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Preface

The idea for a “radically modern” introductory physics course arose out of
frustration in the physics department at New Mexico Tech with the standard
two-semester treatment of the subject. It is basically impossible to incorporate a
significant amount of “modern physics” (meaning post-19th century!) in that
format. It seemed to us that largely skipping the “interesting stuff” that has
transpired since the days of Einstein and Bohr was like teaching biology without
any reference to DNA. We felt at the time (and still feel) that an introductory
physics course for non-majors should make an attempt to cover the great
accomplishments of physics in the 20th century, since they form such an
important part of our scientific culture.

   It would, of course, be easy to pander to students – teach them superficially
about the things they find interesting, while skipping the “hard stuff”. However, I
am convinced that they would ultimately find such an approach as unsatisfying as
would the educated physicist. What was needed was a unifying vision
which allowed the presentation of all of physics from a modern point of
view.

   The idea for this course came from reading Louis de Broglie’s Nobel Prize
address.1
De Broglie’s work is a masterpiece based on the principles of optics and special
relativity, which qualitatively foresees the path taken by Schrödinger and others in
the development of quantum mechanics. It thus dawned on me that perhaps
optics and waves together with relativity could form a better foundation for all of
physics, providing a more interesting way into the subject than classical
mechanics.

   Whether this is so or not is still a matter of debate, but it is indisputable that
such a path is much more fascinating to most college students interested in
pursuing studies in physics — especially those who have been through the usual
high school treatment of classical mechanics. I am also convinced that the
development of physics in these terms, though not historical, is at least as rigorous
and coherent as the classical approach.

   After 15 years of gradual development, it is clear that the course failed in its
original purpose, as a replacement for the standard, one-year introductory physics

course with calculus. The material is way too challenging, given the level of
interest of the typical non-physics student. However, the course has found a niche
at the sophomore level for physics majors (and occasional non-majors with a
special interest in physics) to explore some of the ideas that drew them to physics
in the first place. It was placed at the sophomore level because we found that
having some background in both calculus and introductory college-level physics is
advantageous for most students. However, we allow incoming freshmen into the
course if they have an appropriate high school background in physics and
math.

   The course is tightly structured, and it contains little or nothing that can be
omitted. However, it is designed to fit into two semesters or three quarters. In
broad outline form, the structure is as follows:
      

      	Optics and waves occur first on the menu. The idea of group velocity
      is central to the entire course, and is introduced in the first chapter.
      This is a difficult topic, but repeated reviews through the year cause
      it  eventually  to  sink  in.  Interference  and  diffraction  are  done  in  a
      reasonably conventional manner. Geometrical optics is introduced, not
      only for its practical importance, but also because classical mechanics is
      later introduced as the geometrical optics limit of quantum mechanics.
      

      	Relativity  is  treated  totally  in  terms  of  space-time  diagrams  –  the
      Lorentz transformations seem to me to be quite confusing to students
      at this level (“Does gamma go upstairs or downstairs?”), and all desired
      results can be obtained by using the “space-time Pythagorean theorem”
      instead, with much better effect.
      

      	Relativity  plus  waves  leads  to  a  dispersion  relation  for  free  matter
      waves. Optics in a region of variable refractive index provides a powerful
      analogy for the quantum mechanics of a particle subject to potential
      energy. The group velocity of waves is equated to the particle velocity,
      leading to the classical limit and Newton’s equations. The basic topics
      of classical mechanics are then done in a more or less conventional,
      though abbreviated fashion.
      


      	Gravity is treated conventionally, except that Gauss’s law is introduced
      for  the  gravitational  field.  This  is  useful  in  and  of  itself,  but  also
      provides  a  preview  of  its  deployment  in  electromagnetism.  The
      repetition is useful pedagogically.
      

      	Electromagnetism is treated in a highly unconventional way, though
      the  endpoint  is  Maxwell’s  equations  in  their  usual  integral  form.
      The  connection  to  relativity  is  exploited  rather  than  buried.  In
      particular, the seemingly simple question of how potential energy can
      be extended to the relativistic context gives rise to the idea of potential
      momentum. The potential energy and potential momentum together
      form a four-vector which is closely related to the scalar and vector
      potential  of  electromagnetism.  The  Aharonov-Bohm  effect  is  easily
      explained using the idea of potential momentum in one dimension,
      while extension to three dimensions results in a version of Snell’s law
      valid for matter waves, from which the Lorentz force law is derived.
      

      	The generation of electromagnetic fields comes from Coulomb’s law
      plus relativity (I borrowed from my graduate advisor Mel Schwartz’s
      text on electromagnetism here), with the scalar and vector potential
      being used to produce a much more straightforward treatment than is
      possible with electric and magnetic fields. Electromagnetic radiation is
      a lot simpler in terms of the potential fields as well.
      

      	Resistors, capacitors, and inductors are treated for their practical value,
      but also because their consideration leads to an understanding of energy
      in electromagnetic fields.
      

      	At this point the book shifts to a more qualitative (but non-trivial)
      treatment of atoms, atomic nuclei, the standard model of elementary
      particles, and techniques for observing the very small. Ideas from optics,
      waves, and relativity reappear here. The Bohr model of the hydrogen
      atom is not presented for the simple reason that it gets the angular
      momentum of the electron wrong!

      

      	The final section of the course deals with heat and statistical mechanics.
      Only at this point do non-conservative forces appear in the context
      of classical mechanics. Counting as a way to compute the entropy is
      introduced,  and  is  applied  to  the  Einstein  model  of  a  collection  of
      harmonic oscillators (conceptualized as a “brick”), and in a limited way
      to an ideal gas. The second law of thermodynamics follows. The book
      ends with a fairly conventional treatment of heat engines.


   A few words about how I have taught the course at New Mexico Tech are in
order. As with our standard course, each week contains three lecture hours and a
two-hour recitation. The recitation is the key to making the course accessible to
the students. I generally have small groups of students working on assigned
homework problems during recitation while I wander around giving hints. After
all groups have completed their work, a representative from each group explains
their problem to the class. The students are then required to write up the
problems on their own and hand them in at a later date. The problems
are the key to student learning, and associating course credit with the
successful solution of these problems insures virtually 100% attendance in
recitation.

   In addition, chapter reading summaries are required, with the students urged
to ask questions about material in the text that gave them difficulties. Significant
lecture time is taken up answering these questions. Students tend to do the
summaries, as they also count for their grade. The summaries and the questions
posed by the students have been quite helpful to me in indicating parts of the text
which need clarification.

   The writing style of the text is quite terse. This partially reflects its origin in a
set of lecture notes, but it also focuses the students’ attention on what is really
important. Given this structure, a knowledgeable instructor able to offer
one-on-one time with students (as in our recitation sections) is essential for
student success. The text is most likely to be useful in a sophomore-level course
introducing physics majors to the broad world of physics viewed from a modern
perspective.

   I freely acknowledge stealing ideas from Edwin Taylor, John Archibald
Wheeler, Thomas Moore, Robert Mills, Bruce Sherwood, and many other creative
physicists, and I owe a great debt to them. The physics department at New
Mexico Tech has been quite supportive of my efforts over the years relative to this
course, for which I am exceedingly grateful. Finally, my humble thanks go out to

the students who have enthusiastically (or on occasion unenthusiastically)
responded to this course. It is much, much better as a result of their
input.

   My colleagues Alan Blyth, David Westpfahl, Ken Eack, and Sharon Sessions
were brave enough to teach this course at various stages of its development, and I
welcome the feedback I have received from them. Their experience shows that
even seasoned physics teachers require time and effort to come to grips with the
content of this textbook!

   The reviews of Allan Stavely and Paul Arendt in conjunction with the
publication of this book by the New Mexico Tech Press have been enormously
helpful, and I am very thankful for their support and enthusiasm. Penny Bencomo
and Keegan Livoti taught me a lot about written English with their copy
editing.

David J. Raymond

New Mexico Tech

Socorro, NM, USA

raymond@kestrel.nmt.edu



    




   



Chapter 1
Waves in One Dimension

The wave is a universal phenomenon which occurs in a multitude of physical
contexts. The purpose of this section is to describe the kinematics of waves, i. e.,
to provide tools for describing the form and motion of all waves irrespective of
their underlying physical mechanisms.

   Many examples of waves are well known to you. You undoubtedly know about
ocean waves and have probably played with a stretched slinky toy, producing
undulations which move rapidly along the slinky. Other examples of waves are
sound, vibrations in solids, and light.

   In this chapter we learn first about the basic properties of waves and introduce
a special type of wave called the sine wave. Examples of waves seen in the real
world are presented. We then learn about the superposition principle,
which allows us to construct complex wave patterns by superimposing
sine waves. Using these ideas, we discuss the related ideas of beats and
interferometry. Finally, the ideas of wave packets and group velocity are
introduced.
   
1.1    Transverse and Longitudinal Waves










[image: PIC]



 Figure 1.1: Example of displacements in transverse and longitudinal waves.
The wave motion is to the right as indicated by the large arrows. The small
arrows indicate the displacements at a particular instant.

____________________________






   With the exception of light, waves are undulations in a material medium. For
instance, ocean waves are (nearly) vertical undulations in the position of water
parcels. The oscillations in neighboring parcels are phased such that a pattern
moves across the ocean surface. Waves on a slinky are either transverse, in that
the motion of the material of the slinky is perpendicular to the orientation of the
slinky, or they are longitudinal, with material motion in the direction of the
stretched slinky. (See figure 1.1.) Some media support only longitudinal
waves, others support only transverse waves, while yet others support
both types. Light waves are purely transverse, while sound waves are
purely longitudinal. Ocean waves are a peculiar mixture of transverse and
longitudinal, with parcels of water moving in elliptical trajectories as waves
pass.

   Light is a form of electromagnetic radiation. The undulations in an
electromagnetic wave occur in the electric and magnetic fields. These oscillations
are perpendicular to the direction of motion of the wave (in a vacuum), which is
why we call light a transverse wave.
   
1.2    Sine Waves
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 Figure 1.2: Definition sketch for a sine wave, showing the wavelength λ and
the amplitude h0 and the phase ϕ at various points.

____________________________






   A particularly simple kind of wave, the sine wave, is illustrated in figure 1.2.
This has the mathematical form
   	
   
[image: h (x) = h0sin(2πx ∕λ), ]
	(1.1)




where h is the displacement (which can be either longitudinal or transverse), h0 is
the maximum displacement, also called the amplitude of the wave, and λ is the
wavelength. The oscillatory behavior of the wave is assumed to carry on to infinity
in both positive and negative x directions. Notice that the wavelength is the
distance through which the sine function completes one full cycle. The crest and
the trough of a wave are the locations of the maximum and minimum
displacements, as seen in figure 1.2.

   So far we have only considered a sine wave as it appears at a particular time.
All interesting waves move with time. The movement of a sine wave to
the right a distance d may be accounted for by replacing x in the above
formula by x - d. If this movement occurs in time t, then the wave moves at
velocity c = d∕t. Solving this for d and substituting yields a formula for the
displacement of a sine wave as a function of both distance x and time
t:
   	
   
[image: h(x,t) = h0sin[2π(x - ct)∕λ]. ]
	(1.2)





   The time for a wave to move one wavelength is called the period of the wave:
T = λ∕c. Thus, we can also write
   	
   
[image: h(x,t) = h0sin[2π(x∕ λ - t∕T )]. ]
	(1.3)





   Physicists actually like to write the equation for a sine wave in a slightly
simpler form. Defining the wavenumber as k = 2π∕λ and the angular frequency as
ω = 2π∕T, we write
   	
   
[image: h(x,t) = h0 sin(kx - ωt ). ]
	(1.4)





We normally think of the frequency of oscillatory motion as the number of cycles
completed per second. This is called the rotational frequency, and is given by
f = 1∕T. It is related to the angular frequency by ω = 2πf. The rotational
frequency is usually easier to measure than the angular frequency, but the angular
frequency tends to be used more often in theoretical discussions. As shown above,
converting between the two is not difficult. Rotational frequency is measured in
units of hertz, abbreviated Hz; 1 Hz = 1 cycle s-1. Angular frequency also has the
dimensions of inverse time, e. g.,  radian s-1, but the term “hertz” is generally
reserved only for rotational frequency.

   The argument of the sine function is by definition an angle. We refer to this
angle as the phase of the wave, ϕ = kx - ωt. The difference in the phase
of a wave at fixed time over a distance of one wavelength is 2π, as is
the difference in phase at fixed position over a time interval of one wave
period.

   Since angles are dimensionless, we normally don’t include this in the units for
frequency. However, it sometimes clarifies things to refer to the dimensions of
rotational frequency as “rotations per second” or angular frequency as “radians
per second”.

   As previously noted, we call h0, the maximum displacement of the wave, the
amplitude. Often we are interested in the intensity of a wave, which is
proportional to the square of the amplitude. The intensity is often related to the
amount of energy being carried by a wave.

   The wave speed we have defined above, c = λ∕T, is actually called the phase
speed. Since λ = 2π∕k and T = 2π∕ω, we can write the phase speed in terms of
the angular frequency and the wavenumber:
   	
   
[image:     ω c = k-  (phase  speed ). ]
	(1.5)





   
1.3    Types of Waves

In order to make the above material more concrete, we now examine the
characteristics of various types of waves which may be observed in the real
world.


   
1.3.1    Ocean Surface Waves
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 Figure 1.3: Wave on an ocean of depth H. The wave is moving to the right
and the particles of water at the surface oscillate in elliptical trajectories as
the wave crests and troughs pass.

____________________________






   These waves are manifested as undulations of the ocean surface as seen in
figure 1.3. The speed of ocean waves is given by the formula
   	
   
[image:     (            )1∕2       gtanh-(kH-)- c =        k         , ]
	(1.6)




where g = 9.8 m s-2  is the earth’s gravitational force per unit mass,
H is the depth of the ocean, and the hyperbolic tangent is defined
as1
   	
   
[image:           exp (x) - exp(- x) tanh(x) = ------------------.           exp (x) + exp(- x) ]
	(1.7)




The equation for the speed of ocean waves comes from the theory for oscillations
of a fluid surface in a gravitional field.
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 Figure 1.4:  Plot  of  the  function  tanh(x).  The  dashed  line  shows  our
approximation tanh(x) ≈ x for |x|≪ 1.

____________________________


   



   As figure 1.4 shows, for |x|≪ 1, we can approximate the hyperbolic tangent by
tanh(x) ≈ x, while for |x|≫ 1 it is +1 for x > 0 and -1 for x < 0. This leads to
two limits: Since x = kH, the shallow water limit, which occurs when kH ≪ 1,
yields a wave speed of
   	
   
[image: c ≈ (gH )1∕2,   (shallow  water waves), ]
	(1.8)




while the deep water limit, which occurs when kH ≫ 1, yields
   	
   
[image: c ≈ (g∕k )1∕2,   (deep water waves ). ]
	(1.9)





   Notice that the speed of shallow water waves depends only on the depth of the
water and on g. In other words, all shallow water waves move at the same speed.
On the other hand, deep water waves of longer wavelength (and hence smaller
wavenumber) move more rapidly than those with shorter wavelength. Waves
for which the wave speed varies with wavelength are called dispersive.

Thus, deep water waves are dispersive, while shallow water waves are
non-dispersive.

   For water waves with wavelengths of a few centimeters or less, surface tension
becomes important to the dynamics of the waves. In the deep water case, the
wave speed at short wavelengths is given by the formula
   	
   
[image: c = (g∕k + Ak )1∕2 ]
	(1.10)




where the constant A is related to an effect called surface tension. For an
air-water interface near room temperature, A ≈ 74 cm3 s-2.
   
1.3.2    Sound Waves

Sound is a longitudinal compression-expansion wave in a fluid. The wave speed for
sound in an ideal gas is
   	
   
[image:             1∕2 c = (γRTabs ) ]
	(1.11)





where γ and R are constants and Tabs is the absolute temperature. The
absolute temperature is measured in Kelvins and is numerically given
by
   	
   
[image: Tabs = TC + 273∘ ]
	(1.12)




where TC is the temperature in Celsius degrees. The angular frequency of sound
waves is thus given by
   	
   
[image: ω = ck = (γRTabs )1∕2k. ]
	(1.13)




The speed of sound in air at normal temperatures is about 340 m s-1.



   
1.3.3    Light

Light moves in a vacuum at a speed of cvac = 3 × 108 m s-1. In transparent
materials it moves at a speed less than cvac by a factor n which is called the
refractive index of the material:
   	
   
[image: c = c  ∕n.      vac ]
	(1.14)




Often the refractive index takes the form
   	
   
[image: n2 ≈ 1 +  ----A------,           1 - (k ∕kR)2 ]
	(1.15)




where k is the wavenumber and kR and A are positive constants characteristic of
the material. The angular frequency of light in a transparent medium is
thus
   	

   
[image: ω =  kc = kcvac∕n. ]
	(1.16)






   
1.4    Superposition Principle

It is found empirically that as long as the amplitudes of waves in most media are
small, two waves in the same physical location don’t interact with each other.
Thus, for example, two waves moving in the opposite direction simply pass
through each other without their shapes or amplitudes being changed. When
collocated, the total wave displacement is just the sum of the displacements
of the individual waves. This is called the superposition principle. At
sufficiently large amplitude the superposition principle often breaks down —
interacting waves may scatter off of each other, lose amplitude, or change their
form.

   Interference is a consequence of the superposition principle. When two or more
waves are superimposed, the net wave displacement is just the algebraic sum
of the displacements of the individual waves. Since these displacements
can be positive or negative, the net displacement can either be greater
or less than the individual wave displacements. The former case, which
occurs when both displacements are of the same sign, is called constructive
interference, while destructive interference occurs when they are of opposite
sign.

   








[image: PIC]



  Figure 1.5:  Superposition  (lower  panel)  of  two  sine  waves  (shown
individually in the upper panel) with equal amplitudes and wavenumbers
k1 = 4 and k2 = 5.

____________________________


   



   Let us see what happens when we superimpose two sine waves with
different wavenumbers. Figure 1.5 shows the superposition of two waves with
wavenumbers k1 = 4 and k2 = 5. Notice that the result is a wave with
about the same wavelength as the two initial waves, but which varies
in amplitude depending on whether the two sine waves are interfering
constructively or destructively. We say that the waves are in phase if they are
interfering constructively, and they are out of phase if they are interfering
destructively.
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 Figure 1.6:  Superposition  of  two  sine  waves  with  equal  amplitudes  and
wavenumbers k1 = 10 and k2 = 11.

____________________________


   



   What happens when the wavenumbers of the two sine waves are changed?
Figure 1.6 shows the result when k1 = 10 and k2 = 11. Notice that though
the wavelength of the resultant wave is decreased, the locations where
the amplitude is maximum have the same separation in x as in figure
1.5.
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 Figure 1.7:  Superposition  of  two  sine  waves  with  equal  amplitudes  and
wavenumbers k1 = 10 and k2 = 12.

____________________________


   



   If we superimpose waves with k1 = 10 and k2 = 12, as is shown in figure 1.7,
we see that the x spacing of the regions of maximum amplitude has decreased by
a factor of two. Thus, while the wavenumber of the resultant wave seems to be
related to something like the average of the wavenumbers of the component waves,
the spacing between regions of maximum wave amplitude appears to go inversely
with the difference of the wavenumbers of the component waves. In other words, if
k1 and k2 are close together, the amplitude maxima are far apart and vice
versa.

   








[image: PIC]



 Figure 1.8:  Representation  of  the  wavenumbers  and  amplitudes  of  two
superimposed sine waves.

____________________________


   



   We can symbolically represent the sine waves that make up figures 1.5, 1.6,
and 1.7 by a plot such as that shown in figure 1.8. The amplitudes and
wavenumbers of each of the sine waves are indicated by vertical lines in this
figure.

   








[image: PIC]



 Figure 1.9: Superposition of twenty sine waves with k0 = 4 and Δk = 1.

____________________________
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  Figure 1.10:  Representation  of  the  distribution  of  wavenumbers  and
amplitudes of 20 superimposed sine waves with maximum at k0  = 4 and
half-width Δk = 1.

____________________________


   



   The regions of large wave amplitude are called wave packets. Wave packets will
play a central role in what is to follow, so it is important that we acquire a good
understanding of them. The wave packets produced by only two sine waves are
not well separated along the x-axis. However, if we superimpose many waves,
we can produce an isolated wave packet. For example, figure 1.9 shows
the results of superimposing 20 sine waves with wavenumbers k = 0.4m,
m = 1, 2,…, 20, where the amplitudes of the waves are largest for wavenumbers
near k = 4. In particular, we assume that the amplitude of each sine
wave is proportional to exp[-(k - k0)2∕Δk2], where k
0 = 4 defines the
maximum of the distribution of wavenumbers and Δk = 1 defines the
half-width of this distribution. The amplitudes of each of the sine waves
making up the wave packet in figure 1.9 are shown schematically in figure
1.10.
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 Figure 1.11: Superposition of twenty sine waves with k0 = 4 and Δk = 2.

____________________________
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  Figure 1.12:  Representation  of  the  distribution  of  wavenumbers  and
amplitudes of 20 superimposed sine waves with maximum at k0  = 4 and
half-width Δk = 2.

____________________________


   



   The quantity Δk controls the distribution of the sine waves being
superimposed — only those waves with a wavenumber k within approximately Δk
of the central wavenumber k0 of the wave packet, i. e., for 3 ≤ k ≤ 5 in
this case, contribute significantly to the sum. If Δk is changed to 2, so
that wavenumbers in the range 2 ≤ k ≤ 6 contribute significantly, the
wavepacket becomes narrower, as is shown in figures 1.11 and 1.12. Δk is
called the wavenumber spread of the wave packet, and it evidently plays
a role similar to the difference in wavenumbers in the superposition of
two sine waves — the larger the wavenumber spread, the smaller the
physical size of the wave packet. Furthermore, the wavenumber of the
oscillations within the wave packet is given approximately by the central
wavenumber.

   We can better understand how wave packets work by mathematically
analyzing the simple case of the superposition of two sine waves. Let us define
k0 = (k1 + k2)∕2 where k1 and k2 are the wavenumbers of the component waves.
Furthermore let us set Δk = (k2 - k1)∕2. The quantities k0 and Δk are
graphically illustrated in figure 1.8. We can write k1 = k0 - Δk and k2 = k0 + Δk
and use the trigonometric identity sin(a + b) = sin(a) cos(b) + cos(a) sin(b) to find


   
[image: sin (k1x) + sin(k2x)  =   sin [(k0 - Δk )x] + sin[(k0 + Δk )x]                      =   sin (k0x)cos(Δkx ) - cos(k0x)sin(Δkx ) +                         sin (k0x)cos(Δkx ) + cos(k0x)sin(Δkx )                      =   2sin(k0x) cos(Δkx  ).                   (1.17) ]


The sine factor on the bottom line of the above equation produces the oscillations
within the wave packet, and as speculated earlier, this oscillation has a
wavenumber k0 equal to the average of the wavenumbers of the component waves.

The cosine factor modulates this wave with a spacing between regions of
maximum amplitude of
   	
   
[image: Δx  = π∕Δk. ]
	(1.18)



Thus, as we observed in the earlier examples, the length of the wave packet Δx is
inversely related to the spread of the wavenumbers Δk (which in this case
is just the difference between the two wavenumbers) of the component
waves. This relationship is central to the uncertainty principle of quantum
mechanics.
   
1.5    Beats

Suppose two sound waves of different frequency but equal amplitude impinge on
your ear at the same time. The displacement perceived by your ear is the
superposition of these two waves, with time dependence
   	
   
[image: h(t) = sin(ω t) + sin (ω t) = 2 sin (ω t)cos(Δ ωt),            1          2           0  ]
	(1.19)




where we have used the above math trick, and where ω0 = (ω1 + ω2)∕2 and
Δω = (ω2 - ω1)∕2. What you actually hear is a tone with angular frequency ω0
which fades in and out with period
   	
   
[image: T    =  π∕|Δω | = 2π∕|ω  - ω | = 1∕|f -  f |.   beat                  2    1        2    1 ]
	(1.20)




The beat frequency is simply
   	
   
[image: fbeat = 1 ∕Tbeat = |f2 - f1|. ]
	(1.21)




Note how beats are the time analog of wave packets — the mathematics are
the same except that frequency replaces wavenumber and time replaces
space.



   
1.6    Interferometers

An interferometer is a device which splits a beam of light (or other wave) into two
sub-beams, shifts the phase of one sub-beam with respect to the other, and then
superimposes the sub-beams so that they interfere constructively or destructively,
depending on the magnitude of the phase shift between them. In this section we
study the Michelson interferometer and interferometric effects in thin
films.


   
1.6.1    The Michelson Interferometer










[image: PIC]



 Figure 1.13: Sketch of a Michelson interferometer.

____________________________






   The American physicist Albert Michelson invented the optical interferometer
illustrated in figure 1.13. The incoming beam is split into two beams by the
half-silvered mirror. Each sub-beam reflects off of another mirror which returns it
to the half-silvered mirror, where the two sub-beams recombine as shown. One of
the reflecting mirrors is movable by a sensitive micrometer device, allowing
the path length of the corresponding sub-beam, and hence the phase
relationship between the two sub-beams, to be altered. As figure 1.13 shows, the
difference in path length between the two sub-beams is 2x because the
horizontal sub-beam traverses the path twice. Thus, constructive interference
occurs when this path difference is an integral number of wavelengths,
i. e.,
   	
   
[image: 2x =  m λ,  m = 0, ±1, ±2,...   (Michelson interferometer ) ]
	(1.22)




where λ is the wavelength of the wave and m is an integer. Note that m is the
number of wavelengths that fits evenly into the distance 2x.
   
1.7    Thin Films
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 Figure 1.14: Plane light wave normally incident on a transparent thin film
of thickness d and index of refraction n > 1. Partial reflection occurs at
the front surface of the film, resulting in beam A, and at the rear surface,
resulting in beam B. Much of the wave passes completely through the film,
as with C.

____________________________






   One of the most revealing examples of interference occurs when light interacts
with a thin film of transparent material such as a soap bubble. Figure 1.14 shows
how a plane wave normally incident on the film is partially reflected by the front
and rear surfaces. The waves reflected off the front and rear surfaces of the film
interfere with each other. The interference can be either constructive or
destructive depending on the phase difference between the two reflected
waves.

   If the wavelength of the incoming wave is λ, one would naively expect
constructive interference to occur between the A and B beams if 2d were an
integral multiple of λ.

   Two factors complicate this picture. First, the wavelength inside the film is not
λ, but λ∕n, where n is the index of refraction of the film. Constructive
interference would then occur if 2d = mλ∕n. Second, it turns out that an
additional phase shift of half a wavelength occurs upon reflection when the wave is
incident on material with a higher index of refraction than the medium in which
the incident beam is immersed. This phase shift doesn’t occur when light is
reflected from a region with lower index of refraction than felt by the
incident beam. Thus beam B doesn’t acquire any additional phase shift upon
reflection. As a consequence, constructive interference actually occurs
when
   	
   
[image: 2d =  (m  + 1∕2)λ ∕n,  m =  0,1,2,...  (constructive interference) ]
	(1.23)




while destructive interference results when
   	

   
[image: 2d =  m λ∕n,  m  = 0,1,2,...  (destructive interference). ]
	(1.24)





   When we look at a soap bubble, we see bands of colors reflected back from a
light source. What is the origin of these bands? Light from ordinary sources is
generally a mixture of wavelengths ranging from roughly λ = 4.5 × 10-7 m (violet
light) to λ = 6.5 × 10-7 m (red light). In between violet and red we also
have blue, green, and yellow light, in that order. Because of the different
wavelengths associated with different colors, it is clear that for a mixed light
source we will have some colors interfering constructively while others
interfere destructively. Those undergoing constructive interference will be
visible in reflection, while those undergoing destructive interference will
not.

   Another factor enters as well. If the light is not normally incident on the film,
the difference in the distances traveled between beams reflected off of the front
and rear faces of the film will not be just twice the thickness of the film. To
understand this case quantitatively, we need the concept of refraction, which will
be developed later in the context of geometrical optics. However, it should be
clear that different wavelengths will undergo constructive interference for different
angles of incidence of the incoming light. Different portions of the thin film will in
general be viewed at different angles, and will therefore exhibit different colors
under reflection, resulting in the colorful patterns normally seen in soap
bubbles.
   
1.8    Math Review — Derivatives
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 Figure 1.15: Estimation of the derivative, which is the slope of the tangent
line. When point B approaches point A, the slope of the line AB approaches
the slope of the tangent to the curve at point A.

____________________________






   This section provides a quick review of the idea of the derivative. Often we are
interested in the slope of a line tangent to a function y(x) at some value of x. This
slope is called the derivative and is denoted dy∕dx. Since a tangent line to the
function can be defined at any point x, the derivative itself is a function of
x:
   	
   
[image:         dy(x) g(x ) = -----.          dx ]
	(1.25)





   As figure 1.15 illustrates, the slope of the tangent line at some point on the
function may be approximated by the slope of a line connecting two points, A and
B, set a finite distance apart on the curve:
   	
   
[image: dy-≈  Δy-. dx    Δx ]
	(1.26)




As B is moved closer to A, the approximation becomes better. In the limit when B

moves infinitely close to A, it is exact.

   Derivatives of some common functions are now given. In each case a is a
constant.
   	
   
[image:    a dx--=  axa-1  dx ]
	(1.27)




   	
   
[image: d--exp(ax) = a exp(ax ) dx ]
	(1.28)




   	

   
[image: d            1 ---log (ax) = -- dx           x ]
	(1.29)




   	
   
[image:  d ---sin(ax) = a cos(ax) dx ]
	(1.30)




   	
   
[image:  d dx-cos(ax ) = - a sin (ax) ]
	(1.31)





   	
   
[image: daf(x )    df(x) -------=  a------   dx        dx ]
	(1.32)




   	
   
[image:  d                df (x )   dg(x) ---[f (x ) + g (x )] =-----+  ------ dx                  dx      dx ]
	(1.33)




   	
   

[image: d             df(x)            dg(x) --f (x)g(x) = -----g (x ) + f (x)-----  (product rule) dx             dx               dx ]
	(1.34)




   	
   
[image: d         df dy --f (y ) = -----  (chain rule) dx        dydx ]
	(1.35)





   The product and chain rules are used to compute the derivatives of complex
functions. For instance,
   

[image:  d                  d sin(x )               dcos(x) ---(sin (x )cos(x)) = --------cos(x) + sin (x )--------=  cos2(x ) - sin2(x) dx                     dx                    dx ]


and
   

[image: -d-log(sin(x )) =  --1---dsin(x)-=  cos(x-). dx               sin(x)   dx       sin(x ) ]



   
1.9    Group Velocity

We now ask the following question: How fast do wave packets move? Surprisingly,
we often find that wave packets move at a speed very different from the phase
speed, c = ω∕k, of the wave composing the wave packet.

   We shall find that the speed of motion of wave packets, referred to as the
group velocity, is given by
   	
   
[image:         |      dω-|| u =  dk ||       (group velocity).         k=k0 ]
	(1.36)




The derivative of ω(k) with respect to k is first computed and then evaluated at
k = k0, the central wavenumber of the wave packet of interest.

   The relationship between the angular frequency and the wavenumber for a
wave, ω = ω(k), depends on the type of wave being considered. Whatever this
relationship turns out to be in a particular case, it is called the dispersion relation
for the type of wave in question.

   As an example of a group velocity calculation, suppose we want to find the
velocity of deep ocean wave packets for a central wavelength of λ0 = 60 m. This
corresponds to a central wavenumber of k0 = 2π∕λ0 ≈ 0.1 m-1. The phase
speed of deep ocean waves is c = (g∕k)1∕2. However, since c ≡ ω∕k, we
find the frequency of deep ocean waves to be ω = (gk)1∕2. The group
velocity is therefore u ≡ dω∕dk = (g∕k)1∕2∕2 = c∕2. For the specified central
wavenumber, we find that u ≈ (9.8 m s-2∕0.1 m-1)1∕2∕2 ≈ 5 m s-1. By
contrast, the phase speed of deep ocean waves with this wavelength is

c ≈ 10 m s-1.

   Dispersive waves are waves in which the phase speed varies with wavenumber.
It is easy to show that dispersive waves have unequal phase and group velocities,
while these velocities are equal for non-dispersive waves.


   
1.9.1    Derivation of Group Velocity Formula
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 Figure 1.16: Upper panel: Net displacement of the sum of two traveling sine
waves plotted in the x-t plane. The white indicates where the displacement
is large and positive, while the black indicates where it is large and negative.
Non-dispersive case. Lower panel: Plot of wave displacement as a function of
x at time t = 0.

____________________________






   We now derive equation (1.36). It is easiest to do this for the simplest wave
packets, namely those constructed out of the superposition of just two sine
waves. We will proceed by adding two waves with full space and time
dependence:
   	
   
[image: h = sin(k x - ω t) + sin(k x - ω  t)          1     1         2      2 ]
	(1.37)




After algebraic and trigonometric manipulations familiar from earlier sections, we
find
   	
   
[image: h = 2sin(k0x - ω0t)cos(Δkx  - Δ ωt ), ]
	(1.38)




where as before we have k0 = (k1 + k2)∕2, ω0 = (ω1 + ω2)∕2, Δk = (k2 - k1)∕2,
and Δω = (ω2 - ω1)∕2.

   Again think of this as a sine wave of frequency ω0 and wavenumber
k0 modulated by a cosine function. In this case the modulation pattern
moves with a speed so as to keep the argument of the cosine function

constant:
   	
   
[image: Δkx  - Δ ωt = const. ]
	(1.39)




Differentiating this with respect to t while holding Δk and Δω constant
yields
   	
   
[image:     dx-   Δ-ω- u ≡ dt  = Δk  . ]
	(1.40)




In the limit in which the deltas become very small, this reduces to the
derivative
   	
   

[image:      dω u =  --,      dk ]
	(1.41)




which is the desired result.
   
1.9.2    Examples

We now illustrate some examples of phase speed and group velocity by showing
the displacement resulting from the superposition of two sine waves, as given by
equation (1.38), in the x-t plane. This is an example of a spacetime diagram, of
which we will see many examples later on.
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 Figure 1.17: As in the upper panel of figure 1.16 except a dispersive case.

____________________________
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 Figure 1.18: As in the upper panel of figure 1.16 except a dispersive case
with phase and group velocities in opposite directions.

____________________________


   



   The upper panel of figure 1.16 shows a non-dispersive case in which
the phase speed equals the group velocity. The white and black regions
indicate respectively strong wave crests and troughs (i. e., regions of large
positive and negative displacements), with grays indicating a displacement
near zero. Regions with large displacements indicate the location of wave
packets. The positions of waves and wave packets at any given time may
therefore be determined by drawing a horizontal line across the graph at the
desired time and examining the variations in wave displacement along
this line. The lower panel of this figure shows the wave displacement as
a function of x at time t = 0 as an aid to interpretation of the upper
panel.

   Notice that as time increases, the crests move to the right. This corresponds to
the motion of the waves within the wave packets. Note also that the wave packets,
i. e., the broad regions of large positive and negative amplitudes, move to the
right with increasing time as well.

   Since velocity is distance moved Δx divided by elapsed time Δt, the slope of a
line in figure 1.16, Δt∕Δx, is one over the velocity of whatever that line
represents. The slopes of lines representing crests are the same as the slopes of
lines representing wave packets in this case, which indicates that the two move at
the same velocity. Since the speed of movement of wave crests is the phase
speed and the speed of movement of wave packets is the group velocity,
the two velocities are equal and the non-dispersive nature of this case is
confirmed.

   Figure 1.17 shows a dispersive wave in which the group velocity is twice the
phase speed, while figure 1.18 shows a case in which the group velocity
is actually opposite in sign to the phase speed. See if you can confirm
that the phase and group velocities seen in each figure correspond to the
values for these quantities calculated from the specified frequencies and
wavenumbers.
   
1.10    Problems


      

      	Measure your pulse rate. Compute the ordinary frequency of your heart

      beat in cycles per second. Compute the angular frequency in radians
      per second. Compute the period.
      

      	An important wavelength for radio waves in radio astronomy is 21 cm.
      (This comes from neutral hydrogen.) Compute the wavenumber of this
      wave. Compute the ordinary and angular frequencies. (The speed of
      light is 3 × 108 m s-1.)
      

      	Sketch  the  resultant  wave  obtained  from  superimposing  the  waves
      A = sin(2x) and B = sin(3x). By using the trigonometric identity given
      in equation (1.17), obtain a formula for A+B in terms of sin(5x∕2) and
      cos(x∕2). Does the wave obtained from sketching this formula agree
      with your earlier sketch?
      

      	Two sine waves with wavelengths λ1 and λ2 are superimposed, making
      wave packets of length L. If we wish to make L larger, should we make
      λ1 and λ2 closer together or farther apart? Explain your reasoning.
      

      	By examining figure 1.9 versus figure 1.10 and then figure 1.11 versus
      figure 1.12, determine whether equation (1.18) works at least in an
      approximate sense for isolated wave packets.
      

      	The frequencies of the chromatic scale in music are given by
      	
      
      [image: fi = f02i∕12,  i = 0,1,2,...,11,        ]
	(1.42)


      
      where f0 is a constant equal to the frequency of the lowest note in the
      scale.
           

           	Compute f1 through f11 if f0 = 440 Hz (the “A” note).
           

           	Using the above results, what is the beat frequency between the
           “A” (i = 0) and “B” (i = 2) notes? (The frequencies are given
           here in cycles per second rather than radians per second.)
           

           	Which pair of the above frequencies f0 - f11  yields the smallest
           beat frequency? Explain your reasoning.
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 Figure 1.19: Sketch of a police radar.

      _____________________________________
      



      

      	Large ships in general cannot move faster than the phase speed of surface
      waves with a wavelength equal to twice the ship’s length. This is because
      most of the propulsive force goes into making big waves under these
      conditions rather than accelerating the ship.

           
           	How fast can a 300 m long ship move in very deep water?
           

           	As the ship moves into shallow water, does its maximum speed
           increase or decrease? Explain.


      

      	Given the formula for refractive index of light quoted in this section,
      for what range of k does the phase speed of light in a transparent
      material take on real values which exceed the speed of light in a
      vacuum?
      

      	A police radar works by splitting a beam of microwaves, part of which is
      reflected back to the radar from your car where it is made to interfere
      with the other part which travels a fixed path, as shown in figure
      1.19.
           
           	If the wavelength of the microwaves is λ, how far do you have to
           travel in your car for the interference between the two beams to
           go from constructive to destructive to constructive?
           

           	If you are traveling toward the radar at speed v = 30 m s-1, use
           the above result to determine the number of times per second
           constructive interference peaks will occur. Assume that λ = 3 cm.
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 Figure 1.20: Sketch of a Fabry-Perot interferometer.

      _____________________________________
      



      

      	Suppose you know the wavelength of light passing through a Michelson
      interferometer with high accuracy. Describe how you could use the
      interferometer to measure the length of a small piece of material.
      

      	A Fabry-Perot interferometer (see figure 1.20) consists of two parallel
      half-silvered mirrors placed a distance d from each other as shown. The
      beam passing straight through interferes with the beam which reflects once
      off of both of the mirrored surfaces as shown. For wavelength λ, what values
      of d result in constructive interference?
      

      	A Fabry-Perot interferometer has spacing d = 2 cm between the glass
      plates, causing the direct and doubly reflected beams to interfere (see
      figure 1.20). As air is pumped out of the gap between the plates, the
      beams go through 23 cycles of constructive-destructive-constructive
      interference. If the wavelength of the light in the interfering beams is
      5 × 10-7 m, determine the index of refraction of the air initially in the
      interferometer.
      

      	Measurements on a certain kind of wave reveal that the angular
      frequency of the wave varies with wavenumber as shown in the following
      table:
      


 	ω (s-1)	k (m-1)

	5         	1         
	20 	2

	45       	3         

	80       	4         

	125      	5         

	       






      
           

           	Compute the phase speed of the wave for k =  3 m-1  and for
           k = 4 m-1.
           

           	Estimate  the  group  velocity  for  k  =  3.5 m-1   using  a  finite
           difference approximation to the derivative.
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 Figure 1.21: Sketch of a weird dispersion relation.

      _____________________________________
      



      

      	Suppose some type of wave has the (admittedly weird) dispersion relation
      shown in figure 1.21.
           
           	For what values of k is the phase speed of the wave positive?
           

           	For what values of k is the group velocity positive?



      

      	Compute the group velocity for shallow water waves. Compare it with the
      phase speed of shallow water waves. (Hint: You first need to derive a
      formula for ω(k) from c(k).)
      

      	Repeat the above problem for deep water waves.
      

      	Repeat for sound waves. What does this case have in common with shallow
      water waves?





   


Chapter 2
Waves in Two and Three Dimensions

In this chapter we extend the ideas of the previous chapter to the case of waves in
more than one dimension. The extension of the sine wave to higher dimensions is
the plane wave. Wave packets in two and three dimensions arise when plane waves
moving in different directions are superimposed.

   Diffraction results from the disruption of a wave which is impingent upon an
object. Those parts of the wave front hitting the object are scattered, modified, or
destroyed. The resulting diffraction pattern comes from the subsequent
interference of the various pieces of the modified wave. A knowledge of diffraction
is necessary to understand the behavior and limitations of optical instruments
such as telescopes.

   Diffraction and interference in two and three dimensions can be manipulated
to produce useful devices such as the diffraction grating.
   
2.1    Math Tutorial — Vectors
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  Figure 2.1:  Displacement  vectors  in  a  plane.  Vector  A  represents
the  displacement  of  George  from  Mary,  while  vector  B  represents  the
displacement of Paul from George. Vector C represents the displacement of
Paul from Mary and C = A + B. The quantities Ax, Ay, etc., represent the
Cartesian components of the vectors.

____________________________
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 Figure 2.2: Definition sketch for the angle θ representing the orientation of
a two dimensional vector.

____________________________


   



   Before we can proceed further we need to explore the idea of a vector. A
vector is a quantity which expresses both magnitude and direction. Graphically
we represent a vector as an arrow. In typeset notation a vector is represented by a
boldface character, while in handwriting an arrow is drawn over the character
representing the vector.

   Figure 2.1 shows some examples of displacement vectors, i. e., vectors which
represent the displacement of one object from another, and introduces the idea of
vector addition. The tail of vector B is collocated with the head of vector A, and
the vector which stretches from the tail of A to the head of B is the sum of A and
B, called C in figure 2.1.

   The quantities Ax, Ay, etc., represent the Cartesian components of the vectors
in figure 2.1. A vector can be represented either by its Cartesian components,
which are just the projections of the vector onto the Cartesian coordinate axes, or
by its direction and magnitude. The direction of a vector in two dimensions is
generally represented by the counterclockwise angle of the vector relative to the x
axis, as shown in figure 2.2. Conversion from one form to the other is given by the
equations
   	
   
[image: A =  (A2x + A2y)1∕2   θ = tan- 1(Ay ∕Ax ), ]
	(2.1)




   	

   
[image: Ax = A  cos(θ)   Ay  = A sin(θ), ]
	(2.2)




where A is the magnitude of the vector. A vector magnitude is sometimes
represented by absolute value notation: A ≡|A|.

   Notice that the inverse tangent gives a result which is ambiguous relative to
adding or subtracting integer multiples of π. Thus the quadrant in which the
angle lies must be resolved by independently examining the signs of Ax and Ay
and choosing the appropriate value of θ.

   To add two vectors, A and B, it is easiest to convert them to Cartesian
component form. The components of the sum C = A + B are then just the sums
of the components:
   	
   
[image: Cx = Ax +  Bx   Cy =  Ay + By. ]
	(2.3)




Subtraction of vectors is done similarly, e. g., if A = C - B, then
   	
   
[image: Ax  = Cx -  Bx   Ay  = Cy - By. ]
	(2.4)





   A unit vector is a vector of unit length. One can always construct a unit vector
from an ordinary (non-zero) vector by dividing the vector by its length:
n = A∕|A|. This division operation is carried out by dividing each of the vector
components by the number in the denominator. Alternatively, if the vector is
expressed in terms of length and direction, the magnitude of the vector is divided
by the denominator and the direction is unchanged.

   Unit vectors can be used to define a Cartesian coordinate system.
Conventionally, i, j, and k indicate the x, y, and z axes of such a system. Note
that i, j, and k are mutually perpendicular. Any vector can be represented in
terms of unit vectors and its Cartesian components: A = Axi + Ayj + Azk. An
alternate way to represent a vector is as a list of components: A = (Ax,Ay,Az).
We tend to use the latter representation since it is somewhat more economical
notation.

   There are two ways to multiply two vectors, yielding respectively what are
known as the dot product and the cross product. The cross product yields another
vector while the dot product yields a number. Here we will discuss only
the dot product. The cross product will be presented later when it is
needed.
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 Figure 2.3: Definition sketch for dot product.

____________________________


   



   Given vectors A and B, the dot product of the two is defined as
   	
   
[image: A ⋅ B ≡ |A ||B |cosθ, ]
	(2.5)




where θ is the angle between the two vectors. In two dimensions an alternate
expression for the dot product exists in terms of the Cartesian components of the
vectors:
   	
   
[image: A ⋅ B = AxBx  + AyBy. ]
	(2.6)




It is easy to show that this is equivalent to the cosine form of the dot
product when the x axis lies along one of the vectors, as in figure 2.3.
Notice in particular that Ax = |A| cos θ, while Bx = |B| and By = 0. Thus,
A ⋅ B = |A| cos θ|B| in this case, which is identical to the form given in equation
(2.5).
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 Figure 2.4: Definition figure for rotated coordinate system. The vector R has
components X and Y  in the unprimed coordinate system and components
X′ and Y ′ in the primed coordinate system.

____________________________


   



   All that remains to be proven for equation (2.6) to hold in general is
to show that it yields the same answer regardless of how the Cartesian
coordinate system is oriented relative to the vectors. To do this, we must
show that AxBx + AyBy = Ax′Bx′ + Ay′By′, where the primes indicate
components in a coordinate system rotated from the original coordinate
system.

   Figure 2.4 shows the vector R resolved in two coordinate systems rotated with
respect to each other. From this figure it is clear that X′ = a + b. Focusing on the
shaded triangles, we see that a = X cos θ and b = Y sin θ. Thus, we find
X′ = X cos θ + Y sin θ. Similar reasoning shows that Y ′ = -X sin θ + Y cos θ.
Substituting these and using the trigonometric identity cos 2θ + sin 2θ = 1 results
in 

   
[image:   ′  ′    ′  ′ A xB x + AyB y  =  (Ax cos θ + Ay sin θ)(Bx cosθ + By sin θ)                 +  (- Ax sinθ + Ay cos θ)(- Bx sinθ + By cos θ)                  =  AxBx  +  AyBy                                (2.7) ]


thus proving the complete equivalence of the two forms of the dot product as
given by equations (2.5) and (2.6). Multiply out the above expression to verify
this.
   A numerical quantity that doesn’t depend on which coordinate system is being
used is called a scalar. The dot product of two vectors is a scalar. However, the
components of a vector, taken individually, are not scalars, since the components
change as the coordinate system changes. Since the laws of physics cannot depend
on the choice of coordinate system being used, we insist that physical laws be
expressed in terms of scalars and vectors, but not in terms of the components of
vectors.

   In three dimensions the cosine form of the dot product remains the same,

while the component form is
   	
   
[image: A ⋅ B = AxBx  + AyBy  + AzBz. ]
	(2.8)




   
2.2    Plane Waves
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 Figure 2.5: Definition sketch for a plane sine wave in two dimensions. The
wave fronts are constant phase surfaces separated by one wavelength. The
wave vector is normal to the wave fronts and its length is the wavenumber.

____________________________






   A plane wave in two or three dimensions is like a sine wave in one dimension
except that crests and troughs aren’t points, but form lines (2-D) or planes (3-D)
perpendicular to the direction of wave propagation. Figure 2.5 shows a
plane sine wave in two dimensions. The large arrow is a vector called the
wave vector, which defines (1) the direction of wave propagation by its
orientation perpendicular to the wave fronts, and (2) the wavenumber by
its length. We can think of a wave front as a line along the crest of the
wave. The equation for the displacement associated with a plane sine
wave (of unit amplitude) in three dimensions at some instant in time
is
   	
   
[image: h(x,y, z) = sin(k ⋅ x ) = sin(kxx + kyy + kzz ). ]
	(2.9)




Since wave fronts are lines or surfaces of constant phase, the equation defining a
wave front is simply k ⋅ x = const.

   In the two dimensional case we simply set kz = 0. Therefore, a wave
front, or line of constant phase ϕ in two dimensions is defined by the
equation
   	
   
[image: k ⋅ x = kxx + kyy = ϕ  (two dimensions ). ]
	(2.10)




This can be easily solved for y to obtain the slope and intercept of the wave front
in two dimensions.

   As for one dimensional waves, the time evolution of the wave is obtained by
adding a term -ωt to the phase of the wave. In three dimensions the wave
displacement as a function of both space and time is given by
   	
   
[image: h (x,y,z,t) = sin (kxx + kyy + kzz - ωt). ]
	(2.11)




The frequency depends in general on all three components of the wave vector. The
form of this function, ω = ω(kx,ky,kz), which as in the one dimensional case is
called the dispersion relation, contains information about the physical behavior of
the wave.
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 Figure 2.6: Contour plots of the dispersion relations for three kinds of waves
in two dimensions. In the upper panels the curves show lines or contours
along which the frequency ω takes on constant values. Contours are drawn
for  equally  spaced  values  of  ω.  For  light  and  ocean  waves  the  frequency
depends only on the magnitude of the wave vector, whereas for gravity waves
it depends only on the wave vector’s direction, as defined by the angle θ in
the upper right panel. These dependences for each wave type are illustrated
in the lower panels.

____________________________


   



   Some examples of dispersion relations for waves in two dimensions are as
follows:
      

      	Light waves in a vacuum in two dimensions obey
      	
      
      [image: ω = c(k2x + k2y)1∕2  (light),       ]
	(2.12)


      
      where c is the speed of light in a vacuum.
      


      	Deep water ocean waves in two dimensions obey
      	
      
      [image: ω = g1∕2(k2x + k2y)1∕4  (ocean  waves),       ]
	(2.13)


      
      where g is the strength of the Earth’s gravitational field as before.

      


      	Certain kinds of atmospheric waves confined to a vertical x-z plane called
      gravity waves (not to be confused with the gravitational waves of general
      relativity)1
      obey
      	
      
      [image: ω =  N-kx-  (gravity waves ),       kz       ]
	(2.14)


      
      where N is a constant with the dimensions of inverse time called the
      Brunt-Väisälä frequency.



   Contour plots of these dispersion relations are plotted in the upper
panels of figure 2.6. These plots are to be interpreted like topographic
maps, where the lines represent contours of constant elevation. In the case
of figure 2.6, constant values of frequency are represented instead. For
simplicity, the actual values of frequency are not labeled on the contour plots,
but are represented in the graphs in the lower panels. This is possible
because frequency depends only on wave vector magnitude (kx2 + k
y2)1∕2
for the first two examples, and only on wave vector direction θ for the
third.
   
2.3    Superposition of Plane Waves


We now study wave packets in two dimensions by asking what the superposition
of two plane sine waves looks like. If the two waves have different wavenumbers,
but their wave vectors point in the same direction, the results are identical to
those presented in the previous chapter, except that the wave packets are
indefinitely elongated without change in form in the direction perpendicular to the
wave vector. The wave packets produced in this case move in the direction of the
wave vectors and thus appear to a stationary observer like a series of passing
pulses with broad lateral extent.

   Superimposing two plane waves which have the same frequency results in a
stationary wave packet through which the individual wave fronts pass. This wave
packet is also elongated indefinitely in some direction, but the direction of
elongation depends on the dispersion relation for the waves being considered.
These wave packets are in the form of steady beams, which guide the individual
phase waves in some direction, but don’t themselves change with time. By
superimposing multiple plane waves, all with the same frequency, one can actually
produce a single stationary beam, just as one can produce an isolated pulse by
superimposing multiple waves with wave vectors pointing in the same
direction.

   If the frequency of a wave depends on the magnitude of the wave vector, but
not on its direction, the wave’s dispersion relation is called isotropic; otherwise it
is anisotropic. In the isotropic case, two waves have the same frequency only if the
lengths of their wave vectors, and hence their wavelengths, are the same. The first
two examples in figure 2.6 satisfy this condition, while the last example is
anisotropic.
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 Figure 2.7: Wave fronts and wave vectors (k1  and k2) of two plane waves
with the same wavelength but oriented in different directions. The vertical
bands show regions of constructive interference where wave fronts coincide.
The  vertical  regions  in  between  have  destructive  interference,  and  hence
define the lateral boundaries of the beams produced by the superposition.
The quantities k0 and Δk are also shown.
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 Figure 2.8: Example of beams produced by two plane waves with the same
wavelength moving in different directions. The wave vectors of the two waves
are k = (±0.1, 1.0). Regions of positive displacement are lighter, while regions
of negative displacement are darker.

____________________________


   



   We now use the language of vectors to investigate the superposition of two
plane waves with wave vectors k1 and k2:
   	
   
[image: h =  sin(k1 ⋅ x - ωt ) + sin(k2 ⋅ x - ωt). ]
	(2.15)




Applying the trigonometric identity for the sine of the sum of two angles (as we
have done previously), equation (2.15) can be reduced to
   	
   
[image: h = 2 sin (k0 ⋅ x - ωt)cos(Δk  ⋅ x) ]
	(2.16)




where
   	

   
[image: k0 = (k1 + k2 )∕2    Δk  = (k2 - k1)∕2. ]
	(2.17)




This is in the form of a sine wave moving in the k0 direction with phase speed
cphase = ω∕|k0| and wavenumber |k0|, modulated in the Δk direction by a cosine
function. The lines of destructive interference are normal to Δk. The distance w
between lines of destructive interference is the distance between successive zeros of
the cosine function in equation (2.16), implying that |Δk|w = π, which leads
to
   	
   
[image: w =  π∕|Δk |. ]
	(2.18)




Thus, the smaller |Δk|, the greater is the beam diameter.
   
2.3.1    Two Waves of Identical Wavelength

In this section we investigate the beams produced by superimposing isotropic
waves of the same frequency. Figure 2.7 illustrates what happens in such a
superposition. Vectors k1 and k2 of equal length give rise to a mean wave vector
k0 and half the difference, Δk. As illustrated, the lines of constructive and
destructive interference are perpendicular to Δk. Figure 2.8 shows a concrete

example of the beams produced by superposition of two plane waves of equal
wavelength oriented as in figure 2.7. The beams are aligned vertically, since Δk is
horizontal, with the lines of destructive interference separating the beams located
near x = ±16. The transverse width of the beams of ≈ 32 satisfies equation (2.18)
with |Δk| = 0.1. Each beam is made up of vertically propagating phase
waves, with the crests and troughs indicated by the regions of white and
black.


   
2.3.2    Two Waves of Differing Wavelength

In the third example of figure 2.6, the frequency of the wave depends
only on the direction of the wave vector, independent of its magnitude,
which is the reverse of the case for an isotropic dispersion relation. In this
highly anisotropic case, different plane waves with the same frequency
have wave vectors which point in the same direction, but have different
lengths.
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 Figure 2.9:  Wave  fronts  and  wave  vectors  (k1   and  k2)  of  two  plane
waves with different wavelengths oriented in different directions. The slanted
bands show regions of constructive interference where wave fronts coincide.
The  slanted  regions  in  between  have  destructive  interference,  and  as
mentioned previously, define the lateral limits of the beams produced by the
superposition. The quantities k0 and Δk are also shown.
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   More generally, one might have waves for which the frequency depends on both
the direction and magnitude of the wave vector. In this case, two different plane
waves with the same frequency would typically have wave vectors which differ
both in direction and magnitude. Such an example is illustrated in figures 2.9 and
2.10.
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 Figure 2.10: Example of beams produced by two plane waves with wave
vectors differing in both direction and magnitude. The wave vectors of the
two  waves  are  k1  =  (-0.1, 1.0)  and  k2  =  (0.1, 0.9).  Regions  of  positive
displacement are lighter, while regions of negative displacement darker.

____________________________
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 Figure 2.11: Illustration of factors entering the addition of two plane waves
with the same frequency. The wave fronts are perpendicular to the vector
average  of  the  two  wave  vectors,  k0   =  (k1  + k2)∕2,  while  the  lines  of
constructive interference, which define the beam orientation, are oriented
perpendicular to the difference between these two vectors, Δk = (k2-k1)∕2.

____________________________


   



   Figure 2.11 summarizes what we have learned about adding plane waves
with the same frequency. In general, the beam orientation (and the lines
of constructive interference) are not perpendicular to the wave fronts.
This only occurs when the wave frequency is independent of wave vector
direction.
   
2.3.3    Many Waves with the Same Wavelength

As with wave packets in one dimension, we can add together more than two waves
to produce an isolated wave packet. We will confine our attention here to the case
of an isotropic dispersion relation in which all the wave vectors for a given
frequency are of the same length.
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 Figure 2.12: Illustration of wave vectors of plane waves which might be
added together.

____________________________


   



   Figure 2.12 shows an example of this in which wave vectors of the same
wavelength but different directions are added together. Defining αi as the angle of
the ith wave vector clockwise from the vertical, as illustrated in figure
2.12, we could write the superposition of these waves at time t = 0 as


   
[image: h  =   ∑  h sin(k  x + k y)         i  i     xi     yi        ∑    =      hisin[kx sin(αi) + ky cos(αi )]            (2.19)         i ]


where we have assumed that kxi = k sin(αi) and kyi = k cos(αi). The parameter
k = |k| is the magnitude of the wave vector and is the same for all the waves. Let
us also assume in this example that the amplitude of each wave component
decreases with increasing |αi|:
   	
   
[image: hi = exp[- (αi∕ αmax)2]. ]
	(2.20)



The exponential function decreases rapidly as its argument becomes more

negative, and for practical purposes, only wave vectors with |αi|≤ αmax
contribute significantly to the sum. We call αmax the spreading angle.
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 Figure 2.13: Plot of the displacement field h(x,y) from equation (2.19) for
αmax = 0.8 and k = 1.

____________________________


   



   Figure 2.13 shows what h(x,y) looks like when αmax = 0.8 radians and k = 1.
Notice that for y = 0 the wave amplitude is only large for a small region in the
range -4 < x < 4. However, for y > 0 the wave spreads into a broad, semicircular
pattern.
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 Figure 2.14: Plot of the displacement field h(x,y) from equation (2.19) for
αmax = 0.2 and k = 1.

____________________________


   



   Figure 2.14 shows the computed pattern of h(x,y) when the spreading angle
αmax = 0.2 radians. The wave amplitude is large for a much broader range of x
at y = 0 in this case, roughly -12 < x < 12. On the other hand, the
subsequent spread of the wave is much smaller than in the case of figure
2.13.

   We conclude that a superposition of plane waves with wave vectors spread
narrowly about a central wave vector which points in the y direction (as in figure
2.14) produces a beam which is initially broad in x but for which the breadth
increases only slightly with increasing y. However, a superposition of plane waves
with wave vectors spread more broadly (as in figure 2.13) produces a beam
which is initially narrow in x but which rapidly increases in width as y
increases.

   The relationship between the spreading angle αmax and the initial breadth of
the beam is made more understandable by comparison with the results for the
two-wave superposition discussed at the beginning of this section. As
indicated by equation (2.18), large values of kx, and hence α, are associated
with small wave packet dimensions in the x direction and vice versa.
The superposition of two waves doesn’t capture the subsequent spread
of the beam which occurs when many waves are superimposed, but it
does lead to a rough quantitative relationship between αmax (which is
just tan -1(k
x∕ky) in the two wave case) and the initial breadth of the
beam. If we invoke the small angle approximation for α = αmax so that
αmax = tan -1(k
x∕ky) ≈ kx∕ky ≈ kx∕k, then kx ≈ kαmax and equation (2.18) can
be written w = π∕kx ≈ π∕(kαmax) = λ∕(2αmax). Thus, we can find the
approximate spreading angle from the wavelength of the wave λ and the initial
breadth of the beam w:
   	
   
[image: αmax ≈  λ∕(2w )  (single slit spreading  angle).  ]
	(2.21)




   
2.4    Diffraction Through a Single Slit
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 Figure 2.15: Schematic behavior when a plane wave impinges on a narrow
slit and a broad slit.

____________________________






   How does all of this apply to the passage of waves through a slit? Imagine a
plane wave of wavelength λ impingent on a barrier with a slit. The barrier
transforms the plane wave with infinite extent in the lateral direction into a
beam with initial transverse dimensions equal to the width of the slit. The
subsequent development of the beam is illustrated in figures 2.13 and 2.14, and
schematically in figure 2.15. In particular, if the slit width is comparable to
the wavelength, the beam spreads broadly as in figure 2.13. If the slit
width is large compared to the wavelength, the beam doesn’t spread as
much, as figure 2.14 illustrates. Equation (2.21) gives us an approximate
quantitative result for the spreading angle if w is interpreted as the width of the
slit.

   One use of the above equation is in determining the maximum angular
resolution of optical instruments such as telescopes. The primary lens or mirror
can be thought of as a rather large “slit”. Light from a distant point source is
essentially in the form of a plane wave when it arrives at the telescope.
However, the light passed by the telescope is no longer a plane wave, but is a
beam with a tendency to spread. The spreading angle αmax is given by
equation (2.21), and the telescope cannot resolve objects with an angular
separation less than αmax. Replacing w with the diameter of the lens or
mirror in equation (2.21) thus yields the telescope’s angular resolution. For
instance, a moderate sized telescope with aperture 1 m observing red
light with λ ≈ 6 × 10-7 m has a maximum angular resolution of about
3 × 10-7 radians.
   
2.5    Two Slits
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 Figure 2.16: Definition sketch for the double slit. Light passing through slit
B travels an extra distance to the screen equal to d sin θ compared to light
passing through slit A.

____________________________






   Let us now imagine a plane sine wave normally impingent on a screen with two
narrow slits spaced by a distance d, as shown in figure 2.16. Since the slits are
narrow relative to the wavelength of the wave impingent on them, the
spreading angle of the beams is large and the diffraction pattern from each slit
individually is a cylindrical wave spreading out in all directions, as illustrated in
figure 2.13. The cylindrical waves from the two slits interfere, resulting
in oscillations in wave intensity at the screen on the right side of figure
2.16.

   Constructive interference occurs when the difference in the paths traveled by
the two waves from their originating slits to the screen, L2 - L1, is an integer
multiple m of the wavelength λ: L2 - L1 = mλ. If L0 ≫ d, the lines L1
and L2 are nearly parallel, which means that the narrow end of the dark
triangle in figure 2.16 has an opening angle of θ. Thus, the path difference
between the beams from the two slits is L2 - L1 = d sin θ. Substitution of
this into the above equation shows that constructive interference occurs
when
   	
   
[image: d sinθ = m λ,  m  = 0,±1, ±2, ...   (two slit interference). ]
	(2.22)




Destructive interference occurs when m is an integer plus 1∕2. The integer m is
called the interference order and is the number of wavelengths by which the two
paths differ.
   
2.6    Diffraction Gratings


Since the angular spacing Δθ of interference peaks in the two slit case depends on
the wavelength of the incident wave, the two slit system can be used as a crude
device to distinguish between the wavelengths of different components of a
non-sinusoidal wave impingent on the slits. However, if more slits are added,
maintaining a uniform spacing d between slits, we obtain a more sophisticated
device for distinguishing beam components. This is called a diffraction
grating.
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 Figure 2.17: Intensity of interference pattern from a diffraction grating with
2 slits on the screen in figure 2.16. The position x on the screen is proportional
to the angle θ in the small angle approximation.
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 Figure 2.18: Intensity of interference pattern from a diffraction grating with
4 slits.

____________________________
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 Figure 2.19: Intensity of interference pattern from a diffraction grating with
16 slits.

____________________________


   



   Figures 2.17-2.19 show the intensity of the diffraction pattern as a function of
position x on the display screen (see figure 2.16) for gratings with 2, 4, and 16
slits respectively, with the same slit spacing. Notice how the interference peaks
remain in the same place but increase in sharpness as the number of slits
increases.

   The width of the peaks is actually related to the overall width of the grating, w = nd,
where n is the number of slits. Thinking of this width as the dimension of a large
single slit, the single slit equation, αmax = λ∕(2w), tells us the angular width of the
peaks.2

   Whereas the angular width of the interference peaks is governed by the single
slit equation, their angular positions are governed by the two slit equation. Let us
assume for simplicity that |θ|≪ 1 so that we can make the small angle
approximation to the two slit equation, mλ = d sin θ ≈ dθ, and ask the following
question: How different do two wavelengths differing by Δλ have to be in order
that the interference peaks from the two waves not overlap? In order for the
peaks to be distinguishable, they should be separated in θ by an angle
Δθ = mΔλ∕d, which is greater than the angular width of each peak,
αmax:
   	
   
[image: Δ θ > α    .         max ]
	(2.23)




Substituting in the above expressions for Δθ and αmax and solving for Δλ, we get

Δλ > λ∕(2mn), where λ is the average of the two wavelengths and n = w∕d is the
number of slits in the diffraction grating. Thus, the fractional difference
between wavelengths which can be distinguished by a diffraction grating
depends solely on the interference order m and the number of slits n in the
grating:
   	
   
[image: Δ-λ-   -1---  λ  >  2mn . ]
	(2.24)




   
2.7    Problems


      

      	Point A is at the origin. Point B is 3 m distant from A at 30∘ counterclockwise
      from the x axis. Point C is 2 m from point A at 100∘ counterclockwise from
      the x axis.
           
           	Obtain the Cartesian components of the vector D1  which goes
           from A to B and the vector D2 which goes from A to C.
           

           	Find the Cartesian components of the vector D3 which goes from
           B to C.
           

           	Find the direction and magnitude of D3.
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 Figure 2.20: Sketch of wave moving at 45∘ to the x-axis.

      _____________________________________
      



      

      	For the vectors in the previous problem, find D1 ⋅ D2 using both the cosine
      form of the dot product and the Cartesian form. Check to see if the two
      answers are the same.
      

      	Show graphically or otherwise that |A + B|≠|A| + |B| except when the
      vectors A and B are parallel.
      

      	A wave in the x-y plane is defined by h = h0 sin(k ⋅ x) where
      k = (1, 2) cm-1.
           
           	On a piece of graph paper draw x and y axes and then plot a line
           passing through the origin which is parallel to the vector k.
           

           	On the same graph plot the line defined by k⋅x = kxx + kyy = 0,
           k ⋅ x  =  π,  and  k ⋅ x  =  2π.  Check  to  see  if  these  lines  are
           perpendicular to k.



      

      	A plane wave in two dimensions in the x - y plane moves in the direction
      45∘ counterclockwise from the x-axis as shown in figure 2.20. Determine how
      fast the intersection between a wave front and the x-axis moves to
      the right in terms of the phase speed c of the wave. Hint: What is
      the distance between wave fronts along the x-axis compared to the
      wavelength?
      

      	Two deep plane ocean waves with the same frequency ω are moving
      approximately to the east. However, one wave is oriented a small angle β
      north of east and the other is oriented β south of east.
           
           	Determine  the  orientation  of  lines  of  constructive  interference
           between these two waves.
           

           	Determine the spacing between lines of constructive interference.


      

      	An example of waves with a dispersion relation in which the frequency is a
      function of both wave vector magnitude and direction is shown graphically
      in figure 2.21.
           
           	What is the phase speed of the waves for each of the three wave
           vectors? Hint: You may wish to obtain the length of each wave
           vector graphically.
           

           	For each of the wave vectors, what is the orientation of the wave
           fronts?
           

           	For each of the illustrated wave vectors, sketch two other wave
           vectors  whose  average  value  is  approximately  the  illustrated
           vector, and whose tips lie on the same frequency contour line.
           Determine  the  orientation  of  lines  of  constructive  interference
           produced by the superimposing pairs of plane waves for which
           each of the vector pairs are the wave vectors.



      

      	Two gravity waves have the same frequency, but slightly different
      wavelengths.
           
           	If one wave has an orientation angle θ = π∕4 radians, what is the
           orientation angle of the other? (See figure 2.6.)
           

           	Determine  the  orientation  of  lines  of  constructive  interference
           between these two waves.


      

      	A plane wave impinges on a single slit, spreading out a half-angle α after the
      slit. If the whole apparatus is submerged in a liquid with index of refraction
      n = 1.5, how does the spreading angle of the light change? (Hint: Recall that
      the index of refraction in a transparent medium is the ratio of the speed of
      light in a vacuum to the speed in the medium. Furthermore, when light
      goes from a vacuum to a transparent medium, the light frequency
      doesn’t change. Therefore, how does the wavelength of the light
      change?)
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 Figure 2.21: Graphical representation of the dispersion relation for
      shallow  water  waves  in  a  river  flowing  in  the  x direction.  Units  of
      frequency are hertz, units of wavenumber are inverse meters.

      _____________________________________
      



      

      	Determine the diameter of the telescope needed to resolve a planet
      2 × 108 km from a star which is 6 light years from the earth. (Assume blue
      light which has a wavelength λ ≈ 4 × 10-7 m = 400 nm. Also, don’t worry
      about the great difference in brightness between the two for the purposes of
      this problem.)
      

      	A laser beam from a laser on the earth is bounced back to the earth by a
      corner reflector on the moon.
           
           	Engineers find that the returned signal is stronger if the laser beam
           is initially spread out by the beam expander shown in figure 2.22.
           Explain why this is so.
           

           	The beam has a diameter of 1 m leaving the earth. How broad is

           it when it reaches the moon, which is 4 × 105 km away? Assume
           the wavelength of the light to be 5 × 10-7 m.
           

           	How broad would the laser beam be at the moon if it weren’t
           initially passed through the beam expander? Assume its initial
           diameter to be 1 cm.


      

      	Suppose that a plane wave impinges on two slits in a barrier at an angle,
      such that the phase of the wave at one slit lags the phase at the other slit by
      half a wavelength. How does the resulting interference pattern change from
      the case in which there is no lag?
      

      	Suppose that a thin piece of glass of index of refraction n = 1.33 is placed in
      front of one slit of a two slit diffraction setup.
           
           	How thick does the glass have to be to slow down the incoming
           wave so that it lags the wave going through the other slit by
           a phase difference of π? Take the wavelength of the light to be
           λ = 6 × 10-7 m.
           

           	For the above situation, describe qualitatively how the diffraction
           pattern changes from the case in which there is no glass in front
           of one of the slits. Explain your results.
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 Figure 2.22: Sketch of a beam expander for a laser.


      _____________________________________
      



      

      	A light source produces two wavelengths, λ1 = 400 nm (blue) and
      λ2 = 600 nm (red).
           
           	Qualitatively  sketch  the  two  slit  diffraction  pattern  from  this
           source. Sketch the pattern for each wavelength separately.
           

           	Qualitatively sketch the 16 slit diffraction pattern from this source,
           where the slit spacing is the same as in the two slit case.


      

      	A light source produces two wavelengths, λ1 = 631 nm and λ2 = 635 nm.
      What is the minimum number of slits needed in a grating spectrometer to
      resolve the two wavelengths? (Assume that you are looking at the
      first order diffraction peak.) Sketch the diffraction peak from each
      wavelength and indicate how narrow the peaks must be to resolve
      them.





   


Chapter 3
Geometrical Optics

As was shown previously, when a plane wave is impingent on an aperture which
has dimensions much greater than the wavelength of the wave, diffraction effects
are minimal and a segment of the plane wave passes through the aperture
essentially unaltered. This plane wave segment can be thought of as a
wave packet, called a beam or ray, consisting of a superposition of wave
vectors very close in direction and magnitude to the central wave vector of
the wave packet. In most cases the ray simply moves in the direction
defined by the central wave vector, i. e., normal to the orientation of
the wave fronts. However, this is not true when the medium through
which the light propagates is optically anisotropic, i. e., light traveling in
different directions moves at different phase speeds. An example of such a
medium is a calcite crystal. In the anisotropic case, the orientation of
the ray can be determined once the dispersion relation for the waves in
question is known, by using the techniques developed in the previous
chapter.

   If light moves through some apparatus in which all apertures are much greater
in dimension than the wavelength of light, then we can use the above rule to
follow rays of light through the apparatus. This is called the geometrical optics
approximation.
   
3.1    Reflection and Refraction

Most of what we need to know about geometrical optics can be summarized in
two rules, the laws of reflection and refraction. These rules may both be inferred
by considering what happens when a plane wave segment impinges on a flat
surface. If the surface is polished metal, the wave is reflected, whereas if the
surface is an interface between two transparent media with differing indices of
refraction, the wave is partially reflected and partially refracted. Reflection means
that the wave is turned back into the half-space from which it came,
while refraction means that it passes through the interface, acquiring a
different direction of motion from that which it had before reaching the
interface.
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 Figure 3.1: Sketch showing the reflection of a wave from a plane mirror. The
law of reflection states that θI = θR.

____________________________


   



   Figure 3.1 shows the wave vector and wave front of a wave being reflected from
a plane mirror. The angles of incidence, θI, and reflection, θR, are defined to be
the angles between the incoming and outgoing wave vectors respectively and the
line normal to the mirror. The law of reflection states that θR = θI. This is a
consequence of the need for the incoming and outgoing wave fronts to be in phase
with each other all along the mirror surface. This plus the equality of
the incoming and outgoing wavelengths is sufficient to insure the above
result.
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 Figure 3.2:  Sketch  showing  the  refraction  of  a  wave  from  an  interface
between two dielectric media with n2 > n1.

____________________________


   



   Refraction, as illustrated in figure 3.2, is slightly more complicated. Since
nR > nI, the speed of light in the right-hand medium is less than in the left-hand
medium. (Recall that the speed of light in a medium with refractive index n is
cmedium = cvac∕n.) The frequency of the wave packet doesn’t change as it passes
through the interface, so the wavelength of the light on the right side is less than
the wavelength on the left side.

   Let us examine the triangle ABC in figure 3.2. The side AC is equal to the side
BC times sin(θI). However, AC is also equal to 2λI, or twice the wavelength of the
wave to the left of the interface. Similar reasoning shows that 2λR, twice the
wavelength to the right of the interface, equals BC times sin(θR). Since
the interval BC is common to triangles ABC and DBC, we easily see
that
   	
   
[image: λI- = -sin(θI). λR    sin(θR) ]
	(3.1)




Since λI = cIT = cvacT∕nI and λR = cRT = cvacT∕nR where cI and cR are the
wave speeds to the left and right of the interface, cvac is the speed of light in a
vacuum, and T is the (common) period, we can easily recast the above equation in
the form
   	
   

[image: nI sin(θI) = nR sin (θR ). ]
	(3.2)




This is called Snell’s law, and it governs how a ray of light bends as it
passes through a discontinuity in the index of refraction. The angle θI
is called the incident angle and θR is called the refracted angle. Notice
that these angles are measured from the normal to the surface, not the
tangent.
   
3.2    Total Internal Reflection

When light passes from a medium of lesser index of refraction to one with greater
index of refraction, Snell’s law indicates that the ray bends toward the normal to
the interface. The reverse occurs when the passage is in the other direction.
In this latter circumstance a special situation arises when Snell’s law
predicts a value for the sine of the refracted angle greater than one. This is
physically untenable. What actually happens is that the incident wave
is reflected from the interface. This phenomenon is called total internal
reflection. The minimum incident angle for which total internal reflection
occurs is obtained by substituting θR = π∕2 into equation (3.2), resulting
in
   	
   
[image: sin (θI) = nR ∕nI   (total internal reflection). ]
	(3.3)







   
3.3    Anisotropic Media

Notice that Snell’s law makes the implicit assumption that rays of light move in
the direction of the light’s wave vector, i. e., normal to the wave fronts. As the
analysis in the previous chapter makes clear, this is valid only when the optical
medium is isotropic, i. e., the wave frequency depends only on the magnitude of
the wave vector, not on its direction.

   Certain kinds of crystals, such as those made of calcite, are not isotropic —
the speed of light in such crystals, and hence the wave frequency, depends on the
orientation of the wave vector. As an example, the angular frequency in an
anisotropic medium might take the form
   	
   
[image:      [c2(kx + ky)2   c2(kx - ky)2]1∕2 ω =   -1----------+  -2----------    ,            2              2 ]
	(3.4)




where c1 is the speed of light for waves in which ky = kx, and c2 is its speed when
ky = -kx.
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 Figure 3.3: The right panel shows the fate of a light ray normally incident on
the face of a properly cut calcite crystal. The anisotropic dispersion relation
which gives rise to this behavior is shown in the left panel.

____________________________


   



   Figure 3.3 shows an example in which a ray hits a calcite crystal oriented
so that constant frequency contours are as specified in equation (3.4).
The wave vector is oriented normal to the surface of the crystal, so that
wave fronts are parallel to this surface. Upon entering the crystal, the
wave front orientation must stay the same to preserve phase continuity at
the surface. However, due to the anisotropy of the dispersion relation
for light in the crystal, the ray direction changes as shown in the right
panel. This behavior is clearly inconsistent with the usual version of Snell’s
law!

   It is possible to extend Snell’s law to the anisotropic case. However, we will
not present this here. The following discussions of optical instruments will always
assume that isotropic optical media are used.
   
3.4    Thin Lens Equation and Optical Instruments

Given the laws of reflection and refraction, one can see in principle how the
passage of light through an optical instrument could be traced. For each of a
number of initial rays, the change in the direction of the ray at each mirror
surface or refractive index interface can be calculated. Between these points, the
ray traces out a straight line.
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 Figure 3.4: Bending of a ray of light as it passes through a prism.

____________________________


   



   Though simple in conception, this procedure can be quite complex in practice.
However, the procedure simplifies if a number of approximations, collectively
called the thin lens approximation, are valid. We begin with the calculation of the
bending of a ray of light as it passes through a prism, as illustrated in figure
3.4.

   The pieces of information needed to find θ, the angle through which the ray
is deflected, are as follows: the geometry of the triangle defined by the
entry and exit points of the ray and the upper vertex of the prism leads
to
   	
   
[image: α + (π∕2 - θ ) + (π∕2 - θ ) = π,             2            3 ]
	(3.5)




which simplifies to
   	
   
[image: α =  θ2 + θ3. ]
	(3.6)




Snell’s law at the entrance and exit points of the ray tell us that

   	
   
[image:      sin-(θ1)        sin-(θ4) n =  sin (θ )   n =  sin (θ ),           2              3 ]
	(3.7)




where n is the index of refraction of the prism. (The index of refraction of the
surroundings is assumed to be unity.) One can also infer that
   	
   
[image: θ = θ1 + θ4 - α. ]
	(3.8)




This comes from the fact that the the sum of the internal angles of the shaded
quadrangle in figure 3.4 is
   	
   

[image: (π ∕2 - θ1) + α + (π ∕2 - θ4) + (π + θ) = 2π. ]
	(3.9)





   Combining equations (3.6), (3.7), and (3.8) allows the ray deflection θ to be
determined in terms of θ1 and α, but the resulting expression is very
messy. However, great simplification occurs if the following conditions are
met:
      

      	The angle α ≪ 1.
      

      	The angles θ1, θ2, θ3, θ4 ≪ 1.


With these approximations it is easy to show that
   	
   
[image: θ = α(n - 1)  (small angles). ]
	(3.10)
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 Figure 3.5: Light ray undergoing deflection through an angle θ by a lens.
The angle α is the angle between the tangents to the entry and exit points
of the ray on the lens.

____________________________


   



   Generally speaking, lenses and mirrors in optical instruments have curved
rather than flat surfaces. However, we can still use the laws for reflection and
refraction by plane surfaces as long as the segment of the surface on which the
wave packet impinges is not curved very much on the scale of the wave
packet dimensions. This condition is easy to satisfy with light impinging
on ordinary optical instruments. In this case, the deflection of a ray of
light is given by equation (3.10) if α is defined as the intersection of the
tangent lines to the entry and exit points of the ray, as illustrated in figure
3.5.

   A positive lens is thicker in the center than at the edges. The angle α between
the tangent lines to the two surfaces of the lens at a distance r from the
central axis takes the form α = Cr, where C is a constant. The deflection
angle of a beam hitting the lens a distance r from the center is therefore
θ = Cr(n - 1), as indicated in figure 3.5. The angles o and i sum to the
deflection angle: o + i = θ = Cr(n - 1). However, to the extent that the
small angle approximation holds, o = r∕do and i = r∕di where do is the
distance to the object and di is the distance to the image of the object.
Putting these equations together and cancelling the r results in the thin lens
equation:
   	
   
[image: 1--  1-               1- d  + d  = C (n - 1) ≡ f .  o    i ]
	(3.11)




The quantity f is called the focal length of the lens. Notice that f = di if the
object is very far from the lens, i. e., if do is extremely large.
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 Figure 3.6: A positive lens producing an image on the right of the arrow on
the left.

____________________________


   



   Figure 3.6 shows how a positive lens makes an image. The image is produced
by all of the light from each point on the object falling on a corresponding point
in the image. If the arrow on the left is an illuminated object, an image of the
arrow will appear at right if the light coming from the lens is allowed to fall on a
piece of paper or a ground glass screen. The size of the object So and the size of
the image Si are related by simple geometry to the distances of the object and the
image from the lens:
   	
   
[image: Si-=  di. So    do ]
	(3.12)




Notice that a positive lens inverts the image.
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 Figure 3.7: Production of a virtual image by a positive lens.

____________________________


   



   An image will be produced to the right of the lens only if do > f. If do < f, the
lens is unable to converge the rays from the image to a point, as is seen in figure
3.7. However, in this case the backward extension of the rays converge at a point
called a virtual image, which in the case of a positive lens is always farther away
from the lens than the object. The image is called virtual because it does
not appear on a ground glass screen placed at this point. Unlike the real
image seen in figure 3.6, the virtual image is not inverted. The thin lens
equation still applies if the distance from the lens to the image is taken to be
negative.
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 Figure 3.8: Production of a virtual image by a negative lens.

____________________________


   



   A negative lens is thinner in the center than at the edges and produces only
virtual images. As seen in figure 3.8, the virtual image produced by a negative
lens is closer to the lens than is the object. Again, the thin lens equation is still
valid, but both the distance from the image to the lens and the focal
length must be taken as negative. Only the distance to the object remains
positive.
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 Figure 3.9: Production of a real image by a concave mirror.

____________________________


   



   Curved mirrors also produce images in a manner similar to a lens, as shown in
figure 3.9. A concave mirror, as seen in this figure, works in analogy to a
positive lens, producing a real or a virtual image depending on whether the
object is farther from or closer to the mirror than the mirror’s focal length.
A convex mirror acts like a negative lens, always producing a virtual
image. The thin lens equation works in both cases as long as the angles are
small.
   
3.5    Fermat’s Principle

An alternate approach to geometrical optics can be developed from Fermat’s
principle. This principle states (in its simplest form) that light waves of a given
frequency traverse the path between two points which takes the least
time. The most obvious example of this is the passage of light through a
homogeneous medium in which the speed of light doesn’t change with
position. In this case the shortest time corresponds to the shortest distance
between the points, which, as we all know, is a straight line. Thus, Fermat’s
principle is consistent with light traveling in a straight line in a homogeneous
medium.
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 Figure 3.10: Definition sketch for deriving the law of reflection from Fermat’s
principle. θI  is the angle of incidence and θR  the angle of reflection as in
figure 3.1.

____________________________


   



   Fermat’s principle can also be used to derive the laws of reflection and
refraction. For instance, figure 3.10 shows a candidate ray for reflection in which
the angles of incidence and reflection are not equal. The time required for the
light to go from point A to point B is
   	
   
[image: t = ([h2 + y2]1∕2 + [h2+ (w - y)2]1∕2)∕c        1            2 ]
	(3.13)




where c is the speed of light. We find the minimum time by differentiating t with
respect to y and setting the result to zero, with the result that
   	
   
[image: -----y----- = ------w---y------ . [h21 + y2]1∕2   [h22 + (w - y)2]1∕2 ]
	(3.14)




However, we note that the left side of this equation is simply sin θI, while the
right side is sin θR, so that the minimum time condition reduces to sin θI = sin θR
or θI = θR, which is the law of reflection.
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 Figure 3.11: Definition sketch for deriving Snell’s law of refraction from
Fermat’s principle. The shaded area has index of refraction n > 1.

____________________________


   



   A similar analysis may be done to derive Snell’s law of refraction. The speed of
light in a medium with refractive index n is c∕n, where c is its speed in a
vacuum. Thus, the time required for light to go some distance in such a
medium is n times the time light takes to go the same distance in a vacuum.
Referring to figure 3.11, the time required for light to go from A to B
becomes
   	
   
[image:        2   2 1∕2     2          2 1∕2 t = ([h 1 + y ]  + n [h2 + (w - y )]   )∕c. ]
	(3.15)




This results in the condition
   	
   
[image: sin θI = nsinθR ]
	(3.16)




where θR is now the refracted angle. We recognize this result as Snell’s
law.


   Notice that the reflection case illustrates a point about Fermat’s principle: The
minimum time may actually be a local rather than a global minimum — after all,
in figure 3.10, the global minimum distance from A to B is still just a
straight line between the two points! In fact, light starting from point A
will reach point B by both routes — the direct route and the reflected
route.
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 Figure 3.12: Ellipsoidal mirror showing minimum and maximum time rays
from the center of the ellipsoid to the mirror surface and back again.

____________________________


   



   It turns out that trajectories allowed by Fermat’s principle don’t strictly have
to be minimum time trajectories. They can also be maximum time trajectories, as
illustrated in figure 3.12. In this case light emitted at point O can be reflected
back to point O from four points on the mirror, A, B, C, and D. The trajectories
O-A-O and O-C-O are minimum time trajectories while O-B-O and O-D-O are
maximum time trajectories.

   Fermat’s principle seems rather mysterious. However, the American physicist
Richard Feynman made sense out of it by invoking an even more fundamental
principle, as we now see.

   If a light ray originates at point O in figure 3.12, reflects off of the ellipsoidal
mirror surface at point A, and returns to point O, the elapsed time isn’t much
different from that experienced by a ray which reflects off the mirror a slight
distance from point A and returns to O. This is because at point A the beam from
point O is perpendicular to the tangent to the surface of the mirror at point A. In
contrast, the time experienced by a ray going from point O to point E and back
would differ by a much greater amount than the time experienced by a ray
reflecting off the mirror a slight distance from point E. This is because the tangent
to the mirror surface at point E is not perpendicular to the beam from point
O.

   Technically, the change in the round trip time varies linearly with the
deviation in the reflection point from point E, but quadratically with the
deviation from point A. If this deviation is small in the first place, then the
change in the round trip time will be much smaller for the quadratic case than for
the linear case.

   It seems odd that we would speak of a beam reflecting back to point O if it hit
the mirror at any point except A, B, C, or D, due to the requirements of the law
of reflection. However, recall that the law of reflection itself depends on
Fermat’s principle, so we cannot assume the validity of that law in this
investigation.

   Feynman postulated that light rays explore all possible paths from one point
to another, but that the only paths realized in nature are those for which light
taking closely neighboring paths experiences nearly the same elapsed time (or
more generally, traverses nearly the same number of wavelengths) as the original
path. If this is true, then neighboring rays interfere constructively with
each other, resulting in a much brighter beam than would occur in the
absence of this constructive interference. Thus, the round-trip paths O-A-O,
O-B-O, O-C-O, and O-D-O in figure 3.12 actually occur, but not O-E-O.

Feynman explains Fermat’s principle by invoking constructive and destructive
interference!

   








[image: PIC]



 Figure 3.13: Ray trajectories from a point O being focused to another point
I by a lens.

____________________________


   



   Figure 3.13 illustrates a rather peculiar situation. Notice that all the rays from
point O which intercept the lens end up at point I. This would seem to contradict
Fermat’s principle, in that only the minimum (or maximum) time trajectories
should occur. However, a calculation shows that all the illustrated trajectories in
this particular case take the same time. Thus, the light cannot choose one
trajectory over another using Fermat’s principle and all of the trajectories are
equally favored. Note that this inference applies not to just any set of trajectories,
but only those going from an object point to the corresponding image
point.
   
3.6    Problems


      

      	The index of refraction varies as shown in figure 3.14:
           
           	Given θ1, use Snell’s law to find θ2.
           

           	Given θ2, use Snell’s law to find θ3.
           

           	From the above results, find θ3, given θ1. Do n2 or θ2 matter?
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 Figure 3.14: Refraction through multiple parallel layers with different
      refractive indices.

      _____________________________________
      



      

      	A 45∘-45∘-90∘ prism is used to totally reflect light through 90∘ as shown in
      figure 3.15. What is the minimum index of refraction of the prism needed for
      this to work?
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 Figure 3.15: Refraction through a 45∘-45∘-90∘ prism.

      _____________________________________
      



      

      	Show graphically which way the wave vector must point inside the calcite
      crystal of figure 3.3 for a light ray to be horizontally oriented. Sketch the
      orientation of the wave fronts in this case.
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 Figure 3.16: Focusing of parallel rays by a parabolic mirror.

      _____________________________________
      



      





[image: PIC]


      
 Figure 3.17: Refraction through a wedge-shaped prism.

      _____________________________________
      



      

      	The human eye is a lens which focuses images on a screen called the retina.
      Suppose that the normal focal length of this lens is 4 cm and that this
      focuses images from far away objects on the retina. Let us assume that the
      eye is able to focus on nearby objects by changing the shape of the lens, and
      thus its focal length. (The lens-retina distance remains the same.) If an
      object is 20 cm from the eye, what must the altered focal length of the
      eye be in order for the image of this object to be in focus on the
      retina?

      

      	An amoeba 0.01 cm in diameter has its image projected on a screen as
      shown in figure 3.18 by a positive lens of diameter 0.1 cm.
      
           

           	How big is the image of the amoeba?
           

           	What is the focal length of the lens?
           

           	What is the minimum distance between features on the image of
           the amoeba which can be resolved? Assume that the wavelength
           of light used is 5 × 10-7 m. (Hint: What is the spreading angle of
           a beam of light passing through an opening the size of the lens?)
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 Figure 3.18: An amoeba imaged by a lens.

      _____________________________________
      



      

      	The great refractor telescope of Yerkes Observatory in Wisconsin (see figure
      3.19) has primary lens D = 1.02 m in diameter with a focal length of
      L = 19.4 m. Use the small angle approximation in all calculations and
      assume that the light has wavelength 5 × 10-7 m.
      
           

           	Jupiter has a diameter of 1.5 × 105 km and an average distance

           from the earth of 8 × 108 km. How big is the image of Jupiter (in
           cm) at the focal plane of the primary lens?
           

           	Given perfect atmospheric “seeing” conditions, how far apart must
           two features be on Jupiter (in km) for the Yerkes telescope to be
           able to resolve them?
           

           	What should the focal length l of the secondary lens or eyepiece be
           for Jupiter to subtend the same angle as the moon subtends to the
           naked eye? The moon’s diameter is 3.5 × 103 km and its distance
           from the earth is 3.8 × 105 km. Hint: Imagine that a translucent
           sheet of ground glass is placed at the focal plane so that the image
           is seen projected on this ground glass, which scatters light over a
           broad range of angles. The eyepiece can then be thought of as a
           magnifying glass with which you can examine the image on the
           ground glass. Using this artiface, you need consider only light rays
           that pass through the center of each lens.
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 Figure 3.19: The great Yerkes refractor telescope observing Jupiter.

      _____________________________________
      



      

      	Show that a concave mirror that focuses incoming rays parallel to the
      optical axis of the mirror to a point on the optical axis, as illustrated in
      figure 3.16, is parabolic in shape. Hint: Since rays following different

      paths all move from the distant source to the focal point of the
      mirror, Fermat’s principle implies that all of these rays take the same
      time to do so (why is this?), and therefore all traverse the same
      distance.
      

      	Use Fermat’s principle to explain qualitatively why a ray of light follows the
      solid rather than the dashed line through the wedge of glass shown in figure
      3.17.
      

      	Test your knowledge of Fermat’s principle by using equation (3.15) to derive
      Snell’s law.





   


Chapter 4
Special Relativity

Albert Einstein invented the special and general theories of relativity early in the
20th century, though many other people contributed to the intellectual climate
which made these discoveries possible. The special theory of relativity arose out of
a conflict between the ideas of mechanics as developed by Galileo and Newton,
and the theory of electromagnetism. For this reason relativity is often
discussed in textbooks after electromagnetism is developed. However, special
relativity is actually a valid extension to the Galilean world view which is
needed when objects move at very high speeds, and it is only coincidentally
related to electromagnetism. For this reason we discuss relativity before
electromagnetism.

   The only fact from electromagnetism that we need is introduced now: There is
a maximum speed at which objects can travel. This is coincidentally equal to the
speed of light in a vacuum, c = 3 × 108 m s-1. Furthermore, a measurement of the
speed of a particular light beam yields the same answer regardless of the speed
of the light source or the speed at which the measuring instrument is
moving.

   This rather bizarre experimental result is in contrast to what occurs in
Galilean relativity. If two cars pass a pedestrian standing on a curb, one at
20 m s-1 and the other at 50 m s-1, the faster car appears to be moving at
30 m s-1 relative to the slower car. However, if a light beam moving at
3 × 108 m s-1 passes an interstellar spaceship moving at 2 × 108 m s-1, then the
light beam appears to occupants of the spaceship to be moving at 3 × 108 m s-1,
not 1 × 108 m s-1. Furthermore, if the spaceship beams a light signal forward
to its (stationary) destination planet, then the resulting beam appears
to be moving at 3 × 108 m s-1 to instruments at the destination, not
5 × 108 m s-1.

   The fact that we are talking about light beams is only for convenience. Any
other means of sending a signal at the maximum allowed speed would result in the
same behavior. We therefore cannot seek the answer to this apparent paradox in
the special properties of light. Instead we have to look to the basic nature of space
and time.
   
4.1    Galilean Spacetime Thinking
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 Figure 4.1: Spacetime diagram showing an event, a world line, and a line of
simultaneity.

____________________________






   In order to gain an understanding of both Galilean and Einsteinian relativity
it is important to begin thinking of space and time as being different dimensions
of a four-dimensional space called spacetime. Actually, since we can’t visualize
four dimensions very well, it is easiest to start with only one space dimension and
the time dimension. Figure 4.1 shows a graph with time plotted on the vertical
axis and the one space dimension plotted on the horizontal axis. An event is
something that occurs at a particular time and a particular point in space.
(“Julius X. wrecks his car in Lemitar, NM on 21 June at 6:17 PM.”) A world line
is a plot of the position of some object as a function of time on a spacetime
diagram, although it is conventional to put time on the vertical axis.
Thus, a world line is really a line in spacetime, while an event is a point
in spacetime. A horizontal line parallel to the position axis is a line of
simultaneity in Galilean relativity — i. e., all events on this line occur
simultaneously.

   In a spacetime diagram the slope of a world line has a special meaning. Notice
that a vertical world line means that the object it represents does not move — the
velocity is zero. If the object moves to the right, then the world line tilts to the
right, and the faster it moves, the more the world line tilts. Quantitatively, we say
that
   	
   
[image:            ---------1---------- velocity =  slope of world line ]
	(4.1)




in Galilean relativity. Notice that this works for negative slopes and velocities as
well as positive ones. If the object changes its velocity with time, then the world
line is curved, and the instantaneous velocity at any time is the inverse of the
slope of the tangent to the world line at that time.


   The hardest thing to realize about spacetime diagrams is that they
represent the past, present, and future all in one diagram. Thus, spacetime
diagrams don’t change with time — the evolution of physical systems is
represented by looking at successive horizontal slices in the diagram at
successive times. Spacetime diagrams represent evolution, but they don’t evolve
themselves.

   The principle of relativity states that the laws of physics are the same
in all inertial reference frames. An inertial reference frame is one that
is not accelerated. Reference frames attached to a car at rest and to a
car moving steadily down the freeway at 30 m s-1 are both inertial. A
reference frame attached to a car accelerating away from a stop light is not
inertial.

   The principle of relativity is an educated guess or hypothesis based on
extensive experience. If the principle of relativity weren’t true, we would have to
do all our calculations in some preferred reference frame. This would be very
annoying. However, the more fundamental problem is that we have no idea what
the velocity of this preferred frame might be. Does it move with the earth? That
would be very earth-centric. How about the velocity of the center of our galaxy or
the mean velocity of all the galaxies? Rather than face the issue of a
preferred reference frame, physicists have chosen to stick with the principle of
relativity.
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 Figure 4.2: The left panel shows the world line in the unprimed reference
frame, while the right panel shows it in the primed frame, which moves to
the right at speed U relative to the unprimed frame. (The “prime” is just a
label that allows us to distinguish the axes corresponding to the two reference
frames.)

____________________________


   



   If an object is moving to the left at velocity v relative to a particular reference
frame, it appears to be moving at a velocity v′ = v - U relative to another
reference frame which itself is moving at velocity U. This is the Galilean velocity
transformation law, and it is based on everyday experience. If you are
traveling 30 m s-1 down the freeway and another car passes you doing
40 m s-1, then the other car moves past you at 10 m s-1 relative to your
car.

   Figure 4.2 shows how the world line of an object is represented differently in
the unprimed (x, t) and primed (x′, t′) reference frames. The difference between
the velocity of the object and the velocity of the primed frame (i. e., the
difference in the inverses of the slopes of the corresponding world lines) is the
same in both reference frames in this Galilean case. This illustrates the difference
between a physical law independent of reference frame (the difference between
velocities in Galilean relativity) and the different motion of the object in the two
different reference frames.
   
4.2    Spacetime Thinking in Special Relativity

In special relativity we find that space and time “mix” in a way that they don’t in
Galilean relativity. This suggests that space and time are different aspects of the
same “thing”, which we call spacetime.

   If time and position are simply different dimensions of the same abstract
space, then they should have the same units. The easiest way to arrange this
is to multiply time by the maximum speed, c, resulting in the kind of
spacetime diagram shown in figure 4.3. Notice that world lines of light
have slope ±1 when the time axis is scaled this way. Furthermore, the
relationship between speed and the slope of a world line must be revised to
read
   	
   
[image:     ---c-- v = slope   (world line). ]
	(4.2)
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 Figure 4.3: Scaled spacetime diagram showing world lines of light passing
left and right through the origin.
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   Notice that it is physically possible for an object to have a world line which
connects event O at the origin and the events A and D in figure 4.3, since the
slope of the resulting world line would exceed unity, and thus represent a velocity
less than the speed of light. Events which can be connected by a world line
are called timelike relative to each other. On the other hand, event O
cannot be connected to events B and C by a world line, since this would
imply a velocity greater than the speed of light. Events which cannot be
connected by a world line are called spacelike relative to each other. Notice
the terminology in figure 4.3: Event A is in the past of event O, while
event D is in the future. Events B and C are elsewhere relative to event
O.
   
4.3    Postulates of Special Relativity

As we learned previously, the principle of relativity states that the laws
of physics are the same in all inertial reference frames. The principle of
relativity applies to Einsteinian relativity just as it applies to Galilean
relativity.

   Notice that the constancy of the speed of light in all reference frames is
consistent with the principle of relativity. However, as noted above, it is
inconsistent with our notions as to how velocities add, or alternatively, how we
think the world should look from reference frames moving at different speeds. We
have called the classical way of understanding the view from different reference
frames Galilean relativity. The new way that reconciles the behavior of objects
moving at very high speeds is called Einsteinian relativity. Einstein’s great
contribution was to discover the laws that tell us how the world looks from
reference frames moving at high speeds relative to each other. These laws
constitute a geometry of spacetime, and from them all of special relativity can be
derived.

   All of the observed facts about spacetime can be derived from two
postulates:
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 Figure 4.4: Triangle for Pythagorean theorem in spacetime.
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      	Whether two events are simultaneous depends on the reference frame
      from which they are viewed.
      

      	Spacetime obeys a modified Pythagorean theorem, which gives the distance,
      I, in spacetime or spacetime interval as
      	
      
      [image:  2     2   2  2 I =  X  - c T  ,       ]
	(4.3)


      
      where X, T, and I are defined in figure 4.4.



Let us discuss these postulates in turn.
   
4.3.1    Simultaneity

The classical way of thinking about simultaneity is so ingrained in our
everyday habits that we have a great deal of difficulty adjusting to what
special relativity has to say about this subject. Indeed, understanding
how relativity changes this concept is the single most difficult part of the
theory — once you understand this, you are well on your way to mastering
relativity!

   Before tackling simultaneity, let us first think about collocation. Two events
(such as A and E in figure 4.5) are collocated if they have the same x value.
However, collocation is a concept that depends on the reference frame. For

instance, George is driving from Boston to Washington, with the line passing
through events A and D being his world line. Just as he passes New York he
sneezes (event A in figure 4.5). As he drives by Baltimore, he sneezes again (event
D). In the reference frame of the earth, these two sneezes are not collocated, since
they are separated by many kilometers. However, in the reference frame of
George’s car, they occur in the same place — assuming that George hasn’t left the
driver’s seat!

   Notice that any two events separated by a timelike interval are collocated in
some reference frame. The speed of the reference frame is given by equation (4.2),
where the slope is simply the slope of the world line connecting the two
events.

   In Galilean relativity, if two events are simultaneous, we consider them to be
simultaneous in all reference frames. For instance, if two clocks, one in New York
and one in Los Angeles, strike the hour at the same time in the earth reference
frame, then in Galilean relativity these events also appear to be simultaneous to
instruments in the space shuttle as it flies over the United States. However, if the
space shuttle is moving from west to east, i. e., from Los Angeles toward New
York, careful measurements will show that the clock in New York strikes the hour
before the clock in Los Angeles! Thus, the Galilean point of view is not
accurate.

   Just as collocation depends on one’s reference frame, this result shows that
simultaneity also depends on the reference frame. Figure 4.5 shows how this
works. In figure 4.5 events A and B are simultaneous in the rest or unprimed
reference frame. However, in the primed reference frame, events A and C are
simultaneous, and event B occurs at an earlier time. If A and B correspond to the
clocks striking in Los Angeles and New York respectively, then it is clear that B
must occur at an earlier time in the primed frame if indeed A and C are
simultaneous in that frame.
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 Figure 4.5: Sketch of coordinate axes for a moving reference frame, x′, ct′.
The meanings of the events A-E are discussed in the text. The lines tilted at
±45∘ are the world lines of light passing through the origin.
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   The tilted line passing through events A and C in figure 4.5 is called the line
of simultaneity for the primed reference frame. Its slope is related to the speed, U,
of the reference frame by
   	
   
[image: slope = U ∕c  (line of simultaneity). ]
	(4.4)




Notice that this is the inverse of the slope of the world line attached to the primed
reference frame. There is thus a symmetry between the world line and the line of
simultaneity of a moving reference frame — as the reference frame moves faster to
the right, these two lines close like the blades of a pair of scissors on the 45∘
line.

   In Galilean relativity it is fairly obvious what we mean by two events being
simultaneous — it all boils down to coordinating portable clocks which are sitting
next to each other, and then moving them to the desired locations. Two events
separated in space are simultaneous if they occur at the same time on clocks
located near each event, assuming that the clocks have been coordinated in the
above manner.

   In Einsteinian relativity this doesn’t work, because the very act of moving the
clocks changes the rate at which the clocks run. Thus, it is more difficult to
determine whether two distant events are simultaneous.
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 Figure 4.6: World lines of two observers (O1, O2) and a pulsed light source
(S) equidistant between them. In the left frame the observers and the source
are all stationary. In the right frame they are all moving to the right at half the
speed of light. The dashed lines show pulses of light emitted simultaneously
to the left and the right.
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   An alternate way of experimentally determining simultaneity is shown in figure
4.6. Since we know from observation that light travels at the same speed in all
reference frames, the pulses of light emitted by the light sources in figure 4.6 will
reach the two equidistant observers simultaneously in both cases. The line
passing through these two events, A and B, defines a line of simultaneity for
both stationary and moving observers. For the stationary observers this
line is horizontal, as in Galilean relativity. For the moving observers the
light has to travel farther in the rest frame to reach the observer receding
from the light source, and it therefore takes longer in this frame. Thus,
event B in the right panel of figure 4.6 occurs later than event A in the
stationary reference frame and the line of simultaneity is tilted. We see
that the postulate that light moves at the same speed in all reference
frames leads inevitably to the dependence of simultaneity on reference
frame.
   
4.3.2    Spacetime Pythagorean Theorem

The Pythagorean theorem of spacetime differs from the usual Pythagorean
theorem in two ways. First, the vertical side of the triangle is multiplied by c. This
is a trivial scale factor that gives time the same units as space. Second, the right
side of equation (4.3) has a minus sign rather than a plus sign. This highlights a
fundamental difference between spacetime and the ordinary xyz space in which we
live. Spacetime is said to have a non-Euclidean (but not curved) geometry — in
other words, the normal rules of geometry that we learn in high school don’t
always work for spacetime!

   The main consequence of the minus sign in equation (4.3) is that I2 can be
negative and therefore I can be imaginary. Furthermore, in the special case where
X = ±cT, we actually have I = 0 even though X, T≠0 — i. e., the “distance”
between two well-separated events can be zero. Clearly, spacetime has some weird
properties!

   The quantity I is usually called an interval in spacetime. Generally speaking,
if I2 is positive, the interval is called spacelike, while for a negative I2, the interval
is called timelike.

   A concept related to the spacetime interval is the proper time τ. The
proper time between the two events A and C in figure 4.4 is defined by the
equation

   	
   
[image: τ2 = T2 - X2 ∕c2. ]
	(4.5)




Notice that I and τ are related by
   	
   
[image: τ2 = - I2∕c2, ]
	(4.6)




so the spacetime interval and the proper time are not independent concepts.
However, I has the dimensions of length and is real when the events defining the
interval are spacelike relative to each other, whereas τ has the dimensions of
time and is real when the events are timelike relative to each other. Both
equation (4.3) and equation (4.5) express the spacetime Pythagorean
theorem.

   If two events defining the end points of an interval have the same t value, then
the interval is the ordinary space distance between the two events. On the other
hand, if they have the same x value, then the proper time is just the time interval
between the events. If the interval between two events is spacelike, but the events
are not simultaneous in the initial reference frame, they can always be made

simultaneous by choosing a reference frame in which the events lie on the same
line of simultaneity. Thus, the meaning of the interval in that case is just
the distance between the events in the new reference frame. Similarly,
for events separated by a timelike interval, the proper time is just the
time between two events in a reference frame in which the two events are
collocated.


   
4.4    Time Dilation
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 Figure 4.7: Two views of the relationship between three events, A, B, and C.
The left panel shows the view from the unprimed reference frame, in which A
and C are collocated, while the right panel shows the view from the primed
frame, in which A and B are collocated.
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   Stationary and moving clocks run at different rates in relativity. This is
illustrated in figure 4.7. The triangle ABC in the left panel of figure 4.7 can be
used to illustrate this point. Suppose that the line passing through the
events A and C in this figure is the world line of a stationary observer. At
zero time another observer moving with velocity V passes the stationary
observer. The moving observer’s world line passes through events A and
B.

   We assume that events B and C are simultaneous in the rest frame, so ABC is
a right triangle. Application of the spacetime Pythagorean theorem thus
yields
   	
   
[image:  2 ′2    2 2     2 c T  =  cT  -  X  . ]
	(4.7)




Since the second observer is moving at velocity V , the slope of his world line
is
   	
   
[image: c    cT V-=  X--, ]
	(4.8)





where the right side of the above equation is the slope calculated as the rise of the
world line cT over the run X between events A and B. Eliminating X
between the above two equations results in a relationship between T and
T′:
   	
   
[image: T′ = T(1 - V 2∕c2)1∕2 ≡ T ∕γ, ]
	(4.9)




where
   	
   
[image: γ =  ------1-------.      (1 - V 2∕c2)1∕2 ]
	(4.10)




The quantity γ occurs so often in relativistic calculations that we give it this
special symbol. Note by its definition that γ ≥ 1.

   Equation (4.9) tells us that the time elapsed for the moving observer is
less than that for the stationary observer, which means that the clock of
the moving observer runs more slowly. This is called the time dilation
effect.


   Let us view this situation from the reference frame of the moving observer. In
this frame the moving observer becomes stationary and the stationary observer
moves in the opposite direction, as illustrated in the right panel of figure 4.7. By
symmetric arguments, one infers that the clock of the initially stationary observer
who is now moving to the left runs more slowly in this reference frame than the
clock of the initially moving observer. One might conclude that this contradicts
the previous results. However, examination of the right panel of figure
4.7 shows that this is not so. The interval cT is still greater than the
interval cT′, because such intervals are relativistically invariant quantities.
However, events B and C are no longer simultaneous, so one cannot use
these results to infer anything about the rate at which the two clocks run
in this frame. Thus, the relative nature of the concept of simultaneity
saves us from an incipient paradox, and we see that the relative rates at
which clocks run depends on the reference frame in which these rates are
observed.
   
4.5    Lorentz Contraction
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 Figure 4.8: Definition sketch for understanding the Lorentz contraction. The
parallel lines represent the world lines of the front and the rear of a moving
object. The left panel shows a reference frame moving with the object, while
the right panel shows a stationary reference frame.
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   A similar argument can be made to show how the postulates of relativity
result in the Lorentz contraction. Figure 4.8 compares the length X′ of a moving
object measured in its own reference frame (left panel) with its length X as
measured in a stationary reference frame (right panel). The length of a moving
object is measured by simultaneously measuring the positions of the front and the
rear of the object and subtracting these two numbers. Events A and C correspond
to these position measurements for the stationary reference frame since they are
respectively on the rear and front world lines of the object. Thus, the interval AC,
which is equal to X, is the length of the object as measured in the stationary
frame.

   In the left panel, X is the hypotenuse of a right triangle. Therefore, by the
Pythagorean theorem of spacetime, we have
   	
   
[image: X  = I =  (X ′2 - c2T′2)1∕2. ]
	(4.11)




Now, the line passing through A and C in the left panel is the line of simultaneity
of the stationary reference frame. The slope of this line is -V∕c, where V is the
speed of the object relative to the stationary reference frame. Geometrically in
figure 4.8, the slope of this line is -cT′∕X′, so we find by equating these two
expressions for the slope that
   	
   

[image:   ′      ′  2 T  =  VX  ∕c . ]
	(4.12)




Finally, eliminating T′ between (4.11) and (4.12) results in
   	
   
[image: X  = X ′(1 - V 2∕c2)1∕2 = X ′∕γ. ]
	(4.13)




This says that the length of a moving object as measured in a stationary reference
frame (X) is less than the actual length of the object as measured in its
own reference frame (X′). This reduction in length is called the Lorentz
contraction.

   Note that the Lorentz contraction only occurs in the direction of motion.
The dimensions of a moving object perpendicular to the motion remain
unchanged.
   
4.6    Twin Paradox

An interesting application of time dilation is the so-called twin paradox, which
turns out not to be a paradox at all. Two twins are initially the same
age. One twin travels to a distant star on an interstellar spaceship which
moves at speed V , which is close to the speed of light. Upon reaching the
star, the traveling twin immediately turns around and heads home. When
reaching home, the traveling twin has aged less than the twin that stayed
home. This is easily explained by the time dilation effect, which shows

that the proper time elapsed along the world line of the traveling twin is
(1 - V 2∕c2)1∕2 times the proper time elapsed along the world line of the other
twin.

   The “paradox” part of the twin paradox arises from making the symmetric
argument in which one assumes the reference frame of the traveling twin to be
stationary. The frame of the earth-bound twin must then travel in the sense
opposite that of the erstwhile traveling twin, which means that the earth-bound
twin must age less rather than more. This substitution is justified on the basis of
the principle of relativity, which states that the laws of physics must be the same
in all inertial reference frames.

   However, the above argument is fallacious, because the reference frame of the
traveling twin is not inertial throughout the entire trip, since at various points the
spaceship has to accelerate and decelerate. Thus, the principle of relativity cannot
be used to assert the equivalence of the traveler’s reference frame to the stationary
frame.
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 Figure 4.9: Definition sketch for the twin paradox. The vertical line is the
world line of the twin that stays at home, while the traveling twin has the
curved world line to the right. The slanted lines between the world lines are
lines of simultaneity at various times for the traveling twin. The heavy lines of
simultaneity bound the period during which the traveling twin is decelerating
to a stop and accelerating toward home.
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   Of particular importance is the period of deceleration and acceleration near
the distant star. During this interval, the line of simulaneity of the traveling twin
rotates, as illustrated in figure 4.9, such that the twin staying at home rapidly
ages in the reference frame of the traveler. Thus, even though the acceleration of
the traveling twin may occupy only a negligible segment of the twin’s world line,
the overall effect is not negligible. In fact, the shorter and more intense the period
of acceleration, the more rapidly the earth-bound twin ages in the traveling frame
during this interval!
   
4.7    Problems


      

      	Sketch your personal world line on a spacetime diagram for the last
      24 hours, labeling by time and location special events such as meals,
      physics classes, etc. Relate the slope of the world line at various times
      to how fast you were walking, riding in a car, etc.
      

      	Spacetime conversions:
           
           	What is the distance from New York to Los Angeles in seconds?
           From here to the moon? From here to the sun?
           

           	What is one nanosecond in meters? One second? One day? One
           year?


      

      	Three events have the following spacetime coordinates: A is at
      (x,ct) = (2 m, 1 m); B is at (x,ct) = (-2 m, 0 m); C is at (x,ct) = (0 m, 3 m).
           
           	A world line for an object passes through events B and C. How
           fast and in which direction is the object moving?

           

           	A  line  of  simultaneity  for  a  coordinate  system  passes  through
           events A and B. How fast and in which direction is the coordinate
           system moving?
           

           	What is the invariant interval between events A and B? B and C?
           A and C?
           

           	Can a signal from event B reach event A? Can it reach event C?
           Explain.


      Hint: Draw a spacetime diagram with all the events plotted before trying to
      answer the above questions.
      


      	In the following problem be sure to indicate the slope of all pertinent lines
      drawn.
           
           	In a spacetime diagram, sketch a line of simultaneity for a reference
           frame moving to the left at V = c∕2, where c is the speed of light.
           

           	Sketch the world line of an object which is initially stationary, but
           which accelerates to a velocity of v = c∕3.


      

      	If the slopes of the world lines of the observers in the right panel of
      figure 4.6 are both 1∕β, find the slope of their line of simultaneity,
      AB.
      

      	Suppose that an interstellar spaceship goes a distance X = 100 light years
      relative to the rest frame in T′ = 10 years of its own time.
           
           	Draw a spacetime diagram in the rest frame showing X, T′, and
           the time T needed for this journey relative to the rest frame.
           

           	Compute T, using your spacetime diagram as an aid.

           

           	Compute the speed of the spaceship.


      

      	If an airline pilot flies 80 hr per month (in the rest frame) at 300 m s-1 for
      30 years, how much younger will she be than her twin brother (who handles
      baggage) when she retires? Hint: Use (1 + ϵ)x ≈ 1 + xϵ for small
      ϵ.
      

      	A mu particle normally lives about 2 × 10-6 sec before it decays. However,
      muons created by cosmic rays 20 km up in the atmosphere reach the Earth’s
      surface. How fast must they be going?
      

      	The Stanford Linear Accelerator accelerates electrons to a speed such that
      the 3 km long accelerator appears to be 8 cm long to the electron,
      due to the Lorentz contraction. How much less than the speed of
      light is the electron traveling? Hint: It is best to first develop an
      approximation for the relationship between γ = (1 - v2∕c2)-1∕2 and the
      difference between c and v for a particle moving close to the speed of
      light.
      

      	How fast do you have to go to reach the center of our galaxy in your
      expected lifetime? At this speed, what does this distance appear to be? (We
      are about 30000 light years from the galactic center.)
      

      	Two identical spaceships pass each other going in the opposite direction at
      the same speed.
           
           	Sketch a spacetime diagram showing the world lines of the front
           and rear of each spaceship as well as lines of simultaneity for each
           spaceship.
           

           	Indicate  an  interval  on  the  diagram  corresponding  to  the
           rightward-moving spaceship’s length in its own reference frame.

           

           	Indicate   an   interval   corresponding   to   the   leftward-moving
           spaceship’s length in the reference frame of the rightward-moving
           spaceship.
           

           	Indicate an interval equal to the length of either spaceship in the
           rest frame.
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  Figure 4.10:  Sketch  for  moving  twins.  Line  AC  is  the  line  of
      simultaneity for a reference frame moving with Sally and George.

      _____________________________________
      



      

      	George and Sally are twins initially separated by a distance d and at rest. In
      the rest frame they are initially the same age. At time t = 0 both George
      and Sally get in their spaceships and head to the right at velocity U. Both
      move a distance d to the right and decelerate to a halt. (See figure
      4.10.)
           
           	When both are moving, how far away is Sally according to George?

           

           	How much older or younger is Sally relative to George while both
           are moving?
           

           	How much older or younger is Sally relative to George after both
           stop?


      Hint: Draw the triangle ABC in a reference frame moving with George and
      Sally.
      






   


Chapter 5
Applications of Special Relativity

In this chapter we continue the study of special relativity. Three important
applications of the ideas developed in the previous chapter are made here. First,
we show how to describe waves in the context of spacetime. We then see how
waves which have no preferred reference frame (such as that of a medium
supporting them) are constrained by special relativity to have a dispersion
relation of a particular form. This dispersion relation turns out to be that of the
relativistic matter waves of quantum mechanics. Second, we investigate the
Doppler shift phenomenon, in which the frequency of a wave takes on different
values in different coordinate systems. Third, we show how to add velocities in a
relativistically consistent manner.

   A new mathematical idea is presented in the context of relativistic waves,
namely the spacetime vector or four-vector. Writing the laws of physics totally in
terms of relativistic scalars and four-vectors insures that they will be valid in all
inertial reference frames.
   
5.1    Waves in Spacetime

We now look at the characteristics of waves in spacetime. Recall that a
sine wave moving to the right in one space dimension can be represented
by
   	
   
[image: A (x,t) = A0 sin (kx - ωt), ]
	(5.1)




where A0 is the (constant) amplitude of the wave, k is the wavenumber, and ω is
the angular frequency, and that the quantity ϕ = kx - ωt is called the phase of
the wave. For a plane wave in three space dimensions, the wave is represented in a
similar way,

   	
   
[image: A (x,t) = A  sin (k ⋅ x - ωt),             0 ]
	(5.2)




where x is now the position vector and k is the wave vector. The magnitude of the
wave vector, |k| = k is just the wavenumber of the wave and the direction of this
vector indicates the direction the wave is moving. The phase of the wave in this
case is ϕ = k ⋅ x - ωt.

   








[image: PIC]



 Figure 5.1: Sketch of wave fronts for a wave in spacetime. The large arrow
is the associated wave four-vector, which has slope ω∕ck. The slope of the
wave fronts is the inverse, ck∕ω. The phase speed of the wave is greater than
c in this example. (Can you tell why?)

____________________________


   



   In the case of a one-dimensional wave moving to the right ϕ = kx-ωt. A wave
front has constant phase ϕ, so solving this equation for t and multiplying by c, the
speed of light in a vacuum, gives us an equation for the world line of a wave
front:
   	
   
[image:      ckx-   cϕ-  cx-   cϕ- ct =  ω  -  ω  = up -  ω    (wave  front ). ]
	(5.3)




The slope of the world line in a spacetime diagram is the coefficient of x, or c∕up,
where up = ω∕k is the phase speed. The world lines of the wave fronts of a wave
are illustrated in figure 5.1.
   
5.2    Math Tutorial – Four-Vectors

Also shown in figure 5.1 is a spacetime vector or four-vector which represents the
frequency and wavenumber of the wave, which we refer to as the wave four-vector.
It is called a four-vector because it has 3 spacelike components and one timelike
component when there are 3 space dimensions. In the case shown, there is only a
single space dimension. The spacelike component of the wave four-vector is just k
(or k when there are 3 space dimensions), while the timelike component is ω∕c.
The c is in the denominator to give the timelike component the same dimensions
as the spacelike component. From figure 5.1 it is clear that the slope of the line
representing the four-vector is ω∕ck, which is just the inverse of the slope of the
wave fronts.

   Let us define some terminology. We indicate a four-vector by underlining and
write the components in the following way: k = (k,ω∕c), where k is the wave
four-vector, k is its spacelike component, and ω∕c is its timelike component. For

three space dimensions, where we have a wave vector rather than just a
wavenumber, we write k = (k,ω∕c).

   Another example of a four-vector is simply the position vector in spacetime,
x = (x,ct), or x = (x,ct) in three space dimensions. The c multiplies the timelike
component in this case, because that is what is needed to give it the same
dimensions as the spacelike component.

   In three dimensions we define a vector as a quantity with magnitude and
direction. Extending this to spacetime, a four-vector is a quantity with magnitude
and direction in spacetime. Implicit in this definition is the notion that the
vector’s magnitude is a quantity independent of coordinate system or reference
frame. We have seen that the invariant interval in spacetime from the origin to the
point (x,ct) is I = (x2 - c2t2)1∕2, so it makes sense to identify this as the
magnitude of the position vector. This leads to a way of defining a dot product of
four-vectors. Given two four-vectors A = (A,At) and B = (B,Bt), the dot
product is
   	
   
[image: A ⋅ B = A ⋅ B - A  B   (dot product in spacetime ). -- --             t t ]
	(5.4)




This is consistent with the definition of invariant interval if we set A = B = x,
since then x ⋅ x = x2 - c2t2 = I2.

   In the odd geometry of spacetime it is not obvious what “perpendicular”
means. We therefore define two four-vectors A and B to be perpendicular if their
dot product is zero, A ⋅ B = 0, in analogy with ordinary vectors.

   The dot product of two four-vectors is a scalar result, i. e., its value is
independent of coordinate system. This can be used to our advantage on occasion.
For instance, consider the dot product of a four-vector A which resolves into
(Ax,At) in the unprimed frame. Let us further suppose that the spacelike
component is zero in some primed frame, so that the components in this frame are

(0,At′). The fact that the dot product is independent of coordinate system means
that
   	
   
[image:          2     2      ′2 A-⋅ A-= Ax - A t = - At . ]
	(5.5)




This constitutes an extension of the spacetime Pythagorean theorem to
four-vectors other than the position four-vector. Thus, for instance, the
wavenumber for some wave may be zero in the primed frame, which means that
the wavenumber and frequency in the unprimed frame are related to the
frequency in the primed frame by
   	
   
[image: k2 - ω2 ∕c2 = - ω ′2∕c2. ]
	(5.6)







   
5.3    Principle of Relativity Applied

Returning to the phase of a wave, we immediately see that
   	
   
[image: ϕ = k ⋅ x - ωt = k ⋅ x - (ω∕c)(ct) = k ⋅ x. ]
	(5.7)




Thus, a compact way to rewrite equation (5.2) is
   	
   
[image: A (x) = A0 sin(k-⋅ x). ]
	(5.8)





   Since x is known to be a four-vector and since the phase of a wave is known
to be a scalar independent of reference frame, it follows that k is also a
four-vector rather than just a set of numbers. Thus, the square of the length
of the wave four-vector must also be a scalar independent of reference
frame:
   	

   
[image:                 2  2 k ⋅ k-= k ⋅ k - ω ∕c = const. ]
	(5.9)
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 Figure 5.2: Resolution of a four-vector into components in two different
reference frames.
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   Let us review precisely what this means. As figure 5.2 shows, we can resolve a
position four-vector into components in two different reference frames,
x = (X,cT) = (X′,cT′). However, even though X≠X′ and T≠T′, the vector
lengths computed from these two sets of components are necessarily the same:
x ⋅ x = X2 - c2T2 = X′2 - c2T′2.

   Applying this to the wave four-vector, we infer that
   	
   
[image:  2    2  2    ′2    ′2  2 k -  ω ∕c  = k  -  ω ∕c  = const., ]
	(5.10)




where the unprimed and primed values of k and ω refer to the components of the
wave four-vector in two different reference frames.

   Up to now, this argument applies to any wave. However, waves can be divided
into two categories, those for which a “special” reference frame exists, and those
for which there is no such special frame. As an example of the former, sound
waves look simplest in the reference frame in which the gas carrying the sound is
stationary. The same is true of light propagating through a material medium with
an index of refraction not equal to unity. In both cases the speed of the wave is
the same in all directions only in the frame in which the material medium is
stationary.

   Suppose we have a machine that produces a wave with wavenumber k and
frequency ω in its own rest frame. If we observe the wave from a moving reference
frame, the wavenumber and frequency will be different, say, k′ and ω′. However,
these quantities will be related by equation (5.10).

   Up to this point the argument applies to any wave whether a special reference
frame exists or not; the observed changes in wavenumber and frequency have
nothing to do with the wave itself, but are just consequences of how we have
chosen to observe it. However, if there is no special reference frame for the type of

wave under consideration, then the same result can be obtained by keeping
the observer stationary and moving the wave-producing machine in the
opposite direction. By moving it at various speeds, any desired value of k′
can be obtained in the initial reference frame (as opposed to some other
frame), and the resulting value of ω′ can be computed using equation
(5.10).

   This is actually an amazing result. We have shown on the basis of the principle
of relativity that any wave type for which no special reference frame exists can be
made to take on a full range of frequencies and wavenumbers in any given
reference frame, and furthermore that these frequencies and wavenumbers
obey
   	
   
[image:   2    2 2    2 ω   = k c +  μ . ]
	(5.11)




Equation (5.11) comes from solving equation (5.10) for ω2 and the constant μ2
equals the constant in equation (5.10) times -c2. Equation (5.11) relates
frequency to wavenumber and therefore is the dispersion relation for such
waves. We call waves which have no special reference frame and therefore
necessarily obey equation (5.11) relativistic waves. The only difference in the
dispersion relations between different types of relativistic waves is the
value of the constant μ. The meaning of this constant will become clear
later.
   
5.4    Characteristics of Relativistic Waves

Light in a vacuum is an example of a wave for which no special reference frame
exists. For light, μ = 0, and we have (taking the positive root) ω = ck. This

simply states what we know already, namely that the phase speed of light in a
vacuum is c.

   If μ≠0, waves of this type are dispersive. The phase speed is
   	
   
[image:       ω up =  --=  (c2 + μ2∕k2 )1∕2.       k ]
	(5.12)




This phase speed always exceeds c, which at first seems like an unphysical
conclusion. However, the group velocity of the wave is
   	
   
[image:                   2            2    2 ug = d-ω =  -----c-k------= kc--=  c-,       dk    (k2c2 + μ2)1∕2    ω     up ]
	(5.13)




which is always less than c. Since wave packets and hence signals propagate at the
group velocity, waves of this type are physically reasonable even though the phase
speed exceeds the speed of light.

   Another interesting property of such waves is that the wave four-vector is
parallel to the world line of a wave packet in spacetime. This is easily shown by
the following argument. As figure 5.1 shows, the spacelike component of a wave
four-vector is k, while the timelike component is ω∕c. The slope of the four-vector

on a spacetime diagram is therefore ω∕kc. However, the slope of the world line of
a wave packet moving with group velocity ug is c∕ug = ω∕(kc), which is the same
as the slope of the k four-vector.

   Note that when k = 0 we have ω = μ. In this case the group velocity
of the wave is zero. For this reason we call μ the rest frequency of the
wave.


   
5.5    The Doppler Shift

You have probably heard how the pitch of a train horn changes as it passes you.
When the train is approaching, the pitch or frequency is higher than when it
is moving away from you. This is called the Doppler shift. A similar,
but distinct shift occurs if you are moving past a source of sound. If a
stationary whistle is blowing, the pitch perceived from a moving car is
higher while moving toward the source than when moving away. The
first case thus has a moving source, while the second case has a moving
observer.

   In this section we compute the Doppler shift as it applies to light moving
through a vacuum. Figure 5.3 shows the geometry for computing the time
between wave fronts of light for a stationary and a moving reference frame. The
time in the stationary frame is just T. Since the world lines of the wave
fronts have a slope of unity, the sides of the shaded triangle have the same
value, X. If the observer is moving at speed U, the slope of the observer’s
world line is c∕U, which means that c∕U = (cT + X)∕X. Solving this
for X yields X = UT∕(1 - U∕c), which can then be used to compute
T′ = T + X∕c = T∕(1 - U∕c). This formula as it stands leads to the classical
Doppler shift for a moving observer. However, with relativistic velocities, one
additional factor needs to be taken into account: The observer experiences time
dilation since he or she is moving. The actual time measured by the observer
between wave fronts is actually
   	

   
[image:                                             (        )1 ∕2       ′2     2  21∕2     (1 --U-2∕c2)1∕2     -1 +-U-∕c τ = (T  -  X ∕c )   =  T    1 - U∕c    =  T  1 - U ∕c     , ]
	(5.14)




where the last step uses 1 - U2∕c2 = (1 - U∕c)(1 + U∕c). From this we infer the
relativistic Doppler shift formula for light in a vacuum:
   	
   
[image:        ( 1 - U∕c )1∕2 ω ′ = ω  --------    ,          1 + U∕c ]
	(5.15)




where the frequency measured by the moving observer is ω′ = 2π∕τ and the
frequency observed in the stationary frame is ω = 2π∕T.
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 Figure 5.3: Definition sketch for computing the Doppler shift for light.

____________________________


   



   We could go on to determine the Doppler shift resulting from a moving source.
However, by the principle of relativity, the laws of physics should be the same in
the reference frame in which the observer is stationary and the source is moving.
Furthermore, the speed of light is still c in that frame. Therefore, the problem of a
stationary observer and a moving source is conceptually the same as the problem
of a moving observer and a stationary source when the wave is moving at
speed c. This is unlike the case for, say, sound waves, where the stationary
observer and the stationary source yield different formulas for the Doppler
shift.
   
5.6    Addition of Velocities

Figure 5.4 shows the world line of a moving object from the point of view of two
different reference frames, with the primed frame (left panel) moving to the right
at speed U relative to the unprimed frame (right panel). The goal is to
calculate the velocity of the object relative to the unprimed frame, v,
assuming its velocity in the primed frame, v′ is known. The classical result is
simply
   	
   
[image: v =  U + v′  (classical result). ]
	(5.16)




However, this is inconsistent with the speed of light being constant in all reference
frames, since if we substitute c for v′, this formula predicts that the speed of light
in the unprimed frame is U + c.
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 Figure 5.4: Definition sketch for relativistic velocity addition. The two panels
show the world line of a moving object relative to two different reference
frames moving at velocity U with respect to each other. The velocity of the
world line in the left panel is v′ while its velocity in the right panel is v.

____________________________


   



   We can use the geometry of figure 5.4 to come up with the correct relativistic
formula. From the right panel of this figure we infer that
   	
   
[image: v-=  X--+-ΔX---=  X-∕(cT)-+-ΔX--∕(cT). c    cT + cΔT          1 + ΔT ∕T ]
	(5.17)




This follows from the fact that the slope of the world line of the object in this
frame is c∕v. The slope is calculated as the ratio of the rise, c(T + ΔT), to the
run, X + ΔX.

   From the left panel of figure 5.4 we similarly see that
   	
   
[image: v′   X ′ --=  --′. c    cT ]
	(5.18)




However, we can apply our calculations of Lorentz contraction and time dilation
from the previous chapter to triangles ABD and OAE in the right panel.
The slope of AB is U∕c because AB is horizontal in the left panel, so
X′ = ΔX(1 - U2∕c2)1∕2. Similarly, the slope of OA is c∕U since OA is vertical in

the left panel, and T′ = T(1 - U2∕c2)1∕2. Substituting these formulas into the
equation for v′∕c yields
   	
   
[image: v′   ΔX -- = ----.  c    cT ]
	(5.19)




Again using what we know about the triangles ABD and OAE, we see
that
   	
   
[image: U-=  cΔT--=  X--. c    ΔX      cT ]
	(5.20)





   Finally, we calculate ΔT∕T by noticing that
   	

   
[image: ΔT     ΔT  cΔX     ( cΔT ) ( ΔX  )   U  v′ ----=  --------- =   -----   ----  = -- --.  T      T  cΔX       ΔX      cT       c c ]
	(5.21)





   Substituting equations (5.19), (5.20), and (5.21) into equation (5.17) and
simplifying yields the relativistic velocity addition formula:
   	
   
[image:             ′ v =  --U-+-v---- (special relativity).      1 + U v′∕c2 ]
	(5.22)





   Notice how this equation behaves in various limits. If |Uv′|≪ c2, the
denominator of equation (5.22) is nearly unity, and the special relativistic formula
reduces to the classical case. On the other hand, if v′ = c, then equation (5.22)
reduces to v = c. In other words, if the object in question is moving at the speed
of light in one reference frame, it is moving at the speed of light in all
reference frames, i. e., for all possible values of U. Thus, we have found a
velocity addition formula that 1) reduces to the classical formula for low
velocities and 2) gives the observed results for very high velocities as
well.


   Equation (5.22) is valid even if v′ is negative, i. e., if the object is moving to
the right less rapidly than the primed reference frame, or even if it is moving to
the left in the unprimed frame.
   
5.7    Problems
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 Figure 5.5: Doppler shift for a moving light source.

____________________________






      
      	Sketch the wave fronts and the k four-vector in a spacetime diagram
      for the case where ω∕k = 2c. Label your axes and space the wave fronts
      correctly for the case k = 4π m-1.
      

      	If the four-vector k = (0, 1 nm-1) in the rest frame, find the space and
      time components of k in a frame moving to the left at speed c∕2.
      

      	Let’s examine the four-vector u = (ug,c)∕(1 - β2)1∕2 where β = u
g∕c, ug
      being the velocity of some object. The four-vector u is called the
      four-velocity.
           
           	Show that u is parallel to the world line of the object.
           

           	Show that u ⋅ u = -c2.
           

           	If ug is the group velocity of a relativistic wave packet, show that
           k = (μ∕c2)u, where k is the central wave four-vector of the wave
           packet.


      

      	Find the Doppler shift for a moving source of light from figure 5.5, roughly
      following the procedure used in the text to find the shift for a moving
      observer. (Assume that the source moves to the left at speed U.) Is the
      result the same as for the moving observer, as demanded by the principle of
      relativity?
      

      	Find the Doppler shift for a stationary source of sound (c ≈ 380 m s-1 in
      the earth’s atmosphere). Follow the procedure as for light in section 5.5
      except note that the proper time τ is virtually the same as the
      time T′ in figure 5.3 since speeds are much less than the speed of
      light.

      

      	Suppose you shine a laser with frequency ω and wavenumber k on a mirror
      moving toward you at speed v, as seen in figure 5.6. What are the frequency
      ω′ and wavenumber k′ of the reflected beam? Hint: Find the frequency of
      the incident beam in the reference frame of the mirror. The frequency of
      the reflected beam will be the same as that of the incident beam
      in this frame. Then transform back to the reference frame of the
      laser.
      





[image: PIC]


      
 Figure 5.6: Laser beam reflecting off of a moving mirror.

      _____________________________________
      



      

      	Suppose the moving twin in the twin paradox has a powerful telescope so
      that she can watch her twin brother back on earth during the entire trip.
      Describe how the earthbound twin appears to age to the travelling twin
      compared to her own rate of aging. Use a spacetime diagram to illustrate
      your argument and consider separately the outbound and return legs.
      Remember that light travels at the speed of light! Hint: Does the concept of
      Doppler shift help here?
      

      	Find the velocity of an object with respect to the rest frame if it is
      moving at a velocity of 0.1c with respect to another frame which itself
      is moving in the same direction at 0.1c relative to the rest frame
      using

           
           	the Galilean formula and
           

           	the formula of special relativity.


      Determine the fractional error made in using the Galilean formula.
      


      	Each stage of a high performance 3 stage rocket can accelerate to a speed of
      0.9c from rest. If the rocket starts from rest, how fast does the final stage
      eventually go?
      

      	An interstellar spaceship is going from Earth to Sirius with speed U = 0.8c
      relative to the rest frame. It passes a spaceship which is going from Sirius to
      Earth at a speed of 0.95c in the reference frame of the first spaceship. What
      is the velocity (direction and speed) of the second spaceship in the rest
      frame?





   


Chapter 6
Acceleration and General Relativity

General relativity is Einstein’s extension of special relativity to include gravity.
An important aspect of general relativity is that spacetime is no longer
necessarily flat, but in fact may be curved under the influence of mass.
Understanding curved spacetime is an advanced topic which is not easily
accessible at the level of this text. However, it turns out that some insight
into general relativistic phenomena may be obtained by investigating the
effects of acceleration in the flat (but non-Euclidean) space of special
relativity.

   The central assumption of general relativity is the equivalence principle, which
states that gravity is a force which arises from being in an accelerated reference
frame. To understand this we must first investigate the concept of acceleration.
We then see how this leads to phenomena such as the gravitational red shift,
event horizons, and black holes. We also introduce in a preliminary way the
notions of force and mass.
   
6.1    Acceleration

Imagine that you are in a powerful luxury car stopped at a stoplight. As you sit
there, gravity pushes you into the comfortable leather seat. The light turns green
and you “floor it”. The car accelerates and an additional force pushes you into the
seat back. You round a curve, and yet another force pushes you toward the
outside of the curve. (But the well designed seat and seat belt keep you from
feeling discomfort!)
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 Figure 6.1: Example of linear motion.

____________________________


   



   Let us examine the idea of acceleration more closely. Considering first
acceleration in one dimension, figure 6.1 shows the position of an object as a
function of time, x(t). The velocity is simply the time rate of change of the
position:
   	
   
[image:        dx(t) v(t) =   dt  . ]
	(6.1)




The acceleration is the time rate of change of velocity:
   	
   
[image:        dv(t)   d2x-(t) a(t) =  dt   =   dt2 . ]
	(6.2)




In figure 6.1, only the segment OA has zero velocity. Velocity is increasing in AB,
and the acceleration is positive there. Velocity is constant in BC, which means
that the acceleration is zero. Velocity is decreasing in CD, and the acceleration is
negative. Finally, in DE, the velocity is negative and the acceleration is
zero.


   In two or three dimensions, position x, velocity v, and acceleration a are all
vectors, so that the velocity is
   	
   
[image:        dx(t) v(t) = ------         dt ]
	(6.3)




while the acceleration is
   	
   
[image:        dv(t) a(t) =  -----.         dt ]
	(6.4)




Thus, over some short time interval Δt, the changes in x and v can be
written
   	

   
[image: Δx  = v Δt     Δv  = aΔt. ]
	(6.5)




These are vector equations, so the subtractions implied by the “delta” operations
must be done vectorially. An example where the vector nature of these quantities
is important is motion in a circle at constant speed, which is discussed in the next
section.
   
6.2    Circular Motion
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 Figure 6.2: Two different views of circular motion of an object. The left
panel shows the view from the inertial reference frame at rest with the center
of the circle. The tension in the string is the only force and it causes an
acceleration toward the center of the circle. The right panel shows the view
from an accelerated frame in which the object is at rest. In this frame the
tension in the string balances the centrifugal force, which is the inertial force
arising from being in an accelerated reference frame, leaving zero net force.

____________________________






   Imagine an object constrained by an attached string to move in a
circle at constant speed, as shown in the left panel of figure 6.2. We now
demonstrate that the acceleration of the object is toward the center of
the circle. The acceleration in this special case is called the centripetal
acceleration.

   Figure 6.3 shows the position of the object at two times spaced by the time
interval Δt. The position vector of the object relative to the center of the circle
rotates through an angle Δθ during this interval, so the angular rate of revolution
of the object about the center is ω = Δθ∕Δt. The magnitude of the velocity of the
object is v, so the object moves a distance vΔt during the time interval. To
the extent that this distance is small compared to the radius r of the
circle, the angle Δθ = vΔt∕r. Solving for v and using ω = Δθ∕Δt, we see
that
   	
   
[image: v = ωr   (circular motion ). ]
	(6.6)





   The direction of the velocity vector changes over this interval, even though the
magnitude v stays the same. Figure 6.3 shows that this change in direction implies
an acceleration a which is directed toward the center of the circle, as noted above.
The magnitude of the vectoral change in velocity in the time interval Δt is aΔt.
Since the angle between the initial and final velocities is the same as the
angle Δθ between the initial and final radius vectors, we see from the
geometry of the triangle in figure 6.3 that aΔt∕v = Δθ. Solving for a results
in
   	

   
[image: a = ωv   (circular motion ). ]
	(6.7)
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 Figure 6.3: Definition sketch for computing centripetal acceleration.

____________________________


   



   Combining equations (6.6) and (6.7) yields the equation for centripetal
acceleration:
   	
   
[image: a = ω2r =  v2∕r  (centripetal acceleration ). ]
	(6.8)




The second form is obtained by eliminating ω from the first form using equation
(6.6).
   
6.3    Acceleration in Special Relativity
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 Figure 6.4: World line of the origin of an accelerated reference frame.
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   As noted above, acceleration is just the time rate of change of velocity. We
use the above results to determine how acceleration transforms from one
reference frame to another. Figure 6.4 shows the world line of an accelerated
reference frame, with a time-varying velocity U(t) relative to the unprimed
inertial rest frame. Defining ΔU = U(T) - U(0) as the change in the
velocity of the accelerated frame (relative to the unprimed frame) between
events A and C, we can relate this to the change of velocity, ΔU′, of the
accelerated frame relative to an inertial frame moving with the initial velocity,
U(0). Applying the equation for the relativistic addition of velocities, we
find
   	
   
[image:                         U (0) + ΔU ′ U(T ) = U(0) + ΔU  =  ------------′--2.                       1 + U (0 )ΔU   ∕c ]
	(6.9)





   We now note that the mean acceleration of the reference frame between events
A and C in the rest frame is just a = ΔU∕T, whereas the mean acceleration in the
primed frame between the same two events is a′ = ΔU′∕T′. From equation (6.9)
we find that
   	
   
[image:        ΔU  ′[1 - U (0 )2∕c2] ΔU   = -------------′--2-,         1 + U (0)ΔU  ∕c ]
	(6.10)




and the acceleration of the primed reference frame as it appears in the unprimed
frame is
   	
   
[image:     ΔU     ΔU  ′[1 - U (0)2∕c2] a = ----=  -------------------.      T     T [1 + U (0)ΔU ′∕c2] ]
	(6.11)





   Since we are interested in the instantaneous rather than the average
acceleration, we let T become small. This has three consequences. First, ΔU
and ΔU′ become small, which means that the term U(0)ΔU′∕c2 in the
denominator of equation (6.11) can be ignored compared to 1. This means
that
   	
   
[image:         ′         2  2 a ≈  ΔU--[1---U-(0)-∕c-],              T  ]
	(6.12)




with the approximation becoming exact as T → 0. Second, the “triangle” with the
curved side in figure 6.4 becomes a true triangle, with the result that
T′ = T[1 - U(0)2∕c2]1∕2. The acceleration of the primed frame with respect to an
inertial frame moving at speed U(0) can therefore be written
   	
   
[image:   ′  ΔU  ′          ΔU ′ a  = ---′-=  -----------2--21∕2.       T      T [1 - U (0) ∕c ] ]
	(6.13)




Third, we can replace U(0) with U, since the velocity of the accelerated frame
doesn’t change very much over a short time interval.

   Dividing equation (6.12) by equation (6.13) results in a relationship between
the two accelerations:
   	
   
[image: a = a′(1 - U2∕c2)3∕2, ]
	(6.14)




which shows that the acceleration of a rapidly moving object, a, as observed
from the rest frame, is less than its acceleration relative to an inertial

reference frame in which the object is nearly stationary, a′, by the factor
(1 - U2∕c2)3∕2. We call this latter acceleration the intrinsic acceleration. This
difference in observed acceleration between the two inertial reference frames is
purely the result of the geometry of spacetime, but it has interesting
consequences.

   Identifying a with dU∕dt, we can integrate the acceleration equation assuming
that the intrinsic acceleration a′ is constant and that the velocity U = 0 at time
t = 0. We get the following result (verify this by differentiating with respect to
time):
   	
   
[image: a′t = ------U-------,       (1 - U 2∕c2)1∕2 ]
	(6.15)




which may be solved for U∕c:
   	
   
[image:            ′ U-=  -----a-t∕c-----. c    [1 + (a′t∕c)2]1∕2 ]
	(6.16)




This is plotted in figure 6.5. Classically, the velocity U would reach the speed of

light when a′t∕c = 1. However, as figure 6.5 shows, the rate at which the velocity
increases with time slows as the object moves faster, such that U approaches c
asymptotically, but never reaches it.
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 Figure 6.5: Velocity divided by the speed of light as a function of the product
of the time and the (constant) acceleration divided by the speed of light.

____________________________


   



   The results for this section are valid only for acceleration components in the
direction of motion. The components perpendicular to this direction behave
differently and are treated in more advanced texts.
   
6.4    Acceleration, Force, and Mass

We have a good intuitive feel for the concepts of force and mass because they are
very much a part of our everyday experience. We think of force as how hard we
push on something. Mass is the resistance of an object to acceleration if it is
otherwise free to move. Thus, pushing on a bicycle on a smooth, level road causes
it to accelerate more readily than pushing on a car. We say that the car has
greater mass. We can summarize this relationship with Newton’s second
law
   	
   
[image: F =  ma ]
	(6.17)




where F is the total force on an object, m is its mass, and a is the acceleration
resulting from the force.

   Three provisos apply to equation (6.17). First, it only makes sense in
unmodified form when the velocity of the object is much less than the speed of
light. For relativistic velocities it is best to write this equation in a slightly
different form which we introduce later. Second, the force must be the total force,
including all frictional and other incidental forces which might otherwise be
neglected by an uncritical observer. Third, it only works in a reference frame
which itself is unaccelerated. We deal below with accelerated reference
frames.



   
6.5    Accelerated Reference Frames

Referring back to the forces being felt by the occupant of a car, it is clear that the
forces associated with accelerations are directed opposite the accelerations and
proportional to their magnitudes. For instance, when accelerating away from a
stoplight, the acceleration is forward and the perceived force is backward.
When turning a corner, the acceleration is toward the corner while the
perceived force is away from the corner. Such forces are called inertial
forces.

   The origin of these forces can be understood by determining how acceleration
changes when one observes it from a reference frame which is itself accelerated.
Suppose that the primed reference frame is accelerating to the right with
acceleration A relative to the unprimed frame. The position x′ in the
primed frame can be related to the position x in the unprimed frame
by
   	
   
[image:       ′ x =  x + X, ]
	(6.18)




where X is the position of the origin of the primed frame in the unprimed frame.
Taking the second time derivative, we see that
   	

   
[image:      ′ a = a + A, ]
	(6.19)




where a = d2x∕dt2 is the acceleration in the unprimed frame and a′ = d2x′∕dt2 is
the acceleration according to an observer in the primed frame.

   We now substitute this into equation (6.17) and move the term involving A to
the left side:
   	
   
[image: F  - mA  = ma  ′. ]
	(6.20)




This shows that Newton’s second law represented by equation (6.17) is not valid
in an accelerated reference frame, because the total force F and the acceleration
a′ in this frame don’t balance as they do in the unaccelerated frame; the
additional term -mA messes up this balance.

   We can fix this problem by considering -mA to be a type of force, in which
case we can include it as a part of the total force F. This is the inertial force
which we mentioned above. Thus, to summarize, we can make Newton’s second
law work when objects are observed from accelerated reference frames if we
include as part of the total force an inertial force which is equal to -mA, A being
the acceleration of the reference frame of the observer and m the mass of the
object being observed.


   The right panel of figure 6.2 shows the inertial force observed in the reference
frame of an object moving in circular motion at constant speed. In the case of
circular motion the inertial force is called the centrifugal force. It points away
from the center of the circle and just balances the tension in the string.
This makes the total force on the object zero in its own reference frame,
which is necessary since the object cannot move (or accelerate) in this
frame.

   General relativity says that gravity is nothing more than an inertial force. This
was called the equivalence principle by Einstein. Since the gravitational force on
the Earth points downward, it follows that we must be constantly accelerating
upward as we stand on the surface of the Earth! The obvious problem with this
interpretation of gravity is that we don’t appear to be moving away from the
center of the Earth, which would seem to be a natural consequence of
such an acceleration. However, relativity has a surprise in store for us
here.

   It follows from the above considerations that something can be learned about
general relativity by examining the properties of accelerated reference frames. In
particular, we can gain insight into the above apparent paradox. Equation (6.16)
shows that the velocity of an object undergoing constant intrinsic acceleration a
(note that we have dropped the “prime” from a to simplify the notation)
is
   	
   
[image:     dx           at v = --- = -----------21∕2,      dt   [1 + (at∕c) ] ]
	(6.21)




where t is the time and c is the speed of light. A function x(t) which satisfies
equation (6.21) is
   	

   
[image:          2             2 1∕2 x(t) = (c ∕a)[1 + (at∕c) ] . ]
	(6.22)




(Verify this by differentiating it.) The interval OB in figure 6.6 is of length
x(0) = c2∕A.
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 Figure 6.6: Spacetime diagram showing the world line of the origin of a
reference frame undergoing constant acceleration.

____________________________


   



   The slanted line OA is a line of simultaneity associated with the unaccelerated
world line tangent to the accelerated world line at point A. This line of
simultaneity goes through the origin, as is shown in figure 6.6. To demonstrate
this, multiply equations (6.21) and (6.22) together and solve for v∕c:
   	
   
[image: v ∕c = ct∕x. ]
	(6.23)




From figure 6.6 we see that ct∕x is the slope of the line OA, where (x, ct) are the
coordinates of event A. Equation (6.23) shows that this line is indeed the desired
line of simultaneity, since its slope is the inverse of the slope of the world line, c∕v.
Since there is nothing special about the event A, we infer that all lines of
simultaneity associated with the accelerated world line pass through the
origin.

   We now inquire about the length of the invariant interval OA in figure 6.6.
Recalling that I2 = x2 -c2t2 and using equation (6.22), we find that the length of
OA is
   	
   
[image:        2   2 2 1∕2     4  2 1∕2    2 I = (x  - c t )   = (c ∕a )   =  c∕a,  ]
	(6.24)




which is the same as the length of the interval OB. By extension, all events on the
accelerated world line are the same invariant interval from the origin. Recalling
that the interval along a line of simultaneity is the distance in the associated
reference frame, we reach the astonishing conclusion that even though the object
associated with the curved world line in figure 6.6 is accelerating away from the
origin, it always remains the same distance (in its own frame) from the
origin.

   The analogy between this problem and the apparent paradox in which one
remains a fixed distance from the center of the earth while accelerating away from
it is not perfect. In particular, the center of the earth as it exists is not analogous
to point O in figure 6.6 as it is not an event horizon. The analogy would be closer
if the earth’s entire mass were compressed into a very small volume. In this case
the earth would be a black hole with an event horizon corresponding to the event
horizon in figure 6.6.
   
6.6    Gravitational Red Shift
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 Figure 6.7: Spacetime diagram for explaining the gravitational red shift.
Why is the interval AC equal to the interval BC? L is the length of the
invariant interval OB.

____________________________






   Light emitted at a lower level in a gravitational field has its frequency reduced
as it travels to a higher level. This phenomenon is called the gravitational red
shift. Figure 6.7 shows why this happens. Since experiencing a gravitational
force is equivalent to being in an accelerated reference frame, we can use
the tools of special relativity to view the process of light emission and
absorption from the point of view of the unaccelerated or inertial frame. In this
reference frame the observer of the light is accelerating to the right, as
indicated by the curved world line in figure 6.7, which is equivalent to
a gravitational force to the left. The light is emitted at point A with
frequency ω by a source which is stationary at this instant. At this instant the
observer is also stationary in this frame. However, by the time the light
gets to the observer, he or she has a velocity to the right which means
that the observer measures a Doppler shifted frequency ω′ for the light.
Since the observer is moving away from the source, ω′ < ω, as indicated
above.

   The relativistic Doppler shift is given by
   	
   
[image:  ′   (         )1∕2 ω--    1---U-∕c ω  =   1 + U ∕c    , ]
	(6.25)




so we need to compute U∕c. The line of simultaneity for the observer at point B
goes through the origin, and is thus given by line segment OB in figure 6.7.
The slope of this line is U∕c, where U is the velocity of the observer at
point B. From the figure we see that this slope is also given by the ratio
X′∕X. Equating these, eliminating X in favor of L = (X2 - X′2)1∕2,
which is the actual invariant distance of the observer from the origin, and
substituting into equation (6.25) results in our gravitational red shift

formula:
   	
   
[image:  ′   (        ′)1 ∕2   (   2     ′21∕2     ′)1∕2 ω--=   X----X--    =   (L--+-X---)-----X--    . ω      X +  X ′        (L2 + X ′2)1∕2 + X ′ ]
	(6.26)




If X′ = 0, then there is no redshift, because the source is collocated with the
observer. On the other hand, if the source is located at the origin, so X′ = X, the
Doppler shifted frequency is zero. In addition, the light never gets to the observer,
since the world line is asymptotic to the light world line passing through the
origin. If the source is at a higher level in the gravitational field than the observer,
so that X′ < 0, then the frequency is shifted to a higher value, i. e., it becomes a
“blue shift”.
   
6.7    Event Horizons

The 45∘ diagonal line passing through the origin in figure 6.6 is called
the event horizon for the accelerated observer in this figure. Notice that
light from the “twilight zone” above and to the left of the event horizon
cannot reach the accelerated observer. However, the reverse is not true
— a light signal emitted to the left by the observer can cross the event
horizon into the “twilight zone”. The event horizon thus has a peculiar
one-way character — it passes signals from right to left, but not from left to
right.


   
6.8    Problems



      

      	An object moves as described in figure 6.8, which shows its position x as a
      function of time t.
           
           	Is the velocity positive, negative, or zero at each of the points A,
           B, C, D, E, and F?
           

           	Is the acceleration positive, negative, or zero at each of the points
           A, B, C, D, E, and F?


      





[image: PIC]


      
 Figure 6.8: Position of an object as a function of time.

      _____________________________________
      



      

      	An object is moving counterclockwise at constant speed around the circle
      shown in figure 6.9 due to the fact that it is attached by a string to the
      center of the circle at point O.
           
           	Sketch the object’s velocity vectors at points A, B, and C.

           

           	Sketch the object’s acceleration vectors at points A, B, and C.
           

           	If the string breaks at point A, sketch the subsequent trajectory
           followed by the object.
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 Figure 6.9: Object in circular motion.

      _____________________________________
      



      

      	How fast are you going after accelerating from rest with intrinsic
      acceleration a = 10 m s-2 for
           
           	10 y?
           

           	100000 y?


      Express your answer as the speed of light minus your actual speed. Hint:
      You may have a numerical problem on the second part, which you should
      try to resolve using the approximation (1 + ϵ)x ≈ 1 + xϵ, which is valid for
      |ϵ|≪ 1.
      


      	An object’s world line is defined by x(t) = (d2 + c2t2)1∕2 where d is a
      constant and c is the speed of light.

           
           	Find the object’s velocity as a function of time.
           

           	Using the above result, find the slope of the tangent to the world
           line as a function of time.
           

           	Find where the line of simultaneity corresponding to each tangent
           world line crosses the x axis.


      

      	A car accelerates in the positive x direction at 3 m s-2.
           
           	What is the net force on a 100 kg man in the car as viewed from
           an inertial reference frame?
           

           	What is the inertial force experienced by this man in the reference
           frame of the car?
           

           	What  is  the  net  force  experienced  by  the  man  in  the  car’s
           (accelerated) reference frame?


      

      	A person is sitting in a comfortable chair in her home in Bogotá, Columbia,
      which is essentially on the equator.
           
           	What would the rotational period of the earth have to be to make
           this person weightless?
           

           	What is her acceleration according to the equivalence principle in
           this situation?


      

      	At time t = 0 a Zork (a creature from the planet Zorkheim) accelerating to
      the right at a = 103 m s-2 in a spaceship accidently drops its stopwatch
      from the spaceship just when its velocity is zero.

           
           	Describe qualitatively how the hands of the watch appear to move
           to the Zork as it observes the watch through a powerful telescope.
           

           	After a very long time what does the watch read?


      Hint: Draw a spacetime diagram with the world lines of the spaceship and
      the watch. Then send light rays from the watch to the spaceship.
      


      	Using a spacetime diagram, show why signals from events on the hidden side
      of the event horizon from an accelerating spaceship cannot reach the
      spaceship.





   


Chapter 7
Matter Waves

We begin our study of quantum mechanics by discussing the diffraction undergone
by X-rays and electrons when they interact with a crystal. X-rays are a form of
electromagnetic radiation with wavelengths comparable to the distances between
atoms. Scattering from atoms in a regular crystalline structure results in an
interference pattern which is in many ways similar to the pattern from a
diffraction grating. We first develop Bragg’s law for diffraction of X-rays from a
crystal. Two practical techniques for doing X-ray diffraction are then
described.

   It turns out that electrons have wave-like properties and also undergo Bragg
diffraction by crystals. Bragg diffraction thus provides a crucial bridge between
the worlds of waves and particles. With this bridge we introduce the classical
ideas of momentum and energy by relating them to the wave vector and frequency
of a wave. The properties of waves also give rise to the Heisenberg uncertainty
principle.

   Table 7.1 shows a table of the Nobel prizes associated with the ideas presented
in this chapter. This gives us a feel for the chronology of these discoveries and
indicates how important they were to the development of physics in the early 20th
century.
   


   






 	Year	Recipient                  	Contribution                            

	    	                   	                            
	1901 	W. K. Röntgen 	Discovery of X-rays

	1906 	J. J. Thomson            	Discovery of electron                 

	1914 	M. von Laue              	X-ray diffraction in crystals        

	1915 	W. and L. Bragg        	X-ray analysis of crystal structure

	1918 	M. Planck                 	Energy quantization                  

	1921 	A. Einstein                	Photoelectric effect                    

	1922 	N. Bohr                    	Structure of atoms                    

	1929 	L.-V. de Broglie          	Wave nature of electrons            

	1932 	W. Heisenberg           	Quantum mechanics                  

	1933 	Schrödinger and Dirac 	Atomic theory                          

	1937 	Davisson and Thomson	Electron diffraction in crystals     





 Table 7.1: Selected Nobel prize winners, year of award, and contribution.

____________________________

   



   

   7.1    Bragg’s Law
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 Figure 7.1: Schematic diagram for determining Bragg’s law.

____________________________






   Figure 7.1 schematically illustrates interference between waves scattering from
two adjacent rows of atoms in a crystal. The net effect of scattering from a single
row is equivalent to partial reflection from a mirror imagined to be aligned with
the row. Thus, the angle of “reflection” equals the angle of incidence for each row.
Interference then occurs between the beams reflecting off different rows of atoms
in the crystal.

   For the two adjacent rows shown in figure 7.1, the path difference between
beams is 2h = 2d sin θ. For constructive interference this must be an integer
number of wavelengths, mλ, where the integer m is called the order of
interference. The result is Bragg’s law of diffraction:
   	
   
[image: m λ =  2dsinθ,  m  = 1,2,3 ...  (Bragg ’s law). ]
	(7.1)





   If only two rows are involved, the transition from constructive to destructive
interference as θ changes is gradual. However, if interference from many
rows occurs, then the constructive interference peaks become very sharp
with mostly destructive interference in between. This sharpening of the
peaks as the number of rows increases is very similar to the sharpening of
the diffraction peaks from a diffraction grating as the number of slits
increases.
   
7.2    X-Ray Diffraction Techniques

Two types of targets are used in Bragg diffraction experiments: single crystals and
powder targets.



   
7.2.1    Single Crystal
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 Figure 7.2: Setup for single crystal Bragg diffraction.

____________________________






   In a single crystal setup, an X-ray detector is mounted as shown in figure 7.2.
A mechanical device keeps the detector oriented so that the angle of incidence
equals the angle of reflection for the desired crystal plane. Peaks in the X-ray
detection rate are sought as the angle θ is varied.

   The advantage of this type of apparatus is that diffraction peaks from only the
selected crystal plane are observed.
   
7.2.2    Powder Target
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 Figure 7.3: Setup for powder target Bragg diffraction.

____________________________






   The powder in a powder target is really a conglomeration of many tiny
crystals randomly oriented. Thus, for each possible Bragg diffraction angle
there are crystals oriented correctly for Bragg diffraction to take place.
The detector is usually a photographic plate or an equivalent electronic
device as illustrated in figure 7.3. For each Bragg diffraction angle one
sees a ring on the plate concentric with the axis of the incident X-ray
beam.

   The advantage of this type of system is that no knowledge is needed of the
crystal plane orientations. Furthermore, a single large crystal is not required.
However, all possible Bragg scattering angles are seen at once, which can lead to
confusion in the interpretation of the results.
   
7.3    Meaning of Quantum Wave Function

Bragg diffraction illustrates the most difficult thing to understand about quantum
mechanics, namely that particles can have wave-like properties and waves can
have particle-like properties.

   The variation of X-ray intensity with angle seen in a Bragg diffraction
apparatus is very difficult to explain in any terms other than wave interference.
Yet, X-rays are typically detected by a device such as a Geiger counter
which produces a pulse of electricity for each X-ray particle, or photon,
which hits it. Thus, X-rays sometimes act like particles and sometimes like
waves.

   Light isn’t alone in having both particle and wave properties. Davisson and
Germer and later G. P. Thomson (son of J. J. Thomson, the discoverer of the
electron) showed that electrons also can act like waves. They did this by
demonstrating that electrons undergo Bragg diffraction in crystals, much as
X-rays do.

   Most physicists (including Albert Einstein) have found quantum mechanics to
be extremely bizarre, so if you feel the same way, you are in good company!
However, there is a useful interpretation of quantum mechanics which at least
allows us to get on with using it to solve problems, even though it may not satisfy
our intuitive reservations about the theory.

   The displacement of the matter wave associated with a particle is usually
called the wave function, ψ. It is not at all clear what ψ is a displacement of,
but its use is straightforward. The absolute square of the wave function,

|ψ(x,t)|2, is proportional to the probability of finding the associated particle
at position x and time t. The absolute square is taken because under
many circumstances the wave function is actually complex, i. e., it has
both real and imaginary parts. The reasons for this will be discussed
later.

   Due to the interpretation of the wave function, quantum mechanics is a
probabilistic theory. It does not tell us with certainty what happens to a
particular particle. Instead, it tells us the probability for detecting the particle in
any given location. If many experiments are done, with one particle per
experiment, the numbers of experiments with particles being detected in the
various possible locations are in proportion to the quantum mechanical
probabilities.


   
7.4    Sense and Nonsense in Quantum
Mechanics

The essential mystery of quantum mechanics becomes clearer when discussed in
the conceptually simpler context of two slit interference. If light and electrons can
have both particle and wave properties, then one might ask through which of the
two slits the particle passed. However, in physics a question simply doesn’t make
sense if it cannot be answered by experiment.

   One can indeed perform an experiment to determine which slit the X-ray
photon or electron passes through in the two slit experiment. However, by the
very act of making this measurement, the form of the associated wave is altered.
In particular, since the absolute square of the wave displacement represents the
probability of finding the particle, once the particle has definitely been found
passing through one or the other of the slits, the wave function collapses into a
very small wave packet located at the observed position of the particle. Thus,
the wave displacement becomes zero at the slit it didn’t pass through.
However, the interference pattern results from the superposition of waves
emanating from two slits. If no wave comes from one of the slits (because
the wave displacement is zero there), then there can be no interference
pattern!

   We can now make the inverse argument. If there is an interference pattern,
then we know that the wave displacement is non-zero at both slits. From the
probability interpretation of the wave displacement, we conclude that we cannot

say, even in principle, through which slit the particle passed. It is not just that we
don’t know the answer to this question; there is simply no experiment which
can give us an answer without destroying the interference pattern. In
other words, the question “Which slit did the particle pass through?” is a
nonsensical question in the case where an interference pattern is actually
produced.

   The American physicist Richard Feynman noticed that the above behavior can
be interpreted as violating the normal laws of probability. These laws
say that the probability of an event is the sum of the probabilities of
alternate independent ways for that event to occur. For instance, the
probability for a particle to reach point A on the detection screen of a
two slit setup is just the probability P1 for the particle to reach point
A after going through slit 1, plus the probability P2 for the particle to
reach point A after going through slit 2. Thus, if P1 = P2 = 0.1, then the
probability for the particle to reach point A irrespective of which slit
it went through should be Ptotal = P1 + P2 = 0.2. However, if point A
happens to be a point of destructive interference, then we know that
Ptotal = 0.

   Feynman proposed that the above rule stating that alternate independent
probabilities add, is simply incorrect. In its place Feynman asserted that
probability amplitudes add instead, where the probability amplitude in this case is
just the wave function associated with the particle. The total probability for a
process is obtained by adding the alternate probability amplitudes together and
taking the absolute square of the sum.

   Feynman’s view is a particularly compact expression of the so-called
Copenhagen interpretation of quantum mechanics which evolved from the ideas of
Niels Bohr, Werner Heisenberg, Max Born, and others in the 1920s. It dispenses
with the wave-particle duality and other philosophical baggage by saying
“Particles are real in that we can observe them, but the only theory we have is
about probability amplitudes for particles.” This interpretation of quantum
mechanics may be weird, but it appears to be self-consistent and in agreement
with experiment.


   
7.5    Mass, Momentum, and Energy

In this section we relate the classical ideas of mass, momentum and energy to

what we have done so far. Historically, these connections were first made by Max
Planck and Louis de Broglie with help from Albert Einstein. Bragg diffraction of
electrons is invoked as an experimental test of the Planck and de Broglie
relations.

   Technically, we don’t need the ideas of mass, momentum, and energy to
do physics – the notions of wavenumber, frequency, and group velocity
are sufficient to describe and explain all observed phenomena. However,
mass, momentum, and energy are so firmly embedded in physics that
one couldn’t talk to other physicists without an understanding of these
quantities!


   
7.5.1    Planck, Einstein, and de Broglie

Max Planck was the first to develop a theory explaining the energy density of
electromagnetic radiation in a box at a fixed temperature. Albert Einstein
extended Planck’s ideas by postulating that the energy of electromagnetic
radiation is quantized into chunks called photons. The energy E of a photon is
related to the frequency of the electromagnetic radiation by the equation
   	
   
[image: E =  hf = ¯hω    (Planck-Einstein relation), ]
	(7.2)




where f is the rotational frequency of the associated electromagnetic wave and ω
is its angular frequency. The constant h = 6.63 × 10-34 kg m2 s-1 is called
Planck’s constant. The related constant ℏ = h∕2π = 1.06 × 10-34 kg m2 s-1 is also
referred to as Planck’s constant, but to avoid confusion with the original constant,
we will generally refer to it as “h bar”.


   Notice that a new physical dimension has appeared, namely mass, with the
unit kilogram, abbreviated “kg”. The physical meaning of mass is much like our
intuitive understanding of the concept, i. e., as a measure of the resistance of an
object to its velocity being changed. The precise scientific meaning will emerge
shortly.

   Einstein showed that Planck’s idea could be used to explain the emission of
electrons which occurs when light impinges on the surface of a metal. This
emission, which is called the photoelectric effect, can only occur when electrons
are supplied with a certain minimum energy EB required to break them loose
from the metal. Experiment shows that this emission occurs only when the
frequency of the light exceeds a certain minimum value. This value turns out to
equal ωmin = EB∕ℏ, which suggests that electrons gain energy by absorbing
a single photon. If the photon energy, ℏω, exceeds EB, then electrons
are emitted, otherwise they are not. It is much more difficult to explain
the photoelectric effect from the classical theory of light. The value of
EB, called the binding energy or work function, is different for different
metals.

   Louis de Broglie proposed that Planck’s energy-frequency relationship be
extended to all kinds of particles. In addition he hypothesized that the momentum
Π of the particle and the wave vector k of the corresponding wave were similarly
related:
   	
   
[image: Π  = ¯hk    (de Broglie relation). ]
	(7.3)




Note that this can also be written in scalar form in terms of the wavelength as
Π = h∕λ. (We use Π rather than the more common p for momentum, because as
we shall see, there are two different kinds of momentum, one related to the
wavenumber, the other related to the velocity of a particle. In many cases they

are equal, but there are certain important situations in which they are
not.)

   De Broglie’s hypothesis was inspired by the fact that wave frequency and
wavenumber are components of the same four-vector according to the theory of
relativity, and are therefore closely related to each other. Thus, if the energy of a
particle is related to the frequency of the corresponding wave, then there
ought to be some similar quantity which is correspondingly related to
the wavenumber. It turns out that the momentum is the appropriate
quantity. The physical meaning of momentum will become clear as we
proceed.

   We will also find that the rest frequency, μ, of a particle is related to its mass,
m:
   	
   
[image:            2 Erest ≡ mc  =  ¯hμ. ]
	(7.4)




The quantity Erest is called the rest energy of the particle.

   From our perspective, energy, momentum, and rest energy are just scaled
versions of frequency, wave vector, and rest frequency, with a scaling factor ℏ. We
can therefore define a four-momentum as a scaled version of the wave
four-vector:
   	
   
[image: Π-=  ¯hk. ]
	(7.5)




The spacelike component of Π is just Π, while the timelike part is E∕c.

   Planck, Einstein, and de Broglie had extensive backgrounds in classical
mechanics, in which the concepts of energy, momentum, and mass have precise
meaning. In this text we do not presuppose such a background. Perhaps the best
strategy at this point is to think of these quantities as scaled versions of
frequency, wavenumber, and rest frequency, where the scale factor is ℏ. The
significance of these quantities to classical mechanics will emerge bit by
bit.


   
7.5.2    Wave and Particle Quantities

Let us now recapitulate what we know about relativistic waves, and how this
knowledge translates into knowledge about the mass, energy, and momentum of
particles. In the following equations, the form on the left is expressed in wave
terms, i. e., in terms of frequency, wavenumber, and rest frequency. The form on
the right is the identical equation expressed in terms of energy, momentum, and
mass. Since the latter variables are just scaled forms of the former, the two forms
of each equation are equivalent.

   We begin with the dispersion relation for relativistic waves:
   	
   
[image:  2    2 2    2      2    2 2     2 4 ω  = k c  + μ     E  =  Π c  + m  c . ]
	(7.6)





Calculation of the group velocity, ug = dω∕dk, from the dispersion relation
yields
   	
   
[image:       2            2 ug = c-k-   ug =  c-Π-.       ω            E ]
	(7.7)




These two sets of equations represent what we know about relativistic waves, and
what this knowledge tells us about the relationships between the mass, energy,
and momentum of relativistic particles. When in doubt, refer back to
these equations, as they work in all cases, including for particles with zero
mass!

   It is useful to turn equations (7.6) and (7.7) around so as to express the
frequency as a function of rest frequency and group velocity,
   	
   
[image:      ------μ-------        -----mc2------ ω =  (1 - u2∕c2)1∕2    E  = (1 - u2∕c2)1∕2,            g                     g ]
	(7.8)




and the wavenumber as a similar function of these quantities:

   	
   
[image:     ---μug-∕c2----        -----mug------ k = (1 - u2∕c2)1∕2    Π  = (1 - u2∕c2)1∕2.           g                     g ]
	(7.9)




Note that equations (7.8) and (7.9) work only for particles with non-zero
mass! For zero mass particles both the numerators and denominators of
equations (7.8) and (7.9) are zero, making these equations undefined,
and you need to use equations (7.6) and (7.7) with m = 0 and μ = 0
instead.

   The quantity ω - μ indicates how much the frequency exceeds the rest
frequency. Notice that if ω = μ, then from equation (7.6) k = 0. Thus,
positive values of ωk ≡ ω - μ indicate |k| > 0, which means that the
particle is moving according to equation (7.7). Let us call ωk the kinetic
frequency:
   	
   
[image:      [                  ]           [                 ]       -------1------                 ------1-------        2 ωk =  (1 - u2∕c2)1∕2 - 1 μ    K  =   (1 - u2∕c2)1∕2 - 1  mc  .             g                              g ]
	(7.10)





We call K the kinetic energy for similar reasons. Again, equation (7.10) only
works for particles with non-zero mass. For zero mass particles the kinetic energy
equals the total energy.

   Note that the results of this section are valid only for free particles, i. e.,
particles to which no force is applied. Force in classical and quantum mechanics is
treated in the next chapter.


   
7.5.3    Non-Relativistic Limits

When the mass is non-zero and the group velocity is much less than the speed of
light, it is useful to compute approximate forms of the above equations valid in
this limit. Using the approximation (1 + ϵ)x ≈ 1 + xϵ, we find that the dispersion
relation becomes
   	
   
[image:           2 2                 2 ω = μ +  k-c--   E = mc2  + Π---,          2 μ                2m ]
	(7.11)




and the group velocity equation takes the approximate form
   	
   
[image:      c2k          Π ug = ----   ug =  --.       μ           m ]
	(7.12)




The non-relativistic limits for equations (7.8) and (7.9) become
   	
   
[image:          μu2g                mu2g ω = μ +  --2-   E  = mc2 +  -----          2c                  2 ]
	(7.13)




and
   	
   
[image:           2 k = μug ∕c    Π  = mug, ]
	(7.14)




while the approximate kinetic energy equation is
   	

   
[image:       μu2          mu2 ωk =  --2g   K  =  ---g.       2c            2 ]
	(7.15)





   Just a reminder — the equations in this section are not valid for massless
particles!


   
7.5.4    An Experimental Test

How can we test the above predictions against experiment? The key point is to be
able to relate the wave aspects to the particle aspects of a quantum mechanical
wave-particle. Equation (7.9), or equation (7.14) in the non-relativistic case,
relates a particle’s wavenumber k to its velocity ug. Both of these quantities can
be measured in a Bragg’s law experiment with electrons. In this experiment
electrons are fired at a crystal with known atomic dimensions at a known speed,
which we identify with the group velocity ug. The Bragg angle which yields
constructive interference can be used to calculate the wavelength of the
corresponding electron wave, and hence the wavenumber and momentum. If
the momentum is plotted against group velocity in the non-relativistic
case, a straight line should be found, the slope of which is the particle’s
mass. In the fully relativistic case one needs to plot momentum versus
ug∕(1 -ug2∕c2)1∕2. Again, a straight line indicates agreement with the theory and
the slope of the line is the particle’s mass. This particular experiment
is difficult to do, but the corresponding theories verify in many other
experiments.



   
7.6    Heisenberg Uncertainty Principle

Classically, we consider the location of a particle to be a knowable piece of
information. In quantum mechanics the position of a particle is well known if the
wave packet representing it is small in size. However, quantum mechanics imposes
a price on accurately knowing the position of a particle in terms of the future
predictability of its position. This is because a small wave packet, which
corresponds to accurate knowledge of the corresponding particle’s position,
implies the superposition of plane waves corresponding to a broad distribution of
wavenumbers. This translates into a large uncertainty in the wavenumber, and
hence the momentum of the particle. In contrast, a broad wave packet
corresponds to a narrower distribution of wavenumbers, and correspondingly less
uncertainty in the momentum.

   Referring back to chapters 1 and 2, recall that both the longitudinal (along the
direction of motion) and transverse (normal to the direction of motion)
dimensions of a wave packet, ΔxL and ΔxT , can be related to the spread of
longitudinal and transverse wavenumbers, ΔkL and ΔkT :
   	
   
[image: ΔkL ΔxL  ≈  1, ]
	(7.16)




   	
   
[image: ΔkT  ΔxT  ≈ 1. ]
	(7.17)




We have omitted numerical constants which are order unity in these approximate
relations so as to show their essential similarity.

   The above equations can be interpreted in the following way. Since the
absolute square of the wave function represents the probability of finding a
particle, ΔxL and ΔxT  represent the uncertainty in the particle’s position.
Similarly, ΔkL and ΔkT  represent the uncertainty in the particle’s longitudinal
and transverse wave vector components. This latter uncertainty leads to
uncertainty in the particle’s future motion — larger or smaller longitudinal k
results respectively in larger or smaller particle speed, while uncertainty in the
transverse wavenumber results in uncertainty in the particle’s direction of motion.
Thus uncertainties in any component of k result in uncertainties in the
corresponding component of the particle’s velocity, and hence in its future
position.

   The equations (7.16) and (7.17) show that uncertainty in the present and
future positions of a particle are complimentary. If the present position is
accurately known due to the small size of the associated wave packet, then the
future position is not very predictable, because the wave packet disperses rapidly.
On the other hand, a broad-scale initial wave packet means that the present
position is poorly known, but the uncertainty in position, poor as it is, doesn’t
rapidly increase with time, since the wave packet has a small uncertainty in wave
vector and thus disperses slowly. This is a statement of the Heisenberg uncertainty
principle.

   The uncertainty principle also applies between frequency and time:
   	
   
[image: Δω Δt ≈  1. ]
	(7.18)




This shows up in the beat frequency equation 1∕Tbeat = Δf = Δω∕2π. The beat
period Tbeat may be thought of as the size of a “wave packet in time”. The beat
frequency equation may be rewritten as ΔωTbeat = 2π, which is the same as
equation (7.18) if the factor of 2π is ignored and Tbeat is identified with
Δt.

   The above forms of the uncertainty principle are not relativistically invariant.
A useful invariant form may be obtained by transforming to the coordinate
system in which a particle is stationary. In this reference frame the time t
becomes the proper time τ associated with the particle. Furthermore, the
frequency ω becomes the rest frequency μ. The uncertainty principle thus
becomes
   	
   
[image: Δ μΔ τ ≈ 1 ]
	(7.19)




in this reference frame. However, since Δμ and Δτ are relativistic invariants, this
expression of the uncertainty principle is valid in any reference frame.

   It is more common to express the uncertainty principle in terms of the mass,
momentum, and energy by multiplying equations (7.16) - (7.19) by ℏ. Lumping
the momentum equations, we find
   	

   
[image: Δ Π Δx  ≈ ¯h, ]
	(7.20)





   	
   
[image: ΔE  Δt ≈  ¯h, ]
	(7.21)




and
   	
   
[image: Δ (mc2 )Δ τ ≈ ¯h. ]
	(7.22)






   Classical mechanics is the realm of quantum mechanics in which the
dimensions of the system of interest are much larger than the wavelengths of the
waves corresponding to the particles constituting the system. In this case the
uncertainties induced by the uncertainty principle are unimportant. This
limit is analogous to the geometrical optics limit for light. Thus, we can
say that classical mechanics is the geometrical optics limit of quantum
mechanics.


   
7.7    Problems


      

      	An electron with wavelength λ = 1.2 × 10-10 m undergoes Bragg diffraction
      from a single crystal with atomic plane spacing of d = 2 × 10-10 m.
           
           	Calculate the Bragg angles (all of them!) for which constructive
           interference occurs.
           

           	Calculate the speed of the electron.


      

      	Suppose that electrons impinge on two slits in a plate, resulting in a two slit
      diffraction pattern on a screen on the other side of the plate. The
      probability for an electron to pass through either one of the slits and
      reach point A on the screen is P, assuming that the other slit is
      blocked.
           
           	If  there  are  two  slits  open  and  A  is  a  point  of  constructive
           interference, what is the probability of an electron reaching A?
           Hint: Remember that amplitudes, not probabilities add.

           

           	If  there  are  two  slits  open  and  A  is  a  point  of  destructive
           interference, what is the probability of an electron reaching A?
           

           	If there are two slits open, what is the probability for an electron to
           reach point A according to the conventional rule that probabilities
           add? (This is the result one would expect if, for instance, the
           particles were machine gun bullets and the slits were, say, 5 cm
           apart.)
           

           	If  the  slit  separation  is  very  much  greater  than  the  electron
           wavelength,  how  does  this  affect  the  spacing  of  regions  of
           constructive and destructive interference? Explain how the results
           of parts (a) and (b) become approximately consistent with those
           of part (c) in this case.


      

      	Compute the (angular) rest frequency of an electron and a neutron. (Look
      up their masses.)
      

      	How does the dispersion relation for relativistic waves simplify if the rest
      frequency (and hence the particle mass) is zero? What is the group velocity
      in this case?
      

      	X-rays are photons with frequencies about 2000 times the frequencies of
      ordinary light photons. From this information and what you know about
      light, infer the approximate velocity of electrons which have Bragg
      diffraction properties similar to X-rays. Are the electrons relativistic or
      non-relativistic?
      

      	Electrons with velocity v = 0.6c are diffracted with a 0.2 radian half-angle of
      diffraction when they hit an object. What is the approximate size of
      the object? Hint: Diffraction of a wave by an object of a certain
      size is quite similar to diffraction by a hole in a screen of the same
      size.

      

      	Work out an approximate formula for the kinetic energy of a particle as a
      function of mass m and velocity ug which is valid when ug2 ≪ c2. Hint: Use
      the approximation (1 + ϵ)x ≈ 1 + xϵ, which is valid for |ϵ|≪ 1. As u
g∕c
      becomes larger, how does this approximate formula deviate from the exact
      formula?
      

      	Work out an approximate formula for the momentum of a particle as a
      function of m and ug in the case where ug2 ≪ c2. You may wish to use the
      approximation mentioned in the previous problem.
      

      	If a photon is localized to within a distance Δx, what is the uncertainty in
      the photon energy?
      

      	If an electron is localized to within a distance Δx, what is the uncertainty in
      the electron kinetic energy? Hint: As long as ΔΠ ≪ Π, ΔΠ2 ≈ 2ΠΔΠ. To
      see why, compute dΠ2∕dΠ.
      

      	A grocer dumps some pinto beans onto a scale, estimates their mass as 2 kg,
      and then dumps them off after 5 s. What is the quantum mechanical
      uncertainty in this measurement? Assume this occurs in Quantum World
      where the speed of light is 10 m s-1 (speed of a fast buggy) and Planck’s
      constant ℏ = 1 kg m2 s-1.
      

      	Mary’s physics text (mass 0.3 kg) has to be kept on a leash (length 0.5 m)
      to prevent it from wandering away from her in Quantum World
      (ℏ = 1 kg m2 s-1).
           
           	If the leash suddenly breaks, what is the maximum speed at which
           the book is likely to move away from its initial location?
           

           	In order to reduce this speed, should Mary make the new leash
           shorter or longer than the old one? Explain.



      

      	A proton (mass M = 1.7 × 10-27 kg) is confined to an atomic nucleus of
      diameter D = 2 × 10-15 m.
           
           	What is the uncertainty in the proton’s momentum?
           

           	Roughly what kinetic energy might you expect the proton to have?


      Planck’s constant is ℏ = 1.06 × 10-34 kg m2 s-1. You may use the
      non-relativistic equation for the energy.






   


Chapter 8
Geometrical Optics and Newton’s Laws

The question that motivates us to study physics is “What makes things go?” The
answers we conceive to this question constitute the subject of dynamics.
This is in contrast to the question we have primarily addressed so far,
namely “How do things go?” The latter question is about kinematics.
Extensive preparation in the kinematics of waves and particles in relativistic
spacetime is needed to intelligently address dynamics. This preparation is now
complete.

   In this chapter we outline three different dynamical principles based
respectively on pre-Newtonian, Newtonian, and quantum mechanical thinking. We
first discuss the Newtonian mechanics of conservative forces in one dimension.
Certain ancillary concepts in mechanics such as work and power are introduced at
this stage. We then show that Newtonian and quantum mechanics are consistent
with each other in the realm in which they overlap, i. e., in the geometrical optics
limit of quantum mechanics. For simplicity, this relationship is first developed in
one dimension in the non-relativistic limit. Higher dimensions require the
introduction of partial derivatives, and the relativistic case will be considered
later.
   
8.1    Fundamental Principles of Dynamics

Roughly speaking, there have been three eras of physics, characterized by three
different answers to the question of what makes things go.


   
8.1.1    Pre-Newtonian Dynamics

Aristotle expounded a view of dynamics which agrees closely with our everyday
experience of the world. Objects only move when a force is exerted upon them. As
soon as the force goes away, the object stops moving. The act of pushing a box
across the floor illustrates this principle — the box certainly doesn’t move by
itself!


   
8.1.2    Newtonian Dynamics

In contrast to earthly behavior, the motions of celestial objects seem effortless. No

obvious forces act to keep the planets in motion around the sun. In fact, it
appears that celestial objects simply coast along at constant velocity unless
something acts on them. The Newtonian view of dynamics — objects change their
velocity rather than their position when a force is exerted on them — is expressed
by Newton’s second law:
   	
   
[image: F = ma    (Newton ’s second law ), ]
	(8.1)




where F is the force exerted on a body, m is its mass, and a is its acceleration.
Newton’s first law, which states that an object remains at rest or in uniform
motion unless a force acts on it, is actually a special case of Newton’s second law
which applies when F = 0.

   It is no wonder that the first successes of Newtonian mechanics were
in the celestial realm, namely in the predictions of planetary orbits. It
took Newton’s genius to realize that the same principles which guided
the planets also applied to the earthly realm as well. In the Newtonian
view, the tendency of objects to stop when we stop pushing on them is
simply a consequence of frictional forces opposing the motion. Friction,
which is so important on the earth, is negligible for planetary motions,
which is why Newtonian dynamics is more obviously valid for celestial
bodies.

   Note that the principle of relativity is closely related to Newtonian physics and
is incompatible with pre-Newtonian views. After all, two reference frames moving
relative to each other cannot be equivalent in the pre-Newtonian view, because
objects with nothing pushing on them can only come to rest in one of the two
reference frames. Newton’s second law obeys the principle of relativity
because the acceleration of an object is the same when viewed from two
different reference frames moving at a constant velocity with respect to each

other.

   Einstein’s relativity is often viewed as a repudiation of Newton, but this is far
from the truth — Newtonian physics makes the theory of relativity possible
through its invention of the principle of relativity. Compared with the
differences between pre-Newtonian and Newtonian dynamics, the changes
needed to go from Newtonian to Einsteinian physics constitute minor
tinkering.


   
8.1.3    Quantum Dynamics

In quantum mechanics, particles are represented by matter waves, with the
absolute square of the wave displacement yielding the probability of finding the
particle. The behavior of particles thus follows from the reflection, refraction,
diffraction, and interference of the associated waves. The connection with
Newtonian dynamics comes from tracing the trajectories of matter wave
packets. Changes in the speed and direction of motion of these packets
correspond to the accelerations of classical mechanics. When wavelengths
are small compared to the natural length scale of the problem at hand,
the wave packets can be made small, thus pinpointing the position of
the associated particle, without generating excessive uncertainty in the
particle’s momentum. This is the geometrical optics limit of quantum
mechanics.


   
8.2    Potential Energy

We now address Newtonian mechanics in the case where the force on a particle is
conservative. A conservative force is one that can be derived from a so-called
potential energy U. We assume that the potential energy of the particle depends
only on its position. The force is obtained from the potential energy by the
equation
   	

   
[image: F =  - dU-.        dx ]
	(8.2)




Using this equation we write Newton’s second law as
   	
   
[image:    dU -  ---=  ma.    dx ]
	(8.3)




We then notice that the acceleration can be written in terms of the x derivative
along the particle’s trajectory of v2∕2:
   	
   
[image:                               2 a =  dv-= dv-dx- = dv-v = 1-dv-.      dt   dx dt    dx     2 dx ]
	(8.4)




The last step in the above derivation can be verified by applying the product rule:

dv2∕dt = d(vv)∕dt = v(dv∕dt) + (dv∕dt)v = 2v(dv∕dt). Putting equations (8.3)
and (8.4) together, we find that d(mv2∕2 + U)∕dt = 0, which implies that
mv2∕2 + U is constant. We call this constant the total energy E and the quantity
K = mv2∕2 the kinetic energy. We thus have the principle of conservation of
energy for conservative forces:
   	
   
[image: E  = K  + U =  constant. ]
	(8.5)
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 Figure 8.1: Example of spatially variable potential energy U(x) for a particle
with fixed total energy E. The kinetic energy K = E - U is zero where the
E and U lines cross. These points are called turning points. The thick part of
the horizontal line indicates the allowed range for the particle with the given
energy.

____________________________


   



   Recall that in quantum mechanics the momentum is related to the group
velocity ug by
   	
   
[image: Π =  mug   (momentum   ) ]
	(8.6)




in the nonrelativistic case. Equating the group velocity to v and eliminating it in
the kinetic energy results in an alternate expression for this quantity:
   	
   
[image:                 2 K  ≡  1mu2g = -Π--  (kinetic energy).       2       2m ]
	(8.7)





   Since the total energy E is constant or conserved, increases in the potential
energy coincide with decreases in the kinetic energy and vice versa, as is
illustrated in figure 8.1. In classical mechanics the kinetic energy cannot be
negative, since it is the product of half the mass and the square of the velocity,
both of which are positive. Thus, a particle with total energy E and potential
energy U is forbidden to venture into regions in which the kinetic energy

K = E - U is less than zero.

   The points at which the kinetic energy is zero are called turning points.
This is because a particle decreases in speed as it approaches a turning
point, stops there for an instant, and reverses direction. Note also that a
particle with a given total energy always has the same speed at some
point x regardless of whether it approaches this point from the left or the
right:
   	
   
[image:                                 1∕2 speed =  |ug| = | ± [2(E -  U)∕m ]   |. ]
	(8.8)




   
8.2.1    Gravity as a Conservative Force

An example of a conservative force is gravity. An object of mass m near the
surface of the earth has the gravitational potential energy
   	
   
[image: U  = mgz   (gravity near earth’s surface) ]
	(8.9)





where z is the height of the object above some reference point such as the earth’s
surface and g = 9.8 m s-2 is the local value of the gravitational field near the
surface. Notice that the gravitational potential energy increases upward. The
speed of the object in this case is |ug| = [2(E - mgz)∕m]1∕2. If |u
g| is known to
equal the constant value u0 at elevation z = 0, then equations (8.8) and (8.9) tell
us that u0 = (2E∕m)1∕2 and |u
g| = (u02 - 2gz)1∕2.

   There are certain types of questions which energy conservation cannot directly
answer. For instance, if an object is released at elevation h with zero velocity at
t = 0, at what time will it reach z = 0 under the influence of gravity? In
such cases it is often easiest to return to Newton’s second law. Since the
force on the object is F = -dU∕dz = -mg in this case, we find that the
acceleration is a = F∕m = -mg∕m = -g. However, a = du∕dt = d2z∕dt2,
so
   	
   
[image: u = - gt + C1    z = - gt2∕2 + C1t + C2   (constant gravity), ]
	(8.10)




where C1 and C2 are constants to be determined by the initial conditions. These
results can be verified by differentiating to see if the original acceleration is
recovered. Since u = 0 and z = h at t = 0, we have C1 = 0 and C2 = h.
With these results it is easy to show that the object reaches z = 0 when
t = (2h∕g)1∕2.


   
8.3    Work and Power


When a force is exerted on an object, energy is transferred to the object.
The amount of energy transferred is called the work done on the object.
However, energy is only transferred if the object moves. The work W done
is
   	
   
[image: W  = F Δx ]
	(8.11)




where the distance moved by the object is Δx and the force exerted on it
is F. Notice that work can either be positive or negative. The work is
positive if the object being acted upon moves in the same direction as the
force, with negative work occurring if the object moves opposite to the
force.

   Equation (8.11) assumes that the force remains constant over the full
displacement Δx. If it is not, then it is necessary to break up the displacement
into a number of smaller displacements, over each of which the force can be
assumed to be constant. The total work is then the sum of the works associated
with each small displacement.

   If more than one force acts on an object, the works due to the different forces
each add or subtract energy, depending on whether they are positive or negative.
The total work is the sum of these individual works.

   There are two special cases in which the work done on an object is
related to other quantities. If F is the total force acting on the object, then
W = FΔx = maΔx by Newton’s second law. However, a = dv∕dt where v is the
velocity of the object, and Δx = (Δx∕Δt)Δt ≈ vΔt, where Δt is the time
required by the object to move through distance Δx. The approximation becomes
exact when Δx and Δt become very small. Putting all of this together results
in
   	

   
[image:            dv        d ( mv2 ) Wtotal = m ---vΔt =  --  ----- Δt =  ΔK    (total work ),            dt        dt   2 ]
	(8.12)




where K is the kinetic energy of the object. Thus, when F is the only
force, W = Wtotal is the total work on the object, and this equals the
change in kinetic energy of the object. This is called the work-energy
theorem, and it demonstrates that work really is a transfer of energy to an
object.

   The other special case occurs when the force is conservative, but is not
necessarily the total force acting on the object. In this case
   	
   
[image: Wcons  = - dU-Δx  = - ΔU    (conservative force),            dx ]
	(8.13)




where ΔU is the change in the potential energy of the object associated with the
force of interest.

   The power associated with a force is simply the amount of work done by the
force divided by the time interval Δt over which it is done. It is therefore the
energy per unit time transferred to the object by the force of interest. From
equation (8.11) we see that the power is
   	

   
[image:      FΔx P =  -----=  Fv   (power ),       Δt ]
	(8.14)




where v is the velocity at which the object is moving. The total power is just the
sum of the powers associated with each force. It equals the time rate of change of
kinetic energy of the object:
   	
   
[image: Ptotal = Wtotal=  dK--  (total power ).          Δt       dt ]
	(8.15)






   
8.4    Mechanics and Geometrical Optics

Louis de Broglie1
made an analogy between matter waves and light waves, pointing out that wave

packets of light change their velocity as the result of spatial variations in
the index of refraction of the medium in which they are travelling. This
behavior comes about because the dispersion relation for light traveling
through a medium with index of refraction n is ω = kc∕n, so that the group
velocity, ug = dω∕dk = c∕n. Thus, when n increases, ug decreases, and vice
versa.2

   In this section we pursue de Broglie’s analogy to see if we can come up
with a theory of matter waves which gives the same results as classical
mechanics in the geometrical optics limit of these waves. The dispersion
relation for free matter waves is ω = (k2c2 + μ2)1∕2. In the non-relativistic
limit k2c2 ≪ μ2. As done previously, we use (1 + ϵ)n ≈ 1 + nϵ for small ϵ.
In the non-relativistic limit, the dispersion relation for free waves thus
becomes
   	
   
[image: ω = μ (1 + k2c2∕μ2 )1∕2 ≈ μ + k2c2∕(2μ ). ]
	(8.16)





   The above equation can be transformed into the total energy equation for a
free, non-relativistic particle, E = mc2 + K, where mc2 is the rest energy and K is
the kinetic energy, by multiplying by ℏ. We convert the free particle energy
equation into the equation for a particle subject to a conservative force by adding
the potential energy U the right side. The analogous change to equation (8.16)
is to add S = U∕ℏ to the right side, resulting in a modified dispersion

relation:
   	
   
[image:              2 2 ω =  S(x) + k c ∕(2μ). ]
	(8.17)




(Since the rest energy is just a constant, we have absorbed it into S.) This
gives us the dispersion relation for one-dimensional matter waves subject
to a spatially varying potential energy. The quantity S, which we see
is just a scaled potential energy, plays a role for matter waves which is
analogous to the role played by a spatially variable index of refraction for light
waves.

   Let us now imagine that all parts of the wave governed by this dispersion
relation oscillate in phase. The only way this can happen is if ω is constant, i. e.,
it takes on the same value in all parts of the wave.

   If ω is constant, the only way S can vary with x in equation (8.17) is if the
wavenumber varies in a compensating way. Thus, constant frequency and spatially
varying S together imply that k = k(x). Solving equation (8.17) for k
yields
   	
   
[image:          [ 2μ[ω - S (x )]]1∕2 k(x) = ±   -------------   .                 c2 ]
	(8.18)




Since ω is constant, the wavenumber becomes smaller and the wavelength larger
as the wave moves into a region of increased S.

   In the geometrical optics limit, we assume that S doesn’t change much over
one wavelength so that the wave remains reasonably sinusoidal in shape with
approximately constant wavenumber over a few wavelengths. However, over
distances of many wavelengths the wavenumber and amplitude of the wave are
allowed to vary considerably.

   The group velocity calculated from the dispersion relation given by equation
(8.17) is
   	
   
[image:      dω    kc2      (2c2(ω - S ))1∕2 ug = ---=  ----= ±   -----------      dk     μ             μ ]
	(8.19)




where k is eliminated in the last step with the help of equation (8.18). The
resulting equation tells us how the group velocity varies as a matter wave
traverses a region of slowly varying S. Thus, as S increases, ug decreases and vice
versa.

   We can now calculate the acceleration of a wave packet resulting from the spatial
variation in S. We assume that x(t) represents the position of the wave packet, so
that ug = dx∕dt. Using the chain rule dug∕dt = (dug∕dx)(dx∕dt) = (dug∕dx)ug, we
find
   	

   
[image:      du     du       du2∕2     c2 dS      ¯h dS a =  --g-=  --gug =  --g---= - -- ---=  - -----.      dt     dx        dx        μ dx      m dx ]
	(8.20)




The group velocity is eliminated in favor of S by squaring equation (8.19) and
substituting the result into equation (8.20).

   Recalling that U = ℏS, equation (8.20) becomes
   	
   
[image: a = - -1 dU- = F-,       m  dx    m ]
	(8.21)




which is just Newton’s second law! Thus, the geometrical optics approach to
particle motion is completely equivalent to the classical mechanics of a particle
moving under the influence of a conservative force, at least in one dimension. We
therefore have two ways of solving for the motion of a particle subject to a
potential energy U(x). We can apply the principles of classical mechanics to get
the force and the acceleration of the particle, from which we can derive the
motion. Alternatively, we can apply the principles of geometrical optics to
compute the spatially variable velocity of the wave packet using equation (8.19).
The results are completely equivalent, though the methods are conceptually very
different.

   
8.5    Math Tutorial – Partial Derivatives

In order to understand the generalization of Newtonian mechanics to two and
three dimensions, we first need to understand a new type of derivative called
the partial derivative. The partial derivative is used in functions of more
than one variable. It is just like an ordinary derivative, except that when
taking the derivative of the function with respect to one of the variables,
the other variables are held constant. As an example, let us consider the
function
   	
   
[image: f(x,y) = Ax4  + Bx2y2 +  Cy4 ]
	(8.22)




where A, B, and C are constants. The partial derivative of f with respect to x
is
   	
   
[image: ∂f- = 4Ax3  + 2Bxy2 ∂x ]
	(8.23)




and the partial derivative with respect to y is

   	
   
[image: ∂f-       2        3 ∂y =  2Bx  y + 4Cy  . ]
	(8.24)





   That’s it! Note that a special symbol “∂” is used in place of the normal “d” for
the partial derivative. This is sometimes called a “curly d”.


   
8.6    Motion in Two and Three Dimensions
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 Figure 8.2: Refraction of a matter wave by a discontinuity in potential
energy. The component of the wave vector parallel to the discontinuity, ky,
doesn’t change, so k1y = k2y.

____________________________






   When a matter wave moves through a region of variable potential energy in
one dimension, only the wavenumber changes. In two or three dimensions, the
wave vector can change in both direction and magnitude. This complicates the
calculation of particle movement. However, we already have an example of how to
handle this situation, namely, the refraction of light. In that case Snell’s law tells
us how the direction of the wave vector changes, while the dispersion relation
combined with the constancy of the frequency gives us information about the
change in the magnitude of the wave vector. For matter waves a similar
procedure works, though the details are different, because we seek the
consequences of a change in potential energy rather than a change in the index of
refraction.

   Figure 8.2 illustrates the refraction of matter waves at a discontinuity in the
potential energy. Let us suppose that the discontinuity occurs at x = 0. If the
matter wave to the left of the discontinuity is ψ1 = sin(k1xx + k1yy - ω1t) and to
the right is ψ2 = sin(k2xx + k2yy - ω2t), then the wavefronts of the waves
will match across the discontinuity for all time only if ω1 = ω2 ≡ ω and
k1y = k2y ≡ ky. We are already familiar with the first condition from the
one-dimensional problem, so the only new ingredient is the constancy of the y
component of the wave vector.

   In two dimensions the momentum is a vector: Π = mu when |u|≪ c,
where u is the particle velocity. Furthermore, the kinetic energy is
K = m|u|2∕2 = |Π|2∕(2m) = (Π
x2 + Π
y2)∕(2m). The relationship between kinetic,
potential, and total energy is unchanged from the one-dimensional case, so we
have
   	
   
[image:            2     2 E = U  + (Πx + Π y)∕(2m ) = constant. ]
	(8.25)





The de Broglie relationship tells us that Π = ℏk, so the constancy of ky across the
discontinuity in U tells us that
   	
   
[image: Πy =  constant ]
	(8.26)




there.
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 Figure 8.3: Trajectory of a wave packet through a variable potential energy,
U(x), which decreases to the right.

____________________________


   



   Let us now approximate a continuously variable U(x) by a series of
steps of constant U oriented normal to the x axis. The above analysis
can be applied at the jumps or discontinuities in U between steps, as
illustrated in figure 8.3, with the result that equations (8.25) and (8.26)
are valid across all discontinuities. If we now let the step width go to
zero, these equations then become valid for U continuously variable in
x.

   An example from classical mechanics of a problem of this type is a ball rolling
down an inclined ramp with an initial velocity component across the ramp, as
illustrated in figure 8.4. The potential energy decreases in the down ramp
direction, resulting in a force down the ramp. This accelerates the ball in
that direction, but leaves the component of momentum across the ramp
unchanged.
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 Figure 8.4: Classical mechanics example of the problem illustrated in figure
8.3.

____________________________


   



   Using the procedure which we invoked before, we find the force components
associated with U(x) in the x and y directions to be Fx = -dU∕dx and Fy = 0.
This generalizes to
   	
   
[image:        (             )         ∂U-- ∂U--∂U-- F = -    ∂x ,∂y , ∂z     (3-D conservative force) ]
	(8.27)




in the three-dimensional case where the orientation of constant U surfaces is
arbitrary. It is also valid when U(x,y,z) is not limited to a simple ramp form, but
takes on a completely arbitrary structure.

   The definitions of work and power are slightly different in two and three
dimensions. In particular, work is defined as
   	
   
[image: W  = F  ⋅ Δx ]
	(8.28)




where Δx is now a vector displacement. The vector character of this expression
yields an additional possibility over the one dimensional case, where the work is
either positive or negative depending on the direction of Δx relative to F. If the

force and the displacement of the object on which the force is acting are
perpendicular to each other, the work done by the force is actually zero, even
though the force and the displacement both have non-zero magnitudes. The power
exhibits a similar change:
   	
   
[image: P =  F ⋅ u. ]
	(8.29)




Thus the power is zero if an object’s velocity is normal to the force being exerted
on it.

   As in the one-dimensional case, the total work done on a particle equals the
change in the particle’s kinetic energy. In addition, the work done by a
conservative force equals minus the change in the associated potential
energy.

   Energy conservation by itself is somewhat less useful for solving problems in
two and three dimensions than it is in one dimension. This is because
knowing the kinetic energy at some point tells us only the magnitude of the
velocity, not its direction. If conservation of energy fails to give us the
information we need, then we must revert to Newton’s second law, as we
did in the one-dimensional case. For instance, if an object of mass m
has initial velocity u0 = (u0, 0) at location (x,z) = (0,h) and has the
gravitational potential energy U = mgz, then the force on the object is
F = (0,-mg). The acceleration is therefore a = F∕m = (0,-g). Since
a = du∕dt = d2x∕dt2 where x = (x,z) is the object’s position, we find
that
   	

   
[image:                                          2 u = (C1,- gt + C2)    x = (C1t + C3, - gt∕2 + C2t + C4 ), ]
	(8.30)




where C1, C2, C3, and C4 are constants to be evaluated so that the solution
reduces to the initial conditions at t = 0. The specified initial conditions
tell us that C1 = u0, C2 = 0, C3 = 0, and C4 = h in this case. From
these results we can infer the position and velocity of the object at any
time.
   
8.7    Kinetic and Total Momentum

If you have previously taken a physics course then you have probably
noticed that a rather odd symbol is used for momentum, namely Π, rather
than the more commonly employed p. The reason for this peculiar usage
is that there are actually two kinds of momentum, kinetic momentum
and total momentum, just as there are two kinds of energy, kinetic and
total.3
The symbol Π represents total momentum while p represents kinetic momentum.
Normally we don’t need to distinguish between the two quantities, as they are
generally equal to each other. However, we will find later in the course that it is
crucial to make this distinction in the case of charged particles in a magnetic field.
As a general rule, the total momentum is related to a particle’s wave vector via
the de Broglie relation, Π = ℏk, while the kinetic momentum is related to a
particle’s velocity, p = mu∕(1 - u2∕c2)1∕2.

   
8.8    Problems


      

      	Suppose the dispersion relation for a matter wave under certain
      conditions is ω = μ + (k - a)2c2∕(2μ) where k is the wavenumber of
      the wave, μ = mc2∕ℏ, m is the associated particle’s mass, a is a
      constant, c is the speed of light, and ℏ is Planck’s constant divided by
      2π.
           
           	Use this disperson relation and the Planck and de Broglie relations
           to determine the relationship between energy E, momentum Π,
           and mass m.
           

           	Compute the group velocity of the wave and use this to determine
           how the group velocity depends on mass and momentum in this
           case.


      

      	A matter wave function associated with a particle of definite (constant)
      total energy E takes the form shown in figure 8.5. Make a sketch showing
      how the kinetic, potential, and total energies of the particle vary with
      x.
      





[image: PIC]


      
  Figure 8.5:  A  wave  function  in  which  the  wavelength  varies  with
      position.

      _____________________________________
      




      

      	Compute ∂∕∂x and ∂∕∂y of the following functions. Other symbols are
      constants.
           
           	f(x,y) = ax2 + by3
           

           	f(x,y) = ax2y2
           

           	f(x,y) = (x + a)∕(y + b)


      

      	Given a potential energy for a particle of mass M of the form U(x) = Ax3 -Bx
      where A and B are positive constants:
           
           	Find the force on the particle.
           

           	Find the values of x where the force is zero.
           

           	Sketch U(x) versus x and graphically compare the slope of U(x)
           to the force computed above. Do the two qualitatively match?
           

           	If the total energy of the particle is zero, where are its turning
           points?
           

           	What is the particle’s speed as a function of position assuming
           that the total energy E is known?


      

      	Given a potential energy function U(x,y) = A(x2 + y2) where A is a positive
      constant:
           
           	Sketch lines of constant U in the x-y plane.

           

           	Compute the components of force as a function of x and y and
           draw sample force vectors in the x-y plane on the same plot used
           above. Do the force vectors point “uphill” or “downhill”?


      

      	Do the same as in the previous question for the potential energy function
      U(x,y) = Axy.
      

      	Suppose that the components of the force vector in the x-y plane are
      F = (2Axy3, 3Ax2y2) where A is a constant. See if you can find a potential
      energy function U(x,y) which gives rise to this force.
      

      	You are standing on top of a cliff of height H with a rock of mass
      M.
           
           	If you throw the rock horizontally outward at speed u0, what will
           its speed be when it hits the ground below?
           

           	If you throw the rock upward at 45∘ to the horizontal at speed u
0,
           what will its speed be when it hits the ground?


      Hint: Can you use conservation of energy to solve this problem? Ignore air
      friction.
      


      	A car of mass 1200 kg initially moving 30 m s-1 brakes to a stop.
           
           	What is the net work done on the car due to all the forces acting
           on it during the indicated period?
           

           	Describe the motion of the car relative to an inertial reference
           frame initially moving with the car.
           

           	In the above reference frame, what is the net work done on the
           car during the indicated period?



      Is work a relativistically invariant quantity?
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 Figure 8.6: The trajectory of a soccer ball.

      _____________________________________
      



      

      	A soccer player kicks a soccer ball, which is caught by the goal keeper as
      shown in figure 8.6. At various points forces exerted by gravity, air friction,
      the foot of the offensive player, and the hands of the goal keeper act on the
      ball.
           
           	List the forces acting on the soccer ball at each of the points A,
           B, C, D, and E.
           

           	State whether the instantaneous power being applied to the soccer
           ball due to each of the forces listed above is positive, negative, or
           zero at each of the labeled points.


      

      	A cannon located at (x,z) = (0, 0) shoots a cannon ball upward at an angle
      of θ from the horizontal at initial speed u0. Hint: In order to solve this
      problem you must first obtain the x and z components of acceleration from
      Newton’s second law. Second, you must find the velocity components as a
      function of time from the components of acceleration. Third, you
      must find x and z as a function of time from the the components of
      velocity. Only then should you attempt to answer the questions
      below.

           
           	How long does it take the cannon ball to reach its peak altitude?
           

           	How high does the cannon ball go?
           

           	At what value of x does the cannon ball hit the ground (z = 0)?
           

           	Determine what value of θ yields the maximum range.


      





   


Chapter 9
Symmetry and Bound States

When quantum mechanics was first invented, the dynamical principles
used were the same as those underlying classical mechanics. The initial
development of the field thus proceeded largely by imposing quantum laws on
classical variables such as position, momentum, and energy. However,
as quantum mechanics advanced, it became clear that there were many
situations in which no classical analogs existed for new types of quantum
mechanical systems, especially those which arose in the study of elementary
particles. To understand these systems it was necessary to seek guidance from
novel sources. One of the most important of these sources was the idea
of symmetry, and in particular the relationship between symmetry and
conserved variables. This type of relationship was first developed in the
early 20th century by the German mathematician Emmy Nöther in the
context of classical mechanics. However, her idea is easier to express and use
in quantum mechanics than it is in classical mechanics. Emmy Nöther
showed that there is a relationship between the symmetries of a system
and conserved dynamical variables. This idea is naturally called Nöther’s
theorem.

   In classical mechanics a particle is bound or confined to a particular region if
its total energy exceeds the potential energy only in this region. In quantum
mechanics, matter waves can also be confined for the same reason, though
the confinement is often less perfect than in the classical case. In this
chapter we examine the consequences of wave confinement. We first look at
the so-called “particle in a box” in one spatial dimension. We find that
confined particles can take on only discrete energy values. When confinement
isn’t perfect we see how a quantum mechanical particle can leak through
a potential energy barrier which is classically impenetrable. Movement
of a particle on a circular ring leads us to another form of confinement
and the introduction of angular momentum. This brings us finally to
a discussion of the intrinsic or spin angular momentum of elementary
particles.
   
9.1    Math Tutorial — Complex Waves

Until now we have represented quantum mechanical plane waves by sine and
cosine functions, just as with other types of waves. However, plane matter waves
cannot be truly represented by sines and cosines. We need instead mathematical
functions in which the wave displacement is complex rather than real. This

requires the introduction of a bit of new mathematics, which we tackle
first. Using our new mathematical tool, we are then able to explore two
crucially important ideas in quantum mechanics; (1) the relationship between
symmetry and conservation laws, and (2) the dynamics of spatially confined
waves.

   A complex number z is the sum of a real number and an imaginary number.
An imaginary number is just a real number multiplied by i ≡ (-1)1∕2. Thus, we
can write z = a + ib for any complex z, where a and b are real. The quantities a
and b are the real and imaginary parts of z, sometimes written Re(z) and
Im(z).

   Quantum mechanics requires wave functions to be complex, i. e., to possess
real and imaginary parts. Plane waves in quantum mechanics actually
take the form ψ = exp[i(kx - ωt)] rather than, say, cos(kx - ωt). The
reason for this is the need to distinguish between waves with positive
and negative frequencies. If we replace k and ω with -k and -ω in the
cosine form, we get cos(-kx + ωt) = cos[-(kx - ωt)] = cos(kx - ωt). In
other words, changing the sign of k and ω results in no change in a wave
expressed as a cosine function. The two quantum mechanical states, one with
wavenumber and frequency k and ω and the other with -k and -ω, yield
indistinguishable wave functions and therefore would represent physically
indistinguishable states. The cosine form is thus insufficiently flexible to represent
quantum mechanical waves. On the other hand, if we replace k and ω with
their negatives in the complex exponential form of a plane wave we get
ψ = exp[-i(kx - ωt)], which is different from exp[i(kx - ωt)]. These two wave
functions are distinguishable and thus correspond to distinct physical
states.

   It is not immediately obvious that a complex exponential function provides the
oscillatory behavior needed to represent a plane wave. However, the complex
exponential can be expressed in terms of sines and cosines using Euler’s
equation:
   	
   

[image: exp(iϕ) = cos(ϕ) + isin(ϕ)  (Euler’s equation). ]
	(9.1)
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 Figure 9.1: Graphical representation of a complex number z as a point in
the complex plane. The horizontal and vertical Cartesian components give
the real and imaginary parts of z respectively.

____________________________


   



   If we define r = (a2 + b2)1∕2 and ϕ = tan -1(b∕a), then an alternate way of
expressing a complex number is z = r exp(iϕ), which by Euler’s equation equals
r cos(ϕ) + ir sin(ϕ). Comparison shows that a = r cos(ϕ) and b = r sin(ϕ). Thus, a
complex number can be thought of as a point in the a-b plane with Cartesian
coordinates a and b and polar coordinates r and ϕ. The a-b plane is called the
complex plane.

   We now see how the complex wave function represents an oscillation. If
ψ = exp[i(kx-ωt)], the complex function ψ(x,t) moves round and round the unit
circle in the complex plane as x and t change, as illustrated in figure 9.1. This
contrasts with the back and forth oscillation along the horizontal axis of the
complex plane represented by cos(kx - ωt).

   We will not present a formal proof of Euler’s equation — you will
eventually see it in your calculus course. However, it may be helpful to note
that the ϕ derivatives of exp(iϕ) and cos(ϕ) + i sin(ϕ) have the same
behavior:
   	
   
[image:  d ---exp(iϕ) = iexp (iϕ ); dϕ ]
	(9.2)






   
[image:  d dϕ-[cos(ϕ ) + i sin(ϕ )] =   - sin(ϕ ) + icos(ϕ )                        =   i[cos(ϕ) + isin (ϕ)].           (9.3) ]


(In the second of these equations we have replaced the minus sign in front of the
sine function by i2 and then extracted a common factor of i.) The ϕ derivative of
both of these functions thus yields the function back again times i. This is a
strong hint that exp(iϕ) and cos(ϕ) + i sin(ϕ) are different ways of representing
the same function.
   We indicate the complex conjugate of a complex number z by a superscripted
asterisk, i. e., z*. It is obtained by replacing i by -i. Thus, (a + ib)* = a-ib. The
absolute square of a complex number is the number times its complex
conjugate:
   	
   
[image: |z|2 = |a + ib|2 ≡ (a + ib)(a - ib) = a2 + b2 = r2. ]
	(9.4)





   Notice that the absolute square of a complex exponential function is
one:
   	
   

[image:          2 |exp(iϕ)| =  exp (iϕ)exp (- iϕ) = exp (iϕ - iϕ) = exp (0) = 1. ]
	(9.5)




In quantum mechanics the absolute square of the wave function at any point
expresses the relative probability of finding the associated particle at that point.
Thus, the probability of finding a particle represented by a plane wave is uniform
in space. Contrast this with the relative probability associated with a
sine wave: | sin(kx - ωt)|2 = sin 2(kx - ωt). This varies from zero to one,
depending on the phase of the wave. The “waviness” in a complex exponential
plane wave resides in the phase rather than in the magnitude of the wave
function.

   One more piece of mathematics is needed. The complex conjugate of Euler’s
equation is
   	
   
[image: exp(- iϕ) = cos(ϕ) - isin(ϕ). ]
	(9.6)




Taking the sum and the difference of this with the original Euler’s equation
results in the expression of the sine and cosine in terms of complex exponentials:
   	

   
[image: cos(ϕ ) = exp(iϕ) +-exp(--iϕ)-   sin(ϕ) = exp-(iϕ)---exp-(--iϕ).                    2                               2i ]
	(9.7)





   We aren’t used to having complex numbers show up in physical theories and it
is hard to imagine how we would measure such a number. However, everything
observable comes from taking the absolute square of a wave function, so we deal
only with real numbers in experiments.
   
9.2    Symmetry and Quantum Mechanics

The idea of symmetry plays a huge role in physics. We have already used
symmetry arguments in the theory of relativity — applying the principle of
relativity to obtain the dispersion relation for relativistic matter waves is just such
an argument. In this section we begin to explore how symmetry can be used to
increase our understanding of quantum mechanics.


   
9.2.1    Free Particle

For our first example we take the case of a free particle in quantum mechanics,
i. e., a particle subject to no force. The wave function for a free particle of definite
momentum Π and energy E is given by
   	
   
[image: ψ = exp [i(kx - ωt )] = exp [i(Πx -  Et)∕¯h]  (free particle). ]
	(9.8)




For this wave function |ψ|2 = 1 everywhere, so the probability of finding the
particle anywhere in space and time is uniform. This contrasts with the
probability distribution which arises if we assume a free particle to have the wave
function ψ = cos[(Πx - Et)∕ℏ]. In this case |ψ|2 = cos 2[(Πx - Et)∕ℏ], which
varies with position and time, and is inconsistent with a uniform probability
distribution.


   
9.2.2    Symmetry and Definiteness

Quantum mechanics is a probabilistic theory, in the sense that the predictions it
makes tell us, for instance, the probability of finding a particle somewhere in
space. If we know nothing about a particle’s previous history, and if there are no
physical constraints that would make it more likely for a particle to be at one
point along the x axis than any another, then the probability distribution must be
P(x) = constant.

   This is an example of a symmetry argument. Expressed more formally, it
states that if the above conditions apply, then the probability distribution
ought to be subject to the condition P(x + D) = P(x) for any constant
value of D. The only possible P(x) in this case is P = constant. In the
language of physics, if there is nothing that gives the particle a higher
probability of being at one point rather than another, then the probability is
independent of position and the system is invariant under displacement in the x
direction.

   The above argument doesn’t suffice for quantum mechanics, since as we have
learned, the fundamental quantity describing a particle is not the probability
distribution, but the wave function ψ(x). Thus, the wave function rather than the
probability distribution ought to be the quantity which is invariant under
displacement, i. e., ψ(x + D) = ψ(x).

   This condition turns out to be too restrictive, because it implies that
ψ(x) = constant, whereas we know that a one-dimensional plane wave, which
describes a particle with a uniform probability of being found anywhere along the

x axis, has the form ψ(x) = exp(ikx). (For simplicity we temporarily
ignore the time dependence.) If we make the substitution x → x + D
in a plane wave, we get exp[ik(x + D)] = exp(ikx) exp(ikD). The wave
function is thus technically not invariant under displacement, in that the
displaced wave function is multiplied by the factor exp(ikD). However, the
probability distribution of the displaced wave function still equals one
everywhere, so there is no change in what we observe. Thus, in determining
invariance under displacement, we are allowed to ignore changes in the wave
function which consist only of multiplying it by a complex constant with an
absolute value of one. Such a multiplicative constant is called a phase
factor.

   It is easy to convince oneself by trial and error or by more sophisticated means
that the only form of wave function ψ(x) which satisfies the condition
ψ(x + D) = ψ(x) × (phase factor) is ψ(x) = A exp(ikx) where A is a (possibly
complex) constant. This is just in the form of a complex exponential plane wave
with wavenumber k. Thus, not only is the complex exponential wave function
invariant under displacements in the manner defined above, it is the only
wave function which is invariant to displacements. Furthermore, the phase
factor which appears for a displacement D of such a plane wave takes
the form exp(iC) = exp(ikD), where k is the wavenumber of the plane
wave.

   As an experiment, let us see if a wave packet is invariant under displacement.
Let’s define a wave packet consisting of two plane waves:
   	
   
[image: ψ (x) = exp(ik1x) + exp(ik2x). ]
	(9.9)




Making the substitution x → x + D in this case results in 


   
[image: ψ(x + D )  =  exp [ik1(x + D )] + exp [ik2(x + D )]            =  exp (ik1x)exp (ik1D ) + exp(ik2x)exp (ik2D )             ⁄=  [exp (ik1x) + exp (ik2x )] × (phase factor).     (9.10) ]


The impossibility of writing ψ(x + D) = ψ(x) × (phase factor) lends plausibility to
the assertion that a single complex exponential is the only possible form of the
wave function that is invariant under displacement.
   Notice that the wave packet does not have definite wavenumber, and hence,
momentum. In particular, the wave packet is a sum of complex exponentials with
wavenumbers k1 and k2, which means that the associated particle can have either
momentum Π1 = ℏk1 or Π2 = ℏk2. This makes sense from the point of view of
the uncertainty principle – for a single plane wave the uncertainty in
position is complete and the uncertainty in momentum is zero. For a wave
packet the uncertainty in position is reduced and the uncertainty in the
momentum is non-zero. As we have seen, this idea can be carried further: A
definite value of momentum must be associated with a completely indefinite
probability distribution in position, i. e., with P = constant. This corresponds
to a wave function which has the form of a complex exponential plane
wave. However, such a plane wave is invariant under displacement D,
except for the multiplicative phase factor exp(ikD), which has no physical
consequences since it disappears when the probability distribution is obtained.
Thus, we see that invariance under displacement of the wave function and
a definite value of the momentum are linked, in that each implies the
other:
   	

   
[image: invariance under displacement ⇐ ⇒  definite momentum ]
	(9.11)





   The idea of potential energy was introduced in the previous chapter. In
particular, we found that if the total energy is constant, then the momentum
cannot be constant in the presence of spatially varying potential energy. This
means that the wavenumber, and hence the wavelength of the oscillations in the
wave function also vary with position. The spatial inhomogeneity of the potential
energy gives rise to spatial inhomogeneity in the wave function, and hence an
indefinite momentum.

   The above argument can be extended to other variables besides momentum. In
particular since the time dependence of a complex exponential plane wave is
exp(-iωt) = exp(-iEt∕ℏ), where E is the total energy, we have by analogy with
the above argument that
   	
   
[image: invariance under  time  shift ⇐⇒  de finite energy. ]
	(9.12)




Thus, invariance of the wave function under a displacement in time implies a
definite value of the energy of the associated particle.

   In the previous chapter we assumed that the frequency (and hence the
energy) was definite and constant for a particle passing through a region of
variable potential energy. We now see that this assumption is justified
only if the potential energy doesn’t change with time. This is because a

time-varying potential energy eliminates the possibility of invariance under time
shift.


   
9.2.3    Invariance

We have seen a few examples of invariance in quantum mechanics. It is
now time to define this concept more precisely. A quantum mechanical
wave function is said to be invariant under some transformation if the
transformed wave function is observationally indistinguishable from the
original.

   In the above examples, the transformation is accomplished by replacing x by
x + D in the case of displacement in space and similarly by replacing t by t + T
for displacement in time. However, the idea of a transformation is much more
general; other examples will be discussed as they arise.

   The idea of “observationally indistinguishable” can be tricky. For example, if
some transformation results in a new wave function which is the old wave function
times a constant phase factor, then the new wave function is observationally
indistinguishable from the old one. This is because physical measurements capture
phase differences between different parts of wave functions (think of how
interferometers work), but not absolute phases. The constant phase factor
disappears in this difference calculation. However, if the multiplicative phase
factor created by some transformation is a function of position, then the
phase difference between different parts of a wave function changes as a
result of the transformation. The wave function is not invariant under this
transformation.


   
9.2.4    Compatible Variables

We already know that definite values of certain pairs of variables cannot be
obtained simultaneously in quantum mechanics. For instance, the indefiniteness of
position and momentum are related by the uncertainty principle — a
definite value of position implies an indefinite value of the momentum
and vice versa. If definite values of two variables can be simultaneously
obtained, then we call these variables compatible. If not, the variables are
incompatible.


   If the wave function of a particle is invariant under the displacements
associated with both variables, then the variables are compatible. For instance,
the complex exponential plane wave associated with a free particle is invariant
under displacements in both space and time. Since momentum is associated with
space displacements and energy with time displacements, the momentum and
energy are compatible variables for a free particle.


   
9.2.5    Compatibility and Conservation

Variables which are compatible with the energy have a special status. The wave
function which corresponds to a definite value of such a variable is invariant to
displacements in time. In other words, the wave function doesn’t change under
this displacement except for a trivial phase factor. Thus, if the wave function is
also invariant to some other transformation at a particular time, it is invariant
to that transformation for all time. The variable associated with that
transformation therefore retains its definite value for all time — i. e., it is
conserved.

   For example, the plane wave implies a definite value of energy, and is thus
invariant under time displacements. At time t = 0, it is also invariant under x
displacements, which corresponds to the fact that it represents a particle with a
known value of momentum. However, since momentum and energy are compatible
for a free particle, the wave function will represent the same value of momentum
at all other times. In other words, if the momentum is definite at t = 0, it will be
definite at all later times, and furthermore will have the same value. This is
how the conservation of momentum (and by extension, the conservation
of any other variable compatible with energy) is expressed in quantum
mechanics.


   
9.2.6    New Symmetries and Variables

In modern quantum physics, the discovery of new symmetries leads to new
dynamical variables. In the problems we show how that comes about for the
symmetries of parity (x →-x), time reversal t →-t), and charge conjugation
(the interchange of particles with antiparticles). One of the key examples of this
was the development of the quark theory of matter, which came from the

observation that the interchange of certain groups of elementary particles left
the universe approximately unchanged, meaning that the universe was
(approximately) symmetric under these interchanges.


   
9.3    Confined Matter Waves

Confinement of a wave to a limited spatial region results in rather peculiar
behavior — the wave can only fit comfortably into the confined region if the wave
frequency, and hence the associated particle energy, takes on a limited set of
possible values. This is the origin of the famous quantization of energy, from
which the “quantum” in quantum mechanics comes. We will explore two types of
confinement, position confinement due to a potential energy well, and rotational
confinement due to the fact that rotation of an object through 2π radians returns
the object to its original orientation.


   
9.3.1    Particle in a Box
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 Figure 9.2: First three modes for wave function of a particle in a box.

____________________________






   We now imagine how a particle confined to a region 0 ≤ x ≤ a on the x axis
must behave. As with the displacement of a guitar string, the wave function must
be zero at x = 0 and a, i. e., at the ends of the guitar string. A single complex
exponential plane wave cannot satisfy this condition, since | exp[i(kx - ωt)]|2 = 1
everywhere. However, a superposition (with a minus sign) of leftward and
rightward traveling waves creates a standing wave, in which the the wave
function separates into a function of space alone times a function of time
alone.
   	
   
[image: ψ =  exp[i(kx -  ωt)] - exp [i(- kx - ωt)] = 2iexp(- iωt)sin(kx). ]
	(9.13)




Notice that the time dependence is still a complex exponential, which means that
|ψ|2 is independent of time. This insures that the probability of finding the
particle somewhere in the box remains constant with time. It also means that the
wave packet corresponds to a definite energy E = ℏω.

   Because we took a difference rather than a sum of plane waves, the condition
ψ = 0 is already satisfied at x = 0. To satisfy it at x = a, we must have ka = nπ,
where n = 1, 2, 3,…. Thus, the absolute value of the wavenumber must take on the
discrete values
   	
   

[image:       nπ- kn =   a ,   n =  1,2,3,.... ]
	(9.14)




(The wavenumbers of the two plane waves equal plus or minus this absolute value
respectively.) This implies that the absolute value of the particle momentum is
Πn = ℏkn = nπℏ∕a, which in turn means that the energy of the particle must
be
   	
   
[image: En  = (Π2nc2 + m2c4 )1∕2 = (n2 π2¯h2c2∕a2 + m2c4 )1∕2, ]
	(9.15)




where m is the particle mass. In the non-relativistic limit this becomes
   	
   
[image:         2     2 2 2 En =  Π-n-=  n-π-¯h--  (non-relativistic)       2m     2ma2 ]
	(9.16)





where we have dropped the rest energy mc2 since it is a constant offset.
In the ultra-relativistic case where we can ignore the particle mass, we
find
   	
   
[image: E   = |Π  |c = n-π¯hc   (zero mass ).   n     n       a ]
	(9.17)




The shapes of the wave functions for the first three values of n for the particle in
the box are illustrated in figure 9.2.

   In both limits the energy takes on only a certain set of possible values.
This is called energy quantization and the integer n is called the energy
quantum number. In the non-relativistic limit the energy is proportional
to n2, while in the ultra-relativistic case the energy is proportional to
n.

   








[image: PIC]



 Figure 9.3: Allowed energy levels for the non-relativistic particle in a box.
The constant E0 = π2ℏ2∕(2ma2). See text for the meanings of symbols.

____________________________


   



   We can graphically represent the allowed energy levels for the particle in a box
by an energy level diagram. Such a diagram is shown in figure 9.3 for the
non-relativistic case.

   One aspect of this problem deserves a closer look. Equation (9.13) shows that
the wave function for this problem is a superposition of two plane waves
corresponding to momenta Π1 = +ℏk and Π2 = -ℏk and is therefore a kind of
wave packet. Thus, the wave function is not invariant under displacement and
does not correspond to a definite value of the momentum — the momentum’s
absolute value is definite, but its sign is not. Following Feynman’s prescription,
equation (9.13) tells us that the amplitude for the particle in the box to have
momentum +ℏk is exp[i(kx - ωt)], while the amplitude for it to have
momentum -ℏk is - exp[i(-kx - ωt)]. The absolute square of the sum of these
amplitudes gives us the relative probability of finding the particle at position
x:
   	
   
[image: P(x ) = |2iexp (- iωt) sin(kx )|2 = 4 sin2(kx ). ]
	(9.18)





   Which of the two possible values of the momentum the particle takes on is
unknowable, just as it is impossible in principle to know which slit a particle
passes through in two slit interference. If an experiment is done to measure the
momentum, then the wave function is irreversibly changed, just as the interference
pattern in the two slit problem is destroyed if the slit through which the particle
passes is unambiguously determined.

   
9.3.2    Barrier Penetration

Unlike the situation in classical mechanics, quantum mechanics allows the kinetic
energy K to be negative. This makes the momentum Π (equal to (2mK)1∕2 in the
nonrelativistic case) imaginary, which in turn gives rise to an imaginary
wavenumber.

   Let us investigate the nature of a wave with an imaginary wavenumber. Let
us assume that k = iκ in a complex exponential plane wave, where κ is
real:
   	
   
[image: ψ  = exp[i(kx - ωt)] = exp(- κx - iωt) = exp (- κx )exp(- iωt). ]
	(9.19)




The wave function doesn’t oscillate in space when K = E - U < 0, but grows or
decays exponentially with x, depending on the sign of κ.
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 Figure 9.4: Real part of wave function Re[ψ(x)] for barrier penetration.
The left panel shows weak penetration occurring for a large potential energy
barrier, while the right panel shows stronger penetration which occurs when
the barrier is small.
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   For a particle moving to the right, with positive k in the allowed region, κ
turns out to be positive, and the solution decays to the right. Thus, a
particle impingent on a potential energy barrier from the left (i. e., while
moving to the right) will have its wave amplitude decay in the classically
forbidden region, as illustrated in figure 9.4. If this decay is very rapid,
then the result is almost indistinguishable from the classical result — the
particle cannot penetrate into the forbidden region to any great extent.
However, if the decay is slow, then there is a reasonable chance of finding
the particle in the forbidden region. If the forbidden region is finite in
extent, then the wave amplitude will be small, but non-zero at its right
boundary, implying that the particle has a finite chance of completely
passing through the classical forbidden region. This process is called barrier
penetration.

   The probability for a particle to penetrate a barrier is the absolute square of
the amplitude after the barrier divided by the square of the amplitude before the
barrier. Thus, in the case of the wave function illustrated in equation (9.19), the
probability of penetration is
   	
   
[image: P = |ψ (d)|2∕|ψ(0)|2 = exp(- 2κd) ]
	(9.20)




where d is the thickness of the barrier.

   The rate of exponential decay with x in the forbidden region is related to how
negative K is in this region. Since
   	

   
[image:                    Π2      ¯h2k2    ¯h2κ2 -  K =  U - E  = - ----= - -----=  -----,                    2m       2m      2m ]
	(9.21)




we find that
   	
   
[image:     (      )1∕2 κ =  2mB--        ¯h2 ]
	(9.22)




where the potential energy barrier is B ≡-K = U - E. The smaller B is, the
smaller is κ, resulting in less rapid decay of the wave function with x. This
corresponds to stronger barrier penetration. (Note that the way B is defined, it is
positive in forbidden regions.)

   If the energy barrier is very high, then the exponential decay of the wave
function is very rapid. In this case the wave function goes nearly to zero at the
boundary between the allowed and forbidden regions. This is why we specify the
wave function to be zero at the walls for the particle in a box. These walls act in
effect as infinitely high potential barriers.

   Barrier penetration is important in a number of natural phenomena. Certain
types of radioactive decay and the fissioning of heavy nuclei are governed by this
process.

   
9.3.3    Orbital Angular Momentum
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 Figure 9.5: Illustration of a bead of mass M sliding (without friction) on a
circular loop of wire of radius R with momentum Π.

____________________________






   Another type of bound state motion occurs when a particle is constrained to
move in a circle. (Imagine a bead sliding on a circular loop of wire, as
illustrated in figure 9.5.) We can define x in this case as the path length
around the wire and relate it to the angle θ: x = Rθ. For a plane wave we
have
   	
   
[image: ψ  = exp[i(kx - ωt)] = exp[i(kR θ - ωt )]. ]
	(9.23)




This plane wave differs from the normal plane wave for motion along a Cartesian
axis in that we must have ψ(θ) = ψ(θ + 2π). This can only happen if the
circumference of the loop, 2πR, is an integral number of wavelengths, i. e., if
2πR∕λ = m where m is an integer. However, since 2π∕λ = k, this condition
becomes kR = m.

   Since Π = ℏk, the above condition can be written ΠmR = mℏ. The
quantity
   	
   
[image: Lm ≡  ΠmR ]
	(9.24)





is called the angular momentum, leading to our final result,
   	
   
[image: Lm  = m ¯h,   m  = 0,±1, ±2, .... ]
	(9.25)




We see that the angular momentum can only take on values which are integer
multiples of ℏ. This represents the quantization of angular momentum, and m in
this case is called the angular momentum quantum number. Note that this
quantum number differs from the energy quantum number for the particle in the
box in that zero and negative values are allowed.

   The energy of our bead on a loop of wire can be expressed in terms of the
angular momentum:
   	
   
[image:       Π2       L2 Em  = --m- = ---m-2-.       2M     2M  R ]
	(9.26)




This means that angular momentum and energy are compatible variables in this
case, which further means that angular momentum is a conserved variable. Just as
definite values of linear momentum are related to invariance under translations,

definite values of angular momentum are related to invariance under rotations.
Thus, we have
   	
   
[image: invariance under rotation ⇐ ⇒  definite angular momentum ]
	(9.27)




for angular momentum.

   We need to briefly address the issue of angular momentum in three
dimensions. Angular momentum is actually a vector oriented perpendicular to the
wire loop in the example we are discussing. The direction of the vector is defined
using a variation on the right-hand rule: Curl your fingers in the direction of
motion of the bead around the loop (using your right hand!). The orientation of
the angular momentum vector is defined by the direction in which your thumb
points. This tells you, for instance, that the angular momentum in figure 9.5
points out of the page.

   In quantum mechanics it is only possible to measure simultaneously the square
of the length of the angular momentum vector and one component of this vector.
Two different components of angular momentum cannot be simultaneously
measured because of the uncertainty principle. However, the length of the angular
momentum vector may be measured simultaneously with one component. Thus,
in quantum mechanics, the angular momentum is completely specified
if the length and one component of the angular momentum vector are
known.
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 Figure 9.6: Illustration of the angular momentum vector L for a tilted loop
and its z component Lz.

____________________________


   



   Figure 9.6 illustrates the angular momentum vector associated with a bead
moving on a wire loop which is tilted from the horizontal. One component (taken
to be the z component) is shown as well. For reasons we cannot explore here, the
square of the length of the angular momentum vector L2 is quantized with the
following values:
   	
   
[image:   2    2 L l = ¯h l(l + 1),   l = 0,1,2,.... ]
	(9.28)




One component (say, the z component) of angular momentum is quantized just
like angular momentum in the two-dimensional case, except that l acts as an
upper bound on the possible values of |m|. In other words, if the square of the
length of the angular momentum vector is ℏ2l(l + 1), then the z component can
take on the values
   	
   
[image: Lzm  = ¯hm,     m  = - l,- l + 1,...,l - 1, l. ]
	(9.29)





The quantity l is called the angular momentum quantum number, while m is
called the orientation or magnetic quantum number, the latter for historical
reasons.
   
9.3.4    Spin Angular Momentum

The type of angular momentum discussed above is associated with the movement
of particles in orbits. However, it turns out that even stationary particles
can possess angular momentum. This is called spin angular momentum.
The spin quantum number s plays a role analogous to l for spin angular
momentum, i. e., the square of the spin angular momentum vector of a particle
is
   	
   
[image:   2    2 L s = ¯h s(s + 1). ]
	(9.30)




The spin orientation quantum number ms is similarly related to s:
   	
   
[image: Lzs = ¯hms,     ms =  - s,- s + 1,...,s - 1,s.  ]
	(9.31)





   The spin angular momentum for an elementary particle is absolutely
conserved, i. e., it can never change. Thus, the value of s is an intrinsic
property of a particle. The major difference between spin and orbital angular
momentum is that the spin quantum number can take on more values, i. e.,
s = 0, 1∕2, 1, 3∕2, 2, 5∕2,….

   Particles with integer spin values s = 0, 1, 2,… are called bosons after the
Indian physicist Satyendra Nath Bose. Particles with half-integer spin values
s = 1∕2, 3∕2, 5∕2,… are called fermions after the Italian physicist Enrico Fermi. As
we shall see later in the course, bosons and fermions play very different roles in
the universe.


   
9.4    Problems


      

      	Suppose that a particle is represented by the wave function
      ψ = sin(kx - ωt) + sin(-kx - ωt).
           
           	Use trigonometry to simplify this wave function.
           

           	Compute the x and t dependence of the probability of finding the
           particle by squaring the wave function.
           

           	Explain what this result says about the time dependence of the
           probability of finding the particle. Does this make sense?


      

      	Repeat the above problem for a particle represented by the wave function
      ψ = exp[i(kx - ωt)] + exp[i(-kx - ωt)].
      

      	Determine if the wavefunction ψ(x) = exp(iCx2) is invariant under

      displacement in the sense that the displaced wave function differs from the
      original wave function by just a phase factor.
      

      	Just as invariance under the substitution x → x + D is associated with
      momentum, invariance under the substitution x →-x is associated with a
      quantum mechanical variable called parity, denoted P. However, unlike
      momentum, which can take on any numerical value, parity can take on only
      two possible values, ±1. The parity of a wave function ψ(x) is +1 if
      ψ(-x) = ψ(x), while the parity is -1 if ψ(-x) = -ψ(x). If ψ(x)
      satisfies neither of these conditions, then it has no definite value of
      parity.
           
           	What is the parity of ψ = sin(kx)? Of ψ = cos(kx)? The quantity
           k is a constant.
           

           	Is ψ(x) = cos(kx) invariant under the substitution x = x + D for
           all possible values of D? Does this wave function have a definite
           value of the momentum?
           

           	Show that a wave function with a definite value of the momentum
           does not have a definite value of parity. Are momentum and parity
           compatible variables?


      

      	Realizing that cos(kx - ωt) can be written in terms of complex exponential
      functions, give a physical interpretation of the meaning of the above cosine
      wave function. In particular, what are the possible values of the associated
      particle’s momentum and energy?
      

      	The time reversal operation T makes the substitution t →-t. Similar to
      parity, time reversal can only take on values ±1. Is symmetry of a wave
      function under time reversal, i. e., ψ(-t) = ψ(t), consistent with a definite
      value of the energy? Hint: Any wave function corresponding to a definite
      value of energy E must have the form ψ = A exp(-iEt∕ℏ) where A is not a
      function of time t. (Why?)

      

      	The operation C takes the complex conjugate of the wave function, i. e., it
      makes the substitution i →-i. In modern quantum mechanics this
      corresponds to interchanging particles and antiparticles, and is called
      charge conjugation. What does the combined operation CPT do
      to a complex plane wave, i. e., one with definite wave vector and
      frequency?
      

      	Make an energy level diagram for the case of a massless particle in a
      box.
      

      	Compare |Π| for the ground state of a non-relativistic particle in a box of
      size a with ΔΠ obtained from the uncertainty principle in this situation.
      Hint: What should you take for Δx?
      

      	Imagine that a billiard table has an infinitely high rim around it. For this
      problem assume that ℏ = 1 kg m2 s-1.
           
           	If the table is 1.5 m long and if the mass of a billiard ball is
           M  =  0.5 kg, what is the billiard ball’s lowest or ground state
           energy? Hint: Even though the billiard table is two dimensional,
           treat this as a one-dimensional problem. Also, treat the problem
           nonrelativistically and ignore the contribution of the rest energy
           to the total energy.
           

           	The energy required to lift the ball over a rim of height H against
           gravity is U = MgH where g = 9.8 m s-2. What rim height makes
           the gravitational potential energy equal to the ground state energy
           of the billiard ball calculated above?
           

           	If the rim is actually twice as high as calculated above but is only
           0.1 m thick, determine the probability of the ball penetrating the
           rim.


      






[image: PIC]


      
 Figure 9.7: Real part of the wave function ψ, corresponding to a fixed
      total energy E, occurring in a region of spatially variable potential
      energy U(x). Notice how the wavelength λ changes as the kinetic energy
      K = E - U changes.

      _____________________________________
      



      

      	The real part of the wave function of a particle with positive energy E
      passing through a region of negative potential energy is shown in figure
      9.7.
           
           	If the total energy is definitely E, what is the dependence of this
           wave function on time?
           

           	Is the wave function invariant under displacement in space in this
           case? Why or why not?
           

           	Does  this  wave  function  correspond  to  a  definite  value  of
           momentum? Why or why not?
           

           	Is the momentum compatible with the energy in this case? Why
           or why not?



      

      	Assuming again that ℏ = 1 kg m2 s-1, what are the possible speeds of a
      toy train of mass 3 kg running around a circular track of radius
      0.8 m?
      

      	If a particle of zero mass sliding around a circular loop of radius R can take
      on angular momenta Lm = mℏ where m is an integer, what are
      the possible kinetic energies of the particle? Hint: Remember that
      L = ΠR.
      





   


Chapter 10
Dynamics of Multiple Particles

So far we have considered only the dynamics of a single particle subject to an
externally imposed potential energy. The particle has no way of influencing this
external agent. In the real world particles interact with each other. In this chapter
we learn how this happens.

   We first rewrite Newton’s second law in terms of momentum. This is useful in
the subsequent consideration of Newton’s third law, which leads to the principle
of the conservation of momentum. Collisions between particles and the behavior of
rockets and conveyor belts are then studied as applications of the conservation
laws to more than one particle.
   
10.1    Momentum and Newton’s Second Law

Up to this point we have stated Newton’s second law in its conventional form,
F = ma. However, in the non-relativistic case ma = mdu∕dt = d(mu)∕dt, so we
can also write Newton’s second law as
   	
   
[image: F =  dp-  (Newton ’s second  law )      dt ]
	(10.1)




where p = mu is the non-relativistic kinetic momentum. This form of Newton’s
second law is actually closer to Newton’s original statement of the law. It also has
the advantage that it is correct even in the relativistic case when the relativistic
definition of kinetic momentum, p = mu∕(1 - u2∕c2)1∕2 (as defined earlier), is
substituted.



   
10.2    Newton’s Third Law
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 Figure 10.1: Interactions between three particles, A, B, and C. A and B are
considered to be part of the system defined by the dashed line.

____________________________






   Newton’s third law states that if particle A exerts a force F on particle B, then
particle B exerts a force -F on particle A. Newton’s third law makes it possible
to apply Newton’s second law to systems of particles without considering the
detailed interactions between particles within the system. For instance, if we
(arbitrarily) define the system in figure 10.1 to be the particles A and B inside the
dashed lines, then we can divide the forces acting on these particles into internal
and external parts,
   	
   
[image: FA  = FA -internal + FA -external = dpA-,                                   dt ]
	(10.2)




   	
   
[image: FB  = FB -internal + FB -external = dpB-.                                   dt ]
	(10.3)




Adding these equations together results in the net force Fnet being equal
to

   	
   
[image:                                                      d- FA -internal + FA -external + FB -internal + FB -external = dt(pA + pB ). ]
	(10.4)




However, the internal interactions in this case are A acting on B and B acting on
A. These forces are equal in magnitude but opposite in direction, so they cancel
out, leaving us with the net force equal to the sum of the external parts,
Fnet = FA-external + FB-external. The external forces in figure 10.1 are the force of
C on A and the force of C on B. Defining the total kinetic momentum of the
system as the sum of the A and B momenta, ptot = pA + pB, the above equation
becomes
   	
   
[image:         dptot Fnet =  -----,          dt ]
	(10.5)




which looks just like Newton’s second law for a single particle, except that it now
applies to the system of particles (A and B in the present case) as a whole. This
argument easily generalizes to any number of particles inside and outside the
system. Thus, for instance, even though a soccer ball consists of billions of atoms,

we are sure that the forces between atoms within the soccer ball cancel out, and
the trajectory of the ball as a whole is determined solely by external forces such
as gravity, wind drag, friction with the ground, and the kicks of soccer
players.

   Remember that for two forces to be a third law pair, they have to be acting on
different particles. Furthermore, if one member of the pair is the force of particle
A acting on particle B, then the other must be the force of particle B acting on
particle A. A counterexample would be gravity and the upward normal force
acting on a mass sitting on a table; these forces are equal and opposite in the
stationary case, but act on the same object, and therefore do not constitute a
third law pair. However, the upward normal force of the table on the mass and the
downward normal force of the mass on the table would be a third law
pair.
   
10.3    Conservation of Momentum

If all external forces on a system are zero, then equation (10.5) reduces
to
   	
   
[image: ptot = const  (isolated system ). ]
	(10.6)




A system of particles with no external forces acting on it is called isolated.
Newton’s third law thus tells us that the kinetic momentum of an isolated
system doesn’t change with time. This law is called the conservation of
momentum.



   
10.4    Collisions

Let us now consider the situation in which two particles collide with each other.
There can be several outcomes to this collision, of which we will study
two:
      

      	The two particles collide elastically, in essence bouncing off of each
      other.
      

      	The two particles stick together, resulting in the production of a single
      particle, or a single particle breaks apart into two particles. These are
      inelastic processes.


   In both of the above cases energy and momentum are conserved. We
assume that the forces acting between the particles are short range, so
that except in the instant of collision, we need not worry about potential
energy or potential momentum — all energy is in the form of rest plus
kinetic energy except in this short interval, and all momenta are kinetic
momenta.

   Because of the principle of relativity, we are free to consider collisions in any
convenient reference frame. We can then transform the results to any
reference frame we please. Generally speaking, the most convenient reference
frame to consider is the one in which the total momentum of the two
particles is zero. For the sake of simplicity we only consider collisions in one
dimension.


   
10.4.1    Elastic Collisions
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 Figure 10.2: One-dimensional elastic collisions of two particles in the center
of momentum frame as seen in spacetime diagrams.

____________________________






   Suppose a particle with mass m1 and initial velocity u1 in the center of
momentum frame, i. e., the reference frame in which the total momentum is zero,
collides elastically with another particle of mass m2 with initial velocity u2. The
momenta of the two particles are
   	
   
[image: p =  ----m1u1------  p =  ----m2u2------.  1   (1 - u21∕c2)1∕2    2   (1 - u22∕c2)1∕2 ]
	(10.7)




In the center of momentum frame we must have
   	
   
[image: p1 = - p2. ]
	(10.8)





   Figure 10.2 shows what happens when these two particles collide. The first
particle acquires momentum p1′ while the second acquires momentum p2′. The
conservation of momentum tells us that the total momentum after the collision is
the same as before the collision, namely zero, so
   	

   
[image:  ′      ′ p1 = - p2. ]
	(10.9)





   In the center of momentum frame we know that |p1| = |p2| and we know that
the two momentum vectors point in opposite directions. Similarly, |p1′| = |p2′|.
However, we as yet don’t know how p1′ is related to p1. Conservation of
energy,
   	
   
[image: E1 + E2  = E ′1 + E ′2, ]
	(10.10)




gives us this information. Notice that if p1′ = -p1, then
E1′2 = p
1′2c2 + m
12c4 = p
12c2 + m
12c4 = E
12. Assuming positive energies, we
therefore have E1′ = E1. If p2′ = -p2, then we can similiarly infer that E2′ = E2.
If these conditions are satisfied, then so is equation (10.10). Therefore, a complete
solution to the problem is
   	

   
[image:         ′          ′ p1 = - p 1 = - p2 = p2 ≡ p ]
	(10.11)




and
   	
   
[image: E  = E ′ = (p2c2 + m2 c4)1∕2 E  = E ′ = (p2c2 + m2 c4)1∕2.  1     1            1         2     2            2 ]
	(10.12)




In other words, the particles just exchange momenta.

   The left panel of figure 10.2 shows what happens in a collision when the
masses of the two colliding particles are equal. If m1 = m2, then the incoming and
outgoing velocities of the two particles are the same, as indicated by the inverse
slopes of the world lines. On the other hand, if m1 > m2, then the velocity of
particle 2 is greater than the velocity of particle 1, as is illustrated in the right
panel of figure 10.2.
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 Figure 10.3: Elastic collisions viewed from a reference frame in which one
particle is initially stationary.

____________________________


   



   Suppose we wish to view the results of an elastic collision in a reference frame
in which particle 2 is initially stationary. All we have to do is to transform the
velocities into a reference frame moving with the initial velocity of particle 2, as
illustrated in figure 10.3. We do this by relativistically adding U = -u2 to each
velocity. (Note that the velocity U of the moving frame is positive since u2
is negative.) Using the relativistic velocity translation formula, we find
that
   	
   
[image:                           ′                  ′ v1 = --u1 +-U---  v′ = --u1-+-U---  v′ =  --u2 +-U---      1 + u1U∕c2    1   1 + u′1U ∕c2   2    1 + u ′2U∕c2 ]
	(10.13)




where u1, u1′, u2, and u2′ indicate velocities in the original, center of momentum
reference frame and v1, v1′, etc., indicate velocities in the transformed
frame.

   In the special case where the masses of the two particles are equal to each
other, we have v1 = 2U∕(1 + U2∕c2), v
1′ = 0, and v2′ = 2U∕(1 + U2∕c2) = v
1.
Thus, when the masses are equal, the particles simply exchange velocities.

   If the velocities are nonrelativistic, then the simpler Galilean transformation
law v = u + U can be used in place of the relativistic equations invoked
above.
   
10.4.2    Inelastic Collisions
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 Figure 10.4: Building blocks of inelastic collisions. In the left panel two
particles collide to form a third particle. In the right panel a particle breaks
up, forming two particles.

____________________________






   An inelastic collision is one in which the particles coming out of the collision
are not the same as the particles going into it. Inelastic collisions conserve both
total momentum and energy just as elastic collisions do. However, unlike
elastic collisions, inelastic collisions generally do not conserve the total
kinetic energy of the particles, as some rest energy is generally created or
destroyed.

   Figure 10.4 shows the fundamental building blocks of inelastic collisions. We
can consider even the most complex inelastic collisions to be made up of
composites of only two processes, the creation of one particle from two, and the
disintegration of one particle into two.

   Let us consider each of these in the center of momentum frame. In both cases
the single particle must be stationary in this frame since it carries the total
momentum of the system, which has to be zero. By conservation of momentum, if
particle 1 in the left panel of figure 10.4 has momentum p, then the momentum of
particle 2 is -p. If the two particles have masses m1 and m2, then their energies
are E1 = (p2c2 + m
12c4)1∕2 and E
2 = (p2c2 + m
22c4)1∕2. The energy of particle
3 is therefore E3 = E1 + E2, and since it is at rest, all of its energy is
in the form of “mc2” or rest energy, and so the mass of this particle is


   
[image: m3   =  (E1 +  E2)∕c2  (center of momentum   frame )           2  2     2 1∕2     2  2     21∕2      =  (p ∕c  + m 1)   + (p ∕c +  m 2)      =  m1 [1 + p2∕(m21c2)]1∕2 + m2 [1 + p2∕(m22c2)]1∕2.   (10.14) ]



   The last line in the above equation shows that m3 > m1 + m2 because it is in
the form m1A + m2B where both A and B are greater than one. Thus, rest energy
is created in the amount ΔErest = (m3 - m1 - m2)c2.


   Actually, it is easy to calculate the mass of particle 3 in the above case from
any reference frame as long as the momenta and energies of particles 1 and 2 are
known in this frame. By conservation of energy and momentum, E3 = E1 + E2
and p3 = p1 + p2. Furthermore, E32 = p
32c2 + m
32c4, so we can solve for
m3:
   	
   
[image: m   = [(E  + E  )2∕c4 - (p  + p ) ⋅ (p + p )∕c2]1∕2   (any  frame ).   3      1     2         1     2    1    2 ]
	(10.15)





   The right panel of figure 10.4 shows the process of particle decay. This is just
the inverse of the particle creation process, and all of the analysis we have done
for creation is valid for particle decay except that rest energy is converted to
kinetic energy rather than vice versa.
   
10.5    Rockets and Conveyor Belts

Normally when we define a system to which Newton’s second law is to
be applied, the system is closed in the sense that mass cannot enter or
exit the system. However, sometimes it is convenient to work with open
systems for which this is not true. The classic example is the rocket, where
exhaust gases leave the system, thus decreasing the mass of the rocket with
time.

   Open systems can be analyzed if momentum is considered to be a
quantity which is accounted for much as money is accounted for in a
bank account. The bank account can change in three ways: money can be
deposited in the account, it can be withdrawn from the account, and

the amount can grow or shrink as a consequence of interest payments or
fees. Similarly, the amount of momentum in a system can change as the
result of mass entering the system, mass leaving the system, and forces
acting on the system. The time rate of change of momentum in a system is
therefore
   	
   
[image:           (    )    (    ) dp          dp        dp dt-=  F +   dt-   -   dt-    ,                 in        out ]
	(10.16)




where F is the net force on the system, (dp∕dt)in is the momentum per unit time
added by mass entering the system, and (dp∕dt)out is the amount lost
per unit time by mass exiting the system. In the non-relativistic case,
(dp∕dt)in = uin(dm∕dt)in and (dp∕dt)out = uout(dm∕dt)out, where (dm∕dt)in is the
mass entering the system per unit time with velocity uin and (dm∕dt)out is the
mass per unit time exiting the system with velocity uout.

   For non-relativistic velocities, the momentum of the system can be written as
p = mu so that
   	
   
[image: dp-=  dm-u + m du-. dt    dt       dt  ]
	(10.17)




To complete the analysis, we need an accounting of the mass entering and leaving
the system:
   	
   
[image:        (    )     (    ) dm--     dm--       dm--  dt =    dt     -   dt     .              in         out ]
	(10.18)
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 Figure 10.5: Rocket moving with velocity V while expelling gas at a rate R
with velocity V - ux.

____________________________


   



   Let us see how to apply this to a rocket for which all velocities are
non-relativistic. As figure 10.5 indicates, a rocket spews out a stream of exhaust
gas. The system is defined by the dashed box and includes the rocket and the part
of the exhaust gas inside the box. The reaction to the momentum carried off in
this stream of gas is what causes the rocket to accelerate. We note that
(dm∕dt)in = 0 since no mass is entering the system, and (dm∕dt)out = R, the rate
at which mass is ejected by the rocket in the form of exhaust gas. The
rocket is assumed to be moving to the right at speed V and the gas is
ejected at a speed ux relative to the rocket, which means that its actual
velocity after ejection is V - ux. We call ux the exhaust velocity. Notice
that V - ux may be either positive or negative, depending on how big V
is.

   Equating the mass of the rocket to the system mass, we find that R = -dm∕dt.
The momentum balance equation (10.16) becomes dp∕dt = -(V - ux)R.
The force on the rocket is actually zero, so the force term does not enter
the momentum balance equation. This is non-intuitive, because we are
used to acceleration being the result of a force. However, nothing,
including the ejected gas, is actually pushing on the system, so we
must indeed conclude that there is no force — all of the change in the
system’s momentum arises from the ejection of gas with the opposite
momentum.1

   Finally, we see that dp∕dt = (dm∕dt)V + m(dV∕dt) = -RV + m(dV∕dt).
Equating this to the results of the momentum balance calculation gives us
-RV + m(dV∕dt) = -(V - ux)R. Solving for the acceleration dV∕dt results
in
   	

   
[image: dV- =  uxR-- (rocket acceleration).  dt     m ]
	(10.19)




Thus, the acceleration of the rocket depends on the exhaust velocity of the
ejected gas, the rate at which the gas is being ejected, and the mass of the
rocket.
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 Figure 10.6: Sand is dumped on a conveyor belt and in turn is dumped off
the end of the belt.

____________________________


   



   Figure 10.6 illustrates another type of open system problem. A hopper
dumps sand on a conveyor belt at a rate of R kilograms per second. The
conveyor belt is moving to the right at (non-relativistic) speed V and
the sand is dumped off at the end. What force F is needed to keep the
conveyor belt moving at a constant speed, assuming that the conveyor belt
mechanism itself is frictionless? In this case (dm∕dt)in = (dm∕dt)out = R.
Furthermore, since the system outlined by the dashed line is in a steady state,
dp∕dt = 0.

   The key to understanding this problem is that the sand enters the system
with zero horizontal velocity, but exits the system with the horizontal
velocity of the conveyor belt, V . The momentum balance equation is
thus
   	
   
[image: 0 = F -  VR ]
	(10.20)




and the force is
   	
   
[image: F =  VR   (force on conveyor belt).  ]
	(10.21)




This force serves to accelerate the sand up to the velocity of the conveyor
belt.
   
10.6    Problems


      

      	Imagine a block of mass M resting on a plate under the influence of gravity,
      as shown in figure 10.7.
           
           	Determine the force of the plate on the block, Nb, and the force
           of the block on the plate, Np.
           

           	State which of the three forces, Mg, Nb, and Np, form a Newton’s
           third law pair.
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 Figure 10.7: Block of mass M subject to gravitational force Mg while
      resting on a plate. The force of the block on the plate is Np while the
      force of the plate on the block is Nb.

      _____________________________________
      




      

      	Repeat the previous problem assuming that the block and the plate are in
      an elevator accelerating upward with acceleration a.
      

      	Straighten out the misunderstanding of Newton’s third law implicit in
      the question “If the force of the horse on the cart equals the force
      of the cart on the horse, why does anything ever go anywhere”?
      Examine in particular the conditions under which the horse-cart system
      accelerates.
      

      	A pusher boat (mass M) on the Mississippi is pushing two barges (each
      mass m) at a steady speed as shown in figure 10.8. Each barge is subject to
      a drag force by the water of FB. Consider only horizontal force components
      in the following.
           
           	What is the total horizontal force of the water on the barge-boat
           system? Explain.
           

           	What is the direction and magnitude of the force of the pusher
           boat on barge 1? Explain.
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 Figure 10.8: Barges being pushed by a pusher boat on the Mississippi.
      Each barge experiences a drag force Fb.

      _____________________________________
      




      

      	A train with an engine of mass M and 2 freight cars, each of mass
      m, is accelerating to the right with acceleration a on a horizontal
      track as shown in figure 10.9. Assume that the two freight cars roll
      with negligible friction. Consider only horizontal force components
      below.
           
           	Find the direction and magnitude of the force of the rails on the
           engine and specify the system to which Newton’s second law is
           applied.
           

           	Find the direction and magnitude of the force of the engine on the
           first car and specify the system to which Newton’s second law is
           applied.
           

           	Find the direction and magnitude of the force of the first car on
           the second car and specify the system to which Newton’s second
           law is applied.
           

           	Find the direction and magnitude of the force of the second car
           on the first car and specify the law used to obtain this force.
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 Figure 10.9: An engine and two freight cars accelerating to the right.

      _____________________________________
      



      

      	A car and trailer are descending a hill as shown in figure 10.10. Assume that
      the trailer rolls without friction and that air friction can be ignored.
      Consider only forces parallel to the road surface.

           
           	Compute the force of the road on the car if the car-trailer system
           shown in figure 10.10 is moving down the hill at constant speed.
           

           	Compute the force of the trailer on the car in the above conditions.
           

           	If the driver takes his foot off the brake and lets the car coast
           frictionlessly, recompute the force of the trailer on the car.


      





[image: PIC]


      
 Figure 10.10: A car and a trailer going down a hill.

      _____________________________________
      



      

      	Consider a one-dimensional elastic collision between particles of masses m1
      and m2. If particle 2 is initially stationary, what range of values must
      m1∕m2 have for the initial particle to rebound backwards along its initial
      track after the collision? (Do this problem non-relativistically.)
      

      	A stationary pion (mass M) decays into a muon (mass m < M) and a
      neutrino (massless).
           
           	What is the (fully relativistic) momentum of the muon after the
           decay?
           

           	What is the energy of the neutrino?



      

      	In an elastic collision viewed in the center of momentum frame, the energy
      of each particle is conserved individually. Is this true for the same process
      viewed from a reference frame in which one of the particles is initially
      stationary?
      

      	A space probe approaches a planet in the -x direction, curves around it
      under the influence of the planet’s powerful gravity (a conservative force)
      and recedes from the planet in the +x direction, as seen in figure 10.11. The
      planet is moving in the +x direction at speed V , while the space
      probe is initially moving in the -x direction at speed u1. What is its
      speed u2 in the +x direction after this close approach to the planet?
      Treat this problem nonrelativistically. Hint: First transform to the
      center of mass frame in which the planet is essentially stationary.
      Work out the interaction between the probe and the planet in this
      frame. Then transform back to the original reference frame. Assume
      that the mass of the probe is negligible compared to that of the
      planet.
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 Figure 10.11: A space probe approaches a planet, curves around it,
      and heads off in the opposite direction.

      _____________________________________
      



      

      	Two asteroids, each with mass 1010 kg and initial speed 105 m s-1, collide
      head on. The whole mess congeals into one large mass. How much rest mass
      (rest energy divided by c2) is created?

      

      	Two equal objects, both with mass m, collide and stick together. Before the
      collision, one mass is stationary and the other is moving at speed v. In the
      following, assume that velocities are fully relativistic.
           
           	Compute the total momentum and energy (including rest energy)
           of the two masses before the collision.
           

           	Compute the mass M of the combined system after the collision,
           taking the conversion of energy into mass into account.


      

      	Explain qualitatively why a fireman needs to push forward on a firehose to
      keep it stationary. Hint: The water is flowing faster after it comes out of the
      nozzle of the hose than before.
      

      	Solve equation (10.19) for V as a function of m, assuming that
      V = 0 and m = m0 at t = 0. Hint: Since R = -dm∕dt, we have
      R∕m = -d ln(m)∕dt.
      

      	Bottles are filled with soft drink at a bottling plant as shown in figure 10.12.
      The bottles sit on a scale which is used to determine when to shut off the
      flow of soft drink. If the desired mass of the bottle plus soft drink after
      filling is M, what weight should the scale read when the bottle is full? The
      rate at which mass is being added to the bottle is R and its velocity entering
      the bottle is V .
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 Figure 10.12: A bottle being filled with soft drink at a rate R. The
      liquid enters the bottle with velocity V .

      _____________________________________
      



      

      	An interstellar space probe has frontal area A, initial mass M0, and initial
      velocity V 0, which is non-relativistic. The tenuous gas between the stars has
      mass density ρ. These gas molecules stick to the probe when they hit it.
      Find the probe’s acceleration. Hint: In a frame of reference in which the gas
      is stationary, does the momentum of the space probe change with time?
      Does its mass?
      

      	A light beam with power J hits a plate which is oriented normally to
      the beam. Compute the force required to hold the plate in place
      if
           
           	the plate completely absorbs the light, and
           

           	the plate completely reflects the light.


      Hint: Photons are massless, so the momentum of a photon with energy
      E is E∕c. Thus, the momentum per unit time hitting the plate is
      J∕c.
      


      	Find the acceleration of a rocket when the exhaust “gas” is actually a laser

      beam of power J. Assume that the rocket moves at non-relativistic velocities
      and that the decrease in mass due to the loss of energy in the laser beam is
      negligible.





   


Chapter 11
Rotational Dynamics

We have already seen the quantum mechanical treatment of angular momentum
and rotational dynamics. In this section we study these subjects in a classical,
non-relativistic context. We first define the concepts of torque and angular
momentum in order to understand the orbital motion of a single particle.
Next we examine two particles in arbitrary motion and learn how kinetic
energy and angular momentum are partitioned between orbital and internal
components. Two particles fixed to the ends of a light rod constitute a
dumbbell, which serves as a prototype for the rotation of rigid bodies. We
then see how what we learned for two particles extends to an arbitrary
number of particles. Finally, we explore the physics of structures in static
equilibrium.

   Before we begin, we need to extend our knowledge of vectors to the cross
product.
   
11.1    Math Tutorial — Cross Product

There are two ways to multiply two vectors together, the dot product and the
cross product. We have already studied the dot product of two vectors, which
results in a scalar or single number.
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 Figure 11.1: Illustration of the cross product of two vectors A and B. The
resulting vector C is perpendicular to the plane defined by A and B.

____________________________


   



   The cross product of two vectors results in a third vector, and is written
symbolically as follows:
   	
   
[image: C =  A ×  B. ]
	(11.1)




As illustrated in figure 11.1, the cross product of two vectors is perpendicular to
the plane defined by these vectors. However, this doesn’t tell us whether the
resulting vector in figure 11.1 points upward out of the plane or downward. This
ambiguity is resolved using the right-hand rule:
      

      	Point the uncurled fingers of your right hand along the direction of the
      first vector A.
      

      	Rotate your arm until you can curl your fingers in the direction of the
      second vector B.
      

      	Your  stretched  out  thumb  now  points  in  the  direction  of  the  cross
      product vector C.


   The magnitude of the cross product is given by
   	

   
[image: |C | = |A ||B |sin(θ), ]
	(11.2)




where |A| and |B| are the magnitudes of A and B, and θ is the angle between
these two vectors. Note that the magnitude of the cross product is zero when the
vectors are parallel or anti-parallel, and maximum when they are perpendicular.
This contrasts with the dot product, which is maximum for parallel vectors and
zero for perpendicular vectors.

   Notice that the cross product does not commute, i. e., the order of the vectors
is important. In particular, it is easy to show using the right-hand rule
that
   	
   
[image: A × B  = - B ×  A. ]
	(11.3)





   An alternate way to compute the cross product is most useful when the two
vectors are expressed in terms of components, i. e., A = (Ax,Ay.Az) and
B = (Bx,By,Bz): 


   
[image: Cx  =   AyBz  - AzBy Cy  =   AzBx  - AxBz  Cz  =   AxBy  - AyBx.                     (11.4) ]


Notice that once you have the first of these equations, the other two can be
obtained by cyclically permuting the indices, i. e., x → y, y → z, and z → x. This
is useful as a memory aid.
   11.2    Torque and Angular Momentum
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 Figure 11.2: A mass M located at r relative to the origin O has momentum
p and has a force F applied to it. By the right-hand rule the torque τ = r×F
points out of the page, while the angular momentum L = r × p points into
the page.

____________________________






   Torque is the action of a force F on a mass M which induces it to revolve
about some point, called the origin. It is defined
   	
   
[image: τ = r × F, ]
	(11.5)




where r is the position of the mass relative to the origin, as illustrated in figure
11.2.

   Notice that the torque is zero in a number of circumstances. If the force points
directly toward or away from the origin, the cross product is zero, resulting in zero
torque, even though the force is non-zero. Likewise, if r = 0, the torque is zero.
Thus, a force acting at the origin produces no torque. Both of these limits make
sense intuitively, since neither induces the mass to revolve around the
origin.

   The angular momentum of a mass M relative to a point O is
   	
   
[image: L = r × p, ]
	(11.6)





where p is the ordinary kinetic momentum of the
mass.1
The angular momentum is zero if the motion of the object is directly towards or
away from the origin, or if it is located at the origin.

   If we take the cross product of the position vector and Newton’s second law,
we obtain an equation that relates torque and angular momentum:
   	
   
[image:             dp     d           dr r × F = r × --- =  --(r × p ) ----× p.              dt    dt          dt ]
	(11.7)




The second term on the right side of the above equation is zero because dr∕dt
equals the velocity of the mass, which is parallel to its momentum and the cross
product of two parallel vectors is zero. This equation can therefore be
written
   	
   
[image:     dL τ = -dt   (Newton ’s second law  for rotation ). ]
	(11.8)




It is the rotational version of Newton’s second law.

   For both torque and angular momentum the location of the origin is
arbitrary, and is generally chosen for maximum convenience. However, it is
necessary to choose the same origin for both the torque and the angular
momentum.
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 Figure 11.3: A convenient choice of origin for a planet (right-hand sphere)
revolving around the sun is simply the center of the sun. In this case the
torque of the sun’s gravitational force on the planet is zero.

____________________________


   



   For the case of a central force, i. e., one which acts along the line of centers
between two objects (such as gravity), there often exists a particularly convenient
choice of origin. Imagine a planet revolving around the sun, as illustrated
in figure 11.3. If the origin is placed at the center of the sun (which is
assumed not to move under the influence of the planet’s gravity), then the
torque exerted on the planet by the sun’s gravity is zero, which means
that the angular momentum of the planet about the center of the sun is
constant in time. No other choice of origin would yield this convenient
result.

   We already know about two fundamental conservation laws — those of energy
and linear momentum. We believe that angular momentum is similarly conserved
in isolated systems. In other words, particles can exchange angular momentum
between themselves, but the vector sum of the angular momentum of all
the particles in a system isolated from outside influences must remain
constant.

   








[image: PIC]



 Figure 11.4: Scenario for the non-conservation of angular momentum. F12
is the force of mass M2 on mass M1 and vice versa.

____________________________


   



   Conservation of angular momentum is not an automatic consequence of the
conservation of linear momentum, even though the governing equation (11.8) for
angular momentum is derived from Newton’s second law. As an example, figure
11.4 shows a hypothetical situation in which the force F21 of M1 on M2 is equal
in magnitude but opposite in sign to the force F12 of M2 on M1, i. e., Newton’s
third law holds, and the sum of the momenta of the two masses is conserved.
However, because the forces are non-central, the angular momentum of
the masses is not conserved. This scenario is impossible if the forces are
central.
   
11.3    Two Particles
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 Figure 11.5: Two particles of mass M1 and M2 with M2 > M1.

____________________________






   Suppose we wish to apply Newton’s second law to two particles considered
together as a single system. As we showed previously, only external forces act on
the total momentum, ptotal = p1 + p2, of the two particles:
   	
   
[image: F        = dptotal.   external     dt ]
	(11.9)





   Let’s write the total non-relativistic momentum of the two particles in a
special way:
   	
   
[image:                               ( M1v1  + M2v2 ) ptotal = M1v1  + M2v2  = Mtotal  ----M--------- ≡  MtotalVcm,                                       total ]
	(11.10)




where Mtotal = M1 + M2. The quantity Vcm is the velocity of the center of mass
and can be expressed as the time derivative of the position of the center of mass,
Rcm,
   	

   
[image:         dRcm Vcm  =  -----,          dt ]
	(11.11)




where
   	
   
[image:         M1r1 +  M2r2 Rcm  =  -------------.            Mtotal ]
	(11.12)





   We now see how the kinetic energy and the angular momentum of the two
particles may be split into two parts, one having to do with the motion
of the center of mass of the two particles, the other having to do with
the motion of the two particles relative their center of mass. Figure 11.5
shows graphically how the vectors r′1 = r1 - Rcm and r′2 = r2 - Rcm
are defined. These vectors represent the positions of the two particles
relative to the center of mass. Substitution into equation (11.12) shows
that M1r′1 + M2r′2 = 0. This leads to the conclusion that M1d1 = M2d2
in figure 11.5. We also define the velocity of each mass relative to the
center of mass as v′1 = dr′1∕dt and v′2 = dr′2∕dt, and we therefore have
M1v′1 + M2v′2 = 0.

   The total kinetic energy is just the sum of the kinetic energies of the two
particles, K = M1v12∕2 + M
2v22∕2, where v
1 and v2 are the magnitudes of the

corresponding velocity vectors. Substitution of v1 = Vcm + v′1 etc., into the
kinetic energy formula and rearranging yields
   	
   
[image:                                    2           ′2         ′2 Ktotal = Ktrans + Kintern = [MtotalVcm∕2 ] + [M1v 1 ∕2 + M2v 2 ∕2]. ]
	(11.13)




Terms like Vcm ⋅ v′1 cancel out because M1v′1 + M2v′2 = 0.

   The first term on the right side of equation (11.13) in square brackets is the
kinetic energy the two particles would have if all of the mass were concentrated at
the center of mass. The second term is the kinetic energy computed relative
to the motion of the center of mass. The first is called the translational
kinetic energy of the system while the second is called the internal kinetic
energy.

   The angular momentum of the system is just the sum of the angular momenta
of the two particles: Ltotal = M1r1 × v1 + M2r2 × v2. By reasoning similar to the
case of kinetic energy, we can rewrite this as
   	
   
[image: L     = L   +  L    = [M     R   ×  V   ] + [M r′×  v′+  M  r′× v ′].   total     orb    spin      total  cm      cm       1 1    1     2 2    2  ]
	(11.14)




The first term in square brackets on the right is called the orbital angular
momentum while the second term is called the spin angular momentum. The
former is the angular momentum the system would have if all the mass were
concentrated at the center of mass, while the latter is the angular momentum of
motion about the center of mass.

   Interestingly, the idea of center of mass and the corresponding split of kinetic
energy and angular momentum into orbital and spin parts has no useful
relativistic generalization. This is due to the factor of γ ≡ (1 - v2∕c2)-1∕2 in the
relativistic definition of momentum, p = mvγ, which means that
   	
   
[image: dmr -----⁄= p   (relativistic case).  dt ]
	(11.15)




   
11.4    The Uneven Dumbbell
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 Figure 11.6: Perspective view of the rotating dumbbell attached to an axle
labeled ω. The axle attaches to the crossbar at the center of mass. The
velocity v1 is out of the page and v2 is into the page.

____________________________






   So far we have put no restrictions on the movements of the two particles. An
interesting special case occurs when the particles are connected by a lightweight,
rigid rod, giving us a dumbbell. In order to further simplify things, we assume
that the rod is connected rigidly to a fixed axle at the center of mass of the two
particles, as shown in figure 11.6. The masses constituting the ends of the
dumbbell are therefore free to revolve in circles about the axle, but they are
prevented from executing any other motion. The key effect of this constraint is
that both masses rotate about the axle with the same angular frequency
ω.

   If the particles are respectively distances d1 and d2 from the axle, then their
speeds are v1 = d1ω and v2 = d2ω. Thus the kinetic energy of the rotating
dumbbell is
   	
   
[image: Kintern =  1M1v2  + 1-M2v2 =  1Iω2   (fixed axle),           2    1   2     2   2 ]
	(11.16)




where I = M1d12 + M
2d22 is called the moment of inertia. Similarly, the
magnitude of the spin angular momentum, which is a vector parallel to the axle,
is
   	
   
[image: Lspin =  M1d1v1 + M2d2v2  =  Iω  (fixed  axle). ]
	(11.17)




Finally, Newton’s second law for rotation becomes
   	
   
[image: τ =  dLspin = dIω- = I dω-  (fixed axle),        dt      dt      dt ]
	(11.18)




where τ is the component of torque along the rotation axis.

   Note that the rightmost expression in equation (11.18) assumes that I is
constant, which only is true if d1 and d2 are constant – i. e., the dumbbell must
truly be rigid.
   
11.5    Many Particles

The generalization from two particles to many particles is quite easy in principle.
If a subscripted i indicates the value of a quantity for the ith particle, then the
center of mass is given by
   	
   
[image:         --1---∑ Rcm  =  M        Miri           total i ]
	(11.19)




where
   	
   
[image: M      = ∑  M  .    total    i   i ]
	(11.20)




Furthermore, if we define r′i = ri - Rcm, etc., then the kinetic energy is
just
   	
   
[image: K     =  M    V 2 ∕2 + ∑  M  v′2∕2   total     total cm       i   i i ]
	(11.21)




and the angular momentum is
   	

   
[image:                            ∑      ′    ′ Ltotal = MtotalRcm  × Vcm  +    Mir i × vi.                             i ]
	(11.22)




In other words, both the kinetic energy and the angular momentum can be
separated into two parts: one part is related to the overall motion of the system
and the other is due to motions of system components relative to the center of
mass, just as for the case of the dumbbell.


   
11.6    Rigid Bodies

For a rigid body rotating about a fixed axle, the moment of inertia is
   	
   
[image:     ∑ I =    Mid2i,      i ]
	(11.23)




where di is the perpendicular distance of the ith particle from the axle. Equations
(11.16)-(11.18) are valid for a rigid body consisting of many particles.
Furthermore, the moment of inertia is constant in this case, so it can be taken out
of the time derivative:
   	

   
[image:     dIω     d ω τ = ---- = I--- = I α  (fixed axle, constant I).      dt      dt ]
	(11.24)




The quantity α = dω∕dt is called the angular acceleration.

   The sum in the equation for the moment of inertia can be converted to an
integral for a continuous distribution of mass. We shall not pursue this here,
but simply quote the results for a number of solid objects of uniform
density:
      

      	For rotation of a sphere of mass M and radius R about an axis piercing
      its center: I = 2MR2∕5.
      

      	For rotation of a cylinder of mass M and radius R about its axis of
      symmetry: I = MR2∕2.
      

      	For rotation of a thin rod of mass M  and length L about an axis
      perpendicular to the rod passing through its center: I = ML2∕12.
      

      	For rotation of an annulus of mass M, inner radius Ra, and outer radius
      Rb about its axis of symmetry: I = M(Ra2 + R
b2)∕2.



   
11.7    Statics










[image: PIC]



 Figure 11.7: Asymmetric mass balance. We assume that the balance beam
is massless.

____________________________






   If a rigid body is initially at rest, it will remain at rest if and only if the sum of
all the forces and the sum of all the torques acting on the body are zero. As an
example, a mass balance with arms of differing length is shown in figure 11.7. The
balance beam is subject to three forces pointing upward or downward, the tension
T in the string from which the beam is suspended and the weights M1g and M2g
exerted on the beam by the two suspended masses. The parameter g is the local
gravitational field and the balance beam itself is assumed to have negligible
mass. Taking upward as positive, the force condition for static equilibrium
is
   	
   
[image: T -  M  g - M  g = 0  (zero net force).        1      2 ]
	(11.25)




Defining a counterclockwise torque to be positive, the torque balance computed
about the pivot point in figure 11.7 is
   	
   
[image: τ =  M  gd -  M  gd  = 0  (zero torque),        1  1     2  2 ]
	(11.26)





where d1 and d2 are the lengths of the beam arms.

   The first of the above equations shows that the tension in the string must
be
   	
   
[image: T  = (M1  + M2 )g, ]
	(11.27)




while the second shows that
   	
   
[image: M      d ---1=  -2. M2     d1 ]
	(11.28)




Thus, the tension in the string is just equal to the weight of the masses attached
to the balance beam, while the ratio of the two masses equals the inverse ratio of
the associated beam arm lengths.

   
11.8    Problems


      

      	Show using the component form of the cross product given by equation
      (11.4) that A × B = -B × A.
      

      	A mass M is sliding on a frictionless table, but is attached to a string which
      passes through a hole in the center of the table as shown in figure 11.8. The
      string is gradually drawn in so the mass traces out a spiral pattern as shown
      in figure 11.8. The initial distance of the mass from the hole in the table is
      R and its initial tangential velocity is v. After the string is drawn in, the
      mass is a distance R′ from the hole and its tangential velocity is
      v′.
           
           	Given R, v, and R′, find v′.
           

           	Compute the change in the kinetic energy of the mass in going
           from radius R to radius R′.
           

           	If the above change is non-zero, determine where the extra energy
           came from.
           





[image: PIC]



           
 Figure 11.8: Trajectory of a mass on a frictionless table attached
           to a string which passes through a hole in the table. The string is
           drawing the mass in.

           _____________________________________
           



           


      

      	A car of mass 1000 kg is heading north on a road at 30 m s-1 which passes
      2 km east of the center of town.
           
           	Compute the angular momentum of the car about the center of
           town when the car is directly east of the town.
           

           	Compute the angular momentum of the car about the center of
           town when it is 3 km north of the above point.


      

      	The apparatus illustrated in figure 11.9 is used to raise a bucket of mass M
      out of a well.
           
           	What force F  must be exerted to keep the bucket from falling
           back into the well?
           

           	If the bucket is slowly raised a distance d, what work is done on
           the bucket by the rope attached to it?
           

           	What work is done by the force F on the handle in the above
           case?


      






[image: PIC]


      
 Figure 11.9: A crank on a fixed axle turns a drum, thus winding the
      rope around the drum and raising the mass.

      _____________________________________
      



      

      	Derive equations (11.13) and (11.14).
      

      	A mass M is held up by the structure shown in figure 11.10. The support
      beam has negligible mass. Find the tension T in the diagonal wire. Hint:
      Compute the net torque on the support beam about point A due to the
      tension T and the weight of the mass M.
      





[image: PIC]


      
 Figure 11.10: A mass is supported by the tension in the diagonal wire.
      The support beam is free to pivot at point A.


      _____________________________________
      



      

      	A system consists of two stars, one of mass M moving with velocity
      v1 = (0,v, 0) at position r1 = (d, 0, 0), the other of mass 2M with zero
      velocity at the origin.
           
           	Find the center of mass position and velocity of the system of two
           stars.
           

           	Find the spin angular momentum of the system.
           

           	Find the internal kinetic energy of the system.
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 Figure 11.11: A mass is supported by two strings.

      _____________________________________
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 Figure 11.12: A ladder leaning against a wall is held in place the force
      F acting on the base of the ladder.

      _____________________________________
      



      

      	A solid disk is rolling down a ramp tilted an angle θ from the horizontal.
      Compute the acceleration of the disk down the ramp and compare it
      with the acceleration of a block sliding down the ramp without
      friction.
      

      	A mass M is suspended from the ceiling by two strings as shown in figure
      11.11. Find the tensions in the strings.
      

      	A man of mass M is a distance D up a ladder of length L which
      makes an angle θ with respect to the vertical wall as shown in figure
      11.12. Take the mass of the ladder to be negligible. Find the force
      F needed to keep the ladder from sliding if the wall and floor are
      frictionless and therefore can only exert normal forces A and B on the
      ladder.





   


Chapter 12
Harmonic Oscillator
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 Figure 12.1: Illustration of a mass-spring system.

____________________________






   Figure 12.1 illustrates the prototypical harmonic oscillator, the mass-spring
system. A mass M is attached to one end of a spring. The other end of the spring
is attached to something rigid such as a wall. The spring exerts a restoring force
F = -kx on the mass when it is stretched by an amount x, i. e., it acts to return
the mass to its initial position. This is called Hooke’s law and k is called the
spring constant.
   
12.1    Energy Analysis
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 Figure 12.2: Potential, kinetic, and total energy of a harmonic oscillator
plotted as a function of spring displacement x.

____________________________






   The potential energy of the mass-spring system is
   	
   
[image:            2 U (x) = kx ∕2 ]
	(12.1)




which may be verified by noting that the Hooke’s law force is derived from this
potential energy: F = -d(kx2∕2)∕dx = -kx. This is shown in figure 12.2. Since a
potential energy exists, the total energy E = K + U is conserved, i. e., is
constant in time. If the total energy is known, this provides a useful tool for
determining how the kinetic energy varies with the position x of the mass M:
K(x) = E - U(x). Since the kinetic energy is expressed (non-relativistically) in
terms of the velocity u as K = Mu2∕2, the velocity at any point on the graph in
figure 12.2 is
   	
   
[image:       (          )1 ∕2         2(E---U-)- u = ±      M          . ]
	(12.2)






   Given all this, it is fairly evident how the mass moves. From Hooke’s law, the
mass is always accelerating toward the equilibrium position, x = 0. However, at
any point the velocity can be either to the left or the right. At the points
where U(x) = E, the kinetic energy is zero. This occurs at the turning
points
   	
   
[image:          (2E )1 ∕2 xTP = ±   ---     .            k ]
	(12.3)




If the mass is moving to the left, it slows down as it approaches the left turning
point. It stops when it reaches this point and begins to move to the right. It
accelerates until it passes the equilibrium position and then begins to
decelerate, stopping at the right turning point, accelerating toward the left,
etc. The mass thus oscillates between the left and right turning points.
(Note that equations (12.2) and (12.3) are only true for the harmonic
oscillator.)

   How does the period of the oscillation depend on the total energy of the
system? Notice that from equation (12.2) the maximum speed of the mass (i. e.,
the speed at x = 0) is equal to umax = (2E∕M)1∕2. The average speed must be
some fraction of this maximum value. Let us guess here that it is half the
maximum speed:
   	
   

[image:                   (    )1∕2 uaverage ≈ umax-=   -E--       (approximate ).             2      2M ]
	(12.4)




However, the distance d the mass has to travel for one full oscillation is twice the
distance between turning points, or d = 4(2E∕k)1∕2. Therefore, the period of
oscillation must be approximately
   	
   
[image:        d        ( 2E )1∕2( 2M  )1∕2    ( M )1 ∕2 T = u-------≈  4  -k-      -E--    =  8  k--      (approximate ).       average ]
	(12.5)




   
12.2    Analysis Using Newton’s Laws

The acceleration of the mass at any time is given by Newton’s second
law:
   	
   

[image:     d2x    F       kx a = ---2 = ---=  - ---.      dt    M       M ]
	(12.6)




An equation of this type is known as a differential equation since it involves a
derivative of the dependent variable x. Equations of this type are generally
more difficult to solve than algebraic equations, as there are no universal
techniques for solving all forms of such equations. In fact, it is fair to say that
the solutions of most differential equations were originally obtained by
guessing!

   We already have the basis on which to make an intelligent guess for the
solution to equation (12.6) since we know that the mass oscillates back and forth
with a period that is independent of the amplitude of the oscillation. A
function which might fill the bill is the sine function. Let us try substituting
x = sin(ωt), where ω is a constant, into this equation. The second derivative of x
with respect to t is -ω2 sin(ωt), so performing this substitution results
in
   	
   
[image:    2            -k- - ω  sin(ωt ) = - M sin(ωt). ]
	(12.7)




Notice that the sine function cancels out, leaving us with -ω2 = -k∕M. The
guess thus works if we set
   	

   
[image:      (   )1∕2 ω =   -k-    .       M ]
	(12.8)





   The constant ω is the angular oscillation frequency for the oscillator, from
which we infer the period of oscillation to be T = 2π(M∕k)1∕2. This agrees with
the earlier approximate result of equation (12.5), except that the approximation
has a numerical factor of 8 rather than 2π ≈ 6. Thus, the earlier guess is only off
by about 30%!

   It is easy to show that x = A sin(ωt) is also a solution of equation (12.6),
where A is any constant and ω = (k∕M)1∕2. This confirms that the oscillation
frequency and period are independent of amplitude. Furthermore, the cosine
function is equally valid as a solution: x = B cos(ωt), where B is another constant.
In fact, the most general possible solution is just a combination of these two,
i. e.,
   	
   
[image: x = A  sin(ωt) + B cos(ωt). ]
	(12.9)




The values of A and B depend on the position and velocity of the mass at time
t = 0.



   
12.3    Forced Oscillator
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 Figure 12.3: Illustration of a forced mass-spring oscillator. The left end of
the spring is wiggled back and forth with an angular frequency ωF   and a
maximum amplitude d0.

____________________________






   If we wiggle the left end of the spring by the amount d = d0 sin(ωF t), as in
figure 12.3, rather than rigidly fixing it as in figure 12.1, we have a forced
harmonic oscillator. The constant d0 is the amplitude of the imposed wiggling
motion. The forcing frequency ωF  is not necessarily equal to the natural or
resonant frequency ω = (k∕M)1∕2 of the mass-spring system. Very different
behavior occurs depending on whether ωF  is less than, equal to, or greater than
ω.

   Given the above wiggling, the force of the spring on the mass becomes
F = -k(x - d) = -k[x - d0 sin(ωF t)] since the length of the spring is the
difference between the positions of the left and right ends. Proceeding as for the
unforced mass-spring system, we arrive at the differential equation
   	
   
[image:  2 d-x-+ kx- = kd0-sin(ωFt). dt2   M      M ]
	(12.10)




The solution to this equation turns out to be the sum of a forced part in which x
is proportional to sin(ωF t) and a free part which is the same as the solution to the
unforced equation (12.9). We are primarily interested in the forced part of the
solution, so let us set x = x0 sin(ωF t) and substitute this into equation
(12.10):
   	
   

[image:                    kx0            kd0 - ω2Fx0 sin(ωF t) + ----sin(ωF t) = ----sin (ωF t).                    M              M ]
	(12.11)




Again the sine factor cancels and we are left with an algebraic equation for x0, the
amplitude of the oscillatory motion of the mass.

   








[image: PIC]



 Figure 12.4: Plot of the ratio of response to forcing vs. the ratio of forced
to free oscillator frequency for the mass-spring system.

____________________________


   



   Solving for the ratio of the oscillation amplitude of the mass to the amplitude
of the wiggling motion, x0∕d0, we find
   	
   
[image: x0-= -----1-----, d0   1 - ω2F∕ω2 ]
	(12.12)




where we have recognized that k∕M = ω2, the square of the frequency of the free
oscillation. This function is plotted in figure 12.4.

   Notice that if ωF  < ω, the motion of the mass is in phase with the
wiggling motion and the amplitude of the mass oscillation is greater than
the amplitude of the wiggling. As the forcing frequency approaches the
natural frequency of the oscillator, the response of the mass grows in
amplitude. When the forcing is at the resonant frequency, the response
is technically infinite, though practical limits on the amplitude of the
oscillation will intervene in this case — for instance, the spring cannot
stretch or shrink an infinite amount. In many cases friction will act to
limit the response of the mass to forcing near the resonant frequency.
When the forcing frequency is greater than the natural frequency, the
mass actually moves in the opposite direction of the wiggling motion —
i. e., the response is out of phase with the forcing. The amplitude of the
response decreases as the forcing frequency increases above the resonant
frequency.

   Forced and free harmonic oscillators form an important part of many physical
systems. For instance, any elastic material body such as a bridge or an
airplane wing has harmonic oscillatory modes. A common engineering
problem is to ensure that such modes are damped by friction or some
other physical mechanism when there is a possibility of exitation of these
modes by naturally occurring processes. A number of disasters can be

traced to a failure to properly account for oscillatory forcing in engineered
structures.
   
12.4    Quantum Mechanical Harmonic Oscillator

The quantum mechanical harmonic oscillator shares the characteristic of other
quantum mechanical bound state problems in that the total energy can take on
only discrete values. Calculation of these values is too difficult for this book, but
the problem is sufficiently important to warrant reporting the results here. The
energies accessible to a quantum mechanical mass-spring system are given by the
formula
   	
   
[image:                        1∕2 En  = (n + 1∕2)¯h(k ∕M )  ,   n =  0,1,2,.... ]
	(12.13)




In other words, the energy difference between successive quantum mechanical
energy levels in this case is constant and equals the classical resonant frequency
for the oscillator, ω = (k∕M)1∕2, times ℏ.


   
12.5    Problems


      

      	An oscillator (non-harmonic) has the potential energy function U(x) =
      Cx4, where C is a constant. How does the oscillation frequency depend
      on energy? Explain your reasoning.

      

      	A mass M is suspended against gravity by a spring of spring constant k.
      The unstretched length of the spring is x0 and under the influence of gravity
      the spring is stretched to a resting length x1 > x0.
           
           	Compute the length of the spring x1 in the steady, resting case.
           

           	Set up the equation of motion for the mass moving under the
           influence of the two forces, gravity and spring. Solve the equation
           for the frequency of the oscillation and the position of the spring
           as a function of time x(t). Does the oscillation frequency change
           from the case without gravity?


      

      	Consider the pendulum in figure 12.5. The mass M moves along an arc
      with x denoting the distance along the arc from the equilibrium
      point.
           
           	Find the component of the gravitational force tangent to the arc
           (and thus in the direction of motion of the mass) as a function
           of the angle θ. Use the small angle approximation on sin(θ) to
           simplify this answer.
           

           	Get the force in terms of x rather than θ. (Recall that θ = x∕L.)
           

           	Use Newton’s second law for motion in the x direction (i. e., along
           the arc followed by the mass) to get the equation of motion for
           the mass.
           

           	Solve the equation of motion using the solution to the mass-spring
           problem as a guide.
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 Figure 12.5: The pendulum as a harmonic oscillator.

      _____________________________________
      



      

      	A massless particle is confined to a box of length a. (Think of a photon
      between two mirrors.) Treating the particle classically, compute the period
      of one round trip from one end of the box to the other and back again.
      From this compute an angular frequency for the oscillation of this
      particle in the box. Does this frequency depend on the particle’s
      energy?
      

      	Compute the ground state energy Eground of a massless particle in a box of
      length a using quantum mechanics. Compare Eground∕ℏ with the angular
      frequency computed in the previous problem.






   
Appendix A
Constants, Units, and Conversions

This appendix contains various useful constants and conversion factors as well as
information on the International System of Units.
   
A.1    SI Units

“SI” is the French abbreviation for the International System of Units, the system
used universally in science. See http://physics.nist.gov/cuu/Units/ for the
last word on this subject. This treatment is derived from the National Institute of
Science and Technology (NIST) website.

   The most fundamental units of measure are length (meters; m), mass
(kilograms; kg), time (seconds; s), electric current (ampere; A), temperature
(kelvin; K), amount of a substance (mole; mol), and the luminous intensity
(candela; cd). The candela is a rather specialized unit related to the perceived
brightness of a light source by a “standard” human eye. As such, it is rather
anthropocentric and hardly seems to merit the designation “fundamental”.
The mole is also less fundamental than the other units, as it is simply a
convenient way to refer to a multiple of Avogadro’s number of atoms or
molecules.

   Fundamental units can be combined to form derived units with special names.
Some of these derived units are listed below.

   Fundamental and derived SI units can have multipliers expressed as prefixes,
e. g., 1 km = 1000 m. The NIST website points out a minor irregularity with the
fundamental unit of mass, the kilogram. This already has the multiplier “kilo”
prefixed to the unit “gram”. In this case 1000 kg is written 1 Mg, not 1 kkg, etc.
SI multipliers are listed below as well.


   
A.1.1    Derived Units


    	Name      	Abbrev.	Units          	Meaning                              

	         	       	           	                          

	hertz        	Hz       	s-1                  	frequency (cycles/sec)             

	(unnamed)	       	s-1                  	angular frequency (radians/sec)

	newton     	N        	kg m s-2       	force                                   

	pascal      	Pa       	N m-2           	pressure                               

	joule        	J         	N m           	energy                                 

	watt        	W       	J s-1              	power                                  

	coulomb   	C        	A s            	electric charge                       

	volt         	V        	N m C-1       	scalar potential                     

	(unnamed)	       	N s C-1         	vector potential                     

	(unnamed)	       	V m-1           	electric field                          

	tesla        	T        	N s C-1 m-1	magnetic field                       

	(unnamed)	       	V m           	electric flux                          

	weber       	Wb      	T m2              	magnetic flux                        

	volt         	V        	V               	electric circulation (EMF)       

	(unnamed)	       	T m           	magnetic circulation               

	farad        	F         	C V-1            	capacitance                          

	ohm         	Ω        	V A-1            	resistance                             

	henry       	H        	V s2 C-1       	inductance                           

	          




   
A.1.2    SI Multipliers

    	Multiplier	Name	Prefix

	         	     	     

	1024            	yotta 	Y      

	1021            	zetta 	Z      

	1018            	exa   	E      

	1015            	peta  	P      

	1012            	tera  	T      

	109              	giga  	G     

	106              	mega 	M     

	103              	kilo   	k      

	102              	hecto 	h      

	101              	deka  	da     

	10-1           	deci  	d      

	10-2           	centi 	c      

	10-3           	milli  	m     

	10-6           	micro	μ     

	10-9           	nano 	n      

	10-12          	pico  	p      

	10-15          	femto	f       

	10-18          	atto  	a      

	10-21          	zepto 	z      

	10-24          	yocto	y      

	          





   
A.1.3    CGS or Centimeter-Gram-Second Units

An older system of scientific units is the CGS system. This system is
still used widely in certain areas of physics. The fundamental units of
length, mass, and time are as implied by the title given above. The most
common CGS derived units are those for force (1 dyne = 10-5 N) and energy
(1 erg = 10-7 J).

   Electromagnetism is expressed in several different ways in CGS units.
Electromagnetic quantities in CGS not only have different units than in SI, they
also have different physical dimensions, with different versions differing among
themselves. The most common variant of CGS electromagnetic units is called
“Gaussian” units. This variant is advocated by some physicists, though many
others consider the whole subject of CGS electromagnetic units to be a terrible
mess! SI units for electromagnetism are used in this text and CGS units will not
be discussed further here.


   
A.1.4    Miscellaneous Conversions

    	1 lb = 4.448 N                                               
	1 ft = 0.3048 m

	1 mph = 0.4470 m s-1                                                    

	1 eV = 1.60 × 10-19 J                                      

	1 mol = 6.022 × 1023 molecules                          

	(One mole of carbon-12 atoms has a mass of 12 g.)

	1 gauss = 10-4 T (CGS unit of magnetic field)      

	1 millibar = 1 mb = 100 Pa (Old unit of pressure) 

	                                           




   
A.2    Advice on Calculations


   
A.2.1    Substituting Numbers


When faced with solving an algebraic equation to obtain a numerical answer,
solve the equation symbolically first and then substitute numbers. For example,
given the equation
   	
   
[image: ax2 -  b = 0 ]
	(A.1)




where a = 2 and b = 8, first solve for x,
   	
   
[image:            1∕2 x = ± (b∕a)  , ]
	(A.2)




and then substitute the numerical values:
   	
   

[image:            1∕2      1∕2 x = ± (8∕2)   = ±4    =  ±2. ]
	(A.3)




This procedure is far better than substituting numbers first,
   	
   
[image: 2x2 - 8 = 0, ]
	(A.4)




and then solving for x. Solving first and then substituting has two advantages: (1)
It is easier to make algebraic manipulations with symbols than it is with numbers.
(2) If you decide later that numerical values should be different, then the entire
solution procedure doesn’t have to be repeated, only the substitutions at the
end.


   
A.2.2    Significant Digits

In numerical calculations, keep only one additional digit beyond those
present in the least accurate input number. For instance, if you are taking
the square root of 3.4, your calculator might tell you that the answer is
1.843908891. The answer you write down should be 1.84. Keeping all ten
digits of the calculator’s answer gives a false sense of the accuracy of the
result.

   Round the result up if the digit following the last significant digit is 5 or
greater and round it down if it is less than 5. Thus, the square root of 4.1, which
the calculator tells us is 2.049390153, should be represented as 2.05 rather than

2.04.


   
A.2.3    Changing Units

It is easy to make mistakes when changing the units of a quantity. Adopting a
systematic approach to changing units greatly reduces the chance of error. We
illustrate a systematic approach to this problem with an example in which we
change the units of acceleration from meters per second squared to kilometers per
minute squared: 

   
[image:       2            2                             2 5 m/s    →   5 m/s  × (0.001 km/m  ) × (60 s/min )          =   5 × 0.001 ×  602 km/min2                         2          =   18 km/min   .                               (A.5) ]


The trick is to multiply by the conversion factor for each unit to the power that
makes the original unit cancel out. The conversion factors to the proper powers
are then multiplied by the original number and the proper cancellations of the old
units are double checked. If done with care, this yields the correct result every
time!

   
A.3    Constants of Nature


    	Symbol	        Value             	Meaning                                        

	       	                     	                                

	h        	    6.63 × 10-34 J s      	Planck’s constant                            

	ℏ        	    1.06 × 10-34 J s      	h∕(2π)                                          

	c        	     3 × 108 m s-1          	speed of light                                  

	G       	6.67 × 10-11 m3 s-2 kg-1	universal gravitational constant          

	kB        	   1.38 × 10-23 J K-1      	Boltzmann’s constant                       

	σ        	 5.67 × 10-8 W m-2 K-4 	Stefan-Boltzmann constant                

	K       	  3.67 × 1011 s-1 K-1     	thermal frequency constant               

	ϵ0            	8.85 × 10-12 C2 N-1 m-2	permittivity of free space                  

	μ0           	  4π × 10-7 N s2 C-2     	permeability of free space (= 1∕(ϵ
0c2)).

	        




   
A.4    Properties of Stable Particles

    	Symbol	             Value                    	Meaning                        

	       	                              	                       

	e        	         1.60 × 10-19 C              	fundamental unit of charge

	me        	   9.11 × 10-31 kg = 0.511 MeV     	mass of electron              

	mp        	1.672648 × 10-27 kg = 938.280 MeV	mass of proton                

	mn        	1.674954 × 10-27 kg = 939.573 MeV	mass of neutron               

	        




   
A.5    Properties of Solar System Objects

    	Symbol	    Value      	Meaning                  

	       	            	                  

	Me        	5.98 × 1024 kg	mass of earth            

	Mm      	7.36 × 1022 kg	mass of moon           

	Ms        	1.99 × 1030 kg	mass of sun              

	Re         	 6.37 × 106 m 	radius of earth          

	Rm        	 1.74 × 106 m 	radius of moon         

	Rs         	 6.96 × 108 m 	radius of sun            

	Dm       	 3.82 × 108 m 	earth-moon distance  

	Ds        	1.50 × 1011 m	earth-sun distance     

	g        	 9.81 m s-2   	earth’s surface gravity

	        





    

    
    
 





      
         1Reprinted in: Boorse, H. A., and L. Motz, 1966: The world of the atom. Basic Books,
  New York, 1873 pp. Also, search for “Louis de Broglie Nobel Prize Address” on the
  web.


      
 

      
         1The notation exp(x) is just another way of writing the exponential function ex. We
  prefer this way because it is prettier when the function argument is complicated.


      
 

 
    1Gravity waves in the atmosphere are vertical or slantwise oscillations of air parcels produced
  by buoyancy forces which push parcels back toward their original elevation after a vertical
  displacement.

 
 

      
         2Note that for this type of grating to work, the width of the grating has to be much less
  than the width of the interference peaks on the display screen. This is a severe limitation. Real
  diffraction grating spectrometers use a lens to focus the diffraction pattern on the screen, and
  are not subject to this limitation.


      
 

      
         1See Louis de Broglie’s 1929 Nobel Prize address, reproduced in Boorse, H. A., and L.
  Motz, 1966: The World of the Atom, Basic Books.


      
 

      
         2This group velocity calculation ignores the possible dependence of index of refraction on
  wavenumber. If n is a function of k, the calculation is more complicated, but the principle is the
  same.


      
 

      
         3In advanced mechanics the total momentum is called the canonical momentum and the
  kinetic momentum is the ordinary momentum.


      
 

      
         1The back pressure of the gas outside the system on the gas inside the system is
  negligible once the gas exits the nozzle of the rocket engine. If we took the inside of
  the combustion chamber to be part of the system boundary, the results would be
  different, as the gas pressure there is non-negligible. At this point the gas is indeed
  exerting a significant force on the rocket. However, though this viewpoint is conceptually
  simpler, it is computationally more difficult, which is why we define the system as we
  do.


      
 

      
         1In the presence of a potential momentum we would have to distinguish between total
  and kinetic momentum. This in turn would lead to a distinction between total and kinetic
  angular momentum. We will assume that no potential momentum exists here, so that this
  distinction need not be made.
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