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Summary

This book provides a new and robust power-law (PL)-based, non-extensive entropy
econometrics approach to the economic modelling of ill-behaved inverse problems.
Particular attention is paid to national account-based general equilibrium models
known for their relative complexity.

In theoretical terms, the approach generalizes Gibbs-Shannon-Golan entropy
models, which are useful for describing ergodic phenomena. In essence, this entropy
econometrics approach constitutes a junction of two distinct concepts: Jayne’s
maximum entropy principle and the Bayesian generalized method of moments. Rival
econometric techniques are not conceptually adapted to solving complex inverse
problems or are seriously limited when it comes to practical implementation.

In recent years, PL-based Tsallis entropy has been applied in many fields. Its
popularity can be attributed to its ability to more accurately describe heavy tail, non-
ergodic phenomena. However, the link between PL and economic phenomena has
been neglected—probably because the Gaussian family of laws, which are globally
sufficient for time (or space) aggregated data and easy to use and interpret. Recent
literature shows that the amplitude and frequency of macroeconomic fluctuations
do not substantially diverge from many extreme events, natural or human-related,
once explained at the same time or space-scale by PL. In particular, in the real world,
socioeconomic rare events may, through long-range correlation processes, have
higher impact than more frequent events could. Because of this and based on existing
literature, this monograph proposes an econometric extension called Non-extensive
Entropy Econometrics or, using a less technical expression, Superstar-Generalised
Econometrics.

Recent developments in information-theoretic built upon Tsallis non-additive
statistics are powerful enough to put established econometric theory in question
and suggest new approaches. As will be discussed throughout this book, long-range
correlation and observed time invariant scale structure of high frequency series may
still be conserved—in some classes of non-linear models—through a process of time
(or space) aggregation of statistical data. In such a case, the non-extensive entropy
econometrics approach generally provides higher parameter estimator efficiency over
existing competitive econometrics procedures. Next, when aggregated data converge
to the Gaussian attractor, as generally happens, outputs from Gibbs-Shannon entropy
coincide with those derived through Tsallis entropy. In general, when the model
involved displays less complexity (with a well-behaved data matrix) and remains
closer to Gaussian law, computed outputs by both entropy econometrics approaches
should coincide or approximate those derived through most classical econometric
approaches. Thus, the proposed non-ergodic approach could at least be as good as the
existing estimation techniques. On empirical grounds, it helps in ensuring stability of
the estimated parameters and in solving some classes of, up to now, intractable non-
linear PL-related models. Furthermore, the approach remains one of the most appro-
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priate for solving all classes of inverse problems, whether deterministic or dynamic.
It is a more general approach. Finally, this approach helps us better assess—thanks
to the Tsallis-q parameter—the interconnection level (complexity) between economic
systems described by the model.

Consequently, this book aims at providing a new paradigm for econometric mod-
elling through non-extensive (cross) entropy information-theoretic. Reaching this
goal requires some intermediary results obtained through a synthesis of the exist-
ing, sometimes sparse literature. There are, then, methodological issues to address.
Among these is the application of non-extensive entropy to low frequency time series.
This constitutes a new challenge and must be clarified. Next, generalizing Gibbs-
Kullback-Leibler information divergence to the Tsallis non-ergodic econometric
model with different constraining moment formulations in both classes of entropy
model will require special attention since we are not aware of any publications on the
subject. Another important intermediary result of this work will be the proposition
of a new theorem linking PL and macroeconomics on both the supply and demand
sides. Its demonstration will provide new keys for carrying out further Tsallis entropy
econometric modelling. Finally, we will provide an ad hoc statistical inference cor-
responding to the new modelling approach presented here.

The first part of the monograph presents basic targets and principal hypotheses.

In the second part, we present definitions and quantitative properties of statistical
theory of information. Progressively, a link between the statistical theory of informa-
tion and the generalized ill-posed inverse problem is established. After having shown
the properties of the Shannon-Jaynes maximum entropy principle in detail, tech-
niques for solving ill-behaved problems, from the Moore-Penrose generalized inverse
problem to non-extensive entropy, are compared. Intrinsic relationships between
both forms of Shannon-Jaynes' and Tsallis entropies are also shown. After having
presented Kullback-Leibler information divergence, a generalization of this concept
to non-extensive entropy is developed. A general linear non-extensive entropy econo-
metric model is then introduced. It will play an important role for models to be devel-
oped in subsequent chapters. Next, an inferential formalism for parameter confidence
interval area is proposed. This part is concluded with an applications example: the
estimation of a Tsallis entropy econometrics model using the case of labour demand
anticipation with a time series, error-correction model. Its outputs are compared with
those of other approaches through Monte-Carlo simulations.

The third and fourth parts of the book—and, to a certain extent, the fifth part—
are closely related to each other since a social accounting matrix can be seen as a
kind of input-output transaction matrix generalization. The separation of these two

1 Here we prefer to shorten the name of this form of entropy. Scientists who have contributed to
this form of entropy are many and cannot all be mentioned. It could be ‘succinctly’ named “Gibbs-
Shannon- Jaynes-Kullback-Leibler Golan entropy econometrics.”
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Xii —

parts has avoided highly horizontal and vertical subdivisions in the book, thereby
preserving the clarity of the study. These two parts provide economic applications of
statistical theory presented through Part II. Part III focuses on updating and forecast-
ing national accounts tables. In particular, a new efficient approach to forecast input-
output tables—or their extended forms—is set forth. The RAS approach is presented
as a competing technique with empirical application and comments. To show one of
the possible fields of entropy model implementation, we provide an ecological model
to be solved as an inverse problem.

After having proposed a theorem linking PL distribution and the macroeconomic
aggregative structure of national accounts, the problem of balancing a social account-
ing matrix (SAM) in the context of non-ergodicity is posed and solved in Part IV. The
example presented deals with the actual problems of updating a SAM in real-world
conditions.

In Part V, a computable general equilibrium (CGE) model is presented as a
national account-related model. Two important concepts are discussed in the context
of optimum property that both of them convey: the maximum entropy principle and
the Pareto-optimum. Next, we open a short, epistemological discussion on two com-
petitive and frequently confused estimation approaches, the Bayesian approach and
the maximum entropy principal. An approach using non-extensive relative entropy
for parameter estimation in the case of a constant elas-ticity of substitution (CES)
function is proposed through the presentation of the CGE model.

To show the extensions of the standard national accounts table and to go beyond
the general equilibrium framework, an environmentally extended social accounting
matrix and a subsequent theoretical model displaying externalities are presented in
Part VI. Finally, a carbon tax and double dividend theory model is presented and its
social welfare impact is derived as well.

The last part of the book concludes with the principal findings and proposes
areas for further investigation and research.

Two examples are provided in Appendix C and D. The first concerns the use of
GAMS as a platform for economic programming. The second presents some hints for
solving inverse problems in the context of the proposed model.

To enable readers to better understand the results in the different chapters, they
are accompanied by detailed examples or case studies and summarizing comments.
As such, this book can be an ideal reference for students and researchers in many dis-
ciplines (infometrics, econometrics, statistics, national accounting, optimal control,
etc.) interested in becoming familiar with approaches that reflect the most recent
developments in statistical theory of information and their application for stochastic
inverse problem modelling. Last but not least, the discussion in this book is limited
to technical issues; it does not cover the philosophical implications of non-extensive
entropy, whether general or within the discipline of economics.
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1 Generalities

1.1 Information-Theoretic Maximum Entropy Principle and Inverse
Problem

1.1.1 Information-Theoretic Maximum Entropy Principle

According to recent literature (Golan, Judge, & Miller, 1996; Golan, 2008), the infor-
mation-theoretic maximum entropy principle is a coincident junction of two lines of
research: inferential statistics and statistical thermodynamics.

The first line of research emerged in the beginning of the 18th century through the
work of Bernoulli (Jaynes, 1957), (Halmos & Savage, 1949), Bayes (1763), and Laplace
(1774). They developed the Principle of Sufficient Reason, which consists of deter-
mining the state of the system on the basis of limited information (moments) from
a subsystem. This principle was later extended in the last century by Jeffreys (1946),
Cox (1946), and Jaynes (1957b) to the principle of “not telling more than you know,”
thus suggesting the necessity of avoiding additional hypotheses imposed merely to
simplify the problem to be solved. The purpose of all of the above authors’ research
was to retrieve characteristics of a general population on the basis of limited infor-
mation from a possibly non-representative sample of that population, out of risky or
non-convenient hypotheses.

The second line of research is represented, amongst others, by Maxwell (1871),
Boltzmann (1871), Cauchy (1855), Weierstrass (1886), Lévy and Gibbs (Gibbs, 1902),
Shannon (1948), Jaynes (1957, 1957b), Rényi (1961), Bregman (1967), Mandelbrot
(1967), Tsallis (1988). Its main objective was to provide mathematical formalism to
statistical modelling of physical information related to natural phenomena. Thanks
to the celebrated work of Tsallis (1988), on non-extensive thermodynamics?, this
second line elegantly extended its multidisciplinary applications to “auto-organized
systems” and to the social sciences, particularly in financial fields.

The ascent and development of the post-war information theory-based, maximum
entropy proposed by Shannon (1948) can be viewed as a major step toward the rapid
extension of the discipline. Less than a decade was needed to develop the informa-
tion-theoretic principles of statistical inference, inverse problem solution methodol-
ogy based on Gibbs-Shannon maximum entropy, and its generalizations by Kullback
and Leibler (1951), Kullback (1959) and Jaynes (1957b). The above authors developed,
in particular, fundamental notions in statistics, such as sufficiency and efficiency

2 Currently, this theory—undoubtedly the best—generalizes Boltzmann-Gibbs statistics for describ-
ing the case of anomalous systems characterized by non-ergodicity or metastable states. It thus bet-
ter fits dynamic correlation of complex systems and can be better explained (e.g. Douglas, 2006),
amongst many others.
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Information-Theoretic Maximum Entropy Principle and Inverse Problem =— 3

(Halmos & Savage, 1979), a generalization of Cramer-Rao inequality (e.g., Kullback,
1959) and the introduction of a general linear model as a consistency restriction
(Heckelei et al., 2008) through Bayesian philosophy. Thus, it became possible to unify
heterogeneous statistical procedures via the concepts of information theory. Lindley
(2008), on the other hand, had provided the interpretation that a statistical sample
could be viewed as a noisy channel (Shannon’s terminology) that conveys a message
about a parameter (or a set of parameters) with a certain prior distribution. This new
interpretation extended application of Shannon’s ideas to statistical theory by refer-
ring to the information in a statistical sample rather than in a message.

Over the last two decades the literature concerned with applying entropy in
social science has grown considerably and disserves closer attention. On one side,
Shannon-Jaynes-Kullback-Leibler-based approaches are currently used for modelling
economic phenomena competitively with classical econometrics. A new paradigm in
econometrical modelling is taking place and finds its roots in the influential work of
Golan, Judge, and Miller (1996). The present monograph constitutes an illustration of
this.

As mentioned above, this approach is particularly useful in the case of solving
inverse problems or ill-behaved matrices when we try to estimate parameters of an
econometric model on the basis of insufficient information from an observed sample,
and this estimation may concern the behaviour of an individual element within the
system.

Insufficient information implies that we are trying to solve an ill-posed problem,
which plausibly can arise in the following cases:

— data from sampling design are not sufficient and/or complete due to technical or
financial limitations—small area official statistics could illustrate this situation;

— non-stationary or non-co-integrating variables are resulting from bad model speci-
fication;

— data from the statistical sample are linearly dependent or collinear for various
reasons;

— Gaussian properties of random disturbance are put into question due to, amongst
many others things?, systematic errors from the survey process;

— the model is not linear and approximate linearization remains the last possibility;
— aggregated (in time or space) data observations hide a very complex system repre-
sented, for instance, by a PL distribution, and multi-fractal properties of the system
may exist.

3 It is not excluded that distribution law may be erroneously applied since, for instance, randomness
is dependent on the experimental setup or the sophistication of the apparatus involved in measuring
the phenomenon (Smith, 2001).
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4 —— Generalities

Using the traditional econometrical approaches in one or more of the above cases—
without additional simplifying hypotheses—could lead to various estimation prob-
lems owing to the nonexistence of a bounded solution or the instability of estima-
tes. Consequently, outputs from traditional econometrical approaches will display,
at best, poor informative parameters. In the literature, there are other well-known
techniques to cope with inverse problems or ill-conditioned data. Among them, two
popular techniques deserve our attention: the bi-proportional RAS approach (and
its variants), particularly used for updating or forecasting input/output matrices
(Parikh, 1979) and the Moore-Penrose pseudo-inverse technique, useful for inver-
ting irregular matrices (e.g., Green, 2003, p. 833). In spite of their popularity, both
techniques present serious drawbacks in empirical investigations. In fact, the RAS
techniques, in spite of their divergence information nature, remain less adapted to
solving stochastic problems or to optimizing the information criterion function under
a larger number of different prior constraining data. Since Moore-Penrose generalized
inverse ensures a minimum distance (Y-BX) only when the matrix B has full rank, it
will not reflect an optimal solution in other cases. Golan et al. (1996) have clearly
shown higher efficiency of Shannon maximum entropy econometrics over the above
cited methods in recovering unknown information when data or model design is
poorly conditioned. The suggested superiority stands on the fact that it combines and
generalizes maximum entropy philosophy (as in the second law of thermodynamics)
and statistical theory of information attributes as a Bayesian information processing
rule. As demonstrated convincingly by Golan (1996, 2006), Shannon entropy econo-
metrics formalism may generalize least squares (LS) and the maximum likelihood
(ML) approaches and belongs to the class of Bayesian method of moments (BMOM).
It is worthwhile to point out that in the coming chapters many cases of cross-entropy
(or minimum entropy) formalism will be used in place of maximum entropy. This is
because, in this study, many problems to be treated involve information measuring in
the context of the Kullback-Leibler framework.

This monograph does not intend to treat the case of high frequency series for
which a rich literature already exists. We invite readers interested in the case of high
frequency series to see, for instance, J.W. Kantelhardt (2008) for testing for the exis-
tence of fractal or multi-fractal properties, suggesting the case of a PL distribution.

1.2 Motivation of the Work
1.2.1 Frequent Limitations of Shannon-Gibbs Maximum Entropy Econometrics
In spite of a growing interest in the research community, some incisive critics have

come forward to address Shannon-based entropy econometrics (e.g., Heckelei et al.,
2008). According to some authors, generalized maximum entropy (GME) or cross-
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Motivation of the Work =—— 5

entropy (GCE) econometrical techniques face at least three difficulties. The first is
related to the specification and interpretation of prior information, imposed via the
use of discrete support points, and assigning prior probabilities to them. The authors
argue that there are complications that result from the combination of priors and
their interaction with the criterion of maximum entropy or minimum cross-entropy
in determining the final estimated a posteriori probabilities on the support space. The
second group of criticisms questions the sense of the entropy objective function once
combined with the prior and data information. The last problem, according to the
same authors, refers to computational difficulties owing to the mathematical com-
plexity of the model with an unnecessarily large number of parameters or variables.

Concerning the first criticism, the problem—selecting a prior support space and
prior probabilities on it—exists since estimation outputs seem to be extremely sensi-
tive to initial conditions. However, when there is a theory or some knowledge about
the space on which parameters are supposed to be staying, the problem becomes trac-
table. In particular, when we have to estimate parameters in the form of ratios, the
performance of entropy formalism is high. To this counterargument, it is worthwhile
to add that GME or GCE formalism constitutes an approach based on the Bayesian
efficient processing rule and, as such, prior values are not fixed constraints of the
model; they combine and adapt with respect to other sets of information (e.g., con-
sistency function) added to the model to update a new parameter level in the entropy
criterion function.

The second problem concerns questioning the sense or interpretability of output
probabilities from the maximum entropy criterion function once combined with real
world probability-related restrictions. One cannot comment on this problem without
making reference to the important contribution of Jaynes (1957, 1957b), who proposed
a way to estimate unknown probabilities of a discrete system in the presence of less
data point observations than parameters to be estimated through the celebrated
example of Jaynes dice. Given a set of all possible ways of distribution resulting from
all micro-elements of a system, Jaynes proposed using the one that generates the
most “uncertain” distribution. To understand this problem, the question becomes a
matter of combining philosophical interpretation of the maximum entropy principle
with that of Jaynes’ formulation in the context of Shannon entropy. Depending on the
type of entropy® considered, output estimates will have slightly different meaning.
However, all interpretations refer to parameter values that assure a long-run, steady-

4 Here we are in the realm of the second law of thermodynamics, which stipulates, in terms of en-
tropy, that natural equilibrium of any set of events is reached once disorder inside them becomes
optimal. This results from their property of having equal (ergodic system) odds to occur. In that state,
we reach the maximum uncertainty about which event should occur in the next trial.

5 Later, for comparison, properties of the most well-known types of entropy in the literature will be
presented.
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6 —— Generalities

state equilibrium of the system (relations defined by the model) with respect to data
and other knowledge at hand, usually in the form of moments and/or normalization
conditions. Owing to maximum entropy alone, the more consistent moments are or
the more other a priori information binds, the more output probabilities will differ
from those in a uniform distribution. Considering the above, interpretation of the
maximum entropy model is far removed from interpretation of the classical model,
especially in the case of the econometric linear model where estimates mean a change
in the endogenous variable due to unitary change in an explicative variable, that is,
in ceteris paribus conditions.

The last criticisms concern the burden arising from the computational and
numerical process—a problem common to all complex, nonlinear systems. Thanks to
recent developments of computer software, this problem is now less important.

In many empirical studies that attempt to solve inverse problems, the Shannon
entropy-based approach is relatively efficient in recovering information. However,
gaining in parameter precision requires good design of the prior. In particular, the
point support space must fit into the space of the true population parameter values.
As Golan et al. (1996) have shown, when prior design is weak, outputs of Shannon
entropy econometrics will produce approximately the same parameter precision as
traditional econometrical methods, such as LS or the ML, which means Shannon
entropy could discount information not fitting the maximum entropy principle as
expected.

The above criticisms of the Shannon entropy econometrics model remain rela-
tively weak as has been shown through the preceding discussion.

According to us, the main drawback related to that form of model is due to the
analytical function of constraining moments. In fact, as already suggested, long-
range correlation and observed time invariant scale structure of high frequency series
may still be conserved—in some classes of non-linear models—through a time—or
space—aggregation process of statistical data. This raises the question of why this
study proposes a new approach of Tsallis non-extensive entropy econometrics.

The next section provides a first answer by showing potential theoretical and
then empirical drawbacks of the Shannon-Gibbs entropy model and potential advan-
tages from the PL-related Tsallis non-extensive entropy approach.

1.2.2 Rationale of Pl-Related Tsallis Entropy Econometrics and Low Frequency
Series

This section presents the essence of the scientific contribution of this monograph
to econometric modelling. For a few decades, PL has confirmed its central role in
describing a large array of systems, natural and manmade. While most scientific
fields have integrated this new element into their analytical approaches, economet-
rics and hence, economics globally, is still dwelling—probably for practical reasons—
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on the Gaussian fundamentals. This study takes a step forward by introducing Tsallis
non-extensive entropy to low frequency series econometric modelling. The potential
advantages of this new approach will be presented, in particular, its capacity to ana-
lytically solve complex PL-related functions. Since any mathematical function form
can be represented by a PL formulation, the importance of the proposed approach
becomes clear. To be concrete, one of the complex nonlinear models is the fractionally
integrated moving average (ARFIMA) model, which, to our knowledge, has remained
non-tractable using traditional statistical instruments. An empirical application to
solve such a class of models will be implemented at the end of Part V of this book.

According to several studies (Bottazzi & et al, 2007), (Champernowne, 1953),
(Gabaix, 2008), a large array of economic laws take the form of a PL, in particular
macroeconomic scaling laws, distribution of income, wealth, size of cities and firms®,
and distribution of financial variables such as returns and trading volume. Ormerod
and Mounfield (2012) underscore a PL distribution of business cycle duration. Stanley
et al. (1998) have studied the dynamics of a general system composed of interacting
units, each with a complex internal structure comprising many subunits, where the
subunits grow in a multiplicative way over a period of twenty years. They found that
this system followed a PL distribution. It is worthwhile to note the similarity of such a
system with the internal mechanism of national accounts tables, such as a SAM, also
composed of interacting economic sectors, each with a complex internal structure
defined by firms exercising similar business. Ikeda and Souma (2008) have made an
international comparison of labour productivity distribution for manufacturing and
non-manufacturing firms. A PL distribution in terms of firms and sector productivity
was found in US and Japanese data. Testing the Gibrat's law of proportionate effect,
Fujiwara et al. (2004) have found, among others things, that the upper-tail of the dis-
tribution of firm size can be fitted with a PL (Pareto-Zipf law). The list of PL evidence
here is limited to social science.

Since this study focuses on the immense potentiality of PL-related economic
models, PL ubiquity in the social sciences will be underscored and a theorem showing
the PL character of national accounts in its aggregate form will be presented.

In line with the rationale for the proposed methodology detailed below, the fol-
lowing from recent literature is evidence of entropy:

— Non-extensive entropy, as such, models the non-ergodic systems which com-
pound Levy’ instable phenomena® converging in the long range to the Gauss-
ian basin of attraction. In the limiting case, non-extensive entropy converges to
Shannon Gibbs entropy.

6 See (Bottazzi & et al, 2007) for different standpoints on the subject.
7 Shlesinger (Shlesinger, Zaslavsky, & Klafter, Strange Kinetics, 1993)
8 (Shlesinger & et al, Lévy Flights and Related Topics in Physics, 1995).
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— PL-related Tsallis entropy should remain, even in the case of a low frequency
series, a precious device for econometric modelling since the outputs provided
by the exponential family law (e.g., the Gibbs-Shannon entropy approach) cor-
respond to the Tsallis entropy limiting case when the Tsallis-q parameter equals
unity.

— A number of complex phenomena involve long-range correlations which can
be seen particularly when data are time scale-aggregated (Drozdz & Kwapien,
2012), (Rak & et al, 2007). This is probably because of the interaction between
the functional relationships describing the involved phenomena and the inheri-
tance properties of a PL or because of their nonlinearity. Delimiting the thresh-
old values for a PL transition towards the Gaussian structure (or to the exponen-
tial family law) as a function of the data frequency amplitude is difficult since
each phenomenon may display its own rate of convergence—if any—towards the
central theorem limit attractor.

— Systematic errors from statistical data collecting and processing may generate a
kind of tail queue distribution. Thus, a systematic application of the Shannon-
Gibbs entropy approach in the above cases—even on the basis of annual data—
could be misleading. In the best case, it can lead to unstable solutions.

— On the other hand, since non-extensive Tsallis entropy generalizes the exponen-
tial family law (Nielsen & Nock, 2012), the Tsallis-q entropy methodology fits well
with high or low frequency series.

In the class of a few types of entropy displaying higher-order entropy estimators able
to generalize the Gaussian law, Tsallis non-extensive entropy has the valuable quality
of concavity—and then stability—along the existence interval characterizing most real
world phenomena. As far as the g-generalization of the Kullback-Leibler (K-L) relative
entropy index is concerned, it conserves the same basic properties as the standard K-L
entropy and can be used for the same purpose (Tsallis, 2009).

The above-enumerated points imply that in cases where the assumed Levy law
complexity is not verified by empirical observation, outputs from the non-extensive
entropy model converge with those derived from Shannon entropy. In other words,
errors which involve taking a sample as if it were PL-driven has no consequence on
outputs if the truth model belongs to the Gaussian basin of attraction. This explains
why in most empirical applications—but by no means all—both forms of entropy
provide similar results and the entropic Tsallis-g complexity parameter then tends
to converge to unity, revealing the case of a normal distribution. Empirical examples
will be presented at the end of this document, and the strength of Tsallis maximum
entropy econometrics will be demonstrated in different contexts.

In summary, the following are entropy function regularities:

— The Tsallis entropy model generalizes the Shannon-Gibbs model, which consti-
tutes a converging case of the former for the Tsallis-q parameter equal unity.
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— The Shannon-Gibbs model fits natural or social phenomena displaying Gaussian
properties.

— PL high frequency time (space) series scaling—aggregating—does not always lead
to Gaussian low frequency time (space) series. Additionally, the rate of conver-
gence from the PL to the Gaussian model, if any, varies according to the form of
the function used.

Is it judicious to replace Shannon-Gibbs entropy modelling by Tsallis non-extensive

entropy for empirical applications?

The answer is yes, and this is the motivation for this study. There are at least three
expected advantages to introducing Tsallis non-extensive econometric modelling:

1. A data generating system characterized by a low—or no—convergence rate from
PL to Gaussian distribution only becomes analytically tractable when using
Tsallis entropy formalism. (This will be proven through an econometrical model
with constant substitution elasticity and then considered as an inverse problem
to be estimated later.)

2. The Tsallis entropy model displays higher stability than the Shannon-Gibbs, par-
ticularly when systematic errors affect statistical data.

3. The Tsallis-q parameter presents an expected advantage of monitoring complex-
ity of systems by measuring how far a given random phenomenon is from the
Gaussian benchmark. In addition to other advantages, this can help draw atten-
tion to the quality of collected data or the distribution involved.

The choice of national accounts-related models for testing the new approach of
non-extensive entropy econometrics is motivated by the empirical inability of
national systems of economic information to provide consistent data according
to macroeconomic general equilibrium. As a result, national account tables are
generally not balanced unless additional—often contradictory—assumptions
are applied to balance them. However, following the principle of not adding (to
a hypothetical truth) more than we know, it remains preferable to deal with an
unbalanced national accounts table. Trying to balance such a table implies that
we are faced with ill-behaved inverse problems. According to the existing litera-
ture, and as will be seen through this monograph, entropy formalism remains the
best approach to solving such a category of complex problems. The superiority
of Tsallis non-extensive entropy econometrics over other known econometrical
or statistical procedures results from its capacity to generalize a large category of
most known laws, including Gaussian distribution.
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1.3 National Accounts-Related Models and the Scope of this Work

Under the high frequency series hypothesis, we postulate that social and economic
activities are characterized by complex behavioural interactions between socio-eco-
nomic agents and/or economic sectors. Recent, Big Data for Official Statistics may
illustrate such a complexity. This could mean that the supposed extreme events may
appear systematically more (or less) frequently than expected (Gaussian scheme),
implying internal and aggregated long-range correlation (over time, space, or both).
The maximum entropy principle is best suited to estimating ill-behaved inverse prob-
lems and, in particular, models with ratios or elasticity as parameters. In this latter
case, as we will see later, the support space area for unknown parameters coincides
with the probability area over the space from zero to unity. Fortunately enough, due
to its macroeconomic consistency, national account table structure reflects this prop-
erty. In empirical macroeconomic investigations, the national accounts system of
information plays a crucial role for modelling as it guarantees internal coherence of
macroeconomic relations. Numerical information is embodied inside comprehensive
statistical tables or balance sheets displaying algebraic properties of a matrix. Having
in mind an economic or statistical inference investigation, mathematical treatment
of information compounded inside these matrices is carried out by economists or
statisticians on the basis of a priori information at hand. When such matrices are
algebraically regular, traditional inverse methods can be applied to solve the problem
of, for instance, estimating parameters that define relationships between the endog-
enous variable and its covariates. Nevertheless, in the social sciences, causality rela-
tionships linking both variables seldom have a one-to-one correspondence. In many
cases, two or more different inputs or causes can lead to the same output or effect.
Such different causal concomitances for the same output render the social or eco-
nomic model indeterminate. In such cases, the recovery of a data generating system
from the observed finite sample becomes impossible using the traditional statistical
or econometric devices, such as the standard maximum likelihood method or the
generalized method of moments. On mathematical grounds, this may result from an
insufficient number of model data points with respect to the number of parameters
to estimate. Such a sample is said to be ill-behaved. This situation leads to the lack
of an optimal solution sought. Collinear variables, inadequate size of a small sample,
or the poor quality of statistical data may lead to the same difficulties. Finally, taking
into account the above deficiencies and anomalies, modellers have to deal with ill-
behaved inverse problems most of the time. Following what has been said above,
this monograph targets developing a robust approach generalizing Kullback-Leibler-
Shannon entropy for solving inverse problems related to national account models in
a way that reflects the complex relationships between economic institutions and/
or agents. Statistical data from such complex interrelations are usually difficult to
collect, incomplete, and defective. Additionally—and this may be one of the most
important points—modelling national account table-related information involves
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some class of nonlinear functions, otherwise only solvable using the PL model; thus,

non-ergodic situations are involved.

The next area of national accounts modelling to be treated in this monograph is:

- Updating an input/output table when the problem is posed as inverse, with the
possibility of adding extra sample information to the model in the form of an a
priori and without any additional assumption;

— Forecasting an input/output table or its extended forms, such as the social
accounting matrix (SAM), solely on the basis of yearly published national accounts
concerning sectorial elements of final demand and gross domestic product;

- Deriving backward or forward multiplier coefficient impact on the basis of insuf-
ficient pieces of information;

— Demonstrating a method to forecast a sectorial energy final demand and total pol-
lutants emission by producton the basis of an environmentally extended input/
output table when basic information is missing;

- Presenting a computable general equilibrium model using the maximum entropy
approach instead of calibration techniques to derive the parameters of CES func-
tions,

— Estimating other nonlinear economic functions as inverse problems and conduct-
ing Monte Carlo experiments to test Tsallis entropy econometrics outputs;

— Presenting in detail, across different chapters, national account-related general
equilibrium models before coming back to inverse problem solution techniques
as suggested above.

The reader should be enriched not only by techniques for solving complex inverse
problems but also by a thorough examination of different aspects of national account
updating and modelling in the Walrasian spirit. To render the models presented
here more consistent, emergent elements on an environmentally extended system of
accounts will be included along with their impact on the general equilibrium frame-
work and the optimum Pareto or social welfare.
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1 Information and its Main Quantitative Properties

1.1 Definition and Generalities

This chapter constitutes the base of the next theoretical formalism to be developed
in this part of the book. The connection between the Bayesian rule and Kullback
information divergence is first envisaged. This will permit a better understanding of
Shannon-Jaynes-Kullback cross-entropy. The next section will deal with the connec-
tion between Shannon-Gibbs entropy and non-extensive (Tsallis) entropy. Finally, the
generalized non-extensive cross-entropy will be presented for further applications in
the remaining parts of the work.

Many forms and measures of information exist. As far as parameters linked to
data observations are concerned, one well-known measure of information was pro-
vided by R.A. Fisher in 1929. As will be clear below, the next can be log(n), explaining
the sum of n hypotheses Hi, all uniformly distributed and known as Hartley’s infor-
mation measure, Hartley (1928). Information theory has its mathematical roots in the
concept of disorder or entropy in statistical mechanics. Kullback (1959) provides an
extensive literature on the form and mathematics linking entropy and information
theory. As mentioned, the next formal definition will be followed by theoretical and
empirical extensions arising from the entropy principle.

Let us now develop a workable measure of information obtained through obser-
vation of an event having probability p. Our first problem is to ignore any particular
features of the event and focus only on whether or not it happened. Thus we will think
of an event as the observance of a symbol whose probability of occurring is p. Thus,
the information will be defined in terms of the probability p.

Let us consider the probability spaces (y, 9, ), i = 1,2 as a basic set of elements x
X (sample space) and the 0 — algebra 9, a collection of all possible sets of events from
X with the probability measure p. Under general assumptions of the above probability
measures, in particular those stating their absolute continuity with respect to one
another, let A=y By the Radon-Nikodym theorem (e.g., Loeve, 1955), there exist func-
tions fi(x), i=1,2, called generalized probability densities, 0 < f; (x) < oo [A] such that:

1 (E) = f fGIdAGO, (=12, 2.1

for all E belonging to the ¢ — algebra 9. Following Kullback (1959) and Halmos &
Savage (1949), the symbol [A], pronounced “modulo A”, means that the assertion is
true along with all the support space of events E except the case for E € § and A (E)=0.

In (2.1), the function f{(x) is also referred to as the Radon-Nikodym derivative. If
the probability measure u is absolutely continuous with respect to the probability
measure A and the probability measure v is absolutely continuous with respect to p,
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then the probability measure v is also absolutely continuous with respect to A, and the
Radon-Nikodym derivatives satisfy:

dv _dv du

A ap aaM

The defined symbols above allow us to better derive the conceptual definition of
information below as it will be understood in the coming chapters of this book.

Next, let H, i = 1,2, be the hypothesis that a variableis X from the statistical pop-
ulation with probability measure u. Then, by applying Bayes’s theorem, it follows
that:

P(H,) (%)

A=
P(Hl)ﬁ(x)+P(H2)Jg(x)[ Li=12, (2.2)

P(H, | x) =

After transformations with respect to logarithms of relative function densities
f(x), we obtain:

f (x) ~log P(H, |x) P(H )[ 2], (2.3
f2(X) P(H, [ x) P(H )

where: x is an element of X; P(H)) is the prior probability of H, and P(H,| x) is the pos-
terior probability of H.. The logarithm in (2.3) stands for an information measure base
unit (Hartley, 1928). The right-hand side of (2.3) is an informative measure resulting
from the difference (positive or negative) between the logarithm of the odds in favour
of H,once observation of x has occurred and before it occurred.

Thus, following Kullback, one defines the logarithm of the likelihood ratio,

A
L)

as the information in X = x for discrimination in favour of H, against H,. An interesting
alternative definition of information after (2.3) is the weight of evidence for H, given x
(Kullback, 1959), (Good, 1963). Next, most informative is the mean information for
discrimination in favour of H, against H, given xe Ee J, for u,, which is defined as
follows:

log

N A C) _ L@ oo
I : ) = [log )= [ £i(x)1og £ @
(1og PELL) P(H,)
=Jlow gy 0 e e
with = dy, (x) = ,()d A (x).
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Here one has treated the general case when E represents the entire sample space y
and then must not appear as support space for integration (see 2.1). The last member
in (2.4) is the difference between the mean value, with respect to y,, of the logarithms
of the posterior and prior odds of the hypotheses. Following Savage (1954), Kullback
(1959), I(1:2) could be referred to as the information of u, with respect to p,.

Let us extend the above general definition of information to some known cases.
Suppose we have a set (categories) of hypotheses, H.=1,2,.,, nand that from observa-
tion, we can infer with certainty which hypothesis is true. Then the mean information
in an observation about H is the mean value of -log P(Hl,), that is,

P(H) log P(H)) - P(H,) log P(H,) - ...- P(H ) log P(H ). (2.5)

The expression in (2.5) above is called entropy of the d}. (e.g., Khinchin, 1957,
Shannon, 1948). When hypotheses H, are uniformly distributed (then equally prob-
able) so that

P(Hi) = 1/n,i=1..n; thisleadsto - Y P(H,)logP(H,)=logn,
i=1

which turns out to be Hartley’s information measure.

As shown below, an interesting applicability of (2.4) may concern the analysis
of hypotheses H, i = 1,2, on dependency between variables x and y (Vg > 0) or on
the measure of divergence between given hypotheses H. Presenting relationships
between information discriminating measure and dependency between variables
will be useful when we introduce an inferential approach for entropy econometrics
models. In particular, measure of divergence constitutes, once again, the cornerstone
of the present work in which a priori and a posteriori hypotheses will be recalled in
many applicable analyses.

Suppose we have the entire sample space y being the Euclidean space of two
dimensions R? with elements X = (x, y). Let us consider that under H, variables x and y
(Vq > 0) are dependent with probability density f(x, y) and that, under the alternative
hypothesis H,, both variables are independent with probabilities g(x) and h(y). In this
case, we rewrite (2.4) as follows:

(s ) = [ [ (. y)log 222 Se)) dxdy (2.6)
g(x)h(y)

Information measure I(y, : u,) is nonnegative (Kullback, 1959) and equal to zero
if and only if f(x, y) = g(x) h(y) [ A ]. As such, it constitutes an informative indicator
on dependency degree between x and y (Vq > 0). Note that in the case of a bivariate
normal density
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1 1 x° X 2
fey) = ‘e’q{_ 21— 2)(02 —2p02+;zﬂ

where hypothesis H, then represents the product of the normal densities as explained
in (2.6), and finally one obtains:

1 )= logl(1- P 27)

which indicates that in the case of bivariate normal distribution, as expected, the
mean information is discriminatory in favour of H, (dependence) against H, (indepen-
dence); that is I(y, : u,) is a function of the correlation coefficient p alone.

Following (Jeffreys, 1946), (Kullback, Information theory and statistics,, 1959), if
we define I(2: 1) as

S>(x)
1(p 2 ) = fo(x) log == dA(x) (2.8)
H(x)
as the mean information from y, for discrimination in favour of H, against H,, one can
define the divergence (noted V) by:

(H H) = TG0 1) + 100,:30) = [ (1100 = fy(0)log 22 da()-

£ (x)
P(H, | x) (H, |x)
=|1 d hypoth
f og ——1—= P(L, | ) duy (x) - I gP( ) 11, (x) divergence between hypotheses. (2.9)

Thus, V(H,, HZ) measures the divergence between H, and H, or between p, and p..
As such, it constitutes a measure of the difficulty of discriminating between them.

1.2 Main Quantitative Properties of Statistical Information

The approach undertaken here is axiomatic (Carter, 2011). It is worthwhile to note
that we can apply this axiomatic system in any context where we have an available
set of non-negative real numbers. This can be the case, for instance, when we dispose
of non-negative coefficients (noted p) of a given set and target the estimation of the
related model parameters through their reparametrization (Golan, Judge & Miller,
1996). Naturally, we will come back to such applications, and an estimation approach
using probabilities and support space simultaneously will be presented. This under-
scores an important role to be assigned to the probability form of numbers, which
motivated the selection of the axioms below. We will want our information measure
I(p) to have several properties:
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1. Information is a non-negative quantity, i.e., I(p) > 0. Following what has been pre-
sented above on information definition (see 2.4), one may generalize this prop-
erty to convexity in the next theorem:

Theorem: I(p, : p,) is almost positive defined, that is I(p, : p,) =0 with equality if
and only if f,(x) = f,(x) [A].

We will not demonstrate this theorem (see Kullback, 1959, pp. 14-15); we just
provide the reader with the essence channelled through it. The above theorem
explains that in the mean, discrimination information from statistical observa-
tions is positive. It follows from what has been previously said that no discrimi-
nation information will result if the distribution of observations is the same [A]
under hypothesis one and two. A typical example—as we will see later—may con-
stitute maximum entropy and cross-entropy principles. In that case, when non-
informative consistency moments from observations are not provided, minimum
cross-entropy declines into maximum entropy.

2. If an event has probability 1, certainty follows, and we get no information from
the occurrence of the event: I(p = 1) = 0.

3. If two independent events occur (whose joint probability is the product of their
individual probabilities), then the information we get from observing the events
is the sum of the two pieces of information:

I(p,p,) = I(p,) + I(p,). This property is referred to as additivity. Note that this prop-
erty presents a valuable feature; it represents the basis of the logarithmic form
of information. Intuitively, that means that a sample of n independent observa-
tions from the same population provides n times the mean information in a single
observation.

In the case of non-independent events, the additive property is retained, but in
terms of conditional information.

4, Finally, as already stipulated in the preceding section, we will want our infor-
mation measure to be a continuous (and, in fact, monotonic) function of the
probability—slight changes in probability should result in slight changes in infor-
mation. For consistency with the properties above, it can be useful to show the
logarithmic feature of statistical information in the following way:

L 1(p?) = I(pp) = I(p) + I(p) = 2I(p) (2.10)

2. Through inductive reasoning, one can generalize (2.10) and rite, I(pn) =

nl(p)
3.1(p) = I((p)") = m(p")
and we have

1(p'") = i’“”
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and, once again, we can generalize in the following way :

1(p"") =" 1(p)

4, The property of continuity allows us to write, for O < p < 1 and a real
number o:

I(p") = ad(P).

From (2.10), one can observe that an operator transforming the probability p at
the power | S (that is, p¥™) into an information measure I(p™™) displays a logarithmic
property of additivity. This allows us to write a general, useful relation:

I(p )=—log,(p)=log b(%) for base b. 2.11)

For other information properties not directly connected with the aim of this work,
such as invariance or sufficiency, which will not be presented here, see Jaynes (1994),
Kullback (1959). Furthermore, in the coming chapters, additional properties for differ-
ent forms of entropy will be presented, such as concavity and stability (common for
both Shannon-Gibbs and Tsallis entropies) or extensivity (common for both Shannon-
Gibbs and Renyi (1961) entropies).

As a final remark of this section, it is important to note that the above logarithmic
nature of information as explained in (2.11)—for the case of independent events—is
limited to ergodic systems which convey additive-extensive properties of information
in the case of independent events.
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2 Ill-posed Inverse Problem Solution and the
Maximum Entropy Principle

2.1 Introduction

As explained in the introduction, many economic relationships are characterized by
indeterminacy. This may be because of long-range feedback and complex correla-
tions between source and targets, thus rendering causal relationships more difficult
to investigate.

In this part of the work, the formal definition of the inverse problem will be dis-
cussed. A Moore-Penrose approach will be presented for solving this kind of problem
and its limits will be stressed. The next step will be to present the concept of the
maximum entropy principle in the context of the Gibbs-Shannon model. Extensions
of the model by Jaynes and Kullback-Leibler will be presented and a generalisation
of the model will be implemented to take into account random disturbance. The next
step will concern the non-ergodic form of entropy known in the literature of thermo-
dynamics as non-extensive entropy or non-additive statistics. There will be a focus on
Tsallis entropy, and its main properties will be presented in the context of information
theory. To establish a footing in the context of real world problems, non-extensive
entropy will be generalized and then random disturbances will be introduced into
the model. This part of the work will be concluded with the proposition of a statistical
inference in the context of information theory.

2.2 The Inverse Problem and Socio-Economic Phenomena

An inverse problem, e.g., Thikonov et al., (1977), Bwanakare (2015), Golan et al.,
(1996) explains a situation where one tries to capture the causes of phenomena for
which experimental observations represent the effect.

The essence of the inverse problem is conveyed by the expression:

Y=XB+& (2.12)
or its equivalent in continuous form:

Y(g)= Ig(X )B(X, )X +b(S) (2.13)

where

X represents the state space,

Y designates the observation space,

D defines the Hilbert support space of the model,

B is the transformation kernel linking measures X and Y,
b(¢) displays random error process.
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In classical econometrics, when given a state X, an operator B and, as happens most
of time, a disturbance term (), what is Y? This is referred to as a forward problem. In
social science, one must often cope with the above random (Gaussian or not) distur-
bance term, and this usually complicates matters in spite of significant, recent devel-
opments in econometrics, particularly concerning stochastic time-series analysis
(Engle & Granger, 1987). Furthermore, the inverse question is more profound: Given y
and a specific B, what is the true state X?

If B should also be a functional of X, the problem becomes arbitrarily complex.
Correlation between (() and X will be at the base of such additional complexity.

Everyday, psychologists cope with such inferential problems. Patients display
identical symptoms from different sicknesses. Health practitioners need more histori-
cal (a priori) information on patients to try to find the solution.

In economics, the same national output growth rate may result from different
combinations of factors. One of the main problems encountered by practicing econo-
mists is isolating the causes of economic phenomena once they have occurred. In
most cases, the economist becomes inventive in finding an appropriate hypothe-
sis before trying to solve the problem. As an example, in the case of a recession or
financial turbulence, it is usually difficult to point to principal causes and fix them.
Schools of economics suggest different, even contradictory, solutions—the legacy of
its inverse problem nature.

In empirical research, many techniques exist to try to solve the inverse problem.
In the context of the present work, the presentation will be limited to those more
applicable to matrix inversion, like the Moore-Penrose pseudo-inverse approach,
and, naturally, maximum entropy based approaches. The approach better known in
economics for updating national accounts on the basis of bi-proportionalities will
then be added to these two techniques.

2.2.1 Moore-Penrose Pseudo-Inverse

Let us consider the discrete and determinist case and rewrite (2.12) as follows:
Y=XB=Xp (2.14)

In the right equality reflects the case where we have to deal with a ratio or prob-
ability parameter, for example, after reparametrizing B. We then have:

p=YS< Y=XBS
p=BY < Y=XYV
Y = Xp = YXV = XBXp, (2.15)

which means:
XBX = X and V, representing the generalized inverse matrix (Golan, 1996), (Kalman,
1960).
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This is a matrix with the symbol B+ that satisfies the following requirements:

BB*B=B,
B‘BB*=B,
B*Bis symmetric,
B B*is symmetric.

Following Theil (1967), a unique B* can be found for any matrix: square, non-
singular or not. When the matrix B* happens to simultaneously be square and non-
singular, then the generalized inverse will be the ordinary inverse B-. The problem
that interests us is the over-determined system of equations

Y=XB

where B has n rows, K < n columns and column rank equal to R < K.
If we retain the particular case when R equals K to ensure the existence of (B’B)?,
then the generalised inverse of B is

B*=(B’B)'B’
as can be easily verified. A solution to the system of equations can be presented as:
X=B+Y.

Following Green (2003, pp. 833), we note in this case that the length of this vector
minimizes the distance between Y and BX, according to the least squares properties
method. This distance will naturally remain equal to zero if y lies in the column space
of B.

If we now retain the more general case where B does not have full rank, the above
solution is no longer valid and a spectral decomposition using the reciprocals of the
characteristic roots is involved to compute the inverse which becomes:

B'=CA"C’E

where C, are the R characteristic vectors corresponding to the non-zero roots arrayed
in the diagonal matrix A .

The next and last case is the one where B is symmetric and singular, that is, with
the rank R < K. In such a case, Moore-Penrose inverse is computed as in the preceding
case but without pre-multiplying by B’. Thus, for such a symmetric matrix,

B =C AC;, (2.16)

with A 7 being a diagonal matrix of the reciprocals of the non-zero roots of B.

It is important to note that only matrix B with full rank ensures a minimum dis-
tance between Y and BX. In other cases, there may exist an infinite number of combi-
nations of elements of matrix B or p which satisfy (2.14).
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To conclude, in spite of strong advantages of the Moore-Penrose generalised
inverse, outputs will not always reflect an optimal solution.

2.2.2 The Gibbs-Shannon Maximum Entropy Principle and the Inverse Problem

Let us introduce the concept of Shannon entropy by continuing with the case of pure
linear inverse problem solution discussed above. The simplest (one dimensional
case) example is the Jaynes dice inverse problem.

If a dice is fair, and we throw it a large number of times n, with k different output
modalities® (k = 1,..., K), the expected value will be 3.5, as from a uniform distribution
with probability f, equal 1/6. How can one infer about p, if we have ‘loaded’ (unfair)
dice and the expected value of the trial becomes:

K

4.5="kp, (2.17)
k=1

where frequencies p, is n% ?

In this case, the central question is: Which estimate of the set of frequencies
would most likely yield this number? The problem is underdetermined since there
are many sets of f, that can be found to fit the single datum of equation (2.17). Here
we have to deal with a multinomial distribution where the multinomial coefficient w
is given by:

W N! N!
~ Np,!Np,l.Np,! Nk!Nk,!.Nk,!

Deriving and using the Stirling approximation Inx! = xIlnx — x for a large number
of N, we get the Shannon entropy formulation:

K
Max,H(p)=-) p,In p, (2.18)"

k=1

In the case of a die, parameter K equals 6, and W is the multinomial coefficient,
i.e., the number yielding a particular set of frequencies among 6" possible outcomes.

9 Generally, if the number of trials is equal to n, we will have n, possible outputs corresponding
to each modality k with n =an . Thus, the frequency p, = "% is related to each modality k.
k n

10 Note that the generalized form of Shannon entropy in the continuous case has the form:

Max, H(f(y)) = -Jfy)logf(y)dy.
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We need only find the set of frequencies maximizing Win order to find the set that
can be realized in the greatest number of ways. This is the most plausible combina-
tion in the case of fair dice.

This turns out to convey the same logic as maximizing Shannon Gibbs entropy.
Thus, starting from two pieces of information that is, the number k equal to sixand N a
large number of trialswe are able to derive six probabilities related to a die distribution.

Next, Jaynes (1994) maximized the Shannon function through the restriction of
consistent information at hand. This opened entropy theory application to many sci-
entific fields, including the social sciences.

Thus, if we add to the formulation (2.18) the moment-consistency and the adding
up-normalization constraints, we then get:

K
Max,H(p)= —Zpk In p, (2.19)
k=1
subject to:
K
ZPkf;(xk)=yt,lStST (2.20)
k=1
K
Dop =1 (2.21)
k=1

where {y,, y,,..., ¥} denotes a set of observations (e.g., aggregate accounts or their
averages) being consistent with a function f(x,) of explicative variables weighted by a
corresponding distribution of probabilities {p,, p,,..., p,}. As usually happens, T is less
than K, and the problem is ill-posed (underdetermined).

Two main results emerge from the above formulation. First, if all events are inde-
pendent or quasi-independent (locally dependent) and equally probable, then the
above entropy is a linear function of the number of the possible system states and then
is extensive®'.

A second fundamental result is connected with information theory and suggests
that a Gaussian variable has the largest entropy among all random variables of equal
variance (see Papoulis, 1991 for proof). In the next chapter on non-extensive entropy,
a measure to assess the divergence of a given distribution from Gaussian distribution
will be presented.

11 For this reason, as earlier alluded to, the Gibbs-Shannon entropy is called extensive. In reverse,
as it will be commented on in the coming sections, the hypothesis of long-range correlation between
events leads to the concept of non-extensive entropy (e.g., Tsallis entropy) suggesting an entropy no
longer being a linear function of data.
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Table 1: Recovering probability distribution of an unbalanced die through the maximum entropy
principle.

P1 P2 P3 P4 P5 P6

0.054 0.079 0.114 0.166 0.240 0.348

Coming back to the dice case, maximization of Shannon entropy in (2.19), that is
H(P)=—-P' In Punder Jaynes consistency, leads to the distribution presented in Table 1.
To solve this inverse problem of six unknowns, the only two pieces of information
available are the expected value—from the experiments in this example—assumed
to be equal to 4.5 and the information that the probability of different possibilities
adds up to one. However, since we are dealing with unbalanced dice, we have no idea
about the distribution.

The next chapters extend the Shannon-Gibbs-Jaynes maximum entropy principle
with Kullback-Leibler relative entropy. The next to the last targeted presentation will
deal with the general linear entropy model, that is, the one with a stochastic compo-
nent. To conclude, Tsallis power law distribution to generalize Kullback-Leibler cross-
entropy will be considered.

2.2.3 Kullback-Leibler Cross-Entropy

Kullback (1959), Good (1963) extended the Jaynes-Shannon-Gibbs model by formulat-
ing the principle of minimum (cross or relative) entropy. Using an a priori piece of
information g about unknown parameter p, the resulting formulation is as follows:

K
Min_H(p,q)=).p,In(p,/q,)=p'h p—p'q (2.22)
k=1

under restrictions:

Y=XP (2.23)
P1=1 (2.24)

where p = (pl,..., p)’, 4 = (qL,..., q).

These restrictions are the same as those presented earlier. In the criterion func-
tion (2.22), a posteriori and a priori vectors or matrices p and q are confronted with the
purpose of measuring entropy reduction resulting from exclusive new content of data
information.
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One should note that when q is fully consistent with moments, then p = g and the
distribution becomes uniform with g, = 1/K. This leads to the solution of the maximum
entropy principle.

Thus, the cross-entropy principle stands for a certain form of generalization of
maximum entropy. Relation (2.22) above is an illustration of the previous Kullback
formulation in (2.8) as a mean information from (2.23) and (2.24) for discrimination in
favour of p against q.

2.3 General Linear Entropy Econometrics

In social science, it is rare to encounter the situation described by the relation (2.14)
where the random term is meaningless as is often encountered in the experimental
sciences. Social phenomena are particularly affected by stochastic components. Let
us rewrite it below in its generalized form:

K
yi = Z BiXj + ¢, (2.12)
j—1

with the random term e and
i=(1,..., ) I being the number of observations); K is the number of model parameters
to be estimated.

2.3.1 Reparametrization of Parameters

Following Golan et al., (1996), we first reparametrize the above generalized entropy
model (2.12)).

We treat each B, (j = 1,..., K) as a discrete random variable within a compact
support and 2 < M < oo possible outcomes. So, we can express B; as:

M
B, = Zpkmvkm VkeK (2.25)
m=1

where p, is the probability of outcome v, and the probabilities must be non-negative
and sum up to one.

Similarly, let us treat each element C, of e as a finite and discrete random vari-
able with compact support and 2 < M < oo possible outcomes centred on zero. We can
express , as:

J
g = Zrnj.wnj (2.26)
=
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where r_is the probability of outcome w . The term (, like any prior value in the
model, reflects Bayesian properties and is not a fixed value as in the case of classical
econometric models. In practice, support sets with three or more points'? are used to
take into account higher moments of the distribution during the process of informa-
tion recovery.

2.4 Tsallis Entropy and MainProperties
2.4.1 Definition and Shannon-Tsallis Entropy Relationships

This relatively new form of entropy is emerging over an immense area of applica-
tions in social science, including economics. One of the fields of interest is model-
ling and predicting markets of financial returns (Drozdz & Kwapien, 2012), (Grech &
Pamula, 2013). Nevertheless, due to the high frequency nature of Big Data in Official
Statistics (e.g., Braaksma & Zeelenberg, 2015), the PL-based non-extensive entropy
econometrics should be seen as a potential and natural estimation device in this
new statistical area. As in statistical physics, socioeconomic random events display
two types of stochastic behaviour: ergodic and non-ergodic systems. Whenever iso-
lated in a closed space, ergodic systems dynamically visit with equal probability all
the allowed micro-states (Gell-Mann & Tsallis, 2004). However, it seems logical to
imagine systems visiting the allowed micro-states in a much more complex way than
defined by ergodicity. The financial market is a well-known example of such complex
systems, as characterized by multifractal dimensions (Drozdz & Kwapien, 2012),
(Grech & Pamula, 2013). Other examples include income distribution inside a given
region, evolution of a given disease inside a region, size of cities, or cellular structure.
These forms seem to display an organized structure owing to long-range correlation
between micro-elements, heavy queues with respect to Gaussian distribution, scale-
invariant structures, and criticality. Such phenomena would be better described by a
stable law-based Levy process, like power law distribution.
Shannon-Kullback-Leibleir Equations (2.22-2.24) are generalized by Tsallis rela-
tive entropy formulation. To emphasize consistency among the principal formula-
tions, it is worthwhile to reiterate the statistical theory connection between the above
relations and the Kullback relation presented in (2.8) or to some extent (2.9), which

12 Golan, Judge, and Miller (1996) suggest the Chebyshev inequality as a good starting point to define
the error support set: Pr[|x| < va] > v where v is a positive real and x a random variable, such that
E(x) = 0 while var(x) = 0 This inequality leads to three-sigma rule (Pukelsheim, 1994) for v = 3, i.e., to
the probability Pr[-30 < x < 30], which is at least 0.88 and higher when x displays a standard normal
distribution. Let us remember that this inequality has the additional advantage of being independent
of distribution laws.

Unauthenticated
Download Date | 3/9/19 6:55 AM



30 — lll-posed Inverse Problem Solution and the Maximum Entropy Principle

measures the divergence between two hypotheses H, and H,. A similar concept will be
introduced in the case of non-extensive entropy, which will constitute the final step
of Shannon entropy extensions.

Let us generalize the Shannon Gibbs inverse problem through ordinary differen-
tial equation characterization (Tsallis, 2009). First, we need to introduce the three
simplest—in terms of dynamic complexity—differential equations and their inverse
functions,
dy

.- 0 6O=1. 2.27)

Its solution is y=1 (Vx), and its inverse function is X=1 (Vy).
The next simplest differential equation is
ay

o 1 (y(0)=1). (2.28)

Its solution is y=(1 + x) and its inverse Y=(x — 1).

The next higher step in increasing complexity is the differential equation
d
oy (y(0)=D. (2.29)
dx
Its solution is y = e, and its inverse is y = Inx.

Note that the latter inverse equation satisfies the additive property:

In(x x,) = In(x) + In(x,). (2.30)

Following Gell-Mann & Tsallis (2004) and trying to unify the three cases (without
preserving linearity), we get:

@_ y* (y(0)=1; geR). (2.31a)
dx

We observe that this expression displays power-law distribution form.
Its solution is

y=[1+0=qx]'"1 = eg(ef =e"),

and its inverse function is

(-a) _q

y= ﬁ = lnq x (In, x = In x). (2.31b)
The above represents the non-extensive (Tsallis) entropy formula. Though it

will be discussed in the next section, let us immediately show here the relationship

between Shannon and Tsallis entropies through the next pseudo-additive property:

lnq(xaxb) =In(x) +1In(x) + (1 - q)lnq(xa)lnq(xb) (2.32)
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for g — —o, g = 0, ¢ = 1 we obtain the three initial cases (2.27 — 2.29), respectively.

In particular for g = 1, we then obtain (after using 'Hépital’s rule) the solution
of (2.29), the case of Shannon Gibbs entropy. The expression (2.30) states that if two
systems x_and x, are logarithmically multiplied, the output is the additive sum of
these systems in a logarithmic scale. This explains why Shannon entropy is some-
times referred to as additive entropy. This observation has been taken from (2.21) to
emphasize that Shannon entropy is a direct function of data. The term q is referred
to as “q-Tsallis.” When it is equal to unity, we reach in this limiting case the Shannon
entropy.

Tsallis entropy should now be described and compared with other entropy forms.
This description indirectly replies to the question of why Tsallis or Shannon entropy
rather than Renyi entropy or another is appropriate for a given problem.

2.4.2 Characterization of Non-Extensive Entropy

2.4.2.1 Correlations

Following Tsallis (2009), suppose we have a system composed of subsystems*® A (with
W, possibilities of complexities) and B (with W, possibilities of complexity). Their
joint probabilities can be presented as p; B (i=1,2,.., w,j=1.2,.., WB) and marginal
probabilities as

WB l/VA
pi' =D p;(hence Y p/'=1)and
=1

i=1

w, Wy
p? =Y p;’(hence Y p? =1).
=1

J=1

In general,
p'pr #p)” (2.33)

if they happen to be equal, then A and B are said to be probabilistically independent.
Otherwise, they are dependent or correlated. Let us then define entropies:

5,(p*)=s,(1n)

and

5,(0")=s,(10")

13 For models to be presented later, subsystem A can be considered as a data generating process and
B as a subsystem of disturbances. After reparametrization, these two subsystems will be associated
in terms of probabilities.
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More interestingly, the conditional entropies definition, that is,

Sq(pA/B) and Sq (pB/A),

may deserve closer attention, as it can intervene for the definition of estimation preci-
sion of a model if the hypothesis of independence between the model variables and
its random terms has been accepted or not. If and only if A and B are independent,

5,(ps)=5,(0")

and

Sq(pB/A): Sq(PB)'

Next ,
s,(4B)=5,(1p;"})

in general, satisfies:

S,(4B)=5,(p" )+ 5, (P )+ (=0)S, (2" )5, ()= S, (p% )+ S, (P )+
+(1-9)s,(»")5, (pys) (2.34)

Finally, to be more explicit than in the previous section, S_is said to be non-exten-
sive in the sense that given two independent random systems A and B, i.e., P(A, B)

~P(A)P(B),
then,
5,(48)=5,(p")+S, (" J+1-4)s,(p" s, (p") (235)

In the next, empirical part of this book, for inferential purposes and for optimal
simplification of numerical computations, this formula will play a key role in deter-
mining the level of entropy of a complex system under the hypothesis of indepen-
dence of subsystems, i.e., between the model and the random term.

2.4.2.2 Concavity

The concept of concavity is important since, among others things, it allows us to
determine whether or not a system is stable. Stability is a meaningful concept in
econometrics since it implies stationarity of a process in a given system. Testing for
stationarity and cointegration using entropy distribution seems thus to be an open
area of further research.

14 However, the job may be rendered difficult since optimal equilibrium responding to economic
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S, is concave (convex) for all probability distributions and all ¢ = 0(g < 0) (Gell-
Mann & Tsallis, 2004). Let us follow the traditional mathematical definition of con-
cavity and let {pi} and {px }(i =12,.., W) be two arbitrary probability distributions. The
next relation of intermediate distribution follows:

'
i

p, =ap,+(1-2)p, (0= 2 <1)

By concavity we mean that it can be proven that for all a,

s,(lo/" )2 25, e+ -5, (1))

2.4.3 Tsallis Entropy and Other Forms of Entropy

Let us first review the mathematical main forms of entropies before presenting their
most important distinctive properties.

Ssa(p)=—) piln pi=58, =S =" (2.36)
S,(p)= (1 - Zpﬁ g 1)] 237)
S¥(p)= [m prj/(l —q)=hn[1+(1-¢)s,[/(1-¢) (2.38)
S™(p)=(s, )/[pr j = [l {Zpi’ }IJ/G ~q)=5,/J1+(1-q)s,] (2.39)

A key element deserves attention here. We see from the first mathematical rela-
tion in (2.36) above that Shannon-Gibbs entropy may be generalized, too, by Renyi
entropy (2.38) or by the normalized non-extensive form (2.39), independently intro-
duced by Landsberg & Vedral (1998) and by Rajagopal and Abe (2000). Both forms of
entropy are monotonically increasing functions of Sq. Tsallis (Gell-Mann & Tsallis,
2004, p. 11) poses and explains a relevant question concerning relationships between
these forms of entropy. In fact, after pointing out that monotonicity makes Sq, SqR,
and SqN extreme for the same probability distribution, he asks why not base thermo-
dynamics on SqR or SgN rather than only on Tsallis entropy. The response lies in the

laws does not necessarily fit into optimal entropy equilibrium. This problem will be briefly covered,
later.
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Table 2: Comparison of different forms of entropy with regard to important properties

Property Entropy

Spe S, Sy Sire
Extensive yes no yes no
(Va)p;” = pi'p})
Concave (Vg > 0) Yes Yes No no
Stable (Vg >~ 0) Yes Yes No no
Optimizing distribution exponential Law!¢ Power Law Power Law Power Law
(vq)

Source: own, based on Tsallis (2009) and Gell-Mann & Tsallis (2004)

disadvantages of these two forms of competitive entropy. In fact, it happens that they
are not concave for all positive values of g, but only for 0 < g < 1. Since many physi-
cally meaningful phenomena for which q are higher than unity exist, this becomes a
serious drawback of both competitive entropies. As far as economic, financial, or social
phenomena are concerned, the problem does not allow for any ambiguity since, as we
will see in the next section, 1 < q < 5/3. For the majority of them, extreme events are
on average more frequent (with persistence) than predicted by Gaussian law and not
the reverse (i.e., less frequent—with persistence—than predicted by Gaussian law).
Tsallis entropy thus remains the one form that not only generalizes SG entropy but
also ensures concavity (stability) inside the whole finite interval where probability
distribution is defined. The reader should thus far understand why non-extensive
Tsallis entropy has been recently used to generalize all other forms of entropy, at least
in many fields where entropy is applied.

2.4.3.1 Characterization

In the following table, we illustrate different links between the commonly used forms
of entropy with respect to the characterization in Table 2.

“yes” and “no” correspond, respectively, to what, according to recent thermodynamic
literature (Gell-Mann & Tsallis, 2004), are thermodynamically allowed and forbidden
violations of the Boltzmann-Gibbs (BG) entropy properties.

15 For example, for stock market returns, q is around 1.4, far enough from the unity which charac-
terises Gaussian distribution.
16 “Exp” for exponential and “P” for power.
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NB: R stands for Renyi, and SqLVRA = S;v (LVRA and N stand for Landsberg-Vedral-
Rajagopal-Abe and normalized, respectively (Gell-Mann & Tsallis, 2004).

2.4.3.2 Scale of g-Tsallis Index and its Interpretation
Following the thermodynamic literature built on Lévy-like anomalous diffusion, it
has been shown that p(x) oc e;ﬂx optimizes

1- J‘ dx[p(x)}
S, =—
qg-1
under appropriate constraints. If one convolutes n times p(x)(n — oo), we approach a
Gaussian distribution if ¢ < 5/3, and a Lévy L (x) if 5/3 < q < 3. The index yL of Lévy
distribution is related to q as follows:

_L+3.

5/3 < q < 3).
7L+1(/ q=3)

Thus, in empirical applications, the value of q should vary inside an interval from
unity to 5/3, which corresponds to cases of finite variance for phenomena dwelling
within the Gaussian basin of attraction.

2.5 Kullback-Leibler-Tsallis Cross-Entropy
2.5.1 The g-Generalization of the Kullback-Leibler Relative Entropy

Kullback-Leiber-Tsallis cross-entropy is known in literature as the g-generalization of
Kullback-Leibler relative entropy. The Kullback-Leiber-Shannon entropy introduced
in Part II can be g-generalized (Tsallis, 2009) in a straightforward manner. The dis-
crete version becomes:

[pi /pw_]q—l -1

1,(p.p)=2. D B (2.40)7

since with any real r = 0, one has the following properties:

o
T 7510 g0 2.41)
qg-1 r

17 Ina continuous case, we have:

1,(p.p®) = [ dipn | L) | | asptoy €0/ 2] 1
! L p(x) g—1
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=1—1 ifg=0
r
1 .
<l-— ifg=<o0

T’ﬁus, retaining the practical case of , we can write:

[p@)/ p, " =1, p(x)
g-1 p(x)

Hence®,

p(x)

Zp()[ } 1>Z (){ po(x)}l—l.

P(x)
Therefore, coming back again to the generalized K-Ld cross-entropy, we have'®:

Iq(p,po) >0ifg > 0,
=0ifg=0,
<0ifg=<0. (2.42)

Thus, as Tsallis (2009) has made us aware, the above g-Kullback-Leibler index
has the same basic property as the standard Kullback-Leibler entropy and can be used
for the same purpose while having the additional advantage of an adaptive q accord-
ing to the system with which we are dealing.

There exist two different versions of the Kullback-Leibler divergence (K-Ld)
in Tsallis statistics, the usual generalized K-Ld shown above and the generalized
Bregman K-Ld. According to Venkatesanet et al., (Plastino & Venkatesan, 2011), prob-
lems have been encountered in empirical thermodynamics trying to reconcile these
two versions. Unfortunately—or fortunately!—the same problems seem to reappear
while applying this theory in social science since every version of generalized K-Ld
leads to different outputs. Let us try to synthesize what recent literature says about
this problem.

18 It is straightforward to derive this property in the case of the continuous case.
19 The same conclusion is obtained by using Jensen's inequality (e.g., Gell-Mann & Tsallis, 2004).
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2.5.2 Tsallis Versions of the Kullback-Leibler Divergence in Constraining Problems

This short section represents the final bridge between theory and the applications
in the last parts of this work. In a recent study, Plastino & Venkatesan (2011) lay out
interesting aspects of empirical research when g-generalized K-Ld cross-entropy is
associated with constraining information. Since, in the social sciences, we particu-
larly need discrete forms of these relative entropies, let us first rewrite these forms
before commenting on their conditions of applicability:

L(p.p,)=2p: % 243)
1,lplp,)= ﬁ ¥ plp) =) - X = o))" (2.44)

The form (2.43) is the one derived directly from Kullback-Leibler formalism and
presented in (2.40). The second form is referred to as the generalized Bregman form of
K-Ld cross-entropy, and it is more appealing than (2.43) from an information-geomet-
ric viewpoint (Plastino & Venkatesan, 2011) even if it does contain certain inherent
drawbacks.

A study by Abe and Bagci (2005) has demonstrated that the generalized K-Ld
defined by (2.44) is jointly convex in terms of both p, and p , while the form defined by
(2.43) is convex only in terms of pi. A further distinction between the two forms of the
generalized K-Ld concerns the property of composability. While the form defined by
(2.44) is composable, the form defined by (2.43) does not exhibit this property.

The second interesting aspect for practitioners concerns the manner in which
mean values are computed. Non-extensive statistics has employed a number of forms
in which expectations may be defined. The first among these are the linear constraints
initially used by Tsallis (2009), also known as normal averages, that is:

()= p,
The second is the Curado-Tsallis (C-T) constraints of the form:
)=2p'y

and the normalized Tsallis-Mendes-Plastino (TMP) constraints (also known as g-aver-
ages or an escort distribution) of the form:

<yq>zzi:

q
Z;’-qyi

A fourth—less applied by practitioners—constraining procedure is the optimal
Lagrange multiplier approach.
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Among these four methods to describe expectations, the most commonly
employed by Tsallis practitioners is TMP, referred to as escort distribution.

Recent work by Abe (2009) suggest that, in generalized statistics, expectations
defined in terms of normal averages, in contrast to those defined by g-averages, seem
to display higher consistency in material chaos hypotheses. Recent reformulation of
the variational perturbation approximations in non-extensive statistical physics fol-
lowed from these findings. To my knowledge, application in the social sciences to
assess the universality of this finding has not been done yet.

Finally, there is the issue of consistency. This stems from the form of the gen-
eralized K-Ld defined by (2.43) being consistent with expectations and constraints
defined by g-averages (“prominently” the TMP) while, on the other hand, the gen-
eralized Bregman K-Ld defined by (2.44) is consistent with expectations defined by
normal averages.

Thus, through reformulations of an empirical inverse problem, this last point may
play a key role since non-appropriated constraints should lead to a non-optimal solu-
tion in the best case or to computational problems, as is often the case.

2.6 A Generalized Linear Non-Extensive Entropy Econometric
Model

2.6.1 A General Model

This section presents a generalized linear non-extensive entropy econometric
approach to estimate econometric model. Following Golan et al., (1996), we first repa-
rametrize the generalized linear model of the equation (2.12°) rewritten below:

K
¥, =Y .BX, +( 2.12)
k=1

With, once again, the random term (.ce and i = (1,...,I) (being the number of
observations); K is the number of model parameters to be estimated.

Where B values are not necessarily constrained between 0 and 1, and ¢ is an
unobservable disturbance term with finite variance, owing to the nature of economic
data that exhibits error observation from empirical measurement or random shocks.
If we treat each B, (k = 1...K) as a discrete random variable with compact support and
2 < M < oo possible outcomes, we can express B as:

M
B =) PiVinsVk e fl,.. K} (2.45)
m=1

where p, is the probability of the outcome v, . The probabilities must be non-nega-
tive and add up to one. Similarly, by treating each element C, of C as a finite and dis-
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crete random variable with compact support and 2 < M < oo possible outcomes centred
around zero, we can express (, as:

¢ = Z'}jwy‘ (2.46)

J=1

where 7, is the probability of outcome w, on the support space j, with je{1,....J} and ie
{i = 1....,N}. Note that the term e (an estimator of ¢) can be fixed as a percentage of the
explained variable, as an a priori Bayesian hypothesis. Posterior probabilities within
the support space may display non-Gaussian distribution. The element v, constitutes
a priori information provided by the researcher while p, is an unknown probability
whose value must be determined by solving a maximum entropy problem. In matrix
notation, let us rewrite = V- P with p, >0 and

Zle zm>2.4.M Pen =1,

where again, K is the number of parameters to be estimated and M the number of data
points in the support space. Also, let e = r- w, with r,z0 and

DI !
i=] hed j>2....T ri=

for N the number of observations and J the number of data points on the support
space for the error term. Then, the maximum Tsallis Entropy Econometric (MTEE)
estimator can be stated as:

max [, (pir)]={1-3, 3, @ (0, [+ 1I-2 3, 0-0) 6, [ (a-1)" @47)

subject to
K M p q J 7
yi:ZBka+ei:X ‘va M “ +ij JJ (248)
k=1 m=1 q j=1 q
pm r;
K M
Zkzl 2 Phm =1 (249)

> Zfﬂ ry=1 (2.50)

where the real g, as previously stated, stands for the Tsallis parameter.
Above, Hq(p,r) weighted by a dual criterion function is nonlinear and measures
the entropy in the model. The estimates of the parameters and residual are sensitive
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to the length and position of support intervals of B parameters. When parameters
of the proposed mode?® concern elasticity or error correct coefficients, the values of
which lie between 0 and 1, then the support space should be defined inside the inter-
val zero and one. In other cases, the support space may be defined between minus
and plus infinity, according to the intuitive evaluation of the modeller. Additionally,
within the same interval support, the model estimates and their variances should be
affected by the number of support values (Golan et al., 1996). Increasing the number
of point values inside the support space leads to improving the a priori information
about the system. A few years of modelling with the maximum entropy approach
seem to show that a well-defined support space is crucial to obtaining better results.
The weights a and (1 — a) are introduced into the above dual objective function. The
first term “of precision” accounts for deviations of the estimated parameters from the
prior (defined under support space). The second, “prediction ex post,” accounts for
an empirical error term as a difference between predicted and observed data values
of the model.

2.6.2 Parameter Confidence Interval Area

In this section, we will propose the normalized Tsallis entropy coefficient S(d,) as an
equivalent to a standard error measure in the case of classical econometrics. An equiv-
alent of the determination coefficient R? will be introduced, also under the entropy
symbol S(lsr). The departure point is that the maximum level of entropy-uncertainty
is reached when significant information-moment constraints are not enforced. This
leads to a uniform distribution of probabilities over the k states of the system. As
we add each piece of informative data in the form of a constraint, a departure from
the uniform distribution will result, which means a lowering in uncertainty. Thus,
the value of the proposed S('I\Dr) below reflects a global departure from the maximum
uncertainty for the whole model. Without giving superfluous theoretical details, we
follow formulations in, e.g., Bwanakare (2014) and propose a normalized non-exten-
sive entropy measure of 5(d,) and S(Pr).

From the Tsallis entropy definition, S, vanishes (for all q) in the case of M = 1; for
M > 1, q > 0, whenever one of the p (i = 1..M) occurrences equals unity, the remaining
probabilities, of course, vanish. We get a global, absolute maximum of Sq (for all q)
in the case of a uniform distribution, i.e., when all p, = /,. This vanishes (for all q) in

q
P
M
q
D Pu
m=1

have for g=1 (then Pm is normalized to unity), that is, in the case of Gaussian distribution (Gell-Mann
i Tsallis, 2004), (Tsallis, 2009).

20 As already presented, the expression P,, = is referred to as escort probabilities, and we
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the case M = 1; and for M > 1, g >0, whenever one of the p, equals unity, the remaining
ones vanish. A global, absolute maximum of Sq (for all q) is obtained in the case of
equiprobability, i.e., when all p, = //, . Note that we are interested, for our economic
analysis, in g values lying inside the interval (1, 5/3). In such an instance, we have for
our two systems:

S =M1-1)-0-g? (2.51)
and
SN=N""-1)-(1-¢g)" (2.52)

in the limit when g = 1, relation (2.51) or (2.52) leads to the Boltzmann-Shannon expres-
sion (Gell-Mann & Tsallis, 2004).

Below, a normalized entropy index is suggested, one in which the numerator
stands for the calculated entropy of the system while the denominator displays the
highest maximum entropy of the system owing to the equiprobability property:

S@)=-0-32> o, )l/k--9-1)] (2.53)

with k varying from 1 to K (number of parameters of the system) and m belonging to M
(number of support space points), with M > 2. S(d,) then reporting the accuracy on
estimated parameters. Equation (2.48) reflects the non-additivity property of Tsallis
entropy for two (probably) independent systems; the first, parameter probability dis-
tribution, and the second, error disturbance probability distribution (plausibly with
quasi-Gaussian properties):

S(Br) = [5@ + ] = {[S®) + SPI + (1 - @) - SB) - S} (2.54)
where:
@) =-11-33 @)1/ -@n-1-1)]

and
S(#)=- [(1 -2 gﬂ)]/[k N -(e-1)]

S('Pr) is then the sum of normalized entropy related to parameters of the model
S(p) and to the disturbance term S(7). Likewise, the latter value S(7) is derived for all
observations n, with J the number of data points on the support space of estimated
probabilities r related to the error term.
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The values of these normalized entropy indexes S(4,), S(f’r) vary between zero
and one. Their values, near to one, indicate a poor informative variable while lower
values are an indication of better informative parameter estimate 4, about the model.

The next part of the book will present in detail national accounts tables used for
building or forecasting macroeconomic models. The statistical theory will be imple-
mented particularly in the case of the inverse problem, while keeping in line with this
work's objective.

2.7 An Application Example: a Maximum Tsallis Entropy Econome-
trics Model for Labour Demand

This example presents, through Monte Carlo simulations, a model for labour demand
adjustment for the Polish private sector. It constitutes an extension of an initial model
presented by Bwanakare (2010) for the labour demand adjustment by the private
sector of Subcarpate province in Poland. The model aims at displaying short-run and
long-run relationships between labour demand determinants through an error self-
correct process. Due to the relatively short period of the sample (fourteen annual data
points) and the autoregressive nature of the model, we may have to deal with limited
possibilities of statistical inference in the absence of convergence properties or, in the
worst case, an inverse ill-behaved problem. Thus, traditional methods of parameter
estimation may fail to be effective. We then propose to apply the generalized maximum
Tsallis entropy econometric approach—as an extension of Jaynes-Shannon-Gibbs
Information theoretic entropy formalism, already applied in econometrics (Golan,
Judge & Miller, 1996). Due to an annual data frequency of the sample, the approach
proves to be applicable in the case of classical econometrics when a small, lower fre-
quency data sample is available. Such a small data sample should display tail queue
Gaussian distribution. Through this application, Monte Carlo experiment outputs
seem to confirm the reliability of the Tsallis entropy econometrics approach, which
in this particular case performs as well as the generalized least square technique.

2.7.1 Theoretical Expectation Model

In the short run, managers decide on the number of employees to be hired (or dis-
missed) in accordance with the expected long-run optimal level of production.
However, because of institutional or economic reasons, that optimal number is not
hired (or fired) at once. First, uncertainty remains a predominant characteristic of
business. For this reason, employers naturally prefer a moderate and progressive
adjustment of recruited workers to the targeted optimal level. Recruitment in some
economic sectors could be time-consuming as well, especially when searching for
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good specialists. Second, relatively well organized trade unions could prevent
employers from abrupt, large-scale layoffs, or the cost of dismissing a worker may
become high, depending on prevailing labour laws at a given period. In both cases,
the process of shock correction will be more or less long, depending on its origin and
magnitude.

Under classical assumptions of constant returns to scale, ex ante and ex post
complementarities of factors, and long-run constant rate of labour productivity, the
desired level of labour demand L* is a function of the output Y, and the technical
progress t?%:

L* = a.exp(-B.t).Y, (2.55)

Assuming that labour demand adjusts to its targeted level by an error correction
model:

log(L, /L ,) = Alog(L* /L* ) +p.log(L* /L ), (2.56)
combining (2.55) and (2.56) leads to:
log(L, /L) =Adog(Y,/ Y, ) +p. log(Y, /L )+ Bt+a, (2.57)

The parameter A is the impact of output on labour demand, and then a short-run
elasticity of labour demand with respect to output Y, p being the error correction
parameter. Since a relation -1 < p < 0 should prevail, the equilibrium error is only
partly adjusted at each period. In other words, this parameter synthesizes employ-
ers’ determinants of labour demand adjustment once a shock in sales for the coming
period is expected.

2.7.2 A Generalized Non-Extensive Entropy Econometric Model

2.7.2.1 General Model
Presently we are interested in the estimation of parameters of a Podkarpacki labour
demand model, applying a generalized non-extensive entropy econometric approach.
Following Golan, Judge & Miller (1996) and Bwanakare (2014a, 2014b), we reparam-
etrize, in the first step, the generalized linear model before fitting it to equation (2.48).
This step allows for including in moment equations-restrictions the same probability
variables as those optimized in the criterion function.

To reparametrize the model, we follow each equation in (2.45-2.46) where each
B, (k = 1,...,K) is treated as a discrete, random variable with compact support and
2 < M < oo possible outcomes. Next, for the estimation of the model, we maximize the
entropy criterion function in (2.47) under moment and normality condition restric-

21 This is a simplification stipulating that technical progress is a linear function of time.

Unauthenticated
Download Date | 3/9/19 6:55 AM



44 —— |ll-posed Inverse Problem Solution and the Maximum Entropy Principle

tions presented in (2.48-2.50). For confidence area analysis, we need to apply Equa-
tions (2.53-2.54).

With the purpose of improving estimated parameter quality, one can add addi-
tional a priori restrictions to (2.48-2.50) as follows:

e=Y-Y=Y-XVp=0. (2.58)

Then we constrain the error term e to sum up to zero*> which provides an addi-
tional quality of requiring an unbiased parameter estimator.

Efficiency property mainly depends upon informative quality of the prior. When
itis poor, the values of the estimated p, from the model tends to be equal for all p,, i.e.,
the case of a uniform distribution.

According to economic theory, we constrain elasticity parameters within a point
support space of zero and one. As known (e.g., Golan, Judge & Miller 1996), sharper
support area points of a parameter act as increasing quality of the “a priori” infor-
mation. Furthermore, this allows computations of this nonlinear model to promptly
converge to an optimum solution. This is explained as follows:

0<A=Vp=1 (2.59)

Likewise, we may add additional economic restrictions to the model (2.57) param-
eters; this leads to the following formulations:

-1su=Vp<0 (2.60)

—o<B=Vp<0 (2.61)

2.7.3 Estimated Confidence Area Of Parameters

In classical econometrics, we usually combine the variance of random model error
with the co-linearity level of explicative variables to determine the standard error of
estimated parameters and to infer their confidence area while assuming a normal
distribution law of random errors. This is particularly true in the case of the Least
Squares approach for a linear model.

In entropy econometrics, the approach is very different. We use the normalized
entropy S(dij) (equation 2.53) as an equivalent of the estimate standard error measure
in classical linear model econometrics. Likewise, the equivalent of the coefficient
of determination R? is a S('Pr) (equation 2.54). Following Golan et al. (1996a, 1996b,
1996¢, 2002) and Soofi (1992, 1994), in the case of maximum entropy formulation, the

22 Note that our model has a constant term, suggesting that the economic initial condition may im-
pact the optimal solution.
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maximum level of entropy-uncertainty results when the information-moment con-
straints (a priori information) are not enforced. Furthermore, this leads to uniform
distribution of probabilities over the k states of the system. As we add each piece of
informative data in the form of a constraint, a departure results from the uniform
distribution, which explains an uncertainty reduction. Thus, the value of S(f’) reflects
a global departure from the maximum uncertainty for the whole model. A similar
measure, 1 — 5(13), called the information index, explains the level of informative
content of the model. For theoretical details, we refer you to the formulations pre-
sented above in Equations (2.51-2.54) or, e.g., in Golan et al., (1996).

2.7.4 Data and Model Outputs

In this section, the output parameter of Tsallis entropy, Shannon entropy, and least
squares econometric models are presented. Next, the obtained results will be com-
pared to those from a Monte Carlo simulation using the same data.

Data used in the model (equation 2.57) come from the Polish Office of Statistics
(GUS) and concern the period 1997-2010. Parameters of the model have been com-
puted with the GAMS (General algebraic modelling system) code with the incorpo-
rated solver PATHNLP. We have noticed, through different simulations, that the Shan-
non-Gibbs entropy model seems more sensitive to initial conditions (support space of
parameters in particular) than Tsallis entropy. This is a useful property, particularly
when an economic theory does not exist to prompt us as to the starting parameters
with which to begin. Parameter estimation by robust standard errors least squares
(LS) approach has been carried out, using freeware Gretl software (http://gretl.source-
forge.net/). Thus, the HAC estimator is used for heteroscedasticity and autocorrela-
tion correction.

a) Parameter outputs of Tsallis entropy model:

Dependent variable: log (% j
-1

Exogenous variables 10g(J7) 1042%) T a0
Yia (-1

Estimates ﬁ/. 0.710 0.010 -0.020 -0.266
Precision error S(d,) on estimated 0.135 0.250 0.250 0.236
parameters

Information Index /[S(PP)]=1- S(Pr) = 0.852
Tsallis -q parameter (for a weight ai=15%) = 2.091
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Throughout many conducted experiments, we have observed the coefficient S('Pr) to
be very sensitive to weighting parameters a in the objective function. Tsallis-q value
being itself influenced by the above weights, its values closer or higher to 5/3 cor-
respond to meaningless information index coefficients for which S(f’r) vanishes to
zero. In empirical research, the Tsallis-q coefficient may take much higher values as a
consequence of model linearity attributes or in the case when the sample is small. In
the present case, we have noticed a high sensitivity of this Tsallis-q parameter on the
change of the weight o in the criterion function. The higher the weight o, the higher
the value of the Tsallis-q parameter. We have retained the value of this weight for
which I[S(f’r)] is the highest.

b) Parameter outputs of Shannon-Gibbs entropy model:

Dependent variable: log (% )
-1

Exogenous variables 105{%) 10g(yz/) T a0
Yia L,

Estimates 6/. 0.709 0.010 -0.020 -0.263
Precision error 5(d,) on estimated 0.297 0.518 0.518 0.421
parameters

Information Index /[S(PP]=1- S(Pr) = 0.829

¢) Robust standard errors LS estimation:

Dependent variable: log (% )
t—1

Exogenous variables 10g(%) 1og(Yz%) T a0
-1 -1

Estimates d/. 0.709963 0.010417 -0.02031 -0.26578

P-values 2.73e-011*** 4.34e-06 2.89e-06*** 0.0302**

Corrected R2=10.79
DW =1.4832

Three parameters are different from zero at 1%, and one on the variable a, signifi-
cant at 10%. The above precision on the estimated parameters from such a small data
sample of an autoregressive model suggests the presence of co-integrating—at the
same order—variables L, and Y,. Such a particular situation leads to super-consistency
of estimated parameters.
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Table 3: Monte Carlo simulation outputs

Poland Labor demand Model and simulation outputs

NEE/GLS #5000 #10000 #15000 #20000 #25000
V 0.709963106  0.7092748 0.70445994 0.7126441 0.709756 0.708636
Vi
Y,
r/LH 0.010416764  0.0105625 0.01052379 0.0103705 0.010461 0.010458
W T -0.020312463 -0.020624 -0.0205689 -0.020213 0.020406 -0.02038
[
g
;;: c, -0.26577817 -0.272354 -0.2652226 -0.266263 -0.26784 -0.26663
% 0.176056192  0.3303391 0.33502592 0.3377129 0.331089 0.335143
=1
Y,
I/l’z—l 0.003753087  0.0070234 0.00704595 0.0071221 0.007143 0.007144
4
o
s T 0.007938838  0.0148845 0.01489532 0.0150799 0.015074 0.015107
°
©
2
% ¢, 0.222643946  0.4216688 0.42344287 0.4260381 0.420446 0.426712

Source: own elaboration.

i\hhhm\h

0 v 1N A R A e A R AR TN
ooy L ool ' ool ool “."‘."““.“‘."‘
1 5D 55 54D 55 55 54
=i =3hn =S SShn =i =S
s s s s s s
-2
L #5000 #10000 #15000 #20000 #25000
_3 /method\non-
extensive
Entropy

==¢==estimates
== T-student

Figure 1: Monte Carlo model estimates and T-student from simulations: initial model, #5000,
#10000, #15000, #20000, #25000.
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For comparative purposes, the table 3 presents outputs from Monte Carlo experi-
ments (computed with Mathlab 7.3.0 software).

The above outputs have been derived under the hypothesis of random normal

law. The empirical standard error initially computed for random value generation is
0.02035. This constitutes 50% of the observed endogenous variable standard error.
We observe that Shannon-Tsallis entropy and the least squares outputs are similar
and almost reflect Monte Carlo convergence outputs. The initial t-student related to
the parameters on the variables y /y, , and y, /L , decrease when we carry out the
#5000 simulation and remain practically unchanged up at the #25000 simulation
experiment. Nevertheless, we observe that parameter estimates of the model remain
unchanged irrespective of the number of the simulations.
To conclude, we note the accuracy in the similarity of outputs from the three models.
This suggests that we are dealing with a convergent case of power law to Gaussian
distribution. If the Tsallis-q parameter is too high, it cannot be interpreted in a model
where its nonlinearity and the small sample size (in this case 14 observation years)
should have a significant impact on the value of that parameter (Grech & Pamula,
2013). The impact parameter is around 0.71. This is, on average, a 0.71% growth of
labour demand when gross profits shifts up to 1%. As it has been indicated, these
outputs are related to a period (1997-2010) during which Poland was undergoing
structural, post-communism reforms. As such, their interpretation should be done
carefully. As far as exogenous technical progress is concerned, we observe a negative
sign on the value of the estimated parameter on the symptomatic variable , which
indicates an expected adverse impact of technical progress on labour demand.

Annex A

The solution for the above constrained equation is obtained by forming the Lagrange
function:

L:‘zpﬂnl’k+Zl{y,—Zpkft(xk)}u[l—Zpkj (2.20)
k=1 t=1 k=1 k=1

After defining the first order conditions, the solution to this (K + T + 1) equations
and parameters is:

—exp[ ZT: f,(x,)-1- yjk 1,2,..K,

t=1

T

K
Zexp( Z xk) 1- lu)/t(xk):yt:tzlazwaT’
k=1

t=1
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Zexp[—Zitf,(xk)—l—ﬂJ =1,

k=1

and, as a formal solution, we obtain:

—oof-E s}

o)
:}J)
S
o

Q) = Zexp[— > A )}

t=l1

is a normalization factor.
It is easy to prove the uniqueness of the primal ME solution. In fact, given the first

order conditions, elements of the Hessian matrix are as follows:

2 -1 U
oL = l'exp(/(x)' ) = L for the diagonal elements,

op exp(f(x)'A) Pr

and
o’L

=0 for the off-diagonal elements.
opOp f]

Thus, the Hessian is a negatively defined and sufficient condition for a unique
global maximum is fulfilled. Furthermore,

o4,

1

y,=( 9 J]nQ,lStsT

One may observe that the value of the entropy H is a function of the given data:

~ T A~
H=nQA)+) 4y, @21,

Annex B: Independence of Events Within g-Generalized Kullback-
Leibler Relative Entropy

Let us consider (Tsallis, 2009) the problem of independence of random variables in
the case of two-dimensional random variable (x, y), and its corresponding distribu-
tion function p(x, y) with [ dxdyp(x, y) = 1

As expected, the marginal distribution functions are then given by

() = dyp(x, y)
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and

h(y) =1 dxp(x, ).

The discrimination criterion for independence concerns the comparison of p(x, y)
with p_(x, y) = h,(x)h,(y). Once again, the one-dimensional random variables x and y
are independent if and only if p(x, y) = p_(x, y). Therefore, the criterion becomes:

p(x,y) T]

-1
Idxd(y)w >0, forg > 0.
q-

When g — 1, we then recover the usual discrimination criterion, i.e. :
[dxdy p(x, y) Inp(x, y) - [ dx h,() In h,(x) - [ dy h,(y) In h,(y) = 0.

An interesting case is if ¢ — 2, then we have:

p(x,y)
Jax m{h(x)h (y)} *b

The value of this quantity, useful in economics, may give a sign of independence
between x and y, when it vanishes.

Finally, if we generalize to the case of many variables, the Kullback-Leibler-Tsallis
index of information becomes:

Iq (p(x1, x2, ..., xd), p (x1, X2, ..., xd)) 20 (for q = 0)

or its symmetrized version:
1
E [Iq (p(Xl’ Xz’ eeey Xd)’ po (Xli Xz’ ey Xd) + quo (Xl) Xz’ eeey Xd) p(le Xz’ seey Xd))] 2 0 (q 2 0)

When equality holds for these two above relations, this means that all elements

X, X,, ..., X, are independent among them (almost everywhere).
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