Nils M Holm

Sketchy LISP

An Introduction to Functional Programming in Scheme
Third Edition

Sketchy LISP - Third Edition

Copyright (C) 2006,2007,2008 Nils M Holm
All rights reserved.

Print and Distribution: Lulu Press, Inc

ISBN 978-1-4116-7448-6

Order: www.lulu.com/content/213736

Preface

A lot has happened since the release of the previous edition of Sketchy
LISP. The “Six’th Revised Report on the Algorithmic Language
Scheme” (R°RS) was ratified and Scheme is no longer the language it used
to be.

This edition is dedicated to the principle that made Scheme a language that
was esteemed by researchers, educators, and creative coders all around
the world:

Programming languages should be designed not by piling feature on top
of feature, but by removing the weaknesses and restrictions that make
additional features appear necessary. — R'RS introduction

Unfortunately this principle was abandoned in the RORS process. I created
this edition in the hope that enough people will stay interested in the small
and beautiful language that Scheme used to be, so the RRS will remain a
de-facto standard

After publishing the second edition of Sketchy LISP a lot of people
mailed me with really good ideas on how to improve the book. I consid-
ered all of them and implemented most of them:

This edition uses a more consistent style in the examples, which is partic-
ularly important to beginners. A style guide was added to the appendix.

A new chapter was added that illustrates what “‘real-world” Scheme code
looks like by discussing a more complex program in great detail.

Some subtle flaws in the code were fixed. In particular the case syntax
of chapter 3 now works in exactly the same way as the actual Scheme
syntax.

Have fun reading the new edition!
Nils M Holm, August 2008
Acknowledgements

Thanks to all the people who pointed out subtle flaws in the code, suggest-
ed improvements, and proposed additions.

Preface to the Second Edition

This is the revised and extended second edition of Sketchy LISP. This
edition discusses the Scheme language in much more general terms and
makes fewer references to an actual implementation. The terminology is
much more “schemy”, for example ““functions” are called ““procedures™
now and pseudo functions are explained in terms of syntax transfor-
mation.

This edition adds various topics that were not covered in the previous
edition. The section about Scheme syntax has been extended and now
covers macros, there is a new section about quasiquotation, and there are
two additional appendices containing a table of example programs and
brief summary of all Scheme functions discussed in the book.

Overall, the book has been made more general. All references to proce-
dures that were part of a specific implementation have been removed. For
example, letrec is explained in terms of let and set! now rather than
introducing an implementation-dependent model.

Finally, the prose was revised, some typos were removed, and the text
was streamlined for easier reading. I hope that you enjoy reading this
new edition!

Nils M Holm, May 2007
Acknowledgements

Thanks to Diana Jeschag for catching some typos that slipped past me.

Preface to the First Edition

This book presents an overview of the Scheme programming language
with strong emphasis on functional programming. Language elements
and programming techniques are explained by means of simple examples
which are used to form more complex programs.

Functional programming is an approach that focuses on the evaluation of
expressions. Programs are formed by combining functions. Most functions
are free of side effects which allows to examine programs formally and
prove properties of algorithms.

The first chapter of this book introduces basic concepts such as definitions,
conditional evaluation, recursion, procedures, and elementary data types.

While the second chapter continues this tour, it puts emphasis on more
complex programs by introducing problems of varying complexity and
then outlining the way to their solution step by step.

The last chapter takes up some lose ends and briefly introduces continua-
tions, one of the more advanced features of Scheme. It also demonstrates
how Scheme can be viewed as a formal system by constructing a Y com-
binator.

To make best use of this book, experimenting with the given examples is
strongly recommended. See the appendix for download URLSs and a brief
introduction to the program development cycle.

The Scheme language achieves what only few languages have managed
before: to bring fun back to programming. Its simple syntax, clean seman-
tics, and powerful functions open the door to a fresh perspective on pro-
gram design. Programming in Scheme is fun, and this book is an attempt
to share some of that fun.

Nils M Holm, Feb. 2006
Acknowledgements

Thanks to Diana Jeschag for proof reading, to Al Petrofsky for explaining
some of the more subtle details of binding constructs and continuations,
and to Jens Axel Sggaard, Anton van Straaten, and other regulars of
the comp.lang.scheme newsgroup for helping me to get used to the
concept of continuations.

Contents

1 Basic Scheme Programming 9
1.1 Notation. 9
1.2 Functional Programming 11
1.3 Loops in Functional Programs 14
1.3.1 CondRevisited. 18
1.4 BasicDataTypes. 21
1.4.1 Integers. o v v v it e e e e e 21
1.4.2 Booleans. 22
1.4.3 Chars, Strings, and External Representation. 23
1.4.4 Lists,Symbols,and Quotation. 24
1.5 Some Things You Can Dowith Lists. 28
1.6 Procedures and Local Scopes. 31
1.6.1 Whatare Closures Good for?. 36
1.7 Different Ways of Binding Symbols. 38
1.7.1 Binding Recursive Procedures. 41
1.8 Lists, Pairs,and History 44
1.8.1 AssociationLists. 46
1.8.2 NestedLists. 47
1.8.3 AHistoricalNote. 51
2 Less Basic Scheme Programming 53
2.1 Variable Argument Procedures. 53
2.2 Identity and Equality 57
2.2.1 A More General Form of Equality 61
2.2.2 Usingldentity and Equality 66
2.3 Higher Order Functions 68
2.3.1 Some Fun with Higher Order Functions. 72
2.4 Dynamic Typing. 75
2.5 TypeConversion. 79
2.5.1 ArithmeticswithLists. 82
2.6 Arithmetics. L o 84
2.7 Strings and Characters Recycled 88
2.7.1 GarbageCollection., 96
2.8 Input, Output, and Side Effects. 100
2.8.1 InputandOutput. 101

Contents

3 Some Missing Pieces. 109
3.1 Syntax Transformation. 109
3.1.1 PatternMatching. 110
3.1 Substitution. 111
3.1.3 RecursiveSyntax. 114
3.2 Quasiquotation.o 116
3.2.1 Metaprogramming. 118
3.3 Tail-Recursive Programs 120
3.4 Continuations. 123
3.4.1 Non-LocalExits. 126
3.4.2 Exposing some Gory Details. 128
3.5 Lambda Calculus and the Y Combinator 133
3.5.1 SchemevsLambdaCalculus. 140
4 SchemeintheWild. 145
4.1 Drawing Box Diagrams. 145
4.2 The DRAW-TREE Program 148
TheEnd., 155
Appendix. L 157
Al First Stepsin Scheme 157
A.2 Scheme StyleGuide 160
A.2.1 Definitions and Bindings. 161
A.2.2 Procedure Application. 164
A.2.3 Conditionals, Logic,Etc. 164
A.2.4 DataandQuotation. 166
A.3 Table of Example Programs. 167
A.4 Scheme Syntax and Procedures. 168

1 Basic Scheme Programming

1.1 Notation

Scheme is a small language with simple syntax and clean semantics. It
uses a uniform notation for all of its constructs. Here are some simple ex-
amples:

Scheme notation Math notation

(+ 5 79) ; 5+7+49

(= n) ; —n

(f x) 7 £ (x)

(+ a (* b c)) ; a + b * c

Note that there are no precedence or associativity rules. All operations are
explicitly grouped by parentheses:

(* (+ a b) (- c d)) ; in math: (a + b) * (c - d)

The semicolon introduces a comment. Everything between the ; and the
end of the same line is ignored by Scheme systems.

In Scheme, operators like + or * are ordinary procedures. A procedure is
a small program that receives some values and returns a result, just like a
mathematical function. The terms “procedure’ and “‘function” are used
as synonyms in this text.

The values passed to a procedure are called arguments. Because all
procedure applications are delimited using parentheses, many procedures
can have any number of arguments. For example, the expression a+b+c+d
would be written as

(+ a b c d)

Like math functions, Scheme procedures return a result that depends on
the values passed to the procedure:

(+ 5 7) => 12
(+ 7 9) => 16

The double arrow => is not really part of Scheme, but it is frequently used
to denote the value of an expression. In Scheme, everything that has a val-
ue is called an expression. (+ 5 7) is an expression, but 5 and 7 are also
expressions. Scheme programs are formed by combining expressions.

The formula a => breads “‘a evaluates tob” or ““a reduces tob”. Above
formula means “the application of + to 5 and 7 evaluates to 12. All
procedure applications have the same form: the first position between
two parentheses is occupied by the procedure and the remaining positions
contain arguments:

(procedure argument; ... argumentp) => value

Some procedures have a fixed number of arguments, some have a mini-
mum number of arguments, and some accept any number of arguments.

For instance, the ““ - procedure requires at least one argument:
(= 5) => -5

(= 5 7) => -2

(- 10 2 3) => 5

(=) => bottom

When a single argument is passed to it, it negates it. When more than
one argument is passed to it, it subtracts all but the first of its arguments
from the first one. Passing no arguments at all to “-” is an error and the
application reduces to ‘“‘bottom”. Botfom denotes an undefined value.
Of course, when actually entering an erroneous expression at a Scheme
prompt, the system will not just print “‘bottom’ but a more explanative
message. The formula

e => bottom

merely states that something about the expression e is not correct. For
instance, it could be used to state that the division by zero is not allowed:

(quotient x 0) => bottom

Note that above formula is not valid Scheme, because the variable x is not
known without a corresponding declaration. It should be read as ““(quo-
tient x 0) reduces to bottom for any value of x”’. Such formulae are
frequently used to describe the behavior of procedures in a formal way.

Most Scheme procedures are strict. This means that a procedure that has
at least one argument of bottom also reduces to bottom:

(eg? (quotient 0 0) 0) => bottom

Although the eg? procedure (which compares its two arguments) theoret-
ically could find out that 0/0 is not equal to 0 and reduce to falsity, it does

10

not. Because eq? is strict, it must evaluate to bottom as soon as at least one
of its arguments evaluates to bottom. From a more practical point of view,
this means that the evaluation of above expression would abort with an er-
ror message explaining that a division by zero was attempted. All Scheme
programs abort as soon as a reduction to bottom occurs.

1.2 Functional Programming

The majority of popular languages, like C, C++, and Java, is based on the
paradigm of imperative programming. Each program ultimately consists
of statements that ““do something”’, where ““doing something” includes ac-
tions like storing values in variables, repeating sections of code, or select-
ing code based on conditions. Imperative languages typically include some
functional aspects, too. For example, the C expression 5+7 evaluatesto 12,
justlike (+ 5 7) doesin Scheme. You can even write simple functional
programs in some imperative languages like C:

/* Factorial function in C */
int fact(int n) {
return n==07? 1:
n*fact (n-1);

}

This function computes the factorial of its argument and returns it. There
are no assignments or explicit repetitions in the program. In functional
Scheme, all programs are written in this way. Each program has a number
of arguments and a result. The Scheme version of the above functions
looks like this:

(define (fact n)
(cond ((zero? n) 1)
(#t (* n (fact (- n 1))))))

Define looks like a procedure, but is in fact part of the Scheme syntax.
Because its application looks like the application of a procedure or func-
tion, it is also called a pseudo function. Pseudo functions and Scheme syn-
tax will be discussed later in detail. For now, it is sufficient to know that
define defines a new procedure. Its general form is:

(define (procedure—-name variable; ... variablep)
body)

11

The definition consists of two parts: a head and a body. The head of a pro-
cedure consists of the name of the procedure and the names of its vari-
ables. The second part is the body of the procedure, which is an ordinary
expression.

When the new procedure is applied using, say,
(fact 3)

the variable n gets the value of the argument 3. In LISP terminology,
you would say that n is bound to 3. L In this context, the procedure body
is evaluated.

The zero? procedure is a so-called predicate. In LISP speak, a predicate
is a procedure returning a truth value. Zero? tests whether its argument is
equal to zero.

In Scheme, a predicate is a procedure returning one of the truth values #t
and #£. The names of most Scheme predicates end with a question mark,
like these:

eq? equal? zero? number?

The outermost construct in the body of fact is cond. The cond pseudo
function plays a central role in Scheme, becaus it controls the flow of
evaluation. It is a generalized form of the if pseudo function which will
be introduced later. A cond expression consists of a series of clauses,
which are tested in sequence. Above cond expression has two clauses:

((zero? n) 1)

and

(#t (* n (fact (- n 1))))

Each clause has a predicate and a conditional body:
(predicate body)

Both the predicate and the body are ordinary expressions. Cond starts by
evaluating the predicate of its first clause. If the predicate evaluates to log-

1 Actually, variables are bound to storage locations rather than values, but we will use a
simplified model here.

12

ical truth, the body of the same clause is evaluated and the result of the
body is the result of the entire cond expression. The remaining clauses
are ignored. If the predicate of the first clause reduces to logical falsity,
though, cond proceeds with the next clause until it finds one whose pred-
icate evaluates to truth.

Itis a good idea to make the last clause of cond catch the remaining cases
by specifying constant truth as its predicate. In Scheme, the notation #£
represents falsity and all other values represent truth. However, it is good
style to use the expression #t to represent logical truth. This is exactly
what is done in the second clause of fact, so

(cond ((zero? n) 1)
(#t (* n (fact (- n 1))))))

has the following meaning:

if (zero? n)
then evaluate to 1
else evaluate to (* n (fact (- n 1)))

Because cond is a functional construct, it returns a value: the value of the
body of the first clause with a true predicate:

(cond (#f 0) (#t 1)) => 1

So what exactly happens when the above fact procedure is applied to a
value, say, 3?7 Here is an answer:

(fact 3)

-> (cond ((zero? 3) 1) (#t (* 3 (fact (- 3 1)))))
-> (* 3 (fact (- 3 1)))

-> (* 3 (fact 2))

-> (* 3 (* 2 (fact 1)))

-> (* 3 (* 2 (* 1 (fact 0))))

-=> (* 3 (* 2 (*11)))

-> (* 3 (* 2 1))

-> (* 3 2)

=> 6

In this book, the single arrow —> denotes “‘half a reduction”. The formula
a —> b means that a is partially reduced to b by reducing one or multiple
sub-expressions of a to their normal forms. For instance, in

(* 2 (+ 3 4)) —> (* 2 7)

13

the sub-expression (+ 3 4) isreduced to its normal form, 7. The normal
form then replaces the sub-expression from which it resulted, forming a
new expression (which can be reduced further). Partial reduction is used
to illustrate the process of reducing an expression when multiple steps are
involved. At some point the reduction normally reaches a point where the
expression cannot be reduced any further. Such an expression is said to
be in its normal form. The => operator always has a normal form on its
righthand side, while —> never has a normal form on its righthand side:

(* 2 (+ 3 4))
-> (* 2 7)
=> 14

The value of an expression is exactly equal to its normal form. Computing
the value of a procedure application normally involves multiple steps.

When the body of fact is evaluated as shown above, each n in it is replaced
with 3. Cond then evaluates (zero? 3) which tests whether 0=3. This is
not the case, so the second clause is tested. Its predicate is #t, so its body
is evaluated. This body contains another application of fact, but this time,
the procedure is applied to (- 3 1) =2.The same path is taken over and
over again until n reaches zero. Finally, (zero? n) returns truth and so
fact evaluates to 1. The resulting 1 replaces the application of fact in
the expression

(* 3 (* 2 (* 1 (fact 0))))

Assoonas (fact 0) hasreturned its value, the complete expression can
be reduced to 6 by performing the multiplications represented by *.

The sample reduction of fact above shows one major advantage of func-
tional languages over imperative languages. Programs can be ‘“‘executed”
on a sheet of paper by re-writing them according to a set of simple rules.
This property makes it easy to verify characteristics of programs formally.
Try this with a C program.

1.3 Loops in Functional Programs

Typical Scheme procedures have much in common with math functions.
Their sole purpose is to map a number of values (its arguments) to another
value, the function result. For example the math function

14

fix) := x?
would look like this in Scheme:
(define (f x) (* X X))

But of course you would give it a more descriptive name, like square.
Even the fact procedure given in the previous section is modelled after a
math function:

0!:=1

n! :=nx(n-1)!

But instead of declaring multiple instances of the function that handle
different argument values, like in the math definition above, cond decides
which path to take:

(define (fact n)

(cond
; (fact 0) =1
((zero? n) 1)
; (fact n) = (* n (fact (- n 1)))
(#t (* n (fact (- n 1))))))

You probably have noticed that the definition of fact is self-referential.
It applies itself in order to compute its own result. This is by no means
contradictory. It is a well-known principle known as recursion. A recursive
procedure has (at least) two cases: the trivial case and the general case
(also called the recursive case). Above definition could be pronounced as

“The factorial of N is
- 1,if N equals 0
- N times the factorial of N-1, otherwise.”

The condition “if N equals 0” is very specific, while the condition
“otherwise” is rather general. Also, the first case returns the value 1 which
israther trivial, while the value of the second case is computed recursively
and hence not that trivial.

As it happens, the trivial case of a recursive procedure is exactly what you
would specify as an exit condition in a loop of an imperative program, as
the following C program illustrates:

15

/* Imperative fact() in C */
int ifact (int n) {

return r;

}

The loop in this program reads: ‘“while the exit condition (n==0) is not
true, repeat the general case.”” However, this program does not tell you
much about the nature of the fact procedure. All it does is to shuffle some
state until an exit condition is met and then return some of that state.
Reducing ifact (3) on a sheet of paper would be a tedious exercise.

What is more interesting, though, is that iteration and recursion seem to
be equivalent to some degree. In fact, this equivalence is strong enough
that Scheme expresses any repetition using recursion. This approach has
some advantages:

- It allows for a declarative style of programming;
- It frees you from keeping track of a lot of state;
- It facilitates the analysis of algorithms.

An issue seems to be, though, that recursion looks inefficient in some
situations. If you are used to imperative languages, you may have heard
that recursion is bad because it slows down programs and may even break
things (for example by overflowing the runtime stack). Relax. In Scheme
this is not the case.

Both the recursive C program and the recursive Scheme program call fact
for the same number of times. (To ““call a procedure” is a more technical
term for applying a function.) Each call causes the space consumed by
the program to grow by some constant amount. The total amount is this
constant times the size of the argument: (fact 5) adds five levels of
recursionand (fact 100) addsone hundred levels. The i fact function,
on the other hand, does not add anything. It does so by cheating. It adds
some state, namely the variable r, to hold the intermediate result of the
computation. Scheme would be a boring language, if it would not support
the same sort of cheat:

16

(define (fact2 n r)
(cond ((zero? n) r)
(#t (fact2 (- n 1) (* nr)))))

The fact2 procedure still recurses, but its space remains constant while
it evaluates:

(fact2 5 1)

-> (fact2 4 5)
-> (fact2 3 20)
-> (fact2 2 60)
-> (fact2 1 120)
-> (fact2 0 120)
=> 120

What looks fine on a sheet of paper also works on a real CPU. The
principle that makes this possible is called tail call optimization. In fact2
the body of the general case is

(fact2 (- n 1) (* nr))

When fact2 returns from the recursive call, the only thing that is left to do
for the calling procedure is to pass control back to its own caller. Scheme
recognizes this and transforms the call to fact2 into a jump. The flow
of control never returns to the caller (which would be fact2 itself), but
directly to the caller of the caller.

A program that “does not do anything” after calling itself is called a tail
recursive program. Fact2 is a tail-recursive program, while the original
fact program is not, because it applies * to the value returned by the
recursive call:

(* n (fact (- n 1)))
; """ "——— this is done after the return of fact

Tail call optimization transforms tail-recursive programs into programs
doing ordinary loops. It combines the expressiveness of recursion with
the advantages of iteration. If you do not believe this, try the following
small program which implements an indefinite loop by omitting the
trivial case:

(define (o) (0))

Once started (o) will recurse forever, but its space will remain constant.

17

This is why tail-recursive Scheme programs are said to “evaluate in
constant space’.

All linear-recursive programs (like fact) can be transformed into tail-recur-
sive programs using an additional argument. Note that this transformation
does not turn the program into a total mess like the transformation of the
C program. The Scheme program still is declarative:

(fact2 0 r) :=r
(fact2 n r) := (fact2 (- n 1) (* r n))

The only thing that is a bit ugly is that fact2 takes two arguments, where
the second one always must be 1. This fact can be easily covered, though,
by wrapping a new definition of fact around fact2:

(define (fact n) (fact2 n 1))

If you do not like to write two procedures where only one is required,
letrec isyour friend:

(define (fact n)

(letrec
((fact2
(lambda (n r)
(cond ((zero? n) r)
(#t (fact2 (- n 1) (* n1r)))))))
(fact2 n 1)))

Letrec embeds local definitions into a procedure. In the above example,
it defines fact2 locally inside of fact. Do not worry too much about
letrec and lambda for now. They will be explained soon.

By the way: while ifact (100) is arather hypothetical construct in C and
will deliver anything but the result of 100!, this works fine in Scheme:

(fact 100)

=> 93326215443944152681699238856266700490715968264381621468
59296389521759999322991560894146397615651828625369792082722
3758251185210916864000000000000000000000000

1.3.1 Cond Revisited

While cond may give the impression that it is used to write programs in
a declarative way, there is one important difference: the order of clauses

18

does matter, while the order of declarations does not. For example,
the declarations

0!:=1
n! :=nx(n-1)!

are equivalent to

n! :=nx(n-1)!
0!:=1

because you would pick the best match before re-writing an application
of the factorial function. Even if the case n/ also covers 0/, you would
probably prefer the more special case, and this would be the right thing to
do. Cond is not that smart. It simply tests its clauses in sequence and picks
the first one with a true predicate. Therefore the following program will
not compute n/:

; A broken version of fact
(define (broken-fact n)
(cond (#t (* n (broken-fact (- n 1))))
; The following part 1is unreachable!
((zero? n) 1)))

A cure for this problem is to always specify clauses of cond in order of as-
cending generality. The most general clause, usually containing a #t pred-
icate, must always be the last clause. Remember: clauses after a true pred-
icate are unreachable. Ordering the clauses of more complex applications
of cond requires some practice, but not more than formulating complex
exit conditions in imperative languages.

The keyword else, which is part of the cond syntax, helps to remember
that the catch-all clause should be last:

(define (fact n)
(cond ((zero? n) 1)
(else (* n (fact (- n 1))))))

Whenever else appears in the last clause of cond, it is equivalent to #t.
Its value is undefined in other clauses:

(cond (else 1)
(else 2)) => bottom

19

Another interesting fact about cond is that it is non-strict. If it was strict,
it could not work. Remember the simple procedure o which never ter-
minates:

(define (o) (0))

Once applied, o keeps evaluating for ever (or until your computer breaks
or until you get bored and abort program execution, whatever comes first).
Because there is no way to obtain the value of (o), it is undefined, which
is the same as bottom:

(o) => bottom
The following expression evaluates to a value, though:
(cond (#f (o)) (#t 1)) =>1

Earlier in this book, the equivalence between cond and 1f was illustrated.
Given this equivalence, the above expression could be re-written as

if #f
then evaluate to (o)
else evaluate to 1
Scheme actually does have an if function, which looks like this:
(if predicate consequent alternative)
It is just another way of saying:
(cond (predicate consequent) (#t alternative))
If 1f was a strict function,
(if #f (o) 1) => bottom
because

(o) => bottom

So if cannot be strict. The syntax of cond hides the fact that (o) is an
argument of cond, but the equivalence

(cond (p el) (#t e2)) = (if p el e2)
demonstrates that cond cannot be strict, either.

The practical meaning of this property of cond (and if)is that it is a pre-

20

requisite for recursive functions. The procedure down, which counts down
to 0, could not be implemented using a hypothetical strict i £ function:

(define (down x)
(1f (zero? x)
0
(down (- x 1))))

Of course, i £ does not really evaluate the general case to botfom and then
ignores it, but it evaluates the general case if, and only if, the predicate did
not hold.

1.4 Basic Data Types

Up to this point only two data types have been introduced: the integer and
the boolean. There are more types in Scheme, though. Some of them will
be introduced in this section.

1.4.1 Integers

The integer is the only numeric type that is required to be supported by
all Scheme implementations. Most implementations also provide floating
point, rational and complex numbers, but these are not discussed in detail
here. While Scheme uses a highly interesting and mathematically correct
model for numeric computations involving floating point arithmetics,
most of the numeric code in this book deals with integers.

One interesting property of Scheme arithmetics is that computations do
not overflow. There are still some popular languages that will silently
provide a wrong result for expressions like

1234567890 + 9876543210

For instance, the following C program will print -1773790788 (on a
two’s-complement 32-bit machine), which is plain wrong:

#include <stdio.h>

int main(void) {
printf ("$1d\n", 1234567890 + 9876543210);
return 0;

}

Of course, modern computers have 64-bit integers, but there will always

21

be a number that is too big to compute in a given number of bits, and
there will always be a language which computes the wrong result without
notice.

Scheme uses so-called bignum arithmetics. “Bignum” is short for ‘“big
number”’. The implementation of this kind of arithmetics is independent
from a specific kind of hardware. It can handle all numbers that fit in mem-
ory, so the only sort of overflow that theoretically can occur while doing
bignum arithmetics is the memory overflow, and even such an event will
reliably abort the computation in progress and not deliver a wrong result.

Some versions of Scheme use bignum arithmetics exclusively, but more
efficient implementations use native arithmetic operations as long as the
result fits in a machine word. When an overflow occurs, they switch to
bignum mode. To the user there is no visible difference. Bignum integers
look exactly the same as “native’ integers. As long as the result of an
operation fits in a machine word, Scheme is about as fast as any other
language. When an overflow occurs, it does slow down, but still produces
correct results.

1.4.2 Booleans

The boolean is used to represent logical truth and falsity. There are only
two literals representing theses states, which is why this sub-section is
rather short.

The object #t represents logical truth (or just “truth’) and #£ represents
logical falsity (““falsity”, the ‘““false” value). There is only one false value,
but any object except for #£f is considered a true value. This is why the
following expression works fine:

(cond (0 ’"foo)) => foo

Do not worry about the sub-expression ' foo — it will be explained real
soon now. What is more interesting is the fact that O is considered to be
true. This might look odd at a first glance, but it simplifies some code sig-
nificantly.

For example, the member procedure searches a given object in a list.
When it finds a matching member, it returns a sublist with that member at
the first position. When it does not find a match, it returns #£. Because all
non-#£ values are considered true, you can write code like this:

22

(define (digit-type x)
(cond ((member x (1 3 5 7 9)) ’odd)
((member x "(0 2 4 6 8)) ’'even)
(else "not—-a—number)))

1.4.3 Chars, Strings, and External Representation

Like most other languages, Scheme provides data types for holding single
characters and sequences of characters. Single characters are represented
by chars, and sequences of characters are represented by strings.

At this point, it is time to introduce something called external representa-
tion. The external representation of an object is what the programmer keys
in in order to create an object of a given type. For instance, 123 is typed
to create a numeric object with a value of 123. Of course, the computer
does not really store the number 123 in this form, but it converts it to some
internal representation that is more efficient from the machine’s point
of view.

Because the internal representation of 123 would be something like
01111010, which is hard to decode for a human being, each Scheme object
maps to exactly one single external representation. Numbers map to their
decimal forms, logical falsity maps to #£, etc.

The Scheme procedures read and write translate between internal
and external representation. Read maps external representation to the
internal one:

(read) 12345 => 12345

Because Scheme environments use write to output their results, though,
you cannot see the internal representation. In fact, the internal represen-
tation is never of any interest to Scheme programmers. You do not have
to care about things like byte ordering, memory layout, etc. Scheme hides
these details from you and allows you to concentrate on real problems
instead.

The external representation of a char consists of the prefix #\ and the
character to represent, for example:

#\H #\e #\1 #\1 #\o
#AN #N(#\5 #\+ #)\

23

The last char in the above sample represents the blank character, but this
representation is unfortunate, because the character to represent is invisi-
ble. This is why an alternative external representation of this character ex-
ists: #\ space. The same is valid for the newline character, which is writ-
ten #\newline.

A sequence of characters is called a string. The characters of a string are
enclosed in double quotes:

"Hello, World!"

To include a quotation mark in a string, it must be prefixed with a back-
slash:

"He said \"hello\"."

To include a backslash, it must be prefixed with another backslash. The
external representation of a string requires the backslash before the
characters #\ " and #\\. Therefore,

"\"Hi\"" => "\"Hi\""

If you want to output a string without the additional backslashes, you have
to use the pretty-printing display procedure:

(display "A\\B") writes A\B

Note that the output of display is not an external representation. When
discussing Scheme, the external representation is used exclusively to refer
to objects. Neither the sequence A\B nor the sequence "A\B" is a valid
object of the type string.

1.4.4 Lists, Symbols, and Quotation

In fact I was lying when I told you that you only had learned about two
data types at the beginning of this section. Actually, it were four, because
programs like

(define (fact n)
(cond ((zero? n) 1)
(else (* n (fact (- n 1))))))

are nothing but /ists of integers, booleans, other lists, and symbols. So you
already have seen quite a few lists and symbols in this book. You even

24

may have understood how lists work by using your intuition. A simple
explanation would be that a list is a sequence of objects enclosed by
parentheses, like these:

(1 2 3)

(#t "hi"™ (+ 5 7) #\x)

(cond (a b) (#t #f))

(define (id x) x)

() ; <——— this is the empty list

These examples ilustrate two notable properties: The first one is that a
list may contain lists. Lists may be nested to any depth. The second one is
that Scheme programs are in fact lists. This is a particularly nice feature,
because it allows Scheme programs to examine, decompose, and even
write Scheme programs in a simple way, just by using procedures for
manipulating lists. On the other hand, this may seem troublesome, because
procedure applications look like lists, too:

(+ 5 7)

Is this supposed to be a list of three elements or an application of the +
procedure to the numbers 5 and 7? At this point, quotation comes into play.
Above expression is not quoted, so it is a procedure application:

(+ 5 7) => 12

To create a list containing the members +, 5, and 7, the quote pseudo
function is used:

(quote (+ 5 7)) => (+ 5 7)

Quote is a very important and frequently used construct and albeit it ap-
pears to do nothing more than return its argument without any further eval-
uation, you should read about its implications carefully. Understanding
quote is absolutely essential in order to understand Scheme.

Another type that frequently has to be quoted is the symbol. While sym-
bols are common in most programming languages, quoted symbols are
only present in a minority of them. As long as a symbol occurs without
quotation in a Scheme program, it has exactly the same meaning as in
most other languages: either it is a variable representing a value or it is a
keyword.

25

Scheme has keywords, too. You already have seen a few in this book,
namely define, cond, if, letrec, and lambda. Most other symbols
you have seen were in fact variables, including, for instance, zero?, fact,
and +.

As you can see, the naming conventions for symbols are rather lax in
Scheme. You may include letters, numbers, and even a wide range of
special characters,like + - * / : < > 2 and others.

Characters you may never use in symbols are these:
)y L1 .Y, %"

You may not use sequences that could be mixed up with numbers, either
(like 123, -1, etc).

The define pseudo function introduces a variable, binds it to a storage
location, and makes that location refer to the normal form of an expres-
sion. In most contexts, it is also correct to say that it *“‘binds a variable to
a value”.

Note that variables do not have types in Scheme, so this is different from
storing a value in a typed variable. When a value is stored in a typed
variable, like in a C program, the variable must have the right type to
hold that value. You cannot store a C string in a C int. A Scheme variable,
however, is merely a reference to a value. By associating a variable with a
value, you make the variable refer to that value.

Once a variable is associated with with a value, each reference to the
variable evaluates to that value:

(define foo 5)

foo => 5
(+ foo foo) => 10
(+ foo (* foo foo)) => 30

It is an error to refer to a symbol that is not bound to any value:

unbound-symbol => bottom

Unlike most other popular languages, Scheme can refer to symbols
themselves. In order to refer to a symbol rather than its value, the symbol
is quoted:

26

foo => 5
(quote foo) => foo

Even unbound symbols can be referred to in this way:

(quote unbound-symbol) => unbound-symbol

To avoid misunderstandings, the term symbol will be used to denote quot-
ed symbols and unbound symbols in this book. Unquoted and bound sym-
bols will be referred to as variables or arguments or, if they are bound to
procedures, even as procedures, as in “‘the proceduref takes two arguments
aand b”.

An alternative notation for quoting expressions is:
’foo => foo

This is because typing (quote something) each time you want to
refer to a symbol rather than its value or create a list rather than apply a
procedure is a bit tedious. The two notations are perfectly equivalent:

"expression = (quote expression)

(Quoted) symbols do not have any value other than their name. They
cannot be composed, decomposed, or manipulated in any other way. All
you can do with them is to convert them to strings:

(symbol->string ’foo) => "foo"
or compare them:

(eq? ’"foo ’"foo) => #t

(eq? ’"foo ’bar) => #f

(define baz ’foo)

(eq? ’"foo baz) => f#t

The eq? predicate tests whether its two arguments are identical. The term
“identical”’ is much stronger than the terms “equal’ or ‘“‘equivalent™. It
states that two appearances of an object are in fact one and the same. All
occurrences of one symbol are identical. Applying eq? to two appearances
of the same symbol always yields truth. Symbols, the empty list (), and
the truth literals #t and #f are the only objects whose occurrences are
identical.

Although there are many Scheme programs that do not make any use of

27

symbols, they are essential to the language, because Scheme programs
themselves are made of lists and symbols. For example, the expression

"(define (fact n)
(cond ((zero? n) 1)
(else (* n (fact (- n 1))))))

reduces to a list that resembles a Scheme program. Note that the quote
character (*) at the beginning quotes the entire expression. The expression
consists of (lists containing) truth literals, integers, and lots of symbols.
You can use list procedures to decompose the program and examine its
components. For example, you can extract the first member of the list,
define, and store it in a variable x. You can then use the expression

(eg? x ’'define)

to find out whether the program defines something. This is how Scheme
programs can examine Scheme programs. The necessary procedures for
composing and decomposing lists will be introduced in the following
section.

1.5 Some Things You Can Do with Lists

Scheme is a language of the LISP family, and “LISP” is short for “LISt
Processor”, so it is not surprising that Scheme has quite a few procedures
for processing lists. The list is a simple yet very flexible data structure
that can be used to implement a lot of useful algorithms. In the previous
section, the list was described as a sequence of objects delimited by
parentheses. While this is true, it is a simplified description. This section
will explain lists a little more in depth.

The most basic procedures for processing lists are called cons, car,
and cdr. Car and cdr are used to decompose lists and cons is used to
construct lists:

(car "(a b c)) => a
(cdr "(a b c)) => (b c)
(cons 'a "(b c)) => (a b ¢)

The following relation exists between these procedures: For any non-emp-
ty list x, the subsequent proposition holds:

X = (cons (car x) (cdr x))

28

The car procedure extracts the first member of a list. This member is
also called the head of the list. Cdr extracts a sublist containing all but
the head of a list. This sublist is called the fail of the list. Cons, finally,
assembles a new list by attaching a new head to an existing list.

There are a few important things to notice about these procedures. For
example, car always extracts the first member of a flat list, where lists
contained in lists count as single members, so:

(car " ((a b) c)) => (a b)
The same is valid for cdr:
(cdr "((a b) d)) => (d)

Cons can only add one single member to the head of an existing list. It
cannot be used to append lists, because

(cons "(a b) "(c d)) => ((a b) c d)
If you want to append lists, use append:
(append "(a b) "(c d)) => (a b c d)

The tail of a single-element list is the empty list and adding an element to
the empty list results in a single-element list:

(cdr 7 (x)) => ()
(cons ’'x ' ()) => (x)

Neither car nor cdr may be applied to the empty list, because the empty
list has neither a head nor a tail:

(car "()) => bottom
(cdr "()) => bottom

Using just the three basic list procedures, you can do a lot of interesting
things, already. For instance, an append procedure can easily be written in
terms of these:

(define (append2 a Db)
(cond ((null? a) b)
(else (cons (car a)

(

append2 (cdr a) b)))))

The null? predicate tests whether a list is empty:

29

(null?
(null?

(a b)) => #f
()) => #t

4
4
(Note that the empty list must be quoted in standard Scheme, even if some
implementations do not enforce this rule.)

So how does append2 work? Here is an explanation:

(append2 ’(a b) ’'(c d))
-> (append2 (a b) (c d))

-> (cons (car (a b)) (append2 (cdr (a b)) (c d)))
-> (cons a (append2 (b) (c d)))
-> (cons a (cons b (append2 () (c d))))
-> (cons a (cons b (e d)))
> (cons a (b ¢ d))
=> (a b c d)

Note that Scheme notation does not provide any means of representing in-
termediate steps involving symbols or literal lists. Therefore, literal objects
are outlined using boldface characters in partial reductions. For example,

(cons a (b ¢ d))

should actually be read as

(cons ’a "(b c d))

in illustrations like the sample reduction of append?2 above.

You may have noticed that append? has the same weakness as the fact
procedure introduced at the beginning of this book: it adds one recursive
call for each element in the first list. Can this procedure, too, be converted
into a tail-recursive one? Yes, it can:

(define (append2 a b)
(letrec
((app2

(lambda (a b)

(cond ((null? a) b)
(else (app2 (cdr a)
(cons (car a) b)))))))
(app2 (reverse a) b)))

The embedded app2 procedure, which does the real work, removes one
member of a at each iteration and attaches it to b. However, this causes the

30

members of a to be in reverse order when the procedure finishes. This is
why the list a is reversed before passing it to app2. This is quite a common
technique in Scheme.

This version of append?2 is much better than the initial one, but still not as
nice as the append procedure that is built into the language. For example,
to append three lists, you have to write

(append2 ' (a b) (append2 "(c d) ’"(e £)))

while the built-in procedure lets you append any number of lists:

(append) => ()

(append " (a b)) => (a b)

(append "(a b) "(c d)) => (a b c d)

(append "(a b) "(c d) "(e £f)) => (a b c de f)

And this version of append can still be written in Scheme! How this is
done will be explained in a later section, though.

1.6 Procedures and Local Scopes

You may have wondered what the lambda in procedures like fact2
is about:

(define (fact n)

(letrec
((fact?2
(lambda (n r)
(cond ((zero? n) r)
(else (fact2 (- n 1) (* nxr)))))))
(fact2 n 1)))

Again, there is a simple explanation and a more complex one. The simple
explanation is that “lambda” is just a placeholder name for anonymous
procedures. For instance,

(lambda (x) (* x x))

creates an anonymous procedure that computes the square of its ar-
gument:

(lambda (x) (* x x)) => f#<procedure (x)>

31

The question what exactly a procedure is is part of the more complex
answer and will be discussed a bit later. What is more important now is the
fact that there is not much of a difference between named procedures and
anonymous procedures. You can apply lambda functions to arguments just
like any ordinary procedure:

((lambda (x) (* x x)) 7) => 49

You can even bind an anonymous procedure to a symbol, making the
anonymous procedure a named procedure:

(define square (lambda (x) (* x x)))

In fact the above definition is perfectly equivalent to
(define (square x) (* x X))

and in early versions of Scheme the variant involving lambda was the
only way to define new procedures. Letrec does not support the new
syntax, so binding an anonymous procedure to a name is the only way to
create a local procedure inside of it. So much for the simple answer.

All Scheme procedures are either primitive procedures or closures. Primi-
tive procedures are procedures that can not (or, at least, not easily) be im-
plemented in Scheme. They form the very core of the language, and they
are mostly implemented in some other, typically more low-level, language.
The following procedures are examples for “‘primitives’:

car => f#<primitive car>
cons => f#f<primitive cons>
write => #<primitive write>

Constructs like lambda, define, and cond are also primitives in the
sense that they are part of the core language, but they are not really proce-
dures at all. They are part of the syntax of the language.

Some people may tell you that 1ambda is the only primitive that is really
needed to build a working Scheme. While this is true and even may be
a challenging mental exercise, it is not very practical, so do not listen to
these people until you feel a bit more familiar with Scheme.

Whether a pre-defined procedure is a primitive procedure or a closure
is merely an implementation detail. Some Scheme systems do not even
distinguish between them:

32

reverse => #<procedure (x)>
(lambda (x) x) => f#<procedure (x)>

BTW: All external representations that begin with the prefix #< are un-
readable, which means that they cannot be parsed by the read procedure.
This is because there is no practical external representation for procedures.
What should write output for a primitive procedure? Its machine code?
That would not be very portable. The same is valid for closures. Their im-
plementation depends highly on the Scheme system in use, so they do not
have a universal external representation, either.

What exactly is a closure? To answer this question in detail, another pseu-
do function will be explained first: Let. This construct is a close relative of
letrec, which has been used to create local procedures in some example
programs so far. Let binds symbols locally, creating a new context. The
following Scheme session illustrates how it works:

(define a ’'foo)
(define b ’bar)
(let ((a 3)

(b 4))

(* a b))

=> 12
a => foo
b => bar

First a is bound to foo and b to bar. Let then binds a to 3 and b to 4 locally,
thereby creating a new context. In this context, * is applied to a and b.
When the let finishes, the original bindings of the symbols that were
re-bound locally are restored. The context outside of a let is also called
the outer context of that 1et and the context created by it is called its
inner context. Variables of the inner and outer context can be merged:

(define foo 100)
(let ((bar 70))
(- foo bar))

=> 30

Only when an inner and an outer variable have the same name, the out-
er binding becomes invisible inside of an inner context. Symbols that are
unbound in an outer context remain unbound after their use in an inner
context:

33

xyz => bottom

(let ((xyz ’"some-value))
XyZ)

=> some-value

xyz => bottom

A variable that occurs in an argument list of a lambda function or in the
definition part of let (or letrec) is said to be bound in that procedure
or binding construct. For instance, the symbol x is bound in

(lambda (x) Xx)

and in

(let ((x "foo)) x)
but it is not bound in
(lambda (y) x)

A variable that is not bound in a given context is said to be free in that
context. Note that a variable can be bound in one context and free in
another at the same time:

(lambda (x) (lambda (y) (cons x y)))

In this example, x is bound in the whole expression, but y is only bound in
the inner lambda function. X is free in the inner function alone:

(lambda (y) (cons x y))

A variableis called “bound” in a given context, like a lambda function, be-
cause it is bound to a value when the procedure is applied. Free variables,
on the other hand, remain unchanged when the procedure is called. The
values of free variables are defined in the outer context of the procedure.

Let is very similar to a procedure application: it binds values to local
symbols (which are therefore ‘‘bound in its context’), evaluates a body,
restores the original bindings of its local variables, and returns the normal
form of the body. This is exactly what happens during a procedure appli-
cation:

((lambda (a b) (let ((a 5)
(* a b)) (b 7))
5 7) (* a b))
=> 35 => 35

34

So let is just an alternative syntax for the application of lambda func-
tions:

((lambda (a; ... apn) = (let ((a; vy)
body)
Vi ... Vn) (an vn))
body)

One major difference between let and the application of a lambda
function is that the application can be decomposed into two parts: the
lambda function itself and the list of its arguments:

(car "((lambda (a b) (* a b)) 3 4))

=> (lambda (a b) (* a b))

(cdr "((lambda (a b) (* a b)) 3 4))

=> (3 4)

An interesting question to ask at this point would be: what is the outer
context of the lambda function? The inner context is created when the
procedure is applied to its arguments, but this application may take place
a long time after defining the procedure and the outer context might have
changed in the meantime. For example, what is the following program
supposed to evaluate to:

(let ((v 1))
(let ((f (lambda (x) (* x v))))
(let ((v 0))
(£ 5))))

In the outermost let, v is assigned to one. In this context the procedure
f is created. In the context of f, v is bound to zero. In this context, finally,
f is applied to five. To find out what (£ 5) reduces to, the value of v in f
must be known. The fact that the innermost binding always takes prece-
dence suggests that the expression evaluates to zero, but in fact it reduces
to five:

(let ((v 1))
(let ((f (lambda (x) (* x v))))
(let ((v 0))
(f 5))))
=> 5

How can this be? Because the outer context may change between the
definition of a procedure and its application, lambda “freezes’ the outer

35

context at the time of its application and takes it with it. This is what the
experienced LISPer calls lexical scoping. It is called ““lexical’’ because the
value of a variable depends on its lexical (or textual) context. F is created
in a context where v is bound to one, so appearances of v in the body of f
evaluate to one.

BTW:If the above expression would have reduced to zero, the “dynamic”
value of v would have been used. This principle is known as dynamic
scoping, but Scheme uses lexical scoping exclusively.

The “frozen’ context of a procedure is also called the lexical environment
of that procedure. The combination of a lambda function and a lexical
environment is called a closure. In Scheme, every (non-primitive) proce-
dure is a closure, so the terms closure and procedure are mostly used as
synonyms.

1.6.1 What are Closures Good for?

In case you wonder what the use of lambda is: it can be used to create new
procedures on the fly. Here is a rather classic example:

(define (compose f g)
(lambda (x) (f (g x))))

The compose procedure takes two arguments f and g (which must be
procedures themselves). It evaluates to a procedure of one argument that
applies the two procedures passed to compose to its own argument (x). The
variables f and g belong to the outer context of the 1ambda, so they are
captured by the resulting closure. One says that 1ambda closes over f and

g

(compose car cdr) => #<procedure (x)>
i body = (£ (g x))
; £ = car, g = cdr

The resulting procedure applies the composition of car and cdr to its
argument, thereby extracting the second member of a list:

((compose car cdr) ’'(a b c)) =>Db

BTW: The procedure (compose car cdr) is part of the Scheme
standard. Its name is cadr. Of course, you could define cadr in a much
more straight forward way:

36

(define (cadr x) (car (cdr x)))

So the above example is indeed a bit artifical. Here is another example:
Imagine a procedure named filter which extracts all members with a given
property from a list:

(define (filter p a)
(cond ((null? a) ’"())

((p (car a))
(cons (car a)
(filter p (cdr a))))
(else (filter p (cdr a)))))

Filter uses a predicate to check whether a member has a given property.
All members x which satisfy (p x) are collected in the resulting list. The
following sample application of filter extracts all numbers from a list (the
number ? predicate tests whether its argument is a number):

(filter number? ’'(a 31 b 41 c 59)) => (31 41 59)

If you want to extract all non-numbers from the same list, you could pass
a lambda function negating the predicate number ? to filter:

(filter (lambda (x)
(not (number? x)))
"(a 31 b 41 ¢ 59))
=> (a b c)

However, the above lambda function leads to another interesting proce-
dure:

(define (complement p)
(lambda (x) (not (p x))))

The complement procedure creates the complement P’ of a predicate P.
Wherever P returns #t, P’ returns #£ and vice versa. Using complement,
above application of filfer can be written like this:

(filter (complement number?) ’‘(a 31 b 41 c 59))
=> (a b)

Complement can also be used to create a procedure that collects all mem-
bers of a list which do not satisfy the given predicate, thereby effectively
removing all matching members:

37

(define (remove p a)
(filter (complement p) a))

which would allow you to write:

(remove number? ’'(a 31 b 41 ¢ 59)) => (a b c)

1.7 Different Ways of Binding Symbols

In the previous section, two facilities for binding symbols locally were
mentioned, but there is a third one, so Scheme has in fact three variants of
let:

let let* letrec

This section explains the differences between these constructs. Let is the
most straight-forward one of them. As outlined before, it is basically equal
to a procedure application:

(let ((x 3)) (* x x))
is just another way of writing:
((lambda (x) (* x x)) 3)

Procedure applications are typically divided into the procedure part (which
is bound to a name) and the arguments to which the procedure is applied:

(define square

(lambda (x) (* x x)))
(square 3) => 9
(square 5) => 25
(square 7) => 49

Let, on the other hand, is mainly used to name parts of more complex
expressions in order to increase efficiency and/or readabiliy. For instance,
the following procedure searches an environment of the form that is used
in let:

alue-of sym env)

(define (v
(null? env) #£f)
(
e

(cond
eq? sym (car (car env))) (car env))
lse (value-of sym (cdr env)))))

(
(
(
(

When the search for the symbol sym in the environment env is successful,

38

it returns the binding of the given symbol and otherwise it returns #£ to
signal failure:

(value-of b "((a 1) (b 2) (c 3))) => (b 2)
(value-of ’'x "((a 1) (b 2) (c 3))) => #f

If you wanted to write a procedure that evaluates to the value of a symbol
if the symbol is in env and to the symbol itself otherwise, you would have
to call value-of twice:

(define (substitute sym env)
(if (value-of sym env)
(cadr (value—-of sym env))
sym))

The second application of value-of can be saved by using let:

(define (substitute sym env)
(let ((val (value-of sym env)))
(1f val (cadr val) sym)))

Instead of evaluating (value-of sym env) twice in case of a match,
this version of substitute binds the result returned by value-of to val and
uses the variable in the place of the application of value-of. This ver-
sion is both more readable, because val is easier to read than (value-
of sym env), and more efficient, because value-of is only called once,
no matter whether the given symbol exists in the environment or not.

BTW: in a real Scheme program, you would use the built-in assoc
procedure rather than coding value-of yourself. Assoc has the same
cost as value-of, though, so the above example remains valid.

Here is another application for 1et which demonstrates how to simplify
an expression. Given the coordinates of two points on a grid, the distance
between the points is to be calculated. Using Pythagoras’ theorem, the
distance is computed by:

square-root (distance-on-x-axis® + distance—on—y—axis2)

If the coordinates of one point are (x,y) and the coordinates of the other
point are (x2,y2), the distance on the x-axis is x2-x| and the distance on the
y-axis is ly2-yl, where x| denotes the absolute value of x. So the procedure
to compute the distance in Scheme looks like this:

39

(lambda (x y x2 y2)

(sgrt (+ (* (abs (- yv2 vy))
(abs (- y2 y)))
(* (abs (- x2 x))

(abs (- x2 x))))))

Although indentation even makes the formula readable, it can be simpli-
fied by extracting the distances on the individual axes using let:

(define (distance-between-points x y x2 y2)
(let ((dx (abs (- x2 x)))
(dy (abs (- y2 y))))
(sgrt (+ (* dx dx)
(* dy dy)))))

In applications of Scheme procedures, the order of evaluation is unspeci-
fied. This means that in a procedure application like

(+ (= 12) (*34) (*506))

the arguments (* 1 2), (* 3 4),and (* 5 6) may be evaluated in
any order before they are passed to +. Because let is equivalent to the
application of a (lambda) function, the same is valid for let:

(let ((a (* 1 2))
(b (* 3 4))
(c (* 56)))

(+ a b ¢))

When creating local contexts using let, it is important that the definitions
of the local values be independent (which they are in the above example).
No value specified in the environment of a let may refer to a variable
defined in the same let. Thisis because let first evaluates all valuesin its
environment and then binds the values to symbols. The above expression
would first evaluate (* 1 2), (* 3 4),and (* 5 6) insome unspecific
order and only after evaluating all of these expressions, it would bind a to
2,bto 12, and c to 30. Dependencies between definitions of the same let
will lead to undesired results:

(let ((a 5)
b (+ 1 a))
(c (+ 1 Db)))
c)
=> bottom

40

Because a is bound to 5 after the evaluation of all values of the environ-
ment, a is not bound at all when evaluating (+ 1 a).The same is valid
for the b in the value of c. The desired effect can be achieved, though, by
nesting let:

(let ((a 5))
(let ((b (+ 1 a)))
(let ((c (+ 1 b)))

c)))
=> 7

In this example, the value to be bound to b is computed inside of the
context in which a is bound to 5, and c is bound inside of the context in
which b is bound to 6. Because nesting applications of 1et may look a bit
cumbersome, Scheme provides a binding construct which evaluates and
binds values in sequence:

(let* ((a 5)

c)
=> 7
The star in 1et * indicates that “the construct does something sequential-
ly”. Let* evaluates the first value and binds it to a symbol, thereby creat-
ing a new context. In this context it evaluates the second value and binds it
to a symbol, creating yet another context, and so on. The expression form-
ing the value of a symbol may refer to all variables created before it in the
same let *. The following expressions are equivalent:

(let ((vy ajp)) = (let* ((vy aj)

(let ((vy ajy)) (vy az)

(let ((vn an)) (vn an))
body))) body)

1.7.1 Binding Recursive Procedures

In the code so far letrec was used to bind procedures and 1et was used
to bind all other values. However, this is not really the difference between
these two binding constructs. Letrec can be used to bind values, too:

41

(letrec ((a 17)
(b 4))
(+ a b))
=> 21

and let can be used to bind #rivial procedures:

(let ((square (lambda (x) (* x x))))
(square 7))
=> 49

The order of evaluation of the values of letrec is unspecified, just as
the order of evaluation in 1et. So what is the difference between let and
letrec? A minor hint was already given in a sentence above: let can
only be used to bind trivial procedures. In this case “‘trivial”’ means ‘“not
using recursion’, and this is exactly what letrec is for: binding recursive
procedures. In case you wonder why let cannot be used for this, take a
look at the following expression:

(let ((down
(lambda (x)
(if (zero? x)
0
(down (- x 1))))))
(down 5))
=> bottom

When you try this example, your Scheme system will complain about
down being unbound. How can this be?

First the value to be assigned to down is evaluated. This involves the ap-
plication of 1ambda which returns a closure. And this is exactly the prob-
lem. Lambda closes over down before down is bound to the procedure. In
the resulting closure, down is unbound, and when the closure is applied to
a non-zero value, an error occurs. (When the closure is applied to zero, no
recursion takes place and 0 is returned, just as expected.)

What letrec does after binding values to symbols in the same way as
let does is to fix recursive references. It even fixes indirect recursive ref-
erences which are created by mutually recursive expressions like these:

(letrec
((even-p
(lambda (x)

42

(if (zero? x) #t (odd-p (- x 1)))))

(odd-p
(lambda (x)
(if (zero? x) #f (even-p (- x 1))))))
(cons (even-p 5) (odd-p 5)))
=> (#f . #t)

To fix recursive bindings, letrec needs a construct that is not purely
functional, because it changes the value of a variable. This construct is the
set ! pseudo function. The trailing ““! "’ in the name set ! indicates that it
does something that requires special attention. Constructs ending with ““!”
are used with care in Scheme.

Set! changes the value associated with a variable:

(define foo 0)

foo => 0
(set! foo 1)
foo =>1

It differs from define in two ways:

— define introduces a new variable, which set ! does not;
- set! can be used anywhere, define only in specific contexts.

Standard Scheme requires a variable to be defined before you can set !
it, but some Scheme environments do not enforce this rule.

How does set! help letrec define recursive procedures? Like let*,
letrec can be re-written to 1et (and set!):

(letrec ((down
(lambda (x)
(if (zero? x) 0 (down (- x 1))))))
(down 5))

becomes

(let ((down #f))
(let ((t0 (lambda (x)
(1f (zero? x) 0 (down (- x 1))))))
(set! down tO0)
(down 5)))

The outer let binds the variable down to something unimportant. The

43

only purpose of this definition is to introduce the procedure name before
the inner let is entered. In the inner 1et, lambda closes over the binding
of down to an unimportant value and then let binds the resulting proce-
dure to the temporary variable 0. In the body of the inner let, the bind-
ing of down to #f£ is still visible. Set ! changes its value to the procedure
bound to ¢0. This mutation also affects the value that 1ambda closed over,
because the scope of the outer 1et is still in effect. The resulting structure
is recursive:

down = (lambda (x)
(1f (zero? x) 0 (down (- x 1))))

In general, letrec can be transformed to let in the following way:

(letrec ((vy py) = (let ((vq #£f) ... (vy #£))
... (let ((t1 pp)
(Vvn Pn))
body) (tn Pn))

(set! vy tq)

(set! vpy th)
body))

Set! and letrec are the only Scheme constructs discussed in this book
which can create cyclic structures. If you think that you can create a
recursive structure in a purely applicative subset of Scheme without using
constructs like letrec or set!, I really would like to see how it works
(but do not try too hard, it may turn out to be impossible).

1.8 Lists, Pairs, and History

A good definition of the list is still lacking. To give one, another type that
already has occurred in this book will be explained first: the pair. A pair
is what you get when you cons together two atoms. An atom, as the name
suggests, is a type that cannot be decomposed. (“Atomos” is the Greek
word for “indivisible”.) A Scheme object that cannot be decomposed is
said to be ““atomic’’. The following objects are atomic:

— Symbols
- Booleans
— Procedures
— Numbers

44

- Chars
- Strings
— The empty list

In the previous sections, the second argument of cons has always been
a list. So what happens when cons is applied to two atoms? Here is
the answer:

(cons "a 'b) => (a . b)

The two objects are “‘glued together” and form something that is called a
dotted pair. To understand how his works, it is probably best to disclose
some internal details. The cons procedure actually creates a special type
of object that is sometimes referred to as an object of the type cons. Its
only purpose is to glue together two objects. The dot of a dotted pair may
be considered to be the external representation of a the cons object itself.

What is particularly interesting is what happens when the empty list is
consed to an atom:

(cons "a ()) => (a)

You might have expected an object of the form (a . ()) but what you
get is a list with a single member. The empty list seems to have vanished,
but it has not. In fact a single-element list is a pair whose cdr part is the
empty list:

(fa . () = (a)

Gathering all information about lists that have been given so far, the
following rules for constructing lists can be devised:

- () is alist (obviously);
- (Cons x ’()) isalist for any object x;
- If yisalist (and x is any object), (cons x y) isa list.

The second case is in fact redundant, because () is a list and so case two is
just a variant of case three. This method of constructing lists was used in
the self-made append?2 procedure at the beginning of this book. Append2
created some nested conses in order to create a new list:

(cons ’'a (cons b "(c d))) => (a b c d)

Every list can be written in dotted pair notation. For example

45

(abc) = (abc . ())
= (ab . (c. (O))
= (a . (b. (¢c. O)))

The first line is particularly interesting, because it shows that the cdr part
of the last element of a list is always (). This is why null? can be used
to detect the end of a list. (Other dialects of LISP call the empty list NIL
which means “Not In List”.) Above illustration also makes clear why
taking the cdr part of a list results in a list. Dotted pair notation also can
be used to show why consing a list to a list does not append the lists:

(cons ’(a b) "(c d))
=> ((a b) . (c d))
((a b) c d)

Above definition for the list implies that the last element of each list must
be ().Is it possible, though, to append an atom to a list? Let us see:

(append "(a b c) 'd) => (a b c . d)

The result of this application is called an improper list. It is called “im-
proper”’ just because it does not end with (), which every proper list must
do. Because the last member of an improper list is not the empty list, the
external representation of such a list includes a dot marking its last cons.
You can create improper lists not only by appending an atom to a list, but
also by just typing them in:

"fabc . d) => (abc . d

However, most procedures of Scheme expect proper lists and reduce to
bottom when an improper list is passed to them:

(reverse "(a b . ¢c)) => bottom
(append "(a b . c) ’'(d)) => bottom

Improper lists are not useless, though. Even the Scheme language itself
makes use of them. The details will be discussed in a later section.

1.8.1 Association Lists

A list that consists of pairs exclusively is called an association list (or
alist). Alists are frequently used to form environments. Some Scheme
implementations even use them to store their own environments, like the
lexical environments of closures.

46

Each pair of an alist is called an “‘association’. The car part of an associ-
ation is called the “key” and the cdr part is called the ‘““value” of that as-
sociation:

((key; . value;) ... (keyp . valuep))

To retrieve an association from an alist, the assoc procedure is used. It
returns the first association containing the given key. In case no matching
association is found, it returns #£:

(define alist ’'((a . 1) (b . 2) (¢ . 3) (b . 4)))
(assoc 'b alist) => (b . 2)
(assoc ’'x alist) => #f

Although assoc always returns a true value when it finds a matching
association and false if it does not find one, it is not a predicate, because
it returns any true value in case of success and not always #t.

Note that associations created by alists are independent from bindings of
symbols. Although the above alist associates symbols with values, it does
not change the bindings of any symbols. The symbols themselves serve as
keys in alists:

(define x ’'foo)

x => foo

(assoc 'x '((x . bar))) => (x . bar)
x => foo

The keys of alists are not really limited to symbols, but they can be of any
type. There may even be different types of keys in the same alist:

(define alist ' ((#f . first)

("hello" . second)
((a b c) . third)))
(assoc #f alist) => (#f . first)
(assoc "hello" alist) => ("hello" . second)
(assoc '(a b c) alist) => ((a b c) . third)

1.8.2 Nested Lists

Another thing you might want to know about lists is how to access mem-
bers of nested lists efficiently. Of course, the car and cdr procedures can
be combined to achieve this, but nested applications of these procedures
soon become a mess to read:

47

define x ' (define (square x) (* x x)))

(

(car x) => define

(car (cdr x)) => (square x)
(car (car (cdr x))) => square
(car (cdr (car (cdr x)))) => x

You also might want to know why Scheme still uses the names car and
cdr (which are artifacts from the early LISP days of the 1950’s) to refer
to the heads and tails of lists. Other dialects of LISP use names like ““first”
and “‘rest” or ““head” and “‘tail”’, so why does Scheme stick with the tradi-
tional names? The answer is simple: because they can easily be combined
to form new names for procedures that access members of nested lists. For
example, a combination of car and cdr is used to access the second ele-
ment of a list:

(car (cdr "(a b c))) => b

If you take the “a” of car and the “d” of cdr, you can use these letters
to create the name cadr. This is the name of the Scheme procedure for
accessing the car of the cdr of a list (or the head of the tail of a list (or the
first member of the rest of a list)):

(cadr "(a b c)) => Db

Scheme provides built-in procedures for accessing up to four levels of
nesting, such as

(cddr "(a b c)) => (c)

(caddr "(a b c)) > C
(caddr ’"((a b) (c d) (e f))) => (e £f)
(caaddr "((a b) (c d) (e £))) => e
(cadadr "((a b) (c d) (e £))) =>d

Figuring out which member a procedure like cadadr produces is simple.
Read the a’s and the d’s of the name backward and perform a car for each
“a” and a cdr for each ““d”, as in the following example:

(cadadr " ((a b) (c d) (e f))) ; do a cdr
-> (cadar ((c d) (e £))) ; do a car
-> (cadr (e d)) ; do a cdr
-> (car (d)) ; do a car
=> d

Of course, these procedures are only useful when decomposing lists on the

48

fly. If you plan to use lists as data structures, you would give more descrip-
tive names to procedures extracting specific members. For example, a date
could be stored in a list of the form

(year month day)

but of course, you would not use the names car, cadr and caddr to refer
to the single fields of a date object. You would define accessor procedures
like these:

(define (year date) (car date))
(define (month date) (cadr date))
(define (day date) (caddr date))

Of course, cadr and friends as well as custom names for accessing parts
of structured lists are only suitable for handling rather flat and short lists.
More complex list structures are typically handled by “traversing” them.
The built-in length procedure, for instance, traverses a flat list and
counts its members, resulting in the length of that list:

(length ’(a b c)) => 3
(length "(a (b (c) d) (e (£ (g))) h)) =>4

The (also built-in) 1ist-ref procedure produces the nth member of a
list, where the first member is at position zero:

(list-ref ’'(a b c) 0) => a
(list-ref ’'(a b c) 2) => c
(list-ref ’'(a b c) 3) => bottom

When no appropriate procedure is available, a specialized one must be
coded. For example, Scheme has no procedure for computing the depth
of an object (probably because it is not terribly useful). However, writing
a depth procedure may serve as an interesting exercise. The depth of an
object is the maximum number of times that car can be applied to that
object. The cars do not have to be in a row, but they can be mixed with
any number of cdrs. For example,

(depth ’"x) => 0

(depth 7" (x)) =>1

(depth / ((x))) => 2
(depth " (u (v (x)))) => 3

So the depth of each member of a given list has to be computed and then

49

the maximum of the results has to be chosen. To compute the depth of each
sublist, depth has to recurse. The trivial case is simple: each atomic object
has a depth of zero. The depth of non-atomic objects is the depth of the
deepest object contained in it plus one:

(define (depth x)
(if (not (pair? x))
0
(+ 1 (deepest-sublist x))))

The depth of the deeptest sublist is computed by applying depth to each
sublist, collecting the results, and then returning the maximum of the re-
sults. To do so, a procedure for finding the maximum of a list is required:

(define (max-list a)

(cond ((null? (cdr a)) (car a))
((> (car a) (cadr a))
(max—1list (cons (car a) (cddr a))))

(else (max-list (cdr a)))))

(Note: the > procedure, which makes sure that its arguments are in numer-
ically strict descending order, is a predicate, even if its name does not end
with a question mark.)

The only procedure that is left to implement is deepest-sublist. This pro-
cedure has to transform a list of objects into a list of numbers, where each
number indicates the depth of the object it replaces. After transforming the
list, it is passed to max-list to extract the greatest depth found in the list.
Here is the code:

(define (deepest-sublist x)
(letrec
((transform
(lambda (in out)
(cond ((null? in) out)
(else (transform (cdr in)
(cons (depth (car in))
out)))))))

(max—-list (transform x ’"()))))

When looking at the transform procedure, you might notice an opportunity
for an optimization in the following expression.

(cons (depth (car in)) out)

50

Got it? Before doing the next iteration in transform, the depth of the cur-
rent sublist is consed to out. If the maximum depth found so far was bound
to out instead of the list, the new maximum depth could be computed right
at this point. In this case, the max-list procedure could be optimized away
altogether. Of course, transform and out would have to get more descrip-
tive names, too:

(define (deepest-sublist x)
(letrec
((max—depth
(lambda (in max-so-far)
(cond ((null? in) max-so-far)
(else (max-depth (cdr in)
(max (depth (car in))
max-so—-far)))))))
(max-depth x 0)))

Optimizations like this spring to mind quite frequently. The first program
rarely is the optimal solution (if such a thing exists anyway). The most
important goal is to make an algorithm work at all. Even the first version
of depth worked fine, and there is barely a (non-trivial) program that
cannot be optimized in one or another way. Do you think that depth cannot
be expressed in an even simpler way? We will see.

1.8.3 A Historical Note

The names car and cdr date back to the very first implementation of
LISP in the late 1950’s. This version of LISP ran on an “IBM Type 704
Electronic Data Processing Machine”, which was a vacuum tube-based
computer.

The memory of that computer consisted of up to 32768 machine words of
magnetic core, so 15 bits were sufficient to address each word of storage.
A machine word on the IBM 704 had 36 bits, so a complete cons object
could be stored in a single word or register.

LRI LT3

The registers of the 704 had four parts named “‘prefix”’, “address”, “tag”,
and ‘““decrement”. The address and decrement parts were used to store
addresses, so they had a size of 15 bits each. Hence they were used to store
the references to the car and cdr part of a cons cell.

The routine for extracting the head of a cons cell was called CAR, which

51

was short for “Content of Address part of Register”. The routine to ex-
tract the tail was called CDR for “Content of Decrement part of Regis-

’9

ter .

Although the technical details vanished when LISP was being ported to
other machines, the names car and cdr persisted, and most dialects of
LISP still keep them today, because they can easily be combined to form
new procedure names like cadr.

52

2 Less Basic Scheme Programming

2.1 Variable Argument Procedures

Many languages provide a means of defining procedures that take a vari-
able number of arguments, and Scheme is among them. Normally each
variable is bound to one argument during a procedure call. For example,
the following max procedure takes two arguments and returns the greater
one of them:

(define (max a b)
(if (> a b) a b))

When max is called, its argument a is bound to the first argument and b is
bound to its second argument:

(max 34 43)
-> (1f (> 34 43) 34 43)

However, the real max procedure of Scheme is a variadic procedure,
which means that it accepts any positive number of arguments:

(max 51 3 8 9 7 26 4) => 9

In the previous section, the max-list procedure was defined. This procedure
extracted the greatest member from a list of values. It had to be called with
a single argument which was a list of the numbers to process:

(max-list (5 1 3 8 9 7 2 6 4)) => 9

So the algorithm is already there. The only problem left is to stop Scheme
from decomposing the list of arguments when calling a procedure. This
is where improper lists come into play. A procedure with an improper
argument list takes any number of arguments, but at least as many as it
has variables before the dot. Here is an example:

(define (fv2 a b . c¢c) ¢)

This procedure accepts at least two arguments. Its first argument will be
bound to a and the second one to b. The list of remaining arguments will
be bound to c:

(fv2 "foo ’'bar ’'baz) => (baz)
(fv2 '"a '"b 'c 'd 'e 'f) => (c d e f)

53

If the procedure has exactly two members, the empty list is bound to c:
(fv2 "a "b) => ()
Passing any smaller number of arguments to fv2 results in an error:

(fv2 ’"a) => bottom
(fv2) => bottom

The max procedure should expect at least one member, because applying
max to zero members would not make any sense. Here is a procedure that
can be wrapped around max-list in order to create a max procedure taking
a variable number of arguments but at least one:

(define (max x . a)
(max—-1list (cons x a)))

The x before the dot makes Scheme report an error when less than one
argument is passed to max. However, the x has to be consed to the list
holding the rest of arguments before passing the list to max-Iist. This could
be avoided by making max accept zero or more arguments. In this case,
though, the max procedure itself would have to make sure that at least one
argument was passed to it:

(define (max . a)
(1f (null? a)
(bottom "max requires at least one argument")
(max-list a)))

This definition has no symbols between the procedure name and the dot
of the argument list, so it binds the entire list of arguments to a without
doing any decomposition. When zero arguments are passed to this version
of max, the bot t om procedure is used to abort the computation and report
an error.

Note that the bot t om procedure does not really exist in Scheme. Because
it does not exist, Scheme will print an error message and abort the current
computation when it encounters an application of bottom, which is
exactly what bottom is intended to do. If your Scheme system offers a
(non-standard) procedure like error or wrong, you may prefer to use it
in the place of bottom.

Because (non-primitive) procedures are created using 1ambda, there must
be a way to create variadic lambda functions, too. Indeed this is possible:

54

((lambda (a . b) b) ’'foo ’'bar) => (bar)
((lambda (a . b) b) 'a 'b 'c) => (b c)
((lambda (a . b) b) ’'foo) => ()

Using lambda, procedures that are local to a letrec can be made vari-
adic, too. It is even possible to create procedures accepting zero or more
arguments using lambda. A pair obviously cannot be used to achieve this,
because a pair with no car part would not be a pair. So how does it work?
Decomposing the signatures of some procedures gives the answer. The sig-
nature of a procedure is a list containing the name and the variables of a
procedure, as in

(define (£2 a b . ¢) c¢)

The cdr part of a signature is the argument list of a procedure, e.g.:

; Definition Signature Arguments
(define (f x) v) (f x) (x)
(define (f x . vy) vy) (f x . v) (x . vy)
(define (f . x) x) (f . x) X

So the argument list of a variadic procedure with zero or more arguments
isnot a list at all, but a single variable. This variable will be associated with
the entire list of arguments when the procedure is called:

((lambda x x) ’'a 'b ’'c) => (a b c)
((lambda x x) ’foo) => (foo)
((lambda x x)) => ()

BTW: (Lambda x x) happens to be the code of a very useful Scheme
procedure named 1ist. All it does is to evaluate to the list of arguments
passed to it. Because Scheme evaluates arguments before passing them
to procedures, the resulting list will be a list of normal forms, which is
different from specifying a literal list:

"+ 5 7) (3 4)) => ((+57) (¥ 3 4))
(list (+ 5 7) (* 3 4)) => (12 12)

Because variadic arguments are passed as lists, they cannot simply be
passed to other variadic procedures. For example, the following attempt ro
write a procedure that extracts the limits of a list (its least and its greatest
member) fails:

((lambda a (list (min a) (max a))) x) => bottom

55

This expression reduces to bottom for any value of x, because a list is
passed to min and to max while both of these procedures expect numbers
as their arguments. If min and max were two-argument procedures, this
would be simple:

(lambda a
(list (min (car a) (cadr a))
(max (car a) (cadr a))))

This approach decomposes the variable argument list using car and cadr
and then passes the extracted arguments to min and max. This method
works only if the number of arguments is known in advance, though.

The program would be much nicer and simpler, if the variable argument
list itself could just be passed to min and max. This is the point where the
apply procedure comes into play:

(define (limits . a)
(list (apply min a)
(apply max a)))

(Apply £ a) applies a procedure f to a list of arguments a:
(apply £ 7(1 2 3)) —> (£ 1 2 3)

Of course the number of members of the list must match the number of
arguments that the procedure expects:

(apply cons ’(a)) —-> (cons ’a) => bottom

Apply is an ordinary procedure. Its arguments are passed to it using call
by value. A procedure is called “‘by value™, if all arguments of that proce-
dure are evaluated before they are passed to the procedure. In Scheme all
procedures are called by value. Pseudo functions, on the other hand, are
applied “by name”’. Passing arguments to a function using call by name
means that the arguments are not evaluated before they are passed to the
function. For example, quote is called by name:

(quote (+ 2 3)) => (+ 2 3)
while the 1ist procedure is called by value:
(list (+ 2 3)) => (5)

(Apply £ a) receives its arguments by value, but applies f to the

56

members of a using call by name:

(apply cons ’(a b))
-> (cons a b)
=> (a . b)

If (apply £ a) would pass the members of a using call by value, they
would be evaluated twice: once when calling apply and another time
when applying f. In the above example this would mean that the values
of a and b would be passed to cond, resulting in bottom if a or b was
unbound. If you actually wanted to pass the values of some variables a, b,
and c to a procedure using apply, you would use 1ist:

(apply + (list a b c))

but then again, this would be equivalent to using the procedure being
applied directly:

(apply + (list a b c)) = (+ a b ¢)

BTW: The compose procedure introduced earlier in this book can be
improved by using apply, too. The version introduced earlier can only
compose unary procedures (procedures of one argument). The improved
version accepts a procedure of any arity (any number of arguments) in the
last position:

(define (compose f qg)
(lambda x (f (apply g x))))

2.2 Identity and Equality

In Scheme, there are many procedures for testing for equality, but there is
only one procedure for testing for identity. As outlined earlier, only appear-
ances of the same object can be identical. The definition of ‘“‘equality” is
a much broader one.

There are only three types of objects that can be tested for identity: the
symbol, the boolean, and the empty list. It would be incorrect to state that
“two symbols are identical, if they have the same name” , because identity
is arelation that only exists between an object and itself. If there are two or
more symbols, they cannot be identical. However, the name of one symbol
can be written down any number of times, like this:

foo foo foo foo foo

57

In this case, the name of the symbol exists five times, but the symbol is
still unique. Sometimes the name of a symbol is referred to as a symbol,
which is confusing with regard to identity. It is better to state that all these
names refer to the same symbol. The eq? procedure tests whether two
expressions reduce to the same symbol:

(eg? ’'foo ’'foo) => #t
(eq? ’"foo ’bar) => #f
(egq? "foo (car ’(foo))) => #t

The empty list () shares the property of uniqueness with symbols. There
is only one empty list in Scheme (which is why it is frequently referred to
as the empty list), so eg? can be applied to it safely:

(eg? " () "()) => #t
(egq? "foo 7 ()) => #f

The truth literals #t and #£ are unique, too:

(eqg? #f #f) => #t
(eg? #t #t) => #t

If one of the two arguments of eq? is neither a symbol nor an empty list
nor a boolean, the result is negative:

(eg? ’'foo 5) => #f
(eg? #t #\x) => #f
(eg? () '(y)) => #f

So eq? performs some implied type checking. If the types of its arguments
do not match, it always returns falsity.

If both arguments of eg? are neither symbols nor empty lists nor a
booleans, the result is undefined:

(eg? 5 5) => bottom
(eg? #\a #\a) => bottom
(eq? 7 (x) ’(x)) => bottom

Note that bottom really means “‘undefined” in this case. Some implemen-
tations of Scheme may return truth when eqg? is applied to 5 and 5, some
may return falsity, some may return truth most of the time and falsity an-
other time. Just do not use eg? to compare with anything but symbols

58

and booleans, and you are on the safe side. Even to compare with (),
null? should be preferred.

There are lots of other types in Scheme which can be compared. However,
these types are compared in terms of equality or equivalence. There is
a whole bunch of different procedures for comparing different types of
objects. For example, these procedures are used to compare numbers:

< <= = > >=

These are predicates, but because their names consist of special characters
exclusively, they have no question marks attached. The meanings of these
symbols are the same as in mathematics or in many other programming
languages: < means ‘“less than”, >= means ‘‘greater than or equal to”,
and = tests for numeric equivalence. There is no predicate to test whether
a sequence of values is not equivalent, though. The reason will become
clear soon.

The numeric predicates of Scheme are variadic procedures that take at
least two arguments, and

(< a b c d)

actually tests whether a is less than b and b is less than ¢ and c is less than
d. In other words, < tests whether its arguments are in monotonically as-
cending order. The <= predicate tests whether its arguments are in mono-
tonically non-descending order, and = tests whether its arguments are all
equivalent.

Given these definitions, what is a hypothetical not= (not-equivalent)
predicate to do? To be in line with the above definitions

(not= a b c)

would mean that a is not equal to b and b is not equal to c. In this case,
though, not= would have a meaning hat differs from

(not (= a b c))
The latter would denote that a is not equal to b or b is not equal to c.

Because each of the above definitions of negative equivalence is flawed in
one or another way, the Scheme standard does the only right thing to do:
it does not include such a definition at all.

59

There are predicates similar to = and friends that are used to compare chars
and strings. They work in the same way as the numeric predicates, but
compare chars and strings respectively. These procedures are not required
by the standard to accept more than two arguments, but implementations
may choose to make them variadic. The names of string and char predi-
cates are formed by attaching the prefixes ““string” or ““char’” and append-
ing a question mark:

numeric char string

< char<? string<?
<= char<=? string<=?
= char="? string="?
> char>? string>?
>= char>=? string>=?

A char a is considered ‘“‘less than” a char b, if

- they are both upper case letters and a comes before b in the alphabet;
- they are both lower case letters and a comes before b in the alphabet;
- they are both digits and the value of a is less than the value of b.

The definitions of the other char predicates can be derived from the above
rules using basic logic:

(char>? a b) = (char<? b a)
(char<=? a b) = (not (char>? a b))
etc

When comparing letters, only the alphabetic part of the ASCII definition
is taken into consideration. The order of characters other than letters and
decimal digits (“‘special” characters) is undefined, and so are the relations
between letters and digits, letters and special characters, and digits and
special characters:

(char>? #\x #\%) => bottom
(char>? #\+ #\-) => bottom
(char>? #\+ #\0) => bottom

The char equivalence predicate has no such limitations, though:

(char=? #\a #\0) => #f
(char=7? #* #*) => {#t

When the name of a char predicate begins with “char-ci” instead of

60

*“char”, then the predicate folds the case of its arguments before compar-
ing them. The abbreviation *“‘ci” means case insensitive. For example,

(char<? #\a #\b) => #t
(char<? #\a #\B) => bottom

but
(char—-ci<? #\a #\B) => #t

Strings are sequences of chars, so the string predicates basically use
the char predicates to compare the individual characters of two strings.
String=7? evaluates to truth, if the strings passed to it contain equal char-
acters at corresponding positions:

(string=? "abcd" "abcd") => #t
(string=? "dcba" "abcd") => #f

The other predicates skip over all characters that are equal in both strings
and then apply the corresponding char predicate to the first characters that
do not match, returning its result:

(string<? "abcd" "abcz") => #t
(string>? "abcd" "abca") => #t

If two strings have different lengths and contain equal characters up to
the end of shorter string, the shorter string is considered “‘less than” the
longer string:

(string<? "abc" "abcd") => #t

Like the char predicates, all of the string predicates have case insensitive
counterparts called string-ci=?, string-ci<?,etc. They work in the
same way as the case sensitive string predicates, but apply the correspond-
ing case insensitive char predicates instead.

Given all the different types of equivalence described in this section, a
general predicate for testing all kinds of objects for equality would be
desirable. Such a predicate is discussed in the following section.

2.2.1 A More General Form of Equality

The predicates discussed in the previous section express identity and
equivalence. Identity, the sameness of two objects, already has been dis-

61

cussed before. Equivalence expresses that two objects have ‘‘the same val-
ue” . Itis typically applied to objects on which an ordering can be imposed,
like numbers, characters, or strings.

Scheme also provides a more general equivalence predicate that can be
used to compare objects of different types: eqv? is a less strict variant of
eq? that can be used to compare numbers and characters:

(eqv? ’'x ’'x) => {#t
(eqv? #f #£f) => #t
(eqv? " () "()) => #t
(egqv? #\Z #\Z) => #t
(eqv? -123 -123) => {#t

For each pair of arguments for which eq? returns truth, eqv ? returns truth
as well. Eqv? performs the same implied type checking as eq?:

(eqv? 5 "x") => #f
(eqv? 7 ' (x)) => #f

But even eqv? cannot be used to compare two strings or pairs:

(egqv? "abc" "abc") => bottom
(eqv? ' (x) '"(x)) => bottom

While strings can be compared using string=? or string-ci=?, none
of the procedures discussed so far could compare pairs.

Pairs have no order, so equivalence does not apply to them. Because the ap-
plication of eq? to pairs is undefined, identity does not help either, which
leaves equality. To give a first impression of general equality, only symbols
and lists of symbols will be taken into consideration. Two lists of sym-
bols are equal, if they contain the same symbol at corresponding positions.
Since the list is only a special case of the pair, though, an approach based
on the pair would be more promising. Here is a first definition:

Two objects are equal, if

- they are the same symbol;
- they are both pairs and contain equal car and cdr parts.

The conversion of this definition into code is quite straight-forward:

(define (eqgl? a b)
(if (pair? a)

62

(if (pair? b)

(if (egl? (car a) (car b))
(egql? (cdr a) (cdr b))
#£)
#£)
(eg? a b)))

The condition “a and b are both pairs and contain equal car and cdr
parts” is implemented in a rather awkward way in this procedure by using
three nested applications of if. Scheme provides a much better way of
expressing logical conjunctions. The expression “a is a pair and b is a
pair” can be written as:

(and (pair? a) (pair? b))

The and pseudo function does not just implement a logical “‘and’’, though.
In fact it implements conditional evaluation in a similar way as cond or
if. And evaluates its arguments in sequence until either an argument re-
duces to #£ or it runs out of arguments. As soon as one of its arguments
evaluates to # £, it stops instantly and returns falsity, ignoring the remaining
arguments, if any. Therefore, it is safe to write code like this:

(and (pair? a)
(pair? (car a))
(caar a))

If a is not a pair, and returns #f immediately and the expressions
(pair? (car a)) and (caar a) are not evaluated at all. Only if a
already turned out to be a pair, the next expression is evaluated, and only
if (car a) is a pair, too, the final expression is reduced. In this case, the
value of the final expression is the value of the entire application of and.
By skipping the remaining expressions as soon as a predicate could not be
satisfied, the above application of and protects car from taking the car
part of a non-pair.

Formally and can be re-written using i £ in the following way:

(and a b) = (if a b #f)
(and a b ¢) = (1f a (1if b c #f) #f)
etc

Using and, the above eq!? predicate can be simplified significantly:

63

(define (eqgl? a b)
(if (and (pair? a)

(pair? b))
(and (egl? (car a) (car b))
(egql? (cdr a) (cdr b)))
(eg? a b)))

Based on the egl? procedure, a general predicate for testing the equality or
equivalence or identity of any two objects can be devised. Such a predicate
could be used to compare any type of objects without ever reducing to bot-
tom (with one exception that will be outlined later). In order to compare
any objects, some type checking has to be added. Using and makes this a
piece of cake:

(define qual? a b)

(e
(cond ((number? a) (and (number? b) (= a b)))
((char? a) (and (char? b) (char=? a b)))
((string? a) (and (string? b) (string=? a b)))
((and (pair? a) (pair? b))

(and (equal? (car a) (car b))

(equal? (cdr a) (cdr b))))

((or (procedure? a) (procedure? b)) (bottom))

(else (eg? a b))))

Equal? uses type predicates like char? and number? to find out what
type an object has. A type predicate returns truth, if its argument has a
given type. Type predicates allow equal? to choose the proper procedure
for comparing the given objects. For example, the clause

((number? a) (and (number? b) (= a b)))

is selected, if the argument a is numeric. In the body of the clause,
(= a D) isonly evaluated if b is also a number. If the types of a and b are
not equal, #£f is returned. And protects = from improper types. The same
method is applied to the other types, so specialized predicates are always
applied to the matching types. The clause handling pairs is based on the
eql? procedure. The default clause handles symbols, booleans, and empty
lists, which are checked for identity.

The equal? procedure can be used to check numbers, strings, chars,
booleans, lists of any objects and any combination of these for equality,
and it always delivers a meaningful result:

64

(equal? "foo "foo) => #t
(equal? 123 123) => #t
a (12) (b . c))

a (12) (b . c))) => #t
(a . b) (a . c)) => #f

(equal? ' (
"
(equal? '
Equality can be considered a lax form of identity (every object is equal to
itself), so equal? delivers truth when appearances of the same object are
passed to it. Because equal? is such a versatile procedure, is is part of the
Scheme standard.

One clause of equal? deserves a second glance for two reasons:

((or (procedure? a) (procedure? b)) (bottom))

One reason is that it employs the or pseudo function which has not been
discussed yet, and the other reason is that is reduces to (bottom) without
any further checking when a procedure is passed to equal®.

Or works in a similar way as and, implementing both the logical or and
conditional evaluation. However, or evaluates its arguments in sequence
until one of them evaluates to truth. As soon as an argument reduces to
truth, or evaluates to that argument and ignores the remaining arguments.
When all but the last argument reduce to falsity, it evaluates to the normal
form of the last argument. Or can be re-written using cond like this:

(or a b) = (cond (a a) (else b))
(or a b ¢) = (cond (a a) (b b) (else c))

Applying a single argument to either and or or is equivalent to the
argument alone:

(or a) = a
(and a) = a

Applying these pseudo functions to zero arguments yields the neutral
element of the corresponding logic function:

(and) => #t
(or) => #f

#T is the neutral element of the logical and operation because adding
another #t to a sequence of expressions linked together using logical
and does not change the value of that expression, just like adding a zero

65

does not change a sum and an additional factor of one does not change
a product.

BTW: The arithmetic procedures * and + indeed deliver the neutral
elements of the product and the sum respectively when they are applied to
Zero arguments.

The second question about the equal? predicate was why the equality
of procedures is undefined. This question is perhaps best answered with
another questions: “Under which circumstances should two procedures
be considered equal?”’ Should they be equal, if their lambda expressions
are equal? In this case, the two following procedures would be different,
although they obviously do the same:

(lambda (x) Xx)
(lambda (a) a)

Or should they be considered equal, if they do the same? In this case,
what would “doing the same’ mean? Deliver the same values for each
set of arguments? This would not only be impossible to check, because
there is an infinite number of possible sets of arguments, it would also
make quicksort and bubblesort equal, 2 because both of them sort a set of
objects. And at this point, the topic of primitive procedures was not even
touched. When should two primitive procedures be considered equal?
When their machine codes are equal? What about implementations for
different CPUs?

Defining the equality of procedures is a task that is far beyond the scope
of a simple utility procedure. This is why the Scheme standard leaves this
point undefined.

2.2.2 Using Identity and Equality

The rules for using eq?, eqv?, and equal? are simple. When in doubt,
use equal?. When you are sure about the types to compare, use eqv?.
When you are absolutely sure about the type, use the predicates specialized
in that type. For example, use = to compare numbers and string=? or

2 Quicksort and bubblesort are both sorting procedures, but quicksort is known to
be highly efficient while bubblesort is known to be one of the worst sorting algo-
rithms around.

66

string-ci=? to compare strings. Of course, equal? can only check for
equality, so if you want to examine the order of some objects, you have to
use more specialized predicates like < and char>? anyway.

Only when dealing with symbols or truth values exclusively, eqg? is the
predicate of choice, because it expresses identity, which is what you
actually want to check in this case, and eq? is much more efficient than
eqv? or equal?. For instance, the logical not can be implemented quite
efficiently like this:

(eq? predicate #f)

Whenever predicate evaluates to truth, this expression will reduce to falsity
and vice versa. This actually is what the standard procedure not does.

When checking for the empty list, the null? predicate should be used.
Using

(eg? x 7 ())

would be fine from a technical point of view, but using null? probably
expresses your intent more clearly.

There are some procedures which use equal? internally, like assoc
and member. This is why assoc recognizes any type of object in the key
fields of association lists. To search an alist containing symbolic keys
exclusively, the assq procedure is much more efficient. To search an alist
that contains numbers or characters as keys, the assv is most efficient.
Assqguses eq? in the place of equal? and assv uses eqv?.

The member procedure also has counterparts that are based on eq? and
eqv?. They are called memg and memv. Although they are highly efficient,
their use is limited to the types covered by their equivalence predicates.
For example, memq is limited to flat lists of symbols (or truth values):

(memg 'y '"(xy z)) => (y z)
It cannot be used to search non-symbolic members of lists:
(memg ’(c d) ’"((a b) (c d) (e f£))) => bottom

In this case, you have to use member instead. Above rule of the thumb also
applies here: when in doubt, use assoc and member.

67

Remember: Equality is a more general case than identity. Wherever eq?,
assq, and memqg return a non-#f result, equal?, assoc, and member
will deliver the same result. The reverse is not true, though: (==> denotes
a logical implication)

(eg? a b) ==> (egv? a b)
(eqv? a b) ==> (equal? a b)
but
(equal? a b) =/=> (eqv? a b)

(eqv? a b) =/=> (eg? a b)

2.3 Higher Order Functions

A higher order function is a procedure that either takes a procedure as an
argument or returns a procedure (or both). For instance, the complement
and compose procedures introduced earlier in this book were higher order
functions (HOFs). A classic among the HOFs is the mapcar procedure,
which used to be part of early versions of LISP. Mapcar maps a procedure
over a list. It is defined as follows:
(define (mapcar a f)
(cond ((null? a) ’"())

(else (cons (f (car a))
(mapcar (cdr a) £)))))

Using this procedure you can do quite a few useful things like computing
the sum of squares of a set of numbers:

(define (sum-of-squares . Xx)
(apply + (mapcar x (lambda (x) (* x x)))))

or find the member with the least absolute value in a list of numbers:

(define (least-abs x)
(apply min (mapcar x abs)))

In both of these procedures, mapcar creates an argument list for a variadic
procedure such as + or min. This combination can be seen frequently in
Scheme programs. The following sample reduction of sum-of-squares
illustrates how apply and mapcar interact:

68

(sum-of-squares 2 3 5 7)

-> (apply + (mapcar (2 3 5 7) (lambda (x) (* x x))))
-> (apply + (4 9 25 49))

-> (+ 4 9 25 49)

=> 87

The Scheme standard does not define mapcar but a much more powerful
procedure called map. You may have observed that mapcar can only
apply procedures of one argument to the members of a single list. Map
eliminates this limitation. It can be applied to any number of lists. To allow
for this, the procedure argument had to move to the first position. Map can
do anything mapcar can do and more, like computing the inner product
(the ““dot product”) of two vectors:

(define (v* a b) (apply + (map * a b)))
or the sum of two vectors:

(define (v+ a b) (map + a b))

or even the sum of any number of vectors:

(define (v+ . a) (apply map + a))

In the above defintion, apply takes three arguments rather than two. In
fact apply itself is variadic. When more than two arguments are passed
to it, the second through second-to-last arguments are consed to the
last argument:

(apply map + a) -> (map + a)
(apply list 2 3 4 (5 6 7)) —> (list 2 3 4 5 6 7)

Map is a variadic procedure which accepts a number of lists, so the struc-
ture it ultimately processes is a list of lists. Like mapcar it passes the car
parts of these lists to its procedure argument. It then advances to the cdr
parts of its list arguments.

The version of map that will be constructed here will stop as soon as it
reaches the end of one of the lists passed to it. Subsequently it processes
lists only up to the length of its shortest argument:

(map + (1 2 3) "(4 5)) => (5 7)

Note that this behavior, although found in some environments, does not
comply with the Scheme standard, which states that all lists passed to map

69

must have the same length.

A procedure for testing whether one member of a list is equal to () can
easily be created by first introducing another useful predicate: any? tests
whether a given list a contains any member satisfying a predicate p:

ny? p a)

(define (a
(null? a) #f)
(
e

(
(cond (

((p (car a)) #t)

(else (any? p (cdr a)))))

Using this predicate, the any-null? procedure is trivial:
(define (any-null? x) (any? null? x))

Procedures for taking the car parts and the cdr parts of the sublists of a list
can be defined by means of mapcar:

(define (car-of a) (mapcar a car))
(define (cdr-of a) (mapcar a cdr))

Given these procedures, the definition of map is quite straight-forward.
The procedure basically looks like mapcar, but uses car-of instead of car,
cdr-of instead of cdr and any-null? instead of null?. And because a real
map has to run in constant space, the following version is tail-recursive,
too:

(define (map £ . a)
(letrec
((map2
(lambda (a b)
(cond ((any-null? a)
(reverse b))
(else
(map2 (cdr-of a)
(cons (apply f (car-of a)) b)))))))
(map2 a " ())))

Note that this procedure would accept zero lists, which the real map pro-
cedure does not. However, as mentioned earlier, standard Scheme provides
no procedure for indicating failure, so this condition is left unchecked.
(You may use bottom or an implementation dependent error reporting
facility to improve this version of map.)

70

One question that comes into mind is this: If map can do anything mapcar
can do, can the occurrences of mapcar in car-of and cdr-of be replaced
with map? Can mapcar be optimized away completely by doing this? The
startling answer is: “‘no”. (Before you go ahead: can you figure out on
your own why this optimization is not possible?)

The answer is given in a semi-formal way by assuming that car-of is
written in this way:

(define (cdr-of a) (map cdr a))
Given this definition, a sample application of map is reduced:

(map - " (1 2 3))

-> (map2 ((1 2 3)) ())

-> (cond ((any-null? ((1 2 3))) (reverse b)) ...)
-> (cond (else (map2 (cdr-of ((1 2 3))) ...)))

The ellipses in the above reduction denote that this part of the expression
is currently of no interest. What is interesting at this point is that

(map cdr ((1 2 3)))

has to be evaluated in order to get the value of first argument of map2. It
is evaluated like this:

(map cdr ((1 2 3)))

-> (map2 ((1 2 3)) ())

-> (cond ((any-null? ((1 2 3))) (reverse b)) ...)
-> (cond (else (map2 (cdr-of ((1 2 3))) ...)))

Atthispoint (map cdr ((1 2 3))) hastobeevaluated againin order to
continue the reduction. In other words: ‘“To compute the first argument of
map?2, the first argument of map2 has to be computed.” This is a recursive
statement without a trivial case, so its reduction can never terminate.

No reduction containing the same intermediate step twice (like above
example) can ever reduce to a normal form, because such a repetition
indicates a cycle in that reduction. If you can show that the evaluation of
an expression contains a cycle, you have proven that the expression in
question has no normal form. In terms of programming: you have proven
that the program will ““crash” when it is run. Do you think that this can be
done in imperative languages?

71

2.3.1 Some Fun with Higher Order Functions

In an earlier section, two versions of the depth procedure were shown.
The section ended with the question whether depth can be written in any
simpler way. Using higher order procedures, indeed, it can:

(define (depth a)
(if (pair? a)
(+ 1 (apply max (map depth a)))
0))

Higher order functions are a quite powerful tool. They actually do add
expressiveness to a language, because they allow it to do things that could
not be done without them. Another previous section explained why 1if
cannot be implemented as an ordinary procedure. The reasoning was as
follows. Given a procedure xif which implements 1£, the expression

(letrec
((down
(lambda (n)
(xif (zero? n)
0
(down (- n 1))))))
(down 1))

would reduce to bottom, because both the trivial and the recursive branch
of

(xif (zero? n) 0O (down (- n 1)))

would be evaluated before xif was applied and therefore the procedure
could never terminate. Higher order functions help here, too, because
they can be used to ““wrap up’’ expressions for later evaluation. Consider
the expression

(lambda () (down (= n 1)))

This expression reduces to a procedure whose body is the branch that
causes trouble in the above application of xif. Because the troublesome
expression is wrapped up in a procedure, it is not evaluated before the
procedure is applied (to zero arguments) by writing:

((lambda () (down (- n 1))))

72

(Note the additional parentheses!) The following equation holds for any
expression x:

x = ((lambda () x))
The following implementation of xif is based on this equality:

(define (xif pred true false)
(if (pred) (true) (false)))

It accepts three zero-argument procedures which wrap up the predicate,
the true branch and the false branch of the conditional expression, so

(if a b ¢)
has the same meaning as
(xif (lambda () a) (lambda () b) (lambda () c))

Therefore above expression involving the application of down can be
re-written using xif:

(letrec
((down
(lambda (n)
(xif (lambda () (zero? n))
(lambda () 0)
(lambda () (down (- n 1)))))))
(down 1))

Except for its awkward syntax xif is perfectly equal to if. The above
expression even reduces in constant space, so any value can be passed to
down safely.

In fact, higher order functions are so powerful that lambda alone is
sufficient to create an entire programming language. Doing so is beyond
the scope of this book, but here is a little teaser: In the section explaining
primitive procedures, these were described as procedures that cannot be
implemented in Scheme itself easily. Here is how the basic list processing
primitives can be re-written in Scheme using only lambda and variables:

(define (kons a b) (lambda (p) (p a
(define (kar x) (x (lambda (a b) a))
b)

b)))
)
(define (kdr x) (x (lambda (a b)))

Let us see if this works:

73

(kons ’head ’tail) => #<procedure (p)>

Does not look too promising, does it? But wait. A cons cell is an object that
glues together two other objects, where the first one can be extracted using
car and the second one can be extracted using cdr, and this is exactly
what kar and kdr do with objects created using kons:

(kar (kons ’'head ’tail)) => head
(kdr (kons ’'head ’tail)) => tail

Here is an explanation how it works. Note that the external representations
of procedures include bodies here and the variables of procedures are
substituted by their values to make the code easier to read.

(kons ’"head ’tail)

=> f<procedure (p) (p head tail)>

(kdr (kons ’'head ’'tail))

-> (kdr #<procedure (p) (p head tail)>)

—> (#<procedure (x) (x (lambda (a b) b))>
#<procedure (p) (p head tail)>)

—> (#<procedure (p) (p head tail)> (lambda (a b) b))

-> ((lambda (a b) b) head tail)

=> tail

Even recursion can be implemented using lambda exclusively by using
self-application:
(define (S £ x) (f £ x))

Using S, the recursive fact procedure from the first section can be re-writ-
ten in this way:
(S (lambda (f x)
(cond ((zero? x) 1)
(else (* x (£ £ (- x 1))))))
5)
=> 120

This expression uses an anonymous recursive procedure to compute the
factorial of 5, but how can a procedure apply itself when it has no name?

A procedure that is passed to S has to provide an additional argument
which will be bound to a copy of itself. This is what the f argument of
the above lambda function is used for. (There is a more general device
known as the “Y combinator’ that does not have this limitation. It will be
introduced later.)

74

S applies the procedure f to two arguments: f itself and 5. Here is another
depiction of the anonymous factorial procedure. This time, S is expanded
to a lambda function and the first argument of the operator is rendered in
boldface characters:

((lambda (f x) (f £ x))
(lambda (f x)
(cond ((zero? x) 1)
(else (* x (£ £ (- x 1))))))
5)

You might want to try to evaluate this expression on a piece of paper in
order to understand what it does. You may need a lot of paper, though,
which is why there is no sample reduction in this book.

2.4 Dynamic Typing

Like most popular languages, Scheme is a fyped language which means
that there are different types of objects, like numbers, booleans, chars,
strings, etc. Most contemporary languages like C or Java are statically
typed languages, though, while Scheme uses a system called dynamic
typing. In statically typed languages, types are associated with variables.
A variable of a given type can be used to store objects of that type. The
dynamic typing approach is much more flexible. It is made possible by the
fact that Scheme does not store data in variables but only stores references
to data.

Scheme variables do not have types. They are just symbolic names and
you can bind any type of object to them. The type information is carried
in the objects themselves. For example, the object 127 is of the type
integer, the object "Hello, World!" isof the type string, and the object
(a b c) isof the type pair. A value that carries its type information with
it is also called a boxed value.

Many procedures accept only arguments of one specific type. For instance,
the reverse procedure expects a list:

(reverse ’'(a b c)) => (c b a)
Passing any other type to the procedure will make it fail:

(reverse ’'non-1list) => bottom

75

The actual behavior of the reverse procedure depends on the Scheme
implementation you are using. Most versions will tell you that you applied
a procedure expecting a list to a symbol or print a similarly informative
message. In an environment where reverse is a user-level procedure,
though, the system may not perform any type checking at all when re-
verse is applied to an argument. When the procedure is applied to a non-
list, it simply fails as soon as the first primitive is hit. In such an environ-
ment the reverse procedure may look like this:

(define (reverse a)
(letrec
((reverse?2
(lambda (a b)
(cond ((null? a) b)
(else (reverse2 (cdr a)
(cons (car a) b)))))))
(reverse2 a ’"())))

When this procedure is applied to the symbol non-list, the following
happens:

(reverse ’'non-list)
-> (reverse2 non-list ())
-> (cond ((null? non-list) Db)
(else (reverse2 (cdr non-list)
(cons (car non-list) b))))
-> (reverse?2 (cdr non-list)
(cons (car non-list) b))

At this point, Scheme attempts to take the cdr of a symbol:
(cdr non-list) => bottom

and because Scheme procedures are strict, reverse also reduces to
bottom. The system will then print a message like this:

reverse2: cdr: expected a pair, but got: non-list

It tells you that the application of cdr to an object that is not a pair was
attempted. The system also tells you that this happened inside of the re-
verse?2 procedure and that the offending object was the symbol non-list.

It is a common practice in Scheme to let procedures fail like this. Of
course, you could intercept such type errors by checking the argument

76

using a predicate like 1ist?, but all this would buy you was a slightly
improved error message. This is why Scheme programmers normally do
not bother with adding such redundant checks.

Note that adding type checks does not improve safety, because all primi-
tive procedures of Scheme perform type checking internally. This is why
the cdr procedure finally caught the bad type of the argument of re-
verse. All primitives abort evaluation immediately when an object of the
wrong type is passed to them, and because all procedures are ultimately
composed of primitives, a wrong type sooner or later will hit such a prim-
itive. The following example will illustrate this principle a bit more. Let us
assume that the char<=? predicate was a user-level procedure. It would
probably be defined in such a way:

(define (char<=? a b) (not (char>? a b)))

It is based on the char>? predicate, which could be a user-level proce-
dure, too:

(define (char>? a b) (char<? b a))

Char<?, finally, is a primitive procedure which expects two arguments of
the type char. Now imagine a procedure called hex-digit? which is based
upon char<=2?:

(define (hex-digit? x)
(or (char<=? #\0 x #\9)
(char<=? #\a x #\f)))

When a non-char is passed to hex-digit?, evaluation continues until
the primititive procedure char<? is applied to it. First Hex-digit? calls
char<=?, which calls char>?, which in turn calls char<?. Char<?, fi-
nally, detects the wrong type and reduces to bottom.

But what happens if a type error is never caught at all? Type errors are
feared by programmers all over the world. Once more the answer is: relax.
A type error that is not caught in Scheme is not a type error at all. Either
an object hits a primitive that does not know how to handle it, or the
evaluation terminates normally and delivers a proper normal form.

In fact, there have been quite a few procedures in this book that do not
depend on specific types. For example, the cons procedure can be used to
glue together objects of any type:

77

(cons ’'a #f) => (a . #f)
(cons "foo" 123) => ("foo" . 123)
(cons #\x "(25)) => (#\x 25)

The eqg? procedure also accepts arguments of any type, although it does
not always reduce to a valid result. This is not a type error, though, but
a deliberate design decision. If the set of types accepted by eg? was
restricted, eq? would not work, as the following examples show:

(define (null? x) (eg? x "()))
(define (not x) (eg? x #f))

The above definitions of null? and not fully comply with the Scheme
standard (but they are mostly implemented as primitives). Instead of
saying that eq? allows type errors, it should be considered a procedure
that does both type checking and checking for identity, because

(eg? x y) => #t
implies that x and y have the same type.

There are many other procedures and pseudo functions that accept any
type, like quote and pair?, but one of these procedures is particularly in-
teresting: equal?. It is interesting because it makes use of type predicates.
A type predicate is used to check whether a given object has a given type.
Pair?, for instance, returns truth only if its argument is a pair. Of course,
type predicates have to accept any type of argument themselves, or they
could not work. The following type predicates exist in Scheme:

boolean? char? number? pair? port? procedure?
string? symbol? vector?

Any data object of the Scheme languages satisfies exactly one of the
above predicates. No object may have more than one type and all types are
different. This principle is called disjointness of types.In case you wonder
why the 1ist? predicate is not in the above list: The list is a special case
of the pair, so it is sufficient to include the pair in the list of fundamental
types. Furthermore, adding a special case to the list of fundamental types
would break disjointness of types because

(list? " (a)) => #t
(pair? "(a)) => #t

The examples given in this section show that dynamic typing provides

78

a high level of flexibility and a high level of safety at the same time. It
is particularly suitable for rapid prototyping, because it does not force
the programmer to make decisions about types where no such decision
is required. Statically typed languages that employ strong typing (like
Pascal) often lack flexibility, and languages employing weak typing (like
C) typically sacrifice safety for flexibility. Dynamic typing combines the
safety of strong static typing with the flexibility of weak typing.

Another thing most programmers are concerned about is efficiency, and
boxed values decrease performance, because they do not fit in registers.
However, optimizing Scheme compilers can decide to “unbox” values in
contexts where their type information is not needed. For example, when
compiling the distance-between-points procedure introduced earlier,
a compiler may find out that the type information of the arguments is
not used:

(define (distance-between-points x y x2 y2)

(let ((dx (abs (- (unbox x2) (unbox x))))
(dy (abs (- (unbox y2) (unbox vy)))))
(box (sgrt (+ (* dx dx)
(* dy dy))))))

Therefore it is sufficient to unbox the arguments when the procedure is
entered and re-box the result before returning it. Calls to the fictitious
procedures box and unbox have been added to the code above in order
to illustrate this principle. An optimizing compiler would add code for
boxing and unboxing values on its own. The values of the variables dx and
dy do not have to be boxed at all, because they are local to the scope of the
procedure. Hence all intermediate results can be kept in registers inside of
distance-between-points.

By unboxing values and limiting type checking to primitive procedures,
the overhead is reduced to a degree where there is not much of a difference
between optimized Scheme code and optimized code generated by a
compiler for a statically typed language. On the other hand, this small
overhead buys a high degree of freedom and flexibility.

2.5 Type Conversion

Sometimes it would make sense to apply a procedure that is specific to
one type to a different type. For example, it would be nice if the reverse

79

procedure could be used to reverse strings. However, reverse expects an
argument of the type list. This is where type conversion comes into play.
The string->1list and list->string procedures convert strings
to lists and vice versa. With their help, reverse can be used to reverse
a string:

(list->string
(reverse
(string->1list "Hello, World!")))
=> "!dlroW ,olleH"

The conversion of one type to another is not the same as “‘type casts’ in
weakly typed languages. A type cast tells a compiler that it should treat an
object of a given type as an object of another type, even if this is not the
case. A type conversion, though, creates a new object of the desired type
that resembles the object to be converted. For example, string->1ist
creates a list containing the same sequence of characters as a given string

(string->1ist "Hello World!")
=> (#\H #\e #\1 #\1 #\o #\space #\W #\o #\r #\1 #\d #\!)

and list->string converts a list of characters into a correspond-
ing string.

There are more type conversion procedures in Scheme, like these:

char->integer string->symbol list->string list->vector
integer->char symbol->string string->list vector->list

There is not a conversion procedure for every possible conversion. For in-
stance, there is no symbol->list procedure, because it would rarely be used,
and even if you would need it, it could easily be written by composing
string->1list and symbol->string

(define (symbol->list x)
(string->list (symbol->string x)))

In early versions of LISP there was no char type, so single characters
were represented by single-character symbols, and there was a procedure
that decomposed multi-character symbols into lists of single-character
symbols. This procedure was called explode. Using above definition of
symbol->list, it can easily be re-written in Scheme:

80

(define (explode x)
(map (lambda (x)
(string—->symbol (string x)))
(symbol->1list x)))

This procedure first converts the symbol passed to it into a list of chars.
Then it maps a procedure over that list which converts each member back
into a symbol. String is a variadic procedure that creates a new string
from its arguments:

(string #\f #\o #\o) => "foo"

The string->symbol procedure, which is used to convert a string to a
symbol, should be used with care, because it can be (mis)used to create
symbols that cannot be accessed by Scheme:

(string->symbol ";unreadable") => ;unreadable

Given the above definition of explode,
(explode ’"foo) => (f o o)

A procedure that composes a new symbol from a list of single-character
symbols is a bit harder to implement, because there is a bit of type-check-
ing to do. It has to be done to make sure that the list passed to that proce-
dure really consists of single-character symbols. The inverse procedure
of explode is called implode. Here is its code:

(define (implode x)
(letrec

((sym->char

(lambda

(let (

X)
str (symbol->string x)))
(if (n

ot (= (string-length str) 1))
bottom "bad symbol in implode")
(string-ref str 0))))))
(string->symbol
(list->string (map sym->char x)))))

(
(
(
(

This procedure basically works like explode, but in reverse order. It first
maps a procedure over x which converts the symbols in the list to chars.
The resulting list is converted into a string, and the string into a symbol.

Type checking is performed in the local sym->char procedure which, as

81

its name suggests, converts a symbol to a char. It first converts the given
symbol into a string, binding the result to str. If str has not a length of one
character, a type error has occurred and the procedure reduces to bottom.
If the string has a length of one character, this character is extracted using
string-ref. (The first character of a string is at position zero, that is
why zero is passed to string-ref.)

Using this definition of implode:

(implode '(f o o)) => foo
(implode ' (f o0o0)) => bottom ; bad symbol in implode

2.5.1 Arithmetics with Lists

This little digression introduces two type conversion procedures that are
not part of Scheme: int->list and list->int. These two procedures show
how bignum arithmetics can be performed in terms of single digits.

The int->list procedure converts an integer number into a list of digits:

(define (int->1list x)
(letrec
((convert
(lambda (in out)
(1f (zero? in)
out
(convert (quotient in 10)
(cons (remainder in 10) out))))))

(1f (zero? x) ’'(0) (convert x ’"()))))

Lists of digits open the way to a simple and portable (although inefficient)
method of performing bignum arithmetics. Of course, it is not normally
done in this way, but the the approach illustrates the fundamental princi-
ples of arithmetics with arbitrary precision. Here is a procedure that adds
two lists of digits:

(define (add a b)
(letrec
((result
(lambda (a b c¢)
(if (> (+ a b c) 9)
(- (+ a b c) 10)
(+ abc))))

82

(carry
(lambda (a b c)
(if (> (+ abec) 9) 1 0)))
(add2c
(lambda (a b r c¢)
(cond ((null? a)
(if (null? Db)
(cons ¢ r)
(add2c ' ()
(cdr b)
(cons (result 0 (car b) c) r)
(carry 0 (car b) c))))
((null? b)
(add2c (cdr a)
" ()
(cons (result (car a) 0 c) r)
(carry (car a) 0 c)))
(else (add2c (cdr a)

(cdr b)
(cons (result (car a) (car b) c) r)
(carry (car a) (car b) c)))))))
(let ((r (add2c (reverse a) (reverse b) () 0)))
(if (= (car r) 0) (cdr r) r))))

The details of the add procedure are not very interesting. It uses the
algorithm which most people use for adding numbers on a sheet of paper.
Feel free to explore it on your own. The procedure can indeed operate on
numbers of any size:

(add (9 9 9 9 9 99 9 9 0) "(1 2))
=> (1L 00O0O0O0O0O0O0O0 2)

List->int implements the reverse function of int->list. It converts a list of
digits to an integer:

(define (list->int x)
(letrec
((convert
(lambda (in out)
(if (null? in)
out
(convert (cdr in)
(+ (car in) (* 10 out)))))))
(convert x 0)))

83

Using int->list, list->int, and add, you can add arbitrarily large numbers
without using +:

(list->int (add (int->1ist 1234567890)
(int->1ist 9876543210)))
=> 11111111100

Of course, add is a rather low-level procedure and all it can do is add natu-
ral numbers, not even integers. Implementing integer arithmetics and some
more interesting procedures performing operations like integer addition,
subtraction, multiplication, and exponentation is left as an exercise to the
reader. Interestingly, the lowest-level operations are also the most complex
ones. Writing a procedure that performs integer exponentation is a rather
simple task compared to the implementation of add.

2.6 Arithmetics

Because numbers are a very common thing in programs, the first examples
in this book used numbers, and many arithmetic procedures already have
been introduced in the sections so far. Like other programming languages,
Scheme can add, subtract and multiply numbers:

(
(_
(

+

9) => 21
9) => -11
9) => 315

[C2ENCRNE)]
~N 3 3

*

Unlike most languages, Scheme allows a variable number of arguments
in these procedures. + and * accept zero or more arguments. They return
the neutral element of the corresponding operation when applied to
Zero arguments:

(+)
(*)

> 0
> 1

The - procedure expects at least one argument. When a single argument
is passed to it, it negates it, and otherwise it computes the difference of
its arguments.

You might have observed that none of the programs discussed before the
previous section involved a division, though. This is not because Scheme
does not have a procedure for dividing numbers, but because there are
several of them. The most versatile of them is the / function, which takes
at least one argument and returns the reciprocal value of a single argument

84

or the quotient of two or more arguments:

) => 1/2
3) => 2
4) => 3/2
4 2) => 3/4

What is particularly interesting about / is that it returns a rational value, if
its result cannot be expressed as an integer. Rational values are a separate
type of number, but most procedures which accept integers accept ratio-
nals as well. For example you can pass rational values to +:

(+ 2/3 1/3) => 1

The procedure accepts the rational arguments, adds them, and if the result
can be expressed as an integer, it returns one.

The quotient procedure limits its result to the integer domain:

(quotient 6 3) => 2
(quotient 6 4) => 1

Quotient implements a function from number theory. Given two num-
bers a and b, it computes the largest positive integer ¢ so that b*g<=a. Less
formally expressed, this is what you get in most programming languages
when you divide integers: the integer part of their quotient. Quotient
accepts exactly two arguments, which must both be integers. It can never
overflow, but when its second argument is larger than its first, it returns
zero. When the second argument is zero, its result is undefined:

(quotient x 0) => bottom ; deja wvu?

The quotient procedure is accompanied by a bunch of other procedures
from number theory. The most frequently used of those are probably mod-
ulo and remainder. Both of them can be used to compute the remainder
of an integer division:

(remainder 23 5) =>

3
(modulo 23 5) => 3

The difference between modulo and remainder is the sign of their
result. When applied to positive values, they evaluate to equal numbers.
(Remainder a b) isdefined as:

(- a (* (quotient a b) b))

85

From this formula follows that remainder always delivers a result that
has the same sign as its first argument (a):

(remainder +23 +5) => 3
(remainder +23 -5) => 3
(remainder -23 +5) => -3
(remainder -23 -5) => -3

Modulo, on the other hand, makes use of the following formula to com-
pute the division remainder:

(- a (* (floor (/ a b)) b))

The f£loor procedure takes an integer, rational, or floating point argument
and reduces to the greatest integer that is not greater than that argument.
Because £ 1oor may decrease negative quotients, modulo always delivers
a result that has the same sign as its second argument (b):

(modulo +23 +5) => 3
(modulo +23 -5) => -2
(modulo -23 +5) => 2
(modulo -23 -5) => -3

Modulo can be implemented without using £1loor, too. The following
method is based on the observation that £1oor only has an effect on the
result, if the signs of the operands of modulo differ:

(floor (/ 23 5)) (quotient 23 5) =14
(floor (/ -23 -5)) = (quotient -23 -5) = 4
(floor (/ 23 -5)) = (floor -4.6) = -5
(floor (/ -23 5)) (floor -4.6) = -5

and the remainder is non-zero:
if (remainder x y) => 0 then (modulo x y) => 0

In the cases where £loor causes this effect, it reduces the quotient
by one:

(- a (* (= (quotient a b)
1)
b))

which can be re-written as follows:

(- a (* (- (quotient a b)

86

1)
b))
= (+ (- a (* (quotient a b)
b))
b)
= (+ (remainder a b) b)

So all modulo has to do is to compute the remainder and then add b if the
remainder is non-zero and the signs of its operands differ. Here is the code
(the negative? predicate tests whether a number is negative):

(define (modulo a b)

(let ((rem (remainder a b)))
(cond ((zero? rem) 0)
((eg? (negative? a) (negative? b)) rem)

(else (+ b rem)))))

Two interesting procedures which make use of remainder are gcd and
lcm, which compute the greatest common divisor and least common
multiple respectively. Like many other arithmetic procedures, they are
variadic:

(gcd 51) => 51
(gcd 289 34 51) => 17
(lcm 17) => 17
(lcm 16 17 68) => 272

There are many other numeric Scheme procedures to discover. A brief and
incomplete summary of them is given here:

abs compute the absolute wvalue
even? test for n mod 2 = 0

odd? test for n mod 2 =/= 0
denominator extract denominator of rational
numerator extract numerator of rational
sqrt extract square root

expt exponentiate

complex? test for type complex
integer? test for type integer
rational? test for type rational

real? test for type real

ceiling round towards 1

round round towards closest integer
truncate truncate real

sin compute sine

87

Some of these procedures require the implementation of the full numeric
tower. The full numeric tower encompasses the types “‘integer”, “‘ratio-
nal”, “floating point”, and “‘complex”’, including representations for in-

exact numbers.

These concepts are not explained here, because a discussion of the full
numeric tower is beyond the scope of this book. You will probably have
noticed, though, that there is a complex type, and this fact shall not pass
unnoticed.

When you take the square root of a negative number in a Scheme environ-
ment implementing the full numeric tower, you will get a result of the type
complex, as you would expect it in mathematics:

(sgrt 2) => 1.4142135623730951
(sgqrt -2) => 0+1.41421356237309511

Standard Scheme implementations are not required to include the full
numeric tower, but most of them do.

2.7 Strings and Characters Recycled

This section will demonstrate some things you can do with strings and
characters. In an earlier section, predicates for comparing chars have
been introduced, but chars have some other attributes as well. For exam-
ple, there are upper and lower case characters. Scheme provides a set of
predicates for testing the properties of chars such as char-alphabet-
ic?,char-numeric?,char—-upper—-case?,char—-lower—case? and
char-whitespace?. The effects of these procedures are quite obvious,
so they will not be explained in detail. The following procedure prints all
properties of a given char using these predicates:

(define (char-properties x)
(apply append
(map (lambda (prop)

(cond (((car prop) x) (cdr prop))
(else "())))
(list (cons char—-alphabetic? ’ (alphabetic))
cons char—-numeric? ’ (numeric))

cons char-lower-case? '

((
((
(cons char-upper-case? '’ (upper-case))
((lower—-case))
((

cons char-whitespace? '’ (whitespace))))))

88

Given this definition,

(char-properties #\X) => (alphabetic upper-case)
(char-properties #\0) => (numeric)
(char-properties #\newline) => (whitespace)

The char-properties procedure is quite straight-forward but rather artifical.
It merely serves as a brute-force example for illustrating a large number of
char predicates at one time. The only thing that is interesting about it is the
fact that it uses another instance of the combination of apply and map.
In this example, append is applied to the result of map in order to remove
the empty lists generated by predicates that where not satisfied. Without
applying append, the results of char-properties would look a bit messy:

((alphabetic) () () (lower-case) ())

By applying append, the sublists of the result get appended. Because
appending an empty list to a list x yields x, the empty lists are eliminated
from the result. The creation of flat lists using apply and append is a
useful tool, as will be demonstrated later in this section.

Another thing you can do with chars is to convert their case. The char-
upcase procedure converts a lower case character to upper case, and the
char-downcase procedure converts an upper case char to lower case:

(map char-upcase (#\a #\- #\Z)) => (#\A #\- #\2)
(map char-downcase ' (#\a #\- #\Z)) => (#\a #\- #\z)

As you can see, both of these procedures pass through characters that are
not to be converted. That is about all you can do with chars in Scheme.

Because strings are more complex than chars, the things you can do with
them are much more interesting, too. For instance, you can create a list
of all sub-strings of a string or you can create permutations of strings,
which is useful for finding anagrams. Here are some sample solutions to
these problems.

To extract a sub-string from a string, the substring procedure is used. It
works as follows:

(substring "hello" 1 4) => "ell"

The first argument of substring is the source string. Its second argu-
ment specifies the position of the first character to extract and its third ar-

89

gument the position of the first character not to extract. The position of the
first character of the source string is zero (all string procedures of Scheme
use this convention).

The third argument of substring must not be less than the second
argument. The two arguments may be equal, though. In this case, an empty
string is extracted:

(substring "hello" 3 3) => ""

Because of this convention, it is even legal to extract an empty string from
an empty string:

(substring "" 0 0) => ""

Specifying an offset that is outside of the source string or a negative range
(second argument greater than third) is undefined:

(substring "abc" 3 4) => bottom
(substring "abc" 1 4) => bottom
(substring "abc" 2 1) => bottom

Upon success, substring creates a new string that contains the charac-
ters that were extracted from the source string.

Using substring, writing a procedure that creates a list of all sub-strings
of a string is quite straight-forward. The first step is to create the procedure
fixed-length-substrings which creates a list of all sub-strings with a
fixed length:

(define (fixed-length-substrings s n)
(let ((len (string-length s)))
(letrec
((f-1-subs
(lambda (pos)
(1f (> (+ pos n) len)
()
(cons (substring s pos (+ pos n))
(f-1-subs (+ pos 1)))))))
(f-1-subs 0))))

Using fixed-length-substrings, a procedure to extract all possible sub-
strings is easy to do. All you have to do is pass the values from 1 to the
length of the given string to fixed-length-substrings and collect the results.

90

The string-length procedure for computing the length of a string al-
ready has been introduced in the code above, so here is the code of the sub-
strings procedure that returns all sub-strings of a given string:

(define (sub-strings s)
(let ((len (string-length s)))
(letrec
((subs
(lambda (n)
(if (> n len)
()
(append (fixed-length-substrings s n)
(subs (+ n 1)))))))
(subs 1))))

Here are some sample applications of sub-strings:
(sub-strings "") => ()

(sub-strings "x") => ("x")

(

sub-strings "Scheme")
:> ("S" "c" "h" "e" "m" "e" "Sc" "ch" "he" "em" "me"

"Sch" n che" "hem" "eme" "Sche" n chem" "heme" "Schem"
"cheme" "Scheme")

There is no magic involved in any of these procedures. The only interest-
ing part of fixed-length-substrings and sub-strings is the fact that they use
nested applications of let and letrec in order to save an argument in
their inner procedures. For instance, subs could have been implemented as
a two-argument procedure that carries len with it. However, len is constant
and the creation of a context only has to be done once while the additional
argument would have to be passed along each time subs recurses. The cre-
ation of an additional context is usually cheaper and often more readable
than an additional argument.

The second procedure to be constructed in this section is a procedure that
generates permutations of a string. A permutation of a string is a string of
the same length and containing the same characters but in a different order.
For example "bca" is a permutation of "abc". The permute procedure
to be written here, however, will produce all permutations of a string. For
the input "abc" it will return

("abc" "acb" "bca" "bac" "cab" "cba")

91

The first step towards a solution is, of course, to investigate how permuta-
tions are created systematically. Here is a first approach:

For each character C of a string S
- extract C from S, giving a string S’ that contains all characters but C;
- attach C to all permutations of S’.

What this solution is lacking is a trival case. In fact there are two, because
there are no permutations for empty strings, and there is only one per-
mutation (the string itself) for single-character strings, so here is an im-
proved recipe:

The permutations of a string S are created this way:
- if S is empty, return ();
- if S contains only one character, return (S);
- otherwise:
for each character C of S:
- extract C from S, giving the rest S’;
- attach C to all permutations of S’.

The extraction of a single character from a string is done by the string-
ref procedure which takes a string and a position as arguments and ex-
tracts the char at the given position:

(string-ref "abcd" 2) => #\c

As usual, the first character is at position zero. A procedure that creates
a substring containing all characters but the one at a given position is
simple, too:

(define (all-but-this-char s n)
(string-append
(substring s 0 n)
(substring s (+ n 1) (string-length s))))

There is an even simpler solution, though. When a string of the length n
is rotated n times, each of its characters occurs at the first position exactly
one time:

"abcd"
"bcda"
"cdab"
"dabc"

92

So it would make sense to create all rotations of the input string and then
map a procedure over the resulting list that creates C and S’, computes all
permutations of S’ and then re-attaches C to each permutation. But let us
do this step by step. The first procedure that is needed is one that creates a
rotation of a string. Here it is:

(define (rotate s)
(string—append (rest-of s)
(first-of s)))

where rest-of and first-of are defined this way:

(define (first-of s) (string (string-ref s 0)))

(define (rest-of s) (substring s 1 (string-length s)))

These two procedures have been factored out because they will be useful
at a later time, when C and S’ are created. Note that first-of extracts a
string containing the first character and not just a char. This is helpful
when appending the output of first-of and rest-of at a later time.

Rotate rotates a string by appending a string containing its first character
to the rest of the string:

(rotate "abcd") => "bcda"

Based on rotate, a procedure for creating all rotations of a string is not
hard to do. The number of rotations to perform is equal to the length of
the string, so the procedure has to iterate (string-length s) times to
collect all rotations of s:

(define (rotations s)
(letrec
((rot (lambda (s n)
(if (zero? n)
()
(cons s (rot (rotate s) (- n 1)))))))
(rot s (string-length s))))

Rotations delivers all rotations of the given string:

(rotations "abcd") => ("abcd" "bcda" "cdab" "dabc")

All that is left to do now is to write the permute procedure itself. The two

93

trivial cases are easy to implement. The hard part is the procedure to be
mapped over the rotations of the input string. It has to extract the first
character of each rotation (giving C and S’), permute the remaining string
S’, and then attach C to each permutation. Because it maps each rotation
to a list of permutations, it uses map to re-attach C. This leads to a nested
application of map, which might look a bit confusing at a first glance,
but the procedure will be explained in great detail immediately. Here is
the code:

(define ermute str)
(string-length str) 0) ' ())
(string-length str) 1) (list str))

lse (apply append

(cond

(p
((=
((=
(e
(map (lambda (rotn)
(map (lambda (perm)
(string—append
(first-of rotn)
perm))
(permute (rest-of rotn))))
(rotations str))))))

And here is what happens inside of permute: When a string, say "abc",
is passed to it, the general case kicks in. It first creates all rotations of the
input string:

(rotations "abc") => ("abc" "bca" "cab")
Then the following procedure is mapped over the list of rotations:

(lambda (rotn)
(map (lambda (perm)
(string-append (first-of rotn) perm))
(permute (rest-of rotn))))

The first thing this procedure does it to create all permutations of the rest
of the current rotation. When the recursively called permute returns, it has
mapped the rest of one rotation into a list of its permutations:

(permute "bc") => ("bc" "cb")

The inner map then pastes the string containing the first character of the
current rotation to each member of that list, as the following expression
demonstrates:

94

(let ((rotn "abc"))
(map (lambda (perm)
(string-append (first-of rotn) perm))
I("bcll "Cb")))
:> ("abcll "acb")

When the outer map finishes, it has created combinations of all possible
first/rest pairs:

(("abc" "acb") ("bca" "bac") ("cab" "cba"))

All that is left to do at this point is to append the sublists, so that a flat list of
permutations is returned. This is done by using the combination of apply
and append mentioned earlier in this section.

The permute procedure works for strings of any size, but it slows down
significantly as the string grows. There is a pretty obvious optimization,
though. It is based on the observation that the permutations of each
two-character string are equal to the rotations of that string:

(permute "ab") => ("ab" "ba")
(rotations "ab") => ("ab" "ba")

The permutations of two-character sub-strings are created quite frequently
during evaluations of permute. There are n/ permutations of a string of the
length n, which means that permute recurses

(*n (-n1) ... 2 1)

times to create all permutations. To do so, it combines each of the possible
n first characters with

(* (= n1l) (-n2) ... 2 1)

permutations. To do so, it combines

(*n (= n 1))

possible prefixes with

(* (- n2) (-n3) ... 21)

possible permutations. Iterating this formula further finally yields
(*n (= n 1) ... 3)

prefixes and two permutations. In other words: n!//2 prefixes are combined

95

with permutations of two-character strings, so permute spends almost
half of its time generating permutations of two-character strings. Adding
another trivial case to handle these strings should speed up the procedure
significantly. Here is the optimized code (the additional clause prints in
boldface characters):

(define pt-permute str)
(string-length str) 0) ' ())

(string-length str) 1) (list str))

(cond

(o
((
((
((= (string-length str) 2) (rotations str))
(else (apply append
(map (lambda (rotn)
(map (lambda (perm)
(string-append
(first-of rotn)
perm))
(opt-permute
(rest—-of rotn))))
(rotations str))))))

Most Scheme environments provide a facility that allows the user to mea-
sure some properties of an algorithm. One property that is frequently mea-
sured is the number of conses during program execution, i.e. the number
of memory cells allocated. Using such a facility, the plain version of per-
mute can be compared to the optimized version. Here are the results: 3

; Expression Nodes allocated Reduction
Steps

(permute "abcde") 3,228,729 574,788
(opt-permute "abcde") 2,374,935 425,690

The actual numbers may differ between environments, but these numbers
show that the optimized version saves about 35% of the reduction steps
and also about 35% of the used memory. This is not too bad for a single-
line optimization.

2.7.1 Garbage Collection

Procedures like permute seem to allocate vast amounts of memory. When

3 Results where obtained using SketchyLISP’s : statistics option. SketchyLISP
is a now obsolete interpreter that was described in the first edition of this book.

96

creating the permutations of a seven-character string, the procedure allo-
cates about 78 million nodes in the SketchyLISP interpreter. Given a node
size of 9 bytes (on a 32-bit architecture), this makes about 702 million
bytes, and the procedure does not even seem to contain any code to release
unused storage. So how does memory management work in Scheme?

From a programmer’s point of view, this is simple: just keep allocating
things and Scheme makes sure that unused stuff is recycled and returned
to the pool of free memory. Sounds too good to be true? There must be a
catch? No, there is none. Automatic memory management has made quite
some progress in the past years, and there is really no excuse for managing
memory ‘“‘manually” these days. Let us see how automatic memory
management works.

Many Scheme procedures allocate memory. In the permute procedure,
substring was used heavily. Each time substing is called, it allocates
a new string. The same is valid for string-append, and even string-
length might create a boxed integer.

Recursive procedures like permute create really huge amounts of interme-
diate results. (Opt-permute "abcdefg") creates about 700M bytes of
intermediate data, but delivers just a list of 5040 seven-character strings,
allocating about 85K bytes. However, the peak memory load created by
opt-permute is only about 190K bytes when run in SketchyLISP. 4

To be able to allocate 700M bytes of memory in a pool that may be as
small as one megabyte, Scheme has to recycle unused data on a regular
basis. It normally does so when the free space of a memory pool runs low.
When this happens, it marks all data that can be accessed at the current
time and releases the rest to the pool of free memory (which is also called
the freelist by LISP programmers).

Note that Scheme actually proves that an object is no longer usable before
it recycles its memory. It never throws away data that you might want to
use at a later time. How does this work? Any object can only be accessed
as long as it is referred to by a variable or contained in a list (or vector) that
is referred to by a variable. When an object is not accessible through any
variable any longer, it becomes ‘“‘garbage’. For example, when passing

4 You can verify this by using the : gc meta command of SketchyLISP.

97

the string "Hello, World!" to string-length, this string is bound
inside of string-length as long as the procedure reduces. As soon as
it returns its result, though, the string becomes uninteresting:

(string-length "Hello, World!") => 13

There is no way to access the string at this point, because it is no longer
referred to by any variable. If you want to use a string containing the same
letters again, you have to create a new one. The same happens in recursive
procedures. This principle will be explained by means of a sample imple-
mentation of string-length:

(define (string-length s)
(letrec
((str-1len
(lambda (x r)
(if (null? x)

r
(str—-len (cdr x) (+ 1 r))))))
(

(str—-len (string->1list s) 0)))

When a string is passed to this procedure, it is bound to s, converted to a
list, and then passed on to str-len where the list is bound to x. At this point
there is a string and a list kept in memory (and the integer r, but it does
not matter in this explanation). When the general case occurs in str-len,
the cdr part of the list is passed to str-len. This causes the cdr part of the
original list to be bound to x. Because str-len is tail-recursive, the original
binding of x is discarded. At this point, no variable refers to the full list any
longer, so the car part of the list becomes garbage. At each iteration, one
member of the list becomes useless, and when the trivial case is reached,
the entire list is garbage. Once str-len is called, the memory usage of the
program decreases. The program releases memory, and it does so without
any explicit instructions to do so.

The process of recycling unused memory is widely known as garbage col-
lection (or in short: GC). GC got a bad name because many people think
that it causes a great overhead and, even worse, may stop the program at
random locations in order to reclaim storage. The latter is an artifact from
quite early times. Modern garbage collectors do not stop the program to
do their task. They work in the background while the program runs. The
overhead caused by garbage collection (concurrent or not) is no larger than

98

the overhead caused by any decent memory manager. The only scenario
where manual memory management wins is a program that only allocates
memory but never releases it. As soon as memory has to be released, the
two principles run head to head, but GC frees you completely from the task
of keeping track of used memory. Using GC, memory leaks cannot occur!

Another thing that modern GCs avoid is memory fragmentation. Memo-
ry fragmentation occurs when lots of small regions are randomly allo-
cated and freed over a period of time. Doing so leaves a memory layout
like this:

XXX XXX XXX oo XX XXX XX XXX L LW XX
= 1 unit of free memory

X 1 unit of allocated memory

Although the above region contains much more than four units of free
memory, it is impossible to allocate a four-unit object in it, because the
largest contiguous free region has a size of three units. Therefore, a pro-
gram may report insufficient memory although sufficient memory exists
- just not as a contiguous region.

What modern garbage collectors do in such cases is called memory
compaction. The allocated units are moved to one end of the memory pool
and the free units to the other, leading to the following layout:

),0:0:9.0:0:9.0:9:9:9:9:9:9.0:9:9.0:0 -0 .0 G

After compacting memory, the same pool provides enough space for
allocating a 19-unit object.

Automatic memory management does not only deliver the same perfor-
mance as explicit memory management in non-trivial scenarios, it also
makes better use of the existing memory by avoiding fragmentation and
it frees the programmer from the tedious and superflous task of keeping
track of used memory. Using garbage collection, ‘“‘dangling references”
(references to accidentally freed regions) and memory leaks belong to
the past.

5 A program that fails to release unused memory is said to have a memory leak.

99

2.8 Input, Output, and Side Effects

All Scheme procedures have an effect which is to map a number of argu-
ments to a value. This is even true with most pseudo functions. For exam-
ple cond maps a number of clauses to a value. Given the same arguments,
a procedure always returns the same value.

There are constructs, though, which have an effect that cannot be ex-
plained by mapping arguments to values. In section 1.7, one of them was
introduced in order to explain letrec: set ! changes the value of a vari-
able, thereby mutating the state of the current environment. This can eas-
ily be observed by checking the value of the variable before and after the
application of set!:

define x ’"foo)

(
X
(set! x ’'bar)

X

Because this effect of set! on x cannot be explained by mapping argu-
ments to values, it is called a side effect. There are two common kinds
of side effects in Scheme. One is the mutation of objects, and the other is
caused by input and output operations.

Scheme, being a multi-paradigm language, provides several constructs
for mutating state. The names of these constructs end with an exclamation
mark (like set !) to indicate that they have side effects on objects.

In this book a ““purely applicative” subset of Scheme is discussed, so there
are only few procedures with side effects. The only constructs discussed
here that alter values are set! and letrec. Letrec does this “behind
the scenes”, which is why its name has no trailing exclamation mark.

An applicative language is a language in which programs are formed by
combining the applicatitions of procedures and pseudo functions. Strictly
speaking, it is purely applicative, if its procedures do not have any side
effects at all. So, strictly speaking again, the language discussed here is not
purely applicative, because some of its constructs do have side effects.

In fact, terms like ““purely applicative” or ““purely functional” are a bit
blurry. There are a few real-world languages that claim to be “pure’ in

100

this regard, but a real-world language without I/O would not make much
sense, so I/O seems to be an exception to the rule.

2.8.1 Input and Output

To cause side effects is in the nature of input and output procedures. In fact
many I/O procedures do not even have any observable effect other than
returning an unspecific value. The side effects of 1/O procedures are often
more important than their effects.

The most abstract I/O procedures of Scheme are called read and write.
These procedures translate between internal and external representation.
Read is used by Scheme environments to parse programs, and write is
used to write the external representations of normal forms to the user’s
terminal.

Most output that is written by write can be read back using read. There
are some objects that do not have any external representation, though,
like procedures. Such objects are represented by some informative text
enclosed by #< and >:

(write cons) writes #<primitive cons>
(write (lambda () ’"foo)) writes #<procedure ()>

Any attempt to read such a form results in bottom:

(read) f#<primitive cons> => bottom

In case you wonder what applications of write reduce to: it is something
called an unspecific value, frequently represented by #<unspecific> or
#<void>. Unspecific values are used to indicate that the value returned by
a procedure or pseudo function is not interesting. You cannot do anything
useful with such a value, and they cause a type error when passed to most
procedures. Output procedures typically reduce to an unspecific value,
because their effect is not important.

Write writes its output to the same output stream as the Scheme system
itself, so the output of write and the system itself are mixed:

(write "Hello, World!")
"Hello, World!"=> #<unspecific>

You already know read, too, because all programs you have typed in so

101

far were processed by this procedure. In interactive environments, read
reads the same input stream as the Scheme prompt, so you can place your
input right after an application of read

(read) (this is a list with members)
=> (this is a list with members)

Two interesting things happen above. Read is a zero-argument procedure.
It evaluates to the object read by it. Because it can evaluate to different val-
ues given the same argument (none), it is obvious that it has a side effect.
The other interesting part is that the list read by read is not quoted. This is
not necessary, because the list is never evaluated. Quotation is only needed
to tell Scheme that a list is data and not a program. Because something that
is read in obviously is data, there is no need to quote it. In fact, quoting it
would cause read to return an application of quote instead the quoted
object:

(read) foo => foo
(read) ’'foo => ’'foo

Because read and write translate objects from and to an unambiguous
external form, they are useful for storing and retrieving information.

If you want to write some output to a terminal while your program runs,
however, the display procedure is probably what you want. Display
“pretty-prints”’ objects. It does not print quotation marks around strings
and emits ‘“‘special” characters and white space without escaping them.
For instance, display can be used to begin a new line by emitting a
#\newline character:

(display #\newline)
=> f#<unspecific>

Write would emit the external representation #\newline instead. Here
are some other output samples of these two procedures:

write display
#\space

"A \\/ B" A \/ B
#\x x
"\"Hi!\"" "Hi!"

102

Because output procedures are called for their side effects, their returned
values are normally ignored. The following procedure makes use of this
fact. It is used to call the same procedure a given number of times:
(define (do-times n f)
(i1f (zero? n)
(void)
(begin (f)
(do-times (- n 1) £))))

Do-times applies f n times and then returns a meaningless value using
void. Note that the void procedure does not conform to the Scheme
standard, although a lot of implementations do include it. If your Scheme
does not provide it, you can define it using:

(define (void) (if #f #f))

When no alternative is given to i£f, it returns an unspecific value when the
(non-existing) alternative is to be evaluated.

What is more interesting about do-times is its use of begin. This pseudo
function is similar to and and or: it evaluates the expressions passed to
it in sequence. Unlike and and or it does not ever do anything with the
normal forms of these expressions, though. It always evaluates all of the
given expressions and returns the value of the last one:

(begin ’'foo) => foo
(begin ’"foo ’'bar ’'baz) => baz

Because the values of all but the last expression are discarded, this pseudo
function is only interesting if the expressions passed to it have side effects.
In do-times the f procedure is called and its value is discarded. When
f returns, do-times recurses to apply f another time. It can be used, for
example, to write a string 10 times:

(do-times 10 (lambda () (display "Hello")))

HelloHelloHelloHelloHelloHelloHelloHelloHelloHello
=> f<unspecific>

In case you want each of the 10 occurrences of “Hello” to be written on
a fresh line, begin can help, too:

103

(do-times 10 (lambda ()
(begin
(display "Hello")
(newline))))

Newline is a built-in procedure that does the same as (dis-
play #\newline) but is slightly easier to type.

Note that begin is not really necessary in the above expression, because
the body of lambda contains an implied begin, which allows you
to write:

(do—times 10 (lambda ()
(display "Hello")
(newline)))

The read procedure reads only complete forms. Once applied, it waits
until an object has been read entirely:

(read) (define foo ; this is ignored
(lambda () ’'bar)

)

=> (define foo (lambda () ’'bar))

This is pretty handy when parsing Scheme programs, but makes it hard
to read some specific characters alone, such as the semicolon or the
opening parenthesis. This is why Scheme has a procedure for reading raw
characters, too:

(read-char)x => #\x

Read-char reads a single character and returns it. Because it does not
process its input in any way, it can be used to read any character:

(read-char) (=> #\(

Note that read-char reads the same input stream as the Scheme system
itself, so when you use it at the Scheme prompt, you have to place the
character to read immediately after the last closing parenthesis. If you
leave a blank in between, that blank will be read instead:

(read-char)) => #\space

After reading the space in this example, the closing parenthesis will be fed
to the Scheme evaluator which will probably complain about it.

104

There is no built-in procedure for reading lines of text, but such a proce-
dure can easily be constructed using read-char.

(define (read-line)
(letrec
((collect—-chars
(lambda (c s)
(cond ((eof-object? c)
(cond ((null? s) c)
(else (apply string (reverse s)))))
((char=? ¢ #\newline)
(apply string (reverse s)))
(else (collect-chars (read-char)
(cons ¢ s)))))))
(collect-chars (read-char) ’())))

Scheme’s input/output procedures are not limited to the screen and the
keyboard. They can be used to read and write files, too. Scheme uses so-
called ports to implement access to files, but most port-related procedures
work in an imperative way and hence do not integrate well with the pro-
cedural paradigm. Only such file I/O procedures that fit well in applicative
programs will be discussed here.

The with-input-from-file procedure opens an input file for read-
ing:

(with-input-from-file "some-file" read-line)
=> "first line of file"

The first argument of with-input-from-file specifies the file to
read. Its second argument must be a procedure of zero arguments. With-
input-from-file opens the given file and connects the default input
port to that file. In this context it evaluates the given procedure. When the
procedure returns, the default inport port is re-connected to the file or de-
vice that was in effect before the call to with—-input-from-file.

The effect of redirecting the default input port is that all input read via
read or read-char is read from the specified file rather than the user’s
terminal.

When a file specified in with-input-from-file does not exist, the
application reduces to bottom:

(with-input-from-file "non-existant" read) => bottom

105

You can read more than a single line, character, or form by passing a proce-
dure to with-input-from-£file that does whatever you want with the
input from the given file. The following procedure copies the content of a
file to the default output port, effectively typing that file on the screen:

(define (type from)
(with-input-from-file from
(lambda ()
(letrec
((type-chars
(lambda (c)
(cond ((eof-object? c) c)
(else (display c)
(type-chars (read-char)))))))
(type-chars (read-char))))))

Although the cond of type-chars has only two clauses, it is not replaced
by if for a reason. Clauses of cond, like the bodies of lambda, imply
begin, so you can place any number of expressions after the predicate of
a clause.

The eof-object? procedure used in fype tests whether the object passed
to it is the so-called EOF object. The EOF object is a unique, unreadable
object that is returned by read and read-char when a read operation is
attempted on a file that offers no more input.

With-input-from-file hasacounterpartnamed with-output-to-
file. Asits name suggests, it redirects the default output port in the same
way as with-input—from-£file redirects the input port.

The result of specifying an existing file in with-output-to-£file is
unspecified by the standard, so one Scheme environment may overwrite
the file silently and another one may report an error and abort program
execution.

Using with-output-to-file and type, it is easy to write a procedure
that copies the content of one file to another:

(define (copy from to)
(with-output-to-file to
(lambda ()
(type from))))

106

Because (type from) isreduced in a context where the default output
is directed to the file fo, the content of from is typed to that file. with-
input-from-file and with-output-to-£file redirect the input and
output of all I/O procedures inside of their contexts, ®sono special prepa-
rations have to be made inside of type.

6 Unless the I/O procedure specifies an explicit port, but this feature is not discussed
here.

107

108

3 Some Missing Pieces

3.1 Syntax Transformation

Throughout this book pseudo functions were described as something that
not really is a function but whose application looks like a procedure ap-
plication. This is only half of the truth, though. Keywords like define,
lambda, and quote form the synfax of Scheme. The syntax is the very
core of the language. It describes the lexical form of programs. For exam-
ple, define is not really a procedure, but part of the language itself. This
is why just typing define at the Scheme prompt yields a syntax error in
all standard-compliant implementations:

define => bottom
This happens because the syntax of define has only two valid forms

which are

(define symbol value)

and
(define (symbol variable ...) body)

and just define without any parentheses and arguments is neither
of them.

What is particularly interesting about Scheme syntax is that you can
extend it just like you can extend the Scheme procedure library with own
procedures. The process that maps user-defined syntax to existing syntax
is called syntax transformation.

Here is a simple example:

(define-syntax when
(syntax-rules ()
((_ predicate . commands)
(if predicate (begin . commands)))))

In this example define-syntax is used to create a new pseudo function
named when. Whenever Scheme finds an application of when, it re-writes
itaccording to the syntax-rules associated with it. Although other vari-

109

ants exist, the body of define-syntax always consists of an instance of
syntax-rules in standard Scheme.

Syntax-rules provides a set of rules that is used to transform the
application of a pseudo function. Each rule consists of two parts, a pattern
and a template:

(syntax-rules ()
(pattern; template;)

;éétternn templateyn))
In the above example, the only pattern is
(_ predicate . commands)
and the associated template is
(if predicate (begin . commands))

During the transformation, the application of a pseudo function is matched
against each supplied pattern. The template of the first matching pattern
is used to re-write the application.

3.1.1 Pattern Matching

A pattern P is matched against a form F as follows:

If P is a symbol, it matches any form F. For example,

x matches 123
x matches "hello world"
x matches (foo bar)

If P is an atom other than a symbol, F must be exactly the same atom.
For example,

123 matches 123
"hello world" matches "hello world"
#\g matches #\g

If P is a keyword, F must be the same keyword (keywords will be ex-
plained below).

If P is a pair, F' must also be a pair and the car and cdr parts of P must

110

match the car and cdr parts of F. For example,

(1 . 2) matches (1 . 2)
(x . 1) matches (foo . 1) ; x matches anything
(1 . x) matches (1 . (bar baz)) ; x matches anything
(1 . x) matches (1 bar baz) ; same as above!

(1 (2) 3) matches (1 (2) 3)

If an ellipsis (the symbol . . .) occurs in a list, it matches any number of
forms. For example,

(x ...) matches (1)

(x ...) matches (1 #\x)

(x ...) matches (1 #\x (foo))

(x ...) matches (1 #\x (foo) "hi"™)

Whenever a symbol of a pattern (including . ..) matches a form, the

symbol is bound to that form. For example:

Matching x against (foo bar) binds x to (foo bar).
Matching (x ...) against (1 2 3) Dbindsxtoland...to (2 3).
Matching (x . y) against (a b ¢) Dbindsxtoaandyto (b c).

The difference between the patterns (x . y) and (x ...) will become
clear soon.

3.1.2 Substitution

The application of a pseudo function is re-written by replacing it with the
template that is associated with the matching pattern. At the same time,
each variable of the template is substituted by the value assigned to it
while matching the pattern.

Given the user-defined when syntax

(define-syntax when
(syntax-rules ()
((_ predicate . commands)
(1f predicate (begin . commands)))))

and the application
(when (= 1 1) (display "yes!") (newline))

the pattern of the first (and only) syntax rule

111

(_ predicate . commands)

matches the application. While matching the application, it binds

— to when;
predicate to (=1 1);
commands to ((display "yes!") (newline)).

The underscore _is an ordinary symbol that is by convention used to bind
the name of the pseudo function itself.

Substituting the symbols predicate and commands by their values in
the template

(1f predicate (begin . commands))
finally yields
(if (= 1 1) (begin (display "yes!") (newline)))

Note how the dotted pair in the template is used to cons the list of com-
mands to begin:

(begin . commands)
= (begin . ((display "yes!") (newline)))
= (begin (display "yes!") (newline))

The when pseudo function is similar to if, but instead of an alternative
expression it accepts any number of consequent expressions. Because of
its implied begin it allows you to write

(when p X7 X, X3 ...)
instead of
(if p (begin x; X, X3 ...))

Another way to implement the when pseudo function is the use of an el-
lipsis:

(define-syntax when
(syntax-rules ()
((_ predicate command ...)
(1f predicate (begin command ...)))))

This version works in exactly the same way as the version using an

112

improper list. However, the ellipsis has another interesting property that
distinguishes it from the dotted list. The fresh pseudo function makes use
of this property:

(define-syntax fresh
(syntax-rules ()
((_ (sym ...) expr . exprs)
(let ((sym (if #f #f)) ...) expr . exprs))))

Fresh creates some fresh local variables without assigning any specific
values to them. Such a construct could be useful in the implementation of
letrec, for example. The syntax of fresh is similar to the syntax of let,
and in fact the above syntax transformer re-writes fresh using let:

(fresh (a b ¢) (list a b c¢))

becomes

(let ((a (if #£f #£))
(b (1f #f #£f))
(c (if #£ #£)))

(list a b ¢))

Note that a single symbol precedes the ellipsis in the pattern, but the
form

(sym (if #f #f))

precedes the ellipsis in the template. What the syntax transformer does
in this case is to replace each form matched by the ellipsis with the above
template. In

(fresh (a b c¢) (list a b c¢))

the ellipsis matches the symbols a, b, and c. In the template, the ellipsis is
replaced with three instancesof (sym (if #f #£)).Inthe firstinstance,
sym is replaced by a, in the second one it is replaced by b, and in the last
one by c.

Here is another example:

(define-syntax twins
(syntax-rules ()

((_ x ...)
(list (quote (x x)) ...))))

113

The effect of the twins pseudo functions is as follows:

(twins 1) => ((1 1))
(twins 1 2) => ((1 1) (2 2))
(twins 1 2 3) => ((1 1) (2 2) (3 3))

3.1.3 Recursive Syntax

Recursion works even in syntax definitions. A syntax transformation
terminates only if no more opportunities for a syntax transformation can
be found in a resulting form. The following pseudo function reverses a
list:

(define-syntax reverse-syntax
(syntax-rules ()
((_ 1st) (reverse—-syntax 1lst ()))

((_ () r) r)

((_ (a . d) r) (reverse-syntax d (a . r)))))

When reverse-syntax is applied to a list, the application is re-written to an
application of reverse-syntax to that list and () by rule #1: (the ——> arrow
means ‘‘is re-written to’’)

(reverse-syntax (1 2 3)) —--> (reverse-syntax (1 2 3) ())

Because the result contains another application of reverse-syntax, the
transformation continues. Rule #3 is applied three times:

(reverse-syntax (1 2 3) ()) —--> (reverse-syntax (2 3) (1))
(reverse-syntax (2 3) (1)) —--> (reverse-syntax (3) (2 1))
(reverse-syntax (3) (2 1)) —--> (reverse-syntax () (3 2 1))

At this point, rule #2 is invoked which extracts the second argument:

(reverse-syntax () (3 2 1)) ——> (3 2 1)

The resulting list does not contain any applications of syntax transformers,
so it is the final result of the transformation. Using reverse-syntax, you can
reverse a list before it is evaluated:

(reverse-syntax (7 5 cons)) => (5 . 7)

The following recursive syntax transformer implements the case pseudo

114

function, which is part of the Scheme standard:

(define-syntax expand-cases
(syntax-rules (else)
((_ key (else expr ...))
(begin expr ...))
((_ key (data expr ...))
(if (memv key ’data)
(begin expr ...)
(1f #f #£)))
((_ key (data expr . exprs)
more—-cases ...)
(if (memv key ’data)
(begin expr . exprs)
(expand-cases key more-cases ...)))))

(define-syntax case
(syntax-rules ()

((_ key . cases)
(let ((k key))
(expand-cases k . cases)))))

Case is used to select cases based on the value of an expression (which
is called the key of case). Like cond, it has one or multiple clauses
as arguments:

(case key

((dl,l) exprq)
(else expr, cel))
When the key is found in a list of data (d; ; ...), the associated ex-

pressions are reduced. Like the bodies of cond, the bodies of case imply
begin. The else clause, which catches any remaining cases, is optional.

The first thing that stands out in the definition of case is the keyword
else in syntax-rules. Any number of keywords can be defined in the
list that forms the first argument of syntax-rules. The keywords are
local to the syntax transformer being defined.

Rule #1 of the expand-cases helper function matches the else keyword
and re-writes it as follows:

115

(case key (else x; ...)) ——> (begin x; ...)

The second rule makes sure that case reduces to an unspecific value when
no matching clause is found.

Rule #3 is a recursive rule that re-writes a case with multiple clauses to
an if expression that handles the first clause and whose alternative branch
is another application of case that handles the remaining clauses.

The case definition itself just evaluates the key before passing it to
expand-cases, thereby avoiding its multiple reduction.

3.2 Quasiquotation

Quasiquote is like quote, but only quasi. At a first glance they look
equal:

(+12))) => (
(+12))) => (

(quote (

12 12
(quasiquote (1 2 12

But quasiquote has a companion keyword named unquote which, as
its name suggests, allows to unquote individual parts of a quasiquoted ex-
pression:

(quasiquote (1 2 (unquote (+ 1 2)))) => (1 2 3)

Quasiquote and unquote have single-character abbreviations (just like
quote) which are much more handy than their pseudo function forms.
The “” (backquote) character equals an application of quasiquote and
the “,” (comma) character equals an application of unquote:

M1 2 ,((+ 1 2)) = (quasiquote (1 2 (unquote (+ 1 2))))
It is technically possible to quasiquote and unquote single atoms:

‘\foo = ‘'foo
\,foo = foo

However, quasiquoting an atom is equal to quoting it, and quasiquoting
and then unquoting it is equal to not quoting it at all. The major purpose of
quasiquotation is the construction of fixed list structures that contain only
few variable parts:

116

(let ((var ’'x))
‘(lambda (,var)
(* ,var ,var)))
=> (lambda (x) (* x x))

Without using quasiquotation, this expression would have to be written
this way:
(let ((var ’x))

(list ’lambda

(list wvar)
(list ’* var var)))

Not quite as readable, is it? And things get even worse when you start
splicing lists using unquote-splicing (or , @ in short):

‘(1 2 3 ,Q(1list 4 5 6)) => (1 2 3 4 5 6)
‘(1 2 3 (unquote-splicing (list 4 5 6))) => (1 2 3 4 5 6)

Like unquote, unquote-splicing unquotes its argument, but instead
of including it in a surrounding list, it splices it into that list:

‘M1 2 ,@(list 3 4)) = (append ' (1) "(2) (list 3 4))

Because unquote-splicing splices its argument into a list, it is not
valid outside of quasiquoted lists:

\,@(list 3 4) => bottom

Here is an expression that constructs a form using unquote-splicing:

(let* ((var ’'x)
(body ‘((display ,var)
(newline)
rvar)))

‘(lambda (,var) ,@body))
=> (lambda (x) (display x) (newline) x)

and the same expression without quasiquotation:

(let* ((var ’'x)
(body (list (list ’‘display var)
"(newline)
var)))
(append ' (lambda)
(list (list wvar))
body))

117

If you see a pattern emerging here, you are not mistaken:

14

\x = ’'x
L, X = X
V(x) = (list 'x)
V(,x) = (list x)
Y (x ,x) = (list ’'x x)
‘(,@x) = (append x)
“(x ,x ,@x) = (append (list ’'x) (list x) x)

We already know that a quasiquoted atom is a quoted atom and a
quasiquoted and unquoted atom is an (unquoted) atom. Here are some new
observations: 1) A quasiquoted list is an application of 1ist to a series of
quoted forms. 2) An unquoted form in a quasiquoted list is not quoted. 3)
When , @ occurs in a quasiquoted list, the application of 1ist isreplaced
by an application of append, and 1ist is applied to each subform except
for those that will be spliced.

3.2.1 Metaprogramming

A metaprogram is a program that writes to re-writes a program. Metapro-
gramming is the art of writing metaprograms.

The previous section introduced some simple metaprograms, such as

(let ((var ’'x))
‘(lambda (,var)
(* ,var ,var)))

which generates the code of a procedure that squares its argument. Here
is a more interesting metaprogram that makes heavy use of quotation and
quasiquotation:

((lambda (x) ‘(,x ’,x)) '(lambda (x) ‘(,x ’,x)))
Can you find out what it does without reading ahead?

Programs like the above are widely known as guines in computer science,
named after the logician W.V.O. Quine. What they do is to print a copy of
their own code. Above quine makes use of the fact that Scheme environ-
ments print normal forms of expressions. It reduces to its own code which
is then printed by the Scheme system. Some systems may print some-
thing like

118

((lambda (x) (quasiquote ((unquote x) ' (unquote x))))
’(lambda (x) (quasiquote ((unguote x) ' (ungquote x)))))

instead of the original expression, but this is merely its expanded form.
When you evaluate it again, you will finally reach a fixed point in the
evaluation. Fixed points are an interesting concept in computer science,
and we will get back to them in a later section.

In the previous subsection some rules regarding the equivalence of
quasiquotation and 1ist/append were introduced. Using metaprogram-
ming, it should be possible to transform applications of quasiquote me-
chanically into applications of append and 1ist by applying these rules.
Indeed this is possible. The following metaprogram performs this transfor-
mation: ’

(define (expand-qqg form)
(letrec
((does—splicing?
(lambda (form)
(and (pair? form)
(or (and (pair? (car form))
(egq? ’unquote-splicing (caar form)))
(does—-splicing? (cdr form))))))
(expand-1list
(lambda (form)
(if (does-splicing? form)
(cons "append
(map (lambda (x)
(if (and (pair? x)
(egq? ’"unquote-splicing
(car x)))
(cadr x)
(list ’list (expand x))))
form))
(cons ’"list (map expand form)))))
(expand
(lambda (form)
(cond ((not (pair? form))
(list ’'quote form))
((eg? ’"quasiquote (car form))
(expand (cadr form)))

7 Expand-qq is not a full quasiquote expander as required by standard Scheme. It does not
handle improper lists correctly, ignores vectors, and does not support nested quasiquo-
tation.

119

((eg? "unquote (car form))
(cadr form))
(else (expand-list form))))))
(expand (cadr form))))

The expand-qq procedure expands quasiquote to 1ist and append as
described in the previous section:

(expand-qq ’‘(x)) => (list ’x)
(expand-qq "‘(,x)) => (list ’x)
(expand-qq '‘(x ,x ,0@x)) => (append (list ’'x) (list x) x)

It also translates the quasiqoted part of the above quine properly:
(expand-qg "M(,x ’,x)) => (list x (list ’'quote x))

Verifying that the above result is actually equal to the original quasiquoted
form is left as an exercise to the reader.

3.3 Tail-Recursive Programs

Earlier in this book, a tail-recursive program was described as a program
that ““does not do anything after calling itself”’. However, this is only half
of the truth, as even this trivial example illustrates:

(define (down n)
(cond ((zero? n) 0)
(else (down (- n 1)))))

When stating that the application of down is the last thing that down
does in the general case, cond was silently excluded. Of course, cond is
required to distinguish between the general case and the trivial case, so it
has to be an exception, or tail-recursion could not work at all. It does work
because a cond with a true predicate can be re-written this way:

(cond (#t expr)) = expr

As soon as a true predicate is reached, there is nothing left to do for cond.
This is why bodies of cond are safe positions for tail calls. A tail call is a
call to a procedure that occurs right before the calling procedure returns.
When a procedure uses tail calls exclusively to implement recursion, it
is tail-recursive.

The predicates of cond are not valid positions for tail calls, because

120

cond has to examine the normal form of each predicate in order to decide
whether the corresponding body is to be evaluated. In the following exam-
ple, the first recursive call to equ? is not a tail call (because it is a predicate
of cond), but the second one is (because it is a body of cond):

(define (equ? a b)

(cond ((or (not (pair? a))
(not (pair? b)))
(egq? a b))

((equ? (car a) (car b))
(equ? (cdr a) (cdr b)))
(else #£f)))

There are other positions that are safe for tail calls. The last argument of
and is one such position. The last two clauses of the above equ ? procedure
can be replaced by an application of and:

(define (equ? a b)
(cond ((or (not (pair? a))
(not (pair? b)))
(eg? a b))
(else (and (equ? (car a) (car b))
(equ? (cdr a) (ecdr b))))))

The second application of equ? is still a tail call. The other arguments of
and are not safe, because and may have to examine all of its arguments
before it can return.

The same is true with or and begin: their last arguments are safe, their
others are not. In general, all expressions that can be re-written in such a
way that only the tail call remains are safe:

(begin (f)) = (f)

(or (£)) = (f)

(and (£)) = (f)

(cond (#t (£))) = (f)
(case ’'x ((x) (£))) = (f)
(if #t (£f) (g9)) = (f)

(if #£ (£f) (g9)) = (9)

In if, both the consequent and the alternative are safe, because if the
predicate is true, the consequent is safe and the alternative is ignored,
and if the predicate is false, the consequent is ignored and the alternative
is safe.

121

The fact that the last positions of and, or, and begin are safe can easily
be derived from their definitions, as will be demonstrated here using the
example of and.

And evaluates its arguments a;...a, in sequence. When one of the argu-
ments a;...qa,_; evaluates to #£, the last argument gy, is never evaluated, so
it does not matter whether it is a tail call or not. What remains is the case
that all arguments up to the last one evaluate to #t. In this case,

(and al a2 ... aN)
(and a2 ... aN)

= (and aN)

= aN

Showing that the last position of or is safe works in an analogous way.
The last position of begin is trivially safe because

(begin al ... aN)
= (begin aN)
= aN ; modulo side effects

Note that the fact that only the last expression of begin is a tail call
position has consequences for all constructs that use an implied begin.
Only the last expression in the bodies of lambda, cond, case, etcisin a
tail call position. In the expression

(cond (else (f) (g) (h)))

the calls to f and g are no tail calls, only the call to /4 is one.

Although this might not be obvious, the bodies of the binding constructs
let, let*, and letrec are also safe. The following version of down
is tail-recursive:

(define (down n)
(let ((m (- n 1)))
(cond ((zero? n) 0)
(else (down m)))))

That this procedure is tail-recursive can easily be shown by re-writing let
to the application of a lambda function:

(define (down n)
((lambda (m)
(cond ((zero? n) 0)

122

(else (down m))))
(- n 1)))

The anonymous procedure application is in a tail call position, because it
is the last thing to be evaluated in down. The recursive call to down is also
in a tail call position, because it is the last expression in a body of cond.
Ergo this version of down is tail-recursive.

A tail-recursive program may very well consist of multiple procedures
which call each other. Recursion involving multiple procedures is called
mutual recursion or indirect recursion. The following example implements
the even-p procedure, which checks whether a number is even, in terms
of the odd-p procedure, which checks whether a number is odd, and vice
versa:

(define (even-p Xx)
(or (zero? x) (odd-p (- x 1))))

(define (odd-p x)
(if (zero? x) #f (even-p (- x 1))))

Of course this definition works only for positive numbers, but this is a
circumstantial detail. What is more interesting is the fact that both even-p
and odd-p are tail-recursive. Tail call optimization, which is responsible
for turning tail calls into “jumps”, is not limited to procedures that call
themselves directly. Scheme optimizes all tail calls no matter whether they
are directly recursive, indirectly recursive, or not recursive at all.

3.4 Continuations

Each point in an evaluation has a past and a future. The past is gone and
has condensed to a value. The future, which waits for its past to complete,
expects exactly that value. For instance, the application of car in the
following sample expression waits for the completion of the application
of reverse:

(car (reverse ’"(a b c)))

At the point where reverse returns, the past of the evaluation has con-
densed to the value (¢ b a),and the future can be expressed as a proce-
dure application that awaits that value:

(car _)

123

The underscore character represents the value that the future is wait-
ing for.

Note that the procedure waiting for the past is always a single-argument
procedure, even in expressions like

(+ (* 1 2 3) (* 2 3 4))

Although each * has three arguments and + has two arguments, this ex-
pression can easily be broken up into a past evaluating to one single value
and a future expecting one single argument at any point. The following
sample reduction illustrates this:

(+ (* 1 2 3) (* 2 3 4))

> (+ 6 (* 2 3 4)) ; (lambda (x) (+ x (* 2 3 4)))
-> (+ 6 24) ; (lambda (x) (+ 6 x))

=> 30

At the point where the first argument of + has been evaluated (to 6), the
future of the computation consists of a procedure expecting that value in
order to add it to (* 2 3 4).The procedure that is forming the future
of the computation is constructed by replacing the _, which marks the
position where the past is expected to complete, with a free variable:

(+ 6 _) becomes (+ 6 x)
and then performing the following transformation:
(+ X 6) becomes (lambda (x) (+ 6 x))

This transformation turns the expression into the body of a lambda func-
tion which binds the newly introduced free variable. Thereby the expres-
sion becomes a procedure.

In fact there were much more opportunities to split the above example
expression into a past and a future. Even the sub-expression (+ 1 2 3)
contains three points where + waits for a value:

(lambda (x) (+ x 2 3)) ; wait for 1
(lambda (x) (+ 1 x 3)) ; wait for 2
(lambda (x) (+ 1 2 x)) ; wait for 3

Each of the numeric arguments evaluates to itself. While it does so, + waits
for that part of the reduction to complete. At each of these points, the
process can be split into a past and a future.

124

The future of a computation is also called its continuation, and the con-
tinuation of the current point in the process of an evaluation is called the
current continuation. For example, the current continuationof (£ (g x))
at the point where (g x) returnsis (£ _) or, after transforming it into a
procedure:

(lambda (x) (f x))

Now imagine a procedure that captures the current continuation, freezes
it, and packages it for later use. Scheme has such a procedure and it is
called call-with-current-continuation. Because this name is a
bit long, though, many Scheme implementation abbreviate it to call/cc.
In case your implementation has only the long variant, you can define your
own abbreviation using the definition:

(define call/cc call-with-current-continuation)

Call/cc is a single argument procedure expecting a procedure of one
argument. What it does is to capture the current continuation and pass it to
that procedure:

(call/cc £) —> (f #<continuation>)

where #<continuation> represents the captured continuation.

To prepare the continuation for later use, call/cc “reifies” it, which is
basically the same as the transformation outlined above:

(£ _) becomes (lambda (x) (f x))

So what you get is an ordinary procedure that constitutes the future of a
point in the evaluation of an expression. You can “jump” to that future
by applying the reified continuation. When you decide to do nothing with
a captured continuation, nothing special happens. Call/cc returns the
return value of the procedure passed to it:

(call/cc (lambda (k) ’"foo)) => foo

When the captured continuation is applied to a value, this value is returned
by call/cc:

(call/cc (lambda (k) (k ’'bar))) => bar

Of course, the application of k does have its own continuation. Because
this is not obvious in the above example, here is a better one:

125

(f (call/cc (lambda (k) (g (k ’'bar)))))

In this example, the continuation captured by call/ccis (f _),and the
continuation of (k ’'bar) is (g _).

Applying k£ melts the previously frozen continuation which causes the
problem that now there are two possible futures for (k ‘bar): (f _) and
(g _).So what Scheme does is to eradicate the current future (g _) and
establish (£ _) which is the future captured before:

(f (call/cc (lambda (k) (g (k 'bar)))))
-> (f (g (#<continuation> ’bar)))
-> (£ ’'bar)

The current continuation of (k ’bar) is never reached and so g is never
applied. You could even do total nonsense in the future of the application
of a reified continuation - it would not matter as this example illustrates:

(call/cc (lambda (k) (#f (k #t)))) => #t

The non-sensical application of #£ is never reached.

The following sections will explain some things you can do with continu-
ations.

3.4.1 Non-Local Exits

The length procedure takes a “proper’ list as its argument. Checking
for an improper list takes linear time, because the complete list has to be
traversed before it can be recognized as an improper one:

(define (checked-length x)
(letrec
((proper—-1list?
(lambda (x)

(cond ((null? x) #t)
((not (pair? x)) #f)
(else (proper-1list? (cdr x))))))
(length

(lambda (x)
(cond ((null? x) 0)
(else (+ 1 (length (cdr x))))))))
(and (proper-1list? x) (length x))))

126

The checked-length procedure returns the length of a list or #£ in case
an improper list is passed to it. To do so, it has to traverse the list twice:
once to check whether the last cdr part of the list is () and another time
to compute the length. Of course, it would be nice if both of these tasks
could be performed in one loop. Unfortunately, this is not that simple:

(define
(cond

(broken-length x)

((null? x) 0)

((not (pair? x)) #1f)

(else (+ 1 (broken-length (cdr x))))))

While this procedure works fine for lists and correctly detects atomic
arguments, its application to a dotted list has no normal form:

(broken-length ’"(a . b))

-> (+ 1 (broken-length ’'Db))
-> (+ 1 #£f)

=> bottom

At this point, a continuation captured by call/cc could avoid the appli-
cation of + to #£. The following version of checked-length uses call/cc
to implement a so-called non-local exit:

(define (checked-length-nl x)
(call/cc (lambda (exit)

(letrec
((length
(lambda (x)
(cond ((null? x) 0)
((not (pair? x)) (exit #f))
(else (+ 1 (length (cdr x))))))))
(length x)))))

A non-local exit is a facility that bypasses the normal flow of evaluation.
The broken-length procedure uses a local exit by just returning #f when
an improper list is detected. However, this value might be passed back to
“outer” instances of broken-length which attempt to apply + to this value.
In the checked-length-nl procedure, the exit continuation is used to exit
from all recursively called instances of the length procedure at once. This
is how it works:

The first thing that is applied inside of checked-length-nl is call/cc. It
captures the continuation of its own application and passes it to its argu-

127

ment which binds the continuation to exit. Inside of this context, length
is defined and applied to the list. When length detects an improper list,
it applies exit. This application discards the current continuation of
(exit #f) and establishes the continuation saved at the beginning:

(checked-length-nl ’"(a . b))

; the exit continuation is captured here
-> (length (a . b))

-> (+ 1 (length b))

-> (+ 1 (exit #f))

=> #f

You might wonder what the continuation captured by call/cc in
checked-length-nl looks like, because there does not seem to be anything to
do after the return of call/cc. In fact there is something to to: checked-
length-nl has to return the value passed to the continuation. This operation
can be thought of as applying the identity function (lambda (x) x):

1 (length b))

(+ 1 (exit #f))

-> ((lambda (x) x) #f)
#£

Because adding an application of the identity function to any expression
does not change the meaning of that expression, this is a useful tool for
understanding continuations in expressions like this:

(call/cc (lambda (k) (#f (k ’"foo0))))

What does the continuation that is bound to k in this expression look like?
Adding an application of the identity functions clarifies things:

((lambda (x) x) (call/cc (lambda (k) (#f (k ’"foo0)))))
The continuation is an application of identity:

((lambda (x) x) _)

3.4.2 Exposing some Gory Details

‘What makes continuations special is that they are first class objects with
indefinite extent. A first class object is an object that can be bound to vari-
ables, passed to procedures and returned by procedures. You can do this
with all Scheme objects except for keywords. An object with indefinite ex-

128

tent exists as long as at least one variable refers to it (directly or indirectly
through a list or vector). Only when the last reference to the object is bro-
ken, the object becomes garbage and is recycled. All Scheme objects have
indefinite extent.

Because continuations are first class objects and have indefinite extent,
they can escape from the dynamic context of call/cc, as the following
trivial example illustrates:

(call/cc (lambda (k) k)) => #<continuation>

The dynamic context of call/cc is the procedure passed to it. When
this procedure returns, the dynamic context of call/cc vanishes. In
the above example, the identity function returns the continuation passed
to it, so when the application of call/cc returns, the continuation can
be bound to a symbol for later use. Even resuming the continuation at a
later time does not invalidate it. Because it captures the complete future
of a point in an evaluation, it can be applied any number of times, which
opens the door to a whole load of brain-twisting puzzles. Here is a rather
simple one:

(let ((x (call/cc (lambda (k)
(cons k "foo)))))

(let ((k (car x))
(v (cdr x)))
(cond ((eg? v ’"foo) (k (cons k ’'bar)))
((eg? v ’'bar) (k (cons k ’'baz)))
(else v))))

The value x is bound to consists of a continuation and a symbol:
(#<continuation> . foo0)

Because continuations are first class objects, they can be stored in struc-
tures like lists or pairs. The second 1et decomposes the structure, binding
the continuation to k and the symbol to v. The next action depends on the
symbol. Because it is foo when cond is entered, the following body is
evaluated:

(k (cons k ’bar))

And this is where the fun begins. The object that is passed to the continu-
ation is equal to the original structure only with foo replaced by bar:

129

(#<continuation> . bar)

The continuation stays the same. But what does the captured future look
like in this example? It is the point where the reduction of a value to be
bound in 1let returns, but the corresponding binding is not yet established.
When £ is applied, the flow of the program kind of travels back in time to
the point where the value returned by call/cc is bound to x. Instead of
the originally specified value

(#<continuation> . foo)
call/cc this time returns
(#<continuation> . bar)

To let there is no difference to the first time the value of x reduced. It
binds the new value and evaluates the cond expression in its body. The
same procedure is carried out again, this time replacing bar with baz.
The case that v is bound to baz is not specified in cond, so it falls through
and the value of v is returned. Let returns baz and the continuation is
finally recycled.

And now for the gory details that this section promised to reveal. In fact
call/ccisnot hard to grasp. What is hard to grasp are all the subtle little
details that the Scheme language encompasses. Call/cc discloses some
details that would pass unnoticed without its existance. Whether this is a
good thing or not is debatable.

The order of evaluation of arguments is undefined in Scheme. This means
that the expressions passed to a procedure expecting multiple arguments
can be evaluated in any order. You cannot tell which of the arguments a,
b, and ¢ in

(f a b ¢)

will be evaluated first, which second, and which last. Any combination
is possible. As long as the sub-expressions a, b, and ¢ do not have any
side effects, the order of evaluation does not change the meaning of the
application, so each Scheme implementation is free to choose the order of
evaluation which is most efficient. If multiple sub-expressions have side
effects, these side effects occur in some unspecific order:

130

(letrec

((print—and-return

(lambda (x)
(display x)
x)))

(+ (print-and-return 2)
(print—-and-return 3)
(print—and-return 4)))

=> 9

While this expression is guaranteed to evaluate to 9, it may print any
permutation of the values 1,2, and 3. This is the reason why begin cannot
be expressed as a lambda function:

(lambda x (car (reverse Xx)))

would evaluate its arguments and return the normal form of the last
one of them, but the order in which the arguments are evaluated would
be undefined.

The following rather simple example exposes the order of sub-expression
evaluation without using I/O:

(call/cc (lambda (k)
(#f (k ’"left-to-right)
(k 'right-to-left))))

Because evaluating either of the both applications of k abandons the rest of
the evaluation of this expression and returns the argument of £ immediate-
ly, the expression will reduce to the argument of the k that is applied first.
However, the result obtained from this expression does not really help. All
it demonstrates is that the order of evaluation is left-ro-right or right-to-left
in this particular situation. It does not consider the fact that an optimizing
compiler still might re-order arguments of other applications in any way
that may lead to more efficient code.

The following expression shows that letrec actually does mutate
bindings in order to create a recursive structure: 8

8 This test was posted to Usenet by Al Petrofsky on 2005-03-23 using Message-
ID <87118eftvu.fsf@petrofsky.org>.

131

(letrec ((x (call/cc list)))
(if (pair? x)
((car x) (lambda () x))
(pair? (x))))
=> #f

As in an earlier example, x is bound to a structure (this time a list) contain-
ing a continuation. A list is a pair, so the continuation is applied to

(lambda () x)

Lambda freezes the outer context which includes the current binding of
x. The value of x is still a list containing a continuation at this point. The
binding is included in the lexical environment of the resulting procedure.
Lexical environments of procedures cannot be changed by applicative
programs like the above one, so the value of x should not change.

The procedure is passed as an argument to the continuation (car x).
Evaluation continues at the point where letrec binds its arguments. This
time x is bound to the procedure returned by (lambda () x).

A procedure is not a pair, so
(pair? (x))

is evaluated by cond and obviously
(x)

evaluates to a non-pair, or the whole expression would not evaluate to
#f. However, the value contained in the lexical environment of (lamb-
da () x) was a pair, so that value must have changed at some point be-
tween the creation of the procedure and the application of cond.

The only construct that was in between was letrec, and what happened
is this: When call/cc returns for the second time, it evaluates to the
procedure resulting from

(lambda () x)

This procedure contains a lexical environment in which x is bound to
(#<continuation>). However, x is exactly the variable that is bound
by letrec,soitis arecursive reference. Because letrec fixes recursive
references, it changes the binding of x in the procedure to the value that it

132

binds to x, resulting in the following recursive structure:

(lambda () x) where
x = (lambda () x) where
X =

To prove that this effect is really caused by letrec, it is sufficient to
replace letrec with let and show that the effect does not occur in the
resulting program:

(let ((x (call/cc 1list)))
(if (pair? x)
((car x) (lambda () x))
(pair? (x))))
=> #t

Indeed this expression evaluates to #t, leaving letrec as the only
possible cause for the mutation of the lexical environment.

3.5 Lambda Calculus and the Y Combinator

Earlier in this book, the self-application combinator S was introduced as
a device for the construction of anonymous recursive functions:

(lambda (f x) (f £ x))

A combinator is a function that does not make use of any free variables,
which is why it cannot even use basic operations like + or car. So it
is basically limited to binding constructs, function applications, and its
(bound) variables.

While the self-application combinator works fine, it has one limitation.
It requires two arguments: the function to be applied and the value the
function is to be applied to. It would be much more elegant, if it could just
transform a function into a recursive function. Such an operator would
turn the following factorial function (which does not work because (lamb-
da (x)...) closes over the free variable f) into a working recursive function
R:

(lambda (f)
(lambda (x) mmmmmm > R
(cond ((zero? x) 1) mystery
(else (* £ (- x 1)))))) transformation

133

Indeed a function performing this “mystery transformation” exists. It is
called the Y combinator (Y), and it turns any function f of the above form
into a recursive function f:

(Y £) => £’

F’ is also called the fixed point of f, which is why Y is also known as the
“fixed point operator”’. The fixed point of a higher order function f is a
function f” which is mapped to itself by f:

(f £7) => £’

Because the Y combinator computes the fixed point of a function f,
(Y £) = (£ (Y £)) = (£ (f (Y £)))

In the remainder of this section, the definition of a recursive function using
letrec will be transformed into an equivalent definition that employs the
Y combinator instead of letrec. A definition of the Y combinator itself
will be a by-product of this transformation.

Note that most of the steps (exceptions: 11,12,13,14) during the trans-
formation still implement the factorial function. You can try them in a
Scheme environment, if you want to.

Here is the expression to be transformed. It contains a definition of a
recursive factorial function using letrec:

; The original factorial function f

(letrec
((£f (lambda (a)
(cond ((zero? a) 1)
(else (* a (£ (- a 1))))))))
(£ 5))
=> 120

The use of letrec can easily be avoided by adding an argument to f that
is used to carry a copy of the function itself. It is no coincidence that this
argument is also called f; it names the function locally. Applications of f
have to pass along the additional argument, so (f x) becomes (f f x):
; Step 1: replace LETREC with self-application
(let ((f (lambda (f a)
(cond ((zero? a) 1)
(else (* a (£ £ (- a 1))))))))
(£ £ 5))

134

Let can be transformed into an application of a lambda function, which
is done in the following step:

; Step 2: transform LET to LAMBDA

((lambda (f) (£ £ 5))
(lambda (f a)
(cond ((zero? a) 1)
(else (* a (£ £ (- a 1)))))))

The above version applies the constant 5 to the factorial function. Because
a real factorial function would be applicable to any positive value, though,
an argument is added to receive that value:

; Step 3: make argument a variable

((lambda (f x) (f £ x))
(lambda (f a)
(cond ((zero? a) 1)
(else (* a (£ £ (- a 1))))))
5)

The above step results in a two-argument factorial function that expects
a copy of itself as well as the value whose factorial is to be computed. To
convert the two-argument function into a single-argument function, a
method known as currying is applied.

By currying a two-argument function, that function is turned into a
higher-order single-argument function. Applying a curried two-argument
function to the first argument and then applying the resulting function to
the second argument is equivalent to applying the original function to two
arguments. Here is an example. Currying the function

(define (add a b) (+ a b))
gives
(define (add-n a) (lambda (b) (+ a b)))

Applying add-n to a value evaluates to a single-argument function that
adds the given value to its argument:

(add-n 5)
; This procedure will add 5 to its argument:
=> f<procedure (b)>

Applying this function to a second argument yields the same result as the

135

application of the original function to the same values at once:

(add 5 7) => 12
((add-n 5) 7) => 12

Currying the above version of the factorial function separates the function
f from its argument a, just like the above example separated the first
argument (5) from the second argument (7):

; Step 4: curry the lambda functions
(((lambda (f) (lambda (x) ((f f) x)))
(lambda (f)
(lambda (a)
(cond ((zero? a) 1)
(else (* a ((£ £) (- a 1))))))))
5)

The factorial function (lambda (f a) ...) turned into (lambda (f) (lamb-
da(a)...)),self application turned into (lambda (f) (lambda (x)...)), and ap-
plications of the form (f f x) turned into ((f f) x). When (lambda (f) (lamb-
da (a)...)) is applied to itself, it closes over its own copy, giving a single-
argument function that is capable of applying itself.

The function resulting from this transformation can now be separated
from its argument:

; Step 5: extract the function
((lambda (f) (lambda (x) ((f f£f) x)))
(lambda (f)
(lambda (a)
(cond ((zero? a) 1)
(else (* a ((£ £) (- a 1))))))))

— o~

This expression looks fine, but it has one minor flaw: f has to apply itself
each time it wants to recurse. The remaining transformations will draw this
self-application into the Y combinator itself, so that recursive applications
of the factorial function will be ordinary function applications.

The first step to achieve this goal is to give self-application a name (s):

; Step 6: give self-application a name

((lambda (f) (lambda (x) ((f f£f) x)))
(lambda (f)
(let ((s (lambda (x) ((f f) x))))

136

(lambda (a)
(cond ((zero? a) 1)
(else (* a (s (- a 1)))))))))

After naming self-application s, the recursive function invocation looks
like an ordinary function application. The let that is used to name self-
application is now transformed into the application of a lambda function:

; Step 7: transform LET to LAMBDA
((lambda (f) (lambda (x) ((f f£f) x)))
(lambda (f)
((lambda (s)
(lambda (a)
(cond ((zero? a)
(else (* a
) X

1)
(s (=al1)))))))
((£ £)))

(lambda (x))

)

The next step is to give the factorial function a name. This might look
a bit counter-intuitive at a first glance, because this whole exercise is
about the creation of anonymous recursive functions, but it is a necessary
intermediate step. The factorial function is named g:

; Step 8: give the factorial function a name

((lambda (f) (lambda (x) ((f f) x)))
(lambda (f)
(let ((g (lambda (s)
(lambda (a)
(cond ((zero? a) 1)
(else (* a (s (- a 1)))))))))
(g (lambda (x) ((f £) x))))))

In the next step, let is once more transformed into lambda, giving an
expression that may cause serious headache when examining it. Here are
some hints: The (lambda (s) ...) part still introduces the factorial function,
and the (lambda (g) ...) part binds that function to g and applies it to the
function implementing self-application. Self-application is thereby bound
to s.

; Step 9: transform LET to LAMBDA

((lambda (f) (lambda (x) ((f f) x)))
(lambda (f)
((lambda (qg)
(g (lambda (x) ((f f) x))))
(lambda (s)

137

(lambda (a)
(cond ((zero? a) 1)
(else (* a (s (= a 1))))))))))

In fact, the above expression comes pretty close to a definition of the
Y combinator. It only has to be isolated. This is done by “‘eta conversion™.
The parts of the expression that are added by this conversion are empha-
sized using boldface characters in the following step.

; Step 10: eta-expand Y

((lambda (r)

((lambda (f) (lambda (x) ((f f) x)))
(lambda (f) ((lambda (g)
(g (lambda (x) ((£ £) x))))
r))))
(lambda (s
(lambda)

)
(a

(cond ((zero? a) 1)
(e

Ise (* a (s (- a 1))))))))

Eta conversion works in two directions. It converts a function into an
equivalent lambda function and vice versa:

(lambda (x) (f x)) e > f

The transformation of a lambda function to an equivalent function is
called eta reduction, the reverse operation is called eta expansion. The
conversion performed in step 10 is an eta expansion.

After performing this conversion, the expression can be decomposed
into two parts: the factorial function and the Y combinator. Removing the
outermost application and the factorial function yields the Y combinator:

; Step 11: extract Y

(lambda (r)
((lambda (f) (lambda (x) ((f f) x)))
(lambda (f) ((lambda (g)

(g (lambda (x) ((f £f) x))))
r))))

Each expression of the form ((lambda (x) t) v) can be reduced to ¢’, where
t’ equals ¢ with each free occurrence of x replaced by v:

((lambda (x) (x x)) v) ———————— > (v V)

138

This conversion is called beta reduction. It is exactly this conversion which
substitutes arguments for variables when applying a Scheme function.
In the next step, the application of (lambda (g) ...) is beta-reduced by
substituting r for g in (g (lambda (x) ((ff) x))):

; Step 12: remove lambda(g) by beta reduction
(lambda (r)
((lambda (f) (lambda (x) ((f f£f) x)))
(lambda (f) (r (lambda (x) ((f £f) x))))))

Finally, the first self-application in the expression is simplified by eta
reduction. (In case you wonder why the second self-application is not
reduced: this will be explained in the following sub-section.) The result of
this step is a definition of the Y combinator:

; Step 13: remove first lambda(x) by eta-reduction
(lambda (r)

((lambda (f) (£ £f£))

(lambda (f) (r (lambda (x) ((£f £) x))))))

To facilitate further experiments with this combinator, it will be named
Y:

; Step 14: name the combinator
(define (Y r)
((lambda (f) (f £f£))
(lambda (f) (r (lambda (x) ((£f £) x))))))

The following definition binds f to the factorial function of step 8. As you
can see, it employs neither letrec nor self-application:

(define (f s)
(lambda (a)
(cond ((zero? a) 1)
(else (* a (s (= a 1)))))))

Given these definitions of Y and f:

(Y £) => {#<procedure (a)>
((Y £) 5) => 120

((f (Y £)) 5) => 120

((f (£ (Y £))) 5) => 120
So

139

- Y turns f into a recursive factorial function;
- (Y f)is the fixed point of f.

3.5.1 Scheme vs Lambda Calculus

Lambda calculus (LC) is the basis of all programming languages of the
LISP family. Above conversion rules, like eta conversion or beta reduc-
tion, actually belong to lambda calculus, but many of these rules apply to
Scheme as well. In a way, Scheme may be considered a kind of “applied
lambda calculus”. This is why the Y combinator can be implemented in
both LC and Scheme.

This sub-section will explain how the Y combinator works and why
the second self-application of the combinator may not be eta-reduced
in Scheme.

In fact, the operation performed by Y is rather simple: Y is a function of
a function f that applies self-application to the application of f to self-ap-
plication.”

Although this description is brief and correct, an example may be more
helpful. The following reduction shows how the anonymous factorial func-
tion (which already has been stretched a bit far at this point) is converted
into a recursive function:

(lambda (r)
((lambda (f) (f £))
(lambda (f) (r (lambda (x) ((f £) x))))))
(lambda (s)
(lambda (a)
((zero? a) 1)
(else (* a (s (- a 1))))))))

(cond

In the first step, the factorial function [(lambda (s) ...)] replaces the variable
r in the body of the combinator by beta reduction:

; beta-reduce ((lambda (r) ...) ...)
-> ((lambda (f) (f £f))
(lambda (f) ((lambda (s)
(lambda (a)
(cond ((zero? a) 1)
(else (* a (s (- a 1)))))))
(lambda (x) ((f £) x)))))

140

In the following step, the factorial function is applied to self-application.
This step makes (lambda (a) ...) close over s, giving a function that is ca-
pable of performing self-application. For improved readability, (lamb-
da (x) ((f f) x)) is eta-reduced to (f f) in the same step:

; beta-reduce ((lambda (s) ...) ...)
; eta-reduce (lambda (x) ((f f£f) x))
-> ((lambda (f) (f f))
(lambda (f)
(lambda (a)
(cond (
(

a
(zero? a) 1)
e (

Ise (* a ((£f £) (- a 1))))))))

Finally, the resulting function is applied to itself. It thereby closes over its
own copy, leaving a function that applies itself to itself. This transforma-
tion is a bit tricky, because f is bound in different contexts. To avoid this
ambiguity when performing beta reduction manually,lambda calculus pro-
vides a rule known as alpha conversion.

Alpha conversion replaces the names of variables that are bound in a
function with names that are not bound in the argument of that function.
More formally: given the expression

((lambda (x) t) v)

it replaces all occurences of x in (lambda (x) t) with a name that does not
occur in v. This transformation is safe because changing the name of a
bound variable does not change the meaning of an expression:

(lambda (f) (£ £)) = (lambda (x) (x X))

Scheme environments do not have to do alpha conversion because com-
puters are good at keeping track of different instances of the same sym-
bol, but to humans dealing with expressions like the above, it is a valu-
able aid:

; alpha-convert (lambda (f) (f £f))

-> ((lambda (x) (x x))
(lambda (f)

(lambda (

(cond (

(

a)
(zero? a) 1)
else (* a ((£ £) (- a 1))))))))

Above self-application makes the function (lambda (a) ...) close over f:

141

; beta-reduce ((lambda (x) (x X)) ...)
=> (lambda (a)

(cond ((zero? a) 1)
(else (* a ((£ £) (- a 1))))))
where £ = (lambda (f)
(lambda (a)
(cond (
(

a
(zero? a) 1)
e (

lse (* a ((£ £) (- a 1)))))))

Each time the function chooses to recurse, (lambda (f) ...) is applied to it-
self one more time, thereby creating another instance of the above expres-
sion. So the reduction of this expression may cycle, effectively implement-
ing recursion.

Although the Y combinator only has been used to create the factorial
function in this section, it is of course not limited to this function. Any
function of the form

(lambda (f) (lambda (x) body))

is mapped to its fixed point by Y:
((Y (lambda (f) (lambda (x) x))) ’'foo) => foo

The function transformed by ¥ may use f to recurse (although f is named
length in this example):

((Y (lambda (length)
(lambda (a)
(cond ((null? a) 0)
(else (+ 1 (length (cdr a))))))))
"(a b cde))
=> 5

A final question remains. Why was the second self-application of Y not
simplified using eta reduction? This would have lead to the following
Y combinator:

(define (Ylc r)
((lambda (£) (£ £))
(lambda (£f) (r (£ £)))))

Indeed, this is exactly the way the Y combinator is defined in lambda cal-
culus, but it does not work in Scheme, so there has to be a subtle difference
between LC and Scheme. The point where the systems differ is their type
of evaluation.

142

While Scheme uses call by value, lambda calculus employs call by name,
except it is called normal order evaluation there. (And Scheme’s evalua-
tion would be called applicative order evaluation in LC).

When using the Y combinator of LC in Scheme, indefinite recursion
occurs:

(Ylc (lambda (f) (lambda (x) x))) => bottom

This happens because self-application [(f f)] is applied on the spot in the
combinator instead of passing it to 7.

(Ylc (lambda (f) (lambda (x) x)))
; do not care about R; it is not reduced anyway

-> ((lambda (f) (f £f))
(lambda (f) (r (£ £)))))
-> ((lambda (f) (r (£ £)))
(lambda (£) (r (£ £))))
-> (r ((lambda (f) (r (f £)))
(lambda (£) (r (£ £)))))
-> (r (r ((lambda (f) (r (f £)))
(lambda (f) (r (£ £)))))

When you try Ylc in Scheme, the program will finally run out of memory.
Eta-expanding the second self-application simulates call-by-name seman-
tics in Scheme and thereby avoids the above indefinite recursion.

The Y combinator demonstrates the full power of higher order functions
by implementing generic recursion using lambda and function appli-
cation exclusively. While lambda calculus is a rather theoretical device,
Scheme bridges the gap between mathematics and programming. It com-
bines mathematical rigor with the tools that a programmer needs for ex-
ploring problems and inventing new algorithms.

143

144

4 Scheme in the Wild

This chapter illustrates what ‘“‘real-world” Scheme code looks like by
means of a small, self-contained, and heavily commented utility pro-
gram.

There is a notation called box notation which is very useful for understand-
ing Scheme data structures. Using box notation, forms like this one

(a b (c . d) e f)

are represented by diagrams like this one:

[olo]-—=[olo]l-—-=[olo]-—-=[olo]--=[0]|/]
Lol
[;Io]——— d
:

In a box diagram each object of the type cons is represented by a box:
[olo]. The first o of the box points to the car part of the cons, the second
one to its cdr part:

(car . cdr) = [o|lo]l-—- cdr

car

The empty list () is represented by a slash when it occurs at the end of
a list:
(a () b) = [olo]l-—[olo]l-—=[o]/]

| | |

a () c

While drawing box diagrams may be a nice exercise, it is a cumbersome
task that begs for automation. The program discussed in the following sec-
tions will accept any Scheme datum as input and write the corresponding
box diagram to its output.

4.1 Drawing Box Diagrams

The draw-tree program, whose code will be shown in the following

145

section, draws ASCII box diagrams that represent Scheme data structures,
just like the diagrams introduced in the previous section. In fact draw-tree
was used to render these diagrams.

When designing the program, the initial question is, of course, how to
draw the diagrams.

So what does a typical Scheme data structure look like? Here is an ex-
ample:

(a (b c . d) e = [olol-—-[olo]l-—-[0l/]
a0 e
[g|o],,,[o|o],,, d
b e

The “spine” of the structure, which is to be drawn first, is a series of
boxes representing the cons cells of the corresponding list. The next line
contains bars connecting the spine to the members of that list. The third
line consists of the members themselves. Members may be lists, so the
process recurses at this point.

One problem is to decide when to render sublists. In the above example,
the sublist cannot be drawn directly below the spine, because doing so
would allocate the space that is needed to render the e member.

The problem is solved by always rendering the rightmost member of a list
first. After rendering e, we know that there is sufficient space to render
the second-to-last member below. Atoms are the exception to this rule.
They are always rendered as soon as they are encountered. This is why a
is displayed immediately in the above example.

The next question to ask is how to represent Scheme data structures inter-
nally.

The above approach leads quite directly to the data structure used to store
lists internally while rendering them. When a list is encountered, a series of
conses is drawn and the list is converted into an internal representation:

(a (b c . d) e) renders [olo]l-——=[olo]l-——=[0]/]
gives ((V) a (b c . d) e)

146

(V) is a tag that is used to mark internal structures. It indicates that this
list is already being visited.

After drawing the bars, the internal form of the list is processed once
more. The atoms a and e are rendered. The sublist (b ¢ . d) isskipped
because it is not the last member of the list being visited. A vertical bar is
emitted in its place, so it can be rendered later. After displaying an atom,
it is replaced with an (N) tag, which represents ‘““nothing’:

((V) a (bc . d) e) renders a | e
gives ((V) (N) (b c . d)))

Note that trailing (N)s can be removed immediately. This has been
done above.

After drawing another series of bars, the structure is visited once again:

((V) (N) (b c . d)) renders [olo]-—=[0]0]—-—— d
gives ((V) (N) ((V) bc))

This time the embedded improper list (b ¢ . d) is converted to internal
representation and its spine is rendered. The trailing d of the improper list
is removed after displaying it.

The underscores (_) represent the spaces that are used to render ““nothing”
((N)), so the (N) tag makes sure that the embedded spine is properly in-
dented.

After drawing another set of bars, the final iteration finishes the process:

((V) (N) ((V) b)) renders b C
gives ((V) (N) ((V)))

Because ((V)) is essentially equal to (N):

((V)) represents an empty visited list internally, so there is nothing left
to render and the program terminates.

The final question to answer is which algorithm to use. Given the above
data structure, the algorithm is rather obvious. Here is a rough sketch:

147

- Draw a set of conses, mark the input list “visited” (((V) ...));

- Draw a set of spaces (for (N) members) and bars (for other mem-
bers);

- Draw a set of objects
- Draw atoms immediately, replace them with (N);
- Draw bars for embedded lists except for the last one;

— If the last object is a list, render its conses and mark it *“visited”.
- Remove trailing (N)sand ((V))s;

- Repeat steps 2, 3, 4 until the input list is empty (((V))).

Of course, this algorithm works only as long as its input it a pair. Atomic
input has to be handled separately.

4.2 The DRAW-TREE Program

The draw-tree program draws box diagrams of its input, which may be a
Scheme atom or pair. It does not support vectors. The program is purely
functional and uses side effects only for output. It works by rewriting the
internal structure discussed in the previous section.

The first lines of the code already contain a subtle hack that needs some
explanation:

(define *nothing* (cons 'N 7 ()))

(define *visited* (cons 'V 7()))

The tags used to represent visited lists and ‘“‘nothing’ in the internal
structure impose a problem: how do you render a structure like ((N)),
which contains the “nothing” tag as data? Draw-tree renders this input
just fine, but how does it do it?

The above definitions of *nothing* and *visited* make use of a subtle
side effect which is caused by the following two properties of Scheme:

— Cons always returns a fresh pair.
- Eqgreturns #t only for identical objects.

So the formula
(eg? (cons x "()) (cons x ’'())) => #f

holds for any value of x.

148

By defining *nothing* and *visited* as fresh pairs and checking them
with eq?, collisions between *nothing* and (N) and *visited* and (V)
are excluded.

The following predicates check whether an object is ‘“‘nothing” and
whether a list is currently being visited, respectively:

(define (empty? x) (eg? x *nothing*))

(define (visited? x) (eqg? (car x) *visited*))

Mark-visited marks a list as visited, members-of returns the members of
a list that is being visited:

(define (mark-visited x) (cons *visited* x))

(define (members-of x) (cdr x))

The done? predicate checks whether a (sub)list has been rendered com-
pletely:

(define (done? x)
(and (visited? x)
(null? (cdr x))))

The void procedure is used to indicate an uninteresting value. It is returned
by procedures that are called exclusively for their side effects.

(define (void) (if #f #f))

The idea behind the draw-fixed-string procedure (below) is to print single-
character and two-character atoms directly under the bar connecting the
atom to a box:
[olo]l-——[olo]-—=[o]/]

| | |

a bc def
The procedure draws a string with a fixed length of eight characters. If
the string to be printed is longer than seven characters, it is truncated to
seven characters. If it is shorter than three characters, a blank is appended
in front of it. The resulting string is left-adjusted in a field of eight blanks
and emitted.

149

(define (draw-fixed-string s)
(let* ((make-string 8 #\space))
string-length s))
(> k 7) (substring s 0 7) s)
(< k 3) (string-append " " s) s))
string-length s)))
(display (string-append
s
(substring b 0 (- 8 k))))))

d
(b
(k
(s (if
(s (if
(k

The bottom procedure, which is used by draw-atom (below), is not part of
Scheme. In fact it is (or should be) undefined and serves only as an indica-
tor that something went wrong. If your Scheme environment refuses to run
a program containing an undefined symbol, you may include a definition
like this one:

(define (bottom x) (quotient x 0))

Draw-atom converts an atomic Scheme datum into a string and renders it
using draw-fixed-string.

(define (draw—-atom n)
(cond ((null? n)
(draw-fixed-string "()"))
((symbol? n)
(draw-fixed-string (symbol->string n)))
((number? n)
(draw-fixed-string (number->string n)))
((string? n)
(draw-fixed-string (string-—-append "\"" n "\"")))
((char? n)
(draw-fixed-string (string-append "#\\"
(string n))))
((eg? n #t)
(draw-fixed-string "#t"))
((eg? n #£f)
(draw-fixed-string "#f"))
(else
(bottom "draw-atom: unknown type" n))))

Draw-conses displays a spine of boxes corresponding to a list. If the list
is an improper list, it prints an atom at the end of the spine and otherwise
it prints a box containing a slash in the cdr part. For instance:

150

(draw—-conses '"(a b . c¢)) displays [o]lo]-——=[0]l0]l—— C
(draw—conses '(a b c¢)) displays [o]o]-—=[0o]lo]-—[0]|/]

The function returns the list that was passed to it.

(define (draw-conses n)
(letrec
((d-conses
(lambda (n)
(cond ((not (pair? n)
(draw—atom n)
((null? (cdr n)
(display "[o]
(else
(display "[olo]—-——-")
(d-conses (cdr n)))))))
(d-conses n)
n))

)
)
)
/1

The draw-bars procedure traverses a visited list, drawing a bar for each
non- (N) member and a blank for each (N) member. Bars of embedded
visited lists are rendered recursively. For instance,

(draw-bars ‘(, *visited* (a b) ,*nothing* (,*visited* c d)))
generates the following output (underscores denote spaces):

The first bar will connect to (a b), the gap is caused by , *nothing*,
the final two bars will connect to ¢ and d respectively.

(define (draw-bars n)
(letrec
((d-bars
(lambda (n)
(cond ((not (pair? n))
(void))
((empty? (car n))
(draw-fixed-string "")
(d=bars (cdr n)))
((and (pair? (car n))
(visited? (car n)))
(d=bars (cdar n))
(d=bars (cdr n)))

151

(else
(draw-fixed-string "|")
(d-bars (cdr n)))))))
(d-bars (members-of n))))

Skip-empty is used to skip over empty slots in visited lists, e.g.:
(skip-empty ‘(, *nothing* (,*visited*) (foo))) => ((foo0))

In combination with remove-trailing-nothing it is used to remove trailing
empty slots from internal lists:

(define (skip-empty n)
(letrec
((skip2
(lambda (n)
(cond ((null? n)
"))
((or (empty? (car n))
(done? (car n)))
(skip2 (cdr n)))
(else
n)))))
(skip2 n)))

(define (remove-trailing-nothing n)
(reverse (skip-empty (reverse n))))

The draw-members procedure renders the members that are attached to a
spine by bars. This includes the spines of embedded lists:

Input Rendered Output
\(,*visited* a b c)) _a b c
\(,*visited* , *nothing* (a b)) [olo]l-——T[0]/]
V(,*visited* a (b c))) a [o]lo]-—=[0]/]

Draw-members also rewrites its input in the following ways: it replaces
atoms with (N) and marks trailing not-yet-visited lists as visited. It also
removes trailing empty slots:

Input Result

\(,*visited* a b c¢)) ((V))

‘\(,*visited* , *nothing* (a b)) ((V) (N) ((V) a b)))
‘(,*visited* a (b c¢))) ((V) (N) ((V) b c)))

152

The procedure implements most of the algorithm outlined at the end of
the previous section.

(define (draw-members n)
(letrec
((d—-members
(lambda (n r)

(cond ((not (pair? n))

(reverse r))
((empty? (car n))
(draw-fixed-string "")
(d-members (cdr n)
cons *nothing* r)))

((not (pair? (car n)))
(draw—atom (car n))
(d-members (cdr n)

((null? (cdr
(d—-members

))
cdr n)

(

(

(

(

(cons *nothing* r)))

n

(

(cons (draw—-final (car n)) r)))

(else
(draw-fixed-string "|")
(d-members (cdr n)
(cons (car n) r)))))))
(mark-visited
(remove-trailing-nothing
(d-members (members-of n) ’"())))))

The draw-final procedure is called by draw-members to render the last
slot of a visited list. If it contains an atom, the atom is simply emitted.
When the slot contains a list that is already being visited, its members are
drawn recursively. When the slot contains a not-yet-visited list, it is tagged
visited and its spine is rendered.

Draw-final rewrites the value of the slot in the same way as draw-members
and returns it.

(define (draw-final n)
(cond ((not (pair? n))
(draw—atom n)
nothing¥)
((visited? n)
(draw-members n))
(else
(mark-visited (draw-conses n)))))

153

Unsurprisingly, draw-tree is the main procedure of the program. It renders
a box diagram corresponding to its argument and returns an uninteresting
value. The body of its letrec handles atomic input and the embedded d-
tree procedure iterates over input in form of a list until all of its members
have been displayed.

(define (draw-tree n)

(letrec
((d-tree
(lambda (n)
(cond ((done? n)
(void))
(else
(newline)

(draw-bars n)
(newline)
(d-tree (draw-members n)))))))
(if (not (pair? n))
(draw—atom n)
(d—tree (mark-visited (draw-conses n))))
(newline)))

Of course draw-tree is a long word to type, so:

(define dt draw-tree)

154

The End

In case you arrived here after reading the complete book: Congratulations.
You should now be able to read some more serious texts about Scheme.
Some titles that may be of interest to you are cited below.

The RRS is the climax of Scheme standards (so far) and a great improve-
ment over its immediate successor.

R. Kelsey, W. Clinger; J. Rees (eds.)

“Revised® Report on the Algorithmic Language Scheme”
Higher-Order and Symbolic Computation,

Vol. 11, No. 1, August, 1998

ACM SIGPLAN Notices, Vol. 33, No. 9, September, 1998

Full text: http://www.schemers.org/Documents/Standards/R5SRS/

The following titles occur in order of increasing complexity:

Daniel P. Friedman, Matthias Felleisen

“The Little Schemer”

MIT Press, 1995 (4th Edition)

ISBN 978-0-262-56099-3

Info: http://www.ccs.neu.edu/home/matthias/BTLS/

Hal Abelson, Jerry Sussman, Julie Sussman

“Structure and Interpretation of Computer Programs”
MIT Press, 1996 (2nd Edition)

ISBN 978-0-262-51087-5

Full text: http://mitpress.mit.edu/sicp/

Christian Queinnec

“Lisp In Small Pieces”

Cambridge University Press, 1994

ISBN 978-0-521-54566-2

Info: http://www-spi.lip6.fr/~queinnec/WWW/LiSP. html

155

156

Appendix

A.1First Steps in Scheme
Getting an Interpreter

Because there is a lot of examples to try in this book, the first thing you
will want is a Scheme environment. For your first steps you should choose
a stable, well-documented, and easy-to-use implementation. Make sure to
get an R5RS or R4RS-compliant version. Here are a few suggestions:

PLT Scheme comes in two flavors: MzScheme is a command line envi-
ronment with very good error reporting. For those who cannot live without
it: DrScheme has an IDE. The 3.x versions of both variants use on the fly
compilation. PLT Scheme is open source software with an unrestrictive
license. The 2.x and 3.x versions are fine.
URL:http://www.plt-scheme.org/

Scheme 48 is a very clean implementation that is quite picky about the
programs that it accepts (this is a good thing). It is free software.
URL:http://www.s48.0rg/

Scheme 9 from Empty Space is a free, small, and portable implementa-
tion that compiles out of the box on a wide variety of systems. It imple-
ments only a subset of R4RS, though.
URL:http://www.t3x.0rg/bits/s9%fes/

If you prefer the big picture, here is a collection of lots of implementa-
tions. Have a look and see for yourself:
http://community.schemewiki.org/?scheme-fag-standards#implementations

The FreeBSD Project’s ports collection has a Scheme section, too:

http://www.freebsd.org/ports/scheme.html

Running the Interpreter

Once you have chosen an environment, installed it, and launched it, it will
greet you with some kind of banner:

Foo Scheme ready
>

157

At this point you can type in or paste an expression. When the expression
has a value, the environment will print it and prompt you for another ex-
pression:

Foo Scheme ready
> (cons 1 2)

(1 . 2)

>

When something goes wrong, an informative message will print:

> (car 'x)
car: expected a pair, but got: x
>

An interactive environment is also called a read eval print loop (or in
short: REPL), because this is what it does: read an expression, evaluate it,
print the result, and loop.

To end a session it is normally sufficient to type an end-of-file character
such as control-D or control-Z.If this does not work, typing (exit)
or (quit) is worth a try.

Testing Programs

You will not want to enter programs with a size of more than two or three
lines directly at the REPL. Something you definitely want is a decent
programmer’s editor. Vi or Emacs are fine, if you are used to them. In
fact, any editor will do, but one thing that really helps is the capability to
show matching parentheses, so you should get an editor that can do this.
When using vi, you can use the :set showmatch option and/or the
% command.

To test a program, launch your editor in one command line window and
the Scheme environment in another. Make sure that your editor saves to
the directory in which you started Scheme.

Key in your program in the editor window and save the text when you are
done. Here is a sample program to try:

(define (hello)
(display "Hello, World!™M™)
(newline))

158

After keying in the program text, save the file. Scheme program files
normally have a . scm suffix, so you might name your source file hel-
lo.scm, for example.

To load the program into the Scheme environment, type
(load "hello.scm")

at the REPL. You can now run the program by calling the hello function:

> (hello)
Hello, World!
>

Above example program does not have a specific result. Some environ-
ments print unspecific results, some omit them.

If you change the program in your editor window, you have to re-load it
at the REPL in order to transfer the changes to the Scheme environment.

Should your program ‘“hang” during execution, you can normally hit
control-C (or whatever key interrupts program execution on your
system) to stop it and return to the REPL.

Batch Mode

Maybe you are used to working on a command line and prefer to run
programs in batch mode. Most Scheme implementations can do this,
too. See the documentation for the actual command line options that are
required to do so. Because there is no interaction in batch mode, you have
to include the function application that starts your program in the program
file, so you would have to change above example to:

(define (hello)
(display "Hello, World!"™)
(newline))

(hello) ; start the program

You can then run the program from the shell prompt or DOS prompt using
a command like this:

your—-scheme -f hello.scm

159

Of course, you will have to replace your—scheme with the name of your
Scheme system and -f with the option that actually loads and runs a
program in batch mode.

In batch mode no greeting banner is printed and the environment does not
enter the REPL. All expressions of the specified program are evaluated and
then the Scheme process terminates. In case of an error or keyboard inter-
rupt, the Scheme process prints an error message and terminates immedi-
ately.

When your Scheme system offers a stand-alone compiler, you can com-
pile Scheme programs to executables and run them just like programs writ-
ten in other languages. Many systems offer both an interactive environ-
ment and a stand-alone compiler.

Note that a REPL is not a reliable indicator for interpretive program
execution. There are more and more systems that compile expressions
entered at the REPL on the fly and execute them as native code, thereby
combining the convenience of an interactive environment with the speed
of compiled code.

A.2 Scheme Style Guide

The rules and templates listed in this appendix are useful for writing read-
able Scheme programs. They are intended to reflect the logical structure of
programs. Of course, style is a highly personal matter, so feel encouraged
to develop your own one.

Conventions are there to be bent or broken occasionally. When the rules
get in your way, feel free to ignore them. Make your code as readable as
you can. Your code is a document written in an abstract language that
describes how to solve a specific problem. It just happens to be “‘ex-
ecutable”.

Here are the most basic rules for formatting Scheme programs:

- Use a monospace font for editing Scheme code;

Use blanks rather than TABs for indentation;
Indentation of code is done in steps of two characters;
Indentation of data is done in steps of one character;

160

- One level of indentation is added at each opening parenthesis;
- One level of indentation is subtracted at each closing parenthesis;
- Subsequent closing parentheses stick together.

The following program would be acceptable, but not really beautiful:

(define (foo x)
(and
(pair?
X)
(pair?
(cdr

X))
(cadr x)))

This is why there are two additional rules:

— Whenever a subexpression fits in a single line without obscuring
meaning too much, it should be placed in a single line.

(define (foo x)
(and
(pair? x)
(pair? (cdr x))
(cadr x)))

- When sufficient horizontal space exists, the first argument of a function
or pseudo function application should be placed in the same line as the
function itself and the remaining arguments should start in the same
column as the first one.

(define (foo x)
(and (pair? x)
(pair? (cdr x))
(cadr x)))

These simple rules are sufficient for writing quite readable code. Further
details and exceptions follow below.

A.2.1 Definitions and Bindings

Most variable definitions are one-liners:

(define variable value)

161

Variable definitions with lengthy values (like procedures) have their
values indented:

(define variable
(lambda (formal ...)
body))

The following style is preferred for static procedures (procedures whose
names are not assigned different values at a later time):

(define (procedure formal ...)
body)

Very short procedures can be defined in single lines:

(define (procedure formal) body)

The structure of define-syntax and syntax-rules is rather static:

(define-syntax keyword
(syntax-rules (symbol ...)
(pattern template)

(pattern template)))
or.

(define-syntax keyword
(syntax-rules (symbol ...)
(pattern
template)

(pattern
template)))

Both patterns and templates of syntax rules are formatted like code, not
like data, e.g.:

(define-syntax when
(syntax-rules ()
((_ predicate consequent ...)
(if predicate
(begin consequent
--)))))

Short lambda functions are placed in a single line:

162

(lambda (formal ...) body)

Otherwise the body is indented:

(lambda (formal ...)
body)

Let and let* both follow the same scheme. Their first arguments are
indented like data at the first level of nesting, so the opening parentheses
in front of the variables are in the same column:

(let ((variable wvalue)

(variable value))

body)
(let* ((variable value)

(variable value))
body)

When a value of let or let* does not fit in a single line, it is indented
as usual:
(let ((s (cond ((positive? x) "positive")
((negavive? x) "negative")
(else "zero"))))
(string-append "x is " s))

When horizontal space is tight, Let rec-style indentation may be used.

Because letrec is mostly used to define procedures, letrec itself
and the symbols bound by it are placed in separate lines to save horizon-

tal space:

(letrec
((symbol
(lambda (formal ...)
body))
(symbol
(lambda (formal ...)

body)))
letrec-body)

163

A.2.2 Procedure Application

There are not many choices for procedures of no arguments:
(procedure)

Applications that fit in a single line are placed in a single line:
(procedure argument ...)

In longer expressions, the arguments are lined up with respect to a com-
mon column:

(procedure argument

argument)
If there is insufficient horizontal space, arguments may be indented in the
lines following the procedure:

(procedure
argument

argument)
Short lambda function applications are placed in a single line:
((lambda (variable ...) body) argument ...)

The arguments of more complex applications are indented by one blank
so that they share the first column with the beginning of the lambda
function itself:

((lambda (variable ...)
body)
argument
argument)
You will rarely need this, though, unless you are dealing with lambda cal-
culus.

A.2.3 Conditionals, Logic, Etc

Applications of and, begin, if, and or are preferably indented in the

164

following way (but short applications may be compacted to single lines):

(and expression
expression)

(begin expression

expression)
(if predicate (if predicate
consequent consequent)
alternative)

(or expression

expression)

The difference between the following case styles is mostly a matter of
taste (the left one may save some horizontal space, though):

(case expression (case expression
(list body) (list body)
(list body)) (list body))

When the lists of cases are long or have different lengths, the following
style may be preferable:

(case expression
(list
body)
(list
body))

When all lists of cases have similar lengths, the bodies may be adjusted
with respect to a common column:

(case digit
((1 357 9) "odd")
((0 2 4 6 8) "even")
(else "not a digit"))

The formatting of cond is similar to that of case. This style is used for

165

short precidates and bodies:
(cond (predicate body)

(predicate body))

In cond expressions with long precicates and/or bodies the following
format saves some horizontal space:

(cond (predicate
body)

(predicate
body))
This format squeezes out four more characters:

(cond
(predicate
body)

(predicate
body))

Even in cond two left-adjusted columns may be used for predicates
and bodies:

(cond ((< x 0) "negative")
((> x 0) "positive")
(else "zero"))

A.2.4 Data and Quotation

When quoted lists fit in a single line, this is how it should be done:

" (member ...)
(quote (member ...))

Otherwise members are indented by a single character:

" (member (quote (member
$é$ber) &é&ber))

" ((member ...) (quote ((member ...)
;%émber cel)) ;%émber o))

166

The following template illustrates why indentation by a single character is
essential, especially in deeply nested lists:

" (((member ..

(member ..
((member ..

(member ..

-)

2))
-)

2)))

Although quasiquoted forms are technically data, they are mostly used to
form expressions, so they are formatted in the style of code:

‘\(if ,predicate
, consequent

,alternative)

‘(lambda , formals

, @body)

A.3 Table of Example Programs

add

append?
case

checked-len

complement
compose
copy
depth
depth
draw-tree
eql?
equal?
expand-gq
explode
fact

fact
filter
implode
int->1ist

add listsof digits. 82
append lists, tail recursive version. 30
casesyntaXx.o 115
length withnon-localexit. 127
negate predicates. 37
function composition. 57
copyfiles. L. 106
depthof lists. 50
depth of lists,using HOFs. 72
draw box diagrams of Schemedata. 148
equality of listsof symbols. 62
general equality predicate 64
quasiquoteexpander. 119
explodesymbols. 80

factorial function. 11

factorial function, tail recursive version. 18
extractlistelements. 37
implode listsof symbols. 81
convertintegertolist. 82

167

kons
list->int
map
mapcar
max
max—list
modulo
permute
quine
read-line
remove
reverse

reverse—syn

rotations

sub-strings

type
when

Y

consasacombinator. 73
convert listtointeger. 83
map procedures over lists, variadic version. 70
map proceduresover lists. 68
maximum of arguments. 54
maximumofalist. 50
remainder of integer division. 87
permutations of strings. 96
aSchemequine. 118
read lines of characters. 105
remove listelements. 37
reverselists. oL oL 76
reverse listsusingsyntax. 114
rotationsof astring. 93

substringsof astring. 91

copy files to current outputport. 106
whensyntax. 109
Ycombinator. L. Lo 139

A.4 Scheme Syntax and Procedures

This is a summary of the Scheme syntax and procedures discussed in

this book.

Key

body a sequence of expressions proc™ a procedure of n arguments
char achar str astring

expr any type sym asymbol

form any datum tval atruth value

int aninteger void an unspecific value

list alist [x] xisoptional

num any numeric type X . zero or more occurrences of x
pailr a pair x|y xory

proc a procedure

168

Syntax

"form => form
Turn form into a datum. Alias: quote.
,expr => form
Evaluate expr in a quasiquote template. Alias: unquote.
, @expr => spliced-form
Evaluate expr in a quasiquote template and splice into surround-
ing list. Alias: unquote-splicing.
‘gg-template => form
Quasiquote the quasiquote template gg-template. Alias:
quasiquote.
(expry expry ...)
Apply expryto expr... Expry must reduce to a procedure.
(and expr; ...) => form
Evaluate expressions in sequence until one gives #£.
(begin expr; ...) => form
Evaluate expressions in sequence.
(case expr (list; body;) (list, body,) ...) => form
Evaluate first body whose list contains expr.
(cond (expr; body;) (expr, body,) ...) => form
Evaluate first body whose expr reduces to truth.
(define sym expr) => void
Introduce sym and bind it to (a location referring to) expr.
(define (sym; sym, ...) body) => void
(define (sym; sym, symy) body) => void
Introduce sym; and bind it to (a location referring to) a procedure
with the variables sym,... and the given body.
(define-syntax keyword transformer) => void
Introduce the keyword keyword and bind it to the syntax trans-
former transformer. See also: syntax—-rules.
(if expr, expr, [expr3]) => form
Evaluate to expr, if expr; reduces to truth, and to expr; otherwise.
(lambda sym body) => proc
(lambda (sym; sym, symp) body) => proc
Evaluate to a variadic procedure with the variable sym (or the
variables sym...) and the given body.

169

(lambda (sym; ...) body) => proc
Evaluate to a procedure with the variables sym,... and the given
body.

(let ((sym; exprqy) ...) body) => form
Bind sym; to expr; locally giving a new context and evaluate body
in that context.

(let* ((sym; expry) ...) body) => form

Like let, but bind expressions to symbols sequentially.
(letrec ((sym; expr;) ...) body) => form

Like 1et, but fix recursive references.
(or expry ...) => form

Evaluate expressions in sequence until one gives truth.
(quasiquote gg-template) => form

Quasiquote the quasiquote template gg-template. Alias: .
(quote form) => form
Turn form into a datum. Alias: ’.

(set! sym expr) => void
Change the value of sym to expr.
(syntax-rules (sym; ...) (pat; temp,) (pat, temp,) ...)

=> transformer
Evaluate to a syntax transformer. Sym... are local keywords, pat is
a pattern and femp is a template. See also: define-syntax.
(unquote expr) => form
Evaluate expr in a quasiquote template. Alias: , .
(unquote-splicing expr) => spliced-form
Evaluate expr in a quasiquote template and splice into surround-
ing list. Alias: , @.

Procedures

(* numy; ...) => num
Evaluate to the product of the given numbers.
(+ numy ...) => num
Evaluate to the sum of the given numbers.
(- numy; num, ...) => num
Evaluate to the difference of the given numbers. If only one argu-
ment 7 is given, return —n.

170

(/ num; num, ...) => num
Evaluate to the quotient of the given numbers. If only one argument
n is given, return 1/n.

(< num; num, nums ...) => tval
(<= num; num, numz ...) => tval
(> num; num, nums ...) => tval
(>= num; num, numz ...) => tval
Check whether the given arguments are in a specific order. E.g., <
checks whether its arguments are in strict ascending order.
(= num; num, nums ...) => tval
Check whether the given numbers are equivalent.
(abs num) => num
Return the absolute value of num.
(append list; ...) => list
Append lists, giving a (proper) list.
(append list; ... expr) => pair
Append lists, giving a (potentially improper) list.
(apply proc expr; ... list) => form
Apply proc to the arguments in list. If exprs are given, cons them to
list.
(assoc expr alist) => pair|#f
Find pair with key=expr in alist. Use equal? to compare keys.
(assqg expr alist) => pair|#f
Find pair with key=expr in alist. Use eg? to compare keys.
(assv expr alist) => pair|#f
Find pair with key=expr in alist. Use eqv? to compare keys.
(caar pair) ... (cddddr pair) => form
Extract members of lists. E.g. (cadr x) = (car (cdr x)).

1) => form

(call-with-current-continuation proc
(call/cc procl) => form

Capture current continuation and pass it to proc’.
(car pair) => form

Extract car part (head) of pair.
(cdr pair) => form

Extract cdr part (tail) of pair.
(char-ci<? chary char, chars ...) => tval
(char-ci<=? char; char, char; ...) => tval

continued...

171

(char-ci>? chary char, chars ...) => tval

(char-ci>=? char; char, char; ...) => tval
Check whether the given characters are in a specific lexical order.
E.g., char-ci<? checks whether its arguments are in strict alpha-
betical order. Ignore the case of the characters.

(char-ci=? chary char, chars ...) => tval
Check whether the given characters are equal. Ignore their case.
(char->integer char) => int
Convert char to integer.
(char—alphabetic? char) => tval
(char-lower-case? char) => tval
(char-numeric? char) => tval
(char-upper—-case? char) => tval
(char-whitespace? char) => tval

Check properties of characters.E.g. (char-numeric? x) checks
whether x is in the range #\0. . . #\9.

(char-downcase char) => char
(char—-upcase char) => char
Change the case of a letter. E.g. (char-upcase #\c) => #\C.
(char<? char,; char, char; ...) => tval
(char<=? char, char, char; ...) => tval
(char>? char,; char, char; ...) => tval
(char>=? char, char, char; ...) => tval

Check whether the given characters are in a specific lexical order.
E.g.,char<? checks whether its arguments are in strict alphabetical
order.
(char=? char,; char, char; ...) => tval
Check whether the given characters are equal.
(cons expr, expr,) => pair
Construct a fresh pair with head=expr; and tail=expr,.
(display expr [out-port]) => void
Print expr in a prettier but less accurate form than write. If an
output port is specified, write to that port.
(eof-object? expr) => tval
Check whether expr is the end-of-file object.
(eqg? expr; expr,) => tval
Check whether expr; and expr, are identical.
(equal? exprq expr,) => tval
Check whether expr; and expr, are equal.

172

(eqv? expr; expr,) => tval
Check whether expr; and expr, are equivalent.
(floor num) => int
Return the greatest integer that is not greater than num.
(gcd int; ...) => int
Return the greatest common divisor of int;....
(integer->char int) => char
Convert integer to char.
(lcm int; ...) => int
Return the least common multiple of int;....
(length list) => int
Return the length of [list.
(list expr; ...) => list
Create a fresh list containing the given exprs and return it.
(list->string list) => str
Convert list to string.
(list-ref list int) => form
Extract the int’th member of list.
(list? expr) => tval
Check whether expr is a (proper) list.
(map proc list; list, ...) => list
Map procedure proc over the given lists.
(max num; num, ...) => num
Return the greatest of the given numbers.
(member expr list) => list|#f
Return the first sublist of list whose head equals expr, or #£ if no
such sublist exists. Use equal? to compare list elements.
(memg expr list) => list|#f
Return the first sublist of list whose head equals expr, or #£ if no
such sublist exists. Use eq? to compare list elements.
(memv expr list) => list|#f
Return the first sublist of list whose head equals expr, or #£ if no
such sublist exists. Use eqv? to compare list elements.
(min num; num, ...) => num
Return the least of the given numbers.
(modulo int; int,) => int
Return int; modulo int, (division remainder).
(negative? num) => tval
Check whether num is negative.

173

(newline [out-port]) => void
Display a newline sequence. If an output port is given, write to
that port.
(not expr) => tval
Logical not, i.e. (eq? expr #f).
(null? expr) => tval
Check whether expr is the empty list.
(number? expr) => tval
Check whether expr is a number.
(pair? expr) => tval
Check whether expr is a pair.
(quotient int,; int,) => int
Return the integer part of the quotient of int; and int,.
(read [in-port]) => form
Read the external representation of a form and return a corre-
sponding internal representation. If in input port is given, read from
that port.
(read-char [in-port]) => char
Read a character and return it. If in input port is given, read from
that port.
(remainder int; int,) => int
Return the division remainder of int; and int,.
(sgrt num) => num
Evaluate to the square root of num.
(string char; ...) => str
Create a fresh string containing the given chars and return it.
(string->1list str) => list
Convert string to list (of chars).
(string->symbol str) => sym
Convert string to symbol.
(string-ci<=? stry str, stry ...) => tval
(string-ci<? str; str, stry ...) => tval
(string-ci>=? stry str, strs ...) => tval
(string-ci>? str; str, stry ...) => tval
Check whether the given strings are in a specific lexical order. E.g.,
string-ci<? checks whether its arguments are in strict alphabet-
ical order. Ignore case.
(string-ci=? str; str, strsy ...) => tval
Check whether the given strings are equal. Ignore case.

174

(string-length str) => int
Return the length of a string.

(string-ref str int) => char

Return int’th char of str.
(string<=? str; str, strsy ...) => tval
(string<? strq str, strs ...) => tval
(string>=? str; str, strsy ...) => tval
(string>? strq str, strs ...) => tval

Check whether the given strings are in a specific lexical order. E.g.,
string<? checks whether its arguments are in strict alphabetical

order.
(string=? stry str, strs ...) => tval
Check whether the given strings are equal.
(substring str int; int,) => str

Extract substring starting at int; and extending up to but not includ-
ing int, from str and return it.
(symbol->string sym) => str
Convert symbol to string.
(with-input-from-file str proc
Connect the standard input port to the file named in s¢r and evaluate
(proco) in that context.
(with-output-to-file str proc®) => form
Connect the standard output port to the file named in str and
evaluate (proco) in that context.
(write expr [out-port]) => void
Write the external representation of expr. If an output port is
specified, write to that port.
(zero? num) => tval
Check whether num equals zero.

O) => form

175

176

Index

#
#£22
#t22

#\newline 24

#\space 24
127,166
() 45

* 84, 14, 66
+ 84, 10, 66
, 116, 167
,@ 117,167
->13

- 84,10
... 111

/ 84

<59

<=59

=59

=9

> 50

>=59

‘116,167

A
alist 46

alpha conversion 141
and 63,121, 164

append 29

applicative language 100
applicative order 143
apply 56, 69

argument 9
assoc 47

association list 46

assq 67
assv 67
atom 44

begin 103, 121, 164
beta reduction 139
bignum arithmetics 22, 82
binding 12,26, 111

boolean 22

bottom 10, 150

bottom 54

bound variable 34
box notation 145
boxed value 75

C

caaaar...cddddr 48

cadr 36

call by name 56, 143
call by value 56, 143
call/cc 125

call-with-current-continuation

125
car 28,51

case 114,165
case insensitive 61

cdr 28,51

character predicates 60

char>? 77

char<=? 77
char-alphabetic? 88
char-downcase 89
char-lower-case? 88
char-numeric? 88
char-upcase 89

177

char-upper-case? 88
char-whitespace? 88
character 23

clause 12, 115

close over 36

closure 32

code 160

combinator 133
comment 9

cond 12, 120, 106, 165
cons 28,45

cons object 45, 145
continuation 125

current continuation 125
currying 135

D

default input port 105
define 11,161
define-syntax 109, 162
disjointness of types 78
display 102,24

dotted pair 45

dynamic scoping 36
dynamic context 129
dynamic typing 75

E

effect (of a function) 100
ellipsis 111

else (of cond) 19
empty list 29, 45
eof object 106
eof-object? 106
eq? 27,11,58
equal? 64
equality 62, 57
eqv? 62

eta conversion 138
evaluation 10

178

expression 9

external representation 23, 101

F

file 105

first class object 128
fixed point 134

floor 86

free variable 34

freelist 97

full numeric tower 88
function 9

function body 12, 104
G

garbage collection 98
gcd 87

H

head (of a list) 29

head (of a procedure) 12
higher order function 68
|

identity 57, 27
identity 128

if 20,72, 164
imperative programming 11
improper list 46
indefinite extent 128
indirect recursion 123
inner context 33

integer 21

K

keyword 115

L

lambda 31,54,73,163
lambda calculus 140, 164
lcm 87

length 49

let* 41,122,163

let 33,91,122,163

letrec 41,91, 18,122,131, 163
lexical environment 36
lexical scoping 36

LISP 28

list 24

list->string 80
list 55

list-ref 49

list? 78

M

map 69

max 53

member 22

memory compation 99
memory fragmentation 99
memg 67

memv 67
metaprogramming 118
modulo 85

mutual recursion 42, 123
N

negative? 87
newline 104

non-local exit 127
normal form 14

normal order 143

not 67

null? 29

number? 37

numeric predicate 59
numeric tower 88

o

or 65,121, 164

order of evaluation 40, 130
outer context 33

P

pair 44

pair? 78

pattern 110
permutation 91

port 105

predicate 12

predicate (of cond) 12
primitive function 32
procedure 9

procedure application 9, 164
pseudo functions 109, 11
Q

quasiquote 116, 167
quine 118

quotation 25, 166, 116
quote 25, 166
quotient 85,10

R

rational value 85
read-char 104

read eval print loop 158
read 101, 23
recursion 15, 114
reduce 10

remainder 85

S

self application 74, 133
set! 43

side effect 100, 148, 43
signature 55

spine 146

sqrt 88

strict function 10
string->1list 80
string->symbol 81
string-ci<? 61
string-ci=? 61
string 81
string-length 91
string predicate 61

179

string-ref 92, 82
string=7? 61

string 24

style 160

substring 89

symbol 24
symbol->string 80
syntax 109, 11
syntax-rules 109, 162
syntax transformation 109

T

tail (of a list) 29

tail call 120

tail call optimization 17, 123
tail recursive 17, 120

truth value 12

type checking 64

type conversion 80

type predicate 64

U

unquote 116, 167
unquote-splicing 117, 167
unspecific value 101

\')

value 14

variable 12

variadic procedure 53

w
with-input-from-file 105
with-output-to-file 106
write 101,23

Y

Y combinator 134

Z

zero? 12

180

