we consider the higher order term. Since H,0,<0(x) = %(xﬂp—l —log x), the higher order expansion
of N, x requires the analysis of

1 & i —1
EZ 1°g<k+1>

where Y, = (1/k) TF_ p— Y, has expectatlon (1—p)~L, soby the CLT Y, = (1 —p) ! 4+ O, (k~1/2).
To handle the last sum, note that Yy_j 110 = exp(Ek,H]/k) = (Vj,k)*1 where V denotes a standard
uniform random variable, and we replace the order statistic V; by its expectation, Vj; = j/(k+1) +
0, (k~1/2). A Taylor series expansion then gives (V Do = (k+1/j)P + Op(k=1/2). Then

Ye o —1
7]‘7“;’}( } log(k+1)Y,

k Ye . -1
Z logl— |: k—i+1,k }

o

»\H

P = Y1) _ logk+1) 1(ht1p ko
- -1)lo : = —= logi — e
kg( )og { =7 ) =0 o K 1:21( gi—1)j
11 & log k
+ E%glog(l_ﬂ)—i_o”(klﬂ)

For the third term on the rhs, we use the Euler Maclaurin (A3), for the second term on the rhs we
have the following Euler Maclaurin

1§ iflog(— 1) = — k¥ log(k — )—<L>2k*f’+o(k*ﬂ)
R o8l — ) = 7 logt ) — (1

Combing these two Euler Maclaurin formulae, we can simplify to get

k

1( logk—n 1 1 1 <logk>
”—77 log(i—1n) = - = +-+0
P = Z 8l l—p  p(=p? p k
logk—y  2—p logk
1—p a-p2 Ok
Therefore®

Ylf—i+1k_l 2—p
P 7(1*p)z+o’”( k > (A6)

We are now in a position to combine the results. In order to simplify notation, denote the first order
expansion of the numerator N, 1/ by Nj ,, /7, given by the rhs of (A1). Then substituting the higher
order expression for the scaled excesses (A5) into the formula for N, recalling that %Y,,,k,,, —r1
(Wellner 1978), and using (A6) yields

17 2— logk
Nn,k/')/ = Nl,n,k/'7+A (%) ; {ﬁ} +Op ( O;({; ) +0;;(A(1’1/k)).

Proof of (8). The class of kernel estimator considered in Csorgo et al. (1985) is of the form

Z;czl(]/k)K(]/k) [log Xp—jt1 — log anj]
J) K(t)at

FViernel =

5 To support this key expression, numerical evidence from a Monte Carlo with k = 1000, 1000 samples, and ;7 = 0 yielded for

the Ihs of (15) v. (2 — p) /(1 — p)? the following: p = —1/2: 1.105v. 1.111, p = —1: .746 v. 0.75, p = —2: 0.443 v. 0.444.
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Their Theorem 2 (or Theorem 1.1 in Beirlant et al. 1996) states the following. Under general
conditions on kernel K and distribution function F so that there exists a nonrandom sequence C,, such
that C, (@ — 1y) converges weakly to a limiting N(0,1) distribution for some sequence k = k, — oo
with k, /n — 0, it is necessary and sufficient that

Jijﬂoﬁ/(;l b(kw/n)K(w)dw = 0

where b is a function such that b(1/x) — 0 as x — oo, and that for the tail quantile function

U(x) = x7I(x) with .
I(x) = c(x) exp </1/X %du)

where ¢(x) — c as x — oo. If this condition is satisfied, then as k = k;, — co and k,,/n — 0

—-1/2
vk ( A Kz(wdv) Brermet — 1) =4 N(0,27).

Beirlant et al. (1996) observe that our slope estimator 4, given by (3), is (to first order) a member of the
class of kernel estimators §ye,; with kernel K(t) = 1 — log t, and that the above condition holds under
the regular variation hypothesis. Turning to the specific kernel K(t) = 1 —log t, since fol K(t)dt =2
and not unity, a scale correction is required. As fol K2(t)dt = 5, the stated result (8) follows.

Proof of (10). Consider the mean weighted theoretical squared deviation

1 k <anj+1n> <k+1>>2
- 2 wiyE(log | ——— ) —vlog | ——
k j=1 " ( 8 Xt o8 ]

for some weights w; ,,. Using (A5) this equals, to first order,

2k k 2
E; k1
77 E ((Zz —log <7j )) + A(Ynk,n)H%P(YkHl,k))
=

j i

Then, recalling that Y14 =d (lek)*l and proceeding as in Beirlant et al. (1996, Section 4),
which involves approximating expectations E(f(V;)) by the leading term f(j/ (k + 1)) when applying
the delta method yields, to first order,

’Yz 2
O ()b,

k k—j+1 1 2 ki ka1 2
aeton (B (te) + (B it (5)

and di(p) = (} =57) i (p) with

k , o _1\2
) = Ly (V1)
E

with

P
Finally, we set ¢ = (4/5)¢ and wj, = 1to arrive at (10).

Remark: In order to obtain an estimate of the AMSE, Beirlant et al. (1996) use two weighting schemes,
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namely w;; = 1 leading to coefficients, say, ct and d} and mean weighted squared residuals k"1SSR},
and wjy = j/(k+1) leading to cZ, d7, and k~'SSRZ. Then a linear combination of two approximate
MSE expressions (with coefficients, say, x and y) is sought that yields Var(§) + b2 , which is achieved
by solving simultaneously the equations /

xc,1<+ycf =1
xdi+ydk = 1.
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survey indicate that survey response probabilities are negatively associated with income and bias the
measurement of inequality downward. Correcting for this bias with reweighting, the Gini coefficient
for Europe is revised upwards by 3.7 percentage points. Similar results are reached with replacing of
top incomes using values from the Pareto distribution when the cut point for the analysis is below the
95th percentile. For higher cut points, results with replacing are inconsistent suggesting that popular
parametric distributions do not mimic real data well at the very top of the income distribution.

Keywords: top incomes; inequality measures; survey non-response; Pareto distribution; parametric
estimation; EU SILC

JEL Classification: D31; D63; N35

1. Introduction

Thanks to the wide public attention that top incomes have received in the aftermath of the
global financial crisis, it is now acknowledged that top incomes have grown disproportionally faster
than other incomes in industrialized countries over the past several decades. The fact that these top
incomes are difficult to capture in household surveys potentially leads to biases in the estimation of
income inequality related to the representation and precision of reported top incomes, even though the
direction of the bias is not a priori clear (Deaton 2005, p. 11). These range from issues related to sampling,
to issues related to data collection, data preparation or data analysis. The European Union Survey of
Income and Living Conditions, for example, suffers from data issues such as under-representation of
the highest incomes (Bartels and Metzing 2017; Térmaélehto 2017). Most countries in Europe suffer
from very high non-response rates reaching up to 50 percent of the sample. Income measurement
issues including surveying, interview methods and post-survey treatment also explain differences in
inequality measurements across data sources (Frick and Krell 2010).

Two types of in-survey methods have been proposed to address the question of correcting
inequality in the presence of top-income biases while relying on survey microdata only. The first
method, which we call reweighting, attempts to correct the sampling weights of existing observations
using information on unit or item non-response rates across demographic cells such as geographical
areas (Mistiaen and Ravallion 2003; Korinek et al. 2006, 2007). The approach exploits the relationship
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between response rates and shapes of income distributions across national regions to estimate the
gradient of households’ response probability by income level. It then uses the estimated response
probabilities to reweight the observed incomes by the mass of nonresponding households in order
to correct the measure of inequality. The second method, which we call replacing attempts to
replace top-income observations with observations generated from known theoretical distributions.
This method can be used to correct for issues such as top coding, trimming or censoring but can also
mitigate the problem of unit or item non-responses if these non-responses are concentrated among top
incomes (Cowell and Victoria-Feser 2007; Jenkins et al. 2011). Several distributions have been suggested
as candidates, including Pareto type I or type II, or generalized beta.! Hlasny and Verme (2018) have
combined the reweighting and replacing methods, and studied the contribution of each method to the
composite correction of an inequality index.

It is evident that both the reweighting and replacing methods have their advantages and
disadvantages, as the information available within surveys has its limits even if used creatively
to correct for top-income problems. Proper reweighting and replacing depend on the appropriateness
of parametric assumptions imposed on a particular national distribution of incomes at hand. Using
alternative methods based on out of survey information such as tax records or national accounts data
to inform the measurement of top incomes has its own measurement problems. Good tax or macro
data are only available in a few countries and data may not be comparable across countries, whereas
household survey data of reasonable quality are now available in most countries worldwide.

This paper compares the reweighting and replacing methods using the European Union’s Statistics
on Income and Living Conditions (SILC) survey data, taking into account heterogeneity of income
distributions, differences in sampling designs and definitions of non-response rates across EU member
states. We find survey non-response probabilities to be negatively and significantly associated with
income indicating that measures of inequality are downward biased. Correcting for this bias with
reweighting, the Gini coefficient for Europe is revised upwards by 3.7 percentage points. Similar
results are reached with replacing of top incomes using values from the Pareto distribution when the
cut point for replacing is set below the 95th percentile. For higher cut points, results with replacing are
inconsistent suggesting that popular parametric distributions do not mimic well real data at the very
top of the income distribution.

The paper is organized as follows. The next section discusses measurement issues related to
top incomes. The following section outlines the main methods used to correct for top-income biases
related to unit non-response. Section 3 describes the data. Section 4 presents main results and
Section 5 concludes.

2. Materials and Methods

Problems related to top-income data may be due to sample design, data collection, data preparation
or data analysis. We introduce these four typologies of errors in turn clarifying the type of error we
address in this paper.

Sample design issues emerge when the sampling is designed in such a way that top incomes
cannot be captured by design. This can occur, for example, when the sampling is done poorly or when
the population census is old or the master sample has not been updated to capture newly constructed
wealthy areas. If detected, some of these issues can be corrected post-survey by reweighting the
sample, but either detecting or correcting these problems post-survey is not simple. It is important to
note here that we should not expect exceptionally high incomes to be captured in household sample

Similar methods include Lakner and Milanovic (2013) who combined corrections for unit non-response with corrections
for measurement errors among top incomes, and calibrated the estimated Pareto distribution among top incomes using
aggregate income information from national accounts data. Bartels and Metzing (2017) replaced the top one percent of
incomes in the EU Statistics on Income and Living Conditions (SILC) surveys with Pareto estimates obtained using World
Wealth and Income Database information.
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surveys. Billionaires are a very rare characteristic in any population. There are less than 3000 people
worldwide with this characteristic and most countries have only one or two billionaires at the most.
If one wishes to study billionaires, sample surveys are not the right instrument. It would also be
unwise to add billionaires in survey income statistics partly because they are billionaires in wealth,
not income, and partly because most of their wealth is generated globally rather than in a particular
country. Including billionaires in income statistics would simply bias survey population statistics.
Therefore, when we consider the very top income earners in this paper we are considering millionaires
in wealth whose income is counted in the hundreds of thousands of euros annually. This is the class of
people we want properly represented in household sample surveys at the top of the distribution.

Data collection issues mostly arise from respondents’ or interviewers’ non-compliance to survey
instructions and may result in unit non-response, item non-response, item underreporting or generic
measurement errors:

Unit non-response. Unit non-response refers to households that were selected into the sample but
did not participate in the survey. The reasons for non-participation can be many such as a change of
address or non-interest on the part of the household. Interviewers generally have lists of addresses
that can be used to replace the missing household but this practice is not always sulfficient to complete
the survey with the full expected sample. Most of the available household survey data suffer from
unit non-response.? In some surveys, the reason for non-response is recorded but in others it is not.
Unit non-response bias results if non-response is not random but systematically driven by specific
factors. This paper will address unit non-response issues using reweighting.

Item non-response. Item non-response occurs when households participating in the survey do not
reply to an item of interest (income or expenditure in our case). Item non-response biases results if it is
non-random and related to specific factors. Non-response may be related to households’ characteristics
such as wealth or education, and this may bias statistics constructed with income or expenditure
variables. As compared to unit non-response, it is possible to correct for item non-response using
information on the reasons for non-response (when available) or by means of imputation using
household and individual socio-economic characteristics to predict income. The reweighting method
proposed in this paper also corrects for item non-response.

Item underreporting. Consistent underreporting of variables on the part of respondents can lead
to poor estimates of inequality. For example, if the degree of underreporting rises with income,
the measurement of inequality could be affected. Even if underreporting applies equally across
respondents, the measurement of inequality may change if the income inequality measure used is not
scale invariant. Over-reporting is also possible although extremely rare with income and expenditure
data, particularly at the top end of the distribution. The replacing method used in this paper helps to
correct for item underreporting.

Generic measurement errors. Any variable including income or expenditure can be subject to
measurement error. This error is typically expected to be random, distributed normally and with
zero mean. For example, extreme observations in an income distribution can result from data input
errors, but if they are very large they bias sample statistics significantly. Statistical agencies are
usually quite thorough on this issue and clear data of errors before providing the data to researchers.
This issue will not be treated in this paper explicitly but these errors are implicitly treated when
replacing observations.

Data preparation issues are mostly a consequence of statistical agencies’ compliance with rules
and regulations governing data confidentiality and data use, and may result in top coding, sample
trimming, or the provision of limited subsamples to researchers.

Topcoding. Top coding is the practice adopted by some statistical agencies such as the US Census
Bureau to modify intentionally the values of some variables to prevent identification of households or

2 Notable exception is that of income surveys based on national tax registers (Burricand 2013; Jantti et al. 2013).
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individuals. It can take various forms, from replacing values above a certain threshold with means
or medians of top cells to swapping incomes across top observations. In some cases and for research
purposes, statistical agencies provide restricted access to the original values. However, in most cases
researchers are left with the problem of having to correct sample statistics for top coding. In this
paper, we use EU-SILC data which are not subject to top coding on the part of Eurostat, although it
is possible that some countries apply some form of topcoding to their data before transmitting these
data to Eurostat. Replacing corrects for topcoding but only for the segment of data replaced whereas
reweighting is unlikely to correct for topcoding.

Trimming. Trimming is the practice of cutting off some observations from the sample. This may
be done for confidentiality reasons or for observations that appear unreliable. Researchers may not
be informed whether statistical agencies have trimmed data, why trimming was performed, or both.
A related issue is that of trimming through sampling weights. Statistical agencies sometimes trim
sampling weights to bring them within a narrow range of values or to limit their influence if their
variable values may have been mismeasured. The overarching objective is to control the influence
of units that are rare in the sampling frame. Trimming observations or weights biases statistical
measurement and should be corrected for. Trimming is similar to unit or item non-response in that
we are missing income observations. Reweighting can help to address this issue if trimmed income
observations come from within the support in the observed sample.

Provision of subsamples. Some statistical agencies cannot provide the entire data sets to researchers
for confidentiality or national-security reasons or simply to prevent others from replicating official
statistics. In many countries, statistical agencies provide 20% to 50% of their samples to researchers.
These subsamples are usually extracted randomly so that statistics produced from these subsamples may
be reasonably accurate. As we know from sampling theory, random extraction is the best option for
extracting a subsample in the absence of any information on the underlying population. However, only
one subsample is typically extracted from the full sample and given to researchers and this implies that a
particularly “unlucky” random extraction can potentially provide skewed estimates of the statistics of
interest. Hlasny and Verme (2018) have tested the margins of error in inequality measurement that can
arise from the provision of subsamples instead of full samples and found significant margins of error.
This issue is not treated in this paper because EU-SILC data are provided in full.

Data analysis issues may arise from an inadvertently wrong choice of statistical estimators on the
part of researchers. Some estimators are more sensitive than others to the issues listed above so that one
choice of estimator may lead to greater errors than others. For example, Cowell and Victoria-Feser (1996)
have found that the Gini index is more robust to contamination of extreme values than two members
of the generalized entropy family, a finding later confirmed by Cowell and Flachaire (2007). Based on
these findings, we will focus on the Gini index and leave the discussion of alternative inequality estimators
aside. Also important to note is that many researchers routinely trim outliers or problematic observations
or apply top coding with little consideration of the implications for the measurement of inequality.

2.1. Reweighting

Unlike the case of item non-response, unit non-response cannot be dealt with by inferring
households’ unreported income from their other reported characteristics, because we do not
observe any information for the non-responding households. In an effort to address this problem,
Atkinson and Micklewright (1983) used information on non-response rates across regions to uniformly
‘gross up’ the mass of respondents in a region by the regional non-response rate. This is the
approach taken by several national statistical agencies in adjusting sampling weights for regional
unit non-response. This approach is inadequate, as it accounts only for inter-regional differences in
non-response rates, and not for systematic differences in response probability across units within
individual regions.

Mistiaen and Ravallion (2003), and Korinek et al. (2006, 2007) proposed a probabilistic model that
uses information on non-response rates across geographic regions as well as information about the
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distribution within regions. They estimated the response probability of each household, and used the
inverse of this estimate to adjust each household’s weight. Each household’s weight is thus ‘grossed
up’ non-uniformly to match the mass of all respondents to the size of the underlying population.

The central tenet of the method is that the probability of a household i in a region j to respond
to the survey, Pj;, is a deterministic function of its arguments. Logistic functional form is used for its
simplicity and its robustness properties:

08 (xij.0)
2y (xij0) = L1 A )
Here g(x;;,0) is a stable function of x;;, the observable demographic characteristics of responding
households that are used in estimations, and of 6, the corresponding vector of parameters.
Variable-specific subscripts are omitted for conciseness. g(x;;,0) is assumed to be twice continuously
differentiable. Equation (1) thus imposes several restrictions on the modeled behavioral relationship
between households’ characteristics x;; and their response probability: the relationship is deterministic
and dictated by the logistic functional form and the functional form of g(x;;,0), differentiable at all levels
of x;;, and identical across all households and regions. These restrictions are strong, but several facts
help to justify them. One, the logistic function is well-accepted as a robust form to model probabilistic
relations. Two, Korinek et al. (2006, 2007), and Hlasny and Verme (2018) have evaluated alternative
forms of g(x;;,0) including non-monotonic functions on US and Egyptian data, and have concluded that
some of the most parsimonious functions provide very good fit, compared to both uncorrected income
distributions and compared to external information on the true degree of inequality in those countries.
Three, nonlinear forms of P(x;;,0) and g(x;;,0) allow for response differences between poorer and richer
households in a realistic way. Four, a comparative study of US, EU and Egyptian data led to similar
estimation results across countries, suggesting that the behavioral tendencies exhibit a high degree of
consistency across regions (Hlasny and Verme 2015). Five, supplementing g(x;;,0) with indicators for
subsets of regions helps to attenuate any systematic behavioral differences across parts of the country.

The number of households in each region () is imputed as the sum of inverted estimated
response probabilities of responding households in the region (131-]-) where the summation is over all N;
responding households.

N,A .
@:;@%m@. @)
P

The parameters 6 can be estimated by fitting the estimated and actual number of households in each
region using the generalized method of moments estimator:
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where m; is the number of households in region j according to sample design, and w; is a region-specific
analytical weight proportional to m]-.3 The asymptotic variance of f can be estimated as the ratio of the
model objective value (the weighted sum of squared region-level residuals), and the squared partial

derivative of this objective value with respect to 0 (equal to — Y w;l Y (xij / exff9> under the assumed
j i

An illustration is in order. Suppose there are two income groups residing in two national regions. Region 1 has a higher
share of the richer income group, and correspondingly a higher unit non-response rate, as the richer households are less
likely to participate. As a result, mean income and income inequality index may or may not differ across the two regions.
To correct the mean incomes and inequality indexes in each region as well as nationally, we wish to give more weight to
each richer household until the sum of weights equals the underlying regional population, because behind each responding
rich household there are more non-responding rich households. Equation (2) ‘blows up’ the weight of each responding
household systematically, under the household-level behavioral rules specified in Equation (1), to fit the joint weighted
mass of the responding households to the underlying regional population (Equation (3)). In one region the weighted
mass of the responding households may exceed the underlying population, while in the other region it may fall short
(because of the restrictions imposed in Equation (1)), but the nationwide sum of the weighted masses equals the underlying
national population.
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logistic functional form), both weighted by region-specific analytical weights w; (Equations (11)-(14)
in Korinek et al. 2007).

Under the assumptions of random sampling within and across regions, representativeness of
the sample for the underlying population in ef\ch region, and stable functional form of g(x;;,6) f01:
all households and all regions, the estimator 6 is consistent for the true 6. Estimated values of 6
that are significantly different from zero would serve as an indication of a systematic relationship
between household demographics and household response probability, and of a non-response bias in
the observed distribution of the demographic variable. In that case, we could reweight observations
using the inverted estimated household response probabilities to correct for the bias.

Applying the model in Equations (1)—=(3) involves making several decisions regarding the
delineation of regions, and choosing parametric forms for the functions P(x;;,) and g(x;;,0). The choice
of regional delineation involves a trade-off between the number of j data points for the model
loss function (Equation (3)), and the number and distribution of within-j observations vis-a-vis the
underlying population to achieve consistency for the underlying distribution of incomes. The sample
in each region should encompass the entire range of values of relevant characteristics of the underlying
population, calling for a higher geographic level at which sample stratification was performed.

Properties of the data at hand thus call for different degrees of data aggregation, but there is presently
little guidance for arbitrary national surveys. For the United States CPS, Korinek et al. (2006, 2007) used
state-level aggregation, because geographic identifiers are consistently reported only at that level
whereas county or metropolitan statistical area identifiers are missing for some responding as well
as non-responding households. Hlasny and Verme (2017) considered various degrees of geographic
aggregation, from the level of 185 metropolitan statistical areas (MSAs) to that of 7 census divisions.
They concluded that an intermediate level of aggregation, at the level of states or groups of 1-2 MSAs,
performed more consistently than extreme aggregation or disaggregation. Using the Egyptian
Household Income, Expenditure and Consumption Survey (HIECS), Hlasny and Verme (2018)
assessed the degrees of regional aggregation from a high administrative level (governorate by
urban—rural areas, 50 areas with 939.7 observations on average) down to the level of primary sampling
units (PSUs, 2526 areas with 18.6 observations on average). These alternative approaches yielded
different corrections for unit non-response, but the more detailed level of disaggregation was deemed
conceptually more appropriate. It gave rise to a higher number of data points used in optimization
(Equation (3)). Moreover, the observed range of household characteristics in each Egyptian PSU likely
comprised the values of non-responding households, while higher levels of geographic aggregation
would make behavioral responses less stable across households within areas j.

For the set of national surveys in the SILC, this paper uses regional aggregation to the highest
level of nomenclature of territorial units for statistics (NUTS-1) level. With the exception of a handful
of countries, non-response rates are not available at more detailed levels of disaggregation. At the same
time, heterogeneity of non-response rates reported by national statistical agencies puts aggregation to
the level of EU member states into question. In a similar vein, to satisfy the assumption of stability of
g(x;;,0) across all regions, functional form and covariates x;; are selected to make households across all
regions behaviorally similar, in the sense that households with similar values of demographic variables
should have similar response probabilities across all regions. To effectively neutralize the cross-country
heterogeneity in households’ response probabilities, logarithmic specification of g(x;;,0), and country
indicators are used in g(x;;,0). On the margins, we will report how the addition of regional indicators
affects the correction for the unit non-response bias.*

For the covariates in x;;, Korinek et al. (2006, 2007) evaluated several variables affecting households’
response probability, including income, gender, race, age, education, employment status, household

4 Exclusion of influential regions and EU member states was also tried, but is not discussed here, as it prevents the estimation

of inequality for EU member states and EU at large. (These results are available on request.)
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size and an urban—rural indicator. Hlasny and Verme (2018) compared income and expenditures,
and indicators for survey rounds. These studies concluded that univariate models controlling for
expenditures or income are the most efficient. Because this paper focuses on equivalized disposable
income as the welfare aggregate, and because arbitrary household surveys worldwide may not
consistently report any additional household characteristics, equivalized disposable income is used as
the only explanatory variable.?

Finally worth noting, SILC surveys already provide a limited correction for unit non-response
through sampling weights. This method accounts for differences in response rates across regions
but not for systematic differences across demographic groups within regions. Unfortunately, these
sampling weights cannot be decomposed into weights for unit non-response and weights for other
issues with unit representativeness. We could either double-correct for unit non-response by using the
available sampling weights, or ignore other sample representativeness issues by not using the weights.
In the United States CPS (Korinek et al. 2006, 2007; Hlasny and Verme 2017) and the Egyptian HIECS
(Hlasny and Verme 2018), the correction for non-response (through 151-’1) affected inequality estimates
substantially more than the corrections for other sample representativeness issues (through sampling
weights), and so the non-response correction weights should be used with or without the survey
sampling weights. These findings may not apply to surveys with less prevalent or less systematic
non-responses, and with graver sampling design issues. In the case of the SILC, the great heterogeneity
in sample representativeness across EU member states, and the modest role of non-response correction
in the available sampling weights are thought to favor the usage of the non-response correction weights
(P1) in tandem with the sampling weights. To accommodate all these options, alternative estimates
of inequality are produced: on uncorrected data, data corrected with non-response-bias weights, data
corrected with statistical agency weights, and data corrected with both sets of weights simultaneously.
Estimates obtained without sampling weights are reported on the margins.

2.2. Replacing

An alternative approach to correct for poorly reported top incomes is to remove the top end of
the distribution and replace it with synthetic values under some parametric assumptions. Cowell and
Victoria-Feser (1996), Cowell and Flachaire (2007) and a large body of following studies combined
estimates from a Pareto distribution (Pareto 1896) for the top of the income distribution with
non-parametric statistics for the rest of the distribution. Atkinson et al. (2011) summarize this literature,
and model the historic distribution of top incomes in several countries. Testing this method on US
CPS data, Hlasny and Verme (2017) find that replacing actual top incomes with Pareto parametric
estimates has a small positive effect on the computed Gini, implying that the reported top incomes
are distributed more narrowly than the predicted values. However, the effect is smaller than a
correction for unit non-response alone using the reweighting method, suggesting that top-income
biases operating in opposite directions may be at play. Burkhauser et al. (2010) compared four
alternative parametric estimators for replacing of topcoded incomes and combined the estimates with
those from non-topcoded incomes. Alvaredo and Piketty (2014) have recently proposed to use synthetic
data for the entire income distribution, and estimate inequality using a mix of Pareto distributions for
top incomes and log-normal distributions for the rest of incomes. Alvaredo et al. (2017) improve on
this methodology by collecting survey micro-data from several countries, and replacing top incomes
with values from the Pareto distribution benchmarked using administrative income tax data from
a highly unequal paragon country, Lebanon. Using uncharacteristically high parametric values for
the distributions in the Middle East countries, these approaches yielded higher inequality measures

5 This decision also can be viewed as upholding the anonymity axiom that inequality measures be based only on the welfare

aggregate itself, and independent of other household characteristics (Litchfield 1999).
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than those using raw survey data or using the Pareto replacement of top incomes alone (estimated by
Hlasny and Intini 2015; Hlasny and Verme 2018).

Beside the Pareto distribution, other parametric forms have been suggested in recent literature as
providing superior fit to income distributions in particular countries. A generalized beta distribution
of the second kind (GB2), also known as the Feller-Pareto distribution, is a suitable functional form
representing well a large extent of the income distribution (McDonald 1984). The upper tail of the
distribution can be modeled as heavy and decaying similar to a power function, while the lower end
of the distribution can be short-tailed. The lognormal, Fisk, Singh-Maddala (Singh and Maddala 1976)
and Dagum (1980) distributions have also been suggested as candidates for modeling income
distributions, being themselves limiting cases of the GB2 distribution with some parameters held fixed
(McDonald 1984). However, their fit was not consistent or universally good across various waves of
European and US income surveys (Butler and McDonald 1989; Brachmann et al. 1996; Jenkins 2007;
Jenkins 2009a; Brzezinski 2013), and so the more flexible GB2 distribution may be preferred.

This study uses the parametric properties of the Pareto and GB2 distributions to evaluate
how representative are the top-income observations in our sample to the corresponding expected
income distribution, and which parametric form provides the best fit for SILC data. Following
Cowell and Flachaire (2007) and Davidson and Flachaire (2007) we correct the Gini coefficient by
replacing highest-income observations with values drawn from a parametric distribution and
combining the corresponding parametric inequality measure for these incomes with a non-parametric
measure for lower incomes. The following sections discuss the mechanics of fitting the alternative
parametric forms to the data at hand.

2.2.1. Pareto Distribution

For the past century, the Pareto distribution has been applied to various socio-economic
phenomena and is thought to be suitable to model the distribution of upper incomes. The Pareto
distribution can be described by the following cumulative density function:

F(x):lf(syx,Lngoo, 4)

where « is a fixed parameter called the Pareto coefficient and x is the variable of interest (income in
our case) and L is the lowest value allowed for x in the case of left censoring. The corresponding
probability density function, allowing for right-censoring at H (separating potentially contaminated
top-income observations, H < x < oo, from reliable bottom observations, 0 < x < H), is

o
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This density function is decreasing, tending to zero as x tends to infinity and has a mode equal to
the minimum value, L. As income becomes larger, the number of observations declines following a
law dictated by the constant parameter a. Clearly, this distribution function does not suit perfectly all
incomes under all income distributions, but it should be thought of as one alternative in modeling the
right-hand tail of a general income distribution.

Parameter a in Equations (4) and (5) can be estimated using maximum likelihood from a right-truncated
Pareto distribution, which also provides robust standard errors (Jenkins and Van Kerm 2015).

The Gini among the top k households can be derived from the expression of the corresponding
Lorenz curve as follows

1
T -1 (©)
with a standard error composed of a sampling error in the estimation of the Pareto distribution,
and an error in the estimation of the Gini coefficient. The sampling standard error under the Pareto
distribution is equal to 4a(a — 1)/ [17(0( —2)(20 —1)*(3a — 2)] (Modarres and Gastwirth 2006), where
1 is the estimation sample size (L < x < H). The estimation error due to the potentially imprecise
estimates of « is equal to €/ (2042 — 20 — 20+ € + 0.5), where € is the standard error of &.

Gini =1 —2/0l 1—[1—F(x)]'" % dF(x)
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2.2.2. Generalized Beta Type 2 Distribution

Because the Pareto distribution is not representative of incomes in the middle or bottom of the
income distribution, and because even among top incomes in some countries it may not follow the
dispersion of incomes accurately, more flexible parametric distributions have been considered in recent
literature. The four-parameter Generalized Beta distribution type 2 (GB2) has been suggested as
providing better and more consistent fit for the distribution in various EU and US income surveys
(Jenkins et al. 2011). It has the cumulative distribution function

_ (x/b)"
F(x) = 1(?:% m) 7)

In this equation, I(p,q,y) is the regularized incomplete beta function, in which the last argument, y,
is income normalized to be in the unit interval. Parameters 4, b, p, and g are parameters estimable
with their standard errors by maximum likelihood. Because the right tail may be contaminated by
top-income issues, right-truncation may be applied in the calculation of the GB2 density and model
likelihood functions.

Moreover, as with the Pareto distribution, the GB2 distribution itself may not approximate well
the bottom-most incomes, even though it tends to perform well in the middle and the top of the
distribution. Jenkins et al. (2011, p. 69) propose left-truncating the distribution at the 30th percentile,
a suggestion that this paper follows.® Finally worth noting, the Gini under the estimated left- and
right-truncated GB2 distribution could be computed by evaluating the corresponding generalized

hypergeometric function 3 F, <ﬁ, b,p, 1?) (McDonald 1984; Jenkins 2009Db).

2.3. Corrected Gini for EU States and EU-Wide

Replacing of observed top incomes with fixed Pareto or GB2 fitted values has the problem that it
does not account for parameter-estimation error and sampling error in the available sample. The resulting
Gini carries an artificially low standard error. An and Little (2007), and Jenkins et al. (2011) account for
sampling error by drawing random values from the estimated distribution for all top incomes.

In the case of the EU SILC, we derive a corrected Gini coefficient across all EU member states as
follows. The cumulative parametric distributions in Equations (4) and (7) are estimated at the level of
each member state, and top incomes observed in each member state are replaced with random draws
from the corresponding state-specific parametric distribution, as proposed by An and Little (2007),
and Jenkins et al. (2011). Combining the observed lower-income values and the imputed top incomes
across all EU member states allows us to derive a non-parametric estimate of the aggregate EU-wide
Gini. Finally, repeating the exercise (bootstrapping) we obtain a quasi-nonparametric EU-wide Gini with
its standard error (Reiter 2003).

As compared to the semi-parametric approach conventionally used in countries with
homogeneous populations, this procedure allows the EU-wide distribution to include observations
from both tails of state-level distributions, and preserve the original number of observations for each
country. It also allows modalities such as custom truncation of state samples used for parametric
estimation and for inequality measurement. Estimating the parametric distributions at the level of EU
member states and replacing top incomes according to the estimated country-specific distributions
ensures that each state will have true lower incomes as well as replacement top incomes in the EU-wide
data.” The random draws of incomes (x > H) from the parametric distributions (estimated on incomes
between L and H) can be combined with true lower incomes (up to H) as well as with incomes across

Indeed, during GB2 estimation on the SILC with Eurostat sampling weights, the algorithm could not converge due to the
bottommost income observations (2.50 Euro/year or less). This indicates atypical distribution of the bottommost incomes.
Indeed, there are over 100 observations in the SILC with annual income less than 100 Euro, suggesting measurement errors.
Conversely, if all EU-wide incomes were used for estimation and replacement, this estimation and replacement would be
largely done on the richest member states. Poorer states would then be represented with largely true incomes, while the
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EU states. Such flexible estimation of the EU-wide Gini and its standard error would generally not be
possible with parametric estimates of the top-income Ginis.

Comparing the corrected state Ginis from the replacing analysis with the observed non-parametric
Ginis would indicate whether the observed high incomes have been generated by Pareto- or GB2-like
statistical processes, or whether the observed Gini is affected by top-income issues such as missing
or non-representative values. A quasi-nonparametric Gini that is lower than the nonparametric Gini
can be interpreted as evidence that some top incomes are extreme compared to those predicted under
the parametric distribution. A higher quasi-nonparametric Gini would indicate that the observed top
incomes are distributed more narrowly than would be predicted parametrically, potentially implying
under-representation, censoring, or measurement errors in relation to high-income units in the sample.

An important decision in applying the replacing method relates to the range of incomes that
should be replaced as potentially nonrepresentative or contaminated. Cowell and Flachaire (2007)
choose a threshold at the 90th percentile of incomes. On the basis of the quality of fit in the
United Kingdom income surveys, Jenkins (2017) advocates setting the threshold at top 1% or 5%
incomes. We consider replacing between the top 1% and the top 10% of incomes with synthetic values
contaminated only by randomness of the draw from the parametric distributions.

In conclusion, the reweighting and replacing methods differ in several respects and address
different types of problems related to top incomes. Reweighting considers the entire income support
and reweights all observations throughout the support according to the probability of non-response
estimated with real data. Replacing keeps all observations up to the cut point unaltered while
replacing all observations above the cut point with observations drawn from a theoretical distribution.
Reweighting uses a probabilistic model drawing information from within and between regions’
non-response rates to estimate the probability of non-response. Replacing does not make use of
non-response rates or probabilistic models and uses instead estimated parameters from theoretical
distributions to replace observations at the top. Reweighting is suited to address issues related to
unit and item non-response and trimming whereas replacing is suited to address issues related to
item underreporting, generic measurement errors, topcoding, and undue sensitivity of inequality
measurement to the inclusion of rare extreme income observations.

3. Data

The methodologies outlined in the above section are evaluated using the set of national household
surveys included in the 2011 round of the EU Statistics on Income and Living Conditions (SILC). This is
a challenging set of surveys with different types of problems related to measurement issues that affect
top incomes and inequality estimates.?

The SILC surveys, coordinated by a Directorate-General of the European Commission, Eurostat,
cover one of the most heterogeneous and largest common markets, including some of the world’s most
affluent nations as well as former socialist economies. All European Union member states as well as
Iceland, Norway and Switzerland are included. The data include relatively large sample sizes for each
state but suffer from very different non-response rates across member states, and from limited potential
for regional disaggregation. Average national non-response rates range from 3.3 to 50.7 percent across
member states in the 2011 wave, and from 3.5 to 48.1 percent in 2009 (Tables S1 and S2 in the online
Supplementary Material). These features allow for a limited number of model specifications to be used

to reevaluate inequality under various measurement issues.’

richest states would be largely replaced, a dubious exercise. Moreover, while the Pareto law may hold for each EU member
state, there is no guarantee that it would hold on incomes EU wide.

This analysis cannot be performed across multiple waves of SILC for several reasons: SILC was first collected only in 2004;
Availability of countries has varied by wave; member states are not required to collect or publish sub-national non-response
rates, and some statistical agencies have declined to compute them for the authors of this study citing lack of resources.
For more information on the SILC see: http:/ /ec.europa.eu/eurostat/web/income-and-living-conditions.
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SILC data are rarely used as one dataset for cross-country analysis in the same fashion as one
would do cross-region analysis in a specific country. That is because SILC data are derived from
country specific surveys which take different forms in different countries. However, in our case,
they are an interesting set of data in that they are characterized by substantial diversity compared to
other national surveys (Hlasny and Verme 2015). They are therefore a good benchmark to test how
different top incomes correction methodologies perform under such diversity, provided that systematic
cross-country differences are controlled for.!'® One challenge is that incomes exhibit substantial
cross-nation inequality, but relatively less inequality within nations, as evidenced by the difference
between state-specific and EU-wide Gini indexes (refer to Tables S1 and S2). In fact, decomposition of
the EU-wide Gini reveals that 67 percent of inequality arises solely from income differences between
EU member states, and only 4 percent arises solely from within-state inequality, while 29 percent is
due to an overlap of the between and within state inequality (2009 SILC shows analogous results).

With little overlap between income distributions in the richest and the poorest member states,
when the reweighting correction method is run at the level of states (rather than within-state regions),
it would effectively adjust the mass of entire member states in the calculation of the Gini. The vast
majority of households in rich states would be assigned higher weights, and the majority of households
in poor states would be assigned lower weights. This suggests that the analysis performed at a more
geographically disaggregated level is warranted. To that end, we have collected unit non-response
rates for NUTS-1 regions, that is geographic divisions, provinces or states of EU member countries.!!
Refer to Tables S2 and S3 in the online Supplementary Material. In what follows, we will primarily
make use of the 2011 round of the SILC, and we will report on the 2009 round only on the margins.
When not noted explicitly, the discussion refers to the 2011 round.

Household non-response rates (NRE) in SILC surveys are computed using Eurostat notation as:

NRh—1— Y 1(db120 = 11) Y. 1(db135 =1) )
B Y 1(db120 # @) — Y, 1(db120 = 23) Y 1(db130 # @)
Address contact rate Rate of complete

interviews accepted

where 1(-) is a binary indicator function, db120 is the record of contact at the address, db130 is the
household questionnaire result and db135 is the household interview acceptance result. Addresses
that could not be located or accessed (db120 < 22) are accounted for in the address contact rate, while
non-existing, non-residential, non-occupied and non-principal residence addresses (db120 = 23) are
omitted. Rate of complete interviews accepted is the accepted interviews (i.e., at least one personal
interview in household accepted) among all households completing, refusing to cooperate, temporarily
absent, or unable to respond due to illness, incapacity, language or other problems.

Sampling weights available in SILC (db090) account for units’” probability of selection, limited
correction for the probability of non-response by different population subgroups, and calibration of
sample representativeness vis-a-vis the distribution of households and persons in the target population,
including by sex, age, household size and composition and NUTS-2 region (European Commission 2006).

The income variable that is best comparable across SILC national surveys is the equivalized
disposable income, hx090. The equivalized household size is computed as hx050 = 1+ 0.5 x
(adults — 1) 4+ 0.3 x children, where adults are those aged 14 or over at the end of the income

Sampling weights in the SILC are distributed very widely, from essentially zero to 38,357.27 (mean 901.89, standard deviation
1050.31) in the 2011 round. This also suggests that comparing unweighted, SILC weighted, and our non-response probability
weighted statistics may yield very different estimates. Moreover, sampling weights in the SILC are trimmed from below and
from above to limit the extent to which individual observations can influence sample-wide statistics. To evaluate how much
this trimming affects survey-wide results, we could compare results across alternative weighting schemes, or replace the
trimmed weights with imputed values.

For Cyprus, Estonia, Germany, Iceland, Latvia, Lithuania, Luxembourg, Malta, Portugal, Slovenia and Switzerland,
non-response rates are available by the degree of urbanization (db100 variable): dense, intermediate or thin level of
population density. In 2009 for Slovakia and the UK, only nationwide non-response rates are available.
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reference period and children are those aged 13 or less.!> Income is not adjusted for cost-of-living
differences across EU member states for conceptual and empirical reasons. First, workers in the
European Single Market can spend their income in any jurisdiction as well as on Internet purchases,
circumventing local price differentials. Second, it is unclear which single cross-country price index
should be applied to workers’ earnings, consumption and savings, and the SILC database does not
provide such a price index. The income aggregate across countries may also have a different capacity
to capture capital income either by design or by practice.

Finally, many of the EU statistical agencies combine survey and administrative information such
as tax and social security records to estimate income (refer to individual chapters of Jantti et al. (2013)).
This may result in a more accurate estimation of incomes as compared to countries that do not adopt
this strategy. If this is the case, both the reweighting and replacing methods should show (correctly) a
lower bias as for any survey with better quality data. However, these techniques vary across countries
and can play a role when comparing estimated biases across countries. Considering the fact that the
original survey instruments differ and that the income aggregates are not identical in their composition,
estimations presented in this paper are not strictly comparable across countries. Moreover, the influence
of each country in the overall estimation for the EU Gini is also affected by these factors.

4. Results

4.1. Reweighting

Table 1 presents the benchmark results for the reweighting correction method described in
Equations (1)—(3). Equivalized disposable income is used as the outcome variable whose inequality
is being measured, as well as the main element of x;; (in logarithmic form). Binary indicators for
European countries are also included as element of x;; in light of the high heterogeneity in incomes,
inequalities and non-response rates across Europe.'

The main finding is that households” survey response probability is related negatively to
disposable income. The estimated coefficient on log income (6,) is negative and significantly different
from zero, an indication that unit non-response is related to incomes and is therefore expected to bias
our measurement of inequality. As a consequence, the corrected Ginis are consistently higher than
the non-corrected Ginis. The unweighted corrected Gini coefficient is 48.34. This is higher than the
uncorrected and unweighted Gini by 3.25 percentage points, statistically highly significant. Making
use of the sampling weights provided by national statistical agencies does not affect these findings.
The correction for unit non-response in this case amounts to 3.70 percentage points of the Gini.!*

12 There are two editions of the EU-SILC survey produced by Eurostat. The Production Data Base (PDB) includes all available
variables for responding and nonresponding households, while a Users Data Base (UDB) excludes nonresponding units and
variables that could potentially allow identification of households. Related to our analysis, the PDB includes variables DB120,
DB130 and DB135, defining responding and non-responding households, DB060-DB062, identifying primary sampling
units, and DB075, separating the traditional non-response rate (households interviewed for the first time) from the attrition
rate (households from the 2nd to the 4th interview). Unfortunately, the PDB is not shared with users for confidentiality
reasons, so in this study we rely on the UDB datasets.

This includes 27 country indicators, with Hungary and Slovakia; Denmark and Norway; and Ireland and Island respectively
sharing single indicators due to their empirical similarities, and The Netherlands serving as a baseline country. Alternatively,
12 regional indicators plus a baseline were considered, in agreement with geopolitical division of Europe and with empirical
distribution of incomes, inequalities and non-response rates across countries. Refer to Table S16 in the online Supplementary
Material. However, this less parameterized specification still produced inconsistent results due to the remaining systematic
heterogeneity within the 13 European regions.

Note that applying the sampling weights to the distribution of incomes uncorrected for unit non-response reduces the Gini
in the SILC by 5.7 percentage points. This happens because sampling weights in the SILC (correcting for various sampling
issues including region-level non-response) and the estimated non-response correction weights are related negatively
for most households. SILC sampling weights are higher among households with atypical incomes, and lower among
households in the middle of the national income distributions. Hence, combination of the two sets of weights serves to
dampen the effect of inflating the representation of atypical units with very low incomes. This dampening—which lowers
the estimate of inequality—overshadows the double-correction for unit non-response among top-income households.
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To the extent that applying the statistical agency weights amounts to some double-correcting
for non-response and these corrections interact with each other arbitrarily, we can estimate a
quasi-difference-in-difference type of effect of weighting. The stand-alone correction for non-response
is estimated at 3.60 percentage points of the Gini (48.34-45.10). The stand-alone correction for
non-representative sampling is estimated at —6.19 percentage points of the Gini (38.91-45.10). Adding
these effects to the uncorrected Gini, we conclude that the robust Gini is 42.15. This figure is slightly
lower than the original estimate of 42.61, suggesting that the double-correction of non-response is
responsible for a 0.46 percentage-point inflation of the Gini. In conclusion, reweighting is consistent in
finding an upward correction of the Gini of between 3.25 and 3.70 percentage points.

Table 1. Benchmark results of Gini correction for unit non-response bias.

Variable Coefficient Estimate
Intercept 12.377 (1.306)
Log(income) —1.047 (0.127)
AT —0.571 (0.156)
BE —1.386 (0.134)
BG —1.360 (0.414)
CH —0.112 (0.164)
CY 0.146 (0.311)
cz —1.212 (0.227)
DE 0.042 (0.175)
EE —2.221(0.232)
EL —1.611 (0.169)
ES —0.381 (0.187)
FI —0.248 (0.158)
FR —0.452 (0.145)
HR —3.035 (0.219)
IE, IS —0.794 (0.155)
IT —0.866 (0.133)
LT —1.790 (0.289)
LU —0.982 (0.144)
LV —2.249 (0.251)
MT —0.533 (0.294)
DK, NO —1.289 (0.135)
PL —1.583 (0.241)
PT —0.259 (0.348)
RO —0.869 (0.719)
SE —1.229 (0.133)
SI —1.284 (0.165)
HU, SK —1.330 (0.265)
UK —0.972 (0.141)
Regions j 31 member states
Households i 238,383
Uncorrected Gini 45.10 (0.08)
Gini using stat. agency weights 38.91 (0.13)
Gini corrected for unit non-response bias 48.34 (0.84)
Gini corrected for unit non-resp. bias, with sampling wts. 42.61 (0.83)
Unit non-response bias 3.25
Bias (using sampling wts.) 3.70

The model is estimated on an unweighted sample, and the uncorrected or corrected weights are only applied in the
calculation of the Ginis. Only incomes >1 are retained. Benchmark region is The Netherlands. Standard errors are
in parentheses. Ginis and their bootstrap standard errors are multiplied by 100.

Using the results in Table 1 and the estimated non-response correction weights, we can re-estimate the
Ginis for each EU member state (Table 2, last column). The corrected Gini increases by 0.2-6.5 percentage
points, with the exception of Belgium and Slovakia (20.0 and 9.3 pc.pt. correction, respectively).
The corrected Ginis for Belgium and Slovakia carry high standard errors and should be viewed
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with great caution.’® Across the 29 EU member states (excluding the two outliers, and without
accounting for states’ population or sample sizes), the estimated Gini correction is strongly positively
associated with states’ mean income (correl. +0.541), mean non-response rate (correl. +0.219) and the
count of regions used for sub-national disaggregation (correl. +0.488).1° Finally, refer to the discussion
on the survey instruments, income aggregates and combination with administrative data to understand
other potential sources of cross-country differences in estimated biases.

Table 2. Non-response rate and income distribution by member state, 2011 SILC.

Mean State Gini, State Gini, SILC

. National . Pure Pure .
Member State Sub-Natlonal Househds. Non-Response Eq.mvahzed S.ILC within-Region between-Region Weighted &
Regions Rate (%) Disposable - Weighted " iy "0 Contrib. (%)~ Non-Response
Income (Euro)  Households Corrected
Austria 3 6183 226 23,713.37 27.59 (0.40) 34.2 10.4 29.54 (0.75)
Belgium 3 5897 36.7 21,622.14 27.63 (0.91) 39.5 10.7 47.61 (18.45)
Bulgaria 2 6548 75 3415.42 35.99 (0.58) 49.3 145 37.88 (1.03)
Croatia 1 6403 43.3 5981.46 32.07 (0.36) - - 32.81(0.57)
Cyprus 3 3916 10.2 20,084.84 31.65 (1.02) 443 16.8 36.41 (4.35)
Czech Rep. 8 8865 17.1 8402.77 2591 (0.37) 124 20.7 27.53 (0.57)
Denmark 1 5306 444 28,441.21 27.45 (0.55) - - 31.00 (1.30)
Estonia 2 4980 26.0 6475.47 32.62 (0.55) 544 123 34.15 (0.82)
Finland 4 9342 18.1 23,870.09 26.83 (0.37) 24.7 20.3 29.71 (1.92)
France 21 11,348 18.0 24,027.78 30.84 (0.45) 7.2 20.3 36.99 (1.72)
Germany 3 13,473 126 21,496.55 30.21 (0.33) 41.0 7.1 32.41(0.77)
Greece 4 5969 26.5 12,704.72 32.92(0.57) 27.6 17.0 35.67 (1.10)
Hungary 3 11,680 112 5146.29 26.86 (0.26) 34.1 22.0 27.58 (0.31)
Iceland 2 3008 248 20,668.26 24.99 (0.64) 53.8 6.0 28.00 (1.68)
Ireland 8 4333 19.6 39,831.65 32.92 (0.56) 14.9 23.8 34.82 (1.10)
Ttaly 5 19,234 25.0 18,353.37 31.72 (0.29) 21.6 237 35.56 (1.00)
Latvia 2 6549 189 5048.72 34.98 (0.39) 49.0 17.0 36.46 (0.48)
Lithuania 2 5157 18.6 4588.81 33.02 (0.57) 50.0 16.6 33.95 (0.65)
Luxembourg 3 5442 43.3 37,232.63 27.32 (0.47) 35.5 12.7 29.42 (0.86)
Malta 2 4070 118 12,167.55 28.29 (0.44) 81.5 19 28.95(0.52)
The Netherlands 1 10,469 145 22,726.06 25.66 (0.34) - - 27.01 (0.56)
Norway 1 4621 50.7 38,616.14 24.98 (0.59) - - 29.39 (3.05)
Poland 6 12,861 149 5849.61 32.10 (0.39) 17.5 10.1 34.32(0.73)
Portugal 3 5740 7.9 10,462.34 35.07 (0.57) 32.8 19.2 36.35(0.72)
Romania 4 7614 3.3 2447.42 32.37 (0.39) 25.0 13.3 32.58 (0.41)
Slovakia 4 5200 145 6983.48 27.30 (1.26) 285 15.0 36.58 (9.42)
Slovenia 1 9246 23.8 12,714.07 25.84 (0.29) - - 26.54 (0.38)
Spain 19 12,900 37.2 14,584.40 32.67 (0.26) 6.7 23.6 33.03 (0.29)
Sweden 1 6694 36.5 23,727.45 25.76 (0.36) 36.8 9.0 28.65 (2.52)
Switzerland 3 7502 24.0 39,327.92 30.28 (0.49) 42.6 12.0 34.82 (1.60)
UK 37 8009 27.3 20,843.59 32.85 (0.57) 3.1 245 39.32 (2.88)
Wtd. Mean 7695
EU wide] 5231620 g 239 17,929.58 29.61[38.91] - - 32.99 [42.61]

Note: Non-response rate is reported in the member-states” Intermediate /Final Quality Reports at the state level
as NR# for total sample. Incomes less than 1 are omitted. Mean incomes may not be representative of those for
the entire states, as they omit non-responding households. For clarity of presentation, Ginis are multiplied by 100.
Source: EU-SILC data in World Bank database; Ireland data from Luxembourg Income Study database.

4.2. Replacing

Next, we use a methodology first proposed by Cowell and Victoria-Feser (2007) to test the

sensitivity of the Gini coefficients to extreme or non-representative observations on the right-hand
side of the distribution. We correct for the influence of potentially contaminated top incomes using

The high corrections of the Ginis in Belgium and Slovakia are not due to atypical distributions of incomes across national
regions—Gini decomposition shows similar within- and between-region components (Table 2, two columns before the last
column). Instead, it is due to exceptionally thin top-income distributions with rare extreme incomes. Tables S4-S9 show that
the Pareto coefficients estimated among the highest quartile of incomes in Belgium (particularly from the 75-80th percentile
to the 92-94th percentile) are the highest or among the highest of all EU member states. Pareto coefficients estimated for
Slovakia are also above average, but not exceptionally high. These thin top ends of the income distribution suggest that the
few observed extreme incomes, when reweighted, can have great influence on the measurement of inequality. This also
explains the high standard errors on the Ginis.

The number of regions j selected for the estimation of Equation (3) determines the weight that the model attributes to
within-region as opposed to between-regions information and this choice leads to significantly different estimations of the
correction bias. Analyses using finer degrees of disaggregation have been found to typically yield lower corrections for unit
non-response (Hlasny 2016; Hlasny and Verme 2017, 2018). In Tables 1 and 2, however, the estimates come from a model on
the entire set of 31 member states, using a fixed degree of disaggregation into 162 regions.
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an estimated Pareto or generalized beta distribution as discussed in the methodological section.
The analysis is performed at the level of individual EU member states, so that the replaced income
values would come from all states rather than just from a handful of the richest states. Table 3
presents quasi-nonparametric estimates of the Gini coefficients obtained by replacing the highest
top 1-10 percent of income observations in each state with values imputed from the estimated Pareto
distribution left-truncated at the 75-85th percentile of incomes and right-truncated at the 92-99th
percentile of incomes. (Tables S4-S9 in the online Supplementary Material show the results for
each member state.) Lower right-truncation, such as at the 90th percentile, could not be performed
because it would leave small national sample sizes for estimation (say, 85-90th percentile incomes),
particularly compared to the range of incomes for replacing (say, 91st percentile incomes and above),
and would yield volatile or excessively high Ginis. Recall that the estimation is performed at the
national level, and national samples are not large (Table 2). By the same token, lower left-truncation
would compromise the quality of fit of the Pareto distribution.

The choice of right truncation is a critical parameter because it affects which observations will
be classified as uncontaminated and will be used to estimate the parametric distribution, and which
observations labeled as suspect will be replaced with values drawn from the distribution. The corrected
inequality index will be based on the actual income observations to the left of the right-truncation point,
and only on synthetic values to the right of that point. Since there is no theoretically favored point for
left- or right-truncation, and there is limited empirical guidance on how to set them particularly in a
new dataset for a group of countries such as the EU-SILC, we consider a range of cutoff points. Values of
the estimated parameters, measures of model fit, and the estimated corrections for the Gini can be used
to determine which ranges of incomes are best suited for estimation and for out-of-sample prediction.

Results are shown in Table 3. The table has three sets of rows, for left-truncation set at the
85th, 80th and 75th percentile of national incomes. We find that the choice over left truncation in
estimation does not affect the measurement of inequality significantly. The Ginis are corrected by —0.2
to +4.4 percentage points regardless of the left-truncation point. On the other hand, right truncation
affects the measurement systematically. This should not be surprising, because right-truncation in
this exercise affects not only the estimation of the Pareto distribution, but also the extent of replacing
observed top incomes with values drawn from the national parametric distributions. When only 1% of
top incomes are replaced, the Gini typically falls by 0.02 to 0.20 points, suggesting that the observed
topmost incomes are extreme and over-represent the incomes of the richest 1 percent in the population
as predicted by the estimated national Pareto distributions.” However, when 5-8 percent of observed
top incomes are replaced, the Gini rises by 0.39 to 4.36 percentage points, suggesting that in this group
(and particularly in the second ventile of the national distributions) the observed incomes typically
underrepresent the incomes in the population due to unit non-response and other biases. These latter
results are consistent with the results provided by reweighting potentially suggesting that the Pareto
distribution mimics rather well the top decile of the real income distribution but not the very top of
the distribution (top 1 or up to top 5 percent).

17" Analogous replacement was also done for the top 0.2, 0.5 and 0.7 percent of incomes. The effects of these replacements are

smaller than those in Table 3, as they reflect the replacement of individual outlying observations.
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Table 3. Correction by replacing incomes with random draws from national Pareto distributions.

Correction of Extreme Sampling Sample Size 5 Gini Bias in Original
Observations Correction k obs. Replaced Gini (pc.pt.)

Estimation on top 15-hth percentile of incomes

Semi-param Unweighted Uhee 44.92 (0.07) ~0.18
S _

estimation, = 1% Eurostat weights 171;3;15,:? 38.71 (0.13) ~020
Semi-param Unweighted Z - lzf'g;f; 45.49 (0.11) +0.39
mati 5o i -

estimation, /1 = 5% Eurostat weights 1= f;;’i; 38.85 (0.14) ~0.06
Semi-param Unweighted 7 ﬂ;f; 45.87 (0.16) +0.77
— oo — 51,

estimation, / = 6% Eurostat weights (s f;’gzg 4327 (11.01) +436

Estimation on top 20-hth percentile of incomes

Semi-param Unweighted ”k:_‘f 43(9)5 44.98 (0.07) —0.12

estimation, /= 1% Eurostat weights 17k::4265,;(;2 38.81 (0.13) —0.10
Semi-param Unweighted Z - fir";g’g 45.72 (0.10) +0.62
AT _

estimation, h=5% g octat weights o 39.66 (0.16) +0.75
Semi-param Unweighted 1z 593’332 4726 (0.18) +2.16

estimation, /1 = 8% Eurostat weights 1~ f;'ggg 4215 (0.47) +324

Estimation on top 25-hth percentile of incomes

Semi-param Unweighted ’7;527 4338 45.04 (0.08) —0.06
ST _

estimation, h=1% g/ ctat weights Uiies 38.89 (0.14) —0.02
Semi-param Unweighted (i ﬁ 9653 4609 (0.17) +0.99
RS _

estimation, 1 = 5% Eurostat weights o f‘g’gjg 40.12 (0.19) +121

. 7 = 40,532

Semi-param. Unweighted k = 19,086 47.89 (0.20) +2.79
L _

estimation, /1 = 8% Eurostat weights 1z g’gg; 42.41 (0.46) +3.50

Notes: Pareto coefficients are estimated on non-contaminated income observations (sample size 17; L < x < H; H is
income corresponding to the 100-/ith percentile) using maximum likelihood, and are then used to impute values for
the k top-income observations. Parametric replacement is done at the national level. Europe-wide Ginis and their
standard errors are computed across all national quasi-nonparametric income distributions, and are bootstrapped.
For clarity, Ginis and their standard errors are multiplied by 100. Sampling weights are adopted from Eurostat.
I Right-truncation here is higher than in the models below. Any lower right-truncation point than this leads to
overly large and erratic Gini estimates due to small national estimation samples (i.e., range of income quantiles
on which Pareto distribution is fit) and comparatively large national prediction samples (i.e., quantiles for which
Pareto estimates are drawn). Refer to Table S5.

Tables S4-S9 in the online Supplementary Material present the Pareto coefficients & and
semiparametric Ginis estimated for each EU member state.!® Like under the reweighting approach,

18 The parametric Gini estimates among top incomes in Tables $4-S9 were calculated under smooth fitted Pareto curves rather

than from any observations or fitted values per se. As a robustness check, we have re-estimated these Ginis by replacing
top incomes with numbers drawn randomly from the corresponding Pareto distributions, and bootstrapping the exercise.
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the corrections of the Ginis across individual states are in line with the EU-wide corrections with some
notable exceptions. Estimated Pareto coefficients are low in several states—notably Cyprus, Estonia,
Ireland and Latvia—on account of a narrow dispersion of top incomes and rare extreme incomes,
leading to high corrected Ginis in those states. On the other end of the spectrum, Belgium, Iceland,
Norway, Slovenia and Sweden have high estimated Pareto coefficients leading to lower corrected
Ginis. The effects of top-income replacement on the Ginis are dampened by the fact that replacement
is applied only to top incomes, while original values are used for the rest of incomes. In comparison,
the reweighting method affected the contribution of all income observations, leading to even larger
corrections of the Gini.

The variation in the Pareto coefficients across model specifications indicates that the estimated «
depends systematically on the way income observations are weighted, and on the range of top incomes
under analysis. Pareto coefficients are estimated somewhat higher in the income distribution weighted
by Eurostat sampling weights than in the unweighted distribution. Moreover, the higher the values of
incomes evaluated in terms of the left and right truncation points, the higher the Pareto coefficient,
and thus the lower the corresponding inverted Pareto coefficient f, the estimated top income share and
the Gini. The highest Pareto coefficients are obtained when the national distributions are left-truncated
at the 85th percentile and right-truncated at the 99th percentile. That suggests that extreme income
dispersion may be a problem among the topmost 1% of incomes and between the 75th and 85th
percentile, but not as much between the 85th and 99th percentiles.

One potential criticism of the Pareto distribution is that it relies on only one parameter to fit
true top incomes. The fit of the one-parameter Pareto distribution to European and other income
distributions has been questioned (Jagielski and Kutner 2013; Jenkins 2017). In the following
paragraphs we re-estimate the semi-parametric Gini coefficients assuming top incomes to be distributed
as under the generalized beta distribution. To do this, we estimate the generalized beta distribution
that provides the best fit for the distribution of top 70 percent of incomes in each state, and then use
predicted values to compute a parametric Gini coefficient for the state. To derive an EU-wide Gini,
we use values drawn randomly from the parametric distributions to replace topmost incomes in each
state, and combine these replacement top-income values with actual lower incomes to derive the Gini
quasi-nonparametrically.'’

Table 4 reports the main results for the EU at large, and Tables S10-515 in the online Supplementary
Material report model coefficients and parametric Ginis for individual EU member states. Comparing
the Ginis in Table 4 to the nonparametric estimates in Table 1, we find that the quasi-nonparametric
Ginis under the assumed generalized beta distribution are systematically lower, implying that
actual incomes may be distributed more unequally than incomes predicted under that distribution.
The downward correction of the Gini is up to 3.3 percentage points and 1.4 percentage points on
average across the 6 model specifications reported.

Compared to the Pareto distribution, the corrections to the Gini coefficients under the generalized
beta distribution are consistently negative, but of a similar magnitude in absolute value. This indicates
that the estimated generalized beta distributions predict a narrower dispersion of top incomes than
the estimated Pareto distributions, but both estimations give rise to concerns about top-income biases
of a similar magnitude, 0—4 percentage points of the Gini.

These Ginis from random draws are very similar to the smooth-distribution Ginis in Tables S4-S9, but have slightly higher
standard errors due to sampling errors.

To validate the procedure, we again compare the parametric and quasi-nonparametric Ginis in each state (refer to the
previous footnote). Indeed, using random income draws from a generalized beta distribution produces a similar correction
of the Gini as numerical inference of the Gini under a smooth distribution.
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Table 4. Correction by replacing incomes with random draws from national GB2 distributions.

Correction of Extreme Sampling Sample Size 5 Gini Bias in Original
Observations Correction k obs. Replaced Gini (pc.pt.)

Estimation on top 70-hth percentile of incomes

) 7 = 164,423 B
Semi-param. Unweighted & = 2400 43.89 (0.05) 1.21
P 19 _

estimation, 1= 1% Eurostat weights 1 = 167,932 37.64 (0.08) 127

k =2587

. 1 = 154,944 B

Semi-param. Unweighted k=11,939 44.86 (0.08) 0.24
estimation, & = 5% . 1 = 158,093

Eurostat weights k= 12,545 36.80 (0.09) —2.11

) 7 = 143,233 B
Semi-param. Unweighted k=14317 44.73 (0.14) 0.37

estimation, 1 = 10% . 1 = 145,699 B
Eurostat weights k = 15,068 35.57 (0.07) 3.34

Notes: GB2 coefficients are estimated on non-contaminated income observations (sample size 17; L < x < H; Lis
income corresponding to the 30th percentile; H is income corresponding to the 100-ith percentile) using maximum
likelihood. Quasi-nonparametric Ginis and their standard errors are bootstrap estimates, and are multiplied by 100.

Coefficient estimates presented in Tables S10-515 carry for the most part acceptable standard
errors and are rather consistent across model specifications with different sampling weights and
right-truncation points. There are unclear patterns in the estimated coefficients between the analyses
performed under alternative weighting schemes (unweighted versus Eurostat weighted) and alternative
sample cutoff points (90th, 95th, 99th percentile). The higher the range of incomes included in estimation
(up to the 95th or the 99th percentile), the systematically lower the distributional shape parameter a, but
the other shape parameters (p, g) and the scale parameter (b) vary non-systematically. As a byproduct
of our analysis, we can confirm that the generalized beta distribution cannot be easily approximated
by Singh-Maddala or Dagum distributions as p and 4, respectively, are significantly different from
unity across most EU member states, under all weighting schemes and sample-truncation points in
the analysis.

The estimated parametric Ginis vary greatly across EU member states, due to heterogeneous
distributions of incomes and sampling weights across states, different sample sizes, and different
quality of fit of the parametric GB2 distributions. Like in the case of reweighting and Pareto-replacing
estimation, several states end up with outlying parametric estimates of their Ginis subject to high
standard errors. Across multiple runs of the analysis (in Tables S10-515), Belgium, Bulgaria, Finland,
Greece, Ireland, Latvia, Norway and Slovenia end up with unreasonably high parametric estimates
of their Ginis, while Denmark, Germany, Iceland, Slovakia and Sweden end up with unreasonably
low Ginis.

5. Discussion

This study has evaluated two methods—reweighting and replacing—for correcting top-income
biases generated by known data issues including unit and item non-response and more generally
representativeness issues of top-income observations. The joint use of two distinct statistical methods
for correcting top-income biases, sensitivity analysis of their technical specifications, and analysis
of their performance on a challenging heterogeneous household survey were methodological
contributions of this study.
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Using the reweighting approach and the 2011 wave of the SILC, the paper finds a significant
3.3-3.7 percentage point downward bias in the Gini index.2 The weighted Europe-wide Gini index is
estimated at 42.61 percent as compared to a non-corrected Gini of 38.91 percent. The average Gini for
the 31 European countries considered is estimated at 32.99 percent as compared to an uncorrected Gini
of 29.61 percent.

Similar results are found using the replacing method with the Pareto distribution but only when
the cutoff point for replacing is below 95 percent. The use of higher cutoff points yields very low
biases, below 1 percentage point of the Gini. Given that top-income biases are expected to be higher
at the very top, it is possible that the Pareto distribution does not mimic well the European income
distribution at the very top. This may be due to the limited flexibility offered by the one-parameter
Pareto distribution.

Repeating the replacing exercise with the four-parameter GB2 distribution does not improve our
findings. Our estimates of inequality fall by 0.2-3.3 percentage points of the Europe-wide Gini, while
the Ginis for individual member states are estimated very widely and often unreasonably low or high.
We conclude that the popular 1-4 parameter distributions such as the Pareto and the GB2 distributions
are not well suited to model the topmost incomes across a heterogeneous sample of distributions,
and that alternative distributions should be sought to model the very top ends. The fact that these
distributions were proposed and initially tested in the 20th century combined with the sharp growth of
incomes at the very top of the distribution in the 21st century in Europe and elsewhere may contribute
to explain this shortcoming.

Another problem with the replacing methods, similarly to the traditional treatments for item
nonresponse, is that they rely on an assumption that other income observations are valid and accurate.
Replacing methods assume away measurement issues below the cutoff point. At the same time,
the parametric distributions proposed yield a wide range of empirical results (in Tables 3 and 4),
indicating that parameters calibrated with the lower parts of the income distributions do not offer
insights of any accuracy about the very top.

In perspective of the findings from the reweighting and parametric replacing exercises, we also
conclude that the systematic under-representation of top-income households due to unit nonresponse
is a more worrying problem than other potential contaminations of the top-income distribution for
inequality measurement. Unit non-response leads to a systematic downward bias in the measurement
of the Gini coefficient by 3—4 percentage points, while the balance of other top-income biases remains
unclear, and has been estimated in this study widely at between a —3 and a +4 percentage point
adjustment to the Gini.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2225-1146/6/2/30/s1.
Tables S1-5S3 show summary statistics and unit nonresponse rates in national surveys. Tables S4-S9 show
additional results of Pareto replacement for individual EU member states. Tables S10-S15 show additional results
of replacement using Generalized Beta II distribution also for individual EU member states. Table S16 shows the
considered delineation of 13 European regions.
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rates, and some statistical agencies have declined to compute them for the authors of this study citing lack of resources.
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