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Preface

The idea for a “radically modern” introductory physics course arose out of
frustration in the physics department at New Mexico Tech with the standard
two-semester treatment of the subject. It is basically impossible to incorporate a
significant amount of “modern physics” (meaning post-19th century!) in that
format. It seemed to us that largely skipping the “interesting stuff” that has
transpired since the days of Einstein and Bohr was like teaching biology without
any reference to DNA. We felt at the time (and still feel) that an introductory
physics course for non-majors should make an attempt to cover the great
accomplishments of physics in the 20th century, since they form such an
important part of our scientific culture.

   It would, of course, be easy to pander to students – teach them superficially
about the things they find interesting, while skipping the “hard stuff”. However, I
am convinced that they would ultimately find such an approach as unsatisfying as
would the educated physicist. What was needed was a unifying vision
which allowed the presentation of all of physics from a modern point of
view.

   The idea for this course came from reading Louis de Broglie’s Nobel Prize
address.1
De Broglie’s work is a masterpiece based on the principles of optics and special
relativity, which qualitatively foresees the path taken by Schrödinger and others in
the development of quantum mechanics. It thus dawned on me that perhaps
optics and waves together with relativity could form a better foundation for all of
physics, providing a more interesting way into the subject than classical
mechanics.

   Whether this is so or not is still a matter of debate, but it is indisputable that
such a path is much more fascinating to most college students interested in
pursuing studies in physics — especially those who have been through the usual
high school treatment of classical mechanics. I am also convinced that the
development of physics in these terms, though not historical, is at least as rigorous
and coherent as the classical approach.

   After 15 years of gradual development, it is clear that the course failed in its
original purpose, as a replacement for the standard, one-year introductory physics

course with calculus. The material is way too challenging, given the level of
interest of the typical non-physics student. However, the course has found a niche
at the sophomore level for physics majors (and occasional non-majors with a
special interest in physics) to explore some of the ideas that drew them to physics
in the first place. It was placed at the sophomore level because we found that
having some background in both calculus and introductory college-level physics is
advantageous for most students. However, we allow incoming freshmen into the
course if they have an appropriate high school background in physics and
math.

   The course is tightly structured, and it contains little or nothing that can be
omitted. However, it is designed to fit into two semesters or three quarters. In
broad outline form, the structure is as follows:
      

      	Optics and waves occur first on the menu. The idea of group velocity
      is central to the entire course, and is introduced in the first chapter.
      This is a difficult topic, but repeated reviews through the year cause
      it  eventually  to  sink  in.  Interference  and  diffraction  are  done  in  a
      reasonably conventional manner. Geometrical optics is introduced, not
      only for its practical importance, but also because classical mechanics is
      later introduced as the geometrical optics limit of quantum mechanics.
      

      	Relativity  is  treated  totally  in  terms  of  space-time  diagrams  –  the
      Lorentz transformations seem to me to be quite confusing to students
      at this level (“Does gamma go upstairs or downstairs?”), and all desired
      results can be obtained by using the “space-time Pythagorean theorem”
      instead, with much better effect.
      

      	Relativity  plus  waves  leads  to  a  dispersion  relation  for  free  matter
      waves. Optics in a region of variable refractive index provides a powerful
      analogy for the quantum mechanics of a particle subject to potential
      energy. The group velocity of waves is equated to the particle velocity,
      leading to the classical limit and Newton’s equations. The basic topics
      of classical mechanics are then done in a more or less conventional,
      though abbreviated fashion.
      


      	Gravity is treated conventionally, except that Gauss’s law is introduced
      for  the  gravitational  field.  This  is  useful  in  and  of  itself,  but  also
      provides  a  preview  of  its  deployment  in  electromagnetism.  The
      repetition is useful pedagogically.
      

      	Electromagnetism is treated in a highly unconventional way, though
      the  endpoint  is  Maxwell’s  equations  in  their  usual  integral  form.
      The  connection  to  relativity  is  exploited  rather  than  buried.  In
      particular, the seemingly simple question of how potential energy can
      be extended to the relativistic context gives rise to the idea of potential
      momentum. The potential energy and potential momentum together
      form a four-vector which is closely related to the scalar and vector
      potential  of  electromagnetism.  The  Aharonov-Bohm  effect  is  easily
      explained using the idea of potential momentum in one dimension,
      while extension to three dimensions results in a version of Snell’s law
      valid for matter waves, from which the Lorentz force law is derived.
      

      	The generation of electromagnetic fields comes from Coulomb’s law
      plus relativity (I borrowed from my graduate advisor Mel Schwartz’s
      text on electromagnetism here), with the scalar and vector potential
      being used to produce a much more straightforward treatment than is
      possible with electric and magnetic fields. Electromagnetic radiation is
      a lot simpler in terms of the potential fields as well.
      

      	Resistors, capacitors, and inductors are treated for their practical value,
      but also because their consideration leads to an understanding of energy
      in electromagnetic fields.
      

      	At this point the book shifts to a more qualitative (but non-trivial)
      treatment of atoms, atomic nuclei, the standard model of elementary
      particles, and techniques for observing the very small. Ideas from optics,
      waves, and relativity reappear here. The Bohr model of the hydrogen
      atom is not presented for the simple reason that it gets the angular
      momentum of the electron wrong!

      

      	The final section of the course deals with heat and statistical mechanics.
      Only at this point do non-conservative forces appear in the context
      of classical mechanics. Counting as a way to compute the entropy is
      introduced,  and  is  applied  to  the  Einstein  model  of  a  collection  of
      harmonic oscillators (conceptualized as a “brick”), and in a limited way
      to an ideal gas. The second law of thermodynamics follows. The book
      ends with a fairly conventional treatment of heat engines.


   A few words about how I have taught the course at New Mexico Tech are in
order. As with our standard course, each week contains three lecture hours and a
two-hour recitation. The recitation is the key to making the course accessible to
the students. I generally have small groups of students working on assigned
homework problems during recitation while I wander around giving hints. After
all groups have completed their work, a representative from each group explains
their problem to the class. The students are then required to write up the
problems on their own and hand them in at a later date. The problems
are the key to student learning, and associating course credit with the
successful solution of these problems insures virtually 100% attendance in
recitation.

   In addition, chapter reading summaries are required, with the students urged
to ask questions about material in the text that gave them difficulties. Significant
lecture time is taken up answering these questions. Students tend to do the
summaries, as they also count for their grade. The summaries and the questions
posed by the students have been quite helpful to me in indicating parts of the text
which need clarification.

   The writing style of the text is quite terse. This partially reflects its origin in a
set of lecture notes, but it also focuses the students’ attention on what is really
important. Given this structure, a knowledgeable instructor able to offer
one-on-one time with students (as in our recitation sections) is essential for
student success. The text is most likely to be useful in a sophomore-level course
introducing physics majors to the broad world of physics viewed from a modern
perspective.

   I freely acknowledge stealing ideas from Edwin Taylor, John Archibald
Wheeler, Thomas Moore, Robert Mills, Bruce Sherwood, and many other creative
physicists, and I owe a great debt to them. The physics department at New
Mexico Tech has been quite supportive of my efforts over the years relative to this
course, for which I am exceedingly grateful. Finally, my humble thanks go out to

the students who have enthusiastically (or on occasion unenthusiastically)
responded to this course. It is much, much better as a result of their
input.

   My colleagues Alan Blyth, David Westpfahl, Ken Eack, and Sharon Sessions
were brave enough to teach this course at various stages of its development, and I
welcome the feedback I have received from them. Their experience shows that
even seasoned physics teachers require time and effort to come to grips with the
content of this textbook!

   The reviews of Allan Stavely and Paul Arendt in conjunction with the
publication of this book by the New Mexico Tech Press have been enormously
helpful, and I am very thankful for their support and enthusiasm. Penny Bencomo
and Keegan Livoti taught me a lot about written English with their copy
editing.

David J. Raymond

New Mexico Tech

Socorro, NM, USA

raymond@kestrel.nmt.edu



    




   



Chapter 13
Newton’s Law of Gravitation

In this chapter we study the law that governs gravitational forces between massive
bodies. We first introduce the law and then explore its consequences. The notion
of a test mass and the gravitational field is developed, followed by the idea of
gravitational flux. We then learn how to compute the gravitational field from
more than one mass, and in particular from extended bodies with spherical
symmetry. We finally examine Kepler’s laws and learn how these laws and the
conservation laws for energy and angular momentum may be used to solve
problems in orbital dynamics.
   
13.1    The Law of Gravitation

Of Newton’s accomplishments, the discovery of the universal law of gravitation
ranks as one of the greatest. Imagine two masses, M1 and M2, separated by a
distance r. The force has the magnitude
   	
   
[image:      M  M  G F  = --1--2--,         r2 ]
	(13.1)




where G = 6.67 × 10-11 m3 kg-1 s-2 is the universal gravitational constant. The
gravitational force is always attractive and it acts along the line of centers
between the two masses.


   
13.2    Gravitational Field

The gravitational field at any point is equal to the gravitational force on some test
mass placed at that point divided by the mass of the test mass. The dimensions of

the gravitational field are length over time squared, which is the same as
acceleration. For a single point mass M (other than the test mass), Newton’s law
of gravitation tells us that
   	
   
[image: g = - GM--r-  (point mass ),        r3 ]
	(13.2)




where r is the position of the test point relative to the mass M. Note that we have
written this equation in vector form, reflecting the fact that the gravitational field
is a vector. Thus, r = xtest - xmass, where xtest and xmass are the position vectors
of the test point and the mass M. The vector r points from the mass to the
test point. The quantity r = |r| is the distance from the mass to the test
point.

   








[image: PIC]



 Figure 13.1: Sketch showing the addition of gravitational fields at a test
point resulting from two masses.

____________________________


   



   If there is more than one mass, then the total gravitational field at a test point
is obtained by computing the individual fields produced by each mass at the test
point and vectorially adding these fields. This process is schematically illustrated
in figure 13.1.
   
13.3    Gravitational Flux










[image: PIC]



 Figure 13.2: Definition sketch for the gravitational flux through the directed
area S.

____________________________






   The next concept we need to discuss is the gravitational flux. Figure 13.2
shows a rectangular area S with a vector S perpendicular to the rectangle. The
vector S is defined to have length S, so it is a compact way of representing the
size and orientation of a rectangle in three dimensional space. The vector
S could point either upward or downward, and the choice of directions
turns out to be important. This is why we say that S represents a directed
area.

   Figure 13.2 also shows a vector g, representing the gravitational field on the
surface of the rectangle. Its value is assumed here not to vary with position
on the rectangle. The angle θ is the angle between the vectors S and
g.

   








[image: PIC]



 Figure 13.3: Two areas with the same projected area normal to g. Is the
flux through area 2 greater than, less than, or equal to the flux through area
1? (The two areas are being viewed edge-on and are assumed to have some
dimension d in the direction normal to the page.)

____________________________


   



   The gravitational flux through the rectangle is defined as
   	
   
[image: Φg =  S ⋅ g = Sg cosθ = Sgn, ]
	(13.3)




where gn = g cos θ is the component of g normal to the rectangle. The flux is thus
larger for larger areas and for larger gravitational fields. However, only the
component of the gravitational field normal to the rectangle (i. e., parallel to S)
counts in this calculation. A consequence is that the gravitational flux
through area 1, S1 ⋅ g, in figure 13.3 is the same as the flux through area 2,
S2 ⋅ g.

   The significance of the directedness of the area is now clear. If the vector
S pointed in the opposite direction, the flux would have the opposite
sign. When defining the flux through a rectangle, it is necessary to define
which way the flux is going. This is what the direction of S does — a
positive flux is defined as going from the side opposite S to the side of
S.

   An analogy with flowing water may be helpful. Imagine a rectangular channel
of cross-sectional area S through which water is flowing at velocity v. The flux of
water through the channel, which is defined as the volume of water per unit time
passing through the cross-sectional area, is Φw = vS. The water velocity takes the
place of the gravitational field in this case, and its direction is here assumed to be
normal to the rectangular cross-section of the channel. The field thus
expresses an intensity (e. g., the velocity of the water or the strength of the
gravitational field), while the flux expresses an amount (the volume of water per
unit time in the fluid dynamical case). The gravitational flux is thus the
amount of some gravitational influence, while the gravitational field is its
strength. We now try to more clearly understand to what this amount really

refers.

   We need to briefly consider the case in which the gravitational field
varies from one point to another on the rectangular surface. In this case a
proper calculation of the flux through the surface cannot be made using
equation (13.3) directly. Instead, we must break the surface into a grid of
sub-surfaces. If the grid is sufficiently fine, the gravitational field will be
nearly constant over each sub-surface and equation (13.3) can be applied
separately to each of these. The total flux is then the sum of all the individual
fluxes.

   








[image: PIC]



 Figure 13.4: Calculation of the gravitational flux through the surface of a
sphere with a mass at the center.

____________________________


   



   There is actually no need for the area in figure 13.2 to be rectangular. We can
calculate the gravitational flux through the surface of a sphere of radius R with a
mass M at the center. As illustrated in figure 13.4, the gravitational field points
inward toward the mass. It has magnitude g = GM∕R2, so if we desire to
calculate the gravitational flux out of the sphere, we must introduce a minus
sign. Finally, the area of a sphere of radius R is S = 4πR2, so the flux
is
   	
   
[image: Φg  = - gS = - (GM  ∕R2 )(4πR2 ) = - 4 πGM. ]
	(13.4)





   Notice that this flux doesn’t depend on how big the sphere is — the factor of
R2 in the area cancels with the factor of 1∕R2 in the gravitational field. This is a
hint that something profound is going on. The size of the surface enclosing the
mass is unimportant, and neither is its shape — the answer is always the same —
the gravitational flux outward through any closed surface surrounding a mass
M is just Φg = -4πGM! This is an example of Gauss’s law applied to
gravity.

   








[image: PIC]



 Figure 13.5: Three cases of a mass M and a closed surface. In the left and
center examples the mass is inside the closed surface and the outward flux
through the surface is Φg = -4πGM. In the right example the mass is outside
the surface and the outward flux through the surface is zero.

____________________________


   



   It is possible to formally prove this result using arguments like those posed in
figure 13.3, but perhaps the easiest way to understand this result is via the
analogy with the flow of water. If we think of the mass as something which
destroys water at a certain rate, then there must be an inward flow of water
through the surfaces in the left and center examples in figure 13.5. Furthermore,
the volume of water per unit time flowing inward through these surfaces is the
same in the two examples, because the rate at which water is being destroyed is
the same. In the right case the mass is not contained inside the surface and
though water flows into the volume bounded by the surface, it also flows out the
other side, resulting in a net outward (or inward) volume flux through the surface
of zero.
   
13.4    Flux from Multiple Masses










[image: PIC]



 Figure 13.6: Gauss’s law applied to more than one mass. The masses M1,
M2, and M3 contribute to the outward gravitational flux through the surface
shown. The masses M4 and M5 don’t contribute.

____________________________






   Gauss’s law extends trivially to more than one mass. As figure 13.6 shows, the
outward flux through a closed surface is just
   	
   
[image:              ∑ Φg =  - 4πG      Mi   (Gauss ’s law).             inside ]
	(13.5)




In other words, all masses inside the closed surface contribute to the flux, while no
masses outside the surface contribute. This is the most general statement of
Gauss’s law as it applies to gravity.

   An important application of Gauss’s law is to show that the gravitational field
outside of a spherically symmetric extended mass M is exactly the same as if all
the mass were concentrated at a point at the center of the sphere. The proof goes
as follows: Imagine a sphere concentric with the center of the extended
mass, but with larger radius. The gravitational flux from the mass is just
Φg = -4πGM as before. However, because of the assumed spherical symmetry, we
know that the gravitational field points normally inward at every point
on the spherical surface and is equal in magnitude everywhere on the
sphere. Thus we can infer that Φg = -4πR2g, where R is the radius of
the sphere and g is the magnitude of the gravitational field at radius R.
From these two equations we immediately infer that the field magnitude
is
   	
   

[image:      GM g =  --2-.      R ]
	(13.6)




Expressing this in vector form for arbitrary radius r, and remembering that the
gravitational field points inward, we find that
   	
   
[image:       GM  r g = - ------,         r3 ]
	(13.7)




which is precisely the equation for g resulting from a point mass M. Recall that r
points from the mass to the test point.
   
13.5    Effects of Relativity

So far our discussion of gravity has been completely non-relativistic. We will not
explore in detail how the theory of gravity changes in a completely relativistic
treatment. As we noted earlier in the course, Einstein’s general theory of relativity
covers this, and the mathematics are formidable. We confine ourselves to two
comments:
      

      	As  noted  previously,  gravity  is  locally  equivalent  to  being  in  an
      accelerated reference frame. However, unlike the simple example which
      we studied earlier, there is in general no universal frame of reference
      that is everywhere inertial to which we can transform.

      

      	Space is even more non-Euclidean in general relativity than in special
      relativity. In particular, there is no such thing as a straight line in
      the geometry of general relativistic spacetime. This is true because
      spacetime itself is curved. An example of a curved space is the surface of
      a sphere. Clearly, a straight line cannot be embedded in this space. The
      closest equivalent to a straight line in a curved space is a geodesic curve.
      On  a  sphere  great  circles  are  geodesic  curves.  In  general  relativity,
      objects subject only to the force of gravity move along geodesic curves.


   








[image: PIC]



 Figure 13.7: Illustration of elliptical orbit of a planet with the sun at the
left focus. The semi-major  and semi-minor axes are denoted by a and b.
The shaded triangular area element is needed for the discussion of Kepler’s
second law. Perihelion and aphelion are respectively the points on the orbit
nearest and farthest from the sun. Note that at perihelion and aphelion the
velocity is purely tangential, i. e., the velocity component along the radius
vector is zero.

____________________________


   



   One potentially observable prediction of relativity is the existence of
gravitational waves. Imagine two stars revolving around each other. The
gravitational field from these stars will change periodically due to this motion.
However, this change propagates outward only at the speed of light. As a result,
ripples in the field, or gravitational waves, spread outward from the revolving
stars. Efforts are currently under way to develop apparatus to detect
gravitational waves produced by violent cosmic events such as the explosion of a
supernova.
   
13.6    Kepler’s Laws

Johannes Kepler, using data compiled by Tycho Brahe, inferred three laws
governing the motions of planets in the solar system:
      

      	Planets move in elliptical orbits with the sun at one focus.
      

      	Equal areas are swept out in equal times by the line connecting the sun
      and the planet.
      

      	The square of the period of revolution of the planet around the sun is
      proportional to the cube of the semi-major axis of the ellipse.


These laws were instrumental in the development of modern mechanics and the
universal law of gravitation by Isaac Newton.

   Showing that the first law is consistent with Newtonian mechanics is
mathematically more difficult than we can undertake in this course. However, the
second law turns out to be a simple consequence of the conservation of angular
momentum. Figure 13.7 shows an elliptical orbit with the area swept out as
a planet moves from position 1 to position 2. We estimate this area as
dA = Rdx∕2, where we have ignored the small unshaded part of the area to
the right of the shaded triangle. The distance traveled by the planet in
time dt is ds, so the magnitude of the velocity is v = ds∕dt. However, in
computing the angular momentum, we need the tangential component of the
velocity, i. e., the component normal to the radius vector R. This is simply

vt = dx∕dt. The angular momentum is L = mRvt = mRdx∕dt, where m is
the mass of the planet. Combining this with the formula for dA results
in
   	
   
[image: dA- = -L--. dt    2m ]
	(13.8)




Since gravitation is a central force, angular momentum is conserved, which means
that dA∕dt is constant. Thus, we have shown that conservation of angular
momentum is equivalent to Kepler’s second law.

   Kepler’s third law turns out to be a consequence of the universal law of
gravitation. We can prove this for circular orbits. We know that a planet moving
in a circular orbit around the sun is accelerating toward the sun with the
centripetal acceleration a = v2∕R, where v is the speed of the planet’s motion in
its orbit and R is the orbit’s radius. This acceleration is caused by the
gravitational force, so we can equate the force divided by the planetary mass to a,
resulting in
   	
   
[image: v2   GM ---= -----, R     R2  ]
	(13.9)




where M is the mass of the sun. This may be solved for v:
   	
   
[image:      (     )1∕2 v =   GM---    .        R ]
	(13.10)




Eliminating v in favor of the period of revolution T = 2πR∕v results in
   	
   
[image:         2  3  2   4-π-R-- T  =  GM    . ]
	(13.11)




This agrees with Kepler’s third law since the semi-major axis of a circle is simply
the radius R.



   
13.7    Use of Conservation Laws

The gravitational force is conservative, so two point masses M and m separated
by a distance r have a potential energy:
   	
   
[image: U  = - GM--m-.          r ]
	(13.12)




It is easily verified that differentiation recovers the gravitational force.
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 Figure 13.8:  Example  of  a  hyperbolic  orbit  of  a  positive  energy  object
passing by the sun. The sun sits at the focus of the hyperbola. The quantity
b is called the impact parameter.

____________________________


   



   The conservation of energy and angular momentum in planetary motions
can be used to solve many practical problems involving motion under
the influence of gravity. For instance, suppose a bullet is shot straight
upward from the surface of the moon. One might ask what initial velocity
is needed to insure that the bullet will escape from the gravity of the
moon. Since total energy E is conserved, the sum of the initial kinetic and
potential energies must equal the sum of the final kinetic and potential
energies:
   	
   
[image: E =  Kinitial + Uinitial = Kfinal + Ufinal. ]
	(13.13)




For the bullet to escape the moon, its kinetic energy must remain positive no
matter how far it gets from the moon. Since the potential energy is always
negative, asymptoting to zero at infinite distance (i. e., Ufinal = 0), the minimum
total energy consistent with this condition is zero. For zero total energy we
have
   	
   
[image: mv2                              GM   m ---initial=  Kinitial = - Uinitial = +------,    2                                R  ]
	(13.14)




where m is the mass of the bullet, M is the mass of the moon, R is the radius of
the moon, and vinitial is the minimum initial velocity required for the bullet to
escape. Solving for vinitial yields
   	
   
[image:         ( 2GM   )1∕2 vinitial =  ------    .             R ]
	(13.15)




This is called the escape velocity. Notice that the escape velocity from a given
radius is a factor of 21∕2 larger than the velocity needed for a circular orbit at that
radius (see equation (13.10)).

   An object is energetically bound to the sun if its kinetic plus potential energy
is less than zero. In this case the object follows an elliptical orbit around the sun
as shown by Kepler. However, if the kinetic plus potential energy is zero, the
object follows a parabolic orbit, and if it is greater than zero, a hyperbolic
orbit results. In the latter two cases the sun also resides at a focus of
the parabola or hyperbola. Figure 13.8 shows a typical hyperbolic orbit.
The impact parameter, defined in this figure, is the closest the object
would have come to the center of the sun if it hadn’t been deflected by
gravity.

   Sometimes energy and angular momentum conservation can be used together
to solve problems. For instance, suppose we know the energy and angular
momentum of an asteroid of mass m and we wish to infer the maximum and
minimum distances of the asteroid from the sun, the so-called aphelion and
perihelion distances. Since the asteroid is gravitationally bound to the sun, it is
convenient to characterize the total energy by Eb = -E, the so-called binding
energy. If v is the orbital speed of the asteroid and r is its distance from the sun,

then the binding energy can be written in terms of the kinetic and potential
energies:
   	
   
[image:         mv2    GM   m - Eb  = ------ -------.           2       r ]
	(13.16)





   The magnitude of the angular momentum of the asteroid is L = mvtr,
where vt is the tangential component of the asteroid’s velocity. At aphelion
and perihelion, the radial part of the velocity of the asteroid is zero and
the speed equals the tangential component of the velocity, v = vt. Thus,
at aphelion and perihelion we can eliminate v in favor of the angular
momentum:
   	
   
[image:            2 - E   = -L----- GM---m-  (aphelion and perihelion ).     b   2mr2       r ]
	(13.17)




This can be rearranged into a quadratic equation
   	

   
[image:      GM  m       L2 r2 - ------r + ------ = 0,        Eb      2mEb ]
	(13.18)




which can be solved to yield
   	
   
[image:       ⌊          (  2   2  2      2)1 ∕2⌋ r =  1⌈ GM--m--±   G-M---m---  2L---   ⌉ .      2    Eb          E2b       mEb ]
	(13.19)




The larger of the two solutions yields the aphelion value of the radius while the
smaller yields the perihelion.

   Equation (13.19) tells us something else interesting. The quantity
inside the square root cannot be negative, which means that we must
have
   	
   
[image:   2   G2M  2m3 L  ≤  ---------.          2Eb ]
	(13.20)




In other words, for a given value of the binding energy Eb there is a maximum
value for the angular momentum. This maximum value makes the square root
zero, which means that the aphelion and the perihelion are the same — i. e., the
orbit is circular. Thus, among all orbits with a given binding energy, the circular
orbit has the maximum angular momentum.
   
13.8    Problems


      

      	Assume  a  mass  M  is  located  at  (-2 m, 0 m)  and  a  mass  2M  is
      located at (0 m, 3 m). Find the (vector) gravitational field at the point
      (1 m, 1 m).
      

      	If two equal masses M are located at x1  = (-3 m,-4 m) and x2  =
      (-3 m, +4 m), determine where a third mass M must be placed to
      result in zero gravitational force at the origin.
      

      	Given the value of g at the Earth’s surface, the radius of the Earth
      (look it up), and the universal gravitational constant G, determine the
      mass of the Earth.
      

      	Given the situation in figure 13.9:
           
           	What is the gravitational flux through the illustrated surface?
           

           	Explain  why  you  cannot  use  this  information  to  compute  the
           gravitational field on the surface in this case.



      





[image: PIC]


      
 Figure 13.9: Various masses inside and outside a Gaussian surface.

      _____________________________________
      



      

      	Suppose mass is distributed uniformly with density μ kg m-1 in a thin line
      along the z axis. Try to figure out a way of using Gauss’s law and symmetry
      arguments to predict the gravitational field resulting from this mass
      distribution.
      

      	If the Earth is of uniform density, ρ, use Gauss’s law to determine the
      gravitational field inside the Earth as a function of distance from the
      center.
      

      	Using the results of the above problem, determine the motion of an object
      moving through an evacuated hole drilled through the center of the Earth.
      Ignore the Earth’s rotation.
      

      	Two infinite thin sheets of mass, each with σ mass per unit area, are aligned
      perpendicular to each other. Determine the gravitational field from this

      combination. Hint: Compute g from each sheet separately and add
      vectorially.
      

      	Suppose that the universal law of gravitation says that the (attractive)
      gravitational force takes the form F = M1M2Gr, where r is the separation
      between the two masses M1 and M2 and G is a constant. Find the
      relationship between the orbital radius and the period for a circular orbit of
      a planet around the sun in this case.
      

      	An alien spaceship enters the solar system at distance D from the sun with
      speed v0. (D may be considered to be very far from the sun.) It coasts
      through the solar system, approaching within a distance d ≪ D of the
      sun.
           
           	Find its speed at the point of closest approach.
           

           	Find the angular momentum of the spaceship with respect to the
           center of the sun.
           

           	What was the tangential component of the spaceship’s velocity
           (i. e., the component normal to the radius vector) when it entered
           the solar system at distance D?


      

      	As a result of tidal torques, the spin angular momentum of the Earth is
      gradually being converted into orbital angular momentum of the
      moon, which causes the radius of the moon’s (circular) orbit to
      increase. Hint: Recall that for a solid sphere the moment of inertia is
      I = 2mr2∕5.
           
           	Obtain a relationship between the moon’s orbital velocity and its
           distance from the Earth, assuming that the orbit is circular.
           

           	If the Earth’s rotation rate is cut in half due to this effect, what
           will the new radius of the moon’s orbit be?



      





   


Chapter 14
Forces in Relativity

In this chapter we ask an apparently simple question: How can the idea of
potential energy be extended to the relativistic case? The answer to this question
is unexpectedly complex, but it leads us to immensely fruitful results. In
particular, it prompts us to investigate the idea of potential momentum,
which results ultimately in gauge theory, of which electromagnetism is an
example.

   Along the way we show that conservation of four-momentum has an
unexpected consequence — the idea of force at a distance is inconsistent with the
theory of relativity. This means that momentum and energy must be carried
between interacting particles by another type of particle that we call an
intermediary particle. These particles are virtual in the sense that they don’t have
their real-world mass when acting in this role.

   In relativistic quantum mechanics, we find that particles can take on negative
energies. Feynman’s interpretation of this fact is discussed, which leads us to a
model for antiparticles.
   
14.1    Potential Momentum

For a free, non-relativistic particle of mass m, the total energy E equals
the kinetic energy K and is related to the momentum Π of the particle
by
   	
   
[image:           |Π-|2- E = K  =  2m    (free, non -relativistic). ]
	(14.1)




(Note that we have ignored the contribution of the rest energy to the total energy
here.) In the non-relativistic case, the momentum is Π = mv, where v is the
particle velocity.


   If the particle is not free, but is subject to forces associated with a potential
energy U(x,y,z), then equation (14.1) must be modified to account for the
contribution of U to the total energy:
   	
   
[image:                   2 E - U  = K  = |Π-|- (non -free, non -relativistic).                2m ]
	(14.2)




The force on the particle is related to the potential energy by
   	
   
[image:        (             ) F  = -   ∂U-, ∂U-, ∂U- .          ∂x   ∂y  ∂z ]
	(14.3)





   For a free, relativistic particle, we have
   	

   
[image:          2 2    2 4 1∕2 E =  (|Π | c + m  c )     (free, relativistic). ]
	(14.4)




The obvious way to add forces to the relativistic case is by rewriting equation
(14.4) with a potential energy, in analogy with equation (14.2):
   	
   
[image:              2 2     2 41∕2 E - U  = (|Π |c  + m  c )      (incomplete! ). ]
	(14.5)




Unfortunately, equation (14.5) is incomplete, because we have subtracted U
from the energy E without subtracting a corresponding term from the
momentum Π as well. However, Π = (Π,E∕c) is a four-vector, so an
equation with something subtracted from just one of the components of
this four-vector is not relativistically invariant. In other words, equation
(14.5) doesn’t obey the principle of relativity, and therefore cannot be
correct!

   How can we fix this problem? One way is to define a new four-vector with
U∕c being its timelike part and some new vector Q being its spacelike
part:
   	

   
[image: Q-≡ (Q, U ∕c)  (potential four-momentum  ). ]
	(14.6)




We then subtract Q from the momentum Π. When we do this, equation (14.5)
becomes
   	
   
[image:                   2 2     2 41∕2 E -  U = (|Π -  Q |c  + m  c)     (non -free, relativistic). ]
	(14.7)




The quantity Q is called the potential momentum and Q is the potential
four-momentum.

   Some additional terminology is useful. We define
   	
   
[image: p ≡  Π -  Q   (kinetic momentum   ) ]
	(14.8)




as the kinetic momentum for reasons discussed below. In order to avoid confusion, we rename Π
the total momentum.1
Thus, the total momentum equals the kinetic plus the potential momentum, in
analogy with energy.

   So far, we have shown that the introduction of a potential momentum
complements the potential energy so as to make the energy-momentum
relationship for a particle relativistically invariant. However, we as yet have no
idea what causes potential momentum nor what it does to the affected particle.
We shall put off answering the former question and address only the latter at this
point. A hint comes from the corresponding behavior of energy. The total
energy of a particle is related to the quantum mechanical frequency ω
of the particle, and the total momentum is related to its wave vector
k:
   	
   
[image: E =  ¯hω     Π  = ¯hk. ]
	(14.9)




However, the kinetic energy2

and the kinetic momentum are related to the particle’s velocity v:
   	
   
[image:               mc2                              mv E - U  = ------2--2-1∕2    p =  Π -  Q =  ------2--21∕2,          (1 - v ∕c )                      (1 - v ∕c ) ]
	(14.10)




where v = |v|.

   The relationship between kinetic momentum and velocity can be proven by
dividing equation (14.7) by ℏ to obtain a dispersion relation and then computing
the group velocity, which we equate to the particle velocity. However, we will not
do this here.
   
14.2    Aharonov-Bohm Effect
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 Figure 14.1:  Setup  for  the  Aharonov-Bohm  effect.  The  particle  moves
through  a  channel  which  has  a  divided  segment  with  non-zero  potential
momenta pointing in opposite directions in the two sub-channels. The vertical
line segments show the wave fronts for the particle.

____________________________






   Let us now study a phenomenon that depends on the existence of potential
momentum. If the potential energy of a particle is zero and both the kinetic and
potential momenta point in the ±x direction, the total energy equation (14.7) for
the particle becomes
   	
   
[image: E =  [(Π -  Q )2c2 + m2c4 ]1∕2 = (p2c2 + m2c4 )1∕2. ]
	(14.11)




Since its total energy E is conserved, the magnitude of the kinetic momentum p of
the particle doesn’t change according to the above equation. Thus, if a region of
non-zero potential momentum is encountered, the total momentum of the particle
must change so as to keep the kinetic momentum constant. This results
in a change in the wavelength of the matter wave associated with the
particle. In particular, if the potential momentum points in the same
direction as the kinetic momentum, the total momentum is increased
and the wavelength decreases, while a potential momentum pointing in
the direction opposite the kinetic momentum results in an increase in
wavelength.

   Figure 14.1 illustrates what might happen to a particle moving through a
channel that splits into two sub-channels for an interval. If we arrange
to have non-zero potential momenta pointing in opposite directions in
the sub-channels, the wavelength of the particle will be different in the
two regions. At the end of the interval, the waves recombine, interfering
constructively or destructively, depending on the magnitude of the phase
difference between them. If destructive interference occurs, then the particle
cannot pass. The potential momentum thus acts as a valve controlling the flow of
particles through the channel. This is an example of the Aharonov-Bohm
effect.

   
14.3    Forces from Potential Momentum

In the Aharonov-Bohm effect, the potential momentum didn’t result in any force
on the particle — its only manifestation was to change the particle’s wavelength.
In such situations the potential momentum’s presence is only revealed by
quantum mechanical effects.

   The potential momentum has more of an influence on the non-quantum world
when the problem is two or three-dimensional or when the potential momentum
is changing with time. The total force on a particle due to all possible
effects involving the potential energy and the potential momentum is given
by
   	
   
[image:        (∂U   ∂U  ∂U  )   ∂Q F = -   ----,---,----  - ----+ v ×  P,          ∂x  ∂y   ∂z      ∂t ]
	(14.12)




where v is the particle velocity and P is a vector obtained from the potential
momentum vector as follows:
   	
   
[image:      (                                      ) P ≡   ∂Qz- -  ∂Qy-, ∂Qx--  ∂Qz-, ∂Qy-- ∂Qx-- .        ∂y      ∂z   ∂z     ∂x    ∂x     ∂y  ]
	(14.13)





   This is unexpectedly complicated. However, equation (14.12) consists of three
parts. The first part involves derivatives of the potential energy and is exactly the
same as in the non-relativistic case. The new effects are confined to the second
and third parts, -∂Q∕∂t and v × P. A full derivation of these equations involves
rather complex mathematics. However, it is possible to understand the origin of
these additional contributions to the force by looking at a couple of simple
examples.


   
14.3.1    Refraction Effect

A matter wave impingent on a discontinuity in potential momentum is refracted,
just as it is refracted by a discontinuity in potential energy. Refraction of a matter
wave packet means that the velocity of the associated particle changes as it moves
across the interface. This means that the particle undergoes an acceleration,
implying that it is subject to a force.

   As in the case of Snell’s law for optics, the frequency of a matter wave
doesn’t change as it crosses such a discontinuity in potential momentum.
Furthermore, neither does the component of the wave vector parallel to the
discontinuity. These two conditions together ensure phase continuity at the
interface.
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 Figure 14.2:  Trajectory  of  a  wave  packet  through  a  region  of  variable
potential  momentum  Q.  Q  points  in  the  y  direction  and  increases  in
magnitude by steps with increasing x. The kinetic momentum p indicates
the direction of motion of the associated particle at each point along the
trajectory.

____________________________


   



   Figure 14.2 shows an example of what happens when a wave encounters a
series of parallel slabs with increasing values of Q. The y component of the wave
vector doesn’t change as the wave crosses each of the interfaces between
slabs, for reasons discussed above. Hence, Πy = ℏky doesn’t change either,
which means that dΠy∕dx = 0. The y component of kinetic momentum,
py = Πy - Qy, must therefore decrease as Qy increases, as illustrated in figure
14.2.

   Newton’s second law tells us that the y component of the force on the particle
associated with the wave is just the time derivative of the y component of the
kinetic momentum:
   	
   
[image:       dpy   dpy dx    dpy        dQy Fy =  ----= -------=  ----ux = - ----ux.       dt     dx dt    dx          dx ]
	(14.14)




In the last step of this equation we used the fact that dΠy∕dx = 0.

   The x component of the force can be obtained by similar reasoning, using the
additional information that the speed, and hence the magnitude of the kinetic
momentum, p2 = p
x2 + p
y2, doesn’t change under the influence of the potential
momentum:
   	
   
[image:       dpx    dpxdx           py     dpy      pydQy       dQy Fx =  -dt-=  dx--dt = - (p2 --p2)1∕2-dx-ux =  p--dx-ux =  -dx-uy.                                y              x ]
	(14.15)




Aside from assuming that p2 = constant, we have used the relationships
px = (p2 - p
y2)1∕2 and p
y∕px = uy∕ux. Equations (14.14) and (14.15) constitute a
special case of equations (14.12) and (14.13) which is valid when Q points in the y
direction and is a function only of x.
   
14.3.2    Time-Varying Potential Momentum
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 Figure 14.3:  A  moving  particle  and  a  stationary  pattern  of  potential
momentum Q must be equivalent to a stationary particle and a moving
pattern of potential momentum according to the principle of relativity.

____________________________






   The necessity for the term -∂Q∕∂t in equation (14.12) is easily understood
from the following argument, which is illustrated in figure 14.3. The example in
the previous section showed that a particle moving in the +x direction with
velocity ux through a field of increasing Qy (left panel of figure 14.3) experiences a
force in the -y direction equal to Fy = -(dQy∕dx)ux. However, viewing this same
process from a reference frame in which the particle is stationary (right panel of
this figure), we see that the potential momentum at the position of the particle
increases with time at the rate dQy∕dt. The particle is not moving in this
reference frame, so the term v×P = 0. However, the stationary particle must still
experience the above force in this reference frame in order to satisfy the principle
of relativity.

   Noting that dQy∕dt = (dQy∕dx)ux, we see that equation (14.12) provides this
force via the term -∂Q∕∂t in the reference frame moving with the particle. Thus,
the time derivative term in equation (14.12) is needed to maintain the principle of
relativity; the same force occurs in the two different reference frames but
originates from the term v × P in the original reference frame and the term
-∂Q∕∂t in the frame moving with the particle.

   Arguments similar to these were actually made by Einstein in his original 1905
paper on relativity.
   
14.4    Lorenz Condition

It turns out that the four components of the potential four-momentum are not
independent, but are subject to the condition
   	
   
[image: ∂Qx--  ∂Qy--   ∂Qz-   1-∂U--  ∂x  +  ∂y  +  ∂z  +  c2 ∂t = 0. ]
	(14.16)





This is called the Lorenz condition. The physical meaning
of this condition will become clear when we study
electromagnetism.3
   
14.5    Gauge Theories and Other Theories

The theory of potential momentum is only one of three ways in which the idea of
potential energy can be extended to the relativistic case. This theory is called
gauge theory for obscure historical reasons. Gauge theory is important because
electromagnetism as well as the theories of weak and strong sub-nuclear
interactions are all of this type.

   Gravity is the only fundamental force that does not take the form of a gauge
theory. Instead, gravity takes the form of one of two other possible relativistic
extensions of potential energy. This theory is called general relativity. The
gravitational force in general relativity can be interpreted geometrically as a
consequence of the curvature of spacetime. Mathematically, it is far too difficult to
pursue here.

   The third relativistic extension of potential energy considers potential energy
to be a field which alters the rest energy of particles. High energy physicists
believe that the elementary particles gain their mass by this mechanism. The field
is called the Higgs field after the English physicist who first proposed this theory,
Peter Higgs. However, this theory has yet to be experimentally verified at the time
of writing.


   
14.6    Conservation of Four-Momentum

We earlier introduced the ideas of energy and momentum conservation.
In other words, if we have a number of particles isolated from the
rest of the universe, each with momentum pi and energy Ei, then
particles may be created and destroyed and they may collide with each

other.4
In these interactions the energy and momentum of each particle may change, but
the sum total of all the energy and the sum total of all the momentum remains
constant with time:
   	
   
[image:     ∑                     ∑ E =     Ei = const    p =    pi =  const.       i                    i ]
	(14.17)




The expression is simpler in terms of four-momentum:
   	
   
[image:     ∑ p-=    pi = const.      i ]
	(14.18)






   At this point a statement such as the one above should ring alarm bells. Just
what does it mean to say that the total energy and momentum remain constant
with time in the context of relativity? Which time? The time in which reference
frame?
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 Figure 14.4: The trouble with action at a distance. View of the remote
exchange  of  four-momentum  from  the  point  of  view  of  two  different
coordinate systems. The fat line in both pictures is the line of simultaneity in
the unprimed frame which is coincident with the exchange of four-momentum
between the two particles.

____________________________


   



   Figure 14.4 illustrates the problem. Suppose two particles exchange
four-momentum remotely at the time indicated by the fat horizontal bar
in the left panel of figure 14.4. Conservation of four-momentum implies
that
   	
   
[image: p  +  p  = p′ + p ′, -A    -B   -A   --B ]
	(14.19)




where the subscripted letters correspond to the particle labels in figure 14.4.
Primed values refer to the momentum after the exchange while no primes
indicates values before the exchange.

   Now view the exchange from the reference frame in the right panel of
figure 14.4. A problem with four-momentum conservation exists in the
region between the thin horizontal lines. In this region particle B has
already transferred its four-momentum, but it has yet to be received by
particle A. In other words, four-momentum is not conserved in this reference
frame!
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 Figure 14.5: Mediation of action at a distance by a third particle. Notice
that the world line of the intermediary particle has a slope less than unity,
which means that it is nominally moving faster than the speed of light.

____________________________


   



   This problem is so serious that we must eliminate the concept of force at a
distance from the repertoire of physics. The only way to have particles interact
remotely and still conserve four-momentum in all reference frames is to assume
that all remote interactions are mediated by another particle, as indicated in
figure 14.5. In other words, momentum and energy are transferred from
particle A to particle B in a two step process. First, particle A emits
particle C in a manner which conserves the four-momentum. Second,
particle C is absorbed by particle B in a similarly conservative interaction.
Four-momentum is conserved at all times in all reference frames in this
picture.
   
14.7    Virtual Particles

Another problem is evident from figure 14.5. As drawn, the velocity of the
intermediary particle exceeds the speed of light. This is reflected in the fact that
different reference frames yield contradictory results as to whether the
intermediary particle moves from A to B or B to A. These difficulties turn out to
be much less severe than those arising from non-locality. Let us address them in
sequence.

   For sake of definiteness, let us view the emission of particle C by particle A in
a reference frame in which the velocity of particle A is just reversed in the
emission process. In this case the four-momentum before the emission is
pA = (p,E∕c), where E = (p2c2 + m2c4)1∕2. After the emission we have
p′A = (-p,E∕c). Conservation of four-momentum in the emission process requires
that
   	
   
[image:        ′ pA =  pA + q-  ]
	(14.20)




where q is the four-momentum of particle C. From the above assumptions it is
clear that
   	
   
[image: q = p- - p′ = (p + p,E ∕c - E ∕c) = (2p,0).      A    A ]
	(14.21)





   Suppose that the real, measured mass of particle C is mC. This conflicts with
the apparent or virtual mass of this particle in its flight from A to B, which
is
   	
   
[image:  ′          1∕2 m  = (- q ⋅ q) ∕c ≡ iq∕c, ]
	(14.22)




where q ≡|q| is the momentum transfer. Note that the apparent mass is
imaginary because the four-momentum is spacelike.


   Classically, this discrepancy in the apparent and actual masses of the particle
C would simply indicate that the process wasn’t possible. However, recall that the
uncertainty principle allows there to be an uncertainty in the mass if it doesn’t
persist for too long in terms of the proper time interval along the particle’s world
line. The statement of this law is ΔμΔτ ≈ 1. Expressed in terms of mass, this
becomes
   	
   
[image:              2 Δm Δ τ ≈  ¯h∕c . ]
	(14.23)




Let us convert the proper time to an interval since the world line of particle C is
horizontal in the reference frame in which we are viewing it. Ignoring the factor of
i, Δτ = ΔI∕c. We finally compute the absolute value of the mass discrepancy as
follows: |mC -iq∕c| = [(mC -iq∕c)(mC + iq∕c)]1∕2 = (m
C2 + q2∕c2)1∕2. Solving for
I yields the approximate maximum invariant interval that particle C can move
from its source point while keeping its erroneous mass hidden by the uncertainty
principle:
   	
   
[image:              ¯h ΔI  ≈  --2--2----21∕2.        (mC c + q ) ]
	(14.24)






   A particle forced into having an apparent mass different from its actual
mass is called a virtual particle. The interaction shown in figure 14.5 can
only take place if particles A and B come closer to each other than the
distance ΔI. This argument thus produces an estimate for the “range” of an
interaction with momentum transfer 2p and intermediary particle mass
mC.

   Two distinct possibilities exist. If the intermediary particle is massless (a
photon, for instance), then the range of the interaction is inversely related to the
momentum transfer: ΔI ≈ℏ∕q. Thus, small momentum transfers can occur at
large distances. An interaction of this type is called “long range”. On the other
hand, if the intermediary particle has mass, the range is simply ΔI ≈ℏ∕mCc
when q ≪ mCc. The range is thus constant and inversely proportional to the mass
of the intermediary particle for low momentum transfers. For large momentum
transfer, i. e., when q ≫ mCc, the range decreases from this value with
increasing momentum transfer, as in the case of a massless intermediary
particle.


   
14.7.1    Virtual Particles and Gauge Theory

According to quantum mechanics, particles are represented by waves. The
absolute square of the wave amplitude represents the probability of finding the
particle. In gauge theory the potential four-momentum performs this role for
the virtual particles intermediary interactions. Thus a larger potential
four-momentum at some point means a higher probability of finding the related
virtual particles at that point.


   
14.8    Negative Energies and Antiparticles

Figure 14.5 illustrates another oddity in the role of intermediary particles in
collisions. In the unprimed frame, particle C appears to be emitted by particle A
and absorbed by particle B. In the primed frame the reverse is true; it appears to
be emitted by B and absorbed by A. These judgements are based on the fact that

the A vertex occurs earlier than the B vertex in the unprimed frame, while
the B vertex occurs earlier in the primed frame. However, since these
distinctions are based on time ordering in different reference frames of events
separated by a spacelike interval, they are inherently not relativistically
invariant. Since the principle of relativity states that physical laws are the
same in all inertial reference frames, we have a conceptual problem to
overcome.

   A related problem has to do with the computation of energy from mass and
momentum. The solution of equation E2 = p2c2 + m2c4 for the energy has a sign
ambiguity that we have so far ignored:
   	
   
[image: E = ± (p2c2 + m2c4)1∕2. ]
	(14.25)




A natural tendency would be to omit the minus sign and just consider positive
energies. However, this would be a mistake — experience with quantum mechanics
indicates that both solutions must be considered.

   Richard Feynman won the Nobel Prize in physics largely for developing a
consistent interpretation of the above negative energy solutions, which we now
relate. Notice that the four-momentum points backward in time in a spacetime
diagram if the energy is negative. Feynman suggested that a particle with
four-momentum p is equivalent to the corresponding antiparticle with
four-momentum -p. Thus, we interpret a particle with momentum p
and energy E < 0 as an antiparticle with momentum -p and energy
-E > 0.

   Antiparticles are known to exist for all particles. If a particle and its
antiparticle meet, they can annihilate, creating one or more other particles.
Correspondingly, if energy is provided in the right form, a particle-antiparticle
pair can be created.
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 Figure 14.6:  Equivalence  of  different  processes  according  to  Feynman’s
picture.

____________________________


   



   Suppose a particular kind of particle, call it an A particle, produces a B
particle when it annihilates with its antiparticle A. This is illustrated in the left
panel in figure 14.6. In Feynman’s view, this process is equivalent to the scattering
of an A particle backward in time by a B particle, the scattering of an A
backward in time by a B particle, the creation of an AA pair moving backward in
time by a B particle (an antiB), and the emission of a B particle by an A particle
moving forward in time.

   The statement “moving backward in time” has stimulated generations of
physics students to contemplate the possibility that Feynman’s picture makes
time travel possible. As far as we know, this is not so. The key phrase is equivalent
to. In other words, causality still works forward in time as we have come to
expect.

   The real utility of the “backward in time” picture is that it makes calculations
easier, since processes which are normally thought of as being very different turn
out to have the same mathematical form.

   Returning to the ambiguity shown in figure 14.5, it turns out that it does not
matter whether the picture in the left or right panel is chosen. According to the
Feynman view the two processes are equivalent if one small correction is made —
if the intermediary particle going from left to right is a C particle, then the
intermediary particle going from right to left in the other picture is a C particle,
or an antiC. It is immaterial whether the arrow representing either the C or the C
points forward or backward in time. The key point is that if an arrow points into
a vertex, the four-momentum of that particle contributes to the input
side of the momentum-energy budget for that vertex. If an arrow points
away from a vertex, then the four-momentum contributes to the output
side.
   
14.9    Problems


      

      	An alternate way to modify the energy-momentum relation while
      maintaining relativistic invariance is with a “potential mass”, H(x):
      
      [image:   2    2 2           2 4 E   = p c  + (m + H ) c .       ]

      
      If |H|≪ m and p2 ≪ m2c2, show how this equation may be approximated
      as
      

      [image:                    2 E = something  +  p ∕(2m )       ]

      
      and determine the form of “something” in terms of H. Is this theory
      distinguishable from the theory involving potential energy at nonrelativistic
      velocities?
      


      	For a given channel length L and particle speed in figure 14.1, determine the
      possible values of potential momentum ±Q in the two channels that result
      in destructive interference between the two parts of the particle
      wave.
      

      	Show that equations (14.14) and (14.15) are indeed recovered from
      equations (14.12) and (14.13) when Q points in the y direction and is a
      function only of x.
      

      	Show that the force F = v × P is perpendicular to the velocity
      v. Does this force do any work on the particle? Is this consistent
      with the fact that the force doesn’t change the particle’s kinetic
      energy?
      

      	Show that the potential momentum illustrated in figure 14.2 satisfies the
      Lorenz condition, assuming that U = 0. Would the Lorenz condition be
      satisfied in this case if Q depended only on x and pointed in the x
      direction?

      

      	A mass m moves at non-relativistic speed around a circular track of
      radius R as shown in figure 14.7. The mass is subject to a potential
      momentum vector of magnitude Q pointing counterclockwise around the
      track.
           
           	If the particle moves at speed v, does it have a longer wavelength
           when it is moving clockwise or counterclockwise? Explain.
           

           	Quantization of angular momentum is obtained by assuming that
           an integer number of wavelengths n fits into the circumference of
           the track. For given |n|, determine the speed of the mass (i) if it is
           moving clockwise (n < 0), and (ii) if it is moving counterclockwise
           (n > 0).
           

           	Determine the kinetic energy of the mass as a function of n.


      





[image: PIC]


      
 Figure 14.7: The particle is constrained to move along the illustrated
      track under the influence of a potential momentum Q.


      _____________________________________
      



      

      	Suppose momentum were conserved for action at a distance in a
      particular reference frame between particles 1 cm apart as in the
      left panel of figure 14.4 in the text. If you are moving at velocity
      2 × 108 m s-1 relative to this reference frame, for how long a time
      interval is momentum apparently not conserved? Hint: The 1 cm
      interval is the invariant distance between the kinks in the world
      lines.
      

      	An electron moving to the right at speed v collides with a positron (an
      antielectron) moving to the left at the same speed as shown in figure 14.8.
      The two particles annihilate, forming a virtual photon, which then decays
      into a proton-antiproton pair. The mass of the electron is m and the mass of
      the proton is M = 1830m.
           
           	What is the mass of the virtual photon? Hint: It is not 2m. Why?
           

           	What is the maximum possible lifetime of the virtual photon by
           the uncertainty principle?
           

           	What is the minimum v the electron and positron need to have to
           make this reaction energetically possible? Hint: How much energy
           must exist in the proton-antiproton pair?


      






[image: PIC]


      
     Figure 14.8:     Electron-positron     annihilation     leading     to
      proton-antiproton production.

      _____________________________________
      



      

      	A muon (mass m) interacts with a proton as shown in figure 14.9, so that
      the velocity of the muon before the interaction is v, while after the
      interaction it is -v∕2, all in the x direction. The interaction is mediated by
      a single virtual photon. Assume that v ≪ c for simplicity.
           
           	What is the momentum of the photon?
           

           	What is the energy of the photon?


      





[image: PIC]



      
  Figure 14.9:  Collision  of  a  muon  with  a  proton,  mediated  by  the
      exchange of a virtual photon.

      _____________________________________
      



      

      	A photon with energy E and momentum E∕c collides with an electron with
      momentum p = -E∕c in the x direction and mass m. The photon is
      absorbed, creating a virtual electron. Later the electron emits a
      photon in the x direction with energy E and momentum -E∕c. (This
      process is called Compton scattering and is illustrated in figure
      14.10.)
           
           	Compute the energy of the electron before it absorbs the photon.
           

           	Compute the mass of the virtual electron, and hence the maximum
           proper time it can exist before emitting a photon.
           

           	Compute the velocity of the electron before it absorbs the photon.
           

           	Using the above result, compute the energies of the incoming and
           outgoing photons in a frame of reference in which the electron is
           initially at rest. Hint: Using Ephoton = ℏω and the above velocity,
           use the Doppler shift formulas to get the photon frequencies, and
           hence energies in the new reference frame.
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 Figure 14.10: Compton scattering.

      _____________________________________
      



      

      	The dispersion relation for a negative energy relativistic particle
      is
      
      [image: ω = - (k2c2 + μ2 )1∕2.       ]

      
      Compute the group velocity of such a particle. Convert the result
      into an expression in terms of momentum rather than wavenumber.
      Compare this to the corresponding expression for a positive energy
      particle and relate it to Feynman’s explanation of negative energy
      states.
      


      	The potential energy of a charged particle in a scalar electromagnetic
      potential ϕ is the charge times the scalar potential. The total energy of such
      a particle at rest is therefore
      
      [image:          2 E =  ±mc   + qϕ       ]

      
      where q is the charge on the particle and ±mc2 is the rest energy, with the
      ± corresponding to positive and negative energy states. Assume that
      |qϕ|≪ mc2.
           

           	Given that a particle with energy E  < 0 is equivalent to the
           corresponding antiparticle with energy equal to -E > 0, what is
           the potential energy of the antiparticle?
           

           	From  this,  what  can  you  conclude  about  the  charge  on  the
           antiparticle?


      Hint: Recall that the total energy is always rest energy plus kinetic energy
      (zero in this case) plus potential energy.
      






   


Chapter 15
Electromagnetic Forces

In this chapter we begin the study of electromagnetism. The forces on charged
particles due to electromagnetic fields are introduced and related to the
general case of force on a particle by a gauge field. The principles of electric
motors and generators are then addressed as an example of such forces in
action.
   
15.1    Electromagnetic Four-Potential

Electromagnetism is a gauge theory. Particles that have a property called electric
charge are subject to forces exerted by the gauge fields of electromagnetism. The
potential four-momentum Q = (Q,U∕c) of a particle with charge q in the presence
of the electromagnetic four-potential a is just
   	
   
[image: Q  = qa. --    -- ]
	(15.1)





   In the simplest case the four-potential represents the amplitude for finding the
intermediary particle associated with the electromagnetic gauge field. This
particle has zero mass and is called the photon. If more than one photon is
present, the interpretation of a becomes more complicated. This issue will be
considered later.

   The four-potential has space and time components A and ϕ∕c such that
a = (A,ϕ∕c). The quantity A is called the vector potential and ϕ is called
the scalar potential. The scalar and vector potential are related to the
potential energy U and potential momentum Q of a particle of charge q
by
   	

   
[image: U =  qϕ     Q = qA. ]
	(15.2)





   The Lorenz condition written in terms of A and ϕ is
   	
   
[image: ∂Ax     ∂Ay    ∂Az    1 ∂ ϕ ---- +  ----+  ----+  -2--- = 0.  ∂x     ∂y      ∂z    c ∂t ]
	(15.3)






   
15.2    Electric and Magnetic Fields and Forces

Electric and magnetic fields manifest themselves observationally by the forces that
they cause. These vector quantities are related to the scalar and vector potentials
as follows:
   	

   
[image:        ( ∂ϕ  ∂ϕ  ∂ϕ )   ∂A E  = -   ---,---,---  - ----  (electric field)          ∂x  ∂y  ∂z      ∂t ]
	(15.4)




   	
   
[image:      ( ∂A     ∂A    ∂A     ∂A   ∂A     ∂A   ) B  ≡   ---z - ---y, --x--  ---z,---y - ---x     (magnetic field).         ∂y     ∂z   ∂z     ∂x    ∂x     ∂y ]
	(15.5)





   Note that arbitrary scalar and vector constants may be added respectively to
ϕ and A without changing either the electric or magnetic fields, since the latter
are functions only of space and time derivatives of the former. This is a simple
example of the concept of gauge invariance in action. We will see later that not
just a constant, but any time-independent vector function A′(x,y,z) may be
added to A with similar null results, as long as ∂Ax′∕∂y = ∂Ay′∕∂x,
etc. Gauge invariance is an important part of gauge theory, but a full
understanding depends on more sophisticated mathematics than currently at our
disposal.

   By comparison of equations (15.4) and (15.5) with the general expression for
force in gauge theory, we find that the electromagnetic force on a particle with

charge q is 

   
[image:            (              )              ∂U-- ∂U--∂U--    ∂Q-- Fem   =  -   ∂x , ∂y , ∂z   -  ∂t + v × P              (           )               ∂-ϕ ∂-ϕ ∂-ϕ      ∂A--       =  - q  ∂x ,∂y , ∂z  -  q∂t  + qv × B        =  qE  + qv × B   (Lorentz force)              (15.6) ]


where v is the velocity of the particle and where we have used equations (15.2)
and (15.4). For historical reasons this is called the Lorentz force.

   
15.3    Charged Particle Motion

We now explore some examples of the motion of charged particles under the
influence of electric and magnetic fields.


   
15.3.1    Particle in Constant Electric Field

Suppose a particle with charge q is exposed to a constant electric field Ex in the x
direction. The x component of the force on the particle is thus Fx = qEx.
From Newton’s second law the acceleration in the x direction is therefore
ax = Fx∕m = qEx∕m where m is the mass of the particle. The behavior of the
particle is the same as if it were exposed to a constant gravitational field equal to
qEx∕m.



   
15.3.2    Particle in Conservative Electric Field

If ∂A∕∂t = 0, then the electric force on a charged particle is
   	
   
[image:               (            ) F       = - q  ∂-ϕ, ∂ϕ, ∂ϕ- ,    ∂A--=  0.   electric       ∂x   ∂y  ∂z        ∂t ]
	(15.7)




This force is conservative, with potential energy U = qϕ. Recalling that the total
energy, E = K + U, of a particle under the influence of a conservative force
remains constant with time, we can infer that the change in the kinetic energy
with position of the particle is just minus the change in the potential energy:
ΔK = -ΔU. Notice in particular that if the particle returns to its initial position,
the change in the potential energy is zero and the kinetic energy recovers its
initial value.

   If ∂A∕∂t≠0, then there is the possibility that the electric force is not
conservative. Recall that the magnetic field is derived from A. Interestingly, a
necessary and sufficient criterion for a non-conservative electric force is that the
magnetic field be changing with time. This result was first inferred experimentally
by the English physicist Michael Faraday in 1831 and at nearly the same time by
the American physicist Joseph Henry. It will be further explored later in this
chapter.


   
15.3.3    Torque on an Electric Dipole
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 Figure 15.1: Definition sketch for an electric dipole. Two charges, q and -q
are connected by an uncharged bar of length d. The vectors d∕2 and -d∕2
give the positions of the two charges relative to the central point between
them. The two forces are due to the electric field E.

____________________________






   Let us now imagine a “dumbbell” consisting of positive and negative charges
of equal magnitude q separated by a distance d, as shown in figure 15.1. If there is
a uniform electric field E, the positive charge experiences a force qE, while the
negative charge experiences a force -qE. The net force on the dumbbell is thus
zero.

   The torque acting on the dumbbell is not zero. The total torque acting
about the origin in figure 15.1 is the sum of the torques acting on the two
charges:
   	
   
[image: τ = (- q)(- d ∕2) × E + (q)(d∕2 ) × (E ) = qd × E. ]
	(15.8)




The vector d can be thought of as having a length equal to the distance between
the two charges and a direction going from the negative to the positive
charge.

   The quantity p = qd is called the electric dipole moment. (Don’t confuse it
with the momentum!) The torque is just
   	
   
[image: τ  = p × E.  ]
	(15.9)




This shows that the torque depends on the dipole moment, or the product of the
charge and the separation. Thus, halving the separation and doubling the charge
results in the same dipole moment.

   The tendency of the torque is to rotate the dipole so that the dipole moment p
is parallel to the electric field E. The magnitude of the torque is given
by
   	
   
[image: τ = pE sin(θ), ]
	(15.10)




where the angle θ is defined in figure 15.1 and p = |p| is the magnitude of the
electric dipole moment.

   The potential energy of the dipole is computed as follows: The scalar potential
associated with the electric field is ϕ = -Ez where E is the magnitude of the
field, assumed to point in the +z direction. Thus, the potential energy of a single
particle with charge q is U = qϕ = -qEz. The total potential energy of
the dipole is the sum of the potential energies of the individual charges:


   
[image: U   =   (+q )(- Ez+ ) + (- q)(- Ez - ) = - qE(z+ - z- )     =   - qEd cos(θ) = - pE cos(θ) = - p ⋅ E,           (15.11) ]


where z+ and z- are the z positions of the positive and negative charges. The
equating of z+ - z- to d cos(θ) may be verified by examining the geometry of
figure 15.1.
   The tendency of the electric field to align the dipole moment with itself is
confirmed by the potential energy formula. The potential energy is lowest when
the dipole moment is aligned with the field and highest when the two are
anti-aligned.
   
15.3.4    Particle in Constant Magnetic Field
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 Figure 15.2: Spiraling motion of a charged particle in the direction of the
magnetic field. This is composed of a circular motion about the field vector
plus a translation along the field.

____________________________






   The magnetic force on a particle with charge q moving with velocity v is
Fmagnetic = qv × B, where B is the magnetic field. The magnetic force is directed
perpendicular to both the magnetic field and the particle’s velocity. Because of
the latter point, no work is done on the particle by the magnetic field. Thus, by
itself the magnetic force cannot change the magnitude of the particle’s velocity,
though it can change its direction.

   If the magnetic field is constant, the magnitude of the magnetic force on the
particle is also constant and has the value Fmagnetic = qvB sin(θ) where v = |v|,
B = |B|, and θ is the angle between v and B. If the initial velocity is
perpendicular to the magnetic field, then sin(θ) = 1 and the force is just
Fmagnetic = qvB. The particle simply moves in a circle with the magnetic force
directed toward the center of the circle. This force divided by the mass m must
equal the particle’s centripetal acceleration: v2∕R = a = F
magnetic∕m = qvB∕m in
the non-relativistic case, where R is the radius of the circle. Solving for R
yields
   	
   
[image: R =  mv ∕(qB ). ]
	(15.12)





   The angular frequency of revolution is
   	
   

[image: ω  = v∕R  = qB ∕m   (cyclotron frequency ). ]
	(15.13)




Notice that this frequency is a constant independent of the radius of the particle’s
orbit or its velocity. This is called the cyclotron frequency.

   If the initial velocity is not perpendicular to the magnetic field, then the
particle still has a circular component of motion in the plane normal to the
field, but also drifts at constant speed in the direction of the field. The
net result is a spiral motion in the direction of the magnetic field, as
illustrated in figure 15.2. The radius of the circle is R = mvp∕(qB) in
this case, where vp is the component of v perpendicular to the magnetic
field.
   
15.3.5    Crossed Electric and Magnetic Fields
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 Figure 15.3: With crossed electric E and magnetic B fields (i. e., fields
perpendicular to each other), a charged particle can move at a constant
velocity v with magnitude equal to v = |E|∕|B| and direction perpendicular
to both E and B. This is because the electric and magnetic forces, Felectric =
qE and Fmagnetic = qv × B, balance each other in this case.

____________________________






   If we have perpendicular electric and magnetic fields as shown in figure 15.3,
then it is possible for a charged particle to move such that the electric and
magnetic forces simply cancel each other out. From the Lorentz force equation
(15.6), the condition for this happening is E + v × B = 0. If E and B are
perpendicular, then this equation requires v to point in the direction of E × B
(i. e., normal to both vectors) with the magnitude v = |E|∕|B|. This, of
course, is not the only possible motion under these circumstances, just the
simplest.

   It is interesting to consider this situation from the point of view of a reference
frame that is moving with the charged particle. In this reference frame the particle
is stationary and therefore not subject to the magnetic force. Since the particle is
not accelerating, the net force, which in this frame consists only of the electric
force, is zero. Hence, the electric field must be zero in the moving reference
frame.

   








[image: PIC]



 Figure 15.4:  The  four-potential  a and  its  components  in  two  different
reference  frames.  In  the  unprimed  frame  the  four-potential  is  purely
space-like. The primed frame is moving in the x direction at speed U relative
to the unprimed frame. The four-potential points along the x axis.

____________________________


   



   This argument shows that the electric field perceived in one reference frame is
not necessarily the same as the electric field perceived in another frame. Figure
15.4 shows why this is so. The left panel shows the situation in the reference
frame moving to the right, which is the unprimed frame in this picture. The
charged particle is stationary in this reference frame. The four-potential is purely
spacelike, having no time component ϕ∕c. Assuming that a is constant in time,
there is no electric field, and hence no electric force. Since the particle
is stationary in this frame, there is also no magnetic force. However, in
the primed reference frame, which is moving to the left relative to the
unprimed frame and therefore is equivalent to the original reference frame in
which the particle is moving to the right, the four-potential has a time
component, which means that a scalar potential and hence an electric field is
present.
   
15.4    Forces on Currents in Conductors

So far we have talked mainly about point charges moving in free space. However,
many practical applications of electromagnetism have charges moving
through a conductor such as copper. A conductor is a material in which
electrically charged particles can freely move. An insulator is a material in
which charged particles are fixed in place. Practical conductors are often
surrounded by insulators in order to confine the motion of charge to particular
paths.

   The current through a wire is defined as the amount of charge passing through
the wire per unit time. When defining current, one needs to decide which direction
constitutes a positive current for the problem at hand, i. e., the direction in which
the positive charge is moving. If the current consists of particles carrying negative
charge, then the direction of the current is opposite the direction of the motion of
the particles.

   Metals tend to be good conductors, while glass, plastic, and other non-metallic
materials are usually insulators. All materials contain both positive and negative
charges. In metals, negatively charged electrons can escape from atoms
and are free to move about the material. When atoms lose one or more
electrons, they become positively charged. Atoms tend to be fixed in place.
Since the electron charge is negative, the current in a wire actually has
a direction opposite the direction of motion of the electrons, as noted

above.
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 Figure 15.5: Stationary positive charge and negative charge moving to the
right with speed v in blown up segment of wire.

____________________________


   



   If a conductor is in the form of a wire, we can compute the magnetic force
on the wire if we know the number of mobile particles per unit length
of wire N, the charge on each particle q, and the speed v with which
they are moving down the wire. The total force on a length of wire L is
F = qNLvn × B, where n is a unit vector pointing in the direction of motion of
the particles through the wire. The quantity i ≡ qNv is called the current in
the wire. It equals the amount of charge per unit time flowing down the
wire. Written in terms of the current, the force on a length L of the wire
is
   	
   
[image: F =  iLn × B. ]
	(15.14)




   
15.5    Torque on a Magnetic Dipole and Electric Motors
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 Figure 15.6:  Perspective  and  side  views  of  a  rectangular  loop  of  wire
mounted  on  an  axle  in  a  magnetic  field.  Forces  on  the  currents  in  loop
segments 1 and 3 generate a torque about the axle.

____________________________






   Figure 15.6 shows a rectangular loop of wire mounted on an axle in a magnetic
field. A current i exists in the loop as shown. The currents in loop segments 2 and
4 experience a force parallel to the axle. These forces generate no net torque.
However, the magnetic forces on loop segments 1 and 3 are each F = idB in
magnitude, where B = |B| is the magnitude of the magnetic field. Together
these forces generate a counterclockwise torque about the axle equal to
τ = 2F(w∕2) sin(θ) = iwdB sin(θ). This can be represented in vector form
as
   	
   
[image: τ =  m ×  B, ]
	(15.15)




where m is a vector with magnitude iwd and direction normal to the
loop as shown in figure 15.6. The vector m is called the magnetic dipole
moment.

   The loop can actually be any shape, not just rectangular. In the general case
the magnitude of the magnetic moment equals the current i times the area S of
the loop:
   	
   
[image: |m | = iS   (magnetic  dipole moment ). ]
	(15.16)




In the above example the area is S = wd. The direction of m is determined by the
right hand rule; curl the fingers on your right hand around the loop in
the direction of the current and your thumb points in the direction of
m.

   In analogy with the electric dipole in an electric field, the potential energy of a
magnetic dipole in a magnetic field is
   	
   
[image: U = - m  ⋅ B. ]
	(15.17)





   Figure 15.6 illustrates the principle of an electric motor. A motor consists of
multiple loops of wire on an axle carrying a current in a magnetic field. The
torque on the axle turns the loops so that the magnetic moment is parallel to the
field. The angular momentum of the loops carries the rotation of the axle through
the zero torque region, which occurs when the magnetic moment is either
perfectly parallel or perfectly anti-parallel (i. e., pointing in the opposite
direction) to the field. At this point either the magnetic field is reversed
by some mechanism or the magnetic dipole is reversed by making the
current circulate around the loops in the opposite direction. The torque
due to the magnetic force then turns the axle through another half-turn,
whereupon the field or the magnetic moment is again reversed, and so
on.

   
15.6    Electric Generators and Faraday’s Law

As was shown earlier, the electric field is derived from two different sources,
spatial derivatives of the scalar potential and time derivatives of the vector
potential:
   	
   
[image:         ∂ϕ-   ∂Ax-           ∂ϕ-  ∂Ay-           ∂-ϕ   ∂Az- Ex =  - ∂x -  ∂t  ,  Ey =  - ∂y -  ∂t  ,  Ez = -  ∂z -  ∂t . ]
	(15.18)




In time independent situations the vector potential part drops out and we are left
with a dependence only on the scalar potential. In this case a particle with charge
q has an electrostatic potential energy U = qϕ, which means that the electric force
is conservative. However, in the time dependent situation there is no guarantee
that the part of the electric field derived from the vector potential will be
conservative.
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 Figure 15.7: Illustration of the electric field pattern E = (-Cy,Cx, 0) (small
arrows). A charged particle moving in a circle as shown continually gains
energy.

____________________________


   



   An example of a non-conservative electric field occurs when we have
   	
   
[image: A  = (Cyt, - Cxt, 0),   ϕ =  0 ]
	(15.19)




where C is a constant. In this case the electric and magnetic fields are
   	
   
[image: E = (- Cy, Cx, 0),    B = (0,0, - 2Ct ). ]
	(15.20)




The magnetic field points in the -z direction and increases in magnitude with
time. The electric field vectors are shown in figure 15.7. Notice that a positively
charged particle moving in a counterclockwise circle as shown is continually being
accelerated in the direction of motion, and is therefore continually gaining energy.
This is impossible with a conservative force.

   How much energy is gained by a particle with charge q moving in a complete
circle of radius R under the above circumstances? The magnitude of the electric
field at this radius is E = CR, so the force on the particle is F = qCR. The
circumference of the circle is 2πR, so the total work done by the electric field in

one revolution is just ΔW = 2πRF = 2πqCR2 = 2qCS, where S = πR2 is the
area of the circle. Let us define ΔV = ΔW∕q = 2CS. For historical reasons this is
called the electromotive force or EMF. This is deceptive terminology, because in
fact ΔV doesn’t have the dimensions of force — it is really just the work per unit
charge done on a particle making a single loop around the circle in figure
15.7.

   Recall that the z component of the magnetic field in this case is Bz = -2Ct.
Note that the time derivative of the magnetic field is just ∂Bz∕∂t = -2C.
Comparison with the equation for electromotive force shows us that
   	
   
[image: ΔV  =  - ∂Bz-S =  - ∂BzS-,           ∂t         ∂t ]
	(15.21)




where the area is brought inside the time derivative since it is constant in time.
This is a special case of a general law in electromagnetism called Faraday’s
law.
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 Figure 15.8: Sketch illustrating Faraday’s law. The arrows passing through
the loop indicate the direction of the time rate of change of the magnetic field.
The arrow going around the loop indicates the direction a positive charge
would be pushed by the electric field.

____________________________


   



   Notice that the argument of the time derivative in the above equation is the
component of B perpendicular to the plane of the loop. The loop area
multiplied by the normal component of B is the magnetic flux through
the loop: ΦB ≡ BnormalS. Faraday’s law is expressed most compactly
as
   	
   
[image:          dΦB ΔV   = - -----  (Faraday ’s law ),           dt ]
	(15.22)




and it turns out to be valid for arbitrary loops and arbitrary magnetic field
configurations, not just for the simple loop we have been investigating.
The most general statement of the law is that the EMF around a closed
loop equals minus the time rate of change of magnetic flux through the
loop.

   The minus sign in equation (15.22) means the following: If the fingers on your
right hand curl around the loop in the direction opposite to the direction that
causes a positive charge to gain energy, then your thumb points in the direction of
the time rate of change of the magnetic flux passing through the loop. This is
illustrated in figure 15.8.
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 Figure 15.9: Rotating wire loop in a magnetic field. At the instant illustrated
the magnetic flux is increasing with time, which means that an EMF tends
to drive a current as illustrated.

____________________________


   



   The electric generator is perhaps the best known application of Faraday’s law.
Figure 15.9 shows a rectangular loop of wire fixed to an axle that rotates at an
angular rate Ω. The magnetic flux through the loop thus varies with time
according to ΦB = wdB cos(θ) = wdB cos(Ωt). The EMF around the loop is
thus
   	
   
[image:          dΦB ΔV  =  - -----= ΩwdB   sin(Ωt ).           dt ]
	(15.23)




In a real generator there are many loops forming a coil of wire and the ends of the
coil are brought out through the axle so that the resulting current can be tapped
for practical use.
   
15.7    EMF and Scalar Potential

The EMF ΔV has the same units as the scalar potential ϕ. What is the difference
between the two quantities? Both represent work done per unit charge by the
electric field on a particle moving through the field. However, recall that the
electric field is composed of two parts:
   	
   
[image:        (            )         ∂ ϕ  ∂ϕ  ∂ϕ     ∂A E =  -  ---, --, ---  - ----.          ∂x  ∂y  ∂z      ∂t ]
	(15.24)




Δϕ = ϕ2 - ϕ1 is minus the work done on the particle in going from point 1 to
point 2 by the part of the electric field associated with the scalar potential. ΔV is
(plus) the work done by the part of the electric field associated with the time
derivative of the vector potential. This sign difference is consistent with the
general result that the work on a particle for a conservative force equals minus the
change in potential energy.

   Aside from the different sign conventions, there is one other fundamental
difference between the two quantities: Δϕ is always zero for closed paths, i. e.,
paths in which the particle returns to its initial point. This is because point 1 is
then the same as point 2, so ϕ1 = ϕ2. This condition doesn’t necessarily apply to
the EMF. ΔV often is non-zero for closed particle paths. The electric generator
that we have just discussed is an important case in point. The total work
done per unit charge by the electric field on a charged particle moving
along some path is thus ΔV - Δϕ. The Δϕ term drops out if the path is
closed.


   
15.8    Problems


      

      	Given a four-potential a = (Cyt,-Cxt, 0, 0) where C is a constant:
           
           	Determine   whether   this   four-potential   satisfies   the   Lorenz
           condition.
           

           	Compute the electric and magnetic fields from this four-potential.


      

      	Given a1 = (C1zt, 0, 0,C2x), find the electric and magnetic field components.
      Compare with the fields you get from a2 = (C1zt,C3y,-C3z,C2x). C1, C2,

      and C3 are constants. Can one have more than one four-potential field
      giving rise to the same electric and magnetic fields?
      

      	Suppose that in the rest frame we have a four-potential of the form
      a = (0, 0, 0,Ky) where K is a constant.
           
           	Find the electric and magnetic fields in this frame.
           

           	Find the components of a in a reference frame moving in the -x
           direction at speed U. Hint: Draw a spacetime diagram showing the
           a vector and resolve into components in the moving frame using
           the spacetime Pythagorean theorem.
           

           	Find the electric and magnetic fields in the moving frame.


      

      	Assume a four-potential of the form a = (A,ϕ∕c), where A = (Ky, 0, 0) and
      ϕ = 0 in the rest frame, K being a constant.
           
           	Compute the electric and magnetic fields in the rest frame.
           

           	Find the components of the four-potential in a reference frame
           moving in the -x direction at speed U.
           

           	Compute the electric and magnetic fields in the moving frame
           using the above results.


      

      	Using the right-hand rule, show that the electric torque acting on an electric
      dipole tries to align the dipole so that it is in its state of lowest potential
      energy.
      

      	The net electric force on an electric dipole is zero in a uniform electric field.
      However, if the field varies with position, this is not necessarily true.

      Consider an electric field that has the form E = E0(1 + αz)k along the z
      axis, where E0 and α are positive constants.
           
           	An electric dipole consisting of charges ±q spaced by a distance d
           is centered at the origin. If the dipole is aligned with the electric
           field, determine the direction and magnitude of the net force on
           the dipole.
           

           	Determine the force on the dipole if it is anti-aligned with (i. e.,
           pointing in the opposite direction from) the electric field.


      

      	Suppose that a charged particle is moving under the influence of electric and
      magnetic fields such that it periodically returns to some point P. If
      the four-potential is independent of time, will the kinetic energy of
      the particle be the same or different every time it returns to P?
      Explain.
      

      	Given constant electric and magnetic fields E = Ej and B = Bk:
           
           	Find the velocity (magnitude and direction) of a charged particle
           for which the Lorentz force is zero.
           

           	Using this result, describe how you would build a setup to select
           out only those particles in a beam moving at a certain velocity.


      

      	Determine qualitatively how a charged particle moves in crossed electric
      and magnetic fields in the general case in which it is not moving
      at constant velocity. For the sake of definiteness, assume that the
      magnetic field points in the +z direction and the electric field in the +x
      direction. Hint: Is there a reference frame in which the electric field
      vanishes? If there is, describe the motion in this reference frame
      and then determine how this motion looks in the original reference
      frame.

      

      	A horizontal wire of mass per unit length 0.1 kg m-1 passes through a
      horizontal magnetic field of strength B = 0.1 T with an orientation
      of 45∘ to the field as shown in figure 15.10. What current must
      the wire carry for the magnetic force on the wire to just balance
      gravity?
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 Figure 15.10: Horizontal wire with current i in a magnetic field.

      _____________________________________
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 Figure 15.11: Magnetic dipole (current loop) in an inhomogeneous
      magnetic field.


      _____________________________________
      



      

      	Figure 15.11 shows a current loop in a magnetic field. The magnetic field
      diverges with increasing z, so that its magnitude decreases with
      height.
           
           	Which way does the magnetic dipole vector due to the current
           loop point?
           

           	Is  this  dipole  oriented  so  as  to  have  maximum  or  minimum
           potential energy, or is it somewhere in between?
           

           	Is there a net force on the dipole? If so, what direction does it
           point? Hint: Determine the direction of the v × B force at each
           point on the current loop. What direction does the sum of all these
           forces point?
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 Figure 15.12: A moving crossbar on a U-shaped wire in a magnetic
      field.

      _____________________________________
      



      

      	A charged particle moving in a circle in a magnetic field constitutes a
      circular current which forms a magnetic dipole.
           
           	Determine whether the dipole moment produced by this current
           is aligned or anti-aligned with the initial magnetic field.
           

           	Do charged particles moving in a non-uniform magnetic field as
           shown in figure 15.11 tend to accelerate toward regions of stronger
           or weaker field?


      

      	Why do electric motors have many turns of wire around the loop that cuts
      the magnetic field, instead of just one? Hint: Magnetic fields in normal
      motors are of order 0.1 T and currents are typically a few amps. Estimate
      the torque on a reasonably sized current loop for these conditions. Compare
      this to the torque you could expect to exert with your hand acting on a 1 m
      moment arm.
      

      	Imagine a stationary U-shaped conductor with a moving conducting bar in
      contact with the U as shown in figure 15.12. A uniform magnetic field exists
      normal to the plane of the U and has magnitude B. The bar is moving
      outward along the U at speed v as shown.
           
           	Using  the  fact  that  the  charged  particles  in  the  moving  bar
           are  subject  to  a  Lorentz  force  due  to  the  motion  of  the  bar
           through a magnetic field, compute the EMF around the closed
           loop consisting of the bar and the U. Hint: Recall that the EMF
           is the work done per unit charge on a charged particle moving
           around the loop.

           

           	Compute the EMF around the above loop using Faraday’s law. Is
           the answer the same as obtained above?
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 Figure 15.13: The charged bead continuously accelerates around the
      loop due to electromagnetic fields.

      _____________________________________
      



      

      	A bead on a loop has a positive charge q and accelerates continuously
      around the loop in the counterclockwise direction, as shown in figure 15.13.
      Explain qualitatively what this information tells you about
           
           	the vector potential in the vicinity of the loop, and
           

           	the magnetic flux through the loop.


      





   


Chapter 16
Generation of Electromagnetic Fields

In this chapter we investigate how charge produces electric and magnetic fields.
We first introduce Coulomb’s law, which is the basis for everything else in the
section. We then discuss Gauss’s law for the electric and magnetic field, drawing
on what we learned while using it on the gravitational field. Coulomb’s law and
the theory of relativity together show that magnetic fields are generated by
moving charge. We then use this fact to compute the magnetic fields from some
simple charge distributions. We finish with a discussion of electromagnetic
waves.
   
16.1    Coulomb’s Law and the Electric Field

A stationary point electric charge q is known to produce a scalar potential
   	
   
[image: ϕ =  --q---      4πϵ0r ]
	(16.1)




a distance r from the charge. The constant ϵ0 = 8.85 × 10-12 C2 N-1 m-2 is called
the permittivity of free space. The vector potential produced by a stationary
charge is zero.

   The potential energy between two stationary charges is equal to the scalar
potential produced by one charge multiplied by the value of the other
charge:
   	

   
[image:       q1q2 U  = ------.      4 πϵ0r ]
	(16.2)




Notice that it doesn’t make any difference whether one multiplies the
scalar potential from charge 1 by charge 2 or vice versa – the result is the
same.

   Since r = (x2 + y2 + z2)1∕2, the electric field produced by a charge
is
   	
   
[image:       (            )         ∂ϕ  ∂ ϕ ∂ ϕ       qr E = -   ---,---,---  =  -----3-         ∂x  ∂y  ∂z      4πϵ0r ]
	(16.3)




where r = (x,y,z) is the vector from the charge to the point where the electric
field is being measured. The magnetic field is zero since the vector potential is
zero.

   The force between two stationary charges separated by a distance r is the
value of one charge multiplied by the electric field produced by the other charge.
Thus the magnitude of the force is
   	
   

[image:      -q1q2-- F =  4πϵ r2  (Coulomb  ’s law ),         0 ]
	(16.4)




with the force being repulsive if the charges are of the same sign, and attractive if
the signs are opposite. This is called Coulomb’s law.

   Equation (16.4) is the electric equivalent of Newton’s universal law of
gravitation. Replacing mass by charge and G by -1∕(4πϵ0) in the equation for the
gravitational force between two point masses gives us equation (16.4). The
most important aspect of this result is that both the gravitational and
electrostatic forces decrease as the square of the distance between the
particles.


   
16.2    Gauss’s Law for Electricity

The electric flux is defined in analogy to the gravitational flux as
   	
   
[image: ΦE  = S ⋅ E  (electric flux) ]
	(16.5)




where S is the directed area through which the flux passes. (This is strictly true
only for small, flat areas S over which the component of E normal to S can be
assumed constant.) Since the electric field obeys an inverse square law, Gauss’s
law applies to the electric flux ΦE just as it applies to the gravitational flux. In
particular, since the magnitude of the outward electric field a distance r from a

charge q is E = q∕(4πϵ0r2), the electric flux through a sphere of radius r (and area
4πr2) concentric with the charge is ES = [q∕(4πϵ
0r2)] × (4πr2) = q∕ϵ
0. This
generalizes to an arbitrary distribution of charge as in the gravitational
case:
   	
   
[image: ΦE =  qinside∕ϵ0  (Gauss ’s law for electricity), ]
	(16.6)




where ΦE in this equation is the outward electric flux through a closed surface
and qinside is the net charge inside this surface. This is an expression of Gauss’s
law for the electric field. Since Gauss’s law for electricity and for gravitation are so
similar, we can use all our insights from studying gravity on the electric field
case.


   
16.2.1    Sheet of Charge
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 Figure 16.1: Definition sketch for use of Gauss’s law to obtain the electric
field due to an infinite sheet of surface charge. The dashed line shows the
Gaussian box, which is of height h and depth d into the page.

____________________________






   Figure 16.1 shows how to set up the Gaussian surface to obtain the electric
field emanating from an infinite sheet of charge. We assume a charge density of
σ Coulombs per square meter, which means that the amount of charge
inside the box is qinside = σhd, where the box has height h and depth d
into the page. The total electric flux out of the left and right faces of
the box is ΦE = 2Ehd, where E is the magnitude of the electric field on
these surfaces. The field is assumed to point away from the charge, and
hence out of the box on both faces. Due to the assumed direction of the
electric field, there is no electric flux out of any of the other faces of the
box.

   Applying Gauss’s law, we infer that 2Ehd = σhd∕ϵ0, which means that the
electric field emanating from a sheet of charge with charge density per unit area σ
is
   	
   
[image: E =  σ--.      2ϵ0 ]
	(16.7)





   The scalar potential associated with this electric field is easily obtained by
realizing that equation (16.7) gives the x component of this field — the other
components are zero. Using E = -∂ϕ∕∂x, we infer that
   	
   

[image:        σ|x| ϕ =  - ----.        2ϵ0 ]
	(16.8)




The absolute value signs around x take account of the fact that the direction of
the electric field for negative x is opposite that for positive x.
   
16.2.2    Line of Charge
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 Figure 16.2: Definition sketch for use of Gauss’s law to obtain the electric
field due to an infinite line charge oriented normal to the page. The dashed
line shows the Gaussian cylinder, which is of radius R and length d into the
page. The outward-pointing arrows show the electric field.

____________________________






   Similar reasoning is used to obtain the electric field due to a line of charge.
A sketch of the expected electric field vectors and a Gaussian cylinder
coaxial with the line of charge is shown in figure 16.2. If the charge per unit
length is λ, the amount of charge inside the cylinder is qinside = λd, where
d is the length of the cylinder. The outward electric flux at radius r is
ΦE = 2πrdE. Gauss’s law therefore tells us that the electric field at radius r is
just
   	
   
[image: E  = --λ---.      2 πϵ0r ]
	(16.9)





   In this case E = -∂ϕ∕∂r, so that the scalar potential is
   	
   
[image: ϕ = - --λ--ln(r).       2π ϵ0 ]
	(16.10)





   
16.3    Gauss’s Law for Magnetism
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 Figure 16.3: Illustration for Gauss’s law for magnetism. The net flux out of
the closed surface is zero, but the flux through the open surface is not.

____________________________






   By analogy with Gauss’s law for the electric field, we could write a Gauss’s law
for the magnetic field as follows:
   	
   
[image: ΦB  = Cqmagnetic inside, ]
	(16.11)




where ΦB is the outward magnetic flux through a closed surface, C is a constant,
and qmagnetic inside is the “magnetic charge” inside the closed surface. Extensive
searches have been made for magnetic charge, generally called a magnetic
monopole. However, none has ever been found. Thus, Gauss’s law for magnetism
can be written
   	
   
[image: ΦB  = 0    (Gauss ’s law for magnetism ). ]
	(16.12)




This of course doesn’t preclude non-zero values of the magnetic flux through open
surfaces, as illustrated in figure 16.3.

   
16.4    Coulomb’s Law and Relativity

The equation (16.1) for the scalar potential of a point charge is valid only in the
reference frame in which the charge q is stationary. By symmetry, the vector
potential must be zero. Since ϕ is actually the timelike component of the
four-potential, we infer that the four-potential due to a charge is tangent to the
world line of the charged particle.

   A consequence of the above argument is that a moving charge produces a
magnetic field, since the four-potential must have spacelike components in this
case.


   
16.5    Moving Charge and Magnetic Fields

We have shown that electric charge generates both electric and magnetic fields,
but the latter result only from moving charge. If we have the scalar potential due
to a static configuration of charge, we can use this result to find the magnetic field
if this charge is set in motion. Since the four-potential is tangent to the particle’s
world line, and hence is parallel to the time axis in the reference frame in which
the charged particle is stationary, we know how to resolve the space and time
components of the four-potential in the reference frame in which the charge is
moving.
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 Figure 16.4: Finding the space and time components of the four-potential
produced by a particle moving at the velocity of the primed reference frame.
The  ct′ axis  is  the  world  line  of  the  charged  particle  that  generates  the
four-potential.

____________________________


   



   Figure 16.4 illustrates this process. For a particle moving in the +x direction
at speed v, the slope of the time axis in the primed frame is just c∕v. The
four-potential vector has this same slope, which means that the space and time
components of the four-potential must now appear as shown in figure 16.4. If the
scalar potential in the primed frame is ϕ′, then in the unprimed frame it is ϕ, and
the x component of the vector potential is Ax. Using the spacetime Pythagorean
theorem, ϕ′2∕c2 = ϕ2∕c2 - A
x2, and relating slope of the ct′ axis to the
components of the four-potential, c∕v = (ϕ∕c)∕Ax, it is possible to show
that
   	
   
[image: ϕ = γ ϕ′   A  =  vγϕ ′∕c2              x ]
	(16.13)




where
   	
   
[image: γ = ------1-------.     (1 - v2∕c2)1∕2 ]
	(16.14)





Thus, the principles of special relativity allow us to obtain the full four-potential
for a moving configuration of charge if the scalar potential is known for the charge
when it is stationary. From this we can derive the electric and magnetic fields for
the moving charge.
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 Figure 16.5: Vector potential from a moving line of charge. The distribution
of vector potential around the line is cylindrically symmetric.

____________________________


   



   16.5.1    Moving Line of Charge

As an example of this procedure, let us see if we can determine the magnetic field
from a line of charge with linear charge density in its own rest frame of λ′, aligned
along the z axis. The line of charge is moving in a direction parallel to itself. From
equation (16.10) we see that the scalar potential a distance r from the z axis
is
   	
   
[image:         λ′ ϕ′ = - -----ln(r)        2πϵ0 ]
	(16.15)




in a reference frame moving with the charge. The z component of the vector
potential in the stationary frame is therefore
   	
   
[image:           ′ Az  = - -λ-vγ--ln (r)         2π ϵ0c2 ]
	(16.16)





by equation (16.13), with all other components being zero. This is illustrated in
figure 16.5.
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 Figure 16.6: Magnetic field from a moving line of charge. The charge is
moving along the z axis out of the page.

____________________________


   



   We infer that
   	
   
[image:       ∂A        λ′vγy            ∂A       λ′vγx Bx =  ---z=  - -----2-2- By  = - ---z = ------2-2  Bz =  0,       ∂y       2πϵ0c r            ∂x    2 πϵ0c r ]
	(16.17)




where we have used r2 = x2 + y2. The resulting field is illustrated in figure 16.6.
The field lines circle around the line of moving charge and the magnitude of the
magnetic field is
   	
   
[image:                        ′ B =  (B2  + B2 )1∕2 = --λ-vγ--.        x     y      2π ϵ0c2r ]
	(16.18)





   There is an interesting relativistic effect on the charge density λ′, which is
defined in the co-moving or primed reference frame. In the unprimed frame the
charges are moving at speed v and therefore undergo a Lorentz contraction in the
z direction. This decreases the charge spacing by a factor of γ and therefore
increases the charge density as perceived in the unprimed frame to a value

λ = γλ′.

   We also define a new constant μ0 ≡ 1∕(ϵ0c2). This is called the permeability of
free space. This constant has the assigned value μ0 = 4π × 10-7 N s2 C-2. The
value of ϵ0 = 1∕(μ0c2) is actually derived from this assigned value and the
measured value of the speed of light. The reasons for this particular way of dealing
with the constants of electromagetism are obscure, but have to do with making it
easy to relate the values of constants to the experiments used in determining
them.

   With the above substitutions, the magnetic field equation becomes
   	
   
[image: B =  μ0λv-.      2πr ]
	(16.19)




The combination λv is called the current and is symbolized by i. The current is
the charge per unit time passing a point and is a fundamental quantity in electric
circuits. The magnetic field written in terms of the current flowing along the z
axis is
   	
   
[image:      μ0i B  = ----  (straight wire).      2πr  ]
	(16.20)




   
16.5.2    Moving Sheet of Charge

As another example we consider a uniform infinite sheet of charge in the x - y
plane with charge density σ′. The charge is moving in the +x direction with speed
v. As we showed in the section on Gauss’s law for electricity, the electric field for
this sheet of charge in the co-moving reference frame is in the z direction and has
the value
   	
   
[image:         ′ E ′ = -σ-sgn (z)   z   2ϵ0 ]
	(16.21)




where we define
   	
   
[image:          (          |{  - 1  z < 0 sgn(z) ≡      0  z = 0 .          |(    1  z > 0  ]
	(16.22)




The sgn(z) function is used to indicate that the electric field points upward above
the sheet of charge and downward below it (see figure 16.7).

   The scalar potential in this frame is
   	
   
[image:  ′     σ′|z-| ϕ =  -  2ϵ .           0 ]
	(16.23)
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 Figure 16.7: Vector potential A, electric field E, and magnetic field B from
a moving sheet of charge. The charge is moving in the x direction.

____________________________


   



   In the stationary reference frame in which the sheet of charge is moving in the
x direction, the scalar potential and the x component of the vector potential
are
   	
   
[image:          ′                          ′ ϕ = - γσ-|z| = - σ|z|    A  = - v-γσ-|z-|= - v-σ|z|,        2 ϵ0      2 ϵ0      x      2 ϵ0c2      2 ϵ0c2 ]
	(16.24)




according to equation (16.13), where σ = γσ′ is the charge density in the
stationary frame. The other components of the vector potential are zero. We
calculate the magnetic field as
   	
   
[image:                  dAx       vσ Bx  = 0    By =  ---- = - ----2sgn(z)    Bz = 0                   dz      2ϵ0c ]
	(16.25)




where sgn(z) is defined as before. The vector potential and the magnetic field are
shown in figure 16.7. Note that the magnetic field points normal to the direction
of motion of the charge but parallel to the sheet. It points in opposite directions
on opposite sides of the sheet of charge.

   
16.6    Electromagnetic Radiation

We have found so far that stationary charge produces an electric field while
moving charge produces a magnetic field. It turns out that accelerated charge
produces electromagnetic radiation. Electromagnetic radiation is nothing more
than one or more photons that have zero mass, and are therefore real, not
virtual.

   








[image: PIC]



 Figure 16.8: Feynman diagrams for two processes that potentially might
produce real photons and hence electromagnetic radiation. The process in
the left panel turns out to be impossible if the masses of particles A and B
are the same, for reasons discussed in the text. The process in the right panel
occurs commonly. Solid lines represent electrons while dashed lines represent
photons. Particles are taken to be real unless otherwise labeled.

____________________________


   



   Acceleration of a charged particle is needed to produce radiation because of
the conservation of energy and momentum. The left panel of figure 16.8 shows
why. Since a photon carries off energy and momentum, conservation means
that the energy and momentum of the emitting particle change due to
the emission of a photon. This corresponds in classical mechanics to an
acceleration.

   The process in the left panel of figure 16.8 actually cannot occur if particles A
and B have the same mass. If the mass of the outgoing particle B is less than the
mass of the incoming particle A, then this reaction can and does occur. An
example is the decay of an atom from a higher energy state to a lower
energy state (and hence lower mass), accompanied by the emission of a
photon.

   Another type of reaction that can generate radiation occurs when two charged
particles (say, electrons) collide, as illustrated in the right panel of figure 16.8.
In an elastic collision both electrons are real both before and after the
photon transfer. However, it is possible for one of the electrons to have
a virtual mass that is greater than the normal electron mass after the
collision, which means that it is free to decay to a real electron plus a real
photon.

   We now try to understand the characteristics of free electromagnetic radiation.
In our studies of waves we found it easiest to examine plane waves. We will follow
this path here, writing the four-potential for an electromagnetic plane wave
moving in the x direction as
   	
   
[image: a-= (A, ϕ∕c ) = (A ,ϕ ∕c) cos(k x - ωt),                   0  0         x ]
	(16.26)




where a0 = (A0,ϕ0∕c) is a constant four-vector representing the direction and

maximum amplitude of the four-potential, and kx and ω are the wavenumber and
the angular frequency of the wave. Since the real photon is massless,
we have ω = kxc in this case. Virtual photons are not subject to this
constraint.

   By substituting A and ϕ from equation (16.26) into the Lorenz condition, we
find that
   	
   
[image:             2 kxAx -  ωϕ∕c  = 0   (Lorenz  condition  for plane wave ). ]
	(16.27)




Thus, the Lorenz condition requires that the scalar potential ϕ be related to the x
or longitudinal component of the vector potential, Ax, i. e., the component
pointing in the direction of wave propagation. The transverse components, Ay and
Az, are unconstrained by the Lorenz condition, since they don’t depend on y and
z.

   Using equations for the electric and magnetic field, as well as equations
(16.26) and (16.27), we can now find E and B in an electromagnetic plane
wave:
   	
   
[image: B =  (0,kxA0z,- kxA0y )sin(kxx - ωt)  ]
	(16.28)




   	
   
[image: E =  (kxϕ0 - ωA0x, - ωA0y,- ωA0z )sin(kxx - ωt ). ]
	(16.29)




The electric field has a longitudinal or x component proportional to
kxϕ0 -ωA0x = -ω(ϕ0∕c-A0x). However, comparison with equation (16.27) shows
that Ex = 0 as long as ω∕kx = c, i. e., as long as the photons travel at the
speed of light, c. Thus, virtual photons, i. e., those that have a non-zero
mass and therefore travel at a speed other than that of light, can have a
non-zero longitudinal component of the electric field, but real photons
cannot.

   The dot product of the electric and magnetic fields in a plane wave is
E ⋅ B = 0, as can be verified from equations (16.28) and (16.29). This means that
E and B are perpendicular to each other. Furthermore, both E and B are
perpendicular to the direction of wave motion for real photons.

   








[image: PIC]



 Figure 16.9: Electric and magnetic fields in a horizontally polarized plane
wave, i. e., with Az = 0, moving in the direction of the large arrow. The left
panel shows how the electric and magnetic fields point, while the right panel
shows the distribution of the magnetic field in space.

____________________________


   



   Figure 16.9 shows the electric and magnetic fields for real photons in the
special case where Az = 0. The electric field points in the same direction
as the transverse part of the vector potential, while the magnetic field
points in the other transverse direction. The ratio of the magnitudes of the
electric and magnetic fields is easily inferred from equations (16.28) and
(16.29):
   	
   
[image:            2    2 1∕2 |E-|-= -ω(A-y +-A-z)--sin(kxx----ωt) =  ω--= c. |B |   kx(A2z + A2y)1∕2sin(kxx - ωt)    kx ]
	(16.30)





   Notice that the electric and magnetic fields for a wave do not depend on the
longitudinal component of the vector potential, Ax. This is because the Lorenz
condition forces Ax to cancel with the term containing ϕ in the expression for
Ex.
   
16.7    The Lorenz Condition

We are now in a position to see what the Lorenz condition means. For
an isolated stationary charge, the scalar potential is given by equation
(16.1) and the vector potential A is zero. The Lorenz condition reduces
to
   	

   
[image:  1 ∂ϕ       1    dq -2 ---=  ------2----= 0. c  ∂t    4πϵ0rc  dt ]
	(16.31)




From this we see that the Lorenz condition applied to the four-potential for a
point charge is equivalent to the statement that the charge on a point particle is
conserved, i. e., it doesn’t change with time. This is extended to any stationary
distribution of charge by the superposition principle.

   We thus see that the Lorenz condition is closely related to charge conservation
for the four-potential of any charge distribution in the reference frame in which
the charge is stationary. If we can further show that the Lorenz condition is an
equation that is equally valid in all reference frames, then we will have
demonstrated that it is true for the four-potential produced by moving charged
particles as well.

   If the Lorenz condition is valid in one reference frame, it is valid in all
frames for the special case of a plane electromagnetic wave. This follows
from substituting the four-potential for a plane wave into the Lorenz
condition, as was done in equation (16.27) in the previous section. In this case
the Lorenz condition reduces to k ⋅ a = 0. Since the dot product of two
four-vectors is a relativistic scalar, the Lorenz condition is equally valid in all
frames.


   
16.8    Problems


      

      	Imagine that an electron actually consists of two point charges, each
      with charge e∕2, separated by a distance D, where e is the charge on the
      electron. Compute D such that the potential energy of the two charges

      equals  the  rest  energy  of  the  electron.  Look  up  the  constants  and
      compute a numerical value for D. Finally, compute the force between
      the two charges and compare to the gravitational force between two
      masses each equal to half the electron mass separated by this distance.
      

      	Verify that the equations for the scalar potentials associated with a
      sheet and a line of charge, (16.8) and (16.10), yield the corresponding
      electric fields.
      

      	Two sheets of charge, one with charge density σ, the other with -σ,
      are aligned as shown in figure 16.10. Compute the electric field in each
      of the regions A, B, and C.
      





[image: PIC]


      
 Figure 16.10: Two parallel sheets of charge, one with surface charge
      density σ, the other with -σ.

      _____________________________________
      



      

      	Positive charge is distributed uniformly on the upper surface of an infinite
      conducting plate with charge per unit area σ as shown in figure 16.11. Use
      Gauss’s law to compute the electric field above the plate. Hint: Is there any
      electric field inside the plate?
      






[image: PIC]


      
 Figure 16.11: A charged metal plate.

      _____________________________________
      



      

      	Suppose a student proposes that a magnetic field can take the form shown
      in figure 16.12. Is the proposed form of the magnetic field consistent with
      Gauss’s law for magnetism? Explain.
      





[image: PIC]


      
 Figure 16.12: Hypothesized magnetic field. Does it satisfy Gauss’s law
      for magnetism?

      _____________________________________
      



      

      	The magnetic flux through the sides of the cone illustrated in figure 16.13 is
      zero. The magnetic field may be assumed to be approximately normal
      to the ends of the cone and the magnetic flux into the left end is

      ΦB. The areas of the left and right ends of the cone are Sa and
      Sb.
      





[image: PIC]


      
  Figure 16.13:  Converging  magnetic  field  passing  through  a  closed
      surface.

      _____________________________________
      



      
           

           	What is the magnetic flux out of the right end of the cone?
           

           	What is the value of the magnetic field B on the left end of the
           cone?
           

           	What is the value of B on the right end?


      

      	In the lab frame a wire has negative charge with linear charge density -λ
      moving at speed -U corresponding to a current i = λU as shown in figure
      16.14. Positive charge is stationary, and has charge density λ, so the net
      charge is zero.
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 Figure 16.14: A horizontal wire with current i viewed in two different
      reference frames.

      _____________________________________
      



      
           

           	What are the electric and magnetic fields produced by the charge
           in the wire in the stationary frame?
           

           	In a reference frame moving at velocity -U in the x direction, such
           that the negative charge is stationary, what is the apparent linear
           charge density of (1) the negative charge, and (2) the positive
           charge? Hint: The Lorentz contraction must be taken into account
           here.
           

           	What is the electric field produced by the charge in the wire in
           the moving frame? Hint: Do the charge densities from the positive
           and negative charge cancel in this frame?
           

           	What is the current in the wire in the moving frame, and hence,
           what is the magnetic field around the wire in this frame? Hint: Is
           the positive or negative charge causing the current in this frame?
           

           	Explain why the net force on a separate charged particle some
           distance from the wire and stationary in the lab frame is zero in
           both reference frames.


      


      	The left panel of figure 16.8 shows a real charged particle A emitting a real
      photon, turning into a possibly different real particle B after the emission. If
      particle A and particle B have the same mass, show that this process is
      energetically impossible. Hint: Work in a reference frame in which particle A
      is stationary.
      

      	Given the four-potential for an electromagnetic plane wave, show why the
      longitudinal component of the magnetic field is zero.
      

      	Referring to figure 16.9, show that the vector E × B points in the direction
      of propagation of a plane electromagnetic wave.
      

      	Referring to figure 16.9, what direction and speed must a charged particle
      move in the presence of a free electromagnetic wave such that the net
      electromagnetic force on the particle is zero?





   


Chapter 17
Capacitors, Inductors, and Resistors

Various electronic devices are considered in this chapter. This is useful not
only for understanding these devices but also for revealing new aspects of
electromagnetism. The capacitor is first discussed and Ampère’s law is
introduced. The theory of magnetic inductance is then developed. Ohm’s law and
the resistor are discussed. The energy associated with electric and magnetic
fields is calculated and Kirchhoff’s laws for electric circuits are briefly
discussed.
   
17.1    The Capacitor and Ampère’s Law

We first discuss a device that is commonly used in electronics, called the
capacitor. We then introduce a new mathematical idea called the circulation of a
vector field around a loop. Finally, we use this idea to investigate Ampère’s
law.


   
17.1.1    The Capacitor

The capacitor is an electronic device for storing charge. The simplest type is the
parallel plate capacitor, illustrated in figure 17.1. This consists of two conducting
plates of area S separated by distance d, with the plate separation being much
smaller than the plate dimensions. Positive charge q resides on one plate, while
negative charge -q resides on the other.
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 Figure 17.1: Two views of a parallel plate capacitor.

____________________________


   



   The electric field between the plates is E = σ∕ϵ0, where the charge per unit
area on the inside of the left plate in figure 17.1 is σ = q∕S. The density on the
right plate is just -σ. All charge is assumed to reside on the inside surfaces
and thus contributes to the electric field crossing the gap between the
plates.

   The above formula for the electric field comes from applying Gauss’s law to
the sheet of charge on the positive plate. The factor of 1∕2 present in the equation
for an isolated sheet of charge is absent here because all of the electric flux exits
the Gaussian surface on the right side — the left side of the Gaussian box is
inside the conductor where the electric field is zero, at least in a static
situation.

   There is no vector potential in this case, so the electric field is related solely to
the scalar potential ϕ. Integrating Ex = -∂ϕ∕∂x across the gap between the
conducting plates, we find that the potential difference between the plates is
Δϕ = Exd = qd∕(ϵ0S), since Ex is known to be constant in this case. This
equation indicates that the potential difference Δϕ is proportional to the
charge q on the left plate of the capacitor in figure 17.1. The constant of
proportionality is d∕(ϵ0S), and the inverse of this constant is called the
capacitance:
   	
   
[image:      ϵ0S- C =   d    (parallel plate capacitor). ]
	(17.1)




The relationship between potential difference, charge, and capacitance is
thus
   	

   
[image: Δ ϕ =  q∕C   or  C =  q∕Δ ϕ. ]
	(17.2)




The equation for the capacitance of the illustrated parallel plates contains just a
fundamental constant (ϵ0) and geometrical factors (area of plates, spacing between
them), and represents the amount of charge the parallel plate capacitor can store
per unit potential difference between the plates. A word about signs: The higher
potential is always on the plate of the capacitor that has the positive
charge.

   Note that equation (17.1) is valid only for a parallel plate capacitor.
Capacitors come in many different geometries and the formula for the capacitance
of a capacitor with a different geometry will differ from this equation. However,
equation (17.2) is valid for any capacitor.
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 Figure 17.2: Parallel plate capacitor with circular plates in a circuit with
current i flowing into the left plate and out of the right plate. The magnetic
field that occurs when the charge on the capacitor is increasing with time
is shown at right as vectors tangent to circles. The radially outward vectors
represent the vector potential giving rise to this magnetic field in the region
where x > 0. The vector potential points radially inward for x < 0. The y
axis is into the page in the left panel while the x axis is out of the page in
the right panel.

____________________________


   



   We now show that a capacitor that is charging or discharging has a magnetic
field between the plates. Figure 17.2 shows a parallel plate capacitor with a
current i flowing into the left plate and out of the right plate. This current is
necessarily accompanied by an electric field that is changing with time:
Ex = q∕(ϵ0S) = it∕(ϵ0S). Such an electric field can be derived from a scalar
potential that is a function of time: ϕ = -itx∕(ϵ0S). However, the Lorenz
condition
   	
   
[image: ∂Ax-+  ∂Ay- + ∂Az- + -1 ∂ϕ-= 0 ∂x      ∂y     ∂z    c2 ∂t ]
	(17.3)




demands that some component of the vector potential A be non-zero under these
circumstances, since ∂ϕ∕∂t is non-zero.

   How much can we infer about the vector potential from the geometry of the
capacitor and equation (17.3)? Substituting ϕ = -itx∕(ϵ0S) into this equation
results in
   	
   
[image: ∂A     ∂A     ∂A       ix ---x + ---y + ---z =  ---2-,  ∂x     ∂y     ∂z     ϵ0cS  ]
	(17.4)




which suggests a number of different possibilities for A. For instance,
A = (0,ixy∕(ϵ0c2S), 0) and A = [0, 0,ixz∕(ϵ
0c2S)] both satisfy equation (17.4).
However, neither of these trial choices is satisfactory by itself, as they are not
consistent with the cylindrical symmetry of the capacitor about the x
axis.

   A choice of vector potential that is consistent with the shape of the capacitor
and satisfies the Lorenz condition is obtained by combining these two trial
solutions:
   	
   
[image: A =  [0,ixy ∕(2ϵ c2S ),ixz∕(2ϵ c2S)].                0            0 ]
	(17.5)




This vector potential leads to the magnetic field
   	
   
[image: B  = [0,- iz∕ (2ϵ0c2S ),iy∕ (2 ϵ0c2S )]. ]
	(17.6)




These fields are illustrated in the right-hand panel of figure 17.2.

   
17.1.2    Circulation of a Vector Field

We have already seen one example of the
circulation1
of a vector field, though we didn’t label it as such. In chapter 15 we computed the
work done on a charge by the electric field as it moves around a closed
loop in the context of the electric generator and Faraday’s law. The work
done per unit charge, or the EMF, is an example of the circulation of a
field, in this case the electric field, ΓE. Faraday’s law can be restated
as
   	
   
[image:        dΦB-- Γ E = - dt     (Faraday’s law ). ]
	(17.7)





   In the simple case of a circular loop with the field directed along the loop, the
circulation is just the magnitude of the field multiplied by the circumference of
the loop, as illustrated in the left panel of figure 17.3. In more complicated cases
in which the field points in a direction other than the direction of the loop, just
the component in the direction of traversal around the loop enters the circulation.
If this component varies as one progresses around the loop, the calculation must
be broken into pieces. The total circulation is then obtained by adding up the
contributions from segments of the loop in which the value of the field
component parallel to the motion around the loop is constant. An example of

this type is the calculation of the EMF around a square loop of wire in
an electric generator. Another is illustrated in the right panel of figure
17.3.
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 Figure 17.3: Two examples of circulation paths in a vector field.

____________________________


   



   17.1.3    Ampère’s Law

The magnetic circulation ΓB around the periphery of the capacitor in the right
panel of figure 17.2 is easily computed by taking the magnitude of B in equation
(17.6). The magnitude of the magnetic field on the inside of the capacitor is just
B = ir∕(2ϵ0c2S), since r = (y2 + z2)1∕2 in figure 17.2. Thus, at the periphery of
the capacitor, r = R, and B = iR∕(2ϵ0c2S) there. The area of the capacitor plates
is S = πR2 and ϵ
0c2 = 1∕μ
0, as we discussed previously. Thus, the magnetic field
is B = μ0i∕(2πR) at the periphery. If the periphery is traversed in the
counter-clockwise direction, the magnetic circulation around the capacitor is
ΓB = 2πRB = μ0i.

   Let us now compute the magnetic circulation around a wire carrying a current.
The magnetic field a distance r from a straight wire carrying a current i
is B = μ0i∕(2πr). The magnetic field points in the direction of a circle
concentric with the wire. The magnetic circulation around the wire is thus
ΓB = 2πrB = μ0i.

   Notice that the magnetic circulation is found to be the same around the wire
and around the periphery of the capacitor. Furthermore, this circulation depends
only on the current in the wire and the constant μ0.

   One further item needs to be calculated, namely the electric flux across the
gap between the capacitor plates. This is just the electric field E = σ∕ϵ0
multiplied by the area S, or ΦE = Sσ∕ϵ0 = q∕ϵ0. The current into the capacitor is
the time rate of change on the capacitor, so i = dq∕dt = ϵ0dΦE∕dt.

   We are now in a position to understand Ampère’s law:
   	
   
[image:         (           )                d-ΦE- Γ B = μ0  i + ϵ0 dt      (Amp  `ere’s law ).  ]
	(17.8)




This states that the magnetic circulation around a loop equals the sum of two
contributions, (1) μ0 multiplied by the electric current through the loop and (2)
μ0ϵ0 multiplied by the time rate of change of the electric flux through the loop. In
the above example the first term dominates when the loop is around the wire,
while the second term acts when the loop is around the gap between the capacitor
plates.

   Ampère actually formulated an incomplete version of the law named
after him — he included only the first term containing the current. The
Scottish physicist James Clerk Maxwell added the second term, based
primarily on theoretical reasoning. Maxwell’s additional term solved a
serious internal inconsistency in electromagnetic theory — in our terms, the
Lorenz condition requires a magnetic field to exist if the scalar potential ϕ
is time-dependent. This magnetic field is only predicted by Ampère’s
law if Maxwell’s term is included. The quantity ϵ0dΦE∕dt was called the
displacement current by Maxwell since it has the dimensions of current
and is numerically equal to the current entering the capacitor. However,
it isn’t really a current — it is just an electric flux that changes with
time!

   Gauss’s law for electricity and magnetism, Faraday’s law, and Ampère’s law
are collectively called Maxwell’s equations. Together they form the basis for
electromagnetism as it developed historically. However, our formulation of
electromagnetism in terms of the four-potential, the dispersion relation for free
electromagnetic waves, the Lorenz condition, and Coulomb’s law, is precisely
equivalent to Maxwell’s equations, and is much closer to the modern approach to
electromagnetism.


   
17.2    Magnetic Induction and Inductors
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 Figure 17.4:  Magnetic  field  and  vector  potential  for  two  parallel  plates
carrying  equal  currents  in  opposite  directions.  This  is  an  example  of  an
inductor.

____________________________






   Induction is the tendency of a current in a conductor to maintain itself in the
face of changes in the potential difference driving the current. Figure 17.4 shows a
parallel plate inductor in which a current i passes through the two plates in opposite
directions.2
The vector potential between plates of width w and spacing d is
   	
   
[image:      (   μ0iz    ) A  =   - ----,0,0  ,           w ]
	(17.9)




as long as w ≫ d (see figure 17.4).

   Let us try to understand how this vector potential is constructed from what
we already know. The vector potential for a single current sheet in the x-y
plane at z = 0 moving in the x direction was computed in the previous
chapter as Ax = -vσ|z|∕(2ϵ0c2), with A
y = Az = 0. The quantity σ is
the charge per unit area on the sheet and v is the velocity of the charge
sheet in the x direction. We use the relationship 1∕(ϵ0c2) = μ
0 and also
realize that if each plate has a width w, then the current in each plate is
i = vσw, which means that we can rewrite Ax = -μ0i|z|∕(2w) for a single
plate.

   To proceed further, we first need to understand that |z| in the above equation
is only valid if the charge sheet is at z = 0. If the sheet is located a distance a
from the origin, then we must replace |z| by |z - a|. We also need to call on the
definition of absolute value to realize that |z - a| = z - a if z > a, and
|z - a| = -z + a if z < a. Figure 17.5 shows how the profiles of Ax from each of

the charge sheets add together to form a combined profile for the two sheets
together.
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 Figure 17.5: Illustration of the addition of the vector potentials from two
current sheets with the left-moving current located above the x axis and the
right-moving current below. The sum is obtained by the vector addition of
the two components. Notice how the vector potential varies with z between
the current sheets, but is constant outside of them.

____________________________


   



   The resulting magnetic field between the plates can be computed from the
vector potential:
   	
   
[image:      (          ) B =   0,- μ0i-,0 .            w ]
	(17.10)




Above and below the plates the magnetic field is zero because the vector potential
is constant.

   Let us now ask what happens when the current through the inductor increases
or decreases with time. Assuming initially that no scalar potential exists, the x
component of the electric field in the device is
   	
   
[image:         ∂Ax    μ0z di Ex =  - ---- = ------,          ∂t     w  dt ]
	(17.11)




while Ey = Ez = 0. Substituting the z values for each plate, we see that



   
[image:                μ0d di Ex-upper =   + ------  (upper  plate)                2w  dt Ex-lower =   - μ0d-di  (lower plate).           (17.12)                2w  dt ]


The work done by this electric field on a unit charge moving from the right end of
the upper plate, around the wire loops at the left end, and back to the right end
of the lower plate is ΔV = Ex-upper(-l) + Ex-lower(+l) = -(μ0dl∕w)(di∕dt),
where l is the length of the plate, as illustrated in figure 17.4.
   The minus sign means that the electric field acts so as to oppose a
change in the current. This result is called Lenz’s law. Lenz’s law is not an
independent law, but arises from the minus sign in the statement of Faraday’s
law.

   In order for the current i to flow through the inductor, an external potential
difference Δϕ must be imposed between the input and output wires of the
inductor, which just balances the effects of the internally generated electric
field:
   	
   
[image:       μ  ld di Δ ϕ = --0----   (parallel plate inductor ).         w  dt ]
	(17.13)




If this potential difference is positive, i. e., if the input wire of the inductor is at a

higher potential then the output wire, then the current through the inductor will
increase with time. If it is lower, the current will decrease.

   As with capacitors, inductors come in many shapes and forms. The above
equation is valid only for a parallel plate inductor, but the relationship
   	
   
[image: Δ ϕ = L di         dt ]
	(17.14)




is valid for any inductor, assuming that the inductance L is known. Comparison of
the above two equations reveals that the inductance for the parallel plate inductor
shown in figure 17.4 is just
   	
   
[image:      μ0ld L =  -----  (parallel plate inductor).       w ]
	(17.15)





   
17.3    Resistance and Resistors
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 Figure 17.6: Rectangular resistor with a current i flowing through it.

____________________________






   Normal conducting materials require an electric field to keep an electric
current flowing through them. The electric field causes a force on the electrons
in the material, which is balanced by the energy loss that occurs when
the electrons collide with the atoms forming the material. Most objects
exhibit a linear relationship between the current i through them and the
potential difference Δϕ applied to them. This relationship is called Ohm’s
law,
   	
   
[image: Δϕ =  iR   (R  constant), ]
	(17.16)




where the constant of proportionality R is called the resistance. The quantity Δϕ
is sometimes called the voltage drop across the resistor.

   For certain materials, such as semiconductors, the resistance depends on the
current. For such materials, the above equation defines resistance, but since the
resistance doesn’t remain constant when the current changes, these materials
don’t obey Ohm’s law.

   Figure 17.6 illustrates a rectangular resistor. The resistance of such a resistor
can be written
   	
   
[image:       l R  = wh- ρ ]
	(17.17)




where the resistivity ρ is characteristic only of the material and not its shape or
size.

   Unlike capacitors and inductors, resistors are dissipative devices. The work
done on a charge q passing through a resistor is just qΔϕ. This energy is
converted to heat. The work done per unit time, which equals the power
dissipated by a resistor is therefore
   	
   
[image:              2         2 P  = iΔ ϕ = i R = (Δ ϕ) ∕R. ]
	(17.18)




   
17.4    Energy of Electric and Magnetic Fields

In this section we calculate the energy stored by a capacitor and an inductor. It is
most profitable to think of the energy in these cases as being stored in the electric
and magnetic fields produced respectively in the capacitor and the inductor.
From these calculations we compute the energy per unit volume in electric
and magnetic fields. These results turn out to be valid for any electric
and magnetic fields — not just those inside parallel plate capacitors and
inductors!
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 Figure 17.7: Capacitor (left) and inductor (right) being charged respectively
by constant sources of current and voltage.

____________________________


   



   Let us first consider a capacitor starting in a discharged state at time t = 0. A
constant current i is caused to flow through the capacitor by some device such as
a battery or a generator, as shown in the left panel of figure 17.7. As
the capacitor charges up, the potential difference across it increases with
time:
   	
   
[image:        q    it Δ ϕ = -- =  --.       C     C ]
	(17.19)




The EMF supplied by the generator has to increase to match this value.

   The generator does work on the positive charges moving around the circuit in
the direction indicated by the arrow. We assume that Δϕ equals the EMF or
work per unit charge done by the generator V G, so the work done in
time dt by the generator is dW = V Gdq = V Gidt. Using the equation for
the potential difference across a capacitor, we see that the power input
is
   	
   
[image:      dW            i2t P =  ----=  Δ ϕi = ---.       dt           C  ]
	(17.20)




Integrating this in time yields the total energy UE supplied to the capacitor by
the generator:
   	
   
[image:       i2t2-   q2- UE =  2C  =  2C    (capacitor). ]
	(17.21)





   Assuming that we have a parallel plate capacitor, let’s insert the formula for
the capacitance of such a device, C = ϵ0S∕d. Let us further recall that the electric
field in a parallel plate capacitor is E = σ∕ϵ0 = q∕(ϵ0S), so that q = ϵ0ES
and
   	
   
[image:              2        2 U   = (E-ϵ0S)--=  ϵ0E-Sd-.   E   2(ϵ0S∕d )      2 ]
	(17.22)




The combination Sd is just the volume between the capacitor plates. The energy
density in the capacitor is therefore

   	
   
[image:       UE-    ϵ0E2-- uE  = Sd  =   2     (electric energy density). ]
	(17.23)




This formula for the energy density in the electric field is specific to a
parallel plate capacitor. However, it turns out to be valid for any electric
field.

   A similar analysis of a current increasing from zero in an inductor yields the
energy density in a magnetic field. Imagine that the generator in the right panel of
figure 17.7 produces a constant EMF, V G, starting at time t = 0 when the current
is zero. The work done by the generator in time dt is dW = V Gdq = V Gidt so that
the power is
   	
   
[image:                              (   2) P =  dW--=  VGi = Li di=  d-  Li--  .       dt             dt   dt   2 ]
	(17.24)




We have assumed that the EMF supplied by the generator, V G, balances the
voltage drop across the inductor: V G = Δϕ = L(di∕dt).


   If we integrate the above equation in time, we get the energy added to the
inductor as a result of increasing the current through it. Substituting the formula
for the inductance of a parallel plate inductor, L = μ0dl∕w, we arrive at the
equation for the energy stored by the inductor:
   	
   
[image:       Li2-   μ0i2ld- UB  =  2  =   2w      (parallel plate inductor). ]
	(17.25)




Finally, using the relationship between the current and the magnetic field in a
parallel plate inductor, B = μ0i∕w, we can eliminate the current i and
write
   	
   
[image:        B2lwd UB  =  ------.         2μ0 ]
	(17.26)




The volume between the inductor plates is just dlw, so again we can write an
energy density, this time for the magnetic field:
   	

   
[image:       UB     B2 uB =  ----=  ---- (magnetic  energy density).       lwd     2μ0 ]
	(17.27)




Though we only proved this equation for the magnetic field inside a parallel plate
inductor, it turns out to be true for any magnetic field.

   The total energy density is just the sum of the electric and magnetic energy
densities:
   	
   
[image:                 ϵ0E2-   -B2- uT = uE +  uB =   2   + 2μ  .                            0 ]
	(17.28)




   
17.5    Kirchhoff’s Laws
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 Figure 17.8: A typical circuit to which we apply Kirchhoff’s laws.

____________________________






   In the above discussion of energy we made two assumptions about
electric circuits, which consist of electronic components connected by
wires:
      

      	Currents are conserved. Thus, the current entering one end of a wire
      connecting two devices is equal to the current leaving the other end,
      and the current out of the generator in the left panel of figure 17.7 is
      assumed to equal the current into and out of the capacitor. No electric
      charge is stored in any of the wires connecting components.
      

      	The electric fields outside of components are conservative, and therefore
      are derived solely from the scalar potential. Thus, the net work done
      on a charged particle passing completely around a circuit loop is zero
      and the positive work done on charge passing through the generator
      in the right panel of figure 17.7 is exactly balanced by the potential
      difference across the inductor. As a result, the effects of electric fields
      outside of components can be represented by electrostatic potentials, or
      “voltages”. Every part of a wire connecting components has the same
      potential and the effect of each component is to maintain a potential
      difference between its input and output connections.


These are called Kirchhoff’s laws. They are used extensively in electronic circuit
design. Figure 17.8 illustrates a typical circuit with a voltage source VS, which
may be a battery or generator, and three circuit components. The voltage source
provides a potential difference equal to V a - V g, which is equal simply to V a,
since we are assuming that V g = 0. (Since the scalar potential is insensitive to an
arbitrary additive constant, we can always set the potential at one point in
the circuit to zero to simplify our calculations.) The voltage drop across
component 1 is V a - V b and the voltage drop across both components 2 and
3 is V b - V g. If the components are resistors, then Ohm’s law can be
used to relate the voltage drops across the components to the currents
through them. If they are capacitors or inductors, the voltage drop is related
respectively to the charge on the capacitor or the time rate of change of
current through the inductor. The time rate of change of the charge on
the capacitor can be related to the current through the capacitor. The
final point in figure 17.8 is that current is conserved at junctions, i. e.,

i1 = i2 + i3. The methods of algebra (for just resistors) or calculus (if there are
capacitors or inductors) can then be used to calculate all currents and
voltages.

   It is important to realize that Kirchhoff’s laws are only approximations that
hold when the currents and potentials in a circuit change slowly with time. For
steady currents and constant potentials they are precisely true, since imbalances
in charge entering and leaving a junction between devices would result in the
indefinite buildup of charge in the junction with time and therefore an
increasing electrostatic potential, which would violate the steady state
assumption. Furthermore, a non-zero EMF around a closed loop would result in
net acceleration of charge around the loop and a constantly increasing
current.

   If currents and potentials are changing with time, Kirchhoff’s laws are
approximately valid only if the capacitance, inductance, and resistance of the
wires connecting circuit elements are much smaller than the capacitance,
inductance, and resistance of the circuit elements themselves. For very high
frequency operation, the effects of these “parasitic” properties are not small and
must be included in the design of the circuit.
   
17.6    Problems


      

      	Compute the capacitance of an isolated conducting sphere of radius R.
      Hint: Consider the other electrode to be a spherical shell surrounding
      the conducting sphere at very large radius.
      

      	Given a parallel plate capacitor with plate area S, fixed charge ±q on the
      plates, and the possibly variable plate separation x:
           
           	Is the force between the plates attractive or repulsive?
           

           	Compute the magnitude of the force of each plate on the other.
           Hint: You know both the electric field and the charge.

           

           	Make an alternate computation of the force as follows: Compute
           the energy U in the electric field between the plates. The force is
           F = -dU∕dx.
           

           	You probably found that the above two calculations of the force
           didn’t agree. Which is correct? Explain. Hint: In doing part (b),
           what part of the electric field acting on (say) the negative charge
           is due to itself, and what part is due to the positive charge? Only
           the latter part can exert a net force on the negative charge!


      

      	Compute the circulation of the vector field around the illustrated circle in
      the left panel of figure 17.3. Assume that the magnitude of the vector field
      equals Kr where K is a constant.
      

      	Compute the circulation of the vector field around the illustrated rectangle
      in the right panel of figure 17.3. Assume that the x component of the vector
      field equals Ky where K is a constant.
      

      	The solar wind consists of a plasma (a gas consisting of charged particles
      with equal amounts of positive and negative charge) streaming out from the
      sun. In certain sectors of the solar wind the magnetic field points away from
      the sun while in other sectors it points toward the sun. What is
      the magnitude and direction of the current flowing through the
      loop defined by the dashed rectangle that spans a sector boundary
      as shown in figure 17.9? Assume that the displacement current is
      negligible.
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 Figure 17.9: Magnetic field at a solar wind sector boundary.

      _____________________________________
      



      

      	A superconducting parallel plate inductor with plate dimensions 0.1 m by
      0.1 m and spacing 0.01 m is held together by connectors with maximum
      breaking strength 500 N and has the input and the output connected
      by a superconducting wire. A current i is circulating through the
      inductor.
           
           	Is the force between the plates attractive or repulsive?
           

           	What is the maximum magnetic field that the inductor can have
           between the plates without blowing apart? Hint: Find the energy
           in the magnetic field as a function of plate separation and compute
           the force between the plates as for the capacitor. The magnetic
           flux through the inductor remains constant as the plates move in
           this case, which means that the current can change.
           

           	What is the current corresponding to the above maximum field?
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 Figure 17.10: Resistors in parallel and in series.

      _____________________________________
      



      

      	Use Kirchhoff’s laws to compute the net resistance of
           
           	resistors in parallel, and
           

           	resistors in series,


      as shown in figure 17.10. Hint: In the first case the voltage drop across the
      resistors is the same, in the second, the current through the resistors is the
      same. Recall that Ohm’s law relates the current through a device to the
      voltage drop across it. (If you already know the answers, derive them; don’t
      just write them down.)
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 Figure 17.11: Battery in parallel with an inductor.

      _____________________________________
      



      

      	Try to explain in physical terms why doubling the length of a resistor
      doubles its resistance, while doubling its cross-sectional area halves its
      resistance. Use this argument to justify equation (17.17).

      

      	Describe qualitatively what happens when
           
           	the switch is closed in the circuit in figure 17.11, and
           

           	when it is abruptly opened.


      The battery produces a voltage difference V , but also may be thought of as
      having a small internal resistance R.
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 Figure 17.12: Circuit consisting of a shorted resistor.

      _____________________________________
      



      

      	Given the circuit shown in figure 17.12:
           
           	What do Kirchhoff’s laws tell you about Δϕ across the resistor?
           

           	Suppose a time-varying magnetic field B = B0 sin(ωt) is applied
           normal  to  the  circuit  loop,  where  B0  is  a  constant.  What  is
           the (time-dependent) voltage drop Δϕ across the resistor in this
           situation?
           

           	Given the above Δϕ, what is the current through the resistor as
           a function of time?



      You may ignore the effect of the current in creating an additional magnetic
      field.
      


      	In the circuit shown in figure 17.13, the voltage source is switched on at
      time t = 0, at which the voltage V A goes from zero to some constant
      positive value. The capacitor initially has no charge.
           
           	Just  after  the  source  is  switched  on  what  is  the  voltage  V B?
           Hint:  Can  the  potential  difference  across  the  capacitor  change
           instantaneously with the resistor in the circuit? Explain why or
           why not.
           

           	After a very long time, what is the voltage V B?
           

           	Make a qualitative sketch of V B as a function of time.
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 Figure 17.13: Simple RC circuit.

           _____________________________________
           



           


      





   


Chapter 18
Measuring the Very Small

To begin our study of matter we discuss experiments in the late 19th and
early 20th centuries that led to proof of the existence of atoms and their
constituents. We then introduce a fundamental idea about the scattering of
waves using the diffraction of light by small particles as a prototype. The
famous Geiger-Marsden experiment that led to the idea of the atomic
nucleus is discussed. Finally, we examine some of the crucial experiments
done with modern particle accelerators and the physical principles behind
them.1
   
18.1    Continuous Matter or Atoms?

From the time of the ancient Greeks there have been debates about the ultimate
nature of matter. One of these debates is whether matter is infinitely divisible or
whether it consists of fundamental building blocks that are themselves indivisible.
However, it wasn’t until the late 19th century that real progress began to be made
on this question.
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 Figure 18.1: Crookes tube, the original particle accelerator. When potentials
are applied to the plates as shown, electrons are emitted by the left electrode
and accelerated to the right, some of which pass through holes in the right
electrode. Positive ions, which are atoms missing one or more electrons, are
created by collisions between electrons and residual gas atoms. These are
accelerated to the left.

____________________________


   



   Advancements in our understanding of matter have largely been coupled to
the development of machines to accelerate atomic and sub-atomic particles. The
original accelerator was developed in the 19th century and is called the Crookes
tube.

   J. J. Thomson measured the charge to mass ratio for both electrons
and positive ions in the Crookes tube in the following way: If a potential
difference Δϕ is applied between the electrodes, then by energy conservation a
particle of charge q starting from rest will acquire a kinetic energy moving
from electrode to electrode of K = mv2∕2 = qΔϕ. Solving for v, we find
v = (2qΔϕ∕m)1∕2. If a magnetic field B is then imposed normal to the electron
beam after it has passed the positive electrode, the beam bends with
a radius of curvature of R = mv∕(qB). Since R and B are known, the
charge to mass ratio can be computed by eliminating v and solving for
q∕m: q∕m = 2Δϕ∕(BR)2. Thomson found that positive ions typically had
charge to mass ratios several thousand times smaller than the electrons.
Furthermore, the ions were positively charged, while the electrons were
negatively charged. If the ions and the electrons have electrical charges equal
in magnitude (plausible, since the ions are neutral atoms with at least
one electron removed), the ions have to be much more massive than the
electrons.

   Robert Millikan made the first direct measurement of electric charge. He
did this by suspending electrically charged oil drops in a known electric
field against gravity. The size of an oil drop is directly measured using a
microscope, leading to a calculation of its mass, and hence the gravitational
force, mg. This is then balanced against the electric force, qE, leading to
q = mg∕E. Occasionally an oil drop loses an electron due to photoelectric
emission caused by photons from an ultraviolet lamp. This disrupts the
force balance, and causes the oil drop to move up or down. If the electric
field is quickly adjusted, this motion can be arrested. The change in the
charge can be related to the change in the electric field: Δq = mgΔ(1∕E).
If only a single electron is emitted, then Δq is equal to the electronic
charge.

   Between the work of Thomson and Millikan, the masses and the charges of
sub-atomic particles were accurately measured for the first time. Ironically, this
work also showed that the “atom”, which means “indivisible” in Greek, in fact
isn’t. Atoms consist of positive charges with large mass, or protons, in
conjunction with low mass electrons of negative charge. Electrons and protons

have opposite charges, so they attract each other to form atoms in this
picture.

   Geiger and Marsden did an experiment that strongly suggested that atoms
consist of very small, positively charged atomic nuclei, surrounded by a cloud of
circling, negatively charged electrons. This is called the Rutherford model of the
atom after Ernest Rutherford.

   Chadwick completed our picture of the atom with the discovery of a neutral
particle of mass comparable to the proton, called the neutron. The neutron is a
constituent of the atomic nucleus along with the proton. The number of protons
in a nucleus is denoted Z while the number of neutrons is N. We define
A = Z + N to be the total number of nucleons (protons plus neutrons). The
parameter Z is often called the atomic number while A is called the atomic mass
number.

   Marie and Pierre Curie and Henri Becquerel were the first to discover a more
fundamental divisibility of atoms in the form of the radioactive decay, though
the implications of their results did not become clear until much later.
Radioactive decay of atomic nuclei comes in three common forms: alpha,
beta, and gamma decay. Alpha decay is the spontaneous emission of a
helium-4 nucleus, called an alpha particle by a heavy nucleus such as
uranium or radium. The alpha particle consists of two protons and two
neutrons, so the emission decreases both Z and N by 2. Beta decay is the
emission of an electron or its antiparticle, the positron, by a nucleus, with an
accompanying change in the electric charge of the nucleus. For electron
emission Z increases by 1 while N decreases by 1. The opposite occurs
for positron emission. Gamma decay is the emission of a high energy
photon by a nucleus. The values of Z and N remain unchanged. The
energy released by these decays is typically of order a few million electron
volts.

   Of the three forms of decay, beta decay is the most interesting, since it
involves the transformation of one sub-atomic particle into another. In the case of
neutron decay, a neutron is converted into a proton, an electron, and an
antineutrino. For proton decay, a proton becomes a neutron, a positron, and a
neutrino. (Only the neutron form occurs for an isolated particle. However, the
energetics inside atomic nuclei can result in either form, depending on the nucleus
in question.) The neutrino is one of the great theoretical predictions of modern
physics. Careful studies of beta decay, which at the time was thought to
result only in the emission of a proton and an electron for the neutron
form of the reaction, showed apparent non-conservation of energy and

angular momentum. Rather than accept this rather unpalatable conclusion,
Wolfgang Pauli proposed that a third particle named a neutrino, or little
neutral particle, is emitted in the decay, thus accounting for the missing
energy and angular momentum. The presumed electrical neutrality of the
particle explained the difficulty of detecting it. Over 25 years passed before
Frederick Reines and Clyde Cowan from Los Alamos observed this elusive
particle.

   The three forms of radioactive decay are associated with three of the four
known fundamental forces of nature. Gamma decay is electromagnetic in nature,
while alpha decay involves the breaking of bonds produced by the nuclear or
strong force. Beta decay is a manifestation of the so-called weak force. (The fourth
force is gravity, which plays a negligible role on the sub-atomic scale, as far as we
know.)

   Beta decay gives us a strong hint that even particles such as protons and
neutrons, which make up atomic nuclei, are not “atomic” in the sense of the
original Greek, since neutrons can change into protons in beta decay and vice
versa. We now have excellent evidence that protons, neutrons, and many other
sub-nuclear particles are made up of particles called quarks. Quarks and electrons
are currently thought to be fundamental in that they are supposedly indivisible,
and are hence the true “atoms” of the universe. However, who knows, perhaps
someday we will discover that they too are composed of even more fundamental
constituents!
   
18.2    The Ring Around the Moon
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 Figure 18.2: Scattering of an incident plane wave by a water droplet. The
opening half-angle of the scattered wave is α ≈ λ∕(2d).

____________________________






   Sometimes at night one sees a diffuse disk of light around the moon if it
happens to be shining through a thin layer of cloud. This disk consists of light
diffracted by the water or ice particles in the cloud. The diameter of the
disk contains information about the size of the cloud particles doing the
diffraction. In particular, if the particles have diameter d and the light
has wavelength λ, then the diffraction half-angle shown in figure 18.2 is
approximately
   	
   
[image: α ≈  λ∕(2d). ]
	(18.1)





   This equation comes from the problem of passage of light through a hole or slit
of diameter or width d. This problem was treated in the chapter on waves, and
the above formula was concluded to hold in that case. One can think of the
diffraction of light by a particle to be the linear superposition of a plane
wave minus the diffraction of light by a hole in a mask, as illustrated in
figure 18.2. The angular spread of the diffracted light is the same in both
cases.

   The interesting point about equation (18.1) is that the opening angle of the
diffraction cone is inversely proportional to the diameter of the diffracting
particles. Thus, for a given wavelength, smaller particles cause diffraction through
a wider angle.

   Note that when the wavelength exceeds the diameter of the particle by a
significant amount, equation (18.1) fails, since scattering through an angle greater
than π doesn’t make physical sense. In this case the diffracted photons tend
to be isotropic, i. e., they are scattered with equal probability into any
direction.


   If one wishes to measure the size of an object by observing the diffraction of a
wave around the object, the lesson is clear; the wavelength of the wave must be
less than or equal to the dimensions of the object — otherwise the scattering of
the wave by the object is largely isotropic and equation (18.1) yields no
information. Since wavelength is inversely related to momentum by the de
Broglie relationship, this condition implies that the momentum must
satisfy
   	
   
[image: p = h∕λ >  h∕d ]
	(18.2)




in order that the size of an object of diameter d be resolved.
   
18.3    The Geiger-Marsden Experiment
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 Figure 18.3:  Schematic  of  Geiger-Marsden  experiment.  The  radioactive
source produces alpha particles that are collimated into a beam and directed
at a gold foil. The alpha particles scatter off the foil and are detected by a
flash of light when they hit the scintillation screen.

____________________________






   In 1908 Hans Geiger and Ernest Marsden, working with Ernest Rutherford of
the Physical Laboratories at the University of Manchester, measured
the angular distribution of alpha particles scattered from a thin gold foil
in an experiment illustrated in figure 18.3. In order to understand this
experiment, we need to compute the de Broglie wavelength of alpha particles
resulting from radioactive decay. Typical alpha particle kinetic energies
are of order 5 MeV = 8 × 10-13 J. Since the alpha particle consists of
two protons and two neutrons, its mass is about Mα = 6.7 × 10-27 kg.
This implies a velocity of about v = 1.1 × 107 m s-1, a momentum of
about p = mv = 7.4 × 10-20 N s, and a de Broglie wavelength of about
λ = h∕p = 9.0 × 10-15 m.

   Other evidence indicates that atoms have dimensions of order 10-10 m, so
the de Broglie wavelength of an alpha particle is about a factor of 104
smaller than a typical atomic dimension. Thus, the typical diffraction
scattering angle of alpha particles off of atoms ought to be very small, of order
α = λ∕(2d) ≈ 10-4 radian ≈ 0.01∘.

   Imagine the surprise of Geiger and Marsden when they found that while most
alpha particles suffered only small deflections when passing through the gold foil,
a small fraction of the incident particles scattered through large angles, some in
excess of 90∘!
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 Figure 18.4: Illustration of alpha particle trajectory in Rutherford’s model
of the atom. The momentum transfer q from the nucleus to the alpha particle
is equal to the change in the alpha particle’s momentum.

____________________________


   



   Ernest Rutherford calculated the probability for an alpha particle,
considered to be a positive point charge, to be scattered through various
angles by a stationary atomic nucleus, assumed also to be a positive point
charge. The calculation was done classically, though interestingly enough
a quantum mechanical calculation gives the same answer. The relative
probability for scattering with a momentum transfer to the alpha particle of
q is proportional to |q|-4 ≡ q-4 according to Rutherford’s calculation.
(Do not confuse this q with charge!) As figure 18.4 indicates, a larger
momentum transfer corresponds to a larger scattering angle. The maximum
momentum transfer for an incident alpha particle with momentum p is 2|p|, or
just twice the initial momentum. This corresponds to a head-on collision
between the alpha particle and the nucleus followed by a recoil of the
alpha particle directly backwards. Since this collision is elastic, the kinetic
energy of the alpha particle after the collision is approximately the same
as before, as long as the nucleus is much more massive than the alpha
particle.

   Rutherford’s calculation agreed quite closely with the experimental
results of Geiger and Marsden. Though the probability for scattering
through a large angle is small even in the Rutherford theory, it is still
much larger than would be expected if there were no small scale atomic
nucleus.
   
18.4    Cosmic Rays and Accelerators


   
18.4.1    Early Cosmic Ray Results

Earlier we indicated that particles interacted with each other via the exchange of
a virtual intermediary particle that interchanges energy, momentum, and other
physical properties between the interacting particles. This idea originated with the
Japanese physicist Hideki Yukawa in 1935 in an effort to understand the forces
between nucleons. Yukawa hypothesized that the force that holds nucleons
together is associated with the exchange of a boson, i. e., a particle with integer
spin, with rest energy mc2 ≈ 100 MeV. The range of this force at low momentum

transfers is I ≈ℏ∕(mc) ≈ 2 × 10-15 m, or comparable to the observed size of an
atomic nucleus.

   In 1947 two new particles were discovered in cosmic rays, the negatively
charged muon with a rest energy of 106 MeV, and the pion, which comes in three
varieties, the π+, the π-, and the π0, which respectively have positive,
negative, and zero charge. The rest energies of the π+ and π- are 140 MeV
while that of the π0 is 135 MeV. All of these particles are unstable in
that they decay into other, more stable particles in a tiny fraction of
a second. In particular, the negative pion decays into a muon and an
antineutrino, while the neutral pion decays into two gamma rays, or high energy
photons. The antineutrino that results from pion decay is actually distinct
from the antineutrino emitted in nuclear beta decay; it is called the mu
antineutrino since it is associated with the muon in the same way that the
antineutrino in beta decay is associated with the electron. To further
distinguish between the two, the latter is called the electron antineutrino.
The muon itself decays into an electron, a mu neutrino, and an electron
antineutrino.

   The muon and its associated neutrino are rather peculiar. In all respects
except mass, the muon appears to be identical to the electron. The physicist
I. I. Rabi is reputed to have responded “Who ordered that?” upon learning of the
properties of the muon. Furthermore, the electron neutrino only interacts with the
electron and the muon neutrino only interacts with the muon. This is the first
hint that elementary particles occur in families that appear to be replicated at
higher energies.

   Since the muon is a fermion with spin 1∕2, it can’t be Yukawa’s intermediary
particle since all intermediary particles are bosons with integral spin.
Furthermore, as with the electron, it is not subject to the nuclear force. The pions
are more promising candidates for being intermediary particles of the
nuclear force, since they are bosons with spin 0. However, as we shall
see, the situation is more complex than Yukawa imagined, and the force
between nucleons cannot be so simply treated. However, Yukawa’s idea of
intermediary particle exchange lives on in today’s theories of sub-nuclear
particles.


   
18.4.2    Particle Accelerators


Soon after the discovery of muons and pions in cosmic rays, a whole plethora of
unstable particles was uncovered. Central to these discoveries was the particle
accelerator. In these devices, charged particles, typically electrons or protons, are
accelerated to high energy and then smashed into a target. Detectors of various
sorts are used to examine the particles created by the collisions of the accelerated
particles and the atomic nuclei with which they collide. Sometimes an elastic
collision occurs, in which the accelerated particle simply “bounces off” of the
target particle, transferring a good bit of its momentum to this particle. However,
under many circumstances the collision results in the production of new particles
that didn’t exist before the collision. This is referred to as an inelastic
collision.

   The simplest type of target is liquid hydrogen since the nucleus consists of a
single proton. The orbital electrons of the target atoms are so light that they are
generally just “brushed aside” without greatly affecting the trajectories of the
accelerated particles. However, a variety of targets are used under different
circumstances.


   
18.4.3    Size and Structure of the Nucleus
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  Figure 18.5:  Schematic  illustration  of  Robert  Hofstadter’s  results  for
scattering of electrons off of atomic nuclei. The solid line shows the relative
probability (in log-log coordinates) of elastic scattering as a function of the
momentum transfer. The dashed curve illustrates the observed probability
distribution. The difference between the curves is the logarithm of the form
factor, F(q).

____________________________






   In the late 1950s and early 1960s Robert Hofstadter of Stanford University
extended the Geiger-Marsden experiment to much shorter de Broglie
wavelengths using high energy electrons from an accelerator, rather than alpha
particles, as the probe. The type of results obtained by Hofstadter are shown
in figure 18.5. After accounting for some effects having to do with the
electron spin, these experiments should agree with the Rutherford formula if
the nucleus is truly a point particle. However, the actual results show
probabilities that drop off more rapidly with increasing momentum transfer q
than is predicted by the Rutherford model. The ratio of the actual to the
Rutherford probability distributions is called the form factor, F(q), for this
process:
   	
   
[image:                                -4 Pobs(q) = F (q)PRuth (q ) ∝ F (q)q . ]
	(18.3)




Taking the logarithm of this equation results in
   	
   
[image: log[Pobs] = log[F(q)] - 4 log(q) + const. ]
	(18.4)






   These results are related to the fact that the nucleus is actually of finite
size. The diffraction effects discussed in the section on the scattering of
moonlight come into play here, in that little scattering takes place for
scattering angles larger than roughly λ∕(2d), where λ is the de Broglie
wavelength of the probing particle and d is the diameter of the target. For a
small scattering angle (which we now call θ), it is clear from figure 18.4
that
   	
   
[image: θ ≈ q∕p, ]
	(18.5)




where p is the momentum of the incident electron and q is the momentum
transfer. If qmax is the maximum momentum transfer for which there is significant
scattering, then we can write
   	
   
[image: q    ∕p = θ    ≈ λ ∕d,  max       max ]
	(18.6)





where the factor of 2 in the denominator on the right side has been dropped
since this is an approximate analysis. However, since λ = h∕p, we find
that
   	
   
[image: q    ≈  h.  max    d ]
	(18.7)




Thus, the momentum transfer for which the measured form factor becomes small
compared to one gives us an immediate estimate of the diameter of an atomic
nucleus: d ≈ h∕qmax. The results obtained by Hofstadter show that nuclear
diameters are typically a few times 10-15 m.

   More than just size information can be extracted from the form factor.
Hofstadter’s experiments also led to a great deal of information about the internal
structure of atomic nuclei.
   
18.4.4    Deep Inelastic Scattering of Electrons from Protons
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 Figure 18.6:  Deep  inelastic  scattering  of  a  high  energy  electron  by  a
proton occurs when the momentum transfer q is large and many particles
are produced. According to the Bjorken-Feynman theory of this process,
the proton consists of a number of partons flying in “loose formation”. A
sufficiently energetic photon, i. e., with large momentum transfer q, kicks
out just one of these partons, leaving the others undisturbed.

____________________________






   The construction of the Stanford Linear Accelerator Center (SLAC), which
accelerates electrons up to 40 GeV, allowed experiments like Hofstadter’s to be
carried out at much higher energies. At these energies, many of the collisions
between electrons and protons and neutrons are inelastic — generally a great mess
of short-lived particles is spewed out, and are very difficult to interpret. However,
the so-called deep inelastic collisions, where the electron scatters through a large
angle and therefore transfers a large momentum, q, to the proton, yield
very interesting results. In particular, these collisions occur essentially
with a probability proportional to q-4 — just as in the Geiger-Marsden
experiment!

   The electron is a point particle as far as we know. However, previous
experiments showed the proton to have a finite size, of order 10-15 m.
Therefore, the scattering probability should drop off more rapidly with
increasing momentum transfer q than with q-4, as in the earlier Hofstadter
experiments.

   James Bjorken and Richard Feynman showed a way out of this dilemma. They
proposed that the proton actually consists of a small number of point particles
bound together by weakly attractive forces. A sufficiently energetic photon is able
to knock a single one of these particles out of the proton, as illustrated in the
right panel of figure 18.6. This leads to a subsequent set of reactions that produce
the profusion of particles seen in the left panel of this figure. Feynman called the
particles that make up the proton partons. However, we now know that they
are actually quarks, spin 1/2 particles with fractional electronic charge
that are thought to be the fundamental building blocks of matter, and
gluons, the massless spin 1 intermediary particles that carry the strong
force.
   
18.4.5    Storage Rings and Colliders
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 Figure 18.7: Schematic model of a particle-antiparticle collider. The particles
and antiparticles are injected into the storage rings shown and are made to go
in a circle by magnetic fields. The beams cross at two points and equipment
is set up around these points to observe the products of collisions.

____________________________






   An alternate way to create interesting collisions is to crash particles and
antiparticles of the same energy into each other. This is done via a storage ring, as
shown in figure 18.7. A set of magnets forces particles and antiparticles (which
have opposite charges) to move in opposing circles within a high vacuum. The
circles are slightly offset so that the beams cross at only two points. Collisions
occur at these points and are observed by various types of experimental
equipment.

   An alternate type of collider has two storage rings that intersect at only one
point. This type of system can be used to collide particles of the same type
together, e. g., protons colliding with protons.
   
18.4.6    Proton-Antiproton Collisions

If collisions occur by the exchange of a single intermediary particle of zero mass
between point particles, the q-4 dependence of the collision probability on
momentum transfer will occur in proton-antiproton collisions as in the
Geiger-Marsden experiment. However, if the colliding particles are not point
particles, a form factor that decreases for increasing momentum transfer will occur
as with the Hofstadter experiments.

   When collisions between protons and antiprotons of a few hundred GeV are
arranged, certain types of events called two-jet events are recorded. In these
events, two jets, each containing many particles, are emitted in opposite directions
at wide angles (i. e., with large momentum transfer) from the colliding beams.
Furthermore, these jets show a probability distribution as a function of
momentum transfer very close to q-4. This indicates that the colliding particles
are point-like, at least down to the minimum spatial resolutions available to
today’s accelerators.
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 Figure 18.8: Illustration of what happens in a high energy collision between
a proton and an antiproton according to the Bjorken-Feynman parton model.

____________________________


   



   According to the Bjorken-Feynman parton model of the proton, the collision
between highly energetic protons and antiprotons should operate as shown in
figure 18.8. The actual collision is between individual partons. Figure 18.8
illustrates the collision between a quark in the proton and an antiquark in the
antiproton. The result of this interaction is the scattering of these particles out of
the incident particles, resulting ultimately in a two jet event as described
above.
   
18.4.7    Electron-Positron Collisions
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 Figure 18.9: Two-jet events resulting from the annihilation of high energy
electrons and positrons. The virtual photon decays into a quark-antiquark
pair that in turn generates the oppositely pointing jets of particles.

____________________________






   Two-jet events can also be created by the collision of high energy electrons and
positrons. Figure 18.9 shows how this process is thought to work. The annihilation
of the electron and positron results in a virtual photon, which in turn decays into
a quark-antiquark pair. The quarks then produce the jets. These results suggest
that quarks can indeed occur outside of protons, at least if they occur in
quark-antiquark pairs.
   
18.5    Commentary

We have examined a selected set of experiments performed over the last 100 years.
Though complicated in detail, we have seen that they can be understood
in their essence using one idea, namely the uncertainty principle. This
principle underlies the diffraction angle formula and also turns out (in an
argument that we have not made) to be central to the q-4 dependence of
scattering probability for point particles. For momentum transfers of order
1000 GeV/c, we are able to probe spatial scales of order 10-17 m, or a factor of
100-500 less than the scale of the atomic nucleus. Even on this scale it
appears that both the electron and the quark act like point particles.
They thus appear to be the ultimate “atoms” of matter in the original
sense of the word. However, it is possible that experiments at even higher
momentum transfers would show the electron or the quark to have some kind
of internal structure. Perhaps this heirarchy of structure, of which we
have noted the atom, the atomic nucleus, nucleons, and quarks, goes on
forever.


   
18.6    Problems


      

      	If possible, observe the moon through a thin cloud layer and estimate
      the angular size of the disk of scattered light around the moon. From
      this, estimate the size of the particles doing the scattering.
      


      	Which particle can be used to investigate smaller scales, a proton or an
      electron, at
           
           	the same velocity, and
           

           	at  the  same  kinetic energy?  (Work  non-relativistically  in  both
           cases.)
           

           	Now  consider  ultra-relativistic  protons  and  electrons  with  the
           same total energy. Is there a significant difference between their
           ability to investigate very small scales?


      

      	Electron microscope:
           
           	What  kinetic  energy  (in  electron  volts)  must  electrons  in  an
           electron microscope have to match the resolution of an optical
           microscope? (The resolutions match when the wavelengths of the
           electrons and the light are the same.)
           

           	If  the  electrons  have  kinetic  energy  50 KeV,  how  much  better
           resolution does the electron microscope have than the best optical
           microscope?


      Hint: Use the non-relativistic kinetic energy and check whether this
      assumption is valid in retrospect.
      


      	Integrated circuits are made by a system in which the circuit pattern is
      engraved on a silicon wafer using a photochemical process working with
      an optical imaging device that projects the circuit image on the
      wafer.
           
           	Assuming visible light is used, estimate the size of the smallest
           feature that could be produced on the silicon by this system.

           

           	Do the same for 1 KeV X-rays.


      Hint: Recall that the smallest feature resolvable by a wave is approximately
      the wavelength of that wave.
      


      	The rest energy of two colliding particles is just c2 multiplied by the
      mass of the single particle created by the colliding particles sticking
      together.
           
           	Compute the rest energy (in GeV) of a particle resulting from a
           100 GeV energy proton colliding with a stationary proton.
           

           	Compute the rest energy of the particle resulting from two 50 GeV
           protons colliding head-on.


      Hint: These calculations are relativistic, since the rest energy of the proton
      is about 0.9 GeV.
      


      	Relativistic charged particle in magnetic field: Assume that a relativistic
      particle of mass m and charge e is moving in a circle under the influence of
      the magnetic field B = (0, 0,-B). The position of the particle as a function
      of time is given by x = [R cos(ωt),R sin(ωt), 0].
           
           	Compute the (vector) velocity of the particle and show that its
           speed is v = ωR.
           

           	Compute the (relativistic) momentum (again in vector form) of
           the particle using the above results.
           

           	Compute the magnetic force F on the particle.
           

           	Using the relativistic version of Newton’s second law, F = dp∕dt,
           determine how the rotational frequency ω depends on the speed

           of the particle, the magnetic field B, and the particle’s charge and
           mass. Examine particularly the limits where v ≪ c and v ≈ c.
           

           	Eliminate ω between the above result and the speed formula to
           get an equation for the radius R of the circle. Show that this takes
           the particularly simple form R = p∕(eB) when written in terms
           of the magnitude of the momentum p = mvγ.


      

      	A 30 GeV electron is scattered by a virtual photon through an angle of 60∘
      without changing its energy.
           
           	Compute its momentum vector before and after the scattering.
           

           	Compute the momentum transfer to the electron by the photon
           in the scattering event.
           

           	Compute the wavelength of the virtual photon.
           

           	What is the virtual photon’s energy?
           

           	What is the virtual photon’s mass?


      

      	Find α, β, and γ such that ℏαcβGγ has the units of length. (G is the
      universal gravitational constant.) Compute the numerical value of this
      length, which is called the Planck length. Compare this value to the
      resolution available today in the highest energy accelerators.





   


Chapter 19
Atoms

In this chapter we investigate the structure of atoms. However, before we can
understand these, we first need to review some facts about angular momentum in
quantum mechanics.
   
19.1    Fermions and Bosons


   
19.1.1    Review of Angular Momentum in Quantum Mechanics

As we learned earlier, angular momentum is quantized in quantum mechanics. We
can simultaneously measure only the magnitude of the angular momentum vector
and one component, usually taken to be the z component. Measurement of the
other two components simultaneously with the z component is forbidden by the
uncertainty principle.

   The magnitude of the orbital angular momentum of an object can take on the
values |L| = [l(l + 1)]1∕2ℏ where l = 0, 1, 2,…. The z component can likewise equal
Lz = mℏ where m = -l,-l + 1,…,l.

   Particles can have an intrinsic spin angular momentum as well as an orbital
angular momentum. The possible values for the magnitude of the spin
angular momentum are |S| = [s(s + 1)]1∕2ℏ and the z component of the spin
angular momentum Sz = msℏ where ms = -s,-s + 1,…,s. Spin differs
from orbital angular momentum in that the spin can take on half-integer
as well as integer values: s = 0, 1∕2, 1, 3∕2,… are possible spin quantum
numbers.

   Spin is an intrinsic, unchangeable quantity for an elementary particle. Particles
with half-integer spins, s = 1∕2, 3∕2, 5∕2,…, are called fermions, while particles
with integer spins, s = 0, 1, 2,… are called bosons. Fermions can only be created or
destroyed in particle-antiparticle pairs, whereas bosons can be created or
destroyed singly.


   
19.1.2    Two-Particle Wave Functions

We learned in quantum mechanics that a particle is represented by a wave,
ψ(x,y,z,t), the absolute square of which gives the relative probability of finding

the particle at some point in spacetime. If we have two particles, then we must
ask a more complicated question: What is the relative probability of finding
particle 1 at point x1 and particle 2 at point x2? This probability can be
represented as the absolute square of a joint wave function ψ(x1,x2), i. e., a
single wave function that represents both particles. If the particles are not
identical (say, one is a proton and the other is a neutron) and if they are not
interacting with each other via some force, then the above wave function
can be broken into the product of the wave functions for the individual
particles:
   	
   
[image: ψ(x1,x2) = ψ1 (x1)ψ2(x2)  (non -interacting  dissimilar particles). ]
	(19.1)




In this case the probability of finding particle 1 at x1 and particle 2 at x2 is just
the absolute square of the joint wave amplitude: P(x1,x2) = P1(x1)P2(x2). This is
consistent with classical probability theory.

   The situation in quantum mechanics when the two particles are identical is
quite different. If P(x1,x2) is, say, the probability of finding one electron at x1 and
another electron at x2, then since we can’t tell the difference between one electron
and another, the probability distribution cannot change if we switch the
electrons. In other words, we must have P(x1,x2) = P(x2,x1). There are
two obvious ways to make this happen: Either ψ(x1,x2) = ψ(x2,x1) or
ψ(x1,x2) = -ψ(x2,x1).

   It turns out that the wave function for two identical fermions is antisymmetric
to the exchange of particles whereas for two identical bosons it is symmetric. In
the special case of two non-interacting particles, we can construct the joint wave
function with the correct symmetry from the wave functions for the individual
particles as follows:

   	
   
[image: ψ (x ,x ) = ψ (x )ψ  (x  ) - ψ (x )ψ (x )  (non -interacting  fermions )     1  2     1  1   2  2     1  2  2  1 ]
	(19.2)




for fermions and
   	
   
[image: ψ (x1,x2) = ψ1(x1)ψ2(x2 ) + ψ1 (x2 )ψ2 (x1) (non-interacting bosons ) ]
	(19.3)




for bosons.
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 Figure 19.1: Joint probability distributions for two particles, one in the
ground state and one in the first excited state of a one-dimensional box. Left
panel: non-identical particles. Middle panel: identical fermions. Right panel:
identical bosons. The curved lines are contours of constant probability. The
lighter shading shows where the probability is large.

____________________________


   



   Figure 19.1 shows the joint probability distribution for two particles in
different energy states in an infinite square well: P(x1,x2) = |ψ(x1,x2)|2. Three
different cases are shown: non-identical particles, identical fermions, and identical
bosons. Notice that the probability of finding two fermions at the same point in
space, i. e., along the diagonal dotted line in the center panel of figure 19.1, is
zero. This follows immediately from equation (19.2), which shows that
ψ(x1,x2) = 0 for fermions if x1 = x2. Notice also that if two fermions are in the
same energy level (say, the ground state of the one-dimensional box) so that
ψ1(x) = ψ2(x), then ψ(x1,x2) = 0 everywhere. This demonstrates that the two
fermions cannot occupy the same state. This result is called the Pauli exclusion
principle.

   On the other hand, bosons tend to cluster together. Figure 19.1 shows that the
highest probability in the joint distribution occurs along the line x1 = x2, i. e.,
when the particles are colocated. This tendency is accentuated when more
particles are added to the system. When there are a large number of bosons, this
tendency creates what is called a Bose-Einstein condensate in which most or all of
the particles are in the ground state. Bose-Einstein condensation is responsible for
such phenomena as superconductivity in metals and superfluidity in liquid helium
at low temperatures.
   
19.2    The Hydrogen Atom

The hydrogen atom consists of an electron and a proton bound together by the
attractive electrostatic force between the negative and positive charges of these
particles. Our experience with the one-dimensional particle in a box shows that a
spatially restricted particle takes on only discrete values of the total energy.
This conclusion carries over to arbitrary attractive potentials and three
dimensions.

   The energy of the ground state can be qualitatively understood in terms of the
uncertainty principle. A particle restricted to a region of size a by an
attractive force will have a momentum equal at least to the uncertainty in the
momentum predicted by the uncertainty principle: p ≈ℏ∕a. This corresponds to
a kinetic energy K = mv2∕2 = p2∕(2m) ≈ℏ2∕(2ma2). For the particle
in a box there is no potential energy, so the kinetic energy equals the
total energy. Comparison of this estimate with the computed ground
state energy of a particle in a box of length a, E1 = ℏ2π2∕(2ma2), shows

that the estimate differs from the exact value by only a numerical factor
π2.

   We can make an estimate of the ground state energy of the hydrogen atom
using the same technique if we can somehow take into account the potential
energy of this atom. Classically, an electron with charge -e moving in a
circular orbit of radius a around a proton with charge e at speed v must
have the centripetal acceleration multiplied by the mass equal to the
attractive electrostatic force, mv2∕a = e2∕(4πϵ
0a2), where m is the electron
mass. (The proton is so much more massive than the electron that we can
assume it to be stationary.) Multiplication of this equation by a∕2 results
in
   	
   
[image:      mv2      e2       U K =  -----=  ------= - --,        2     8πϵ0a      2 ]
	(19.4)




where U is the (negative) potential energy of the electron and K is its kinetic
energy. Solving for U, we find that U = -2K. The total energy E is therefore
related to the kinetic energy by
   	
   
[image: E =  K + U  = K  - 2K  = - K   (hydrogen  atom ).  ]
	(19.5)





   Since the total energy is negative in this case, and since U = 0 when the
electron is infinitely far from the proton, we can define a binding energy that is
equal to minus the total energy:
   	
   
[image: EB  ≡ - E =  K  = - U∕2   (virial theorem ). ]
	(19.6)




The binding energy is the minimum additional energy that needs to be added
to the electron to make the total energy zero, and thus to remove it to
infinity. Equation (19.6) is called the virial theorem, and it is even true for
non-circular orbits if the energies are properly averaged over the entire
trajectory.

   Proceeding as before, we assume that the momentum of the electron is
p ≈ℏ∕a and substitute this into equation (19.4). Solving this for a ≡ a0 yields an
estimate of the radius of the hydrogen atom:
   	
   
[image:            2   (       ) (    ) a0 = 4π-ϵ0¯h- =   4πϵ0¯hc-   -¯h-        e2m          e2      mc  ]
	(19.7)




This result was first obtained by the Danish physicist Niels Bohr, using
another method, in an early attempt to understand the quantum nature of
matter.

   The grouping of terms by the large parentheses in equation (19.7) is
significant. The dimensionless quantity
   	
   
[image:        e2       1 α =  -------≈  ---- (fine structure constant)      4πϵ0¯hc    137 ]
	(19.8)




is called the fine structure constant for historical reasons. However, it is actually a
fundamental measure of the strength of the electromagnetic interaction.
The Bohr radius can be written in terms of the fine structure constant
as
   	
   
[image:       -¯h---           -11 a0 =  αmc  = 5.29 × 10    m   (Bohr radius). ]
	(19.9)






   The binding energy predicted by equations (19.4) and (19.6) is
   	
   
[image:                 2               2   2 EB =  - U-=  --e----=  α-¯hc-=  α-mc---= 13.6 eV.         2    8πϵ0a0     2a0      2 ]
	(19.10)




The binding energy between the electron and the proton is thus proportional to
the electron rest energy multiplied by the square of the fine structure
constant.

   The above estimated binding energy turns out to be precisely the ground state
binding energy of the hydrogen atom. The energy levels of the hydrogen atom
turn out to be
   	
   
[image:                  2   2 E  =  - EB-=  - α-mc--,  n =  1,2,3,...  (hydrogen  energy levels),  n      n2       2n2 ]
	(19.11)




where n is called the principal quantum number of the hydrogen atom.



   
19.3    Complex Atoms
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 Figure 19.2: Energy levels of the hydrogen atom. Energy increases upward
and angular momentum increases to the right. The numbers above each level
indicate the spin orientation multiplied by the orbital orientation degeneracy
for each level. The numbers at the right show the total degeneracy for each
value of n. Only the first three values of n are shown.

____________________________






   The energy levels of the hydrogen atom whose energies are given by equation
(19.11) are actually degenerate, in that each energy has more than one
state associated with it. Three extra degrees of freedom are associated
with angular momentum, expressed by the quantum numbers l, m, and
ms. For energy level n, the orbital angular momentum quantum number
can take on the values l = 0, 1, 2,…,n - 1. Thus, for the ground state,
n = 1, the only possible value of l is zero. For a given value of l, there
are 2l + 1 possible values of the orbital z component quantum number,
m = -l,-l + 1,…,l. Finally, there are two possible values of the spin
orientation quantum number, ms. Thus, for the nth energy level there
are
   	
   
[image:        n- 1 Nn  = 2 ∑  (2l + 1)         l=0 ]
	(19.12)




states. In particular, for n = 1, 2, 3,…, we have Nn = 2, 8, 18,…. This is
summarized in figure 19.2.

   These results have implications for the character of atoms with more than one
proton in the nucleus. Let us imagine how such atoms might be built. The binding
energy of a single electron in the ground state of a nucleus with Z protons is Z2
multiplied by the binding energy of the electron in the ground state of a hydrogen
atom. If the force between electrons can be ignored compared to the force between
an electron and the nucleus (a very poor but initially useful assumption that we
will discuss below), then we could construct an atom by dropping Z electrons
one by one into the potential well of the nucleus. The Pauli exclusion
principle prevents all of these electrons from falling into the ground state.
Instead, the available states will fill in order of lowest energy first until all Z

electrons are added and the atom becomes electrically neutral. From figure
19.2 we see that Z = 2 fills the n = 1 levels with two electrons, one spin
up and one spin down, both with zero orbital angular momentum. For
Z = 10 the n = 2 levels fill such that two electrons have l = 0 and six have
l = 1.

   As electrons are added to an atom, previous electrons tend to shield
subsequent electrons from the nucleus, since their negative charge partially
compensates for the nuclear positive charge. Thus, binding energies are
considerably less than would be expected on the basis of the non-interacting
electron model. Furthermore, the binding energies for states with higher orbital
angular momentum are smaller than those with lower values, since electrons in
these states tend to be more effectively shielded from the nucleus by other
electrons. This effect becomes sufficiently important at higher Z to disrupt the
sequence in which states are filled by electrons — sometimes level n + 1
states with low l start to fill before all the level n states with large l are
full. Accurate calculations of atomic properties in which electron-electron
interactions are taken into account are possible, but are computationally
expensive.
   
19.4    Atomic Spectra

The best evidence for atomic energy levels comes from the emission of light by
atoms in a gas at low pressure. If the atoms are put in an excited state by some
mechanism, say, collisions with energetic electrons accelerated by a potential
difference between electrodes, then light is emitted at particular frequencies called
spectral lines. These frequencies can be separated by a device called a spectroscope.
Spectroscopes use either a prism or a diffraction grating and ancillary optics to
make the separation visible to the eye.

   The frequency of a spectral line is equal to the energy difference between
two states divided by Planck’s constant. This is a consequence of the
conservation of energy — the energy released when an atom undergoes
a transition from a state with energy E2 to a state with energy E1 is
just the difference between these energies. The frequency of the emitted
photon is then derived from the Planck formula. In terms of the angular
frequency,
   	

   
[image:        E2 - E1 ω21 =  --------.           ¯h ]
	(19.13)
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 Figure 19.3: Spectral lines from transitions between electron energy states
in hydrogen.

____________________________


   



   Figure 19.3 shows the possible transitions between the lowest four energy
levels of hydrogen plus the ionized state in which the electron is initially a large
distance from the hydrogen nucleus. Transitions from any state to the
ground state form a series called the Lyman series, while transitions to
the first excited state are called the Balmer series, transitions to the
second excited state are called the Paschen series, and so on. Within each
series, increasing frequencies are labeled using the Greek alphabet, so
the transition from n = 2 to n = 1 is called the Lyman-α spectral line,
etc.

   Atoms can absorb as well as emit radiation. For instance, if hydrogen atoms in
the ground state are bombarded with photons of energy equal to the energy
difference between the ground state and some excited state, some of the atoms
will absorb these photons and undergo transitions to the excited state. If white
light (i. e., many photons with a continuous distribution of frequencies)
irradiates such atoms, just those photons with the right energies will be
absorbed. Examination of the light with a spectroscope after it passes through
a gas of atoms will show absorption lines where the photons with the
critical energies have been removed. This is one of the main ways in which
astrophysicists learn about the elemental constitution of stars and interstellar
gases.

   Atoms in excited states emit photons spontaneously. However, a process called
stimulated emission is also possible. This occurs when a photon with energy equal
to the difference between two atomic energy levels interacts with an atom in the
higher energy state. The amplitude for this process is equal to the spontaneous
emission amplitude times n + 1, where n is the number of incident photons with
energy equal to the energy of the photon which would be spontaneously emitted.
If a beam of photons with the right energy shines on atoms in an excited
state, the beam will gain energy at a rate that is proportional to the
initial intensity of the beam. For intense beams, this stimulated emission
process overwhelms spontaneous emission and a large amount of energy
can be rapidly extracted from the excited atoms. This is how a laser
works.
   
19.5    Problems



      

      	The wave function for three non-identical particles in a box of unit length
      with one particle in the ground state, the second in the first excited state,
      and the third in the second excited state is
      
      [image: ψ (x1,x2,x3) = sin(πx1) sin(2πx2 )sin(3πx3).       ]

      
           

           	From this write down the wave function for three identical bosons
           in the above mentioned states.
           

           	Do the same for three identical fermions.


      Hint: In each case there are six terms corresponding to the six permutations
      of x1, x2, and x3. Exchanging any two particles leaves ψ unchanged for
      bosons but changes the sign for fermions.
      


      	Two identical particles with equal energies collide nearly head-on, so that
      they are both deflected through an angle θ, as shown in figure 19.4. A
      physicist calculates the amplitude ψ as a function of θ for this deflection to
      take place (using very advanced theory!), resulting in the solid curve
      shown in figure 19.4. However, measurements show that the actual
      amplitude as a function of θ (not probability!) is given by the dashed
      curve.
           
           	What did the physicist forget to take into account? Explain.
           

           	Are the particles fermions or bosons? Explain.


      Hint: If the outgoing particles (but not the incoming particles) are
      interchanged, how does the apparent deflection angle change?
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 Figure 19.4: Incorrectly calculated and observed scattering amplitude
      for a collision between two identical particles.

      _____________________________________
      



      

      	Following the analysis made for the hydrogen atom, compute the “Bohr
      radius” and the ground state binding energy for an “atom” consisting of Z
      protons in the nucleus and one electron.
      

      	Upper and lower bounds on the binding energy of the last (outermost)
      electron in the sodium atom (Z = 11) may be obtained by assuming (a) that
      the other electrons have no effect, or (b) that the other electrons neutralize
      all but one proton in the nucleus. Compute the binding energy of the last
      electron in sodium in these two limits. (The actual binding energy of the last
      electron in sodium is 5.139 eV.)
      

      	A uranium atom (Z = 92) has all its electrons stripped off except the first
      one.
           
           	What is the first electron’s binding energy in electron volts?
           

           	What is the ground state radius of the electron orbit in this case?



      

      	The energy levels of a particle in a box are given by En = E0n2 = E
0, 4E0, 9E0,…
      where E0 is the ground state energy for the particle. Find the lowest
      possible total energy of a group of particles, expressed as a multiple of E0,
      for the following particles in the box:
           
           	5 identical spin 0 particles.
           

           	5 identical spin 1/2 particles.
           

           	5 identical spin 1 particles.
           

           	5 identical spin 3/2 particles.


      

      	A charged particle in a 1-D box has energy levels at
      En = E0n2 = E
0, 4E0, 9E0, 16E0, 25E0,…, where E0 is the ground state
      energy of the particle. If the particle can absorb a photon with any of the
      energies 5E0, 12E0, 21E0,…, what can you infer about the initial energy of
      the particle? Explain.
      

      	The X-rays in your dentist’s office are produced when an energetic beam of
      free electrons knocks the most tightly bound electrons (n = 1) completely
      out of the target atoms. Electrons from the next level up (n = 2) then drop
      into the n = 1 level.
           
           	Estimate the energy in electron volts of the resulting photons for
           a copper target (Z = 29). Hint: For the inner electrons, you may
           ignore the effects of the other electrons to reasonable accuracy.
           

           	What minimum energy must the electron beam have in this case?


      

      	What is the shortest ultraviolet wavelength usable in astronomy? Hint: UV
      photons more energetic than the binding energy of the electron in hydrogen
      are strongly absorbed by this gas.

      

      	In the naive periodic table model, the first three closed shells occur for
      Z = 2, 10, 28. However, the first three noble gases have Z = 2, 10, 18.
      Explain why this is so.





   


Chapter 20
The Standard Model

In this chapter we learn about the most fundamental known particles of
the universe, and how they act as building blocks for everything that we
know. The theory describing this scheme is called the standard model.
Speculations exist about possible, more fundamental structures in the
universe, such as the constructs of string theory. However, with the standard
model we have reached the frontier of what is known with any degree of
certainty.
   
20.1    Hadrons and Leptons

The standard model of hadrons and leptons is a united set of quantum mechanical
theories encompassing electromagnetism; the weak force, which is responsible for
beta decay; and the strong force, which holds atomic nuclei together. Before
investigating the standard model, we need to describe the state of affairs previous
to its development. The creation of high energy particle accelerators led to the
discovery of a plethora of particles in addition to those already known. These
particles fall into the following categories:
      

      	Leptons are spin 1/2 particles that do not interact via the strong force.
      The electron, muon, and the electron and muon neutrinos are examples.
      

      	Hadrons are particles that interact via the strong force. They are divided
      into two sub-categories depending on their spin:
           
           	Baryons are hadrons with half-integral spin, mainly 1/2 and 3/2.
           The proton and neutron are well known examples. The neutral
           lambda particle is another.
           

           	Mesons are hadrons with integral spin, mainly 0 and 1. Examples
           are the pions and kaons.


      

      	Strange particles are baryons and mesons that are unstable, but have much
      longer half-lives than other particles of similar mass and spin. This is
      interpreted to mean that such particles possess a property called strangeness

      that is conserved by strong processes, thus making strange particles stable
      against strong decay into non-strange particles. However, strangeness is not
      conserved by weak processes, allowing strange particles to decay via the
      weak interaction, which indeed is much weaker than the strong interaction
      at low energies. This explains their anomalously long half-lives. Strange
      particles are always created in pairs by strong processes in such a way
      that the total strangeness remains zero. For instance, if one particle
      has strangeness +1 then the other must have strangeness -1. An
      example of strange particle production is when a negative pion collides
      with proton, giving rise to a neutral lambda particle and a neutral
      kaon.
      

      	Intermediary particles are those that transfer energy, momentum, charge,
      and other properties from one particle to another in association with one of
      the four fundamental forces.
           
           	Photons transmit the electromagnetic force and have zero mass
           and spin 1.
           

           	Gravitons are thought to transmit the gravitational force, though
           they have not been directly observed. The graviton is postulated
           to have zero mass and spin 2.


      We will discover additional intermediary particles in our discussion of the
      standard model.
      


      	Antiparticles exist for all particles. These have the same mass and spin but
      opposite values of the electric charge and various other quantum numbers
      such as lepton number or baryon number. The lepton number is the number
      of leptons minus the number of antileptons, with a similar definition for
      baryon number. Thus, a lepton has lepton number 1 and a baryon has
      baryon number 1. Their antiparticles have lepton number -1 and
      baryon number -1. As far as we know, baryon number and lepton
      number are absolutely conserved, which means that baryons and
      leptons can only be created or destroyed in particle-antiparticle

      pairs.1
      Antiparticles are represented by the symbol of the particle with an
      overbar.



   
20.2    Quantum Chromodynamics

The standard model postulates that all known particles are either fundamental
point particles or are composed of fundamental point particles according to a
remarkably small set of rules. Just as atoms are bound states of atomic nuclei and
electrons, atomic nuclei are bound states of protons and neutrons. Atomic nuclei
are discussed in the next section. In this section we delve one step deeper in the
heirarchy of the universe. We now believe that all hadrons are actually bound
states of fundamental spin 1/2 particles called quarks. Whereas all other known
charged particles have an electric charge equal to an integer multiple of ±e where
e is the proton charge, quarks have electric charges equal to either -e∕3
or +2e∕3. Leptons themselves are considered to be fundamental, so the
leptons and the quarks form the basic building blocks of all matter in the
universe.

   Quarks are subject to electromagnetic forces via their charge, but interact
most strongly via the so-called strong force. The strong force is carried by
massless, uncharged, spin 1 bosons called gluons.
   


   






 	Type       	Charge	Rest energy	  s	  c	  b	  t

	         	      	          	  	  	  	  

	down (d)   	 -1∕3 	   0.333    	  0	 0	  0	 0

	up (u)      	 +2∕3 	   0.330    	  0	 0	  0	 0

	strange (s) 	 -1∕3 	   0.486    	-1	 0	  0	 0

	charm (c)  	 +2∕3 	   1.65     	  0	+1	  0	 0

	bottom (b)	 -1∕3 	    4.5      	  0	 0	-1	 0

	top (t)      	 +2∕3 	   176     	  0	 0	  0	+1

	         





 Table 20.1: Table of quark types, charge (as a fraction of the proton charge),
rest energy (in GeV), and the four “exotic” flavor quantum numbers.

____________________________

   



   

   When Murray Gell-Mann and George Zweig first proposed the quark model in
1963, they needed to postulate only three types or flavors of quarks: up, down,
and strange. These were sufficient to explain the constitution of all hadrons known
at the time. We currently know of six different flavors of quarks. Their properties
are listed in table 20.1. The properties charm, topness, and bottomness are
analogous to strangeness — these properties are conserved in strong interactions.
Weak interactions, discussed in the next section, can turn quarks of one flavor into
another flavor. However, the strong and electromagnetic forces cannot do
this.
   


   






 	Type          	Charge	Rest energy	Spin	Composition	 Mean life 

	           	      	          	    	           	          

	proton         	  +1   	  938.280   	 1/2 	    uud      	  stable    

	neutron       	  0    	  939.573   	 1/2 	    udd      	   898     

	lambda        	  0    	   1116     	 1/2 	    uds      	 3.8 × 10-9 

	delta++      	  +2   	   1232     	 3/2 	    uuu      	5.6 × 10-24

	positive pion 	  +1   	   140     	 0  	    ud       	 2.6 × 10-8 

	negative pion	  -1   	   140     	 0  	    ud       	 2.6 × 10-8 

	neutral pion  	  0    	   135     	 0  	  uu - dd   	8.7 × 10-17

	positive rho  	  +1   	   770     	 1  	    ud       	 4 × 10-24  

	positive kaon	  +1   	   494     	 0  	    us       	1.24 × 10-8

	neutral kaon 	  0    	   498     	 0  	    ds       	8.6 × 10-11

	J/psi           	  0    	   3097     	 1  	    cc       	1.5 × 10-20

	           





 Table 20.2: Sample hadrons. The charge is specified as a fraction of the
proton charge, the rest energy is in MeV, and the mean life (1.44 multiplied
by the half life) is in seconds. The composition is presented in terms of the
flavors of quarks and antiquarks that make up the particle.

____________________________

   



   

   Just as the proton and the neutron have antiparticles, so do quarks.
Antiquarks of a particular type have strong and electromagnetic charges of the
sign opposite to the corresponding quarks. Quarks have baryon number equal to
1∕3, while antiquarks have -1∕3. Thus combining three quarks results in a baryon
number equal to 1, while together a quark plus an antiquark have baryon number
zero. All baryons are thus combinations of three quarks, while all mesons are
combinations of a quark and an antiquark. Table 20.2 lists a sampling of
hadrons and some of their properties. Notice that the same combination
of quarks can make up more than one particle, e. g., the positive pion
and the positive rho. The positive rho may be considered as an excited
state of the ud system, while the positive pion is the ground state of this
system.
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 Figure 20.1: The color table of quantum chromodynamics. Quarks have
colors  red,  green,  and  blue,  while  antiquarks  have  colors  antired  (cyan),
antigreen (magenta), and antiblue (yellow). The combination of a quark and
its corresponding antiquark is colorless or white, as is the combination of
three quarks (or antiquarks) of three different colors.

____________________________


   



   Yet to be mentioned is the quantum number color, which has nothing to do
with real colors, but has analogous properties. Each flavor of quark can take on
three possible color values, conventionally called red, green, and blue. This is
illustrated in figure 20.1. Antiquarks can be thought of as having the
colors antired, antigreen, and antiblue, also known as cyan, magenta, and
yellow. Because of this, the theory of quarks and gluons is called quantum
chromodynamics. Counting all color and flavor combinations, there are 6 × 3 = 18
known varieties of quarks.

   As in electromagnetism, the strong force has associated with it a “strong
charge”, gs. However, this charge is somewhat more complicated than
electromagnetic charge in that there are three kinds of strong charge, one for each
of the strong force colors. Each color of charge can take on positive and negative
values equal to ±gs. As with electromagnetism, positive and negative charges (of
the same color) cancel each other. However, in quantum chromodynamics there is
an additional way in which charges can cancel. A combination of equal
amounts of red, green, and blue charges results in zero net strong charge as
well.

   The delta++ particle (see table 20.2) is good evidence for the existence of the
color quantum number. Since all three u-quarks in the delta++ have spin
orientation up, the Pauli exclusion principle would only allow one of these quarks
to exist in the ground state if color did not exist, resulting in a much larger mass.
As it is, each of the quarks in the delta++ takes on a different value of the color
quantum number (red, green, or blue), which means that the Pauli exclusion
principle does not prevent them from all from residing in the ground
state.

   Gluons, the intermediary particles of the strong interaction come in eight
different varieties, associated with differing color-anticolor combinations. Since
gluons don’t interact via the weak force, there is no flavor quantum number for
gluons — quarks of all flavors interact equally with all gluons.

   The quark model of matter has led to extensive searches for free quark
particles. However, these searches for free quarks have proven unsuccessful. The
current interpretation of this result is that quarks cannot exist in a free
state, basically because the attractive potential energy between quarks
increases linearly with separation. This appears to be related to the fact that
gluons, the intermediary particles for the strong force, can interact with
each other as well as with quarks. This leads to a series of increasingly
complex processes as quarks move farther and farther apart. The result is

called quark confinement — apparently, individual quarks can never be
observed outside of the confines of the observable particles that contain
them.

   Confinement works not only on single quarks, but on any “colored”
combinations of quarks and gluons, e. g., a red up quark combined with a green
down quark. It appears that long range inter-quark forces only vanish for
interactions between “white” or “color-neutral” combinations of quarks. This is
why only color-neutral combinations of quarks — three quarks of three different
colors or a quark-antiquark pair of the same color — are actually seen as
observable particles.

   The strong equivalent of the fine structure constant is the coupling constant
for the strong force:
   	
   
[image:         2 αs =  -gs--.       4π¯hc ]
	(20.1)




Note that αs is dimensionless. The binding energy between quarks is comparable
to the rest energies of the quarks themselves. In other words, αs ≈ 1.
Furthermore, as we have noted, the potential energy between two quarks
appears to increase indefinitely with separation. Though forces exist between
color-neutral particles, they are weak and of short range compared to the forces
between quarks or colored combinations of quarks. However, they are
still relatively strong compared to, say, electromagnetic forces. As we
shall see later, these residual strong forces are responsible for nuclear
processes.
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 Figure 20.2: Some sample strong interactions illustrated in terms of gluon
emission and absorption. The process on the left shows the reaction π-+p →
K0 + Λ0, while the one on the right shows the decay ρ+ → π+ + π0. Quarks
are labeled with solid lines while gluons are shown by dashed lines.

____________________________


   



   Interactions between hadrons can be thought of as resulting from interactions
between the individual quarks making up the hadrons. Two sample strong
interactions are shown in figure 20.2. Virtual gluons can be emitted and absorbed
by quarks much as virtual photons can be emitted and absorbed by electrically
charged particles. Particles unstable to strong decay processes (such as the
positive rho particle) typically live only about 10-23 s, whereas particles stable to
strong decay but unstable to weak decay live of order 10-10 s or longer, depending
strongly on how much energy is liberated in the decay. Particles subject to
electromagnetic decay processes, such as the neutral pion, take on mean
lifetimes intermediate between strong and weak values, typically of order
10-18 s.
   
20.3    The Electroweak Theory

   

   






 	Type                     	Charge	Rest energy	 Mean life 

	                  	      	          	         

	electron (e-)            	  -1   	 0.000511  	  stable   

	electron neutrino (νe)	  0    	   ≈ 0     	  stable   

	muon (μ-)              	  -1   	   0.106    	 2.2 × 10-6 

	mu neutrino (νμ)      	  0    	   ≈ 0     	  stable   

	tau (τ)                   	  -1   	   ≈ 1.7    	3.0 × 10-13

	tau neutrino (ντ)      	  0    	   ≈ 0     	  stable   

	                  





 Table 20.3: Table of lepton types, charge (as a fraction of the proton charge),
rest energy (in GeV), and mean life (in seconds).

____________________________

   



   

   The strong force acts only on quarks and the strong force carrier, the gluon. It
does not act on leptons, e. g., electrons, muons, or neutrinos. Table 20.3 shows all
of the known leptons. The so-called weak force acts on leptons as well as on
quarks.
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 Figure 20.3: Illustration of two weak reactions. The left panel shows beta
decay  while  the  middle  panel  shows  how  electron  antineutrinos  can  be
detected by conversion to a positron. The right panel shows how W- emission
works according to the quark model, resulting in the conversion of a down
quark to an up quark and the resulting transformation of a neutron into a
proton.

____________________________


   



   In 1979 Sheldon Glashow, Abdus Salam, and Steven Weinberg won the Nobel
Prize for their electroweak theory, which unites the electromagnetic and weak
interactions. Unlike the strong and electromagnetic forces, the intermediary
particles of the weak interaction, the W+, the W-, and the Z0 have rather large
masses. In particular, the rest energy of the W± is 81 GeV while that of the Z0 is
92 GeV. Electroweak theory considers electromagnetism and the weak interactions
to be different aspects of the same force. A key aspect of the theory is
the explanation of why three out of four of the intermediary particles
of the electroweak force are massive. (The photon is the massless one.)
Unfortunately, the details of why this is so are highly technical, so we cannot
delve into this subject here. We only note that the explanation requires the
existence of a massive spin zero boson called the Higgs particle. We have
not yet determined whether the Higgs particle exists, though the hunt is
on!

   The weak force has certain bizarre properties not shared by the other forces of
nature:
      

      	The weak interaction can change quark flavors. For instance, the beta
      decay of a neutron converts a down quark into an up quark. On the
      other hand, the weak interaction is “colorblind”, i. e., it is insensitive
      to quark colors.
      

      	The weak interaction is not left-right symmetric. In other words, the
      physical laws governing the weak interaction look different when seen
      in a mirror.
      

      	The  weak  interaction  is  slightly  asymmetric  to  the  interchange  of
      particles and antiparticles in certain situations.


   The prototypical weak interaction is the decay of the neutron into
a proton, an electron, and an antineutrino. This decay is energetically
possible because the neutron is slightly more massive than the proton and is
illustrated in the left panel of figure 20.3. Note that this figure is drawn as if a
neutrino moving backward in time absorbs a W- particle, with a resulting
electron exiting the reaction forward in time. However, we know that this is

equivalent to an electron and an antineutrino both exiting the reaction
forward in time according to the Feynman interpretation of negative energy
states.

   The weak interaction is called “weak” because it appears to be so in commonly
observed processes. For instance, the range of a relativistic electron in ordinary
matter is of order centimeters to meters. This is because the electromagnetic force
between the charge of the electron and the charges on atomic nuclei are strong
enough to rapidly cause the energy of the electron to be dissipated. However, the
range in matter of a neutrino produced by beta decay is many orders of
magnitude greater than that of an electron. This is not because the weak force is
intrinsically weak — the value of the “fine structure constant” for the weak force
is
   	
   
[image:         -2 αw ≈  10 ]
	(20.2)




according to the standard model, and is actually larger than α for
electromagnetism.

   The real reason for the apparent weakness of the weak force is the large mass
of the intermediary particles. As we have seen, large mass translates into short
range for a virtual particle at low momentum transfers. This short range is what
causes the weak force to appear weak for momentum transfers much less than the
masses of the W and Z particles, i. e., for q ≪ 100 GeV. For leptons and quarks
with energies E ≫ 100 GeV, the weak force acts with much the same strength as
the electromagnetic force.
   
20.4    Grand Unification?


   

   






 	Generation	Leptons            	Quarks

	          	              	      
	 1 	electron 	down

	          	electron neutrino	up      

	          	              	      

	    2       	muon               	strange

	          	mu neutrino      	charm  

	          	              	      

	    3       	tau                  	bottom

	          	tau neutrino      	top     

	          





 Table 20.4: Generations of leptons and quarks. Members of each generation
tend to fit together.

____________________________

   



   

   The standard model is a great achievement, but it leaves a number of
questions unanswered. As table 20.4 shows, nature seems to have produced more
particles than are needed to construct the universe. Virtually everything
we know of is composed of electrons, electron neutrinos, up quarks, and
down quarks. These four particles seem to fall naturally together in a
family or generation. Why then are there apparently unneeded additional
generations? What role do muons, taus, and the exotic quark forms play in the
universe?

   Another question concerns the dichotomy between leptons and quarks.
Electrons and electron neutrinos can be converted into each other by weak
interactions, as can up and down quarks. Why then can’t quarks be converted
into leptons and vice versa?

   In the standard model, electromagnetic and weak forces are truly united as
aspects of a single phenomenon. However, quantum chromodynamics stands more
on its own. One could imagine further advances that would show that the
electroweak and strong forces were in fact different aspects of the same
phenomenon. This could be characterized as a grand unification of the forces of
nature.
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 Figure 20.4: Speculated behavior of the dependence of the coupling constant
α on  momentum  transfer  for  each  of  the  forces.  Extrapolation  based  on
current  measurements  suggests  that  these  constants  come  together  to  a
common value at very high momentum transfer.

____________________________


   



   As previously noted, the strong force coupling constant, αs, gets smaller with
increasing momentum transfer. It turns out that the weak coupling constant, αw,
exhibits similar behavior, while the electromagnetic coupling constant, the fine
structure constant α, becomes stronger at higher energies. This behavior is
illustrated in figure 20.4, though it is based on data only up to about 103 GeV/c.
Figure 20.4 is thus largely speculative. However, if the observed trends do
continue to very high momentum transfers, this would be evidence in favor of
grand unification.

   A number of speculative grand unification theories have been proposed. Most
such theories view leptons and quarks as being different states of the same particle
and also predict that leptons can turn into quarks and vice versa, albeit at very
low rates. One of the consequences of such theories is that the proton would be an
unstable particle, but with a very long lifetime, of order 1030 yr. Experiments have
been done to detect the decay of the proton, but so far without success. These
experiments are sufficient to rule out some but not all of the proposed grand
unification theories.

   One task that would not be accomplished by grand unification is the
incorporation of gravity into a common framework with the strong, weak and
electromagnetic forces. Creation of a satisfactory quantum theory of gravity has
been a very difficult problem and is unsolved to this day, though many people are
working on it.
   
20.5    Problems
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 Figure 20.5: An example of inelastic electron-proton scattering.

____________________________






      
      	Verify that the quark model predicts the correct electric charge for the
      proton, the neutron, and all the pions. Also check to see if the spin
      angular momentum of each of these particles is consistent with its quark
      composition.
      

      	Draw a picture of how the negative pion decays into a muon and a
      mu antineutrino in terms of the quark model of the pion and our ideas
      about the weak interaction.
      

      	Draw a picture of how the muon decays into a mu neutrino, an electron,
      and an electron antineutrino in terms of our ideas about the weak
      interaction.
      

      	A mu antineutrino hits a proton, turning it into a neutron.
           
           	What other particle must be emitted from this reaction?
           

           	Could you use this result to distinguish between electron and mu
           antineutrinos?
           

           	What minimum total energy in the center of momentum frame
           would you expect of the mu antineutrino for this reaction to be
           possible? Note that in this reference frame the kinetic energy of the
           initial proton will be nearly the same as that of the final neutron.


      

      	Suppose that the electron had a rest energy of M = 500 MeV rather than
      ≈ 0.5 MeV. Describe as best you can the many ways in which this would
      change the world and universe in which we live.
      

      	In the reaction shown in figure 20.5, specify what actually happens

      at the vertex in the shaded region in terms of the quark model of
      hadrons.
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 Figure 20.6: Reactions that may or may not be allowed.

      _____________________________________
      



      

      	A solar neutrino detector in South Dakota consists of a huge tank
      of cleaning fluid, which has a large concentration of chlorine-37
      (Z = 17,A = 37).
           
           	Will an electron neutrino more likely interact with a proton or a
           neutron in the chlorine-37 nucleus?
           

           	If this interaction occurs, what will the final products be?


      Note: Z = 16 is sulfur and Z = 18 is argon.
      


      	An electron collides with an antimuon, resulting in the apparent
      disappearance of both particles. This seems to indicate that energy is not
      conserved.
           
           	What do you, the Sherlock Holmes of particle physics, suggest
           actually happened?

           

           	Is this likely to be a very common event? Why or why not?


      

      	A Λ particle consists of 3 quarks with flavors u,d,s. A possible decay mode
      is Λ → p + π-.
           
           	Is the Λ a fermion or a boson? Explain.
           

           	Draw  a  Feynman  diagram  showing  how  the  above  decay  can
           happen at the quark level.
           

           	Is the above decay a strong or a weak process?


      Reminder: p = u,u,d; π- = u,d.
      


      	For each of the reactions shown in figure 20.6, determine whether it is
      allowed or not. If not, state what is wrong.
      





   


Chapter 21
Atomic Nuclei

Atomic nuclei are composite particles made up of protons and neutrons.
These two particles are collectively known as nucleons. In order to better
understand atomic nuclei, we first make an analogy with molecules. We
then investigate the binding energies of atomic nuclei. This information is
central to the subjects of radioactive decay as well as nuclear fission and
fusion.
   
21.1    Molecules — an Analogy

Molecules are bound states of two or more atoms. In chemistry we identify several
modes of molecular binding, e. g., covalent and ionic bonds, the hydrogen bond,
and binding at low temperatures due to the van der Waal’s force. All of these
bonds involve electromagnetic forces, but all (except arguably the ionic bond) are
relatively subtle residual forces between atoms that are electrically neutral. The
ways in which atoms form molecules are therefore complex and resistent to
accurate calculation.

   Atomic nuclei are the nuclear equivalent of molecules, in that they are bound
states of nucleons, which are themselves “uncharged” composite particles. The
charge we refer to here is not the electric charge (nuclei do of course possess this!),
but the strong or color charge. As we discovered in the previous chapter, nucleons
are color-neutral combinations of quarks. Thus, the “strong” forces between
nucleons are subtle residuals of inter-quark forces. This is reflected in the
binding energies; quark-quark binding energies are on the order of the rest
energies of the quarks themselves. However, nuclear binding energies are
typically of order 10 MeV per nucleon, or about 1% of the rest energy of a
nucleon.
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 Figure 21.1:  Approximate  sketch  of  the  strong  force  potential  energy
between two nucleons. 1 fm = 10-15 m. The binding energy B is the energy
required to separate the two nucleons. If the nucleons are bound together,
the rest energy of the resulting combination, Mcomboc2  is less than the sum
of the rest energies of the two nucleons, M1c2, M
2c2, by the amount B:
Mcomboc2 = M
1c2 + M
2c2 - B.

____________________________


   



   The residual nature of nuclear forces makes them complex and difficult to
calculate from our basic knowledge of quantum chromodynamics for the same
reasons that intermolecular forces are difficult to calculate. An empirical approach
is thus needed in order to understand their effects.

   In contrast to molecules and atomic nuclei, atoms are relatively easy to
understand. This is true for two reasons: (1) Electrons appear to be truly
fundamental point particles. (2) Though the atomic nucleus itself is a very
complex system, little of this complexity spills over into atomic calculations,
because on the atomic scale the nucleus is very nearly a point particle. Thus, both
main ingredients in atoms are “simple” from the point of view of atomic
calculations.

   The above result is true because by some accident of nature, the mass of the
electron is so much less than the masses of quarks. It would be interesting to
speculate what atomic theory would be like if this weren’t true — there would be
no scale separation between the atomic and nuclear scales, and the world would
be a very different place!
   
21.2    Nuclear Binding Energies

It is impossible to specify an accurate inter-nucleon force valid under all
circumstances, but figure 21.1 gives an approximate representation of the
potential energy associated with the strong force as the function of nucleon
separation. The binding energy is of order 2 MeV, with an attractive force for
separations greater than about 2 × 10-15 m and an intense repulsive force
for smaller separations. At large distances the potential energy decays
exponentially with distance rather than according to the r-1 law of the Coulomb
potential.

   The short range of the inter-nuclear force means that atomic nuclei can be
thought of as conglomerations of “sticky billiard balls”. The nuclear force is
essentially a contact force and each nucleon simply binds to all its nearest
neighbors. When nucleons are close-packed, the binding energy per nucleon due to
the strong force is simply the number of nearest neighbors for each nucleon,
multiplied by the binding energy per nucleon pair, divided by 2. The
factor of 1∕2 accounts for the fact that each nuclear bond is shared by two
nucleons.

   Several other effects need to be accounted for in the nucleus. The nucleons on

the surface of the nucleus do not have as many bonds as nucleons in the interior.
Thus, to compute the nuclear binding energy of a nucleus with a finite number
of nucleons, a correction must be made for this effect. This contributes
negatively to the nuclear binding energy in proportion to the surface area of
the nucleus, which scales as the number of nucleons to the two-thirds
power.

   In addition to the nuclear force, the repulsive electrostatic force between
protons needs to be accounted for. Since the electrostatic force is a long range
force, the (negative) contribution to the binding energy of the nucleus goes as the
square of the number of protons divided by the radius of the nucleus. The latter
goes as the cube root of the number of nucleons.
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 Figure 21.2: Effect of the Pauli exclusion principle on two nuclei, each with
8 nucleons. The total energy of the nucleus on the left, which has an equal
number of protons and neutrons is 2×(1+2)+2×(1+2) = 12. The nucleus
on the right has total energy 2 × (1) + 2 × (1 + 2 + 3) = 14.

____________________________


   



   The Pauli exclusion principle operates in nuclei so as to favor equal numbers of
protons and neutrons. This effect is illustrated in figure 21.2. If a proton is
converted into a neutron in a nucleus in which equal numbers of the two particles
occur, then the exclusion principle forces these nucleons to move to a higher
energy level than they previously occupied. The binding energy of the nucleus
is correspondingly decreased. This effect opposes the weaker, repulsive
Coulomb potential that occurs when there are more neutrons and fewer
protons.

   The net result of all these effects is a nuclear binding energy equation with
four terms representing the four above-mentioned effects:
   	
   
[image:                      2∕3      2   1∕3              2 B (Z,A ) = avA -  asA   -  acZ ∕A    - aa(2Z -  A) ∕A ]
	(21.1)




where Z is the atomic number or the number of protons, N is the number of
neutrons, and A = Z + N is the atomic mass number, or number of nucleons.
Equation (21.1) represents the binding energy of the entire nucleus. The binding
energy per nucleon is just B∕A.
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 Figure 21.3: Nuclear binding energy per nucleon B(Z,A)∕A, calculated from
equation (21.1). The thick curved line starting near the origin gives the line
of stability for atomic nuclei. The white areas near the horizontal and vertical
axes indicate negative binding energy.

____________________________


   



   Fitting equation 21.1 to observed binding energies in nuclei yields the
following values for the coefficients of the above equation: av ≈ 16 MeV,
as ≈ 17 MeV, ac ≈ 0.70 MeV, and aa ≈ 23 MeV. A contour plot of binding energy
per nucleon, B∕A, is shown in figure 21.3. We note that this equation doesn’t
work well for nuclei with only a few nucleons. For instance, the helium nucleus
with A = 4 is more stable than the lithium nucleus with A = 6, and there is no
stable nucleus at all with A = 5.

   Part of the reason for the problem at small A is that even numbers of protons
and neutrons tend to bind more strongly together than nuclei containing odd
numbers of either. This is because pairs of protons or neutrons with opposite spins
fully occupy nuclear states while an odd nucleon occupies a state by itself with
energy greater than that of all the other occupied states. This behavior can be
approximately accounted for by adding the term ap∕A1∕2 to equation (21.1), where
ap = 12 MeV if N and Z are both even, ap = 0 if either N or Z is odd, and
ap = -12 MeV if both are odd. We leave this term off even though it is
sometimes quite important, in order to make equation (21.1) a smooth
function of Z and A and thus representative of the general trend of binding
energy.

   For a given value of A, it is easy to demonstrate that the maximum nuclear
binding energy in equation (21.1) occurs when
   	
   
[image:              A Z  = ----------2∕3-----.      2 (1 + acA   ∕4aa ) ]
	(21.2)




This formula confirms the trend seen in figure 21.3 that the most stable nuclear
configuration contains an increasing fraction of neutrons as A increases.
The function Z(N) given by equation (21.2) and illustrated by the curve

starting near the origin in figure 21.3 defines the line of stability for atomic
nuclei.

   Figure 21.4 shows the binding energy per nucleon as a function of nucleon
number A along the line of stability. The rapid increase in binding energy for
small A reflects the decreasing surface effect as the number of nucleons increases.
The subsequent decrease is a result of the combined effects of Coulomb repulsion
of protons and the Pauli exclusion principle. Notice that the maximum binding
energy per nucleon occurs near A = 60.

   The chemical properties of the atom associated with an atomic nucleus are
determined by the number of protons, Z, in the nucleus. In many cases there
exists more than one stable or long-lived nucleus with a given value of Z. These
nuclei differ in their neutron number, N. Nuclei with the same Z and
differing N are called isotopes of the element defined by the specified
value of Z. For instance, there are three isotopes of the element hydrogen,
normal hydrogen, deuterium, and tritium, with zero, one, and two neutrons
respectively.
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 Figure 21.4: Binding energy per nucleon along line of stability according to
equations (21.3) and (21.2).

____________________________


   



   21.3    Radioactivity

Radioactive decay is the emission of some particle from an atomic nucleus,
accompanied by a change of state or type of the nucleus, depending on the type of
radioactivity.

   Gamma rays or photons are emitted when a nucleus decays from an excited
state to its ground state. No transformation of the nuclear type occurs. Photons
are often emitted when some other form of radioactive decay leaves the resulting
nucleus in an excited state.

   Beta minus decay is the conversion of a neutron into a proton, an
electron, and an electron antineutrino. This and the inverse reaction,
beta plus decay, or conversion of a proton into a neutron, a positron,
and an electron neutrino, were described in chapter 18. These processes
occur in the nucleons contained in nuclei when they are energetically
possible.

   Alpha particle emission occurs in heavy elements where it is energetically
possible. Since an alpha particle is just a helium 4 nucleus containing two protons
and two neutrons, the values of Z and N of the emitting nucleus are each reduced
by two.

   The rest energy of a nucleus (ignoring atomic effects) is just the sum of the
rest energies of all the nucleons minus the total binding energy for the
nucleus:
   	
   
[image: M  (Z,A )c2 = ZMpc2  + N Mnc2  - B (Z,A ), ]
	(21.3)





where Mpc2 = 938.280 MeV is the rest energy of the proton and M
nc2 = 939.573 MeV
is the rest energy of the neutron.

   Energy conservation requires that
   	
   
[image: M (Z, A )c2 = M  (Z - 2,A -  4)c2 + M (2,4)c2 + Q ]
	(21.4)




for the alpha decay of a nucleus. If Q > 0, then the decay is energetically possible.
The excess energy, Q, goes into kinetic energy of the new nucleus and the alpha
particle, mainly the latter. Substitution of equation (21.3) into equation (21.4)
yields
   	
   
[image: Q = B (Z -  2,A - 4) + B (2,4) - B (Z, A)  (alpha decay ). ]
	(21.5)
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 Figure 21.5: Approximate curve for the energy released in alpha decay of a
nucleus on the line of stability. Decay is only possible if Q > 0.

____________________________


   



   The binding energy of the alpha particle is not accurately represented by
equation (21.1), but is known to be about B(2, 4) = 28.3 MeV. On the other
hand, the heavy elements are generally well represented by equation (21.1). The
curve of Q versus A is plotted in figure 21.5, and it shows that alpha decay for
nuclei along the line of stability is energetically impossible (i. e., Q < 0) for nuclei
with A less than about 175.
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 Figure 21.6: Schematic illustration of the paths of nuclear transformations
in the N-Z plane due to alpha and beta decay. The thick line represents the
line of stability. β+  is the decay of a proton into a neutron, positron, and
electron neutrino, while β- is the decay of a neutron into a proton, electron,
and electron antineutrino.

____________________________


   



   Figure 21.6 shows schematically how alpha and beta decay transform atomic
nuclei in the N-Z plane. As previously indicated, alpha decay decreases both Z
and N by two. Ordinary beta decay (i. e., n → p+ + e- + ν
e) decreases N by one
and increases Z by one. This is sometimes called β- decay since it produces an
electron with negative charge. Though the proton in isolation is stable, the
energetics of atomic nuclei are such that a nucleus with a higher proton-neutron
ratio than specified by the line of stability can sometimes release energy by the
reaction p+ → n + e+ + ν
e. This is called β+ decay since it produces a positively
charged positron.

   Certain isotopes of very heavy elements are at the head of a chain of
radioactive decays. This chain consists of a combination of alpha decays
interspersed with β- decays. The latter are needed because the alpha decays
create nuclei with too low a ratio of protons to neutrons relative to the line of
stability, as illustrated in figure 21.6. The beta decays push the chain back toward
this line. An example of a chain is one that starts with the element thorium
(Z = 90, A = 232) and ends with lead (Z = 82, A = 208). Radioactive decay thus
accomplishes what medieval alchemists tried, but failed, to do: transmute
elements from one type into another. Unfortunately, no radioactive chain ends at
the element gold!

   Radioactive decay is governed by a simple law, namely that the rate at which
nuclei decay is proportional to the number of remaining nuclei. In mathematical
terms, this is expressed as follows:
   	
   
[image: dN--=  - λN,  dt ]
	(21.6)




where N(t) is the number of remaining nuclei at time t and λ is called the decay

rate. This differential equation has the solution
   	
   
[image: N (t) = N (0)exp (- λt)  (radioactive decay), ]
	(21.7)




which shows that the number of nuclei decreases exponentially with time.

   The half-life, t1∕2 of a certain nuclear type, is the time required for half the
nuclei to decay. Setting N(t1∕2) = N(0)∕2, we find that
   	
   
[image:        ln (2) t1∕2 = -----  (half- life).          λ ]
	(21.8)




The nature of exponential decay means that half the particles are left after one
half-life, a quarter after two half-lives, an eighth after three half-lives, etc. The
actual value of λ, and hence t1∕2, depends on the character of the nucleus in
question, with half-lives ranging from a small fraction of a second to many billions
of years.

   
21.4    Nuclear Fusion and Fission

From figure 21.4 it is clear that atomic nuclei with A < 60 can combine to form
more tightly bound nuclei and in so doing release energy. This is called nuclear
fusion and it is the process that powers stars.
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 Figure 21.7: Combined nuclear and Coulomb potentials between two light
nuclei. The resulting potential barrier repels the two nuclei unless their kinetic
energy is very large. However, if the nuclei are able to overcome this barrier,
substantial energy is released.
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   It is not easy to fuse two nuclei. As figure 21.7 shows, the nuclear force, which
is attractive but short in range, and the Coulomb force, which is repulsive,
combine to create a potential barrier that must be surmounted in order to release
energy from fusion. Nuclei must therefore somehow attain large kinetic energy for
fusion to take place. We shall discover later that temperature is a measure
of the translational kinetic energy of atoms and nuclei. Therefore, one
way to create fusion is to heat the appropriate material to a very high
temperature. The interiors of ordinary stars are hot enough to fuse hydrogen
into helium. Somewhat hotter stars can create slightly heavier elements.
However, we believe that only the interior of a type of exploding star called a
supernova is hot enough to create the heavy elements we find in the universe.
Thus, the iron in your automobile engine and the copper in your electrical
wiring were created in some of the most spectacular explosions in the
universe!
   


   






 	Nucleus  	Z	A	B (MeV)

	        	 	 	        
	deuterium	 1	 2	 2.22

	tritium    	 1	 3	  8.48   

	helium-3  	 2	 3	  7.72   

	helium-4  	 2	 4	  28.30   

	lithium-6 	 3	 6	  32.00   

	lithium-7 	 3	 7	  39.25   

	        





 Table 21.1: Binding energies of light nuclei.

____________________________

   



   

   In computing energy balances for light nuclei, it is important to use exact
values of binding energies, not the approximate values obtained from the binding
energy formula given by equation (21.1), as the values given by this equation for
small A can be off by a large amount. Sample values for such nuclei are given in
table 21.1.

   It is possible for a heavy nucleus such as uranium, with atomic number and
atomic mass number (Z,A) to spontaneously fission or split into two lighter nuclei
with (Z′,A′) and (Z - Z′,A - A′) if there is a net energy release from this
process:
   	
   
[image:               ′      ′        ′  ′ Q ≡  B (Z  - Z ,A -  A ) + B (Z ,A ) - B (Z,A ) > 0 (fission possible). ]
	(21.9)




An energy of order 160 MeV per nucleus can be released by causing uranium
(Z = 92) or plutonium (Z = 94) to fission.
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 Figure 21.8: Spontaneous fission of a heavy nucleus into a slightly lighter
nucleus and an alpha particle occurs when the alpha particle penetrates the
potential barrier illustrated by the shading and leaves the nucleus. Other
types of spontaneous fission occur in a similar manner. Compared to the case
of two light nuclei in figure 21.7, the Coulomb potential is more important
here, which makes the resultant force more repulsive.

____________________________


   



   Even if Q > 0, spontaneous fission generally occurs at a very slow rate. This is
because a potential energy barrier of order 5 MeV typically must be overcome for
this split to occur. Barrier penetration allows fission to occur spontaneously in the
absence of the energy needed to overcome this barrier, as illustrated in figure 21.8,
but is generally a slow process. Alpha decay is an example of spontaneous
fission of a heavy nucleus by barrier penetration in which Z′ = 2 and
A′ = 4.

   If a heavy nucleus collides with an energetic particle such as a neutron,
photon, or alpha particle, it can be induced to fission if the energy transferred to
the nucleus exceeds the approximate 5 MeV needed to breach the potential
barrier.

   If the heavy nucleus has an odd number of neutrons, another way
for fission to occur is for the nucleus to capture a slow neutron, i. e.,
one with energy much less than the 5 MeV needed to directly overcome
the potential barrier. In this case neutron capture actually converts the
nucleus from atomic number and mass (Z,A) to atomic number and mass
(Z,A + 1).

   The binding energy per nucleon of a nucleus with an even number of
neutrons is greater than the binding energy per nucleon of one with an odd
number, since in the former case all neutron spins are paired. Thus, if
the initial nucleus has an odd number of neutrons, the capture of a slow
neutron makes it more tightly bound than if the initial nucleus has an even
number of neutrons. If the difference in binding energy between the initial
nucleus and the nucleus modified by neutron capture exceeds the 5 MeV
needed to overcome the potential barrier for spontaneous fission, then
energy conservation leaves the new nucleus in a sufficiently high excited
state that it instantly fissions. Examples of nuclei subject to fission by
slow neutron absorption are uranium 235 and plutonium 239. Note that
both have odd numbers of neutrons. In contrast, uranium 238 has an
even number of neutrons and slow neutron bombardment does not cause
fission.
   
21.5    Problems


      


      	How would nuclear physics be different if the weak interactions didn’t
      exist?
      

      	Suppose one started with 1020 radioactive atoms. How many half lives
      would one have to wait to be reasonably sure that none of the atoms
      were left?
      

      	One possible laboratory fusion reaction is d + d → α + Q where d
      represents a deuteron (Z = 1,A = 2), α an alpha particle, and Q the
      released energy. Given the binding energies for the deuteron (2.22 MeV)
      and for the alpha particle (28.30 MeV), find the energy released by
      this reaction. For the purposes of this problem you may ignore the rest
      energy of the electrons and their binding energy.
      

      	Fusion in the sun is a complicated process, but the net effect is the
      conversion of four protons into an alpha particle, or a helium-4 nucleus. This
      is what powers the sun.
           
           	How much energy is released for every helium-4 nucleus created?
           

           	How  many  and  what  kind  of  neutrinos  or  antineutrinos  are
           released for every helium-4 nucleus created?
           

           	At the earth’s orbit we get about 1400 J m-2 s-1  from the sun.
           How many neutrinos or antineutrinos do we expect to get from
           the sun per square meter per second from solar fusion?


      

      	A neutrino has to pass within a distance D ≈ℏ∕(Mc) of a quark to have a
      chance of αw2 to interact with it, where M is the mass of a W particle and
      αw is the weak “fine structure constant”.
           
           	What is the area of the circular “target” centered on the quark
           through which the neutrino has to pass in order to interact with
           the quark?

           

           	If the quarks are located in the nuclei of water molecules, how
           many quarks are there per molecule with which the neutrino can
           interact? Hint: The neutrino can only interact with d quarks in
           neutrons. Why?
           

           	Imagine a cylindrical water tank of end cross-sectional area A and
           length L, with neutrinos passing through the tank in a direction
           parallel to the axis of the cylinder. How many quarks of the right
           kind are needed in the tank to give a neutrino passing through
           the tank a 50% probability of interacting with a quark?
           

           	How big must L be in this case? Water has a density of about
           1000 kg m-3.


      

      	Suppose that fission of a uranium-235 nucleus induced by absorbing a slow
      neutron ultimately results in two equal nuclei and two neutrons.
           
           	How  much  energy  is  released  for  each  fissioned  uranium-235
           nucleus? Hint: The fission products must beta decay until they
           reach the line of stability on the N-Z plot. Thus, the final state
           consists of the two free neutrons, two nuclei with the same value of
           A as the fission products, but with some of the neutrons converted
           to protons, and the resulting electrons and neutrinos.
           

           	How many neutrinos or antineutrinos are released per second by
           a 100 MW nuclear power plant?


      





   


Chapter 22
Heat, Temperature, and Friction

Human beings have long had an intuitive understanding of heat and temperature
from personal experience. We sense that different things often have different
temperatures and we know that objects tend to acquire the same temperature
after being placed in physical contact for some time. We view this equilibration
process as a flow of “heat” (whatever that is) from the warmer body to the cooler
body.

   A need for a more precise understanding of the behavior of heat and
temperature was felt with the development of the steam engine. The science of
thermodynamics arose out of this need. Thermodynamics was developed before
we understood the atomic nature of matter. More recently the ideas of
thermodynamics were related to mechanical processes happening on the atomic
scale. Today we understand the phenomena of heat and temperature to be
aspects of the collective mechanical behavior of large numbers of atoms and
molecules.
   
22.1    Temperature

We measure temperature by a variety of means. The most primitive measurement
is direct sensing by the human body. We immediately discern whether something
we touch is hot or cold relative to our own body. Furthermore, we can detect a
hot stove from a distance by the feeling of warmth on our skin. In the case of
direct contact, heat is transferred to our hand by conduction, whereas in the latter
case the transfer takes place by thermal radiation. Our body considers something
to be hot if heat is transferred from the object to our body, whereas it is
perceived as being cold if the transfer of heat is from our body to the
object.
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 Figure 22.1: Most solid bodies expand by the same fractional amount in all
directions when their temperature increases, so that ΔL∕L = ΔW∕W. Thus,
the ratio α = ΔL∕(LdT) is the same for all objects constructed of the same
material, generally over a considerable range of temperature.

____________________________


   



   A more objective measure of temperature is obtained by using the fact that
ordinary material objects expand when they become warmer and contract when
they cool. Empirically it is found that the fractional change in the length of a
solid body, ΔL∕L, is related to the change in temperature ΔT, as illustrated in
figure 22.1:
   	
   
[image: ΔL ----=  αΔT,  L ]
	(22.1)




where α is called the linear coefficient of thermal expansion.

   For liquids the fractional change in volume, ΔV∕V , is easier to relate to the
change in temperature than the fractional change in linear dimension:
   	
   
[image: ΔV-- = βΔT,  V ]
	(22.2)




where β is the volume coefficient of thermal expansion. The quantities α and β
depend on the material properties and on the temperature scale being used. The

ordinary thermometer is based on the thermal expansion of a liquid such as
mercury.

   The most commonly used temperature scales in science are the Celsius and
Kelvin scales. Roughly speaking, water freezes at 0∘ C and it boils (at sea level) at
100∘ C. More precise definition of the Celsius scale depends on a detailed
understanding of the phase changes of water, which we won’t develop
here.

   There is a limit to how cold something can be. The Kelvin scale is designed to
go to zero at this minimum temperature. The relationship between the Kelvin
temperature T and the Celsius temperature TC is
   	
   
[image: T = T  +  273.15.       C ]
	(22.3)




Thus, water freezes at about 273 K and boils at about 373 K. (Notice that the
little circle or degree sign is used for Celsius temperatures but not Kelvin
temperatures.) Unless otherwise noted, we will use the Kelvin scale. Table 22.1
gives values of α and β for some common materials.
   


   






 	Material       	 α (K-1) 	  β (K-1)   

	            	         	          

	steel             	12 × 10-6 	    —       

	copper          	16 × 10-6 	    —       

	aluminum      	23 × 10-6 	    —       

	invar             	0.7 × 10-6	    —       

	glass             	 9 × 10-6  	    —       

	lead              	29 × 10-6 	    —       

	methyl alcohol	   —     	 1.22 × 10-3 

	glycerine        	   —     	 0.53 × 10-3 

	mercury        	   —     	0.182 × 10-3

	water (15∘ C) 	   —     	 0.15 × 10-3 

	water (35∘ C) 	   —     	 0.35 × 10-3 

	water (90∘ C) 	   —     	 0.70 × 10-3 

	            





 Table 22.1: Values of the linear coefficient of thermal expansion for common
solids and the volume coefficient of expansion for common liquids. Invar is
an alloy that is specificially formulated to have a low coefficient of thermal
expansion.

____________________________

   



   

   Accurate temperature measurements depend in practice on a knowledge of the
properties of materials under temperature changes. However, we shall find later
that the concept of temperature can be defined in a way that is completely
independent of material properties.
   
22.2    Heat

Two types of experiments suggest that heating is a form of energy transfer.
First of all, on the macroscopic or everyday scale of things, there are
forces that are apparently nonconservative. This is in marked contrast
to the microscopic world, where forces are either conservative (gravity,
electrostatics), don’t change a particle’s energy (magnetic force), or convert
energy from one known form to another (non-static electric forces). With these
fundamental forces all energy is accounted for — it is neither created or
destroyed.

   In contrast, macroscopic energy routinely disappears in the everyday
world. Cars once set in motion don’t continue in motion forever on a
level road once the engine is stopped; a soccer ball once kicked eventually
comes to rest; electrical energy powering a light bulb appears to be lost.
Careful measurements show that whenever this type of energy loss is found,
heating occurs. Since we believe that macroscopic forces are really just large
scale manifestations of fundamental microscopic forces, we do not believe
that energy really disappears as a result of these forces — it must simply
be converted from a form visible to us into an invisible form. We now
know that such forces convert macroscopic energy to internal energy, a
form of energy that is just the kinetic and potential energy of atomic and
molecular motions. Thus, the apparent disappearance of macroscopic energy
is just a consequence of the conversion of this energy into microscopic
form.
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 Figure 22.2:  Conversion  of  internal  energy  of  gas  in  the  cylinder  to
macroscopic energy. The work done by the force of the gas on the piston as
it moves outward results in a decrease in temperature of the gas.

____________________________


   



   The second type of experiment that suggests that heating converts
macroscopic energy to internal energy is one in which this energy is converted
back to macroscopic form. An example of this process is illustrated in figure 22.2.
As the piston moves out of the cylinder under the force exerted on it by the gas,
work is done that can be stored or used by, say, compressing a spring or running
an electric generator. As the piston moves out, the gas in the cylinder
decreases in temperature, which indicates that the gas is losing microscopic
energy.
   
22.2.1    Specific Heat

Conversion of macroscopic energy to microscopic kinetic energy thus tends to
raise the temperature, while the reverse conversion lowers it. It is easy to show
experimentally that the amount of heating needed to change the temperature of a
body by some amount is proportional to the amount of matter in the body. Thus,
it is natural to write
   	
   
[image: ΔQ  =  M C ΔT ]
	(22.4)




where M is the mass of material, ΔQ is the amount of energy transferred to the
material, and ΔT is the change of the material’s temperature. The quantity C is
called the specific heat of the material in question and is the amount of heating
needed to raise the temperature of a unit mass of material by one degree. C varies
with the type of material. Values for common materials are given in table
22.2.
   


   






 	Material       	C (J kg-1 K-1)

	            	              
	brass 	 385

	glass             	      669         

	ice                	     2092        

	steel             	      448         

	methyl alcohol	     2510        

	glycerine        	     2427        

	water            	     4184        

	            





 Table 22.2: Specific heats of common materials.

____________________________

   



   

   22.2.2    First Law of Thermodynamics

We now address some questions of terminology. The use of the terms “heat” and
“quantity of heat” to indicate the amount of microscopic kinetic energy inhabiting
a body has long been out of favor due to their association with the discredited
“caloric” theory of heat. Instead, we use the term internal energy to describe the
amount of microscopic energy in a body. The word heat is most correctly used
only as a verb, e. g., “to heat the house”. Heat thus represents the transfer of
internal energy from one body to another or conversion of some other form of
energy to internal energy. Taking into account these definitions, we can
express the idea of energy conservation in some material body by the
equation
   	
   
[image: ΔE   = ΔQ  - ΔW     (first law of thermodynamics ), ]
	(22.5)




where ΔE is the change in internal energy resulting from the addition of heat ΔQ
to the body and the work ΔW done by the body on the outside world. This
equation expresses the first law of thermodynamics. Note that the sign
conventions are inconsistent as to the direction of energy flow. However, these
conventions result from thinking about heat engines, i. e., machines that take in
heat and put out macroscopic work. Examples of heat engines are steam engines,
coal and nuclear power plants, the engine in your automobile, and the engines on
jet aircraft.



   
22.2.3    Heat Conduction
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 Figure 22.3: Geometry of heat flow problem. Heat flows from higher to lower
temperature.

____________________________






   As noted earlier, internal energy may be transferred through a material from
higher to lower temperature by a process known as heat conduction. The rate at
which internal energy is transferred through a material body is known empirically
to be proportional to the temperature difference across the body. For a
rectangular body, the rate of transfer is also known to scale in proportion to the
cross sectional area of the body perpendicular to the temperature gradient and to
scale inversely with the distance over which the temperature difference exists.
This is known as the law of heat conduction and is expressed in the following
mathematical form:
   	
   
[image:         κA-ΔT-- Fheat =    L   , ]
	(22.6)




where Fheat is the internal energy per unit time flowing down the temperature
gradient, A is the cross sectional area of the body normal to the internal energy
flow direction, L is the length of the body in the direction of heat flow, ΔT is the
temperature difference along its length, and κ is a constant characteristic of the
material known as the thermal conductivity. The geometry is illustrated in figure
22.3 and the thermal conductivities of common materials are shown in table
22.3.
   


   






 	Material	κ (W m-1 K-1)

	        	               
	brass 	 109

	brick      	      0.50         

	concrete 	      1.05         

	ice         	      2.2          

	paper     	     0.050        

	steel      	      46          

	        





 Table 22.3: Values of thermal conductivity for common materials.

____________________________

   



   

   22.2.4    Thermal Radiation

Energy can also be transmitted though empty space by thermal radiation. This is
nothing more than photons with a mixture of frequencies near a frequency
ωthermal that is a function only of the temperature T of the body that is emitting
them:
   	
   
[image: ωthermal = KT, ]
	(22.7)




where the constant K = 3.67 × 1011 s-1 K-1. The amount of thermal energy per
unit area per unit time emitted by a material surface is called the flux of radiation
and is given by Stefan’s law:
   	
   
[image:          4 JE = εσT    (Stefan’s law ), ]
	(22.8)





where σ = 5.67 × 10-8 W m-2 K-4 is the Stefan-Boltzmann constant and ε is
the emissivity of the material surface. The emissivity lies in the range
0 ≤ ε ≤ 1 and depends on the type of material and the temperature of the
surface.

   Surfaces that emit thermal radiation at a particular frequency can also reflect
radiation at that frequency. If JI is the flux of radiation incident on the surface,
then the reflected radiation is just
   	
   
[image: JR = (1 - ε)JI   (reflected radiation) ]
	(22.9)




and the balance of the radiation is absorbed by the surface:
   	
   
[image: JA =  εJI  (absorbed  radiation). ]
	(22.10)




Thus, high thermal emissivity goes along with high absorbed fraction
and vice versa. A little thought indicates why this has to be so. If the
emissivity were high and the absorption were low, then the object would

spontaneously cool relative to its environment. If the reverse were true, it
would spontaneously warm up. Thus, the universally observed behavior
that internal energy flows from higher to lower temperatures would be
violated.
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 Figure 22.4: Two surfaces facing each other, each with emissivity ε and
temperature T.
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   Imagine two surfaces of equal temperature T facing each other. The radiation
emitted by one surface is partially absorbed and partially reflected from the other
surface, as illustrated in figure 22.4. The total radiative flux, Jtot, coming
from each surface is the sum of the reflected radiation originating from
the other surface, (1 - ε)Jtot, and the emitted thermal radiation, εσT4.
Thus,
   	
   
[image:                        4 Jtot = (1 - ε)Jtot + εσT  . ]
	(22.11)




Solving for Jtot, we find that
   	
   
[image:                 4 Jtot ≡ JBB = σT  . ]
	(22.12)




Note that the total radiation originating from each surface, Jtot, is independent of
the emissivity of the surfaces and depends only on the temperature. This radiative
flux is called the black body flux. We give it the special name JBB. Because it no
longer depends on ε, it is independent of the character of the material making

up the emitting surfaces. Different materials result in different fractions
of thermal and reflected radiation, but the sum is always equal to the
black body flux if both surfaces are at the same temperature. Planck’s
arguments that led to the energy-frequency relationship of quantum mechanics,
E = ℏω, came from his attempt to explain black body radiation. The laws
of black body radiation presented here can be derived from quantum
mechanics.
   
22.3    Friction

In this section we consider the quantitative forms of non-conservative forces on
the macroscopic level. We first examine the frictional force between two solid
bodies and then consider viscosity in liquids.


   
22.3.1    Frictional Force Between Solids










[image: PIC]



 Figure 22.5: The kinetic frictional force Fk is exerted on the upper body by
the stationary lower body. The upper body is moving with velocity v and is
pressed together with the lower body by a normal force N. It may also be
acted upon by an additional external force Fext.

____________________________






   The frictional force Fk between two solid objects in contact obeys an empirical
law.1
If the two objects are sliding over each other, the frictional force on each object
acts so as to oppose the relative motion of the two objects. (See figure 22.5.) The
frictional force is proportional to the normal force N pressing the objects
together:
   	
   
[image: Fk = μkN    (kinetic friction). ]
	(22.13)




The dimensionless quantity μk is called the coefficient of kinetic friction. This
quantity is different for different pairs of materials rubbing together. It is
typically of order one, but may be much less for particularly slippery
materials.

   Equation (22.13) is only valid if the two objects are moving relative to each
other. If they are not in relative motion, but if some other force is being exerted
on one of them, a static frictional force Fs will precisely counteract this force so as
to result in zero net force on the object. However, the static frictional
force will keep the bodies from slipping only up to some limit defined
by
   	

   
[image: |Fs | ≤ μsN   (static friction ), ]
	(22.14)




where μs is the coefficient of static friction. Generally we find that μs > μk, so
gradually increasing the external force on an object in static frictional contact
with another object will cause it to suddenly break loose and accelerate when the
maximum sustainable static frictional force is exceeded. Once the object is in
motion, a lesser external force is needed to keep it moving at a constant
velocity.
   
22.3.2    Viscosity










[image: PIC]



 Figure 22.6: Two solid plates separated by a distance d, the gap being filled
by a viscous fluid. The lower plate is stationary and the upper plate is moving
to the right at speed vp = v(d) = Sd. The fluid is sheared, moving according
to v(y) = Sy. The fluid velocity matches that of the plates where the fluid
touches the plates. The upper plate experiences a drag force Fdrag = -μSA
where μ is the viscosity of the fluid and A is the area of the plate.

____________________________






   If two objects are not in physical contact but are separated by a thin layer of
fluid (i. e., a liquid or a gas), there is still a frictional or viscous drag force
between the two objects, but its behavior is different. Figure 22.6 tells the story:
The viscous drag force in this case is
   	
   
[image: F    =  - μSA  drag ]
	(22.15)




where S = vp∕d is the shear in the fluid, A is the area of the plates, and μ is the
viscosity of the fluid. (Don’t confuse this parameter with the static and dynamic
coefficients of friction!) The parameter vp is the velocity of the top plate
with respect to the bottom plate and d is the separation between the
plates.

   Viscosity has the dimensions mass per length per time. The most common unit
of viscosity is the Poise: 1 Poise = 1 g cm-1 s-1. The viscosity of water varies
from 0.0179 Poise at 0∘ C to 0.0100 Poise at 20∘ C to 0.0028 Poise at 100∘ C.
The viscosity of water thus decreases with increasing temperature, which
is typical of liquids. In contrast, the viscosity of a gas is independent
of the density of the gas and is proportional to the square root of its
absolute temperature. The viscosity of a gas thus increases with temperature,
in contrast to the viscosity of a liquid. For air at 20∘ C, the viscosity is
1.81 × 10-4 Poise.

   Thin layers of oil between moving parts are commonly used in machinery to
reduce friction, since the resulting viscous drag is generally much less than the
corresponding kinetic friction that would occur if the parts were in direct contact.
The ways in which the layer of oil is maintained between moving parts are
fascinating, but beyond the scope of this course.

   
22.4    Problems


      

      	The George Washington bridge, which spans the Hudson River between
      New York and New Jersey, is 4760 feet long and is made out of steel.
      How much does it expand in length between winter and summer? (Pick
      reasonable winter and summer temperatures.)
      

      	A volume coefficient of expansion β can be defined for solids as well as
      liquids. Show that β = 3α in this case, where α is the linear coefficient
      of expansion. Hint: Imagine a cube that increases the length of a side
      by a fractional amount αΔT ≪ 1 when the temperature increases by
      ΔT. Compute the fractional change in the volume of the cube.
      

      	Equal  masses  of  brass  and  glass  are  put  in  the  same  insulating
      container, the brass initially at 300 K, the glass at 350 K. Assuming
      that the interior of the container has negligible heat capacity, what
      temperature does the material in the container reach after coming to
      equilibrium?
      

      	The gravitational potential energy of water going over Niagara Falls
      (60 m high) is converted to kinetic energy in the fall and then dissipated
      at the bottom. How much warmer does the water get as a result?
      

      	A normal-sized house has concrete walls and roof 0.1 m thick. About
      how  much  does  it  cost  per  month  to  heat  the  house  electrically
      if  electricity  costs  $0.10  per  kilowatt-hour?  Estimate  the  wall  and
      roof areas of a typical house and typical inside-outside temperature
      differences in winter.
      

      	Compute the thermal frequency ωthermal and the power per unit area
      emitted by a surface with emissivity ϵ = 1 for

           
           	T = 3 K (cosmic background temperature),
           

           	T = 300 K (earth’s temperature),
           

           	T = 6000 K (sun’s surface),
           

           	and T = 2 × 107 K (sun’s interior).


      

      	Derive an equation for the light pressure (force per unit area) acting on the
      walls of a box whose interior is at temperature T. Assume for simplicity that
      all photons being emitted and absorbed by a wall move in a direction
      normal to the wall. Compute this pressure for the interior of the sun.
      Hint: Recall that a photon with energy E has momentum E∕c, and
      that both emitted and absorbed photons transfer momentum to the
      wall.
      

      	Imagine two plates, each at temperature T as in figure 22.4, except that the
      left plate has emissivity ϵL and the right plate has emissivity ϵR, so that we
      cannot assume a priori that JTOT  is the same going to the left and to the
      right. Show that the radiative energy flux incident on each plate from the
      other is still σT4.
      

      	Two parallel plates facing each other, one at temperature T1, the other at
      temperature T2, each have emissivity ϵ = 1. Assuming that T1 = 200 K and
      T2 = 300 K, compute the net radiative transfer of energy per unit area per
      unit time from plate 2 to plate 1.
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 Figure 22.7: Mass M subject to gravity, friction (F), and a normal
      force (N) on a ramp tilted at an angle θ with respect to the horizontal.

      _____________________________________
      



      

      	Imagine a mass sliding on a ramp subject to frictional and normal forces as
      shown in figure 22.7.
           
           	If the coefficient of kinetic friction is μk, determine the acceleration
           down the ramp.
           

           	Suppose the mass has been given a push so that it is sliding up
           the ramp. Determine its acceleration down the ramp.
           

           	If the coefficient of static friction is μs, compute the maximum
           angle for which the mass in figure 22.7 will remain stationary.


      

      	Consider a layer of water at 20∘ C between two plates, the bottom one
      stationary and the top one moving to the right, as shown in figure 22.6. The
      spacing between the plates is 1 mm and the top plate is moving at
      10 m s-1.

           
           	Compute the drag force per unit area on the top plate.
           

           	Compute the increase in temperature of the water after 100 s.
           Assume all work done by the plate is dissipated in the water. The
           density of water is 1000 kg m-3.


      





   


Chapter 23
Entropy

So far we have taken a purely empirical view of the properties of systems
composed of many atoms. However, as previously noted, it is possible to
understand such systems using the underlying principles of mechanics. The
resulting branch of physics is called statistical mechanics. J. Willard Gibbs, a late
19th century American physicist from Yale University, almost single-handedly laid
the groundwork for the modern form of this subject. Interestingly, the
quantum mechanical version of statistical mechanics is much easier to
understand than the version that Gibbs developed, which is based on
classical mechanics. It also gives correct answers where the Gibbs version
fails.

   A system of many atoms has many quantum mechanical states in which it can
exist. Think of, say, a brick. The atoms in a brick are not stationary; they are in a
continual flurry of vibration at ordinary temperatures. The kinetic and potential
energies associated with these vibrations constitute the internal energy of the
brick.

   Though the details of each state are unimportant, the number of states
turns out to be a crucial piece of information. To understand why this is
so, let us imagine two bricks identical in composition and mass. Brick
A has internal energy between E and E + ΔE and brick B has energy
between 0 and ΔE. Think of ΔE as the uncertainty in the energy of the
bricks; we can only observe a brick for a finite amount of time Δt, so
the uncertainty principle asserts that the uncertainty in the energy is
ΔE ≈ℏ∕Δt.

   The brick is a complex system consisting of many atoms, so in general there
are many possible quantum mechanical states available to brick A in the energy
range E to E + ΔE. It turns out, for reasons that we will see later, that
significantly fewer states are available to brick B in the energy range 0 to ΔE
than are available to brick A.

   Roughly speaking, the larger the internal energy of an object per unit mass,
the higher is its temperature. Thus, we infer that brick A has a much higher
temperature than brick B. What happens when we bring the two bricks into
thermal contact? Our experience tells us that heat (i. e., internal energy)
immediately starts to flow from one brick to the other, ultimately resulting in
an equilibrium state in which the temperature is the same in the two
bricks.

   We explain this process as follows. Statistical mechanics hypothesizes that any
system of atoms (such as a brick) is free to roam through all quantum

mechanical states that are energetically available to it. In fact, this roaming
is assumed to be continually taking place. Given this picture and the
assumption that the roaming between states is completely random, one
would expect equal probabilities for finding the system in any particular
state.

   Of course, this probability argument assumes that we don’t know anything
about the initial state of the system. If the system is known to be in some
particular state at time t = 0, then it will take some time for the system to evolve
in such a way that it has “forgotten” the initial state. During this interval our
knowledge of the initial state and the quantum mechanical dynamics of the
system can be used (in principle) to follow the evolution of the system. Eventually
the uncertainty in our initial knowledge of the system catches up with us and we
cannot predict the future evolution of the system beyond this point. The brick
develops “amnesia” and its probability of being in any of the energetically allowed
states is then uniform.

   Something like this happens to the two bricks if they are brought into
thermal contact. Initially brick A has virtually all of the energy and brick B
has only a tiny amount. When the bricks are brought into contact, they
eventually can be treated as a single brick of twice the size. However, it
takes time for the new, larger brick to evolve to the point where it has
forgotten the fact that it started out as two separate bricks at different
temperatures. In this interval the temperature of brick A is decreasing while
the temperature of brick B is increasing as a result of internal energy
flowing from one to the other. This evolution continues until equilibrium is
reached.

   Even though the combined brick has forgotten its initial state, there is
a small chance that it will return to this state, since the probability of
finding the brick in any state, including the original one, is non-zero. Thus,
according to the postulates of statistical mechanics, one might suddenly find
the brick again in a state in which virtually all of the internal energy is
concentrated in former brick A. Actually, the issue is slightly more complicated
than this. Brick A actually had many states available to it before being
brought together with brick B. Thus, a more interesting problem is to
find the probability of the system suddenly finding itself in any of the
states in which (virtually) all of the energy is concentrated in former
brick A. Given the randomness assumption of statistical mechanics, this
probability is simply the number of states that correspond to all of the
energy being in brick A, divided by the total number of states available

to the combined brick. Computing this number is the task we set for
ourselves.
   
23.1    States of a Brick
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 Figure 23.1: “Inner-spring mattress” model of the atoms in a solid body.
Interatomic forces act like miniature springs connecting the atoms. As a result
the whole system oscillates like a bunch of harmonic oscillators.

____________________________






   In this section we demonstrate the above assertions by making a crude model
of the quantum mechanical states of a brick. We approximate the atoms of the
brick as a collection of harmonic oscillators, three oscillators per atom, since each
atom can oscillate in three dimensions under the influence of interatomic forces
(see figure 23.1). For simplicity we assume that all of the oscillators have the same
classical oscillation frequency, ω0, so that the energy of each oscillator is given
by
   	
   
[image: En  = (n + 1∕2)¯h ω0 ≡ (n + 1∕2)E0,   n = 0,1, 2,..., ]
	(23.1)




as reported in chapter 12. This assumption is a rather poor approximation to the
behavior of a solid body when the total amount of internal energy is so small that
many of the harmonic oscillators are in their ground state. However, it is adequate
for situations in which the energy per oscillator is several times the ground state
oscillator energy.

   We further assume that each oscillator is weakly coupled to its neighbor. This
allows a slow transfer of energy between oscillators without appreciably affecting
the energy levels of each oscillator.

   








[image: PIC]



 Figure 23.2: Diagrams for counting states of systems of two (left panel) and
three (right panel) harmonic oscillators with the same classical oscillation
frequency.

____________________________


   



   The next step is to calculate the number of states of a system of harmonic
oscillators for which the total energy is less than some maximum value E. This
calculation is easy for a system consisting of a single oscillator. From equation
(23.1) we infer that the number of states, [image: N], of one oscillator with energy less
than E is
   	
   
[image: N  = E ∕E0   (one oscillator), ]
	(23.2)




since the states are evenly spaced in energy with spacing E0.

   The calculation for a system of two oscillators is slightly more complicated.
The dots in the left panel of figure 23.2 show the states available to a two
oscillator system. Each dot corresponds to a unique pair of values of the quantum
numbers n1 and n2 for the two oscillators. The total energy of the two oscillators
together is Etotal = E1 + E2 = (n1 + n2 + 1)E0.

   The line defined by the equation E∕E0 = E1∕E0 + E2∕E0 is illustrated by the
hypotenuse of the shaded triangle in the left panel of figure 23.2. The number of
states with total energy less than E is obtained by simply counting the dots inside
this triangle. An easy way to do this “counting” is to note that there is one dot
per unit area in the plot, so that the number of dots approximately equals the
area of the triangle:
   	
   

[image:      1 ( E )2 N =  -- ---     (two oscillators).      2  E0 ]
	(23.3)





   For a system of three oscillators the possible states of the system form a
cubical grid in a three-dimensional space with axes E1∕E0, E2∕E0, and E3∕E0, as
shown in the right panel of figure 23.2. The dots representing the states are
omitted for clarity, but one state per unit volume exists in this space. The
dark-shaded oblique triangle is the surface of constant total energy E defined by
the equation E1∕E0 + E2∕E0 + E3∕E0 = E∕E0, so the volume of the tetrahedron
formed by this surface and the coordinate axis planes equals the number of states
with energy less than E. This volume is computed as the area of the base
of the tetrahedron, (E∕E0)2∕2, times its height, E∕E
0, times 1∕3. We
get
   	
   
[image:           (    )3 N  =  -1--  E--     (three oscillators).       2 ⋅ 3 E0 ]
	(23.4)





   There is a pattern here. We infer that there are
   	

   
[image:                       (   )N        (   )N N (E ) = ------1------ -E-    = -1-  -E-      (N oscillators)          1 ⋅ 2 ⋅ 3...N E0       N !  E0 ]
	(23.5)




states available to N oscillators with total energy less than E. The notation N! is
shorthand for 1 ⋅ 2 ⋅ 3…N and is pronounced “N factorial”.

   Let us summarize what we have accomplished. [image: N](E) is the number of states
of a system of harmonic oscillators, taken together, with total energy less than E.
What we need is an estimate of the number of states between two energy limits,
say E and E + ΔE. This is easily obtained from [image: N](E) as follows: [image: N](E) is the
number of states with energy less than E, while [image: N](E + ΔE) is the number
of states with energy less than E + ΔE. We can obtain the number of
states with energies between E and E + ΔE by subtracting these two
quantities:
   	
   
[image: ΔN  =  N (E + ΔE  ) - N (E) =  N-(E-+-ΔE--) --N-(E)-ΔE  ≈ ∂N--ΔE.                                        ΔE                  ∂E ]
	(23.6)





   For N harmonic oscillators we find that
   	

   
[image:        N  EN - 1          1     ( E )N -1 ΔE ΔN   = ------N--ΔE  =  --------- ---      ----.        N ! E 0         (N - 1 )!  E0       E0 ]
	(23.7)




   


   






 	N	 Δ[image: N] (r = 5)	   Δ[image: N] (r = 10)

	  	           	              
	 1	 1	 1

	 2	          5	            10
	 3	 50	 200

	 4	         563	          4500
	 5	 6667	 106667

	 6	       81381	        2604167

	 7	     1012500	       64800000

	 8	    12765734	     1634013889

	 9	   162539683	    41610158730

	 10	  2085209002	  1067627008928

	 11	 26911444555	 27557319223986

	 12	349006782021	714765889577822

	  





 Table 23.1:  Number  of  states  Δ[image: N] available  to  N  identical  harmonic
oscillators between energies E and E + ΔE, where E = rNE0 and where we
have chosen ΔE = E0. Results are shown for two different values of r.

____________________________

   



   

   Table 23.1 shows the number of states of a system of a small number of
harmonic oscillators with energy between E and E + ΔE where we have chosen
ΔE = E0. Results are shown for systems up to N = 12 (i. e., “microbricks” with
up to 4 atoms, each with 3 modes of oscillation). The quantity r is defined
to be the average value of the quantum number n of all the harmonic
oscillators in the system; r = E∕(NE0). Thus, rE0 is the average energy
per oscillator. Recall that our calculation is only valid if r is appreciably
greater than one. The number of available states is computed for r = 5 and
10.

   We see that a few atoms considered jointly have an astonishingly large number
of possible states. For instance, a system of 4 atoms (i. e., 12 oscillators) with
r = 5 has about 3.5 × 1011 states. Suppose we now confine this energy to only
2 of the atoms or 6 oscillators. In this case r doubles to a value of 10
since the same amount of internal energy is now spread among half the
number of oscillators. Table 23.1 shows that this reduced system has only
about 2.6 × 106 states. The probability of having all of the energy of the 4
atom system in these 2 atoms is the ratio of the number of states in the 2
atom case to the total number of possible states of the 4 atom system, or
2.6 × 106∕3.5 × 1011 = 7.4 × 10-6. This is a rather small number, which means
that it is rare to find the system with all internal energy concentrated in two
atoms.

   We now determine how the number of states available to a system of harmonic
oscillators behaves for a very large number of oscillators such as might be found in
a real brick. Values of Δ[image: N] become so large in this case that it is useful to
work in terms of the natural logarithm of Δ[image: N]. For large N we can safely
approximate N - 1 by N. Using the properties of logarithms, we get


   
[image:                (                )                  (E ∕E0 )N -1ΔE ln(ΔN  )  =  ln  ---------------                (  (N  - 1)!  E0)                  (E-∕E0-)N-ΔE--           ≈  ln     N !    E                              0           =  N  ln(E ∕E0 ) - ln(N !) + ln(ΔE  ∕E0 ).       (23.8) ]


A useful mathematical result for large N is the Stirling
approximation1:
   	
   
[image: ln (N  !) ≈ N ln(N ) - N   (Stirling approximation ). ]
	(23.9)



Substituting this into equation (23.8), using the fact that
N ln(E∕E0) - N ln N = N ln[E∕(NE0)], and rearranging results in
   	
   
[image:              [  ( -E---)    ]     ( ΔE--) ln(ΔN  ) = N  ln  N E    + 1  + ln   E       (N  oscillators).                       0               0 ]
	(23.10)





   We now return to the original question, which we state in this form: What
fraction of the states of a brick corresponds to the special situation with all of the
internal energy in half of the brick? A real brick has of order 3 × 1025 atoms or
about N = 1026 oscillators. Half of the brick thus has N′ = 5 × 1025 oscillators. If,
as before, we assume that r = 5 when the internal energy is distributed
throughout the brick, then we have r′ = 10 when all the energy is in half
of the brick. Therefore the logarithm of the total number of available
states is ln(Δ[image: N]) = N[ln(r) + 1] + ln(ΔE∕E0), while the logarithm of
the number of states available when all the energy is in half of the brick
is ln(Δ[image: N]′) = N′[ln(r′) + 1] + ln(ΔE∕E0). Putting in the numbers, we
find that the probability of finding all the energy in half of the brick is


   
[image:     ′                     ′ ΔN   ∕ΔN    =   exp[ln (ΔN   ) - ln (ΔN  )]             =   exp[N ′ln(r′) + N ′ + ln(ΔE ∕E0 )                      - N  ln(r) - N  - ln (ΔE ∕E0 )]             =   exp(- 0.96N  ) = exp(- 9.6 × 1025) = 10- 4.2×1025.(23.11) ]


This probability is extremely small, and is zero for all practical purposes.
   Notice that ΔE, which we haven’t specified, cancels out. This typically
happens in the theory when measurable quantities are calculated, and it shows
that the actual value of ΔE isn’t important. Furthermore, for very large values of

N typical of normal bricks, the term in equation (23.10) containing ΔE is always
negligible for any reasonable values of ΔE. We therefore drop it in future
calculations.

   The variable ln(Δ[image: N]) is proportional to a quantity that we call the entropy, S.
The actual relationship is
   	
   
[image: S = k  ln(ΔN  )  (definition of entropy )      B ]
	(23.12)




where kB = 1.38 × 10-23 J K-1 is called Boltzmann’s constant. Ludwig Boltzmann
was a 19th century Austrian physicist who played a pivotal role in the
development of the concept of entropy. The entropy of a brick containing N
oscillators is therefore
   	
   
[image:           [  (  E  )     ] S =  N kB  ln   ----- +  1   (entropy of N  oscillators).                N E0 ]
	(23.13)






   As with the speed of light and Planck’s constant, Boltzmann’s constant is not
really needed for a complete development of statistical mechanics. Its
only role is to convert entropy and related quantities to everyday units.
The conventional dimensions of entropy are thus the same as those of
Boltzmann’s constant, or energy divided by temperature. However, more
fundamentally, we consider entropy (without Boltzmann’s constant) to be a
dimensionless quantity since it is just the logarithm of the number of available
states.
   
23.2    Second Law of Thermodynamics

What use is entropy? In our example we found that the number of states for the
situation in which all of the internal energy of a brick is restricted to half of the
brick is much less than the number of states available when no restrictions are put
upon the distribution of the same amount of internal energy through the entire
brick. Thus, the entropy, which is just proportional to the logarithm of the
number of available states, is less in the restricted case than it is in the
unrestricted case.

   This turns out to be generally true. Any measurable restriction we place on
the distribution of internal energy in the brick turns out to result in a much
smaller number of available quantum mechanical states and hence a smaller value
for the entropy. Once such a restriction is lifted, all possible states become
available, and according to the postulates of statistical mechanics the brick
eventually evolves to the point where it is roaming randomly through these
states. The probability of the brick revisiting the original restricted set of
states is so small as to be completely ignorable once it forgets its initial
state, because these states form only a miniscule fraction of the states
available to the brick. Thus, with a very high degree of certainty, one
can say that the entropy of the brick increases when the restriction is
lifted.

   Strictly speaking, our definition of entropy is only valid after the brick has
reached equilibrium, i. e., when the initial state has been forgotten. The entropy
during the equilibration period according to our definition is technically
undefined.

   Our inferences about a brick can be extended to any isolated system, i. e., any
system that doesn’t exchange mass or energy with the outside world: The
entropy of any isolated system consisting of a large number of atoms will not

spontaneously decrease with time. This principle is called the second law of
thermodynamics.


   
23.3    Two Bricks in Thermal Contact
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 Figure 23.3: Two bricks in thermal contact, one at temperature TA, the
other at temperature TB. If TA > TB, internal energy flows from brick A to
brick B.

____________________________






   Where does the idea of temperature fit into the picture? This concept has
come up informally, but we need to give it a precise definition. If two objects at
different temperatures are placed in contact with each other, we observe that
internal energy flows from the warmer object to the cooler object, as illustrated in
figure 23.3.

   We wish to see if the role of temperature differences in the flow of internal
energy can be related to the ideas developed in the previous section. Let us
consider two bricks as before, but possibly of different size, and therefore
containing different numbers of harmonic oscillators. Suppose brick A has NA
oscillators and energy EA while brick B has NB oscillators and energy EB. The
two bricks have entropies
   	
   
[image:             [  (  E    )    ] SA  = kBNA   ln  ---A--  + 1                  NAE0 ]
	(23.14)




and
   	
   
[image:             [  (  E    )    ] SB =  kBNB   ln  ---B--  + 1 .                  NBE0  ]
	(23.15)





   If the two bricks are thermally isolated from each other but are nevertheless
considered together as one system, then the total number of states available to
this combined system is just the product of the numbers of states available to
each brick separately:
   	
   
[image: ΔN   = ΔNA  ΔNB. ]
	(23.16)




To make an analogy, the total number of ways of arranging two coins, each of
which may either be heads up or tails up, is 4 = 2 × 2, or heads-heads,
heads-tails, tails-heads, and tails-tails. We compute the states of the combined
system just as we compute the total number of ways of arranging the coins,
i. e., by taking the product of the numbers of states of the individual
systems.

   Taking the logarithm of [image: N] and multiplying by Boltzmann’s constant results in
an equation for the combined entropy S of the two bricks:
   	
   
[image: S =  SA + SB. ]
	(23.17)




In other words, the combined entropy of two (or more) isolated systems is just the
sum of their individual entropies.
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 Figure 23.4: Total entropy of two systems for fixed total energy E = EA+EB
as a function of EA, the energy of system A.

____________________________


   



   We can determine how the total entropy of the two bricks depends on the
distribution of energy between them by using equations (23.14) and (23.15).
Plotting the sum of the entropies of the two bricks SA(EA) + SB(EB) versus the
energy EA of brick A under the constraint that the total energy E = EA + EB is
constant yields a curve that typically looks something like figure 23.4. Notice that
the total entropy reaches a maximum for some critical value of EA. Since the
slope of S(EA) is zero at this point, we can determine the corresponding value of
EA by setting the derivative to zero of the total entropy with respect to EA,
subject to the condition that the total energy is constant. Under the constraint of
constant total energy E, we have dEB∕dEA = d(E - EA)∕dEA = -1,
so
   	
   
[image:  ∂S     ∂S      ∂S     ∂S      ∂S  dE      ∂S      ∂S -----=  ---A-+ ---B- = ---A-+  ---B---B- = ---A--  ---B-= 0. ∂EA     ∂EA    ∂EA     ∂EA     ∂EB  dEA    ∂EA     ∂EB ]
	(23.18)




(The partial derivatives indicate that parameters besides the energy are held
constant while taking the derivative of entropy.) Thus,
   	
   
[image: ∂SA    ∂SB ∂E---= ∂E---  (equilibrium  condition)   A       B ]
	(23.19)




at the point of maximum entropy.

   Once the equilibrium values of EA and EB are found, we can calculate the
total entropy S = SA + SB of two thermally isolated bricks. We now assert that
this entropy doesn’t change when two bricks in equilibrium are brought into
thermal contact. Why is this so?

   The derivative of the entropy of a system with respect to energy turns out to
be one over the temperature of the system. Thus, the temperatures of the bricks
can be found from
   	
   
[image: -1 ≡ -∂S-  (definition of temperature ). T    ∂E ]
	(23.20)




The condition for equilibrium (23.19) therefore reduces to 1∕TA = 1∕TB, or
TA = TB. This is consistent with observations of the behavior of real systems.
Thus, at the equilibrium point the temperatures of the two bricks are the same
and bringing them together causes no heat flow to occur. The process of bringing
two bricks at the same temperature into thermal contact is thus completely
reversible, since separating them leaves each with the same amount of energy it
started with.

   The temperature of a brick is easily calculated using equation (23.20):
   	

   
[image:       E T =  -----  (temperature  of N harmonic  oscillators).      kBN ]
	(23.21)




We see that the temperature of a brick is just the average energy per harmonic
oscillator in the brick divided by Boltzmann’s constant.
   
23.4    Thermodynamic Temperature

Equation (23.20) provides us with a physical definition of temperature that is
independent of specific material properties such as the thermal expansion
coefficient of some particular metal. Though different materials have different
dependences of entropy on internal energy, the derivative of entropy with respect
to energy will be the same for any two materials in thermal equilibrium with each
other.

   Note that the unit of temperature is the Kelvin degree according to this
theory. If we had left off Boltzmann’s constant in the definition of entropy, the
dimensions of temperature would be that of energy. Boltzmann’s constant is thus
simply a scaling factor that changes temperature to energy just as multiplication
by the speed of light converts time to distance.


   
23.5    Specific Heat

How can we compute the specific heat of a collection of harmonic oscillators?
Starting from the temperature of a brick, as given by equation (23.21), we solve
for the brick’s internal energy:
   	

   
[image: E =  N kBT   (internal energy of N oscillators). ]
	(23.22)




Recall that the specific heat is the heat required per unit mass to increase the
temperature of the brick by one degree. For a solid body, essentially all the heat
added to the body goes into increasing its internal energy. Thus, if the mass of the
brick is M = Nm where m is the mass per oscillator, then the predicted specific
heat of the brick is
   	
   
[image: C ≡  -1-dQ- ≈ -1-dE- =  kB-  (specific heat of harmonic  oscillators).      M  dT    M  dT     m ]
	(23.23)




This formula is in reasonable agreement with measurements when the
temperature is high enough so that all the harmonic oscillators are in
excited states, i. e., with r > 1. (We equate dQ = dE using the first law of
thermodynamics, since no work is being done by the brick.)


   
23.6    Entropy and Heat Conduction


Though entropy is formally not defined in a system that is not in thermodynamic
equilibrium, one can imagine situations in which elements of a system interact
only weakly with other elements. Each element is therefore very close to internal
equilibrium, so that the entropy of each element can be defined. However, the
elements are not in equilibrium with each other.
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 Figure 23.5: The two regions at temperatures T1 and T2 < T1 are connected
by a thin bar that conducts heat slowly from the first to the second region.
For heat ΔQ transferred, the entropy of region 1 decreases according to
ΔS1 = -ΔQ∕T1, while the entropy of region 2 increases by ΔS2 = ΔQ∕T2.

____________________________


   



   Figure 23.5 shows an example of such a situation. Since 1∕T = ∂S∕∂E, one
can write
   	
   
[image: ΔS1  = - ΔQ ∕T1, ]
	(23.24)




since heat flowing out of region 1 results in a decrease in internal energy
ΔE1 = -ΔQ. Likewise, we find that
   	
   
[image: ΔS2 =  ΔQ ∕T2, ]
	(23.25)




since the internal energy of region 2 increases by ΔE2 = ΔQ. The total change of
entropy of the system is therefore
   	

   
[image:                         ( 1     1 ) ΔS  = ΔS1  + ΔS2  = ΔQ    ---- ---  .                           T2   T1 ]
	(23.26)




From our experience, we know that heat will only flow from region 1 to region 2 if
T1 > T2. However, equation (23.26) shows that the net entropy change is positive
when this is true. Conversely, if T1 < T2, then the net entropy change would be
negative and heat would be flowing spontaneously from lower to higher
temperatures. Thus, the statement that heat cannot spontaneously flow from
lower to higher temperatures is equivalent to the statement that the entropy of an
isolated system must not decrease. An alternative statement of the second law of
thermodynamics is therefore heat cannot spontaneously flow from lower to higher
temperatures.

   If entropy increases in some process, we call it irreversible. Spontaneous heat
flow is always irreversible. However, in the limit in which the temperature
difference is very small, the entropy increase due to heat flow is also small. Of
course, the rate of flow of heat is also quite slow in this case. Nevertheless, this
situation forms a useful idealization. In the idealized limit of very small, but
nonzero temperature difference, the flow of heat is said to be reversible because
the generation of entropy is negligible.
   
23.7    Problems


      

      	Compute  an  approximate  value  for  NN∕N!  using  the  Stirling
      approximation.  (This  gives  the  essence  of  Δ[image: N] for  N  harmonic
      oscillators.) From this show that ln(Δ[image: N]) ∝ N.
      

      	States of a pair of distinguishable dice (e. g., one is red, the other is

      green):
           
           	List all of the possible states of a pair of dice, i. e., all the possible
           combinations of face-up numbers.
           

           	Given that each of the dice has six faces, does the total number
           of states equal that given by equation (23.16)?


      

      	There are N!∕[M!(N - M)!] ways of arranging N pennies with M
      heads up. Verify this for 2, 3, and 4 pennies. (Note that by definition
      0! = 1.)
      

      	Suppose we have N pennies on a shaking table that bounces the pennies
      around, flipping them over at random. The pennies are weighted so that the
      gravitational potential energy of a penny is zero with tails up and U with
      heads up.
           
           	If M heads are up, what is the total energy E?
           

           	How  many  “states”,  Δ[image: N],  are  there  with  M  heads  up?  Hint:
           Compute this directly from the statement of the previous problem,
           not by computing d[image: N]∕dE as we did for N harmonic oscillators.
           

           	Compute the entropy of the system as a function of E and N.
           Hint: You will need to use the Stirling approximation to do this
           part.
           

           	Compute the temperature as a function of E and N.
           

           	Invert the temperature equation derived in the previous step to
           obtain E as a function of T and N. To understand this result,
           approximate it in the low and high limits, i. e., kBT∕U ≪ 1 and
           kBT∕U ≫ 1. Try to think of an explanation of the behavior of the

           pennies in these limits that would make sense to (say) an 8th grade
           student. In particular, how is the intensity of the shaking of the
           table related to the “temperature”? Hint: In the low temperature
           limit note that exp(U∕kBT) ≫ 1, while in the high temperature
           limit exp(U∕kBT) ≈ 1.


      

      	Suppose that two systems, A and B, have available states Δ[image: N]A = EAX
      and Δ[image: N]B = EBY , where E = E
A + EB = 2. Compute and plot
      Δ[image: N] = Δ[image: N]AΔ[image: N]B as a function of EA over the range 0 < EA < 2
      for:
           
           	X = Y = 1;
           

           	X = Y = 5;
           

           	X = Y = 25;
           

           	X = 2; Y = 8 — explain the position of the peak in terms of the
           values of X and Y .


      How does the width of the peak change as X and Y get larger? Explain the
      consequences of this result for the reliability of the second law of
      thermodynamics as a function of the number of particles in each
      system.
      


      	Suppose we have a system of mass M in which kBT = AE1∕2, where T is the
      temperature, E is the internal energy, kB is Boltzmann’s constant, and A is
      a constant.
           
           	Derive a formula for the entropy of the system as a function of
           internal energy. Hint: Remember the thermodynamic definition of
           temperature.
           

           	Compute the specific heat of this system.



      





   


Chapter 24
The Ideal Gas and Heat Engines

All heat engines have the common property of turning internal energy into useful
macroscopic energy. They extract internal energy from a high temperature
reservoir, convert part of this energy to useful work, and transfer the rest to a low
temperature reservoir. The second law of thermodynamics imposes a firm limit on
the fraction of the initial internal energy that can be converted to macroscopic
energy.

   Almost all heat engines work by means of expansions and contractions of a
gas. A simple theoretical model called the ideal gas model quite accurately
predicts the behavior of the gases in most heat engines of this type.

   Our first task is to build the ideal gas model using the techniques learned in
the previous chapter. We then use this model to understand the operation of
heat engines. We are particularly interested in determining the maximum
theoretical efficiency at which these devices can convert heat to useful
work.
   
24.1    Ideal Gas

An ideal gas is an assembly of atoms or molecules that interact with each other
only via occasional collisions. The distance between molecules is much
greater than the range of inter-molecular forces, so gas molecules behave
as free particles most of the time. We assume here that the density of
molecules is also low enough to make the probability of finding more than one
molecule in a given quantum mechanical state very small. For this reason
it doesn’t matter whether the molecules are bosons or fermions for our
calculations.

   J. Willard Gibbs tried computing the entropy of an ideal gas using his version
of statistical mechanics, which was based on classical mechanics. The result was
wrong in a very fundamental way — the calculated amount of entropy was not
proportional to the amount of gas. In fact, the amount of entropy of an ideal
gas at fixed temperature and pressure is calculated to have a non-linear
dependence on the number of gas molecules. In particular, doubling the
amount of gas more than doubles the entropy according to the Gibbs
formula.
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 Figure 24.1: Consequence of the incorrect classical calculation of entropy
of an ideal gas by Gibbs. Two parts of a container separated by a divider
each contain the same type of gas at the same temperature and pressure.
The total entropy is 2S where S is the classically calculated entropy of each
half. If the divider is removed, the classical calculation yields an entropy for
the entire body of gas S′ > 2S. Reinserting the divider returns the container
to the initial state in which the total entropy is 2S.

____________________________


   



   The significance of this error is illustrated in figure 24.1. Imagine a container
of gas of a certain type, temperature, and pressure that is divided into
two equal parts by a sheet of material. The total entropy of this state
is 2S, where S is the entropy calculated separately for each half of the
body of gas. This follows because the two halves are completely separate
systems.

   If the divider is now removed, a calculation of the entropy of the full body of
gas yields S′ > 2S according to the Gibbs formula, since the calculated entropy
doesn’t scale with the amount of gas. Furthermore, replacing the divider restores
the system to the initial state in which the total entropy is 2S. Thus, simply
inserting or removing the divider, an operation that transfers no heat and does
no work on the system, is able to increase or decrease the entropy of
the gas at will according to Gibbs. This is at variance with the second
law of thermodynamics and is known not to occur. Its prediction by the
formula of Gibbs is called the Gibbs paradox. Gibbs was well aware of the
serious nature of this problem but was unable to come up with a satisfying
solution.

   The resolution of the paradox is simply that the Gibbs formula for the entropy
of an ideal gas is incorrect. The correct formula is only obtained when the
quantum mechanical version of statistical mechanics is used. The failure of Gibbs
to obtain the proper entropy was an early indication that classical mechanics had
problems on the atomic scale.

   We will now calculate the entropy of a body of ideal gas using quantum
statistical mechanics. In order to reduce the difficulty of the calculation, we will
take a shortcut and assume that the amount of entropy is proportional to the
amount of gas. However, the more rigorous calculation confirms that this actually
is true.
   
24.1.1    Particle in a Three-Dimensional Box

The quantum mechanical calculation of the states of a particle in a three-dimensional
box forms the basis for our treatment of an ideal gas. Recall that a non-relativistic
particle of mass M in a one-dimensional box of width a can only support
wavenumbers kl = ±πl∕a where l = 1, 2, 3,… is the quantum number for the
particle. Thus, the possible momenta are pl = ±ℏπl∕a and the possible energies
are

   	
   
[image: E  = p2∕ (2M  ) = ¯h2π2l2∕(2M a2)   (one -dimensional  box).   l    l ]
	(24.1)





   If the box has three dimensions, is cubical with edges of length a, and has one
corner at (x,y,z) = (0, 0, 0), the quantum mechanical wave function for a single
particle that satisfies ψ = 0 on all the walls of the box is a three-dimensional
standing wave,
   	
   
[image: ψ (x,y,z) = sin(lx π∕a) sin(my π ∕a)sin(nzπ ∕a), ]
	(24.2)




where the quantum numbers l,m,n are positive integers. You can verify this by
examining ψ for x = 0, x = a, etc.

   Equation (24.2) is a solution in which the x, y, and z wavenumbers are
respectively kx = ±lπ∕a, ky = ±mπ∕a, and kz = ±nπ∕a. The corresponding
components of the kinetic momentum are therefore px = ℏkx, etc. The possible
energy values of the particle are 


   
[image:            p2    p2 + p2 + p2   ¯h2π2 (l2 + m2 +  n2) Elmn  =   ----=  -x----y----z = -----------2-------           2M         2M                2M a           -¯h2π2L2-       2       =   2M  V2∕3 ≡ E0L    (three-dimensional box ).    (24.3) ]


In the last line of the above equation we have eliminated the linear dimension a of
the box in favor of its volume V = a3 and have adopted the shorthand notation
L2 = l2 + m2 + n2 and E
0 = ℏ2π2∕(2Ma2) = ℏ2π2∕(2MV 2∕3). The quantity E
0 is
the ground state energy for a particle in a one-dimensional box of size
a.
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 Figure 24.2: Energy levels for a non-relativistic particle in a one-dimensional
and a three-dimensional box, each of side length a. The value E0  is the
ground state energy of the one-dimensional particle in a box of length a. The
numbers to the right of the levels respectively give the values of l for the 1-D
oscillator and the values of l, m, and n for the 3-D oscillator. The numbers
in parentheses give the degeneracy of each energy level (see text).
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   Figure 24.2 shows the energy levels of a particle in a one-dimensional and a
three-dimensional box. Different values of l, m, and n can result in the same
energy in the three-dimensional case. For instance, (l,m,n) = (1, 1, 2), (1, 2, 1),
(2, 1, 1) all yield L2 = 6 and hence energy 6E
0. This energy level is thus said to
have a degeneracy of 3. Similarly, the states (1, 2, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1),
(2, 1, 3), (1, 3, 2) all have the same value of L2, so this level has a degeneracy of 6.
However, the state (1, 1, 1) is unique and thus has a degeneracy of 1.
From this we see that the degeneracy of an energy level is the number
of different physically distinguishable states that have the same energy.
Counting the effects of degeneracy, the particle in a three-dimensional
box has 60 distinct states for E ≤ 30E0, while the one-dimensional box
has 5. As the limiting value of E∕E0 increases, this ratio becomes even
larger.
   
24.1.2    Counting States
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 Figure 24.3: The states of a particle in a two-dimensional box. The dots
indicate  particular  states  associated  with  allowed  values  of  the  x and  y
direction quantum numbers, l and m. The pie-shaped segment bounded by
the arc of radius L and the l and m axes encompasses all of the states with
l2 + m2 ≤ L2.

____________________________






   In order to compute the entropy of a system, we need to count the number of
states available to the system in a particular band of energies. Figure 24.3 shows
how to count the states with energy less than some limiting value for a particle in
a two-dimensional box. The pie-shaped segment bounded by the arc of radius L
and the l and m axes has an area equal to one fourth the area of a circle of
radius L, or πL2∕4. The dots represent allowed values of the l and m
quantum numbers. One dot, and hence one state, exists per unit area in this
graph, so the above expression tells us how many states [image: N] exist with
l2 + m2 ≤ L2.

   In two dimensions the particle energy is E = (l2 + m2)E
0. Thus, the
number of states with energy less than or equal to some maximum energy E
is
   	
   
[image:          2     (   ) N  =  πL--=  π-  E--   (two -dimensional  box).        4     4   E0 ]
	(24.4)





   Similar arguments can be made to calculate the number of states of a particle
in a three-dimensional box. The equivalent of figure 24.3 would be a plot with
three axes, l, m, and n representing the x, y, and z quantum numbers. The
volume of a sphere with radius L is then 4πL3∕3 and the region of the sphere with
l,m,n > 0, i. e., an eighth of the sphere, contains real physical states. The result
is that
   	

   
[image:      4 πL3    π ( E )3∕2 N  = ----- =  -- ---       (three -dimensional  box)       3 ⋅ 8   6  E0 ]
	(24.5)




states exist with energy less than E.
   
24.1.3    Multiple Particles

An ideal gas of only one molecule isn’t very interesting. Calculating the number of
states available to many particles in a box is a bit complex. However, by analogy
with the case of multiple harmonic oscillators, we guess that the number of states
of an N-particle gas is the number of states available to a single particle
to the Nth power multiplied by some as yet unknown function of N,
F(N):
   	
   
[image:            (    )              E-- 3N∕2 N  = F (N )  E0        (N  particles in 3-D box ). ]
	(24.6)




(Note that the (π∕6)N from equation (24.5) has been absorbed into F(N).)
Substituting E0 = ℏ2π2∕(2MV 2∕3) results in
   	

   
[image:             (       2∕3)3N ∕2 N  =  F(N )  2M--EV----      .                 ¯h2π2 ]
	(24.7)





   Now, π2ℏ2∕(2M) has the units of energy multiplied by volume to the
two-thirds power, so we write this combination of constants in terms of constant
reference values of E and V :
   	
   
[image:  2 2               2∕3 π ¯h ∕(2M ) = Eref Vref . ]
	(24.8)




Given the above assumption, we can rewrite the number of states with energy less
than E as
   	
   
[image:            (  E  )3N∕2 ( V  )N N =  F (N )  -----       ----    .             Eref        Vref ]
	(24.9)





   We now argue that the combination F(N) must take the form KN-5N∕2 where
K is a dimensionless constant independent of N. Substituting this assumption
into equation (24.9) results in
   	
   
[image:         (   E   )3N ∕2(   V   )N N  = K    -------       ------   .           N Eref        N Vref ]
	(24.10)




It turns out that we will not need the actual values of any of the three constants
K, Eref, or V ref.

   The effect of the above hypothesis is that the energy and volume occur only in
the combinations E∕(NEref) and V∕(NV ref). First of all, these combinations are
dimensionless, which is important because they will become the arguments of
logarithms. Second, because of the N in the denominator in both cases, they are
in the form of energy per particle and volume per particle. If the energy per
particle and the volume per particle stay fixed, then the only dependence of [image: N] on
N is via the exponents 3N∕2 and N in the above equation. Why is this
important? Read on!


   
24.1.4    Entropy and Temperature


Recall now that we need to compute the number of states in some small energy
interval ΔE in order to get the entropy. Proceeding as for the case of a collection
of harmonic oscillators, we find that
   	
   
[image:                             (       )3N ∕2 (       )N         ∂N--      3KN---ΔE-   --E----      ---V-- ΔN   =  ∂E ΔE   =    2E       N Eref       N  Vref    . ]
	(24.11)




The entropy is therefore
   	
   
[image:                        [     (       )     (       ) ]                          3-   ---E---        --V--- S =  kB ln (ΔN   ) = N kB  2 ln N E      + ln  N V         (ideal gas),                                   ref            ref ]
	(24.12)




where we have dropped the term kB ln[3KNΔE∕(2E)]. Since this term is not
multiplied by the number of particles N, it is unimportant for systems made up of
lots of particles.

   Notice that this equation has a very important property, namely, that the
entropy is proportional to the number of particles for fixed E∕N and
V∕N. It thus satisfies the criterion that Gibbs was unable to satisfy in his

computation of the entropy of an ideal gas. However, we cannot claim that
our calculation is superior to his, because we cheated! The reason we
assumed that F(N) = KN-5N∕2 is precisely so that we would obtain this
result.

   The temperature is the inverse of the E-derivative of entropy:
   	
   
[image: -1   -∂S-   3N-kB-              --2E--            3N-kBT-- T  = ∂E  =   2E      =⇒    T  = 3N kB   or   E =     2   . ]
	(24.13)






   
24.1.5    Slow and Fast Expansions

How does the entropy of a particle in a box change if the volume of the box is
changed? The answer to this question depends on how rapidly the volume change
takes place. If an expansion or compression takes place slowly enough and no
heat is added or removed, the quantum numbers of the particle don’t
change.
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 Figure 24.4: Harmonics on a guitar. Plucking a string while a finger rests
lightly on the string at the 12th fret results in excitation of the first harmonic
on the guitar string. Only one string is shown for clarity.
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   This fact may be demonstrated by the tuning of a guitar. A guitar string is
tuned in frequency by adjusting the tension on the string with the tuning peg. If
the first harmonic mode (corresponding to quantum number n = 2 for particle in
a one-dimensional box) is excited on a guitar string as illustrated in figure
24.4, changing the tension changes the frequency of the vibration but it
does not change the mode of vibration of the string — for instance, if
the first harmonic is initially excited, it remains the primary mode of
oscillation.

   Slowly changing the volume of a gas consisting of many particles, each with its
own set of quantum numbers, results in the same behavior — changing the
dimensions of the box results in no switching of quantum numbers beyond that
which would normally take place as a result of particle collisions. As a
consequence, the number of states available to the system, Δ[image: N], and hence the
entropy, doesn’t change either.

   A process that changes the macroscopic condition of a system but that doesn’t
change the entropy is called isentropic or reversible adiabatic. The word
“isentropic” means at constant entropy, while “adiabatic” means that no heat
flows in or out of the system.
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 Figure 24.5: The curved line indicates the reversible adiabatic curve E ∝
V -2∕3 for an ideal gas in a box. The two straight line segments indicate what
happens in a rapid expansion or compression.
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   If the entropy doesn’t change as a result of a change in volume, then
E3∕2V = const according to equation (24.12). Thus, the energy of the gas
increases when the volume is decreased and vice versa. This behavior is illustrated
in figure 24.5. The change in energy in both cases is a consequence of work done
by the gas on the walls of the container as it changes volume — positive in
expansion, meaning that the gas loses energy; and negative in compression,
meaning that the gas gains energy. This type of energy transfer is the means by
which internal energy is converted to useful work.

   A rapid expansion of the box has a completely different effect. If the expansion
is so rapid that the quantum mechanical waves trapped in the box undergo
negligible evolution during the expansion, then the internal energy of the particles
in the box does not change. As a consequence, the particle quantum numbers
must change to compensate for the change in volume. Equation (24.12) tells us
that if the volume increases and the internal energy doesn’t change, the entropy
must increase.

   A rapid compression has the opposite effect — it does extra work
on the material in the box, thus adding internal energy to the gas at a
rate in excess of the reversible adiabatic rate. The entropy increases in
this type of process as well. Both of these effects are illustrated in figure
24.5.
   
24.1.6    Work, Pressure, and Gas Law

The pressure p of a gas is the normal force per unit area exerted by the gas on the
walls of the chamber containing the gas. If a chamber wall is movable, the
pressure force can do positive or negative work on the wall if it moves out
or in. This is the mechanism by which internal energy is converted to
useful work. We can determine the pressure of a gas from the entropy
formula.
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 Figure 24.6: Gas in a cylinder with a movable piston. The force F exerted
by the gas on the piston is the area A of the face of the piston multiplied by
the pressure p.
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   Consider the behavior of a gas contained in a cylinder with a movable piston
as shown in figure 24.6. The net force F exerted by gas molecules bouncing off of
the piston results in work ΔW = FΔx being done by the gas if the piston moves
(slowly) out a distance Δx. The pressure is related to F and the area A of the
piston by p = F∕A. Furthermore, the change in volume of the cylinder is
ΔV = AΔx.

   If the gas does work ΔW on the piston, its internal energy changes
by
   	
   
[image: ΔE  =  - ΔW  =  - FΔx  = - F-A Δx  = - pΔV,                            A ]
	(24.14)




assuming that ΔQ = 0, i. e., no heat is added or removed during the change in
volume. Solving this for p results in
   	
   
[image:       ∂E-- p ≡ - ∂V . ]
	(24.15)





In the previous section we showed that as long as the change in volume is slow
and ΔQ = 0, the entropy does not change. Thus, in the evaluation of ∂E∕∂V , the
entropy is held constant.

   We can determine the pressure for an ideal gas by solving equation
(24.12) for E and taking the V derivative. As we showed in the previous
section, E3∕2V is constant for constant entropy processes, which means
that
   	
   
[image: E =  BV - 2∕3  (constant entropy expansion ), ]
	(24.16)




where B is constant.

   The pressure is then computed to be
   	
   
[image: p = - ∂E--= 2--B---=  2E-  (ideal gas),       ∂V    3 V 5∕3    3V ]
	(24.17)




where B is eliminated in the last step using equation (24.16). Employing equation
(24.13) to eliminate the energy in favor of the temperature, this can be

written
   	
   
[image: pV  = N kBT    (ideal gas law ), ]
	(24.18)




which relates the pressure, volume, temperature, and particle number of an ideal
gas.

   This equation is called the ideal gas law and jointly represents the
observed relationships between pressure and volume at constant temperature
(Boyle’s law) and pressure and temperature at constant volume (law of
Charles and Gay-Lussac). The fact that we can derive it from statistical
mechanics is evidence in favor of our quantum mechanical model of a
gas.

   The formulas for the entropy of an ideal gas (24.12), its temperature (24.13),
and the ideal gas law (24.18) summarize our knowledge about ideal gases.
Actually, the entropy and temperature laws only apply to a particular type of
ideal gas in which the molecules consist of single atoms. This is called a
monatomic ideal gas, examples of which are helium, argon, and neon. The
molecules of most gases consist of two or more atoms. These molecules have
rotational degrees of freedom that can store energy. The calculation of the entropy
of such gases needs to take these factors into account. The most common case is
one in which the molecules are diatomic, i. e., they consist of two atoms each. In
this case simply replacing factors of 3∕2 by 5∕2 in equations (24.12), (24.13),
(24.16), and (24.17) results in equations that apply to diatomic gases at ordinary
temperatures.
   
24.1.7    Specific Heat of an Ideal Gas


As previously noted, the specific heat of any substance is the amount of heating
required per unit mass to raise the temperature of the substance by one degree.
For a gas one must clarify whether the volume or the pressure is held constant as
the temperature increases — the specific heat differs between these two cases
because in the latter situation the added energy from the heating is split between
the production of internal energy and the production of work as the gas
expands.

   At constant volume all heating goes into increasing the internal energy, so
ΔQ = ΔE from the first law of thermodynamics. From equation (24.13) we find
that ΔE = (3∕2)NkBΔT. If the molecules making up the gas have mass M, then
the mass of the gas is NM. Thus, the specific heat at constant volume of an ideal
gas is
   	
   
[image:        1   3N k     3k CV =  ---------B-=  --B-  (specific heat at const vol).       N M    2      2M ]
	(24.19)





   As noted above, when heat is added to a gas in such a way that the pressure is
kept constant as a result of allowing the gas to expand, the added heat ΔQ is split
between the increase in internal energy ΔE and the work done by the gas in the
expansion ΔW = pΔV such that ΔQ = ΔE + pΔV . In a constant pressure
process the ideal gas law (24.18) predicts that pΔV = NkBΔT. Using this and
the previous equation for ΔE results in the specific heat of an ideal gas at
constant pressure:
   	

   
[image:            (              ) CP =  -1---  3N-kB-+ N kB   =  5kB-  (specific heat at const pres).       N M      2               2M ]
	(24.20)






   
24.2    Heat Engines

Heat engines typically operate by heating and cooling a volume of gas and
by compressing or expanding the gas. If these operations are done in a
particular order, internal energy can be converted to useful work. We
therefore seek to understand how an ideal gas reacts to the addition and
subtraction of internal energy and to the change in the volume of the
gas.

   The equation for the entropy of an ideal gas and the ideal gas law contain
the information we need. The entropy of an ideal gas is a function of
its internal energy E and its volume V . (We assume that the number
of molecules in the gas remains fixed.) Thus, a small change ΔS in the
entropy can be related to small changes in the energy and volume as
follows:
   	
   
[image:        ∂S--      ∂S-- ΔS  =  ∂E ΔE  +  ∂V ΔV. ]
	(24.21)






   We know that ∂S∕∂E = 1∕T. Using equation (24.12) we can similarly
calculate ∂S∕∂V = NkB∕V = p∕T, where the ideal gas law is used in the last step
to eliminate NkB in favor of p. Substituting these into the above equation,
multiplying by T, and solving for pΔV results in
   	
   
[image: pΔV   = ΔW   = T ΔS  - ΔE    (work by ideal gas) ]
	(24.22)




where we have recognized pΔV = ΔW to be the work done by the gas on the
piston.

   We are now in a position to investigate the conversion of internal
energy to useful work. If the gas is allowed to push the piston out in a
reversible adiabatic manner, then ΔS = 0 and energy is converted with 100%
efficiency from internal form to work. This work could in principle be
used to run an electric generator, stretch springs, power an automobile,
etc.

   Unfortunately, a piston in a cylinder that can only extract energy during single
expansion wouldn’t be very useful — it would be like an automobile engine
that only worked for half a turn of the crankshaft and then had to be
replaced! If the piston is simply pushed back into the cylinder, then the
macroscopic energy gained from the initial expansion would be converted back
into internal energy of the gas, resulting in zero net creation of useful
work.

   








[image: PIC]



  Figure 24.7:  Plot  of  Carnot  cycle  for  an  ideal  gas  in  a  cylinder.
Entropy-energy coordinates are used.

____________________________


   



   The trick to obtaining non-zero useful work from the expansion and
contraction of a gas is to add heat to the gas before the expansion and extract
heat from it before the recompression. This makes the gas cooler in the
compression than in the expansion. The pressure is therefore less in the
compression and the work needed to compress the gas is less than that produced
in the expansion.

   Figure 24.7 shows a particular way of executing a complete cycle of expansion
and compression of the gas that results in a net conversion of internal energy to
useful work. Assuming that the gas has initial entropy and internal energy S1 and
E1 at point A in figure 24.7, the gas is first compressed in reversible adiabatic
fashion to point B. The entropy doesn’t change in this compression but the
internal energy increases from E1 to E2. The work done by the gas is negative and
equals WAB = E1 - E2.

   The gas then is allowed to slowly expand (so that the expansion is reversible),
moving from point B to point C in figure 24.7 in such a way that its internal
energy doesn’t change. From equation (24.22) we see that WBC = T2(S2 -S1) for
this segment of the expansion. However, heat must be added to the gas equal
in amount to the work done in order to keep the internal energy fixed:
Q2 = T2(S2 - S1).

   From point C to point D the gas expands further but in this segment the
expansion is reversible adiabatic so that the entropy change is again zero. Thus,
WCD = E2 - E1.

   Finally, the gas is slowly compressed from point D to point A in a constant
internal energy process. Keeping the internal energy fixed means that the
(negative) work done by the gas in this segment is WDA = T1(S1 - S2).
Furthermore, heat equal to the work done on the gas by the piston must
be removed from the gas in order to keep the internal energy constant:
Q1 = -WDA = T1(S2 - S1). The net work done by the gas over the
full cycle is obtained by adding up the contributions from each segment:


   

[image: W   =   WAB  + WBC   + WCD  + WDA     =   (E1 - E2 ) + T2 (S2 - S1 ) + (E2 - E1) + T1(S1 - S2)      =   (T2 - T1)(S2 - S1)  (Carnot  cycle).                (24.23) ]



   The energy source for this work is internal energy at temperature
T2. As demanded by energy conservation, W = Q2 - Q1. The fraction
of the internal energy Q2 that is converted to useful work in this cycle
is
   	
   
[image:     W--   (T2---T1-)(S2---S1-)       T1- ϵ = Q2  =     T2(S2 - S1)    =  1 - T2   (thermodynamic   efficiency ). ]
	(24.24)




This quantity ϵ is called the thermodynamic efficiency of the heat engine. Notice
that it depends only on the ratio of the lower and upper temperatures, expressed
in absolute or Kelvin form. The smaller this ratio, the larger the thermodynamic
efficiency.

   Heat engines normally work via repeated cycling around some loop such as
described above. The particular cycle we have discussed is called the Carnot cycle
after the 19th century French scientist Sadi Carnot. Heat is accepted from a high
temperature heat source, created, for example, by burning coal in a power plant.
Excess heat is disposed of in the atmosphere or in some source of running water
such as a river. Notice that the ability to get rid of excess heat at low
temperature is as important to a heat engine as the supply of heat at a high

temperature.

   Many cycles for converting heat to work are possible — these are represented
by different closed trajectories in the S-E plane. However, the Carnot cycle is
special for two reasons: First, all heat absorbed by the system is absorbed at a
single temperature T2, and all heat rejected from the system is rejected at a single
temperature T1. This allows the expression of the efficiency simply in terms of the
two temperatures. Second, the Carnot cycle is reversible, which means that no net
entropy is generated.

   A Carnot engine running backwards acts as a refrigerator. Heat ΔQ1 is
extracted at temperature T1 from the box being cooled with the aid of externally
supplied work W. An amount of heat Q2 = W + Q1 is then transferred to the
environment at temperature T2 > T1. Equation (24.24) gives the ratio
of W to Q2 in this case, as well as when the heat engine is run in the
forward direction. This may be verified by tracing the cycle in figure 24.7 in
reverse.

   In analyzing heat engines and refrigerators it is generally easier to go back to
basic principles than it is to use equations such as (24.23) and (24.24). In
particular, for a Carnot engine in which heat Q2 is being extracted from the high
temperature reservoir (T2) and heat Q1 is being added to the low temperature
reservoir (T1), conservation of energy says that the useful work extracted is
W = Q2 - Q1, and that the total combined entropy change in the warm and
cold reservoirs is ΔS = -Q2∕T2 + Q1∕T1 = 0. (Note that the reservoir
providing energy has a minus sign, while the reservoir accepting energy has
a plus sign.) Given these two relationships, any two of Q1, Q2, and W
can be determined if the third is known. For a refrigerator, the higher
temperature reservoir accepts energy while the lower temperature reservoir
(generally the interior of the refrigerator) and the work term provide energy.
This changes the signs of all three energy flows. If the machine is not a
perfectly efficient Carnot engine, then ΔS > 0 whether the machine is a
heat engine or a refrigerator, and one deals with inequalities rather than
equalities.
   
24.3    Perpetual Motion Machines

Perpetual motion machines are devices that are purported to create useful work
for “nothing” by violating some physical principle. Generally they are
divided into two types, perpetual motion machines of the first and second

kinds. Perpetual motion machines of the first kind violate the conservation
of energy, while perpetual motion machines of the second kind violate
the second law of thermodynamics. It is the latter type that we address
here.

   We commonly hear talk of an “energy crisis”. However, it is clear to all
physicists that such a crisis, if it exists, is actually an “entropy crisis”. Energy
beyond the most extravagant projected needs of mankind exists in the form of
internal energy of the earth. Furthermore, one cannot possibly “waste” energy,
because energy can neither be created nor destroyed.

   The real problem is that internal energy can only be tapped if two
reservoirs of internal energy exist, one at high temperature and one at low
temperature. Heat engines depend on this temperature difference to operate
and if all internal energy exists at the same temperature, no conversion
of internal energy to useful work is possible, at least using the Carnot
cycle.

   One naturally inquires as to whether some cycle exists that is more efficient
than the Carnot cycle. In other words, does there exist a heat engine operating
between temperatures T2 and T1 that extracts more work from the high
temperature heat input Q2 than ϵQ2? Recall that ϵ = 1 - T1∕T2 is the
thermodynamic efficiency of the Carnot engine.
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 Figure 24.8: Perpetual motion machine of the second kind. The Super-X
machine is advertised as having a thermodynamic efficiency greater than a
Carnot engine. The output of the Super-X machine runs the Carnot engine
backwards as a refrigerator, resulting in net transfer of heat from the lower
temperature to the higher temperature reservoir.

____________________________


   



   Let’s suppose that an inventor has presented us with the “Super-X machine”,
which is purported to have a thermodynamic efficiency greater than a Carnot
engine. Figure 24.8 shows how we could set up an experiment in our laboratory to
test the inventor’s claim. The Carnot engine runs in reverse as a refrigerator,
emitting heat Q2 to the upper reservoir, absorbing Q1 from the lower reservoir,
and using the work W = Q2 -Q1 = ϵQ2 from the Super-X machine. The Super-X
machine is operated in heat engine mode, emitting Q3 to the lower reservoir and
absorbing Q4 = Q3 + W < W∕ϵ from the upper reservoir. The inequality indicates
that the ratio of work produced and heat extracted from the upper reservoir,
W∕Q4, is greater for the Super-X machine than for an equivalent Carnot
engine.

   Let us examine the net heat flow out of the upper reservoir, Qupper = Q4 -Q2.
Since Q4 < W∕ϵ = Q2, we find that Qupper < 0. In other words, the Super-X
machine is extracting less heat from the upper reservoir than the Carnot engine is
returning to this reservoir using the work produced by the Super-X machine. The
source of this energy is the lower reservoir, from which an equivalent amount of
heat is being extracted. The net effect of these two machines working together is a
spontaneous transfer of heat from a lower to a higher temperature, since no outside
energy source or entropy sink is needed to make it operate. This is a
violation of the second law of thermodynamics. Therefore, the Super-X
machine, if it truly works, is a perpetual motion machine of the second
kind.

   Though there have been many claims, no perpetual motion machine
has been convincingly demonstrated. Thus, heat engines are apparently
incapable of converting all of the internal energy supplied to them to useful
work, as this would require either an infinite input temperature or a zero
output temperature. As we have demonstrated, this source of inefficiency is
intrinsic to all heat engines and is in addition to the usual sources of
inefficiency such as friction and heat loss from imperfect insulation. No heat
engine, no matter how perfectly designed, can overcome this intrinsic
inefficiency.

   As a result of the second law of thermodynamics, we see that real heat
engines, which are always less efficient than Carnot engines, produce useful work,
W,
   	

   
[image: W  < ϵQ2   (real heat engines ), ]
	(24.25)




where Q2 is the amount of heat energy extracted from the upper reservoir. On the
other hand, refrigerators transfer heat Q2 to the upper reservoir in the
amount
   	
   
[image: Q2 < W  ∕ϵ  (real refrigerators), ]
	(24.26)




where W is the work done on the refrigerator.
   
24.4    Problems


      

      	Following the procedure for a three-dimensional gas, do the following for a
      two-dimensional gas in a box of area A = a2, where a is the side length of
      the box.

           
           	Find [image: N] for N particles. Eliminate a in favor of the box area A.
           

           	Compute the entropy for this gas.
           

           	Compute the temperature T, as a function of N and the internal
           energy E. Invert to obtain the internal energy as a function of N
           and T.
           

           	Solve   the   entropy   equation   for   energy   and   compute   the
           “two-dimensional pressure”, τ  =  -∂E∕∂A. What units does τ
           have?
           

           	Find the two-dimensional analog to the ideal gas equation.


      These calculations are relevant to atoms that can move freely around on a
      surface, but cannot escape it for energetic reasons.
      


      	Suppose your house has interior volume V . There are a few small air leaks,
      so that the inside air pressure p always equals the outside air pressure,
      which is assumed not to change.
           
           	Compute the internal energy of the air in your house.
           

           	Your  roommate,  trying  to  impress  you  with  his  knowledge  of
           physics, says that he is going to turn up the thermostat to increase
           the internal energy of the air in the house. Will this work? Explain.


      

      	It has been proposed to extract useful work from the ocean by exploiting the
      temperature difference between deep ocean water at ≈ 0∘ C and tropical
      surface water at ≈ 30∘ C to run a heat engine. What thermodynamic
      efficiency would this process have?
      

      	Suppose your house is heated by a Carnot engine working as a refrigerator

      between an outdoor temperature of 273 K and an indoor temperature of
      303 K. (This means you are cooling the outdoors to heat the indoors! Such
      devices are called heat pumps.) If your house loses heat at a rate of 5 kW,
      how much electrical energy must be used to power the (perfectly efficient)
      electrical motor running the Carnot engine? Compare the monthly cost of
      running this Carnot engine to the cost of direct electric heating, i. e., via a
      big resistor.
      

      	Suppose an airplane engine is a heat engine that works between
      temperatures Tair and Tair + ΔT, where Tair is the air temperature, and
      where ΔT is fixed. Other things being equal, is this engine more
      thermodynamically efficient in the summer or winter? Explain.
      

      	Suppose the spring constant k of a spring varies with temperature, so that
      k = CT, where C is a constant and T is the (Kelvin) temperature. Describe
      how this spring could be used to construct a heat engine.
      

      	Suppose a monatomic ideal gas at initial temperature T is allowed to
      expand very rapidly so that its new volume is twice its original volume. It is
      then compressed isentropically (i. e., at constant entropy, which
      means it is done slowly) back to the original volume. What is its new
      temperature?
      

      	An inventor claims to have a refrigerator that extracts 100 W of heat from
      its interior, which is kept at 150 K, rejecting the heat at room temperature
      (300 K). He claims that the refrigerator only consumes 10 W of externally
      supplied power. If this device works, does it violate the second law of
      thermodynamics?






   
Appendix A
Constants, Units, and Conversions

This appendix contains various useful constants and conversion factors as well as
information on the International System of Units.
   
A.1    SI Units

“SI” is the French abbreviation for the International System of Units, the system
used universally in science. See http://physics.nist.gov/cuu/Units/ for the
last word on this subject. This treatment is derived from the National Institute of
Science and Technology (NIST) website.

   The most fundamental units of measure are length (meters; m), mass
(kilograms; kg), time (seconds; s), electric current (ampere; A), temperature
(kelvin; K), amount of a substance (mole; mol), and the luminous intensity
(candela; cd). The candela is a rather specialized unit related to the perceived
brightness of a light source by a “standard” human eye. As such, it is rather
anthropocentric and hardly seems to merit the designation “fundamental”.
The mole is also less fundamental than the other units, as it is simply a
convenient way to refer to a multiple of Avogadro’s number of atoms or
molecules.

   Fundamental units can be combined to form derived units with special names.
Some of these derived units are listed below.

   Fundamental and derived SI units can have multipliers expressed as prefixes,
e. g., 1 km = 1000 m. The NIST website points out a minor irregularity with the
fundamental unit of mass, the kilogram. This already has the multiplier “kilo”
prefixed to the unit “gram”. In this case 1000 kg is written 1 Mg, not 1 kkg, etc.
SI multipliers are listed below as well.


   
A.1.1    Derived Units


    	Name      	Abbrev.	Units          	Meaning                              

	         	       	           	                          

	hertz        	Hz       	s-1                  	frequency (cycles/sec)             

	(unnamed)	       	s-1                  	angular frequency (radians/sec)

	newton     	N        	kg m s-2       	force                                   

	pascal      	Pa       	N m-2           	pressure                               

	joule        	J         	N m           	energy                                 

	watt        	W       	J s-1              	power                                  

	coulomb   	C        	A s            	electric charge                       

	volt         	V        	N m C-1       	scalar potential                     

	(unnamed)	       	N s C-1         	vector potential                     

	(unnamed)	       	V m-1           	electric field                          

	tesla        	T        	N s C-1 m-1	magnetic field                       

	(unnamed)	       	V m           	electric flux                          

	weber       	Wb      	T m2              	magnetic flux                        

	volt         	V        	V               	electric circulation (EMF)       

	(unnamed)	       	T m           	magnetic circulation               

	farad        	F         	C V-1            	capacitance                          

	ohm         	Ω        	V A-1            	resistance                             

	henry       	H        	V s2 C-1       	inductance                           

	          




   
A.1.2    SI Multipliers

    	Multiplier	Name	Prefix

	         	     	     

	1024            	yotta 	Y      

	1021            	zetta 	Z      

	1018            	exa   	E      

	1015            	peta  	P      

	1012            	tera  	T      

	109              	giga  	G     

	106              	mega 	M     

	103              	kilo   	k      

	102              	hecto 	h      

	101              	deka  	da     

	10-1           	deci  	d      

	10-2           	centi 	c      

	10-3           	milli  	m     

	10-6           	micro	μ     

	10-9           	nano 	n      

	10-12          	pico  	p      

	10-15          	femto	f       

	10-18          	atto  	a      

	10-21          	zepto 	z      

	10-24          	yocto	y      

	          





   
A.1.3    CGS or Centimeter-Gram-Second Units

An older system of scientific units is the CGS system. This system is
still used widely in certain areas of physics. The fundamental units of
length, mass, and time are as implied by the title given above. The most
common CGS derived units are those for force (1 dyne = 10-5 N) and energy
(1 erg = 10-7 J).

   Electromagnetism is expressed in several different ways in CGS units.
Electromagnetic quantities in CGS not only have different units than in SI, they
also have different physical dimensions, with different versions differing among
themselves. The most common variant of CGS electromagnetic units is called
“Gaussian” units. This variant is advocated by some physicists, though many
others consider the whole subject of CGS electromagnetic units to be a terrible
mess! SI units for electromagnetism are used in this text and CGS units will not
be discussed further here.


   
A.1.4    Miscellaneous Conversions

    	1 lb = 4.448 N                                               
	1 ft = 0.3048 m

	1 mph = 0.4470 m s-1                                                    

	1 eV = 1.60 × 10-19 J                                      

	1 mol = 6.022 × 1023 molecules                          

	(One mole of carbon-12 atoms has a mass of 12 g.)

	1 gauss = 10-4 T (CGS unit of magnetic field)      

	1 millibar = 1 mb = 100 Pa (Old unit of pressure) 

	                                           




   
A.2    Advice on Calculations


   
A.2.1    Substituting Numbers


When faced with solving an algebraic equation to obtain a numerical answer,
solve the equation symbolically first and then substitute numbers. For example,
given the equation
   	
   
[image: ax2 -  b = 0 ]
	(A.1)




where a = 2 and b = 8, first solve for x,
   	
   
[image:            1∕2 x = ± (b∕a)  , ]
	(A.2)




and then substitute the numerical values:
   	
   

[image:            1∕2      1∕2 x = ± (8∕2)   = ±4    =  ±2. ]
	(A.3)




This procedure is far better than substituting numbers first,
   	
   
[image: 2x2 - 8 = 0, ]
	(A.4)




and then solving for x. Solving first and then substituting has two advantages: (1)
It is easier to make algebraic manipulations with symbols than it is with numbers.
(2) If you decide later that numerical values should be different, then the entire
solution procedure doesn’t have to be repeated, only the substitutions at the
end.


   
A.2.2    Significant Digits

In numerical calculations, keep only one additional digit beyond those
present in the least accurate input number. For instance, if you are taking
the square root of 3.4, your calculator might tell you that the answer is
1.843908891. The answer you write down should be 1.84. Keeping all ten
digits of the calculator’s answer gives a false sense of the accuracy of the
result.

   Round the result up if the digit following the last significant digit is 5 or
greater and round it down if it is less than 5. Thus, the square root of 4.1, which
the calculator tells us is 2.049390153, should be represented as 2.05 rather than

2.04.


   
A.2.3    Changing Units

It is easy to make mistakes when changing the units of a quantity. Adopting a
systematic approach to changing units greatly reduces the chance of error. We
illustrate a systematic approach to this problem with an example in which we
change the units of acceleration from meters per second squared to kilometers per
minute squared: 

   
[image:       2            2                             2 5 m/s    →   5 m/s  × (0.001 km/m  ) × (60 s/min )          =   5 × 0.001 ×  602 km/min2                         2          =   18 km/min   .                               (A.5) ]


The trick is to multiply by the conversion factor for each unit to the power that
makes the original unit cancel out. The conversion factors to the proper powers
are then multiplied by the original number and the proper cancellations of the old
units are double checked. If done with care, this yields the correct result every
time!

   
A.3    Constants of Nature


    	Symbol	        Value             	Meaning                                        

	       	                     	                                

	h        	    6.63 × 10-34 J s      	Planck’s constant                            

	ℏ        	    1.06 × 10-34 J s      	h∕(2π)                                          

	c        	     3 × 108 m s-1          	speed of light                                  

	G       	6.67 × 10-11 m3 s-2 kg-1	universal gravitational constant          

	kB        	   1.38 × 10-23 J K-1      	Boltzmann’s constant                       

	σ        	 5.67 × 10-8 W m-2 K-4 	Stefan-Boltzmann constant                

	K       	  3.67 × 1011 s-1 K-1     	thermal frequency constant               

	ϵ0            	8.85 × 10-12 C2 N-1 m-2	permittivity of free space                  

	μ0           	  4π × 10-7 N s2 C-2     	permeability of free space (= 1∕(ϵ
0c2)).

	        




   
A.4    Properties of Stable Particles

    	Symbol	             Value                    	Meaning                        

	       	                              	                       

	e        	         1.60 × 10-19 C              	fundamental unit of charge

	me        	   9.11 × 10-31 kg = 0.511 MeV     	mass of electron              

	mp        	1.672648 × 10-27 kg = 938.280 MeV	mass of proton                

	mn        	1.674954 × 10-27 kg = 939.573 MeV	mass of neutron               

	        




   
A.5    Properties of Solar System Objects

    	Symbol	    Value      	Meaning                  

	       	            	                  

	Me        	5.98 × 1024 kg	mass of earth            

	Mm      	7.36 × 1022 kg	mass of moon           

	Ms        	1.99 × 1030 kg	mass of sun              

	Re         	 6.37 × 106 m 	radius of earth          

	Rm        	 1.74 × 106 m 	radius of moon         

	Rs         	 6.96 × 108 m 	radius of sun            

	Dm       	 3.82 × 108 m 	earth-moon distance  

	Ds        	1.50 × 1011 m	earth-sun distance     

	g        	 9.81 m s-2   	earth’s surface gravity
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         1Reprinted in: Boorse, H. A., and L. Motz, 1966: The world of the atom. Basic Books,
  New York, 1873 pp. Also, search for “Louis de Broglie Nobel Prize Address” on the
  web.


      
 

      
         1In advanced mechanics, Π is called the canonical momentum.


      
 

       
          2In relativity, the quantity E - U is actually equal to the kinetic plus the rest energy.
  This quantity ought to have a separate name but it does not.


      
 

      
         3Alternatives to the Lorentz condition are sometimes used in electromagnetism. However,
  we will confine our attention to the Lorenz condition, as it does not change as the reference
  frame changes. (Note that Lorenz and Lorentz are different people!)


      
 

      
         4We use the symbol p for kinetic momentum here. However, in collisions we assume that
  the potential momentum and energy are only non-zero when the particles are very close
  together. Thus, when the particles are reasonably well separated, the distinction between kinetic
  and total momentum is unimportant.


      
 

      
         1The terminology comes from fluid dynamics where the concept is used with the fluid
  velocity field. The idea of circulation is so useful in fluid dynamics that it seems worthwhile to
  generalize it to vector fields in other areas of physics.


      
 

      
         2The standard example of an inductor in most texts is a coil of wire. We use a parallel
  plate inductor here as it is easier to analyze with our treatment of electromagnetism.


      
 

      
         1Many of the ideas in this chapter were taken from Aitchison, I. J. R., and
  A. J. G. Hey, 1989: Gauge theories in particle physics. IOP Publishing, 571 pp.


      
 

 
    1Actually, lepton conservation is even more restrictive, with conversion between electrons,
  muons, and tau particles being apparently forbidden. However, recent work shows that electron,
  muon, and tau neutrinos convert into each other on slow time scales. We also know from this
  work that neutrinos have small, but non-zero mass. The implications of these results are still
  being explored by the physics community.

 
 

      
         1An empirical law is one that we cannot justify in terms of the fundamental principles of
  physics, but which is observed to be true in a wide variety of situations.


      
 

       
          1To derive the Stirling approximation note that ln(N!) = ln(1) + ln(2) + … + ln(N). This
  sum can be approximated by the integral ∫
 1N ln(x)dx = N ln(N) - N + 1 ≈ N ln(N) - N.
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