If you find this book to be useful to you, please consider making a small contribution to the author.

You can use Unglue.it to help to thank the creators for making Functional Programming Textbook free. The amount is up to you.

Click here to thank the creators

Functional Programming with F ${ }^{\text {\# }}$

Yusuf M Motara

2019.1 Edition

Contents

Notation and conventions 1
Whitespace conventions 1
Setup 3
F\# files 3
F\# interactive 3
Introduction 5
Immutability 5
Expressions 5
Functions. 5
First-class functions 5
Referential \square
transparency 5
Purity 5
Exercises 7
Basics 9
Operators 9
Patterns 9
Exercises 13
Functions 15
Curried functions 16
Function types 17
Operators 17
Exercises 19
Tutorial 21
Extensions 22
Match expressions 23
Mapping functions 23
Exercises 25
Tutorial 27
Extensions 28
Can you be helped? 29
Scepticalepsy 29
Analogiculosis 29
Functionalophobia 29
Syntactic dyslexia 29
Hypopractical psychosis 30
Space dysmorphopsia 30
Iteration 31
More efficient recursion 31
Exercises 33
Tutorial 35
Square root 35
Chocolate wrappers 35
Basic data structures 37
Tuples and Records 37
Discriminated unions 38
Comparison 39
"as" patterns 40
Exercises 41
Tutorial 43
Commission of Sales 43
Type theory 45
Type-safety 45
Parametric polymorphism 45
Type inference 46
Type errors 47
Generic composite types 47
Exercises 49
Lists 51
Comparison 52
Exercises 53
Useful functions 55
Strings 55
Catastrophic errors 55
Options and Results 55
List operations 55
Sequence functions 57
Mathematical functions 57
Exercises 59
Functional techniques 61
Higher-order functions 61
Closures 61
Exercises 63
Tutorial 65
Extensions 67
Lambda calculus 69
Basics 69
True and false 69
Practical impact 70
Answers 71
Page 7 71
Page 13 71
Page 19 72
Page 25 72
Page 33 73
Page 41 73
Page 49 74
Page 53 75

NOTATION AND CONVENTIONS

We will use the following notation in this textbook:

- keyword is text that must be written exactly as it is on the page.
- pattern is replaced in actual code by a pattern (see page 9 .
- ident is replaced in actual code by an identifier.
- type is replaced in actual code by a type.
- expression is replaced in actual code by an expression.
- \downarrow indicates where a line can, optionally, be broken. To indicate that code on subsequent lines is part of this line, it is indented.
- optional indicates a part of the syntax that is optional.

Syntax is defined in a box like this:

Syntax: CONSTRUCT

Examples appear in a box like this:

Common misunderstandings that first-time functional programmers have will appear like this:

Description

Important terms which should be remembered with their meaning are written olike this.

Whitespace conventions

Whitespace is significant in $\mathrm{F}^{\#}$; in other words, the indentation and spacing of code can affect its meaning.

Short expressions that only take up a single line are usually left on that line.

```
fun x -> x + 10
```

Expressions which consist of multiple lines are placed on a new line and indented, usually by 2-4 spaces.

```
fun x ->
    let k = 21
    k + x
```

Multiple-step single-line expressions are typically broken up over multiple lines, with an operator being used to start each line.

```
[3. .200]
|> List.map (fun x -> x * 3)
|> List.filter (fun x -> x % 5 = 0)
|> List.length
```

More complex code tends to use slight variations on the above conventions.

```
List.mapi (fun i (v,p) ->
    let w = (v+p)*i
    w,v*w
) |> List.filter (fun (_,n) -> n < 0)
|> List.fold (fun s (a,b) -> s+a+b) 4
```

Here we have an example that shows single-line expressions and multiple-line expressions in a multiplestep single-line expression. Notice the fourth line, where a small variation to the above conventions can be seen. The code could just as easily have been written as follows:
List.mapi (fun i (v,p) ->
let $w=(v+p) * i$
$w, v * w$
)
|> List.filter (fun (_, n) -> $\mathrm{n}<0$)
|> List.fold (fun s (a,b) -> s+a+b) 4

Always double-check to make sure that your code is correctly indented.

SETUP

You can experiment with $\mathrm{F}^{\#}$ by using anything from the command-line to an online editor; however, for the purposes of this module, we'll be using Visual Studio 2017 and the .Net Core Software Development Kit (SDK). The free Community edition of Visual Studio 2017 should work perfectly. Visual Studio 2017 is not cross-platform, although $\mathrm{F}^{\#}$ and the .Net Core SDK are. If you want a cross-platform editor, there are many options; some suggest VS Code, but I have found it to be much worse in terms of its Read-Execute-Print Loop, as well as its code completion. If you choose to not use Visual Studio 2017 and you run into technical difficulties, you're on your own! Installation of the necessary components may take upwards of 2 hours, depending on machine speed and internet connection speed.

F\# FILES

You can create a new $\mathrm{F}^{\#}$ project using the command:

- dotnet new console -lang F\# -n ProjName

If you are using Visual Studio 2017, I suggest that you also create a solution file and add the project to it:

- dotnet new solution -n SolnName
- dotnet sln SolnName.sln add ProjPath

Once you are done, you can open the solution file in Visual Studio. You should have some boilerplate code in front of you.

> // Learn more about F\# at http://fsharp.org

open System

$\odot \longleftarrow$ Your Code Goes Here
[<EntryPoint>]
let main argv =
printfn "Hello from F\#!"
$0 / /$ return an integer exit code
The main function is what gets evaluated when the program is compiled and run. Compilation, testing, and running can be done using the dotnet task runner. For now, don't worry about this: we will not be running code by compiling programs at first. Instead, we will be using F\# Interactive.

F\# INTERACTIVE

You will find yourself writing many small, independent functions and pieces of code in F\#. One of the best ways to test these out and to explore the language
is via F\# Interactive, which is a Read-Execute-Print Loop (REPL) environment that comes with F\#. The majority of the examples in this textbook can be typed into $\mathrm{F}^{\text {\# }}$ Interactive so that you can play around with them, so getting familiar with the environment will make the content of this module much easier to learn.

You can launch F\# Interactive from Visual Studio via the $\mathrm{Ctrl}+\mathrm{Alt}+\mathrm{F}$ shortcut. If you'd like to use the command prompt, the fsi (Windows) or fsharpi (Linux/OSX) executable is what you're looking for.

If the $\mathrm{F}^{\text {\# }}$ Interactive session gets messed up in any way, you can reset it from Visual Studio by rightclicking in the interactive window and choosing the "Reset Interactive Session" option.

You can use $\mathrm{F}^{\#}$ Interactive in two ways, and you can combine these ways as well.

INTERACTIVE EVALUATION

F\# Interactive can be used as an interactive language evaluator. Type in the full code that you want to evaluate at the prompt, then indicate that the code entry is complete by typing ; ; and pressing Enter. The code that you have typed in will be evaluated, and a result will be printed.

```
> let simba = "Lion"
simba + " king"
;;
val simba : string = "Lion"
val it : string = "Lion king"
> simba;;
val it : string = "Lion"
```

This example shows you the interactive way to use F\# Interactive. Terminal output is displayed in bold. "it", in the output "val it : ...", is what F\# Interactive calls the final expression that it evaluates.

SEND TO INTERACTIVE

Highlight a section of code in your file and press Alt + Enter to send that code to F ${ }^{\#}$ Interactive for evaluation. Any identifiers that are bound will be available for use in the interactive session.

InTRODUCTION

This textbook tries to teach you functional programming, using $\mathrm{F}^{\#}$ as the language of instruction. $\mathrm{F}^{\#}$ is a multi-paradigm functional-first language: this means that it supports functional programming natively as well as the "usual" constructs such as objects and classes and interfaces and mutable variables and so on, which you may be familiar with from imperative programming. Since we are learning functional programming, we will only be using the functional parts of $\mathrm{F}^{\#}$ in this module.

There are many different functional languages such as Swift, Ocaml, Haskell, Elm, and Erlang. Some of these have strong typing, and others don't. Some of them have algebraic data types, and others don't. But all of them follow certain principles, and their strengths and weaknesses are directly related to these principles.

Immutability

A Ovalue, once created, can never be altered.

EXPRESSIONS

All executable constructs are expressions.
An ©expression is anything that, when evaluated, generates a value. By contrast, a Ostatement does not generate a value. Values may be used in place of expressions and, when this is done, they evaluate to themselves. There are no statements in a functional language.

Note we have specified "executable constructs" because some code is non-executable. In this module you will encounter non-executable code which defines a data type, or links a value to an identifier, or organizes code into different namespaces.

FUNCTIONS

A function is a value which accepts exactly one input value and, when this is supplied, evaluates an expression to generate exactly one output value. The ©definition and Dapplication of a function are separate. Code within a function is only executed when the function is applied.

FIRST-CLASS FUNCTIONS

A Ofunction can be used in any context that a value can be used.

It can be created, it can be passed to another function, it can be given a name, it can be returned as the result of an expression, it can be part of a data structure, and so on.

REFERENTIAL
 TRANSPARENCY

An identifier, once it has been linked to a value, will always refer to that value. An identifier can therefore always be replaced by its value without changing the meaning of the program.

IMMUTABILITY $=$ REFERENTIAL TRANSPARENCY

Immutability means that a value can never be changed.

Referential transparency means that the link between an identifier and a value can never be changed.

These two concepts are often confused by beginners. Make sure that you understand the difference!

PURITY

A ©pure function must fulfill two conditions:

1. its output depends only on its input; and
2. it has no $\boldsymbol{\text { side}}$-effects

There is a continuum of purity: a language can be completely pure (such as Haskell or PureScript), or mostly pure (such as Ocaml or $\mathrm{F}^{\#}$). Completely pure languages do not allow any impure functions to be written, and mostly pure languages allow them but discourage them.

DEpENDING ONLY ON INPUT

A function, when given an input, will execute some instructions and generate an output value. Neither the execution of those instructions nor the generation of the output value can depend on anything other than the input to the function.

A function is still pure if it doesn't use the input. However, in this case, the function must necessarily generate a predetermined value, since it cannot possibly depend on anything other than its input.

A function is still pure if it uses constant values within it (such as true or 0.8). Similarly, a function remains pure if it uses identifiers ${ }^{11}$ that exist in the environment where it is defined. Since nothing can change about these identifiers or the values that they refer to, the situation is equivalent to using constant values.

As a guideline, ask yourself whether the function can ever possibly return a different result when given a particular input. If the answer is "yes", then it must depend on something other than the input, and it cannot be pure. Common examples of such dependencies are mutable global variables, random number generators, user input, countdown timers, files, and date/time lookups.

No SIDE-EFFECTS

A side-effect is an observable interaction of the function with anything outside of the function. The substitution of a generated value at a call site occurs after the application of a function has been completed, and is therefore not an interaction of the function with anything outside of the function. The only way in which the function should be able to affect anything at all is by returning a value; all other interactions that affect the external environment are considered to be sideeffects.

Common side-effects include: altering a mutable external variable, writing data to a file, printing or displaying something on the screen, and sending data across a network.

Why would you program like this?

Programming would be so much easier if we could change values, and write functions however we wanted to! So why would we want to not do all of that? There are two reasons.

Firstly, if we program functionally, then complicated code becomes incredibly easy to reason about. When you are reading a line of imperative code and you see a variable, you have to always think to yourself: "What will the value of this be now? When and where was it last changed?". If you program functionally, identifiers are referentially transparent and values are immutable, so you never need to think about this when you are doing functional programming. In fact, students who struggle with functional programming often ask "What will the value be now?" without realizing that the question doesn't make any sense. An identifier will always refer to the value it was initially bound to!

Secondly, think of a complicated imperative program. Perhaps some code in it looks like this:

```
SpecialObject a = N();
```

Whatever $b=\operatorname{Mirror}(a, N())$;
SpecialObject $c=C o m b i n e(b, a)$;

[^0]Wouldn't it be great if we could take this code and reduce it to a single line?

Combine(Mirror(N(), N()), N());
However, we can't do that. What if $N()$ changes each time? What if Mirror changes something in a, or affects the next call to N ? Replacing variables with initially-assigned values, or executing a function more than once - even with the same arguments might change the meaning of the program!

In functional programming, none of these problems occurs. We can always replace identifiers with their values, just as we would in an algebraic equation, so we can make our programs smaller and more efficient very easily. In fact, we can go a step further: we could calculate $N($) once, and we can use it three times - and we are guaranteed that none of these optimizations will ever change the meaning of the program!

ExERCISES

1. A friend shows you their code and says that a particular value is immutable. What does this mean?
2. What is the difference between an expression and a statement?
3. What is a function?
4. What are the defining characteristics of a pure function?
5. For each of the the following $C^{\#}$ methods, determine whether the method is pure. Give a reason for your answer.
```
(a) int Register(string t) {
    return t.Length - 5;
}
```

(b) int Tristan(string t) \{
Console.WriteLine("X: \{0\}", t);
return t.Length - 5;
\}
(c) int Ark(int[] q) \{
if (q==null || q.Length==0) \{
return -1;
\} else \{
q[0]++;
return 1;
\}
\}
(d) int YesNo(int g, int v) \{
while (g > 3) \{
v += 4;
g--;
\}
return g;
\}
(e) bool Decide(DateTime d) \{ if (d.Year > 944) return true; return false;
\}
6. If variables in a language are referentially transparent, what does that mean?
7. What is a first-class function?
8. What is the difference between referential transparency and immutability?
9. Write down the word or phrase that means "something that a function does in addition to generating an output value".

BASICS

Each value in the $\mathrm{F}^{\#}$ language has a type associated with it. The basic types are int, float, bool, string, char, and unit $\left.\right|^{1}$ Unlike C\#, $\mathrm{F}^{\#}$ does not implicitly convert between types, even when it is "safe" to do so. This means that an expression such as $3+4.0$ is illegal.

The unit type may be unfamiliar to you. Unit has only one possible value: (). Unit values are equal to other unit values.

What's the point of a "unit" type?

Remember that a function must accept a single input, and when it is given that input, it must generate a single output. If it doesn't do that, it isn't a function ... and if it does do that, then it is a function, even if it might not look like a function! There's no such thing as a "void method" in functional programming: all functions return a value.

However, when a function is called only for its sideeffect, we want to return a value that cannot possibly have an effect on the program's working. If we return an int or a bool or any other type, an evil programmer may decide to use that value to affect the output of their function, and we would thus be making it easy to introduce even more side-effects into our program! We want to avoid that, so we return (): a unit value which gives no indication of success or failure, and which cannot be used to change control flow.

A second reason to use unit is as a function input. Sometimes we want to define a function, but delay its application. The function does not need any additional input to generate its result, but we must nevertheless give it an input to apply it. The only sensible input value to give is (), since this is the only type of input which the function can depend on without causing the control flow of the function to be affected in any way.

A true value is considered to be greater than a false value.
Types are \boldsymbol{O} inferred from their context. This means that $\mathrm{F}^{\#}$ will attempt to prove - not guess! - what the type of an identifier must be. For now, you can understand this to mean that you don't need to write down the types of identifiers; $\mathrm{F}^{\#}$ will do that for you. Types and typing are covered in more detail on page 45

A single-line comment is started with the // characters. Multi-line comments are started with ($*$, ended with *), and may be nested.

Identifiers follow $C^{\#}$-style restrictions ${ }^{2}$, but in addition they must usually also start with a lowercase

[^1]letter. Identifiers in F\# can include single-quotes ('). An identifier can also be any text enclosed in doublebackticks (e.g. "this is an identifier!").

Operators

Arithmetic operators are the usual familiar ones:,+- , *, l, and \%.

Logical operators are $\& \&$ and $\mid 1$. Instead of a "not" operator, there is a built-in function called not which inverts any boolean value that it is given.

Some comparison operators are familiar: <, >, <=, and $>=$. The "is equal to" operator is $=$; note the single equal sign! The "is not equal to" operator is <>.

The + operator can also be used to concatenate strings; however, the sprintf function (introduced on page 55) is a far superior way of doing this.
$\mathrm{F}^{\#}$ also includes some operators that are useful for joining functions together, and for manipulating lists. These will be introduced in later chapters.

Brackets in $\mathrm{F}^{\#}$, just as in algebra, are only used to separate logical groups or clarify the order in which operations are performed. They have no special meaning other than this.

PATTERNS

A opattern expresses a possible shape for a value. OPattern-matching is the process of looking into a value, seeing if it matches a specified pattern, and then binding parts of the value to any specified identifiers. Binding is the only way in which values can be linked to names, and it is therefore impossible for a name to exist without a value. The process of looking into a value is called ©structural decomposition. If any part of the value does not match the pattern, then pattern-matching fails - and, consequently, no binding occurs.

Pay careful attention to syntax in this text: wherever you see code formatted like this, that is a place where pattern-matching and binding can be used. There are four important differences between "assignment" and pattern-matching \& binding:

1. Assignment cannot fail. Pattern-matching can.

2. Assignment must assign a value to at least one variable. Pattern-matching does not necessarily result in any identifiers being bound.
3. Assignment always makes a copy: for a "value type", a value is copied, and for a "reference type" /"pointer type", a reference/pointer is copied. Binding never causes any copies to
be made: a bound identifier is just a name for a value.
4. Re-assignment to an existing variable changes the value that is linked to that variable name. Rebinding a name does not affect any existing binding. Instead, the existing name is $\boldsymbol{\nabla}$ shadowed by the new name. If the new name is ever removed from consideration - for example, if it passes out of scope - then the older name is no longer shadowed, and it becomes accessible again.

Different patterns will be introduced throughout this textbook, and patterns can be nested arbitrarily. Pattern-matching is a much more powerful and general mechanism than assignment, and is used very extensively throughout $\mathrm{F}^{\#}$; you must develop a good understanding of it. One way of using patterns to bind values in our expressions is by using a Olet binding.

SYNTAX: let BINDING

let $\underset{\sim}{x}=\downarrow$ expr $_{0}$ in \downarrow expr ${ }_{1}$

This syntax evaluates expr r_{0} and pattern-matches the resulting value against the pattern \underline{x}. Any identifiers that are bound to values during the pattern-match can be used in expr 1_{1}. Identifiers must be defined before they are used in expressions. Bound identifiers only begin to exist after the in part of the let binding ${ }^{3}$ let bindings can be nested to any depth.
let alex = "Lion" in alex + " king"
The value of this expression is "Lion king". The bound value is limited in scope to the expression that it is used in.

The Value of Functions

Always remember that identifiers are bound to values, not expressions. However, you have also been told that functions, which evaluate an expression to generate a value, are values. How does this all make sense?

Keep this in mind: when we define a function, we are creating a value. This created value can be bound to an identifier. The code within the function is not executed during this process.

It is only later on, when we apply that function, that the code within the function will be executed.

This "trick" lets us use functions as values and apply them to generate values. The difference between definition and application is very important, so be sure that you understand it!

[^2]We typically use a shorter syntax to mean almost the same thing as shown in the previous syntax box:

SYNTAX: SIMPLER let BINDING

```
let x = \downarrowexpro
```

expr $_{1}$

Now that we have a way to see some code that can be used for pattern-matching, it's time to turn our attention to patterns themselves. For now, there are four basic patterns that you should know about.

Syntax: Identifier pattern

x

An ©identifier pattern ${ }^{4}$ matches any value and binds it to the supplied identifier. It always succeeds. The identifier must be a valid $\mathrm{F}^{\#}$ identifier.

```
let test = "Hi there!"
let ''this is fun..."' = 732
```

We typically use an identifier pattern to extract a particular part of a value - such as a single element of a list - from a larger value, so that we can use that part in a future calculation.

```
let w = 5 in
    let x = 7 in
        let y = w - x in
            let w = x in w + y
```

What happens when this is evaluated?

1. The value 5 matches the pattern and is bound to the identifier w.
2. 7 matches the pattern and is bound to x.
3. The expression $w-x$ is evaluated, resulting in the value -2 .
4. -2 matches the pattern and is bound to y.
5. The expression x is evaluated, resulting in the value 7 .
6. 7 matches the pattern and is bound to w. The binding in step (1) continues to exist and is unchanged!
7. The expression $w+y$ is evaluated, resulting in the value 5 .
[^3]
A Detail of shadowing

In $\mathrm{F}^{\#}$, an identifier at the top level (i.e. the outermost scope) of a file or module cannot be shadowed at that level of scoping. You will probably never run into this exception to the rule in a real-world functional program.

Note that, in some functional languages, there is no obligation to execute an expression if the language can prove that the result of an expression will not affect the semantics of the program.

```
let w = 5
let x = 7
let y = w - x
let w = x
w + y
This example is semantically equivalent to the previous example, but written using a shorter syntax.
```


F\# Interactive

The above example doesn't work if you type it into F\# Interactive in one go. However, it does work if you type it into $F^{\#}$ Interactive and end each line with ;;. This occurs because $\mathrm{F}^{\#}$ Interactive evaluates "blocks" of code in a single top-level environment, where duplicate values are not allowed. The code itself is valid and correct.

Syntax: Wildcard Pattern

The Owildcard pattern is a single underscore. It matches any value; it does not bind any identifier; and it always succeeds.

```
let _ = 43.2
```

This pattern-match will succeed. No identifiers will be bound.

We typically use a wildcard pattern to match and ignore parts of a value that we don't want to use later on. For example, we can use an identifier pattern together with a wildcard pattern to bind the first element of a list to a name, and ignore the rest of the list.

Syntax: constant pattern

Any literal value

A constant pattern is a literal value such as a numeric, string, boolean, or character literal. 5, "Kind sir", false, 45.109, and 'p' are all constant patterns. A constant pattern will only succeed if the value
exactly matches the specified literal. The type of the value must be the same as that specified by the constant pattern.
let ' k ' = ' k '
let $10=1+2+3+4$
let "batman" = "joker"
The first two of these pattern-matches will succeed. The last pattern-match will compile, but will fail at runtime if it ever needs to be executed. Execution would result in a MatchFailureException, which is what $\mathrm{F}^{\#}$ uses to indicate that a pattern-match has failed.

Since the type of the value must be the same as the type specified by the constant pattern, code such as let $7=$ ' p ' is invalid.

We typically use a constant pattern when we want to answer very specific questions and make decisions ${ }^{5}$ For example,

- We can answer "is the list empty?" by checking whether the list matches a constant pattern for an empty list
- We can answer "is the return value -1?" by trying to pattern-match against the -1 pattern
- We can answer "did the operation succeed?" by matching against the constants true and false

PATTERNS \neq EXPRESSIONS

A pattern is not an expression, and an expression is not a pattern. They can look the same, but they mean very different things. For example:
let $x=$ "ndi"
let $y=x+$ "funda"
On the first line of this code, x is used as a pattern. This means that it will be pattern-matched and, if the pattern-match succeeds, it will be bound to a value. On the second line of this code, x is used as an expression. This means that it will be evaluated and will generate a value. If you do not understand the difference, you will end up writing incorrect and nonsensical code like let x + "funda" = "ndifunda", and you won't understand why it doesn't compile!

Read the Syntax sections very carefully and note where a pattern is allowed and where an expression is allowed. This will allow you to interpret and write F\# code correctly.

SYNTAX: OR PATTERN

pat ${ }_{8}$ | pat I_... $^{\text {I }}$ pat $_{n}$
${ }^{5}$ You'll have to wait a while to see how we use patternmatching to make decisions, and a discussion of lists will occur even later.

An or-pattern matches if any of the patterns, separated by I, match. Or-patterns are sometimes enclosed by brackets to separate them from surrounding syntax.
let $3 \mid 4=3$
let 5 | 6 | $7=1+2+3$
let $m=$ "luthor"
let "joker" | "riddler" = m
The first two of these pattern-matches will succeed. The third pattern-match is an identifier pattern and will succeed. The last pattern-match will compile, but will fail at runtime if it ever needs to be executed.

We typically use an or-pattern when different values should be treated in the same way.

ExERCISES

1. List three differences between pattern-matching / binding and assignment.
2. In C\#, I would write $a==b$ to test for equality between a and b . What would I write in $\mathrm{F}^{\#}$?
3. Rewrite the following code so that it does not use the in keyword. For example,
let test $=11$ in test-2
could be rewritten as
let test $=11$
test-2
Preserve all the bindings in your answers, even if they are not used.
(a) let $a=" h i "$ in "zoot"
(b) let $b=$ "zoo" in "zooty" + b
(c) let $\mathrm{c}=7.5 \mathrm{in}$
let $d=34$ in

$$
c+0.2
$$

(d) let $e=8$ in

$$
\text { let } f=e \text { in }
$$

let $\mathrm{e}=20 \mathrm{in}$ let $g=3$ in $\mathrm{e}+\mathrm{f}+\mathrm{g}$
4. What is the difference between pattern-matching and binding?
5. Which of the following are valid $\mathrm{F}^{\#}$ identifiers? Give a reason for each answer.
(a) _
(b) a
(c) a'ight
(d) "amp and such"
(e) "'amp and such"
(f) @called
(g) let
(h) " _"
6. Explain the difference between shadowing and updating (or mutating) a symbol.
7. A student writes this code:

```
let r = System.Random ()
let v1 = r.Next ()
let v2 = v1
```

The student is surprised to see that $v 1$ is always the same as v2. Shouldn't they be different values from the random number generator? Explain why the values are the same.
8. Examine the following patterns and write down C, W, I, or O if the pattern is a constant, wildcard, identifier/variable, or or-pattern respectively.
(a) 213
(b) q
(c) $\mathrm{q} \mid \mathrm{q}$
(d) ' q '
(e) ""
(f) _
(g) false
(h) _ 15
(i) practically
(j) not_really
(k) "Not | really"
(l) _true
(m) 312
(n) 43.50
9. Which of the patterns below are valid patterns? If a pattern is valid, write a \checkmark and identify the kind of pattern that it is. If a pattern is invalid, write a x and explain what is wrong with it.
(a) 'c'|'k'
(b) 1.012 .0
(c) 1.012 .013
(d) m / p
(e) kappa-delta
(f) O'neill
(g) let
(h) 'cause
(i) $\quad \mathrm{Iv}$
(j) '"'f'|blah|_"
(k) _-

Functions

A function is a value which accepts exactly one input value and, when this is supplied, evaluates an expression to generate exactly one output value. The ©definition and Sapplication of a function are separate. Code within a function is only executed when the function is applied ${ }^{1}$

Syntax: function definition

fun x-> \downarrow expr

It is extremely important to understand that a function is just a value, and function definition is how we create a function value.

The x is a pattern. The expr is the function body; it necessarily generates a value when an input is provided, which is the result (or "return value") of the function. There is no "return statement" in $\mathrm{F}^{\#}$; the last value to be generated by the function is the returned value.

A definition should always be read as fun $x \rightarrow$ (expr): imagine that there are implicit brackets that group the expr part together and separate it from the x . This is always the case, even if the actual expression is many lines long, or a single continuous long line of logic.

When a function is not bound to a name, we call it a Olambda function.

```
let qwan = fun k -> k * 4
```

In this example we have bound a function to a name.

We say that we ©invoke, ©call, ©evaluate, or ©apply a function; these terms are largely synonymous and all of them mean "provide an input to the function, thereby obtaining an output". A function's body is not executed until the function is applied.

A function's body is evaluated in the context of the code that the function is defined in (i.e. in its Olexical scope), not the scope that it is applied in. This fact is very important for understanding some of the techniques, such as closures, which are discussed later on.

SYntax: FUNCTION APPLICATION

function input

We apply a function by giving it its input, separated by a space. Function application causes the input to be bound to the input-pattern of the function before

[^4]the body of the function is executed and a value is consequently generated.
(fun $\mathrm{p}->\mathrm{p}+3$) 7
Here we define a function and then immediately apply it; note that the brackets exist only to show where the function begins and ends. During evaluation of this function, p is bound to 7. Due to referential transparency, p can immediately be replaced at all places by 7 . This simplifies the expression to $7+3$, which is evaluated and generates the value 10 .

The technique of substituting a function input with a value, resulting in a simpler expression, is called β-reduction (pronounced "beta-reduction"). In fact, function application in a functional language is just repeated β-reduction!

Function application is always greedy ${ }^{2}$ A function will always grab the first input that it's given, use it, and replace itself with the resulting β-reduced value. The . operator, which you will read about on page 38 is one of the very few parts of the language that is "greedier" (i.e. has higher precedence) than function application.

```
let rex = fun ny -> ny + 3
rex 7
```

This is exactly equivalent to the previous example; if you use referential transparency to replace rex with its value, you will obtain the code of the previous example. Having bound the function to a name, we apply it and the value 10 is generated. It is unambiguously clear where the function begins and ends, and brackets are therefore not needed here.

Keep It Simple!

Can you write a $\mathrm{F}^{\#}$ function which takes an input and subtracts 10 from it?

YES - you can! Following the instructions and examples that you've read so far, you will not only be able to create the function, you will also be able to apply it. Think about what that function will look like, and then read the next line.
fun v -> v - 10
Did your function look like that? Did you actually try to write it? If so, congratulations: many students don't. After years of programming in an imperative language, most students hesitate to try writing their own functions. This is because all of the languages that they've used up to this point are complicated:

[^5]they require you to keep state in your head, they have different "kinds" of methods/functions, the values are split into value-types and reference-types and addresses, some things are aliased, and so on. In a language like C\#, similar code would be longer and more complicated:
int SomeName(int k) \{
return k - 10;
\}
Programmers coming from an imperative background usually think "there must be more to write!", because things are complicated when you program imperatively. But functional programming is not like that. There is only one kind of function; there are no "aliases" or different kinds of values; there's no necessity to put in semicolons or braces or a return statement or explicit type-names or names for functions; and identifiers are referentially transparent. When programming in a functional language, keep it simple, and you'll be surprised at how often it just works!
returning additional functions.
(fun z -> fun e -> e*z+1) 95
Here we have a " 2 -input" function which is actually two 1 -input functions. We seem to be providing our "2-input" function with two inputs, though what we are really doing is providing one input, in turn, to each of the functions. Remember that this should be read as: (fun $z \rightarrow(f u n e->(e * z+1))) 95$, and that function application is greedy - so the 9 will be grabbed immediately. A single β-reduction results in (fun e $->(e * 9+1)$) 5 . The next β-reduction results in $5 * 9+1$, which evaluates to 46 .

Currying is such a common technique that there is a convenient syntax for it.

Syntax: CONVENIENT CURRYING

fun $\underline{i_{0}} \underline{i}_{1} \cdots \underline{i_{n}} \rightarrow$ expr

Binding a name to a function is such a common thing that there is a convenient syntax for it.

Syntax: function definition \& binding

let ident pat $=$ expr

let increase $n=n+16$

let $\mathrm{t}=$ increase $8 / 4$
The increase function is applied before the division, so the identifier t is bound to the value 6 . To evaluate the $8 / 4$ before applying the function, one would have to write increase $(8 / 4)$.

CURRIED FUNCTIONS

A function cannot accept more than one input. However, functions are first-class, and function values can therefore be returned from a function. We can use these facts to simulate n-input functions, using a technique called ©currying ${ }^{3}$

SYntax: CURRYING

fun $\underline{i_{0}} \rightarrow$ fun $\underline{i_{1}} \rightarrow \cdots \rightarrow$ fun $\underline{i_{n}} \rightarrow$ expr

A curried function simulates an n-input function by

[^6](fun z e -> e*z+1) 95
This is exactly equivalent to the previous example; it's just written in a shorter way.

In fact, binding a name to a curried function is so common that there is a convenient syntax for that, too!

SYntax: binding \& CURRYING

let ident $_{i_{1}}^{\cdots} \underline{i_{n}}=\operatorname{expr}$

let em i nem = i/nem

The above line of code is exactly equivalent to these lines:

- let em = fun i nem -> i/nem
- let em $=$ fun i $->$ fun nem $->$ i/nem

In all of these, the identifier em is bound to a curried "2-input" function.

Syntactic sugar

The "binding \& currying" and "convenient currying" syntaxes are syntactic sugar: a way of writing exactly the same thing using a more convenient (and usually shorter) syntax. You may have already encountered other examples of syntactic sugar in your Computer Science journey; for example, many languages allow you to say count $+=7$, which is syntactic sugar for count $=$ count +7 . They both mean exactly the same thing, but one way of writing it is shorter. If you don't want to use the syntactic sugar, or if you want to spend more time writing out the
full form so that you understand currying a bit better, don't use the sugared syntax! Stick to the basic forms. They mean exactly the same thing.

If you are struggling to see what some sugared code does, de-sugar it by getting some paper out and translating it into a more expanded form. It will only take 5-10 seconds, and it will often help you to understand exactly what's going on. Staring at the screen or page for 40 seconds and trying to do the same thing mentally will just waste your time! As you get more familiar with the syntax, you'll need to do this less and less often, and with enough practice you'll be able to switch between the syntaxes effortlessly.

FUNCTION TYPES

All functions are values, and all values have types. Therefore, all functions have a type. As you know, a function is anything that takes an input and, when this input is provided, evaluates code to generate an output. The type of a function can therefore be specified entirely in terms of the type of the input and the type of the output. We use the following syntax to write a function type:

SYNTAX: FUNCTION TYPE

$t_{\text {in }} \rightarrow t_{\text {out }}$
$t_{i n}$ is the type of the input, and $t_{\text {out }}$ is the type of the output. Remember that a function can only take one input and generate one output. If it appears to take more than one input, then it is actually a curried function: a function which returns a function value. This means that the type of a curried function such as $t_{0} \rightarrow t_{1} \rightarrow t_{2}$ should be understood as $t_{0} \rightarrow\left(t_{1} \rightarrow t_{2}\right)$. For simplicity and convenience, we often write a curried function type without the brackets.

Operators

It often happens that we wish to apply one function, then use another function on the result, then use another function on that result, and so on. If we have initial data d and functions f, g, and h to be applied in order, we might achieve this as follows:

```
\(h(g(f d))\)
```

Not only is this annoying to type, but it makes the order of operations more difficult to see. The first function to be applied is f, but this is the most deeplynested function - and, therefore, the last to be read
during a left-to-right scan of the code. Good use of built-in operators, most of which are available in most functional languages, can make code much more readable and understandable.

Pipe operator

The ©pipe operator $\mid>$, sometimes called pipe-to, accepts a value on the left and a function on the right, and applies the function to the value. Instead of $h(g(f d))$, this allows us to write $d|>f|>g \mid>h$ - and, written like this, we can clearly see the execution of each function in-order from left to right. The pipe operator allows us to build a "pipeline" of functions, each one building on the previous one, that takes in data on the left and spits out a result on the right. When reading the code, we vocalise this as " d pipe-to f pipe-to g ...".

COMPOSE OPERATOR

The composition operator \gg, sometimes called ©compose, "glues together" two functions to form a new function ${ }_{4}^{4}$. Instead of $h(g(f d))$, this allows us to write

```
let \(z=f \gg g \gg h\)
```

z d
For any two functions a and b which you want to compose as $a \gg b$, the output type of a must be usable as the input type of b. The composed function's input type will be a's input type, and its output type will be b's output type.

"COMPOSITION SOUNDS WEIRD!"

While you might not use composition as much in your earlier functional programming attempts, it becomes critically important for understanding and using the vast majority of advanced functional programming techniques - including "monadic" techniques that you may discover online. Composition allows a programmer to split functionality into small and simple sections, while having the ability to join these sections together to form a much more powerful and complex entity \sqrt{a} It can also help you to reuse functions and develop exceptionally elegant and concise code, so search for opportunities to use composition.

[^7]
OTHER OPERATORS

Other interesting operators are:

[^8]- Backwards-pipe <1:
let $(<\mid) f x=f x$

This is mostly used to avoid using brackets. For example, g (f d) could be written as $g<l f d$ instead.

- Backwards-compose <<:

```
let (<<) g f = fun \(x\)-> g (f x )
```


OPERATOR MADNESS

Consider the expression a / b, and think about what the operator, /, does. It takes two inputs - one on each side - and when it is evaluated, it uses them to generate a result. Taking inputs and using them to generate a result is not so different from what a function does... and, in fact, operators in functional languages are often simply functions in disguise! For convenience, the language allows you to use the operator after its first argument; this is called infix notation. If you wanted to use it in the prefix notation, i.e. before its arguments, you could do that by enclosing it in round brackets. For example, 23 * 45 can be equivalently written as (*) 2345 !

You might want to use prefix notation for an operator if you want to only specify one of the operands. If you use infix notation, you have to specify both.

ExERCISES

1. Briefly define β-reduction.
2. β-reduce the following expressions:
(a) (fun a -> a + " killer") "hunter2"
(b) (fun k \rightarrow fun $r ~->~ r>k) ~ 16$
(c) (fun $\mathrm{k} \rightarrow>$
let $\mathrm{p}=\mathrm{k}-5$
let $r=$ fun $t \rightarrow p / t$
r
) 2510
(d) let $n k p=(k * 3)+p$ let $\mathrm{t}=\mathrm{n} 2 \mathrm{~s}$
let $r v=$ fun () -> v + (t 3-t 1)
r 10
(e) let $\mathrm{f} x=\mathrm{x} 3.0$
let $\mathrm{g} \mathrm{k}=\mathrm{k}+\mathrm{f}$ (fun q -> q-1.5)
let $\mathrm{t}=\mathrm{f}$ (fun $\mathrm{p}->\mathrm{p}+\mathrm{g} \mathrm{p}$)
(f) let $k=15$
let $z=$ fun $p->p-10$
let $b=$ fun $r->z(r+2)$
let $t=b k$
(g) let $\mathrm{k} p \mathrm{z}=\mathrm{zp}$
let $t=k 10$ (fun $r>r+9$)
(h) let f cat b=b ("see " + cat)
let $\mathrm{th}=\mathrm{f} \mathrm{h}$ (fun $\mathrm{k} \rightarrow$ " $\mathrm{I} "+\mathrm{k}$)
(i) let f cat $\mathrm{b}=\mathrm{b}$ ("see" + cat) let $t h=f$ "dog" h
3. Write down the type of the following functions:
(a) fun p -> "quiz" + p
(b) fun $\mathrm{p} \rightarrow \mathrm{p}+600$
(c) fun $p \rightarrow$ fun $r \rightarrow r-p$
(d) fun $\mathrm{p} \mathrm{r} \rightarrow \mathrm{p}-\mathrm{r}$
(e) fun 8 -> 25.13
(f) fun status -> fun () -> status/2
(g) fun i s $\rightarrow \mathrm{s}()-10$ * i
4. let zoq fot pik $=$ fot/pik can be rewritten in two alternative and semantically-equivalent forms, without altering the body of the function at all:

- let zoq = fun fot pik -> fot/pik
- let zoq = fun fot $->$ fun pik $->$ fot/pik

Rewrite let $k=$ fun $m \rightarrow$ fun $t \rightarrow t * 3$ in two different forms.
5. Define the following terms:
(a) Prefix notation
(b) Currying
(c) Lambda function

TUTORIAL

In this tutorial, we will use functions to create a simple unit converter. Most of the world uses metric (or "SI") units of measurement such as kilograms, meters, and degrees Celsius. However, there are still a few places that use "US customary" units such as pounds, feet, and degrees Fahrenheit. Our converter should be able to convert between customary units and SI units.

You might be unfamiliar with US customary units, so let's go over what you'll need to know:

- 1 inch is 25.4 millimeters. There are 12 inches in a foot. There are 3 feet in a yard. There are 1760 yards in a mile.
- 1 pound is 453.59237 grams. 1 ounce is $\frac{1}{16}$ of a pound. There are 2000 pounds in a short ton.

Amusingly, one of the reasons that people in the United States refuse to use the SI system is because they find the customary units to be "easier"!

1. Create a new $\mathrm{F}^{\#}$ console application called UnitConverter, with a solution file to go with it. Open the solution file in Visual Studio 2017.
2. In the code file (which ends with .fs), above the main method, type:
let inchToMillimeter v = v * 25.4
Select this line and run it through $\mathrm{F}^{\text {\# }}$ Interactive (using Alt Enter), to make sure that $\mathrm{F}^{\text {\# }}$ Interactive integration is working. You should see text saying val inchToMillimeter : v:float $->$ float.
In the $\mathrm{F}^{\text {\# }}$ Interactive window, you should be able to write the expression inchToMillimeter 7.5 remember to end the expression with a ; ; - and get the result of 190.5. Make sure that you can do this.
3. Below the inchTomillimeter line, let's write a function to convert from feet to inches. There are 12 inches in a foot, so
```
let footToInch x = x * 12.0
```

Select all the lines you have typed and send them down to F\# Interactive. Test out footToInch.
4. Let's put in some other length conversions.
let yardToFoot $v=v * 3.0$
let mileToYard mile $=$ mile * 1760.0
Send them down to F\# Interactive. We can now convert from feet to millimeters by evaluating this expression in $\mathrm{F}^{\#}$ Interactive:

```
footToInch 6.0 |> inchToMillimeter
```

Note what the |> does: it takes the output of the expression on the left (i.e. footToInch 6), and uses it as the input of the function on the right
inchToMillimeter. That gives us a figure of 1828.8 - so we now know that someone who is "six feet tall" is about 1.8 meters tall.
5. We might want the output to be meters rather than millimeters, though. How do we convert millimeters to meters? We divide by 1000, of course - or, equivalently, we can multiply by 0.001 . Let's make a function to multiply an input by 0.001 .
let divBy1000 = (*) 0.001
Remember that the multiplication operator (*) uses currying to accept two inputs, and (when used with float values) has the type float -> float -> float. Here, we have given it a single input. It accepts that input and gives us the output, which is a float \rightarrow float.
Send this one down to $\mathrm{F}^{\#}$ Interactive and see what it looks like. You should see it as a float $->$ float function.
6. Let's use that divBy 1000 function to convert millimeters to meters, and meters to kilometers. Write the following functions after divBy1000:

```
let millimeterToMeter n = divBy1000 n
let meterToKilometer = millimeterToMeter
let millimeterToKilometer =
    divBy1000 >> divBy1000
```

The first function here is quite easy to understand. The second and third might be a bit more confusing, so let's talk about them.
To convert a meter to a kilometer, you just divide by 1000. That's exactly what happens in millimeterToMeter - and since a name is exactly equivalent to the value bound to it, we can simply bind meterToKilometer directly to a function which performs the needed task.
In the third function, remember that the \gg operator will compose two functions: it "glues" the functions together to make a more complicated function which takes an input acceptable to the first function, and returns an output specified by the second function. Our millimeterToKilometer will therefore take in a float input, as desired by the first function divBy1000, and return a float output, as generated by the second function divBy1000.
Send these down to $\mathrm{F}^{\#}$ Interactive and play around with them. Do they work as expected?
7. We can convert miles to kilometers as well! Just write

```
1024.0 |> mileToYard |> yardToFoot
|> footToInch |> inchToMillimeter
|> millimeterToKilometer
```

This requires a lot of typing, though. So let's some convenient functions to do some useful conversions for us. Make sure you put these functions below the other functions you've written.

```
let inchToMeter =
    inchToMillimeter >> millimeterToMeter
let footToMeter = footToInch >> inchToMeter
let yardToMeter = yardToFoot >> footToMeter
let yardToKilometer =
    yardToMeter >> meterToKilometer
let mileToKilometer =
    mileToYard >> yardToKilometer
```

Send it all down to $\mathrm{F}^{\#}$ Interactive and you'll be able to evaluate mileToKilometer 1024.0 there and discover that it's 1647.968256 kilometers.

It's important to notice something at this point: for the last few steps, we haven't actually done anything other than compose together existing functions. We last did any "real" conversion work in step 4. Once we were able to do the conversions between basic customary units, everything that we've done has just been gluing together functions to make larger functions - and it all works! In fact, if you want to change the system to use UK imperial units instead of US customary units, all you'd need to do is change those basic functions, and functions like "mileToKilometer" would require no changes whatsoever. Now that's a great way to reuse code!

EXTENSIONS

1. How many ways can you find to write each of the functions, such that the function type remains the same?
2. You have enough information to do mass conversions using pound, ounce, and short ton. Add in functions to do these conversions.
3. What about converting the other way, from metric to customary units? Can you write functions to do those?

MATCH EXPRESSIONS

A Omatch expression is used to select between alternative ${ }^{11}$

```
SyntaX: MATCH EXPRESSION
match expr with\downarrow
| pat }\mp@subsup{|}{0}{}->\downarrow\mathrm{ lexpro }
| pat }\mp@subsup{|}{1}{} >> \downarrowexpr\mp@subsup{r}{1}{}
:
| pat }\mp@subsup{|}{n}{}>>\mp@subsup{\}{\mathrm{ expr }}{n
```

The value generated by expr is pattern-matched against each of the patterns pat ${ }_{0}$ through pat ${ }_{1}$, starting from the topmost pattern and continuing on towards the last pattern. If no pattern matches the value, then a MatchFailureException is thrown.

Let us assume that the first pattern to match is pat ${ }_{m}$. The expression expr_{m} is then evaluated, and the result of this expression is the result of the match expression. Any identifiers which were bound in pat ${ }_{m}$ may be used within the scope of expr_{m}.

Each branch of the match expression must result in the same type of value. For example, if expre evaluates to an integer, then expr ${ }_{1 . . n}$ must also evaluate to integers.

```
match 5+8 with
| 4 -> "hi"
| v -> "yes"
| 13 -> "zip"
| _ -> "roy"
```

The expression is evaluated, resulting in the value
13. Then the constant pattern 4 is checked against
this value. The match fails. The identifier pattern
v is checked. It succeeds and binds v to the value
13. The corresponding expression is evaluated and
the result of the match expression is "yes". The re-
maining patterns in the match expression are skipped.
Note that every branch of the match expression will
evaluate to a string.

I WANT MY IF-THEN STATEMENT BACK!

How can you use a match expression to test a condition, and then execute some code, just like an ifthen statement would do? It's easier than you might think!
let maxValue $a b=$
match a > b with
| true -> a

[^9]```
| false -> b
```

This code finds the maximum of two values. The trick that it uses is simple: evaluate the boolean expression and match the result using the constant patterns true and false. You can use similar tricks throughout your code to do if-then tests, but be warned: some things in $\mathrm{F}^{\#}$ cannot easily be phrased as if-then tests, so you must learn how to use patternmatching in general!

## MATCH EXPRESSIONS $\neq$ SWITCH STATEMENTS!

A match expression checks whether the value of an evaluated expression matches a pattern. A switch statement checks whether a value is equal to another value. These are not the same thing (and, in fact, the F\# language has no "switch statement"). Firsttime functional programmers tend to write code like this:

```
let a = 25
let b = 34
let c =
 match a with
 | b -> "Same!"
 | _ -> "Different!"
```

The programmer is trying to compare the values of $a$ and $b$, but that's not what this code does. The bold line above attempts to match the value 25 to the identifier pattern $b$. This pattern-match succeeds, $b$ is bound to 25 (which shadows the earlier binding of b), the expression "Same!" is evaluated, and the resulting value is the value of the match expression.

## MAPPING FUNCTIONS

Later on, you may want to write short functions that simply map their exact input to a particular output. Such a function might look like this:

```
fun v ->
 match v with
 | 0 -> 0
 | n -> 65/n
```

The functions for doing this always have the following form:

```
fun pat ->
 match pat with
 I_ p_ >> expr0
```

| $\mathrm{p}_{n}$-> expr $_{n}$

F\# provides syntactic sugar for creating such functions.

## SyNTAX: MAPPING FUNCTIONS

function $\downarrow \underline{\underline{p_{0}}} \rightarrow \operatorname{expr}_{0} \downarrow \underline{1} \ldots \downarrow \underline{p_{n}} \rightarrow \operatorname{expr}_{n}$

```
function 0 -> 0 | n -> 65/n
```

You can also, of course, link such a function to a name very easily. Such code is, by convention, formatted in a slightly different way.

```
let divvy = function
 | 0 -> 0
 | n -> 65/n
```


## When should I use a sugared mapping funcTION?

Later on, when you learn about discriminated unions (page 38), you'll find these small mapping functions to be very useful. For now, however, they might not look useful at all! In fact, here are two things that are difficult or impossible to do with these kinds of mapping functions:

- You can't evaluate an expression and patternmatch against the resulting value.
- If you are pattern-matching using an or-pattern of constant patterns, it can be difficult to figure out exactly which value was the function input.


## ExERCISES

1. A friend runs the following code and is convinced that F \# is executing code incorrectly.
let $x=5$
let $\mathrm{y}=8$
let z =
match x with
| $y \rightarrow y+1$
| $x$-> 12
(a) The value of $z$ is 6 . Explain why.
(b) In the match expression, $x$ could be replaced by _. Explain why a good programmer would do this.
(c) Rewrite the match expression to return $y+1$ if $x$ is equal to $y$, and to return 12 otherwise.
2. Consider the following code:
```
let "hazmat" =
 match 901 with
 | 201 -> "wut"
 | kray -> "lol"
 | 901 -> "hazmat"
```

(a) Circle every pattern-match that fails.
(b) Underline every pattern-match that is not executed.
(c) Write down the result of the match expression.
3. Consider the following code:

```
let t = 0.8
let r =
 match t/2.0 with
 | 0.0 -> 6.5
 | t -> t
let v = t + r
```

(a) What is the value of $v$ ?
(b) What is the value of $r$ ?
(c) Will this code compile if you wrote $t / 2$ instead of $t / 2.0$ ? Why or why not?
(d) Will this code compile if you wrote 0 as your constant pattern instead of 0.0 ? Why or why not?
4. Consider the following code:

```
let roll = 4
match roll with
| 2 | 4 | 6 -> "evens"
| 1 | 3 | 5 -> "odds"
```

(a) Write down the result of the match expression.
(b) Which numbers could you bind roll to if you wanted to obtain the other result?
(c) What happens if someone binds roll to 24?
5. Consider the following function.
(fun b ->
match b\%2 with
| 0 -> "Steven"
| 1 -> "Codd"
) 61
(a) $\beta$-reduce the function.
(b) Can you rewrite the function using mapping function syntax? If so, do it. If not, explain why not.

## TUTORIAL

In this tutorial, we will create a program that takes in a number and prints out that number in words. For example, if given the number 7716, it should print out "seven thousand seven hundred and sixteen". The input number must be in the range [-9999, 9999]. We will deal with each "place" in the number - thousands, hundreds, tens, and units - separately.

Some "trivial" code has been left out in this tutorial, and you are expected to fill it in. Each step ends with code that is complete and executable. As you go through this tutorial, you are encouraged to send code down to $\mathrm{F}^{\text {\# }}$ Interactive to play with it. You will also be introduced to a small number of other functions in this tutorial; when an unfamiliar function occurs, we will briefly describe it. All of the functions used here are given fuller descriptions on page 55

1. Just as you have done previously, start a console application. Once again, your code will be written above the main function.
2. We will begin with a small function to parse numbers in the range $[1,9]$.
```
let parseUnits = function
 | 0 -> ""
 | 1 -> "one"
 | 2 -> "two"
 \(\vdots\)
 | 9 -> "nine"
 | _ ->
 failwith "I expected a single digit."
```

Notice that we are using the shorthand syntax for a function that accepts an input and immediately pattern-matches it using a match expression. The failwith function just throws an exception, typically crashing the program as it does so.
3. Now let's write a function to parse numbers in the range [1,99]. In English, this annoying because all the numbers in the range [10..19] have special names. However, we can use the alreadydefined parseUnits function to help us. We cannot use any identifier that still needs to be defined, so we will need to place our parseTens function below the parseUnits function.

```
let parseTens n =
 let tens = (n % 100) / 10
 let units = n % 10
 match tens with
 | 0 -> parseUnits units
 | 1 ->
 match units with
 | 0 -> "ten"
 | -> "nineteen"
```

```
 | _ ->
 failwith "Units can't be >9"
| n ->
 sprintf "%s %s" (tensName n)
 (parseUnits units)
```

Notice that we've used some let-bindings at the top of this function so that we can break up the number into "tens" and "units" places. We didn't have to use let-bindings, but we did because it makes the code easier to read. We can't use same shorthand form that we used for parseUnits, because we need an explicit identifier to use for the let-bindings at the top of the function.
The sprintf function is introduced here, too. It uses a format string, very similar to C format strings that you might have encountered, and generates a string using the format string and the input(s) that it is given.

If you're confused about why the very last line works, re-read it carefully! We are re-binding the $n$ identifier, so within the scope of that branch of the match expression, $n$ is not the same as the $n$ that is bound in the topmost line.

You will need to create a tensName function, with the signature int $\rightarrow$ string, to get this to work. Such a function is very similar to what you've already done in step 2 , so you should have no problem with it.

Hint: If you have written the tensName function and are getting told that it is "not defined", check if you have put it at the correct place in the code. The tensName identifier must be defined before you can use it.
4. Now let's make a function that can handle numbers in the range $[1,999]$. Once again, we'll use previously-defined functions to help us out.

```
let parseHundreds n =
 match (n % 1000) / 100 with
 | 0 -> parseTens (n % 100)
 | h ->
 let prefix =
 sprintf "%s hundred"
 (parseUnits h)
 match n % 100 with
 | 0 -> prefix
 | rest ->
 let units = parseTens rest
 sprintf "%s and %s" prefix units
```

5. We'll now make a function to parse numbers in the range [1,9999]. We can do this in a similar way to the parseHundreds function, with a few changes. The following cases need to be correctly handled:

- $299 \mapsto$ two hundred and ninety nine
- $2999 \mapsto$ two thousand nine hundred and ninety nine
- $2099 \mapsto$ two thousand and ninety nine
- $2009 \mapsto$ two thousand and nine
- $2000 \mapsto$ two thousand
let parseThousands $\mathrm{n}=$
match (n \% 10000) / 1000 with
| 0 -> parseHundreds (n \% 1000)
| t ->
let prefix =
sprintf "\%s thousand"
(parseUnits t)
match n \% 1000 with
| 0 -> prefix
| rest ->
let rest $=$ parseHundreds rest match (n \% 1000) / 100 with
| 0 ->
sprintf "\%s and \%s" prefix rest | _ -> sprintf "\%s \%s" rest

6. We'll tie everything together into a single function that can parse numbers in the range [-9999, 9999].
```
let parse = function
 | 0 -> "zero"
 | n ->
 match n < -9999 || n > 9999 with
 | true -> failwith "Out of range!"
 | _ ->
 match n > 0 with
 | true -> parseThousands n
 | _ ->
 sprintf "minus %s"
 (parseThousands n)
```

By now, you will have noticed how more complicated functions build on simpler functions. Functions are the workhorses of functional programming, so this is the kind of design that you will find again and again!
7. Now we'll make this into a "real" program that you can run from the console, rather than running through $\mathrm{F}^{\#}$ Interactive. Leave the [<EntryPoint>] annotation intact, and replace the main method with this:

```
```

let main _ =

```
```

let main _ =
printf "Gimme a number: "
printf "Gimme a number: "
let v = System.Console.ReadLine ()
let v = System.Console.ReadLine ()
printfn "%s" (parse (int v))
printfn "%s" (parse (int v))
0

```
```

    0
    ```
```

You can now build your program and run it from the command line! You will probably have to actually go to the command line console and run this. If you don't, the answer will flash up for a few milliseconds and then the program will end $\ldots$ and the console window will probably close before you are able to see it.

## Extensions

1. Can you extend this to work for numbers in a larger range - up to 99999 or 999999 , for example? Try it out!
2. In step (3), you created a tensName function. If you created it outside of parseTens, move it inside parseTens. If you created it inside parseTens, move it outside. How difficult is it to make this kind of code change?
before you are able to see it.

## CAN You Be helped?

Introducing functional programming to the dysfunctional mind can result in a number of peculiar mental conditions. These conditions can have serious consequences, including module failure and examination dysfunction. If you suspect that you may be afflicted by any of these conditions, please get yourself checked out by your nearest functional-programming lecturer, and follow the condition-specific advice given below. If you suspect that one of your classmates is developing one or more of these conditions, encourage them to obtain help and, whatever else you do, do not take any action that might aggravate the condition.

## SCEPTICALEPSY

This mental condition is characterised by only halfbelieving what the lecturer, language documentation, or online resources say. It is often found during discussions of fundamental concepts such as immutability, first-class functions, or referential transparency. Students afflicted by scepticalepsy often find themselves asking a question, receiving an answer, and then asking exactly the same question again.

Values can't really be immutable. Nobody could program like that! There must be a way to change them, somehow, I'm sure... maybe I can trick the language somehow. There's got to be a way!

To achieve understanding, the sufferer must learn to have some faith in their lecturer, or at least in the language documentation. If we say that this is how things are, then this is how things are. Simply accept it.

## AnALOGICULOSIS

This is characterised by a deep-rooted conviction that a particular concept or feature of a functional language is actually a similar feature in the nonfunctional language of your choice - despite all evidence to the contrary. Sufferers can often be found staring directly at problematic code and insisting that it works in the way that it clearly does not.

So these match expression things ... they're actually switch statements in disguise, right? Right? Right!

Analogiculosis can only be cured by obtaining an understanding of how the constructs in the language actually work. Some therapists report that extensive practical work may be helpful in this regard.

## FUNCTIONALOPHOBIA

This mental illness is characterized by the belief that functional programming can only be done by the insans ${ }^{1}$. The sufferer's mind begins to race and whirl whenever they encounter functional code and, seeking to avoid becoming insane, they seek to avoid functional programming itself. A student afflicted by functionalophobia is calm and stable while others are struggling with difficult concepts, and often pretends that functional programming does not exist or, if they accept that it does exist, that it is not something that they would ever have to learn. Extensive and determined procrastination is a symptom shared by all functionalophobia sufferers.

66 What are you doing? Oh ... that stuff. Yeah, I'll get to it later. I'll do it on my own. Hey, do you want to go out tonight?

Functionalophobia is often fatal; the cure is simple, but must be enacted before too much time has passed. Sufferers must study very simple code examples, understand them fully, and then write, run, and modify the code themselves. Simple tutorials or examples are highly recommended. An afflicted student must incrementally move on to more and more complex examples as time passes, but be warned: attempting to move too quickly to a too-complex example may result in a relapse.

## SYNTACTIC DYSLEXIA

This is usually characterised by an inability to distinguish between patterns and expressions. In severe cases, the sufferer is unable to see larger syntactic differences: function application starts to look like "two variables next to each other", the unit value starts to look like "a function call without a function", and so on. Interpretation and understanding of code quickly becomes impossible. Syntactic dyslexia can lead to analogiculosis or even, in extreme cases, functionalophobia.

66 So we bind $x$ here ... no, wait, we evaluate $x$... or do we apply $x$ ? Or pass it as an input? Is this shadowing or something? I don't know! Well, I'll just guess and move on. I'm sure it's not that important.

99
Syntactic dyslexia can be remedied by studying the Syntax sections of these notes carefully. Lines of code

[^10]that are found in the wild should be written out and compared to the relevant Syntax section, and each part of the line should be characterized as pattern or expression. In extreme cases, the kind of expression for example, "function application" or "addition" should also be written down. As familiarity with the syntax increases, the syntactic dyslexia should naturally fade away.

## HYPOPRACTICAL PSYCHOSIS

This is characterized by the strong belief that functional programming is purely theoretical, and that no "real" systems are ever written in a functional language. To achieve such a strong belief, a sufferer must ignore significant software such as WhatsApp and Facebook Messenger (both written in Erlang), Facebook spam detection (written in Haskell), Pinterest's web API (written in Elixir), the XBox Achievements system (written in $\mathrm{F}^{\#}$ ), and so on; in addition, they often need to fixate on a particular imperative programming style as being the "one true way" of programming. The disconnect from reality is maintained by constantly shifting the goalposts: whenever an example of real-world functional programming is provided, the sufferer will shift their definition of what a "real" system is to compensate, until only a small subset of software (such as "AAA games") is considered to be a "real" system.

66 But what can you actually do with functional programming? There's no way that I'll ever use it! We shouldn't be learning such useless stuff!

There is no definitive cure for hypopractical psychosis, though some therapists have found that repeated exposure to practical functional programming in a workplace environment can be very helpful. Other therapists suggest introducing functional programming within the "safety net" of non-functional programming (see, for example, C\#'s LINQ or the popular lodash JavaScript library).

## SPACE DYSMORPHOPSIA

A person suffering from space dysmorphopsia is unable to correctly perceive whitespace in a programming language where whitespace is significant, such as Python or F\#. This leads to an inability to understand why their code isn't working. A secondary issue is that sufferers find it difficult to modify their code, simply because they laid it out improperly in the first place. In extreme cases, a sufferer's code will look as though it has been indented randomly, making it very difficult to read - and making it much more likely to have whitespace-related bugs.

Dysmorphopsic	Correct
let make $a=$ let $b=7$	let make $a=$
$a+b$	let $b=7$   $a+b$

If the name of the make function ever needs to change, the dysmorphopsic sufferer will have to reindent the entire function ... manually.

Every time I make a small change, I have to re-indent everything! And then my code just stops working properly, and I haven't changed anything! How can anyone program like this?

Current therapeutic guidelines recommend that space dysmorphopsic individuals should examine well-indented code and try to emulate it wherever they can. A minority of therapists believe that space dysmorphopsia is merely a symptom of a failure to learn what the Tab key is for, and if this is the case, then the sufferer should immediately stop manually indenting using Space, and start using their code editor's automatic Tab and Shiff+ Tab identation.

## ITERATION

F\# supports various looping constructs, including while and for, but we won't be using them. The functional way to loop is by using Orecursion.

Recursion is the calling of a function from within itself, usually with a different input. This cannot be achieved with the syntax that you already know because a let binding is only accessible after its definition, not within its definition. However, we can use the special keyword rec to allow the use of a bound name within its definition. This allows us to create recursive functions.

```
let sumBetween m n =
 let rec sumTo v =
 match n=v with
 | true -> v
 | _ -> v + sumTo (v+1)
 match m>n with
 | true -> 0
 | _ -> sumTo m
 This function adds up the numbers in the range
[m,n]. It works because the rec keyword allows the
identifier sumTo to be referred to within the function
definition. Trace through it and understand how it
works.
```

A recursive function will always have one or more base cases, which describe the conditions under which the recursion stops, and one or more Orecursive cases, which describe the conditions under which the recursion continues. It is extremely common to see the following structure in many looping functions:

```
let rec funcname input =
 match expr with
 | basecase_pattern ->
 basecase_expression
 | recursive_pattern ->
 recursive_expression
```

Verify for yourself that our earlier example does follow this pattern.

## More efficient Recursion

When a function call is made, a new stack frame typically needs to be allocated, and this takes up a bit of space and time. Since recursion involves calling a function for each iteration, it is typically slower than looping in a non-functional language.

Note that it is only necessary to set up a stack frame because some work may remain to be done after a recursive call is made. For example, examine line 5 in the example at the top of the page. After the call to
sumTo ( $v+1$ ) is completed, the resulting value must still be added to v . It is only after this is done that all the work in the function is complete. If a new stack frame was not set up, we would lose the ability to continue with the additional work after the recursive call completes.

To make recursion just as efficient as iteration, most functional languages (including $\mathrm{F}^{\#}$ ) support a technique called tail recursion. Using this technique, the compiler tries to see if any work remains to be done after a particular recursive call is made. If no work remains to be done, then the same stack frame can safely be used to do the recursive call, and recursion becomes just as efficient as iteration!

To use the tail recursion technique, your recursive function calls must be in tail position.
"Normal" recursive call Some work remains to be done after the recursive call completes.

Tail position recursive call No work remains to be done after the recursive call completes.

Converting some of your recursive calls into tail recursive ones can improve the efficiency of your program. If you convert all of your function's recursive calls into tail recursive calls, then we say that your function is tail recursive.

## TAIL RECURSION, PRACTICALLY

To convert a non-tail recursive call into a tail recursive one, you must pass all the relevant data that you still need to use to the recursive function. This is often done by means of one or more Saccumulator parameters. However, if no data needs to be passed onward, then no additional parameters are necessary.

```
let sumBetween m n =
 let rec sumTo v acc =
 match n=v with
 | true -> v + acc
 | _ -> sumTo (v+1) (v+acc)
 match m>n with
 | true -> 0
 | _ -> sumTo m 0
 This function adds up the numbers in the range
[m,n], using tail recursion. The accumulator param-
eter is called acc. Notice that after the recursive call
is made, there is no work whatsoever that remains
to be done. Trace through the code and understand
how it works.
```

Tail recursive functions often look a bit more complicated due to the inclusion of accumulator parameters.

## EXERCISES

1. Explain the problem that is solved by an accuтиlator in a tail recursive function.
2. What would happen if a recursive function does not have a base case, or never executes its base case?
3. What characterises a recursive call in tail position?
4. Convert the following iterative $\mathrm{C}^{\#}$ methods into recursive $\mathrm{F}^{\#}$ functions:
```
(a) int NumOdd(int start, int end) {
 int total = 0;
 for (int i = start; i < end; i++)
 if (i%2 == 1) {
 total++;
 }
 }
 return total;
 }
(b) int NextMul(int start, int n) {
 while (start % n != 0) {
 start++;
 }
 return start;
 }
(c) bool IsPrime(int n) {
 int test = n-1;
 while (test > 1)
 if (n % test == 0) {
 return false;
 }
 test = test-1;
 }
 return true;
 }
```


## TUTORIAL

In this tutorial, we will practice creating recursive functions.

## SQUARE ROOT

The square root of a number $n$ is the value which, multiplied by itself, will result in $n$. Square roots are defined for positive numbers only. The NewtonRaphson method finds a square root by guessing a number and then improving the guess iteratively until it is "good enough". Given a guess $x_{i}$ for a number $n$, we can say that the next approximation $x_{i+1}$ can be found using the equation

$$
x_{i+1}=\frac{x_{i}+\frac{n}{x_{i}}}{2}
$$

Let's make our own implementation of a square root function.

1. We will start by checking the input for validity.
```
let sqrt \(\mathrm{n}=\)
 match n <= 0.0 with
 | true -> failwith "Impossibru!"
 | _ ->
 calculate (\(n / 2.0\)) 0
```

Of course, we still need to write the calculate function. For now, notice that we pass along a 0 parameter, which will keep track of the number of times that we're iterating through.
2. Let's write calculate. We will place it between the let sqrt $n=$ and match $n<=0.0$ with lines, indented appropriately. Ten approximations should get us quite close to the "real" answer.

```
let rec calculate guess i =
 match i with
 | 10 -> guess
 | _ ->
 let g = (guess + n/guess) / 2.0
 calculate g (i+1)
```

Once you're done, try it out in F\# Interactive! You should have some very good approximations: sqrt 2.0 should give you 1.414213562 , for example.

## Extensions

1. Is calculate tail recursive? How can you demonstrate that it is or is not?
2. Why did we place calculate within sart? What benefit do we get?
3. Instead of stopping arbitrarily after 10 iterations, you could choose to stop when two successive guesses are "close enough". Can you modify the code to do this?

## Chocolate wrappers

A shop sells chocolates for $r$ rands each, and will exchange $e$ chocolate wrappers for a new chocolate. Assuming that you start off with $c$ rands, how many chocolates will you be able to obtain from the shop?

Work out the answers yourself for the following values of $c, r$, and $e$, using a pencil and paper.

- $c=15, r=1, e=3$ (you should get 22)
- $c=16, r=2, e=2$ (you should get 15 )
- $c=12, r=4, e=4$ (you should get 3 )
- $c=6, r=2, e=2$ (you should get 5 )

1. We need to keep track of the two things that we can use to buy chocolates: cash and wrappers. If we can't buy chocolates with either, then we're done! If we can, then we should buy them, unwrap them, and see if we can make another trip to the store. Create this function:
```
let rec buy c e cash wraps =
 match cash/r with
 | 0 ->
 match wraps/e with
 | 0 -> 0
 | n ->
 n + buy c e cash (wraps % e + n)
 | n -> n + buy c e (cash % r) n
```

The cash tracks how much cash we have on hand, and the wraps tracks how many wrappers we have on hand. Initially, we start off with $r$ cash and 0 wraps. Use the code to work through the problems above, and verify that you obtain the correct solutions.
2. It's very awkward to call this function: we have to expect our callers to always pass a 0 -valued wraps input, for example. We can do much better. Change your code as follows:

```
let chocs c r e =
 \odot \longleftarrow < ~ b u y ~ f u n c t i o n ~ g o e s ~ h e r e ! ~
 buy c e r 0
```

Now we can call chocs 1513 for the first sample problem - much nicer!
3. We're not done yet. Now that we have the c and e in scope for buy, we don't need to keep passing
them through. Simplify the buy function by removing the c and e inputs entirely. The last line of the chocs function should then read: buy $c 0$.
4. This all seems quite nice, but it could be more efficient. Let's make buy into a tail recursive function. Change it to read as follows:

```
let rec buy cash wraps t =
 match cash/r with
 | 0 ->
 match wraps/e with
 | 0 -> t
 | n ->
 buy cash (wraps % e + n) (n + t)
 | n ->
 n + buy (cash % r) n (n + t)
```


## BASIC DATA STRUCTURES

A data structure or ©composite type helps you to model a problem in a way that makes it easier to encode or solve using a programming language. There are many different kinds of data structure, but we will only be discussing three of the more common kinds of structure here.

1. A Otuple or Orecord allows you to squash together a bunch of data into a single structure. Example use case: representing a person with a name and a birthdate and a weight and a height, and so on. It makes sense to keep all of these things together in one data structure.
2. A ©discriminated union allows you to represent discrete alternatives. Example use case: representing the states that water can be in by using the different cases "Solid", "Liquid", and "Gas" 1 These states are discrete alternatives because water cannot be in more than one state at a time.
3. A ©list allows you to represent zero or more values, all of which must have the same type. Example use case: storing the titles of favourite books.

F\# supports more data structures than this natively, but these will be enough to allow us to start representing a wide variety of problems. This chapter will cover tuples, records, and discriminated unions; we will leave a discussion of lists until later.

Throughout the descriptions of data structures, take notice of two things:

1. Each kind of data structure is created in a different way.
2. Pattern syntax for a data structure is often very similar to creation syntax. If you learn the one, then the other is typically very easy to remember. Pattern-matching is used throughout for ©structural decomposition: the extraction and binding of specific data from within a data structure.

## Tuples and Records



[^11]
## Syntax: tuple pattern

$$
\underline{\mathrm{p}_{0}}, \underline{\mathrm{p}_{1}}, \cdots, \underline{\mathrm{p}_{\mathrm{n}}}
$$

A tuple is created by using the comma operator. Each tuple has a certain number of items in it; this is called its ©arity. A tuple must have at least 2 elements.

Each pattern in the tuple pattern matches an element of the tuple. The arity of the pattern must match the arity of the tuple; otherwise, the code will not compile.

The type of a tuple is the type of each of its components, separated by a * symbol.

```
"F#", 4.0, 2015, (), 'K'
```

This is a tuple with arity 5 . Its type is string * float * int * unit * char. The following patterns will all match the above tuple:

- "F\#",_,_,_,
- _, $4.0, \mathrm{k}, \mathrm{t}$, _
- $t_{,}, y_{,},{ }^{\prime} K^{\prime}$
-     - 
- _,_,_,(), c

A record is a predefined group of named values. Each value can have a different type. The definition of a record must occur outside of a function or binding.

## SyNTAX: RECORD DEFINITION

```
type Name = \downarrow{
 field}\mp@subsup{|}{0}{: type
```

Instead of semicolons, fields in a definition can also be separated by newlines and indents. It is conventional to start type names with a capital letter and field names with a lowercase letter. The type of a record is the name of the record.

```
type Person = {
 Name : string
 Birth : int * int * int
 Weight : float
}
```


## Syntax: RECORD CREATION

\{ Name.field ${ }_{0}=$ expr $_{0} ; \cdots ;$ field $\left._{n}=\operatorname{expr}_{n}\right\}$

## Syntax: Record pattern

$\left\{\right.$ Name.field $_{i}=$ pat $_{i} ; \cdots$; field ${ }_{m}=$ pat $\left._{m}\right\}$

All fields must be specified during record creation. When matching, however, only the fields that you are interested in need to be named. The record pattern matches each named field individually, and all the named fields must match for the overall pattern match to be successful. Order of fields during creation or matching is unimportant.

Once again, a ; character can be used to separate fields instead of a newline. If there are different records that have the same field name(s), then $\mathrm{F}^{\#}$ is sometimes unable to figure out which type you are creating or matching against. To help it find the correct type, you can choose to prefix the first field binding with the record name.

The value of a field within a record can be extracted by using dot-notation.

## SYNTAX: DOt-NOTATION

value.fieldname

Records are immutable, so it is impossible to change them after they have been created. However, it is possible to create a new record with most of the values taken from an existing record and some of the values being different. We call this syntax a copy and update expression (and sometimes shorten it to "update expression").

## Syntax: Record update

$\left\{v\right.$ with $\left.f_{Q}=e_{0} ; \cdots ; f_{n_{2}}=e_{n}\right\}$

This syntax makes it easy to create a record based on an existing record: you only need to supply the fields and values that differ. The fields which are not specified have their values copied from the existing record. Note that the type of the "updated" record will be the same as the type of the original record.

```
let k =
 { Birth = 1981,8,1
 Name = "Y M M"
 Weight = 67.2 }
let v = { k with Birth = 1980,8,9 }
The name v is bound to a new Person record with
most values taken from the existing record k.
```


## Beware the -

F\# allows custom operators to be defined, and interprets $=-$ as if it were a custom operator. This means that syntax such as $\{B l a h=-4\}$ will be misinterpreted! Make sure that you write it as $\{B l a h=-4\}$ instead.

The following patterns will all match the record bound to k in the previous example.

- \{ Birth = y,m,d ; Name = s \}
- $\{$ Birth $=1981, \mathrm{v}, 1$ \}
- $\{$ Weight $=v$; Birth $=\ldots, 8, \ldots\}$
- \{ Birth = k ; Name = "Y M M" \}


## TUPLES OR RECORDS?

Tuples and records do the same thing: they group a bunch of values together. Here is some advice about which one to use in particular situations.

- Are you grouping together more than 3 or 4 values? If so, consider using a record instead of a tuple. The names in a record will make it easier to remember what the meaning of each value is.
- Is the grouping meaningful or useful in the long term in your program? If so, use a record. A "meaningful", "long-term" group might collect together all the attributes of a student, for example. These attributes belong together naturally as part of a greater whole, and the grouping will be used throughout your program, so it's worth taking the time to define a record. On the other hand, if you're just slapping a name and a student number together for a quick comparison, you might as well use a tuple.

If you're still not sure, use a tuple: it's much more convenient to use. However, if you find yourself grouping together the same values three or more times, reconsider! Should you be taking the time to give those values an identity of their own? What meaning do they have together?

## DISCRIMINATED UNIONS

Each alternative in a discriminated union is called a $\boldsymbol{\theta}$ case. Each case can have a value associated with it.

## Syntax: discriminated union definition

type Name =
I Caseo of typeo

1 Case $_{n}$ of $t y p e_{n}$

The type of a discriminated union value is the name of the discriminated union. Each case identifier must start with an uppercase letter. Case identifiers are sometimes called Dlabels, ©tags, or constructors. A case may optionally be linked to data using the of type syntax. The specified type may be the Name of the discriminated union; this makes recursive data structures, such as trees, very easy to implement. The definition of a record must occur outside of a function or binding.


A tag without linked data will construct the discriminated union simply by writing the tag name. A tag with linked data is a function which, when supplied with its input, will construct the discriminated union. If a case is defined as having linked data, then a pattern to match that data is mandatory; if a case is defined without linked data, then no such pattern is necessary. A discriminated union pattern will only match when both the tag and data (if there is linked data!) match.

```
let t = Linux ("NixOS", 17.09)
let v = OSX
let r = Windows Ten
```

Each of the three lines above will create a discriminated union of type OS, and bind it to an identifier. The following patterns will all match one or more of the values bound above.

- Linux _
- OSX
- Linux (name, version)
- _
- blobby
- Linux ("NixOS", ver)
- Windows
- Windows Ten


## COMPARISON

You can only compare the same data type with the same data type, so you can't compare records with tuples, or tuples with discriminated unions.

Tuples If all the types in a tuple are comparable, then the tuple is comparable to another tuple of the same type. Tuples are compared item-byitem, starting from the first item. As soon as one item is greater or less than the corresponding item in the other tuple, a result is generated.

The following statements are true.

- $8,7,6>6,7,8$
- $8,7,6>8,6,7$
- $9,2=9,2$
- $6,7,8$ cannot be compared to 8,5 . The types (int * int * int vs int * int) are different.
- 9,6 cannot be compared to 7,true. The types (int * int vs int * bool) are different.
- (fun _ -> 5), 4 cannot be compared to (fun _ $->2$ ), 2. The types are the same (i.e. ('a $\rightarrow$ int) * int); however, function types are not comparable.

Records If all the types in a record are comparable, then the record is comparable to another record of the same type. Records are compared item-byitem, starting from the first field in the record definition and ending with the last field in the record definition. As soon as one field's value is greater or less than the corresponding field's value in the other record, a result is generated.

Discriminated unions A tag that occurs earlier in the data definition is considered to be less than a tag which occurs later. A discriminated union is considered to be comparable if all the data linked to all tags of the discriminated union is comparable - or if no data is linked to any tag. If two values are equivalent in terms of their tags, and there is linked data, then the linked data is compared.

## "AS" PATTERNS

Sometimes we want to structurally decompose a value and keep a reference to the whole. To do this, we can use an as-pattern.

Syntax: as PATtERN
pattern as identifier

The binds the entire value that is matched to an identifier, allowing you to structurally decompose and extract identifiers while keeping a reference to the whole. It is particularly useful when dealing with records and discriminated unions. If pattern succeeds, then the binding to identifier also succeeds.

```
let addWeight v ({ Weight=w } as r) =
```

    \{ \(r\) with Weight=w+v \}
    This function uses a record pattern to extract only the Weight field from a record, while at the same time binding the entire record to the identifier $r$ using an as-pattern. We have both the entire record and the field that we're interested in, so we can easily use a copy-and-update expression to give back a record with an altered Weight value.

## ExERCISES

1. Consider the following code.
let $a=2,3$
let $b=9.0$, true, $((5,83), a)$
(a) Write down a pattern to extract the value 3 from $a$ and bind it to the identifier $t$
(b) Write down a pattern to extract the values true and 3 and bind them to the identifiers a and $b$ respectively
(c) Is the pattern that you wrote for (b) the shortest pattern that you could use to answer the question? If not, write down a shorter pattern that does the same thing.
(d) Circle patterns which will match a:

- _, 3
- 3, -
- _
(e) Circle patterns which will match b:
- _, -
- _
- _, true, (a, b, c)
- _, true, _, _
- 9.0, _, _
- 9.0, true, _, _, -
- b, _, (a, _)
- _, c, ((_, a))

2. Evaluate (fun (a,b) $->b-2, a+8)(5,5)$
3. Consider the following function.
```
let so (la, ti) doh =
 match ti + "km", la with
 | _, true -> doh + 5
 | _ -> 0
```

(a) What is the type of this function?
(b) If the first line was written as let so la (ti, doh) $=$, what would the type of the function be?
4. What is structural decomposition?
5. (a) Define a record type that represents an XYZ coordinate in 3D space.
(b) Write down a pattern which extracts only the Y-coordinate from a record value of the type you defined, and binds it to guyver.
6. A circle with a radius, a rectangle with a width and length, and a blob are different shapes represented by the following discriminated union:

```
type Shape =
| Circle of int
| Rectangle of int * int
| Blob
```

(a) Create a Circle with radius 100.
(b) Create a Rectangle with length 5 and width 8. You may assume that the length is specified first.
(c) Create a Blob.
(d) Assume that your Rectangle from (b) has been created. Now look at the following patterns; if a pattern will match your Rectangle, write down $\mathbf{Y}$; if it won't match, write down $\mathbf{N}$; and if it is an invalid pattern, write down WTF. If a match is successful, also write down any identifiers and the values that they are bound to.

```
 i. Rectangle
ii. Rectangle
iii. Rectangle (_,_)
iv. Rectangle _, _
v. Rectangle (height, size)
vi. Shape
vii. Shape Rectangle
viii. Shape.Rectangle
ix. Shape.Rectangle _
x. Shape Rectangle _
xi. Shape _
xii. Rectangle (5, 8)
xiii. Circle _
```

7. You are making a booking system for a theatre. Each seat in the theatre may be sold, unsold, or occupied by a Very Important Person (VIP). Sold seats are linked to the name of the person they're sold to, and VIP seats are given a numeric rating that indicates how important the VIP is. Define a data type to represent a seat.
8. Consider the following types.
```
type Glass =
| Full of int // percentage
| Empty
type Customer = {
 Name : string
 Height : float // in meters
 Drink : string * Glass
}
```

(a) Create a Glass that is half-full (or, if you prefer, half-empty).
(b) Circle all the patterns which will match the Glass that you created.
i. Glass
ii. Glass _
iii. Empty
iv. Full
v. Full -
vi. Full 50.0
vii.
viii. Full empty
(c) Create a Customer named Severus Snape. Snape is 189 cm tall, and drinks Pumpkin Juice ... but his glass is empty.
(d) Circle all the patterns which will match the Customer that you created.
i. Customer _
ii. Customer
iii. $\{$ Name="Severus Snape" $\}$
iv. Name=_
v. \{\}
vi. $\{$ Name=n; Height=h; Drink=d\}
vii. $\{$ Name=n; Height=h; Drink=(_, Glass) \}
viii. $\{$ Height=h; Name=me\}
ix. \{Drink='a\}
x. \{Drink=_\}
xi. $\{$ Drink=(s, Empty) \}
9. Why could the Result type be considered superior to the Option type?
10. The technology of the future allows a user to order a drink (tea, coffee, or fruit juice). The tea may be Earl Grey, Rooibos, or Ceylon. Coffee has a strength (weak, OK, or strong) and you can add any number of spoons of sugar to it. Tea and coffee may be iced or hot; juice is always cold. Write down data types that describe a drink order and, as far as possible, make it impossible to describe invalid combinations. Your data types should allow me to order Tea (EarlGrey, Hot).
11. A hotel sells accommodation. Every room has a room number and a status: it can be unavailable, booked, available, or occupied. If a room is unavailable, there must be a reason (such as undergoing maintenance or needs to be fumigated or ... well, anything else). A booked room is associated with the name of the person who booked it. An occupied room is occupied by a customer, and from the hotel's perspective, the only important things about a customer are their name and their credit card number.
(a) Write data structures which describe this scenario.
(b) Create a room 11 that's been booked by Frank Talk.
(c) Create room 16 that's occupied by Banksy, who has credit card number 5555-4325-18360019.
(d) Create an available room 909.
(e) Write a function which, given a list of rooms, will book all the available or booked rooms on the list in the name of Lord Voldemort.

## TUTORIAL

In this tutorial you will use the composite types that you've just learned about.

## Commission of Sales

Instead of paying a salary, some businesses give a monthly commission to their workers. Each worker will buy some of the product from the business. Then workers will sell the product to customers at a higher price, and pay the money to the business. The business then pays the worker a percentage of the profit.

In this problem, the business sells cosmetics. You can buy branded lipstick (Levron or Maybepoint brands) in either red, green, blue, or black colors. You can also buy nailpolish, in all of the aforementioned colors. Lastly, you can buy mascara. The cost prices for these are as follows:

Mascara	R13.99
Blue Levron lipstick	R79.49
Red lipstick	R10.99
Any other lipstick	R12.99
Green nailpolish	R10.34
Red or blue nailpolish	R17.49
Any other nailpolish	R19.99

Selling prices add a mark-up of $35 \%$.
We will create a very small system that lets the business (or a worker) figure out how much commission someone has earned, based on what they've bought and sold.

1. Let's start by defining a few data types that help us to represent the problem. First, we'll define the products.
```
type Color = Red | Green | Blue | Black
type Brand = Levron | Maybepoint
type Product =
| Lipstick of Color * Brand
| NailPolish of Color
| Mascara
```

Here we have defined all of the different products that are offered. We've done this quite differently from how you might have done it in other languages, so let's see why we've laid it out like this.

- We realize that a product's color can't be red and blue, and it can't be black and green, at the same time. More generally, we realize that the colors are distinct: an item can't have more than one color. Once we realize that, it's easy to see that the colors form a discrete set of alternatives, and whenever we have that, we should be using a discriminated union to represent it.
- We realize the same thing about brands. An item is made by one manufacturer, not two. So we represent that as discriminated union as well.
- Our lipsticks have a color and a brand, so we link a tuple of that data to the Lipstick case.
- Our nailpolish has only a color, so we just link a color to it.
- Mascara is always black, so there is nothing to link to it.

Note that the tags of a discriminated union must start with a capital letter!
2. Now we should represent a worker who buys and sells products. For working out the commission, the only things that are important are the amounts bought and sold, and the name of the worker.

```
type Salesperson = {
 Name : string
 Bought : double
 Sold : double
}
```

We've made this information into a record. This allows us to pick out only the fields that we want to pick out when we are pattern-matching, and it also makes it easy to see what each value means in the record.
3. We will need to see the cost price of cosmetics, so let's make a function that takes in a product and gives us the cost price of that cosmetic.

```
let costPrice = function
 | Lipstick (Red, _) -> 10.99
 | Lipstick (Blue, Levron) -> 79.49
 | Lipstick _ -> 12.99
 | Mascara -> 13.49
 | NailPolish Green -> 10.34
 | NailPolish (Red | Blue) -> 17.49
 | NailPolish _ -> 19.99
```

Here we use the short syntax of a mapping function to reduce the amount of code we have to write. We use discriminated union patterns to match the data that is sent in to this function. If a pattern matches, then we send back the corresponding price. Note that the order of the cases can be very important; for example, if the Lipstick _ pattern is placed at the top, then none of the other Lipstick patterns can possibly match.
The second-last pattern is particularly interesting because it shows how you can use an or-pattern to reduce the size of your patterns. Instead of writing the pattern

## NailPolish Red | NailPolish Green

we were able to write NailPolish (Red | Green). Seek opportunities to get better at patternmatching, because it is very important in controlling your execution path!
Try removing the third, fourth, or seventh cases in the match expression. What warning does $\mathrm{F}^{\#}$ throw up? If you remove different cases, there is no warning; can you see why?
4. The mark-up on a product is $35 \%$. We can write a very simple function that takes in a product and gives back a selling price.

```
let sellingPrice product =
 costPrice product * 1.35
```

That was easy! We use the already-defined costPrice function and just multiply. If we really feel like it, we can even reduce the amount of code that we need to use to define exactly the same function. Consider this rewritten code:

```
let sellingPrice = costPrice >> (*) 1.35
```

Can you see why this function is exactly the same as the original sellingPrice function? In fact, some would argue that the shorter function is also clearer!
5. How about a function to create a worker?
let worker name =
$\{$ Name=name; Sold=0.0; Bought=0.0\}
This is a trivial function to create a worker with the specified name, who has not bought or sold anything. Don't be afraid to create "trivial" functions: in functional programming, we often create complex functions by manipulating simple functions.
6. We want to express the idea of a worker buying $n$ units of a product from the business. Once again, this is a trivial function:

```
let bought n product ({Bought=v} as sp) =
 let amt = float n * costPrice product
 {sp with Bought=v + amt}
```

There are two things to notice about this function. The first is that we use a pattern-match to extract the important value from the Salesperson input while also keeping a reference to the input as a whole. The ability to use pattern-matching in this context is something that you should take advantage of whenever you can.
The second thing is that we're using a copy-andupdate expression. This does not change the sp value; in fact, it cannot change it, because values in $\mathrm{F}^{\#}$ are immutable. It creates a completely new value which has exactly the same fields and values as sp , with the exception of the explicitly specified Bought field.
7. Now that we can express the buying operation, how about the selling operation?

```
let sold n product ({Sold=v} as sp) =
 let amt = float n * sellingPrice product
 {sp with Sold=v + amt}
```

Unsurprisingly, this looks very similar to the previous function!
8. All of the pieces are now in place for writing a commission function which calculates a person's commission. We'll want this function to give back both the name of the salesperson and their commission.

```
let commission sp =
 let profit = sp.Sold - sp.Bought
 let fraction = 0.35
 match profit > 0.0 with
 | true ->
 let amt =
 round (profit * fraction * 100.0)
 sp.Name, amt / 100.0
 | false -> sp.Name, 0.0
```

There is no commission if there's a negative profit, of course. We want a two-digit roundedoff amount, so we use an old trick: we multiply by 100 , round the result to get rid of any fractional parts, and then divide by 100 to push the last two digits to the other side of the decimal point.
We give back a tuple of name and commission; it's not worth our time to make a separate record to represent this information.
9. Go ahead and use what we've made! Write the following, for example, and then pass it down to F\# Interactive.

```
worker "Alice"
|> bought 5 (Lipstick (Red, Levron))
|> sold 3 (Lipstick (Red, Levron))
|> bought 18 Mascara
|> bought 3 (NailPolish Green)
|> sold 3 (NailPolish Green)
|> sold 15 Mascara
|> commission
```


## TYPE THEORY

Though not an intrinsic part of functional programming, $\mathrm{F}^{\#}$ and many other modern languages - functional and non-functional - use Otype systems to make programming more reliable. Typed functional programming has become so pervasive that a discussion of modern functional programming cannot be complete without it.

A more Otype-safe system can make programs more reliable by catching more kinds of errors before the code ever executes; however, more type-safe systems are also more restrictive than less type-safe ones, which makes certain things difficult to express. In a type system, every value is considered to have a type, and the type of a value restricts what operations can be performed with that value.

## TYPE-SAFETY

Let's consider three possible type systems, and see how they would deal with the three-byte string "moo".

- An Ountyped language, such as assembly language, thinks that this is just 3 bytes that happen to be next to each other in memory. You could take any of the values of the bytes and divide it by 2 , if you wanted to, and the language wouldn't complain at all. Allowing programmers to do this kind of craziness has led to some very difficult-tosolve bugs! Aside from assembly language, there are almost no untyped languages that are in common use today.
- A less type-safe language, such as PHP, knows about types and won't allow certain operations.
\$moo = true;
\$moo() ;

Here we've tried to use a boolean value as if it was a function, and PHP won't allow it. However, PHP is much more type-unsafe than a language such as $C^{\#}$; for example, it will allow us to write code such as "hello"/2 and will evaluate it successfully to have the result 0 . Here the division operation has been applied to a string, and the language has no problem with that.

- A more type-safe language, such as $\mathrm{F}^{\#}$, insists that certain operations can only be performed on certain types. Not only is "hello" $/ 2$ considered to be invalid, code such as $8.0 / 2$ is also considered to be invalid since the types used for division don't match up exactly. It restricts the operations that can be used with a value by looking at the type of the value, and it will not implicitly
convert types without the programmer's explicit authorisation.

Some languages are untyped and some are completely type-safe, but most (including $\mathrm{F}^{\text {\# }}$ ) fall somewhere in-between these two. Type-safety leads directly to reliability: when you apply an operation, you can be absolutely certain that the operation has valid semantics for the value that is used with it, and "nonsense results" such as ! ("abc"/2)[3]-'4k' $=-5{ }^{1}$ are impossible. Because "nonsense results" are impossible, semantic errors cannot occur because of such results.

## PARAMETRIC POLYMORPHISM

Being type-safe is a good thing, but it reduces flexibility. Consider the following function:

```
let whenZero a b c ->
 match a with
 | 0 -> b
 | _ -> c
```

This function will return b when a is 0 , and return c otherwise. Clearly, a must be an integer; otherwise, it could not be matched against the constant pattern 0 . What should the type of $b$ and $c$ be? Clearly, they should have the same type ${ }^{2}$. It would be nice to be able to define this function for integers, floating-point values, strings, and anything else. In a basic type-safe system such as the ones described above, this is not possible; in a type-unsafe system, it is possible, but we must then give up the reliability of a type-safe language. Unfortunately, if we give up a type-safe language, then code such as (whenZero $n 5$ "moo") +3 becomes plausible: everything will work fine as long as $n$ is 0 , and bad things will happen whenever it is not 0.

Is there a way to keep type-safety and also be flexible? Yes, there is: a type system can be ©parametrically polymorphic (or Ogeneric; the two terms can be used interchangeably). In a parametrically polymorphic type system, a type may be Oconcrete or parametrically polymorphic. A composite type may include a parametrically polymorphic component, and therefore be partially parametrically polymorphic.

- A concrete type is something like int or unit; the operations that can be used with this type are known.

[^12]- A parametrically polymorphic type is defined in relation to other types in an expression, but has no particular operations that are specifically valid for it. It is indicated by an apostrophe and some letters (e.g. 'a or 'moo). At runtime, any concrete type can be substituted in for a particular generic type.

Let us return to the example of whenZero. We know that b and c must have the same type, and we also want them to be any type. $\mathrm{F}^{\#}$ will automatically Ogeneralise the type of whenZero appropriately so that these constraints are met; the type of the function will therefore be int -> 'a -> 'a -> 'a. When typechecking occurs, $\mathrm{F}^{\#}$ will ensure that each application of whenZero has its 'a replaced by an appropriate concrete type, and will refuse to compile code which is type-unsafe.

## PARTIALLY PARAMETRIC POLYMORPHISM

The basic concept of partially parametric polymorphism is simple: imagine that you want to create a function that checks whether the length of a list is odd. Of course, the list will hold elements of a particular type, perhaps ints. In $\mathrm{F}^{\#}$, we might say that it is an int list if it holds int values. Should our length-checking function have the signature int list $\rightarrow$ bool, then?

If it does have that signature, that wouldn't be as useful to us as it could be. After all, there is nothing in the length-checking function itself that makes it only applicable to lists of integers. We might want to check whether the length of a list of strings is odd, or whether the length of a list of functions is odd. However, if we make the function fully generic, then the signature would look like 'a -> bool; and you would be able to pass in something like a floating-point number instead of a list, and our type-safety would break down!

To keep both flexibility and type-safety, $\mathrm{F}^{\#}$ allows its data structures to be partially generic. This means that we are able to specify that the input must be a list, and also specify that the elements of the list can be of any type. The signature of the function could therefore be specified as 'a list $->$ bool - notice that the input is not fully generic, but partially generic! and all problems fall away.

## Type inference

F\# is able to identify the type of an identifier by looking at way in which it is used. Code is read top-to-bottom, left-to-right, until the language has identified a particular type that an identifier must be ${ }^{3}$. It

[^13]is important to understand that the language does not guess the type of an identifier; it proves what it must be by constraining the type based on the available information. This process of identifying the type by looking at how it is used is called type inference.

Type inference can be very easy to do. For example, if an identifier is bound to a string value, then it must have the string type. An important limitation to be aware of is that when an arithmetic operator such as ,+- , or * is used, $\mathrm{F}^{\#}$ will assume that any identifiers it is used with must be ints if no additional information exists to clarify the type.

## PIPING FOR IMPROVED INFERENCE

F\# does type inference from left to right, and the pipe operator allows us to reorder an expression such as $f(g \times)$ to be $\times|>g|>f$. These expressions are semantically equivalent, but in the first expression, $F^{\#}$ encounters $f$ first and tries to infer its type; in the second, $\mathrm{F}^{\#}$ encounters the input value x first. Examining the input value first sometimes allows it to make inferences that it would otherwise be unable to make, so if you write code that uses the pipe operator more frequently, $\mathrm{F}^{\#}$ might be able to do better type inference for you!

If there is no information that constrains an value to be a particular type, then $\mathrm{F}^{\#}$ understands that value to be generic.

```
let t r = fun e -> e + 2.5
```

What is the type of this function? To find it, we must examine the function itself and add constraints wherever they are necessary. Try and work from left to right, top to bottom.

1. Let's begin with a completely generic function, 'a -> 'b.
2. The output of $t$, when given its input $r$, is the function fun $e->e+2.5$. This is a function type, we can therefore constrain ' $b$ to be a function type. Our updated type for $t$ looks like 'a -> ('b -> 'c).
3. The expression e +2.5 must result in a float. Therefore, we can update our type to be 'a -> ('b -> float).
4. The only thing that can be added to a float is another float, so e must be a float. Therefore, we can update our type to be 'a -> (float -> float).
5. There is nothing that constrains $r$, so it can remain as type 'a.

That concludes the type inference. The brackets are unnecessary because a curried function 'a -> 'b -> 'c -> ... is always read as 'a -> ('b -> ('c -> (...))), so we can remove
the brackets. The type of the function is 'a -> float -> float.
it considers to be sensible.

## Type annotations

## Syntax: type annotation

(x: type)

Any pattern can be supplemented by a Otype annotation which overrides the type inference logic and forces the language to only match that pattern to values of a particular type. The round brackets in annotation syntax are not strictly necessary, but are useful for avoiding ambiguity in larger patterns.

You can also use a generic type annotation (such as ${ }^{\prime}$ a) to force $\mathrm{F} \#$ to regard a pattern as being generic. If you do so when the pattern cannot be generic, then F\# will issue warnings specifically point out any lines of code which force the pattern to be of a more specific type.

Another use of type annotation is to specify what a named function's output should be. When a function is bound to a name, a Otype annotation can be used to indicate the type of the function's generated value, using the following syntax:

## SYNTAX: FUNCTION OUTPUT TYPE ANNOTATION

let $\underset{\sim}{i d e n t} \underline{i_{1}} \cdots \underline{i_{n}}$ : outType $=$ expr

Don't go too crazy with type annotations, though. $\mathrm{F}^{\#}$ is pretty good at figuring out what things are. Allow the compiler to figure it out and you'll typically end up with code that is constrained enough to be correct, while also being as flexible as possible.

## "SOME" OR "ANY"?

When a type is parametrically polymorphic, it must be substitutable by any concrete type, not just some concrete types. The difference is subtle, but important! For example, consider the following function:
let choice ( $x$ : 'a) ( $y$ : 'a) : 'a = x + y
Send this down to $F^{\#}$ Interactive and you'll see the following warning: This construct causes code to be less generic than indicated by the type annotation, and $\mathrm{F}^{\#}$ infers that its type is actually int -> int -> int. This occurs because the + operator works for floats; it works for ints; it even works for strings. So we know that it works for some types, but it doesn't work for any type, such as bool. Accordingly, $\mathrm{F}^{\#}$ is unable to accept that it is parametrically polymorphic, and defaults to what

## Type ERRORS

By now, you've probably seen the dreaded error that says:

## This expression was expected to have type [...] but here has type [...]

You get this error when $\mathrm{F}^{\text {\# }}$ thinks that you've used an expression in a way that forces it to have more than one type - and since this is impossible, one of the ways that you've used it must contradict the other way. The $\mathrm{F}^{\#}$ compiler is quite good at finding these issues, so don't immediately assume that it's wrong! Instead, try to fix the error.

To fix a type error, you need to do your own type inference and verify that there's no contradiction between your types. This is what functional programmers are mean when they say that the types in a system must "line up". Try following this process:

1. Start with a fresh $\mathrm{F}^{\#}$ Interactive session: reset it.
2. Add type annotations to every identifier in your function. These will tell F\# what you expect the type to be. Send what you have down to F\# Interactive, and note any errors or warnings. These usually indicate where you can focus your attention.
3. Begin at the top of your function and continue in a left-to-right fashion, paying special attention to the places where $\mathrm{F}^{\#}$ 's type-checker has found problems. As soon as you reach a contradiction, you're done! Fix the problem by removing the contradiction.
4. If you can't find the problem after a bit of thought, then your function might be too large to keep in your head. This sort of "debugging" works best when you have small functions, so try to break your functions into small pieces so that you make your own life easier.

The above process is also useful whenever $\mathrm{F}^{\text {\# }}$ seems to be inferring the type of a function or identifier incorrectly.

## GENERIC COMPOSITE TYPES

Generic data structures - in other words, data structures which contain one or more fields/cases which are parametrically polymorphic - can be defined by specifying the existence of generic

Otype parameter(s) in angle-brackets after the typename in the type definition. These type parameters should be present in the type definition.

## SYNTAX: GENERIC RECORD DEFINITION

```
type Name<' \(a,{ }^{\prime} b, \cdots, ' z>=\downarrow\{\)
 \(\downarrow\) fielde : typeo
 field \(_{1}:\) 'a
 field \(_{n}: \quad\) z
\(\downarrow\}\)
```


## SYNTAX: GENERIC DISCRIMINATED UNION DEFINITION

```
type Name<' \(a,{ }^{\prime} b, \cdots,{ }^{\prime} z>=\)
1 Case \(_{0}\) of typeo
I Case \({ }_{n}\) of type \({ }_{n}\)
```

The type of of a generic record or discriminated union is the name of the type, as parameterised by the concrete types that replace the parametrically polymorphic variables. Two generic types are not considered to be the same type, unless both types are parameterised by comparable type parameters, and are therefore not comparable. A type parameter $x$ is comparable with a type parameter $y$ if one of the following conditions is true:

- $x$ and $y$ are the same concrete type.
- $x$ is generic and $y$ is a concrete type (or vice versa).
- $x$ and $y$ share the same generic type parameter ${ }^{4}$

```
type Tree<'a> =
| Empty
| Node of 'a * Tree<'a> * Tree<'a>
let q = Empty
let r = Tree("moo", Empty, Empty)
let s = Tree(7, Empty, Empty)
```

Here we define a binary tree. It contains two cases: an Empty case for when there's nothing in a tree, and a Node case that has a tuple consisting of the data to be stored in the node and the "left" and "right" sub-trees.

We then bind three identifiers: $q$ is a Tree<' $a>, r$ is a Tree<string>, and $s$ is a Tree<int>. We will be unable to compare $r$ and $s$, because the types are different. We will, however, be able to compare $q$ to $r$ and $s$. It will compare as being less-than either of those because the Empty case is defined above the
${ }^{4}$ If you are comparing generic types, $\mathrm{F}^{\#}$ will restrict your function to be usable only in cases when the concrete type supplied by calling code on a case-by-case basis - is comparable.

## Options and Results

One of most important built-in types is the Option<'a> type, often referred to informally as the Option type:
type Option<'a> =
| None
| Some of 'a
You will find such a type in almost all functional languages, although its name might differ. In a type annotation, an Option<'a> can be written as 'a option. An Option type is often used to explicitly indicate that no value exists. In other languages, a null is used to indicate that no value exists. An Option type is a better choice than a null for the following reasons:

1. To extract a value from an Option type, a programmer must explicitly pattern-match both cases. If this is not done, then $\mathrm{F}^{\#}$ will display a warning. The Option type therefore forces the programmer to deal with the successful and unsuccessful case, whereas it is easy to forget to deal with the possibility that a value could be null. Forgetting to deal with a null can lead to an error when a null value is used.
2. The Option type explicitly indicates to the programmer that a particular value may not be available. In all other cases, the programmer can assume that a value will be available.

A variation of the Option type is the Result<' $a$, ' $b>$ type, informally referred to as the Result type, defined as
type Result<'a,'b> =
| Ok of 'a
| Error of 'b
Whereas the Option type allows you to explicitly express a value that may or may not exist - and, related to that, whether a value-generating operation has succeeded or not - the Result type allows you to also express the kind of error which has occurred if a value could not be created.

Since both Result and Option types are used to add another layer of meaning to existing values, we sometimes call them Wrapper types. You may hear a functional programmer way that they've $\boldsymbol{O}$ wrapped a value in an Option, or unwrapped a Result.

## ExERCISES

1. Write down the type of the following functions:
(a) fun $\mathrm{p}->$ "quiz" +p
(b) fun $\mathrm{p} \rightarrow \mathrm{p}+600$
(c) fun $p \rightarrow$ fun $r \rightarrow r-p$
(d) fun p -> "quiz"
(e) fun $\mathrm{pr} \rightarrow \mathrm{p}-\mathrm{r}$
(f) fun 8 -> 25.13
(g) fun status -> fun () -> status/2
(h) fun act -> act "boldly"
(i) fun i s -> s () - 10 * i
2. Write down the type of each of the following functions.
(a) fun (d,a,e) -> d,e,a,d
(b) fun a $p$->
match $p$ with
| (_, 3) -> a (p, p) | a -> p
3. Study the following type.
type Circe<'a, 'b> =
| Transform of ('a -> 'b) * string
| Die
Write down a pattern that matches the value Transform (string, "int"), but does not match Transform (int, "string").
4. You must make a system to track particular animals, which have been tagged for research purposes, on a game farm. An animal has a species (which is a string), a tag number (which is an integer), and a last-seen location (expressed as a latitude and longitude, both of which are floatingpoint values). An animal may have a research note attached to it, or it may not.
(a) Define a record type, containing four fields, which represents this.
(b) Create a lion with the tag 9177, last seen at latitude 40.77, longitude -73.97, with no research note attached to it.
(c) Write a function which will take an animal and return a new animal with a research note attached that says "Extremely Dancerous".
(d) Write a pattern (just the pattern!) which will match an antelope and bind its tag number to the identifier tagNo.
5. Write down the definition of the built-in Option<'a> type.
6. The built-in function defaultarg has the type 'a option -> 'a -> 'a. Using only the type, figure out what it does.
7. The bind function has the type
('a -> 'b option) -> 'a option -> 'b option
Write the function.
8. Study the following type which represents a node in a linked list.
type Node<'a> =
| Nothing
| Next of 'a * Node<'a>
(a) Create an empty linked list.
(b) Create a linked list that holds the values 4.22, 1.9, and 0.45.
(c) Write a map function with signature
('a -> 'b) -> Node<'a> -> Node<'b>
9. Assume that you have defined types as follows:
```
type Op<'a> = Success of 'a | Failure
type Parseable<'a> = {
 Input : string
 Parsed : Op<'a>
}
```

(a) The Parseable type requires a generic parameter. Why?
(b) What are the types of the following functions? (Be careful - this is a bit trickier than it might look!)

```
i. let success x v =
 {x with Parsed=Success v}
ii. let success x v =
 {Input=x.Input; Parsed=Success v}
```

(c) Explain the difference in function types.

## Lists

A list is a singly-linked-list of elements, all of which have the same type ${ }^{1}$. A list has a ©head, which is the first element of the list, and a tail, which are the remaining elements of the list. The head is a value and the tail is a list. A list may have zero or more elements.

## Syntax: list Creation



To create a new list with an additional item at the start, we can use the cons operator (::) with an expression and a list. The expression must generate a value of the same type as the existing values in the list.

## Syntax: cons

expr :: list

The type of a list with elements of type $t$ can be expressed either as $t$ list or as List<t>. The former syntax is preferred. If the type of the elements is not constrained, then it can be generic; this means that a list with a type like 'a list is common.

```
let a = [7;6;5]
let b = 83::a
```

Here we create a list containing the elements 7, 6, and 5 , and bind that list to the name a. We then cons an element (83) to the list, thus creating a new list, and bind the new list to b . Remember that lists, like all data structures discussed here, are immutable; therefore, $a$ is still bound to $[7 ; 6 ; 5]$ after $b$ is bound to $[83 ; 7 ; 6 ; 5]$.

The type of both of these lists is int list.

As a convenience, a list of integers between $n$ and $m$, where $n<m$, can be created using a special syntax.

## Syntax: int list creation

[n...m]

[^14]
## Syntax: list Pattern

[ $\left.\underline{p}_{0} ; \ldots ; p_{n}\right]$

Each pattern in the list pattern matches an element of the list. The pattern will not match unless the number of elements in the list is the same as the number of patterns in the list pattern.

## Syntax: cons Pattern

head : : tail

The cons pattern matches the head of the list and the tail of the list separately; the tail pattern can be another cons pattern, or a list pattern.

## [9;8;7;6;5]

The following patterns will all match the above list:

- $[9 ; 8 ; 7 ; 6 ; 5]$
- $\left[p ; 8 ; \_; q ;\right]$
- $\mathrm{h}::[\mathrm{r} ; 7 ; \ldots ; 5]$
- $x: y:]_{-}$
-     - 
- x::8::y::_::_: []

Can you see why each pattern will match?

A new list can be created from two existing lists using the "concat" operator @. However, this operator is much more inefficient than the cons operator and should therefore be used less often.

## Syntax: concat

list. @ list ${ }_{1}$

## @ OR : :?

Adding an element to the start of the list (i.e. the cons operation) is a very quick $\mathcal{O}(1)$ operation. However, concatenating lists using @ requires traversal of the first list, making it a $\mathcal{O}(n)$ operation where $n$ is the length of the first list. It is therefore preferable to use : : instead of @ whenever possible.

## COMPARISON

If the elements in a list are comparable, then the list is comparable to another list of the same type. Lists are compared element-by-element, beginning from the first element. As soon as one element is greater or less than the corresponding element in the other list, a result is generated. If all items are the same, but one list is longer, then the longer list is considered to be "greater than" the shorter list.

## ExERCISES

1. Consider the following code:
let crow $=2$
let beef $=[1 ;$ crow; crow; 8]
let $x=$ crow : : (beef @ beef)
(a) What is the value of beef?
(b) What is the value of $x$ ?
(c) Rewrite the beef binding so that it only uses an empty list and the cons operator.
2. The clevva function is defined as follows:
```
let clevva smoke =
 match smoke with
 | [] -> 0
 | [e;3] -> e
 | _::_::e::__ -> e
 | [p] -> p
 | _::k::[] -> k
 | _ -> 4
```

Evaluate the following expressions:
(a) clevva $[5 ; 3 ; 7 ; 1]$
(b) clevva $[9 ; 2 ; 5]$
(c) clevva $[8 ; 6]$
(d) clevva [0]
3. Your code contains the binding let $k:::_{2}:: m=[0 ; 4]$. If the pattern match will succeed, write down the identifiers and the value associated with each bound identifier. If the binding will not succeed, write down Pattern match fails.
4. Assume that the following function is defined.

```
let tz (a::b::c::r) =
 match a <= b, c with
 | true, _ -> [c]
 | _ -> r
```

(a) Evaluate: tz $[10 ; 8 ; 6 ; 4 ; 2]$
(b) Evaluate: tz $[20 ; 18 ; 16 ; 14 ; 12]$
(c) Evaluate: tz (tz $[20 ; 18 ; 16 ; 14 ; 12])$
5. Assume that the following function is defined.

```
let dino mite =
 let rec dino saur bambi =
 match saur with
 | [] -> 4::bambi
 | [_] -> 8::bambi
 | x::t -> dino t (x+1::t)
 dino mite [25]
```

(a) Evaluate: dino $[1 ; 3]$
(b) Evaluate: dino []
6. Write down a list that will match the pattern _::_::[6.0]::_.
7. Write down the type of each of the following functions.
(a) fun days ->
days |> List.filter ((=) 'n')
(b) fun a p ->
match p with
| [] -> a (p, p)
| a -> p
(c) fun art -> art::("sm"+art)::["heart"]
(d) let rec sweet ness acc =
match ness, ness>0 with
| 0, _ -> acc ness + 0.5
| _, false -> sweet -ness acc
| loch, _ -> sweet (loch-1) acc
8. If a pattern would match the value 5.3, "hi", (9, [9]), write the bound symbols and their values. If the pattern match succeeds but no symbols are bound, write Nothing bound. If the pattern would not succeed, or if it is invalid, write No match.
(a) 5.3, "hi", -
(b) hi, _, (_, _)
(c) this, is, a, test
(d) this, is, (a, bad::test)
(e) _, _, (w<10, x::_)
(f) so, "hi", (said, [i])
(g) _, (tess, ting)
9. Consider the following code.
let prefix $=2,1$
let six = (prefix, 6), [prefix; 1,2], false, prefix, 3
Write a pattern to...
(a) extract the first element from the list in six and bind it to the identifier k
(b) extract the values 6 and 3 from six and bind them to the identifiers six and e respectively
(c) extract all the 2 values from six, binding them to identifiers of your choosing
10. The following record describes a mythical seabeast known as a Kraken.

```
type Kraken = {
 Victims : string list
 Age : int
 Where : float * float }
```

(a) Create a Kraken that has killed two people (Jason and Freddy, with Jason being placed before Freddy), is 16384 years old, and can be found at latitude -33.69 and longitude 26.68.
(b) Assume that your Kraken from (a) has been created. Now look at the following patterns; if a pattern will match your Kraken, write down Y; if it won't match, write down N; and if it is an invalid pattern, write down WTF. If a match is successful, also write down any identifiers and the values that they are bound to.
i. ["Jason"; "Freddy"]
ii. \{ Age=a \}
iii. $\{$ Where $=\mathrm{g}\}$
iv. \{ Where=g, h \}
v. \{Victims=k\}
vi. \{Victims=j::f::k\}
vii. \{Victims=_::[]\}
viii. \{ Victims=f::_ \}
ix. \{ Victims=[_; _] \}
x. \{ Age=16384; Victims=[j; f] \}
xi. \{ Victims=[freddy, "Freddy"] \}
xii. \{ Age=_, Where=(p,q) \}
xiii. \{Where=[-33.69; 26.68]\}
xiv. ["Jason"; "Freddy"]; 16384; (lat,long)
xv. Age=a, Victims=v
xvi. $\{$ Age $=16384\}$
xvii. $\{$ Age $=a>10\}$
xviii. \{Victims=["Freddy"; "Jason"]\}
(c) A record pattern in which a field is matched by the wildcard pattern, such as $\left\{\right.$ Age $\left.=\_\right\}$, is valid. However, a good programmer will not write such a pattern. Why?
(d) The where field should be interpreted as (latitude,longitude), but could also be interpreted as (longitude,latitude). Define a Coordinate record to make this unambiguous, and write down a revised Kraken record definition that makes use of it.
(e) Create a Kraken that contains the same information as in (a), using the definitions you've created in (d).
(f) Some of the valid patterns from (b) must be changed so that they continue to match the new definition of Kraken. Identify only the patterns that need to change and, for each identified pattern, write down a changed pattern that matches and binds the same identifiers.
11. Consider the following just-for-practice code.

```
let prep t xs = t::(t+1)::xs
let strip (a,_,t) = a*t, t/3.0
```

```
let flow \(\mathrm{p}=\)
 match p with
 | [] -> None
 | (b,a)::_ -> Some (a + "," + a)
let rap x = fun () -> strip \(x\)
let flip q =
 let \(t\), next \(=q\)
 (next, t, t) |> strip
let swatch \((b, a)=a, b\)
```

Write down the type of:
(a) prep
(b) strip
(c) flow
(d) rap
(e) flip
(f) swatch
(g) swatch >> swatch
12. Circle all patterns which would match the value Some 5, 7::[11], 9.0.
(a) Option _, _, v
(b) Some n, [_;_], -
(c) _, _: :_: :
(d) -
(e) Option<int>, _::_, r

## UsEFUL FUNCTIONS

## System.Console.ReadLine $\underset{\text { unit }}{()} \rightarrow \underset{\text { string }}{\text { userinput }}$

Reads in a string from the user.
int $\underset{{ }_{a}}{\text { input }} \rightarrow \underset{\text { int }}{\text { output }}$
Creates an integer value based on the input. Throws an exception if the input can't be used to create such a value.
float ${ }^{\prime}{ }_{a}^{\text {input }} \rightarrow \underset{\text { float }}{\text { output }}$
Creates a floating point value based on the input. Throws an exception if the input can't be used to create such a value.
string $\underset{{ }_{\prime}}{\text { input }} \rightarrow \underset{\text { string }}{\text { output }}$
Creates a string representation of the input.

## STRINGS

To print data as a formatted string to the console, use printf. To print data as a formatted string to the console with a trailing newline, use printfn. To create a formatted string from data, use sprintf. All of these take a C-style format string followed by the data to be formatted.

```
sprintf "%d%c, %s %f%c? %b" 2 'b'
 "or not" 2.0 'B' true
 The format string ("%d%c, %s %f%c? %b") is fol-
lowed by the values that are to be formatted and
placed in the string. The result is the string
2b, or not 2.000000B? true.
```

To print out a literal \% character, use \%\% in the format string. The different format specifiers include:
\%s for strings.
\%i for ints.
\%b for bools.
\%f for floats. You can also write \%.nf, where $n$ is a number, to indicate the number of decimal places that should be printed.
\%A for anything else. This pretty-prints $\mathrm{F}^{\#}$ data types very nicely.
\%O to call the .ToString() overload on a value, and print the result.

The *printf functions are treated specially by $\mathrm{F}^{\#}$ : it uses the format string to help it during type inference.

## String.concat $\begin{gathered}\text { separator } \\ \text { string }\end{gathered} \rightarrow \underset{\text { seq }<\text { string }>}{\text { inputs }} \rightarrow \begin{gathered}\text { output } \\ \text { string }\end{gathered}$

Joins all the strings in inputs (which may be, for example, a list of strings) into a single string, inserting separator between the joined elements in the output.

## CATASTROPHIC ERRORS

If a logic error occurs in the program, it is often best to crash the entire program rather than return an invalid result. The failwith function is very useful for this purpose.

$$
\text { failwith } \begin{gathered}
\text { error string } \\
\text { string }
\end{gathered} \rightarrow \underset{\mid}{\text { ignored }}
$$

Raises an exception, using the error string as the exception message. If uncaught, this will crash the program.

## Options and Results

Option.map ${ }_{a}^{\text {function }} \rightarrow \underset{{ }_{a}^{\prime} b}{\text { value }} \rightarrow \underset{{ }_{\text {option }}}{\text { result }}$ option
If value is the None case, ignores function and returns None. If it's the Some case, then the value held within it is unwrapped, passed to function, and re-wrapped.

Like Option.map, but the re-wrapping is done by the higher-order function.

Option.iter,$\underset{a}{\text { function }} \underset{\rightarrow \text { unit }, \text { a alue }}{\text { option }} \rightarrow \underset{\text { unit }}{()}$
If the value is Some, function is executed.

If value is the Error case, ignores function and returns the Error case. If it's the Ok case, then the value held within it is unwrapped, passed to function, and re-wrapped.
A Result.bind function, analogous to the Option.bind function but applicable to Results, also exists.

## LIST OPERATIONS

Several important, built-in functions make it easy to express very powerful operations in a tiny amount of code. Many of these functions are built into the vast majority of functional languages, and their utility is so widely acknowledged that they have been steadily making their way into non-functional languages as
well. Knowing how to use them in $\mathrm{F}^{\#}$ will give you transferable knowledge that you can use in nonfunctional languages such as C\#, Java, C++, Ruby, and JavaScript, as well as functional languages such as Haskell, Elm, Phoenix, and Erlang, among others.

In order of importance, you should know at least the following operations:

Applies func to each element of input, returning the resulting list.

List.filter $\underset{\left({ }^{\prime} a \xrightarrow{\text { tester }} \rightarrow \text { bool }\right)}{ } \rightarrow \underset{{ }_{a}^{\text {input }} \text { list }}{\text { int }} \rightarrow \underset{\text {, list }}{\text { output }}$
Returns a list containing only the elements for which tester returns true.


Uses the combiner on each element in turn to combine all of the elements of input together into a single value. The combiner starts by taking initial and the first item of input, and using them to generate an updated combined value. This value is then used as the state for the next call to combiner, until all the elements of input are exhausted. The last-generated value becomes the output.

This function will throw an exception if input is empty.

$$
\text { List.exists } \underset{\left({ }^{\prime} a \rightarrow \text { bool }\right)}{\substack{\text { tester }}} \rightarrow{ }_{\text {in list list }}^{\text {input }} \rightarrow \underset{\text { bool }}{\text { output }}
$$

Returns true if tester is true for any element of the input.

Like List.map, but passes the index of the element as well as the value to func.

List.rev $\underset{{ }_{a} \text { a list }}{\text { input }} \rightarrow \underset{{ }_{a}^{a} \text { list }}{\text { output }}$
Returns a list with the elements in the reverse order.

Returns the first element for which tester returns true. This function will throw an exception if input is empty.

Creates a list with with the desired length by calling generator, passing it the index of each element to be generated.

List.length,${ }_{a}^{\text {list }} \rightarrow \underset{\text { list }}{\text { count }}$
Returns the number of items in the list.
List.iter $\underset{(' a \rightarrow \text { unit })}{\text { function }} \rightarrow \underset{{ }_{\prime}{ }^{\text {inp list }} \rightarrow \underset{\text { lisit }}{\text { in }}}{()}$
Evaluates function for every element of the input.

List.iteri $\underset{\left(\text { int } \rightarrow{ }^{\prime}{ }^{\text {function }} \rightarrow \text { unit }\right)}{ } \rightarrow \underset{{ }_{\text {a list }} \text { input }}{\text { list }} \rightarrow \underset{\text { unit }}{()}$
Like List.iter, but passes the index of the element as well as the value to function.

Splits the input elements into two lists, passed and failed, based on whether tester returns true or false for a particular element.

Returns a list consisting of corresponding elements from one and two.

List.distinct $\underset{,}{\text { original }} \rightarrow$ duplicates removed
Returns a list that does not contain any duplicate elements.

Returns a list that contains the same elements as the sequence. Can be used to conveniently obtain a list of chars from a string.

Returns the first element in the input list. This function will throw an exception if the list has no elements.

Returns the input list without the first element. This function will throw an exception if the list has no elements.

List.tryFind $\underset{\left.{ }_{('}{ }_{a} \underset{\rightarrow}{\text { tester }} \text { bool }\right)}{\text { input }} \rightarrow \underset{{ }_{a} \text { list }}{\stackrel{\text { ind }}{\text { a option }}}$
Returns the first element for which tester returns true, or None if no such element exists.

Applies func to each element of input, including the output value in the resulting list only if it is not None. In other words, choose can filter and map in a single pass through the list.

Like List. choose, but only returns the first result. This function will throw an exception if an appropriate element does not exist.

List List.pick, but uses an Option rather than throwing an exception.

A complete list of list functions can be found at https://goo.gl/72ZZub

## SEQUENCE FUNCTIONS

You can treat both strings and lists, among other things, as sequences. The Seq module, in addition to the functions mentioned below, contains many functions that perform the same tasks as List functions and have the same names as those functions.

Seq.head $\begin{gathered}\text { sequence } \\ s e q<^{\prime} a>\end{gathered} \rightarrow \begin{gathered}\text { result } \\ { }^{\prime} a\end{gathered}$
Returns the first item in the sequence. If no such item exists, an exception is thrown.

Seq.toList $\begin{gathered}\text { sequence } \\ \text { seq<' } a>\end{gathered} \rightarrow, \stackrel{\text { result }}{\text { l }}$ list
Creates a list from all the items in the sequence.

## MATHEMATICAL FUNCTIONS

round $\underset{\text { float }}{\text { input }} \rightarrow \underset{\text { float }}{\text { output }}$
Rounds a fractional number to the nearest whole number, preferring rounding towards even numbers instead of odd numbers whenever the fractional component is exactly halfway between two numbers.
floor $\underset{\text { float }}{\text { input }} \rightarrow \underset{\text { float }}{\text { output }}$
Rounds a fractional number to the nearest whole number which is smaller.
ceiling ${ }_{\text {float }}^{\text {input }} \rightarrow \underset{\substack{\text { output } \\ \text { float }}}{ }$
Rounds a fractional number to the nearest whole number which is larger.
truncate $\underset{\text { float }}{\text { input }} \rightarrow \underset{\text { float }}{\text { output }}$
Removes the fractional component from a number.
$\min \underset{{ }_{a}}{\times} \rightarrow \underset{{ }_{b}}{\mathrm{y}} \rightarrow \underset{{ }_{a}}{\text { result }}$
Returns the smaller value, choosing between $x$ and $y$. This function works with any comparable data types, including strings, ints, and floats.
$\max { }_{{ }^{\prime}}{ }_{a} \rightarrow \underset{{ }_{\prime}}{\mathrm{y}} \rightarrow \underset{{ }_{a}}{\text { result }}$
Returns the larger value, choosing between x and $y$. This function works with any comparable data types, including strings, ints, and floats.

## ExERCISES

1. The Result type would not be used by an operation such as choose. Why not?
2. Which is the best operation to use to achieve each of the following results? (You may assume that any data types which are named are defined suitably; we'll get to custom data types in the next chapters)
(a) Finding the largest item in a list
(b) Finding all the negative numbers in a list
(c) Getting the length of each word in a list
(d) Checking whether any of the lists in a list is empty
(e) Creating space-filled strings with increasing lengths from 1 to 50 characters.
(f) Dividing a class of Students into those who have more then $50 \%$, and everyone else
(g) Finding a Car with the lowest price in a list of Cars
(h) Numbering each line of code in a list of code-lines
(i) Writing all the lines of text in a list into a file
(j) Determining whether any Student has achieved more than $75 \%$
(k) Concatenating all the strings in a list together into one string
(l) Convert a list of strings into a list of BumperStickers
3. The scan variant of fold has the type
('a -> 'b -> 'a) -> 'a -> 'b list -> 'a list
Use this information, and your knowledge of what fold does, to work out what scan does.
4. The reduce variant of fold has the type ('a -> 'a -> 'a) -> 'a list -> 'a. Use this information to work out the condition under which it will fail.

## Functional TECHNIQUES

Higher-order functions and closures are two techniques that are commonly used in functional programming. This section takes you through the general idea of these techniques and describes situations in which they are useful.

## Higher-ORDER FUNCTIONS

A ©higher-order function accepts a function as input. Higher-order functions are not "special"; they exist as a consequence of the decision to make functions firstclass. The flexibility and expressive power of higherorder functions is remarkable: they allow us to build functions which express a general algorithm, and pass in the specific functionality on a case-by-case basis.

```
let twice f v = f (f v)
let add4 x = x + 4
twice add4 10
In this toy example, the function add4 is applied twice
to the value 10. The twice function is a higher-order
function.
```


## Closures

Recall from page 15 that a function is evaluated in the context of the code that it is defined in, not the scope that it is applied in. If we have a way to delay function execution until later, then we can have the function "carry" its defining environment with it as it goes.

The usual way to delay function execution is by pattern-matching on a unit input.

```
let subtractor a b =
 fun () -> a - b
let to_execute = subtractor 17 5
let v = to_execute ()
The lambda function is defined, bound to a name
(to_execute), and evaluated at different places in the
program. The lambda function "carries" the context
of its definition with it.
```

A function which uses identifiers in its defining scope in addition to its input is called a closure; we say that it "closes over" or "captures" such identifiers.

## ExERCISES

1. Briefly define type inference.
2. Write down the type of the following functions:
(a) fun toi -> fun tli kea -> "toiger"
(b) fun apple (bake : float) -> apple-bake
(c) fun sugar cake -> sprintf "Sugar: \%b" sugar
(d) let super duper = duper
(e) fun titan fall -> (fall+8) |> titan |> sprintf "\%f"
(f) let koan yin yang : bool = sprintf "\%f" yang |> yin
(g) fun $x y z \quad->(y \gg x) z$
(h) fun $\mathrm{x} y \mathrm{y} \rightarrow \mathrm{y} \mathrm{x}$
(i) fun k p -> p k "5"
(j) fun $t->$ match t with | 'R' -> fun a -> a | _ -> fun _ -> 35
(k) fun $k$-> (k >> k) ()
(l) let twilight a $v=$ let $\mathrm{s}=\mathrm{a}$ let $\mathrm{t}=\mathrm{v} 4$ let issue name = sprintf "\%c \%d : \%A" s t name issue
(m) fun p -> "quiz"
(n) fun act -> act "boldly"
3. Write down the word or phrase that means...
(a) "A function which can reference variables that exist within the lexical scope of its definition"
(b) "A function that takes a function as input"
(c) "Single-input, single-output functions which are chained to emulate the multipleinput functions which exist in other languages"
4. (a) Write a function
log: string -> (unit -> 'a) -> 'a
which prints the input string before the function is executed.
(b) Here is an existing line of code:
fly 30012.4
Modify this line of code so that it uses your function to log the message "Flying now" before executing the code.
(c) Explain why the modification that you made cannot possibly change the change the meaning of the program.

## TUTORIAL

In this tutorial, we'll be using recursion, generic types, and lists. We'll also be using almost every feature that we've covered so far, so this is a great tutorial for understanding how features in the language work together.

Recursive functions can often be used effectively with recursive types. We'll create a recursive generic binary search tree data structure and throw in a few tree operations to give it a workout. This part of the tutorial is slightly more difficult to grasp, so you might want to have a paper \& pen ready to sketch out some binary trees and check for yourself that everything works. You might also want to have a quick look online, or consult some past study notes, so that you can remember how binary search trees work.

1. We can start with this definition of a binary tree:
```
type Tree<'a> =
| Empty
| Node of 'a * Tree<'a> * Tree<'a>
```

Each child of a binary tree is, of course, a binary tree itself! A tree might be empty, or it might store some data and two children.
2. We want to insert things into the tree, so let's create an insert function. Remember that this is going to be a search tree, so we want things to be inserted in the correct order.

```
let rec insert v tree =
 match tree with
 | Empty -> Node (v, Empty, Empty)
 | Node (x, l, r) ->
 match v = x with
 | true -> tree
 | false ->
 match v < x with
 | true -> Node (v, insert x l, r)
 | false -> Node (x, l, insert v r)
```

If the tree is empty, we just add in a new node with some empty sub-trees. When the tree isn't empty, we need to look at the value of the node (which extract by binding it to $x$ ). If we've already got this value in the tree, we don't need to store it again, so we check for equivalent values as we go. If the value we're inserting is less than $x$, then we create a new node that contains this value, and we push the old value down through the left sub-tree via a recursive call. However, if the value we're inserting is greater than $x$, then we create a new node that has this node's value, and pushes the new value down though the right sub-tree via a recursive call.
Remember that we are not "updating" or "mutating" the tree in any way here! It is impossible to
update or mutate when you're working with immutable values, as is the case here. Instead, we are creating new nodes as we $\mathrm{gq}^{1}$ Note, also, the type of this function as we pass it down to $\mathrm{F}^{\#}$ Interactive: it can handle any kind of values, as long as they are comparable.
3. We expect the nodes to be inserted in the correct places in the tree. It would be convenient to be able to take a walk through the tree, pulling out all the values, and seeing whether a walk through the tree actually does give us the expected order. To do this, we can create a function to take a tree and give us its string representation after in-order traversal (i.e. Left-Node-Right / LNR traversal).
Creating a string form for the tree is going to be slightly tricky because Node cases will have their data represented in the string, and Empty cases won't be in the string at all. Each piece of data should be separated by a space. We'll start from the tree root and we'll integrate strings from subtrees into our tree. However, we won't know in time whether a sub-tree is Empty or Node, so we won't be able to tell whether we should insert it, followed by a space, before we visit it. To see this problem, try playing with this function:

```
let rec toStringA tree =
 match tree with
 | Empty -> ""
 | Node (v, l, r) ->
 let ls, rs = toStringA l, toStringA r
 sprintf "%s %A %s" ls v rs
```

Notice what it prints out for the tree insert 4 Empty. Can you see why the problem occurs?
We'll implement three different approaches to solving the issue. Each approach will teach you some different tricks, so implement both. Our first approach is to observe that the problem occurs because we can't see which sub-node values are empty, and which aren't. But we can explicitly indicate which ones are empty by using Option values...

```
let toStringB tree =
 let rec toStringB tree =
 match tree with
 | Empty -> None
 | Node (v, l, r) ->
 match toStringB l, toStringB r with
 | None, None ->
 Some <| sprintf "%A" v
 | None, Some x ->
```

[^15]```
        Some <| sprintf "%A %s" v x
        | Some x, None ->
        Some <| sprintf "%s %A" x v
        | Some x, Some y ->
        Some <| sprintf "%s %A %s" x v y
match toStringB tree with
| None -> ""
| Some s -> s
```

Here we explicitly represent the difference between a value that can be placed within the string and a value which doesn't have a viable string representation. As a result, we can pass back viable or non-viable values from our recursive calls, check for them, and choose to execute the appropriate code.
However, all of this presents us with a problem: we want the type of toStringB to be Tree -> string, but it's actually Tree -> string option. We'll use a little trick to fix this: create an inner function (also named toStringB here) which does the actual work, and then "unwrap" the results of that function and pass it out.

Push this down to $\mathrm{F}^{\#}$ Interactive and see play around with it using a simple tree such as
insert 4 Empty |> insert 5 |> insert 1
|> insert 3
4. Our second approach also starts by observing that the problem occurs because we can't see which sub-node values are empty, and which aren't ... or can we? After all, we only ever need to look one level deeper than we are. Patterns allow us to deconstruct values of arbitrary depth. So let's try a pattern-matching solution.

```
let rec toStringC tree =
    match tree with
    | Empty -> ""
    | Node (v, Node _ as a), (Node _ as b)) ->
        let x, y = toStringC a, toStringC b
        sprintf "%s %A %s" x v y
    | Node (v, (Node _ as a), Empty) ->
        sprintf "%s %A" (toStringC a) v
    | Node (v, Empty, (Node _ as a)) ->
        sprintf "%A %s" v (toStringC a)
    | Node (v, Empty, Empty) ->
        sprintf "%A" v
```

Note that this solution is shorter and arguably clearer than the toStringB solution. You will find that solutions that leverage pattern-matching are often shorter and clearer, so learning to think in terms of patterns and the "shape" of data is a valuable skill to learn.
5. Our third approach is to break the problem down. We want to get the nodes; we want to convert them to strings; and we want to merge them into a final string such that they have spaces be-
tween them. Let's see if we can make functions to do each of those things.

```
let rec toList \(=\) function
    | Empty \(\rightarrow\) []
    | Node (v, l, r) ->
        toList 1 @ ( \(v:\) : toList \(r\) )
```

The toList function simply traverses the tree in LNR order, creating a list of values as it goes. Send it down to $\mathrm{F}^{\#}$ Interactive and play around with it, perhaps using the same simple tree that you created in (3). Trace through the code and understand exactly why it gives you the output that it does.

Then we'd like to convertlast each of the node values into a string. This is exceptionally easy.

```
let stringifyList x =
    List.map (sprintf "%A") x
```

Lastly, we want to put a space between each of the string values. There's a built-in function, described in these notes, that can help us with that: String. concat. So let's tie it all together with this function:

```
let toStringD \(x=\)
    toList \(x\) |> stringifyList
    |> String.concat " "
```

A one-line function - wow! And as a bonus, we now have a generally useful function, toList, that we can use to convert any tree to an ordered list. This an even better result than pattern-matching was able to give us. All of the functions are so small that errors in them should be very easy to spot. We often get this kind of excellent result when we break the problem down into steps, because each step (or a few steps) can often be encoded as a function, and functions can then be composed together.

Type inference :

The careful reader will have noted that we could have made the stringifyList and toStringD functions even shorter. For example, stringifyList could have been written as
let stringifyList = List.map (sprintf "\%A")
and toStringD could have been written as let toStringD =
toList >> stringifyList
>> String.concat " "
However, F\# Interactive's type inference isn't good enough to figure out what these types should be, and a more complex explicit type would have to be written to make it all work. A different functional language with better type inference - or an untyped language - would have no trouble with the shorter code.
6. For debugging purposes, we might want to print the tree's values in LNR order, while not affecting the tree itself in any way. Fortunately, this is now exceptionally easy to do.

```
let debug tree =
    printfn "%s" (toStringD tree)
    tree
```

7. We can insert things. How about finding whether a particular value is in a tree?
```
let rec query v tree =
    match tree with
    | Empty -> false
    | Node (x, l, r) ->
        let queryMore () =
            match v < x with
            | true -> query v l
            | false -> query v r
        x = v || queryMore ()
```

Here we use shortcut boolean evaluation to either continue querying down the tree, or stop querying and return true. It's particularly important to realize that the difference between function definition and function application is particularly important here: we've defined the queryMore function, but the code within it won't be executed until and unless! - we apply it. This ensures that the query function does the least possible amount of work to find a value.
(Incidentally, we can't use the boolean evaluation trick in queryMore, e.g. by replacing the body with

```
(v < x && query v l) || query v r
```

Can you see why?)
8. How about a function that allows us to merge binary trees together? This is easier than it looks: we can just take the first tree, get its values, and then push those into the second tree. However, before we begin to write code, let's think about what we already know about functional programs: they typically build larger functions out of smaller functions. Do we have a function to "take a tree and get its values"? Yes, we do: it's toList. Do we have a function to "push a value into a tree"? Yes, we do: it's insert. So we already have the building blocks for making a new function. We just have to figure out how to tie them together.
We'll want to take the first value and insert it into the second tree, and take the result of that insertion and use it to insert the second value, and take the result and use it to insert the third value, and so on. If you know your operations well, you'll immediately recognize that this is a fold operation!

```
let merge a b =
    toList a
    |> List.fold (fun t v -> insert v t) b
```

Once again, a simple one-line function gives us the complex operation that we want.
9. We can add things to the tree, and we can check if an item is in the tree; but we can't remove things yet. Let's make a function to do that. In fact, let's extend ourselves a little bit here: we won't make a simple remove function, we'll make a filter operation for our trees. Just like a List's filter, we will pass through a function that determines whether a node should be kept or not.

```
let rec filter f = function
    | Empty -> Empty
    | Node (x, l, r) ->
        match f x with
        | true -> Node (x, filter f l, filter f r)
        | false -> merge (filter f l) (filter f r)
```

If the function f determines that we should keep this node, then we keep it and run the filter on each sub-tree. If we're not keeping the node, then we ignore the node's value and merge the left and right sub-trees of the node instead.

ExTENSIONS

1. Can you implement a remove operation for a tree, which removes a particular value? There are many ways to do this. Can you find the way which is...
(a) ...the shortest, in terms of lines of code?
(b) ...the most efficient?
2. If we try to turn a sorted list into a binary tree, we'll end up with a very deep tree - essentially, our tree will be a glorified linked list. This is because our tree isn't self-balancing. How difficult would it be to convert our binary tree into a selfbalancing 2-3 tree ${ }^{2}$?
[^16]
LAMBDA CALCULUS

Let's take a break from the practical stuff, and delve into the theory behind functional programming. It should now be clear to you that, in $\mathrm{F}^{\#}$, it is possible to do any computation that you could do in any other language. You have already learned other languages, such as C\# and C and SQL, but F\# can be much more difficult to pick up than other languages that you've learned. Why? What makes it so weird?

One answer to this is found in the roots of the language. You already know that imperative languages such as C are, in a very real sense, just implementations of a Turing machine. A Turing machine manipulates symbols on a tape, following a predefined set of rules; an imperative language manipulates variables in memory, following a programmer-defined algorithm. Functional languages don't use the Turing machine model of computation; instead, they all share a common ancestor in the equally powerful, and often more expressive, Dlambda calculus. For a student who has only ever encountered one way of looking at the world of programming - as if it is all about slightly different Turing machines! - this can be a mind-blowing experience.

"How" vs "What"

In the Turing machine model, we often end up saying how we want to do things: declare an output array, loop through an input array, set the variable at each index of the output array, return the output array. In the lambda calculus model, we often end up saying what we want done: map these values using this transformation. The result is the same, but you need to change your way of looking at the problem to be able to solve it functionally!

BASICS

There are only two things in the lambda calculus, both of which are expressions:

- Variables. These are typically written as single letters, such as a or b or z.
- Functions. These are written as an input variable, a dot, and an output expression; for example, $\lambda x . x$. We say that the input variable is bound in the output expression.

The only operation that is permitted in the lambda calculus is left-associative function application, which is shown by separating the function from its input using a space. Function application, of course, is nothing more than β-reduction! Different functions can bind different variables which happen to have the
same name. When a bound variable has the same name as a free variable, we tend to rename the bound variable to make it clear that they are different. For example,

$$
\lambda x \cdot \lambda y \cdot(x y) a=\lambda y \cdot(a y)
$$

Using only variables, functions, and β-reduction, we can express any computation.

TRUE AND FALSE

Computer scientists have a tendency to think in binary ways: true/false, on/off, yes/no, 1/0. What good can a programming abstraction be, if we cannot define the constants "true" and "false"? It turns out that we can define them - as functions.

- true is $\lambda x . \lambda y . x$
- false is $\lambda x . \lambda y . y$

We can go on to define all of the usual boolean operations using functions, too.

- and (\mathbf{x}, \mathbf{y}) is $\lambda x . \lambda y .(x y(\lambda a . \lambda b . b))$
- $\mathbf{o r} \mathbf{(} \mathbf{x}, \mathbf{y})$ is $\lambda x . \lambda y \cdot(x(\lambda a \cdot \lambda b \cdot a) y)$
- $\boldsymbol{\operatorname { n o t }}(\mathbf{x})$ is $\lambda x .(x(\lambda a . \lambda b . b)(\lambda c . \lambda d . c))$

If all of the above really does work out, then we should be able to evaluate simple boolean expressions! Let's see if we can do that. We'll evaluate the expression and(not(false),true), and see if we get the desired output true. We begin by phrasing the expression using the lambda calculus definitions that we've got above, and renaming bound variables so that they don't conflict.

$$
\begin{aligned}
& \lambda x \cdot \lambda y \cdot(x y(\lambda a \cdot \lambda b \cdot b)) \\
& ((\lambda t \cdot(t(\lambda h \cdot \lambda i \cdot i)(\lambda c \cdot \lambda d \cdot c)))(\lambda u \cdot \lambda v \cdot v))(\lambda j \cdot \lambda k \cdot j) \\
= & \lambda y \cdot(((\lambda t \cdot(t(\lambda h \cdot \lambda i \cdot i)(\lambda c \cdot \lambda d \cdot c)))(\lambda u \cdot \lambda v \cdot v)) y \\
& (\lambda a \cdot \lambda b \cdot b))(\lambda j \cdot \lambda k \cdot j) \\
= & ((\lambda t \cdot(t(\lambda h \cdot \lambda i \cdot i)(\lambda c \cdot \lambda d \cdot c)))(\lambda u \cdot \lambda v \cdot v))(\lambda j \cdot \lambda k \cdot j) \\
& (\lambda a \cdot \lambda b \cdot b) \\
= & (\lambda u \cdot \lambda v \cdot v(\lambda h \cdot \lambda i \cdot i)(\lambda c \cdot \lambda d \cdot c))(\lambda j \cdot \lambda k \cdot j)(\lambda a \cdot \lambda b \cdot b) \\
= & (\lambda v \cdot v(\lambda c \cdot \lambda d \cdot c))(\lambda j \cdot \lambda k \cdot j)(\lambda a \cdot \lambda b \cdot b) \\
= & \lambda c \cdot \lambda d \cdot c(\lambda j \cdot \lambda k \cdot j)(\lambda a \cdot \lambda b \cdot b) \\
= & \lambda d \cdot(\lambda j \cdot \lambda k \cdot j)(\lambda a \cdot \lambda b \cdot b) \\
= & \lambda j \cdot \lambda k \cdot j
\end{aligned}
$$

PRACTICAL IMPACT

Nobody programs in lambda calculus; then again, nobody programs on a pure Turing machine, either. So, why should we learn about it? We study the basis of computation for at least two reasons:

1. By learning the underlying theory, we can understand the commonalities between different languages which implement the same paradigm. You may never have programmed in Haskell, Ocaml, or Phoenix - but because you know that they are based on the lambda calculus, you now also know that they must have first-class functions which are β-reducible. There are certain principles that are described in the introduction. By understanding lambda calculus, you also understand why these principles are a necessary part of functional programming; and you are in a much better position to understand certain features of other functional languages, such as lazy evaluation, without as much struggle.
2. Understanding the theory on a deep enough level will broaden your mind and make you capable enough to tackle larger and larger problems, and able to apply existing tools more creatively. In other words, a bit of reflection will go a long way towards making you a better programmer.

Answers

PAGE 7

1. It means that the value that the variable is linked to cannot be modified/updated/changed.
2. Expressions generate values. Statements do not.
3. A function is a value which accepts only one input and, when this is supplied, evaluates an expression to generate exactly one output.
4. A pure function has no side-effects, and will always generate the same output when given the same input.
5. (a) Yes. It will always generate the same result when given the same input, and it has no side-effects.
(b) No. It has the side-effect of writing something to the screen.
(c) No. It has the side-effect of modifying its parameter. The fact that modification of the parameter might not occur is irrelevant; the potential for it to occur is present.
(d) Yes. It will always generate the same result when given the same input. Although it modifies g and v during execution, this does not count as a side-effect because it is not externally observable, nor does it modify anything outside the function. Remember that ints are value-types, and changes made are therefore local to the method.
(e) Yes. It will always generate the same result when given the same input, and it has no side-effects.
6. A variable can be replaced by the value it holds at any point, without changing the meaning of the program. (or: a name, once linked to a value, will always have that value.)
7. A first-class function can be used in any context that a value can be used.
8. Referential transparency is about the unchangeability of the link between a name and a value; immutability is about the unchangeability of values.
9. Side effect.

Page 13

1. Any 3 of:

- Assignment can't fail, pattern-matching can.
- Pattern-matching doesn't necessarily bind any identifiers.
- Assignment makes a copy; binding doesn't.
- Re-bound identifiers are shadowed, not updated.

2. $a=b$
3. (a) let $a=" h i "$
"zoot"
(b) let b = "zoo"
"zooty" + b
(c) let $\mathrm{c}=7.5$
let $d=34$
$\mathrm{c}+0.2$
(d) let $\mathrm{e}=8$
let $\mathrm{f}=\mathrm{e}$
let $\mathrm{e}=20$
let $\mathrm{g}=3$
e+f+g
4. Pattern-matching determines whether a particular pattern and a particular value are compatible or not. Binding links an identifier with a value.
5. (a) No. The only way to bind to an identifier is via a pattern, and _ is the wildcard pattern which does not bind any identifier. Therefore, _ cannot be a valid identifier name.
(b) Yes.
(c) Yes. A^{\prime} in a name is legitimate.
(d) No. This is a string.
(e) Yes. Any sequence of characters within double-backticks is a valid identifier.
(f) No. An identifier cannot start with an @ character - unlike in C\#.
(g) No. An identifier cannot be a reserved word in the language.
(h) Yes. Any sequence of characters within double-backticks is a valid identifier.
6. A shadowed identifier continues to exist and remains linked to the same value that it was initially bound to. It cannot be accessed using the shadowed name within the scope of the shadowing. The value linked to an updated or mutated symbol is overwritten and the old value is lost.
7. Identifiers are bound to values, not to expressions. This means that r. Next() is evaluated once and the resulting value is bound to $v 1$. On the last line, $v 1$ is evaluated, and the resulting value is bound to v2. This why the values are always the same.
8. (a) C
(b) I
(c) O
(d) C
(e) C
(f) W
(g) C
(h) O
(i) I
(j) I
(k) C
(l) I
(m) O
(n) C
9. (a) \checkmark. Or pattern.
(b) \checkmark. Or pattern.
(c) x. The type expected by one of the alternatives in the or-pattern is not the same as the type expected by the other two alternatives.
(d) X. Both sides do not bind the same set of identifiers.
(e) $X . A^{\prime \prime}-$ sign in the middle of an identifier is not allowed.
(f) \checkmark. Identifier pattern.
(g) \boldsymbol{X}. A reserved word cannot be used as an identifier.
(h) X. An identifier cannot start with an apostrophe.
(i) X. Both sides do not bind the same set of variables.
(j) $\sqrt[\checkmark]{ }$ Identifier pattern.
(k) \checkmark. Identifier pattern. (look closely - it's two underscores, not one!)

PAGE 19

1. β-reduction is the process of substituting a function input with a value, resulting in a simpler expression.
2. (a) "hunter2 killer"
(b) (fun r-> $r>16$)
(c) 2
(d) fun () -> 12
(e) 7.5
(f) 7
(g) 19
(h) fun h-> "I see " $+h$
(i) fun h -> h "see dog"
3. (a) string $->$ string
(b) int -> int
(c) int -> int -> int
(d) int -> int -> int
(e) int -> float
(f) int -> unit -> int
(g) int -> (unit -> int) -> int
4. - let $k=$ fun $m t->t * 3$

- let $\mathrm{kmt}=\mathrm{t} * 3$

5. (a) Using a two-input operator before the operands instead of between the operands, by enclosing it in brackets.
(b) Currying is the technique of simulating a multi-parameter function by sequentially returning different single-parameter functions.
(c) A lambda function is a function that has not been bound to a name.

PAGE 25

1. (a) A match expression never compares values; it can only match patterns. The x is evaluated and results in the value 5 . We attempt to match this value to the pattern y; this succeeds and 5 is bound to y, shadowing the earlier binding of y . The corresponding expression $y+1$ is executed, resulting in the value 6. This value is the result of the match expression, and is bound to z.
(b) Code which binds an identifier, but doesn't use it, is more difficult to understand. It forces a programmer to use up some mental space to remember the binding. A wildcard pattern succeeds but doesn't bind anything, so there is no additional binding for the programmer to remember.
(c) match $x=y$ with
| true -> $y+1$
| _ -> 12
2. (a)-(b) let "hazmat" =

$$
\text { match } 901 \text { with }
$$

1201 -> "wut"
| kray -> "lol"
| 901 -> "hazmat"
(c) " $1 \mathrm{lol} "$
3. (a) 1.2
(b) 0.4
(c) No. F\# does not allow the mixing of different types, nor does it implicitly cast one type into another.
(d) No. An int constant pattern cannot be used to match against a float value.
4. (a) "evens"
(b) 1,3 or 5
(c) A MatchFailureException would occur.
5. (a) "Codd"
(b) No. Mapping function syntax only allows you to match on exactly the input that is passed in. You would be unable to use the \% operator to generate the value that needs to be matched.

Page 33

1. An accumulator solves the problem of having any relevant information, which is still useful for computing with, remaining in the previous stack frame and being lost in a tail recursive call.
2. The recursive function would continue to recurse forever, or (if it is not tail recursive) until it runs out of stack space or reaches the maximum function call depth.
3. This is a recursive call after which there is no work that remains to be done in the calling function.
4. (a) let numOdd start "end" =
let rec count $\mathrm{n}=$
match $\mathrm{n}>=$ '‘end"‘ with
| true -> 0
| _ ->
match n\%2=1 with
| true -> $1+$ count ($n+1$)
| _ -> count ($\mathrm{n}+1$)
count start
(b) let nextMul start $\mathrm{n}=$
let rec count $\mathrm{v}=$
match v\%n = 0 with
| false -> count ($\mathrm{v}+1$)
| _ -> v
count start
(c) let isPrime $\mathrm{n}=$
let rec check $v=$
match $v>1$ with
| false -> true
| _ ->
match n\%v=0 with | true -> false | _ -> check (v-1)
check ($\mathrm{n}-1$)

PAGE 41

1. (a), ,
(b) _, a, (_, (_, b))
(c) Yes.
(d) _, 3 and _
(e) _, 9.0,_,_ and b,_, (a,_)
2. 3,13
3. (a) bool * string -> int -> int
(b) bool -> string * int -> int
4. The unpacking of components of a data structure via pattern-matching of the data structure's structure, with the option to bind to selected values after a successful pattern-match.
5. (a) type $\mathrm{XYZ}=\{$

X : int
Y : int
Z : int
\}
(b) $\{Y=$ guyver $\}$
6. (a) Circle 100
(b) Rectangle (5, 8)
(c) Blob
(d) i. N
ii. Y
iii. Y
iv. N
v. Y. height is 5 , and size is 8 .
vi. WTF
vii. WTF
viii. WTF
ix. N
x. WTF
xi. WTF
xii. Y
xiii. N
7. type Seat $=$
| Unsold
| Sold of string
| VIP of int
8. (a) Full 50
(b) Full _, _ and Full empty
(c) \{ Name="Severus Snape"; Height=1.89 Drink="Pumpkin juice", Empty \}
(d) \{Name="Severus Snape"\},
\{Name=_\},
\{Name=n; Height=h; Drink=d\},
\{Height=h; Name=me\}, \{Drink=_\} and \{Drink=(s, Empty) \}
9. It allows the programmer to pass back some data that can help to diagnose or explain the error that has occurred.
10. type Variety $=$
| Ceylon | Rooibos | EarlGrey
type Strength =
| Weak | OK | Strong
type Heat $=$ Hot | Iced
type Spoons = Sugar of int
type Drink =
| Tea of Variety * Heat
| Coffee of Strength * Spoons * Heat
| Juice
11. (a) type Customer $=\{$

Name : string
CCN : string
\}
type Status =
| Unavailable of string
| Booked of string
| Available
| Occupied of Customer
type Room = \{
Number : int
Status : Status
\}
(b) \{ Number=11 Status=Booked "Frank Talk" \}
(c) let $\mathrm{n}=$ " $5555-4325-1836-0019$ " let cust = \{Name="Banksy"; CCN=n\} \{Number=16; Status=Occupied cust\}
(d) \{Number=909; Status=Available\}
(e) List.map (fun x-> match x.Status with | Available | Booked _ -> \{x with Status=Booked "Lord Voldemort"\} | _ -> x)

PAGE 49

1. (a) string -> string
(b) int -> int
(c) int -> int -> int
(d) 'a -> string
(e) int -> int -> int
(f) int -> float
(g) int -> unit -> int
(h) (string -> 'a) -> 'a
(i) int -> (unit -> int) -> int
2. (a) 'a * 'b*'c $\rightarrow{ }^{\prime} a *{ }^{\prime} c *{ }^{\prime} b *{ }^{\prime} a$
(b) (('a *int) * ('a *int) -> 'a *int) $->$ 'a * int -> 'a *int
3. Transform (_, "int")
4. (a) type Animal = \{

> Species : string

TagNo : int
LastSeen : float * float
Note : string option
\}
(b) \{ Species="Lion"

TagNo=9177
LastSeen=40.77,-73.97
Note=None \}
(c) let f $a=\{a$ with Note=Some "Extremely Dancerous"\}
(d) \{Species="Antelope"; TagNo=tagNo\}
5. type Option<'a> =
| Some of 'a
| None
6. defaultarg takes an 'a option and a 'a value. If the 'a option is None, then the provided 'a value is returned; otherwise, the value wrapped in the 'a option is returned.
7. let bind $a \mathrm{~b}=$
match b with
| Some x -> a x
| None -> None
8. (a) Nothing
(b) $\operatorname{Next}(4.22$,

Next(1.9,
Next(0.45, Nothing)))
(c) let rec map $f x=$
match x with
| Nothing -> Nothing
| Next(v,next) ->
Next (f v, map f next)
9. (a) The Op type requires a type parameter, and cannot be included without one. Consequently, any type that embeds an Op type must either be defined with such a type parameter that it then passes to Op, or it must pass a concrete type to $O p$ as its type parameter.
(b) i. Parseable<'a> -> Parseable<'a>
ii. Parseable<'a> -> Parseable<'b>
(c) The first function uses a copy-and-update expression. Such an expression will always return the same type that it is given. Newly generated records that do not use copy-andupdate are not subject to the same restriction.

Page 53

1. (a) $[1 ; 2 ; 2 ; 8]$
(b) $[2 ; 1 ; 2 ; 2 ; 8 ; 1 ; 2 ; 2 ; 8]$
(c) let beef = 1::crow::crow::8::[
2. (a) 7
(b) 5
(c) 6
(d) 0
3. k is 0 and m is [].
4. (a) $[4 ; 2]$
(b) $[14 ; 12]$
(c) A MatchFailureException is thrown; the pattern $\mathrm{a}:: \mathrm{b}:: \mathrm{c}:: \mathrm{r}$ does not match the input [14; 12].
5. (a) $[8 ; 2 ; 3]$
(b) $[4 ; 25]$
6. [[1.0];[];[6.0];[8.0;3.5]]
7. (a) char list -> char list
(b) (('a list * 'a list) -> 'a list) -> 'a list -> 'a list
(c) string -> string list
(d) int -> (int -> float) -> float
8. (a) Nothing bound
(b) hi is 5.3
(c) No match
(d) this is 5.3 ; is is "hi"; a is 9; bad is 9; test is [].
(e) No match. (the pattern is invalid!)
(f) so is 5.3 ; said is 9 ; i is 9 .
(g) No match
9. (a) _, $\mathrm{k}::_{-},,_{-},-$
(b) (_,six),_,_, ,e

10. (a) \{ Victims=["Jason";"Freddy"]

Age=16384; Where $=-33.69,26.68\}$
(b) i. N
ii. Y. a is 16384 .
iii. Y. g is $-33.69,26.68$
iv. Y. g is -33.69 , and h is 26.68 .
v. Y. k is ["Jason";"Freddy"].
vi. Y. j is "Jason", and f is "Freddy", and k is [].
vii. N
viii. Y. f is "Jason".
ix. Y
x. Y. j is "Jason", and f is "Freddy".
xi. Y. freddy is "Jason".
xii. Y. p is -33.69 , and q is 26.68 .
xiii. N
xiv. WTF
xv. WTF
xvi. Y
xvii. WTF
xviii. N
(c) A record pattern only needs to specify the fields which must match and/or the fields to which one wishes to bind identifiers; the other fields are not considered during the matching process. A wildcard pattern always succeeds, but never binds an identifier. Therefore, specifying a wildcard pattern for a field is always unnecessary; it has the same effect as not specifying that field at all.
(d) type Coordinate = \{

Lat : float
Long : float \}
type Kraken = \{
Victims : string list
Age : int
Where : Coordinate \}
(e) \{ Victims=["Jason";"Freddy"]

Age=16384
Where=\{Lat= -33.69; Long=26.68\}\}
(f) iv. \{ Where=\{Lat=g; Long=h\} \}
xii. $\{$ Age $=$ _; Where=\{Lat=p; Long=q\}\}
or: $\{$ Where=\{Lat=p; Long=q\}\}
11. (a) int -> int list -> int list
(b) float * 'a * float -> float * float
(c) ('a * string) list -> string option
(d) float * 'a * float -> unit -> float * float
(e) float * float -> float * float
(f) 'a * 'b -> 'b * 'a
(g) 'a * 'b -> 'a * 'b
12. Some n, [_;_], _, _, _::_::_, k and _

Page 59

1. choose is only interested in the successful case (0K, in the case of the Either<' a, 'b> type), so it has no need for any diagnostic information that would be passed back with the diagnostic case. Therefore, the Option type would be a semantically superior choice for this operation.
2. (a) fold
(b) filter
(c) map
(d) exists
(e) init
(f) partition
(g) fold
(h) mapi
(i) iter
(j) exists
(k) fold
(l) map
3. Like scan, but returns a list of the intermediate outputs as well.
4. It will fail when the list is empty. In this case, there is no possible way that the function can generate a 'a value.

Page 63

1. Type inference is the process of determining the type of an identifier based on the context and content of surrounding code.
2. (a) 'a -> 'b -> 'c -> string
(b) float -> float -> float
(c) bool -> 'a -> string
(d) 'a -> 'a
(e) (int -> float) -> int -> string
(f) (string -> bool) -> float -> bool
(g) ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b
(h) 'a -> ('a -> 'b) -> 'b
(i) 'a -> ('a -> string -> 'b) -> 'b
(j) char -> (int -> int)
(k) (unit -> unit) -> unit
(l) char -> (int -> int) -> ('a -> string)
(m) 'a -> string
(n) (string -> 'a) -> 'a
3. (a) Closure
(b) Higher-order function
(c) Curried functions
4. (a) let $\log \mathrm{s} f=$
printfn "\%s" s f ()
(b) log "Flying now" (fun () -> fly 300 12.4)
(c) The only way in which the log function can affect the computation is by altering the output of the function that it is passed. However, the only place that log can obtain an 'a value is via the function; and log returns an 'a value as well. There is no modification operation which can operate on a parametrically polymorphic type, and therefore the log function has no choice but to pass the output of the passed function onwards unchanged.

[^0]: ${ }^{1}$ We assume, of course, that the identifiers are referentially transparent, and that the linked values are immutable!

[^1]: ${ }^{1}$ Other basic types such as byte exist, but won't be used here.
 ${ }^{2}$ For example, it cannot start with a digit

[^2]: ${ }^{3}$ Later on, you will learn about the rec keyword which lifts this restriction.

[^3]: ${ }^{4}$ Sometimes called a \mathbf{Q} variable pattern

[^4]: ${ }^{1}$ This is exactly the same definition of a function that you saw on page 5

[^5]: ${ }^{2}$ Another way of phrasing it is that function application has a very high precedence. For a full precedence table, go to https://goo.gl/pFdKNs

[^6]: ${ }^{3}$ The technique is named after the mathematician Haskell Curry, not after the delicious food. Interestingly, Curry rediscovered the technique; it was initially discovered by Moses Schönfinkel, and possibly earlier by Friedrich Frege. We will nevertheless continue to call it "currying", not "schönfinkeling" or "fregeing".

[^7]: ${ }^{c}$ http://bit.ly/2SukqAU

[^8]: ${ }^{4}$ If you know a bit of mathematics, you might recognize this as the composition of two functions - hence the name of the operator.

[^9]: ${ }^{1} \mathrm{~F}^{\#}$ also supports an if statement and when guards; we won't be using these.

[^10]: ${ }^{1}$ This belief is incorrect. Functional programming can be done by the sane and the insane.

[^11]: ${ }^{1}$ Yes, I know that there are five states of matter. No, I'm not going to include the other two.

[^12]: ${ }^{1}$ This is valid PHP 7.0 .3 code.
 ${ }^{2}$ Remember: each branch of a match expression must result in the same type of value.

[^13]: ${ }^{3}$ If you are interested in the exact details of this process, look up Hindley-Milner type inference.

[^14]: ${ }^{1}$ If you recall the differences between linked lists and arrays, you might think that this makes functional lists "slow" or that it makes them space-inefficient. In fact, functional lists can be surprisingly performant and space-efficient; as with many things in Computer Science, a lot of the magic is in the implementation! See, for example, the following paper: Bagwell, P., 2002, September. Fast functional lists. In Symposium on Implementation and Application of Functional Languages (pp.34-50). Springer, Berlin, Heidelberg.

[^15]: ${ }^{1}$ This not as expensive as it sounds because modern functional languages find ways to share common data between structures.

[^16]: ${ }^{2}$ https://en.wikipedia.org/wiki/2-3_tree

