

Ruby Web Dev: The Other Way
Personal best practices guide

Ievgen Kuzminov

This book is for sale at http://leanpub.com/rwdtow

This version was published on 2016-08-02

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 Ievgen Kuzminov

http://leanpub.com/rwdtow
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help Ievgen Kuzminov by spreading the word about this book on Twitter!

The suggested hashtag for this book is #rwdtow.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#rwdtow

http://twitter.com
https://twitter.com/search?q=%23rwdtow
https://twitter.com/search?q=%23rwdtow

Thanks to my Ruby team in MobiDev, you inspire me and suffer from all my new “bright ideas”!

http://mobidev.biz/

Contents

Intro . 1
Why not “Ruby On Rails” and not “The Right Way”? . 1
Damaged ecosystem . 1
Manifesto . 2
You can help here . 2

My Dream Stack . 3

Ground knowledge . 4
Web . 4
Linux . 4
IDE . 5

Gems . 6

Ruby on Rails . 7
Confusing environments . 7
You don’t need ActiveRecord for every kind of model . 7
Before filter/action . 8
HTML helpers. Decorators. 9
ActiveJob and business logic . 11

Alternative frameworks . 12
Full-featured . 12

Hanami.rb . 12
Specialized . 12

Grape . 12
Mini . 12

Architecture . 14
Trailblazer . 15
ROM.rb (Ruby Object Mapper) . 17
dry-rb . 18
Rectify . 18
Learn OOP design . 20

CONTENTS

Dependency Injection and IoC containers . 21

The magical world of Metaprogramming . 23

Mixin/Module include - it is not composition . 24

Document your code . 25

Debug . 26

SQL . 27

Tests . 29
Unit tests . 29
Test Behavior, not Configuration . 31
Integration tests . 32
Test data: Fixtures vs Factories . 33
Stub external services call . 33
Speed-up test . 34
Learn Tests Design . 34

Authentication & Authorization . 35

Know your App Server! . 37

Know your CLI! . 38

Admin . 39

Templates . 40

Cache . 41
Static content . 41
Dynamic content . 41
Nginx page microcache . 41
Application level key-value cache . 41

Fulltext search . 43

Style guide and style checker . 44

Frontend . 45
HTML / CSS . 45
JavaScript . 45

jQuery . 45
Debug JavaScript . 45
Server-side rendered JS . 45

CONTENTS

Modern JavaScript . 45

Performance . 46
Benchmarks . 46

Deployment and Server . 47
VPS, Dedicated server . 47
PaaS . 47
CI . 47
DevOps . 47
Local development . 48
Local tunnels. Exposing dev env in the Internet . 48
Protect non-production servers with HTTP Auth . 48

Web Application Security . 49

Stay open-minded, stay hungry! . 50

Community . 51

Follow great Ruby developers . 52

Books . 53

Intro
This guide is born from the question: “could you write a list of all the things that a good Ruby on
Rails developer should know?” I decided to expand it to the whole of Ruby web development, and
related “full stack” skills, but also limit it to the web, as it is not about Ruby in general.

This guide contains sections dedicated to very important aspects of web development, explanation
(if needed), and lists of tutorial links. The format and advice is inspired by “PHP The Right Way”¹.

Sometimes I will suggest tools or gems (with comparison if possible), but these are merely
suggestions to get you started. It is up to you, the reader, to decide whether you would like to
use them or not.

Important notice: All suggestions in this guide are my personal opinion. They do not
represent absolute truth or generally-accepted best practices. My goal is simply to make
suggestions based on my experience.

This guide is not a complete tutorial. Clear steps like installing Ruby (via rbenv or rvm),
managing dependencies via Bundler, etc., are not described due to the wide coverage
of these topics in other tutorials. If I do not mention a particular topic, that means I am
not aware of any specific issues with it. If it works for you, then it’s fine.

Why not “Ruby On Rails” and not “The Right Way”?

I am glad you are asking! :)

It is no secret that most Rubyweb developers are introduced to Ruby via Rails. This is a double-edged
sword. It lowers the barrier to entry, but it also narrows the range of knowledge. This guide contains
a special Ruby on Rails section to cover Rails-specific things, and hopefully it will encourage you to
look outside of Rails and the “Rails Way.” I can’t call the approach described here “The Right Way,”
as it is just another way to look at Ruby web development.

Damaged ecosystem

The main issue, that forced me to start writing, is unconscious feeling, that something is not perfect
with the Rails Way. Attempts to change the behavior or add more structure had no luck. When you
introduce a new part into your Rails app - it results in a tension and even active resistance (of the
codebase and teammates).

¹http://www.phptherightway.com/

1

http://www.phptherightway.com/
http://www.phptherightway.com/

Intro 2

The whole eco-system is deeply damaged by Rails in terms of code and mindset of developers. And
yes there are no real competitors, only because of Rails is so huge in the room of Ruby, that it requires
enormous forces to rise a competitor.

It results in no pluralism of ideas, no real code reusability, as most gems are made solely for Rails
(and it is the real pain to customize them). Exactly because of this “it is so hard to write Ruby web
app without Rails”.

This guide is an attempt to describe the way to build the web app with a real understanding of
each component, with knowledge that is relevant in any web language and framework. To become
a better web developer and demand for a better ecosystem!

Manifesto

• prefer simple solutions
• configuration over confusion
• boilerplate over magic

You can help here

I am open to questions, suggestions, and critique based on the contents of this guide.

You can participate by opening a discussion issue on GitHub² or joining the Gitter chat³.

I am not a native English speaker, so the verbiage here may be far from perfect. Please contribute
with your proofreading and typographical fixes via pull requests in GitHub.

Share this guide if you consider it useful. Please use the #RWDTOW hashtag on social media.

²https://github.com/iJackUA/rwdtow/issues/new
³https://gitter.im/iJackUA/rwdtow

https://github.com/iJackUA/rwdtow/issues/new
https://gitter.im/iJackUA/rwdtow
https://github.com/iJackUA/rwdtow/issues/new
https://gitter.im/iJackUA/rwdtow

My Dream Stack
Before I start with any detailed descriptions, let us have a brief look at the “ideal” Ruby web
application stack that I am trying to achieve in my work. Not everything is available yet, but “viam
supervadet vadens” â€“ a journey of a thousand miles begins with a single step.

• Linux based OS with RubyMine IDE
• PostgreSQL DB and Redis cache
• Hanami.rb framework, to have a full-featured framework with as little magic as possible
• Trailblazer to organize business logic and reusable widgets, plus handle JSONAPI conversions
• Dependency injection in Ruby code
• Minitest and Capybara for testing, with clear OOP approaches instead of a DSL
• Vue.js + ES6/WebPack for rich JavaScript pages
• Docker for local development and production deployment

3

Ground knowledge
Web

It is a shame that many developers do not understand the fundamentals of web development. We are
creating web apps without even knowing how the Internet (or the web) works. That is why junior
developers do not understand where params come from, and the difference between HTTP request
methods. Unfortunately, this lays the groundwork for reliance upon “magic.”

• Mozilla: How the Web works⁴
• What really happens when you navigate to a URL⁵
• What is HTTP⁶

If you feel confident in your basic web knowledge and want to dive deeper in all aspects, read the
free ebook High-Performance Browser Networking⁷.

This book provides a hands-on overview of what every web developer needs to know
about the various types of networks (WiFi, 3G/4G), transport protocols (UDP, TCP,
and TLS), application protocols (HTTP/1.1, HTTP/2), and APIs available in the browser
(XHR, WebSocket, WebRTC, and more) to deliver the best—fast, reliable, and resilient—
user experience.

• High-Performance Browser Networking by Ilya Grigorik⁸

Linux

A lot of us come to web development with Windows desktops. But even if Ruby can be installed on
Windows, I recommend using a Linux machine for Ruby development – either a real desktop OS
setup, or a virtual machine – because the world of web servers (VPS) is all about Linux. You must
have a good understanding of Linux to do basic performance tuning and advanced web server setup
for your applications in production. This requires being familiar with at least one Linux distribution
– Ubuntu, for example, or one of the other top 10 distros.

⁴https://developer.mozilla.org/en-US/Learn/Getting_started_with_the_web/How_the_Web_works
⁵http://igoro.com/archive/what-really-happens-when-you-navigate-to-a-url/
⁶http://www.jmarshall.com/easy/http/
⁷https://hpbn.co/
⁸https://hpbn.co/

4

https://developer.mozilla.org/en-US/Learn/Getting_started_with_the_web/How_the_Web_works
http://igoro.com/archive/what-really-happens-when-you-navigate-to-a-url/
http://www.jmarshall.com/easy/http/
https://hpbn.co/
https://hpbn.co/
https://developer.mozilla.org/en-US/Learn/Getting_started_with_the_web/How_the_Web_works
http://igoro.com/archive/what-really-happens-when-you-navigate-to-a-url/
http://www.jmarshall.com/easy/http/
https://hpbn.co/
https://hpbn.co/

Ground knowledge 5

• Ubuntu⁹
• DistroWatch TOP¹⁰

IDE

You can write Ruby code in any text editor, but using a more sophisticated IDE increases
productivity.

Editors like SublimeText and Atom require some additional plugin setup

The most full-featured IDE is RubyMine, but it is not free. Due to the dynamic nature of Ruby, it
is hard for IDEs to do correct autocompletion most of the time. This is why RubyMine is not as
powerful as similar IDEs for other languages, but it still provides quite a lot of additional integrated
tools.

• RubyMine¹¹
• SublimeText¹²
• Atom¹³
• NetBeans¹⁴

⁹http://www.ubuntu.com/
¹⁰http://distrowatch.com/dwres.php?resource=popularity
¹¹https://www.jetbrains.com/ruby/index.html
¹²https://www.sublimetext.com/
¹³https://atom.io/
¹⁴https://netbeans.org/features/ruby/index.html

http://www.ubuntu.com/
http://distrowatch.com/dwres.php?resource=popularity
https://www.jetbrains.com/ruby/index.html
https://www.sublimetext.com/
https://atom.io/
https://netbeans.org/features/ruby/index.html
http://www.ubuntu.com/
http://distrowatch.com/dwres.php?resource=popularity
https://www.jetbrains.com/ruby/index.html
https://www.sublimetext.com/
https://atom.io/
https://netbeans.org/features/ruby/index.html

Gems
Before adding any utility gem to the project, try to search for alternatives, and be sure that you
chose a minimal solution â€“ one that still has developer support and a community contributing to
it. It is also useful to browse through curated “awesome” lists.

• The Ruby Toolbox¹⁵
• Curated Awesome Ruby List¹⁶

Be aware! Don’t be gem obsessed!Most of the time, you can write the code on your own, without
any gems. Your own code is much easier to customize, polish, and build into your architecture. It
does only what it is supposed to do, with no ballast.

If you do decide to use a gem, look at the code inside it and try to understand what it does, and how
it is implemented. A lot of gem links provided in this guide show you the most popular solution
(which is usually not the simplest solution) and examples of simpler, better solutions for the topic.
Investigating other people’s open source code gives you a few advantages:

• you can learn how to do something from other good coders
• you don’t need documentation for the gem (if the code is clear), as you can see the public
interface and usage logic

• or you discover that the gem is so bad and unoptimized that you definitely need to throw it
away, and write your own implementation (and you already know at least one way NOT to
do it)

¹⁵http://www.ruby-toolbox.com/
¹⁶http://awesome-ruby.com/

6

http://www.ruby-toolbox.com/
http://awesome-ruby.com/
http://www.ruby-toolbox.com/
http://awesome-ruby.com/

Ruby on Rails
Most Rails developers do not write object-oriented Ruby code. They write MVC-
oriented Ruby code by putting models and controllers in the expected locations. Most
will add utility modules with class-methods in lib/, but that’s it. It takes 2-3 years before
developers realize: “Rails is just Ruby. I can create simple objects and compose them in
ways that Rails does not explicitly endorse!” – Mike Perham¹⁷

RoR is a good starting point for a youngweb developer, but it is important that our education does not
end there. Learn to separate what is pure Ruby and what is Rails. Correctly recognize architectural
and design issues that appear in your app, and that most of these issues are caused by misusing
oversimplified approaches from Rails.

TODO: Add more points to be aware of in Rails

Confusing environments

Rails comes with the following ways to alter config according to the environment:

• Environment initializers (in the config/environments folder)
• YAML inheritance
• ENV variables
• Or you can replace config files on deploy

Often, all of these approaches are mixed without any separation or consideration. They can usually
all be replaced by ENV vars that change the value of primitive configs and env initializers, to make
bigger structural changes in initialization flow.

You don’t need ActiveRecord for every kind of model

What Rails teaches you first is to model data with AR classes, and that works great while you are
following “The RailsWay.” Unfortunately, that teaches us to think that model structure is inseparable
from the persistence layer (literally from the DB table structure).

That causes issues:

¹⁷https://www.mikeperham.com/2012/05/05/five-common-rails-mistakes/

7

https://www.mikeperham.com/2012/05/05/five-common-rails-mistakes/
https://www.mikeperham.com/2012/05/05/five-common-rails-mistakes/

Ruby on Rails 8

• All data that is not saved to the DB flows into the app as primitive data structures (e.g. Array
of Hashes).

• There is a tendency to structure data in a way that is easy to map into a relational DB, rather
than a way that clearly reflects the business logic.

• Anything that is not an AR class is put into the lib folder.

It is an open secret: even a PORO can be a model, if it encapsulates the data and actions of an entity.
Models are not required to have find and save actions (those are merely the Active Record pattern.
Recognize it!). You can, and ideally should, separate models as data containers from other classes
that handle persistence. It does not matter whether we get/save it via a DB, or get/send it via a REST
API.

Before filter/action

The main purpose of the before_action hook is to authorize the call to the action – literally, to
decide to allow this user to run the action or not. But often we can find “pre-population” code like
this:

1 before_filter :find_item, only: [:update, :show, :edit]

2 before_action :authenticate_user!

3

4 def show

5 end

6

7 private

8 def find_item

9 @item = Item.find(params[:id])

10 end

Firstly, there is no difference between before_filter and before_action. They are aliases, and
before_filter is deprecated in Rails 5.0.

Secondly, do you think this is DRY? No. It is misleading when you forget what @variables are
available in what actions/views. Be explicit in such cases:

Ruby on Rails 9

1 before_action :authenticate_user!

2

3 def show

4 @item = find_item(params[:id])

5 end

6

7 private

8 def find_item(id)

9 Item.find(id)

10 end

This does not violate the DRY principle, even if you repeat the find_item call 10 times in different
actions.

HTML helpers. Decorators.

This is the first place where young RoR developers put their view helper code. It is fine to do things
like this, in the very beginning.

1 module ApplicationHelper

2 def page_title(title)

3 title += " | " if title.present?

4 title += "My Site"

5 end

6 end

Unfortunately, helpers become overcomplicated very quickly with:

• a lot of semi-domain logic
• mixed responsibilities
• being included into controllers (because you also want to do some semi-domain logic in
controller)

• a lot of HTML concatenation

I almost consider global view helpers as an antipattern which leads to messy code. The solution is
to apply the Decorator pattern approach, with view helpers encapsulated in specialized Decorator
classes, and helpers that generate a lot of HTML using partials with ERB instead of HTML string
concatenation.

A Decorator could be as simple as this:

Ruby on Rails 10

1 class Coffee

2 def cost

3 2

4 end

5

6 def origin

7 "Colombia"

8 end

9 end

10

11 require 'delegate'

12

13 class Decorator < SimpleDelegator

14 def class

15 __getobj__.class

16 end

17 end

18

19 class Sugar < Decorator

20 def cost

21 super + 0.2

22 end

23 end

24

25 class Milk < Decorator

26 def cost

27 super + 0.4

28 end

29 end

30

31 coffee = Coffee.new

32 Sugar.new(Milk.new(coffee)).cost # 2.6

33 Sugar.new(Sugar.new(coffee)).cost # 2.4

34 Milk.new(coffee).origin # Colombia

35 Sugar.new(Milk.new(coffee)).class # Coffee

Or it could be something more sophisticated, like the functionality provided in the Drapper or
Disposable::Twin gems.

• Evaluating Alternative Decorator Implementations In Ruby¹⁸

¹⁸https://robots.thoughtbot.com/evaluating-alternative-decorator-implementations-in

https://robots.thoughtbot.com/evaluating-alternative-decorator-implementations-in
https://robots.thoughtbot.com/evaluating-alternative-decorator-implementations-in

Ruby on Rails 11

• Gem: Draper¹⁹
• Gem: Disposable²⁰

ActiveJob and business logic

ActiveJob is a very convenient tool, but it is very easy to write unmaintainable code with it. When
you put your actual Job logic inside process method it is very hard to test this logic and impossible
to reuse without the ActiveJob context.

The main idea that is hidden behind ActiveJob - it is an application-framework boundary, where
the framework got data from to “external world” and transfer these data to you application code.
It should follow the same rules as the controller does. If you follow the idea of “skinny controller”,
you should also apply the “skinny job” principle. It should not contain SQL queries or business logic
manipulations inside but just call to model or operation object.

Look at the following similarities of ActiveJob::process and Controller::[action_name] classes:

• it is the first entry point where your code naturally “gets the wheel” and where you can do
all the manipulations

• this method receives parameters from the “outside worlds”
• Browser and Job queue - are representatives of the “outside world”
• controller and job classes do parsing and unification of params for your code

Your job should like as simple as that

1 class BigComplexJob < ApplicationJob

2 queue_as :default

3

4 def perform(*params)

5 MyComplexLogicClass.do_a_lot_of_work(params)

6 end

7 end

And you cover MyComplexLogicClasswith simple Unit tests with thewhole set of params conditions.

Another aspect is a job queue backend. Delayed Job seems to be a good starting point as it does not
require additional infrastructure, just a database. But it quickly became a bottleneck if you have a
lot of quick jobs. Redis (im-memory storage) based solutions should be used as more reliable and
performant alternatives: Resque²¹ or Sidekiq²².

¹⁹https://github.com/drapergem/draper
²⁰https://github.com/apotonick/disposable
²¹https://github.com/resque/resque
²²http://sidekiq.org/

https://github.com/drapergem/draper
https://github.com/apotonick/disposable
https://github.com/resque/resque
http://sidekiq.org/
https://github.com/drapergem/draper
https://github.com/apotonick/disposable
https://github.com/resque/resque
http://sidekiq.org/

Alternative frameworks
The Ruby ecosystem does not end at Ruby on Rails. There are a number of alternative frameworks
which excel in different areas or provide a more lightweight way to build web apps. Here are some
of the most notable:

Full-featured

Hanami.rb

Hanami proposes a cleaner approach with less metaprogramming than Rails. Some interesting
architectural decisions are: multi-app architecture with shared parts (that delays and simplifies
the decision to break your app into smaller parts), data mapper/entity-repository approach for the
persistence layer, separated actions, explicit exposition of variables for views, and more.

• What is Hanami? Where is it going?²³

Specialized

Grape

Grape is an opinionated framework for creating REST-like APIs in Ruby. It has built-in support for
common conventions, including: multiple formats, subdomain/prefix restriction, content negotia-
tion, versioning, and much more. All these elements are described via a simple DSL.

Mini

The Mini framework focuses on providing a web request routing layer and leaves everything else
to us. All Ruby web frameworks support, or are based on, Rack - a minimal interface for Ruby
webservers, which standardizes how web requests are handled. Rack allows us to create a chain
of “middlewares” (small specific handlers) that give us many basic things such as variable parsing,
cookie and session management, etc â€“ things that we tend to consider as a “given.”

• dry-web²⁴

²³https://discuss.hanamirb.org/t/what-is-hanami-where-is-it-going/222
²⁴https://github.com/dry-rb/dry-web

12

http://hanamirb.org/
https://discuss.hanamirb.org/t/what-is-hanami-where-is-it-going/222
http://www.ruby-grape.org/
https://github.com/dry-rb/dry-web
https://discuss.hanamirb.org/t/what-is-hanami-where-is-it-going/222
https://github.com/dry-rb/dry-web

Alternative frameworks 13

• Padrino²⁵
• Rack²⁶
• Roda²⁷
• Sinatra²⁸

²⁵http://padrinorb.com/
²⁶http://rack.github.io/
²⁷http://roda.jeremyevans.net
²⁸http://www.sinatrarb.com/

http://padrinorb.com/
http://rack.github.io/
http://roda.jeremyevans.net/
http://www.sinatrarb.com/
http://padrinorb.com/
http://rack.github.io/
http://roda.jeremyevans.net/
http://www.sinatrarb.com/

Architecture
MVC is not an app architecture. This may not be obvious due to the reign ofMVC-based frameworks,
which teach us to use routing +model + view rendering as the way to build web apps. Unfortunately,
business logic has no place in this list.

The “fat model, skinny controller” approach does not solve the issue either. It just sweeps the dust
under the carpet, and you will still suffer from fat models used in numerous contexts. Changing
code for one usage context will break another usage context.

As a general rule in OOP code, you should break code into smaller classes with smaller responsibil-
ities. Ideally, this code should follow SOLID principles (Single Responsibility, Open-Closed, Liskov
Substitution, Interface Segregation, and Dependency Inversion).

In the book “Practical Object-Oriented Design in Ruby: An Agile Primer,” Sandi Metz proposes that
just being SOLID is not enough – code should also be TRUE.

If you define easy to change as

• Changes have no unexpected side effects
• Small changes in requirements require correspondingly small changes in code
• Existing code is easy to reuse
• The easiest way to make a change is to add code that in itself is easy to change.

Then the code you write should have the following qualities. Code should be

• Transparent - The consequences of change should be obvious in the code that is
changing, and in the distant code that relies upon it.

• Reasonable - The cost of any change should be proportional to the benefits the
change achieves.

• Usable - Existing code should be usable in new and unexpected contexts.
• Exemplary - The code itself should encourage those who change it to perpetuate
these qualities.

TODO: Describe approaches like Form Model, Service Object, Context

• Gem: Active Interaction²⁹
• SOLID Design Principles³⁰

²⁹https://github.com/orgsync/active_interaction
³⁰https://www.practicingruby.com/articles/solid-design-principles

14

https://github.com/orgsync/active_interaction
https://www.practicingruby.com/articles/solid-design-principles
https://github.com/orgsync/active_interaction
https://www.practicingruby.com/articles/solid-design-principles

Architecture 15

Trailblazer

Trailblazer is a powerful architectural framework. It can be used with any Ruby web framework,
and has special adapters for Rails. It provides the missing pieces to organize business logic.

• Operations are composable entities that encapsulate an action with a context, validations, and
permission checks. Almost everything you would normally write in the controller should be
placed here.

• Active Record models are only used for simple finding, saving, and managing relations. They
are limited to a single responsibility: data persistence operations.

• Forms are provided per operation, unbound from the single context of a Fat Model.
• Cells are small, encapsulated pieces of reusable view logic. They replace messy app helpers.
• Representers describe presentation rules for serializing and deserializing documents. These
are used in a variety of places, from the internal parameter representation of Operations to
the representation of data in a JSON API.

Operation example

1 # CRUD action Operation

2 class Comment::Create < Trailblazer::Operation

3 include Model

4 model Comment, :create

5

6 contract do

7 property :body, validates: {presence: true}

8 end

9

10 def process(params)

11 validate(params[:comment]) do

12 contract.save

13 end

14 end

15 end

16

17 # Run Operation

18 op = Comment::Create.(comment: {body: "MVC is so 90s."})

19 # Get a Model from it

20 model = op.model

Cell example

http://trailblazer.to/

Architecture 16

1 #Cell class

2 class Comment::Cell < Cell::ViewModel

3 property :body

4 property :author

5

6 def show

7 render

8 end

9

10 private

11 def author_link

12 link_to author.email, author_path(author)

13 end

14 end

15

16 # Template

17 - # app/concepts/comment/views/show.haml

18 %li

19 = body

20 By #{author_link}

21

22 # Testing

23 describe Comment::Cell do

24 it do

25 html = concept("comment/cell", Comment.find(1)).()

26 expect(html).to have_css("h1")

27 end

28 end

Representable example

1 # Class

2 class SongRepresenter < Representable::Decorator

3 include Representable::JSON

4

5 property :id

6 property :title

7

8 property :artist, decorator: ArtistRepresenter

9 end

10

11 # Serialize

Architecture 17

12 SongRepresenter.new(song).to_json

13 #=> {"id": 1, title":"Fallout", artist:{"id":2, "name":"The Police"}}

14

15 # Restore object

16 song = Song.new # nothing set.

17

18 SongRepresenter.new(song).

19 from_json('{"id":1,title":"Fallout",artist:{"id":2,"name":"The Police"}}')

20

21 song.artist.name #=> "The Police"

Trailblazer (#Trbr) concepts are somewhat difficult to understand and use properly at first, but they
definitely make more and more sense as you become familiar with them. It is very hard to describe
the whole Trailblazer philosophy in a short text. Nick Sutterer, the author of Trbr, has quite a lot of
documentation with detailed descriptions, and has written a book that covers building a Rails app
with Trbr, step-by-step.

It is definitely worth a try if you want to start making your Ruby apps better.

• Trailblazer³¹
• Trailblazer Book³²

ROM.rb (Ruby Object Mapper)

Ruby Object Mapper (ROM) is a Ruby persistence library with the goal of providing powerful object
mapping capabilities without limiting the full power of your datastore.

• Isolate the application from persistence details
• Provide minimum infrastructure for mapping and persistence
• Provide shared abstractions for lower-level components
• Provide simple use of the underlying datastore when desired

All ROM components are stand-alone – they are loosely coupled, can be used independently, and
follow the single responsibility principle. A single object that handles coercion, state, persistence,
validation, and the all-important business logic, rapidly becomes complex. Instead, ROM provides
the infrastructure that allows you to easily create small, dedicated classes for handling each concern
individually, and then tie them together in a developer-friendly way.

³¹http://trailblazer.to
³²https://leanpub.com/trailblazer

http://trailblazer.to/
https://leanpub.com/trailblazer
http://rom-rb.org/
http://trailblazer.to/
https://leanpub.com/trailblazer

Architecture 18

1 TODO: ROM example

• rom-rb³³

dry-rb

Dry-rb Is a collection of next-generation Ruby libraries, each intended to encapsulate a common
task while remaining decoupled and reusable.

TODO: Add extended dry-rb gems description

• dry-rb³⁴
• list of all dry gems³⁵

Rectify

The Rectify gem provides some lightweight classes that make it easier to build Rails applications in
a more maintainable way. It is built on top of several other gems and adds improved APIs to make
things easier.

Currently, Rectify consists of the following concepts:

• Form Objects
• Commands
• Presenters
• Query Objects

You can use these separately or together, to improve the structure of your Rails applications.

The main problem that Rectify tries to solve is where your logic should go. Commonly, business
logic is either placed in the controller or the model, and the views are filled with too much logic as
well. The opinion of Rectify is that these places are incorrect and that your models, in particular, are
doing too much.

Rectify’s opinion is that controllers should just be concerned with HTTP related things, and models
should just be concerned with data relationships. The problem then becomes how and where you
implement validations, queries, and other business logic.

Using Rectify, Form Objects contain validations and represent the input data of your system.
Commands then take a Form Object (as well as other data) and perform a single action, which is
invoked by a controller. Query objects encapsulate a single database query, and any logic it needs.

³³http://rom-rb.org/
³⁴http://dry-rb.org/
³⁵http://dry-rb.org/gems/

http://rom-rb.org/
http://dry-rb.org/
http://dry-rb.org/
http://dry-rb.org/gems/
https://github.com/andypike/rectify
http://rom-rb.org/
http://dry-rb.org/
http://dry-rb.org/gems/

Architecture 19

Presenters contain the presentation logic in a way that is easily testable, and keeps your views as
clean as possible.

Rectify is designed to be very lightweight and allows you to use some or all of its components. We
also advise that you use these components where they make sense, not just blindly everywhere.
More on that later.

Here is an example controller that shows details about a user, and also allows a user to register an
account. This creates a user, sends some emails, does some special auditing, and integrates with a
third party system:

1 class UserController < ApplicationController

2 include Rectify::ControllerHelpers

3

4 def show

5 present UserDetailsPresenter.new(:user => current_user)

6 end

7

8 def new

9 @form = RegistrationForm.new

10 end

11

12 def create

13 @form = RegistrationForm.from_params(params)

14

15 RegisterAccount.call(@form) do

16 on(:ok) { redirect_to dashboard_path }

17 on(:invalid) { render :new }

18 on(:already_registered) { redirect_to login_path }

19 end

20 end

21 end

The RegistrationForm Form Object encapsulates the relevant data that is required for the action,
and the RegisterAccount Command encapsulates the business logic of registering a new account.
The controller is clean, and business logic now has a natural home:

Architecture 20

1 HTTP => Controller (redirecting, rendering, etc)

2 Data Input => Form Object (validation, acceptable input)

3 Business Logic => Command (logic for a specific use case)

4 Data Persistence => Model (relationships between models)

5 Data Access => Query Object (database queries)

6 View Logic => Presenter (formatting data)

Learn OOP design

By learning to design small pieces – objects, in OOP – and put them together, you automatically
learn how to make good app architecture overall. There is no a magical library that will suddenly
make your code better. Good code comes from the combination of many tiny aspects.

• Video: SOLID Object-Oriented Design by Sandi Metz³⁶
• Video: All the Little Things by Sandi Metz³⁷
• Video: Nothing is Something by Sandi Metz³⁸
• Video: Therapeutic Refactoring by Katrina Owen³⁹
• Video: Overkill by Katrina Owen⁴⁰
• Book: Objects on Rails by Avdi Grimm⁴¹
• Book: Practical Object-Oriented Design in Ruby (POODR) by Sandi Metz⁴²

³⁶https://www.youtube.com/watch?v=v-2yFMzxqwU
³⁷https://www.youtube.com/watch?v=8bZh5LMaSmE
³⁸https://www.youtube.com/watch?v=9lv2lBq6x4A
³⁹https://www.youtube.com/watch?v=J4dlF0kcThQ
⁴⁰https://www.youtube.com/watch?v=GWEEPt8VvmU
⁴¹http://objectsonrails.com/
⁴²http://www.poodr.com/

https://www.youtube.com/watch?v=v-2yFMzxqwU
https://www.youtube.com/watch?v=8bZh5LMaSmE
https://www.youtube.com/watch?v=9lv2lBq6x4A
https://www.youtube.com/watch?v=J4dlF0kcThQ
https://www.youtube.com/watch?v=GWEEPt8VvmU
http://objectsonrails.com/
http://www.poodr.com/
https://www.youtube.com/watch?v=v-2yFMzxqwU
https://www.youtube.com/watch?v=8bZh5LMaSmE
https://www.youtube.com/watch?v=9lv2lBq6x4A
https://www.youtube.com/watch?v=J4dlF0kcThQ
https://www.youtube.com/watch?v=GWEEPt8VvmU
http://objectsonrails.com/
http://www.poodr.com/

Dependency Injection and IoC
containers
This technique is widely used in many programming languages, from Java to PHP and JavaScript.
In brief, it removes direct dependencies from your classes, replacing them with dependencies
upon abstractions instead. Concrete instances of the abstractions are “injected” in the initializer
as parameters. This is Inversion of Control â€“ objects do not instantiate their own dependencies,
the dependencies are provided from the outside. Alas, it can be very messy handling all the injected
dependencies manually, especially when you have a cascade of dependencies. An IoC Container
is that mysterious “someone” who instantiates all objects in the app. It uses class annotations to
instantiate the correct dependencies to inject. The concrete classes for each abstraction are often
specified in the IoC config. Interfaces are natural abstraction identifiers, in languages that support
them, but Ruby does not have interfaces. That is why dependency-injected classes require a synthetic
dependency specification in Ruby.

Some time ago, DHH wrote a critique of DI usage in Ruby⁴³, but Piotr Solnica demonstrated
reasonable examples⁴⁴ of good DI usage. Also, Sandi Metz provides good arguments and examples
in her POODR book⁴⁵.

With the dry-container and dry-auto_inject libs, DI/IoC in Ruby could look something like this:

1 my_container = Dry::Container.new

2

3 my_container.register(:data_store, -> { DataStore.new })

4 my_container.register(:user_repository, -> { container[:data_store][:users] })

5 my_container.register(:persist_user, -> { PersistUser.new })

6

7 # set up your auto-injection function

8 AutoInject = Dry::AutoInject(my_container)

9

10 # then simply include it in your class, specifying the dependencies that

11 # should be injected automatically from the configured container

12 class PersistUser

13 include AutoInject[:user_repository]

14

15 def call(user)

⁴³http://david.heinemeierhansson.com/2012/dependency-injection-is-not-a-virtue.html
⁴⁴http://solnic.eu/2013/12/17/the-world-needs-another-post-about-dependency-injection-in-ruby.html
⁴⁵http://poodr.com

21

http://david.heinemeierhansson.com/2012/dependency-injection-is-not-a-virtue.html
http://solnic.eu/2013/12/17/the-world-needs-another-post-about-dependency-injection-in-ruby.html
http://solnic.eu/2013/12/17/the-world-needs-another-post-about-dependency-injection-in-ruby.html
http://poodr.com/
http://david.heinemeierhansson.com/2012/dependency-injection-is-not-a-virtue.html
http://solnic.eu/2013/12/17/the-world-needs-another-post-about-dependency-injection-in-ruby.html
http://poodr.com/

Dependency Injection and IoC containers 22

16 user_repository << user

17 end

18 end

• David Heinemeier Hansson: Dependency injection is not a virtue⁴⁶
• Piotr Solnica: The World Needs Another Post About Dependency Injection in Ruby⁴⁷
• Martin Fowler: Inversion of Control Containers and the Dependency Injection pattern⁴⁸
• dry-container⁴⁹
• dry-auto_inject⁵⁰
• Effective Ruby dependency injection at scale⁵¹

⁴⁶http://david.heinemeierhansson.com/2012/dependency-injection-is-not-a-virtue.html
⁴⁷http://solnic.eu/2013/12/17/the-world-needs-another-post-about-dependency-injection-in-ruby.html
⁴⁸http://www.martinfowler.com/articles/injection.html
⁴⁹https://github.com/dry-rb/dry-container
⁵⁰https://github.com/dry-rb/dry-auto_inject
⁵¹http://icelab.com.au/articles/effective-ruby-dependency-injection-at-scale/

http://david.heinemeierhansson.com/2012/dependency-injection-is-not-a-virtue.html
http://solnic.eu/2013/12/17/the-world-needs-another-post-about-dependency-injection-in-ruby.html
http://www.martinfowler.com/articles/injection.html
https://github.com/dry-rb/dry-container
https://github.com/dry-rb/dry-auto_inject
http://icelab.com.au/articles/effective-ruby-dependency-injection-at-scale/
http://david.heinemeierhansson.com/2012/dependency-injection-is-not-a-virtue.html
http://solnic.eu/2013/12/17/the-world-needs-another-post-about-dependency-injection-in-ruby.html
http://www.martinfowler.com/articles/injection.html
https://github.com/dry-rb/dry-container
https://github.com/dry-rb/dry-auto_inject
http://icelab.com.au/articles/effective-ruby-dependency-injection-at-scale/

The magical world of
Metaprogramming
Metaprogramming is a special feature of some languages (including Ruby) used to define code
dynamically, at runtime. It is code that generates other code. This is responsible for a lot of the
“magic” in Rails, for example: some_route_path helpers, and find_by_%attr_name% in ActiveRecord.

It seems like an awesome feature at first, until it is misused, and unfortunately it is misused most of
the time. The downsides of metaprogramming are:

• Difficult to locate method source code.
• Hidden intention in the codebase.
• IDEs can’t locate these methods for auto-complete.

There is a famous saying: “if you have a problem and think that metaprogramming could help you,
then congratulations! Now you have two problems.” Many times, the coding challenges that you
solve with metaprogramming could be solved in a simpler way, with better code quality, separation
of concerns, and clearness.

Here is an example of unnecessary metaprogramming in the rest-client⁵² gem:

1 POSSIBLE_VERBS = ['get', 'put', 'post', 'delete']

2

3 POSSIBLE_VERBS.each do |m|

4 define_method(m.to_sym) do |path, *args, &b|

5 r[path].public_send(m.to_sym, *args, &b)

6 end

7 end

• Bala Paranj: 7 Deadly Sins of Ruby Metaprogramming⁵³

⁵²https://github.com/rest-client/rest-client/blob/master/bin/restclient
⁵³https://www.codeschool.com/blog/2015/04/24/7-deadly-sins-of-ruby-metaprogramming/

23

https://github.com/rest-client/rest-client/blob/master/bin/restclient
https://www.codeschool.com/blog/2015/04/24/7-deadly-sins-of-ruby-metaprogramming/
https://github.com/rest-client/rest-client/blob/master/bin/restclient
https://www.codeschool.com/blog/2015/04/24/7-deadly-sins-of-ruby-metaprogramming/

Mixin/Module include - it is not
composition
“Divide et impera” (Divide and rule) is a well known saying from ancient Rome. In programming,
we also try to break our code into smaller parts, compose them, and reuse them. In Ruby, we can use
include and extend to add methods from other modules. But just because your code is DRY does
not mean it exhibits composition.

Yes, now your class/object can respond to a new set of messages, but there is a dark side: mixins
create implicit (hidden) pollution of an object’s public interface. Do these methods really belong to
this class/object? You should ask yourself this question every time you use a mixin (e.g. including a
Concern in Rails).

Mixins make sense when they use the internal state of an Object (@attributes or methods of the
host object). It also makes some sense to use them for static helpers that do not use the host object
itself, only input parameters.

Real composition should be based on Dependency Injection and Separation of Concerns. Your
methods should be grouped by an explicit receiver (e.g not obj.a_m1, obj.a_m2, obj.b_m1, but
obj.a.m1, obj.a.m2, obj.b.m1). Composition in this case literally means opting not to mixin A and
B, but to inject instances of A and B, and assign them to the a and b properties inside obj. In that
way, your dependencies are not hard-coded, and you can substitute them dynamically. The main
advantage of this approach is that A and B are self-contained, and can be reused.

Just think about the following use-cases, in the context of a Rails app. Do they really make sense?

• Path helpers mixed into controller/view
• Application helpers mixed into controller/view

Another issue is that mixin modules make too many assumptions about the host class interface.
They expect the host class to have certain methods, or even worse, expect that the host class already
includes another mixin. These expectations are completely hidden – for example, try to add the
errors capability from ActiveModel into a PORO.

24

Document your code
Code documentation is more than just writing human-readable code comments. It is also about
creating functional comments in specific formats (like RDoc or YARDOC) that are clear to other
developers, and that can be interpreted by your IDE.

• Rails API doc Guideline⁵⁴
• RDoc⁵⁵
• YARDOC⁵⁶

Remember that this documentation can help your IDE to make correct autocompletions of returned
values, and object attributes/methods.

• RubyMine: Creating Documentation Comments⁵⁷
• RubyMine: Using Annotations⁵⁸

⁵⁴http://edgeguides.rubyonrails.org/api_documentation_guidelines.html
⁵⁵http://docs.seattlerb.org/rdoc/
⁵⁶http://yardoc.org/
⁵⁷https://www.jetbrains.com/help/ruby/8.0/creating-documentation-comments.html#create_tag
⁵⁸https://www.jetbrains.com/help/ruby/8.0/using-annotations.html?origin=old_help

25

http://edgeguides.rubyonrails.org/api_documentation_guidelines.html
http://docs.seattlerb.org/rdoc/
http://yardoc.org/
https://www.jetbrains.com/help/ruby/8.0/creating-documentation-comments.html#create_tag
https://www.jetbrains.com/help/ruby/8.0/using-annotations.html?origin=old_help
http://edgeguides.rubyonrails.org/api_documentation_guidelines.html
http://docs.seattlerb.org/rdoc/
http://yardoc.org/
https://www.jetbrains.com/help/ruby/8.0/creating-documentation-comments.html#create_tag
https://www.jetbrains.com/help/ruby/8.0/using-annotations.html?origin=old_help

Debug
Many people are creating apps without using even standard debugging techniques. We tend to stay
as “puts debuggers” because it is easy, stable and reliable. But we lose a lot of troubleshooting
productivity without good debugging skills. The first step is to discover the Pry (binding.pry) and
Byebug (byebug) debuggers. They allow you to set a breakpoint, stop app execution there, and print
out current variables on the stack. But debugging is not limited to breakpoints. The next step is
learning how to walk step-by-step inside the app â€“ stepping into functions, etc.

Great results can be achieved by combining both of these solutions with pry-byebug⁵⁹, which adds
the navigation commands from Byebug to the Pry command line.

The best debugging experience would be provided via a visual debugger, like in the IntelliJ RubyMine
IDE. It requires an additional Gem, and the app must be run using a special launcher, but as a result
you can set breakpoints and step through code right in your IDE. You can also see all the variables on
the stack at each step. Such a high density of visual debug info can dramatically increase productivity,
and decrease the time needed to track down an error.

• Tenderlovemaking: I am a puts debuggerer⁶⁰
• Debugging Rails Appliction⁶¹
• Byebug⁶²
• Pry⁶³
• Ruby default debugger⁶⁴
• IntelliJ RubyMine Visual Debugger⁶⁵

⁵⁹https://github.com/deivid-rodriguez/pry-byebug
⁶⁰http://tenderlovemaking.com/2016/02/05/i-am-a-puts-debuggerer.html
⁶¹http://guides.rubyonrails.org/debugging_rails_applications.html
⁶²https://github.com/deivid-rodriguez/byebug
⁶³https://github.com/pry/pry
⁶⁴http://ruby-doc.org/stdlib-2.3.0/libdoc/debug/rdoc/DEBUGGER__.html
⁶⁵https://www.jetbrains.com/help/ruby/2016.1/debugging.html

26

https://github.com/deivid-rodriguez/pry-byebug
http://tenderlovemaking.com/2016/02/05/i-am-a-puts-debuggerer.html
http://guides.rubyonrails.org/debugging_rails_applications.html
https://github.com/deivid-rodriguez/byebug
https://github.com/pry/pry
http://ruby-doc.org/stdlib-2.3.0/libdoc/debug/rdoc/DEBUGGER__.html
https://www.jetbrains.com/help/ruby/2016.1/debugging.html
https://github.com/deivid-rodriguez/pry-byebug
http://tenderlovemaking.com/2016/02/05/i-am-a-puts-debuggerer.html
http://guides.rubyonrails.org/debugging_rails_applications.html
https://github.com/deivid-rodriguez/byebug
https://github.com/pry/pry
http://ruby-doc.org/stdlib-2.3.0/libdoc/debug/rdoc/DEBUGGER__.html
https://www.jetbrains.com/help/ruby/2016.1/debugging.html

SQL
One of the biggest advantages of Active Record is that the developer does not need to write raw SQL
queries to perform basic data manipulation in the DB. And like everything in nature, if you don’t
use it, you lose it. In that way, we have a bunch of Rails developers that are scared of anything more
complex than SELECT * FROM users. That is pretty depressing.

• Learn SQL and the capabilities of specific databases!
• If you use Rails, open the console and try to understand what SQL is being generated for each
AR query.

• Do not immediately reach for the “simplest” AR code. That makes a lot of unnecessary queries
(N+1 queries, etc.). Think about how the DB will be accessed. Think in SQL!

• If you use Rails, use the power of AR query composition. That’s fine. You do not need to write
raw SQL all the time. But when you need to compose a complex query, and do not know how
to do it with AR, write it in SQL first, and then gradually transform it into AR notation.

• Some queries, especially those using special abilities of the DB (like PARTITION BY, etc.), are
better to leave in raw SQL. Think about other developers who will need to support this code.
Some things are clearer in AR notation, some are clearer in pure SQL. Just consider the options.

Also, consider that different databases are best suited to different use cases. One web application can
make use of multiple databases simultaneously. Think about the type of data you want to operate
upon. You can even combine relational DBs (PostgreSQL, MySQL) with document oriented DBs
(MongoDB). For graph-like data (“friends of my friends” relations) there is another class of DB, like
Neo4J. There are even multiparadigm DBs like ArangoDB.

You should also keep an eye on theDBworld. It is changing as fast as web languages and frameworks.
It is up to the web developer to propose and use the best data storage solution for the situation, based
on the type of data and common query patterns.

To keep productivity high while using special features of specific databases, you can use the Sequel⁶⁶
lib. It is very similar to ActiveRecord, but not coupled to Rails, and has a wide selection of plugins
and extensions.

• Khan Academy. Intro to SQL: Querying and managing data⁶⁷
• PostgreSQL Tutorials⁶⁸

⁶⁶http://sequel.jeremyevans.net/
⁶⁷https://www.khanacademy.org/computing/computer-programming/sql
⁶⁸http://www.postgresqltutorial.com/

27

http://sequel.jeremyevans.net/
https://www.khanacademy.org/computing/computer-programming/sql
http://www.postgresqltutorial.com/
http://sequel.jeremyevans.net/
https://www.khanacademy.org/computing/computer-programming/sql
http://www.postgresqltutorial.com/

SQL 28

• PostgreSQL Exercises⁶⁹
• PostgreSQL⁷⁰
• MongoDB⁷¹
• Neo4J⁷²
• ArangoDB⁷³
• Sequel⁷⁴

⁶⁹https://www.pgexercises.com/
⁷⁰http://www.postgresql.org/
⁷¹https://www.mongodb.org/
⁷²http://neo4j.com/
⁷³https://www.arangodb.com/
⁷⁴http://sequel.jeremyevans.net/

https://www.pgexercises.com/
http://www.postgresql.org/
https://www.mongodb.org/
http://neo4j.com/
https://www.arangodb.com/
http://sequel.jeremyevans.net/
https://www.pgexercises.com/
http://www.postgresql.org/
https://www.mongodb.org/
http://neo4j.com/
https://www.arangodb.com/
http://sequel.jeremyevans.net/

Tests
The Ruby community is well known for its adoption of good testing practices. For example, the PHP
community is not even close the same level of understanding of the importance of testing in every
stage of app development. Moreover, the average PHP developer does not write nearly as many tests
as the average Ruby developer does. One of the secrets of Ruby’s testing success is its great tools.
Ruby testing tools provide powerful syntax and features, made possible by metaprogramming and
DSLs.

Let’s not pat ourselves on the back too quickly, though. As always, great power comes with great
responsibility. These tools are a double-edged sword. You need to recognize the good parts and the
not-so-good parts, so as not to hurt yourself.

Testing rules:

• Tests should be simple and obvious. They should not require testing, themselves.
• Each test should do only one thing.
• Tests should have clear assertions.
• Tests should be predictable and repeatable, producing the same result on each run.

Unit tests

Unit tests cover code-level logic. It instantiates an object, and makes assertions on the result of a
method or function call. There are two popular unit testing solutions in Ruby: Minitest and RSpec.

RSpec is a very popular gem that provides an expressive DSL for all aspects of testing. It allows
writing test in a BDD “expects” style. Its assertions tend to be human-readable, and it has lots of
special extensions. However, its main advantage is also its main drawback – you need to learn a
large DSL and assertion syntax. RSpec extensions make this worse, requiring you to put in quite a
lot of effort to learn everything.

29

Tests 30

1 RSpec.describe "Using an array as a stack" do

2 def build_stack

3 []

4 end

5

6 before(:example) do

7 @stack = build_stack

8 end

9

10 it 'is initially empty' do

11 expect(@stack).to be_empty

12 end

13

14 context "after an item has been pushed" do

15 before(:example) do

16 @stack.push :item

17 end

18

19 it 'allows the pushed item to be popped' do

20 expect(@stack.pop).to eq(:item)

21 end

22 end

23 end

Minitest became a part of the Ruby standard library, and that is why it is preferable for testing gems
and libs, as it does not require additional dependencies. It provides a very small assertions interface,
that is easy to learn and adopt. The main advantage of Minitest is that tests are just POROs. That
is why you do not need to learn anything new to structure your tests – it is just pure Ruby. Use
the same techniques as in your other code. Code initialization and calls are almost identical to real
usage. IMHO Minitest is the better choice for writing simple, clear and predictable tests.

1 class TestMeme < Minitest::Test

2 def setup

3 @meme = Meme.new

4 end

5

6 def test_that_kitty_can_eat

7 assert_equal "OHAI!", @meme.i_can_has_cheezburger?

8 end

9

10 def test_that_it_will_not_blend

11 refute_match /^no/i, @meme.will_it_blend?

Tests 31

12 end

13

14 def test_that_will_be_skipped

15 skip "test this later"

16 end

17 end

Minitest also provides a Spec style, which has a lot of RSpec syntactic sugar, but still has a
dramatically simpler code base (when you look inside Minitest gem code).

1 describe Meme do

2 before do

3 @meme = Meme.new

4 end

5

6 describe "when asked about cheeseburgers" do

7 it "must respond positively" do

8 @meme.i_can_has_cheezburger?.must_equal "OHAI!"

9 end

10 end

11

12 describe "when asked about blending possibilities" do

13 it "won't say no" do

14 @meme.will_it_blend?.wont_match /^no/i

15 end

16 end

17 end

Stay consistent, don’t write tests in different styles with Minitest. Choose the one you like the most,
and write all tests in it. But remember that using Spec style with Minitest reduces its advantages,
like normal Ruby syntax and usage of normal OOP techniques.

• Minitest⁷⁵
• RSpec⁷⁶

Test Behavior, not Configuration

The shoulda-matchers⁷⁷ gem is very popular for testing aspects of ActiveRecordmodel configuration,
like has_one.

⁷⁵http://docs.seattlerb.org/minitest/
⁷⁶http://rspec.info/
⁷⁷https://github.com/thoughtbot/shoulda-matchers

http://docs.seattlerb.org/minitest/
http://rspec.info/
https://github.com/thoughtbot/shoulda-matchers
http://docs.seattlerb.org/minitest/
http://rspec.info/
https://github.com/thoughtbot/shoulda-matchers

Tests 32

1 class Person < ActiveRecord::Base

2 has_one :partner

3 end

4

5 class PersonTest < ActiveSupport::TestCase

6 should have_one(:partner)

7 end

But why do we need to test indirect signs of expected behavior instead of testing the behavior
directly?

We could better write behavior tests like this:

1 class PersonTest < Minitest::Test

2 def test_has_parter

3 person = Person.new

4 partner = Partner.new

5 assert_equal partner, person.partner

6 end

7 end

The test above will continue passing, regardless of any changes to the implementation of per-

son.partner. This is exactly how your app expects the Person class to behave, so why should your
tests be different, and rely upon the internal implementation?

• Test Behavior, not Configuration⁷⁸

Integration tests

Ruby allows you to write integration tests. These emulate the real interaction between the web app
and the browser. They usually contain a set of commands to click on links, visit certain pages, fill in
form fields, and validate the results of these actions.

Integration tests can be written using the Capybara framework. Basically, it acts as a “fake browser,”
making requests to your Rack app and parsing the responses, but is not capable of running JavaScript.
To fully emulate an end-user browser, you need to use the Poltergeist or Capybara Webkit add-ons.
They run the same commands inside a headless Webkit browser. Of course, this incurs a speed
penalty. Tests with JS run slower than tests without JS. You need to be aware of that, and activate
JS per test, only in the tests that require it.

⁷⁸http://naildrivin5.com/blog/2016/05/23/test-behavior-not-configuration.html

http://naildrivin5.com/blog/2016/05/23/test-behavior-not-configuration.html
http://naildrivin5.com/blog/2016/05/23/test-behavior-not-configuration.html

Tests 33

Understand that integration tests should not make assertions against the internal state of the web
app. They should not make assertions on code variables, etc. They should only assert external output,
like the response body and HTTP status codes.

Also, do not overuse integration tests. Keep in mind that in any (ANY!) case, integration tests are an
order of magnitude slower than unit tests. When you write bad quality code – e.g. putting a lot of
logic into Controllers – the only way to test it is to visit the corresponding page. You will need to
execute the whole app request cycle to test only tiny things. That should encourage you to remove
logic from the controller, put it into separate classes, and just call the new classes from the controller.
That way, you can test 90% of the logic via unit tests (which are fast) and make only a few “smoke
tests” on the controller action (to test success/failure scenarios, but not every part of the business
logic).

• Capybara⁷⁹
• Poltergeist⁸⁰ (PhantomJS)
• Capybara-WebKit⁸¹

Test data: Fixtures vs Factories

• Factory Girl⁸²
• fabricationgem⁸³
• Faker⁸⁴

Stub external services call

Your tests should not depend on the availability of external services. Ideally, you should be able to
run all tests without Internet access, but that doesn’t mean that external integrations should not be
tested. If your app makes a request to an external service, this request should be stubbed. Instead of
making a real call, it should “pretend” and return a ready-made response (there could be a couple of
different responses, to test success/failure). Gems like Webmock and VCR can help you to catch real
responses and then reuse them for subsequent test runs, or to write your own response content.

Stub request with Webmock:

⁷⁹http://jnicklas.github.io/capybara/
⁸⁰https://github.com/teampoltergeist/poltergeist
⁸¹https://github.com/thoughtbot/capybara-webkit
⁸²https://github.com/thoughtbot/factory_girl
⁸³http://www.fabricationgem.org
⁸⁴https://github.com/stympy/faker

http://jnicklas.github.io/capybara/
https://github.com/teampoltergeist/poltergeist
https://github.com/thoughtbot/capybara-webkit
https://github.com/thoughtbot/factory_girl
http://www.fabricationgem.org/
https://github.com/stympy/faker
http://jnicklas.github.io/capybara/
https://github.com/teampoltergeist/poltergeist
https://github.com/thoughtbot/capybara-webkit
https://github.com/thoughtbot/factory_girl
http://www.fabricationgem.org/
https://github.com/stympy/faker

Tests 34

1 stub_request(:post, "www.example.com")

2 .with(:query => {'user' => 'Ievgen'})

3 .to_return(:body => "Nice work!")

Catch requests and return a “fake” response with VCR:

1 VCR.use_cassette("synopsis") do

2 response = Net::HTTP.get_response(URI('http://www.iana.org/domains/reserve\

3 d'))

4 assert_match /Example domains/, response.body

5 end

• Stubbing external services in Rails⁸⁵
• Webmock⁸⁶
• VCR⁸⁷

Speed-up test

To achieve fast tests, stub behavior, heavy computations, and external web calls, in addition to
mocking dependencies. You can also run tests in parallel – another reason to keep them completely
independent from one another.

• Gem: parallel_tests⁸⁸

Learn Tests Design

To write cost-efficient and effort-efficient tests – tests that should not be rewritten from scratch after
any small refactoring – you should design your tests almost as well as you design your other code.

• Only test public interface of classes
• Don’t test tiny sensitive private methods (they are very likely to change often)
• Reuse repetitive test via mixins
• Avoid redundantly testing the same functionality multiple times. Code should be organized
in layers that are testable separately from each other.

• Video: The Magic Tricks of Testing by Sandi Metz⁸⁹
• Book: Practical Object-Oriented Design in Ruby (POODR) by Sandi Metz⁹⁰

⁸⁵https://semaphoreci.com/community/tutorials/stubbing-external-services-in-rails
⁸⁶https://github.com/bblimke/webmock
⁸⁷https://github.com/vcr/vcr
⁸⁸https://github.com/grosser/parallel_tests
⁸⁹https://www.youtube.com/watch?v=URSWYvyc42M
⁹⁰http://www.poodr.com/

https://semaphoreci.com/community/tutorials/stubbing-external-services-in-rails
https://github.com/bblimke/webmock
https://github.com/vcr/vcr
https://github.com/grosser/parallel_tests
https://www.youtube.com/watch?v=URSWYvyc42M
http://www.poodr.com/
https://semaphoreci.com/community/tutorials/stubbing-external-services-in-rails
https://github.com/bblimke/webmock
https://github.com/vcr/vcr
https://github.com/grosser/parallel_tests
https://www.youtube.com/watch?v=URSWYvyc42M
http://www.poodr.com/

Authentication & Authorization
One of the first serious issues that are usually not covered by a framework is an authentication. In
the Rails world, people tend to take the well known Devise lib, integrate it into the app with devise

:database_authenticatable, :registerable, and forget about auth. That is, until the awkward
moment when you need to customize any tiny aspect of it - anything from templates to auth logic
(the latter is harder).

The truth is, you can implement auth by yourself very quickly. Just create a users table with login and
password fields, encrypt the password with something like the bcrypt-ruby gem, store the hashed
password in the DB, and write 3-5 controller actions to handle forms. Your users table will not be
cluttered with lots of unknown fields, and you will have an idea of what they are for (or you can
rely on these fields for other business logic).

A less obtrusive, but still more automated, option is to use Sorcery. Another option is the Tyrant
gem â€“ part of the Trailblazer philosophy â€“ that tries to use just a single field of a model.

The fewer hidden pieces of data flow in your app, the easier it is to track down errors and change
behavior. In such a sensitive part of the app as authentication, this is very important.

• Devise⁹¹
• Sorcery⁹²
• Tyrant⁹³
• rodauth⁹⁴

Once users can be identified inside the app, the second requirement is to distinguish their abilities.
One approach is to assign amarker for each user, like role = 'admin', and check thismodel attribute
all over the app. This is not flexible, however, and when your permission rules change, it requires
changes to many different parts of the codebase. Permission logic can be quite complicated, so it
should be encapsulated. A good example of simple authorization logic organization is Pundit.

Unfortunately, I do not know of a good example of RBAC⁹⁵ implemented in Ruby. The piece⁹⁶ gem
comes close, where roles contain sets of permissions, and all of them can be assigned to a user
dynamically with business rules (rules should be implemented as code that checks restrictions).

⁹¹https://github.com/plataformatec/devise
⁹²https://github.com/NoamB/sorcery
⁹³https://github.com/apotonick/tyrant
⁹⁴http://rodauth.jeremyevans.net
⁹⁵https://en.wikipedia.org/wiki/Role-based_access_control
⁹⁶https://github.com/ThoughtWorksStudios/piece

35

https://github.com/plataformatec/devise
https://github.com/NoamB/sorcery
https://github.com/apotonick/tyrant
http://rodauth.jeremyevans.net/
https://en.wikipedia.org/wiki/Role-based_access_control
https://github.com/ThoughtWorksStudios/piece
https://github.com/plataformatec/devise
https://github.com/NoamB/sorcery
https://github.com/apotonick/tyrant
http://rodauth.jeremyevans.net/
https://en.wikipedia.org/wiki/Role-based_access_control
https://github.com/ThoughtWorksStudios/piece

Authentication & Authorization 36

• Pundit⁹⁷
• CanCanCan⁹⁸

⁹⁷https://github.com/elabs/pundit
⁹⁸https://github.com/CanCanCommunity/cancancan

https://github.com/elabs/pundit
https://github.com/CanCanCommunity/cancancan
https://github.com/elabs/pundit
https://github.com/CanCanCommunity/cancancan

Know your App Server!
Running a Rails app starts a WEBrick server by default. This is good enough for the development
environment, but not for production. WEBrick runs code in a single thread, and can not handle
requests concurrently.

It is very important to understand the different operating models of threaded and event-loop based
servers, to select the most reliable and efficient server for your app.

Another aspect is how static files are handled. Do not waste CPU time by giving this task to a Ruby
app. Give this work to reverse proxy servers like Nginx. They can also handle other things, like
proxying (e.g. 3000 port to 80 port), multi-domain setup, limiting requests per second to prevent
DDoS, “slow client” attack, etc.

TODO: Make a brief description of different models

• Rubyraptor: Description of different operation models in Rack servers⁹⁹
• A comparison of Rack web servers for Ruby web applications¹⁰⁰
• Puma¹⁰¹
• Unicorn¹⁰²
• Passenger¹⁰³
• Nginx¹⁰⁴

⁹⁹http://www.rubyraptor.org/how-we-made-raptor-up-to-4x-faster-than-unicorn-and-up-to-2x-faster-than-puma-torquebox/
¹⁰⁰https://www.digitalocean.com/community/tutorials/a-comparison-of-rack-web-servers-for-ruby-web-applications
¹⁰¹https://github.com/puma/puma
¹⁰²https://github.com/defunkt/unicorn
¹⁰³https://www.phusionpassenger.com/
¹⁰⁴http://nginx.org/

37

http://www.rubyraptor.org/how-we-made-raptor-up-to-4x-faster-than-unicorn-and-up-to-2x-faster-than-puma-torquebox/
https://www.digitalocean.com/community/tutorials/a-comparison-of-rack-web-servers-for-ruby-web-applications
https://github.com/puma/puma
https://github.com/defunkt/unicorn
https://www.phusionpassenger.com/
http://nginx.org/
http://www.rubyraptor.org/how-we-made-raptor-up-to-4x-faster-than-unicorn-and-up-to-2x-faster-than-puma-torquebox/
https://www.digitalocean.com/community/tutorials/a-comparison-of-rack-web-servers-for-ruby-web-applications
https://github.com/puma/puma
https://github.com/defunkt/unicorn
https://www.phusionpassenger.com/
http://nginx.org/

Know your CLI!
Everybody knows that you should use Rake tasks to run code from the CLI. But we also need to
understand that Rake is more than just a part of Rails. It is an independent tool, and deserves
consideration about whether it should be used or not. The main downside of Rake tasks is that
they are hard to test â€“ due to their DSL nature, they require special initialization. You should be
very careful when putting business logic into Rake tasks. It is just as harmful as putting business
logic into controllers in a web framework.

As with any tool, Rake is not limited to namespace, task and desc. You should learn how to use all
of the benefits and functionality hidden inside. Try to look into the advanced Rake docs.

Also, we need to understand that there are much cleaner alternatives, like Thor. Thor provides the
same simple functionality for writing your own CLI tools, but does so in a much cleaner, OOP way.

• Rake¹⁰⁵
• Thor¹⁰⁶

¹⁰⁵http://docs.seattlerb.org/rake/
¹⁰⁶https://github.com/erikhuda/thor

38

http://docs.seattlerb.org/rake/
https://github.com/erikhuda/thor
http://docs.seattlerb.org/rake/
https://github.com/erikhuda/thor

Admin
ActiveAdmin is a very popular solution. It provides handy DSL to display CRUD interface for
ActiveRecord Models. From the very beginning it helps to spare time, but the at later development
stages it will require much more time to make even minor customization.

For projects, where you can’t change requirements in favor of the “tool capability”, prefer solutions
that help to scaffold (generate) admin section files. It could look like a lot of repetitive boilerplate
code, but in future, it allows customize each screen separately without a headache.

• Administrate¹⁰⁷
• Active Admin¹⁰⁸
• Rails Admin¹⁰⁹

¹⁰⁷https://github.com/thoughtbot/administrate
¹⁰⁸http://activeadmin.info/
¹⁰⁹https://github.com/sferik/rails_admin

39

https://github.com/thoughtbot/administrate
http://activeadmin.info/
https://github.com/sferik/rails_admin
https://github.com/thoughtbot/administrate
http://activeadmin.info/
https://github.com/sferik/rails_admin

Templates
Ruby comes with a built-in templating solution, ERB, that embeds Ruby into a text document. It has
a number of advantages. It is very close to pure HTML, so it is easy to convert HTML into ERB, and
it does not introduce any new entry barriers. It is similar to approaches in other languages (PHP,
ASP), so it is transferable, common web development knowledge.

Other popular alternative templating solutions include Haml, it’s successor Slim, and other Haml-
like languages. Slim template code looks like this:

1 div id="footer"

2 = render 'footer'

3 | Copyright Â© #{year} #{author}

This approach has the advantage of being more clear, due to the removal of “unneeded” elements
like closing tags and extra brackets. But the disadvantages are obvious: it has a larger entry barrier,
it is harder to migrate HTML markup to it (especially during big redesign sprints), and it is not a
transferable skill outside of Ruby.

So stick with ERB unless all of your developers and designers are familiar with Slim, or you are
building a home-made, 15-min blog.

• An Introduction to ERB Templating¹¹⁰
• Slim¹¹¹

¹¹⁰http://www.stuartellis.eu/articles/erb/
¹¹¹http://slim-lang.com/

40

http://www.stuartellis.eu/articles/erb/
http://slim-lang.com/
http://www.stuartellis.eu/articles/erb/
http://slim-lang.com/

Cache
Caching is a multilayer technique. Each type of content requires its own caching approach.

Static content

Static files, images, and documents could be cached on the server or CDN level by filename or
meta-information. Cache invalidation could be done via conditional requests or filename param
modification.

Dynamic content

Dynamic content is much harder to cache as it requires clear invalidation criteria. Even harder is
personalized content (that is unique per user) - be careful with it, sometimes caching and invalidating
this cache could be even more resource consumption, than having no cache at all!

The most obvious solution for a personalized content is to cache on application level: whole pages,
fragments or long queries. It is up to you to distinguish and measure what part of long page
generation process is the slowest.

Nginx page microcache

The whole page could be cached on the web server level. Nginx server has a “microcache” feature
that could be applied to the whole site or selected locations and cache even dynamic content for a
short period of time (about 1 minute). For example, even if you have a highly dynamic page with
ranked posts, that changes each 10 seconds (according to votes and number of comments), it seems
that you need to generate it on each request to show actual data. But if you have a highload site
with 1000 simultaneous visitors (that refresh a page each minute) you can do only 1 page generation
instead of 1000+. Of course, it depends on the sensitivity of the data (you won’t cache stock data)
and you need to adjust appropriate cache lifetime while your users would not notice that data is
“dramatically outdated”.

Application level key-value cache

A more correct way to do caching, without tricks with total microcaching, is to have a strict cache
key and to regenerate content when this key changes. Very often in-memory key-value storages like
Redis and Memcached are used to store cached data (due to high speed of data access).

41

Cache 42

But even a file-cache could be productive if you cache operation that takes tens of seconds (the only
thing to remember: file-system operation could be a performance bottleneck as disk read speed is
very limited, so it should not be very often).

Another ting to remember - saving Ruby data structures like Hash or Array to the external cache
(file or memory based) requires to serialize it into text representation (and vice versa on reading).
This operation takes CPU resources and time. Usually, it is a JSON or YAML representation and not
all data structures could be represented into the string automatically. Also Ruby provides a special
Marshal class to serialize Objects.

Let’s imagine the same page with the ranged list of posts, you want to cache just a plain data of
ranged list and automatically rebuild cache when needed. You can make a cache key that includes
data like last post date (when a new post is added, you cache key is changed and the page is
regenerated). As you see here, to determine cache key you still need to perform one DB query (to
get latest post date). It is a reasonable tradeoff of you spare 10-20 or more queries with this caching.

The main rule here is - cache key computation should be as simple as possible. Don’t make to
many dependencies in the cache key.

• The Benefits of Microcaching with NGINX¹¹²
• Redis¹¹³
• Memcached¹¹⁴
• Why Redis beats Memcached for caching¹¹⁵

¹¹²https://www.nginx.com/blog/benefits-of-microcaching-nginx/
¹¹³http://redis.io/
¹¹⁴https://memcached.org/
¹¹⁵http://www.infoworld.com/article/3063161/application-development/why-redis-beats-memcached-for-caching.html

https://www.nginx.com/blog/benefits-of-microcaching-nginx/
http://redis.io/
https://memcached.org/
http://www.infoworld.com/article/3063161/application-development/why-redis-beats-memcached-for-caching.html
https://www.nginx.com/blog/benefits-of-microcaching-nginx/
http://redis.io/
https://memcached.org/
http://www.infoworld.com/article/3063161/application-development/why-redis-beats-memcached-for-caching.html

Fulltext search
TODO

• Multi-table Full Text Search in Postgres¹¹⁶
• PostgreSQL full text seach with ts_vector¹¹⁷
• Textacular gem¹¹⁸
• Scenic gem¹¹⁹
• Sphinx¹²⁰
• Elastic Search¹²¹
• Algolia¹²²

¹¹⁶https://speakerdeck.com/calebthompson/multi-table-full-text-search-in-postgres
¹¹⁷http://rachbelaid.com/postgres-full-text-search-is-good-enough/
¹¹⁸https://github.com/textacular/textacular
¹¹⁹https://github.com/thoughtbot/scenic
¹²⁰http://sphinxsearch.com/
¹²¹https://www.elastic.co/products/elasticsearch
¹²²https://www.algolia.com/

43

https://speakerdeck.com/calebthompson/multi-table-full-text-search-in-postgres
http://rachbelaid.com/postgres-full-text-search-is-good-enough/
https://github.com/textacular/textacular
https://github.com/thoughtbot/scenic
http://sphinxsearch.com/
https://www.elastic.co/products/elasticsearch
https://www.algolia.com/
https://speakerdeck.com/calebthompson/multi-table-full-text-search-in-postgres
http://rachbelaid.com/postgres-full-text-search-is-good-enough/
https://github.com/textacular/textacular
https://github.com/thoughtbot/scenic
http://sphinxsearch.com/
https://www.elastic.co/products/elasticsearch
https://www.algolia.com/

Style guide and style checker
While Ruby does not have a lot of curly brackets {}, code style issues are not as painful as languages
like PHP. In any case, we can write code with different paddings, spaces, and line breaks. To avoid
confusion and repeated whitespace changes in your codebase - you should adopt a style guide. All
team members should agree upon it.

Also, there are tools like RuboCop that can make automatic static code analysis and propose fixes
or recommendations.

• RuboCop Rails styleguide¹²³
• GitHub Ruby styleguide¹²⁴
• Airbnb Ruby styleguide¹²⁵
• RuboCop¹²⁶
• Reek¹²⁷

¹²³https://github.com/bbatsov/rails-style-guide
¹²⁴https://github.com/styleguide/ruby
¹²⁵https://github.com/airbnb/ruby
¹²⁶https://github.com/bbatsov/rubocop
¹²⁷https://github.com/troessner/reek

44

https://github.com/bbatsov/rails-style-guide
https://github.com/styleguide/ruby
https://github.com/airbnb/ruby
https://github.com/bbatsov/rubocop
https://github.com/troessner/reek
https://github.com/bbatsov/rails-style-guide
https://github.com/styleguide/ruby
https://github.com/airbnb/ruby
https://github.com/bbatsov/rubocop
https://github.com/troessner/reek

Frontend
HTML / CSS

Bootstrap Foundation SemanticUI

JavaScript

TODO: Whole this section :)

jQuery

Debug JavaScript

• Breakpoints¹²⁸

Server-side rendered JS

“replaceWith” trick

Modern JavaScript

Frameworks, Bower Modules and loaders Try to keep away from Sprockets

¹²⁸https://developers.google.com/web/tools/chrome-devtools/debug/breakpoints/?hl=en

45

https://developers.google.com/web/tools/chrome-devtools/debug/breakpoints/?hl=en
https://developers.google.com/web/tools/chrome-devtools/debug/breakpoints/?hl=en

Performance
As a general rule, if your web page generation time in production is close to one second (or more),
that is not perfect. You should invest some time in performance optimization. But before you start
optimizing, you should locate the bottlenecks. Almost always, the issues are not where you think
they are. Measure!

You can use special profilers that give detailed stats per function call, like PerfTools, or use
continuous high-level performance monitoring with widget-like add-ons, like Rack mini profiler.
Rack mini profiler will display a toolbar at the top of all pages, with a breakdown of the raw page
load time.

There are also external services like New Relic that can gather code runtime performance, even
on the production server. It can give general insight into the most time-consuming code and SQL
queries.

TODO: Add gems that help to track N+1 queries and SQL performance

• Rack mini profiler¹²⁹
• PerfTools.rb¹³⁰
• Peek RBLineProf¹³¹
• New Relic¹³²

Benchmarks

Sometimes, in the development stage, you need to measure the performance of a couple of different
implementations. To get measurable timing results, the code being benchmarked should be run
repeatedly, for many iterations. There are ready-made tools that can help with such measurements.

• Benchmark ips¹³³
• Scientist¹³⁴

¹²⁹https://github.com/MiniProfiler/rack-mini-profiler
¹³⁰https://github.com/tmm1/perftools.rb
¹³¹https://github.com/peek/peek-rblineprof
¹³²http://newrelic.com
¹³³https://github.com/evanphx/benchmark-ips
¹³⁴https://github.com/github/scientist

46

https://github.com/MiniProfiler/rack-mini-profiler
https://github.com/tmm1/perftools.rb
https://github.com/peek/peek-rblineprof
http://newrelic.com/
https://github.com/evanphx/benchmark-ips
https://github.com/github/scientist
https://github.com/MiniProfiler/rack-mini-profiler
https://github.com/tmm1/perftools.rb
https://github.com/peek/peek-rblineprof
http://newrelic.com/
https://github.com/evanphx/benchmark-ips
https://github.com/github/scientist

Deployment and Server
TODO

• Capistrano¹³⁵

Alternative solutions like Mina do not have any major advantages at the moment. Or a custom
Deploy workflow for big projects with tools like Ansible

VPS, Dedicated server

• DigitalOcean¹³⁶ (my ref link ;) you receive $10 credit after registration)
• Amazon Web Services¹³⁷
• Namecheap, domains registrator¹³⁸ (my ref link ;))

PaaS

• Heroku¹³⁹

CI

• Jenkins¹⁴⁰
• Travis CI¹⁴¹
• CircleCI¹⁴²

DevOps

TODO

• Ansible
• Chef
• Puppet
• Docker

¹³⁵http://capistranorb.com/
¹³⁶https://m.do.co/c/20534050b97f
¹³⁷
¹³⁸https://www.namecheap.com/?aff=62428
¹³⁹https://www.heroku.com/
¹⁴⁰https://jenkins.io/
¹⁴¹https://travis-ci.org/
¹⁴²https://circleci.com/

47

http://capistranorb.com/
https://m.do.co/c/20534050b97f
https://www.namecheap.com/?aff=62428
https://www.heroku.com/
https://jenkins.io/
https://travis-ci.org/
https://circleci.com/
http://capistranorb.com/
https://m.do.co/c/20534050b97f
https://www.namecheap.com/?aff=62428
https://www.heroku.com/
https://jenkins.io/
https://travis-ci.org/
https://circleci.com/

Deployment and Server 48

Local development

TODO

• Vagrant
• Docker

Local tunnels. Exposing dev env in the Internet

• Ngrok
• Vagrant share

Protect non-production servers with HTTP Auth

Basic Auth could be used as themain form of authentication for very simple apps, or admin backends.
It is often used to prevent access to staging servers by strangers and search engines (to prevent
indexing of non-production pages).

In Rails, the simplest basic auth could be added like this:

1 class ApplicationController < ActionController::Base

2 http_basic_authenticate_with name: "admin", password: "hunter2"

3 end

More advanced ways can be found in the Rails docs¹⁴³.

In any other Rack based server, you can use the Rack::Auth::Basic middleware:

1 use Rack::Auth::Basic, "Restricted Area" do |username, password|

2 [username, password] == ['admin', 'pass']

3 end

¹⁴³http://api.rubyonrails.org/classes/ActionController/HttpAuthentication/Basic.html

http://api.rubyonrails.org/classes/ActionController/HttpAuthentication/Basic.html
http://api.rubyonrails.org/classes/ActionController/HttpAuthentication/Basic.html

Web Application Security
Frameworks are great because, not only do they simplifying our web app code, they silently provide
security restrictions and best practices. But this magic security only works when you stick to the
defaults. When you start to do “advanced” coding, you need to know where common web app
vulnerabilities are hidden, and where you need to take care of them.

Common vulnerabilities include:

• SQL injection: unfiltered parameters concatenated into raw SQL queries. This allows hackers
to run malicious SQL queries.

• CSRF: allows hackers to send requests to your app without the user’s knowledge or consent.
• XSS: allows hackers to submit malicious JavaScript to your site (e.g. in the comments) which
can steal session data from other users.

There aremanymore potentially dangerous things. You can findmore details on theOWASPwebsite.

• OWASP Vulnerabilities list¹⁴⁴

¹⁴⁴https://www.owasp.org/index.php/Guide_Table_of_Contents

49

https://www.owasp.org/index.php/Guide_Table_of_Contents
https://www.owasp.org/index.php/Guide_Table_of_Contents

Stay open-minded, stay hungry!
Learn other languages to get fresh ideas and orthogonal points of view. Try to learn languages with
completely different paradigms, e.g. functional languages. It changes the way you look at object-
oriented languages and approaches (and no, I am not saying that you need to abandon OOP).

• Elixir¹⁴⁵
• Video: Blending Functional and OO Programming in Ruby, by Piotr Solnica¹⁴⁶

¹⁴⁵http://elixir-lang.org
¹⁴⁶https://www.youtube.com/watch?v=rMxurF4oqsc

50

http://elixir-lang.org/
https://www.youtube.com/watch?v=rMxurF4oqsc
http://elixir-lang.org/
https://www.youtube.com/watch?v=rMxurF4oqsc

Community
• Official Ruby site¹⁴⁷
• Ruby IRC¹⁴⁸
• Conferences¹⁴⁹
• RubyFlow¹⁵⁰ - community news

¹⁴⁷https://www.ruby-lang.org/en/
¹⁴⁸irc://irc.freenode.net/ruby
¹⁴⁹https://www.ruby-lang.org/en/community/conferences/
¹⁵⁰http://www.rubyflow.com/

51

https://www.ruby-lang.org/en/
irc://irc.freenode.net/ruby
https://www.ruby-lang.org/en/community/conferences/
http://www.rubyflow.com/
https://www.ruby-lang.org/en/
irc://irc.freenode.net/ruby
https://www.ruby-lang.org/en/community/conferences/
http://www.rubyflow.com/

Follow great Ruby developers
Person Why? Blog Twitter GitHub

Aaron
Patterson

active Ruby
ecosystem
contributor,
great blogger

tenderlovemaking.com¹⁵¹@tenderlove¹⁵² @tenderlove¹⁵³

Luca Guidi author of
Hanami.rb
framework

lucaguidi.com¹⁵⁴ @jodosha¹⁵⁵ @jodosha¹⁵⁶

Nick Sutterer author of
Trailblazer

nicksda.apotomo.de¹⁵⁷@apotonick¹⁵⁸ @apotonick¹⁵⁹

Piotr Solnica author of
dry-rb

solnic.eu¹⁶⁰ @solnic¹⁶¹ @solnic¹⁶²

Sandi Metz author of
“POODR”
book

sandimetz.com¹⁶³@sandimetz¹⁶⁴ @skmetz¹⁶⁵

Avdi Grimm author of
“Objects on
Rails” book

devblog.avdi.org¹⁶⁶@avdi¹⁶⁷ @avdi¹⁶⁸

Katrina
Owen

creator of
http://exercism.io,
great speaker

kytrinyx.com¹⁶⁹ @kytrinyx¹⁷⁰ @kytrinyx¹⁷¹

¹⁵¹http://tenderlovemaking.com/
¹⁵²https://twitter.com/tenderlove
¹⁵³https://github.com/tenderlove
¹⁵⁴https://lucaguidi.com/
¹⁵⁵https://twitter.com/jodosha
¹⁵⁶https://github.com/jodosha
¹⁵⁷http://nicksda.apotomo.de/
¹⁵⁸https://twitter.com/apotonick
¹⁵⁹https://github.com/apotonick
¹⁶⁰http://solnic.eu/
¹⁶¹https://twitter.com/_solnic_
¹⁶²https://github.com/solnic
¹⁶³http://www.sandimetz.com/
¹⁶⁴https://twitter.com/sandimetz
¹⁶⁵https://github.com/skmetz
¹⁶⁶http://devblog.avdi.org/
¹⁶⁷https://twitter.com/avdi
¹⁶⁸https://github.com/avdi
¹⁶⁹http://kytrinyx.com/
¹⁷⁰https://twitter.com/kytrinyx
¹⁷¹https://github.com/kytrinyx

52

http://tenderlovemaking.com/
https://twitter.com/tenderlove
https://github.com/tenderlove
https://lucaguidi.com/
https://twitter.com/jodosha
https://github.com/jodosha
http://nicksda.apotomo.de/
https://twitter.com/apotonick
https://github.com/apotonick
http://solnic.eu/
https://twitter.com/_solnic_
https://github.com/solnic
http://www.sandimetz.com/
https://twitter.com/sandimetz
https://github.com/skmetz
http://devblog.avdi.org/
https://twitter.com/avdi
https://github.com/avdi
http://kytrinyx.com/
https://twitter.com/kytrinyx
https://github.com/kytrinyx
http://tenderlovemaking.com/
https://twitter.com/tenderlove
https://github.com/tenderlove
https://lucaguidi.com/
https://twitter.com/jodosha
https://github.com/jodosha
http://nicksda.apotomo.de/
https://twitter.com/apotonick
https://github.com/apotonick
http://solnic.eu/
https://twitter.com/_solnic_
https://github.com/solnic
http://www.sandimetz.com/
https://twitter.com/sandimetz
https://github.com/skmetz
http://devblog.avdi.org/
https://twitter.com/avdi
https://github.com/avdi
http://kytrinyx.com/
https://twitter.com/kytrinyx
https://github.com/kytrinyx

Books
TODO: Add more books

• Objects on Rails¹⁷² by Avdi Grimm.

¹⁷²http://objectsonrails.com/

53

http://objectsonrails.com/
http://objectsonrails.com/

	Table of Contents
	Intro
	Why not ``Ruby On Rails'' and not ``The Right Way''?
	Damaged ecosystem
	Manifesto
	You can help here

	My Dream Stack
	Ground knowledge
	Web
	Linux
	IDE

	Gems
	Ruby on Rails
	Confusing environments
	You don't need ActiveRecord for every kind of model
	Before filter/action
	HTML helpers. Decorators.
	ActiveJob and business logic

	Alternative frameworks
	Full-featured
	Hanami.rb

	Specialized
	Grape

	Mini

	Architecture
	Trailblazer
	ROM.rb (Ruby Object Mapper)
	dry-rb
	Rectify
	Learn OOP design

	Dependency Injection and IoC containers
	The magical world of Metaprogramming
	Mixin/Module include - it is not composition
	Document your code
	Debug
	SQL
	Tests
	Unit tests
	Test Behavior, not Configuration
	Integration tests
	Test data: Fixtures vs Factories
	Stub external services call
	Speed-up test
	Learn Tests Design

	Authentication & Authorization
	Know your App Server!
	Know your CLI!
	Admin
	Templates
	Cache
	Static content
	Dynamic content
	Nginx page microcache
	Application level key-value cache

	Fulltext search
	Style guide and style checker
	Frontend
	HTML / CSS
	JavaScript
	jQuery
	Debug JavaScript
	Server-side rendered JS
	Modern JavaScript

	Performance
	Benchmarks

	Deployment and Server
	VPS, Dedicated server
	PaaS
	CI
	DevOps
	Local development
	Local tunnels. Exposing dev env in the Internet
	Protect non-production servers with HTTP Auth

	Web Application Security
	Stay open-minded, stay hungry!
	Community
	Follow great Ruby developers
	Books

