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“Don’t just read it; fight it! Ask your own questions, look for
your own examples, discover your own proofs. Is the hypothesis
necessary? Is the converse true? What happens in the classical
special case? What about the degenerate cases? Where does
the proof use the hypothesis?”

- Paul Halmos

“Pure mathematics is, in its way, the poetry of logical ideas.”
- Albert Einstein

FIGURE 0.0.1. Extreme close-up of a snowflake. (c) 2013
Alexey Kljatov, ALL RIGHTS RESERVED. Used without per-
mission. [This image is NOT covered by a Creative Commons
license.]
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Part 1

Introduction



CHAPTER 1

About this project

The goal of this textbook is to provide an open, low-cost, readable edition of
Euclid’s “Elements” that can be distributed anywhere in the world. (In terms
of the American educational system, this textbook may be used in grades 7-12
as well as undergraduate college courses on proof writing).

Euclid’s “Elements” was the foremost math textbook in most of the world
for about 2,200 years. Many problem solvers throughout history wrestled with
Euclid as part of their early education including Copernicus, Kepler, Galileo,
Sir Isaac Newton, Abraham Lincoln, Bertrand Russell, and Albert Einstein.

However, “The Elements” was abandoned after the explosion of new math-
ematics toward the end of the 19th century, including the construction of for-
mal logic, a more rigorous approach to proof-writing, and the necessity of al-
gebra as a prerequisite to calculus. While the end of the 19th century was
the beginning of a mathematical Golden Age (one that we are still in), many
considered Euclid to be hopelessly out of date.

Should “The Elements” be sufficiently rewritten to conform to the current
textbook standards, its importance in geometry, proof writing, and as a case-
study in the use of logic may once again be recognized by the worldwide edu-
cational community.

This is a goal that no one author can accomplish. As such, this edition of
Euclid has been released under the Creative Commons Attribution-ShareAlike
4.0 International License. The intent is to take advantage of crowd-sourcing
in order to improve this document in as many ways as possible.

“Euclid’s ’Elements’ Redux” began as “The First Six Books of the Elements
of Euclid” by John Casey (which can be downloaded from Project Gutenberg:
http://www.gutenberg.org/ebooks/21076), the public domain translation of
“The Elements” by Sir Thomas L. Heath, information from Wikipedia and
other sources with appropriate licensing, and it includes illustrations com-
posed on GeoGebra software as well as original writing.

The ultimate goal for this document is to contain all 13 books of “The El-
ements” (some perhaps in truncated form) and to be translated as many lan-
guages as possible. Some may also wish to fork this project in order to rewrite
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Euclid from the ground up, to create a “purist’s” edition (the current edition fa-
vors Casey’s amendments to Euclid’s original work), to create a wiki of math-
ematics from the ancient world, or for some other reason. Such efforts are
welcome.

The prerequisites for this textbook include a desire to solve problems and
to learn mathematical logic. Some algebra will be helpful, especially propor-
tions.

This textbook requires its student to work slowly and carefully through
each section. The student should check every result stated in the book and
not take anything on faith. While this may seem tedious, it is exactly this
attention to detail which separates those who understand mathematics from
those who do not.

The figures in this textbook were created in GeoGebra. They can be found
in the images folder in the source files for this textbook. Files with extensions
.ggb are GeoGebra files, and files with the .eps extension are graphics files.
Instructional videos are also available on YouTube which demonstrate how to
use GeoGebra: http://www.youtube.com/channel/UCjrVV46Fijv-Pi5VcFm3dCQ

This document was composed using:
GeoGebra http://www.geogebra.org/

Linux Mint http://www.linuxmint.com/

LYX http://www.lyx.org/

Windows 7 http://windows.microsoft.com/

Xubuntu Linux http://xubuntu.org/

Follow me on Twitter: @euclidredux

1.1. Contributors & Acknowledgments

• Daniel Callahan (general editor)
• Deirdre Callahan (cover art using GIMP on Raphael’s “The School of

Athens”)
• John Casey (his edition of “The Elements” is this basis for this edi-

tion).
• Sir Thomas L. Heath (various proofs)

http://www.youtube.com/channel/UCjrVV46Fijv-Pi5VcFm3dCQ
http://www.geogebra.org/
http://www.linuxmint.com/
http://www.lyx.org/
http://windows.microsoft.com/
http://xubuntu.org/
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Daniel Callahan would like to thank Wally Axmann1, Elizabeth Behrman2,
Karl Elder3, Thalia Jeffres4, Kirk Lancaster5, Phil Parker6, and Weatherford
College7 for time and facilities to work on this project.

1.2. Dedication

This book is dedicated to everyone in the educational community who be-
lieves that algebra provides a better introduction to mathematics than geome-
try.

1http://www.math.wichita.edu/~axmann/
2http://webs.wichita.edu/physics/behrman/behr.htm
3http://karlelder.com
4http://www.math.wichita.edu/~jeffres/
5http://kirk.math.wichita.edu/
6http://www.math.wichita.edu/~pparker/
7http://www.wc.edu

http://www.math.wichita.edu/~axmann/
http://webs.wichita.edu/physics/behrman/behr.htm
http://karlelder.com
http://www.math.wichita.edu/~jeffres/
http://kirk.math.wichita.edu/
http://www.math.wichita.edu/~pparker/
http://www.wc.edu


CHAPTER 2

About Euclid’s “Elements”

[This chapter has been adapted from an entry in Wikipedia.1]

Euclid’s “Elements” is a mathematical and geometric treatise consisting of
13 books written by the ancient Greek mathematician Euclid in Alexandria
c.300 BC. It is a collection of definitions, postulates (axioms), propositions (the-
orems and constructions), and mathematical proofs of the propositions. The
thirteen books cover Euclidean geometry and the ancient Greek version of ele-
mentary number theory. The work also includes an algebraic system that has
become known as geometric algebra, which is powerful enough to solve many
algebraic problems, including the problem of finding the square root of a num-
ber. With the exception of Autolycus’ “On the Moving Sphere”, the Elements
is one of the oldest extant Greek mathematical treatises, and it is the oldest
extant axiomatic deductive treatment of mathematics. It has proven instru-
mental in the development of logic and modern science. The name “Elements”
comes from the plural of “element”. According to Proclus, the term was used to
describe a theorem that is all-pervading and helps furnishing proofs of many
other theorems. The word “element” is in the Greek language the same as “let-
ter”: this suggests that theorems in the “Elements” should be seen as standing
in the same relation to geometry as letters to language. Later commentators
give a slightly different meaning to the term “element”, emphasizing how the
propositions have progressed in small steps and continued to build on previous
propositions in a well-defined order.

Euclid’s “Elements” has been referred to as the most successful and influ-
ential textbook ever written. Being first set in type in Venice in 1482, it is
one of the very earliest mathematical works to be printed after the invention
of the printing press and was estimated by Carl Benjamin Boyer to be second
only to the Bible in the number of editions published (the number reaching
well over one thousand). For centuries, when the quadrivium was included in
the curriculum of all university students, knowledge of at least part of Euclid’s

1http://en.wikipedia.org/wiki/Euclid's_Elements

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organiza-
tion.
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“Elements” was required of all students. Not until the 20th century, by which
time its content was universally taught through other school textbooks, did it
cease to be considered something all educated people had read.

FIGURE 2.0.1. The frontispiece of Sir Henry Billingsley’s first
English version of Euclid’s Elements, 1570.

2.1. History

2.1.1. Basis in earlier work. Scholars believe that the Elements is largely
a collection of theorems proved by other mathematicians supplemented by
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some original work. Proclus, a Greek mathematician who lived several cen-
turies after Euclid, wrote in his commentary: "Euclid, who put together the
Elements, collecting many of Eudoxus’ theorems, perfecting many of Theaete-
tus’, and also bringing to irrefutable demonstration the things which were only
somewhat loosely proved by his predecessors". Pythagoras was probably the
source of most of books I and II, Hippocrates of Chios of book III, and Eudoxus
book V, while books IV, VI, XI, and XII probably came from other Pythagorean
or Athenian mathematicians. Euclid often replaced fallacious proofs with his
own more rigorous versions. The use of definitions, postulates, and axioms
dated back to Plato. The “Elements” may have been based on an earlier text-
book by Hippocrates of Chios, who also may have originated the use of letters
to refer to figures.

2.1.2. Transmission of the text. In the fourth century AD, Theon of
Alexandria extended an edition of Euclid which was so widely used that it
became the only surviving source until François Peyrard’s 1808 discovery at
the Vatican of a manuscript not derived from Theon’s. This manuscript, the
Heiberg manuscript, is from a Byzantine workshop c. 900 and is the basis of
modern editions. Papyrus Oxyrhynchus 29 is a tiny fragment of an even older
manuscript, but only contains the statement of one proposition.

Although known to Cicero, there is no extant record of the text having been
translated into Latin prior to Boethius in the fifth or sixth century. The Arabs
received the Elements from the Byzantines in approximately 760; this version,
by a pupil of Euclid called Proclo, was translated into Arabic under Harun al
Rashid c.800. The Byzantine scholar Arethas commissioned the copying of one
of the extant Greek manuscripts of Euclid in the late ninth century. Although
known in Byzantium, the “Elements” was lost to Western Europe until c. 1120,
when the English monk Adelard of Bath translated it into Latin from an Arabic
translation.

The first printed edition appeared in 1482 (based on Campanus of Novara’s
1260 edition), and since then it has been translated into many languages and
published in about a thousand different editions. Theon’s Greek edition was
recovered in 1533. In 1570, John Dee provided a widely respected "Mathemati-
cal Preface", along with copious notes and supplementary material, to the first
English edition by Henry Billingsley.

Copies of the Greek text still exist, some of which can be found in the Vat-
ican Library and the Bodleian Library in Oxford. The manuscripts available
are of variable quality and are invariably incomplete. By careful analysis of
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the translations and originals, hypotheses have been made about the contents
of the original text (copies of which are no longer available).

Ancient texts which refer to the “Elements” itself and to other mathemat-
ical theories that were current at the time it was written are also important
in this process. Such analyses are conducted by J.L. Heiberg and Sir Thomas
Little Heath in their editions of the text.

Also of importance are the scholia, or annotations, to the text. These ad-
ditions which often distinguished themselves from the main text (depending
on the manuscript) gradually accumulated over time as opinions varied upon
what was worthy of explanation or further study.

2.2. Influence

The “Elements” is still considered a masterpiece in the application of logic
to mathematics. In historical context, it has proven enormously influential
in many areas of science. Scientists Nicolaus Copernicus, Johannes Kepler,
Galileo Galilei, and Sir Isaac Newton were all influenced by the Elements, and
applied their knowledge of it to their work. Mathematicians and philosophers,
such as Bertrand Russell, Alfred North Whitehead, and Baruch Spinoza, have
attempted to create their own foundational “Elements” for their respective dis-
ciplines by adopting the axiomatized deductive structures that Euclid’s work
introduced.

The austere beauty of Euclidean geometry has been seen by many in west-
ern culture as a glimpse of an otherworldly system of perfection and certainty.
Abraham Lincoln kept a copy of Euclid in his saddlebag, and studied it late at
night by lamplight; he related that he said to himself, “You never can make a
lawyer if you do not understand what demonstrate means; and I left my sit-
uation in Springfield, went home to my father’s house, and stayed there till I
could give any proposition in the six books of Euclid at sight.” Edna St. Vin-
cent Millay wrote in her sonnet Euclid Alone Has Looked on Beauty Bare, “O
blinding hour, O holy, terrible day, When first the shaft into his vision shone Of
light anatomized!” Einstein recalled a copy of the “Elements” and a magnetic
compass as two gifts that had a great influence on him as a boy, referring to
the Euclid as the "holy little geometry book".

The success of the “Elements” is due primarily to its logical presentation
of most of the mathematical knowledge available to Euclid. Much of the ma-
terial is not original to him, although many of the proofs are his. However,
Euclid’s systematic development of his subject, from a small set of axioms to
deep results, and the consistency of his approach throughout the Elements,
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encouraged its use as a textbook for about 2,000 years. The “Elements” still in-
fluences modern geometry books. Further, its logical axiomatic approach and
rigorous proofs remain the cornerstone of mathematics.

FIGURE 2.2.1. The Italian Jesuit Matteo Ricci (left) and the
Chinese mathematician Xu Guangqi (right) published the Chi-
nese edition of Euclid’s “Elements” in 1607.

2.3. Outline of Elements

Books 1 through 4 deal with plane geometry.
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Book 2 is commonly called the "book of geometric algebra" because most of
the propositions can be seen as geometric interpretations of algebraic identi-
ties, such as a(b + c + ...) = ab + ac + ... or (2a + b)2 + b2 = 2(a2 + (a + b)2). It
also contains a method of finding the square root of a given number.

Book 3 deals with circles and their properties: inscribed angles, tangents,
the power of a point, Thales’ theorem.

Book 4 constructs the incircle and circumcircle of a triangle, and constructs
regular polygons with 4, 5, 6, and 15 sides.

Books 5 through 10 introduce ratios and proportions.
Book 5 is a treatise on proportions of magnitudes. Proposition 25 has as a

special case the inequality of arithmetic and geometric means.
Book 6 applies proportions to geometry: Similar figures.
Book 7 deals strictly with elementary number theory: divisibility, prime

numbers, Euclid’s algorithm for finding the greatest common divisor, least
common multiple. Propositions 30 and 32 together are essentially equivalent
to the fundamental theorem of arithmetic stating that every positive integer
can be written as a product of primes in an essentially unique way, though
Euclid would have had trouble stating it in this modern form as he did not use
the product of more than 3 numbers.

Book 8 deals with proportions in number theory and geometric sequences.
Book 9 applies the results of the preceding two books and gives the infini-

tude of prime numbers (proposition 20), the sum of a geometric series (propo-
sition 35), and the construction of even perfect numbers (proposition 36).

Book 10 attempts to classify incommensurable (in modern language, irra-
tional) magnitudes by using the method of exhaustion, a precursor to integra-
tion.

Books 11 through to 13 deal with spatial geometry: Book 11 generalizes
the results of Books 1–6 to space: perpendicularity, parallelism, volumes of
parallelepipeds.

Book 12 studies volumes of cones, pyramids, and cylinders in detail, and
shows for example that the volume of a cone is a third of the volume of the
corresponding cylinder. It concludes by showing the volume of a sphere is pro-
portional to the cube of its radius by approximating it by a union of many
pyramids.

Book 13 constructs the five regular Platonic solids inscribed in a sphere,
calculates the ratio of their edges to the radius of the sphere, and proves that
there are no further regular solids.
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2.4. Euclid’s method and style of presentation

Euclid’s axiomatic approach and constructive methods were widely influ-
ential.

As was common in ancient mathematical texts, when a proposition needed
proof in several different cases, Euclid often proved only one of them (often the
most difficult), leaving the others to the reader. Later editors such as Theon
often interpolated their own proofs of these cases.

Euclid’s presentation was limited by the mathematical ideas and notations
in common currency in his era, and this causes the treatment to seem awk-
ward to the modern reader in some places. For example, there was no notion of
an angle greater than two right angles, the number 1 was sometimes treated
separately from other positive integers, and as multiplication was treated ge-
ometrically; in fact, he did not use the product of more than three different
numbers. The geometrical treatment of number theory may have been because
the alternative would have been the extremely awkward Alexandrian system
of numerals.

The presentation of each result is given in a stylized form, which, although
not invented by Euclid, is recognized as typically classical. It has six different
parts: first is the statement of the proposition in general terms (also called the
enunciation). Then the setting-out, which gives the figure and denotes partic-
ular geometrical objects by letters. Next comes the definition or specification
which restates the enunciation in terms of the particular figure. Then the con-
struction or machinery follows. It is here that the original figure is extended
to forward the proof. The proof itself follows. Finally, the conclusion connects
the proof to the enunciation by stating the specific conclusions constructed in
the proof in the general terms of the enunciation.

No indication is given of the method of reasoning that led to the result,
although the data does provide instruction about how to approach the types of
problems encountered in the first four books of the Elements. Some scholars
have tried to find fault in Euclid’s use of figures in his proofs, accusing him
of writing proofs that depended on the specific figures constructed rather than
the general underlying logic (especially concerning Proposition II of Book I).
However, Euclid’s original proof of this proposition is general, valid, and does
not depend on the figure used as an example to illustrate one given configura-
tion.

2.4.1. Criticism. While Euclid’s list of axioms in the “Elements” is not ex-
haustive, it represents the most important principles. His proofs often invoke
axiomatic notions which were not originally presented in his list of axioms.
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Later editors have interpolated Euclid’s implicit axiomatic assumptions in the
list of formal axioms.

For example, in the first construction of Book 1, Euclid uses a premise that
was neither postulated nor proved: that two circles with centers at the distance
of their radius will intersect in two points. Later, in the fourth construction,
he uses superposition (moving the triangles on top of each other) to prove that
if two sides and their angles are equal then they are congruent. During these
considerations, he uses some properties of superposition, but these properties
are not constructs explicitly in the treatise. If superposition is to be consid-
ered a valid method of geometric proof, all of geometry would be full of such
proofs. For example, propositions 1.1 – 1.3 can be proved trivially by using
superposition.

Mathematician and historian W. W. Rouse Ball puts these criticisms in
perspective, remarking that “the fact that for two thousand years [“The Ele-
ments”] was the usual text-book on the subject raises a strong presumption
that it is not unsuitable for that purpose.”



CHAPTER 3

Open Textbooks

[This chapter has been adapted from an entry in Wikipedia.1]

An open textbook is a textbook licensed under an open copyright license
and made available online to be freely used by students, teachers and members
of the public. Many open textbooks are distributed in other printed, e-book, or
audio formats that may be downloaded or purchased at little or no cost.

Part of the broader open educational resources movement, open textbooks
increasingly are seen as a solution to challenges with traditionally published
textbooks, such as access and affordability concerns. Open textbooks were
identified in the New Media Consortium’s 2010 Horizon Report as a compo-
nent of the rapidly progressing adoption of open content in higher education.

3.1. Usage Rights

The defining difference between open textbooks and traditional textbooks
is that the copyright permissions on open textbooks allow the public to freely
use, adapt, and distribute the material. Open textbooks either reside in the
public domain or are released under an open license that grants usage rights
to the public so long as the author is attributed.

The copyright permissions on open textbooks extend to all members of the
public and cannot be rescinded. These permissions include the right to do the
following:

• use the textbook freely
• create and distribute copies of the textbook
• adapt the textbook by revising it or combining it with other materials

Some open licenses limit these rights to non-commercial use or require that
adapted versions be licensed the same as the original.

3.2. Open Licenses

Some examples of open licenses are:

• Creative Commons Attribution (CC-BY)

1https://en.wikipedia.org/wiki/Open_textbook
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• Creative Commons Attribution Share-Alike (CC-BY-SA)
• Creative Commons Attribution Non-Commercial Share-Alike (CC-BY-

NC-SA)
• GNU Free Documentation License

Waivers of copyright that place materials in the public domain include:

• Creative Commons Public Domain Certification

3.3. Affordability

Open textbooks increasingly are seen as an affordable alternative to tra-
ditional textbooks in both K-12 and higher education. In both cases, open
textbooks offer both dramatic up-front savings and the potential to drive down
traditional textbook prices through competition.

3.3.1. Higher Education. Overall, open textbooks have been found by
the Student PIRGs to offer 80% or more savings to higher education students
over traditional textbook publishers. Research commissioned by the Florida
State Legislature found similarly high savings and the state has since imple-
mented a system to facilitate adoption of open textbooks.

In the Florida legislative report, the governmental panel found after sub-
stantial consultation with educators, students, and administrators that “there
are compelling academic reasons to use open access textbooks such as: im-
proved quality, flexibility and access to resources, interactive and active learn-
ing experiences, currency of textbook information, broader professional collab-
oration, and the use of teaching and learning technology to enhance educa-
tional experiences.” (OATTF, p. i) Similar state-backed initiatives are under-
way in Washington, Ohio, California, and Texas. In Canada, the province of
British Columbia became the first jurisdiction to have a similar open textbook
program.

3.3.2. K–12 Education. Research at Brigham Young University has pro-
duced a web-based cost comparison calculator for traditional and open K-12
textbooks. To use the calculator the inputs commercial textbook cost, planned
replacement frequency, and number of annual textbook user count are re-
quired. A section is provided to input time requirements for adaptation to
local needs, annual updating hours, labor rate, and an approximation of pages.
The summary section applies an industry standard cost for print-on-demand
of the adapted open textbook to provide a cost per student per year for both
textbook options. A summed cost differential over the planned period of use is
also calculated.
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3.4. Milestones

In November 2010, Dr. Anthony Brandt was awarded an “Access to Artistic
Excellence” grant from the National Endowment for the Arts for his innova-
tive music appreciation course in Connexions. “Sound Reasoning ... takes a
new approach [to teaching music appreciation]: It presents style-transcendent
principles, illustrated by side-by-side examples from both traditional and con-
temporary music. The goal is to empower listeners to be able to listen atten-
tively and think intelligently about any kind of music, no matter its style. Ev-
erything is listening based; no ability to read music is required.” The module
being completed with grant funds is entitled “Hearing Harmony”. Dr. Brandt
cites choosing the Connexions open content publishing platform because “it
was an opportunity to present an innovative approach in an innovative for-
mat, with the musical examples interpolated directly into the text.”

In December 2010, open textbook publisher Flat World Knowledge was
recognized by the American Library Association’s Business Reference and Ser-
vices Section (ALA BRASS) by being named to the association’s list of “Out-
standing Business Reference Sources: The 2010 Selection of Recent Titles.”
The categories of business and economics open textbooks from Flat World Knowl-
edge’s catalog were selected for this award and referenced as “an innovative
new vehicle for affordable (or free) online access to premier instructional re-
sources in business and economics.” Specific criteria used by the American
Library Association BRASS when evaluating titles for selection were:

A resource compiled specifically to supply information on a
certain subject or group of subjects in a form that will facil-
itate its ease of use. The works are examined for authority
and reputation of the publisher, author, or editor; accuracy;
appropriate bibliography; organization, comprehensiveness,
and value of the content; currency and unique addition to
the field; ease of use for intended purpose; quality and accu-
racy of indexing; and quality and usefulness of graphics and
illustrations. Each year more electronic reference titles are
published, and additional criteria by which these resources
are evaluated include search features, stability of content,
graphic design quality, and accuracy of links. Works selected
are intended to be suitable for medium to large academic and
public libraries.
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Because authors do not make money form the sale of open textbooks, several
organizations have tried to use prizes or grants as financial incentives for writ-
ing open textbooks or releasing existing textbooks under open licenses. Con-
nexions announced a series of two grants in early 2011 that will allow them to
produce a total of 20 open textbooks. The first five titles will be produced over
an 18 month time frame for Anatomy & Physiology, Sociology, Biology, Biology
for non-majors, and Physics. The second phase will produce an additional 15
titles with subjects that have yet to be determined. It is noted the most expen-
sive part of producing an open textbook is image rights clearing. As images
are cleared for this project, they will be available for reuse in even more titles.
In addition, the Saylor Foundation sponsors an ongoing “Open Textbook Chal-
lenge”, offering a $20,000 reward for newly-written open textbooks or existing
textbooks released under a CC-BY license.

The Text and Academic Author’s Association awarded a 2011 Textbook Ex-
cellence Award (“Texty”) to the first open textbook to ever win such recogni-
tion this year. A maximum of eight academic titles can earn this award each
year. The title “Organizational Behavior” by Talya Bauer and Berrin Erdogan
earned one of seven 2011 Textbook Excellence Awards granted. Bauer & Er-
dogan’s “Organizational Behavior” open textbook is published by Flat World
Knowledge.

3.5. Instruction

Open textbooks are flexible in ways that traditional textbooks are not,
which gives instructors more freedom to use them in the way that best meets
their instructional needs.

One common frustration with traditional textbooks is the frequency of new
editions, which force the instructor to modify the curriculum to the new book.
Any open textbook can be used indefinitely, so instructors need only change
editions when they think it is necessary.

Many open textbooks are licensed to allow modification. This means that
instructors can add, remove or alter the content to better fit a course’s needs.
Furthermore, the cost of textbooks can in some cases contribute to the quality
of instruction when students are not able to purchase required materials. A
Florida governmental panel found after substantial consultation with educa-
tors, students, and administrators that “there are compelling academic reasons
to use open access textbooks such as: improved quality, flexibility and access
to resources, interactive and active learning experiences, currency of textbook
information, broader professional collaboration, and the use of teaching and
learning technology to enhance educational experiences.” (OATTF, p. i)
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3.6. Authorship

Author compensation for open textbooks works differently than traditional
textbook publishing. By definition, the author of an open textbook grants the
public the right to use the textbook for free, so charging for access is no longer
possible. However, numerous models for supporting authors are developing.
For example, a start-up open textbook publisher called Flat World Knowledge
pays its authors royalties on the sale of print copies and study aids. Other
proposed models include grants, institutional support and advertising.

3.7. Projects

A number of projects seek to develop, support and promote open textbooks.
Two very notable advocates and supporters of open textbook and related open
education projects include the William and Flora Hewlett Foundation and the
Bill and Melinda Gates Foundation.



CHAPTER 4

Recommended Reading

1. “Geometry: Seeing, Doing, Understanding” 3rd edition, by Harold R.
Jacobs (ISBN: 978-0716743613). I recommend this title for beginning geome-
try students as a primary textbook along with “Euclid’s ’Elements’ Redux” as
a secondary textbook. (An Enhanced Teacher’s Guide and an Improved Test
Bank are also available, although both appear to be out of print.) The text-
book’s ISBN: 978-0716743613

2. “Book of Proof” 2nd edition, by Richard Hammack. This open textbook
is an introduction to the standard methods of proving mathematical theorems.
It can be considered a companion volume to any edition of Euclid, especially for
those who are learning how to read and write mathematical proofs for the first
time. It has been approved by the American Institute of Mathematics’ Open
Textbook Initiative and has a number of good reviews at the Mathematical
Association of America Math DL and on Amazon. Visit the website at:

http://www.people.vcu.edu/~rhammack/BookOfProof/index.html

3. Math Open Reference1, especially the topic of Triangle Centers2.

4. Khan Academy3

5. “The Thirteen Books of Euclid’s Elements”, translation and commen-
taries by Sir Thomas Heath in three volumes. Published by Dover Publica-
tions, Vol. 1: ISBN 978-0486600888, Vol. 2: ISBN 978-0486600895, Vol. 3:
ISBN 978-0486600901.

6. “Euclid’s Elements – All thirteen books in one volume”. Based on
Heath’s translation, Green Lion Press, ISBN 978-1888009194.

1http://www.mathopenref.com/
2http://www.mathopenref.com/trianglecenters.html
3https://www.khanacademy.org/
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Part 2

The “Elements”



In this textbook, students are expected to construct figures as they are
given, step-by-step. This is an essential component to the learning process
that cannot be avoided. In fact, this is the impetus behind the historical quote,
“There is no royal road to geometry.” That is, no one learns mathematics “for
free”.

The propositions of Euclid will be referred to as (for example) either Propo-
sition 3.32 or [3.32], with chapter and proposition number separated by a pe-
riod. Axioms, Definitions, etc., will also be referred to in this way: for example,
Definition 12 in chapter 1 will be denoted as [Def. 1.12]. Exercises to problems
will be denoted as (for example) [3.5, #1] for exercise 1 of Proposition 3.5.

A note on exercises: generally, an exercise is expected to be solved using the
propositions, corollaries, and exercises that preceded it. For example, exercise
[1.32, #3] should first be attempted using propositions [1.1]-[1.32] as well as
all previous exercises. Should this prove too difficult or too frustrating for the
student, then he/she should consider whether propositions [1.33] or later (and
their exercises) might help solve the exercise. It is also permissible to use
trigonometry, linear algebra, or other contemporary mathematical techniques
on challenging problems.



CHAPTER 1

Angles, Parallel Lines, Parallelograms

The following symbols will be used to denote certain standard geometric
shapes or relationships:

• Circles will be denoted by: ◦
• Triangles by: 4
• Parallelograms by: �
• Parallel lines by: ‖
• Perpendicular lines by: ⊥

In addition to these, we shall employ the usual symbols of algebra, +, −, =, <,
>, 6=, 6<, 6>, as well as two additional symbols:

• Composition: ⊕ For example, suppose we have the segments AB
and BC which intersect at the point B. The statement AB+BC refers
to the sum of their lengths, but AB ⊕ BC refers to their composition
as one object. See Fig. 1.0.1.

FIGURE 1.0.1. Composition: the geometrical object AB ⊕ BC
is a single object composed of two segments, AB and BC.

The composition of angles, however, can be written using either +

or ⊕, and in this textbook their composition will be denoted with +.
• Congruence: ∼= Two figures or objects are congruent if they have

the same shape and size, or if one has the same shape and size as the
mirror image of the other. This means that an object can be reposi-
tioned and reflected (but not re-sized) so as to coincide precisely with
the other object.1

1http://en.wikipedia.org/wiki/Congruence_(geometry)

26
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• Similar: ∼ Two figures or objects are similar if they have the same
shape but not necessarily the same size. If two similar objects have
the same size, they are also congruent.

1.1. Definitions

The Point. 1. A point is a zero dimensional object.2 A geometrical object
which has three dimensions (length, height, and width) is a solid. A geomet-
rical object which has two dimensions (length and height) is a surface, and a
geometrical object which has one dimension only is a line. Since a point has
none of these, it has zero dimensions.

The Line. 2. A line is a one dimensional object: it has only length. If
it had any height, no matter how small, it would be space of two dimensions.
If it had any width, it would be space of three dimensions. Hence, a line has
neither height nor width.

(This definition conforms to Euclid’s original definition in which a line need
not be straight. However, in all modern geometry texts, it is understood that a
“line” has no curves. See also [Def 1.4].)

3. The intersections of lines are points.

4. A line without a curve between its endpoints is called a straight line. It is
understood throughout this textbook that a line refers exclusively to a straight
line. A curved line (such as the circumference of a circle) will never be referred
to merely as a line in order to avoid confusion. Lines have no endpoints since
they are infinite in length.

A line segment or more simply a segment is like a line except that it is finite
in length and has two endpoints which occur at its extremities.

A ray is like a line in that it is infinite in length; however, it has only one
endpoint. See Fig. 1.1.1.

2Warren Buck, Chi Woo, Giangiacomo Gerla, J. Pahikkala. "point" (version 13). PlanetMath.org.
Freely available at http://planetmath.org/point

http://planetmath.org/point
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FIGURE 1.1.1. [Def. 1.2, 1.3, 1.4] AB is a line, CD is a seg-
ment, and EF is a ray

The Plane. 5. A surface has two dimensions, length and height. It has no
width; if it had, however small, it would be space of three dimensions.

6. A surface is called a plane whenever two arbitrary points on the surface
can be joined by a right angle.

7. Any combination of points, of lines, or of points and lines on a plane
is called a plane figure. A plane figure that is bounded by a finite number
of straight line segments closing in a loop to form a closed chain or circuit is
called a polygon3.

8. Points which lie on the same straight line, ray, or segment are called
collinear points.

The Angle. 9. The angle made by of two straight lines, segments, or rays
extending outward from a common point but in different directions is called a
rectilinear angle or simply an angle.

10. The common point of intersection between straight lines, rays, or seg-
ments is called the vertex of the angle.

11. A particular angle in a figure will be denoted by the symbol ∠ and
three letters, such as BAC, of which the middle letter, A, is at the vertex.
Hence, an angle may be referred to either as ∠BAC or ∠CAB. Occasionally,
this notation will be shortened to “the angle at point A” instead of naming the
angle as above. See Fig. 1.1.2.

3http://en.wikipedia.org/wiki/Polygon

http://en.wikipedia.org/wiki/Polygon
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FIGURE 1.1.2. [Def 1.11] Notice that both angles could be re-
ferred to as ∠BAC, ∠CAB, or the angle at point A. Also note
that A is a vertex.

12. The angle formed by composing two or more angles is called their sum.
Thus in Fig. 1.1.3, we have that ∠ABC ⊕ ∠PQR = ∠ABR where the segment
QP is applied to the segment BC such that the vertex Q falls on the vertex B
and the side QR falls on the opposite side of BC from BA. We generally choose
to write ∠ABC + ∠PQR = ∠ABR to express the same concept.

FIGURE 1.1.3. [Def. 1.12]

13. When two segments BA, AD are composed such that BA ⊕ AD = BD

where BD is another segment, the angles ∠BAC and ∠CAD are called sup-
plements of each other (see Fig. 1.1.4). This definition holds when we replace
segments by straight lines or rays, mutatis mutandis4.

FIGURE 1.1.4. [Def. 1.13]

4Mutatis mutandis is a Latin phrase meaning "changing [only] those things which need to be
changed" or more simply "[only] the necessary changes having been made". Source: http://en.

wikipedia.org/wiki/Mutatis_mutandis

http://en.wikipedia.org/wiki/Mutatis_mutandis
http://en.wikipedia.org/wiki/Mutatis_mutandis
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14. When one segment (AC) stands on another (DB) such that the adjacent
angles on either side of the first segment are equal (that is, ∠DAC = ∠CAB),
each of the angles is called a right angle, and the segment which stands on the
other is described as perpendicular to the other (or it is called the perpendicular
to the other). See Fig. 1.1.5. We may also write that AC is perpendicular to
DB or more simply that AC ⊥ DB. It follows that the supplementary angle of
a right angle is another right angle.

FIGURE 1.1.5. [Def. 1.14]

Multiple perpendicular lines on a many-sided object may be referred to as
the object’s perpendiculars.

The above definition holds for straight lines and rays, mutatis mutandis.
A line segment within a triangle from a vertex to an opposite side which is

also perpendicular to that side is usually referred to an altitude of the triangle,
although it could in a general sense be referred to as a perpendicular of the
triangle.

15. An acute angle is one which is less than a right angle. ∠CAB in Fig.
1.1.4 and ∠DAB is Fig. 1.1.6 are acute angles.

16. An obtuse angle is one which is greater than a right angle. ∠CAD in
Fig. 1.1.4 is an obtuse angle. The supplement of an acute angle is obtuse, and
conversely, the supplement of an obtuse angle is acute.

17. When the sum of two angles is a right angle, each is called the comple-
ment of the other.

FIGURE 1.1.6. [Def. 1.17] The angle ∠BAC is a right angle.
Since ∠BAC = ∠CAD + ∠DAB, it follows that the angles
∠BAD, ∠DAC are each complements of the other.
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Concurrent Lines. 18. Three or more straight lines intersecting the
same point are called concurrent lines. This definition holds for rays and seg-
ments, mutatis mutandis.

19. A system of more than three concurrent lines is called a pencil of lines.
The common point through which the rays pass is called the vertex .

The Triangle. 20. A triangle is a polygon formed by three segments
joined at their endpoints. These three segments are called the sides of the
triangle. One side in particular may be referred to as the base of the triangle
for explanatory reasons, but there is no fundamental difference between the
properties of a base and either of the two remaining sides of a triangle.

21. A triangle whose three sides are unequal in length is called scalene
(the left-hand example in Fig. 1.1.7). A triangle with two equal sides is called
isosceles (the middle example in Fig. 1.1.7). When all sides are equal, a triangle
is called equilateral, (the right-hand example in Fig. 1.1.7). When all angles
are equal, a triangle is called equiangular.

FIGURE 1.1.7. [Def 3.21] The three types of triangles: scalene,
isosceles, equilateral.

22. A right triangle is a triangle in which one of its angles is a right angle,
such as the middle example in Fig. 1.1.7. The side which stands opposite the
right angle is called the hypotenuse of the triangle. (In the middle example in
Fig. 1.1.7, ∠EDF is a right angle, so side EF is the hypotenuse of the triangle.)

23. An obtuse triangle is a triangle such that one of its angles obtuse (such
as 4CAB in Fig. 1.1.8).
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FIGURE 1.1.8. [Def. 1.23]

24. An acute triangle is a triangle such that each of its angles are acute,
such as the left- and right-hand examples in Fig. 1.1.7.

25. An exterior angle of a triangle is one which is formed by extending the
side of a triangle. For example, the triangle in Fig. 1.1.8 has had side BA

extended to the segment AD which creates the exterior angle ∠DAC.
Every triangle has six exterior angles. Also, each exterior angle is the

supplement of the adjacent interior angle. In Fig. 1.1.8, the exterior angle
∠DAC is the supplement of the adjacent interior angle ∠CAB.

The Polygon. 26. A rectilinear figure bounded by three or more segments
is referred to as a polygon. For example, the object in Fig. 1.0.1 is a plane
figure but not a polygon. The triangles in Fig. 1.1.7 are both plane figures and
polygons.

27. A polygon is said to be convex when it has no re-entrant angle (that is,
it does not have an interior angle greater than 180◦).

28. A polygon of four sides is called a quadrilateral.

29. A quadrilateral whose four sides are equal in length is called a lozenge.
A lozenge is also a form of rhombus5 and therefore also a parallelogram.

30. A rhombus which has a right angle is called a square.

31. A polygon which has five sides is called a pentagon; one which has six
sides, a hexagon, etc.6

5https://en.wikipedia.org/wiki/Rhombus
6See also https://en.wikipedia.org/wiki/Polygon

https://en.wikipedia.org/wiki/Rhombus
https://en.wikipedia.org/wiki/Polygon
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The Circle. 32. A circle is a plane figure formed by a curved line called the
circumference such that all segments constructed from a certain point within
the figure to the circumference are equal in length. That point is called the
center of the circle.

FIGURE 1.1.9. [Def. 1.32] ◦BDA constructed with center C
and radius CD. Notice that CA = CB = CD. Also notice that
AB is a diameter.

33. A radius of a circle is any segment constructed from the center to the
circumference, such as CA, CB, CD in Fig. 1.1.9. Notice that CA = CB = CD.

34. A diameter of a circle is a segment constructed through the center and
terminated in both directions by the circumference, such as AB in Fig. 1.1.9.

From the definition of a circle, it follows that the path of a movable point in
a plane which remains at a constant distance from a fixed point is a circle. Also,
any point P in the plane is either inside, outside, or on the circumference of a
circle depending on whether its distance from the center is less than, greater
than, or equal to the radius.

FIGURE 1.1.10. [Def. 1.35]
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Other. 35. A segment, line, or ray in any figure which divides the area of
a geometric object into two equal halves is called an Axis of Symmetry of the
figure (such as AC in the polygon ABCD, Fig. 1.1.10).

36. A segment constructed from any angle of a triangle to the midpoint of
the opposite side is called a median of the triangle. Each triangle has three
medians which are concurrent. The point of intersection of the three medians
is called the centroid of the triangle.

FIGURE 1.1.11. [Def. 1.36] Segment CD is a median of 4ABC.

37. A locus (plural: loci) is a set of points whose location satisfies or is
determined by one or more specified conditions, i.e., 1) every point satisfies a
given condition, and 2) every point satisfying it is in that particular locus.7 For
example, a circle is the locus of a point whose distance from the center is equal
to its radius.

1.2. Postulates

We assume the following:

(1) A straight line, ray, or segment may be constructed from any one point
to any other point. Lines, rays, and segments may be subdivided by
points into segments or subsegments which are finite in length.

(2) A segment may be extended from any length to a longer segment, a
ray, or a straight line.

(3) A circle may be constructed from any point (which we denote as its
center) and from any finite length measured from the center (which
we denote as its radius).

7http://en.wikipedia.org/wiki/Locus_(mathematics)

http://en.wikipedia.org/wiki/Locus_(mathematics)
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Note: if we have constructed two points A and B on a sheet of paper, and if we
construct a segment from A to B, this segment will have some irregularities
due to the spread of ink or slight flaws in the paper, both of which introduce
some height and width. Hence, it will not be a true geometrical segment no
matter how nearly it may appear to be one. This is the reason that Euclid
postulates the construction of segments, rays, and straight lines from one point
to another (where our choice of paper, application, etc., is irrelevant). For if a
segment could be accurately constructed, there would be no need for Euclid to
ask us to take such an action for granted. Similar observations apply to the
other postulates. It is also worth nothing that Euclid never takes for granted
the accomplishment of any task for which a geometrical construction, founded
on other problems or on the foregoing postulates, can be provided.

1.3. Axioms

Axioms 1-7 and 9 hold for every kind and variety of magnitude. Axioms
8 and 10-12 are strictly geometrical. Note that all Euclidean magnitudes are
positive.

(1) If we consider three magnitudes such that the first magnitude is equal
to the second and the second magnitude is equal to the third, we infer
that the first magnitude equals the third.
(a) If A = B, and B = C, then A = C.

(2) If equals are added to equals, then their sums are equal.
(a) If A = B and C is added to both A and B, then A+ C = B + C.

(3) If equals are taken from equals, then the remainders are equal.
(a) If A = B and C is subtracted from both A and B, then A − C =

B − C.
(4) If equals are added to unequals, then the sums are unequal.

(a) If A > B and C is added to both A and B, then A+ C > B + C.
(b) If A < B and C is added to both A and B, then A+ C < B + C.

(5) If equals are taken from unequals, then the remainders are unequal.
(a) If A > B and C is subtracted from both A and B, then A − C >

B − C.
(b) If A < B and C is subtracted from both A and B, then A − C <

B − C.
(6) The doubles of equal magnitudes are equal.

(a) If A = B, then 2A = 2B.
(7) The halves of equal magnitudes are equal.

(a) If A = B, then A/2 = B/2.
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(8) Magnitudes which can be made to coincide are equal.
(a) The placing of one geometrical object on another, such as a line

on a line, a triangle on a triangle, or a circle on a circle, etc., is
called superposition. The superposition employed in geometry is
only mental; that is, we conceive of one object being placed on the
other. And then, if we can prove that the objects coincide, we infer
by the present axiom that they are equal in all respects, including
magnitude. Superposition involves the following principle which,
without being explicitly stated, Euclid makes frequent use: “Any
figure may be transferred from one position to another without
change in size or form.”

(9) The whole is equal to the sum of all its parts. This is sometimes stated
as: the whole is greater than the sum of its parts.

(10) Two straight lines cannot enclose a space.
(a) This is equivalent to the statement, “If two straight lines have

two points common to both, then they coincide in direction.” Al-
ternatively, we say that they form a single line because they co-
incide at every point.

(b) The above holds for segments and rays, mutatis mutandis.
(11) All right angles are equal to each other.

(a) A proof: Let there be two straight lines AB, CD, and two perpen-
diculars to them, namely, EF , GH. Then if AB, CD are made to
coincide by superposition, so that the point E will coincide with
G, then since a right angle is equal to its supplement, the line EF
must coincide with GH. Hence ∠AEF = ∠CGH.

(12) If two straight lines (AB, CD) intersect a third straight line (AC) such
that the sum of the two interior angles (∠BAC, ∠ACD) on the same
side equals less than two right angles, then if these lines will meet at
some finite distance. (This axiom is the converse of [1.17].) See Fig.
1.3.1.
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FIGURE 1.3.1. [Axiom 1.12] The lines AB and CD must even-
tually meet (intersect) at some finite distance.

The above holds for rays and segments, mutatis mutandis.

1.4. Explanation of Terms

Axioms: “Elements of human reason” are certain general propositions, the
truths of which are self-evident, and which are so fundamental that they can-
not be inferred from any propositions which are more elementary. In other
words, they are incapable of demonstration. “That two sides of a triangle are
greater than the third” is, perhaps, self-evident; but it is not an axiom since
it can be inferred by demonstration from other propositions. However, we can
give no proof of the proposition that “two objects which are equal in length to
a third object are also equal in length to each other”. Since that statement is
self-evident, it is considered an axiom.

Propositions which are not axioms are properties of figures obtained by
processes of reasoning. They may be divided into theorems and problems.

A theorem is the formal statement of a property that may be demonstrated
from known propositions. These propositions may themselves be theorems or
axioms. A theorem consists of two parts: the hypothesis, or that which is as-
sumed, and the conclusion, or that which is asserted to follow from the argu-
ment. We present four examples:

THEOREM. (1) If X is Y , then Z is W .

we have that the hypothesis is that X is Y , and the conclusion is that Z is
W .

Converse Theorems: Two theorems are said to be converses when the hy-
pothesis of either is the conclusion of the other. Thus the converse of the theo-
rem (1) is:

THEOREM. (2) If Z is W , then X is Y .
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From two theorems (1) and (2), we may infer two others called their con-
trapositives. The contrapositive of (1) is:

THEOREM. (3) If Z is not W , then X is not Y .

The contrapositive of (2) is:

THEOREM. (4) If X is not Y , then Z is not W .

Theorem (4) is also called the inverse8 of (1), and (3) is the inverse of (2).

A problem is a proposition in which something is proposed to be done, such
as a line or a figure to be constructed under some given conditions.

The solution of a problem is the method of construction which accomplishes
the required result.

In the case of a theorem, the demonstration is the proof that the conclusion
follows from the hypothesis. In the case of a problem, the demonstration is the
construction which creates the proposed object.

The statement or enunciation of a problem consists of two parts: the data,
or that which we assume we have to work with, and that which we must ac-
complish.

Postulates are the elements of geometrical construction and have the same
relation with respect to problems as axioms do to theorems.

A corollary is an inference or deduction from a proposition.

A lemma is an auxiliary proposition required in the demonstration of a
principal proposition.

A secant line is a line which cuts (intersects) a system of lines, a circle, or
any other geometrical figure.

Congruent figures are those that can be made to coincide by superposition.
They agree in shape and size but differ in position. Hence by [Axiom 1.8], it
follows that corresponding parts or portions of congruent figures are congruent
and that congruent figures are equal in every respect.

The Rule of Symmetry: If X = Y , it follows that Y = X.

8“The counterpart of a proposition obtained by exchanging the affirmative for the negative quality
of the whole proposition and then negating the predicate: The inverse of “’Every act is predictable’
is ’No act is unpredictable.”’
The American Heritage® Dictionary of the English Language, Fourth Edition copyright ©2000 by
Houghton Mifflin Company. Updated in 2009. Published by Houghton Mifflin Company. All rights
reserved.
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1.5. Propositions from Book I: 1-26

PROPOSITION 1.1. CONSTRUCTING AN EQUILATERAL TRIANGLE.
Given an arbitrary segment, it is possible to construct an equilateral triangle
on that segment.

PROOF. We wish to construct an equilateral triangle on the segment AB.
With A as the center of a circle and AB as its radius, we construct the circle

◦BCD [Postulate 1.3]. With B as center and BA as radius, we construct the
circle ◦ACE, cutting ◦BCD at point C. Connect segments CA, CB [Postulate
1.1]. We claim that 4ABC is the required equilateral triangle.

FIGURE 1.5.1. [1.1]

Because A is the center of the circle ◦BCD, AC = AB [Def. 1.33]. Since B
is the center of the circle ◦ACE, BA = BC. Since AB = BA (i.e., denoting a
segment by its endpoints reading from left to right or from right to left does not
affect the segment’s length), by [Axiom 1.1], we have that AC = AB = BA =

BC, or simply AC = AB = BC.
Hence, 4ABC is an equilateral triangle [Def. 1.21]. Since 4ABC is con-

structed on the given segment AB, the proof follows. �

Examination questions.
1. What is assumed in this proposition?
2. What is that we were to have accomplished?
3. What is a finite straight line?
4. What is the opposite of finite?
5. What postulates were cited and where were they cited?
6. What axioms were cited and where were they cited?
7. What use is made of the definition of a circle? What is a circle?
8. What is an equilateral triangle?

Exercises.
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The following exercises use Fig. 1.5.1 and are to be solved when the student
has completed Chapter 1.

1. If the segments AF , BF are joined, prove that the figure �ACBF is a
rhombus.

2. If AB is extended to the circumferences of the circles (at points D and
E), prove that the triangles 4CDF and 4CEF are equilateral.

3. If CA, CB are extended to intersect the circumferences at points G and
H, prove that the points G, F , H are collinear and that the triangle 4GCH is
equilateral.

4. Connect CF and prove that CF 2 = 3AB2.
5. Construct a circle in the space ACB bounded by the segment AB and

the partial circumferences of the two circles.

PROPOSITION 1.2. CONSTRUCTING A STRAIGHT-LINE SEGMENT EQUAL
TO AN ARBITRARY STRAIGHT-LINE SEGMENT. Given an arbitrary point
and an arbitrary segment, it is possible to construct a segment with one end-
point being the previously given point such that its length is equal to that of the
arbitrary segment.

PROOF. Let A be an arbitrary point on the plane, and let BC be an arbi-
trary segment. We wish to construct a segment with point A as an endpoint
and with length equal to that of BC.

FIGURE 1.5.2. [1.2] partially constructed

On AB, construct the equilateral triangle 4ABD [1.1]. With B as the
center andBC as the radius, construct the circle ◦ECH [Postulate 1.3]. Extend
DB to meet the circle ◦ECH at E [Postulate 1.2]. With D as the center and
DE as radius, construct the circle ◦EFG [Postulate 1.3]. Extend DA to meet
◦EFG at F . We claim that AF = BC.



1.5. PROPOSITIONS FROM BOOK I: 1-26 41

FIGURE 1.5.3. [1.2] fully constructed

Because D is the center of the circle ◦EFG, DF = DE [Def. 1.32]. Because
4DAB is an equilateral triangle, DA = DB [Def. 1.21]. Removing DA from
DF and DB from DE, we have that AF = BE [Axiom 1.3]; that is,

DF −DA = DE −DB
DF −DA = AF

DE −DB = BE

 =⇒ AF = BE

Again, because B is the center of the circle ◦ECH, BC = BE. Since AF =

BE, by [Axiom 1.1] we have that AF = BC. Therefore from the given point A,
the segment AF has been constructed such that AF = BC. �

Exercises.
1. Prove [1.2] when A is a point on BC.

PROPOSITION 1.3. CUTTING A STRAIGHT-LINE SEGMENT AT A GIVEN
SIZE. Given two arbitrary segments which are unequal in length, it is possible
to cut the larger segment such that one of its two subsegments is equal in length
to the smaller segment.

PROOF. Let the arbitrary segments CG and AB be constructed such that
AB > CG. We wish to show that AB may be subdivided into segments AE and
EB where AE = CG.

From the point A, construct the segment AD such that AD = CG [1.2].
With A as the center and AD as radius, construct the circle ◦EDF [Postulate
1.3] which cuts AB at E. We claim that AE = CG.
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FIGURE 1.5.4. [1.3]

Because A is the center of the circle ◦EDF , AE = AD [Def. 1.32]. Also,
AD = CG by construction. By [Axiom 1.1], we have that AE = CG. �

COROLLARY. 1.4.1. Given an arbitrary segments and a ray, it is possible
to cut the ray such that the resulting segment is equal in length to the arbitrary
segment.

Examination questions.
1. What previous problem is employed in the solution of this?
2. What postulate?
3. What axiom is employed in the demonstration?
4. Demonstrate how to extend the lesser of the two given segments until

the whole extended segment is equal to the greater segment.

PROPOSITION 1.4. THE “SIDE-ANGLE-SIDE” THEOREM FOR THE CON-
GRUENCE OF TRIANGLES. If two pairs of sides of two triangles are equal in
length and the corresponding interior angles are equal in measurement, then
the triangles are congruent.

PROOF. Suppose we have triangles 4ABC and 4DEF such that:
(a) the length of side AB of triangle4ABC is equal in length to side DE of

triangle 4DEF ,
(b) the length of side AC of triangle4ABC is equal in length to side DF of

triangle 4DEF ,
(c) the measure of the angle ∠BAC is equal in measure to the angle ∠EDF .
We wish to show that 4ABC ∼= 4DEF .
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FIGURE 1.5.5. [1.4]

Suppose that 4BAC is applied to 4EDF such that point A coincides with
D, the segment AB coincides with segment DE, and point C stands on the
same side of the segment AB as F is relative to DE. Because AB = DE, the
point B coincides with point E.

Because ∠BAC = ∠EDF , AC coincides with DF ; and since AC = DF

by hypothesis, the point C coincides with point F . This proves that point B
coincides with point E. Hence two points of the segment BC coincide with two
points of the segment EF . And since two segments cannot enclose a space,
BC must coincide with EF . Hence the triangles agree in every respect: BC =

EF , ∠ABC = ∠DEF , ∠BCA = ∠EFD, from which it follows that 4ABC ∼=
4DEF . �

Examination questions.
1. How many assumptions do we make in the hypothesis of this proposi-

tion? (Ans. 3. Name them.)
2. How many in the conclusion? Name them.
3. What technical term is applied to figures which agree in everything but

position?
4. What is meant by superposition?
5. What axiom is made use of in superposition?
6. How many parts in a triangle? (Ans. 6, three sides and three angles.)
7. When it is required to prove that two triangles are congruent, how many

parts of one must be given equal to corresponding parts of the other? (Ans. In
general, any three except the three angles. This will be established in [1.8] and
[1.26], both of which use [1.4].)

8. What property of two segments having two common points is quoted in
this proposition? (Ans. They must coincide.)

Exercises.
Prove the following:
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1. The line that bisects the vertical angle of an isosceles triangle bisects
the base perpendicularly.

2. If two adjacent sides of a quadrilateral are equal and the diagonal bi-
sects the angle between them, then their remaining sides are equal.

3. If two segments stand perpendicularly to each other and if each bisects
the other, then any point in either segment is equally distant from the end-
points of the other segment.

4. If equilateral triangles are constructed on the sides of any triangle, the
distances between the vertices of the original triangle and the opposite vertices
of the equilateral triangles are equal. (This should be proven after studying
[1.32].)

PROPOSITION 1.5. ISOSCELES TRIANGLES I. Suppose a given triangle
is isosceles. Then

1) if the sides of the triangle other than the base are extended, the angles
under the base are equal to each other,

2) the angles at the base are equal to each other.

PROOF. Construct the triangle 4ABC such that sides AB = AC and de-
note side BC as the triangle’s base. Extend the side AB to the segment BD
and the side AC to the segment CE. We claim that the angles at the base
(∠ABC, ∠ACB) are equal in measure to one another and that the external
angles below the base (∠DBC, ∠ECB) are also equal in measure.

FIGURE 1.5.6. [1.5]

We prove each claim separately:
1. Let F be any point on the segment BD except for its endpoints. From

AE, choose a point G such that CG = BF [1.3]. Join BG, CF [Postulate 1.1].
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Because AF = AG by construction and AC = AB by hypothesis, sides
AF , AC in triangle 4FAC are equal in length to sides AG, AB in triangle
4GAB. Also, the angle ∠BAC is the interior angle to both pairs of sides in
each triangle. By [1.4], 4FAC ∼= 4GAB.

Again, because AF = AG by construction and AB = AC by hypothesis,
the remaining segments BF and CG are equal in length (or BF = CG) [Axiom
1.3].

Notice that ∠AFC = ∠BFC and ∠AGB = ∠CGB. Since we have shown
that FB = CG, FC = GB, and ∠AFC = ∠AGB, by [1.4] we have that triangles
4FBC ∼= 4GCB. Thus,

∠DBC = ∠FBC = ∠GCB = ∠ECB

which are the angles under the base.
2. We also have that ∠FCB = ∠GBC and ∠FCA = ∠GBA by the above.

Since ∠FCA = ∠FCB + ∠ACB and ∠GBA = ∠GBC + ∠ABC, we obtain
∠ACB = ∠ABC which are the angles at the base. �

Observation: The great difficulty which beginners have with this proposi-
tion is due to the fact that the two triangles4ACF ,4ABG overlap each other.
A teacher or tutor should graph these triangles separately and point out the
corresponding parts: AF = AG, AC = AB, and ∠FAC = ∠GAB. By [1.4],
we have that ∠ACF = ∠ABG, ∠AFC = ∠AGB. The student should also be
shown how to apply one of the triangles to the other so as to bring them into
coincidence.

COROLLARY. 1. Every equilateral triangle is equiangular.

Exercises.
1. Prove that the angles at the base are equal without extending the sides.

Do the same by extending the sides through the vertex.
2. Prove that the line joining the pointA to the intersection of the segments

CF and BG is an Axis of Symmetry of 4ABC.
3. If two isosceles triangles stand on the same base, either on the same or

on opposite sides of it, the line joining their vertices is an Axis of Symmetry
of the figure formed by them. (Hint: this follows almost immediately from the
proof of #2.)

4. Show how to prove this proposition by assuming as an axiom that every
angle has a bisector.
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5. Prove that each diagonal of a rhombus is an Axis of Symmetry of the
rhombus. (Hint: this follows almost immediately from the proof of #3.)

6. If three points are taken on the sides of an equilateral triangle (one on
each side and at equal distances from the angles), then the segments joining
them form a new equilateral triangle.

PROPOSITION 1.6. ISOSCELES TRIANGLES II. If a given triangle has
two equal angles, then the sides opposite the two angles are equal in length (i.e.,
the triangle is isosceles).

FIGURE 1.5.7. [1.6]

PROOF. Let 4ABC be a triangle such that ∠ABC = ∠ACB. To show that
side AB = AC, we will use a proof by contradiction9.

Without loss of generality10, suppose side AB > AC. On AB, construct
a point D such that BD = CA [1.3] and join points C and D [Axiom 1.1].
Then in triangles 4DBC, 4ACB, we have that BD = AC with BC being a
common side to both. Therefore, the two sides DB, BC in triangle 4DBC are
equal to the two sides AC, CB in 4ACB. Also, we have that ∠DBC = ∠ABC

by hypothesis. By [1.4], we have that 4DBC ∼= 4ACB, a contradiction, since
AB = AD+DB. It follows that AC, AB are not unequal; that is, AC = AB. �

Examination questions.
1. What is the hypothesis in this proposition?
2. What proposition is this the converse of?

9That is, we will show that the statement “A triangle with two equal angles has unequal opposite
sides” is false. See also https://en.wikipedia.org/wiki/Proof_by_contradiction
10This term is used before an assumption in a proof which narrows the premise to some special
case; it is implied that either the proof for that case can be easily applied to all others or that all
other cases are equivalent. Thus, given a proof of the conclusion in the special case, it is trivial
to adapt it to prove the conclusion in all other cases. http://en.wikipedia.org/wiki/Without_

loss_of_generality

https://en.wikipedia.org/wiki/Proof_by_contradiction
http://en.wikipedia.org/wiki/Without_loss_of_generality
http://en.wikipedia.org/wiki/Without_loss_of_generality


1.5. PROPOSITIONS FROM BOOK I: 1-26 47

3. What is the inverse of this proposition?
4. What is the inverse of [1.5]?
5. What is meant by an indirect proof? (Ans. A proof by contradiction.)
6. How does Euclid generally prove converse propositions?
7. What false assumption is made in order to prove the proposition?
8. What does this false assumption lead to?

COROLLARY. 1. A triangle is isosceles if and only if the angles at its base
are equal.

PROPOSITION 1.7. UNIQUENESS OF TRIANGLES. Suppose that we have
two distinct triangles which share a common base. Also suppose that at one
endpoint of the base we have that the two sides which connect to this vertex are
equal in length. It follows that the lengths of the sides of the triangles which
are connected to the other endpoint of the base are unequal in length.

PROOF. Construct distinct triangles 4ADB, 4ACB which share the base
AB. Suppose that AC = AD where each side shares the common endpoint A.
We claim that BC 6= BD.

FIGURE 1.5.8. [1.7], case 1

We prove this claim in two cases.
Case 1: Let the vertex of each triangle lie outside the interior of the other

triangle (i.e., such that D does not lie inside 4ACB and C does not lie inside
4ADB). Join CD. Because AD = AC by hypothesis, 4ACD is isosceles. By
[1.5], ∠ACD = ∠ADC.

However, ∠ADC > ∠BDC since ∠ADC = ∠ADB + ∠BDC [Axiom 1.9].
Therefore ∠ACD > ∠BDC. Since ∠BCD = ∠BCA+∠ACD, we also have that
∠BCD > ∠BDC.

Now if BD = BC, we would have that ∠BCD = ∠BDC [1.5]; however, we
have shown that ∠BCD 6= ∠BDC. Hence, BD 6= BC.
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FIGURE 1.5.9. [1.7], case 2

Case 2: Wlog11, let the vertex of the triangle 4ADB fall within the inte-
rior of 4ACB. Extend side AC to segment CE and side AD to segment DF .
Because AC = AD by hypothesis, the triangle 4ACD is isosceles, and by [1.5]
∠ECD = ∠FDC (i.e., the external angles at the other side of the base CD are
equal).

Notice that ∠ECD > ∠BCD since ∠ECD = ∠ECB + ∠BCD [Axiom 1.9].
Therefore ∠FDC > ∠BCD. Since ∠BDC = ∠BDF + ∠FDC, we have that
∠BDC > ∠BCD.

Now if BC = BD, we would have that ∠BDC = ∠BCD [1.5]; however, we
have shown that ∠BCD 6= ∠BDC. Hence BD 6= BC. �

COROLLARY. 1.7.1. Triangles which have no sides of equal length are dis-
tinct.

Examination questions.
1. What use is made of [1.7]? (Ans: As a lemma to [1.8].)
2. In the demonstration of [1.7], the contrapositive of [1.5] occurs. Show

where.

PROPOSITION 1.8. THE “SIDE-SIDE-SIDE” THEOREM FOR THE CON-
GRUENCE OF TRIANGLES. If three pairs of sides of two triangles are equal
in length, then the triangles are congruent.

PROOF. If two distinct triangles (4ABC,4DEF ) have two sides (AB, AC)
that are respectively equal to two sides of the other (DE, DF ) where the base
of one triangle (BC) equals the base of the other (EF ), we claim that the two
triangles are congruent.

11An abbreviation for “without loss of generality”. http://en.wikipedia.org/wiki/Without_

loss_of_generality

http://en.wikipedia.org/wiki/Without_loss_of_generality
http://en.wikipedia.org/wiki/Without_loss_of_generality
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FIGURE 1.5.10. [1.8]

Let the triangle 4ABC be applied to 4DEF such that point B coincides
with E and the side BC coincides with the side EF . Because BC = EF , the
point C coincides with point F . If the vertex A falls on the same side of EF as
vertex D, then the point A must coincide with D.

Otherwise, it must take a different position, such as point G. We then have
EG = BA and BA = ED (by hypothesis). By [Axiom 1.1], EG = ED. Similarly,
FG = FD, a contradiction since the triangles are distinct [1.7]. Hence the point
Amust coincide withD, and so the three angles of one triangle are respectively
equal to the three angles of the other (specifically, ∠ABC = ∠DEF , ∠BAC =

∠EDF , and ∠BCA = ∠EFD). Therefore, 4ABC ∼= 4DEF . �

This proposition is the converse of [1.4] and is the second case of the con-
gruence of triangles in the Elements.

Philo’s Proof:

PROOF. Let the equal bases be applied as in the foregoing proof, but let
the vertices fall on the opposite sides of the base. Let 4BGC be a “copy” of
4EDF . Join AG. Because BG = BA, we have that ∠BAG = ∠BGA. Similarly,
∠CAG = ∠CGA.

FIGURE 1.5.11. Philo’s Proof of [1.8]
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Notice that
∠BGA+ ∠CGA = ∠BGC

q
∠BAG+ ∠CAG = ∠BAC

Hence, ∠BAC = ∠BGC. Since 4BGC = 4EDF by construction, we have
that 4BAC = 4EDF .

�

PROPOSITION 1.9. BISECTING A RECTILINEAR ANGLE. It is possible
to bisect an angle.

FIGURE 1.5.12. [1.9]

PROOF. Take any point D on the ray AB. Take the point E on AC such
that AE = AD [1.3]. Join DE [Postulate 1.1] and, on the opposite side of point
A, construct the equilateral triangle 4DEF [1.1]. Join AF . We claim that AF
bisects ∠BAC.

Notice that triangles 4DAF [4EAF share the side AF . Given that AD =

AE by construction, we have that the two sides DA, AF are respectively equal
to the two sides EA, AF . Also, DF = EF because they are the sides of an
equilateral triangle [Def. 1.21].

By [1.8], ∠DAF = ∠EAF . Since ∠BAC = ∠DAF + ∠EAF , ∠BAC is
bisected by AF .

�

COROLLARY. 1. The line AF is an Axis of Symmetry of the figure ABCF ,
4AED, and segment DE.
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COROLLARY. 2. In [1.9], AB and AC may be constructed as either lines,
rays, or segments with point A as the vertex, mutatis mutandis.

Examination questions.
1. Why does Euclid construct the equilateral triangle on the side opposite

of A?
2. If the equilateral triangle were constructed on the other side of DE, in

what case would the construction fail?

Exercises.
1. Prove [1.9] without using [1.8]. (Hint: the proof follows almost immedi-

ately from [1.5, #2].)
2. Prove that AF ⊥ DE. (Hint: the proof follows almost immediately from

[1.5, #2].)
3. Prove that any point on AF is equally distant from the points D and E.

PROPOSITION 1.10. BISECTING A STRAIGHT-LINE SEGMENT. It is
possible to bisect an arbitrary segment; that is, it is possible to locate the mid-
point of a segment.

PROOF. We wish to bisect the segment AB.

FIGURE 1.5.13. [1.10]

Construct an equilateral triangle 4ACB on segment AB [1.1]. Bisect
∠ACB by the segment CD [1.9], intersecting AB at point D. We claim that
AB is bisected at D.

The two triangles 4ACD, 4BCD have sides AC, BC such that AC =

BC (since each are sides of an equilateral triangle) and also share side CD in
common. Therefore, the two sides AC, CD in one triangle are equal to the two
sides BC, CD in the other. We also have that ∠ACD = ∠BCD by construction.
By [1.4], we have that AD = DB. Since AB = AD + DB, it follows that AB is
bisected at D. �
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Exercises.
1. Bisect a segment by constructing two circles.
2. Extend CD to a line. Prove that every point equally distant from the

points A, B are points in the line CD.

PROPOSITION 1.11. CONSTRUCTING A PERPENDICULAR STRAIGHT-
LINE SEGMENT TO A LINE I. It is possible to construct a segment at a right
angle to a given line from an arbitrary point on the line.

PROOF. Construct the line AB containing the point C. We wish to con-
struct the segment CF such that AB ⊥ CF .

On AC, take any point D and choose some point E on AC such that CE =

CD [1.3]. Construct the equilateral triangle 4DFE on DE [1.1] and join CF .
We claim that AB ⊥ CF .

FIGURE 1.5.14. [1.11]

The two triangles 4DCF , 4ECF have CD = CE by construction and CF
in common; therefore, the two sides CD, CF in one triangle are respectively
equal to the two sides CE, CF in the other, and DF = EF since they are the
sides of an equilateral triangle [Def. 1.21]. By [1.8], ∠DCF = ∠ECF . Since
these are adjacent angles, by [Def. 1.13] each is a right angle, and so AB ⊥ CF
at point C. �

COROLLARY. 1. [1.11] holds when AB is a segment or ray and/or when CF
is a straight line or a ray, mutatis mutandis.

Exercises.
1. Prove that the diagonals of a lozenge bisect each other perpendicularly.
2. Prove [1.11] without using [1.8]. (Hint: The proof follows from the result

of [1.9, #2].)
3. Find a point on a given line that is equally distant from two given points.
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4. Find a point on a given line such that if it is joined to two given points
on opposite sides of the line, then the angle formed by the connecting segment
is bisected by the given line. (Hint: similar to the proof of #3.)

5. Find a point that is equidistant from three given points. (Hint: you are
looking for the circumcenter of the triangle formed by the points12.)

PROPOSITION 1.12. CONSTRUCTING A PERPENDICULAR STRAIGHT-
LINE SEGMENT TO A LINE II. Given an arbitrary straight line and an arbi-
trary point not on the line, we may construct a perpendicular segment from the
point to the line.

PROOF. We wish to construct a perpendicular segment to a given line AB
from a given point C which is not on AB.

FIGURE 1.5.15. [1.12]

Take any point D which is not on AB and stands on the opposite side of
AB from C. Construct the circle ◦FDG with C as its center and CD as radius
[Postulate 1.3] which intersects AB at the points F and G. Bisect the segment
FG at H [1.10] and join CH [Postulate 1.1]. We claim that CH ⊥ AB.

To see this, join CF , CG. Then the two triangles 4FHC, 4GHC have
sides FH = GH by construction and side HC in common. We also have that
CF = CG since both are radii of ◦FDG [Def. 1.32]. Therefore, ∠CHF = ∠CHG

[1.8]. Since these are adjacent angles, by [Def. 1.13] each is a right angle, and
so CH ⊥ AB. �

COROLLARY. 1. [1.12] holds when CH and/or AB are replaced by rays,
mutatis mutandis.

12http://www.mathopenref.com/trianglecircumcenter.html

http://www.mathopenref.com/trianglecircumcenter.html


1.5. PROPOSITIONS FROM BOOK I: 1-26 54

Exercises.
1. Prove that circle ◦FDG cannot meet AB at more than two points.
2. If one angle of a triangle is equal to the sum of the other two, prove that

the triangle can be divided into the sum of two isosceles triangles and that
the length of the base is equal to twice the segment from its midpoint to the
opposite angle.

PROPOSITION 1.13. ANGLES AT INTERSECTIONS OF STRAIGHT LINES.
If a line intersects another line at one and only one point, the lines will either
make two right angles or two angles whose sum equals two right angles.

PROOF. If the line AB intersects the line CD at one and only one point (B),
we claim that either ∠ABC and ∠ABD are right angles or the sum ∠ABC +

∠ABD equals two right angles.

FIGURE 1.5.16. [1.13] (α), (β)

If AB ⊥ CD as in Fig. 1.5.16(α), then ∠ABC and ∠ABD are right angles.
Otherwise, construct BE ⊥ CD [1.11]. Notice that ∠CBA = ∠CBE +

∠EBA [Def. 1.11]. Adding the measure of ∠ABD to each side of the equality,
we obtain that

∠CBA+ ∠ABD = ∠CBE + ∠EBA+ ∠ABD

Similarly, we have that

∠CBE + ∠EBD = ∠CBE + ∠EBA+ ∠ABD

Since quantities which are equal to the same quantity are equal to one
another, we have that

∠CBA+ ∠ABD = ∠CBE + ∠EBD

Since ∠CBE, ∠EBD are right angles, we have that ∠CBA+∠ABD equals
the sum of two right angles. �
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An alternate proof:

PROOF. Denote ∠EBA by θ. We then have that

∠CBA = right angle + θ

∠ABD = right angle − θ ⇒
∠CBA+ ∠ABD = right angle

�

COROLLARY. 1. The above proposition holds when the straight lines are
replaced by segments and/or rays, mutatis mutandis.

COROLLARY. 2. The sum of two supplemental angles equals two right an-
gles.

COROLLARY. 3. Two distinct straight lines cannot share a common seg-
ment.

COROLLARY. 4. The bisector of any angle bisects the corresponding re-
entrant angle.

COROLLARY. 5. The bisectors of two supplemental angles are at right an-
gles to each other.

COROLLARY. 6. The angle ∠EBA is half the difference of the angles ∠CBA,
∠ABD.

PROPOSITION 1.14. RAYS TO STRAIGHT LINES. If at the endpoint of a
ray there exists two other rays standing on opposite sides of that ray such that
the sum of their adjacent angles is equal to two right angles, then these two rays
form one line.

PROOF. Construct the ray BA with endpoint B. Suppose at B there exists
two other rays BC and BD which stand on opposite sides of BA such that the
sum of their adjacent angles, ∠CBA + ∠ABD, equals two right angles. We
claim that BC ⊕BD = CD where CD is a line.
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FIGURE 1.5.17. [1.14]

Suppose instead that the rays BC and BE form the straight line CE. Since
CE is a line and BA stands on it, the sum ∠CBA + ∠ABE equals two right
angles [1.13]. Also by hypothesis, the sum ∠CBA + ∠ABD equals two right
angles. Therefore,

∠CBA+ ∠ABE = ∠CBA+ ∠ABD

Removing the angle in common, ∠CBA, we have that ∠ABE = ∠ABD.
However, ∠ABD = ∠ABE +∠EBD, a contradiction [Axiom 1.9]. Hence, BC ⊕
BD = CD where CD is a line. �

COROLLARY. 1. If at a point on a straight line, segment, or ray, two seg-
ments on opposite sides of the line make the sum of the adjacent angles equal to
two right angles, these two segments also form a single segment.

PROPOSITION 1.15. OPPOSITE ANGLES ARE EQUAL. If two lines inter-
sect one another at one point, their opposite angles are equal.

PROOF. If two straight lines AB, CD intersect one another at one point, E,
then their opposite angles are equal (∠CEA = ∠DEB and ∠BEC = ∠AED).

FIGURE 1.5.18. [1.15]

Because the line AB intersects CD at E, the sum ∠CEA + ∠AED equals
two right angles [1.13]. Because the line CD intersects AB at the point E, the
sum ∠CEA+ ∠BEC also equals two right angles. Therefore,

∠CEA+ ∠AED = ∠CEA+ ∠BEC
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Removing the common angle ∠CEA, we have that ∠AED = ∠BEC. By an
analogous method, we also obtain that ∠CEA = ∠DEB. �

An alternate proof:

PROOF. Because opposite angles share a common supplement, they are
equal. �

COROLLARY. 1. [1.15] holds when either one or both of the two straight
lines are replaced either by segments or by rays, mutatis mutandis.

Examination questions for [1.13]-[1.15].
1. What problem is required in Euclid’s proof of [1.13]?
2. What theorem? (Ans. No theorem, only the axioms.)
3. If two lines intersect, how many pairs of supplemental angles do they

make?
4. What is the relationship between [1.13] and [1.14]?
5. What three lines in [1.14] are concurrent?
6. What caution must be taken as we prove [1.14]?
7. State the converse of Proposition [1.15] and prove it.
8. What is the subject of [1.13], [1.14], [1.15]? (Ans. Angles at a point.)

PROPOSITION 1.16. THE EXTERIOR ANGLE IS GREATER THAN EI-
THER OF THE NON-ADJACENT INTERIOR ANGLES. If any side of a tri-
angle is extended, the exterior angle is greater than either of the non-adjacent
interior angles.

PROOF. Construct 4ABC. Wlog, we extend side BC to the segment CD.
We claim that the exterior angle ∠ACD is greater than either of the interior
non-adjacent angles ∠ABC, ∠BAC.
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FIGURE 1.5.19. [1.16]

Bisect AC at point E [1.10] and join BE [Postulate 1.1]. Extend BE to
EF such that BE = EF [1.3]. Join CF . Because EC = EA by construction,
the triangles 4CEF , 4AEB have the sides CE, EF in one equal to the sides
AE, EB in the other. We also have that ∠CEF = ∠AEB [1.15]. By [1.4], the
angle ∠ECF = ∠EAB. However, ∠ACD is greater than ∠ECF since ∠ACD =

∠ECF + ∠FCD. Therefore, the angle ∠ACD > ∠EAB = ∠BAC.
Similarly, it can be shown that if side AC is extended to segment CG, then

the exterior angle ∠BCG > ∠ABC. But ∠BCG = ∠ACD [1.15]. Hence, ∠ACD
is greater than either of the interior non-adjacent angles ∠ABC or ∠BAC. �

COROLLARY. 1. The sum of the three interior angles of the triangle 4BCF
is equal to the sum of the three interior angles of the triangle 4ABC.

COROLLARY. 2. The area of 4BCF is equal to the area of 4ABC, which
we will write as 4BCF = 4ABC.

COROLLARY. 3. The lines BA and CF , if extended, cannot meet at any
finite distance. For, if they met at any finite point X, the triangle 4CAX would
have an exterior angle ∠BAC equal to the interior angle ∠ACX.

Exercise.
1. Prove [1.16, Cor. 3] using a proof by contradiction.

PROPOSITION 1.17. THE SUM OF TWO ANGLES OF A TRIANGLE. The
sum of two angles of a triangle is less than that of two right angles.
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PROOF. We claim that the sum of any two angles of a triangle 4ABC is
less than the sum of two right angles (wlog, we choose ∠ABC and ∠BAC).

FIGURE 1.5.20. [1.17]

Extend side BC to the segment CD. By [1.16], the exterior angle ∠ACD
is greater than ∠ABC. To each, add the angle ∠ACB, and we obtain ∠ACD +

∠ACB > ∠ABC + ∠ACB. However, ∠ACD + ∠ACB equals two right angles
[1.13]. Therefore, ∠ABC + ∠ACB is less than two right angles.

Similarly, we may show that the sums ∠ABC+∠BAC and ∠ACB+∠BAC

are each less than two right angles.
A similar argument follows on 4EFG, mutatis mutandis. �

COROLLARY. 1. Every triangle has at least two acute angles.

COROLLARY. 2. If two angles of a triangle are unequal, the lesser is acute.

Exercise.
1. Prove [1.17] without extending a side. (Attempt after completing Chap-

ter 1. Hint: use parallel line theorems.)

PROPOSITION 1.18. ANGLES AND SIDES IN A TRIANGLE I. In a trian-
gle, if one side is longer than another, then the angle opposite to the longer side
is greater in measure than the angle opposite to the shorter side.

PROOF. Suppose we have 4ABC with sides AB, AC such that AC > AB.
We claim that the angle opposite AC (∠ABC) is greater in measure than the
angle opposite AB (∠ACB).
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FIGURE 1.5.21. [1.18]

From AC, cut off AD such that AD = AB [1.3]. Join BD [Postulate 1.1].
It follows that 4ABD is isosceles; therefore, ∠ADB = ∠ABD. Now ∠ADB >

∠ACB [1.16], and so ∠ABD > ∠ACB. Since ∠ABC = ∠ABD+∠CBD, we also
have that ∠ABC > ∠ABD from which it follows that ∠ABC > ∠ACB. �

An alternate proof:

PROOF. With A as the center and with the shorter side AB as radius, con-
struct the circle ◦BED which intersects BC at point E.

FIGURE 1.5.22. [1.18], alternate proof

Join AE. Since AB = AE, ∠AEB = ∠ABE; however, ∠AEB > ∠ACB

[1.16]. Therefore, ∠ABE > ∠ACB. �

Exercises.
1. Prove that if two of the opposite sides of a quadrilateral are respectively

the greatest and the least sides of the quadrilateral, then the angles adjacent
to the least are greater than their opposite angles.

2. In any triangle, prove that the perpendicular from the vertex opposite
the side which is not less than either of the remaining sides falls within the
triangle.
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PROPOSITION 1.19. ANGLES AND SIDES IN A TRIANGLE II. In a tri-
angle, if one angle is greater in measure than another, then the side opposite the
greater angle is longer than the side opposite the shorter angle.

PROOF. Construct 4ABC with sides AB, AC. We claim that if ∠ABC >

∠ACB, then AC > AB.

FIGURE 1.5.23. [1.19]

If AC is not longer than AB, then either AC = AB or AC < AB.
1. If AC = AB, 4ACB is isosceles and ∠ACB = ∠ABC [1.5]. This contra-

dicts our hypothesis, and so AC 6= AB.
2. If AC < AB, we have that ∠ACB < ∠ABC [1.18]. This also contradicts

our hypothesis, and so AC 66< AB.
Since AC 6≤ AB, we must have that AC > AB. �

COROLLARY. 1. In a triangle, greater (lesser) sides stand opposite the
greater (lesser) angles and greater (lesser) angles stand opposite the greater
(lesser) sides.

Exercises.
1. Prove this proposition by a direct demonstration.
2. Prove that a segment from the vertex of an isosceles triangle to any

point on the base is less than either of the equal sides but greater if the base
is extended and the point of intersection falls outside of the triangle.

3. Prove that three equal segments cannot be constructed from the same
point to the same line.

4. If in [1.16], Fig 1.5.19, AB is the longest side of the 4ABC, then BF is
the longest side of 4FBC and ∠BFC is less than half of ∠ABC.

5. If 4ABC is a triangle such that side AB 6< AC, then a segment AG,
constructed from A to any point G on side BC, is less than AC.
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PROPOSITION 1.20. THE SUM OF THE LENGTHS OF ANY PAIR OF
SIDES OF A TRIANGLE. In a triangle, the sum of the lengths of any pair of
sides is greater than the length of the remaining side.

PROOF. We claim that the sum of any two sides (BA, AC) of a triangle
4ABC is greater than the third (BC).

FIGURE 1.5.24. [3.20]

Extend BA to the segment AD [Postulate 1.2] such that AD = AC [1.3].
Join CD, constructing 4ACD. Because AD = AC, ∠ACD = ∠ADC [1.5].
Since ∠BCD = ∠BCA+∠ACD, ∠BCD > ∠ADC = ∠BDC. It follows that the
side BD > BC [1.19].

Noticing that
AD = AC and

BA+AD = BA+AC ⇒
BD = BA+AC

we obtain that BA+AC > BC. �

Alternatively:

PROOF. Bisect the angle ∠BAC by AE [1.9]. Then the angle ∠BEA is
greater than ∠EAC. However, ∠EAC = ∠EAB by construction. Therefore, the
angle ∠BEA > ∠EAB. It follows that BA > BE [1.19]. Similarly, AC > EC.
It follows that BA+AC > BE + EC = BC. �

Exercises.
1. In any triangle, the difference between the lengths of any two sides is

less than the length of the third.
2. Any side of any polygon is less than the sum of the remaining sides.
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3. The perimeter of any triangle is greater than that of any inscribed tri-
angle and less than that of any circumscribed triangle. (See also [Def. 4.1].)

4. The perimeter of any polygon is greater than that of any inscribed (and
less than that of any circumscribed) polygon of the same number of sides.

5. The perimeter of a quadrilateral is greater than the sum of its diagonals.
6. The sum of the lengths of the three medians of a triangle is less than

3/2 times its perimeter.

PROPOSITION 1.21. TRIANGLES WITHIN TRIANGLES. In an arbitrary
triangle, if two segments are constructed from the vertexes of its base to a point
within the triangle, then

1) the sum of these inner sides will be less than the sum of the outer corre-
sponding sides (i.e., the outer sides excluding the base);

2) these inner sides will contain a greater angle than the corresponding
sides of the outer triangle.

PROOF. If two segments (BD, CD) are constructed to a point (D) within a
triangle (4ABC) from the endpoints of its base (BC), we claim that:

1. BA+AC > BD +DC

2. ∠BDC > ∠BAC

Construct 4ABC and 4BDC as in Fig. 1.5.25(α).

FIGURE 1.5.25. [3.21] (α), (β)

1. Extend BD to meet AC at point E [Postulate 1.2]. In triangle 4BAE,
we have that BA+AE > BE [1.20], from which it follows that

BA+AC = BA+AE + EC > BE + EC

Similarly, in 4DEC, we have that DE + EC > DC, from which it follows
that

BE + EC = BD +DE + EC > BD +DC

From these two inequalities, we obtain that BA+AC > BD +DC.
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2. Consider 4DEC. By [1.16], we have that ∠BDC > ∠BEC. Similarly in
4ABE, ∠BEC > ∠BAE. It follows that ∠BDC > ∠BAE = ∠BAC. �

An alternative proof to part 2 that does not extend sides BD, DC:

PROOF. Construct 4ABC and 4BDC as in Fig. 1.5.25(β), joining AD and
extending it to meet BC at point F . Consider 4BDA and 4CDA. By [1.16],
∠BDF > ∠BAF and ∠FDC > ∠FAC. Since

∠BDF + ∠FDC = ∠BDC

∠BAF + ∠FAC = ∠BAC

we have that ∠BDC > ∠BAC. �

Exercises.
1. The sum of the side lengths constructed from any point within a triangle

to its angular points is less than the length of the triangle’s perimeter.

FIGURE 1.5.26. [1.21, #2]

2. If a convex polygonal line ABCD lies within a convex polygonal line
AMND terminating at the same endpoints, prove that the length of the former
is less than that of the latter.

PROPOSITION 1.22. CONSTRUCTION OF TRIANGLES FROM ARBITRARY
SEGMENTS. It is possible to construct a triangle whose three sides are respec-
tively equal to three arbitrary segments whenever the sum of every two pairs of
segments is greater than the length of the remaining segment.

PROOF. Let AR, BS, and CT be arbitrary segments which satisfy our hy-
pothesis.
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FIGURE 1.5.27. [1.22]

Take the ray DE and cut off the segments DF = AR, FG = BS, and
GH = CT [1.3]. With F as the center and FD as radius, construct the circle
◦KDL [Postulate 1.3]. With G as the center and GH as radius, construct the
circle ◦KHL where K is a point of intersection between the circles ◦KDL and
◦KHL. Join KF , KG. We claim that 4KFG is the required triangle.

Since F is the center of ◦KDL, FK = FD. Since FD = AR by construction,
FK = AR [Axiom 1.1]. Also by construction, we have that GK = CT and
FG = BS. Hence, the three sides of the triangle4KFG are respectively equal
to the three segments AR, BS, and CT . �

Examination questions.
1. What is the reason for our condition that the sum of every two of the

given segments must be greater than the length of the third?
2. Under what conditions would the circles fail to intersect?

Exercises.
1. Prove that when the above condition is fulfilled that the two circles must

intersect.
2. If the sum of two of the segments equals the length of the third, would

the circles meet? Prove that they would not intersect.

PROPOSITION 1.23. CONSTRUCTING AN ANGLE EQUAL TO AN AR-
BITRARY RECTILINEAR ANGLE. It is possible to construct an angle equal to
an arbitrary angle on an endpoint of a segment.
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PROOF. Construct an arbitrary angle ∠DEF from the rays ED, EF . From
a given point A on a given segment AB, we wish to construct an angle equal to
∠DEF .

FIGURE 1.5.28. [1.23]

Join DF and construct the triangle 4BAC whose sides are respectively
equal to those of DEF ; specifically, let AB = ED, AC = EF , and CB = FD

[1.22]. By [1.8], ∠BAC = ∠DEF . �

Exercises.
1. Construct a triangle given two sides and the angle between them.
2. Construct a triangle given two angles and the side between them.
3. Construct a triangle given two sides and the angle opposite one of them.
4. Construct a triangle given the base, one of the angles at the base, and

the sum or difference of the sides.
5. Given two points, one of which is in a given line, find another point on

the given line such that the sum or difference of its distances from the former
points may be given. Show that two such points may be found in each case.

PROPOSITION 1.24. ANGLES AND SIDES IN A TRIANGLE III. If in two
triangles we have two pairs of sides in each triangle respectively equal to the
other where the interior angle in one triangle is greater in measure than the
interior angle of the other triangle, then the remaining sides of the triangles
will be unequal in length; specifically, the triangle with the greater interior
angle will have a greater side than the triangle with the lesser interior angle.

PROOF. Construct two triangles 4ABC, 4DEF where two sides of one
(AB, AC) are respectively equal to two sides of the other (DE, DF ) but the in-
terior angle of 4ABC (∠BAC) is greater than the interior angle of the 4DEF
(∠EDF ). We claim that the base of 4ABC (BC) is longer than the base of
4DEF (EF ). (Or, if AB = DE, AC = DF , and ∠BAC > ∠EDF , then
BC > EF .)
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FIGURE 1.5.29. [1.24]

Construct point G on AC such that ∠BAG = ∠EDF . Wlog, suppose that
AC > AB. Because AB 6> AC, AG < AC [1.19, #5]. Extend AG to point H
where AH = DF = AC [1.3].

Join BH. In triangles 4BAH, 4EDF , we have AB = DE by hypothesis,
and and ∠BAH = ∠EDF by construction. By [1.4], it follows that BH = EF .

Again, because AH = AC by construction, the triangle4ACH is isosceles;
therefore, ∠ACH = ∠AHC [1.5]. However, ∠ACH > ∠BCH since ∠ACH =

∠BCH+∠BCA. It follows that ∠AHC > ∠BCH. And since ∠BHC = ∠BHA+

∠AHC, we also have that ∠BHC > ∠BCH. By [1.19], the greater angle stands
opposite to the longer side, and so BC > BH. Since BH = EF , it follows that
BC > EF . �

Alternatively, the concluding part of this proposition may be proved with-
out joining CH.

PROOF. Construct the triangles as above. We have that

BG+GH > BH [1.20] and
AG+GC > AC [1.20] ⇒
BC +AH > BH +AC

Since AH = AC by construction, we have that BC > BH = EF . �

Another alternative:

PROOF. In 4ABC, bisect the angle ∠CAH by AO and join OH. Now in
4CAO, 4HAO we have the sides CA, AO in one triangle equal to the sides
AH, AO in the other where the interior angles are equal. By [1.4], OC = OH.
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It follows that BO + OH = BO + OC = BC. But BO + OH > BH [1.20].
Therefore, BC > BH = EF . �

Exercises.
1. Prove this proposition by constructing the angle ∠ABH to the left of

AB.
2. Prove that the angle ∠BCA > ∠EFD.

PROPOSITION 1.25. ANGLES AND SIDES IN A TRIANGLE IV. If in two
triangles we have two pairs of sides in each triangle respectively equal to the
other where the remaining sides of the triangles are unequal, the interior angle
of one triangle will be greater in measure than that of the other triangle; specif-
ically, the triangle with the longer side will have a greater interior angle than
the triangle with the shorter side.

PROOF. If two triangles (4ABC, 4DEF ) have two sides of one triangle
(AB, AC) respectively equal to two sides of the other (DE, DF ) where the
base of one (BC) is greater than the base of the other (EF ), the angle (∠BAC)
contained by the sides of the triangle with the longer base (4ABC) is greater in
measure than the angle (∠EDF ) contained by the sides of the other (4DEF ).
(Or, if AB = DE, AC = DF , and BC > EF , then ∠BAC > ∠EDF .)

FIGURE 1.5.30. [1.25]

If ∠BAC 6> ∠EDF , then either ∠BAC = ∠EDF or ∠BAC < ∠EDF . We
divide the proof into two cases:

1. If ∠BAC = ∠EDF , then since the triangles 4ABC, 4DEF have the
two sides AB, AC of one respectively equal to the two sides DE, DF of the
other, it follows that BC = EF by [1.4], which contradicts our hypothesis that
BC > EF . Hence, ∠BAC 6= ∠EDF .

2. If ∠EDF > ∠BAC, then because the triangles 4DEF , 4ABC have the
two sides DE, DF of one respectively equal to the two sides AB, AC of the
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other, by [1.24], EF > BC, which contradicts our hypothesis that BC > EF .
Therefore ∠EDF 6> ∠BAC.

Since it is not the case that either ∠BAC = ∠EDF or ∠BAC < ∠EDF , we
must have that ∠BAC > ∠EDF . �

An alternate proof:

PROOF. Construct 4ABC, 4DEF as in the previous proof as well as the
triangle 4ACG where sides AG = DE, GC = EF , CA = FD of the triangle
4DEF [1.22]. Join BG. Because BC > EF by hypothesis, it follows that
BC > GC. By [1.18], ∠BGC > ∠GBC. Construct ∠BGH = ∠GBH [1.23] and
join AH. By [1.6], BH = GH.

FIGURE 1.5.31. [1.25], alternate proof

Therefore in 4ABH, 4AGH we have that AB = AG, BH = GH, and the
side AH in common. By [1.8], ∠BAH = ∠GAH. Since ∠BAC = ∠BAH +

∠CAH, we also have that

∠BAC = ∠GAH + ∠CAH

= ∠CAG+ 2 · ∠CAH
and therefore ∠BAC > ∠CAG. By [1.8], we have that ∠CAG = ∠EDF , and so
∠BAC > ∠EDF . �

COROLLARY. 1. In two triangles with two pairs of sides respectively equal
to the other, the final sides are unequal if and only if the interior angles of the
two pairs of sides are also unequal. Specifically, the statement that “the triangle
with the longer side contains a greater interior angle than the triangle with the
shorter side” is equivalent to the statement that “the triangle with the greater
interior angle has a longer base than the triangle with the lesser interior angle”.
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Exercise.
1. Demonstrate this proposition directly by cutting off from BC a segment

equal in length to EF .

PROPOSITION 1.26. If in two triangles we have two pairs of angles in each
triangle respectively equal to the other and one side in each triangle respectively
equal to the other, then the triangles are congruent.

1. THE “ANGLE-SIDE-ANGLE” THEOREM FOR THE CONGRUENCE
OF TRIANGLES. If the side in question is the side between the two angles, then
the triangles are congruent.

2. THE “ANGLE-ANGLE-SIDE” THEOREM FOR THE CONGRUENCE
OF TRIANGLES. If the side in question is not the side between the two angles,
then the triangles are congruent.

PROOF. If two triangles (4ABC, 4DEF ) have two angles of one (∠ABC,
∠ACB) respectively equal to two angles of the other (∠DEF , ∠EFD) and a
side of one equal to a similarly placed side of the other (placed with regard to
the angles), then 4ABC ∼= 4DEF .

This proposition breaks down into two cases according to whether the
equal sides are adjacent or opposite to the equal angles. We prove each case
separately:

FIGURE 1.5.32. [1.26], case 1

1. Suppose that BC = EF . If AB 6= DE, suppose that AB = GE. Join GF .
Then the triangles 4ABC, 4GEF have the sides AB, BC of one respectively
equal to the sides GE, EF of the other where∠ABC = ∠GEF by hypothesis.
By [1.4], the angle ∠ACB = ∠GFE. Since ∠ACB = ∠DFE by hypothesis,
we have that ∠GFE = ∠EFD and ∠GFE + ∠GFD = ∠EFD, a contradiction.
Therefore AB and DE are not unequal, or AB = DE.



1.5. PROPOSITIONS FROM BOOK I: 1-26 71

Consequently, the triangles 4ABC, 4DEF have the sides AB, BC of one
respectively equal to the sides DE, EF of the other where interior angles
∠ABC and ∠DEF are equal. By [1.4], 4ABC ∼= 4DEF .

2. Now suppose that AB = DE. (The same result follows if AC = DF ,
mutatis mutandis.)

FIGURE 1.5.33. [1.26], case 2

If BC 6= EF , suppose that EF = BG. Join AG. Then the triangles 4ABG,
4DEF have the two sides AB, BG of one respectively equal to the two sides
DE, EF of the other where ∠ABG = ∠DEF by hypothesis. By [1.4], ∠AGB =

∠DFE. We also have that ∠DFE = ∠ACB by hypothesis. Hence, ∠AGB =

∠ACB [Axiom 1.1]; that is, the exterior angle of the triangle4ACG is equal to
an interior and non-adjacent angle, a contradiction [1.16]. Hence BC = EF .

Consequently, the triangles 4ABC, 4DEF have the sides AB, BC of one
respectively equal to the sides DE, EF of the other where interior angles
∠ABC and ∠DEF are equal. By [1.4], 4ABC ∼= 4DEF . �

This proposition, together with [1.4] and [1.8], includes all the cases of the
congruence of two triangles.

Case 1 may also be proved immediately by superposition: it is evident if
4ABC is applied to 4DEF such that the point B coincides with point E and
the segment BC coincides with EF that, since BC = EF , point C coincides
with point F . And since the angles ∠ABC, ∠BCA are respectively equal to
the angles ∠DEF , ∠EFD, the segments BA, CA will coincide with ED, FD.
Hence, 4ABC ∼= 4DEF .

Exercises.
1. The endpoints of the base of an isosceles triangle are equally distant

from any point on the perpendicular segment from the vertical angle on the
base.

2. If the line which bisects the vertical angle of a triangle also bisects the
base, the triangle is isosceles.
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3. The locus of a point which is equally distant from two fixed lines is the
pair of lines which bisect the angles made by the fixed lines.

4. In a given straight line, find a point such that the perpendiculars from
it on two given lines are equal. State also the number of solutions.

5. Prove that if two right triangles have hypotenuses of equal length and
an acute angle of one is equal to an acute angle of the other, then they are
congruent.

6. Prove that if two right triangles have equal hypotenuses and that if a
side of one is equal in length to a side of the other, then the triangles they are
congruent. (Note: this proves the special case of Side-Side-Angle congruency
for right triangles.)

The bisectors of the three internal angles of a triangle are concurrent.
Their point of intersection is called the incenter of the triangle.

7. The bisectors of two external angles and the bisector of the third internal
angle are concurrent.

8. Through a given point, construct a straight line such that perpendicu-
lars on it from two given points on opposite sides are equal to each other.

9. Through a given point, construct a straight line intersecting two given
lines which forms an isosceles triangle with them.

1.6. Propositions from Book I: 27-48

Additional definitions regarding parallel lines:

Parallel Lines. 38. If two straight lines in the same plane do not meet
at any finite distance, they are said to be parallel. If rays or segments can be
extended into lines which do not meet at any finite distance, they are also said
to be parallel.

39. A parallelogram is a quadrilateral where both pairs of opposite sides
are parallel.

40. The segment joining either pair of opposite angles of a quadrilateral is
called a diagonal. See Fig. 1.6.1.
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FIGURE 1.6.1. [Def 1.40] AC is a diagonal of the square �ABCD

41. A quadrilateral which has one pair of opposite sides parallel is called a
trapezium.

FIGURE 1.6.2. [Def. 1.42]

42. When a straight line intersects two other straight lines at two distinct
points, between them are eight angles (see Fig. 1.6.2). Angles 1 and 2, 7 and
8 are called exterior angles; 3 and 4, 5 and 6 are called interior angles; 4 and
6, 3 and 5 are called alternate angles; 1 and 5, 2 and 6, 3 and 8, 4 and 7 are
called corresponding angles. These definitions hold when we replace straight
lines with either rays or segments, mutatis mutandis.

PROPOSITION 1.27. PARALLEL LINES I. Suppose a straight line inter-
sects two straight lines at one and only point point each. If the alternate angles
are equal, then the lines are parallel.

PROOF. If a straight line (EF ) intersects two straight lines (AB, CD) such
that the alternate angles are equal (∠AEF = ∠EFD), then these lines are
parallel (AB ‖ CD).
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FIGURE 1.6.3. [1.27]

IfAB 6‖ CD, then they must meet at some finite distance; suppose that they
intersect at point G. Then 4EGF is a triangle where ∠AEF is an exterior
angle and ∠EFD a non-adjacent interior angle. By [1.16], ∠AEF > ∠EFD,
which contradicts our hypothesis that ∠AEF = ∠EFD. Hence, AB ‖ CD. �

PROPOSITION 1.28. 1) PARALLEL LINES II. If a straight line intersecting
two straight lines at one and only point point each makes the exterior angle
equal to its corresponding interior angle, the two straight lines are parallel.

2) PARALLEL LINES III. If a straight line intersecting two straight lines
at one and only point point makes two interior angles on the same side equal to
two right angles, the two straight lines are parallel.

PROOF. If a straight line (EF ) intersects two straight lines (AB, CD) at
one and only point point each such that the exterior angle (∠EGB) equals its
corresponding interior angle (∠GHD), or if it makes two interior angles on the
same side (∠BGH, ∠DHG) equal to two right angles, then the two lines are
parallel (AB ‖ CD).

FIGURE 1.6.4. [1.28]

We prove each claim separately:
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1. Suppose that ∠EGB = ∠GHD. Since the lines AB, EF intersect at
G, ∠AGH = ∠EGB [1.15]. It follows that ∠AGH = ∠GHD. Since these are
alternate angles, by [1.27], AB ‖ CD.

2. Now suppose that the sum ∠BGH + ∠DHG equals two right angles.
Since ∠AGH and ∠BGH are adjacent angles, the sum ∠AGH +∠BGH equals
two right angles [1.13]. If we remove the common angle ∠BGH, we have that
∠AGH = ∠DHG, and these are alternate angles. By [1.27], AB ‖ CD. �

PROPOSITION 1.29. PARALLEL LINES IV. If a straight line intersects two
parallel straight lines at one and only one point each, then:

1) corresponding alternate angles are equal to each other,
2) exterior angles are equal to corresponding interior angles,
3) the sum of interior angles on the same side is equal to two right angles.

PROOF. If a straight line EF intersects two parallel straight lines AB, CD
at one and only one point each, we claim that:

1. alternate angles ∠AGH, ∠GHD are equal;
2. the exterior angle∠EGB equals its corresponding interior angles∠GHD;
3. the sum of the two interior angles ∠HGB + ∠GHD equals two right

angles.

FIGURE 1.6.5. [1.29]

We prove each claim separately:
1. If ∠AGH 6= ∠GHD, one must be greater than the other. Wlog, suppose

that ∠AGH > ∠GHD. Then we obtain the inequality

∠AGH + ∠BGH > ∠GHD + ∠BGH

where ∠AGH+∠BGH is equal to the sum of two right angles [1.13]. It follows
that the sum ∠GHD + ∠BGH is less than two right angles. By [Axiom 1.12],
the lines AB, CD meet at some finite distance, a contradiction – since they
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are parallel by hypothesis, they cannot meet at any finite distance. Hence, the
angle ∠AGH is not unequal to ∠GHD; or, ∠AGH = ∠GHD.

2. Since ∠EGB = ∠AGH [1.15] and ∠GHD = ∠AGH by part 1 of this
proof, it follows that ∠EGB = ∠GHD [Axiom 1.1].

3. Since ∠AGH = ∠GHD by part 1 of this proof, we obtain

∠AGH + ∠HGB = ∠GHD + ∠HGB

where the sum ∠AGH + ∠BGH equals the sum of two right angles. It
follows that the sum ∠GHD + ∠HGB equals the sum of two right angles. �

COROLLARY. 1. EQUIVALENT STATEMENTS REGARDING PARAL-
LEL LINES. Suppose two straight lines are intersected by a third straight line
at one and only one point. The two straight lines are parallel if and only if any
one of these three properties hold:

1) corresponding alternate angles are equal;
2) exterior angles equal their corresponding interior angles;
3) the sum of the interior angles on the same side are equal to two right

angles.

COROLLARY. 2. We may replace the straight lines in [1.29, Cor. 1] with
segments or rays, mutatis mutandis.

Exercises.
Note: We may use [1.31] (that we may construct a straight line parallel to

any given straight line) in the proofs of these exercises since the proof of [1.31]
does not employ [1.29].

1. Demonstrate both parts of [1.28] without using [1.27].
2. If ∠ACD, ∠BCD are adjacent angles, any parallel to AB will meet the

bisectors of these angles at points equally distant from where it meets CD.
4. If any other secant is constructed through the midpointO of any straight

line terminated by two parallel straight lines, the intercept on this line made
by the parallels is bisected at O.

5. Two straight lines passing through a point equidistant from two paral-
lels intercept equal segments on the parallels.

6. The perimeter of the parallelogram, formed by constructing parallels to
two sides of an equilateral triangle from any point in the third side, is equal to
twice the side.
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7. If the opposite sides of a hexagon are equal and parallel, its diagonals
are concurrent.

8. If two intersecting segments are respectively parallel to two others, the
angle between the former is equal to the angle between the latter. For, if AB,
AC are respectively parallel to DE, DF and if AC, DE intersect at G, the
angles at points A, D are each equal to the angle at G [1.29].

PROPOSITION 1.30. TRANSITIVITY OF PARALLEL LINES. Straight lines
parallel to the same straight line are also parallel to one another.

PROOF. Construct straight lines AB, CD, EF such that AB ‖ EF and
CD ‖ EF . We claim that AB ‖ CD.

FIGURE 1.6.6. [1.30]

Construct any secant GHK. Since AB ‖ EF , the angle ∠AGH = ∠GHF

[1.29]. Similarly, the angle ∠GHF = ∠HKD [1.29]. By [Axiom 1.1], ∠AGK =

∠GKD, and by [1.27], we have that AB ‖ CD. �

COROLLARY. 1. AB, CD, EF , and GK in [1.30] may be replaced by rays
and/or straight-line segments, mutandis mutandis.

PROPOSITION 1.31. CONSTRUCTION OF A PARALLEL LINE. We wish
to construct a straight line which is parallel to a given straight line and passes
through a given point.

PROOF. We wish to construct a straight line (CE) which is parallel to a
given straight line (AB) and passes through a given point (C).
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FIGURE 1.6.7. [1.31]

Take any point D on AB. Join CD [Postulate 1.1]. Choose any point E such
that by joining points C and E we obtain ∠DCE = ∠ADC [1.23]. By [1.29, Cor.
1], AB ‖ CE. �

COROLLARY. 1. AB and CE in [1.31] may be replaced by rays and/or
straight-line segments, mutatis mutandis.

Definition:
43. The altitude of a triangle is the perpendicular segment from the trian-

gle’s base to the base’s opposing vertex.

Exercises.
1. Given the altitude of a triangle and the base angles, construct the trian-

gle.
2. From a given point, construct a segment to a given segment such that

the resultant angle is equal in measure to a given angle. Show that there are
two solutions.

3. Prove the following construction for trisecting a given line AB:
On AB, construct an equilateral 4ABC. Bisect the angles at points A, B

by the lines AD, BD. Through D, construct parallels to AC, BC, intersecting
AB at E, F . Claim: E and F are the points of trisection of AB.

4. Inscribe a square in a given equilateral triangle such that its base stands
on a given side of the triangle.

5. Through two given points on two parallel lines, construct two segments
forming a lozenge with given parallels.

6. Between two lines given in position, place a segment of given length
which is parallel to a given line. Show that there are two solutions.

PROPOSITION 1.32. EXTERIOR ANGLES AND SUMS OF ANGLES IN A
TRIANGLE. In any triangle, if one of the sides is extended, then:

1) the exterior angle equals the sum of the its interior and opposite angles;
2) the sum of the three interior angles of the triangle equals two right angles.
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PROOF. Construct 4ABC and wlog extend side AB to segment BD. We
claim that the external angle ∠CBD equals the sum of the two internal non-
adjacent angles (∠BAC+∠ACB) and that the sum of the three internal angles
(∠BAC + ∠ACB + ∠ABC) equals two right angles. Or: ∠CBD = ∠BAC +

∠ACB and ∠BAC + ∠ACB + ∠ABC =two right angles.

FIGURE 1.6.8. [1.32]

Construct BE ‖ AC [1.31]. Since BC intersects the parallels BE and AC,
we have that ∠EBC = ∠ACB [1.29]. Also, since AB intersects the parallels
BE and AC, we have that ∠EBD = ∠BAC [1.29]. Since ∠CBD = ∠EBC +

∠EBD, we have that
∠CBD = ∠ACB + ∠BAC

This proves the first claim.
Adding ∠ABC to this equality, we obtain

∠ABC + ∠CBD = ∠ABC + ∠ACB + ∠BAC

But the sum ∠ABC + ∠CBD equals two right angles [1.13]. Hence, the
sum ∠ABC + ∠ACB + ∠BAC equals two right angles. �

COROLLARY. 1. If a right triangle is isosceles, then each base angle equals
half of a right angle.

COROLLARY. 2. If two triangles have two angles in one respectively equal
to two angles in the other, then their remaining pair of angles is also equal.

COROLLARY. 3. Since a quadrilateral can be divided into two triangles,
the sum of its angles equals four right angles.
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COROLLARY. 4. If a figure of n sides is divided into triangles by drawing
diagonals from any one of its angles, we will obtain (n−2) triangles. Hence, the
sum of its angles equals 2(n−2) right angles.

COROLLARY. 5. If all the sides of any convex polygon are extended, then
the sum of the external angles equals to four right angles.

COROLLARY. 6. Each angle of an equilateral triangle equals two-thirds of
a right angle.

COROLLARY. 7. If one angle of a triangle equals the sum of the other two,
then it is a right angle.

COROLLARY. 8. Every right triangle can be divided into two isosceles tri-
angles by a line constructed from the right angle to the hypotenuse.

Exercises.
1. Trisect a right angle.
2. If the sides of a polygon of n sides are extended, then the sum of the

angles between each alternate pair is equal to 2(n−4) right angles.
3. If the line which bisects the external vertical angle is parallel to the

base, then the triangle is isosceles.
4. If two right triangles 4ABC, 4ABD are on the same hypotenuse AB

and if the vertices C andD are joined, then the pair of angles standing opposite
any side of the resulting quadrilateral are equal.

5. The three altitudes of a triangle are concurrent. Note: We are proving
the existence of the orthocenter13 of a triangle: the point where the three
altitudes intersect, and one of a triangle’s points of concurrency14. (Hint:
Solve using [1.34].)

6. The bisectors of two adjacent angles of a parallelogram are at right
angles. (Hint: Solve using [1.34].)

7. The bisectors of the external angles of a quadrilateral form a circum-
scribed quadrilateral, the sum of whose opposite angles equals two right an-
gles.

13http://mathworld.wolfram.com/Orthocenter.html
14http://www.mathopenref.com/concurrentpoints.html

http://mathworld.wolfram.com/Orthocenter.html
http://www.mathopenref.com/concurrentpoints.html
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8. If the three sides of one triangle are respectively perpendicular to those
of another triangle, the triangles are equiangular. (This problem may be de-
layed until the end of chapter 1.)

9. Construct a right triangle being given the hypotenuse and the sum or
difference of the sides.

10. The angles made with the base of an isosceles triangle by altitudes
from its endpoints on the equal sides are each equal to half the vertical angle.

11. The angle included between the internal bisector of one base angle of
a triangle and the external bisector of the other base angle is equal to half the
vertical angle.

12. In the construction of [1.18], prove that the angle ∠DBC is equal to
half the difference of the base angles.

13. If A, B, C denote the angles of a triangle, prove that 1
2 (A+B), 1

2 (B+C),
and 1

2 (A + C) are the angles of a triangle formed by any side, the bisectors of
the external angles between that side, and the other extended sides.

PROPOSITION 1.33. PARALLEL SEGMENTS. Segments which join ad-
jacent endpoints of two equal, parallel segments are themselves parallel and
equal in length.

PROOF. If segments AC, BD join adjacent endpoints of two equal, parallel
segments AB, CD, then AC = BD and AC ‖ BD.

FIGURE 1.6.9. [1.33]

Join BC. Since AB ‖ CD by hypothesis and BC intersects them, we have
that ∠ABC = ∠DCB [1.29]. Hence we have that 4ABC, 4DCB have the
sides AB, BC in one respectively equal to the sides DC, BC in the other where
the interior angles ∠ABC, ∠DCB are equal. By [1.4], 4ABC ∼= 4DCB, and
so AC = BD and ∠ACB = ∠CBD. Since ∠ACB, ∠CBD are alternate angles,
by [1.27], AC ‖ BD. �
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COROLLARY. 1. [1.33] holds for straight lines and rays, mutatis mutandis.

COROLLARY. 2. Figure �ABDC is a parallelogram [Def. 1.39].

Exercises.
1. Prove that if two segments AB, BC are respectively equal and parallel

to two other segments DE, EF , then the segment AC joining the endpoints of
the former pair is equal in length to the segment DF joining the endpoints of
the latter pair.

PROPOSITION 1.34. OPPOSITE SIDES AND OPPOSITE ANGLES OF
PARALLELOGRAMS. The opposite sides and the opposite angles of a parallel-
ogram are equal to one another and either diagonal bisects the parallelogram.

PROOF. Construct �ABCD. We claim that AB = CD, AC = BD, ∠CAB =

∠CDB, and ∠ACD = ∠ABD. Furthermore, we claim that either diagonal
(CB, AD) bisects the parallelogram.

FIGURE 1.6.10. [1.34]

Join BC. Since AB ‖ CD and BC intersects them, ∠ABC = ∠DCB and
∠ACB = ∠CBD [1.29]. Hence the triangles 4ABC, 4DCB have the two an-
gles ∠ABC, ∠ACB in one respectively equal to the two angles ∠BCD, ∠CBD
in the other with side BC in common. By [1.26], 4ABC ∼= 4DCB, and so
AB = CD, AC = BD.

We also have that∠BAC = ∠BDC, ∠ACD = ∠ACB+∠DCB and∠ABD =

∠CBD + ∠ABC. By the equalities above, we obtain

∠ACD = ∠ACB + ∠DCB

= ∠CBD + ∠ABC

= ∠ABD
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or, that opposite angles are equal. Since �ABCD = 4ABC ⊕ 4DEF and
4ABC ∼= 4DCB (and hence the triangles have that same area), the diagonal
bisects the parallelogram.

The remaining case follows mutatis mutandis if we join AD instead of BC.
�

COROLLARY. 1. The area of �ABDC is double the area of4ACB (4BCD).

COROLLARY. 2. If one angle of a parallelogram is a right angle, each of its
angles are right angles.

COROLLARY. 3. If two adjacent sides of a parallelogram are equal in
length, then it is a lozenge.

COROLLARY. 4. If both pairs of opposite sides of a quadrilateral are equal
in length, it is a parallelogram.

COROLLARY. 5. If both pairs of opposite angles of a quadrilateral are equal,
it is a parallelogram.

COROLLARY. 6. If the diagonals of a quadrilateral bisect each other, it is a
parallelogram.

COROLLARY. 7. If both diagonals of a quadrilateral bisect the quadrilat-
eral, it is a parallelogram.

COROLLARY. 8. If the adjacent sides of a parallelogram are equal, its di-
agonals bisect its angles.

COROLLARY. 9. If the adjacent sides of a parallelogram are equal, its di-
agonals intersect at right angles.

COROLLARY. 10. In a right parallelogram, the diagonals are equal in
length.
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COROLLARY. 11. If the diagonals of a parallelogram are perpendicular to
each other, the parallelogram is a lozenge.

COROLLARY. 12. If a diagonal of a parallelogram bisects the angles whose
vertices it joins, the parallelogram is a lozenge.

Exercises.
1. Show that the diagonals of a parallelogram bisect each other.
2. If the diagonals of a parallelogram are equal, each of its angles are right

angles.
3. Divide a segment into any number of equal parts.
4. The segments joining the adjacent endpoints of two unequal parallel

segments will meet when extended on the side of the shorter parallel.
5. If two opposite sides of a quadrilateral are parallel but unequal in length

and the other pair are equal but not parallel, then its opposite angles are sup-
plemental.

6. Construct a triangle being given the midpoints of its three sides.

PROPOSITION 1.35. AREAS OF PARALLELOGRAMS ON THE SAME
BASE AND ON THE SAME PARALLELS. Parallelograms on the same base
and between the same parallels are equal in area.

PROOF. Parallelograms on the same base (BC) and between the same par-
allels (AF , BC) are equal in area. The proof follows in three cases.

FIGURE 1.6.11. [1.35], case 1

1. Construct the parallelograms �ADCB, �FDBC on the common base
BC. Notice that side AD of �ADCB and side DF of �FDBC intersect only
at point D. By [1.34], each parallelogram is double the area of the triangle
4BCD. Hence, �ADCB = �FDBC.



1.6. PROPOSITIONS FROM BOOK I: 27-48 85

FIGURE 1.6.12. [1.35], cases 2 and 3

2. Construct the parallelograms �ADCB and �EFCB such that side AD
of �ADCB and side EF of �EFCB intersect at more than one point (Fig.
1.6.12(α)). Because �ABCD is a parallelogram, AD = BC [1.34]; because
�BCEF is a parallelogram, EF = BC. Hence, AD = EF .

Removing ED, we have that the sides BA, AE in 4BAE are respectively
equal to the two sides CD, DF in 4CDF and that ∠BAE = ∠CDF [1.29, Cor.
1]. By [1.4], 4BAE = 4CDF . Notice that

AFCB = �EFCB +4BAE = �ADCB +4CDF

By the equality of the area of the triangles, it follows that �ADCB =

�EFCB.
3. Construct the parallelograms �ADCB and �EFCB such that side AD

of �ADCB and side EF of �EFCB do not intersect (Fig. 1.6.12(β)). As in case
2, we have that AD = BC and EF = BC. Construct segment DE. Then we
have that the sides BA, AE in 4BAE are respectively equal to the two sides
CD,DF in4CDF and that ∠BAE = ∠CDF [1.29]. By [1.4],4BAE = 4CDF .
As in case 2, it follows that �ADCB = �EFCB. �

Alternatively:

PROOF. Construct the triangles 4BAE, 4CDF as well as the segment
DE if necessary to create the quadrilateral AFCB. Notice that4BAE,4CDF
have the sides AB, BE in one respectively equal to the sides DC, CF in the
other [1.34] and that ∠BAE = ∠DCF [1.29, #8]. Hence, 4BAE ∼= 4CDF .
Since

AFCB = �EFCB +4BAE = �ADCB +4CDF

the proof follows. �
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PROPOSITION 1.36. AREAS OF PARALLELOGRAMS ON EQUAL BASES
AND ON THE SAME PARALLELS. Parallelograms on equal bases and on the
same parallels are equal in area.

PROOF. Parallelograms (�ADCB, �EHGF ) on equal bases (BC, FG) and
standing between the same parallels (AH, BG) are equal in area.

FIGURE 1.6.13. [1.36]

Join DE, CF , BE, CH. Since �EHGF is a parallelogram, FG = EH

[1.34]. Since BC = FG by hypothesis, we have that BC = EH [Axiom 1.1].
Since BE, CH are also parallel and join the adjacent endpoints of EH, BC,
�EBCH is a parallelogram.

Again, since the parallelograms �ADCB, �EBCH stand on the same base
BC and between the same parallels BC, AH, �ADCB = �EBCH [1.35]. Sim-
ilarly, �EBCH = �EHGF . By [Axiom 1.1], �ADCB = �EBCH. �

Exercise.
1. Prove this proposition without joining BE, CH.

PROPOSITION 1.37. TRIANGLES OF EQUAL AREA I. Triangles which
stand on the same base and in the same parallels are equal in area.

PROOF. We claim that triangles (4ABC, 4DBC) on the same base (BC)
and standing between the same parallels (AD, BC) are equal in area.

FIGURE 1.6.14. [1.37]

Construct BE ‖ AC and CF ‖ BD [1.31] and extend AD to segments AE
and DF . It follows that the figures �AEBC, �DBCF are parallelograms.
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Since they stand on the same base BC and between the same parallels BC,
EF , �AEBC = �DBCF [1.35].

Notice that area of the triangle 1
2 · 4ABC = �AEBC because the diagonal

AB bisects �AEBC [1.34]. Similarly, 1
2 · 4DBC = �DBCF . Since halves of

equal magnitudes are equal [Axiom 1.7], we have that 4ABC = 4DBC. �

Exercises.
1. If two triangles of equal area stand on the same base but on opposite

sides, the segment joining their vertices is bisected by the base.
2. Construct a triangle equal in area to a given quadrilateral figure.
3. Construct a triangle equal in area to a given polygon.
4. Construct a lozenge equal in area to a given parallelogram and having

a given side of the parallelogram for base.
5. Given the base and the area of a triangle, find the locus of the vertex.

PROPOSITION 1.38. TRIANGLES OF EQUAL AREA II. Triangles which
stand on equal bases and in the same parallels are equal in area.

PROOF. By a construction analogous to [1.37], we have that the triangles
are the halves of parallelograms, standing on equal bases and between the
same parallels. Hence, they are the halves of equal parallelograms [1.36] and
so are equal in area to each other. �

Exercises.
1. Every median of a triangle bisects the triangle.
2. If two triangles have two sides of one respectively equal to two sides

of the other and where the interior angles are supplemental, their areas are
equal.

3. If the base of a triangle is divided into any number of equal segments,
then segments constructed from the vertex to the points of division divide the
whole triangle into as many equal parts.

4. The diagonal of a parallelogram and segments from any point on the
diagonal to the angular points through which the diagonal does not pass divide
the parallelogram into four triangles which are equal (in a two by two fashion).

5. One diagonal of a quadrilateral bisects the other if and only if it also
bisects the quadrilateral.

6. If two triangles4ABC,4ABD stand on the same base AB and between
the same parallels, and if a parallel toAB meets the sidesAC, BC at the points
E, F as well as the sides AD, BD at the points G, H, then EF = GH.
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7. If instead of triangles on the same base we have triangles on equal
bases and between the same parallels, the intercepts made by the sides of the
triangles on any parallel to the bases are equal in length.

8. If the midpoints of any two sides of a triangle are joined, the triangle
formed with the two half sides has an area equal to one-fourth of the whole.

9. The triangle whose vertices are the midpoints of two sides and any point
in the base of another triangle has an area equal to one-fourth the area of that
triangle.

10. Bisect a given triangle by a segment constructed from a given point in
one of the sides.

11. Trisect a given triangle by three segments constructed from a given
point within it.

12. Prove that any segment through the intersection of the diagonals of a
parallelogram bisects the parallelogram.

13. The triangle formed by joining the midpoint of one of the non-parallel
sides of a trapezium to the endpoints of the opposite side is equal in area to
half the area of the trapezium.

PROPOSITION 1.39. TRIANGLES OF EQUAL AREA III. Triangles which
are equal in area and stand on the same base and on the same side of the base
also stand on the same parallels.

PROOF. Equal triangles (4BAC, 4BDC) on the same base (BC) and on
the same side of the base also stand between the same parallels (AD, BC).

FIGURE 1.6.15. [1.39]

Join AD. If AD 6‖ BC, suppose that AE ‖ BC where the segments intersect
at point E. Join EC. Since the triangles 4BEC, 4BAC stand on the same
base BC and between the same parallels BC, AE, we have that 4BEC =

4BAC [1.37]. By hypothesis, 4BAC = 4BDC. Therefore, 4BEC = 4BDC
[Axiom 1.1]. But 4BDC = 4BEC +4EDC, a contradiction. Hence, we must
have that AD ‖ BC. �
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PROPOSITION 1.40. TRIANGLES OF EQUAL AREA IV. Triangles which
are equal in area and stand on equal bases and on the same side of their bases
stand on the same parallels.

PROOF. Triangles which are equal in area (4ABC, 4DEF ) as well as
stand on equal bases (BC, EF ) and on the same side of their bases stand on
the same parallels.

FIGURE 1.6.16. [1.40]

Join AD. If AD 6‖ BF , let AG ‖ BF . Join GF . Since the triangles 4GEF ,
4ABC stand on equal bases BC, EF and between the same parallels BF , AG,
we have that 4GEF = 4ABC [1.38]; but 4DEF = 4ABC by hypothesis.
Hence 4GEF = 4DEF [Axiom 1.1]. However, 4DEF = 4GEF +4DGF , a
contradiction. Therefore, we must have that AD ‖ BF . �

Exercises.
1. Triangles with equal bases and altitudes are equal in area.
2. The segment joining the midpoints of two sides of a triangle is parallel

to the third because the medians from the endpoints of the base to these points
will each bisect the original triangle. Hence, the two triangles whose base is
the third side and whose vertices are the points of bisection are equal in area.

3. The parallel to any side of a triangle through the midpoint of another
bisects the third.

4. The segments which connect the midpoints of the sides of a triangle
divide it into four congruent triangles.

5. The segment which connects the midpoints of two sides of a triangle is
equal in length to half the third side.

6. The midpoints of the four sides of a convex quadrilateral, taken in order,
are the angular points of a parallelogram whose area is equal to half the area
of the quadrilateral.
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7. The sum of the two parallel sides of a trapezium is double the length of
the segment joining the midpoints of the two remaining sides.

8. The parallelogram formed by the segment which connects the midpoints
of two sides of a triangle and any pair of parallels constructed through the
same points to meet the third side is equal in area to half the area of the
triangle.

9. The segment joining the midpoints of opposite sides of a quadrilateral
and the segment joining the midpoints of its diagonals are concurrent.

PROPOSITION 1.41. PARALLELOGRAMS AND TRIANGLES. If a paral-
lelogram and a triangle stand on the same base and between the same parallels,
then the parallelogram is double the area of the triangle.

PROOF. If a parallelogram (�ABCD) and a triangle (4EBC) stand on the
same base (BC) and between the same parallels (AE, BC), then the parallelo-
gram is double the area of the triangle.

FIGURE 1.6.17. [1.41]

Join AC. By [1.34], �ABCD = 2 · 4ABC, and by [1.37], 4ABC = 4EBC.
Therefore, �ABCD = 2 · 4EBC. �

COROLLARY. 1. If a triangle and a parallelogram have equal altitudes and
if the base of the triangle is double of the base of the parallelogram, their areas
are equal.

COROLLARY. 2. Suppose we have two triangles whose bases are two oppo-
site sides of a parallelogram and which have any point between these sides as
a common vertex. Then the sum of the areas of these triangles equals half the
area of the parallelogram.
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PROPOSITION 1.42. CONSTRUCTION OF PARALLELOGRAMS I. Given
an arbitrary triangle and an arbitrary acute angle, it is possible to construct a
parallelogram equal in area to the triangle which also contains the given angle.

PROOF. We wish to construct a parallelogram equal in area to a given tri-
angle (4ABC) which contains an angle equal to a given angle (∠RDS).

FIGURE 1.6.18. [1.42]

Bisect AB at E and join EC. Construct ∠BEF = ∠RDS [1.23], CG ‖ AB,
and BG ‖ EF [1.31]. We claim that �FEBG is the required parallelogram.

Because AE = EB by construction, we have that 4AEC = 4EBC [1.38].
Therefore,4ABC = 2·4EBC. We also have that�FEBG = 2·4EBC because
each stands on the same base EB and between the same parallels EB and CG
[1.41]. Therefore, �FEBG = 4ABC, and by construction, ∠BEF = ∠RDS.

�

PROPOSITION 1.43. COMPLEMENTARY AREAS OF PARALLELOGRAMS.
Parallel segments through any point in one of the diagonals of a parallelogram
divides the parallelogram into four smaller parallelograms: the two through
which the diagonal does not pass are called the complements of the other two,
and these complements are equal in area.

PROOF. We claim that segments which are parallel to the sides of a par-
allelogram �ABCD (specifically EF,GH) and pass through any point (K) on
one of the diagonals (AC) of �ABCD divide�ABCD into four smaller par-
allelograms: the two through which the diagonal does not pass (�EBGK,
�HKFD) are called the complements of the other two. We also claim that
�EBGK = �HKFD.
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FIGURE 1.6.19. [1.43]

Because AC bisects the parallelograms �ABCD, �AEKH, �KGCF , we
have that 4ADC = 4ABC, 4AHK = 4AEK, and 4KFC = 4KGC [1.34].
Hence, we have that

�EBGK = 4ABC −4AEK −4KGC
q

�HKFD = 4ADC −4AHK −4KFC
or simply �HKFD = �EBGK. �

COROLLARY. 1. If through some point K within parallelogram �ABCD
we have constructed parallel segments to its sides in order to make the paral-
lelograms �HKFD, �EBGK equal in area, then K is a point a the diagonal
AC.

COROLLARY. 2. �ABGH = �AEFD and �EBCF = �HGCD.

PROPOSITION 1.44. CONSTRUCTION OF PARALLELOGRAMS II. Given
an arbitrary triangle, an arbitrary angle, and an arbitrary segment, it is pos-
sible to construct a parallelogram equal in area to the triangle which contains
the given angle and has a side equal in length to the given segment.

PROOF. On a given segment (AB), we wish to construct a parallelogram
equal in area to a given triangle (4NPQ) which contains an equal to a given
angle (∠RST ).
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FIGURE 1.6.20. [1.44]

Construct the parallelogram �BEFG such that �BEFG = 4NPQ [1.42]
where ∠GBE = ∠RST and where AB and BE form the segment AE. Also
construct segment AH ‖ BG [1.31]. Extend FG to intersect AH at point H.
Join HB.

Because HA ‖ FE and HF intersects them, the sum ∠AHF + ∠HFE

equals two right angles [1.29]. It follows that the sum ∠BHF + ∠HFE is
less than two right angles since ∠AHF = ∠BHF +∠BHA. By [Axiom 1.12], if
we extend segments HB and FE, they will intersect at some point K. Through
K, construct KL ‖ AB [1.31] and extend HA and GB to intersect KL at points
L and M , respectively. We claim that �BALM is a parallelogram which fulfills
the required conditions.

By [1.43], �BALM = �FGBE. Recall that �FGBE = 4NPQ by con-
struction, and therefore �BALM = 4NPQ. Again, ∠ABM = ∠EBG [1.15],
and ∠EBG = ∠RST by construction. Therefore, ∠ABM = ∠RST . Finally,
�BALM is constructed on the given segment AB. �

PROPOSITION 1.45. CONSTRUCTION OF PARALLELOGRAMS III. Given
an arbitrary angle and an arbitrary polygon, it is possible to construct a par-
allelogram equal in area to the given polygon which contains an angle equal to
the given angle.

PROOF. We wish to construct a parallelogram equal in area to a given poly-
gon (ABCD) which contains an angle equal to a given angle (∠LMN ).
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FIGURE 1.6.21. [1.45]

Join BD. Construct a parallelogram �FEHG equal in area to the trian-
gle 4ABD where ∠FEH = ∠LMN [1.42]. On segment GH, construct the
parallelogram �GHKI such that �GHKI = 4BCD where ∠GHK = ∠LMN

[1.44]. We may continue to this algorithm for any additional triangles that re-
main in ABCD. Upon exhaustion of this process, we claim that �FEKI is a
parallelogram which fulfills the required conditions.

Because ∠LMN = ∠FEH and ∠GHK = ∠LMN by construction, we have
that ∠GHK = ∠FEH. From this, we obtain

∠GHK + ∠GHE = ∠FEH + ∠GHE

But since HG ‖ EF and EH intersects them, the sum ∠FEH + ∠GHE

equals two right angles [1.29]. Hence, the sum of ∠GHK + ∠GHE equals two
right angles, and EH, HK form the segment EK [1.14, Cor. 1].

Similarly, because GH intersects the parallels FG, EK, the alternate an-
gles ∠FGH, ∠GHK are equal [1.29]. From this, we obtain

∠FGH + ∠HGI = ∠GHK + ∠HGI

Since GI ‖ HK and GH intersects them, the sum ∠GHK + ∠HGI equals
two right angles [1.29]. Hence, the sum ∠FGH,+∠HGI equals two right an-
gles, and FG and GI form the segment FI [1.14, Cor. 1].

Again, because �FEHG and �GHKI are parallelograms, EF and KI are
each parallel toGH. By [1.30], we have that EF ‖ KI and EK ‖ FI. Therefore,
�FEKI is a parallelogram. And because the parallelogram�FEHG = 4ABD
by construction and �GHKI = 4BCD, the parallelogram �FEKI = ABCD.
Since ∠FEH = ∠LMN , the proof follows. �

Exercises.
1. Construct a rectangle equal to the sum of 2, 3, ..., n number of polygons.
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2. Construct a rectangle equal in area to the difference in areas of two
given figures.

PROPOSITION 1.46. CONSTRUCTION OF A SQUARE I. Given an arbi-
trary segment, it is possible to construct a square on that segment.

PROOF. We wish to construct a square on a given segment (AB).

FIGURE 1.6.22. [1.46]

Construct AD ⊥ AB [1.11] such that AD = AB [1.3]. Through point D,
construct DC ‖ AB [1.31], and through point B construct BC ‖ AD where
BC and DC intersect only at point C. We claim that �ABCD is the required
square.

Because �ABCD is a parallelogram, AB = CD [1.34], and AB = AD by
construction. Therefore, AD = CD and AD = BC [1.34] and the four sides of
�ABCD are equal. It follows that �ABCD is a lozenge and ∠DAB is a right
angle. Therefore, AC is a square [Def. 1.30]. �

Exercises.
1. Two squares have equal side-lengths if and only if the squares are equal

in area.
2. The parallelograms about the diagonal of a square are squares.
3. If on the four sides of a square, or on the sides which are extended,

points are taken equidistant from the four angles, they will be the angular
points of another square, and similarly for a regular pentagon, hexagon, etc.

4. Divide a given square into five equal parts: specifically, four right trian-
gles and a square.

PROPOSITION 1.47. THE PYTHAGOREAN THEOREM. In a right trian-
gle, the square of the length of the side opposite the right angle (the hypotenuse)
is equal to the sum of the squares of the remaining side-lengths.
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PROOF. In a right triangle (4ABC), we claim that the square on the hy-
potenuse (AB) is equal to the sum of the squares on the other two sides (AC,
BC).

FIGURE 1.6.23. [1.47]

On the sides AB, BC, CA of 4ABC, construct squares [1.46]. Construct
segment CL ‖ AG. Join CG, BK. Because ∠ACB is right by hypothesis and
∠ACH is right by construction, the sum ∠ACB + ∠ACH equals two right an-
gles. Therefore BC, CH form the segment BH [1.14]. Similarly, AC, CD for
the segment AD.

Because ∠BAG, ∠CAK are angles within a square, they are right angles.
Hence, ∠BAG = ∠CAK; to each, add ∠BAC, and we obtain ∠CAG = ∠KAB.

Again, since �BAGF and �CHKA are squares, BA = AG, and CA = AK.
Hence, the two triangles 4CAG, 4KAB have the sides CA, AG in one respec-
tively equal to the sidesKA, AB in the other such that their interior angles are
equal (∠CAG = ∠KAB). By [1.4], 4CAG ∼= 4KAB. But �AGLO = 2 · 4CAG
because they are on the same base AG and between the same parallels (AG
and CL), [1.41]. Similarly, the parallelogram �CHKA = 2 · 4KAB because
they stand on the same base AK and between the same parallels (AK and
BH). Since doubles of equal magnitudes are equal [Axiom 1.6], the parallelo-
gram �AGLO = �KACH. Similarly, it can be shown that the parallelogram
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�OLFB = �DCBE. Hence,

�AGFB = �AGLO ⊕�OLFB = �KACH +�DCBE

. �

Alternatively:

PROOF. Construct the squares as in Fig. 1.6.24.

FIGURE 1.6.24. [1.47], alternate proof

Join CG, BK, and through C construct OL ‖ AG. Notice that ∠GAK =

∠GAC + ∠BAC + ∠BAK and that ∠BAG, ∠CAK are right angles. Removing
∠BAC from each side of the equality, it follows that ∠CAG = ∠BAK.

Hence the triangles 4CAG, 4BAK have the sides CA = AK, AG = AB,
and ∠CAG = ∠BAK; by [1.4], 4CAG ∼= 4BAK. By [1.41], since the paral-
lelograms �GAOL, �AKHC are respectively the doubles in area of the these
triangles, we have that �GAOL = �AKHC. Similarly, �LOBF = �DEBC.
Hence, . �

The alternative proof is shorter since it is not necessary to prove that AC,
CD are in one segment. Similarly, the proposition may be proved by taking any
of the eight figures formed by turning the squares in all possible directions.
Another simplification of the proof can be obtained by considering that the
point A is such that one of the triangles 4CAG, 4BAK can be turned round
it in its own plane until it coincides with the other; hence, they are congruent.

Exercises.
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1. The square on AC is equal in area to the rectangle �AB.AO, and the
square on �BC = �AB.BO. (Note: �AB.AO denotes that rectangle formed by
the segments AB and AO as well as the area of that rectangle.)

2. The square on �CO = �AO.OB.
3. Prove that AC2−BC2 = AO2−BO2

4. Find a segment whose square is equal to the sum of two given squares.
5. Given the base of a triangle and the difference of the squares of its sides,

the locus of its vertex is a segment perpendicular to the base.
6. The transverse segments BK, CG are perpendicular to each other.
7. If EG is joined, then EG2 = AC2 + 4BC2.
8. The square constructed on the sum of the sides of a right triangle ex-

ceeds the square on the hypotenuse by four times the area of the triangle (see
[1.46], Fig. 1.6.20, #3). More generally, if the vertical angle of a triangle is
equal to the angle of a regular polygon of n sides, then the regular polygon of n
sides, constructed on a segment equal to the sum of its sides exceeds the area
of the regular polygon of n sides constructed on the base by n times the area of
the triangle.

9. If AC and BK intersect at P and a segment is constructed through P

which is parallel to BC, meeting AB at Q, then CP = PQ.
10. Each of the triangles 4AGK and 4BEF formed by joining adjacent

corners of the squares is equal in area to the right triangle 4ABC. (Hint: use
trigonometry.)

11. Find a segment whose square is equal to the difference of the squares
on two segments.

12. The square on the difference of the sidesAC, CB is less than the square
on the hypotenuse by four times the area of the triangle.

13. If AE is joined, the segments AE, BK, CL, are concurrent.
14. In an equilateral triangle, three times the square on any side is equal

to four times the square on the perpendicular to it from the opposite vertex.
15. We construct the square �BEFG on BE, a part of the side BC of a

square �ABCD, having its side BG in the continuation of AB. Divide the
figure AGFECD into three parts which will form a square.

16. Four times the sum of the squares on the medians which bisect the
sides of a right triangle is equal to five times the square on the hypotenuse.

17. If perpendiculars fall on the sides of a polygon from any point and if
we divide each side into two segments, then the sum of the squares on one set
of alternate segments is equal to the sum of the squares on the remaining set.
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18. The sum of the squares on segments constructed from any point to one
pair of opposite angles of a rectangle is equal to the sum of the squares on the
segments from the same point to the remaining pair.

19. Divide the hypotenuse of a right triangle into two parts such that the
difference between their squares equals the square on one of the sides.

20. From the endpoints of the base of a triangle, let altitudes fall on the
opposite sides. Prove that the sum of the rectangles contained by the sides and
their lower segments is equal to the square on the base.

PROPOSITION 1.48. THE CONVERSE OF THE PYTHAGOREAN THEO-
REM. If the square on one side of a triangle is equal to the sum of the squares on
the remaining sides, then the angle opposite to the longest side (the hypotenuse)
is a right angle.

PROOF. If the square on one side (AB) of a triangle (4ABC) equals the
sum of the squares on the remaining sides (AC, CB), then the angle (∠ACB)
opposite to that side is a right angle. Or, if AB2 = AC2 + BC2, then ∠ACB is
a right angle.

FIGURE 1.6.25. [1.48]

Construct CD ⊥ CB [1.11] such that CD = CA [1.3]. Join BD. Because
AC = CD, AC2 = CD2. From this, we obtain

AC2 + CB2 = CD2 + CB2

But AC2 + CB2 = AB2 by hypothesis, and CD2 + CB2 = BD2 [1.46]. It
follows that AB2 = BD2; hence AB = BD [1.46, #1].

Again, because AC = CD by construction and CB is a common side to the
triangles 4ACB, 4DCB, we have that AB = DB and ∠ACB = ∠DCB. But
∠DCB is a right angle by construction, and so ∠ACB is a right angle. �
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The above proof forms an exception to Euclid’s demonstrations of converse
propositions. The following is an indirect proof:

FIGURE 1.6.26. [1.48], alternative proof

PROOF. If CB 6⊥ AC, construct CD ⊥ CB such that CD = CB. Join AD.
Then, as before, it can be shown that AD = AB. This is contrary to [1.7].
Hence, ∠ACB is a right angle. �

Examination questions on chapter 1.
1. What is geometry?
2. What is geometric magnitude?
3. Name the primary concepts of geometry. (Ans. Points, lines, surfaces,

and solids.)
4. What kinds of lines exist in geometry (Ans. Straight and curved.)
5. How is a straight line generated? (Ans. By connecting any three

collinear points.)
6. How is a curved line generated? (Ans. By connecting any three non-

collinear points.)
7. How may surfaces be divided? (Ans. Into planes and curved surfaces.)
8. How may a plane surface be generated?
9. Why has a point no dimensions?
10. Does a line have either width nor thickness?
11. How many dimensions does a surface possess?
12. What is plane geometry?
13. What portion of plane geometry forms the subject of this chapter?
14. What is the subject-matter of the remaining chapters?
15. How is a proposition proved indirectly?
16. What is meant by the inverse of a proposition?
17. What proposition is an instance of the Rule of Symmetry?
18. What are congruent figures?
19. What is another way to describe congruent figures? (Ans. They are

said to be identically equal.)
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20. Mention all the instances of equality which are not congruence that
occur in chapter 1.

21. What is the difference between the symbols denoting congruence and
identity?

22. Define adjacent, exterior, interior, and alternate angles, respectively.
23. What is meant by the projection of one line on another?
24. What are meant by the medians of a triangle?
25. What is meant by the third diagonal of a quadrilateral?
26. Mention some propositions in chapter 1 which are particular cases of

more general ones that follow.
27. What is the sum of all the exterior angles of any polygon equal to?
28. How many conditions must be given in order to construct a triangle?

(Ans. Three; such as the three sides, or two sides and an angle, etc.)

Chapter 1 exercises.
1. Any triangle is equal to a fourth part of the area which is formed by

constructing through each vertex a line which is parallel to its opposite side.
2. The three altitudes of the first triangle in #1 are the altitudes at the

midpoints of the sides of the second triangle.
3. Through a given point, construct a line so that the portion intercepted

by the segments of a given angle are bisected at the point.
4. The three medians of a triangle are concurrent. (Note: we are proving

the existence of the centroid of a triangle.)
5. Construct a triangle given two sides and the median of the third side.
6. In every triangle, the sum of the medians is less than the perimeter but

greater than three-fourths of the perimeter.
7. Construct a triangle given a side and the two medians of the remaining

sides.
8. Construct a triangle given the three medians.
9. The angle included between the perpendicular from the vertical angle

of a triangle on the base and the bisector of the vertical angle is equal to half
the difference of the base angles.

10. Find in two parallels two points which are equidistant from a given
point and whose connecting line is parallel to a given line.

11. Construct a parallelogram given two diagonals and a side.
12. The shortest median of a triangle corresponds to the largest side.
13. Find in two parallels two points standing opposite a right angle at a

given point and which are equally distant from it.
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14. The sum of the distances of any point in the base of an isosceles triangle
from the equal sides is equal to the distance of either endpoint of the base from
the opposite side.

15. The three perpendiculars at the midpoints of the sides of a triangle are
concurrent. Hence, prove that perpendiculars from the vertices on the opposite
sides are concurrent [see #2].

16. Inscribe a lozenge in a triangle having for an angle one angle of the
triangle.

17. Inscribe a square in a triangle having its base on a side of the triangle.
18. Find the locus of a point, the sum or the difference of whose distance

from two fixed lines is equal to a given length.
19. The sum of the perpendiculars from any point in the interior of an equi-

lateral triangle is equal to the perpendicular from any vertex on the opposite
side.

20. Find a point in one of the sides of a triangle such that the sum of
the intercepts made by the other sides on parallels constructed from the same
point to these sides are equal to a given length.

21. If two angles exist such that their segments are respectively parallel,
then their bisectors are either parallel or perpendicular.

22. Inscribe in a given triangle a parallelogram whose diagonals intersect
at a given point.

23. Construct a quadrilateral where the four sides and the position of the
midpoints of two opposite sides are given.

24. The bases of two or more triangles having a common vertex are given,
both in magnitude and position, and the sum of the areas is given. Prove that
the locus of the vertex is a straight line.

25. If the sum of the perpendiculars from a given point on the sides of a
given polygon is given, then the locus of the point is a straight line.

26. If 4ABC is an isosceles triangle whose equal sides are AB, AC and
if B′C ′ is any secant cutting the equal sides at B′, C ′, such that AB′ + AC ′ =

AB +AC, prove that B′C ′ > BC.
27. If A, B are two given points and P is a point on a given line L, prove

that the difference between AP and PB is a maximum when L bisects the
angle ∠APB. Show that their sum is a minimum if it bisects the supplement.

28. Bisect a quadrilateral by a segment constructed from one of its angular
points.

29. If AD and BC are two parallel lines cut obliquely by AB and perpen-
dicularly by AC, and between these lines we construct BED, cutting AC at
point E such that ED = 2AB, prove that the angle ∠DBC = 1

3 · ∠ABC.
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30. If O is the point of concurrence of the bisectors of the angles of the tri-
angle 4ABC, if AO is extended to intersect BC at D, and if OE is constructed
from O such that OE ⊥ BC, prove that the ∠BOD = ∠COE.

31. The angle made by the bisectors of two consecutive angles of a convex
quadrilateral is equal to half the sum of the remaining angles; the angle made
by the bisectors of two opposite angles is equal to half the difference of the two
other angles.

32. If in the construction of [1.47] we join EF , KG, then EF 2 + KG2 =

5AB2.
33. Given the midpoints of the sides of a convex polygon of an odd number

of sides, construct the polygon.
34. Trisect a quadrilateral by lines constructed from one of its angles.
35. Given the base of a triangle in magnitude and position and the sum

of the sides, prove that the perpendicular at either endpoint of the base to the
adjacent side and the external bisector of the vertical angle meet on a given
line perpendicular to the base.

36. The bisectors of the angles of a convex quadrilateral form a quadri-
lateral whose opposite angles are supplemental. If the first quadrilateral is a
parallelogram, the second is a rectangle; if the first is a rectangle, the second
is a square.

37. Suppose that the midpoints of the sides AB, BC, CA of a triangle are
respectively D, E, F and that DG ‖ BF and intersects EF . Prove that the
sides of the triangle 4DCG are respectively equal to the three medians of the
triangle 4ABC.

38. Find the path of a pool ball started from a given point which, after
being reflected from the four sides of the table, will pass through another given
point. (Assume that the ball does not enter a pocket.)

39. If two lines bisecting two angles of a triangle and terminated by the
opposite sides are equal, prove that the triangle is isosceles.

40. State and prove the proposition corresponding to #37 when the base
and difference of the sides are given.

41. If a square is inscribed in a triangle, the rectangle under its side and
the sum of the base and altitude is equal to twice the area of the triangle.

42. If AB, AC are equal sides of an isosceles triangle and if BD ⊥ AC,
prove that BC2 = 2AC.CD.

43. Given the base of a triangle, the difference of the base angles, and the
sum or difference of the sides, construct it.

44. Given the base of a triangle, the median that bisects the base, and the
area, construct it.
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45. If the diagonals AC, BD of a quadrilateral ABCD intersect at E and
are bisected at the points F , G, then

4 · 4EFG = (AEB + ECD)−(AED + EBC)

46. If squares are constructed on the sides of any triangle, the lines of
connection of the adjacent corners are respectively:

(a) the doubles of the medians of the triangle;
(b) perpendicular to them.



CHAPTER 2

Rectangles

This chapter proves a number of propositions which demonstrate elemen-
tary algebraic statements that are more familiar to us in the form of equa-
tions. Algebra as we know it had not been developed when Euclid wrote “The
Elements”. Hence, the results are more of historical importance than practical
use except when they appear in subsequent proofs. As such, Book II appears
here in truncated form.

Students should feel free to solve the exercises in this chapter algebraically.
Note that Axioms and Mathematical Properties from chapter 1 will not

generally be cited.

2.1. Definitions

1. If a point C is taken on a segment AB, point C is the point of division
between segments AC and CB.

2. If the segment AB is extended to point C, then point C is called a point
of external division.

FIGURE 2.1.1. [Def. 2.1] above, [Def 2.2] below

3. A parallelogram whose angles are right angles is called a rectangle.

105
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FIGURE 2.1.2. [Def. 2.3 and 2.4]

4. A rectangle is said to be contained by any two adjacent sides. Thus, the
rectangle ABCD is said to be contained by AB, AD, or by AB, BC, etc.

5. The rectangle contained by two separate segments (such as AB and CD
in Fig 2.1.2) is the parallelogram formed by constructing a perpendicular to
AB at A which is equal in length to CD and constructing parallels. The area
of the rectangle may also be denoted as AB.CD.

FIGURE 2.1.3. [Def. 2.6]

6. In any parallelogram, a figure which is composed of either of the paral-
lelograms about a diagonal and the two complements is called a gnomon [see
1.43]. Thus, if we remove either of the parallelograms �AGDE, �OFCH from
the parallelogram �ADCB, the remainder is a gnomon.

2.2. Axioms

1. A semicircle (half-circle) may be constructed given only its center point
and a radius.
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2.3. Propositions from Book II

PROPOSITION 2.1. Suppose that two segments (AB, BD) which intersect
at one and only one point (B) are constructed such that one segment (BD) is
divided into an arbitrary but finite number of segments (BC, CE, EF , FD).
Then the rectangle contained by the two segments AB and BD is equal in area
to the sum of the areas of the rectangles contained by AB and the subsegments
of the divided segment.

FIGURE 2.3.1. [2.1]

COROLLARY. 1. Algebraically, [2.1] states that the area

AB ·BD = AB ·BC +AB · CE +AB · EF +AB · FD

More generally, it states that if y = y1+y2+...+yn, then xy = xy1+xy2+...+xyn.

COROLLARY. 2. The rectangle contained by a segment and the difference
of two other segments equals the difference of the rectangles contained by the
segment and each of the others.

COROLLARY. 3. The area of a triangle is equal to half the rectangle con-
tained by its base and perpendicular.

PROPOSITION 2.2. If a segment (AB) is divided into any two subsegments
at a point (C), then the square on the segment is equal to the sum of the rectan-
gles contained by the whole and each of the subsegments (AC, CB).
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FIGURE 2.3.2. [2.2]

COROLLARY. 1. Algebraically, [2.2] is a special case of [2.1] when n = 2.
Specifically, it states that

AF · FD = AF · FE +AF · ED

or if y = y1 + y2, then xy = xy1 + xy2.

PROPOSITION 2.3. If a segment (AB) is divided into two subsegments (at
C), the rectangle contained by the whole line and either subsegment (CB or CF )
is equal to the square on that segment together with the rectangle contained by
each of the segments.

FIGURE 2.3.3. [2.3]

COROLLARY. 1. Algebraically, [2.3] states that if x = y+z, then xy = y2+yz.

PROPOSITION 2.4. If a segment (AB) is divided into any two parts (at C),
the square on the whole segment is equal to the sum of the squares on the sub-
segments (AC, CB) together with twice the area of their rectangle.
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FIGURE 2.3.4. [2.4]

COROLLARY. 1. Algebraically, [2.4] states that if x = y + z, then x2 =

y2 + 2yz + z2.

COROLLARY. 2. The parallelograms about the diagonal of a square are
squares.

COROLLARY. 3. The square on a segment is equal in area to four times the
square on its half.

COROLLARY. 4. If a segment is divided into any number of subsegments,
the square on the whole is equal to the sum of the squares on all the subseg-
ments, together with twice the sum of the rectangles contained by the several
distinct pairs of subsegments.

Exercises.
1. Prove [2.4] by using [2.2] and [2.3].
2. If from the vertical angle of a right triangle a perpendicular falls on

the hypotenuse, its square equals the area of the rectangle contained by the
segments of the hypotenuse.

3. If from the hypotenuse of a right triangle subsegments are cut off equal
to the adjacent sides, prove that the square on the middle segment is equal in
area to twice the rectangle contained by the segments at either end.

4. In any right triangle, the square on the sum of the hypotenuse and
perpendicular from the right angle on the hypotenuse exceeds the square on
the sum of the sides by the square on the perpendicular.

5. The square on the perimeter of a right-angled triangle equals twice the
rectangle contained by the sum of the hypotenuse and one side and the sum of
the hypotenuse and the other side.
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PROPOSITION 2.5. If a segment (AB) is divided into two equal parts (at C)
and also into two unequal parts (at D), the rectangle (AD, DB) contained by the
unequal parts together with the square on the part between the points of section
() is equal to the square on half the line.

FIGURE 2.3.5. [2.5]

COROLLARY. 1. Algebraically, [2.5] states that

xy =
(x+ y)2

2
+

(x− y)2

2

This may also be expressed as AD.DB + CD2 = CB2 = CA2.

COROLLARY. 2. The rectangle AD.DB is the rectangle contained by the
sum of the segments AC, CD and their difference, and we have proved it equal
to the difference between the square on AC and the square on CD. Hence the
difference of the squares on two segments is equal to the rectangle contained by
their sum and their difference.

COROLLARY. 3. The perimeter of the rectangle AH = 2AB, and is therefore
independent of the position of the point D on the line AB. The area of the
same rectangle is less than the square on half the segment by the square on the
subsegment between D and the midpoint of the line; therefore, when D is the
midpoint, the rectangle will have the maximum area. Hence, of all rectangles
having the same perimeter, the square has the greatest area.

Exercises.
1. Divide a given segment so that the rectangle contained by its parts has

a maximum area.
2. Divide a given segment so that the rectangle contained by its subseg-

ments is equal to a given square, not exceeding the square on half the given
line.
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3. The rectangle contained by the sum and the difference of two sides of a
triangle is equal to the rectangle contained by the base and the difference of
the segments of the base made by the perpendicular from the vertex.

4. The difference of the sides of a triangle is less than the difference of the
segments of the base made by the perpendicular from the vertex.

5. The difference between the square on one of the equal sides of an isosce-
les triangle and the square on any segment constructed from the vertex to a
point in the base is equal to the rectangle contained by the segments of the
base.

6. The square on either side of a right triangle is equal to the rectangle
contained by the sum and the difference of the hypotenuse and the other side.

PROPOSITION 2.6. If a segment (AB) is bisected (at C) and extended to
a segment (BD), the rectangle contained by the segments (AD, BD) made by
the endpoint of the second segment (D) together with the square on half of the
segment (CB) equals the square on the segment between the midpoint and the
endpoint of the second segment.

FIGURE 2.3.6. [2.6]

COROLLARY. 1. Algebraically, [2.6] states that

x(x− b) = (x− b

2
)2 − (

b

2
)2

This may also be expressed as AD.BD + CB2 = CD2.

Exercises.
1. Show that [2.6] is reduced to [2.5] by extending the line in the opposite

direction.
2. Divide a given segment externally so that the rectangle contained by its

subsegments is equal to the square on a given line.
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3. Given the difference of two segments and the rectangle contained by
them, find the subsegments.

4. The rectangle contained by any two segments equals the square on half
the sum minus the square on half the difference.

5. Given the sum or the difference of two lines and the difference of their
squares, find the lines.

6. If from the vertex C of an isosceles triangle a segment CD is constructed
to any point in the extended base, prove that CD2−CB2 = AD.DB.

7. Give a common statement which will include [2.5] and [2.6].

PROPOSITION 2.7. If a segment (AB) is divided into any two parts (at C),
the sum of the squares on the whole segment (AB) and either subsegment (CB)
equals twice the rectangle (double AB, CB) contained by the whole segment and
that subsegment, together with the square on the remaining segment.

FIGURE 2.3.7. [2.7]

COROLLARY. 1. Algebraically, [2.7] states that if x = y + z, then x2 + z2 =

2xz + y2; equivalently, this can be stated as (x− z)2 = y2. Or,

AB2 +BC2 = 2 ·AB ·BC +AC2

COROLLARY. 2. Comparison of [2.4] and [2.7]:
[2.4]: square on sum = sum of squares + twice rectangle
[2.7]: square on difference = sum of squares-twice rectangle

PROPOSITION 2.8. If a segment (AB) is divided into two parts (at C), the
square on the sum of the whole segment (AB) and either subsegment (BC)
equals four times the rectangle contained by the whole line (AB) and that seg-
ment, together with the square on the other segment (AC).
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FIGURE 2.3.8. [2.8]

COROLLARY. 1. Algebraically, [2.8] states that if x = y + z, then

(x+ y)2 = 4xy + z2 = 4xy + (x− y)2

Exercises.
1. In [1.47], if EF , GK are joined, prove that EF 2−CO2 = (AB +BO)2.
2. Prove that GK2−EF 2 = 3AB · (AO−BO).
3. Given that the difference of two segments equals R and the area of their

rectangle equals 4R2, find the segments.

PROPOSITION 2.9. If a segment (AB) is bisected (at C) and divided into two
unequal segments (at D), the sum of the squares on the unequal subsegments
(AD, DB) is double the sum of the squares on half the line (AC) and on the
segment (CD) between the points of section.

FIGURE 2.3.9. [2.9]
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COROLLARY. Algebraically, [2.9] states that (y + z)2 + (y − z)2 = 2(y + z)2.

Exercises.
1. The sum of the squares on the subsegments of a larger segment of fixed

length is a minimum when it is bisected.
2. Divide a given segment internally so that the sum of the squares on the

subsegments equals a given square and state the limitation to its possibility.
3. If a segment AB is bisected at C and divided unequally in D, then

AD2 +DB2 = 2AD.DB + 4CD2.
4. Twice the square on the segment joining any point in the hypotenuse of

a right isosceles triangle to the vertex is equal to the sum of the squares on the
segments of the hypotenuse.

5. If a segment is divided into any number of subsegments, the contin-
ued product of all the parts is a maximum and the sum of their squares is a
minimum when all the parts are equal.

PROPOSITION 2.10. If a segment (AB) is bisected (at C) and is extended to
a segment (BD), the sum of the squares on the segments (AD, DB) made by the
endpoint (D) is equal to twice the square on half the line and twice the square
on the segment between the points of that section.

FIGURE 2.3.10. [2.10]

COROLLARY. 1. Algebraically, [2.10] states the same result as Proposition
2.9: (y + z)2 + (y − z)2 = 2(y + z)2.

COROLLARY. 2. The square on the sum of any two segments plus the square
on their difference equals twice the sum of their squares.
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COROLLARY. 3. The sum of the squares on any two segments is equal to
twice the square on half the sum plus twice the square on half the difference of
the lines.

COROLLARY. 4. If a segment is cut into two unequal subsegments and
also into two equal subsegments, the sum of the squares on the two unequal
subsegments exceeds the sum of the squares on the two equal subsegments by
the sum of the squares of the two differences between the equal and unequal
subsegments.

Exercises.
1. Given the sum or the difference of any two segments and the sum of

their squares, find the segments.
2. The sum of the squares on two sides AC, CB of a triangle is equal

to twice the square on half the base AB and twice the square on the median
which bisects AB.

3. If the base of a triangle is given both in magnitude and position and the
sum of the squares on the sides in magnitude, the locus of the vertex is a circle.

4. If in 4ABC a point D on the base BC exists such that BA2 + BD2 =

CA2 + CD2, prove that the midpoint of AD is equally distant from both B and
C.

PROPOSITION 2.11. It is possible to divide a given segment (AB) into two
segments (at H) such that the rectangle (AB, BH) contained by the whole line
and one segment is equal in area to the square on the other segment (AH).

FIGURE 2.3.11. [2.11]

Definition: A segment divided as in this proposition is said to be divided
in “extreme and mean ratio.”
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COROLLARY. 1. Algebraically, [2.11] solves the equation AB · BH = AH2,
or a(a− x) = x2. Specifically,

a(a− x) = x2

a2 − ax = x2

x2 + ax = a2

=⇒
x = −a2 (1±

√
5)

Note that γ = 1+
√
5

2 is called the Golden Ratio1.

COROLLARY. 2. The segment CF is divided in “extreme and mean ratio” at
A.

COROLLARY. 3. If from the greater segment CA of CF we take a segment
equal to AF , it is evident that CA will be divided into parts respectively equal
to AH, HB. Hence, if a segment is divided in extreme and mean ratio, the
greater segment will be cut in the same manner by taking on it a part equal to
the less, and the less will be similarly divided by taking on it a part equal to the
difference, and so on.

FIGURE 2.3.12. [2.11], Cor. 4

COROLLARY. 4. Let AB be divided in “extreme and mean ratio” at C. It
is evident ([2.11], Cor. 2) that AC > CB. Cut off CD = CB. Then by ([2.11],
Cor. 2), AC is cut in “extreme and mean ratio” at D, and CD > AD. Next, cut
off DE = AD, and in the same manner we have DE > EC, and so on. Since
CD > AD, it is evident that CD is not a common measure of AC and CB, and
therefore not a common measure of AB and AC. Similarly, AD is not a common
measure of AC and CD and so is therefore not a common measure of AB and
AC. Hence, no matter how far we proceed, we cannot arrive at any remainder
which will be a common measure of AB and AC. Hence, the parts of a line
divided in “extreme and mean ratio” are incommensurable (i.e., their ratio will
never be a rational number).

1https://en.wikipedia.org/wiki/Golden_ratio

https://en.wikipedia.org/wiki/Golden_ratio
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See also [6.30] where we divide a given segment (AB) into its “extreme
and mean ratio”; that is, we divide a line segment AB at point C such that
AB ·BC = AC2.

Exercises.
1. The difference between the squares on the segments of a line divided in

“extreme and mean ratio” is equal to their rectangle.
2. In a right triangle, if the square on one side is equal to the rectangle con-

tained by the hypotenuse and the other side, the hypotenuse is cut in “extreme
and mean ratio” by the perpendicular on it from the right angle.

3. If AB is cut in “extreme and mean ratio” at C, prove that
(a) AB2 +BC2 = 3AC2

(b) (AB +BC)2 = 5AC2

4. The three lines joining the pairs of points G, B; F , D; A, K, in the
construction of [2.11] are parallel.

5. If CH intersects BE at O, AO ⊥ CH.
6. If CH is extended, then CH ⊥ BF .
7. Suppose that4ABC is a right-angled triangle having AB = 2AC. If AH

is equal to the difference between BC and AC, then AB is divided in “extreme
and mean ratio” at H.

PROPOSITION 2.12. On an obtuse-angled triangle (4ABC), the square on
the side opposite the obtuse angle (AB) exceeds the sum of the squares on the
sides (BC, CA) containing the obtuse angle by twice the rectangle contained by
either of them (BC) and its extension (CD) to meet a perpendicular (AD) on it
from the opposite angle.

FIGURE 2.3.13. [2.12]

COROLLARY. 1. Algebraically, [2.12] states that in an obtuse triangleAB2 =

AC2 + BC2 + 2 · BC · CD. This is extremely close to stating the law of cosines:
c2 = a2 + b2–2ab · cos(α).
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COROLLARY. 2. If perpendiculars from A and B to the opposite sides meet
them in H and D, the rectangle AC.CH is equal in area to the rectangle BC.CD
(or �AC.CH = �BC.CD).

Exercises.
1. If the angle ∠ACB of a triangle is equal to twice the angle of an equilat-

eral triangle, then AB2 = BC2 + CA2 +BC.CA.
2. Suppose that ABCD is a quadrilateral whose opposite angles at points

B and D are right, and when AD, BC are extended meet at E, prove that
AE.DE = BE.CE.

3. If 4ABC is a right triangle and BD is a perpendicular on the hy-
potenuse AC, prove that AB.DC = BD.BC.

4. If a segment AB is divided at C so that AC2 = 2CB2, prove that AB2 +

BC2 = 2AB.AC.
5. If AB is the diameter of a semicircle, find a point C in AB such that,

joining C to a fixed point D in the circumference and constructing a perpen-
dicular CE intersecting the circumference at E, then CE2−CD2 is equal to a
given square.

6. If the square of a segment CD, constructed from the angle C of an
equilateral triangle 4ABC to a point D on the extended side AB is equal to
2AB2, prove that AD is cut in “extreme and mean ratio” at B.

PROPOSITION 2.13. In any triangle (4ABC), the square on any side op-
posite an acute angle (at C) is less than the sum of the squares on the sides
containing that angle by twice the rectangle (BC, CD) contained by either of
them (BC) and the intercept (CD) between the acute angle and the foot of the
perpendicular on it from the opposite angle.

FIGURE 2.3.14. [2.13]

COROLLARY. 1. Algebraically, [2.13] states the same result as [2.12].



2.3. PROPOSITIONS FROM BOOK II 119

Exercises.
1. If the angle at point C of the4ACB is equal to an angle of an equilateral

triangle, then AB2 = AC2 +BC2−AC.BC.
2. The sum of the squares on the diagonals of a quadrilateral, together

with four times the square on the line joining their midpoints, is equal to the
sum of the squares on its sides.

3. Find a point C in a given extended segment AB such that AC2 +BC2 =

2AC.BC.

PROPOSITION 2.14. CONSTRUCTION OF A SQUARE II. It is possible to
construct a square equal to a given an arbitrary polygon.

PROOF. We wish to construct a square equal in area to a given polygon
(MNPQ).

FIGURE 2.3.15. [2.14]

Construct the rectangle �ABCD equal in area to MNPQ [1.45]. If the
adjacent sides of �ABCD (AB, BC) are equal, �ABCD is a square and the
proof follows.

Otherwise, extend AB to E such that BE = BC. Bisect AE at F , and with
F as center and FE as radius, construct the semicircle AGE. Extend CB to
the semicircle at G. We claim that the square constructed on BG is equal in
area to MNPQ.

To see this, join FG. Because AE is divided equally at F and unequally
at B, AB.BE + FB2 = FE2 = FG2 [2.5]. But FG2 = FB2 + BG2 by [1.47].
Therefore, the rectangle AB.BE + FB2 = FB2 +BG2.
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Subtracting FB2 from both sides of the equality, we have that the rectangle
AB.BE = BG2. Since BE = BC, the rectangle AB.BE = �ABCD. Therefore
BG2 = �ABCD which is equal in area to the given polygon, MNPQ. �

COROLLARY. 1. The square on the perpendicular from any point on a semi-
circle to the diameter is equal to the rectangle contained by the segments of the
diameter.

Exercises.
1. Given the difference of the squares on two segments and their rectangle,

find the segments.

Examination questions on chapter 2.
1. What is the subject-matter of chapter 2? (Ans. Theory of rectangles.)
2. What is a rectangle? A gnomon?
3. What is a square inch? A square foot? A square mile? (Ans. The square

constructed on a line whose length is an inch, a foot, or a mile.)
4. When is a line said to be divided internally? When externally?
5. How is the area of a rectangle determined?
6. How is a line divided so that the rectangle contained by its segments is

a maximum?
7. How is the area of a parallelogram found?
8. What is the altitude of a parallelogram whose base is 65 meters and

area 1430 square meters?
9. How is a segment divided when the sum of the squares on its subseg-

ments is a minimum?
10. The area of a rectangle is 108.60 square meters and its perimeter is

48.20 linear meters. Find its dimensions.
11. What proposition in chapter 2 expresses the distributive law of multi-

plication?
12. On what proposition is the rule for extracting the square root founded?
13. Compare [1.47], [2.12], and [2.13].
14. If the sides of a triangle are expressed algebraically by x2 + 1, x2−1,

and 2x units, respectively, prove that it is a right triangle.
15. How would you construct a square whose area would be exactly an

acre? Give a solution using [1.47].
16. What is meant by incommensurable lines? Give an example from chap-

ter 2.
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17. Prove that a side and the diagonal of a square are incommensurable.
18. The diagonals of a lozenge are 16 and 30 meters respectively. Find the

length of a side.
19. The diagonal of a rectangle is 4.25 inches, and its area is 7.50 square

inches. What are its dimensions?
20. The three sides of a triangle are 8, 11, 15. Prove that it has an obtuse

angle.
21. The sides of a triangle are 13, 14, 15. Find the lengths of its medians.

Also find the lengths of its perpendiculars and prove that all its angles are
acute.

22. If the sides of a triangle are expressed by m2 + n2, m2−n2, and 2mn

linear units, respectively, prove that it is right-angled.

Chapter 2 exercises.
1. The squares on the diagonals of a quadrilateral are together double the

sum of the squares on the segments joining the midpoints of opposite sides.
2. If the medians of a triangle intersect at O, then AB2 + BC2 + CA2 =

3(OA2 +OB2 +OC2).
3. Through a given point O, construct three segments OA, OB, OC of given

lengths such that their endpoints are collinear and that AB = BC.
4. If in any quadrilateral two opposite sides are bisected, the sum of the

squares on the other two sides, together with the sum of the squares on the
diagonals, is equal to the sum of the squares on the bisected sides together
with four times the square on the line joining the points of bisection.

5. If squares are constructed on the sides of any triangle, the sum of the
squares on the segments joining the adjacent corners is equal to three times
the sum of the squares on the sides of the triangle.

6. Divide a given segment into two parts so that the rectangle contained
by the whole and one segment is equal to any multiple of the square on the
other segment.

7. If P is any point in the diameter AB of a semicircle and CD is any
parallel chord, then CP 2 + PD2 = AP 2 + PB2.

8. If A, B, C, D are four collinear points taken in order, then AB.CD +

BC.AD = AC.BD.
9. Three times the sum of the squares on the sides of any pentagon exceeds

the sum of the squares on its diagonals by four times the sum of the squares
on the segments joining the midpoints of the diagonals.

10. In any triangle, three times the sum of the squares on the sides is equal
to four times the sum of the squares on the medians.
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11. If perpendiculars are constructed from the angular points of a square to
any line, the sum of the squares on the perpendiculars from one pair of opposite
angles exceeds twice the rectangle of the perpendiculars from the other pair by
the area of the square.

12. If the base AB of a triangle is divided at D such that mAD = nBD,
then mAC2 + nBC2 = mAD2 + nDB2 + (m+ n)CD2.

13. If the point D is taken on the extended segment AB such that mAD =

nDB, then mAC2−nBC2 = mAD2−nDB2 + (m−n)CD2.
14. Given the base of a triangle in magnitude and position as well as the

sum or the difference of m times the square on one side and n times the square
on the other side in magnitude, then the locus of the vertex is a circle.

15. Any rectangle is equal in area to half the rectangle contained by the
diagonals of squares constructed on its adjacent sides.

16. If A, B, C, ... are any finite number of fixed points and P a movable
point, find the locus of P if AP 2 +BP 2 + CP 2 + ... is given.

17. If the area of a rectangle is given, its perimeter is a minimum when it
is a square.

18. Construct equilateral triangles on subsegments AC, CB of segment
AB. Prove that if D, D′ are the centers of circles constructed about these
triangles, then 6DD′2 = AB2 +AC2 + CB2.

19. If a, b denote the sides of a right triangle about the right angle and p

denotes the perpendicular from the right angle on the hypotenuse, then 1
a2 +

1
b2 = 1

c2 .
20. If upon the greater subsegment AB of a segment AC which is divided

in extreme and mean ratio, an equilateral triangle 4ABD is constructed and
CD is joined, then CD2 = 2AB2.

21. If a variable line, whose endpoints rest on the circumferences of two
given concentric circles, stands opposite a right angle at any fixed point, then
the locus of its midpoint is a circle.



CHAPTER 3

Circles

Axioms and Mathematical Properties from chapters 1 and 2 will generally
not be be cited. This will be a rule that we will apply to subsequent chapters,
mutatis mutandis.

3.1. Definitions

1. Equal circles are those whose radii are equal.
(Note: This is a theorem, and not a definition. If two circles have equal

radii, they are evidently congruent figures and therefore equal. Using this
method to prove the theorem, [3.26]-[3.29] follow immediately.)

2. A chord of a circle is the segment joining two points on its circumference.
3. A segment, ray, or straight line is said to touch a circle when it intersects

the circumference of a circle at one and only one point. The segment, ray, or
straight line is called a tangent to the circle, and the point where it touches the
circumference is called the point of intersection.

FIGURE 3.1.1. [Def. 3.3] CD touches ◦FEB at B. Or, CD is
tangent to ◦FEB and B is the point of intersection between
◦FEB and CD.

(Note: Modern geometry no longer uses Euclid’s definitions for curves, tan-
gents, etc. However, it would be far easier to write a new geometry textbook

123
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from first principles rather than attempt to update each of Euclid’s defini-
tions and begin again1. However, Euclid’s powerful presentation of complex
ideas from simple axioms remains a model for how mathematics should be ap-
proached, and students who attempt to master Euclid will find 21st century
mathematics more straightforward by doing so.)

4. Circles are said to touch one another when they intersect at one and
only one point. There are two types of contact:

a) When one circle is external to the other.
b) When one circle is internal to, or inside, the other.

FIGURE 3.1.2. [Def. 3.4] The circles ◦BEH and ◦IEJ touch
externally, and the circles ◦BEH and ◦BFG touch internally.

5. A segment of a circle is a figure bounded by a chord and one of the arcs
into which it divides the circumference.

FIGURE 3.1.3. [Def. 3.5] The chord CD of the circle ◦DEB di-
vides the circle into segments DEC and DBC. Segment DEC
is bounded by chord CD and arc DEC, and segment DBC is
bounded by chord CD and arc DBC.

1One such attempt is “The Foundations of Geometry” by David Hilbert, http://www.gutenberg.
org/ebooks/17384.

http://www.gutenberg.org/ebooks/17384
http://www.gutenberg.org/ebooks/17384
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6. Chords are said to be equally distant from the center when the perpen-
diculars constructed to them from the center are equal in length.

7. The angle contained by two lines constructed from any point on the
circumference of a segment to the endpoints of its chord is called an angle in
the segment.

8. The angle of a segment is the angle contained between its chord and the
tangent at either endpoint.

(Note: A theorem is tacitly assumed in this definition, specifically that the
angles which the chord makes with the tangent at its endpoints are equal. We
shall prove this later on.)

9. An angle in a segment is said to stand on its conjugate arc.
10. Similar segments of circles are those that contain equal angles.
11. A sector of a circle is formed of two radii and the arc included between

them.

FIGURE 3.1.4. [Def. 3.11] ◦DEB with radii AD and AC forms
the sectors DACE and DACB.

12. Concentric circles are those which have the same center point.
13. Points which lie on the circumference of a circle are called concyclic.
14. A cyclic quadrilateral is one which is inscribed in a circle.
15. A modern definition on an angle2:
In geometry, an angle is the figure formed by two rays called the sides of

the angle which share a common endpoint called the vertex of the angle. This
measure is the ratio of the length of a circular arc to its radius, where the arc
is centered at the vertex and delimited by the sides.

The size of a geometric angle is usually characterized by the magnitude
of the smallest rotation that maps one of the rays into the other. Angles that
have the same size are called congruent angles.

2http://en.wikipedia.org/wiki/Angle

http://en.wikipedia.org/wiki/Angle
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141_home_daniel_Documents_Euclid_Project_images-book3_Fig7p1p5.pdf

FIGURE 3.1.5. The measure of angle θ is the quotient of s and
r. Author: Gustavb, released under the terms of the GNU Free
Documentation License, Version 1.2.

In order to measure an angle θ, a circular arc centered at the vertex of the
angle is constructed, e.g. with a pair of compasses. The length of the arc is
then divided by the radius of the arc r, and possibly multiplied by a scaling
constant k (which depends on the units of measurement that are chosen):

θ = ks/r

The value of θ thus defined is independent of the size of the circle: if the
length of the radius is changed, then the arc length changes in the same pro-
portion, and so the ratio s/r is unaltered.

A number of units are used to represent angles: the radian and the degree
are by far the most commonly used.

Most units of angular measurement are defined such that one turn (i.e. one
full circle) is equal to n units, for some whole number n. In the case of degrees,
n = 360. A turn of n units is obtained by setting k = n

2π in the formula above.
The radian is the angle stands opposite (opposed) by an arc of a circle that

has the same length as the circle’s radius (k = 1 when k = n
2π ). One turn is

2π radians, and one radian is 180/π degrees, or about 57.2958 degrees. The
radian is abbreviated rad, though this symbol is often omitted in mathemati-
cal texts, where radians are assumed unless specified otherwise. When radi-
ans are used, angles are considered as dimensionless. The radian is used in
virtually all mathematical work beyond simple practical geometry, due to the
"natural" properties that the trigonometric functions display when their argu-
ments are in radians. The radian is the (derived) unit of angular measurement
in the SI system.

142_home_daniel_Documents_Euclid_Project_images-book3_Fig7p1p6.pdf

FIGURE 3.1.6. θ = s/r rad = 1 rad. Author: Gustavb, released
under the terms of the GNU Free Documentation License, Ver-
sion 1.2.

The degree, denoted by a small superscript circle (◦), is 1/360 of a turn,
so one turn is 360◦. Fractions of a degree may be written in normal decimal
notation (e.g. 3.5◦ for three and a half degrees), but the "minute" and "second"
sexagesimal subunits of the "degree-minute-second" system are also in use,
especially for geographical coordinates and in astronomy and ballistics.
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Although the definition of the measurement of an angle does not support
the concept of a negative angle, it is frequently useful to impose a conven-
tion that allows positive and negative angular values to represent orientations
and/or rotations in opposite directions relative to some reference.

In a two-dimensional Cartesian coordinate system, an angle is typically
defined by its two sides, with its vertex at the origin. The initial side is on the
positive x-axis, while the other side or terminal side is defined by the measure
from the initial side in radians, degrees, or turns. Positive angles represent
rotations toward the positive y-axis, and negative angles represent rotations
toward the negative y-axis. When Cartesian coordinates are represented by
standard position, defined by the x-axis rightward and the y-axis upward, pos-
itive rotations are anticlockwise and negative rotations are clockwise.

FIGURE 3.1.7. ∠CBA measured as a positive angle, ∠EDF
measured as a negative angle

3.2. Propositions from Book III

PROPOSITION 3.1. THE CENTER OF A CIRCLE I. It is possible to locate
the center of a circle.

PROOF. We wish to find the center of a given circle (◦ADB).
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FIGURE 3.2.1. [3.1]

Take any two points A, B in the circumference. Join AB and bisect AB at
C. Construct CD ⊥ AB and extend CD to intersect the circumference at E.
Bisect DE at F . We claim that F is the center of ◦ADB.

Suppose instead that point G which does not lie on chord DE is the center
of ◦ADB. Join GA, GC, GB. In the triangles 4ACG, 4BCG, we have AC =

CB by construction, GA = GB (because they are radii by hypothesis), and the
triangles share side CG in common. By [1.8], we have that ∠ACG = ∠BCG.
Therefore, each angle is a right angle. But ∠ACD is right by construction;
therefore ∠ACG = ∠ACD and ∠ACG = ∠ACD + ∠DCG, a contradiction.

Hence no point can be the center other than a point on chord DE. By the
definition of a circle, it follows that F , the midpoint of DE, must be the center
of ◦ADB. �

Alternatively:

PROOF. Because ED bisects AB at a right angle, every point equally dis-
tant from the points A, B must lie on ED [1.10, #2]. However, the center is also
equally distant from A and B. Hence the center must lie on ED. And since it
must be equally distant from E and D, it must be the midpoint of ED. �

COROLLARY. 1. The line which bisects any chord of a circle perpendicularly
passes through the center of the circle.

COROLLARY. 2. The locus of the centers of the circles which pass through
two fixed points is the line bisecting at right angles the line that connects the
two points.
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COROLLARY. 3. If A, B, C are three points on the circumference of a circle,
the lines which perpendicularly bisect the chords AB, BC intersect in the center
of the circle.

PROPOSITION 3.2. POINTS ON A LINE INSIDE AND OUTSIDE A CIR-
CLE. If any two points are chosen from the circumference of a circle and a line
is constructed on these points, then:

1. The points between the endpoints on the circumference form a chord (i.e.,
they lie inside the circle).

2. The remaining points of the straight line lie outside the circle.

PROOF. If any two points (A, B) are taken on the circumference of a circle
(◦FGH), we claim that:

1. If we construct the line AB, then that segment of the line which lies on
and between the points A, B lies within the circle; that is, the line AB contains
a segment which is a chord of ◦FGH.

2. The remaining points of AB lie outside of the circle.

FIGURE 3.2.2. [3.2]

We prove each claim separately:
1. Let C be the center of ◦FGH. Take any point D on the segment AB

(as opposed to the line AB) and join CA, CD, and CB. Notice that the angle
∠ADC is greater than ∠ABC [1.16]; however, ∠ABC = ∠CAB because4CAB
is isosceles [1.5]. Therefore, the angle ∠ADC > ∠CAB; it also follows that
∠ADC > ∠CAD. Hence, AC > CD [1.29], and so CD is less than the radius
of ◦FGH. Consequently, the point D must lie within the circle [Def. 1.23].
Similarly, every other point between A and B lies within ◦FGH. Finally, since
A and B are points in the circumference of ◦FGH, AB is a chord.

2. Extend the segment AB in both directions and let E be any point on
the extension of AB. Wlog, we assume that E lies closer to B than to A. Join
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CE. Then the angle ∠ABC > ∠AEC [1.16]; therefore ∠CAB > ∠AEC. Hence
CE > CA, and so the point E lies outside ◦FGH. �

COROLLARY. 1. Three collinear points cannot be concyclic.

COROLLARY. 2. A straight line, ray, or segment cannot meet a circle at
more than two points.

COROLLARY. 3. The circumference of a circle is everywhere concave to-
wards the center.

PROPOSITION 3.3. CHORDS I. Suppose there exist two chords of a circle,
one of which passes through the center of the circle. The chord which does not
pass through the center is bisected by the chord through the center if and only
if the chords are perpendiculars.

PROOF. Suppose there exist two chords (AB, CD) of a circle (◦ACD), one
of which passes through the center of the circle (AB). We claim that the other
chord (CD) is bisected if and only if AB ⊥ CD.

FIGURE 3.2.3. [3.3]

Suppose first that AB bisects CD. We wish to show that AB ⊥ CD.
Let O be the center of ◦ACD. Join OC, OD. Then the triangles 4CEO,

4DEO have CE = ED by hypothesis, OC = OD since each are radii of ◦ACD,
and both triangles have EO in common. By [1.8], ∠CEO = ∠DEO; since they
are also adjacent angles, each angle is a right angle. Hence AB ⊥ CD.

Now suppose that AB ⊥ CD. We wish to show that AB bisects CD.
Because OC = OD, we have that ∠OCD = ∠ODC by [1.5]. Also ∠CEO =

∠DEO by hypothesis, since each angle is right. Therefore, the triangles4CEO,
4DEO have two angles in one respectively equal to two angles in the other
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and the side EO common. By [1.26], CE = ED. Since CD = CE + ED, CD is
bisected at E by AB. �

The second part of the proposition may also be proved in this way:

PROOF. By [1.47], we have that

OC2 = OE2 + EC2

OD2 = OE2 + ED2

Since we also have that OC2 = OD2, it follows that EC2 = ED2, and so
EC = ED. �

COROLLARY. 1. The line which bisects perpendicularly one of two parallel
chords of a circle bisects the other perpendicularly.

COROLLARY. 2. The locus of the midpoints of a system of parallel chords of
a circle is the diameter of the circle perpendicular to them all.

COROLLARY. 3. If a line intersects two concentric circles, its intercepts be-
tween the circles are equal in length.

COROLLARY. 4. The line joining the centers of two intersecting circles bi-
sects their common chord perpendicularly.

Observation: [3.1], [3.3], and [3.3, Cor. 1] are related such that if any one
of them is proved directly, then the other two follow by the Rule of Symmetry.

Exercises.
1. If a chord of a circle stands opposite a right angle at a given point, the

locus of its midpoint is a circle.
2. Prove [3.3, Cor. 1].
3. Prove [3.3, Cor. 4].

PROPOSITION 3.4. CHORDS II. If two chords, one of which is not a diam-
eter, intersect one another in a circle, they do not bisect each another.
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PROOF. In a circle ◦ACB, construct two chords (AB, CD) which are not
both diameters and intersect each other at a point (E). We claim that AB and
CD do not bisect each other.

FIGURE 3.2.4. [3.4]

Let O be the center of ◦ACB. Since AB, CD are not both diameters, we
may join OE.

Suppose that AE = EB and CE = ED. Since OE, which intersects the
center of the circle, bisects AB, which does not intersect the center of the circle,
we must have that OE ⊥ AB. Similarly, OE ⊥ CD. Hence, ∠AEO = ∠CEO

where ∠CEO = ∠CEA + ∠AEO, a contradiction. Therefore, AB and CD do
not bisect each other. �

COROLLARY. 1. If two chords of a circle bisect each other, they are both
diameters. (This is the contrapositive statement of [3.4].)

PROPOSITION 3.5. NON-CONCENTRIC CIRCLES I. If two circles inter-
sect one another at two points, they are not concentric. (See [Def. 2.13].)

PROOF. If two circles (◦ABC, ◦ABD) intersect at two points (A and B), we
claim that the circles are not concentric.
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FIGURE 3.2.5. [3.5]

-
Suppose that ◦ABC, ◦ABD share a common center, O. Join OA and con-

struct a segment OD (where B 6= D) which cuts the circles at C and D, respec-
tively. Because O is the center of the circle ◦ABC, OA = OC. Because O is the
center of the circle ◦ABD, OA = OD. Hence, OC = OD and OD = OC + CD,
a contradiction. Therefore, ◦ABC, ◦ABD are not concentric. �

Exercises.
1. If two non-concentric circles intersect at one point, they must intersect

at another point. For let O, O′ be the centers of these circles and A be their
point of intersection. From A, let AC be the perpendicular on the segment
OO′. Extend AC to B, making BC = CA. It follows that B is another point of
intersection.

2. Two circles cannot have three points in common without coinciding.

PROPOSITION 3.6. NON-CONCENTRIC CIRCLES II. If one circle inter-
sects another circle internally at one and only one point, then the circles are not
concentric.

PROOF. If a circle (◦ABC) touches another circle (◦ADE) internally at one
and only one point (A), then the circles are not concentric.
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FIGURE 3.2.6. [3.6]

To prove this, suppose that the circles are concentric and let O be the cen-
ter of each. Join OA, and construct any other segment OD, cutting the circles
at the points B, D respectively. Because O is the center of each circle by hy-
pothesis, OA = OB and OA = OD; therefore, OB = OD and OB + BD = OD,
a contradiction. Hence, the circles are not concentric. �

PROPOSITION 3.7. UNIQUENESS OF SEGMENT LENGTHS FROM A
POINT ON THE DIAMETER OTHER THAN THE CENTER. If on the diame-
ter of a circle a point is taken (other than the center of the circle) and from that
point segments are constructed to the circumference, the longest segment will
contain the center of the circle and the shortest segment will form a diameter
with the longest segment. As for the remaining segments, those with endpoints
on the circumference nearer to the endpoint on the circumference of the longest
segment will be longer than segments with endpoints on the circumference far-
ther from the endpoint of the longest segment. Also, only two equal straight-line
segments may be constructed from that point to the circumference, one on each
side of the least segment constructed from the given point to circumference.

PROOF. If from any point (P ) on a diameter of a circle (other than the
center, O) we construct segments (PA, PB, PC, etc.) to the circumference, one
of which passes through the center (PA), we claim that:

1. The longest is the segment which passes through the center (PA).
2. The extension of this segment in the opposite direction (PE) is the short-

est segment.
3. Of the others, the segment which is nearest to the segment which passes

through the center (PA) is greater than every segment which is more remote
(i.e., PA > PB > PC > PD).
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4. Any two segments making equal angles with the diameter and on oppo-
site sides of the diameter are equal in length (i.e., PD = PF ).

5. More than two equal segments cannot be constructed from the given
point (P ) to the circumference.

FIGURE 3.2.7. [3.7] ◦EAG

We prove each claim separately:
1. The longest is the segment which passes through the center (PA).
Let O be the center of ◦EAG. Join OB. Clearly, OA = OB. From this we

obtain PA = OA+OP = OB+OP . Since OB+OP > PB [1.20], it follows that
PA > PB.

2. The extension of this segment in the opposite direction (PE) is the short-
est segment.

Join OD. By [1.20], OP + PD > OD. Since, OD = OE, it follows that
OP +PD > OE. Subtracting OP from each side of the inequality, we have that
PD > PE.

3. Of the others, the segment which is nearest to the segment which passes
through the center (PA) is greater than every segment which is more remote
(i.e., PA > PB > PC > PD).

Join OC. The two triangles 4POB, 4POC have the sides OB = OC with
OP in common. But the angle ∠POB > ∠POC since ∠POB = ∠POC+∠BOC.
By [1.24], we have that PB > PC. Similarly, PC > PD.

4. Any two segments making equal angles with the diameter and on oppo-
site sides of the diameter are equal in length (i.e., PD = PF ).



3.2. PROPOSITIONS FROM BOOK III 136

At O, construct ∠POF = ∠POD and join PF . Consider the triangles
4POD, 4POF : each shares side OP , OD = OF , and ∠POD = ∠POF by con-
struction. By [1.4], 4POD ∼= 4POF , and so ∠OPF = ∠OPD and PD = PF .
The proof follows.

5. More than two equal segments cannot be constructed from the given
point (P ) to the circumference.

We claim that a third segment cannot be constructed from P equal to PD =

PF . Suppose this were possible and let PG = PD. Then PG = PF ; that is,
the segment which is nearest to the segment through the center is equal to the
one which is more remote; this contradicts point 3, above. Hence, three equal
segments cannot is constructed from P to the circumference. �

COROLLARY. 1. If two equal segments PD, PF are constructed from a
point P to the circumference of a circle, the diameter through P bisects the angle
∠DPF formed by these segments.

COROLLARY. 2. If P is the common center of circles whose radii are PA,
PB, PC, PD, etc., then:

(a) The circle whose radius is the maximum segment (PA) lies outside the
circle ◦ADE and touches it at A [Def. 3.4].

(b) The circle whose radius is the minimum segment (PE) lies inside the
circle ◦ADE and touches it at E.

(c) A circle having any of the remaining radii (such as PD) cuts ◦ADE at
two points (D, F ).

Observation: [3.7] is a good illustration of the following important defini-
tion: if a geometrical magnitude varies its position continuously according to
any well-defined relationship, and if it retains the same value throughout, it is
said to be a constant (such as the radius of a fixed circle). But if a magnitude
increases for some time and then begins to decrease, it is said to be a maxi-
mum at the end of the increase. Therefore in the previous figure, PA, which
we suppose to revolve around P and meet the circle, is a maximum. Again,
if it decreases for some time, and then begins to increase, it is a minimum at
the beginning of the increase. Thus PE, which we suppose as before to re-
volve around P and meet the circle, is a minimum. [3.8] will provide other
illustrations of this concept.



3.2. PROPOSITIONS FROM BOOK III 137

PROPOSITION 3.8. SEGMENT LENGTHS FROM A POINT OUTSIDE
THE CIRCLE AND THEIR UNIQUENESS. Suppose a point is chosen outside
of a circle and from that point segments are constructed such that they intersect
the circumference of the circle at two points, one on the “outer” or convex side of
the circumference and one on the “inner” or concave side of the circumference.
Let one segment be constructed which intersects the center of the circle and the
others all within the same semicircle but not through the center of the circle.
Then:

1. The maximum segment passes through the center.
2. Of the others, those nearer to the segment through the center are greater

in length than those which are more remote.
3. If segments are constructed to the convex circumference, the minimum

segment is that which passes through the center when extended.
4. Of the other segments, that which is nearer to the minimum is less than

one more remote.
5. From the given point outside of the circle, there can be constructed two

equal segments to the concave or the convex circumference, both of which make
equal angles with the line passing through the center.

6. Three or more equal segments cannot be constructed from the given point
outside the circle to either circumference.

PROOF. Construct ◦ADK and point P outside of the circle. We prove each
claim separately:

FIGURE 3.2.8. [3.8] ◦ADK

1. The maximum segment passes through the center.
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Let O be the center of ◦ADK and join OB. Clearly, OA = OB. From this
we obtain AP = OA + OP = OB + OP . But the sum OB + OP > BP [1.20].
Therefore, AP > BP .

2. Construct the remaining segments from the figure. Those nearer to the
segment through the center are greater in length than those which are more
remote.

Join OC, OD. The two triangles4BOP ,4COP have the side OB equal in
length to OC with OP in common, and the angle ∠BOP > ∠COP . Therefore,
BP > CP [1.24]. Similarly, CP > DP , etc.

3. If segments are constructed to the convex circumference, the minimum
segment is that which passes through the center when extended.

Join OF . In 4OFP , the sum OF + FP > OP = OE + EP [1.20]. Recall
that OF = OE. Subtracting OE and OF from each side of the inequality, we
have that FP > EP .

4. Of the other segments, that which is nearer to the minimum is less than
one more remote.

Join OG, OH. The two triangles 4GOP , 4FOP have two sides GO, OP
in one respectively equal to two sides FO, OP in the other, and the angle
∠GOP > ∠FOP By [1.24], GP > FP . Similarly, HP > GP .

5. From the given point outside of the circle, there can be constructed two
equal segments to the concave or the convex circumference, both of which make
equal angles with the line passing through the center.

Construct the angles ∠POI = ∠POF [1.23] and join IP . The triangles
4IOP , 4FOP have two sides IO, OP in one respectively equal to two sides
FO, OP in the other, and ∠IOP = ∠FOP by construction. By [1.4], IP = FP .

6. Three or more equal segments cannot be constructed from the given
point outside the circle to either circumference.

A third segment cannot is constructed from P equal to either of the seg-
ments IP , FP . If this were possible, let PK = PF . Then PK = PI, which
contradicts part 4, above. �

COROLLARY. 1. If PI is extended to meet the circle at L, then PL = PB.
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COROLLARY. 2. If two equal segments are constructed from P to either
the convex or concave circumference, the diameter through P bisects the angle
between them, and the segments intercepted by the circle are equal in length.

COROLLARY. 3. If P is the common center of circles whose radii are seg-
ments constructed from P to the circumference of ◦ADK, then:

a) The circle whose radius is the minimum segment (PE) has external con-
tact with ◦ADK [Def. 3.4].

b) The circle whose radius is the maximum segment (PA) has internal con-
tact with ◦ADK.

c) A circle having any of the remaining segments (PF ) as radius intersects
◦ADK at two points (F , I).

PROPOSITION 3.9. THE CENTER OF A CIRCLE II. A point within a circle
from which three or more equal segments can be constructed to the circumfer-
ence is the center of that circle.

PROOF. Let D be a point within ◦ABC and from D construct equal seg-
ments DA, DB, DC which intersect the circumference. We claim that D is the
center of ◦ABC.

FIGURE 3.2.9. [3.9]

Join AB, BC and bisect them at points E and F , respectively. Join ED and
FD and extend these segments to the points G, K, H, and L on the circumfer-
ence [1.10]. Since AE = EB and ED is a common side, the two sides AE, ED
of 4AED equal the sides BE, ED of 4BED; we also have that the base DA
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equals the base DB since each are radii of ◦ABC. By [1.8], 4AED ∼= 4BED,
and so ∠AED = ∠BED. It follows that ∠AED, ∠BED are each right angles.

We have that GK cuts AB perpendicularly into two equal parts. By [3.1,
Cor. 1], the center of ◦ABC is a point on GK. Similarly, the center of ◦ABC is
a point on HL. Since GK and HL have no other point of intersection except for
D, it follows that D is the center of ◦ABC. �

Alternatively:

PROOF. Since AD = LD, the segment bisecting the angle ∠ADL passes
through the center [3.7, Cor. 1]. Similarly, the segment bisecting the angle
∠BDA passes through the center. Hence, the point of intersection of these
bisectors, D, is the center. �

PROPOSITION 3.10. THE UNIQUENESS OF CIRCLES. If two circles have
more than two points of their circumferences in common, they coincide.

PROOF. If two circles (◦ABC, ◦DAB) have more than two points of the
circumference in common, they coincide.

FIGURE 3.2.10. [3.10]

To prove this, suppose that ◦ABC , ◦DAB share three points in common
(A, B, C) without coinciding. Locate P , the center of ◦ABC. Join PA, PB, PC.
Since P is the center of ◦ABC, we have that PA = PB = PC. Again, since
◦DAB is a circle and P a point from which three equal lines PA, PB, PC can
be constructed to its circumference, P must be the center of ◦DAB [3.9]. Hence
◦ABC and ◦DAB are concentric, a contradiction. �

COROLLARY. 1. Two circles which do not coincide do not have more than
two points common.
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Note: Similarly to [3.10, Cor. 1], two lines which do not coincide cannot
have more than one point common.

PROPOSITION 3.11. SEGMENTS CONTAINING CENTERS OF CIRCLES.
If one circle touches another circle internally at one point, then the segment
joining the centers of the two circles and terminating on the circumference must
have that point of intersection as an endpoint.

PROOF. If a circle (◦CPD) touches another circle (◦APB) internally at a
point (P ), we claim that the segment joining the centers of these circles has P
as an endpoint.

FIGURE 3.2.11. [3.11]

Let O be the center of ◦APB and join OP . We claim that the center of
◦CPD is a point on the segment OP .

Otherwise, let the center of ◦CPD be other than on OP ; wlog, choose point
E. JoinOE, EP , and extendOE through E to meet ◦CPD at C and ◦APB atA.
Since E is a point on the diameter of ◦APB between O and A, EA < EP [3.7].
But EP = EC by hypothesis since they are radii of ◦CPD. Hence EA < EC

and EA = EC + CA, a contradiction. Consequently, the center of ◦APB must
be on the segment OP .

Hence, the proof. �

Alternatively:
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PROOF. Since EP is a segment constructed from a point within the circle
◦APB to the circumference but not forming part of the diameter through E,
the circle whose center is E with radius EP cuts ◦APB at P [3.7, Cor. 2] and
also touches it at P by hypothesis, a contradiction. A similar argument holds
for all points not on the segment OP . Hence, the center of ◦CPD must be on
OP . �

PROPOSITION 3.12. INTERSECTING CIRCLES I. If two circles intersect
externally at one point, then the segment joining their centers passes through
that point.

PROOF. If two circles (◦PCF , ◦PDE) have external contact at the point P ,
we claim that the segment joining their centers intersects P .

FIGURE 3.2.12. [3.12]

Let A be the center of ◦PCF . Join AP and extend it to meet ◦PDE at E.
We claim that the center of ◦PDE is on the segment PE.

Otherwise, let it be at B. Join AB, intersecting ◦PCF at C and ◦PDE at
D, and join BP . Since A is the center of the ◦PCF , AP = AC; and since B is
the center of ◦PDE, BP = BD. Hence the sum AP + BP = AC + DB. But
AB > AC +DB. Therefore, AB > AP + PB, and one side of 4APB is greater
than the sum of the other two, a contradiction [1.20].

Hence the center of ◦PDE must be on the segment PE. Let it be G, and
the proof follows. �

Alternatively:

PROOF. Suppose that the center of ◦PDE lies on the segment BP . Since
BP is a segment constructed from a point outside of the circle ◦PCF to its
circumference which does not pass through the center when it is extended,
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the circle whose center is B with radius BP must cut the circle ◦PCF at P
[1.8, Cor. 3]. However, it touches ◦PCF at P by hypothesis, a contradiction.
Since BP was chosen arbitrarily, the center of ◦PDE must lie on the segment
PE. �

Observation: [3.11] and [3.12] may both be included in one theorem: “If two
circles touch each other at any point, the centers and that point are collinear.”
This is a limiting case of the theorem given in [3.3, Cor. 4]: “The line joining the
centers of two intersecting circles bisects the common chord perpendicularly.”

FIGURE 3.2.13. [3.12], Observation. Suppose the circles with
centersO andO′ have two points of intersection, A andB. Sup-
pose further that A remains fixed while the second circle moves
so that the point B ultimately coincides with A. Since the seg-
ment OO′ always bisects AB, we see that OO′ intersects A. In
consequence of this motion, the common chord CD becomes the
tangent to each circle at A.

COROLLARY. 1. If two circles touch each other, their point of intersection
is the union of two points of intersection. When counting the number of points
at which two circles intersect, we may for purposes of calculation consider this
point of intersection as two points. See Cor. 2 for details.
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COROLLARY. 2. If two circles touch each other at any point, they cannot
have any other common point.

FIGURE 3.2.14. [3.2, Cor. 2]

For, since two circles cannot have more than two points common [3.10] and
their point of intersection is equivalent to two points for purposes of calculation,
circles that touch cannot have any other point common. The following is a
formal proof of this Corollary:

Let O, O′ be the centers of the two circles where A is the point of intersection,
and let O′ lie between O and A. Take any other point B in the circumference of
O, and join O′B. By [3.7], O′B > O′A. Therefore, B is outside the circumference
of the inner circle. Hence, B cannot be common to both circles. Since point B
was chosen arbitrarily, the circles cannot have any other common point except
for A.

PROPOSITION 3.13. INTERSECTING CIRCLES II. Two circles cannot touch
each other at two points either internally or externally.

PROOF. We divide the proof into its internal and external cases:
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FIGURE 3.2.15. [3.13]

1. Suppose two distinct circles ◦ACB and ◦ADB touch internally at two
points A and B. Since the two circles touch at A, the segment joining their
centers passes through A [3.11]. Similarly, the segment joining their centers
passes throughB. Hence, the centers of these circles and the pointsA, B are on
one segment, and so AB is a diameter of each circle. Hence, if AB is bisected
at E, E must be the center of each circle, i.e., the circles are concentric, a
contradiction [1.5].

2. If two circles ◦ACB and ◦IJK touch externally at points I and J , then
by [3.12] the segment joining the centers of ◦ACB and ◦IJK passes through
the centers E and H as well as points I and J , a contradiction. �

An alternative proof to part 1:

PROOF. Construct a line bisecting AB perpendicularly. By [3.1, Cor. 1],
this line passes through the center of each circle, and by [3.11], [3.12] must
pass through each point of intersection, a contradiction. Hence, two circles
cannot touch each other at two points. �

This proposition is an immediate inference from [3.12, Cor. 1] that a point
of intersection counts for two intersections, for then two contacts would be
equivalent to four intersections; but there cannot be more than two intersec-
tions [3.10]. It also follows from [3.12, Cor. 2] that if two circles touch each
other at point A, they cannot have any other point common. Hence, they can-
not touch again at B.
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Exercises.
1. If a circle with a non-fixed center touches two fixed circles externally,

the difference between the distances of its center from the centers of the fixed
circles is equal to the difference or the sum of their radii, according to whether
the contacts are of the same or of opposite type [Def. 3.4].

2. If a circle with a non-fixed center is touched by one of two fixed circles
internally and touches the other fixed circle either externally or internally, the
sum of the distances from its center to the centers of the fixed circles is equal to
the sum or the difference of their radii, according to whether the contact with
the second circle is internal or external.

3. Suppose two circles touch externally. If through the point of intersec-
tion any secant is constructed cutting the circles again at two points, the radii
constructed to these points []e parallel.

4. Suppose two circles touch externally. If two diameters in these circles
are parallel, the line from the point of intersection to the endpoint of one di-
ameter passes through the endpoint of the other.

5. Rewrite the results of #3 and #4.

PROPOSITION 3.14. EQUALITY OF CHORD LENGTHS. Chords in a cir-
cle are equal in length if and only if they are equally distant from the center.

PROOF. In circles with equal radii, we claim that:
1. chords of equal length (AB, CD) are equally distant from the center (O).
2. chords which are equally distant from the center are also equal in

length.

FIGURE 3.2.16. [3.14]

Let O be the center of ◦ACD, and construct the chords AB, CD. We prove
each claim separately:

1. Let AB = CD and construct perpendicular segments OE, OF . We wish
to prove that OE = OF .
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Join AO, CO. Because AB is a chord in a circle and OE is a segment
constructed from the center where OE ⊥ AB, OE bisects AB [3.3]. It follows
that AE = EB. Similarly, CF = FD. But AB = CD by hypothesis, and so
AE = CF .

Because ∠OEF is a right angle, AO2 = AE2 + EO2. Similarly, CO2 =

CF 2 + FO2. Since AO2 = CO2, we have that AE2 + EO2 = CF 2 + FO2 where
AE2 = CF 2. Hence EO2 = FO2, and so EO = FO. Hence AB, CD are equally
distant from O [Def. 3.6].

2. Now let EO = FO. We wish to prove that AB = CD.
As before, we have AE2 +EO2 = CF 2 +FO2 where EO2 = FO2 by hypoth-

esis. Hence AE2 = CF 2, and so AE = CF . But AB = 2 · AE and CD = 2 · CF ,
from which it follows that AB = CD. �

Exercise.
1. If a chord of given length slides around a fixed circle, then:
a) the locus of its midpoint is a circle;
b) the locus of any point fixed on the chord is a circle.

PROPOSITION 3.15. INEQUALITY OF CHORD LENGTHS. The diameter
is the longest chord in a circle, and a chord is nearer to the center of a circle
than another chord if and only if it is the longer of the two chords.

PROOF. Construct ◦ACB with centerO, diameterAB, and chords CD, EF .
We claim that:

1. The diameter (AB) is the longest chord in a circle;
2. A chord which is nearer to the center (CD) is longer than a chord which

is more distant (EF );
3. Longer chords are nearer to the center than shorter chords.

FIGURE 3.2.17. [3.15]

We prove each claim separately:
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1. The diameter (AB) is the longest chord in a circle.
Join OC, OD, OE and construct the perpendiculars OG, OH. Because O

is the center of ◦AEF , OA = OC and OB = OD. Hence AB = OA + OB =

OC +OD. But OC + CD > CD by [1.20]. Therefore, AB > CD.
2. A chord which is nearer to the center (CD) is longer than a chord which

is more distant (EF ).
Suppose that CD is nearer to O than EF . It follows that OG < OH [3.14].

Since 4OGC and 4OHE are right triangles, we have that OC2 = OG2 +GC2

and OE2 = OH2 + HE2. Since OC = OE, OG2 + GC2 = OH2 + HE2. But
OG2 < OH2, and so GC2 > HE2. It follows that GC > HE. Since CD = 2 ·GC
and EF = 2 ·HE, it follows that CD > EF .

3. Longer chords are nearer to the center than shorter chords.
Suppose that CD > EF . We wish to prove that OG < OH.
As before, we have OG2 +GC2 = OH2 +HE2. By our hypothesis, we have

that GC2 > HE2. Therefore OG2 < OH2, and so OG < OH. �

Exercises.
1. The shortest chord which can be constructed through a given point

within a circle is the perpendicular to the diameter which passes through that
point.

2. Through a given point, within or outside of a given circle, construct a
chord of length equal to that of a given chord.

3. Through one of the points of intersection of two circles, construct a
secant

a) where the sum of its segments intercepted by the circles is a maximum;
b) which is of any length less than that of the maximum.
4. Suppose that circles touch each other externally at A, B, C and that

the chords AB, AC of two of them are extended to meet the third again in the
points D and E. Prove that DE is a diameter of the third circle and is parallel
to the segment joining the centers of the others.

PROPOSITION 3.16. THE PERPENDICULAR TO A DIAMETER OF A
CIRCLE. The perpendicular to a diameter of a circle intersects the circumfer-
ence at one and only one point, and any other segment through the diameter’s
endpoint intersects the circle at two points.

PROOF. Construct ◦DAB with center C. We claim that:
1. The perpendicular (BI) to the diameter (AB) of ◦DAB touches the circle

only at their point of intersection.
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2. Any other line or segment (BH) through the same point (B) cuts the
circle.

FIGURE 3.2.18. [3.16]

We prove each claim separately:
1. The perpendicular (BI) to the diameter (AB) of ◦DAB touches the circle

only at their point of intersection.
Let I be an arbitrary point on BI and construct the segment CI. Because

∠CBI is a right angle, CI2 = CB2 + BI2 [1.47]. It follows that CI2 > CB2,
and so CI > CB. This confirms that I lies outside of the circle ◦DAB [3.2].
Similarly, every other point on BI except B lies outside of the ◦DAB. Hence,
since BI meets the circle ◦DAB at B and does not cut it, BI must touch ◦DAB
at B.

2. Any other line or segment (BH) through the same point (B) cuts the
circle.

We wish to prove that BH, which is not perpendicular to AB, cuts the
circle. Construct CG ⊥ HB. It follows that BC2 = CG2 + GB2. Therefore
BC2 > CG2, and so BC > CG. Hence the point G must be within the circle
[3.2], and consequently if the segment BG is extended it must meet ◦DAB at
H and therefore cut it. �

Exercises.
1. If two circles are concentric, all chords of the greater circle which touch

the lesser circle are equal in length.
2. Construct a parallel to a given line which touches a given circle.
3. Construct a perpendicular to a given line which touches a given circle.
4. Construct a circle having its center at a given point

a) and touches a given line;
b) and touches a given circle.
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How many solutions exist in this case?
5. Construct a circle of given radius that touches two given lines. How

many solutions exist?
6. Find the locus of the centers of a system of circles touching two given

lines.
7. Construct a circle of given radius that touches a given circle and a given

line or that touches two given circles.

PROPOSITION 3.17. TANGENTS ON CIRCLES I. It is possible to construct
a tangent of a given circle from a given point outside of the circle.

PROOF. We wish to construct a tangent to a given circle (◦BCD) from a
given point (P ) outside of the circle.

FIGURE 3.2.19. [3.17] (α), (β)

Let O be the center of ◦BCD (Fig. 3.2.19). Join OP , cutting the circumfer-
ence at C. With O as center and OP as radius, construct the circle ◦EAP . Also
construct CA ⊥ OP . Join OA, intersecting ◦BCD at B, and join BP . We claim
that BP is the required tangent to ◦BCD.O

Since O is the center of ◦CDB and ◦EAP , we have that OA = OP and
OC = OB. Hence 4AOC, 4POB have the sides OA, OC in one triangle re-
spectively equal to the sides OP , OB in the other with the contained angle
common to both. By [1.4], 4AOC ∼= 4POB, and so ∠OCA = ∠OBP . But
∠OCA is a right angle by construction. Therefore ∠OBP is a right angle, and
so by [3.16], PB touches the circle ◦BCD at B. Hence, PB is a tangent of
◦BCD at point B. �
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COROLLARY. 1. If AC in Fig. 3.2.26(β) is extended to E, OE is joined, the
circle ◦BCD is cut at D, and the segment DP is constructed, then DP is another
tangent of ◦BCD (at point P ).

Exercises.
1. The two tangents PB, PD (in Fig. 3.2.26(β)) are equal in length to one

another because the square of each is equal to the square of OP minus the
square of the radius.

2. If a quadrilateral is circumscribed to a circle, the sum of one pair of
opposite sides is equal to the sum of the other pair.

3. If a parallelogram is circumscribed to a circle, it must be a lozenge, and
its diagonals intersect at the center.

4. In Fig. 3.2.26(β), if BD is joined and OP is intersected at F , then
OP ⊥ BD.

5. The locus of the intersection of two equal tangents to two circles is a
segment (called the radical axis of the two circles).

6. Find a point such that tangents from it to three given circles is equal.
(This point is called the radical center of the three circles.)

7. The rectangle OF.OP is equal in area to the square of the radius of
◦BCD.

Definition: Suppose we have two points F and P such that when the area
of the rectangle OF.OP (where O is the center of a given circle) is equal to the
area of the square of the radius of that circle, then F and P are called inverse
points with respect to the circle.

9. The intercept made on a variable tangent by two fixed tangents stands
opposite a constant angle at the center.

10. Construct a common tangent to two circles. Demonstrate how to con-
struct a segment cutting two circles so that the intercepted chords are of given
lengths.

PROPOSITION 3.18. TANGENTS ON CIRCLES II. If a line touches a cir-
cle, the segment from the center of the circle to the point of intersection with the
line is perpendicular to the line.

PROOF. If the line CD touches ◦ABC, we claim that the segment OC from
the center (O) to the point of intersection (C) is perpendicular to CD.
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FIGURE 3.2.20. [3.18]

Otherwise, suppose that another segment OG is constructed from the cen-
ter such that OG ⊥ CD. Let OG cut the circle at F . Because the angle
∠OGC is right by hypothesis, the angle ∠OCG must be acute [1.17]. By
[1.19], OC > OG. But OC = OF , and therefore we have that OF > OG

and OG = OF + FG, a contradiction. Hence OC ⊥ CD. �

Alternatively:

PROOF. Since the perpendicular must be the shortest segment from O to
CD and OC is evidently the shortest line, it follows that OC ⊥ CD. �

PROPOSITION 3.19. TANGENTS ON CIRCLES III. If a line is a tangent to
a circle, then the perpendicular constructed from its point of intersection passes
through the center of the circle.

PROOF. If a line (AB) is tangent to a circle (◦CDA), we claim that the per-
pendicular (AC) constructed from its point of intersection (A) passes through
the center of ◦CDA.

FIGURE 3.2.21. [3.19]
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Suppose it were otherwise; let O be the center of ◦CDA and join AO. Be-
cause the line AB touches ◦CDA and OA is constructed from the center to
the point of intersection, OA ⊥ AB [3.18]. Therefore ∠OAB and ∠CAB are
right angles. It follows that ∠OAB = ∠CAB and ∠CAB = ∠OAB + ∠OAC, a
contradiction. Hence, the center must lie on the segment AC. �

COROLLARY. 1. If a number of circles touch the same line at the same point,
the locus of their centers is the perpendicular to the line at the point.

COROLLARY. 2. Suppose we have a circle and any two of the following
properties:

a) a tangent to a circumference;
b) a segment, ray, or straight line constructed from the center of the circle to

the point of intersection;
c) right angles at the point of intersection.
Then by [3.16], [3.18], [3.19], and the Rule of Symmetry, the remaining

property follows. If we have (a) and (c), then it may be necessary to extend a
given segment or a ray to the center of the circle. These are limiting cases of
[3.1, Cor. 1] and [3.3].

PROPOSITION 3.20. ANGLES AT THE CENTER OF A CIRCLE AND ON
THE CIRCUMFERENCE. The angle at the center of a circle is double the angle
at the circumference when each stands on the same arc of the circumference.

PROOF. Construct ◦ABC with center O and radius OB as in Fig. 3.2.22
(α).

FIGURE 3.2.22. [3.20], (α), (β), (γ)
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Construct ∠AOB at its center and ∠ACB at the circumference such that
each angle stands on the arc AB. We claim that ∠AOB = 2 · ∠ACB.

Join CO and extend CO through to the circumference at E. Since OC =

OA, we have that ∠OCA = ∠OAC. By [1.5], ∠OCA+∠OAC = 2 ·∠OCA. Also,
∠AOE = ∠OCA+ ∠OAC [1.32]. It follows that ∠AOE = 2 · ∠OCA. Similarly,
∠EOB = 2 · ∠OCB, and so we have that

∠AOB = ∠AOE + ∠EOB

= 2 · ∠OCA+ 2 · ∠OCB
= 2 · ∠ACB

Now construct ◦ABC with center O and radius OB with ∠ACB as in Fig.
3.2.22 (γ). Join CO through to the circumference at E. Similarly to the above,
we can show that ∠EOB = 2 · ∠OCB and ∠EOA = 2 · ∠ECA. It follows that

∠EOB − ∠EOA = ∠AOB

= 2 · ∠OCB − 2 · ∠ECA
= 2 · (∠OCB − ∠ECA)

= 2 · ∠ACB
Therefore, the angle at the center of a circle is double the angle at the

circumference when the angles stand on the same arc. �

Alternatively:

PROOF. Construct ◦ABC as in Fig. 3.2.2(α), ◦ACB as in Fig. 3.2.2(β), and
◦ECB in Fig. 3.22(γ).

Join CO and extend it to E. Because OA = OC, it follows that ∠ACO =

∠OAC. Since ∠AOE = ∠OAC+∠ACO [1.32], we have that ∠AOE = 2 ·∠ACO.
Similarly, ∠EOB = 2 · ∠OCB. Hence (by adding in the cases of Fig 3.2.22 (α),
(β), and subtracting in (γ)), we have that ∠AOB = 2 · ∠ACB. �

COROLLARY. 1. If AOB is a line, then ∠ACB is a right angle; specifically,
the angle in a semicircle is a right angle (compare with [3.31]).

PROPOSITION 3.21. ANGLES ON CHORDS. In a circle, angles standing
on the same arc are equal in measure to one another.

PROOF. We claim that the angles (∠ACB, ∠ADB) standing within ◦ABC
and on the same arc (AB) are equal in measure.
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FIGURE 3.2.23. [3.21], (α), (β)

We first consider the cases presented in Fig. 3.2.23(α), (β). Let O be the
center of ◦ABC, and join OA, OB. By [3.20], ∠AOB = 2 · ∠ACB and ∠AOB =

2 · ∠ADB. It follows that ∠ACB = ∠ADB.
We now consider the case presented in Fig. 3.2.24(γ):

FIGURE 3.2.24. [3.21] (γ)

Let O remain the center of ◦ABC. Join CO and extend the segment to
intersect the circumference of ◦CAB at E. Join DE. Since O is the center, the
arc ACE is greater than a semicircle; similarly to our first case, we obtain that
∠ACE = ∠ADE and ∠ECB = ∠EDB. Hence, we have that

∠ACB = ∠ACE + ∠ECB

= ∠ADE + ∠EDB

= ∠ADB

�

COROLLARY. 1. If two triangles 4ACB, 4ADB stand on the same base
AB and have equal vertical angles on the same side of it, the four points A, C,
D, B are concyclic.
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COROLLARY. 2. If A, B are two fixed points and if C varies its position in
such a way that the angle ∠ACB retains the same value throughout, the locus
of C is a circle. (Or: given the base of a triangle and the vertical angle, the locus
of the vertex is a circle).

Exercises.
1. Given the base of a triangle and the vertical angle, find the locus

(a) of the intersection of its perpendiculars;
(b) of the intersection of the internal bisectors of its base angles;
(c) of the intersection of the external bisectors of the base angles;
(d) of the intersection of the external bisector of one base angle and the

internal bisector of the other.
2. If the sum of the squares of two segments is given, their sum is a maxi-

mum when the segments are equal in length.
3. Of all triangles having the same base and vertical angle, the sum of the

sides of an isosceles triangle is a maximum.
4. Of all triangles inscribed in a circle, the equilateral triangle has the

maximum perimeter.
5. Of all concyclic figures having a given number of sides, the area is a

maximum when the sides are equal.

PROPOSITION 3.22. QUADRILATERALS INSCRIBED INSIDE CIRCLES.
The sum of the opposite angles of a quadrilateral inscribed in a circle equals two
right angles.

PROOF. We claim that the sum of the opposite angles of a quadrilateral
(ABCD) inscribed in a circle (◦CBA) equals two right angles.

FIGURE 3.2.25. [3.22]
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Join AC, BD. Since ∠ABD and ∠ACD stand on the same arc AD, we have
that ∠ABD = ∠ACD [3.21]. Similarly, ∠DBC = ∠DAC because they stand on
the arc DC. Hence, ∠ABC = ∠ACD + ∠DAC. From this, we obtain

∠ABC + ∠CDA = ∠ACD + ∠DAC + ∠CDA

where the right-hand side of the equality is the sum of the three angles of
4ACD. Since this sum equals two right angles [1.32], we have that ∠ABC +

∠CDA equals two right angles. We obtain an analogous result for ∠DAB +

∠BCD. �

Alternatively:

PROOF. Let O be the center of ◦CBA.

FIGURE 3.2.26. [5.22], alternative proofs

Join OA, OC. Define ∠AOC as less than two right angles and ∠COA as
more than two right angles. Also, notice that ∠AOC + ∠COA =four right
angles.

Notice that ∠AOC = 2 · ∠CDA and ∠COA = 2 · ∠ABC by [3.20]. Hence
∠AOC+∠COA = 2 ·(∠CDA+∠ABC). Since, ∠AOC+∠COA equals four right
angles, ∠CDA+ ∠ABC equals two right angles. �

COROLLARY. 1. If the sum of two opposite angles of a quadrilateral are
equal to two right angles, then a circle may be inscribed about the quadrilateral.

COROLLARY. 2. If a parallelogram is inscribed in a circle, then it is a
rectangle.
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Exercises.
1. If the opposite angles of a quadrilateral are supplemental, it is cyclic.
2. A segment which makes equal angles with one pair of opposite sides of a

cyclic quadrilateral makes equal angles with the remaining pair and with the
diagonals.

3. If two opposite sides of a cyclic quadrilateral are extended to meet and a
perpendicular falls on the bisector of the angle between them from the point of
intersection of the diagonals, this perpendicular will bisect the angle between
the diagonals.

4. If two pairs of opposite sides of a cyclic hexagon are respectively parallel
to each other, the remaining pair of sides are also parallel.

5. If two circles intersect at the points A, B, and any two segments ACD,
BFE are constructed through A and B, cutting one of the circles in the points
C, E and the other in the points D, F , then CE ‖ DF .

6. If equilateral triangles are constructed on the sides of any triangle, the
segments joining the vertices of the original triangle to the opposite vertices of
the equilateral triangles are concurrent.

7. In the same case as #7, prove that the centers of the circles constructed
about the equilateral triangles form another equilateral triangle.

8. If a quadrilateral is constructed about a circle, the angles at the center
standing opposite the opposite sides are supplemental.

9. If a tangent which varies in position meets two parallel tangents, it
stands opposite a right angle at the center.

10. If a hexagon is circumscribed about a circle, the sum of the angles
standing opposite the center from any three alternate sides is equal to two
right angles.

PROPOSITION 3.23. UNIQUENESS OF ARCS. It is impossible to construct
two similar and unequal arcs on the same side of the same chord.

PROOF. Two similar arcs (ACB, ADB) which do not coincide cannot be
constructed on the same of the same chord (AB).

FIGURE 3.2.27. [3.23]
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Suppose that we have arcs ACB ∼ ADB which are constructed on the
same side of segment AB. Take any point D in the inner arc (ADB). Join AD,
and extend it to meet the outer arc at C. Also join BC, BD. Then since the
arcs are similar, ∠ADB = ∠ACB [Def. 3.10], which contradicts [1.16.]. Hence,
the proof. �

PROPOSITION 3.24. SIMILAR ARCS. Similar arcs standing on equal chords
are equal in length.

PROOF. We claim that similar arc of circles (AEB, CFD) on equal chords
(AB, CD) are equal in length.

FIGURE 3.2.28. [3.24]

Since AB = CD, if AB is applied to CD such that the point A coincides
with C and the chord AB with CD, the point B coincides with D. Because
AEB ∼ CFD, they must coincide [3.23]. Hence, the proof. �

COROLLARY. 1. Since the chords are equal in length, they are congruent;
therefore the arcs, being similar, are also congruent.

PROPOSITION 3.25. CONSTRUCTION OF A CIRCLE FROM AN ARC.
Given an arc of a circle, it is possible to construct the circle to which the arc
belongs.

PROOF. Given an arc (ABC) of a circle, we wish to construct ◦ABC.

FIGURE 3.2.29. [3.25]
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Take any three points A, B, C of the arc. Join AB, BC. Bisect AB at D
and BC at E. Construct DF , EF at right angles to AB, BC. We claim that F ,
their point of intersection, is the center of the required circle.

Because DF bisects the chord AB and is perpendicular to it, the center of
the circle of which ABC is an arc must lie on DF [3.1, Cor. 1]. Similarly, the
center of the circle of which ABC is an arc must lie on EF . Hence the point F
is the center of ◦ABC (that is, the circle constructed with F as center and FA
as radius). �

Propositions [3.26]-[3.29] are related in the following sense:
In [3.26], given equal angles, we must prove that we have equal arcs.
In [3.27], given equal arcs, we must prove that we have equal angles.

Hence, [3.27] is the converse of [3.26], and together state that we have equal
angles if and only if we have equal arcs.

In [3.28], given equal chords, we must prove that we have equal arcs.
In [3.29], given equal arcs, we must prove that we have equal chords.

Hence, [3.29] is the converse of [3.28], and together state that we have equal
chords if and only if we have equal arcs.

Together, these propositions essentially state that we have equal chords if
and only if we have equal angles if and only if the angles stand on equal arcs.

PROPOSITION 3.26. ANGLES AND ARCS I. In equal circles, equal angles
at the centers or on the circumferences stand upon arcs of equal length.

PROOF. In equal circles (◦ACB, ◦DFE), equal angles at the centers (∠AOB,
∠DHE) or at the circumferences (∠ACB, ∠DFE) stand on equal arcs.

FIGURE 3.2.30. [3.26]

We prove each claim separately:
1. Suppose that ∠AOB = ∠DHE. We wish to show that these angles stand

on equal arcs.
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Because ◦ACB, ◦DFE are equal, their radii are equal [Def. 3.1]. There-
fore, the two triangles 4AOB, 4DHE have the sides AO, OB in one respec-
tively equal to the sides DH, HE in the other, and ∠AOB = ∠DHE by hy-
pothesis. By [1.4], 4AOB ∼= 4DHE, and so AB = DE. Again, since the
angles ∠ACB, ∠DFE are the halves of the equal angles ∠AOB, ∠DHE [3.20],
∠ACB = ∠DFE. By [Def. 3.10], ACB ∼ DFE, and their chords AB, DE have
been proved equal. By [3.24], the segments AB, DE are equal. And taking
these equals from the circles which are equal by hypothesis, we have that the
remaining arcs AGB, DKE are equal.

2. Now suppose that ∠ACB = ∠DFE. Since ∠ACB = 2 · ∠AOB and
∠DFE = 2 · ∠DHE [3.20], the proof follows from part 1. �

COROLLARY. 1. If the opposite angles of a cyclic quadrilateral are equal,
one of its diagonals must be a diameter of the circumscribed circle.

COROLLARY. 2. Parallel chords in a circle intercept equal arcs.

COROLLARY. 3. If two chords intersect at any point within a circle, the
sum of the opposite arcs which they intercept is equal to the arc which parallel
chords intersecting on the circumference intercept. If two chords intersect at any
point outside a circle, the difference of the arcs they intercept is equal to the arc
which parallel chords intersecting on the circumference intercept.

COROLLARY. 4. If two chords intersect at right angles, the sum of the oppo-
site arcs which they intercept on the circle is a semicircle.

PROPOSITION 3.27. ANGLES AND ARCS II. In equal circles, angles at the
centers or at the circumferences which stand on equal arcs are equal in measure.

PROOF. In equal circles (◦ACB, ◦DFE), angles at the centers (∠AOB,
∠DHE) or at the circumferences (∠ACB, ∠DFE) which stand on equal arcs
(AB, DE) are equal in measure.
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FIGURE 3.2.31. [3.27]

We prove each claim separately:
1. Consider the angles at the centers (∠AOB, ∠DHE). Suppose that

∠AOB > ∠DHE and that ∠AOL = ∠DHE. Since the circles are equal, the arc
AL is equal to arc DE [3.26]. But AB = DE by hypothesis. Hence AB = AL

and AB = AL + LB, a contradiction. A corresponding contradiction follows if
we assume that ∠AOB < ∠DHE. Therefore, ∠AOB = ∠DHE.

2. Now consider the angles at the circumference. Since ∠ACB = 2 ·∠AOB
and ∠DFE = 2 · ∠DHE [3.20], the proof follows from part 1. �

PROPOSITION 3.28. CHORDS AND ARCS I. In equal circles, chords of
equal length divide the circumferences into arcs such that the longer arc on the
first circle is equal in length to the longer arc on the second circle, etc.

PROOF. In equal circles (◦ACB, ◦DFE), equal chords (AB, DE) divide the
circumferences into arcs, which are respectively equal; that is, the lesser arcs
are equal and the greater arcs are equal.

FIGURE 3.2.32. [3.28]

If the equal chords are diameters, the proof follows.
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Otherwise, let O, H be the centers of ◦ACB, ◦DFE. Join AO, OB, DH,
HE. Because the circles are equal, their radii are equal [Def. 3.1]. Hence the
triangles 4AOB, 4DHE have the sides AO, OB in one respectively equal to
the sides DH, HE in the other, and the base AB is equal to DE by hypothesis.
By [1.8], ∠AOB = ∠DHE, and the arc AGB is equal in length to DKE [3.26].
And since the whole circumference AGBC is equal in length to the whole cir-
cumferenceDKEF , the remaining arcACB is equal in length to the remaining
arc DFE. �

PROPOSITION 3.29. CHORDS AND ARCS II. In equal circles, equal arcs
stand opposite equal chords.

PROOF. We claim that in equal circles (◦ACB, ◦DFE), equal arcs (AGB,
DCK) stands opposite equal chords.

FIGURE 3.2.33. [3.29]

Let O, H be the centers of circles ◦ACB and ◦DFE, respectively. Join AO,
OB, DH, HE. Because the circles are equal, the angles ∠AOB, ∠DHE at the
centers which stand on the equal arcs AGB, DKE are themselves equal [3.27].
Again, because the triangles4AOB,4DHE have the two sides AO, OB in one
respectively equal to the two sides DH, HE in the other and ∠AOB = ∠DHE,
the base AB of ◦ACB is equal to the base DE of ◦DFE [1.4]. Hence, the
proof. �

COROLLARY. 1. Given the preceding four propositions, we have that in
equal circles:

(a) angles at the centers or at the circumferences are equal in measure if
and only if they stand on arcs which are equal in length,

(b) arcs are equal in length if and only if they stand opposite chords of equal
length,
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(c) angles at the centers or at the circumferences are equal in measure if and
only they stand on chords of equal length.

Observation: Since the two circles in the four last propositions are equal,
they are congruent figures, and the truth of the propositions is made evident
by superposition.

PROPOSITION 3.30. BISECTING AN ARC. It is possible to bisect a given
arc.

PROOF. We wish to bisect the given arc ACB.

FIGURE 3.2.34. [3.30]

Construct the chord AB and bisect it at D. Construct DC ⊥ AB, intersect-
ing the arc at C. We claim that the arc ACB is bisected at C.

Join AC, BC. Then the triangles 4ADC, 4BDC have AD = DB by con-
struction with DC in common and the angle ∠ADC = ∠BDC, where each is a
right angle. By [1.4], it follows that AC = BC. By [3.28], the arc AC is equal
to the arc BC, and hence the arc ACB = AC ⊕BC is bisected at C. �

Exercises.
1. Suppose that ABCD is a semicircle whose diameter is AD and that the

chord BC when extended meets AE (where AE is the extension of AD). Prove
that if CE is equal in length to the radius, the arc AB = 3 · CD.

2. The internal and the external bisectors of the vertical angle of a triangle
inscribed in a circle meet the circumference again at points equidistant from
the endpoints of the base.

3. If A is one of the points of intersection of two given circles and two
chords ACD, ACD are constructed, cutting the circles in the points C, D; C ′,
D′, then the triangles 4BCD, 4BC ′D′ formed by joining these to the second
point B of intersection of the circles are equiangular.

4. If the vertical angle ∠ACB of a triangle inscribed in a circle is bisected
by a line CD which meets the circle again at D, and from D perpendiculars
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DE, DF are constructed to the sides, one of which is extended, prove that
EA = BF and hence that CE = 1

2 (AC +BC).

PROPOSITION 3.31. ANGLES AND ARCS. In a circle,
1. if a circle is divided into two semicircles, then the angle contained in

either arc is a right angle;
2. if a circle is divided into two unequal arcs, and an angle is contained in

the larger of the two arcs, then the angle contained in that arc is an acute angle;
3. if a circle is divided into two unequal arcs, and an angle is contained

in the smaller of the two arcs, then the angle contained in that arc is an obtuse
angle.

PROOF. In circle ◦ABC, we wish to show that:
1. the angle in a semicircle (∠ACB) is a right angle;
2. the angle in an arc greater than a semicircle (∠ACD in arc ACD) is an

acute angle;
3. the angle in an arc less than a semicircle (∠ACE in arc ACE) is an

obtuse angle.

FIGURE 3.2.35. [3.31]

Construct ◦ABC with center O. We prove each claim separately:
1. Let AB be the diameter of ◦ACB, and let C be any point on the semicir-

cle ACB. Join AC, CB. We claim that the angle ∠ACB is a right angle.
Join OC and extend AC to the ray AF . Then because AO = OC, ∠ACO =

∠OAC. Similarly, ∠OCB = ∠CBO. Hence,

∠ACB = ∠ACO + ∠OCB

= ∠OAC + ∠CBO

= ∠BAC + ∠CBA
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However by [1.32], ∠FCB = ∠BAC +∠CBA where ∠BAC and ∠CBA are
the two interior angles of the triangle 4ABC. Hence, ∠ACB = ∠FCB where
each are adjacent angles, and therefore ∠ACB is a right angle.

2. Consider the arc ACE which is greater than a semicircle. Join CE.
Since ∠ACB = ∠ACE + ∠BCE, ∠ACB > ∠ACE. But ∠ACB is a right angle
by part 1 of the proof, and so ∠ACE is acute.

3. Consider the arc ACD is less than a semicircle; similarly to the proof of
part 2, we obtain that ∠ACD is obtuse. �

COROLLARY. 1. If a parallelogram is inscribed in a circle, its diagonals
intersect at the center of the circle.

COROLLARY. 2. [3.31] holds if arcs are replaced by chords of appropriate
length, mutatis mutandis.

PROPOSITION 3.32. TANGENT-CHORD ANGLES RELATED TO ANGLES
ON THE CIRCUMFERENCE WHICH STAND ON THE CHORD. If a line is
tangent to a circle, and from the point of intersection a chord is constructed cut-
ting the circle, the angles made by this chord with the tangent are respectively
equal to the angles in the alternate arcs of the circle.

PROOF. If a line (EF ) is a tangent to a circle, and from the point of in-
tersection (A) a chord (AC) is constructed cutting the circle, we claim that the
angles made by this chord with the tangent are respectively equal to the angles
in the alternate arcs of the circle. We shall prove this in two cases.

FIGURE 3.2.36. [3.32](α)

1. Construct the figures from Fig. 3.2.36(α). We wish to show that ∠ABC =

∠FAC.
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If AC passes through the center of ◦ABC, then the proposition is evident
because the angles are right angles.

Otherwise, from the point of intersection A construct AB such that AB ⊥
EF . Join BC. Because EF is tangent to the circle and AB is constructed from
the point of intersection and is perpendicular to EF , AB passes through the
center of ◦ABC [3.19]. Therefore, ∠ACB is right [3.31], and the sum of the
two remaining angles ∠ABC + ∠CAB equals one right angle. Since the angle
∠BAF is right by construction, we have that ∠ABC + ∠CAB = ∠BAF . From
this we obtain ∠ABC = ∠BAF − ∠CAB = ∠CAF .

2. Construct the figures from Fig. 3.2.36(β).

FIGURE 3.2.37. [3.32](β)

Take any point D on the arc AC. We wish to prove that ∠CAE = ∠CDA.
Since the quadrilateral ABCD is cyclic, the sum of the opposite angles

∠ABC + ∠CDA equals two right angles [3.22] and is therefore equal to the
sum ∠FAC+∠CAE. However, ∠ABC = ∠FAC by part 1. Removing them, we
obtain ∠CDA = ∠CAE. �

Alternatively:

PROOF. Construct the figures from Fig. 3.2.36(β). Take any point G in the
semicircle AGB. Join AG, GB, GC. Then we have that ∠AGB = ∠FAB, since
each angle is right, and ∠CGB = ∠CAB [3.21]. Therefore ∠AGC = ∠FAC.
Again, join BD, CD. Then ∠BDA = ∠BAE, since each angle is right, and
∠CDB = ∠CAB [3.21]. Hence, ∠CDA = ∠CAE. �

Exercises.
1. If two circles touch, any line constructed through the point of intersec-

tion will cut off similar segments.
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2. If two circles touch and any two lines are constructed through the point
of intersection (cutting both circles again), the chord connecting their points of
intersection with one circle is parallel to the chord connecting their points of
intersection with the other circle.

3. Suppose that ACB is an arc of a circle, CE a tangent at C (meeting the
chord AB extended to E), and AD ⊥ AB where D is a point of AB. Prove that
if DE be bisected at C then the arc AC = 2 · CB.

4. If two circles touch at a pointA and ifABC is a chord throughA, meeting
the circles at points B and C, prove that the tangents at B and C are parallel
to each other, and that when one circle is within the other, the tangent at B
meets the outer circle at two points equidistant from C.

5. If two circles touch externally, their common tangent at either side
stands opposite a right angle at the point of intersection, and its square is
equal to the rectangle contained by their diameters.

PROPOSITION 3.33. CONSTRUCTING ARCS GIVEN A SEGMENT AND
AN ANGLE. It is possible to construct an arc of a circle on a given segment such
that the arc contains an angle equal to a given angle.

PROOF. We wish to construct an arc (AB) of a circle (◦ABC) on a given
segment (AB) which contains an angle equal to a given angle (∠FGH).

FIGURE 3.2.38. [3.33]

If ∠FGH is a right angle, construct a semicircle on the given line. The
proof follows since the angle in a semicircle is a right angle.
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Otherwise, on the given segment AB, construct the angle ∠BAE such that
∠BAE = ∠FGH. Construct AC ⊥ AE and BC ⊥ AB. With AC as diameter,
construct the circle ◦CBA. We claim that ◦CBA is the required circle.

The circumference of ◦CBA contains the point B (since ∠ABC is right
[3.31]) and also touches AE (since ∠CAE is right [3.16]). Therefore, ∠BAE is
equal to the angle in the alternate segment [3.32]; that is, ∠BAE = ∠ACB.
But ∠BAE = ∠FGH by construction, and so ∠FGH = ∠ACB, and the arc AB
contains the angle ∠ACB. �

Exercises.
1. Construct a triangle, being given the base, vertical angle, and any of the

following data:
(a) a perpendicular.
(b) the sum or difference of the sides.
(c) the sum or difference of the squares of the sides.
(d) the side of the inscribed square on the base.
(e) the median that bisects the base.
2. If lines are constructed from a fixed point to all the points of the circum-

ference of a given circle, prove that the locus of all their points of bisection is a
circle.

3. Given the base and vertical angle of a triangle, find the locus of the
midpoint of the line joining the vertices of equilateral triangles constructed on
the sides.

4. In the same case, find the loci of the angular points of a square con-
structed on one of the sides.

PROPOSITION 3.34. DIVIDING ARCS GIVEN AN ANGLE. It is possible
to divide the circumference of a circle such that the separated arc contains an
angle equal to a given angle.

PROOF. From a given circle (◦BCA), we wish to cut off an arc which con-
tains an angle equal to a given angle (∠FGH).
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FIGURE 3.2.39. [3.34]

Take any point A on the circumference and construct the tangent AD. Con-
struct the angle ∠DAC such that ∠DAC = ∠FGH. Take any point B on the al-
ternate arc. Join BA, BC. Then ∠DAC = ∠ABC [3.32]. But ∠DAC = ∠FGH

by construction, and so ∠ABC = ∠FGH. �

PROPOSITION 3.35. AREAS OF RECTANGLES CONSTRUCTED ON CHORDS.
If two chords of a circle intersect at one and only one point within the circle, then
the area of the rectangle contained by the divided segments of the first chord is
equal in area to the rectangle contained by the divided segments of the second
chord [Def. 2.4].

PROOF. If two chords (AB, CD) of a circle (◦ACB) intersect at a point (E)
within the circle, the rectangles (AE.EB, CE.ED) contained by the segments
are equal in area.

We prove this proposition in four cases:

FIGURE 3.2.40. [3.35], case 1

1. If the point of intersection is the center of ◦ACB, each rectangle is equal
in area to the square of the radius. Hence, the proof.
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FIGURE 3.2.41. [3.35], case 2

2. Suppose that the chord AB passes through the center of ◦ABC and that
the chord CD does not. Further suppose that AB ⊥ CD.

Join OC. Because AB passes through the center and cuts the other chord
CD which does not pass through the center at right angles, AB bisects CD
[3.3]. Because AB is divided equally at O and unequally at E, by [2.5], we have
that AE.EB+OE2 = OB2. Since OB = OC, we also have that AE.EB+OE2 =

OC2. But OC2 = OE2 + EC2 [1.47]: therefore AE.EB + OE2 = OE2 + EC2.
Subtracting OE2 from both sides of the equality, we obtain AE.EB = EC2. But
EC2 = CE.ED since CE = ED. Therefore, AE.EB = CE.ED.

FIGURE 3.2.42. [3.35], case 3

3. Let O be the center of ◦ACB, and let AB pass through the center of
◦ACB and cut CD such that AB 6⊥ CD.

Construct OF ⊥ CD [1.11]. Join OC, OD. Since CD is cut at right angles
by OF and OF passes through O, CD is bisected at F [3.3] and divided un-
equally at E. Hence by [2.5], CE.ED + FE2 = FD2. Adding OF 2 to each side
of the equality, we obtain:

CE.ED + FE2 +OF 2 = FD2 +OF 2

CE.ED +OE2 = OD2

CE.ED +OE2 = OB2
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Again, since AB is bisected at O and divided unequally at E, AE.EB +

OE2 = OB2 [2.5]. It follows that

CE.ED +OE2 = AE.EB +OE2

CE.ED = AE.EB

FIGURE 3.2.43. [3.35], case 4

4. Suppose neither chord passes through the center. Through E, their
point of intersection, construct the diameter FG. By case 3, the rectangle
FE.EG = AE.EB and FE.EG = CE.ED. Hence, AE.EB = CE.ED. �

COROLLARY. 1. If a chord of a circle is divided at any point within the
circle, the rectangle contained by its segments is equal to the difference between
the square of the radius and the square of the segment constructed from the
center to the point of section.

COROLLARY. 2. If the rectangle contained by the segments of one of two
intersecting segments is equal to the rectangle contained by the segments of the
other, the four endpoints are concyclic.

COROLLARY. 3. If two triangles are equiangular, the rectangle contained
by the non-corresponding sides about any two equal angles are equal.
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FIGURE 3.2.44. [3.35], Cor. 3

Let 4ABO, 4DCO be the equiangular triangles, and let them be placed so
that the equal angles atO are vertically opposite and that the non-corresponding
sides AO, CO stand in one segment. Then the non-corresponding sides BO, OD
form the segment BD. Since ∠ABD = ∠ACD, the points A, B, C, D are con-
cyclic [3.21, Cor. 1]. Hence, AO.OC = BO.OD [3.35].

Exercises.
1. In any triangle, the rectangle contained by two sides is equal in area to

the rectangle contained by the perpendicular on the third side and the diame-
ter of the circumscribed circle.

Definition: The supplement of an arc is the difference between the arc
and a semicircle.

2. The rectangle contained by the chord of an arc and the chord of its
supplement is equal to the rectangle contained by the radius and the chord of
twice the supplement.

3. If the base of a triangle is given with the sum of the sides, the rectangle
contained by the perpendiculars from the endpoints of the base on the external
bisector of the vertical angle is given.

4. If the base and the difference of the sides is given, the rectangle con-
tained by the perpendiculars from the endpoints of the base on the internal
bisector is given.

5. Through one of the points of intersection of two circles, construct a
secant so that the rectangle contained by the intercepted chords may be given,
or is a maximum.

6. If the sum of two arcs AC, CB of a circle is less than a semicircle, the
rectangle AC.CB contained by their chords is equal to the rectangle contained
by the radius and the excess of the chord of the supplement of their difference
above the chord of the supplement of their sum.
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FIGURE 3.2.45. [5.35, #6]

Construct the diameter DE such that DE ⊥ AB, and construct the chords
CF , BG parallel to DE. It is evident that the difference between the arcs AC,
CB is equal to 2 ·CD, and therefore equals CD+EF . Hence the arc CBF is the
supplement of the difference and CF is the chord of that supplement. Again,
since the angle ∠ABG is right, the arc ABG is a semicircle. Hence BG is the
supplement of the sum of the arcs AC, CB, and therefore the segment BG is
the chord of the supplement of the sum. By #1, the rectangle AC.CB is equal
to the rectangle contained by the diameter and CI, and therefore equal to the
rectangle contained by the radius and 2 · CI. But the difference between CF

and BG is evidently equal to 2 ·CI. Hence the rectangle AC.CB is equal to the
rectangle contained by the radius and the difference between the chords CF ,
BG.

7. If we join AF , BF , we find that the rectangle AF.FB is equal in area
to the rectangle contained by the radius and 2 · FI; that is, it is equal to the
rectangle contained by the radius and the sum of CF and BG. Hence, if the
sum of two arcs of a circle is greater than a semicircle, the rectangle contained
by their chords is equal to the rectangle contained by the radius and the sum
of the chords of the supplements of their sum and their difference.

8. Through a given point, construct a transversal cutting two given lines
so that the rectangle contained by the segments intercepted between it and the
line may be given.

PROPOSITION 3.36. THE AREA OF RECTANGLES CONSTRUCTED ON
A TANGENT AND A POINT OUTSIDE THE CIRCLE I. Suppose we are given
a circle and a point outside of the circle. If two segments are constructed from
the point to the circle, the first of which intersects the circle at two points and the
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second of which is tangent to the circle, then the area of the rectangle contained
by the subsegments of the first segment is equal to the square on the tangent.

PROOF. If from any point (P ) outside of the circle ◦ATB two segments are
constructed to meet P , one of which (PT ) is a tangent and the other (PA) a
secant, then the rectangle contained by the segments of the secant (AP.BP ) is
equal in area to the square of the tangent (PT ); or, AP.BP = PT 2.

We solve the proposition in two cases:

FIGURE 3.2.46. [3.36], case 1

1. Let PA pass through the center O of ◦ATB. Join OT . Because AB is
bisected at O and divided externally at P , the rectangle AP.BP + OB2 = OP 2

[2.6]. Since PT is a tangent to ◦ATB and OT is constructed from the center to
the point of intersection, the angle ∠OTP is right [3.18]. Hence OT 2 + PT 2 =

OP 2.
Therefore AP.BP + OB2 = OT 2 + PT 2. But OB2 = OT 2, and so AP.BP =

PT 2.

FIGURE 3.2.47. [3.36], case 2

2. If AB does not pass through the center O, construct the perpendicular
OC on AB. Join OT , OB, OP . Because OC, a segment through the center,
cuts AB, which does not pass through the center at right angles, OC bisects
AB [3.3]. Since AB is bisected at C and divided externally at P , we have that
AP.BP + CB2 = CP 2 [2.6]. Adding OC2 to each side, we obtain:
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AP.BP + CB2 +OC2 = CP 2 +OC2

AP.BP +OB2 = OP 2

We also have that OT 2 + PT 2 = OP 2, from which it follows that AP.BP +

OB2 = OT 2 + PT 2. Subtracting OB2 and OT 2 (since OB = OT ), we have that
AP.BP = PT 2. �

Note: The two propositions [3.35] and [3.36] may be written as one state-
ment: the rectangle AP.BP contained by the segments of any chord of a given
circle passing through a fixed point P , either within or outside of the circle, is
constant.

Suppose O is the center the circle, and join OA, OB, OP . Then4OAB is an
isosceles triangle, and OP is a segment constructed from its vertex to a point P
in the base or the extended base. It follows that the rectangle AP.BP is equal
to the difference of the squares of OB and OP ; therefore, it is constant.

COROLLARY. 1. If two segment AB, CD are extended to meet at P , and
if the rectangle AP.BP = CP.DP , then the points A, B, C, D are concyclic
(compare p3.35, Cor. 2]).

COROLLARY. 2. Tangents to two circles from any point in their common
chord are equal (compare [3.17, #6]).

COROLLARY. 3. The common chords of any three intersecting circles are
concurrent (compare [3.17, #7]).

Exercise.
1. If from the vertex A of 4ABC, the segment AD is constructed which

meets CB extended to D and creates the angle ∠BAD = ∠ACB, prove that
DB.DC = DA2.

PROPOSITION 3.37. THE AREA OF RECTANGLES CONSTRUCTED ON
A TANGENT AND A POINT OUTSIDE THE CIRCLE II. Suppose we are given
a circle and a point outside of the circle. If two segments are constructed from
the point to the circle, the first of which intersects the circle at two points, and
the area of the rectangle contained by the subsegments of the first segment is
equal to the square on the second segment, then the second segment is tangent
to the circle.
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PROOF. If the rectangle (AP.BP ) contained by the segments of a secant
and constructed from any point (P ) outside of the circle (◦ATB) is equal in
area to the square on the segment (PT ) constructed from the same point to
meet the circle, then the segment which meets the circle is a tangent to that
circle.

FIGURE 3.2.48. [3.37]

From P , construct PQ touching the circle [3.17]. Let O be the center of
◦ATQ and joinOP , OQ, OT . By hypothesis, AP.BP = PT 2; by [3.36], AP.BP =

PQ2. Hence PT 2 = PQ2, and so PT = PQ.
Consider the triangles 4OTP , 4OQP . Each have OT = OQ, TP = QP ,

and the base OP in common. By [1.8], 4OTP ∼= 4OQP , and so ∠OTP =

∠OQP. But ∠OQP is a right angle since PQ is a tangent [3.38]; hence ∠OTP
is right, and therefore PT is a tangent to ◦ATB [3.16]. �

COROLLARY. 1. Suppose we are given a circle and a point outside of the
circle where two segments are constructed from the point to the circle, the first
of which intersects the circle at two points. Then the second segment is tangent
to the circle if and only if the area of the rectangle contained by the subsegments
of the first segment is equal to the square on the tangent.

Exercises.
1. Construct a circle passing through two given points and fulfilling either

of the following conditions:
(a) touching a given line;
(b) touching a given circle.
2. Construct a circle through a given point and touching two given lines;

or touching a given line and a given circle.
3. Construct a circle passing through a given point having its center on a

given line and touching a given circle.
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4. Construct a circle through two given points and intercepting a given arc
on a given circle.

5. IfA, B, C,D are four collinear points andEF is a common tangent to the
circles constructed upon AB, CD as diameters, then prove that the triangles
4AEB, 4CFD are equiangular.

6. The diameter of the circle inscribed in a right-angled triangle is equal to
half the sum of the diameters of the circles touching the hypotenuse, the per-
pendicular from the right angle of the hypotenuse, and the circle constructed
about the right-angled triangle.

Examination questions on chapter 3
1. What is the subject-matter of chapter 3?
2. Define equal circles.
3. Define a chord.
4. When does a secant become a tangent?
5. What is the difference between an arc and a sector?
6. What is meant by an angle in a segment?
7. If an arc of a circle is one-sixth of the whole circumference, what is the

magnitude of the angle in it?
8. What are segments?
9. What is meant by an angle standing on a segment?
10. What are concyclic points?
11. What is a cyclic quadrilateral?
12. How many intersections can a line and a circle have?
13. How many points of intersection can two circles have?
14. Why is it that if two circles touch they cannot have any other common

point?
15. State a proposition that encompasses [3.11] and [3.12].
16. What proposition is #16 a limiting case of?
17. What is the modern definition of an angle?
18. How does the modern definition of an angle differ from Euclid’s?
19. State the relations between [3.16], [3.18] and [3.19].
20. What propositions are [3.16], [3.18] and [3.19] limiting cases of?
21. How many common tangents can two circles have?
22. What is the magnitude of the rectangle of the segments of a chord

constructed through a point 3.65m distant from the center of a circle whose
radius is 4.25m?
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23. The radii of two circles are 4.25 and 1.75 ft respectively, and the dis-
tance between their centers 6.5 ft. Find the lengths of their direct and their
transverse common tangents.

24. If a point is h feet outside the circumference of a circle whose diameter
is 7920 miles, prove that the length of the tangent constructed from it to the
circle is

√
3h/2 miles.

25. Two parallel chords of a circle are 12 inches and 16 inches respectively
and the distance between them is 2 inches. Find the length of the diameter.

26. What is the locus of the centers of all circles touching a given circle in
a given point?

27. What is the condition that must be fulfilled that four points may be
concyclic?

28. If the angle in a segment of a circle equals 1.5 right angles, what part
of the whole circumference is it?

29. Mention the converse propositions of chapter 3 which are proved di-
rectly.

30. What is the locus of the midpoints of equal chords in a circle?
31. The radii of two circles are 6 and 8, and the distance between their

centers is 10. Find the length of their common chord.
32. If a figure of any even number of sides is inscribed in a circle, prove

that the sum of one set of alternate angles is equal to the sum of the remaining
angles.

Chapter 3 exercises.
1. If two chords of a circle intersect at right angles, the sum of the squares

on their segments is equal to the square on the diameter.
2. If a chord of a given circle stands opposite a right angle at a fixed point,

the rectangle of the perpendiculars on it from the fixed point and from the
center of the given circle is constant. Also, the sum of the squares of perpen-
diculars on it from two other fixed points (which may be found) is constant.

3. If through either of the points of intersection of two equal circles any
line is constructed meeting them again in two points, these points are equally
distant from the other intersection of the circles.

4. Construct a tangent to a given circle so that the triangle formed by it
and two fixed tangents to the circle shall be:

(a) a maximum;
(b) a minimum.
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5. If through the points of intersection A, B of two circles any two segments
ACD, BEF are constructed parallel to each other which meet the circles again
at C, D, E, F , then we have that CD = EF .

6. In every triangle, the bisector of the greatest angle is the least of the
three bisectors of the angles.

7. The circles whose diameters are the four sides of any cyclic quadrilateral
intersect again in four concyclic points.

8. The four angular points of a cyclic quadrilateral determine four triangles
whose orthocenters (the intersections of their perpendiculars) form an equal
quadrilateral.

9. If through one of the points of intersection of two circles we construct
two common chords, the segments joining the endpoints of these chords make
a given angle with each other.

10. The square on the perpendicular from any point in the circumference
of a circle on the chord of contact of two tangents is equal to the rectangle of
the perpendiculars from the same point on the tangents.

11. Find a point on the circumference of a given circle such that the sum
of the squares on whose distances from two given points is either a maximum
or a minimum.

12. Four circles are constructed on the sides of a quadrilateral as diame-
ters. Prove that the common chord of any two on adjacent sides is parallel to
the common chord of the remaining two.

13. The rectangle contained by the perpendiculars from any point in a
circle on the diagonals of an inscribed quadrilateral is equal to the rectangle
contained by the perpendiculars from the same point on either pair of opposite
sides.

14. The rectangle contained by the sides of a triangle is greater than the
square on the internal bisector of the vertical angle by the rectangle contained
by the segments of the base.

15. If through A, one of the points of intersection of two circles, we con-
struct any line ABC which cuts the circles again at B and C, the tangents at
B and C intersect at a given angle.

16. If a chord of a given circle passes through a given point, the locus of
the intersection of tangents at its endpoints is a straight line.

17. The rectangle contained by the distances of the point where the in-
ternal bisector of the vertical angle meets the base and the point where the
perpendicular from the vertex meets it from the midpoint of the base is equal
to the square on half the difference of the sides.
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18. State and prove the proposition analogous to [3.17] for the external
bisector of the vertical angle.

19. The square on the external diagonal of a cyclic quadrilateral is equal to
the sum of the squares on the tangents from its endpoints to the circumscribed
circle.

20. If a “movable” circle touches a given circle and a given line, the chord
of contact passes through a given point.

21. If A, B, C are three points in the circumference of a circle, and D, E
are the midpoints of the arcs AB, AC, and if the segment DE intersects the
chords AB, AC at F and G, then AF = AG.

22. If a cyclic quadrilateral is such that a circle can be inscribed in it, the
lines joining the points of contact are perpendicular to each other.

23. If through the point of intersection of the diagonals of a cyclic quadri-
lateral the minimum chord is constructed, that point will bisect the part of the
chord between the opposite sides of the quadrilateral.

24. Given the base of a triangle, the vertical angle, and either the internal
or the external bisector at the vertical angle, construct the triangle.

25. If through the midpoint A of a given arc BAC we construct any chord
AD, cutting BC at E, then the rectangle AD.AE is constant.

26. The four circles circumscribing the four triangles formed by any four
lines pass through a common point.

27. If X, Y , Z are any three points on the three sides of a triangle 4ABC,
the three circles about the triangles 4Y AZ, 4ZBX, 4XCY pass through a
common point.

28. If the position of the common point in the previous exercise are given,
the three angles of the triangle 4XY Z are given, and conversely.

29. Place a given triangle so that its three sides shall pass through three
given points.

30. Place a given triangle so that its three vertices shall lie on three given
lines.

31. Construct the largest triangle equiangular to a given one whose sides
shall pass through three given points.

32. Construct the smallest possible triangle equiangular to a given one
whose vertices shall lie on three given lines.

33. Construct the largest possible triangle equiangular to a given triangle
whose sides shall touch three given circles.

34. If two sides of a given triangle pass through fixed points, the third
touches a fixed circle.



3.2. PROPOSITIONS FROM BOOK III 182

35. If two sides of a given triangle touch fixed circles, the third touches a
fixed circle.

36. Construct an equilateral triangle having its vertex at a given point and
the endpoints of its base on a given circle.

37. Construct an equilateral triangle having its vertex at a given point and
the endpoints of its base on two given circles.

38. Place a given triangle so that its three sides touch three given circles.
39. Circumscribe a square about a given quadrilateral.
40. Inscribe a square in a given quadrilateral.
41. Construct the following circles:
(a) orthogonal (cutting at right angles) to a given circle and passing through

two given points;
(b) orthogonal to two others, and passing through a given point;
(c) orthogonal to three others.
42. If from the endpoints of a diameter AB of a semicircle two chords AD,

BE are constructed which meet at C, we have that AC.AD +BC.BE = AB2.
43. IfABCD is a cyclic quadrilateral, and if we construct any circle passing

through the points A and B, another through B and C, a third through C and
D, and a fourth through D and A, then these circles intersect successively at
four other points E, F , G, H, forming another cyclic quadrilateral.

44. If 4ABC is an equilateral triangle, what is the locus of the point M , if
MA = MB +MC?

45. In a triangle, given the sum or the difference of two sides and the angle
formed by these sides both in magnitude and position, the locus of the center
of the circumscribed circle is a straight line.

46. Construct a circle:
(a) through two given points which bisect the circumference of a given cir-

cle;
(b) through one given point which bisects the circumference of two given

circles.
47. Find the locus of the center of a circle which bisects the circumferences

of two given circles.
48. Construct a circle which bisects the circumferences of three given cir-

cles.
49. If CD is a perpendicular from any point C in a semicircle on the diam-

eter AB, ◦EFG is a circle touching DB at E, CD at F , and the semicircle at G,
then prove that:

(a) the points A, F , G are collinear;
(b) AC = AE.
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50. Being given an obtuse-angled triangle, construct from the obtuse angle
to the opposite side a segment whose square is equal to the rectangle contained
by the segments into which it divides the opposite side.

51. If O is a point outside a circle whose center is E and two perpendicular
segments passing through O intercept chords AB, CD on the circle, then prove
that AB2 + CD2 + 4OE2 = 8R2 .

52. The sum of the squares on the sides of a triangle is equal to twice
the sum of the rectangles contained by each perpendicular and the portion of
it comprised between the corresponding vertex and the orthocenter. It is also
equal to 12R2 minus the sum of the squares of the distances of the orthocenter
from the vertices.

53. If two circles touch at C, if D is any point outside the circles at which
their radii through C stands opposite equal angles, and if DE, DF are tangent
from D, prove that DE.DF = DC2.



CHAPTER 4

Inscription and Circumscription

This chapter contains sixteen propositions, four of which relate to trian-
gles, four to squares, four to pentagons, and four to miscellaneous figures.

4.1. Definitions

1. If two polygons are related such that the angular points of one lie on the
sides of the other, then:

(a) the former is said to be inscribed in the latter;
(b) the latter is said to be circumscribed around or about the former.
2. A polygon is said to be inscribed in a circle when its angular points are

on the circumference. Reciprocally, a polygon is said to be circumscribed about
or around a circle when each side touches the circle.

3. A circle is said to be inscribed in a polygon when it touches each side of
the figure. Reciprocally, a circle is said to be circumscribed about or around a
polygon when it passes through each angular point of the figure.

FIGURE 4.1.1. [Def. 4.1] The hexagon ABCDEF is inscribed
in the circle ◦ABC; the circle ◦ABC is circumscribed about the
hexagon ABCDEF .

4. A polygon which is both equilateral and equiangular is said to be regu-
lar.

4.2. Propositions from Book IV

PROPOSITION 4.1. CONSTRUCTING A CHORD INSIDE A CIRCLE. In a
given circle, it is possible to construct a chord equal in length to a given segment
not greater than the circle’s diameter.

184
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PROOF. Given with diameter AC, we wish to construct a chord in ◦ABC
equal in length to a given segment, DG (where AC ≥ DG).

FIGURE 4.2.1. [4.1]

If AC = DG, then the required chord already exists within the circle (i.e.,
its diameter).

Otherwise, cut subsegment AE from diameter AC such that AE = DG

[1.3]. With A as center and AE as radius, construct the circle ◦EBF , cutting
the circle ◦ABC at the points B, F . Join AB. We claim that AB is the required
chord.

Because A is the center of ◦EBF , AB = AE. But AE = DG by construc-
tion, and so AB = DG. Since AB is a chord of ◦ABC, the proof follows. �

PROPOSITION 4.2. INSCRIBE A TRIANGLE INSIDE A CIRCLE. In a
given circle, it is possible to inscribe a triangle equiangular to a given trian-
gle.

PROOF. We wish to inscribe a triangle equiangular to a given triangle
(4DEF ) in a given circle (◦ABC).

FIGURE 4.2.2. [4.2]

At a point A on the circumference of ◦ABC, construct the tangent line
GAH. Construct ∠HAC = ∠DEF and ∠GAB = ∠DFE [1.23]. Join BC. We
claim that 4ABC fulfills the required conditions.
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Since ∠DEF = ∠HAC by construction and ∠HAC = ∠ABC in the al-
ternate segment [3.32], we have that ∠DEF = ∠ABC. Similarly, ∠DFE =

∠ACB. By [1.32], ∠FDE = ∠BAC. Hence the triangle 4ABC inscribed in
◦ABC is equiangular to 4DEF . �

PROPOSITION 4.3. CIRCUMSCRIBE A TRIANGLE ABOUT A CIRCLE.
It is possible to circumscribe a triangle about a circle such that the triangle is
equiangular to a given triangle.

PROOF. We wish to to construct a triangle equiangular to a given triangle
(4DEF ) about a given circle (◦ABC).

FIGURE 4.2.3. [4.3]

Extend side DE of 4DEF to the segment GH, and from the center O of
◦BCA construct any radius OA. Construct ∠AOB = ∠GEF and ∠AOC =

∠HDF [1.23]. At the points A, B, and C, construct the tangents LM , MN , NL
to ◦BCA. We claim that 4LMN fulfills the required conditions.

Because AM touches ◦BCA at A, the angle ∠OAM is right [3.18]. Simi-
larly, the angle ∠MBO is right; but the sum of the four angles of the quadri-
lateral OAMB is equal to four right angles [1.32, Cor.3]. Therefore the sum
of the two remaining angles ∠AOB + ∠AMB is two right angles. By [1.13],
∠GEF +∠FED is two right angles [1.13], and so ∠AOB +∠AMB = ∠GEF +

∠FED. But ∠AOB = ∠GEF by construction; hence ∠AMB = ∠FED; simi-
larly, ∠ALC = ∠EDF . Therefore by [1.32], ∠BNC = ∠DFE, and the triangle
4LMN is equiangular to 4DEF . �

PROPOSITION 4.4. INSCRIBE A CIRCLE IN A TRIANGLE. It is possible
to inscribe a circle in a given triangle.
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PROOF. We wish to inscribe a circle (◦DEF ) in a given triangle (4ABC).

FIGURE 4.2.4. [4.4]

Bisect angles ∠CAB, ∠ABC of 4ABC by the segments AO, BO; we claim
that O, their point of intersection, is the center of the required circle.

From O construct the perpendicular segments OD, OE, OF on the sides
of 4ABC. Consider the triangles 4OAE and 4OAF : ∠OAE = ∠OAF by
construction; ∠AEO = ∠AFO because each is right; and the side OA stands
in common. Hence, OE = OF [1.26]. Similarly, OD = OF . Therefore OD =

OE = OF , and by [3.9], the circle constructed with O as center and OD as
radius will pass through the points D, E, F by construction. Since each of the
angles ∠ODB, ∠OEA, ∠OFA is right, each touches the respective sides of the
triangle 4ABC [3.16]. Therefore, the circle ◦DEF is inscribed in the triangle
4ABC. �

Definition: The bisectors of the three internal angles of a triangle are
concurrent. Their point of intersection is called the incenter of the triangle.

Exercises.
1. In [4.4]: if the points O, C are joined, prove that the angle ∠ACB is

bisected. Hence, we prove the existence of the incenter of a triangle.
2. If the sides BC, CA, AB of the triangle 4ABC are denoted by a, b, c,

and half their sum is denoted by s, the distances of the vertices A, B, C of the
triangle from the points of contact of the inscribed circle are respectively s−a,
s−b, s−c.
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FIGURE 4.2.5. [4.4, #3]

3. If the external angles of the triangle 4ABC are bisected as in Fig.
4.2.5, the three angular points O′, O′′, O′′′ of the triangle formed by the three
bisectors are the centers of three circles, each touching one side externally and
the other two when extended. These three circles are called the escribed circles
of the triangle 4ABC.

4. The distances of the vertices A, B, C from the points of contact of the
escribed circle which touches AB externally are s−b, s−a, s.

5. The center of the inscribed circle, the center of each escribed circle, and
two of the angular points of the triangle are concyclic. Also, any two of the
escribed centers are concyclic with the corresponding two of the angular points
of the triangle.

6. Of the four points O, O′, O′′, O′′′, any one is the orthocenter of the
triangle formed by the remaining three.

7. The three triangles 4BCO, 4CAO,4ABO are equiangular.
8. Confirm that CO.CO = ab, AO.AO = bc, BO.BO = ca.
9. Since the whole triangle4ABC is made up of the three triangles4AOB,

4BOC, 4COA, we see that the rectangle contained by the sum of the three
sides and the radius of the inscribed circle is equal to twice the area of the
triangle. Hence, if r denotes the radius of the inscribed circle, rs =area of
4ABC.
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10. If r′ denotes the radius of the escribed circle which touches the side a
externally, it may be shown that r′(s−a) =area of the triangle.

11.Show that rr′ = s−b.s−c.
12. Show that the square of the area = s.(s−a).(s−b).(s−c).
13. Show that the square of the area = r.r′.r′′.r′′′.
14. If4ABC is a right triangle where the angle at C is right, then r = s−c,

r′ = s−b, r′′ = s−a, and r′′′ = s.
15. Given the base of a triangle, the vertical angle, and the radius of the

inscribed or any of the escribed circles, construct it.

PROPOSITION 4.5. CIRCUMSCRIBE A CIRCLE ABOUT A TRIANGLE.
It is possible to circumscribe a circle about a given triangle.

PROOF. We wish to construct a circle (◦ABC) about a given triangle (4ABC).

FIGURE 4.2.6. [4.5]

Bisect sides BC, AC of 4ABC at the points D, E, respectively. Construct
DO, EO at right angles to BC, CA. We claim that O, the point of intersection
of the perpendiculars, is the center of the required circle ◦ABC.

Join OA, OB, OC. Consider the triangles 4BDO, 4CDO: they have the
side BD = CD by construction, side DO in common, and ∠BDO = ∠CDO

because each is right. By [1.4], 4BDO ∼= 4CDO, and so BO = OC. Similarly,
AO = OC. Therefore, AO = BO = CO, and by [3.9], the circle ◦ABC con-
structed with O as center and OA as radius will pass through the points A, B,
and C; thus, ◦ABC is circumscribed about the triangle 4ABC. �
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COROLLARY. 1. Since the perpendicular from O to AB bisects AB [3.3],
we see that the perpendiculars at the midpoints of the sides of a triangle are
concurrent. (See the following Definition.)

Definition: The circle ◦ABC is called the circumcircle, its radius the cir-
cumradius, and its center the circumcenter of the triangle.

Exercises.
1. The three altitudes of a triangle (4ABC) are concurrent. (This proves

the existence of the orthocenter of a circle.)
2. Prove that the three rectangles OA.OP , OB.OQ, OC.OR are equal in

area.

FIGURE 4.2.7. [4.5, #2]

Definition: The circle with O as center, the square of whose radius is
equal OA.OP = OB.OQ = OC.OR, is called the polar circle of the triangle
4ABC.

3. If the altitudes of a triangle are extended to meet a circumscribed circle,
the intercepts between the orthocenter and the circle are bisected by the sides
of the triangle.

Definition: The nine-points circle is a circle that can be constructed for
any given triangle. It is so named because it passes through nine significant
concyclic points defined from the triangle. These nine points are:
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(a) the midpoint of each side of the triangle
(b) the foot of each altitude
(c) the midpoint of the line segment from each vertex of the triangle to the

orthocenter (where the three altitudes meet; these line segments lie on their
respective altitudes). 1 See Fig. 4.2.9.

205_home_daniel_Documents_Euclid_Project_images-book4_Fig8p2p9.pdf

FIGURE 4.2.8. [4.5, #4] The nine-points circle

4. The circumcircle of a triangle is the “nine points circle” of each of the four
triangles formed by joining the centers of the inscribed and escribed circles.

5. The distances between the vertices of a triangle and its orthocenter are
respectively the doubles of the perpendiculars from the circumcenter on the
sides.

6. The radius of the “nine points circle” of a triangle is equal to half its
circumradius.

Note: the orthocenter, centroid, and circumcenter of any triangle are collinear;
the line they lie on is named the Euler line2.

PROPOSITION 4.6. INSCRIBE A SQUARE IN A CIRCLE. It is possible to
to inscribe a square in a given circle.

PROOF. We wish to inscribe a square (�ABCD) in a given circle (◦ABCD).

FIGURE 4.2.9. [4.6]

1https://en.wikipedia.org/wiki/Nine-point_circle
2https://en.wikipedia.org/wiki/Leonhard_Euler

https://en.wikipedia.org/wiki/Nine-point_circle
https://en.wikipedia.org/wiki/Leonhard_Euler
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Construct any two diameters AC, BD such that AC ⊥ BD. Join AB, BC,
CD, DA. We claim that �ABCD is the required square.

Let O be the center of ◦ABCD. Then the four angles at O are equal since
they are right angles. Hence the arcs on which they stand are equal [3.26]
and the four chords on which they stand are equal in length [3.29]. Therefore
the figure �ABCD is equilateral. Again, because AC is a diameter, the angle
∠ABC is right [3.31]. Similarly, the remaining angles are right. It follows that
�ABCD is a square inscribed in ◦ABCD. �

PROPOSITION 4.7. CIRCUMSCRIBE A SQUARE ABOUT A CIRCLE. It
is possible to circumscribe a square about a given circle.

PROOF. We wish to construct a circle (◦ABC) about the square (�ABCD).

FIGURE 4.2.10. [4.7]

Through the center O construct any two diameters at right angles to each
other, and at the points A, B, C, D construct the tangential segments HE, EF ,
FG, GH. We claim that �EFGH is the required square.

Since AE touches the circle at A, the angle ∠EAO is right [3.18] and there-
fore equal to ∠BOC, which is right by construction. HenceAE ‖ OB. Similarly,
EB ‖ AO. Since AO = OB, the figure AOBE is a lozenge. Since the angle
∠AOB is right, �AOBE is a square. Similarly, each of the figures �BOFC,
�ODGC, �AHDO is a square, and so �EFGH is a square. �

COROLLARY. 1. The circumscribed square has double the area of the in-
scribed square.
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PROPOSITION 4.8. INSCRIBE A CIRCLE IN A SQUARE. It is possible to
inscribe a circle in a given square.

PROOF. We wish to inscribe a circle (◦ABC) in a given square (�EFGH).

FIGURE 4.2.11. [4.8]

Bisect the two adjacent sides EH, EF at the points A, B, and through A,
B construct the segments AC, BD which are respectively parallel to EF , EH.
We claim that O, the point of intersection of these parallels, is the center of the
required circle ◦ABC.

Because �AOBE is a parallelogram, its opposite sides are equal; therefore
AO = EB. But EB is half the side of the given square, and so AO is equal to
half the side of the given square. This is similarly true for each of the segments
OB, OC, OD. Therefore we have that OA = OB = OC = OD. Since they are
perpendicular to the sides of the given square, the circle constructed with O as
center and OA as radius is inscribed in the square. �

PROPOSITION 4.9. CIRCUMSCRIBE A CIRCLE ABOUT A GIVEN SQUARE.
It is possible to circumscribe a circle about a given square.

PROOF. We wish to construct a circle (◦ABC) about a given square (�ABCD).
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FIGURE 4.2.12. [4.9]

Construct perpendicular diagonals AC, BD intersecting at O. We claim
that O is the center of the required circle ◦ABC.

Since 4ABC is an isosceles triangle and the angle ∠ABC is right, each of
the other angles equals half a right angle; therefore ∠BAO equals half a right
angle. Similarly, ∠ABO equals half a right angle; hence ∠BAO = ∠ABO. By
[1.6], AO = OB. Similarly, OB = OC and OC = OD. Hence the circle with
O as center and OA as radius intersects through the points B, C, D and is
evidently constructed about the square �ABCD. �

PROPOSITION 4.10. CONSTRUCTION OF AN ISOSCELES TRIANGLE
WITH BASE ANGLES DOUBLE THE VERTICAL ANGLE. It is possible to
construct an isosceles triangle such that each base angle is double the vertical
angle.

PROOF. We wish to construct an isosceles triangle (4ABD) where

∠ADB = ∠ABD = 2 · ∠DAB
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FIGURE 4.2.13. [4.10]

Take any segment AB and divide it at C such that the rectangle AB.BC =

AC2 [2.6]. With A as center and AB as radius, construct the circle ◦BDE and
on its circumference construct the chord BD = AC [4.1]. Join AD. We claim
that 4ABD fulfills the required conditions.

Join CD. About the triangle 4ACD, construct the circle ◦ACD [4.5]. Be-
cause by construction the rectangle AB.BC = AC2 and AC = BD, each by con-
struction, we have that the rectangle AB.BC = BD2. By [3.32], BD touches
the circle ◦ACD. Hence the angle ∠BDC is equal to the angle at A in the
alternate segment (or, ∠BDC = ∠DAB) [3.32].

To each angle, add ∠CDA, and we have that ∠BDA = ∠CDA + ∠DAB.
But the exterior angle ∠BCD of the triangle 4ACD is equal to the sum of
the angles ∠CDA and ∠CAD (or ∠BCD = ∠CDA + ∠DAB). Hence ∠BDA =

∠BCD. Since AB = AD, we have that ∠BDA = ∠ABD, from which it follows
that

∠BCD = ∠ABD = ∠CBD

By [1.6], BD = CD; but BD = AC by construction. Therefore AC = CD,
and by [1.5], ∠CDA = ∠DAB. But since ∠BDA = ∠CDA + ∠DAB, ∠BDA =

2 · ∠DAB. It follows that each of the base angles of the triangle 4ABD is
double of the vertical angle. �

Exercises.
1. Prove that 4ACD is an isosceles triangle whose vertical angle is equal

to three times each of the base angles.
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2. Prove that BD is the side of a regular decagon inscribed in the circle
◦BDE.

3. If DB, DE, EF are consecutive sides of a regular decagon inscribed in a
circle, prove that BF−BD = radius of a circle.

4. If E is the second point of intersection of the circle ◦ACD with ◦BDE,
then DE = DB. If AE, BE, CE, DE are joined, each of the triangles 4ACE,
4ADE is congruent with 4ABD.

5. AC is the side of a regular pentagon inscribed in the circle ◦ACD, and
EB the side of a regular pentagon inscribed in the circle ◦BDE.

6. Since 4ACE is an isosceles triangle, EB2−EA2 = AB.BC = BD2; that
is, the square of the side of a pentagon inscribed in a circle exceeds the square
of the side of the decagon inscribed in the same circle by the square of the
radius.

PROPOSITION 4.11. INSCRIBE A REGULAR PENTAGON IN A GIVEN
CIRCLE. It is possible to inscribe a regular pentagon in a given circle.

PROOF. We wish to inscribe a regular pentagon in a given circle (◦ABC).

FIGURE 4.2.14. [4.11]

Construct an isosceles triangle having each base angle double the vertical
angle [4.10], and inscribe a triangle4ABD equiangular to it in the given circle
◦ABC. Bisect the angles ∠DAB, ∠ABD by the segments AC, BE. Join EA,
ED, DC, CB. We claim that the figure ABCDE is a regular pentagon.

Since each of the base angles ∠BAD, ∠ABD is double of the angle ∠ADB
(or ∠BAD = 2 · ∠ADB = ∠ABD) and the segments AC, BE bisect them, we
have that

∠BAC = ∠CAD = ∠ADB = ∠DBE = ∠EBA

Therefore the arcs on which they stand are equal, and the five chords AB, BC,
CD, DE, EA are equal in length. Hence, the figure ABCDE is equilateral.
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Again, because the arcs AB, DE are equal, if we add the arc BCD to both,
the arc ABCD is equal to the arc BCDE, and therefore the angles ∠AED,
∠BAE which stand on them are equal [3.27]. Similarly, it can be shown that all
the angles are equal; therefore ABCDE is equiangular. Hence, it is a regular
pentagon. �

Exercises.
1. The figure formed by the five diagonals of a regular pentagon is another

regular pentagon.
2. If the alternate sides of a regular pentagon are extended to meet, the

five points of meeting form another regular pentagon.
3. Every two consecutive diagonals of a regular pentagon divide each other

in the extreme and mean ratio.
4. Being given a side of a regular pentagon, construct it.
5. Divide a right angle into five equal parts.

PROPOSITION 4.12. CIRCUMSCRIBE A REGULAR PENTAGON ABOUT
A GIVEN CIRCLE. It is possible to circumscribe a regular pentagon about a
given circle.

PROOF. We wish to construct a regular pentagon about a given circle (◦ABC).

FIGURE 4.2.15. [4.12]

Let the five points A, B, C, D, E on the circumference ◦ABC be the vertices
of any inscribed regular pentagon; at these points, construct tangents FG, GH,
HI, IJ , JF . We claim that FGHIJ is a circumscribed regular pentagon.

LetO be the center of ◦ABC. JoinOE, OA, OB. Because the angles ∠OAF ,
∠OEF of the quadrilateral AOEF are right angles [3.18], the sum of the two
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remaining angles ∠AOE + ∠AFE equals two right angles. Similarly, the sum
∠AOB + ∠AGB equals two right angles; hence

∠AOE + ∠AFE = ∠AOB + ∠AGB

But we have that ∠AOE = ∠AOB because they stand on equal arcs AE,
AB [3.27]. Hence ∠AFE = ∠AGB. Similarly, the remaining angles of the
figure FGHIJ are equal, and so FGHIJ is equiangular.

Again, join OF , OG. Notice that the triangles 4EOF , 4AOF share equal
sides AF , FE [3.17, #1], have side FO in common, and have equal bases AO,
EO. Hence4EOF ∼= 4AOF , and so ∠AFO = ∠EFO [1.8]. Therefore ∠AFO =
1
2∠AFE. Similarly, ∠AGO = 1

2∠AGB. But ∠AFE = ∠AGB, and so ∠AFO =

∠AGO; also, ∠FAO = ∠GAO since each are right angles, and the two triangles
4FAO, 4GAO share side AO in common. By [1.26], AF = AG, and so GF =

2 ·AF ; similarly, JF = 2 · EF . And since AF = EF , GF = JF .
Similarly, the remaining sides are equal; therefore the figure FGHIJ is

equilateral and equiangular. Hence, it is a regular pentagon. �

Note: This proposition is a particular case of the following general theorem
(which has a analogous proof): “If tangents are constructed to a circle at the
angular points of an inscribed polygon of any number of sides, they will form a
regular polygon of the same number of sides circumscribed to the circle.”

PROPOSITION 4.13. INSCRIBING A CIRCLE IN A REGULAR PENTA-
GON. It is possible to inscribe a circle in a regular pentagon.

PROOF. We wish to inscribe a circle (◦JFG) in a regular pentagon (ABCDE).

FIGURE 4.2.16. [4.13]
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Bisect two adjacent angles ∠JAF , ∠FBG by the segments AO, BO; we
claim that the point of intersection of the bisectors, O, is the center of the
required circle ◦JFG.

Join CO, and construct perpendiculars from O on the five sides of the pen-
tagon. Notice that the triangles 4ABO, 4CBO have the sides AB = BC by
hypothesis, sideBO in common, and ∠ABO = ∠CBO by construction. By [1.4],
∠BAO = ∠BCO; however, ∠BAO = 1

2∠BAE by construction. Therefore

∠BCO =
1

2
∠BAE =

1

2
∠BCD

and hence CO bisects the angle ∠BCD.
Similarly, it may be proved that DO bisects the angle ∠HDI and EO bi-

sects the angle ∠IEJ . Again, the triangles 4BOF , 4BOG have the angle
∠OFA = ∠OGB since each are right, ∠OBF = OBG because OB bisects
∠ABC by construction, and they share side OB in common. Hence, OF = OG

[1.26].
Similarly, all the perpendiculars from O on the sides of the pentagon are

equal. Hence the circle whose center is O with radius OF touches all the sides
of the pentagon and will therefore be inscribed in it; or, a circle may be in-
scribed in any regular polygon. �

PROPOSITION 4.14. CIRCUMSCRIBE A CIRCLE ABOUT A REGULAR
PENTAGON. It is possible to circumscribe a circle about a regular pentagon.

PROOF. We wish to construct a circle (◦AED) about a regular pentagon
(ABCDE).

FIGURE 4.2.17. [4.14]
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Bisect two adjacent angles ∠BAE, ∠ABC by the segments AO, BO. We
claim that O, the point of intersection of the bisectors, is the center of the
required circle ◦ABC.

Join OC, OD, OE. Then the triangles 4ABO, 4CBO have the side AB =

BC by hypothesis, BO common, and ∠ABO = ∠CBO by construction. By [1.4],
∠BAO = ∠BCO. But ∠BAE = ∠BCD by hypothesis. Since ∠BAO = 1

2∠BAE

by construction, ∠BCO = 1
2∠BCD. Hence CO bisects the angle ∠BCD.

Similarly, it may be proved that DO bisects ∠CDE and EO bisects the
angle ∠DEA. Again, because ∠EAB = ∠ABC, their halves are equal, and
∠OAB = ∠OBA. By [1.4], OA = OB. Similarly, the segments OC, OD, OE
are equal to one another and to OA. Therefore the circle constructed with O as
center and OA as radius (◦AED) passes through the points B, C, D, E and is
constructed about the pentagon. �

Note: [4.13] and [4.14] are particular cases of the following theorem: “A
regular polygon of any number of sides has one circle inscribed in it and an-
other constructed about it, and both circles are concentric.

PROPOSITION 4.15. INSCRIBE A REGULAR HEXAGON IN A CIRCLE.
It is possible to inscribe a regular hexagon in a circle.

PROOF. We wish to to inscribe a regular hexagon (ABCDEF ) in a given
circle (◦ABC).

FIGURE 4.2.18. [4.15]

Take any point A on the circumference and join it to O, the center of the
circle. Then with A as center and AO as radius, construct the circle ◦OBF ,
intersecting ◦ABC at the points B, F . Join OB, OF and extend AO, BO, FO
to meet ◦ABC again at the points D, E, C. Join AB, BC, CD, DE, EF , FA;
we claim that ABCDEF is the required hexagon.



4.2. PROPOSITIONS FROM BOOK IV 201

Each of the triangles 4AOB, 4AOF is equilateral. Hence the angles
∠AOB, ∠AOF are each one-third of two right angles; therefore ∠EOF is one-
third of two right angles. Again, the angles ∠BOC, ∠COD, ∠DOE are re-
spectively equal to the angles ∠EOF , ∠FOA, ∠AOB [1.15]. Therefore the six
angles at the center are equal, because each is one-third of two right angles,
and so by [3.29],

AB = BC = CD = DE = EF = FA

Hence the hexagon is equilateral.
Since the arc AF = ED, to each arc add arc ABCD; it follows that the

whole arc FABCD = ABCDE, and therefore the angles ∠DEF , ∠EFA which
stand on these arcs are equal [3.27]. Similarly, it may be shown that the other
angles of the hexagon are equal. Hence ABCDE is equiangular and is there-
fore a regular hexagon inscribed in the circle. �

COROLLARY. 1. The length of the side of a regular hexagon inscribed in a
circle is equal to the circle’s radius.

COROLLARY. 2. If three alternate angles of a hexagon are joined, they form
an inscribed equilateral triangle.

Exercises.
1. The area of a regular hexagon inscribed in a circle is equal to twice the

area of an equilateral triangle inscribed in the circle. Also, the square of the
side of the triangle equals three times the square of the area of the side of the
hexagon.

2. If the diameter of a circle is extended to C until the extended segment
is equal to the radius, then the two tangents from C and their chord of contact
form an equilateral triangle.

3. The area of a regular hexagon inscribed in a circle is half the area
of an equilateral triangle and three-fourths of the area of a regular hexagon
circumscribed to the circle.

PROPOSITION 4.16. INSCRIBE A REGULAR FIFTEEN-SIDED POLY-
GON IN A GIVEN CIRCLE. It is possible to inscribe a regular, fifteen-sided
polygon in a given circle.
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PROOF. We wish to inscribe a regular fifteen-sided polygon in a given circle
(◦ABC).

FIGURE 4.2.19. [4.16]

Inscribe a regular pentagon ABCDE in the circle ◦ABC [4.11] and also an
equilateral triangle 4AGH [4.2]. Join CG. We claim that CG is a side of the
required polygon.

Since ABCDE is a regular pentagon, the arc ABC is 2/5 of the circum-
ference. Since 4AGH is an equilateral triangle, the arc ABG is 1/3 of the
circumference. Hence the arc GC, which is the difference between these two
arcs, is equal to 2

5 −
1
3 = 1

15 of the entire circumference. Therefore, if chords
equal to GC are placed round the circle [4.1], we have a regular fifteen-sided
polygon, or quindecagon, inscribed in it. �

Note: Until the year 1801, no regular polygon could be constructed by lines
and circles only except those discussed in this Book IV of Euclid and those
obtained from them by the continued bisection of the arcs of which their sides
are the chords; but in that year, Gauss proved that if 2n+ 1 is a prime number,
then regular polygons of 2n+1 sides are constructible by elementary geometry.

Examination question for chapter 4.
1. What is the subject-matter of chapter 4?
2. When is one polygon said to be inscribed in another?
3. When is one polygon said to be circumscribed about another?
4. When is a circle said to be inscribed in a polygon?
5. When is a circle said to be circumscribed about a polygon?
6. What is meant by reciprocal propositions? (Ans. In reciprocal propo-

sitions, to every line in one there corresponds a point in the other; and, con-
versely, to every point in one there corresponds a line in the other.)

7. Give instances of reciprocal propositions in chapter 4.
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8. What is a regular polygon?
9. What figures can be inscribed in, and circumscribed about, a circle by

means of chapter 4?
10. What regular polygons has Gauss proved to be constructible by the line

and circle?
11. What is meant by escribed circles?
12. How many circles can be constructed to touch three lines forming a

triangle?
13. What is the centroid of a triangle?
14. What is the orthocenter?
15. What is the circumcenter?
16. What is the polar circle?
17. What is the “nine-points circle”?
18. How does a nine-points circle get its name?
19. Name the nine points that a nine-points circle passes through.
20. What three regular figures can be used in filling up the space round a

point? (Ans. Equilateral triangles, squares, and hexagons.)
21. If the sides of a triangle are 13, 14, 15 units in length, what are the

values of the radii of its inscribed and escribed circles?
22. What is the radius of the circumscribed circle?
23. What is the radius of its nine-points circle?
24. What is the distance between the centers of its inscribed and circum-

scribed circles?
25. If r is the radius of a circle, what is the area:
(a) of its inscribed equilateral triangle?
(b) of its inscribed square?
(c) its inscribed pentagon?
(d) its inscribed hexagon?
(e) its inscribed octagon?
(f) its inscribed decagon?
26. With the same hypothesis, find the sides of the same regular figures.

Exercises on chapter 4.
1. If a circumscribed polygon is regular, the corresponding inscribed poly-

gon is also regular, and conversely.
2. If a circumscribed triangle is isosceles, the corresponding inscribed tri-

angle is isosceles, and conversely.
3. If the two isosceles triangles in #2 have equal vertical angles, they are

both equilateral.
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4. Divide an angle of an equilateral triangle into five equal parts.
5. Inscribe a circle in a sector of a given circle.
6. Suppose that segments DE, BC of4ABC are parallel: DE ‖ BC. Prove

that the circles constructed about the triangles 4ABC, 4ADE touch at A.
7. If the diagonals of a cyclic quadrilateral intersect at E, prove that the

tangent at E to the circle about the triangle 4ABE is parallel to CD.
8. Inscribe a regular octagon in a given square.
9. If a segment of given length slides between two given lines, find the locus

of the intersection of perpendiculars from its endpoints to the given lines.
10. If the perpendicular to any side of a triangle at its midpoint meets the

internal and external bisectors of the opposite angle at the points D and E,
prove that D, E are points on the circumscribed circle.

11. Through a given point P , construct a chord of a circle so that the
intercept EF stands opposite a given angle at point X.

12. In a given circle, inscribe a triangle having two sides passing through
two given points and the third parallel to a given line.

13. Given four points, no three of which are collinear, construct a circle
which is equidistant from them.

14. In a given circle, inscribe a triangle whose three sides pass through
three given points.

15. Construct a triangle, being given:
(a) the radius of the inscribed circle, the vertical angle, and the perpendic-

ular from the vertical angle on the base.
(b) the base, the sum or difference of the other sides, and the radius of the

inscribed circle, or of one of the escribed circles.
(c) the centers of the escribed circles.
16. If F is the midpoint of the base of a triangle, DE the diameter of the

circumscribed circle which passes through F , and L the point where a parallel
to the base through the vertex meets DE, prove that DL.FE is equal to the
square of half the sum and DF.LE is equal to the square of half the difference
of the two remaining sides.

17. If from any point within a regular polygon of n sides perpendiculars
fall on the sides, their sum is equal to n times the radius of the inscribed circle.

18. The sum of the perpendiculars falling from the angular points of a
regular polygon of n sides on any line is equal to n times the perpendicular
from the center of the polygon on the same line.

19. If R denotes the radius of the circle circumscribed about a triangle
4ABC, r, r′, r′′, r′′′ are the radii of its inscribed and escribed circles; δ, δ′,
δ′′ are the perpendiculars from its circumcenter on the sides; µ, µ′, µ′′ are the
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segments of these perpendiculars between the sides and circumference of the
circumscribed circle, then we have the equalities:

r′ + r′′ + r′′′ = 4R+ r (1)
µ+ µ′ + µ′′ = 2R− r (2)
δ + δ′ + δ′′ = R+ r (3)

The relation (3) supposes that the circumcenter is inside the triangle.
20. Take a point D from the side BC of a triangle 4ABC and suppose

we construct a transversal EDF through it; suppose we also construct circles
about the triangles 4DBF , 4ECD. The locus of their second point of inter-
section is a circle.

21. In every quadrilateral circumscribed about a circle, the midpoints of
its diagonals and the center of the circle are collinear.

22. Find on a given line a point P , the sum or difference of whose distances
from two given points may be given.

23. Find a point such that, if perpendiculars fall from it on four given lines,
their feet are collinear.

24. The line joining the orthocenter of a triangle to any point P in the
circumference of its circumscribed circle is bisected by the line of co-linearity
of perpendiculars from P on the sides of the triangle.

25. The orthocenters of the four triangles formed by any four lines are
collinear.

26. If a semicircle and its diameter are touched by any circle either in-
ternally or externally, then twice the rectangle contained by the radius of the
semicircle and the radius of the tangential circle is equal to the rectangle con-
tained by the segments of any secant to the semicircle through the point of
intersection of the diameter and touching circle.

27. If ρ, ρ′ are radii of two circles touching each other at the center of the
inscribed circle of a triangle where each touches the circumscribed circle, prove
that

1

ρ
+

1

ρ′
=

2

r

and state and prove corresponding theorems for the escribed circles.
28. If from any point in the circumference of the circle, circumscribed about

a regular polygon of n sides, segments are constructed to its angular points, the
sum of their squares is equal to 2n times the square of the radius.

29. In the same case as the above, if the lines are constructed from any
point in the circumference of the inscribed circle, prove that the sum of their
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squares is equal to n times the sum of the squares of the radii of the inscribed
and the circumscribed circles.

30. State the corresponding theorem for the sum of the squares of the lines
constructed from any point in the circumference of any concentric circle.

31. If from any point in the circumference of any concentric circle perpen-
diculars are let fall on all the sides of any regular polygon, the sum of their
squares is constant.

32. See #31. For the inscribed circle, the constant is equal to 3n/2 times
the square of the radius.

33. See #31. For the circumscribed circle, the constant is equal to n times
the square of the radius of the inscribed circle, together with 1

2n times the
square of the radius of the circumscribed circle.

34. If the circumference of a circle whose radius is R is divided into sev-
enteen equal parts and AO is the diameter constructed from one of the points
of division (A), and if ρ1, ρ2, ..., ρ8 denote the chords from O to the points of
division, A1, A2, ..., A8 on one side of AO, then

ρ1ρ2ρ4ρ8 = ρ3ρ5ρ6ρ7 = R4

Let the supplemental chords corresponding to ρ1, ρ2, etc., be denoted by r1,
r2, etc. Then by [3.35, #2], we have that

ρ1r1 = Rr2

ρ2r2 = Rr4

ρ4r4 = Rr8

ρ8r8 = Rr1

Hence, ρ1ρ2ρ4ρ8 = R4.
And it may be similarly proved that

ρ1ρ2ρ3ρ4ρ5ρ6ρ7ρ8 = R8

Therefore, ρ3ρ5ρ6ρ7 = R4.
35. If from the midpoint of the segment joining any two of four concyclic

points a perpendicular falls on the line joining the remaining two, the six per-
pendiculars thus obtained are concurrent.

36. The greater the number of sides of a regular polygon circumscribed
about a given circle, the less will be its perimeter.

37. The area of any regular polygon of more than four sides circumscribed
about a circle is less than the square of the diameter.

38. Four concyclic points taken three by three determine four triangles,
the centers of whose nine-points circles are concyclic.
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39. If two sides of a triangle are given in position, and if their included
angle is equal to an angle of an equilateral triangle, the locus of the center of
its nine-points circle is a straight line.

40. If in the hypothesis and notation of #34, α, β denote any two suffixes
whose sum is less than 8 where α > β, then

ραρβ = R(ρα−β + ρα+β)

For example, ρ1ρ4 = R(ρ3 + ρ5) [3.35, #7].
In the same case, if the suffixes be greater than 8, then

ρα · ρβ = R(ρα−β − ρ17−α−β)

For instance, ρ8 · ρ2 = R(ρ6 − ρ7) [3.35, #6].
41. Two lines are given in position. Construct a transversal through a

given point, forming with the given lines a triangle of given perimeter.
42. Given the vertical angle and perimeter of a triangle, construct it with

any of the following data:
(a) The bisector of the vertical angle;
(b) the perpendicular from the vertical angle on the base;
(c) the radius of the inscribed circle.
43. In a given circle, inscribe a triangle so that two sides may pass through

two given points and that the third side may be a maximum or a minimum.
44. If s is the semi-perimeter of a triangle, and if r′, r′′, r′′′ are the radii of

its escribed circles, then

r′ · r′′ + r′′ · r′′′ + r′′′ · r′ = s2

45. The feet of the perpendiculars from the endpoints of the base on either
bisector of the vertical angle, the midpoint of the base, and the foot of the
perpendicular from the vertical angle on the base are concyclic.

46. Given the base of a triangle and the vertical angle, find the locus of the
center of the circle passing through the centers of the escribed circles.

47. The perpendiculars from the centers of the escribed circles of a triangle
on the corresponding sides are concurrent.

48. If AB is the diameter of a circle, PQ is any chord cutting AB at O, and
if the segments AP , AQ intersect the perpendicular to AB at O (at D and E

respectively), then the points A, B, D, E are concyclic.
49. If the sides of a triangle are in arithmetical progression, and if R, r are

the radii of the circumscribed and inscribed circles, then 6Rr is equal to the
rectangle contained by the greatest and least sides.
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50. Inscribe in a given circle a triangle having its three sides parallel to
three given lines.

51. If the sides AB, BC, etc., of a regular pentagon is bisected at the points
A′, B′, C ′, D′, E′, and if the two pairs of alternate sides BC, AE and AB, DE
meet at the points A′′, E′′, respectively, prove that

4A′′AE′′ −4A′AE′ = pentagon A′B′C ′D′E′

52. In a circle, prove that an equilateral inscribed polygon is regular; also
prove that if the number of its sides are odd, then it is an equilateral circum-
scribed polygon.

53. Prove that an equiangular circumscribed polygon is regular; also prove
that if the number of its sides are odd, then it is an equilateral inscribed poly-
gon.

54. The sum of the perpendiculars constructed to the sides of an equian-
gular polygon from any point inside the figure is constant.

55. Express the sides of a triangle in terms of the radii of its escribed
circles.



CHAPTER 5

Theory of Proportions

Chapter 5, like Chapter 2, proves a number of propositions which demon-
strate elementary algebraic statements that are more familiar to us in the
form of equations. Algebra as we know it had not been developed when Euclid
wrote “The Elements”. As such, the results are more of historical importance
than practical use (except when they are used in subsequent proofs). As such,
Book V appears here in truncated form.

5.1. Definitions

1. A lesser magnitude is said to be a part or submultiple of a greater mag-
nitude when the lesser magnitude is contained an exact number of times in
the greater magnitude.

2. A greater magnitude is said to be a multiple of a lesser magnitude
when the greater magnitude contains the lesser magnitude an exact number
of times.

3. A ratio is the mutual relation of two magnitudes of the same kind with
respect to quantity.

4. Magnitudes are said to have a ratio to one another when the lesser
magnitude can be multiplied so as to exceed the greater.

These definitions require explanation, especially [Def. 5.3], which has the
fault of conveying no precise meaning—being, in fact, unintelligible. We recon-
sider the above using algebraic terminology:

(a) If an integer is divided into any number of equal parts, then one part or
the sum of any number of these parts is called a fraction.

FIGURE 5.1.1. Def. 5.1

209
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If the segment AB represents the integer, and if it is divided into four equal
parts at the points C, D, E, then AC = 1/4, AD = 2/4, and AE = 3/4 of the
whole segment, AB. Thus, a fraction is denoted by two numbers denoted
above and below by a horizontal segment; the lower, the denominator, denotes
the number of equal parts into which the integer is divided, and the upper, the
numerator, denotes the number of these equal parts which are taken.

It follows that if the numerator is less than the denominator, the fraction is
less than 1. If the numerator is equal to the denominator, the fraction equals
to 1. And if the numerator is greater than the denominator, the fraction is
greater than 1. It is evident that a fraction is an abstract quantity; that is,
that its value is independent of the nature of the integer which is being
divided.

(b) If we divide each of the equal parts AC, CD, DE, EB into two equal
parts, the whole, AB, will be divided into eight equal parts, and we see that
AC = 2/8, AD = 4/8, AE = 6/8, and AB = 8/8.

As we saw above, AE = 3/4 of the integer AB, and we have just demon-
strated that AE = 6/8. Hence, 3/4 = 6/8, which we can also obtain by multi-
plying the fraction 3/4 by 2/2, or

3

4
=

3

4
· 1 =

3

4
· 2

2
=

6

8

Hence we infer generally that multiplying each of the terms of any fraction
by 2 does not alter its value. Similarly, it may be shown that multiplying each
of the terms of a fraction by any nonzero integer does not alter its value. It
follows conversely that dividing each of the terms of a fraction by a nonzero
integer does not alter the value. Hence we have the following important and
fundamental theorem: “The terms of a fraction can be either both multiplied
or both divided by any nonzero integer and in either case the value of the new
fraction is equal to the value of the original fraction.”

(c) If we take any number, such as 3, and multiply it by any nonzero
integer, the product is called a multiple of 3. Thus 6, 9, 12, 15, ... are mul-
tiples of 3; but 10, 13, 17, ... are not, because the multiplication of 3 by any
nonzero integer will not produce them. Conversely, 3 is a submultiple or part
of 6, 9, 12, 15, ... because it is contained in each of these without a remainder;
but not of 10, 13, 17, ... because in each case it leaves a remainder.

(d) If we consider two magnitudes of the same kind, such as two segments
AB, CD in Fig. 5.1.2, and if we suppose that AB = 3

4CD, it is evident that if
AB is divided into three equal parts and CD is divided into four equal parts
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that each of the parts into which AB is divided is equal in length to each of the
parts into which CD is divided.

FIGURE 5.1.2.

As there are three parts in AB and four in CD, we express this relation by
saying that AB has to CD the ratio of 3 to 4, and we denote it as 3 : 4. Hence
the ratio 3 : 4 expresses the same idea as the fraction 3/4. In fact, both are
different ways of denoting the same thing: when written 3 : 4, it is called a
ratio, and when written as 3/4, it is fraction. Similarly, it can be shown that
every ratio whose terms are commensurable1 can be converted into a fraction;
and, conversely, every fraction can be turned into a ratio.

From this explanation, we see that the ratio of any two commensurable
magnitudes is the same as the ratio of the numerical quantities which denote
these magnitudes. Thus, the ratio of two commensurable lines is the ratio of
the numbers which express their lengths measured with the same unit. And
this may be extended to the case where the lines are incommensurable. If a is
the side of a square and b is its diagonal, the ratio of a : b is

a

b
=

1√
2

=

√
2

2

When two quantities are incommensurable, such as the diagonal and the
side of a square, although their ratio is not equal to that of any two commen-
surable numbers, a series of pairs of fractions can be found whose difference
is continually diminishing and which ultimately becomes infinitely small. We
say that these fractions converge to an irrational number2 such as 1/

√
2. In

this example, we have that:

{1

2
,

14

20
,

141

200
,

1414

2000
,

14142

20000
, ...} converges to

1√
2

In decimal form, this gives us:

{0, 0.7, 0.707, 0.7071, 0.707108, ...} converges to
1√
2

1http://en.wikipedia.org/wiki/Commensurability_(mathematics)
2http://en.wikipedia.org/wiki/Irrational_number

http://en.wikipedia.org/wiki/Commensurability_(mathematics)
http://en.wikipedia.org/wiki/Irrational_number
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By this method and in either form, we can approximate as nearly as we
wish to the exact value of the ratio. It is evident we may continue either se-
quence as far as we please. For example, if we consider the first member of
the fractional sequence as m

n , then we may write the second member as 10m+k
10n

where k can always be determined.
Furthermore, in the case of two incommensurable quantities, two fractions

m
n and m+1

n can always be found where n can be made as large as we wish
where one fraction is greater than the irrational fraction and the other fraction
is less.

To see this, let a and b be the incommensurable quantities. Then, if n 6= m,
we cannot have that na = mb. Since any multiple of a must lie between two
consecutive multiples of b, such as mb and (m + 1)b, we have that na

mb > 1 and
na

(m+1)b < 1. Hence, we obtain

na
(m+1)b < 1 < na

ma

n
m+1 < b

a < n
m

m
n < a

b < m+1
n

Since the difference between (m+1)
n and m

n is 1
n which grows small as n

grows large, we have that the difference between the ratio of two incommen-
surable quantities and that of two commensurable numbers m and n can be
made as small as we please. Ultimately, the ratio of incommensurable quan-
tities may be regarded as the limit of the ratio of commensurable quantities.

(e) The two terms of a ratio are called the antecedent and the consequent.
These correspond to the numerator and the denominator of a fraction.

(f) The reciprocal of a ratio is the ratio obtained by interchanging the an-
tecedent and the consequent. Thus, 4 : 3 is the reciprocal of the ratio 3 : 4.
Hence, we have the following theorem: “The product of a ratio and its recipro-
cal is 1.”

(g) If we multiply any two numbers, as 5 and 7, by any number such as 4,
the products 20, 28 are called equimultiples of 5 and 7. Similarly, 10 and 15
are equimultiples of 2 and 3, and 18 and 30 of 3 and 5, etc.

5. Ratios and fractions preserve order; that is, multiplying by positive
numbers preserve equalities and inequalities.
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6. Magnitudes which have the same ratio are called proportionals. When
four magnitudes are proportionals, it is usually expressed by saying, “The first
is to the second as the third is to the fourth.” As an example:

a

b
=
c

d
because

a

b
=
e

e
· c
d

As a ratio, the above equality may be written as:

a : b :: c : d

7. When we have multiples of four magnitudes (taken as in [Def. 5.5]) such
that the multiple of the first is greater than that of the second but the multiple
of the third is not greater than the fourth, the first has to the second a greater
ratio than the third has to the fourth. Or:

a

b
>
c

d
because a > c and b ≤ d

8. Magnitudes which have the same ratio are called proportional.

9. Proportions consist of at minimum three terms.

This definition has the same fault as some of the others: it is not a defini-
tion, but an inference. It occurs when the means in a proportion are equal, so
that, in fact, there are four terms. As an illustration, let us take the numbers
4, 6, 9. Here the ratio of 4 : 6 is 2/3, and the ratio of 6 : 9 is 2/3, so that 4,
6, 9 are continued proportionals; but, in reality, there are four terms: the full
proportion is 4 : 6 :: 6 : 9.

10. When three magnitudes are continual proportionals, the first is said to
have to the third the duplicate ratio of that which it has to the second.

11. When four magnitudes are continual proportionals, the first is said to
have to the fourth the triplicate ratio of that which it has to the second.

12. When there is any number of magnitudes of the same kind greater
than two, the first is said to have to the last the ratio compounded of the ratios
of the first to the second, of the second to the third, of the third to the fourth,
etc.

13. A ratio whose antecedent is greater than its consequent is called a ratio
of greater inequality. A ratio whose antecedent is less than its consequent is
called a ratio of lesser inequality.
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14. Harmonic division of a segment AB means identifying two points C
and D such that AB is divided internally and externally in the same ratio
CA
CB = DA

DB .

FIGURE 5.1.3. Here, the ratio is 2. Specifically, the distance
AC is one unit, the distance CB is half a unit, the distance AD
is three units, and the distance BD is 1.5 units.

Harmonic division of a line segment is reciprocal: if points C and D divide
the segment AB harmonically, the points A and B also divide the line segment
CD harmonically. In that case, the ratio is given by BC

BD = AC
AD which equals

one-third in the example above. (Note that the two ratios are not equal.)3

5.2. Propositions from Book V

PROPOSITION 5.1. If any number of magnitudes are each the same multiple
of the same number of other magnitudes, then the sum is that multiple of the
sum.

COROLLARY. 1. [5.1] is equivalent to kx+ ky = k(x+ y).

PROPOSITION 5.2. If a first magnitude is the same multiple of a second
that a third is of a fourth, and a fifth also is the same multiple of the second
that a sixth is of the fourth, then the sum of the first and fifth also is the same
multiple of the second that the sum of the third and sixth is of the fourth.

COROLLARY. 1. [5.2] is equivalent to the following: if kv = x, kw = r,
mv = y, and mw = u, then x+ y = (k +m)v and r + u = (k +m)w.

PROPOSITION 5.3. If a first magnitude is the same multiple of a second
that a third is of a fourth, and if equimultiples are taken of the first and third,
then the magnitudes taken also are equimultiples respectively, the one of the
second and the other of the fourth.

3http://en.wikipedia.org/wiki/Harmonic_division

http://en.wikipedia.org/wiki/Harmonic_division
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COROLLARY. 1. [5.3] is equivalent to: let A = kB and C = kD. Then if
EF = mA and GM = mC, then EF = mkB and GH = mkD.

PROPOSITION 5.4. If a first magnitude has to a second the same ratio as
a third to a fourth, then any equimultiples whatever of the first and third also
have the same ratio to any equimultiples whatever of the second and fourth
respectively, taken in corresponding order.

COROLLARY. 1. [5.4] is equivalent to: if A
B = k = C

D , then A = kB and
C = kD.

PROPOSITION 5.5. If a magnitude is the same multiple of a magnitude that
a subtracted part is of a subtracted part, then the remainder also is the same
multiple of the remainder that the whole is of the whole.

COROLLARY. 1. [5.5] is equivalent to: if x+ y = k(m+n) and x = km, then
y = kn.

PROPOSITION 5.6. If two magnitudes are equimultiples of two magnitudes,
and any magnitudes subtracted from them are equimultiples of the same, then
the remainders either equal the same or are equimultiples of them.

COROLLARY. 1. [5.6] is equivalent to: if x + y = km, u + v = kn, x = lm,
y = ln, and all variables are positive, then y = (k−l)m and v = (k−l)nwhenever
k > l.

PROPOSITION 5.7. Equal magnitudes have to the same the same ratio; and
the same has to equal magnitudes the same ratio.

COROLLARY. 1. If any magnitudes are proportional, then they are also
proportional inversely.

COROLLARY. 2. [5.7] is equivalent to: if a = b, then a = b = kc, and
c = qa = qb where q = 1

k .
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PROPOSITION 5.8. Of unequal magnitudes, the greater has to the same a
greater ratio than the less has; and the same has to the less a greater ratio than
it has to the greater.

COROLLARY. 1. [5.8] is equivalent to: if AB > C and D > 0, then AB =

C + k where k > 0, and AB
D = C+k

D = C
D + k

D > C
D . It follows that D

C > D
AB , since

all quantities are positive.

PROPOSITION 5.9. Magnitudes which have the same ratio to the same
equal one another; and magnitudes to which the same has the same ratio are
equal.

COROLLARY. 1. [5.9] is equivalent to: if A = kC and B = kC, then A = B.

PROPOSITION 5.10. Of magnitudes which have a ratio to the same, that
which has a greater ratio is greater; and that to which the same has a greater
ratio is less.

COROLLARY. 1. [5.10] is equivalent to: if A
C > B

C and C > 0, then A > B.

PROPOSITION 5.11. Ratios which are the same with the same ratio are also
the same with one another.

COROLLARY. 1. [5.11] is equivalent to: if A
B = C

D and C
D = E

F , then A
B = E

F .
This is the transitive property for fractions.

PROPOSITION 5.12. If any number of magnitudes are proportional, then
one of the antecedents is to one of the consequents as the sum of the antecedents
is to the sum of the consequents.

COROLLARY. 1. [5.12] is equivalent to: if A = kB, C = kD, E = kF , then
A+ C + E = kB + kD + kF = k(B +D + F ).
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PROPOSITION 5.13. If a first magnitude has to a second the same ratio as
a third to a fourth, and the third has to the fourth a greater ratio than a fifth
has to a sixth, then the first also has to the second a greater ratio than the fifth
to the sixth.

COROLLARY. 1. [5.13] is equivalent to: if A = kB, C = kD, C = lD, E = jF

and l > j, then k = l and so k > j.

PROPOSITION 5.14. If a first magnitude has to a second the same ratio as
a third has to a fourth, and the first is greater than the third, then the second
is also greater than the fourth; if equal, equal; and if less, less.

COROLLARY. 1. [5.14] is equivalent to: if A = kB, C = kD, A > C, and
k > 0, then kB = A > C = kD and so B > D. If A < C and B < D, the result
follows mutatis mutandis.

PROPOSITION 5.15. Parts have the same ratio as their equimultiples.

COROLLARY. 1. [5.15] is equivalent to: if AB = kC, DE = kF , and C =

mF , then AB = kmF = mDE.

PROPOSITION 5.16. If four magnitudes are proportional, then they are also
proportional alternately.

COROLLARY. 1. [5.16] is equivalent to: if A
B = C

D , then A
C = B

D .

PROPOSITION 5.17. If magnitudes are proportional taken jointly, then they
are also proportional taken separately.

COROLLARY. 1. [5.17] is equivalent to: if x+y = ky, u+v = kv, and x = ly,
then ly + y = ky, or l + 1 = k. Thus u+ v = (l + 1)v, or u = lv.

PROPOSITION 5.18. If magnitudes are proportional taken separately, then
they are also proportional taken jointly.
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COROLLARY. 1. [5.18] is equivalent to: if x = ky, u = kv, and x + y = ly,
then (k + 1)y = ly and so k + 1 = l and u+ v = kv = (k + 1)v = lv.

PROPOSITION 5.19. If a whole is to a whole as a part subtracted is to a part
subtracted, then the remainder is also to the remainder as the whole is to the
whole.

COROLLARY. 1. If magnitudes are proportional taken jointly, then they are
also proportional in conversion.

COROLLARY. 2. [5.19] is equivalent to: if x+ y = k(u+ v) and x = ku, then
y = kv.

PROPOSITION 5.20. If there are three magnitudes, and others equal to them
in multitude, which taken two and two are in the same ratio, and if the first is
greater than the third, then the fourth is also greater than the sixth; if equal,
equal, and; if less, less.

COROLLARY. 1. [5.20] is equivalent to: let A = kB, B = lC, D = kE,
E = lF , and A > C. We wish to show that D > F .

Suppose that A = c+m, m > 0. Then A = klC, D = klF , and so A
C = D

F .
Now A

C > 1 since A > C. If D = F , A
C = 1; and if D < F , A

C < 1. Hence,
D > F .

The remaining cases follow mutandis mutatis.

PROPOSITION 5.21. If there are three magnitudes, and others equal to them
in multitude, which taken two and two together are in the same ratio, and the
proportion of them is perturbed, then, if the first magnitude is greater than the
third, then the fourth is also greater than the sixth; if equal, equal; and if less,
less.

COROLLARY. 1. The result of [5.21] is the same as the result [5.20].

PROPOSITION 5.22. If there are any number of magnitudes whatever, and
others equal to them in multitude, which taken two and two together are in the
same ratio, then they are also in the same ratio.
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COROLLARY. 1. [5.22] is equivalent to: if A = kB, B = lC, D = kE, and
E = lF , then A = klC and D = klF .

PROPOSITION 5.23. If there are three magnitudes, and others equal to them
in multitude, which taken two and two together are in the same ratio, and the
proportion of them be perturbed, then they are also in the same ratio.

COROLLARY. 1. The result of [5.23] is the same as the result of [5.22].

PROPOSITION 5.24. If a first magnitude has to a second the same ratio as
a third has to a fourth, and also a fifth has to the second the same ratio as a
sixth to the fourth, then the sum of the first and fifth has to the second the same
ratio as the sum of the third and sixth has to the fourth.

COROLLARY. 1. [5.24] is equivalent to: if x = km, u = kn, y = lm, and
v = ln, then x+ y = km+ lm = (k + l)m and u+ v = kn+ ln = (k + l)n.

PROPOSITION 5.25. If four magnitudes are proportional, then the sum of
the greatest and the least is greater than the sum of the remaining two.

COROLLARY. 1. [5.25] is equivalent to: let x + y = k(u + v), k > 1, and
x = ku. Since x+ y = ku+ kv, y = kv; and since k > 1, y > v.

Examination questions for chapter 5.
1. What is the subject-matter of this chapter?
2. When is one magnitude said to be a multiple of another?
3. What is a submultiple or measure?
4. What are equimultiples?
5. What is the ratio of two commensurable magnitudes?
. What is meant by the ratio of incommensurable magnitudes?
7. Give an illustration of the ratio of incommensurables.
8. What are the terms of a ratio called?
9. What is duplicate ratio?
10. Define triplicate ratio.
11. What is proportion? (Ans. Equality of ratios.)
12. How many ratios in a proportion?



5.2. PROPOSITIONS FROM BOOK V 220

13. When is a segment divided harmonically?
14. What are reciprocal ratios?

Chapter 5 exercises.
1. A ratio of greater inequality is increased by diminishing its terms by the

same quantity, and diminished by increasing its terms by the same quantity.
2. A ratio of lesser inequality is diminished by diminishing its terms by

the same quantity, and increased by increasing its terms by the same quantity.
3. If four magnitudes are proportionals, the sum of the first and second is

to their difference as the sum of the third and fourth is to their difference.
4. If two sets of four magnitudes are proportionals, and if we multiply

corresponding terms together, the products are proportionals.
5. If two sets of four magnitudes are proportionals, and if we divide corre-

sponding terms, the quotients are proportionals.
6. If four magnitudes are proportionals, their squares, cubes, etc., are pro-

portionals.
7. If two proportions have three terms of one respectively equal to three

corresponding terms of the other, the remaining term of the first is equal to the
remaining term of the second.

8. If three magnitudes are continual proportionals, the first is to the third
as the square of the difference between the first and second is to the square of
the difference between the second and third.

9. If a line AB, cut harmonically at C and D, is bisected at O, prove that
OC, OB, OD are continual proportionals.

10. In the same case, if O′ is the midpoint of CD, prove that OO′2 =

OB2 +OD2.

11. Continuing from #10, show that AB(AC + AD) = 2AC.AD, or 1
AC +

1
AD = 2

AB

12. Continuing from #10, show that CD(AD + BD) = 2AD.BD, or 1
BD +

1
AD = 2

AC

13. Continuing from #10, show that AB.CD = 2AD.CB.



CHAPTER 6

Applications of Proportions

When comparing the proportions of areas of triangles, we will use the fol-
lowing abbreviation: if we wish to state that the area of 4ABC divided by the
area of 4DEF is equal to the area of 4GHI divided by the area of 4JKL, we
will write

4ABC
4DEF = 4GHI

4JKL
or

4ABC : 4DEF :: 4GHI : 4JKL
This is comparable for how we also write 4GHI = 4JKL to denote that

the area of 4GHI is equal to the area of 4JKL.

6.1. Definitions

1. Similar polygons are those whose angles are respectively equal and
whose sides about the equal angles are proportional. Similar figures agree in
shape; if they also agree in size, then they are congruent. If polygons ABC and
DEF are similar, we will denote this as ABC ∼ DEF .

(a) When the shape of a figure is given, it is said to be given in species.
Thus a triangle whose angles are given is given in species. Hence, similar
figures are of the same species.

(b) When the size of a figure is given, it is said to be given in magnitude,
such as a square whose side is of given length.

(c) When the place which a figure occupies is known, it is said to be given
in position.

2. A segment is said to be cut at a point in extreme and mean ratio when
the whole segment is to the greater segment as the greater segment is to the
lesser segment.

3. If three quantities of the same kind are in continued proportion, the
middle term is called a mean proportional between the other two. Magnitudes
in continued proportion are also said to be in geometrical progression.

4. If four quantities of the same kind are in continued proportion, the two
middle terms are called two mean proportionals between the other two.

221
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5. The altitude of any figure is the length of the perpendicular from its
highest point to its base.

6. Two corresponding angles of two figures have the sides about them
reciprocally proportional when a side of the first is to a side of the second as
the remaining side of the second is to the remaining side of the first.

This is equivalent to saying that a side of the first is to a side of the second
in the reciprocal ratio of the remaining side of the first to the remaining side
of the second.

7. Similar figures are said to be similarly constructed upon given segments
when these lines are homologous1 sides of the figures.

8. Homologous points in the planes of two similar figures are such that
segments constructed from them to the angular points of the two figures are
proportional to the homologous sides of the two figures. See Fig. 6.1.1.

9. The point O in Fig. 6.1.1 is called the center of similitude of the figures.
It is also called their double point.

FIGURE 6.1.1. [Def 6.9] See also [6.20, #2]

6.2. Propositions from Book VI

PROPOSITION 6.1. PROPORTIONAL TRIANGLES AND PARALLELO-
GRAMS. The areas of triangles and parallelograms which have the same al-
titude are proportional to their bases.

1Def: “Having the same or a similar relation; corresponding, as in relative position or structure.”
Dictionary.com, "homologous," in Dictionary.com Unabridged. Source location: Ran-
dom House, Inc. http://dictionary.reference.com/browse/homologous. Available:
http://dictionary.reference.com. Accessed: May 09, 2013.
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PROOF. The areas of triangles (4ABC,4ACD) and of parallelograms (�EBCA,
�ACDF ) which share the same altitude are proportional to their bases (BC,
CD).

FIGURE 6.2.1. [6.1]

Construct4ACB,�EBCA on the baseBC, and construct4ACD,�ACDF
on the base CD such that each quadrilateral has the same altitude.

ExtendBD in both directions to the pointsH and L. Construct any number
of segments BG and GH which are equal in length to the base CB and any
number of segments DK and KL which are equal in length to the base CD.
Join AG, AH, AK, and AL [1.3]. Since CB = BG = GH, we obtain that
4ACB = 4ABG = 4AGH [1.38]. Therefore, if CH = k ·CB (where k > 1), we
also have that 4ACH = k · 4ACB.

Similarly, if CL = m · CD (where m > 1), we also have that 4ACL =

m ·4ACD. Finally, we also have that CH = n ·CL (where n > 0) which implies
that 4ACH = n · 4ACL. Hence, we obtain

CH : CL :: 4ACH : 4ACL ⇒
CH : m · CD :: 4ACH : m · 4ACD ⇒

k · CB : m · CD :: k · 4ACB : m · 4ACD ⇒
CB : CD :: 4ACB : 4ACD

Next, since �EBCA = 2 · 4ACB and �ACDF = 2 · 4ACD [1.41], we have
that

2 · CB : 2 · CD :: �EBCA : �ACDF ⇒
CB : CD :: �EBCA : �ACDF

�

PROPOSITION 6.2. PROPORTIONALITY OF SIDES OF TRIANGLES. If
a segment is parallel to a side of a triangle, it divides the remaining sides pro-
portionally (when measured from the opposite angle). Conversely, if two sides
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of a triangle, measured from an angle, are cut proportionally, the line joining
the points of section is parallel to the third side.

PROOF. If a segment (DE) is parallel to a side (BC) of a triangle (4ABC),
we claim that it divides the remaining sides proportionally (measured from the
opposite angle, ∠DAE). Conversely, if two sides of a triangle, measured from
an angle are cut proportionally, we claim that the segment joining the points
of the section is parallel to the third side.

FIGURE 6.2.2. [6.2]

1. Suppose that DE ‖ BC in 4ABC. We wish to show that AD : DB ::

AE : EC.
Join BE, CD. The triangles 4BDE, 4CED are on the same base DE

and between the same parallels BC, DE. By [1.37], they are equal in area,
and, regarding the proportionality of the areas of the triangles, we have that
4ADE : 4BDE :: 4ADE : 4CDE [5.7]. We also have that 4ADE : 4BDE ::

AD : DB and 4ADE : 4CDE :: AE : EC, both by [6.1]. It follows that
AD : DB :: AE : EC.

2. Now suppose AD : DB :: AE : EC. We wish to show that DE ‖ BC.
Let the same construction be made as in part 1. Then we have that AD :

BD :: 4ADE : 4BDE and AE : EC :: 4ADE : 4CDE, both by [6.1]. By
hypothesis, we also have that AD : DB :: AE : EC. Hence it follows that
4ADE : 4BDE :: 4ADE : 4CDE.

By [5.9], 4BDE = 4CDE. These triangles also stand on the same base
DE as well as on the same side of DE. By [1.39], they stand between the same
parallels, and so DE ‖ BC. �
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Note: The segment DE may cut the sides AB, AC extended through points
B or C or through the angle at A, but it is clear that a separate figure for each
of these cases is unnecessary.

Exercise.
1. If two segments are cut by three or more parallels, the intercepts on one

are proportional to the corresponding intercepts on the other.

PROPOSITION 6.3. ANGLES AND PROPORTIONALITY OF TRIANGLES.
If a line bisects any angle of a triangle, it divides the opposite side into segments
proportional to the adjacent sides. Conversely, if the segments into which a line
constructed from any angle of a triangle divides the opposite side is proportional
to the adjacent sides, that line bisects the angle.

PROOF. If a line (AD) bisects any angle (∠BAC) of a triangle (4ABC),
it divides the opposite side (BC) into segments (BD, DC) proportional to the
adjacent sides (BA, AC). Conversely, if the segments (BD, DC) into which a
line (AD) constructed from any angle (∠BAC) of a triangle divides the opposite
side is proportional to the adjacent sides (BA, AC) that line bisects the angle
(∠BAC).

FIGURE 6.2.3. [6.3]

We prove each claim separately:
1. Suppose that AD bisects ∠BAC of a triangle 4ABC. Through C, con-

struct segment CE ‖ AD to meet BA when BA is extended to the point E.
Because BA meets the parallels AD, EC, we have that ∠BAD = ∠AEC [1.29].
Also because AC meets the parallels AD, EC, we have that ∠DAC = ∠ACE.
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By hypothesis, we also have that ∠BAD = ∠DAC. Therefore, ∠ACE = ∠AEC,
and so AE = AC [1.6].

Again, because AD ‖ EC, where EC is one of the sides of the triangle
4BEC, we have that BD : DC :: BA : AE [6.2]. Since AE = AC by the above,
it follows that BD : DC :: BA : AC.

2. Now suppose that BD : DC :: BA : AC. We wish to prove that ∠BAC is
bisected.

Let the same construction be made as in part 1. Because AD ‖ EC, BA :

AE :: BD : DC [6.2]. But BD : DC :: BA : AC by hypothesis. By [5.11],
it follows that BA : AE :: BA : AC, and hence AE = AC [5.9]. Therefore,
∠AEC = ∠ACE; we also have that ∠ACE = ∠BAD [1.29] and that ∠ACE =

∠DAC. Hence ∠BAD = ∠DAC, and so the line AD bisects the angle ∠BAC.
�

COROLLARY. 1. [6.3] holds when the line AD is replaced by a ray or seg-
ment of appropriate length, mutatis mutandis.

Exercises.
1. If the segment AD bisects the external vertical angle ∠CAE, then BA :

AC :: BD : DC, and conversely.

FIGURE 6.2.4. [6.3], #1

Cut off AE = AC. Join ED. Then the triangles 4ACD, 4AED are evi-
dently congruent; therefore the angle ∠EDB is bisected, and hence BA : AE ::

BD : DE and BA : AC :: BD : DC [6.3].
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2. #1 has been proved by quoting [6.3]. Prove it independently, and prove
[6.3] as an inference from it.

3. The internal and the external bisectors of the vertical angle of a triangle
divide the base harmonically.

4. Any segment intersecting the legs of any angle is cut harmonically by
the internal and external bisectors of the angle.

5. Any segment intersecting the legs of a right angle is cut harmonically
by any two lines through its vertex which make equal angles with either of its
sides.

6. If the base of a triangle is given in magnitude and position and if the
ratio of the sides is also given, then the locus of the vertex is a circle which
divides the base harmonically in the ratio of the sides.

7. If a, b, c denote the sides of a triangle 4ABC, and D, D′ are the points
where the internal and external bisectors ofAmeetBC, then prove thatDD′ =
2abc
b2−c2 .

8. In the same case as #7, if E, E′, F , F ′ are points similarly determined
on the sides CA, AB, respectively, prove that

1
DD′ + 1

EE′ + 1
FF ′ = 0

a2

DD′ + b2

EE′ + c2

FF ′ = 0

PROPOSITION 6.4. EQUIANGULAR TRIANGLES I. The sides about the
equal angles of equiangular triangles are proportional, and those which stand
opposite to the equal angles are homologous.

PROOF. The sides about the equal angles of equiangular triangles (4BAC,
4CDE) are proportional, and those which are opposite to the equal angles are
homologous.

FIGURE 6.2.5. [6.4]
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Let the sides BC, CE which stand opposite to the equal angles ∠BAC and
∠CDE be constructed so as to form one continuous segment and where the
triangles stand on the same side of the segment such that the equal angles
∠BCA, ∠CED do not share a common vertex. The sum ∠ABC +∠BCA is less
than two right angles, but ∠BCA = ∠BED by hypothesis. Therefore the sum
∠ABE + ∠BED is less than two right angles, and so the segments AB, ED
will meet if extended. Let them meet at F . Again, because ∠BCA = ∠BEF ,
we have that CA ‖ EF [1.28].

Similarly, BF ‖ CD. Therefore, the figure �ACDF is a parallelogram, and
so AC = DF and CD = AF . Because AC ‖ FE, BA : AF :: BC : CE [6.2].
But AF = CD, therefore BA : CD :: BC : CE, and so by [5.16], we obtain that
BA : BC :: CD : CE.

Again, because CD ‖ BF , we obtain that BC : CE :: FD : DE. But
FD = AC, and so BC : CE :: AC : DE. And by [5.16], BC : AC :: CE : DE.

Since we have that BA : BC :: CD : CE and BC : CA :: CE : DE, it
follows that BA : CA :: CD : DE, and so the sides about the equal angles are
proportional. �

This proposition may also be proved very simply by superposition by Fig.
6.2.2. Construct the two triangles be 4ABC, 4ADE and let the second trian-
gle 4ADE be constructed to be placed on 4ABC so that its two sides AD,
AE fall on the sides AB, AC. Since ∠ADE = ∠ABC, DE ‖ BC. Hence
by [6.2], AD : DB :: AE : EC, and so we have AD : AB :: AE : AC and
AD : AE :: AB : AC by [5.16]. Therefore, the sides about the equal angles
∠BAC, ∠DAE are proportional, and an analogous result follows for the oth-
ers.

It can be shown by this proposition that two lines which meet at infinity
are parallel. Let I denote the point at infinity through which the two given
lines pass, and construct any two parallels intersecting them in the points A,
B and A′, B′. Then the triangles 4AIB, 4A′IB′ are equiangular. Therefore,
AI : AB :: A′I : A′B′ where the first term of the proportion is equal to the
third. By [5.14], the second term AB is equal to the fourth A′B′, and, being
parallel to it, the lines AA′, BB′ are parallel [1.43].

Exercises.
1. If two circles intercept equal chords AB, A′B′ on any secant, the tan-

gents AT , A′T to the circles at the points of intersection are to one another as
the radii of the circles.
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2. If two circles intercept on any secant chords that have a given ratio, the
tangents to the circles at the points of intersection have a given ratio, namely,
the ratio compounded of the direct ratio of the radii and the inverse ratio of
the chords.

3. Being given a circle and a line, prove that a point may be found such
that the rectangle of the perpendiculars falling on the line from the points of
intersection of the circle with any chord through the point shall be given.

4. If AB is the diameter of a semicircle ADB and CD ⊥ AB, construct
through A a chord AF of the semicircle meeting CD at E such that the ratio
CE : EF may be given.

PROPOSITION 6.5. EQUIANGULAR TRIANGLES II. If two triangles have
proportional sides, they are equiangular, and the angles which are equal stand
opposite the homologous sides.

PROOF. If two triangles (4ABC, 4DEF ) have their sides proportional
(BA : AC :: ED : DF ; AC : CB :: DF : FE), then they are equiangular
and the equal angles stand opposite the homologous sides.

FIGURE 6.2.6. [6.5]

At the points D, E construct the angles ∠EDG, ∠DEG equal to the angles
∠BAC, ∠ABC of the triangle 4ABC. By [1.32], the triangles 4ABC, 4DEG
are equiangular. Therefore BA : AC :: ED : DG by [1.4] and BA : AC :: ED :

DF by hypothesis. It follows that DG = DF .
Similarly, we can show thatEG = EF . Hence the triangles4EDF ,4EDG

have the sides ED, DF in one equal to the sides ED, DG in the other and the



6.2. PROPOSITIONS FROM BOOK VI 230

base EF equal to the base EG. By [1.8], they are equiangular. But the triangle
4DEG is equiangular to4ABC. Therefore the triangle4DEF is equiangular
to 4ABC. �

Observation: In [Def. 6.1], two conditions are laid down as necessary for
the similitude of polygons:

(a) The equality of angles;
(b) The proportionality of sides.
Now by [6.4] and [6.5], we see that if two triangles possess either condi-

tion, they also possess the other. Triangles are unique in this respect. In all
other polygons, one of these conditions may exist without the other. Thus two
quadrilaterals may have their sides proportional without having equal angles,
or vice verse.

PROPOSITION 6.6. If two triangles have one angle in one triangle equal to
one angle in the other triangle and the sides about these angles are proportional,
then the triangles are equiangular and have those angles equal which stand
opposite to the homologous sides.

PROOF. If two triangles (4ABC, 4DEF ) have one angle (∠BAC) in one
equal to one angle (∠EDF ) in the other, and the sides about these angles pro-
portional (BA : AC :: ED : DF ), then the triangles are equiangular and have
those angles equal which stand opposite to the homologous sides.

FIGURE 6.2.7. [6.6]
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We recreate the construction as in [6.5]. Therefore BA : AC :: ED : DG by
[6.4] , BA : AC :: ED : DF by hypothesis, and DG = DF .

Because ∠EDG = ∠BAC by construction and ∠BAC = ∠EDF by hypothe-
sis, we have that ∠EDG = ∠EDF . Given that DG = DF with DE in common,
the triangles 4EDG and 4EDF are equiangular. But 4EDG is equiangular
to 4BAC, and so 4EDF is equiangular to 4BAC. �

Note: as in the case of [6.4], an immediate proof of this proposition can also
be obtained from [6.2].

COROLLARY. 1. If the ratio of two sides of a triangle are given as well as
the angle between them, then the triangle is given in species.

PROPOSITION 6.7. EQUIANGULAR TRIANGLES III. If two triangles each
have one angle equal to one angle in the other, if the sides about two other angles
are proportional, and if the remaining angles of the same species (i. e. either
both acute or both not acute), then the triangles are similar.

PROOF. If two triangles (4ABC,4DEF ) each have one angle equal to one
angle (∠BAC = ∠EDF ) in the other, the sides about two other angles (B, E)
are proportional (AB : BC :: DE : EF ), and the remaining angles (∠BCA,
∠EFD) of the same species (i. e. either both acute or both not acute), then the
triangles are similar (4ABC ∼ 4DEF ).

FIGURE 6.2.8. [6.7]

If the angles ∠ABC and ∠DEF are not equal, one must be greater than
the other. Wlog, suppose ∠ABC is the greater and that ∠ABG = ∠DEF . Then
the triangles 4ABG, 4DEF have two angles in one equal to two angles in
the other and so are equiangular [1.32]. Therefore, AB : BG :: DE : EF [6.4]
and AB : BC :: DE : EF by hypothesis. It follows that BG = BC. Hence
∠BCG, ∠BGC must each be acute [1.17] and ∠AGB must be obtuse. It follows



6.2. PROPOSITIONS FROM BOOK VI 232

that ∠DFE = ∠AGB is obtuse. Since we have shown that ∠ACB is acute, the
angles ∠ACB, ∠DFE are of different species; but by hypothesis, they are of
the same species, a contradiction. Hence the angles ∠CBA and ∠FED are not
unequal; that is, ∠CBA = ∠FED. Therefore, 4ABG, 4DEF are equiangular,
and so 4ABG ∼ 4DEF . �

COROLLARY. 1. If two triangles 4ABC, 4DEF have two sides in one pro-
portional to two sides in the other, AB : BC :: DE : EF , and the angles at points
A, D opposite one pair of homologous sides are equal, the angles at points C, F
opposite the other are either equal or supplemental. This proposition is nearly
identical with [6.7].

COROLLARY. 2. If either of the angles at points C, F are right, the other
angle must be right.

PROPOSITION 6.8. SIMILARITY OF RIGHT TRIANGLES. The triangles
formed when a right triangle is divided by the perpendicular from the right
angle to the hypotenuse are similar to the whole and to one another.

PROOF. The triangles (4ACD,4BCD) formed when a right triangle (4ACB)
is divided by the perpendicular (CD) from the right angle (∠ACB) to the hy-
potenuse are similar to the whole and to one another (4ACD ∼ 4BCD,
4ACD ∼ 4ACB, 4BCD ∼ 4ACB).

FIGURE 6.2.9. [6.8]

Since the two triangles4ACD,4ACB have the angle ∠BAC common, and
since ∠ADC = ∠ACB because each are right, the triangles are equiangular
[1.32]. By [6.4], 4ACD ∼ 4ACB. Similarly, it can be shown that 4BCD ∼
4ACB. It follows that 4ACD ∼ 4BCD. �
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COROLLARY. 1. The perpendicular CD is a mean proportional between the
segments AD, DB of the hypotenuse. For since the triangles4ADC,4CDB are
equiangular, we have AD : DC :: DC : DB. Hence DC is a mean proportional
between AD, DB (Def. 6.3).

COROLLARY. 2. BC is a mean proportional between AB, BD, and AC is a
mean proportional between AB, AD.

COROLLARY. 3. The segments AD, DB are in the duplicate of AC : CB; in
other words, AD : DB :: AC2 : CB2.

COROLLARY. 4. BA : AD are in the duplicate ratios of BA : AC, and
AB : BD are in the duplicate ratio of AB : BC.

PROPOSITION 6.9. From a given segment, we may cut off any required sub-
multiple.

PROOF. From a given segment (AB), we wish to cut off any required sub-
multiple.

FIGURE 6.2.10. [6.9]

Suppose we wish to cut off a fourth. Construct the segment AF at any
acute angle to AB (where AF is made sufficiently long). From AF , choose any
point C and cut off the segments CD, DE, EF where each is equal to AC [1.3].
Join BF and construct CG ‖ BF . We claim that AG is a fourth of AB.

Since CG ‖ BF where BF is the side of 4ABF , we have that AC : AF ::

AG : AB [6.2]. But AC is a fourth of AF by construction, and so AG is a
fourth of AB. Since our choice of a fourth was arbitrary, any other required
submultiple may similarly be cut off. �
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Note: [1.10] is a particular case of this proposition.

PROPOSITION 6.10. SIMILARLY DIVIDED SEGMENTS. We wish to di-
vide a given undivided segment similarly to a given divided segment.

PROOF. We wish to divide a given undivided segment (AB) similarly to a
given divided segment (CD).

FIGURE 6.2.11. [6.10]

Construct AG at any acute angle with AB and cut off the parts AH, HI,
IG respectively equal to the parts CE, EF , FD of the given divided segment
CD. Join BG and construct HK, IL where each is parallel to BG. We claim
that AB is divided similarly to CD.

Through H, construct HN ‖ AB, cutting IL at M . Now in the triangle
4ALI, we have that HK ‖ IL. By [6.2], AK : KL :: AH : HI, and by construc-
tion, we have that AK : KL :: CE : EF .

In 4HNG, we have that MI ‖ NG. By [6.2], HM : MN :: HI : IG. How-
ever, but by [1.34], HM = KL, MN = LB, and HI = EF , and by construction,
IG = FD. Therefore, KL : LB :: EF : FD. Hence the segment AB is divided
similarly to the segment CD. �

Exercises.
1. We wish to divide a given segment AB internally or externally in the

ratio of two given lines, FG, HJ .
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FIGURE 6.2.12. [6.11]

Through A and B construct any two parallels AC and BD in opposite di-
rections. Cut off AC = FG, BD = HJ , and join CD; we claim that CD divides
AB internally at E in the ratio of FG : HJ .

2. In #1, if BD′ is constructed in the same direction with AC, then CD will
cut AB externally at E in the ratio of FG : HJ .

COROLLARY. 1. The two points E, E′ divide AB harmonically.
This problem is manifestly equivalent to the following: given the sum or

difference of two lines and their ratio, we wish to find the lines.

3. Any line AE′ through the midpoint B of the base DD′ of a triangle
DCD′ is cut harmonically by the sides of the triangle and a parallel to the
base through the vertex.

4. Given the sum of the squares on two segments and their ratio, find the
segments.

5. Given the difference of the squares on two segments and their ratio, find
the segments.

6. Given the base and ratio of the sides of a triangle, construct it when any
of the following data is given:

(a) the area;
(b) the difference on the squares of the sides;
(c) the sum of the squares on the sides;
(d) the vertical angle;
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(e) the difference of the base angles.

PROPOSITION 6.11. PROPORTIONAL SEGMENTS I. We wish to find a
third proportional segment to two given segments.

PROOF. We wish to find a third proportional segment to two given seg-
ments (JK, LM ).

FIGURE 6.2.13. [6.11]

Construct any two segments AC, AE at an arbitrary acute angle. (The
proof holds with rays or lines, mutatis mutandis.) Cut offAB = JK, BC = LM ,
and AD = LM . Join BD and construct CE ‖ BD. We claim that DE is the
required third proportional segment.

In 4CAE, BD ‖ CE. Therefore AB : BC :: AD : DE by [6.2]. But AB =

JK and BC = LM = AD. Therefore JK : LM :: LM : DE. Hence DE is a
third proportional to JK and LM . �

COROLLARY. 5.11.1 Algebraically, this problem can be written as

a
b = b

x

⇒
x = b2

a

where a, b are fixed positive real numbers and x is a positive real variable.

Notes:

(1) Another solution can be inferred from [6.8]. For if AD, DC in that
proposition are respectively equal to JK and LM , then DB will be
the third proportional. Or again, if in Fig. 6.2.9, if AD = JM and
AC = LM , then AB will be the third proportional. Hence, we may
infer a method of continuing the proportion to any number of terms.
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Exercises.
1. If 4AOΩ is a triangle where the side AΩ is greater than AO, then if we

cut off AB = AO, construct BB ‖ AO, cut off BC = BB′, and so on, the series
of segments AB, BC, CD, etc., are in continual proportion.

FIGURE 6.2.14. [6.2, #1]

2. (AB−BC) : AB :: AB : AΩ. This is evident by constructing MB′ ‖ AΩ.

PROPOSITION 6.12. PROPORTIONAL SEGMENTS II. We wish to find a
fourth proportional to three given segments.

PROOF. We wish to find a fourth proportional to three given segments
(AK, BM , CP ).

Construct any two segments DE, DF at an arbitrary acute angle. (The
proof holds with rays or lines, mutatis mutandis.) Cut off DG = AK, GE =

BM , and DH = CP . Join GH and construct EF ‖ GH [1.31]. We claim that
HF is the required fourth proportional segment.

FIGURE 6.2.15. [6.12]
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In 4DEF , GH ‖ EF . Therefore, DG : GE :: DH : HF by [6.2]. But
DG = AK, GE = BM , and DH = CP . Therefore AK : BM :: CP : HF , and so
HF is a fourth proportional to AK, BM , and CP . �

Alternatively:

PROOF. Take two segments AD, BC which intersect at O.

FIGURE 6.2.16. [6.12], Alternative proof

Construct OA = JK, OB = LM , OC = MP and the circle ◦ABC through
the points A, B, C [4.5]. Extend AO through to the point D on the circum-
ference of ◦ABC. We claim that OD is the fourth proportional required. The
demonstration is evident from the similarity of the triangles4AOB and4COD.

�

COROLLARY. 5.12.1 Algebraically, this problem can be written as

a
b = c

x

⇒
x = bc

a

where a, b, and c are fixed positive real numbers and x is a positive real variable.

PROPOSITION 6.13. PROPORTIONAL SEGMENTS III. We wish to find a
mean proportional between two given segments.
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PROOF. We wish to find a mean proportional between two given segments
(EF , GH).

FIGURE 6.2.17. [6.13]

Construct segment AC such that AC = EF + GH and cut parts AB, BC
respectively equal to EF , GH. (The proof holds on rays or lines, mutatis mu-
tandis.) On AC, construct a semicircle ADC. Construct BD ⊥ AC, meeting
the semicircle at D. We claim that BD is the mean proportional required.

Join AD, DC. Since ADC is a semicircle, the angle ∠ADC is right [3.31].
Hence, since 4ADC is a right triangle and BD is a perpendicular from the
right angle on the hypotenuse, BD is a mean proportional between AB, BC
[6.8, Cor. 1]. That is, BD is a mean proportional between EF and GH (or
EF : BD :: BD : GH). �

COROLLARY. 1. Algebraically, we have that

a
x = x

b

⇒
x2 = ab

⇒
x =

√
ab

where a, b are positive fixed real numbers and x is a positive real variable.

Exercises.
1. Another solution may be inferred from [6.8, Cor. 2].
2. If through any point within a circle a chord is constructed which is

bisected at that point, its half is a mean proportional between the segments of
any other chord passing through the same point.

3. The tangent to a circle from any external point is a mean proportional
between the segments of any secant passing through the same point.
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4. If through the midpoint C of any arc of a circle, a secant is constructed
cutting the chord of the arc at D and the circle again at E, the chord of half the
arc is a mean proportional between CD and CE.

5. If a circle is constructed touching another circle internally and with
two parallel chords, the perpendicular from the center of the former on the
diameter of the latter, which bisects the chords, is a mean proportional between
the two extremes of the three segments into which the diameter is divided by
the chords.

6. If a circle is constructed touching a semicircle and its diameter, the
diameter of the circle is a harmonic mean between the segments into which
the diameter of the semicircle is divided at the point of intersection.

7. State and prove the proposition corresponding to #5 for external contact
of the circles.

PROPOSITION 6.14. EQUIANGULAR PARALLELOGRAMS. We wish to
prove that:

1. Equiangular parallelograms (�HACB, �CGDE) which are equal in
area have sides about the equal angles which are reciprocally proportional; that
is, AC : CE :: GC : CB.

2. Equiangular parallelograms which have the sides about the equal angles
reciprocally proportional are equal in area.

PROOF. We claim that:
1. Equiangular parallelograms (�HACB, �CGDE) which are equal in

area have the sides about the equal angles reciprocally proportional; that is,
AC : CE :: GC : CB.

2. Equiangular parallelograms which have the sides about the equal an-
gles reciprocally proportional are equal in area.

FIGURE 6.2.18. [6.14]
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We prove each claim separately:
1. Let �HACB, �CGDE be so placed as to form one segment AE such

that the equal angles ∠ACB, ∠ECG stand vertically opposite. Since ∠ACB =

∠ECG, add ∠BCE to each, and we obtain the sum ∠ACB+∠BCE = ∠ECG+

∠BCE. But ∠ACB + ∠BCE equals two right angles [1.13], and so ∠ECG +

∠BCE equals two right angles. By [1.14], BC, CG form one segment. We
complete the parallelogram �BCEF .

Again, since the parallelograms �HACB, �CGDE are equal in area by
hypothesis, we have that

�HACB : �BCEF :: �CGDE : �BCEF [5.7]
AC : CE :: �HACB : �BCEF [6.1]

�CGDE : �BCEF :: GC : CB [6.1]

Therefore, we have that AC : CE :: GC : CB; that is, the sides about the
equal angles are reciprocally proportional.

2. Let AC : CE :: GC : CB. We wish to prove that the parallelograms
�HACB, �CGDE are equal in area.

Let the same construction be made as in part 1:

AC : CE :: �HACB : �BCEF [6.1]
�CGDE : �BCEF :: GC : CB [6.1]

AC : CE :: GC : CB by hypothesis

Therefore, �HACB : �BCEF :: �CGDE : �BCEF , and hence�HACB =

�CGDE [5.9]. �

Alternatively:

PROOF. Join HE, BE, HD, BD. The area of the parallelogram �HACB =

2 · 4HBE, and the area of the parallelogram �CGDE = 2 · 4BDE. Therefore
4HBE = 4BDE, and by [1.39.], HD ‖ BE. Hence HB : BF :: DE : EF ; that
is, AC : CE :: GC : CB.

Part 2 may be proved by reversing this demonstration.
Another demonstration of this proposition may be obtained by extending

the lines HA and DG to meet at I. Then by [1.43], the points I, C, F are
collinear, and the proposition is evident. �

PROPOSITION 6.15. EQUAL TRIANGLES.
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1. Two triangles equal in area which have one angle in one triangle equal to
one angle in the other triangle have reciprocally proportional sides about these
angles.

2. Two triangles which have one angle in one triangle equal to one angle in
the other triangle and the sides about these angles reciprocally proportional are
equal in area.

PROOF. We wish to prove that:
1. Two triangles equal in area (4ACB, 4DCE) which have one angle

(∠BCA) in one equal to one angle (∠DCE) in the other have reciprocally pro-
portional sides about these angles.

2. Two triangles which have one angle in one triangle equal to one angle
in the other triangle and the sides about these angles reciprocally proportional
are equal in area.

FIGURE 6.2.19. [6.15]

We prove each claim separately:
1. Let the equal angles be placed as to be vertically opposite such that AC,

CD forms the segment AD; then it may be demonstrated, as in the previous
proposition, that BC, CE form one segment. Join BD.

Since the triangles 4ACB = 4DCE, we have that

4ACB : 4BCD :: 4DCE : 4BCD [5.7]
4ACB : 4BCD :: AC : CD [6.1]
4DCE : 4BCD :: EC : CB [6.1]

Therefore, AC : CD :: EC : CB, or the sides about the equal angles are
reciprocally proportional.

2. If AC : CD :: EC : CB, we wish to prove that 4ACB = 4DCE.
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Let the same construction be made; then we have that

AC : CD :: 4ACB : 4BCD [6.1]
EC : CB :: 4DCE : 4BCD [6.1]
AC : CD :: EC : CB (by hypothesis)

Therefore, 4ACB : 4BCD :: 4DCE : 4BCD, and so 4ACB = 4DCE
[5.9]. �

This proposition might have been appended as a corollary to [6.14] since
the triangles are the halves of equiangular parallelograms; it may also be
proven by joining AE and showing that it is parallel to BD.

PROPOSITION 6.16. PROPORTIONAL RECTANGLES. We wish to show
that:

1. If four segments are proportional, the rectangle contained by the extremes
is equal in area to the rectangle contained by the means.

2. If the rectangle contained by the extremes of four segments is equal in
area to the rectangle contained by the means, the four segments are propor-
tional.

PROOF. We wish to show that:
1. If four segments (AB, CD, LM , NP ) are proportional, the rectangle

(AB.NP ) contained by the extremes is equal in area to the rectangle (CD.LM )
contained by the means.

2. If the rectangle contained by the extremes of segments are equal to the
rectangle contained by the means, the four lines are proportional.

FIGURE 6.2.20. [6.16]

We solve each claim separately:
1. Suppose that the segments AB, CD, LM , NP are proportional (that is,

AB : CD :: LM : NP ). Construct AH = NP and CI = LM at right angles
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to AB and CD, respectively, and complete the rectangles. Because AB : CD ::

LM : NP by hypothesis, we have that AB : CD :: CI : AH.
Notice that the parallelograms �HABG, �ICDK are equiangular and the

sides about their equal angles are reciprocally proportional. By [6.14], they are
equal in area. Since since AH = NP , we have that �HABG = AB.NP .

Similarly, �ICDK = CD.LM . It follows that AB.NP = CD.LM , or the
rectangle contained by the extremes is equal to the rectangle contained by the
means.

2. Suppose that AB.NP = CD.LM . We now wish to prove AB : CD :: LM :

NP .
We carry out the same construction as in part 1: becauseAB.NP = CD.LM ,

AH = NP , and CI = LM , we have that �HABG = �ICDK. Since these par-
allelograms are equiangular, the sides about their equal angles are reciprocally
proportional. Therefore AB : CD :: CI : AH, or AB : CD :: LM : NP . �

Alternatively:

PROOF. Place the four segments in a concurrent position so that the ex-
tremes form one continuous segment and the means form a second continuous
segment.

FIGURE 6.2.21. [6.16], Alternative proof

Place the four segments in the order AO, BO, OD, OC. Join AB, CD. Be-
cause AO : OB :: OD : OC and ∠AOB = ∠DOC, the triangles 4AOB, 4COD
are equiangular. Hence, the four points A, B, C, D are concyclic, and so by
[3.35], AO.OC = BO.OD. �

COROLLARY. 6.16.1 Algebraically, the above result states in part that if
a

b
=

c

d

then

ad = bc
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PROPOSITION 6.17. LINES AND RECTANGLES.
1. If three segments are proportional, the rectangle contained by the end-

points is equal in area to the square of the mean.
2. If the rectangle contained by the endpoints of three segments is equal in

area to the square of the mean, then the three segments are proportional.

PROOF. We wish to show that:
1. If three segments (AB, CD, GH) are proportional (AB : CD :: CD : GH),

then the rectangle (AB.GH) contained by the extremes is equal in area to the
square of the mean (CD2).

2. If the rectangle contained by the endpoints of three segments are equal
in area to the square of the mean, then the three lines are proportional.

FIGURE 6.2.22. [6.17]

We prove each claim separately:
1. Suppose that AB : CD :: CD : GH and that CD = EF . By hypoth-

esis, we have that AB : CD :: EF : GH. By [6.16], AB.GH = CD.EF . But
CD.EF = CD2. Therefore, AB.GH = CD2; that is, the rectangle contained by
the extremes is equal to the square of the mean.

2. Now suppose that AB.GH = CD2. Under the same construction, since
AB.GH = CD.EF , we have that AB : CD :: EF : GH where CD = EF . It
follows thatAB : CD :: CD : GH; that is, the three segments are proportionals.

�

Note: This proposition may also be inferred as a corollary to [6.16].

Exercises.
1. Construct a Corollary similar to Corollary 6.16.1 which states the re-

sults of [6.17] algebraically.
2. If a segment CD bisects a vertical angle at a point C of any triangle

4ACB, its square added to the rectangle AD.DB contained by the segments
of the base is equal to the rectangle contained by the sides.
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FIGURE 6.2.23. [6.17, #1]

Construct a circle about the triangle and extendCD to meet it atE. Clearly,
the triangles 4ACD, 4ECB are equiangular. By [6.4], AC : CD :: CE : CB,
and by [3.35], we obtain

AC.CB = CE.CD = CD2 + CD.DE = CD2 +AD.DB

3. If the segment CD bisects the external vertical angle of any triangle
4ACB, its square subtracted from the rectangle AD.DB is equal to AC.CB.
(See Fig. 6.2.23).

4. The rectangle contained by the diameter of the circumscribed circle,
and the radius of the inscribed circle of any triangle, is equal to the rectangle
contained by the segments of any chord of the circumscribed circle passing
through the center of the inscribed. (See Fig. 6.2.23).

Let O be the center of the inscribed circle. Join OB, construct the per-
pendicular OG, and construct construct the diameter EF of the circumscribed
circle. Now we have that ∠ABE = ∠ECB and ∠ABO = ∠OBC [3.27]; there-
fore ∠EBO = sum of∠OCB, ∠OBC = ∠EOB. Hence, EB = EO. Again,
the triangles 4EBF , 4OGC are equiangular because ∠EFB = ∠ECB and
∠EBF = ∠OGC (since each are right). Therefore, EF : EB :: OC : OG, from
which it follows that

EF.OG = EB.OC = EO.OC

5. #3 may be extended to each of the escribed circles of 4ACB.
6. The rectangle contained by two sides of a triangle is equal to the rec-

tangle contained by the perpendicular and the diameter of the circumscribed
circle. (See Fig. 6.2.24).
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FIGURE 6.2.24. [6.17, #5]

Let CE be the diameter and join AE. Then the triangles 4ACE, 4DCB
are equiangular; hence AC : CE :: CD : CB, and therefore AC.CB = CD.CE.

7. If a circle passing through the angle at point A of a parallelogram
�ABCD intersects the two sides AB, AD again at the points E, G and the
diagonal AC again at F , then AB.AE +AD.AG = AC.AF . (See Fig. 6.2.25).

FIGURE 6.2.25. [6.17, #6]

Join EF , FG, and make the angle ∠ABH = ∠AFE. Then the triangles
4ABH, 4AFE are equiangular. Therefore AB : AH :: AF : AE. Hence,
AB.AE = AF.AH. Again, it is clear that the triangles 4BCH, 4GAF are
equiangular, and therefore BC : CH :: AF : AG. Hence BC.AG = AF.CH, or
AD.AG = AF.CH; but we have proved AB.AE = AF.AH. Therefore AD.AG+

AB.AE = AF.AC.
8. If DE, DF are parallels to the sides of a triangle 4ABC from any point

D in the base, then AB.AE+AC.AF = AD2 +BD.DC. Hint: deduce this from
#6.

9. If through a point O within a triangle 4ABC parallels EF , GH, IK are
constructed to the sides, the sum of the rectangles of their segments is equal
to the rectangle contained by the segments of any chord of the circumscribing
circle passing through O.
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FIGURE 6.2.26. [6.17, #8]

Notice that
AO.AL = AB.AK +AC.AE

and
AO2 = AG.AK +AH.AE−GO.OH

Hence,
AO.OL = BG.AK + CH.AE +GO.OH

or
AO.OL = EO.OF + IO.OK +GO.OH

10. The rectangle contained by the side of an inscribed square standing on
the base of a triangle and the sum of the base and altitude is equal to twice the
area of the triangle.

11 The rectangle contained by the side of an escribed square standing on
the base of a triangle and the difference between the base and altitude is equal
to twice the area of the triangle.

12. If from any point P in the circumference of a circle a perpendicular
is constructed to any chord, its square is equal to the area of the rectangle
contained by the perpendiculars from the endpoints of the chord on the tangent
at P .

13. If O is the point of intersection of the diagonals of a cyclic quadrilateral
ABCD, the areas of the four rectangles AB.BC, BD.CD, CD.DA, DA.AB are
proportional to lengths of the four segments BO, CO, DO, AO.

14. Ptolemy’s Theorem: the sum of the rectangles of the opposite sides of
a cyclic quadrilateral ABCD is equal in area to the rectangle contained by its
diagonals.
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FIGURE 6.2.27. [6.17, #13]

Construct the circle ◦ABC on quadrilateralABCD. ∠DAO = ∠CAB. Then
the triangles 4DAO, 4CAB are equiangular. Therefore, AD : DO :: AC : CB,
and it follows that AD.BC = AC.DO. Again, the triangles 4DAC, 4OAB are
equiangular and CD : AC :: BO : AB. Therefore AC.CD = AC.BO, and so
AD.BC +AB.CD = AC.BD.

15. If the quadrilateral ABCD is not cyclic, prove that the three rectangles
AB.CD, BC.AD, AC.BD are proportional to the three sides of a triangle which
has an angle equal to the sum of a pair of opposite angles of the quadrilateral.

16. Prove by using [6.11] that if perpendiculars fall on the sides and di-
agonals of a cyclic quadrilateral, from any point in the circumference of the
circumscribed circle, the rectangle contained by the perpendiculars on the di-
agonals is equal to the rectangle contained by the perpendiculars on either pair
of opposite sides.

17. If AB is the diameter of a semicircle and PA, PB are chords from any
point P in the circumference, and if a perpendicular to AB from any point C
meets PA, PB at D and E and the semicircle at point F , then CF is a mean
proportional between CD and CE.

PROPOSITION 6.18. CONSTRUCTION OF A SIMILAR POLYGON. We
wish to construct a polygon on a given segment which is similar to a given
polygon and similarly placed.

PROOF. Let polygon CDEFG and segment AB be given. We wish to con-
struct a polygon on AB which is similar to polygon CDEFG and which is sim-
ilarly placed.
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FIGURE 6.2.28. [6.18]

Join CE, CF , and construct triangle 4ABH on AB equiangular to 4CDE
and similarly placed as regards CD; that is, construct ∠ABH = ∠CDE and
∠BAH = ∠DCE. Also construct the triangle 4HAI equiangular to 4ECF
and similarly placed. Finally, construct the triangle 4IAJ equiangular and
similarly placed with 4FCG. We claim that ABHIJ is the required polygon.

By construction, it is evident that the figures are equiangular, and it is
only required to prove that the sides about the equal angles are proportional.

Because the triangle 4ABH is equiangular to 4CDE, we have that AB :

BH :: CD : DE [6.4]. Hence the sides about the equal angles at points B and D
are proportional. Again from the same triangles, we haveBH : HA :: DE : EC,
and from the triangles 4IHA, 4FEC, we have HA : HI :: EC : EF . There-
fore, BH : HI :: DE : EF , or the sides about the equal angles ∠BHI, ∠DEF
are proportional. This result follows about the other equal angles, mutatis
mutandis. Hence by [Def. 6.1], the figures are similar. �

Observation: in the foregoing construction, the segment AB is homologous
to CD, and it is evident that we may take AB to be homologous to any other
side of the given figure CDEFG. Again, in each case, if the figure ABHIJ

is turned round the segment AB until it falls on the other side, it will still
be similar to the figure CDEFG. Hence on a given line AB, there can be
constructed two figures each similar to a given figure CDEFG and having the
given segment AB homologous to any given side CD of the given figure.

The first of the figures thus constructed is said to be directly similar, and
the second is said to be inversely similar to the given figure.
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COROLLARY. 1. Twice as many polygons may be constructed on AB similar
to a given polygon CDEFG as that figure has sides.

COROLLARY. 2. If the figure ABHIJ is applied to CDEFG so that the point
A coincides with C and that the line AB is placed along CD, then the points H,
I, J will be respectively on the segments CE, CF , CG. Also, the sides BH, HI,
IJ of the one polygon will be respectively parallel to their homologous sides DE,
EF , FG of the other.

COROLLARY. 3. If segments constructed from any point O in the plane of a
figure to all its angular points are divided in the same ratio, the lines joining
the points of division will form a new figure similar to and having every side
parallel to the homologous side of the original.

Note: [6.19] is the first of Euclid’s Proposition in which the technical term
“duplicate ratio” occurs. Most students find it difficult to understand either
Euclid’s proof or his definition. Due to this, we follow Euclid’s proof with John
Casey’s alternative proof which makes use of a new definition of the duplicate
ratio of two lines: the ratio of the squares constructed on these segments.

PROPOSITION 6.19. RATIOS OF SIMILAR TRIANGLES. Similar trian-
gles have their areas to one another in the duplicate ratio of their homologous
sides.

PROOF. We claim that similar triangles (4ABC, 4DEF ) have their areas
to one another in the duplicate ratio of their homologous sides.

FIGURE 6.2.29. [6.19] (α)
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Take BG as a third proportional to BC, EF [6.11]; that is, BC : BG ::

BG : EF Join AG. Then because 4ABC ∼ 4DEF , AB : BC :: DE : EF ;
hence we also have that AB : DE :: BC : EF [5.16]. Since we also have that
BC : EF :: EF : BG, by [5.11] we also have that AB : DE :: EF : BG. Hence
the sides of the triangles4ABG,4DEF about the equal angles at points B, E
are reciprocally proportional, and therefore 4ABG, 4DEF are equal in area.

Again, since the segments BC, EF , BG are continual proportionals, BC :

BG is in the duplicate ratio of BC : EF [Def. 5.10]; but BC : BG :: 4ABC :

4ABG. Therefore 4ABC : 4ABG in the duplicate ratio of BC : EF . But we
have shown that the triangle4ABG = 4DEF . Therefore, the triangle4ABC
is to the triangle 4DEF in the duplicate ratio of BC : EF . �

Casey’s proof:

PROOF. Suppose that4ABC ∼ 4DEF . OnAB andDE, construct squares
(�AGHB and �DLME, respectively), and through points C and F construct
segments parallel to AB and DE. Extend AG, BH, DL, and EM to points J, I,
O, and N , respectively; this constructs the rectangles �JABI and �ODEN .

FIGURE 6.2.30. [6.19] (β)

Clearly, the triangles 4JAC, 4ODF are equiangular.
Hence:

JA : AC :: OD : DF [6.4] and
AC : AB :: DF : DE [6.4] ⇒
JA : AB :: OD : DE

Since AB = AG and DE = DL by construction, we also have that JA :

AG :: OD : DL.
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Again,

JA : AG :: �JABI : �AGHB [6.1] and
OD : DL :: �ODEN : �DLME [6.1] ⇒

�JABI : �AGHB :: �ODEN : �DLME

Therefore, �JABI : �ODEN :: �AGHB : �DLME by [5.16], and hence

4ABC : 4DEF :: AB2 : DE2

�

Exercises.
1. If one of two similar triangles has a side that is 50% longer than the

homologous sides of the other, what is the ratio of their areas?
2. When the inscribed and circumscribed regular polygons of any common

number of sides to a circle have more than four sides, the difference of their
areas is less than the square of the side of the inscribed polygon.

PROPOSITION 6.20. DIVISION OF SIMILAR POLYGONS. Similar poly-
gons may be divided:

1. into the same number of similar triangles;
2. such that the corresponding triangles have the same ratio to one another

which the polygons have;
3. such that the polygons are to each other in the duplicate ratio of their

homologous sides.

PROOF. Let ABHIJ , CDEFG be the polygons, and let the sides AB, CD
be homologous. Join AH, AI, CE, CF . We prove each claim separately:

FIGURE 6.2.31. [6.20]
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1. We claim that similar polygons may be divided into the same number of
similar triangles.

Since the polygons are similar, they are equiangular and have proportional
sides about their equal angles [Def. 6.1]. Hence, the angle at B is equal to
the angle at D, and AB : BH :: CD : DE. By [6.6], the triangle 4ABH
is equiangular to 4CDE, and so ∠BHA = ∠DEC. But ∠BHI = ∠DEF by
hypothesis; therefore, ∠AHI = ∠CEF .

Again, because the polygons are similar, IH : HB :: FE : ED; and since
4ABH ∼ 4CDE, HB : HA :: ED : EC. It follows that IH : HA :: FE :

EC, and we have shown that ∠IHA = ∠FEC. Therefore, 4IHA, 4FEC
are equiangular. Similarly, it can be shown that the remaining triangles are
equiangular.

2. We claim that similar polygons may be divided such that the correspond-
ing triangles have the same ratio to one another which the polygons have.

Since 4ABH ∼ 4CDE, we have that

4ABH : 4CDE in the duplicate ratio of AH : CE [6.19]

Similarly,

4AHI : 4CEF in the duplicate ratio of AH : CE

Hence, 4ABH : 4CDE = 4AHI : 4CEF [5.9]. Similarly, AHI : CEF =

AIJ : CFG.
In these equal ratios, the triangles 4ABH, 4AHI, 4AIJ are the an-

tecedents, the triangles 4CDE, 4CEF , 4CFG are the consequents, and any
one of these equal ratios is equal to the ratio of the sum of all the antecedents
to the sum of all the consequents [5.7]. Therefore,

4ABH : 4CDE :: polygon ABHIJ : polygon CDEFG

3. We claim that similar polygons are to each other in the duplicate ratio
of their homologous sides.

The triangle

4ABH : 4CDE in the duplicate ratio of AB : CD [6.19]

Hence by (2),

polygon ABHIJ : polygon CDEFG in the duplicate ratio of AB : CD

�
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COROLLARY. 1. The perimeters of similar polygons are to one another in
the ratio of their homologous sides.

COROLLARY. 2. As squares are to similar polygons, the duplicate ratio of
two segments is equal to the ratio of the squares constructed on them.

COROLLARY. 3. Similar portions of similar figures bear the same ratio to
each other as the wholes of the figures.

COROLLARY. 4. Similar portions of the perimeters of similar figures are to
each other in the ratio of the whole perimeters.

Exercises.
1. If two figures are similar, to each point in the plane of one there will be

a corresponding point in the plane of the other.

FIGURE 6.2.32. [6.20, #1]

Let ABCD, A′B′C ′D′ be the two figures and P a point inside of ABCD.
Join AP , BP , and construct a triangle 4A′P ′B′ on A′B′ similar to 4APB;
clearly, segments from P ′ to the angular points of A′B′C ′D′ are proportional to
the lines from P to the angular points of ABCD.

2. If two figures are directly similar and in the same plane, there is in
the plane called a homologous point with respect to the other (which may be
regarded as belonging to either figure).
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FIGURE 6.2.33. [6.20, #2]. See also [Def 6.8].

Let AB, A′B′ be two homologous sides of the figures and C their point of
intersection. Through the two triads of points A, A′, C and B, B′, C construct
two circles intersecting again at the point O: we claim that O is the required
point. Clearly, 4OAB ∼ 4OAB and either may be turned round the point O,
so that the two bases, AB, A′B′ will be parallel.

3. Two regular polygons of n sides each have n centers of similitude.
4. If any number of similar triangles have their corresponding vertices

lying on three given lines, they have a common center of similitude.
5. If two figures are directly similar and have a pair of homologous sides

parallel, every pair of homologous sides will be parallel.

Definition: Figures such as those in #5 are said to be homothetic.

6. If two figures are homothetic, the segments joining corresponding angu-
lar points are concurrent, and the point of concurrence is the center of simili-
tude of the figures.

7. If two polygons are directly similar, either may be turned round their
center of similitude until they become homothetic, and this may be done in two
different ways.

8. Two circles are similar figures.
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FIGURE 6.2.34. [6.20, #8]

Let O, O′ be their centers, and let the angle ∠AOB be made indefinitely
small so that the arc AB may be regarded as a straight line; construct ∠AOB =

∠A′O′B′. We claim that the triangles 4AOB ∼ 4A′O′B′.
Again, construct the angle ∠BOC indefinitely small and set ∠B′O′C ′ =

∠BOC. Hence, 4BOC ∼ 4B′O′C ′. Proceeding in this way, we see that the
circles can be divided into the same number of similar elementary triangles.
Hence the circles are similar figures.

9. Sectors of circles having equal central angles are similar figures.
10. As any two points of two circles may be regarded as homologous, two

circles have in consequence an infinite number of centers of similitude. Their
locus is the circle, whose diameter is the line joining the two points for which
the two circles are homothetic.

11. The areas of circles are to one another as the squares of their diam-
eters. For they are to one another as the similar elementary triangles into
which they are divided, and these are as the squares of the radii.

12. The circumferences of circles are proportional to their diameters (see
[6.20, Cor. 1]).

13. The circumference of sectors having equal central angles are propor-
tional to their radii. Hence if a, a′ denote the arcs of two sectors which stand
opposite equal angles at the centers, and if r, r′ are their radii, then we have
that a/r = a′/r′.

14. The area of a circle is equal to half the rectangle contained by the
circumference and the radius. (This is evident by dividing the circle into ele-
mentary triangles, as in #8.)

15. The area of a sector of a circle is equal to half the rectangle contained
by the arc of the sector and the radius of the circle.

PROPOSITION 6.21. TRANSITIVITY OF SIMILAR POLYGONS. Polygons
which are similar to the same figure are similar to one another.
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PROOF. We claim that polygons (ABC, DEF ) which are similar to the
same figure (GHI) are similar to one another (that is, the property of simi-
larity is transitive).

FIGURE 6.2.35. [6.21] Note that the polygons need not be triangles.

Since ABC ∼ GHI, they are equiangular and have the sides about their
equal angles proportional. Similarly, DEF and GHI are equiangular and
have the sides about their equal angles proportional. Hence ABC and DEF

are equiangular and have the sides about their equal angles proportional; or,
ABC ∼ DEF . �

COROLLARY. 1. Two similar polygons which are homothetic to a third are
homothetic to one another.

Exercise.
1. If three similar polygons are respectively homothetic, then their three

centers of similitudes are collinear.

PROPOSITION 6.22. PROPORTIONALITY OF FOUR SEGMENTS TO THE
POLYGONS CONSTRUCTED UPON THEM. If four segments are proportional,
then if any pair of similar polygons are similarly constructed on the first and
second segments, and if any other pair of similar polygons are constructed on
the third and fourth segments, then these figures are proportional.

Conversely, if we have that a polygon constructed on the first of four seg-
ments is similar and similarly constructed to the polygon constructed on the
second segment as a polygon constructed on the third segment is similar and
similarly constructed to the polygon constructed on the fourth segment, then the
four lines are proportional.
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PROOF. Construct four proportional segments (AB, CD, EF ,GH) and sim-
ilar polygons (4ABK, 4CDL) constructed from AB and CD. Also construct
similar polygons (�MEFI, �NGHJ) from the third and fourth segments (EI,
GJ).

FIGURE 6.2.36. [6.22]

We prove each claim separately:
1. We claim that 4ABK : 4CDL :: �HEFI : �NGHJ .
Suppose that the segments AB, CD, EF , GH are proportional. Then we

have that

4ABK : 4CDL :: AB2 : CD2 [6.20]
�HEFI : �NGHJ :: EF 2 : GH2 [6.20]

AB : CD :: EF : GH (by hypothesis)

Since we have that AB2 : CD2 :: EF 2 : GH2 by [5.22, Cor. 1], it follows
that 4ABK : 4CDL :: �HEFI : �NGHJ .

2. Now suppose that ABK : CDL :: �HEFI : �NGHJ . We wish to show
that AB : CD :: EF : GH.

Notice that

ABK : CDL :: AB2 : CD2 [6.20]
�HEFI : �NGHJ :: EF 2 : GH2 [6.20]

AB2 : CD2 :: EF 2 : GH2 [5.22, Cor. 1]

Hence, AB : CD :: EF : GH. �

PROPOSITION 6.23. EQUIANGULAR PARALLELOGRAMS. Equiangular
parallelograms are to each other as the rectangles contained by their sides about
a pair of equal angles.
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PROOF. Equiangular parallelograms (�HABD,�BGEC) are to each other
as the rectangles contained by their sides about a pair of equal angles (or
X : Z :: AB.BD : BC.BG).

FIGURE 6.2.37. [6.23]

Let the two sides AB, BC about the equal angles ∠ABD, ∠CBG be placed
so as to form one segment AC; clearly, as in [6.14], GB, BD also form the seg-
ment GD. Complete the parallelogram �DBCF . Denoting the parallelograms
�HADB, �DBCF , �BGEC by X, Y , Z, respectively, we have that

X : Y :: AB : BC [6.1]
Y : Z :: BD : BG [6.1]

Hence, XY : Y Z :: AB.BD : BC.BG, or X : Z :: AB.BD : BC.BG. �

Exercises.
1. Triangles which have one angle of one equal or supplemental to one

angle of the other are to one another in the ratio of the rectangles of the sides
about those angles.

2. Two quadrilaterals whose diagonals intersect at equal angles are to one
another in the ratio of the rectangles of the diagonals.

PROPOSITION 6.24. SIMILAR PARALLELOGRAMS ABOUT THE DIAG-
ONAL. In any parallelogram, every two parallelograms which are about a di-
agonal are similar to the whole and to one another.

PROOF. In any parallelogram (�BADC), every two parallelograms (�EAGF ,
�JFHC) which are about a diagonal are similar to the whole and to one an-
other.
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FIGURE 6.2.38. [6.24]

Since the parallelograms �BADC, �EAGF have a common angle, they
are equiangular [1.34], and all we are required to prove that that the sides
about the equal angles are proportional.

Since the segments EF , are parallel, the triangles 4AEF , 4ABC are
equiangular; by [6.4], AE : EF :: AB : BC, and the other sides of the par-
allelograms are equal to AE, EF ; AB, BC. Hence the sides about the equal
angles are proportional, and therefore �EAGF ∼ �BADC. The parallelo-
grams �EAGF , �JFHC may also be shown to be similar in the same way. �

COROLLARY. 1. The parallelograms �EAGF , �JFHC, �BADC are, re-
spectively homothetic.

PROPOSITION 6.25. CONSTRUCTION OF A POLYGON EQUAL IN AREA
TO A GIVEN FIGURE AND SIMILAR TO A SECOND GIVEN FIGURE.

PROOF. We wish to construct a polygon equal to a given polygon, ALMN ,
and similar to a second polygon, BCD.
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FIGURE 6.2.39. [6.25] Note that BCD and GHI need not be triangles.

On any side of the polygon BCD (wlog, we choose BC), construct the rec-
tangle �BJEC = BCD [1.45], and on CE construct the rectangle �CEKF =

ALMN . Between BC, CF , find a mean proportional GH and on it construct
the polygon GHI ∼ BCD [6.18] so that BC and GH may be homologous sides.
We claim that GHI is the required polygon.

We have that BC : GF :: GF : CF ; therefore BC : CF is in the duplicate
ratio ofBC : GH [Def 5.10]. SinceBCD ∼ GHI, BCD : GHI is in the duplicate
ratio of BC : GH [6.20]. We also have that BC : CF :: �BJEC : �CEKF .
Hence, �BJCE : �CEKF :: BCD : GHI. But the rectangle �BJEC is equal
to the polygon BCD; therefore, �CEKF = GHI. Recall that by construction
�CEKF = ALMN . It follows that GHI = ALMN and is similar to BCD.
Hence, it is the required polygon. �

Alternatively:

PROOF. Construct the squares �EFJK, �LMNO equal in area to the
polygonsBCD andALMN , respectively [2.14]. FindGH, a fourth proportional
to EF , LM , and BC [6.12].
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FIGURE 6.2.40. [6.25], alternate proof. Note that GHI need
not be a triangle.

On GH, construct the polygon GHI similar to the polygon BCD [6.18] such
that BC and GH are homologous sides. We claim that GHI is the required
polygon.

Because EF : LM :: BC : GH by construction, we have that EFJK :

LMNO :: BCD : GHI [6.22]. But EFJK = BCD by construction; therefore,
LMNO = GHI. But we also have that LMNO = APQS by construction.
Therefore GHI = APQS and is similar to BCD. �

PROPOSITION 6.26. PARALLELOGRAMS ON A COMMON ANGLE. If
two similar and similarly situated parallelograms have a common angle, they
stand on the same diagonal.

PROOF. If two similar and similarly situated parallelograms (�AEFG,
�ABCD) have a common angle (∠GAF ), we claim that they stand on the same
diagonal.

FIGURE 6.2.41. [6.26]
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Construct the diagonals AF , AC. Because s �AEFG ∼ �ABCD, they can
be divided into the same number of similar triangles [6.20]. Hence, 4GAF ∼
4CAD, and it follows that ∠GAF = ∠CAD. Hence, AC must pass through the
point F and hence the parallelograms are about the same diagonal. �

Observation: [6.26] is the converse of [6.24] and may have been misplaced
in an early edition of Euclid. The following would be a simpler statement of
result: “If two homothetic parallelograms have a common angle, they are about
the same diagonal.”

PROPOSITION 6.27. INSCRIBING A PARALLELOGRAM IN A TRIAN-
GLE I.

PROOF. Construct 4ABC. Bisect the side AC at point P opposite to the
angle at point B. Through P, construct PE, PF parallel to the remaining sides
of the triangle 4ABC. We claim that �EBFP is the required parallelogram.

FIGURE 6.2.42. [6.27]

Take any other point D on AC, construct DG, DH parallel to the sides of
4ABC, and construct CK ‖ AB. Extend EP , GD to meet CK at K and J , and
extend HD to meet PK at I.

Since AC is bisected at P , EK is also bisected in P . By [1.36], �EGOP =

�POJK. Therefore, �EGOP > �IDJK; but �IDJK = �OFHD [1.43], and
so �EGOP > �OFHD. To each add �GBFO, and we have that �EBFP >

�GBHD. Hence, �EBFP is the maximum parallelogram which can be in-
scribed in the triangle 4ABC. �
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COROLLARY. 1. The maximum parallelogram exceeds any other parallelo-
gram about the same angle in the triangle by the area of the similar parallel-
ogram whose diagonal is the line between the midpoint P of the opposite side
and the point D, which is the corner of the other inscribed parallelogram.

COROLLARY. 2. The parallelograms inscribed in a triangle and having
one angle common with it are proportional to the rectangles contained by the
segments of the sides of the triangle made by the opposite corners of the paral-
lelograms.

COROLLARY. 3. The parallelogram in [6.27] has proportions AC : GH ::

AC2 : AD.DC.

PROPOSITION 6.28. INSCRIBING A PARALLELOGRAM IN A TRIAN-
GLE II. We wish to inscribe in a given triangle a parallelogram equal to a given
polygon not greater than the maximum inscribed parallelogram and having an
angle common with the triangle.

PROOF. We wish to inscribe a parallelogram in a given triangle (4ABC)
equal in area to a given polygon (XY Z) not greater than the maximum in-
scribed parallelogram and having an angle (at B) in common with the triangle.

FIGURE 6.2.43. [6.28] Note that XY Z need not be a triangle.

Bisect the side AC at P , opposite to point B. Construct PF , PE parallel
to the sides AB, BC. Then �EBFP is the maximum parallelogram that can
be inscribed in the triangle ABC [6.27]. If XY Z = �EBFP , the problem is
solved.
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Otherwise, extend EP and construct CJ parallel to PF ; then construct the
parallelogram �KLMN equal to the difference between the areas between the
polygons �PJCF and XY Z [6.25] and similar to �PJCF such that the sides
PJ and KL will be homologous. Cut off PI = KL. Construct IH ‖ AB, cutting
AC at D, and construct DG parallel to BC. We claim that �GBHD is the
required parallelogram.

Since the parallelograms �PFCJ , �PODI stand on the same diagonal,
they are similar [6.24]; however, �PFCJ ∼ �KLMN by construction, and
therefore �PODI ∼ �KLMN . Also by construction, their homologous sides,
PI and KL, are equal. Hence by [6.20], �PODI = �KLMN . Now, �PODI is
the difference between �EBFP and �GBHD [6.27, Cor. 1], and �KLMN is
the difference between �PJCF and XY Z by construction. Therefore, the dif-
ference between �PJCF and XY Z is equal to the difference between �EBFP
and �GBHD. However, �EBFP = �PJCF . Hence, �GBHD = XY Z. �

PROPOSITION 6.29. ESCRIBING A PARALLELOGRAM TO A TRIAN-
GLE. We wish to escribe to a given triangle a parallelogram equal to a given
polygon and having an angle common with an external angle of the triangle.

PROOF. We wish to escribe to a given triangle (4ABC) a parallelogram
equal in area to a given polygon (XY Z) and having an angle common with an
external angle (at B) of the triangle.

FIGURE 6.2.44. [6.29]

The construction is the same as [6.28] except that we construct the par-
allelogram �KLMN so that its area is equal to the sum of parallelograms
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�PODI and �XY Z. Make PI = KL and construct IH ‖ AB; the remaining
construction takes place as in [6.28].

Now as in [2.6], it can be shown that the parallelogram�BGDH is equal in
area to the gnomon OHJ : that is, the area of �BGDH equals to the difference
between the parallelograms �PODI and �PFCJ . By construction, this is
also the difference between �KLNM and �PFCJ , which is equal in area of
XY Z. Notice that �BGDH is escribed to the triangle4ABC and has an angle
common with the external angle at B. Hence, the proof. �

PROPOSITION 6.30. We wish to divide a given segment into its “extreme
and mean ratio.”

PROOF. We wish to divide a given segment (AB) into its “extreme and
mean ratio.”

FIGURE 6.2.45. [6.30]

Divide AB at C so that the rectangle AB.BC = AC2 [2.11]. We claim that
C is the required point.

Because the rectangle AB.BC = AC2, we have that AB : AC :: AC : BC

[6.17]. Hence AB is cut in extreme and mean ratio at C [Def. 6.2]. �

Exercises.
1. If the three sides of a right triangle are in continued proportion, the

hypotenuse is divided in extreme and mean ratio by the perpendicular from
the right angle on the hypotenuse.

2. In the same case as #1, the greater segment of the hypotenuse is equal
to the least side of the triangle.

FIGURE 6.2.46. [6.30], #3
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3. The square on the diameter of the circle constructed about the triangle
formed by the points F , H, D (see Fig. 6.2.46) is equal to six times the square
on the segment FD.

PROPOSITION 6.31. AREA OF SQUARES ON A RIGHT TRIANGLE. If
any similar polygon is similarly constructed on the three sides of a right trian-
gle, the polygon on the hypotenuse is equal in area to the sum of the areas of
those polygons constructed on the two other sides.

PROOF. If any similar polygon is similarly constructed on the three sides
of a right triangle (4ABC), we claim that the polygon on the hypotenuse is
equal in area to the sum of the areas of those polygons constructed on the two
other sides.

FIGURE 6.2.47. [6.31]

Construct CD ⊥ AB [1.12]. Because 4ABC is a right triangle and CD is
constructed from the right angle perpendicular to the hypotenuse, BD : AD is
in the duplicate ratio of BA : AC [6.8, Cor. 4]. Again, because the polygons
constructed on BA, AC are similar, they are in the duplicate ratio of BA : AD

[6.20]. Hence by [5.11],

BA : AD :: figure constructed on BA : figure constructed on AC

Similarly,

AB : BD :: figure constructed on AB : figure constructed on BC

By [5.24],

AB : AD +BD :: figure constructed on AB : sum of the figures on AC,BC
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But AB = AD+BD. Therefore the polygon constructed on the segment AB
is equal in area to the sum of the similar polygons constructed on the segments
AC and BC. �

Alternatively:

PROOF. Denote the sides by a, b, c, and the polygons by α, β, γ. Because
the polygons are similar, by [6.20] we have that α : γ :: a2 : c2.

Therefore,
α

γ
=
a2

c2

Similarly,
β

γ
=
b2

c2

from which it follows that
α+ β

γ
=
a2 + b2

c2

But a2 + b2 = c2 by [1.47]. Therefore, α+ β = γ; or, the sum of the polygons
on the sides is equal to the polygon on the hypotenuse. �

Exercise.
1. If semicircles are constructed on supplemental chords of a semicircle,

the sum of the areas of the two crescents thus formed is equal to the area of
the triangle whose sides are the supplemental chords and the diameter.

PROPOSITION 6.32. FORMATION OF TRIANGLES. If two triangles which
have two sides of one triangle proportional to two sides of the other triangle and
the contained equal angles are joined at an angle so as to have their homologous
sides parallel, the remaining sides are in the same segment.

PROOF. If two triangles (4ABC, 4CDE) which have two sides of one tri-
angle proportional to two sides of the other triangle (AB : BC :: CD : DE) and
the contained equal angles (at points B, D) are joined at an angle (at C) so as
to have their homologous sides parallel, the remaining sides (AC, CE) are in
the same segment (AE).
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FIGURE 6.2.48. [6.32]

Because the triangles 4ABC, 4CDE have equal angles at B and D and
the sides about these angles are proportional, (AB : BC :: CD : DE), they are
equiangular [6.6]. Therefore, ∠BAC = ∠DCE. To each add ∠ACD, and we
have ∠BAC + ∠ACD = ∠DCE + ∠ACD. But ∠BAC + ∠ACD is two right
angles [1.29]. It follows that ∠DCE + ∠ACD is two right angles. Hence by
[1.47], AC, CE are in the same segment. �

PROPOSITION 6.33. RATIOS OF EQUAL TRIANGLES. In equal circles,
angles at the centers or at the circumferences have the same ratio to one another
as the arcs on which they stand. This also holds true for sectors.

PROOF. In equal circles (◦ABC, ◦DEF ), angles at the centers (∠BOC,
∠EPF ) or at the circumferences (∠BAC, ∠EDF ) have the same ratio to one
another as the arcs (BC, EF ) on which they stand. This also holds true for
sectors (BOC, EPF ).

FIGURE 6.2.49. [6.33]

We prove each claim separately:
1. We claim that BC : EF :: ∠BAC : ∠EDF .
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Take any number of arcs CG, GH in the first circle, each equal in length
to BC. Join OG, OH. In the second circle, take any number of arcs FI, IJ ,
each equal to EF . Join IP , JP . Because the arcs BC = CG = GH, we have
that ∠BOC = ∠COG = ∠GOH [3.27]. Therefore, the arc BH and ∠BOH are
equimultiples of the arc BC and ∠BOC.

Similarly, it may be shown that the arc EJ and ∠EPJ are equimultiples
of the arc EF and ∠EPF . Again, since the circles are equal, it is evident that
∠BOH is greater than, equal to, or less than ∠EPJ according to whether the
arc BH is greater than, equal to, or less than the arc EJ . We have four mag-
nitudes: the arc BC, the arc EF , the angle ∠BOC, and the angle ∠EPF . We
have also taken equimultiples of the first and third (the arc BH and ∠BOH)
and other equimultiples of the second and fourth (the arc EJ and ∠EPJ) and
we have proved that, according as the multiple of the first is greater than,
equal to, or less than the multiple of the second, the multiple of the third is
greater than, equal to, or less than the multiple of the fourth.

Hence by [Def. 5.5], BC : EF :: ∠BOC : ∠EPF . Again, since the angle
∠BAC is half the angle ∠BOC [3.20.] and ∠EDF is half the angle ∠EPF , we
have that

∠BOC : ∠EPF :: ∠BAC : ∠EDF [5.15]

from which it follows that BC : EF :: ∠BAC : ∠EDF [5.11].

2. We claim that sector BOC : sector EPF :: BC : EF .
We make the same construction as in part 1. Since the arc BC is equal

in length to CG, ∠BOC = ∠COG. Hence the sectors BOC, COG are con-
gruent (see Observation, [3.29]); therefore, they are equal in length. Simi-
larly, the sectors COG, GOH are equal in length. Hence there are as many
equal sectors as there are equal arcs; therefore, the arc BH and the sector
BOH are equimultiples of the arc BC and the sector BOC. Similarly, it may
be shown that the arc EJ and the sector EPJ are equimultiples of the arc
EF and the sector EPF . And it is evident by superposition that if the arc
BH is greater than, equal to, or less than the arc EJ , the sector BOH is
greater than, equal to, or less than the sector EPJ . Hence by [Def. 5.5],
arc BC : arc EF :: sector BOC : sector EPF . �

Alternative proof to part 2):

PROOF. Sector BOC = ( 1
2 rectangle by arc BC) and the radius of the circle

◦ABC [6.20, #14], and sector EPF = (2· rectangle contained by the arc EF and
the radius of the circle ◦EDF ). Since the circles are equal, their radii are equal.
Hence, sector BOC : sector EPF :: arc BC : arc EF . �
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Examination questions for chapter 6.
1. What is the subject-matter of chapter 6? (Ans. Application of the theory

of proportion.)
2. What are similar polygons?
3. What do similar polygons agree in?
4. How many conditions are necessary to define similar triangles?
5. How many conditions are necessary to define similar polygons of more

than three sides?
6. When is a polygon said to be given in species?
7. When in magnitude?
8. When in position?
9. What is a mean proportional between two lines?
10. Define two mean proportionals.
11. What is the altitude of a polygon?
12. If two triangles have equal altitudes, how do their areas vary?
13. How do these areas vary if they have equal bases but unequal alti-

tudes?
14. If both bases and altitudes differ, how do the areas vary?
15. When are two lines divided proportionally?
16. If in two segments which are divided proportionally a pair of homol-

ogous points coincide with their point of intersection, what property holds for
the lines joining the other pairs of homologous points?

17. Define reciprocal proportion.
18. If two triangles have equal areas, prove that their perpendiculars are

reciprocally proportional to the bases.
19. What is meant by inversely similar polygons?
20. If two polygons are inversely similar, how can they be changed into

polygons which are directly similar?
21. Give an example of two triangles inversely similar. (Ans. If two lines

passing through any point O outside a circle intersect it in pairs of points A,
A′; B, B′, respectively, the triangles 4OAB, 4OA′B′ are inversely similar.)

22. What point is it round which a polygon can be turned so as to bring
its sides into positions of parallelism with the sides of a similar polygon? (Ans.
The center of similitude of the two polygons.)

23. How many polygons similar to a given polygon of sides can be con-
structed on a given line?

24. How many centers of similitude can two regular polygons of n sides
each have? (Ans. n centers, which lie on a circle.)

25. What are homothetic polygons?



6.2. PROPOSITIONS FROM BOOK VI 273

26. How do the areas of similar polygons vary?
27. What proposition is [6.19] a special case of?
28. Define Philo’s line.
29. How many centers of similitude do two circles have?

Exercises for chapter 6.
1. If in a fixed triangle, we construct a variable side parallel to the base,

the locus of the points of intersection of the diagonals of the trapezium that is
cut off from the triangle is the median that bisects the base.

2. Find the locus of the point which divides in a given ratio the several
lines constructed from a given point to the circumference of a given circle.

3. Two segments AB, XY , are given in position: AB is divided at C in
the ratio m : n and parallels AA′, BB′, CC ′ are constructed in any direction
meeting XY in the points A′, B′, C ′. Prove that

(m+ n)CC ′ = nAA′ +mBB′

4. Three concurrent lines from the vertices of a triangle 4ABC meet the
opposite sides in A′, B′, C ′. Prove AB′.BC ′.CA′ = A′B.B′C.C ′A.

5. If a transversal meets the sides of a triangle4ABC at the points A′, B′,
C ′, prove AB′.BC ′.CA′ = −A′B.B′C.C ′A.

6. If on a variable segment AC which is constructed from a fixed point A
to any point B on the circumference of a given circle, a point C is taken such
that the rectangle AB.AC is constant, prove that the locus of C is a circle.

7. If D is the midpoint of the base BC of a triangle 4ABC, E the foot of
the perpendicular, L is the point where the bisector of the angle at A meets
BC, and H the point of intersection of the inscribed circle with BC, prove that
DE.HL = HE.HD.

8. As in #7, if K is the point of intersection with BC of the escribed circle,
which touches the other extended sides, prove that LH.BK = BD.LE.

9. If R, r, r′, r′′, r′′′ are the radii of the circumscribed, the inscribed, and
the escribed circles of a plane triangle, d, d′, d′′, d′′′ the distances of the center
of the circumscribed circle from the centers of the others, then R2 = d2 +2Rr =

d′2−2Rr′, etc.
10. As in #9, prove that 12R2 = d2 + d′2 + d′′2 + d′′′2.
11. If p′, p′′, p′′′ denote the altitudes of a triangle, then:

(1) 1
p′ + 1

p′′ + 1
p′′′ = 1

r

(2) 1
p′′ + 1

p′′′ −
1
p = 1

r′ (etc.)
(3) 2

p = 1
r −

1
r′ (etc.)

(4) 2
p′ = 1

r′′ + 1
r′′′ (etc.)
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12. In a given triangle, inscribe another of given form which has one of its
angles at a given point in one of the sides of the original triangle.

13. If a triangle of given form moves so that its three sides pass through
three fixed points, the locus of any point in its plane is a circle.

14. Suppose that the angle at point A and the area of a triangle4ABC are
given in magnitude. If the point A is fixed in position and the point B move
along a fixed line or circle, then the locus of the point C is a circle.

15. One of the vertices of a triangle of given form remains fixed, and the
locus of another is a segment or circle. Find the locus of the third.

16. Find the area of a triangle:
(a) in terms of its medians;
(b) in terms of its perpendiculars.
17. If two circles touch externally, their common tangent is a mean propor-

tional between their diameters.
18. If there are three given parallel lines and two fixed points A, B, and

if the lines connecting A and B to any variable point in one of the parallels
intersects the other parallels at the points C and D, E and F , respectively,
prove that CF and DE each pass through a fixed point.

19. If a system of circles pass through two fixed points, any two secants
passing through one of the points are cut proportionally by the circles.

20. Find a pointO in the plane of a triangle4ABC such that the diameters
of the three circles about the triangles 4OAB, 4OBC, 4OCA may be in the
ratios of three given segments.

21. Suppose that ABCD is a cyclic quadrilateral, and the segments AB,
AD, and the point C are given in position. Find the locus of the point which
divides BD in a given ratio.

22. If CA, CB are two tangents to a circle and BE ⊥ AD (where AD is the
the diameter through A), then prove that CD bisects BE.

23. If three segments from the vertices of a triangle 4ABC to any interior
point O meet the opposite sides in the points A′, B′, C ′, prove that

OA′

AA′
+
OB′

BB′
+
OC ′

CC ′
= 1

24. If three concurrent lines OA, OB, OC are cut by two transversals in
the two systems of points A, B, C; A′, B’, C ′, respectively, then prove that

AB

A′B′
· OC
OC ′

=
BC

B′C ′
· OA
OA′

=
CA

C ′A′
· OB
OB′

25. The line joining the midpoints of the diagonals of a quadrilateral cir-
cumscribed to a circle:
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(a) divides each pair of opposite sides into inversely proportional segments;
(b) is divided by each pair of opposite segments into segments which when

measured from the center are proportional to the sides;
(c) is divided by both pairs of opposite sides into segments which when

measured from either diagonal have the same ratio to each other.
26. If CD, CD′ are the internal and external bisectors of the angle at

C of the triangle 4ACB, the three rectangles AD.DB, AC.CB, AD.BD are
proportional to the squares of AD, AC, AD and are:

(a) in arithmetical progression, if the difference of the base angles is equal
to a right angle;

(b) in geometrical progression if one base angle is right;
(c) in harmonic progression if the sum of the base angles is equal to a right

angle.
27. If a variable circle touches two fixed circles, the chord of contact passes

through a fixed point on the line connecting the centers of the fixed circles.

FIGURE 6.2.50. Ch. 6, #27

Let O,O′ be the centers of the two fixed circles; O the center of the variable
circle; A, B the points of contact. Let AB and OO′ meet at C, and cut the fixed
circles again in the points A′, B′ respectively. Join A′O, AO, BO′. Then AO,
BO′ meet at O′′ [3.11]. Now because the triangles OAA′, O′′AB are isosceles,
the angles O′′BA = O′′AB = OA′A. Hence OA′ ‖ O′B; therefore OC : O′C ::

OA′ : O′B is in a given ratio. Hence, C is a given point.
28. If DD′ is the common tangent to the two circles, then DD′2 = AB′.A′B.
29. If R denotes the radius of O′′ and ρ, ρ′ the radii of O, O′, then DD′2 :

AB2 :: (R ± ρ)(R ± ρ′) : R2 where the choice of sign depends on the nature of
the contacts. (This result follows from #28.)

30. If four circles are tangential to a fifth, and if we denote by 12 the
common tangent to the first and second, etc., then 12.34 + 23.14 = 13.24.
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31. The inscribed and escribed circles of any triangle are all touched by its
nine-points circle.

32. The four triangles which are determined by four points, taken three by
three, are such that their nine-points circles have one common point.

33. If a, b, c, d denote the four sides, and D, D′ the diagonals of a quadrilat-
eral, prove that the sides of the triangle, formed by joining the feet of the per-
pendiculars from any of its angular points on the sides of the triangle formed
by the three remaining points, are proportional to the three rectangles ac, bd,
DD′.

34. Prove the converse of Ptolemy’s theorem (see [6.17], #13).
35. Construct a circle which:
(a) passes through a given point, and touch two given circles;
(b) touches three given circles.
36. If a variable circle touches two fixed circles, the tangent to it from their

center of similitude through which the chord of contact passes is of constant
length (see Fig. 6.2.50).

37. If the lines AD, BD′ are extended (see Fig. 6.2.50), they meet at a
point on the circumference of O′′, and the line O′′P is perpendicular to DD′.

38. If A, B are two fixed points on two lines given in position, and A′, B′

are two variable points such that the ratio AA′ : BB′ is constant, the locus of
the point dividing A′B′ in a given ratio is a segment.

39. If a segment EF divides proportionally two opposite sides of a quadri-
lateral, and a segment GH the other sides, each of these is divided by the other
in the same ratio as the sides which determine them.

40. In a given circle, inscribe a triangle such that the triangle whose an-
gular points are the feet of the perpendiculars from the endpoints of the base
on the bisector of the vertical angle and the foot of the perpendicular from the
vertical angle on the base may be a maximum.

41. In a circle, the point of intersection of the diagonals of any inscribed
quadrilateral coincides with the point of intersection of the diagonals of the
circumscribed quadrilateral whose sides touch the circle at the angular points
of the inscribed quadrilateral.

42. Through two given points describe a circle whose common chord with
another given circle may be parallel to a given line, or pass through a given
point.

43. Being given the center of a circle, describe it so as to cut the legs of a
given angle along a chord parallel to a given line.
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44. If concurrent lines constructed from the angles of a polygon of an odd
number of sides divide the opposite sides each into two segments, the product
of one set of alternate segments is equal in area to the product of the other set.

45. If a triangle is constructed about a circle, the lines from the points of
contact of its sides with the circle to the opposite angular points are concurrent.

46. If a triangle is inscribed in a circle, the tangents to the circle at its
three angular points meet the three opposite sides at three collinear points.

47. The external bisectors of the angles of a triangle meet the opposite
sides in three collinear points.

48. Construct a circle touching a given line at a given point and cutting a
given circle at a given angle.

Definition: the center of mean position of any number of points A, B, C,
D, etc., is a point which may be found as follows: bisect the line joining any two
points A, B at G. Join G to a third point C; divide GC at H so that GH = 1

3GC.
Join H to a fourth point D and divide HD at K, so that HK = 1

4HD, and so
on. The last point found will be the center of mean position of the given points.

49. The center of mean position of the angular points of a regular polygon
is the center of figure of the polygon.

50. The sum of the perpendiculars let fall from any system of points A, B,
C, D, etc., whose number is n on any line L, is equal to n times the perpendic-
ular from the center of mean position on L.

51. The sum of the squares of segments constructed from any system of
points A, B, C, D, etc., to any point P exceeds the sum of the squares of seg-
ments from the same points to their center of mean position, O, by nOP 2.

52. If a point is taken within a triangle so as to be the center of mean
position of the feet of the perpendiculars constructed from it to the sides of the
triangle, the sum of the squares of the perpendiculars is a minimum.

53. Construct a quadrilateral being given two opposite angles, the diago-
nals, and the angle between the diagonals.

54. A circle rolls inside another of double its diameter; find the locus of a
fixed point in its circumference.

55. Two points, C, D in the circumference of a given circle are on the same
side of a given diameter. Find a point P in the circumference at the other side
of the given diameter, AB, such that PC, PD may cut AB at equal distances
from the center.

56. If the sides of any polygon be cut by a transversal, the product of one
set of alternate segments is equal to the product of the remaining set.
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57. A transversal being constructed cutting the sides of a triangle, the
lines from the angles of the triangle to the midpoints of the segments of the
transversal intercepted by those angles meet the opposite sides in collinear
points.

58. If segments are constructed from any point P to the angles of a trian-
gle, the perpendiculars at P to these segments meet the opposite sides of the
triangle at three collinear points.

59. Divide a given semicircle into two parts by a perpendicular to the
diameter so that the radii of the circles inscribed ob them may have a given
ratio.

60. From a point within a triangle, suppose that perpendiculars fall on
the sides; find the locus of the point when the sum of the squares of the lines
joining the feet of the perpendiculars is given.

61. If a circle makes given intercepts on two fixed lines, the rectangle
contained by the perpendiculars from its center on the bisectors of the angle
formed by the lines is given.

62. If the base and the difference of the base angles of a triangle are given,
the rectangle contained by the perpendiculars from the vertex on two lines
through the midpoint of the base, parallel to the internal and external bisectors
of the vertical angle, is constant.

63. The rectangle contained by the perpendiculars from the endpoints of
the base of a triangle on the internal bisector of the vertical angle is equal to
the rectangle contained by the external bisector and the perpendicular from
the middle of the base on the internal bisector.

64. State and prove the corresponding theorem for perpendiculars on the
external bisector.

65. Suppose that R, R′ denote the radii of the circles inscribed in the trian-
gles into which a right triangle is divided by the perpendicular from the right
angle on the hypotenuse. If c is the hypotenuse and s is the semi-perimeter,
R2 +R′2 = (s−c)2.

66. If A, B, C, D are four collinear points, find a point O in the same line
with them such that OA.OD = OB.OC.

67. Suppose the four sides of a cyclic quadrilateral are given; construct it.
68. Being given two circles, find the locus of a point such that tangents

from it to the circles may have a given ratio.
69. If four points A, B, C, D are collinear, find the locus of the point P at

which AB and CD stand opposite equal angles.
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70. If a circle touches internally two sides of a triangle, CA, CB, and its
circumscribed circle, the distance from C to the point of intersection on either
side is a fourth proportional to the semi-perimeter, CA, and CB.

71. State and prove the corresponding theorem for a circle touching the
circumscribed circle externally and two extended sides.

72. Pascal’s Theorem: if the opposite sides of an irregular hexagonABCDEF
inscribed in a circle are extended until they meet, the three points of intersec-
tion G, H, I are collinear. See Fig. 6.2.51.

FIGURE 6.2.51. Ch. 6, #72. Pascal’s Theorem

Join AD. Construct a circle about the triangle4ADI, cutting the extended
segments AF , CD, if necessary, at K and L. Join IK, KL, LI. By [3.21], we
have that ∠KLG = ∠FCG = ∠GAD. Therefore KL ‖ CF . Similarly, LI ‖ CH
and KI ‖ FH; hence the triangles 4KLI, 4FCH are homothetic, and so the
lines joining corresponding vertices are concurrent. Therefore, the points I, H,
G are collinear.

73. If two sides of a triangle circumscribed to a given circle are given in
position with the third side variable, the circle constructed about the triangle
touches a fixed circle.
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74. If two sides of a triangle are given in position, and if the area is given in
magnitude, two points can be found at each of which the base stands opposite
a constant angle.

75. If a, b, c, d denote the sides of a cyclic quadrilateral and s its semi-
perimeter, prove that its area =

√
(s−a)(s−b)(s−c)(s−d).

76. If three concurrent lines from the angles of a triangle 4ABC meet
the opposite side in the points A′, B′, C ′, and the points A′, B′, C ′ are joined,
forming a second triangle 4A′B′C ′, then

4ABC : 4A′B′C ′ :: AB.BC.CA : 2AB′.BC ′.CA′

77. In the same case as #76, find the diameter of the circle circumscribed
about the triangle 4ABC = AB′.BC ′.CA′ divided by the area of A′B′C ′.

78. If a quadrilateral is inscribed in one circle and circumscribed to an-
other, the square of its area is equal to the product of its four sides.

79. If on the sides AB, AC of a triangle4ABC we take two points D, E on
their connecting segment such that

BD

AD
=
AE

CE
=
DE

EF

then prove that the triangle BFC = 2ADE.
80. If through the midpoints of each of the two diagonals of a quadrilateral

we construct a parallel to the other, the lines constructed from their points
of intersection to the midpoints of the sides divide the quadrilateral into four
equal parts.

81. Suppose that CE, DF are perpendiculars to the diameter of a semicir-
cle, and two circles are constructed touching CE, DE, and the semicircle, one
internally and the other externally. Prove that the rectangle contained by the
perpendiculars from their centers on AB is equal to CE.DF .

82. If segments are constructed from any point in the circumference of a
circle to the angular points of any inscribed regular polygon of an odd number
of sides, the sums of the alternate lines are equal.

83. If at the endpoints of a chord constructed through a given point within
a given circle tangents are constructed, the sum of the reciprocals of the per-
pendiculars from the point upon the tangents is constant.

84. If a cyclic quadrilateral is such that three of its sides pass through
three fixed collinear points, the fourth side passes through a fourth fixed point,
collinear with the three given ones.

85. If all the sides of a polygon are parallel to given lines and if the loci of
all the angles except for one are segments, the locus of the remaining angle is
also a segment.
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86. If the vertical angle and the bisector of the vertical angle is given, the
sum of the reciprocals of the containing sides is constant.

87. If P , P ′ denote the areas of two regular polygons of any common num-
ber of sides inscribed and circumscribed to a circle, and Π, Π′ are the areas of
the corresponding polygons of double the number of sides, prove that Π is a
geometric mean between P and P ′ and Π′ a harmonic mean between Π and P .

88. The difference of the areas of the triangles formed by joining the cen-
ters of the circles constructed about the equilateral triangles constructed out-
wards on the sides of any triangle is equal to the area of that triangle. Prove
the same if they are constructed inwards.

89. In the same case as #88, the sum of the squares of the sides of the two
new triangles is equal to the sum of the squares of the sides of the original
triangle.

90. Suppose that R, r denote the radii of the circumscribed and inscribed
circles to a regular polygon of any number of sides, R′, r′, corresponding radii
to a regular polygon of the same area, and double the number of sides. Prove

that R′ =
√
Rr and r′ =

√
r(R+r)

2 .
91. If the altitude of a triangle is equal to its base, the sum of the distances

of the orthocenter from the base and from the midpoint of the base is equal to
half the base.

92. In any triangle, when the base and the ratio of the sides are given,
the radius of the circumscribed circle is to the radius of the circle which is the
locus of the vertex as the difference of the squares of the sides is to four times
the area.

93. Given the area of a parallelogram, one of its angles, and the difference
between its diagonals, construct the parallelogram.

94. If a variable circle touches two equal circles, one internally and the
other externally, and perpendiculars fall from its center on the transverse tan-
gents to these circles, the rectangle of the intercepts between the feet of these
perpendiculars and the intersection of the tangents is constant.

95. Given the base of a triangle, the vertical angle, and the point in the
base whose distance from the vertex is equal half the sum of the sides, con-
struct the triangle.

96. If the midpoint of the base BC of an isosceles triangle 4ABC is the
center of a circle touching the equal sides, prove that any variable tangent to
the circle will cut the sides in points D, E, such that the rectangle BD.CE is
constant.

97. Inscribe in a given circle a trapezium, the sum of whose opposite par-
allel sides is given and whose area is given.
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98. Inscribe in a given circle a polygon all of whose sides pass through
given points.

99. If two circles ◦ABC, ◦XY Z are related such that a triangle may be in-
scribed in ◦ABC and circumscribed about ◦XY Z, prove that an infinite num-
ber of such triangles can be constructed.

100. In the same case as #99: the circle inscribed in the triangle formed by
joining the points of contact on ◦XY Z touches a given circle.

101. In the same case as #99: the circle constructed about the triangle
formed by drawing tangents to ◦ABC at the angular points of the inscribed
triangle touches a given circle.

102. Find a point, the sum of whose distances from three given points is a
minimum.

103. A line constructed through the intersection of two tangents to a circle
is divided harmonically by the circle and the chord of contact.

104. Construct a quadrilateral similar to a given quadrilateral whose four
sides pass through four given points.

105. Construct a quadrilateral similar to a given quadrilateral whose four
vertices lie on four given lines.

106. Given the base of a triangle, the difference of the base angles, and the
rectangle of the sides, construct the triangle.

107. Suppose that �ABCD is a square, the side CD is bisected at E, and
the line EF is constructed making the angle ∠AEF = ∠EAB. Prove that EF
divides the side BC in the ratio of 2 : 1.

108. If any chord is constructed through a fixed point on a diameter of a
circle, its endpoints are joined to either end of the diameter, and the joining
lines cut off on the tangent at the other end, then the portions whose rectangle
is constant.

109. If two circles touch and through their point of intersection two secants
be constructed at right angles to each other, cutting the circles respectively in
the points A, A′; B, B′; then AA′2 +BB′2 is constant.

110. If two secants stand at right angles to each other which pass through
one of the points of intersection of two circles also cut the circles again, and
the line through their centers is the two systems of points a, b, c; a′, b′, c′

respectively, then ab : bc :: a′b′ : b′c′.
111. If a chord of a given circle stands opposite a right angle at a given

point, the locus of the intersection of the tangents at its endpoints is a circle.
112. The rectangle contained by the segments of the base of a triangle

made by the point of intersection of the inscribed circle is equal to the rectangle
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contained by the perpendiculars from the endpoints of the base on the bisector
of the vertical angle.

113. If O is the center of the inscribed circle of the triangle, prove

OA2

bc
+
OB2

ca
+
OC2

ab
= 1

114. State and prove the corresponding theorems for the centers of the
escribed circles.

115. Suppose that four points A, B, C, D are collinear. Find a point P at
which the segments AB, BC, CD stand opposite equal angles.

116. The product of the bisectors of the three angles of a triangle whose
sides are a, b, c, is

8abc.s.area
(a+ b)(b+ c)(c+ a)

117. In the same case as #116, the product of the alternate segments of the
sides made by the bisectors of the angles is

a2b2c2

(a+ b)(b+ c)(a+ c)

118. If three of the six points in which a circle meets the sides of any trian-
gle are such that the lines joining them to the opposite vertices are concurrent,
the same property is true of the three remaining points.

119. If a triangle 4A′B′C ′ is inscribed in another 4ABC, prove

AB′.BC ′.CA′ +A′B.B′C.C ′A

is equal to twice the triangle 4A′B′C ′ multiplied by the diameter of the circle
◦ABC.

120. Construct a polygon of an odd number of sides being given that the
sides taken in order are divided in given ratios by fixed points.

121. If the external diagonal of a quadrilateral inscribed in a given circle
is a chord of another given circle, the locus of its midpoint is a circle.

122. If a chord of one circle is a tangent to another, the line connecting the
midpoint of each arc which it cuts off on the first to its point of intersection
with the second passes through a given point.

123. From a point P in the plane of a given polygon, suppose that perpen-
diculars fall on its sides. If the area of the polygon formed by joining the feet
of the perpendiculars is given, the locus of P is a circle.

124. The medians of a triangle divide each other in the ratio of 2 : 1.



CHAPTER 7

Infinite Primes

This brief chapter highlights Proposition IX.20, Euclid’s proof of infinitely
many prime numbers.

7.1. Definitions

1. The set of all positive integers (1, 2, 3, ...) is called the set of natural
numbers.

2. A natural number that has only one pair of factors, namely 1 and itself,
is a prime number.

3. A natural number that has more than one pair of factors is a composite
number.

4. The only natural number that is neither prime nor composite is 1.

7.2. The Proposition

This proof is based on Chris K. Caldwell’s1 proof which is in turn based on
Euclid’s original2.

PROPOSITION 7.1. Any list of prime numbers which is finite is incomplete.

PROOF. Suppose we obtain a list of all prime numbers, and the list is finite.
Call the primes in our finite list p1, p2, ..., pr. Let P be any common multiple of
these primes plus one (for example, P = p1 · p2 · ... · pr + 1).

Now P is either prime or it is not. If it is prime, then P is a prime that was
not in our list.

If P is not prime, then it is divisible by some prime: call it p. Notice p

cannot be any of p1, p2, ..., pr, otherwise p would divide 1, a contradiction since
the natural numbers do not contain fractions. So this prime p is some prime
that was not in our original list.

In either case, the original finite list was incomplete, and hence the actual
list must be infinite in length. �

1caldwell@utm.edu
2http://primes.utm.edu/notes/proofs/infinite/euclids.html
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CHAPTER 8

Planes, coplanar lines, and solid angles

This chapter includes the first 21 propositions from Euclid’s Book XI.

8.1. Definitions

1. When two or more lines are in one plane, they are said to be coplanar.
2. The angle which one plane makes with another is called a dihedral

angle.
3. A solid angle is that which is made by more than two plane angles in

different planes which meet a point.
4. The point from [Def. 7.3] is called the vertex of the solid angle.
5. If a solid angle is composed of three plane angles, it is called a trihedral

angle; if of four, a tetrahedral angle; and if of more than four, a polyhedral
angle.

6. A line which is perpendicular to a system of concurrent and coplanar
lines is said to be perpendicular to the plane of these lines and is also called
normal to it. (These lines will sometimes be called “normals” to a given plane.
We may also have rays and segments which are normal to a plane.)

7. If from every point in a given line normals are drawn to a given plane,
the locus of their feet is called the projection of the given line on the plane.

8. Two planes which meet are perpendicular to each other when the lines
constructed perpendicular in one of them to their common section are normals
to the other.

9. When two planes which meet are not perpendicular to each other, their
inclination is the acute angle contained by two lines drawn from any point of
their common section at right angles to it (one in one plane, and one in the
other).

10. If at the vertex O of a trihedral angle O—ABC we construct normals
OA, OB, OC to the faces OBC, OCA, OAB, respectively, in such a way that
OA is on the same side of the plane OBC as OA, etc., the trihedral angle
O—A′B′C ′ is called the supplementary of the trihedral angle O—ABC.
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8.2. Propositions from Book XI: 1-21

PROPOSITION 8.1. If part of a line stands on a plane, then each part of that
line must stand on that plane.

PROOF. Construct the line AB on the plane X and cut AB at point C. We
wish to show that BC is also on plane X.

FIGURE 8.2.1. [7.1]

SinceAB is on the planeX, it can be extended onX [Postulate 1.2]. Extend
it to D. Then, if BC is not on X, let any other plane passing through AD be
turned round AD until it passes through the point C. Because the points B,
C are in this second plane, the line BC is on it. Therefore, the two lines ABC,
ABD lying in one plane have a common segment AB, a contradiction. �

COROLLARY. 1. [7.1] holds for rays, mutatis mutandis.

PROPOSITION 8.2. Two segments which intersect one another at any point
are coplanar as are any three segments which form a triangle.

PROOF. We claim that two segments (AB, CD) which intersect one another
at a point (E) are coplanar as are any three segments (EC, CB, BE) which
form a triangle.

FIGURE 8.2.2. [7.2]
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Let any plane pass through EB and be turned round it until it passes
through C. Then because the points E, C are in this plane, the segment EC is
in it [Def. 1.6]. For the same reason, the segment BC is on it. Therefore, EC,
CB, BE are coplanar. Since AB and CD are two of these segments, AB and
CD are coplanar. �

PROPOSITION 8.3. If two planes cut one another, their intersection is a line.

PROOF. We claim that if two planes (AB, BC) cut one another, their inter-
section is a line (BD).

FIGURE 8.2.3. [7.3]

Otherwise, construct in the plane AB the line BED and in the plane BC
construct the line BFD. Then the lines BED, BFD enclose a space, which
contradicts [Axiom 1.10]. Therefore, the common section BD of the two planes
is a line. �

PROPOSITION 8.4. If a line is perpendicular to each of two intersecting
lines, it will be perpendicular to any line which is both coplanar and concurrent
with the intersecting lines.

PROOF. If a line (EF ) is perpendicular to each of two intersecting lines
(AB, CD), it will be perpendicular to any line (GH) which is both coplanar and
concurrent with them.
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FIGURE 8.2.4. [7.4]

Through any pointG inGH construct a lineBC intersectingAB, CD which
is bisected at G. Join any point F in EF to B, G, C. Then because EF ⊥ EB

and EF ⊥ EC, we have that

BF 2 = BE2 + EF 2 and
CF 2 = CE2 + EF 2 ⇒

BF 2 + CF 2 = BE2 + CE2 + 2EF 2 ⇒

Also,

BE2 + EF 2 = 2BG2 + 2GF 2 [2.10, Ex. 2], and
BE2 + CE2 = 2BG2 + 2GE2 ⇒

2BG2 + 2GF 2 = 2BG2 + 2GE2 + 2EF 2

GF 2 = GE2 + EF 2

Hence, the angle ∠GEF is right, and so EF ⊥ EG. �

COROLLARY. 1. The normal is the least line that may be constructed from a
given point to a given plane; of all others that may be constructed to it, the lines
of any system making equal angles with the normal are equal to each other.

COROLLARY. 2. A perpendicular to each of two intersecting lines is normal
to their plane.

PROPOSITION 8.5. If three concurrent lines have a common perpendicular,
they are coplanar.
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PROOF. If three concurrent lines (BC, BD, BE) have a common perpen-
dicular (AB), they are coplanar.

FIGURE 8.2.5. [7.5]

Suppose that BC is not coplanar with BD, BE, and let the plane of AB,
BC intersect the plane of BD, BE at the line BF . By [7.3], BF is a segment;
and, since it is coplanar with BD, we have that BE is perpendicular to AB
(since each are perpendicular to AB, BF ) [7.4]. Therefore, the angle ∠ABF
is right. We also have that the angle ∠ABC is right by hypothesis. Hence,
∠ABC = ∠ABF , a contradiction [Axiom 1.9]. Therefore, the lines BC, BD,
BE are coplanar. �

PROPOSITION 8.6. TWO NORMAL LINES. If two lines are normals to the
same plane, they are parallel to one another.

PROOF. If two lines (AB, CD) are normals to the same plane (X), then
AB ‖ CD.

FIGURE 8.2.6. [7.6]
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Let AB, CD meet the plane X at the points B, D. Join BD, and in the
plane X construct DE ⊥ BD. Take any point E in DE. Join BE, AE, AD.
Then because AB is normal to X, the angle ∠ABE is right. Because the angle
∠BDE is right, it follows that

AE2 = AB2 +BE2 = AB2 +BD2 +DE2

But AB2 + BD2 = AD2 because the angle ∠ABD is right. Hence AE2 =

AD2 + DE2. Therefore the angle ∠ADE is right [1.48]. And since CD is nor-
mal to the plane X, DE ⊥ CD. Hence DE is a common perpendicular to the
three concurrent lines CD, AD, BD. Therefore these lines are coplanar [7.5].
But AB is coplanar with AD, BD [7.2]. Therefore the lines AD, BD, CD are
coplanar; and since the angles ∠ABD, ∠BDC are right, we have that AB ‖ CD
[1.28]. �

Exercises.
1. The projection of any line on a plane is a straight line.
2. The projection on either of two intersecting planes of a normal to the

other plane is perpendicular to the line of intersection of the planes.

PROPOSITION 8.7. PARALLEL LINES AND THEIR INTERSECTIONS.
Two parallel lines and any line intersecting them are coplanar.

PROOF. Two parallel lines (AB, CD) and any line (EF ) intersecting them
are coplanar.

FIGURE 8.2.7. [7.7]

If possible, let the intersecting segment lie outside of the plane as segment
EGF . In the plane, construct the segment EHF . Then we have two segments
EGF , EHF enclosing a space, which contradicts [Axiom 1.10]. Hence, the two
parallel straight lines and the transversal are coplanar. �

Alternatively:
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PROOF. Since the points E, F are in the plane of the parallels, the segment
joining these points also lies in that plane. �

PROPOSITION 8.8. NORMAL PARALLEL LINES. If one of two parallel
straight lines is normal to a plane, the other line is normal to the same plane.

PROOF. If one of two parallel straight lines (AB, CD) is normal to a plane
(X), then the other line is normal to the same plane.

FIGURE 8.2.8. [7.8]

Let AB, CD meet in the plane X at the points B, D. Join BD. Then the
lines AB, BD, CD are coplanar. Wlog, suppose that AB is normal to the X.
Construct DE ⊥ BD. Take any point E in DE and join BE, AE, AD. Then
because AB is normal to the plane X, it is perpendicular to the line BE in that
plane [Def 7.6].

Hence, the angle ∠ABE is right, and so

AE2 = AB2 +BE2 = AB2 +BD2 +DE2

(see the proof of [7.6]). Therefore, the angle ∠ADE is right. Hence, DE is
at right angles both to AD and BD. Therefore DE ⊥ CD [7.4], and DE is
coplanar and concurrent with AD and BD.

Again, since AB ‖ CD, ∠ABD + ∠BDC is two right angles [1.29]. Since
∠ABD is right by hypothesis, it follows that ∠BDC is also right. Hence CD is
perpendicular to the two lines DB, DE, and therefore it is normal to the plane
X by [7.4]. �

PROPOSITION 8.9. TRANSITIVITY OF PARALLEL LINES. Two lines which
are each parallel to a third line are also parallel to one another.
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PROOF. Two lines (AB, CD) which are each parallel to a third line (EF )
are also parallel to one another.

FIGURE 8.2.9. [7.9]

If the three lines are coplanar, the proposition is evidently the same as
[1.30].

Otherwise, from any point G in EF , construct in the planes of EF , AB and
EF , CD (respectively) the lines GH, GK where each is perpendicular to EF
[1.11]. Because EF is perpendicular to each of the lines GH, GK, it is normal
to their plane [7.4]. And because AB ‖ EF by hypothesis and EF is normal
to the plane GHK, AB is normal to the plane GHK [7.8]. Similarly, CD is
normal to the plane HGK. Hence, since AB and CD are normals to the same
plane, they are parallel to one another. �

PROPOSITION 8.10. ANGLES AND PARALLEL LINES. If two intersecting
lines are respectively parallel to two other intersecting straight lines, the angle
between the former is equal to the angle between the latter.

PROOF. If two intersecting lines (AB, BC) are respectively parallel to two
other intersecting lines (DE, EF ), the angle (∠ABC) between the former is
equal to the angle (∠DEF ) between the latter.

FIGURE 8.2.10. [7.10]
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If both pairs of lines are coplanar, the proposition is the same as [1.29, #2].
Otherwise, take any points A, C in the lines AB, BC and cut off ED = BA,

and EF = BC 1.3]. Join AD, BE, CF , AC, DF . Then because AB is equal and
parallel to DE, AD is equal and parallel to BE [1.33].

Similarly, CF = BE and CF ⊥ BE. Hence, AD = CF , AD ‖ CF [7.9], and
AC = DF [1.33]. Therefore, the triangles 4ABC, 4DEF have the three sides
of one respectively equal to the three sides of the other. By [1.8], ∠ABC =

∠DEF . �

PROPOSITION 8.11. CONSTRUCTION OF A NORMAL LINE I. We wish
to construct a normal to a given plane from a given point not in the plane.

PROOF. We wish to construct a normal to a given plane (BH) from a given
point (A) not in the plane.

FIGURE 8.2.11. [7.11]

In the given plane BH construct any line BC, and from A construct AD ⊥
BC [1.12]; if AD is perpendicular to the plane, the proof follows.

Otherwise, from D construct DE in the plane BH at right angles to BC
[1.11] and from A construct AF ⊥ DE [1.12]. We claim that AF is normal to
the plane BH.

To see this, construct GH ‖ BC. Because BC is perpendicular both to ED
and DA, it is normal to the plane of ED, DA [11.4]. And since GH ‖ BC, it is
normal to the same plane [11.8]. Hence AF ⊥ GH [Def. 11.6], and AF ⊥ DE

by construction. Therefore, AF is normal to the plane of GH and ED, which is
the plane BH. �

PROPOSITION 8.12. CONSTRUCTION OF A NORMAL LINE II. Construct
a normal to a given plane from a given point in the plane.
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PROOF. We wish to construct a normal to a given plane from a given point
(A) in the plane.

FIGURE 8.2.12. [7.12]

From any point B not in the plane construct BC normal to it [11.11]. If
this line passes through A, it is the normal required.

Otherwise, from A construct AD ‖ BC [1.32]. Because AD ‖ BC and BC

is normal to the plane, AD is also normal to the plane [11.8], and it is drawn
from the given point. Hence, the proof. �

PROPOSITION 8.13. UNIQUENESS OF NORMAL LINES. From a given
point, there exists a unique normal to a given plane.

PROOF. From a given point (A), we claim that there exists a unique normal
to a given plane (X).

FIGURE 8.2.13. [7.13]

We shall prove this claim in two parts:
1. Let A is in the given plane and suppose that AB, AC are both normals

to it on the same side. Let the plane of BA, AC cut the given plane X at the
line DE. Because BA is a normal, the angle ∠BAE is right. Similarly, ∠CAE
is right. Hence ∠BAE = ∠CAE, a contradiction.

2. If the point A is above the plane, there can exist only one normal; other-
wise, the two would be parallel to one another [11.6], a contradiction.
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Hence, the proof. �

PROPOSITION 8.14. PARALLEL PLANES. Planes which have a common
normal are parallel to each other.

PROOF. We claim that planes (CD, EF ) which have a common normal
(AB) are parallel to each other.

FIGURE 8.2.14. [7.14]

Let GH be the line of intersection between planes CD, EF . Join AK, BK.
Because AB is normal to the plane CD, AB ⊥ AK, which it meets in that plane
[Def. 11.6], the angle ∠BAK is right. Similarly, the angle ∠ABK is right, and
the plane triangle 4ABK has two right angles, a contradiction. Since the
planes CD, EF do not intersect, they are parallel. �

Exercises.
1. The angle between two planes is equal to the angle between two inter-

secting normals to these planes.
2. If a line is parallel to each of two planes, the sections which any plane

passing through the line makes with the planes are parallel.
3. If a line is parallel to each of two intersecting planes, it is parallel to

their intersection.
4. If two lines are parallel, they are parallel to the common section of any

two planes passing through them.
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5. If the intersections of several planes are parallel, the normals drawn to
them from any point are coplanar.

PROPOSITION 8.15. CHARACTERISTIC OF PARALLEL PLANES. Two
planes are parallel if two intersecting lines on one plane are respectively parallel
to two intersecting lines on the other plane.

PROOF. Two planes (AC, DF ) are parallel if two intersecting lines (AB,
BC) on one plane are respectively parallel to two intersecting lines (DE, EF )
on the other plane.

FIGURE 8.2.15. [7.15]

From B construct BG perpendicular to the plane DF [11.11] and let it
intersect plane DF at point G. Through G construct GH ‖ ED and GK ‖
EF . Since GH ‖ ED by construction and AB ‖ ED by hypothesis, AB ‖ GH
[11.9]. Hence, ∠ABG+ ∠BGH equals two right angles [1.29]. Since ∠BGH is
a right angle by construction, ∠ABG is also right. Similarly, ∠CBG is right.
Hence BG is normal to the plane AC [Def. 11.6] as well as normal to DF by
construction. Hence the planes AC, DF have a common normal BG; therefore,
they are parallel to one another. �

PROPOSITION 8.16. PARALLEL PLANES AND AN INTERSECTING PLANE.
If two parallel planes are cut by a third plane, their common sections with the
third plane are parallel.

PROOF. If two parallel planes (AB, CD) are cut by a third plane (FG),
their common sections with the third plane (EF , GH) are parallel.
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FIGURE 8.2.16. [7.16]

If the lines EF , GH are not parallel, they must meet at some finite dis-
tance. Let them meet at K. Since K is a point on the line EF and EF is on
the plane AB, K is in the plane AB. Similarly, K is a point on the plane CD.
Hence, the planes AB, CD meet at K, a contradiction since they are parallel.
Therefore, the lines EF , GH are parallel. �

Exercises.
1. Parallel planes intercept equal segments on parallel lines.
2. Parallel lines intersecting the same plane make equal angles with that

plane.
3. A straight line intersecting parallel planes makes equal angles with he

parallel planes.

PROPOSITION 8.17. PROPORTIONAL AND PARALLEL LINES. If two
parallel lines are cut by three parallel planes in two triads of points, their seg-
ments between those points are proportional.

PROOF. If two parallel lines (AB, CD) are cut by three parallel planes
(GH, KL, MN ) in two triads of points (A, E, B and C, F , D where A, E, B and
C, F , D are respectively collinear), then the segments between those points
are proportional; or, AE : EB :: CF : FD.
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FIGURE 8.2.17. [7.17]

Join AC, BD, AD. Let AD meet the plane KL at point X. Join EX, XF .
Because the parallel planes KL, MN are cut by the plane ABD at the lines
EX, BD, these lines are parallel [11.16]. Hence AE : EB :: AX : XD [6.2].
Similarly, AX : XD :: CF : FD. By [5.11], it follows that AE : EB :: CF :

FD. �

PROPOSITION 8.18. TRANSITIVITY OF PERPENDICULAR PLANES. If
a line is normal to a plane, any plane passing through the line is perpendicular
to that plane.

PROOF. If a line (AB) is normal to a plane (CI), we claim that any plane
(DE) passing through the line is perpendicular to CI.

FIGURE 8.2.18. [9.18]

Let CE be the common section of the planes DE, CI. From any point F on
CE, construct FG in the plane DE such that FG ‖ AB [1.31]. Now AB ‖ FG
and AB is normal to the plane CI; hence, FG is normal to CI [11.8]. Since
FG ‖ AB, we have that ∠ABF + ∠BFG are equal to two right angles [1.29].
Since ∠ABF is right by hypothesis, ∠BFG is right and therefore FG ⊥ CE.
Hence every line in the plane DE drawn perpendicular to the common section
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of the planes DE, CI is normal to the plane CI. Therefore by [Def. 8.11], the
planes DE, CI are perpendicular to each other. �

PROPOSITION 8.19. INTERSECTING PLANES. If two intersecting planes
are each perpendicular to a third plane, their common section is normal to that
plane.

PROOF. If two intersecting planes (AB, BC) are each perpendicular to a
third plane (ADC), their common section (BD) is normal to ADC.

FIGURE 8.2.19. [7.19]

Otherwise, construct the line DE from D in the plane AB such that DE ⊥
AD where AD is the common section of the planes AB, ADC. In the plane BC,
constructBF perpendicular to the common sectionDC of the planesBC, ADC.
Because the plane AB is perpendicular to ADC, the line DE in AB is normal
to the plane ADC [Def. 7.8]. Similarly, DF is normal to it. Therefore from
the point D there are two distinct normals to the plane ADC, a contradiction
[7.13]. Hence, BD is normal to the plane ADC. �

Exercises.
1. If three planes have a common line of intersection, the normals drawn

to these planes from any point of that line are coplanar.
2. If two intersecting planes are respectively perpendicular to two inter-

secting lines, the line of intersection of the former is normal to the plane of the
latter.
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3. In the last case, show that the dihedral angle between the planes is
equal to the rectilinear angle between the normals.

PROPOSITION 8.20. TRIHEDRAL ANGLES. The sum of any two plane an-
gles of a trihedral angle is greater than the third.

PROOF. The sum of any two plane angles (∠BAD, ∠DAC) of a trihedral
angle (at point A) is greater than the third (∠BAC).

FIGURE 8.2.20. [7.20]

If the third angle ∠BAC is less than or equal to either of the other angles,
the proposition is evident.

Otherwise, suppose it greater: take any point D in AD and at the point A
in the plane BAC make ∠BAE = ∠BAD [1.23]. Cut off AE = AD. Through
E construct BC, cutting AB, AC at the points B, C. Join DB, DC. Then the
triangles 4BAD, 4BAE have the two sides BA, AD in one equal respectively
to the two sides BA, AE in the other and ∠BAD = ∠BAE. Therefore the third
side BD = BE.

However, the sum of the sides BD, DC is greater than BC; hence DC is
greater than EC. Again, because the triangles 4DAC, 4EAC have the sides
DA, AC respectively equal to the sides EA, AC in the other where the base
DC greater than EC. By [1.25], the angle ∠DAC is greater than ∠EAC, but
∠DAB = ∠BAE by construction. Hence, ∠BAD + ∠DAC > ∠BAC. �

PROPOSITION 8.21. SUM OF PLANE ANGLES. The sum of all the plane
angles forming any solid angle is less than four right angles.

PROOF. The sum of all the plane angles (∠BAC, ∠CAD, etc.) forming any
solid angle (at A) is less than four right angles.
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FIGURE 8.2.21. [7.21]

Suppose for the sake of simplicity that the solid angle at A is contained
by five plane angles ∠BAC, ∠CAD, ∠DAE, ∠EAF , ∠FAB. Let the planes of
these angles be cut by another plane at the lines BC, CD, DE, EF , FB. By
[11.20], we have ∠ABC + ∠ABF greater in measure than ∠FBC, ∠ACB +

∠ACD greater in measure than ∠BCD, etc.
Adding these, we obtain the sum of the base angles of the five triangles

4BAC, 4CAD, etc., greater than the sum of the interior angles of the penta-
gon BCDEF ; that is, greater than six right angles.

But the sum of the base angles of the same triangles, together with the
sum of the plane angles ∠BAC, ∠CAD, etc., forming the solid angle at A is
equal to twice as many right angles as there are triangles4BAC,4CAD, etc.;
that is, equal to ten right angles. Hence, the sum of the angles forming the
solid angle is less than four right angles. �

Observation: this proposition may not hold if the polygonal base BCDEF
contains re-entrant angles.

Chapter 7 exercises.
1. Any face angle of a trihedral angle is less than the sum (but greater

than the difference) of the supplements of the other two face angles.
2. A solid angle cannot be formed of equal plane angles which are equal to

the angles of a regular polygon of n sides except when n = 3, 4, 5.
3. Through one of two non-coplanar lines, construct a plane parallel to the

other.
4. Construct a common perpendicular to two non-coplanar lines and show

that it is the shortest distance between them.
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5. If two of the plane angles of a tetrahedral angle are equal, the planes of
these angles are equally inclined to the plane of the third angle, and conversely.
If two of the planes of a trihedral angle are equally inclined to the third plane,
the angles contained in those planes are equal.

6. Prove that the three lines of intersection of three planes are either par-
allel or concurrent.

7. If a trihedral angle O is formed by three right angles and A, B, C are
points along the edges, the orthocenter of the triangle 4ABC is the foot of the
normal from O on the plane ABC.

8. If through the vertex O of a trihedral angle O—ABC any line OD is
drawn interior to the angle, the sum of the rectilinear angles ∠DOA, ∠DOB,
∠DOC is less than the sum but greater than half the sum of the face angles of
the trihedral.

9. If on the edges of a trihedral angle O—ABC three equal segments OA,
OB, OC are taken, each of these is greater than the radius of the circle de-
scribed about the triangle 4ABC.

10. Given the three angles of a trihedral angle, find by a plane construction
the angles between the containing planes.

11. If any plane P cuts the four sides of a Gauche quadrilateral ABCD (a
quadrilateral whose angular points are not coplanar) at four points, a, b, c, d,
then given the four ratios

Aa

aB
,
Bb

bC
,
Cc

cD
,
Dd

dA
we have that

Aa

aB
· Bb
bC
· Cc
cD
· Dd
dA

= 1

Conversely, if
Aa

aB
· Bb
bC
· Cc
cD
· Dd
dA

= ±1

then the points a, b, c, d are coplanar.
12. If in #11 the intersecting plane is parallel to any two sides of the

quadrilateral, it cuts the two remaining sides proportionally.
13. If O—A′B′C ′ is the supplementary of O—ABC, prove that O—ABC is

the supplementary angle of O—A′B′C ′.
14. If two trihedral angles are supplementary, each dihedral angle of one

is the supplement of the corresponding face angle of the other.
15. Through a given point, construct a line which will meet two non-

coplanar lines.
16. Construct a line parallel to a given line which will meet two non-

coplanar lines.
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17. Given an angle ∠AOB, prove that the locus of all the points P of space
where the sum of the projections of the line OP on OA and OB are constant is
a plane.



Part 3

Student Answer Key



CHAPTER 1

Solutions: Angles, Parallel Lines,
Parallelograms

[1.1] Exercises

The following two exercises use Fig. 1.5.1 (above) and are to be solved
when the student has completed Chapter 1.

1. If the segments AF , BF are joined, prove that the figure �ACBF is a
lozenge.

PROOF. Suppose that AF , BF are joined. By an argument similar to the
proof of [1.1], we have that AB = AF = BF . By [1.1], we have that AC = AB =

BC. Hence, it follows that

AC = BC = BF = AF

and so by [Def 1.29], �ACBF is a lozenge. �

2. If AB is extended to the circumferences of the circles (at points D and
E), prove that the triangles 4CDF and 4CEF are equilateral.

PROOF. Construct segments CD, DF , FE, CE, and CF as per the hypoth-
esis. Also extend AB to a line. We wish to show that 4CDF and 4CEF are
equilateral.

305
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FIGURE 1.0.1. [1.1, #2]

By [1.1], ∠ACB = ∠BAC = ∠ABC. [1.32, Cor. 6] states that each angle of
an equilateral triangle equals two-thirds of a right angle; since a right angle
equals π

2 radians, ∠ACB = ∠BAC = ∠ABC = π
3 .

Since �ACBF is a lozenge by [1.1, #1], CF is its Axis of Symmetry. Hence,
∠ACL = π

6 . Consider 4ACL. It follows that ∠ALC = π
2 . Similarly, we can

show that in 4BCL ∠BLC = π
2 , ∠BCL = π

6 , and ∠LBC = π
3 . Since 4ACL

and 4BCL share side CL, by [1.26] we have that 4ACL ∼= 4BCL.
Consider 4DAC. Notice that ∠DAC = 2π

3 since ∠DAC and ∠LAC are
supplementary. Since AC and AD are both radii of ◦CDF , we have that
∠ADC = ∠ACD = π

6 [1.5]. Hence in 4DCL, ∠LDC = π
6 and ∠DCL = π

3 .
Similarly, we can show that in 4ECL that ∠LEC = π

6 and ∠LCE = π
3 . Since

4DCL and 4ECL share side CL, by [1.26] we have that 4DCL ∼= 4ECL. It
follows that

DC = CE

Similarly we can show that 4DFL ∼= 4EFL, and so DF = FE. This will
also show that ∠FDL = ∠CDL, ∠FLD = ∠CLD. Since 4CDL and 4FDL
share side DL, by [1.26], 4CDL ∼= 4FDL, so DC = DF . Hence,

DC = CE = DF = FE

Finally, we have that ∠FDC = ∠FEC, ∠DCF = ∠ECF , and 4DCF and
4ECF share side CF . By [1.26], 4CDF ∼= 4CEF . Since each angle of each
triangle equals π

3 radians, the triangles are each equilateral. �

COROLLARY. �CEFD is a lozenge.
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[1.2] Exercises
1. Prove [1.2] when A is a point on BC.

PROOF. Let BC be an arbitrary segment such that A is a point on BC. If
A = B or A = C, the proof follows trivially.

Suppose that A is not an endpoint of BC. Construct the equilateral trian-
gle 4ABD. Also construct the circle ◦CEF with center A and radius equal in
length to AC. Extend side DA to the point E on the circumference of ◦CEF .

FIGURE 1.0.2. [1.2, #1]

Since 4ABD is equilateral, AB = AD. Since AC and AE are radii of
◦CEF , AC = AE. Hence,

DE = AD ⊕AE = BC

By using [Axiom 1.8] (specifically the principle of superposition), we may move
DE so that the point D coincides with point A. The proof follows. �

[1.4] Exercises
Prove the following:
1. The line that bisects the vertical angle of an isosceles triangle bisects

the base perpendicularly.

PROOF. Suppose that 4ABC is an isosceles triangle (where AB = AC).
Further suppose that the ray AD bisects the angle ∠BAC. (A line, ray, or a
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segment of appropriate size may be used in this proof, mutatis mutandis.) We
wish to show that ∠ADB = ∠ADC and that BD = CD.

FIGURE 1.0.3. [1.4, #1]

Since AB = AC and ∠DAB = ∠DAC by hypothesis, and since 4ABD and
4ACD share the side AD, by [1.4] we have that

4ABD ∼= 4ACD

Hence, BD = CD. Also, ∠ADB = ∠ADC. Since the ∠ADB and ∠ADC are
supplements, they are right angles by [Def. 1.14]; hence, AD is a perpendicular
bisector of the base (AC) of 4ABC. �

2. If two adjacent sides of a quadrilateral are equal and the diagonal bi-
sects the angle between them, then their remaining sides are equal.

PROOF. Suppose thatABCD is a quadrilateral whereAB = AC and where
the diagonal AD bisects ∠BAC. We wish to show that BD = CD.
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FIGURE 1.0.4. [1.4, #2]

Since AC = AB and ∠CAD = ∠DAB by hypothesis, and since 4ACD and
4ABD share the side AD, by [1.4] we have that

4ACD ∼= 4ABD

Hence, BD = CD. �

3. If two segments stand perpendicularly to each other and if each bisects
the other, then any point in either segment is equally distant from the end-
points of the other segment.

PROOF. Suppose that segments AB and CD stand perpendicularly to each
other and bisect each other at point E. Let F be a point on AB. We claim that
F is equally distant from C and D.

FIGURE 1.0.5. [1.4, #3]
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Construct4CEF and4DEF . SinceAB perpendicularly bisectsCD, ∠CEF =

∠DEF and CE = DE. Since 4CEF and 4DEF share side FE, by [1.4] we
have that

4CEF ∼= 4DEF

Hence, CF = DE. The proof for a point on CD is similar to the above,
mutatis mutandis. �

[1.5] Exercises
2. Prove that the line joining the pointA to the intersection of the segments

CF and BG is an Axis of Symmetry of 4ABC.

PROOF. Construct the line AH on the figure from [1.5] where H is in the
intersection of the segments CF and BG. We wish to show that AH is the Axis
of Symmetry of 4ABC.

FIGURE 1.0.6.

By [1.5], we have that 4FBC ∼= 4GCB. Subtracting 4HBC from each,
we have that 4FBH ∼= 4GCH. Hence, HB = HC. Since F was chosen
arbitrarily, the position of H is arbitrary in the proof of [1.5], and so we have
that the distance from B to any point on the line AH is equal to the distance
from C to that point.

Let I be the point on AH which intersects the base of4ABC. By the above,
BI = CI. By [Def. 1.35], AH is the Axis of Symmetry of 4ABC. �
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6. If three points are taken on the sides of an equilateral triangle (one on
each side and at equal distances from the angles), then the segments joining
them form a new equilateral triangle.

PROOF. Suppose that 4ABC is equilateral. Construct points I, J , and
K on sides BC, AB, and AC, respectively. Since each point on each side is
at an equal distance from the endpoints of the relevant side, each point is the
midpoint of the side on which it stands. Construct We wish to show that4IJK
is equilateral.

FIGURE 1.0.7.

Since I is the midpoint of side BC, CI = BI. Since J is the midpoint of
side AB, JA = JB; since 4ABC is equilateral, IB = JB. Continuing in this
manner, we can show that

IB = JB = JA = AK = KC = IC

And since 4ABC is equilateral, by [1.5, Cor. 1] we also have that

∠ABC = ∠ACB = ∠BAC

Hence by [1.4],
4JBI ∼= 4KCI ∼= 4JAK

It follows that IJ = JK = KI, and so 4IJK is equilateral. �

[1.9] Exercises
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2. Prove that AF ⊥ DE. (Hint: the proof follows almost immediately from
[1.5, #2].)

PROOF. Extend AF to a line. By [1.5, #2], AF is the Axis of Symmetry
of 4ADE. Hence, if H is the intersection of DE and AF , then DH = HE.
Consider 4ADH and 4AEH. Since each triangle shares side AH and DA =

EA by construction, by [1.8] we have that 4ADH ∼= 4ADE. Hence, ∠DHA =

∠EHA. By [Def. 1.14], ∠DHA and ∠EHA are right angles. Hence, AF ⊥
DE. �

3. Prove that any point on AF is equally distant from the points D and E.

PROOF. By [1.5, #2], AF is an Axis of Symmetry of 4ABC. The proof of
this problem follows immediately by the proof of [1.5, #2]. �

[1.10] Exercises
1. Bisect a segment by constructing two circles.

PROOF. Construct the figure from [1.1]. We wish to bisect segment AB.
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FIGURE 1.0.8. [1.10, #1]

If we construct a segment from C which intersects AB and bisects ∠ACB,
the proof follows immediately from the proof of [1.10]. �

2. Extend CD to a line. Prove that every point equally distant from the
points A, B are points in the line CD.

PROOF. Construct the figure from [1.10] and extend CD to a line.

FIGURE 1.0.9. [1.10, #2]

By [1.9, Cor. 1], the line CD is an Axis of Symmetry to AB. If point E is
an equal distance from both points A and B, then E must lie on the Axis of
Symmetry of AB, which is CD �
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[1.11] Exercises

1. Prove that the diagonals of a lozenge bisect each other perpendicularly.

PROOF. Construct the figure from [1.11], and also construct the equilateral
triangle 4DEG where G lies on the opposite side of AB from the point F .
Construct the segment GC. By a similar argument to the proof of [1.11], GC ⊥
AB.

FIGURE 1.0.10. [1.11, #1]

Consider the triangles 4DCF and 4DCG. Since DF = DG by construc-
tion, the triangles share side DC, and FC = GC by [1.47], we have by [1.8]
that 4DCF ∼= 4DCG. Similarly, it follows that

4DCF ∼= 4DCG ∼= 4ECF ∼= 4ECG

Hence,
FD = FE = GD = GE

and so �FEGD is a lozenge.
Clearly, GC ⊕ CF = GF where GF is a diagonal of �DFEG; similarly,

DE is the other diagonal of �DFEG. By the above, GF ⊥ DE. Hence, the
proof. �
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3. Find a point on a given line that is equally distant from two given points.

PROOF. Suppose that AB is our given line and that C and D are our given
points. We wish to find a point F on AB which is equally distant from C and
D.

FIGURE 1.0.11. [1.11, #3]

Construct the segment CD and by [1.10] locate its midpoint, E. Construct
FE where CD ⊥ FE and F is a point on AB. We claim that F is the required
point. Consider 4CEF and 4DEF . CE = DE by construction, ∠CEF =

∠DEF by construction, and the triangles share side EF . By [1.4], 4CEF ∼=
4DEF . Hence, CF = DF . �

5. Find a point that is equidistant from three given points. (Hint: you are
looking for the circumcenter of the triangle formed by the points.)

PROOF. Construct three arbitrary points A, B, and C. Connect the three
points, constructing 4ABC. By [1.10], we may locate the midpoints of each
side of the triangle where the midpoint of AC is F , the midpoint of BC is E,
and the midpoint of AB is D. Construct the line FG such that FG ⊥ AC.
Similarly, construct the line EG such that EG ⊥ BD and line DG such that
DG ⊥ AB. Since none of the pairs of sides of 4ABC are parallel, the lines
FG, DG, and EG have a common point of intersection: G. We claim that G is
equidistant from A, B, and C.
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FIGURE 1.0.12. [1.10, #5]

Construct the segments AG, BG, and CG. Consider 4ADG and 4BDG.
SinceAD = BD, AB ⊥ DG, and the triangles share sideDG, by [1.4],4ADG ∼=
4BDG. Hence, AG = BG.

Similarly, consider 4AFG and 4CFG. By an argument similar to the
above, we have that 4AFG ∼= 4CFG, and so AG = CG. It follows that

AG = BG = CG

and hence G is equidistant from points A, B, C. �

[1.12] Exercises

1. Prove that circle ◦FDG cannot meet AB at more than two points.

PROOF. Suppose that ◦FDG intersects AB at more than two points. If
the third point lies between points F and G, then the radius of ◦FDG must
decrease in length, a contradiction, since a circle’s radius is a fixed length.
Similarly, if the third point lies to the left of F or to the right of G, the radius
of ◦FDG must increase in length, also a contradiction.

Hence, ◦FDG cannot meet AB at more than two points. �
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[1.19] Exercises
3. Prove that three equal segments cannot be constructed from the same

point to the same line.

PROOF. Construct the line AB and point C. Construct the segments CA,
CB, and CD such that CA = CB. We claim that CD cannot be constructed
such that CA = CB = CD.

TABLE 1. [1.19, #3]

Suppose that CA = CB = CD. By [1.19, Cor. 1], ∠CDA = ∠CAD and
∠CAB = ∠CBA. Hence, ∠CDA = ∠CBD; but by [1.16], we have that∠CDA >

∠CBD, a contradiction.
A similar result occurs if point D does not fall between points A and B,

mutatis mutandis. Hence, the proof. �

[1.20] Exercises
5. The perimeter of a quadrilateral is greater than the sum of its diagonals.

PROOF. Suppose that ABCD is a quadrilateral with diagonals AC and
BD. We wish to show that

AB +BC + CD +DA > AC +BD
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FIGURE 1.0.13. [1.20, #5]

By [1.20], we have that

AD +DC > AC

AB +BC > AC

AD +AB > BD

BC + CD > BD

Or,
AB +BC + CD +DA > 2 ·AC
AB +BC + CD +DA > 2 ·BD

=⇒
2(AB +BC + CD +DA) > 2(AC +BD)

=⇒
AB +BC + CD +DA > AC +BD

�

6. The sum of the lengths of the three medians of a triangle is less than
3/2 times its perimeter.

PROOF. Construct 4ABC with medians AF , BE, and CD. We wish to
show that

AF +BE + CD <
3

2
(AB +BC +AC)
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FIGURE 1.0.14. [1.20, #6]

In 4ABE, notice that by [1.20], we have

AE +AB > BE

Similarly, in 4DBC, we have

BD +BC > CD

and in 4ACF , we have

AC + CF > AF

Adding each inequality, we have that

AB +BC +AC +AE +BD + CF > AF +BE + CD

AB +BC +AC + 1
2AC + 1

2AB + 1
2BC > AF +BE + CD

3
2 (AB +BC +AC) > AF +BE + CD

since AE = 1
2AC, BD = 1

2AB, and CF = 1
2BC. �

[1.22] Exercises
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1. Prove that when the above condition is fulfilled (that the sum of every
two pairs of segments is greater than the length of the remaining segment)
then the two circles must intersect.

PROOF. Construct the figure from [1.22] such that the two circles do not
intersect where AR = FD = FK, FG = BS, and GH = CT .

FIGURE 1.0.15. [1.22, #1]

Consider 4FGK. By [1.20], we have that

FG+GK > FK

FG+GH +HK > FK

FG+GH > FK −HK
=⇒

FG+GH ≤ FK

=⇒
BS + CT ≤ AR
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Hence, when the circles fail to intersect, then that the sum of every two
pairs of segments is not greater than the length of the remaining segment;
this is the contrapositive statement to that which we set out to prove. �

[1.23] Exercises
1. Construct a triangle given two sides and the angle between them.

PROOF. Suppose we have arbitrary segmentsAB and CD and an arbitrary
angle ∠EFG.

FIGURE 1.0.16. [1.23, #1]

By [1.23], construct rays HJ and HK such that ∠JHK = ∠EFG. By [1.4,
Cor. 1], we may construct segment HM on ray HJ and segment HN on ray
HK such that AB = HM and CD = HN . Construct a segment on points M
and N [Postulate 1.2]. Then4MNH has sides equal in length to segments AB
and CD and contains an angle equal in measure to ∠EFG. �

[1.24] Exercises
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2. Prove that the angle ∠BCA > ∠EFD.

PROOF. By [1.16], ∠BCA > ∠BHC, and ∠BHC = ∠BHA+∠AHC. There-
fore, ∠BCA > ∠BHA. By the proof of [1.24], ∠BHA = ∠EFD, and the proof
follows. �

[1.26] Exercises
1. The endpoints of the base of an isosceles triangle are equally distant

from any point on the perpendicular segment from the vertical angle on the
base.

PROOF. By [1.9, #2] and [1.9, #3], any point on the the perpendicular seg-
ment from the vertical angle on the base is equally distant from the endpoints
of the base. �

2. If the line which bisects the vertical angle of a triangle also bisects the
base, the triangle is isosceles.

PROOF. Construct 4ABC with segment AD such that ∠BAC = ∠BAD +

∠CAD where ∠BAD = ∠CAD and where BD = DC. We wish to prove that
∠CBA = ∠BCA.
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FIGURE 1.0.17. [1.26, #2]

By [1.9, #2], AD ⊥ BC. Consider 4ABD and 4ACD. Notice that BD =

CD, ∠BDA = ∠CDA (since both are right angles), and ∠BAD = ∠CAD. By
[1.26], 4ABD ∼= 4ACD. Hence, ∠DBA = ∠DCA. It follows that

∠CBA = ∠DBA = ∠DCA = ∠BCA

�

6. Prove that if two right triangles have equal hypotenuses and that if a
side of one is equal in length to a side of the other, then the triangles they are
congruent. (Note: this proves the special case of Side-Side-Angle congruency
for right triangles.)

PROOF. Suppose that4ABC and4DEF are right triangles where ∠ACB
and ∠DFE are right angles, the hypotenuses AB and DE are equal in length,
and AC = DF . (The proof follows mutatis mutandis if BC = EF .) We wish to
show that 4ABC ∼= 4DEF .

By superposition, we may “move” 4DEF so that side AC lies on side DF
such that A = D and C = F .
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FIGURE 1.0.18. [1.26, #6]

Consider 4AEB. Since AE = AB, ∠AEB = ∠ABE by [1.5].
Now consider4AEC and4ACB. Since ∠ACE = ∠ACB, ∠AEC = ∠ABC,

and AE = AB, by [1.26], 4AEC ∼= 4ABC. Thus 4DEF = 4AEC. �

[1.29] Exercises
2. If ∠ACD, ∠BCD are adjacent angles, any parallel to AB will meet the

bisectors of these angles at points equally distant from where it meets CD.

PROOF. Construct the straight line AB which contains the point C. Con-
struct a straight line EF such that AB ‖ EF where D is a point on EF .
Construct segments CH and CJ such that CJ bisects ∠ACD and CH bisects
∠BCD. We wish to show that DH = DJ .

FIGURE 1.0.19. [1.29, #2]

Construct segments JK and HL such that JK ‖ CD and CD ‖ HL.
Since CH is a bisector of ∠BCD, ∠BCH = ∠HCD. Since CD ‖ HL,

∠HCD = ∠CHL. Similarly, ∠BCH = ∠DHC. Hence,

∠BCH = ∠HCD = ∠DHC = ∠CHL
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FIGURE 1.0.20. [1.29, #2]

This means that4CDH and4CLH are isosceles triangles where the base
angles of each triangle are equal, and so

CL = HL = CD = DH

By similar reasoning, 4DCJ and 4KCJ are isosceles triangles where the
base angles are equal, and so

KJ = CK = CD = DJ

Thus, DJ = DH. �

5. Two straight lines passing through a point equidistant from two paral-
lels intercept equal segments on the parallels.

PROOF. Construct straight lines AB and CD such that AB ‖ CD. Con-
struct straight line LM such that AB ⊥ LM and choose the point G on LM

such that GL = GM [1.10]. Construct arbitrary straight lines HJ and IK such
that each passes through . We claim that HI = JK.
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FIGURE 1.0.21. [1.29, #5]

Consider4GLI and4GMK: ∠LGI = ∠MGK by [1.15]; GL = GM by con-
struction; ∠GMK = ∠GLI by construction. Hence by [1.26],4GLI ∼= 4GMK.
It follows that GI = GK.

Now consider 4GHI and . By [1.15], ∠HGI = ∠JGK. Since AB ‖ CD, by
[1.29, Cor. 1], ∠GIH = ∠GKJ . By the above, GI = GK. Again by [1.26], we
have that 4GHI ∼= 4GJK. Thus, HI = JK. �

[1.31] Exercises
1. Given the altitude of a triangle and the base angles, construct the trian-

gle.

PROOF. Suppose we are given altitude h (a segment) and base angles α and
β. Extend h to the line AB where A and B are the endpoints of h. Construct
the line BC such that AB ⊥ BC [1.11, Cor. 1].
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FIGURE 1.0.22. [1.31, #1]

If α is the “left angle” of the triangle to be constructed, then β is the “right
angle” of the triangle. (Construction is trivial if the left/right assignment is
reversed.) Construct α on the left side of AB as ∠BDA such that the ray at
point D intersects point A. Similarly, construct β on the right side of AB as
∠BCA such that the ray at point C intersects point A.

Clearly, figure ACD is a three-sided polygon containing angles α and β

whose altitude is h. Hence, 4ACD is the required triangle. �

5. Through two given points on two parallel lines, construct two segments
forming a lozenge with given parallels.

PROOF. Construct parallel lines AB and CD where B and C are our given
points. We wish to construct the lozenge FBGC by constructing the segments
FC and BG.

FIGURE 1.0.23. [1.31, #5]
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Locate E, the midpoint of BC [1.10]. Construct the line FG such that
FG ⊥ BC and where F is a point on AB and G is a point on CD. Construct
segments FC and BG. We claim that �FBGC is the required lozenge.

By construction, �FBGC is a parallelogram.
Consider 4CEG and 4BFE. By construction, BE = CE and ∠CEG =

∠BEF . By [1.29, Cor. 1], ∠BFE = ∠CGE. Then by [1.26], 4CEG ∼= 4BFE,
and so BF = CG and EF = EG.

Now consider 4FEC and 4BEG. We have that BE = CE, EF = EG, and
∠FEC = ∠BEG; by [1.4], 4FEC ∼= 4BEG. Hence, FC = BG.

By [1.32, #6],

∠FEB = ∠CEG = ∠FEC = ∠GEB = right angle

By [1.47], BF = BG, and so

BF = BG = FC = CG

Thus by [Def 1.29], FBGC is a lozenge. �

[1.32] Exercises.
3. If the line which bisects the external vertical angle is parallel to the

base, then the triangle is isosceles.

PROOF. Construct 4ABC with external vertical angle ∠ACE where line
CD bisects ∠ACE and CD ‖ AB. We claim that 4ABC is isosceles.

FIGURE 1.0.24. [1.32, #3]
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By [1.32], ∠ACE = ∠CAB + ∠CBA. By [1.29, Cor. 1], ∠DCE = ∠CBA;
that the same corollary, ∠ACD = ∠CAB. Since ∠ACD = ∠DCE by hypothe-
sis, we have that ∠ACE = 2 · ∠DCE = 2 · ∠ACD, from which it follows that
∠CAB = ∠CBA. By [1.6], 4ABC is isosceles. �

An alternate proof that does not use [1.32]:

PROOF. Suppose the above.
By [1.29, Cor. 1], ∠DCE = ∠ABC. By hypothesis, ∠DCE = ∠ACD, and

so ∠ACD = ∠ABC. Again by [1.29, Cor. 1], ∠ACD = ∠CAB, and so ∠CAB =

∠ABC. By [1.6], 4ABC is isosceles. �

5. The three perpendicular bisectors of a triangle are concurrent.

PROOF. Construct 4ABC, altitudes AG and CF , and the segment BE
where E is a point on AC such that AG, BE, and CF intersect at point D.
We wish to show that ∠AEB is a right angle.

FIGURE 1.0.25. [1.32, #5]

Construct segments HD, HI, and AI such that

AD = HD = HI = AI

By [Def. 1.29], �ADHI is a lozenge. By [1.11, #1], the diagonals of a
lozenge bisect each other perpendicularly. Since AH is a diagonal of �ADHI,
AH is bisected perpendicularly by DI at point E, and so ∠AED equals one
right angle. If ∠EDB equals two right angles, then the proof follows.
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By the construction of ∠BDA, we have that ∠EDB = ∠BDA+∠EDA and
that ∠BDA = ∠DEA+ ∠EAD by [1.32]. Hence

∠EDB = ∠BDA+ ∠EDA = ∠DEA+ ∠EAD + ∠EDA = two right angles

since ∠DEA, ∠EAD, and ∠EDA are the interior angles of 4EDA. Thus,

∠AED = ∠AEB = right angle

�

6. The bisectors of two adjacent angles of a parallelogram are at right
angles.

PROOF. Construct a parallelogram. If the parallelogram is a lozenge, the
result follows from [1.34].

Otherwise, construct parallelogram �ABCD which is not a lozenge. Con-
struct ∠DAF such that ∠DAF = 1

2∠DAB and ∠ABE such that ∠ABE =
1
2∠ABC. Extend AD to meet BE at G and extend BC to meet AF at H. Con-
nect G and H. Since BC ‖ AD, BH ‖ AG; similarly, BA ‖ HG. Hence, �ABHG
is a parallelogram. We claim that �ABHG is also a lozenge.

FIGURE 1.0.26. [1.32, #6]

By hypothesis, ∠GAH = ∠BAH. By [1.29, Cor. 1], ∠GAH = ∠AHB and
∠BAH = ∠AHG. Hence

∠GAH = ∠BAH = ∠AHB = ∠AHG
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Consider 4ABH and 4AGH. Since ∠BAH = ∠AHB, 4ABH is isosce-
les. A similar argument holds for 4AGH. Given the equality of the four
base angles above and given than the two triangles share base AH, by [1.26]
4ABH ∼= 4AGH. Hence, we have that

AB = BH = HG = GA

By [Def 1.29], �ABHG is a lozenge. �

[1.33] Exercises
1. Prove that if two segments AB, BC are respectively equal and parallel

to two other segments DE, EF , then the segment AC joining the endpoints of
the former pair is equal in length to the segment DF joining the endpoints of
the latter pair.

PROOF. Construct segments AB, BC, DE, EF such that AB = DE, BC =

EF , AB ‖ DE, and BC ‖ EF . Construct segments AC and DF . We wish to
show AC = DF .
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FIGURE 1.0.27. [1.33, #1]

Consider4ABC and4DEF . Suppose that ∠ABC 6= ∠DEF . Move4ABC
such that C = E. Construct AD such that AD ‖ BF . Since AB ‖ CD and
AD ‖ BF , we have that ∠ABC = ∠DCF . But ∠DCF = ∠DEF 6= ∠ABC,
a contradiction. Hence, ∠ABC = ∠DEF . By [1.4], 4ABC ∼= 4DEF , and so
AC = DF . �

[1.34] Exercises
1. Show that the diagonals of a parallelogram bisect each other.

PROOF. Consider �ABCD and diagonals AD, BC. Let point E be the
intersection of AD, BC. We wish to prove that CE = EB and AE = ED.
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FIGURE 1.0.28. [1.34], #1

Since AB ‖ CD, ∠BCD = ∠CBA. Similarly, we have that ∠CDA =

∠DAB. Consider 4ECD and 4AEB. Since ∠ECD = ∠EBA, ∠EDC =

∠EAB, and CD = AB, by [1.26] we have that 4ECD ∼= 4AEB. Hence,
AE = ED. A similar argument shows that CE = EB, mutatis mutandis. Since
both diagonals are bisected at their point of intersection, the proof follows. �

2. If the diagonals of a parallelogram are equal, each of its angles are right
angles.

PROOF. Construct �ABCD as in [1.34, #1] and suppose that AD = BC.
We wish to show that

∠CAB = ∠ABD = ∠BDC = ∠ACD = 1 right angle

By [1.34, #1], we have that EA = ED = EC = EB. Consider 4ECD,
4EDB, 4EBA, and 4EAC; by the above, they are isosceles triangles. By
[1.6, Cor. 1],

∠EAC = ∠ECA = ∠ECD = ∠EDC = ∠EDB = ∠EBD = ∠EBA = ∠EAB

Consider 4ABC. Notice that

∠ECA+ ∠EAC + ∠EAB + ∠EBA = 2 right angles
4 · ∠ECA = 2 right angles
∠ECA = 1

2 right angles

By the above equality, it follows that

∠CAB = ∠ABD = ∠BDC = ∠ACD = 1 right angle

�
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6. Construct a triangle being given the midpoints of its three sides.

PROOF. Suppose we are given midpoints A, B, and C of a triangle. We
wish to construct 4DEF such that DA = AE, DC = CF , and EB = BF .

FIGURE 1.0.29. [1.34, #6]

Construct 4ABC. Also construct line AD such that AD ‖ BC, construct
line BE such that BE ‖ AC, extend BC to a line, extend AB to a line, construct
line CD such that CD ‖ AB, and construct line BD. We claim that 4DEF is
the required triangle.

Notice that if we construct segments EG and FG such that �EGFD is a
parallelogram, the point B intersects the two diagonals of �EGFD. By [1.34,
#1], the diagonals are bisected. Hence, EB = BF . By similar constructions,
we may show that DA = AE and DC = CF , mutatis mutandis. (The details
are left as an exercise to the student.) �
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[1.37] Exercises
1. If two triangles of equal area stand on the same base but on opposite

sides, the segment joining their vertices is bisected by the base.

PROOF. Suppose we have4ABG and4ABI such that both triangles share
base AB and point G stands on the opposite side of AB than point I. We claim
that the segment GI is bisected by either AB or by the extension of AB to a
line.

FIGURE 1.0.30. [1.37, #1]

Extend AB to a line if necessary. Let J be the point where GI intersects
AB or its extension. Construct lines GK and LI such that GK ‖ AB and
LI ‖ AB. By [1.30], GK ‖ LI. Also construct lines GB and KI such that
GB ‖ KI. Hence, �GKIL is a parallelogram. By [1.34, #1], GJ = JI. Hence,
the proof. �

[1.38] Exercises
1. Every median of a triangle bisects the triangle.

PROOF. Construct 4ABC where AF is the median of side BC. We wish to
show that 4ABF = 4ACF .



1. SOLUTIONS: ANGLES, PARALLEL LINES, PARALLELOGRAMS 336

FIGURE 1.0.31. [1.38, #1]

Construct line AE such that AE ‖ BC. Clearly, 4ABF and 4ACF stand
between the same parallels (AE and BC). Since BF = FC by hypothesis,
4ABF = 4ACF by [1.38]. �

Note: we do not claim that the triangles are congruent, merely equal in
area.

5.One diagonal of a quadrilateral bisects the other if and only if it also
bisects the quadrilateral.

PROOF. Suppose we have quadrilateral ABCD with diagonal BD such
that BD intersects AC at E such that AE = EC. We claim that 4ABD =

4CBD.

FIGURE 1.0.32. [1.38, #5]

Consider 4ABE and 4CBE. By [1.38], they are equal in area; a similar
result holds for 4AED and 4CED.
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Now consider 4ADB and 4CDB. Notice that

4ADB = 4AED ⊕4ABE = 4CED ⊕4CBE = 4CDB

Now suppose that 4ABD = 4CBD. By [1.37, #1], we have that AE =

EC. �

[1.40] Exercises
1. Triangles with equal bases and altitudes are equal in area.

PROOF. Suppose we have two triangles with equal bases and with equal
altitudes. Since the altitude of a triangle is the distance between the parallels
which contain it, equal altitudes imply that the triangles stand between the
same parallels. By [1.38], the triangles are equal in area. �

2. The segment joining the midpoints of two sides of a triangle is parallel
to the third because the medians from the endpoints of the base to these points
will each bisect the original triangle. Hence, the two triangles whose base is
the third side and whose vertices are the points of bisection are equal in area.

PROOF. Construct 4ABC with midpoint D on side AB and midpoint E on
side AC. Connect D and E. We wish to show that DE ‖ BC.

FIGURE 1.0.33. [1.40, #2]
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Construct segment DF such that DE = DF . Construct line BF and con-
sider 4ADE and 4BDF . Notice that ∠ADE = ∠BDE by [1.15]. Also, since
D bisects AB, AD = BD. Finally, DE = DF by construction. Hence by [1.4],
4ADE ∼= 4BDF , and so ∠FBD = ∠DAE. By [1.29, Cor. 1], FB ‖ AC.

Also, since FB = AE and AE = EC, FB = EC. Since FB and EC are
equal in length and parallel, by [1.33] EF and BC are opposite and parallel;
hence, �FECB is a parallelogram. Thus, DE ‖ BC. �

COROLLARY. BC = 2 · DE, or the median segment as constructed is half
the length of its opposite and parallel side.

4. The segments which connect the midpoints of the sides of a triangle
divide it into four congruent triangles.

PROOF. Suppose we have 4ABC with midpoints D on side BC, E on side
AC, and F on side AB. Construct segments DE, EF , and DF . We wish to
show that

4AEF ∼= 4ECD ∼= 4FDB ∼= 4DFE

FIGURE 1.0.34. [1.40, #4]

By [1.40, #2], we have that DE ‖ AB, DF ‖ AC, and EF ‖ BC. It follows
that by [1.29, Cor. 1], we have that

∠EDC = ∠DEF = ∠EFA = ∠DBF

Similarly by [1.29, Cor. 1], we have that ∠CED = ∠EAF = ∠FDB =

∠DFB. Since �AFDE is a parallelogram, we have that ∠EAF = ∠EDF

[1.34], or
∠CED = ∠EAF = ∠EDF = ∠DFB
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Since �EFCD is a parallelogram, we have that EF = CD. Since �EFBD
is a parallelogram, we have that EF = BD, or

EF = CD = BD

By [1.26],
4AEF ∼= 4DEF ∼= 4ECD ∼= DBF

�

[1.46] Exercises
1. Two squares have equal side-lengths if and only if the squares are equal

in area.

PROOF. Suppose we have two squares with equal side-length. Divide each
square into two equal triangles by constructing a diagonal. The side-length is
then the altitude of each triangle. By [1.34], each triangle is half of the area of
the square. By [1.40, #1], each triangle is equal in area to its corresponding tri-
angle in the other square. Together, these results show that all four triangles
are equal in area, and therefore the squares are equal in area.

Now suppose that we have two squares which are equal in area where
the side-lengths are unequal. Divide each square into triangles by the above
method. It follows that each side of a triangle from the larger square has a
longer altitude than its corresponding side on the smaller triangle. It follows
that the areas of the triangle are unequal.

Thus, the proof. �

[1.47] Exercises
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10. Each of the triangles 4AGK and 4BEF formed by joining adjacent
corners of the squares is equal in area to the right triangle 4ABC.

PROOF. Construct the polygons as in [1.47] and then construct segments
AG and EF . We wish to show that

4ABC = 4AGK = 4BEF

We will employ trigonometry to solve this exercise. First, we note that one
right angle equals π

2 radians.
Consider 4ABC. Notice that if ∠CAB = γ, then ∠ABC = π

2 − γ since
∠ACB = π

2 . It follows that

∠KAG = 2π − (
π

2
+
π

2
+ ∠CAB) = π + γ

and that
∠FBE = 2π − (

π

2
+
π

2
+ ∠ABC) =

π

2
− γ

We will employ the general form of the equation of the area of a triangle:

Area =
1

2
xy · sin θ

where θ is the interior angle to sides x and y.

Area 4AKG = 1
2AK ·AG · sin(π + γ)

= 1
2AK ·AG · sin(γ)
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by the properties of the sin function. We also have that

Area 4ABC = 1
2AB ·AC · sin(γ)

= 1
2AK ·AG · sin(γ)

and so
4AKG = 4ABC

Similarly,

Area 4BEF = 1
2BE ·BF · sin(π + γ)

= 1
2BC ·AB · cos(γ)

and

Area 4ABC = 1
2AB ·BC · sin(π2 − γ)

= 1
2AB ·BC · cos(γ)

by the properties of the cosine function.
Thus, the proof. �

Chapter 1 exercises
1. Any triangle is equal to a fourth part of the area which is formed by

constructing through each vertex a line which is parallel to its opposite side.

PROOF. Construct 4ABC; then construct DF ‖ BC through point A, con-
struct EF ‖ AB through point C, and construct DE ‖ AC through point B. We
wish to show that the area of 4DEF is equal to four times the area of 4ABC.
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FIGURE 1.0.35. Chapter 1 exercises, #1

Since DF ‖ BC, ∠ADB = ∠CBE. Since DE ‖ AC, ∠ADB = ∠CAF .
Hence,

∠ADB = ∠CBE = ∠CAF

Similarly, we can show that

∠CFA = ∠BAD = ∠ECB

By [1.32], it follows that

∠DBA = ∠BEC = ∠ACF

Notice that �AFCB is a parallelogram. Hence, AF = BC. Since �DACB
is also a parallelogram, BC = DA. By [1.26],

4ABD ∼= 4CEB ∼= 4FCA

By [1.8],

4ABD ∼= 4CEB ∼= 4FCA ∼= 4ABC

Since 4DEF = 4ABD⊕4CEB ⊕4FCA⊕4ABC, the proof follows. �

4. The three medians of a triangle are concurrent. (Note: we are proving
the existence of the centroid of a triangle.)

PROOF. Construct 4ABC where CE is the median of AB and BF is the
median of AC. Through the intersection of CE and BF , point G, construct the
segment AGD where D is a point on BC. We wish to show that BD = DC.
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FIGURE 1.0.36. Chapter 1 exercises, #4

By [1.38, #1], notice that

4BGE ⊕4EGA⊕4AGF = 4FGC ⊕4CGD ⊕4DGB

and

4CGD ⊕4DGB ⊕4BGE = 4EGA⊕4AGF ⊕4FGC

It follows that

4BGE ⊕4EGA⊕4AGF 	4FGC = 4CGD ⊕4DGB
2 · 4BGE ⊕4EGA⊕4AGF 	4FGC = 4CGD ⊕4DGB ⊕4BGE
2 · 4BGE ⊕4EGA⊕4AGF 	4FGC = 4EGA⊕4AGF ⊕4FGC

2 · 4BGE 	4FGC = 4FGC
2 · 4BGE = 2 · 4FGC
4BGE = 4FGC

By [1.38], we have that 4BGE = 4EGA and 4FGC = 4FGA, and so

4BGE = 4EGA = 4FGC = 4FGA

Suppose H, a point on BD other than B or D, is the midpoint of BC. Then
BH = HC and by [1.38], 4BGH = 4CGH, or

4BGH = 4CGD ⊕4HGD
4BGH 	4HGD = 4CGD

Also notice that by [1.38, #1],

4ABD = 4ACD
4EGA⊕4BGE ⊕4BGH ⊕4HGD = 4FGA⊕4FGC ⊕4CGD

4BGH ⊕4HGD = 4CGD
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By the above, we have that

4BGH 	4HGD = 4BGH ⊕4HGD

which can only hold if4HGD has no area, a contradiction. A similar result
follows if H is a point on CD which is neither C nor D.

Thus, BD = DC. �

COROLLARY. The three medians of a triangle divide the original triangle
into six sub-triangles which are each equal in area.

8. Construct a triangle given the three medians.

PROOF. Suppose we are given the medians of a triangle AE, BF , and CD.
We wish to construct the triangle to which they belong.

FIGURE 1.0.37. Chapter 1 exercise #8

Connect points A and B; connect A and C; finally, connect B and C. Since
AE is a median, BEC forms a segment where BE = EC. Similar statements
can be made for the remaining side, mutatis mutandis. Hence, the required
triangle has been constructed. �

12. The shortest median of a triangle corresponds to the largest side.



1. SOLUTIONS: ANGLES, PARALLEL LINES, PARALLELOGRAMS 345

PROOF. Construct 4ABC where BC > AC > AB, CE is the median of
AB, BF is the median of AC, and AD is the median of BC. We wish to show
that AD < FB and AD < EC.

FIGURE 1.0.38. Chapter 1 exercises, #12

Consider 4BGD and 4BGE. By the Corollary to [Ch.1 Exercises, #4], we
have that 4BGD = 4BGE. Since BD > BE (because BC > AB, BD = 1

2BC.
and BE = 1

2BA) , and since the triangles share side BG, we must have that
EG > DG. Similarly, we can show that EG > FG > DG. By [Ch. 6 Exercises.
#124], we have that the medians of a triangle divide each other in the ratio of
2 : 1. Hence, EC > FB > AD. �

16. Inscribe a lozenge in a triangle having for an angle one angle of the
triangle.

PROOF. Construct 4ABC. Let ∠DAB bisect ∠CAB where D is a point on
the side BC. Construct the ray AD. Construct ∠ADF and ∠ADE such that

∠ADF = ∠DAB = ∠ADE

We claim that �AEDF is the required lozenge.
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FIGURE 1.0.39. [Ch. 1 Exercises, #16]

Consider 4DFA. Since it is an isosceles triangle, DF = FA [1.6]. Also
consider 4DEA. Notice that by a similar argument, we have that AE = ED.
Since 4DFA and 4DEA share side AD, by [1.26] we have that 4DFA ∼=
4DEA. Hence,

DF = FA = AE = ED

By [Def. 1.29], �AEDF is a lozenge. Since 4ABC and �AEDF share
∠BAC, the proof follows. �



CHAPTER 2

Solutions: Rectangles

[2.4] Exercises
2. If from the vertical angle of a right triangle a perpendicular falls on

the hypotenuse, its square equals the area of the rectangle contained by the
segments of the hypotenuse.

PROOF. Construct right triangle4ABC where ∠BAC is the vertical angle.
Construct segment AD such that AD ⊥ BC. We claim that AD2 = DB ·DC.

FIGURE 2.0.1. [2.4, #2]

Construct rectangle �DCHG where BD = DG. Geometrically, we claim
that AD2 = �DCHG.

By [1.47], we have that

AD2 +DC2 = AC2

AD2 +DB2 = AB2

347
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as well as

AB2 +AC2 = (DB +DC)2

AB2 +AC2 = DB2 + 2 ·DB ·DC +DC2

Hence,

AD2 +DC2 +AD2 +DB2 = DB2 + 2 ·DB ·DC +DC2

2 ·AD2 = 2 ·DB ·DC
AD2 = DB ·DC

�

[2.6] Exercises
7. Give a common statement which will include [2.5] and [2.6].

PROOF. Let AB be a line and consider the segment formed by points A and
B. Locate the midpoint C of this segment. Choose a point D on the line AB
such that D is neither A, B, nor C. We then have two cases:

1) D is between A and B. By [2.5], we have that

AD.DB + CD2 = CB2

2) D is not between A and B. By [2.6], we have that

AD.DB + CB2 = CD2

�

[2.11] Exercises
3. If AB is cut in “extreme and mean ratio” at C, prove that
(a) AB2 +BC2 = 3AC2

PROOF. By [2.11], x = −a2 (1±
√

5). (We may ignore negative results since
our context is the side-length of planar figures.) Since AB = a, BC = a − x,
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and AC = x, we have:

AB2 +BC2 = 3AC2

a2 + (a− x)2 = 3x2

a2 + a2 − 2ax+ x2 = 3x2

2a2 − 2ax = 2x2

a2 − ax = x2

a2 + a2

2 (1 +
√

5) = a2

2 (3 +
√

5)
a2

2 (3 +
√

5) = a2

2 (3 +
√

5)

�

Chapter 2 exercises
15. Any rectangle is equal in area to half the rectangle contained by the

diagonals of squares constructed on its adjacent sides.

PROOF. Construct rectangle ADCB, squares GABH and BCFE, and di-
agonals GB and BF . We claim that 1

2GB
2 ·BF 2 = AB ·BC.

FIGURE 2.0.2. [Ch. 2 Exercises, #15]
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Let AB = x and BC = y. By [1.47], it follows that GB = x
√

2 and BC =

y
√

2. Notice that
1
2GB

2 ·BF 2 = 1
2xy
√

4

= xy

= AB ·BC
�



CHAPTER 3

Solutions: Circles

[3.3] Exercises
3. Prove [3.3, Cor. 4]: The line joining the centers of two intersecting circles

bisects their common chord perpendicularly.

PROOF. Construct the circles from [1.1], and then construct segment CF .
We wish to show that AB bisects CF and that AB ⊥ CF .

FIGURE 3.0.1. [3.3, #3]

The proof follows immediately from the proof of [1.1, #2]. The details are
left as an exercise to the reader. �

[3.5] Exercises
2. Two circles cannot have three points in common without coinciding.

PROOF. Suppose that two circles (◦EDF , ◦EBF ) have three points in com-
mon (E, F , and G) and do not coincide. By [3.3, Cor. 4], the line joining the
centers of two intersecting circles (AC) bisects their common chord perpen-
dicularly. Hence, AC bisects EF ; similarly, AC bisects EG. But EG can be
constructed to that EG and AC do not intersect, a contradiction.

351
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FIGURE 3.0.2. [3.5, #2]

Hence, ◦EDF and ◦EBF coincide. �

[3.13] Exercises
3. Suppose two circles touch externally. If through the point of intersec-

tion any secant is constructed cutting the circles again at two points, the radii
constructed to these points are parallel.

PROOF. Suppose ◦GBD and ◦EFB touch at point B. By [3.13], these cir-
cles touch only at B. Construct secant DBE. We claim that AD ‖ CE.

FIGURE 3.0.3. [3.13, #3]
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Connect AC. By [3.12], AC intersects B.
Consider 4ABD and 4CBE. Notice that ∠ABD = ∠CBE by [1.15]. Also,

since each triangle is isosceles, ∠ADB = ∠ABD and ∠CEB = ∠CBE. Hence,

∠ADB = ∠CEB

By [1.29, Cor. 1], AD ‖ CE. �

COROLLARY. 1. If two circles touch externally and through the point of
intersection any secant is constructed cutting the circles again at two points,
the diameters constructed to these points are parallel.

4. Suppose two circles touch externally. If two diameters in these circles
are parallel, the line from the point of intersection to the endpoint of one di-
ameter passes through the endpoint of the other.

PROOF. Suppose ◦DBE and ◦FBG touch at point B. By [3.13], these cir-
cles touch only at B. Construct diameters DE and FG such that DE ‖ FG.
We claim that the line DB intersects G. (The case for the remaining endpoints
follows mutatis mutandis.)

FIGURE 3.0.4. [3.13, #4]

Suppose that DB does not intersect G. Extend FG to a line, and suppose
that DB intersects the line FG at H.

Construct the segment AC. By [1.15], 4ABD = 4CBH. By [1.29, Cor. 1],
∠ADB = ∠CHB. It follows that 4ABD and 4CBH are equiangular. How-
ever, 4ABD is an isosceles triangle and 4CBH is not since CH > CG; hence,
the triangles are not equiangular, a contradiction. A similar contradiction is
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obtained if DB intersects the line FG at any point other than G, mutatis mu-
tandis.

The proof follows. �

[3.16] Exercises
1. If two circles are concentric, all chords of the greater circle which touch

the lesser circle are equal in length.

PROOF. Construct ◦BFG and ◦DCE each with center A. On ◦DCE, con-
struct chord DE such that DE touches ◦BFG at B. Also on ◦DCE, construct
chord HJ such that HJ touches ◦BFG at G. We claim that DE = HJ .

FIGURE 3.0.5. [3.16, #1]

Notice that AG = AB since each are radii of ◦BFG. By [3.16], DE and HJ
have no other points of intersection with ◦BFG. Hence, DE and HJ are equal
distance from the center of ◦BFG and also of ◦DCE. By [3.14], DE = HJ . �

[3.17] Exercises
3. If a parallelogram is circumscribed to a circle, it must be a lozenge, and

its diagonals intersect at the center.
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PROOF. Construct circle ◦GHI with center E and circumscribe parallelo-
gram �BCDA to ◦GHI where �BCDA touches ◦GHI at F , G, H, and I. We
claim that �BCDA is a lozenge and that its diagonals AC and BC intersect E.

FIGURE 3.0.6. [3.17, #3]

Since �BCDA is a parallelogram, EA = EC and EB = ED. Also, BC =

AD and BA = CD. By [1.8], 4EAD ∼= 4ECB and 4EBA ∼= 4EDC.
Now construct radii EH, EI. Since ◦GHI touches �BCDA at H and at

I, we must have and that ∠EHD = ∠EID, since each are tangents to ◦GHI
and so are right angles; therefore,4EHD and4EID are right triangles. Since
4EHD and4EID share side ED and EH = EI (since both are radii of ◦GHI),
by [1.26, #6] we have that 4EHD ∼= 4EID. Similarly, 4EHA ∼= 4EIC, and
so it follows that 4EAD ∼= 4ECD. It follows that

AD = CD = BA = BC

and so �BCDA is a lozenge.
Suppose E is not the center of ◦GHI. But E is a point within a circle from

which three or more equal segments can be constructed to the circumference,
a contradiction [3.9]. Hence, the diagonals of �BCDA intersect E. �

[3.30] Exercises
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1. Suppose that ABCD is a semicircle whose diameter is AD and that the
chord BC when extended meets AE (where AE is the extension of AD). Prove
that if CE is equal in length to the radius, the arc AB = 3 · CD.

PROOF. Suppose ABCD is a semicircle where BC is a chord such that if
BC and AD are extended, they intersect at E, and that CE = DF . We wish to
show that arc AB = 3 · CD.

FIGURE 3.0.7. [3.30, #1]

Connect CD, CF , CB, FB, and AB. Notice that

CE = DF = CF = BF = AF

BY [1.5], we have that ∠CEF = ∠CFE, ∠FCB = ∠FBC, and ∠FBA =

∠FAB.
We will solve this problem using linear algebra. Let

∠CEF = a

∠ECF = b

∠FCB = c

∠CFB = d

∠FBA = e

∠BFA = f

Then we have that
b+ c = 180

2a+ b = 180

2c+ d = 180

2e+ f = 180

a+ d+ f = 180

a+ c+ 2e = 180
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In matrix form, this is

0 1 1 0 0 0 180

2 1 0 0 0 0 180

0 0 2 1 0 0 180

0 0 0 0 2 1 180

1 0 0 1 0 1 180

1 0 1 0 2 0 180


This matrix in reduced row echelon form is:

1 0 0 0 0 0 20

0 1 0 0 0 0 140

0 0 1 0 0 0 40

0 0 0 1 0 0 100

0 0 0 0 1 0 60

0 0 0 0 0 1 60


Or,

∠CEF = 20◦

∠ECF = 140◦

∠FCB = 40◦

∠CFB = 100◦

∠FBA = 60◦

∠BFA = 60◦

Since ∠CFD = ∠CFE = ∠CEF , ∠BFA = 3 · ∠CFD. By [7.29, Cor. 1], it
follows that AB = 3 · CD. �



CHAPTER 4

Solutions: Inscription & Circumscription

[4.4] Exercises

FIGURE 4.0.1. [4.4, #1]

1. In [4.4]: if the points O, C are joined, prove that the angle ∠ACB is
bisected. Hence, we prove the existence of the incenter of a triangle.

PROOF. Consider 4OFC and 4ODC. By the proof of [4.4], we have that
∠OFC = ∠ODC since each are right; OF = OD since each are radii of ◦DEF ;
and each shares side OC. By [1.26, #6], 4OFC ∼= 4ODC, and so ∠OCF =

∠OCD. Hence, ∠ACB is bisected, and O is the incenter of 4ABC. �

[4.5] Exercises
1. The three altitudes of a triangle (4ABC) are concurrent. (This proves

the existence of the orthocenter of a triangle.)

PROOF. Euler’s proof: consider a triangle4ABC with circumcenter O and
centroid G (i.e., the point of intersection of the medians of the triangle).

358
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FIGURE 4.0.2. [4.5, #1]

Let A′ be the midpoint of BC. Let H be the point such that G is between
H and O and HG = 2 ·GO. Then the triangles 4AGH, 4A′GO are similar by
side-angle-side similarity. It follows that AH ‖ OA′ and therefore AH ⊥ BC;
i.e., it is the altitude from A. Similarly, BH, CH, are the altitudes from B, C.
Hence all the altitudes pass through H.1 �

1http://www.artofproblemsolving.com/Wiki/index.php/Orthocenter

http://www.artofproblemsolving.com/Wiki/index.php/Orthocenter
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