
http://google.com/books?id=MXZQAwAAQBAJ

Structure and Interpretation

of Computer Programs

second edition

Unofficial Texinfo Format

2.andresraba5.3

Harold Abelson and

Gerald Jay Sussman

with Julie Sussman,

foreword by AlanJ. Perlis

©1996 by e Massachuses Institute of Technology

Structure and Interpretation of Computer Programs,

second edition

Harold Abelson and Gerald Jay Sussman

with Julie Sussman, foreword by AlanJ. Perlis

is work is licensed under a Creative Commons

Aribution-ShareAlike 3.0 Unported License

(3.0). Based on a work at mitpress.mit.edu.

e Press

Cambridge, Massachuses

London, England

McGraw-Hill Book Company

New York, St. Louis, San Francisco,

Montreal, Toronto

Unofficial Texinfo Format 2.andresraba5.3 (April 6, 2014),

based on 2.neilvandyke4 (January 10, 2007).

Contents

Unofficial Texinfo Format

Dedication

Foreword

Preface to the Second Edition

Preface to the First Edition

Anowledgments

1 Building Abstractions with Procedures 1

1.1 e Elements of Programming 6

1.1.1

1.1.2

1.1.3

1.1.4

1.1.5

1.1.6

1.1.7

Expressions .Naming and the EnvironmentEvaluating CombinationsCompound Procedurese Substitution Model for Procedure Application

Conditional Expressions and Predicates

18

7

Example: Square Roots by Newton’s Method . .

ix

xii

xiii

xix

xxi

xxv

10

12

15

22

28

iii

2

1.2

1.3

1.1.8

Procedures and the Processes ey Generate1.2.1

Procedures as Black-Box Abstractions

Linear Recursion and Iteration

1.2.2 Tree Recursion1.2.3 Orders of Growth1.2.4 Exponentiation

1.2.5

1.2.6

Formulating Abstractions

with Higher-Order Procedures1.3.1

1.3.2

1.3.3

1.3.4

Greatest Common Divisors

Example: Testing for Primality

Procedures as ArgumentsConstructing Procedures Using LambdaProcedures as General MethodsProcedures as Returned Values

.

Building Abstractions with Data

2.1

2.2

2.3

Introduction to Data Abstraction

2.1.1 Example: Arithmetic Operations

for Rational Numbers2.1.2 Abstraction Barriers2.1.3 What Is Meant by Data?2.1.4 Extended Exercise: Interval Arithmetic

Hierarchical Data and the Closure Property

2.2.1 Representing Sequences

2.2.2 Hierarchical Structures2.2.3 Sequences as Conventional Interfaces2.2.4 Example: A Picture LanguageSymbolic Data .2.3.1 otation .

33

40

41

47

54

57

62

65

74

76

83

89

97

107

112

113

118

122

126

132

134

147

154

172

192

192

iv

2.3.2 Example:Symbolic Differentiation 197

2.3.3 Example: Representing Sets 205

2.3.4 Example: Huffman Encoding Trees 218

2.4 Multiple Representations for Abstract Data 229

2.4.1 Representations for Complex Numbers 232

2.4.2 Tagged data . 237

2.4.3 Data-Directed Programming and Additivity . . 242

2.5 Systems with Generic Operations 254

2.5.1 Generic Arithmetic Operations 255

2.5.2 Combining Data of Different Types 262

2.5.3 Example: Symbolic Algebra 274

3 Modularity, Objects, and State 294

3.1 Assignment and Local State 296

3.1.1 Local State Variables 297

3.1.2 e Benefits of Introducing Assignment 305

3.1.3 e Costs of Introducing Assignment 311

3.2 e Environment Model of Evaluation 320

3.2.1 e Rules for Evaluation 322

3.2.2 Applying Simple Procedures 327

3.2.3 Frames as the Repository of Local State 330

3.2.4 Internal Definitions 337

3.3 Modeling with Mutable Data 341

3.3.1 Mutable List Structure 342

3.3.2 Representing eues 353

3.3.3 Representing Tables 360

3.3.4 A Simulator for Digital Circuits 369

3.3.5 Propagation of Constraints 386

3.4 Concurrency: Time Is of the Essence 401

v

3.4.1 e Nature of Time in Concurrent Systems . . 403

3.4.2 Mechanisms for Controlling Concurrency . . . 410

3.5 Streams . 428

3.5.1 Streams Are Delayed Lists 430

3.5.2 Infinite Streams 441

3.5.3 Exploiting the Stream Paradigm 453

3.5.4 Streams and Delayed Evaluation 470

3.5.5 Modularity of Functional Programs

and Modularity of Objects 479

4 Metalinguistic Abstraction 487

4.1 e Metacircular Evaluator 492

4.1.1 e Core of the Evaluator 495

4.1.2 Representing Expressions 501

4.1.3 Evaluator Data Structures 512

4.1.4 Running the Evaluator as a Program 518

4.1.5 Data as Programs 522

4.1.6 Internal Definitions 526

4.1.7 Separating Syntactic Analysis from Execution . 534

4.2 Variations on a Scheme — Lazy Evaluation 541

4.2.1 Normal Order and Applicative Order 542

4.2.2 An Interpreter with Lazy Evaluation 544

4.2.3 Streams as Lazy Lists 555

4.3 Variations on a Scheme — Nondeterministic Computing 559

4.3.1 Amb and Search 561

4.3.2 Examples of Nondeterministic Programs 567

4.3.3 Implementing the Amb Evaluator 578

4.4 Logic Programming . 594

4.4.1 Deductive Information Retrieval 599

vi

4.4.2

4.4.3

4.4.4

How the ery System Works 615

Is Logic Programming Mathematical Logic? . .

Implementing the ery System

4.4.4.1

4.4.4.2

4.4.4.3

4.4.4.4

4.4.4.5

4.4.4.6

4.4.4.7

4.4.4.8

e Driver Loop and Instantiation . .e Evaluator

.Finding Assertions

by Paern Matching

.Rules and UnificationMaintaining the Data Base

Stream Operations

.ery Syntax ProceduresFrames and Bindings

5 Computing with Register Maines

5.1

5.2

5.3

Designing Register Machines

5.1.1

5.1.2

5.1.3

5.1.4

5.1.5

A Language for Describing Register Machines .

Abstraction in Machine Design

Subroutines .

Using a Stack to Implement Recursion

Instruction Summary

A Register-Machine Simulatore Machine Model

5.2.1

5.2.2

5.2.3

5.2.4

e Assembler

Generating Execution Procedures

for Instructions

Monitoring Machine Performance

Storage Allocation and Garbage Collection

5.3.1

5.3.2

Memory as Vectors

Maintaining the Illusion of Infinite Memory . .

627

635

636

638

642

645

651

654

656

659

666

668

672

678

681

686

695

696

698

704

708

718

723

724

731

vii

5.4 e Explicit-Control Evaluator

5.4.15.4.2

5.4.3

5.4.4

e Core of the Explicit-Control Evaluator . . .Sequence Evaluation and Tail RecursionConditionals, Assignments, and Definitions

. .

Running the Evaluator

5.5 Compilation .

5.5.1

5.5.3

5.5.4

5.5.5

5.5.6

5.5.7

References

List of Exercises

List of Figures

Index

Colophon

Structure of the Compiler

Compiling Expressions

Compiling Combinations

Combining Instruction Sequences

An Example of Compiled Code

Lexical Addressing

Interfacing Compiled Code to the Evaluator . .

741

743

751

756

759

767

772

779

788

797

802

817

823

5.5.2

834

844

846

848

855

viii

Unofficial Texinfo Format

is is the second edition book, from Unofficial Texinfo Format.

You are probably readingit inanInfohypertext browser,such asthe

Infomode ofEmacs.Youmight alternativelybe readingitTEX-formaed

on your screen or printer, though that would be silly. And, if printed,

expensive.

e freely-distributed official -and- format was first con-

verted personally to Unofficial Texinfo Format () version 1 by Lytha

Ayth during a long Emacs lovefest weekend in April, 2001.

e is easier to search than the format. It is also much

more accessible to people running on modest computers, such as do-

nated ’386-based PCs. A 386 can, in theory, run Linux, Emacs, and a

Scheme interpreter simultaneously, but most 386s probably can’t also

run both Netscape and the necessary X Window System without pre-

maturely introducing budding young underfunded hackers to the con-

cept of thrashing. UTF can also fit uncompressed on a 1.44 floppy

diskee, which may come in handy for installing UTF on PCs that do

not have Internet or LAN access.

e Texinfo conversion has been a straight transliteration, to the

extent possible. Like the TEX-to- conversion, this was not without

some introduction of breakage. In the case ofUnofficial Texinfo Format,

ix

figures have suffered an amateurish resurrection ofthe lost art of .

Also, it’s quite possible that some errors of ambiguity were introduced

during the conversion of some of the copious superscripts (‘ˆ’) and sub-

scripts (‘_’). Divining which has been le as an exercise to the reader.

But at least we don’t put our brave astronauts at risk by encoding the

greater-than-or-equal symbol as <u>></u>.

If you modify sicp.texi to correct errors or improve the art,

thenupdatethe @set utfversion utfversionline toreflect yourdelta.

For example, if you started with Lytha’s version 1, and your name is

Bob, then you could name your successive versions 1.bob1, 1.bob2, ...

1.bobn. Also update utfversiondate. If you want to distribute your

version on the Web, then embedding the string “sicp.texi” somewhere

in the file or Web page will make it easier for people to find with Web

search engines.

It is believed that the Unofficial Texinfo Format is in keeping with

the spirit of the graciously freely-distributed version. But you

never know when someone’s armada oflawyers might need something

to do, and get their shorts all in a knot over some benign lile thing,

so think twice before you use your full name or distribute Info, ,

PostScript, or formats that might embed your account or machine

name.

Peath, Lytha Ayth

Addendum: See also the video lectures by Abelson and Sussman:

at or .

Second Addendum: Above is the original introduction to the from

2001. Ten years later, has been transformed: mathematical symbols

and formulas are properly typeset, and figures drawn in vector graph-

ics. e original text formulas and art figures are still there in

x

the Texinfo source, but will display only when compiled to Info output.

At the dawn of e-book readers and tablets, reading a on screen is

officially not silly anymore. Enjoy!

A.R, May, 2011

xi

Dedication

T ,inrespectandadmiration,tothespirit that

lives in the computer.

“I think that it’s extraordinarily important that we in com-

puter science keep fun in computing. When it started out,

it was an awful lot of fun. Of course, the paying customers

got shaed every now and then, and aer a while we began

to take their complaints seriously. We began to feel as ifwe

reallywereresponsibleforthe successful,error-freeperfect

use of these machines. I don’t think we are. I think we’re

responsible for stretching them, seing them off in new di-

rections, and keeping fun in the house. I hope the field of

computer science never loses its sense of fun. Above all, I

hope we don’t become missionaries. Don’t feel as if you’re

Bible salesmen. e world has too many of those already.

What you know about computing other people will learn.

Don’t feel as if the key to successful computing is only in

your hands. What’s in your hands, I think and hope, is in-

telligence:the abilitytosee the machine asmore thanwhen

you were first led up to it, that you can make it more.”

—Alan J. Perlis (April 1, 1922 – February 7, 1990)

xii

Foreword

E, , , psychologists, and parents pro-

gram. Armies, students, and some societies are programmed. An

assault on large problems employs a succession of programs, most of

which spring into existence en route. ese programs are rife with is-

sues that appear to be particular to the problem at hand. To appreciate

programmingasanintellectualactivity initsownrightyoumustturnto

computer programming;you must read and write computer programs—

many of them. It doesn’t maer much what the programs are about or

what applications they serve. What does maer is how well they per-

form and how smoothly they fit with other programs in the creation

of still greater programs. e programmer must seek both perfection

of part and adequacy of collection. In this book the use of “program” is

focused on the creation, execution, and study of programs wrien in a

dialect of Lisp for execution on a digital computer. Using Lisp we re-

strict or limit not what we may program, but only the notation for our

program descriptions.

Our traffic with the subject maer of this book involves us with

three foci of phenomena: the human mind, collections of computer pro-

grams, and the computer. Every computer program is a model, hatched

in the mind, of a real or mental process. ese processes, arising from

xiii

human experience and thought, are huge in number, intricate in de-

tail, and at any time only partially understood. ey are modeled to our

permanent satisfaction rarely by our computer programs. us even

though our programs are carefully handcraed discrete collections of

symbols, mosaics ofinterlocking functions, they continually evolve: we

change them as our perception of the model deepens, enlarges, gen-

eralizes until the model ultimately aains a metastable place within

still another model with which we struggle. e source of the exhilara-

tion associated with computer programming is the continual unfolding

within the mind and on the computer of mechanisms expressed as pro-

grams and the explosion of perception they generate. If art interprets

our dreams, the computer executes them in the guise of programs!

For all its power, the computer is a harsh taskmaster. Its programs

must be correct, and what we wish to say must be said accurately in ev-

ery detail. As in every other symbolic activity, we become convinced of

program truth through argument. Lisp itself can be assigned a seman-

tics (another model, by the way), and if a program’s function can be

specified, say, in the predicate calculus, the proof methods of logic can

be used to make an acceptable correctness argument. Unfortunately, as

programs get large and complicated, as they almost always do, the ade-

quacy, consistency, and correctness of the specifications themselves be-

come open to doubt, so that complete formal arguments of correctness

seldom accompany large programs. Since large programs grow from

small ones, it is crucial that we develop an arsenal of standard program

structures of whose correctness we have become sure—we call them

idioms—and learn to combine them into larger structures using orga-

nizational techniques of proven value. ese techniques are treated at

length inthis book,andunderstandingthem isessential to participation

in the Promethean enterprise called programming. More than anything

xiv

else, the uncoveringandmastery of powerful organizational techniques

accelerates our ability to create large, significant programs. Conversely,

since writing large programs is very taxing, we are stimulated to invent

new methods of reducing the mass of function and detail to be fied

into large programs.

Unlike programs, computers must obey the laws of physics. If they

wish to perform rapidly—a few nanoseconds per state change—they

must transmit electrons only small distances (at most 112 feet). e heat

generatedby thehugenumberofdevicessoconcentratedinspacehasto

be removed. An exquisite engineering art hasbeen developed balancing

between multiplicity of function and density of devices. In any event,

hardware always operates at a level more primitive than that at which

we care to program. e processes that transform our Lisp programs

to “machine” programs are themselves abstract models which we pro-

gram. eir study and creation give a great deal of insight into the or-

ganizational programs associated with programming arbitrary models.

Of course the computer itself can be so modeled. ink ofit: the behav-

ior of the smallest physical switching element is modeled by quantum

mechanics described by differential equations whose detailed behavior

is captured by numerical approximations represented in computer pro-

grams executing on computers composed of ...!

It is not merely a maer of tactical convenience to separately iden-

tify the three foci. Even though, as they say, it’s all in the head, this

logical separation induces an acceleration of symbolic traffic between

these foci whose richness, vitality, and potential is exceeded in human

experience only by the evolution oflife itself. At best, relationships be-

tween the foci are metastable. e computers are never large enough or

fast enough. Each breakthrough in hardware technology leads to more

massive programming enterprises, new organizational principles, and

xv

an enrichment of abstract models. Every reader should ask himselfpe-

riodically “Toward what end, toward what end?”—but do not ask it too

oen lest you pass up the fun of programming for the constipation of

biersweet philosophy.

Among the programs we write, some (but never enough) perform a

precise mathematical function such as sorting or finding the maximum

of a sequence of numbers, determining primality, or finding the square

root. We call such programs algorithms, and a great deal is known of

their optimal behavior, particularly with respect to the two important

parameters of execution time and data storage requirements. A pro-

grammershouldacquiregoodalgorithmsandidioms.Eventhoughsome

programs resist precise specifications, it is the responsibility of the pro-

grammer to estimate, and always to aempt to improve, their perfor-

mance.

Lisp is a survivor, having been in use for about a quarter of a cen-

tury. Among the active programming languages only Fortran has had

a longer life. Both languages have supported the programming needs

ofimportant areas of application, Fortran for scientific and engineering

computation and Lisp for artificial intelligence. ese two areas con

tinue to be important, and their programmers are so devoted to these

two languages that Lisp and Fortran may well continue in active use for

at least another quarter-century.

Lisp changes. e Scheme dialect used in this text has evolved from

the original Lisp and differs from the laer in several important ways,

includingstatic scopingforvariablebindingandpermiingfunctionsto

yield functions as values. In its semantic structure Scheme is as closely

akintoAlgol60astoearlyLisps.Algol60,nevertobeanactivelanguage

again, lives on in the genes of Scheme and Pascal. It would be difficult

to find two languages that are the communicating coin of two more dif

xvi

ferent cultures than those gathered around these two languages. Pas-

cal is for building pyramids—imposing, breathtaking, static structures

built by armies pushing heavy blocks into place. Lisp is for building

organisms—imposing, breathtaking, dynamic structures built by squads

fiingfluctuatingmyriads ofsimplerorganismsintoplace.e organiz-

ing principles used are the same in both cases, except for one extraordi-

narily important difference: e discretionary exportable functionality

entrusted to the individual Lisp programmer is more than an order of

magnitude greater than that to be found within Pascal enterprises. Lisp

programs inflate libraries with functions whose utility transcends the

application that produced them. e list, Lisp’s native data structure, is

largely responsible for such growth of utility. e simple structure and

natural applicabilityof lists are reflected infunctionsthat are amazingly

nonidiosyncratic. InPascal the plethora of declarable data structuresin-duces a specialization within functions that inhibits and penalizes ca-

sual cooperation. It is beer to have 100 functions operate on one data

structure than to have 10 functions operate on 10 data structures. As a

result the pyramid must stand unchanged for a millennium; the organ-

ism must evolve or perish.

To illustrate this difference, compare the treatment of material and

exerciseswithinthisbook with that inany first-coursetextusingPascal.

Do not labor under the illusion that this is a text digestible at only,

peculiar to the breed found there. It is precisely what a serious book on

programming Lisp must be, no maer who the student is or where it is

used.

Note that this is a text about programming, unlike most Lisp books,

which are used as a preparation for work in artificial intelligence. Aer

all, the critical programming concerns of soware engineering and ar-

tificial intelligence tend to coalesce as the systems under investigation

xvii

become larger. is explains why there is such growing interest in Lisp

outside of artificial intelligence.

As one would expect from its goals, artificial intelligence research

generates many significant programming problems. In other program-

ming cultures this spate of problems spawns new languages. Indeed, in

anyvery largeprogrammingtaskausefulorganizingprinciple istocon-

trol and isolate traffic within the task modules via the invention oflan-

guage.ese languagestendtobecome lessprimitive asone approaches

the boundaries of the system where we humans interact most oen. As

a result, such systems contain complex language-processing functions

replicated many times. Lisphassuch asimple syntax and semantics that

parsing can be treated as an elementary task. us parsing technology

plays almost no role in Lisp programs, and the construction oflanguage

processors is rarely an impediment to the rate of growth and change of

large Lisp systems. Finally, it is this very simplicity of syntax and se-

mantics that is responsible for the burden and freedom borne by all

Lisp programmers. No Lisp program of any size beyond a few lines can

be wrien without being saturated with discretionary functions. Invent

and fit; have fits and reinvent! We toast the Lisp programmer who pens

his thoughts within nests of parentheses.

Alan J. Perlis

New Haven, Connecticut

xviii

Preface to the Second Edition

Is it possible that soware is not like anything else, that it

is meant to be discarded: that the whole point is to always

see it as a soap bubble?

—Alan J. Perlis

T has been the basis of ’s entry-level

computer science subject since 1980. We had beenteaching thisma-terial for four years when the first edition was published, and twelve

more years have elapsed until the appearance of this second edition.

We are pleased that our work has been widely adopted and incorpo-

rated into other texts. We have seen our students take the ideas and

programs in this book and build them in as the core of new computer

systemsandlanguages.Inliteral realizationof anancientTalmudic pun,

our students have become our builders. We are lucky to have such ca-

pable students and such accomplished builders.

In preparing this edition, we have incorporated hundreds of clarifi-

cations suggested by our own teachingexperience and the commentsofcolleagues at and elsewhere. We have redesigned most of the ma-

jor programming systems in the book, including the generic-arithmetic

system, the interpreters, the register-machine simulator, and the com

xix

piler; and we have rewrien all the program examples to ensure that

any Scheme implementation conforming to the Scheme standard

(IEEE 1990) will be able to run the code.

is edition emphasizes several new themes. e most important of

these is the central role played by different approaches to dealing with

time in computational models: objects with state, concurrent program-

ming, functional programming, lazy evaluation, and nondeterministic

programming.Wehaveincluded newsectionsonconcurrencyandnon-

determinism, and we have tried to integrate this theme throughout the

book.

e first edition of the book closely followed the syllabus of our

 one-semester subject. With all the new material in the second edi-

tion, it will not be possible to cover everything in a single semester,

so the instructor will have to pick and choose. In our own teaching, we

sometimes skipthe section on logic programming(Section4.4),we have

students use the register-machine simulator but we do not cover its im-

plementation (Section 5.2), and we give only a cursory overview of the

compiler (Section 5.5). Even so, this is still an intense course. Some in-

structors may wish to coveronly the first three or four chapters, leaving

the other material for subsequent courses.

eWorld-Wide-Websitehp://mitpress.mit.edu/sicpprovidessup-

port for users of this book. is includes programs from the book, sam

pleprogrammingassignments,supplementarymaterials,anddownload-

able implementations of the Scheme dialect of Lisp.

xx

Preface to the First Edition

A computer is like a violin. You can imagine a novice try—

ing first a phonograph and then a violin. The latter, he says,

sounds terrible. That is the argument we have heard from

our humanists and most of our computer scientists. Com—

puter programs are good, they say, for particular purposes,

but they aren’t flexible. Neither is a violin, or a typewriter,

until you learn how to use it.

—Marvin Minsky, “Why Programming Is a Good Medium

for Expressing Poorly—Understood and Sloppily—Formulated

Ideas”

“ HE STRUCTURE AND INTERPRETATION OF COMPUTER PROGRAM”

Tis the entry—level subject in computer science at the Massachusetts

Institute of Technology. It is required of all students at MIT who major

in electrical engineering or in computer science, as one—fourth of the

“common core curriculum,” which also includes two subjects on circuits

and linear systems and a subject on the design of digital systems. We

have been involved in the development of this subject since 1978, and

we have taught this material in its present form since the fall of 1980 to

between 600 and 700 students each year. Most of these students have

xxi

had lile or no prior formal training in computation, although many

have played with computers a bit and a few have had extensive pro-

gramming or hardware-design experience.

Our design of this introductory computer-science subject reflects

two major concerns. First, we want to establish the idea that a com-

puter language is notjust a way of geing a computer to perform oper-

ations but rather that it is a novel formal medium for expressing ideas

about methodology. us, programs must be wrien for people to read,

and only incidentally for machines to execute. Second, we believe that

the essential material to be addressed by a subject at this level is not

the syntax of particular programming-language constructs, nor clever

algorithms for computing particular functions efficiently, nor even the

mathematical analysis of algorithms and the foundations of computing,

but rather the techniques used to control the intellectual complexity of

large soware systems.

Our goal is that students who complete this subject should have a

good feel for the elements of style and the aesthetics of programming.

ey should have command of the major techniques for controlling

complexity in a large system. ey should be capable of reading a 50-

page-long program, if it is wrien in an exemplary style. ey should

know what not to read, and what they need not understand at any mo-

ment. ey should feel secure about modifying aprogram, retainingthespirit and style of the original author.

ese skills are by no means unique to computer programming. e

techniques we teach and draw upon are common to all of engineering

design. We control complexity by buildingabstractions that hide details

when appropriate. We control complexity by establishing conventional

interfaces that enable us to construct systems by combining standard,

well-understood pieces in a “mix and match” way. We control complex

xxii

ity by establishingnewlanguagesfor describinga design,each ofwhich

emphasizes particular aspects of the design and deemphasizes others.

Underlyingourapproachtothissubject isour convictionthat “com-

puter science” is not a science and that its significance has lile to do

with computers. e computer revolution is a revolution in the way we

think and in the way we express what we think. e essence of this

change is the emergence of what might best be called procedural epis-

temology—the study of the structure of knowledge from an imperative

point of view, as opposed to the more declarative point of view taken

by classical mathematical subjects. Mathematics provides a framework

for dealing precisely with notions of“what is.” Computation provides a

framework for dealing precisely with notions of “how to.”

In teaching our material we use a dialect of the programming lan-

guage Lisp. We never formally teach the language, because we don’t

have to. We just use it, and students pick it up in a few days. is is

one great advantage of Lisp-like languages: ey have very few ways

of forming compound expressions, and almost no syntactic structure.

All of the formal properties can be covered in an hour, like the rules

of chess. Aer a short time we forget about syntactic details of the lan-

guage (because there are none) and get on with the real issues—figuring

out what we want to compute, how we will decompose problems into

manageable parts, and how we will work on the parts. Another advan-

tage of Lisp is that it supports (but does not enforce) more of the large-

scale strategies for modular decomposition of programs than any other

language we know. We can make procedural and data abstractions, we

can use higher-order functions to capture common paerns of usage,

we can model local state using assignment and data mutation, we can

link partsofaprogramwith streamsanddelayedevaluation,andwe can

easily implement embedded languages. All ofthis is embedded in an in

xxiii

teractive environment with excellent support for incremental program

design, construction, testing, and debugging. We thank all the genera-

tions of Lispwizards, startingwith JohnMcCarthy, who have fashioned

a fine tool of unprecedented power and elegance.

Scheme, the dialect of Lisp that we use, is an aempt to bring to-

gether the power and elegance of Lisp and Algol. From Lisp we take the

metalinguistic power that derives from the simple syntax, the uniform

representation of programs as data objects, and the garbage-collected

heap-allocated data.FromAlgolwetakelexical scopingandblockstruc-

ture, which are gis from the pioneers of programming-language de-

sign who were on the Algol commiee. We wish to cite John Reynolds

and Peter Landin for their insights into the relationship of Church’s λ-

calculus to the structure of programming languages. We also recognize

our debt to the mathematicians who scouted out this territory decades

before computers appeared onthescene. esepioneersinclude Alonzo

Church, Barkley Rosser, Stephen Kleene, and Haskell Curry.

xxiv

Acknowledgments

W the many people who have helped us

develop this book and this curriculum.

Our subject is a clear intellectual descendant of“6.231,” a wonderful

subject on programming linguistics and the λ-calculus taught at in

the late 1960s by Jack Wozencra and Arthur Evans, Jr.

We owe a great debt to Robert Fano, who reorganized ’s intro-

ductory curriculum in electrical engineering and computer science to

emphasize the principles of engineering design. He led us in starting

outon thisenterprise and wrote the first set of subjectnotesfromwhich

this book evolved.

Much of the style and aesthetics of programming that we try to

teach were developed in conjunction with Guy Lewis Steele Jr., who

collaborated with Gerald Jay Sussman in the initial development of the

Schemelanguage.Inaddition,DavidTurner,PeterHenderson,DanFried-

man, David Wise, and Will Clinger have taught us many of the tech-

niques of the functional programming community that appear in this

book.

Joel Moses taught us about structuring large systems. His experi-

ence with the Macsyma system for symbolic computation provided the

insight that one should avoid complexities of control and concentrate

xxv

on organizing the data to reflect the real structure of the world being

modeled.

Marvin Minsky and Seymour Papert formed many of our aitudes

about programming and its place in our intellectual lives. To them we

owe the understanding that computation provides a means of expres-

sion for exploring ideas that would otherwise be too complex to deal

with precisely. ey emphasize that a student’s ability to write and

modify programs provides a powerful medium in which exploring be-

comes a natural activity.

We also strongly agree with Alan Perlis that programming is lots of

funandwehadbeerbecarefultosupportthejoy ofprogramming.Partof this joy derives from observing great masters at work. We are fortu-

nate to have beenapprentice programmersat the feet of Bill Gosper and

Richard Greenbla.

It is difficult to identify all the people who have contributed to the

development of our curriculum. We thank all the lecturers, recitation

instructors, and tutors who have worked with us over the past fieen

yearsandput inmany extrahoursonoursubject, especially Bill Siebert,

Albert Meyer, Joe Stoy, Randy Davis, Louis Braida, Eric Grimson, Rod

Brooks, Lynn Stein and Peter Szolovits. We would like to specially ac-

knowledge the outstanding teaching contributions of Franklyn Turbak,

now at Wellesley; his work in undergraduate instruction set a standard

that we can all aspire to. We are grateful to Jerry Saltzer and Jim Miller

for helping us grapple with the mysteries of concurrency, and to Peter

Szolovitsand David McAllester for their contributions to the exposition

of nondeterministic evaluation in Chapter 4.

Many people have put in significant effort presenting this material

at other universities. Some of the people we have worked closely with

are Jacob Katzenelson at the Technion, Hardy Mayer at the University

xxvi

of California at Irvine, Joe Stoy at Oxford, Elisha Sacks at Purdue, and

Jan Komorowski at the Norwegian University of Science and Technol-

ogy. We are exceptionally proud of our colleagues who have received

major teaching awards for their adaptations ofthis subject at other uni-

versities, including Kenneth Yip at Yale, Brian Harvey at the University

of California at Berkeley, and Dan Huenlocher at Cornell.

AlMoyéarrangedforustoteachthismaterialtoengineersatHewle-

Packard, and for the production of videotapes of these lectures. We

would like to thank the talented instructors—in particular Jim Miller,

Bill Siebert, and Mike Eisenberg—who have designed continuing edu-

cationcoursesincorporatingthese tapesandtaught thematuniversities

and industry all over the world.

Many educators in other countries have put in significant work

translating the first edition. Michel Briand, Pierre Chamard, and An-

dré Pic produced a French edition; Susanne Daniels-Herold produced

a German edition; and Fumio Motoyoshi produced a Japanese edition.

We do not know who produced the Chinese edition, but we consider

it an honor to have been selected as the subject of an “unauthorized”

translation.

It is hard to enumerate all the people who have made technical con-

tributions to the development of the Scheme systems we use for in-

structional purposes. In addition to Guy Steele, principal wizards have

included Chris Hanson, Joe Bowbeer, Jim Miller, Guillermo Rozas, and

Stephen Adams. Others who have put in significant time are Richard

Stallman, Alan Bawden, Kent Pitman, Jon Ta, Neil Mayle, John Lamp-

ing, Gwyn Osnos, Tracy Larrabee, George Carree, Soma Chaudhuri,

Bill Chiarchiaro, Steven Kirsch, Leigh Klotz, Wayne Noss, Todd Cass,

Patrick O’Donnell, Kevineobald, Daniel Weise, Kenneth Sinclair, An-

thony Courtemanche, Henry M. Wu, Andrew Berlin, and Ruth Shyu.

xxvii

Beyond the implementation, we would like to thank the many

people who worked on the Scheme standard, including William

Clinger and Jonathan Rees, who edited the R4RS, and Chris Haynes,

David Bartley, Chris Hanson, and Jim Miller, who prepared the

standard.

Dan Friedman has been a long-time leader of the Scheme commu-

nity. e community’s broader work goes beyond issues of language

design to encompass significant educational innovations, such as the

high-school curriculum based on EdScheme by Schemer’s Inc., and the

wonderful books by Mike Eisenberg and by Brian Harvey and Mahew

Wright.

We appreciate the work of those who contributed to making this a

real book, especially Terry Ehling, Larry Cohen, and Paul Bethge at the

 Press. Ella Mazel found the wonderful cover image. For the second

edition we are particularly grateful to Bernard and Ella Mazel for help

with the book design, and to David Jones, TEX wizard extraordinaire.

We also are indebted to those readers who made penetrating comments

on the new dra: Jacob Katzenelson, Hardy Mayer, Jim Miller, and es-

pecially Brian Harvey, who did unto this book as Julie did unto his book

Simply Scheme.

Finally, we would like to acknowledge the support of the organiza-

tions that have encouraged this work over the years, including support

from Hewle-Packard, made possible by Ira Goldstein and Joel Birn-

baum, and support from , made possible by Bob Kahn.

xxviii

Building Abstractions with Procedures

eactsofthemind,whereinitexertsitspoweroversimple

ideas, are chiefly these three: 1. Combining several simple

ideas into one compound one, and thus all complex ideas

are made. 2. e second isbringing two ideas, whether sim-

ple or complex, together, and seing them by one another

so as to take a view of them at once, without uniting them

into one, by which it gets all its ideas of relations. 3. e

third is separating them from all other ideas that accom-

pany them in their real existence: this is called abstraction,

and thus all its general ideas are made.

—John Locke, An Essay Concerning Human Understanding

(1690)

W the idea ofa computationalprocess. Com-

putational processes are abstract beings that inhabit computers.

As they evolve, processes manipulate other abstract things called data.

1

e evolution of a process is directed by a paern of rules called a pro-

gram. People create programs to direct processes. In effect, we conjure

the spirits of the computer with our spells.

A computational process is indeed much like a sorcerer’s idea of a

spirit. It cannot be seen or touched. It is not composed of maer at all.

However, it is very real. It can perform intellectual work. It can answer

questions. It can affect the world by disbursing money at a bank or by

controlling a robot arm in a factory. e programs we use to conjure

processes are like a sorcerer’s spells. ey are carefully composed from

symbolicexpressionsinarcaneandesotericprogramminglanguages that

prescribe the tasks we want our processes to perform.

Acomputational process,inacorrectly working computer,executes

programs precisely and accurately. us, like the sorcerer’s appren-

tice, novice programmers must learn to understand and to anticipate

the consequences of their conjuring. Even small errors (usually called

bugs or glitches) in programs can have complex and unanticipated con-

sequences.

Fortunately,learningtoprogramisconsiderablylessdangerousthan

learning sorcery, because the spirits we deal with are conveniently con-

tained in a secure way. Real-world programming, however, requires

care, expertise, and wisdom. A small bug in a computer-aided design

program, for example, can lead to the catastrophic collapse of an air-

plane or a dam or the self-destruction of an industrial robot.

Master soware engineers have the ability to organize programs so

that they can be reasonably sure that the resulting processes will per-

form the tasks intended. ey can visualize the behavior of their sys-

tems in advance. ey know how to structure programs so that unan-

ticipated problems do not lead to catastrophic consequences, and when

problems do arise, they can debug their programs. Well-designed com

2

putational systems, like well-designed automobiles or nuclear reactors,

are designed in a modular manner, so that the parts can be constructed,

replaced, and debugged separately.

Programming in Lisp

We need an appropriate language for describing processes, and we will

use for this purpose the programming language Lisp.Just as our every-

day thoughts are usually expressed in our natural language (such as En-

glish, French, orJapanese), and descriptions of quantitative phenomena

are expressed with mathematical notations, our procedural thoughts

will be expressed in Lisp. Lisp was invented in the late 1950s as a for-

malism for reasoning about the use of certain kinds of logical expres-

sions, called recursion equations, as a model for computation. e lan-

guage was conceived by John McCarthy and is based on his paper “Re-

cursive Functions of Symbolic Expressions and eir Computation by

Machine” (McCarthy 1960).

Despite its inception as a mathematical formalism, Lisp is a practi-

cal programming language. A Lisp interpreter is a machine that carries

out processes described in the Lisp language. e first Lisp interpreter

was implemented by McCarthy with the help of colleagues and stu-

dentsintheArtificialIntelligenceGroupofthe Research Laboratory

of Electronics and in the Computation Center.1 Lisp, whose name

is an acronym for LISt Processing, was designed to provide symbol-

manipulating capabilities for aacking programming problems such as

the symbolic differentiation and integration of algebraic expressions.

It included for this purpose new data objects known as atoms and lists,

1e Lisp 1 Programmer’s Manual appeared in 1960, and the Lisp 1.5 Programmer’s

Manual (McCarthy et al. 1965) was published in 1962. e early history of Lisp is de-

scribed in McCarthy 1978.

3

which most strikingly set it apart from allother languagesof the period.

Lisp was not the product of a concerted design effort. Instead, it

evolved informally in an experimental manner in response to users’

needs and to pragmatic implementation considerations. Lisp’s informal

evolution has continued through the years, and the community of Lisp

users has traditionally resisted aempts to promulgate any “official”

definition of the language. is evolution, together with the flexibility

andeleganceoftheinitialconception,hasenabledLisp,whichisthesec-

ond oldest language in widespread use today (only Fortran is older), to

continually adapt to encompass the most modern ideas about program

design. us, Lisp is by now a family of dialects, which, while sharing

most of the original features, may differ from one another in significant

ways. e dialect of Lisp used in this book is called Scheme.2

Because of its experimental character and its emphasis on symbol

manipulation, Lisp was at first very inefficient for numerical compu-

tations, at least in comparison with Fortran. Over the years, however,

2e two dialects in which most major Lisp programs of the 1970s were wrien are

MacLisp (Moon 1978; Pitman 1983), developed at the Project , and Interlisp

(Teitelman 1974), developed at Bolt Beranek and Newman Inc. and the Xerox Palo Alto

Research Center. Portable Standard Lisp (Hearn 1969; Griss 1981) was a Lisp dialect

designed to be easily portable between different machines. MacLisp spawned a number

of subdialects, such as Franz Lisp, which was developed at the University of California

at Berkeley, and Zetalisp (Moon and Weinreb 1981), which was based on a special-

purpose processor designed at the Artificial Intelligence Laboratory to run Lisp

very efficiently. e Lisp dialect used in this book, called Scheme (Steele and Sussman

1975), was invented in 1975 by Guy Lewis Steele Jr. and Gerald Jay Sussman of the

Artificial Intelligence Laboratory and later reimplemented for instructional use at .

Scheme became an standard in 1990 (IEEE 1990). e Common Lisp dialect (Steele

1982, Steele 1990) was developed by the Lisp community to combine features from the

earlier Lisp dialects to make an industrial standard for Lisp. Common Lisp became an

 standard in 1994 (ANSI 1994).

4

Lisp compilers have been developed that translate programs into ma

chine code that can perform numerical computations reasonably effi-

ciently. And for special applications, Lisp has been used with great ef-

fectiveness.3 Although Lisp has not yet overcome its old reputation as

hopelessly inefficient, Lisp is now used in many applications where ef-

ficiency is not the central concern. For example, Lisp has become a lan-

guage of choice for operating-system shell languages and for extension

languages for editors and computer-aided design systems.

If Lisp is not a mainstream language, why are we using it as the

framework for our discussion of programming? Because the language

possessesuniquefeaturesthatmakeit anexcellent mediumforstudying

important programming constructs and data structures and for relating

themtothelinguisticfeaturesthatsupportthem.e mostsignificantofthese featuresisthe fact that Lispdescriptionsof processes, called proce-

dures,canthemselvesberepresentedandmanipulatedasLispdata.e

importanceofthisisthatthereare powerfulprogram-designtechniques

thatrelyontheabilitytoblurthetraditionaldistinctionbetween“pas-

sive” data and “active” processes. As we shall discover, Lisp’s flexibility

in handling procedures as data makes it one of the most convenient

languages in existence for exploring these techniques. e ability to

represent procedures as data also makes Lisp an excellent language for

writing programs that must manipulate other programs as data, such as

the interpreters and compilers that support computer languages. Above

and beyond these considerations, programming in Lisp is great fun.

3One such special application was a breakthrough computation of scientific

importance—an integration of the motion of the Solar System that extended previous

results by nearly two orders of magnitude, and demonstrated that the dynamics of the

Solar System is chaotic. is computation was made possible by new integration al-

gorithms, a special-purpose compiler, and a special-purpose computer all implemented

with the aid ofsoware tools wrien in Lisp (Abelson et al. 1992; Sussman and Wisdom

1992).

5

1.1 The Elements of Programming

A powerful programming language is more than just a means for in-

structing a computer to perform tasks. e language also serves as a

framework within which we organize our ideas about processes. us,

when we describe a language, we should pay particular aention to the

means that the language provides for combining simple ideas to form

more complex ideas. Every powerful language has three mechanisms

for accomplishing this:

• primitive expressions, which represent the simplest entities the

language is concerned with,

• means of combination, by which compound elements are built

from simpler ones, and

• meansofabstraction,bywhichcompoundelementscanbenamed

and manipulated as units.

In programming, we deal with two kinds of elements: procedures and

data. (Later we will discover that they are really not so distinct.) Infor-

mally, data is “stuff” that we want to manipulate, and procedures are

descriptions of the rules for manipulating the data. us, any powerful

programming language should be able to describe primitive data and

primitive procedures and should have methods for combining and ab-

stracting procedures and data.

In this chapter we will deal only with simple numerical data so that

we can focus on the rules for building procedures.4 In later chapters we

4e characterization of numbers as “simple data” is a barefaced bluff. In fact, the

treatment of numbers is one of the trickiest and most confusing aspects of any pro

6

willsee thatthese same rulesallowusto build procedurestomanipulate

compound data as well.

1.1.1 Expressions

One easy way to get started at programming is to examine some typical

interactions with an interpreter for the Scheme dialect of Lisp. Imagine

that you are siing at a computer terminal. You type an expression, and

the interpreter responds by displaying the result of its evaluating that

expression.

One kind of primitive expressionyou might type isa number. (More

precisely, the expression that you type consists of the numerals that

represent the number in base 10.) If you present Lisp with a number

486

the interpreter will respond by printing5

486

gramming language. Some typical issues involved are these: Some computer systems

distinguish integers, such as 2, from real numbers, such as 2.71. Is the real number 2.00

different from the integer 2? Are the arithmetic operations used for integers the same

as the operations used for real numbers? Does 6 divided by 2 produce 3, or 3.0? How

large a number can we represent? How many decimal places of accuracy can we repre-

sent? Is the range of integers the same as the range of real numbers? Above and beyond

these questions, of course, lies a collection of issues concerning roundoff and trunca-

tion errors—the entire science of numerical analysis. Since our focus in this book is on

large-scale programdesign rather than on numerical techniques, weare going to ignore

these problems. e numerical examples in this chapter will exhibit the usual roundoff

behavior that one observes when using arithmetic operations that preserve a limited

number of decimal places of accuracy in noninteger operations.

5roughout this book, when we wish to emphasize the distinction between the

input typed by the user and the response printed by the interpreter, we will show the

laer in slanted characters.

7

Expressions representing numbers may be combined with an expres-

sion representing a primitive procedure (such as + or *) to form a com-

pound expression that represents the application of the procedure to

those numbers. For example:

(+ 137 349)

486

(- 1000 334)

666

(* 5 99)

495

(/ 10 5)

2

(+ 2.7 10)

12.7

Expressions such as these, formed by delimiting a list of expressions

within parentheses in order to denote procedure application, are called

combinations. e lemost element in the list is called the operator, and

the other elements are called operands. e value of a combination is

obtained by applying the procedure specified by the operator to the ar

guments that are the values of the operands.

e convention of placing the operator to the le of the operands

is known as prefix notation, and it may be somewhat confusing at first

because it departs significantly from the customary mathematical con-

vention. Prefix notation has several advantages, however. One of them

is that it can accommodate procedures that may take an arbitrary num-

ber of arguments, as in the following examples:

8

(+ 21 35 12 7)

75

(* 25 4 12)

1200

No ambiguity can arise, because the operator is always the lemost el-

ement and the entire combination is delimited by the parentheses.

Asecond advantageofprefix notationisthat it extendsinastraight-

forward way to allow combinations to be nested, that is, to have combi-

nations whose elements are themselves combinations:

(+ (* 3 5) (-10 6))

19

ere is no limit (in principle) to the depth of such nesting and to the

overall complexity of the expressions that the Lisp interpreter can eval-

uate. It is we humans who get confused by still relatively simple expres-

sions such as

(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (-10 7) 6))

which the interpreter would readily evaluate to be 57. We can help our-

selves by writing such an expression in the form

(+ (* 3

(+ (* 2 4)

(+ 3 5)))

(+ (- 10 7)

6))

following a formaing convention known as prey-printing, in which

each long combination is wrien so that the operands are aligned ver-

tically. e resulting indentations display clearly the structure of the

9

expression.6

Even with complex expressions, the interpreter always operates in

the same basic cycle: It reads an expressionfrom the terminal, evaluates

the expression, and prints the result. is mode of operation is oen

expressed by saying that the interpreter runs in a read-eval-print loop.

Observe in particular that it is not necessary to explicitly instruct the

interpreter to print the value of the expression.7

1.1.2 Naming and the Environment

A critical aspect of a programming language is the means it provides

forusing names torefer to computational objects. We say that the name

identifies a variable whose value is the object.

In the Scheme dialect of Lisp, we name things with define. Typing

(define size 2)

causes the interpreter to associate the value 2 with the name size.8

Once the name size has been associated with the number 2, we can

refer to the value 2 by name:

size

2

6Lisp systems typically provide features to aid the user in formaing expressions.

Two especially useful features are one that automatically indents to the proper prey-

print position whenever a new line is started and one that highlights the matching le

parenthesis whenever a right parenthesis is typed.

7Lisp obeys the convention that every expression has a value. is convention, to-

gether with the old reputation of Lisp as an inefficient language, is the source of the

quip by Alan Perlis(paraphrasing Oscar Wilde) that “Lisp programmers know thevalue

of everything but the cost of nothing.”

8In this book, we do not show the interpreter’s response to evaluating definitions,

since this is highly implementation-dependent.

10

(* 5 size)

10

Here are further examples of the use of define:

(define pi 3.14159)

(define radius 10)

(* pi (* radius radius))

314.159

(define circumference (* 2 pi radius))

circumference

62.8318

Define is our language’s simplest means of abstraction, for it allows

us to use simple names to refer to the results of compound operations,

such as the circumference computed above. In general, computational

objects may have very complex structures, and it would be extremely

inconvenient to have to remember and repeat their details each time we

want to use them. Indeed, complex programs are constructed by build-

ing, step by step, computational objects of increasing complexity. e

interpreter makes this step-by-step program construction particularly

convenient because name-object associations can be created incremen-

tally in successive interactions. isfeature encouragesthe incremental

development and testing of programs and is largely responsible for the

fact that a Lisp program usually consists ofa large number of relatively

simple procedures.

Itshouldbe clear that the possibilityof associatingvalueswith sym-

bols and later retrieving them means that the interpreter must maintain

some sort of memory that keeps track of the name-object pairs. is

memory is called the environment (more precisely the global environ-

ment, since we will see later that a computation may involve a number

11

of different environments).9

1.1.3 Evaluating Combinations

One of our goals in this chapter is to isolate issues about thinking pro

cedurally. As a case in point, let us consider that, in evaluating combi-

nations, the interpreter is itself following a procedure.

To evaluate a combination, do the following:

1. Evaluate the subexpressions of the combination.

2. Apply the procedure that is the value of the lemost subexpres-

sion (the operator) to the arguments that are the values of the

other subexpressions (the operands).

Even this simple rule illustrates some important points about processes

in general. First, observe that the first step dictates that in order to ac-

complish the evaluation process for a combination we must first per-

form the evaluation process on each element of the combination. us,

the evaluation rule is recursive in nature; that is, it includes, as one of

its steps, the need to invoke the rule itself.10

Notice how succinctly the idea of recursion can be used to express

what, in the case of a deeply nested combination, would otherwise be

viewed as a rather complicated process. For example, evaluating

9Chapter 3 will show that this notion of environment is crucial, both for under-

standing how the interpreter works and for implementing interpreters.

10It may seem strange that the evaluation rule says, as part of the first step, that

we should evaluate the lemost element of a combination, since at this point that can

only be an operator such as + or * representing a built-in primitive procedure such as

addition or multiplication. We will see later that it is useful to be able to work with

combinations whose operators are themselves compound expressions.

12

390

1526*

242 753

+

64

+

*

Figure 1.1: Tree representation, showing the value of each

subcombination.

(* (+2 (*46))

(+3 5 7))

requires that the evaluation rule be applied to four different combina-

tions. We canobtaina picture ofthis processby representing the combi-

nation in the form ofa tree, as shown in Figure 1.1. Each combination is

represented by a node with branches corresponding to the operator and

the operands of the combination stemming from it. e terminal nodes

(that is, nodes with no branches stemming from them) represent either

operators or numbers. Viewing evaluation in terms of the tree, we can

imagine that the values ofthe operands percolate upward, starting from

the terminal nodes and then combining at higher and higher levels. In

general, we shall see that recursion is a very powerful technique for

dealing with hierarchical, treelike objects. In fact, the “percolate values

upward” form of the evaluation rule is an example of a general kind of

process known as tree accumulation.

Next,observe thatthe repeated applicationofthe first stepbrings us

to the point where we need to evaluate, not combinations, but primitive

expressions such as numerals, built-in operators, or other names. We

13

take care of the primitive cases by stipulating that

• the values of numerals are the numbers that they name,

• the values of built-in operators are the machine instruction se-

quences that carry out the corresponding operations, and

• the values of other names are the objects associated with those

names in the environment.

We may regard the second rule as a special case of the third one by stip-

ulatingthat symbolssuch as + and * are alsoincluded in the globalenvi-ronment,andare associatedwith the sequencesofmachine instructions

that are their “values.” e key point to notice is the role of the environ-

ment in determining the meaning of the symbols in expressions. In an

interactive language such asLisp, it ismeaningless to speak ofthe value

of an expression such as (+ x 1) without specifying any information

about the environment that would provide a meaning for the symbol

x (or even for the symbol +). As we shall see in Chapter 3, the general

notion of the environment as providing a context in which evaluation

takesplace will play an important role in our understanding of program

execution.

Notice that the evaluation rule given above does not handle defini-

tions. For instance, evaluating (define x 3) does not apply define to

two arguments, one of which is the value of the symbol x and the other

ofwhich is 3, since the purpose ofthe define is precisely to associate x

with a value. (at is, (define x 3) is not a combination.)

Suchexceptionstothegeneralevaluationrulearecalledspecialforms.

Define is the only example of a special form that we have seen so far,

but we will meet others shortly. Each special form has its own evalu-

ation rule. e various kinds of expressions (each with its associated

14

evaluation rule) constitute the syntax of the programming language. In

comparison with most other programming languages, Lisp has a very

simple syntax; that is, the evaluation rule for expressions can be de-

scribed by a simple general rule together with specialized rules for a

small number of special forms.11

1.1.4 Compound Procedures

We have identified in Lispsome ofthe elements that must appear in any

powerful programming language:

• Numbers and arithmetic operations are primitive data and proce-

dures.

• Nesting of combinations provides a means of combining opera-

tions.

• Definitions that associate names with values provide a limited

means of abstraction.

Now we will learn about procedure definitions, a much more powerful

abstraction technique by which a compound operation can be given a

name and then referred to as a unit.

11Special
syntactic forms that are simply convenient alternative surface structures

for things that can be wrien in more uniform ways are sometimes called syntactic

sugar, to use a phrase coined by Peter Landin. In comparison with users of other lan-

guages, Lisp programmers, as a rule, are less concerned with maers of syntax. (By

contrast, examine any Pascal manual and notice how much of it is devoted to descrip-

tions of syntax.) is disdain for syntax is due partly to the flexibility of Lisp, which

makes it easy to change surface syntax, and partly to the observation that many “con-

venient” syntactic constructs, which make the language less uniform, end up causing

more trouble than they are worth when programs become large and complex. In the

words of Alan Perlis, “Syntactic sugar causes cancer of the semicolon.”

15

We begin by examining how to express the idea of “squaring.” We

might say, “To square something, multiply it by itself.” is is expressed

in our language as

(define (square x) (* x x))

We can understand this in the following way:

(define (square x) (* x x))

| | | | | |

To square something, multiply it by itself.

We have here a compound procedure, which has been given the name

square. e procedure represents the operation of multiplying some

thing by itself. e thing to be multiplied is given a local name, x, which

playsthesamerolethatapronounplaysinnaturallanguage.Evaluating

the definition creates this compound procedure and associates it with

the name square.12

e general form of a procedure definition is

(define (⟨name⟩ ⟨formal parameters⟩)

⟨body⟩)

e ⟨name⟩is asymbol to be associated with the procedure definition in

the environment.13 e ⟨formalparameters⟩ are the names used within

the body of the procedure to refer to the corresponding arguments of

the procedure. e ⟨body⟩ is an expression that will yield the value of

12Observe that there are two different operations being combined here: we are creat-

ingtheprocedure, andwearegivingitthename square.Itispossible,indeedimportant,

to be able to separate these two notions—to create procedures without naming them,

and to give names to procedures that have already been created. We will see how to do

this in Section 1.3.2.

13roughout this book, we will describe the general syntax of expressions by using

italic symbols delimited by angle brackets—e.g., ⟨name⟩—to denote the “slots” in the

expression to be filled in when such an expression is actually used.

16

the procedure application when the formal parameters are replaced by

the actual arguments to which the procedure is applied.14 e ⟨name⟩

andthe⟨formalparameters⟩aregroupedwithinparentheses,justasthey

would be in an actual call to the procedure being defined.

Having defined square, we can now use it:

(square 21)

441

(square (+ 2 5))

49

(square (square 3))

81

Wecanalsouse square asabuildingblock indefiningotherprocedures.

For example, x2 +y2 can be expressed as

(+ (square x) (square y))

We can easily define a procedure sum-of-squares that, given any two

numbers as arguments, produces the sum of their squares:

(define (sum-of-squares x y)

(+ (square x) (square y)))

(sum-of-squares 3 4)

25

Now we can use sum-of-squares as a building block in constructing

further procedures:

(define (f a)

(sum-of-squares (+ a 1) (* a 2)))

(f 5)

136

14More generally, the body ofthe procedure can be a sequence ofexpressions. In this

case, the interpreter evaluates each expression in the sequence in turn and returns the

value of the final expression as the value of the procedure application.

17

Compound procedures are used in exactly the same way as primitive

procedures. Indeed, one could not tell by looking at the definition of

sum-of-squares given above whether square was built into the inter-

preter, like + and *, or defined as a compound procedure.

1.1.5 The Substitution Model for Procedure Application

To evaluate a combination whose operator names a compound proce-

dure, the interpreter follows much the same process as for combina-

tions whose operators name primitive procedures, which we described

in Section 1.1.3. at is, the interpreter evaluates the elements of the

combination and applies the procedure (which is the value of the oper-

ator of the combination) to the arguments (which are the values of the

operands of the combination).

We can assume that the mechanism for applying primitive proce-

dures to arguments is built into the interpreter. For compound proce-

dures, the application process is as follows:

To apply acompound procedure to arguments, evaluate the

body ofthe procedure with each formal parameter replaced

by the corresponding argument.

To illustrate this process, let’s evaluate the combination

(f 5)

where f isthe procedure definedinSection1.1.4.We beginby retrieving

the body of f:

(sum-of-squares (+ a 1) (* a 2))

en we replace the formal parameter a by the argument 5:

(sum-of-squares (+ 5 1) (* 5 2))

18

us the problem reduces to the evaluation of a combination with two

operands and an operator sum-of-squares. Evaluating this combina-

tion involves three subproblems. We must evaluate the operator to get

the procedure to be applied, and we must evaluate the operands to get

the arguments. Now (+ 5 1) produces 6 and (* 5 2) produces 10, so

we must apply the sum-of-squares procedure to 6 and 10. ese values

are substituted for the formal parameters x and y in the body of sum-

of-squares, reducing the expression to

(+ (square 6) (square 10))

If we use the definition of square, this reduces to

(+ (* 6 6)(*1010))

which reduces by multiplication to

(+ 36 100)

and finally to

136

e process we have just described is called the substitution model for

procedure application. It can be taken as a model that determines the

“meaning” of procedure application, insofar as the procedures in this

chapter are concerned. However, there are two points that should be

stressed:

• e purpose of the substitution is to help us think about proce-

dure application, not to provide a description of how the inter-

preter really works. Typical interpreters do not evaluate proce-

dure applications by manipulating the text ofa procedure to sub-

stitute values for the formal parameters. In practice, the “substi-

tution” is accomplished by using a local environment for the for-

mal parameters. We will discuss this more fully in Chapter 3 and

19

Chapter4 whenweexamine theimplementationof aninterpreter

in detail.

• Over the course of this book, we will present a sequence of in-

creasingly elaborate models of how interpreters work, culminat-

ing with a complete implementation of an interpreter and com-

piler in Chapter 5. e substitutionmodel is only the first ofthese

models—a way to get started thinking formally about the evalu-

ation process. In general, when modeling phenomena in science

and engineering, we begin with simplified, incomplete models.

As we examine things in greater detail, these simple models be-

come inadequate and must be replaced by more refined models.

e substitution model is no exception. In particular, when we

address in Chapter 3 the use of procedures with “mutable data,”

we will see that the substitution model breaks down and must be

replaced by amore complicatedmodelofprocedure application.15

Applicative order versus normal order

According to the description of evaluation given in Section 1.1.3, the

interpreter first evaluates the operator and operands and then applies

the resulting procedure to the resulting arguments. is is not the only

way to perform evaluation. An alternative evaluation model would not

evaluate the operands until their values were needed. Instead it would

15Despite the simplicity of the substitution idea, it turns out to be surprisingly com-

plicated to give a rigorous mathematical definition of the substitution process. e

problem arises from the possibility of confusion between the names used for the formal

parameters of a procedure and the (possibly identical) names used in the expressions to

which the procedure may be applied. Indeed, there is a long history of erroneous def-

initions of substitution in the literature of logic and programming semantics. See Stoy

1977 for a careful discussion of substitution.

20

first substitute operand expressions for parameters until it obtained an

expression involving only primitive operators, and would then perform

the evaluation. If we used this method, the evaluation of (f 5) would

proceed according to the sequence of expansions

(sum-of-squares (+ 5 1) (* 5 2))

(+ (square (+ 5 1)) (square (* 5 2)))

(+ (* (+51) (+51)) (* (*52) (*52)))

followed by the reductions

(+ (* 6 6) (*1010))

(+ 36 100)

136

is gives the same answer as our previous evaluation model, but the

process is different. In particular, the evaluations of (+ 5 1) and (* 5

2) are each performed twice here, corresponding to the reductionof the

expression (* x x) with x replaced respectively by (+ 5 1) and (* 5

2).

is alternative “fully expand and then reduce” evaluation method

is known as normal-order evaluation, in contrast to the “evaluate the

arguments and then apply” method that the interpreter actually uses,

which is called applicative-order evaluation. It can be shown that, for

procedure applications that can be modeled using substitution (includ-

ing all the procedures in the first two chapters of this book) and that

yield legitimate values, normal-order and applicative-order evaluation

produce the same value. (See Exercise 1.5 for an instance of an “illegit-

imate” value where normal-order and applicative-order evaluation do

not give the same result.)

Lisp uses applicative-order evaluation, partly because of the addi-

tional efficiency obtained from avoiding multiple evaluations of expres-

sionssuchasthoseillustratedwith (+ 5 1)and (* 5 2)aboveand,more

21

significantly,becausenormal-orderevaluationbecomesmuchmorecom-

plicated to deal with when we leave the realm of procedures that can be

modeled by substitution. On the other hand, normal-order evaluation

can be an extremely valuable tool, and we will investigate some of its

implications in Chapter 3 and Chapter 4.16

1.1.6 Conditional Expressions and Predicates

e expressive power of the class of procedures that we can define at

this point is very limited, because we have no way to make tests and

to perform different operations depending on the result of a test. For

instance,wecannot defineaprocedurethatcomputestheabsolutevalue

of a numberby testingwhether the numberispositive, negative, orzero

and taking different actions in the different cases according to the rule

|x| =

x if x > 0,

0 if x = 0,

−x if x < 0.

is construct is called a case analysis, and there is a special form in

Lisp for notating such a case analysis. It is called cond (which stands for

“conditional”), and it is used as follows:

(define (abs x)

(cond ((> x 0) x)

((= x 0) 0)

((< x 0) (- x))))

e general form ofa conditional expression is

16In
Chapter 3 we will introduce stream processing, which is a way of handling appar-

ently “infinite” data structures by incorporating a limited form of normal-order evalu-

ation. In Section 4.2 we will modify the Scheme interpreter to produce a normal-order

variantofScheme.

22

(cond (⟨p1⟩ ⟨e1⟩)

(⟨p2⟩ ⟨e2⟩)

...

(⟨pn⟩ ⟨en⟩))

consisting of the symbol
cond followed by parenthesized pairs of ex-

pressions

(⟨p⟩ ⟨e⟩)

called clauses. e first expression in each pair is a predicate—that is, an

expression whose value is interpreted as either true or false.17

Conditional expressions are evaluated as follows. e predicate ⟨p1⟩

is evaluated first. If its value is false, then ⟨p2⟩ is evaluated. If ⟨p2⟩’s

value is also false, then ⟨p3⟩ is evaluated. is process continues until

a predicate is found whose value is true, in which case the interpreter

returns the value of the corresponding consequent expression ⟨e⟩ of the

clause as the value of the conditional expression. If none of the ⟨p⟩’s is

found to be true, the value of the cond is undefined.

e word predicate is used for procedures that return true or false,

as well as for expressions that evaluate to true or false. e absolute-

value procedure abs makes use of the primitive predicates >, <, and =.18

ese take twonumbersasargumentsandtestwhetherthefirst number

is, respectively, greater than, less than, or equal to the second number,

returning true or false accordingly.

Another way to write the absolute-value procedure is

17“Interpreted as either true or false” means this: In Scheme, there are two distin-

guishedvaluesthataredenotedby theconstants#tand #f.When theinterpreterchecksa predicate’s value, it interprets #f as false. Any other value is treated as true. (us,

providing #t is logically unnecessary, but it is convenient.) In this book we will use

names true and false, which are associated with the values #t and #f respectively.

18Abs also uses the “minus” operator -, which, when used with a single operand, as

in (- x), indicates negation.

23

(define (abs x)

(cond ((< x 0) (- x))

(else x)))

which could be expressed in English as “Ifx is less than zero return −x;

otherwise returnx.” Else is aspecial symbol that canbe used inplace of

the ⟨p⟩ in the final clause ofa cond. is causes the cond to return as its

value the value of the corresponding ⟨e⟩ whenever all previous clauses

have been bypassed. In fact, any expression that always evaluates to a

true value could be used as the ⟨p⟩ here.

Here is yet another way to write the absolute-value procedure:

(define (abs x)

(if (< x 0)

(- x)

x))

is uses the special form if, a restricted type of conditional that can

be used when there are precisely two cases in the case analysis. e

general form of an if expression is

(if ⟨predicate⟩ ⟨consequent⟩ ⟨alternative⟩)

To evaluate an if expression, the interpreter starts by evaluating the

⟨predicate⟩ part of the expression. If the ⟨predicate⟩ evaluates to a true

value, the interpreter then evaluates the ⟨consequent⟩ and returns its

value. Otherwise it evaluates the ⟨alternative⟩ and returns its value.19

In addition to primitive predicates such as <, =, and >, there are log-

ical composition operations, which enable us to construct compound

19
Aminordifference between if and cond is thatthe⟨e⟩partofeach cond clause may

be a sequence of expressions. If the corresponding ⟨p⟩ is found to be true, the expres-

sions ⟨e⟩ are evaluated in sequence and the value ofthe final expression in the sequence

is returned as the value of the cond. In an if expression, however, the ⟨consequent⟩ and

⟨alternative⟩ must be single expressions.

24

predicates. e three most frequently used are these:

• (and ⟨e1⟩ ... ⟨en⟩)

e interpreter evaluatesthe expressions ⟨e⟩one at a time, in le-

to-right order. If any ⟨e⟩ evaluates to false, the value of the and

expression is false, and the rest of the ⟨e⟩’s are not evaluated. If

all ⟨e⟩’s evaluate to true values, the value of the and expression is

the value of the last one.

• (or ⟨e1⟩ ... ⟨en⟩)

e interpreter evaluatesthe expressions ⟨e⟩one at a time, in le-

to-right order. If any ⟨e⟩ evaluates to a true value, that value is

returned as the value of the or expression, and the rest of the

⟨e⟩’s are not evaluated. If all ⟨e⟩’s evaluate to false, the value of

the or expression is false.

• (not ⟨e⟩)

e value of a not expression is true when the expression ⟨e⟩

evaluates to false, and false otherwise.

Notice that and and or are special forms, not procedures, because the

subexpressions are not necessarily all evaluated. Not is an ordinary pro-

cedure.

As an example of how these are used, the condition that a number

x be in the range 5 < x < 10 may be expressed as

(and (> x 5) (< x10))

Asanotherexample, wecandefine apredicate to test whetheronenum-ber is greater than or equal to another as

(define (>= x y) (or (> x y) (= x y)))

25

or alternatively as

(define (>= x y) (not (< x y)))

Exercise 1.1: Below is a sequence of expressions. What is

the result printed by the interpreter in response to each ex-

pression? Assume that the sequence is to be evaluated in

the order in which it is presented.

10

(+ 5 3 4)

(-91)

(/ 6 2)

(+ (* 2 4) (- 4 6))

(define a 3)

(define b (+ a 1))

(+ a b (* a b))

(= a b)

(if (and (> b a) (< b (* a b)))

b

a)

(cond ((= a 4) 6)

((= b 4) (+ 6 7 a))

(else 25))

(+ 2 (if (> b a) b a))

(* (cond ((> a b) a)

((< a b) b)

(else -1))

(+ a1))

26

Exercise1.2: Translate the followingexpressionintoprefix

form:
5+4+(2−(3−(6+45)))

3(6 − 2)(2 − 7)
.

Exercise 1.3: Define a procedure that takes three numbers

as arguments and returns the sum ofthe squares of the two

larger numbers.

Exercise 1.4: Observe that our model of evaluation allows

for combinations whose operators are compound expres-

sions. Use this observation to describe the behavior of the

following procedure:

(define (a-plus-abs-b a b)

((if (> b 0) + -) a b))

Exercise1.5:BenBitdiddlehasinventedatesttodetermine

whethertheinterpreterheisfacedwith isusingapplicative-

orderevaluationornormal-orderevaluation.Hedefinesthe

following two procedures:

(define (p) (p))

(define (test x y)

(if (= x 0) 0 y))

en he evaluates the expression

(test 0 (p))

What behavior will Ben observe with an interpreter that

uses applicative-order evaluation? What behavior will he

observe with an interpreter that uses normal-order evalu-

ation? Explain your answer. (Assume that the evaluation

27

rule for the special form if is the same whether the in-

terpreter is using normal or applicative order: e predi-

cate expression is evaluated first, and the result determines

whether to evaluate the consequent or the alternative ex-

pression.)

1.1.7 Example: Square Roots by Newton’s Method

Procedures, as introduced above, are much like ordinary mathematical

functions. ey specify a value that is determined by one or more pa-

rameters. But there is an important difference between mathematical

functions and computer procedures. Procedures must be effective.

As a case in point, consider the problem of computing square roots.

We can define the square-root function as

√

x = the y such that y≥0 and y2=x.

is describes a perfectly legitimate mathematical function. We could

use it to recognize whether one number is the square root of another,

or to derive facts about square roots in general. On the other hand, the

definition does not describe a procedure. Indeed, it tells us almost noth-

ing about how to actually find the square root of a given number. It will

not help maers to rephrase this definition in pseudo-Lisp:

(define (sqrt x)

(the y (and (>= y 0)

(= (square y) x))))

is only begs the question.

e contrast between function and procedure is a reflection of the

generaldistinctionbetweendescribing propertiesof things and describ-

ing how to do things, or, as it is sometimes referred to, the distinction

28

between declarative knowledge and imperative knowledge. In mathe-

matics we are usually concerned with declarative (what is)descriptions,

whereas in computer science we are usually concerned with imperative

(how to) descriptions.20

How does one compute square roots? e most common way is to

use Newton’s method of successive approximations, which says that

whenever wehave aguessy for the value ofthe square root of anumber

x,wecanperformasimplemanipulationtogetabeerguess(onecloser

to the actual square root) by averaging y with x/y.21 For example, we

can compute the square root of 2 as follows. Suppose our initial guess

is 1:

Guess Quotient Average

1 (2/1) = 2 ((2 +1)/2) =1.5

1.5 (2/1.5) = 1.3333 ((1.3333 + 1.5)/2) = 1.4167

1.4167 (2/1.4167) = 1.4118 ((1.4167 + 1.4118)/2) = 1.4142

1.4142

20Declarative and imperative descriptions are intimately related, as indeed are math-

ematics and computer science. For instance, to say that the answer produced by a pro-

gram is “correct” is to make a declarative statement about the program. ere is a large

amount of research aimed at establishing techniques for proving that programs are

correct, and much of the technical difficulty of this subject has to do with negotiating

the transition between imperative statements (from which programs are constructed)

and declarative statements (which can be used to deduce things). In a related vein, an

important current area in programming-language design is the exploration of so-called

very high-level languages, in which one actually programs in terms ofdeclarative state-

ments. e idea is to make interpreters sophisticated enough so that, given “what is”

knowledge specified by the programmer, they can generate “how to” knowledge auto-

matically. is cannot be done in general, but there are important areas where progress

has been made. We shall revisit this idea in Chapter 4.

21is square-root algorithm is actually a special case of Newton’s method, which is

a general technique for finding roots of equations. e square-root algorithm itself was

developed by Heron of Alexandria in the first century .. We will see how to express

the general Newton’s method as a Lisp procedure in Section 1.3.4.

29

Continuing this process, we obtain beer and beer approximations to

the square root.

Now let’s formalize the process in terms of procedures. We start

with a value for the radicand (the number whose square root we are

tryingto compute)anda value for the guess. If theguess isgoodenough

for our purposes, we are done; if not, we must repeat the process with

an improved guess. We write this basic strategy as a procedure:

(define (sqrt-iter guess x)

(if (good-enough? guess x)

guess

(sqrt-iter (improve guess x) x)))

A guess is improved by averaging it with the quotient of the radicand

and the old guess:

(define (improve guess x)

(average guess (/ x guess)))

where

(define (average x y)

(/ (+ x y) 2))

We also have to say what we mean by “good enough.” e following

will do for illustration, but it is not really a very good test. (See Exercise

1.7.) e idea is to improve the answer until it is close enough so that its

square differs from the radicand by less than a predetermined tolerance

(here 0.001):22

(define (good-enough? guess x)

(< (abs (- (square guess) x)) 0.001))

22We will usually give predicates names ending with question marks, to help us re-

member that they are predicates. is is just a stylistic convention. As far as the inter-

preter is concerned, the question mark is just an ordinary character.

30

Finally, we need a way to get started. For instance, we can always guess

that the square root of any number is 1:23

(define (sqrt x)

(sqrt-iter 1.0 x))

If we type these definitions to the interpreter, we can use sqrt just as

we can use any procedure:

(sqrt 9)

3.00009155413138

(sqrt (+ 100 37))

11.704699917758145

(sqrt (+ (sqrt 2) (sqrt 3)))

1.7739279023207892

(square (sqrt 1000))

1000.000369924366

e sqrt program also illustrates that the simple procedural language

we have introduced so far is sufficient for writing any purely numeri-

cal program that one could write in, say, C or Pascal. is might seem

surprising, since we have not included in our language any iterative

23Observe that we express our initial guess as 1.0 rather than 1. is would not make

any difference in many Lisp implementations. Scheme, however, distinguishes be-

tween exact integers and decimal values, and dividing two integers produces a rational

number rather than a decimal. For example, dividing 10 by 6 yields 5/3, while dividing

10.0 by 6.0 yields 1.6666666666666667. (We will learn how to implement arithmetic on

rationalnumbersin Section2.1.1.) Ifwestartwith an initialguessof1 in oursquare-root

program, and x is an exact integer, all subsequent values produced in the square-root

computation will be rational numbers rather than decimals. Mixed operations on ratio-

nal numbers and decimals always yield decimals, so starting with an initial guess of 1.0

forces all subsequent values to be decimals.

31

(looping) constructs that direct the computer to do something over and

over again. Sqrt-iter, on the other hand, demonstrates how iteration

can be accomplished using no special construct other than the ordinary

ability to call a procedure.24

Exercise 1.6: Alyssa P. Hacker doesn’t see why if needs to

be provided as a special form. “Why can’t Ijust define it as

anordinary procedureinterms of cond?” she asks. Alyssa’s

friend Eva Lu Ator claims this can indeed be done, and she

defines a new version of if:

(define (new-if predicate then-clause else-clause)

(cond (predicate then-clause)

(else else-clause)))

Eva demonstrates the program for Alyssa:

(new-if (= 2 3) 0 5)

5

(new-if (= 1 1) 0 5)

0

Delighted, Alyssa uses new-if to rewrite the square-root

program:

(define (sqrt-iter guess x)

(new-if (good-enough? guess x)

guess

(sqrt-iter (improve guess x) x)))

WhathappenswhenAlyssaaemptstousethistocompute

square roots? Explain.

24Readers who are worried about the efficiency issues involved in using procedure

calls to implement iteration should note the remarks on “tail recursion” in Section 1.2.1.

32

Exercise 1.7: e good-enough? test used in computing

square rootswill not bevery effective forfindingthesquare

roots of very small numbers. Also, in real computers, arith-

metic operations are almost always performed with lim

ited precision.ismakesourtest inadequate forvery large

numbers.Explainthesestatements,withexamplesshowing

how the test fails for small and large numbers. An alterna-

tive strategy for implementing good-enough? is to watch

how guess changes from one iteration to the next and to

stop when the change is a very small fraction of the guess.

Design a square-root procedure that uses this kind of end

test. Does this work beer for small and large numbers?

Exercise 1.8: Newton’s method for cube roots is based on

the fact that if y is an approximation to the cube root of x,

then a beer approximation is given by the value

x/y2 +2y

3 .

Use this formula to implement a cube-root procedure anal-

ogoustothesquare-rootprocedure.(InSection1.3.4wewill

see how to implement Newton’s method in general as an

abstractionof these square-root and cube-root procedures.)

1.1.8 Procedures as Black-Box Abstractions

Sqrtisourfirstexampleofaprocessdefinedbyasetofmutuallydefined

procedures. Notice that the definition of sqrt-iter is recursive; that is,

the procedure is defined in terms of itself. e idea of being able to

define a procedure in terms of itself may be disturbing; it may seem

33

sqrt

|

sqrt-iter

/ \

good-enough improve

/ \ \

square abs average

Figure1.2:Proceduraldecompositionofthe sqrtprogram.

unclear how such a “circular” definition could make sense at all, much

less specify a well-defined process to be carried out by a computer. is

will be addressed more carefully in Section 1.2. But first let’s consider

some other important points illustrated by the sqrt example.

Observe that the problem of computing square roots breaks up nat

urally into a number of subproblems: how to tell whether a guess is

good enough, how to improve a guess, and so on. Each of these tasks is

accomplished by a separate procedure. e entire sqrt program can be

viewed as a cluster of procedures (shown in Figure 1.2) that mirrors the

decomposition of the problem into subproblems.

e importance of this decomposition strategy is not simply that

one is dividing the program into parts. Aer all, we could take any large

program and divide it into parts—the first ten lines, the next ten lines,

the next ten lines, and so on. Rather, it is crucial that each procedure ac-

complishes an identifiable task that can be used as a module in defining

other procedures. For example, when we define the good-enough? pro-

cedure in terms of square, we are able to regard the square procedure

as a “black box.” We are not at that moment concerned with how the

procedure computes its result, only with the fact that it computes the

square. e details of how the square is computed can be suppressed,

to be considered at a later time. Indeed, as far as the good-enough? pro

34

cedure is concerned, square is not quite a procedure but rather an ab-

straction of a procedure, a so-called procedural abstraction. At this level

of abstraction, any procedure that computes the square is equally good.

us, considering only the values they return, the following two

procedures for squaring a number should be indistinguishable. Each

takes a numerical argument and produces the square of that number

as the value.25

(define (square x) (* x x))

(define (square x) (exp (double (log x))))

(define (double x) (+ x x))

So a procedure definition should be able to suppress detail. e users

of the procedure may not have wrien the procedure themselves, but

may have obtained it from another programmer as a black box. A user

should not need to know how the procedure is implemented in order to

use it.

Local names

One detail of a procedure’s implementation that should not maer to

the user of the procedure is the implementer’s choice of names for the

procedure’s formal parameters. us, the following procedures should

not be distinguishable:

(define (square x) (* x x))

(define (square y) (* y y))

25It is not even clear which of these procedures is a more efficient implementation.

is depends upon the hardware available. ere are machines for which the “obvious”

implementation is the less efficient one. Consider a machine that has extensive tables

of logarithms and antilogarithms stored in a very efficient manner.

35

is principle—that the meaning of a procedure should be independent

of the parameter names used by its author—seems on the surface to

be self-evident, but its consequences are profound. e simplest conse-

quence is that the parameter names ofa procedure must be local to the

body of the procedure. For example, we used square in the definition

of good-enough? in our square-root procedure:

(define (good-enough? guess x)

(< (abs (- (square guess) x))

0.001))

eintentionoftheauthorof good-enough?istodetermineifthesquare

of thefirst argumentiswithinagiventoleranceof the second argument.

Weseethatthe author of good-enough?usedthename guesstoreferto

the first argument and x to refer to the second argument. e argument

of square is guess. Ifthe author of square used x (as above) to refer to

that argument, we see that the x in good-enough? must be a different x

than the one in square. Running the procedure square must not affect

the value of x that is used by good-enough?, because that value of x

may be needed by good-enough? aer square is done computing.

If the parameters were not local to the bodies of their respective

procedures, then the parameter x in square could be confused with the

parameter xin good-enough?,andthe behaviorof good-enough?woulddependupon which version of square we used.us, squarewould not

be the black box we desired.

A formal parameter of a procedure has a very special role in the

procedure definition, in that it doesn’t maer what name the formal

parameter has. Such a name is called a bound variable, and we say that

the procedure definition binds its formal parameters. e meaning of

a procedure definition is unchanged if a bound variable is consistently

36

renamed throughout the definition.26 If a variable is not bound, we say

that it is free. e set of expressions for which a binding defines a name

is called the scope of that name. In a procedure definition, the bound

variables declared as the formal parameters of the procedure have the

body of the procedure as their scope.

In the definition of good-enough? above, guess and x are bound

variables but <, -, abs, and square are free. e meaning of good-

enough? should be independent of the names we choose for guess and

x so long as they are distinct and different from <, -, abs, and square.

(If we renamed guess to abs we would have introduced a bug by cap-

turing the variable abs. It would have changed from free to bound.) e

meaning of good-enough? is not independent of the names of its free

variables, however. It surely depends upon the fact (external to this def-

inition) that the symbol abs names a procedure for computing the abso-

lute value ofa number. Good-enough? will compute a different function

if we substitute cos for abs in its definition.

Internal definitions and block structure

We have one kind of name isolation available to us so far: e formal

parameters of a procedure are local to the body of the procedure. e

square-root program illustrates another way in which we would like

to control the use of names. e existing program consists of separate

procedures:

(define (sqrt x)

(sqrt-iter 1.0 x))

(define (sqrt-iter guess x)

(if (good-enough? guess x)

26e concept of consistent renaming is actually subtle and difficult to define for-

mally. Famous logicians have made embarrassing errors here.

37

guess

(sqrt-iter (improve guess x) x)))

(define (good-enough? guess x)

(< (abs (- (square guess) x)) 0.001))

(define (improve guess x)

(average guess (/ x guess)))

e problem with this program is that the only procedure that is impor-

tant to users of sqrt is sqrt. e other procedures (sqrt-iter, good-

enough?, and improve) only cluer up their minds. ey may not define

any other procedure called good-enough? as part of another program

to work together with the square-root program, because sqrt needs it.

e problem is especially severe in the construction of large systems

by many separate programmers. For example, in the construction of a

large library of numerical procedures, many numerical functions are

computed as successive approximations and thus might have proce-

dures named good-enough? and improve as auxiliary procedures. We

would like to localize the subprocedures, hiding them inside sqrt so

that sqrtcouldcoexist with othersuccessive approximations,eachhav-ing its own private good-enough? procedure. To make this possible, we

allow a procedure to have internal definitions that are local to that pro-

cedure. For example, in the square-root problem we can write

(define (sqrt x)

(define (good-enough? guess x)

(< (abs (- (square guess) x)) 0.001))

(define (improve guess x) (average guess (/ x guess)))

(define (sqrt-iter guess x)

(if (good-enough? guess x)

guess

(sqrt-iter (improve guess x) x)))

(sqrt-iter 1.0 x))

38

Such nesting of definitions, called block structure, is basically the right

solution to the simplest name-packaging problem. But there is a bet-

ter idea lurking here. In addition to internalizing the definitions of the

auxiliary procedures, we cansimplify them. Since x isboundinthe defi

nition of sqrt, the procedures good-enough?, improve, and sqrt-iter,

which are defined internally to sqrt, are in the scope of x. us, it is

not necessary to pass x explicitly to each of these procedures. Instead,

we allow x to be a free variable in the internal definitions, as shown be

low. en x gets its value from the argument with which the enclosing

procedure sqrt is called. is discipline is called lexical scoping.27

(define (sqrt x)

(define (good-enough? guess)

(< (abs (- (square guess) x)) 0.001))

(define (improve guess)

(average guess (/ x guess)))

(define (sqrt-iter guess)

(if (good-enough? guess)

guess

(sqrt-iter (improve guess))))

(sqrt-iter 1.0))

We will use block structure extensively to help us break up large pro-

gramsintotractablepieces.28 eideaofblockstructureoriginatedwith

the programming language Algol 60. It appears in most advanced pro-

gramming languages and is an important tool for helping to organize

the construction oflarge programs.

27Lexical scoping dictates that free variables in a procedure are taken to refer to

bindings made by enclosing procedure definitions; that is, they are looked up in the

environment in which the procedure was defined. We will see how this works in detail

in chapter 3 when we study environments and the detailed behavior of the interpreter.

28Embedded definitions must come first in a procedure body. e management is not

responsible for the consequences of running programs that intertwine definition and

use.

39

1.2 Procedures and theProcesses They Generate

We have now considered the elements of programming: We have used

primitive arithmetic operations, we have combined these operations,

and we have abstracted these composite operations by defining them as

compound procedures. But that is not enough to enable us to say that

we knowhowtoprogram.Oursituationisanalogoustothatofsomeone

who has learned the rules for how the pieces move in chess but knows

nothing of typical openings, tactics, or strategy. Like the novice chess

player, we don’t yet know the common paerns of usage in the do-

main. We lack the knowledge ofwhich moves are worth making (which

procedures are worth defining). We lack the experience to predict the

consequences of making a move (executing a procedure).

e ability to visualize the consequences of the actions under con-

sideration is crucial to becoming an expert programmer, just as it is in

any synthetic, creative activity. In becoming an expert photographer,

for example, one must learn how to look at a scene and know how dark

each region will appear on a print for each possible choice of exposure

and development conditions. Only then can one reason backward, plan-

ning framing, lighting, exposure, and development to obtain the desired

effects. So it is with programming, where we are planning the course

of action to be taken by a process and where we control the process by

means of a program. To become experts, we must learn to visualize the

processes generated by various types of procedures. Only aer we have

developed such a skill can we learn to reliably construct programs that

exhibit the desired behavior.

A procedure is a paern for the local evolution of a computational

process.Itspecifieshoweachstageoftheprocessisbuiltupontheprevi-

ousstage.Wewouldliketobeable tomakestatementsabout the overall,

40

or global, behavior of aprocess whose local evolution hasbeenspecified

by a procedure. is is very difficult to do in general, but we can at least

try to describe some typical paerns of process evolution.

In this section we will examine some common “shapes” for pro-

cesses generated by simple procedures. We will also investigate the

rates at which these processes consume the important computational

resources of time and space. e procedures we will consider are very

simple. eir role is like that played by test paerns in photography: as

oversimplified prototypical paerns, rather than practical examples in

their own right.

1.2.1 Linear Recursion and Iteration

We begin by considering the factorial function, defined by

n!=n·(n−1)·(n−2)···3·2·1.

ere are many ways to compute factorials. One way is to make use

of the observation that n! is equal to n times (n − 1)! for any positive

integer n:

n!=n·[(n−1)·(n−2)···3·2·1]=n·(n−1)!.

us, we can compute n! by computing (n − 1)! and multiplying the

result byn. Ifwe addthe stipulationthat1!is equalto1, thisobservation

translates directly into a procedure:

(define (factorial n)

(if (= n 1)

1

(* n (factorial (- n 1)))))

41

(factorial 6)

(* 6 (factorial 5))

(* 6 (* 5 (factorial 4)))

(* 6 (* 5 (* 4 (factorial 3))))

(* 6 (* 5 (* 4 (* 3 (factorial 2)))))

(* 6 (* 5 (* 4 (* 3 (* 2 (factorial 1))))))

(* 6 (* 5 (* 4 (* 3 (* 2 1)))))

(* 6 (* 5 (* 4 (* 3 2))))

(* 6 (* 5 (* 4 6)))

(* 6 (* 5 24))

(* 6 120)

720

Figure 1.3: A linear recursive process for computing 6!.

We can use the substitution model of Section 1.1.5 to watch this proce-

dure in action computing 6!, as shown in Figure 1.3.

Now let’s take a different perspective on computing factorials. We

could describe a rule for computing n! by specifying that we first mul-

tiply 1 by 2, then multiply the result by 3, then by 4, and so on until we

reach n. More formally, we maintain a running product, together with

a counter that counts from 1 up to n. We can describe the computation

by saying that the counter and the product simultaneously change from

one step to the next according to the rule

product ← counter * product

counter ← counter + 1

and stipulating that n! is the value of the product when the counter

exceeds n.

Once again, we can recast our description as a procedure for com-

puting factorials:29

29In a real program we would probably use the block structure introduced in the last

sectiontohidethedefinitionoffact-iter:

42

(factorial

(fact-iter

(fact-iter

(fact-iter

(fact-iter

(fact-iter

(fact-iter

6)

1 1 6)

1 2 6)

2 3 6)

6 4 6)

24 5 6)

120 6 6)

(fact-iter

720

720 7 6)

Figure 1.4: A linear iterative process for computing 6!.

(define (factorial n)

(fact-iter 1 1 n))

(define (fact-iter product counter max-count)

(if (> counter max-count)

product

(fact-iter (* counter product)

(+ counter 1)

max-count)))

As before, we can use the substitution model to visualize the process of

computing 6!, as shown in Figure 1.4.

(define (factorial n)

(define (iter product counter)

(if (> counter n)

product

(iter (* counter product)

(+ counter 1))))

(iter 1 1))

We avoided doing this here so as to minimize the number of things to think about at

once.

43

Compare the two processes. From one point of view, they seem

hardlydifferent atall. Bothcompute the same mathematicalfunctiononthe same domain, and each requires a number of steps proportional ton

to computen!. Indeed, both processes even carry out the same sequence

of multiplications, obtaining the same sequence of partial products. On

the other hand, whenwe consider the “shapes” ofthe two processes, we

find that they evolve quite differently.

Consider the first process. e substitution model reveals a shape of

expansion followed by contraction, indicated by the arrow in Figure 1.3.

e expansion occurs as the process builds up a chain of deferred oper-

ations (in this case, a chain of multiplications). e contraction occurs

as the operations are actually performed. is type of process, charac-

terized by a chain of deferred operations, is called a recursive process.

Carrying out this process requires that the interpreter keep track of the

operationsto be performed later on. Inthe computation ofn!,the length

of the chain of deferred multiplications, and hence the amount ofinfor-

mation needed to keep track of it, grows linearly withn (is proportional

to n), just like the number of steps. Such a process is called a linear re-

cursive process.

By contrast, the second process does not grow and shrink. At each

step, all we need to keep track of, for any n, are the current values of

the variables product, counter, and max-count. We call this an iterative

process. In general, an iterative process is one whose state can be sum-

marized by a fixed number of state variables, together with a fixed rule

that describes how the state variables should be updated as the process

moves from state to state and an (optional) end test that specifies con-

ditions under which the process should terminate. In computingn!, the

number of steps required grows linearly withn. Such a process is called

a linear iterative process.

44

e contrast between the two processes can be seenin another way.

In the iterative case, the program variables provide a complete descrip-

tion of the state of the process at any point. If we stopped the compu-

tation between steps, all we would need to do to resume the computa-

tion is to supply the interpreter with the values of the three program

variables. Not so with the recursive process. In this case there is some

additional “hidden” information, maintained by the interpreter and not

contained in the program variables, which indicates “where the process

is” innegotiating the chain of deferred operations. e longer the chain,

the more information must be maintained.30

In contrasting iteration and recursion, we must be careful not to

confuse the notion of a recursive process with the notion of a recursive

procedure. When we describe a procedure as recursive, we are referring

to the syntactic fact that the procedure definition refers (either directly

or indirectly) to the procedure itself. But when we describe a process

as following a paern that is, say, linearly recursive, we are speaking

about how the processevolves, not about the syntax ofhow aprocedure

is wrien. It may seem disturbing that we refer to a recursive procedure

such as fact-iter asgenerating aniterative process. However, the pro-

cess really is iterative: Its state is captured completely by its three state

variables, and an interpreter need keep track of only three variables in

order to execute the process.

One reasonthat the distinction betweenprocessandprocedure may

be confusing is that most implementations of common languages (in

cludingAda, Pascal, and C)aredesignedinsuch away thatthe interpre-

tation of any recursive procedure consumes an amount of memory that

30When we discuss the implementation of procedures on register machines in Chap-

ter 5, we will see that any iterative process can be realized “in hardware” as a machine

that has a fixed set of registers and no auxiliary memory. In contrast, realizing a re-

cursive process requires a machine that uses an auxiliary data structure known as a

stack.

45

grows with the number of procedure calls, even when the process de-

scribed is, in principle, iterative. As a consequence, these languages can

describe iterative processes only by resorting to special-purpose “loop-

ing constructs” such as do, repeat, until, for, and while. e imple-

mentation of Scheme we shall consider in Chapter 5 does not share this

defect. It will execute an iterative process in constant space, even if the

iterative process is described by a recursive procedure. An implemen-

tation with this property is called tail-recursive. With a tail-recursive

implementation, iteration can be expressed using the ordinary proce-

dure call mechanism, so that special iteration constructs are useful only

as syntactic sugar.31

Exercise 1.9: Each of the following two procedures defines

a method for adding two positive integers in terms of the

procedures inc, which increments its argument by 1, and

dec, which decrements its argument by 1.

(define (+ a b)

(if (= a 0) b (inc (+ (dec a) b))))

(define (+ a b)

(if (= a 0) b (+ (dec a) (inc b))))

Using the substitution model, illustrate the process gener-

ated by each procedure in evaluating (+ 4 5). Are these

processes iterative or recursive?

31Tail recursion has long been known as a compiler optimization trick. A coherent

semanticbasis for tail recursion was provided by Carl Hewi (1977), whoexplaineditinterms of the “message-passing” model of computation that we shall discuss in Chapter

3. Inspired by this, Gerald Jay Sussman andGuy Lewis Steele Jr. (see Steele and Sussman

1975) constructed a tail-recursive interpreter for Scheme. Steele later showed how tail

recursion is a consequence of the natural way to compile procedure calls (Steele 1977).

e standard for Scheme requires that Scheme implementations be tail-recursive.

46

Exercise 1.10: e following procedure computes a math

ematical function called Ackermann’s function.

(define (A x y)

(cond ((= y 0) 0)

((= x 0) (* 2 y))

((= y 1) 2)

(else(A(- x 1) (A x (- y 1))))))

What are the values of the following expressions?

(A1 10)

(A 2 4)

(A 3 3)

Consider the following procedures, where A is the proce-

dure defined above:

(define (f n) (A 0 n))

(define (g n) (A 1 n))

(define (h n) (A 2 n))

(define (k n) (* 5 n n))

Giveconcisemathematicaldefinitionsforthefunctionscom-

puted by the procedures f, g, and h for positive integer val-

ues of n. For example, (k n) computes 5n2.

1.2.2 Tree Recursion

Another common paern of computation is called tree recursion. As an

example, consider computing the sequence of Fibonacci numbers, in

which each number is the sum of the preceding two:

0,1,1, 2, 3, 5, 8,13, 21,

47

In general, the Fibonacci numbers can be defined by the rule

Fib(n) =

0 if n = 0,

1 if n =1,

Fib(n − 1) + Fib(n − 2) otherwise.

We can immediately translate this definition into a recursive procedure

for computing Fibonacci numbers:

(define (fib n)

(cond ((= n 0) 0)

((= n 1) 1)

(else (+ (fib (- n 1))

(fib (- n 2))))))

Considerthe paern of thiscomputation.To compute (fib 5), we com

pute (fib 4) and (fib 3).To
compute (fib 4),we compute (fib 3)

and (fib 2). In general, the evolved process looks like a tree, as shown

in Figure 1.5. Notice that the branches split into two at each level (ex-

cept at the boom); this reflects the fact that the fib procedure calls

itself twice each time it is invoked.

is procedure is instructive as a prototypical tree recursion, but it

is aterrible way to compute Fibonacci numbers because it does so much

redundantcomputation.NoticeinFigure1.5thattheentirecomputation

of (fib 3)—almost half the work—isduplicated. In fact, it is not hard to

show that the number of times the procedure will compute (fib 1) or

(fib 0) (the number ofleaves in the above tree, in general) is precisely

Fib(n+1). To get an idea of how bad this is, one can show that the value

ofFib(n) grows exponentially withn. More precisely (see Exercise 1.13),

Fib(n) is the closest integer to ϕn/√
5, where

1+

√

5

ϕ =

2

≈ 1.6180

48

fib 5

fib 4 fib 3

fib 3 fib 2 fib 2 fib 1

1

fib 2 fib 1 fib 1 fib 0 fib 1 fib 0

1 1 0 1 0

fib 1 fib 0

1 0

Figure 1.5: e tree-recursive process generated in com-

puting (fib 5).

is the golden ratio, which satisfies the equation

ϕ2=ϕ+1.

us, the process uses a number of steps that grows exponentially with

the input. On the other hand, the space required grows only linearly

with the input, because we need keep track only of which nodes are

above us in the tree at any point in the computation. In general, the

number of steps required by a tree-recursive process will be propor-

tional to the number of nodes in the tree, while the space required will

be proportional to the maximum depth of the tree.

We can also formulate an iterative process for computing the Fi-

bonacci numbers. e idea is to use a pair ofintegersa andb, initialized

to Fib(1) = 1 and Fib(0) = 0, and to repeatedly apply the simultaneous

49

transformations

a ← a+b,

b←a.

It is not hard to show that, aer applying this transformationn times, a

and b will be equal, respectively, to Fib(n + 1) and Fib(n). us, we can

compute Fibonacci numbers iteratively using the procedure

(define (fib n)

(fib-iter 1 0 n))

(define (fib-iter a b count)

(if (= count 0)

b

(fib-iter (+ a b) a (- count 1))))

is second methodfor computingFib(n) isalineariteration. e differ-

ence in number of steps required by the two methods—one linear in n,

one growing as fast as Fib(n) itself—is enormous, even for small inputs.

One should not conclude from this that tree-recursive processes

are useless. When we consider processes that operate on hierarchically

structured data rather than numbers, we will find that tree recursion is

a natural and powerful tool.32 But even in numerical operations, tree-

recursive processes can be useful in helping us to understand and de-

sign programs. For instance, although the first fib procedure is much

less efficient than the second one, it is more straightforward, being lile

more than a translation into Lisp of the definition of the Fibonacci se-

quence. To formulate the iterative algorithm required noticing that the

computation could be recast as an iteration with three state variables.

32An example of this was hinted at in Section 1.1.3. e interpreter itself evaluates

expressions using a tree-recursive process.

50

Example: Counting change

It takes only a bit of cleverness to come up with the iterative Fibonacci

algorithm. In contrast, consider the following problem: How many dif-

ferent ways can we make change of $1.00, given half-dollars, quarters,

dimes, nickels, and pennies? More generally, can we write a procedure

to compute the number ofways to change any given amount of money?

is problem has a simple solution as a recursive procedure. Sup-

pose we think of the types of coins available as arranged in some order.

en the following relation holds:

e number of ways to change amount a using n kinds of coins

equals

• the number of ways to change amount a using all but the first

kind of coin, plus

• the number of ways to change amount a − d using all n kinds of

coins, where d is the denomination of the first kind of coin.

To see why this is true, observe that the ways to make change can be

divided into two groups: those that do not use any of the first kind of

coin, and those that do. erefore, the total number of ways to make

change forsome amount isequaltothe numberof ways to make change

for the amount without using any of the first kind of coin, plus the

number ofways to make change assuming that we do use the first kind

of coin. But the laer number is equal to the number of ways to make

change for the amount that remains aer using a coin of the first kind.

us, we can recursively reduce the problem of changing a given

amount to the problem of changing smaller amounts using fewer kinds

of coins. Consider this reduction rule carefully, and convince yourself

51

that we can use it to describe an algorithm if we specify the following

degenerate cases:33

• Ifa is exactly 0, we should count that as 1 way to make change.

• Ifa is less than 0, we should count that as 0 ways to make change.

• Ifn is 0, we should count that as 0 ways to make change.

We can easily translate this description into a recursive procedure:

(define (count-change amount) (cc amount 5))

(define (cc amount kinds-of-coins)

(cond ((= amount 0) 1)

((or (< amount 0) (= kinds-of-coins 0)) 0)

(else (+ (cc amount

(- kinds-of-coins 1))

(cc (- amount

(first-denomination

kinds-of-coins))

kinds-of-coins)))))

(define (first-denomination kinds-of-coins)

(cond ((= kinds-of-coins 1) 1)

((= kinds-of-coins 2) 5)

((= kinds-of-coins 3) 10)

((= kinds-of-coins 4) 25)

((= kinds-of-coins 5) 50)))

(e first-denominationproceduretakesasinputthenumberofkinds

of coins available and returns the denomination of the first kind. Here

we are thinking of the coins as arranged in order from largest to small-

est, but any order would do as well.) We can now answer our original

question about changing a dollar:

33For example, work through in detail how the reduction rule applies to the problem

of making change for 10 cents using pennies and nickels.

52

(count-change 100)

292

Count-changegeneratesatree-recursiveprocesswith redundanciessim-ilartothose inourfirst implementationof fib. (It will take quiteawhile

for that 292 to be computed.) On the other hand, it is not obvious how

to design a beer algorithm for computing the result, and we leave this

problem as a challenge. e observation that a tree-recursive process

may be highly inefficient but oen easy to specify and understand has

led people to propose that one could get the best of both worlds by

designing a “smart compiler” that could transform tree-recursive pro-

cedures into more efficient procedures that compute the same result.34

Exercise 1.11: A function f is defined by the rule that

n if n<3,

f(n)= f(n−1)+2f(n−2)+3f(n−3) if n≥3.

Write a procedure that computes f by means ofa recursive

process. Write a procedure that computes f by means of an

iterative process.

Exercise 1.12: e following paern of numbers is called

Pascal’s triangle.

34One
approach to coping with redundant computations is to arrange maers so

that we automatically construct a table of values as they are computed. Each time we

are asked to apply the procedure to some argument, we first look to see if the value

is already stored in the table, in which case we avoid performing the redundant com-

putation. is strategy, known as tabulation or memoization, can be implemented in a

straightforward way. Tabulation can sometimes be used to transform processes that

require an exponential number of steps (such as count-change) into processes whose

space and time requirements grow linearly with the input. See Exercise 3.27.

53

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

. . .

e numbers at the edge of the triangle are all 1, and each

number inside the triangle is the sum of the two numbers

above it.35 Write a procedure that computes elements of

Pascal’s triangle by means ofa recursive process.

Exercise 1.13: Prove that Fib(n) is the closest integer to
ϕn/√5, where ϕ = (1+ √5)/2. Hint: Let ψ = (1 − √5)/2.

Use induction and the definition of the Fibonacci numbers

(see Section 1.2.2) to prove that Fib(n) = (ϕn −ψn)/
√

5.

1.2.3 Orders of Growth

e previous examples illustrate that processes can differ considerably

in the rates at which they consume computational resources. One con-

venient way to describe this difference is to use the notion of order of

growth to obtain a gross measure of the resources required by a process

as the inputs become larger.

35e elements of Pascal’s triangle are called the binomial coefficients, because the

nth row consists of the coefficients of the terms in the expansion of (x + y)n. is pat-

tern for computing the coefficients appeared in Blaise Pascal’s 1653 seminal work on

probability theory, Traité du triangle arithmétique. According to Knuth (1973), the same

paern appears in the Szu-yuen Yü-chien (“e Precious Mirror of the Four Elements”),

published by the Chinese mathematician Chu Shih-chieh in 1303, in the works of the

twelh-century Persian poet and mathematician Omar Khayyam, and in the works of

the twelh-century Hindu mathematician Bháscara Áchárya.

54

Let n be a parameter that measures the size of the problem, and let

R(n) be the amount of resources the process requires for a problem of

size n. In our previous examples we took n to be the number for which

a given function is to be computed, but there are other possibilities. For

instance,ifourgoalistocompute anapproximationtothesquarerootof

anumber, we might taken to be the number of digitsaccuracy required.

For matrix multiplication we might take n to be the number of rows in

the matrices. In general there are a number of properties of the problem

with respect to which it will be desirable to analyze a given process.

Similarly, R(n) might measure the number of internal storage registers

used, the number of elementary machine operations performed, and so

on. Incomputersthat doonly afixednumberof operationsat atime,thetimerequiredwillbeproportionaltothenumberofelementary machine

operations performed.

We say that R(n)hasorder ofgrowth Θ(f(n)), wrien R(n) =Θ(f(n))

(pronounced “theta of f(n)”), if there are positive constants k1 and k2

independent ofn such that k1f(n) ≤ R(n) ≤ k2f(n) for any sufficiently

largevalueofn.(Inotherwords,forlargen,thevalue R(n)issandwiched

between k1f(n) and k2f(n).)

For instance, with the linear recursive process for computing facto-

rial described in Section 1.2.1 the number of steps grows proportionally

to the input n. us, the steps required for this process grows as Θ(n).

We also saw that the space required grows as Θ(n). For the iterative

factorial, the number of steps is still Θ(n) but the space is Θ(1)—that

is, constant.36 e tree-recursive Fibonacci computation requires Θ(ϕn)

36ese statements mask a great deal of oversimplification. For instance, if we count

process steps as “machine operations” we are making the assumption that the number

of machine operations needed to perform, say, a multiplication is independent of the

size of the numbers to be multiplied, which is false if the numbers are sufficiently large.

Similar remarks hold for the estimates of space. Like the design and description of a

process, the analysis of a process can be carried out at various levels of abstraction.

55

steps and space Θ(n), where ϕ is the golden ratio described in Section

1.2.2.

Orders of growth provide only a crude description of the behavior

of a process. For example, a process requiring n2 steps and a process

requiring 1000n2 steps and a process requiring 3n2 + 10n + 17 steps all

haveΘ(n2)orderofgrowth.Ontheotherhand,orderofgrowthprovides

a useful indication of how we may expect the behavior of the process to

change as we change the size ofthe problem. For a Θ(n) (linear) process,

doubling the size will roughly double the amount ofresources used. For

anexponentialprocess,eachincrementinproblemsizewillmultiplythe

resource utilization by a constant factor. In the remainder of Section 1.2

we will examine two algorithms whose order of growth is logarithmic,

so that doubling the problem size increases the resource requirement

by a constant amount.

Exercise 1.14: Draw the tree illustrating the process gen-

erated by the count-change procedure of Section 1.2.2 in

making change for 11 cents. What are the orders of growth

of the space and number of steps used by this process as

the amount to be changed increases?

Exercise 1.15: e sine of an angle (specified in radians)

canbecomputedbymakinguseoftheapproximationsinx ≈ x

ifx is sufficiently small, and the trigonometric identity

x 3 x

sinx = 3sin 3 −4sin 3

to reduce the size of the argument of sin. (For purposes of

this exercise an angle is considered “sufficiently small” ifits

magnitude is not greater than 0.1 radians.) ese ideas are

incorporated in the following procedures:

56

(define (cube x) (* x x x))

(define (p x) (- (* 3 x) (* 4 (cube x))))

(define (sine angle)

(if (not (> (abs angle) 0.1))

angle

(p (sine (/ angle 3.0)))))

a. Howmanytimesistheprocedure pappliedwhen (sine

12.15) is evaluated?

b. What is the order of growth in space and number of

steps(asafunctionofa)usedbytheprocessgenerated

by the sine procedure when (sine a) is evaluated?

1.2.4 Exponentiation

Consider the problem of computing the exponential ofa given number.

We would like a procedure that takes as arguments a base b and a posi-

tive integer exponent n and computes bn. One way to do this is via the

recursive definition
bn =b·bn−1,

b0 =1,

which translates readily into the procedure

(define (expt b n)

(if (= n 0)

1

(* b (expt b (- n1)))))

is is a linear recursive process, which requires Θ(n) steps and Θ(n)

space.Just as with factorial, we can readily formulate an equivalent lin-

ear iteration:

57

(define (expt b n)

(expt-iter b n 1))

(define (expt-iter b counter product)

(if (= counter 0)

product

(expt-iter b

(- counter 1)

(* b product))))

is version requires Θ(n) steps and Θ(1) space.

We can compute exponentials in fewer steps by using successive

squaring. For instance, rather than computing b8 as

b·(b·(b·(b·(b·(b·(b·b)))))),

we can compute it using three multiplications:

b2=b·b,

b4=b2·b2,

b8=b4·b4.

is method works fine for exponents that are powers of 2. We can

also take advantage of successive squaring in computing exponentials

in general if we use the rule

bn = (bn/2)2 if n is even,

bn = b · bn−1 if n is odd.

We can express this method as a procedure:

(define (fast-expt b n)

(cond ((= n 0) 1)

((even? n) (square (fast-expt b (/ n 2))))

(else (* b (fast-expt b (- n 1))))))

58

wherethepredicatetotestwhetheranintegerisevenisdefinedinterms

of the primitive procedure remainder by

(define (even? n)

(= (remainder n 2) 0))

e process evolved by fast-expt growslogarithmically withn in both

space and number of steps. To see this, observe that computing b2n us-

ing fast-expt requires only one more multiplication than computing

bn. e size ofthe exponent we cancompute therefore doubles (approx-

imately) with every new multiplication we are allowed. us, the num-

ber of multiplications required for an exponent ofn grows about as fast

as the logarithm ofn to the base 2. e process has Θ(logn) growth.37

e difference between Θ(logn) growth and Θ(n) growth becomes

striking as n becomes large. For example, fast-expt for n = 1000 re-

quires only 14 multiplications.38 It is also possible to use the idea of

successive squaring to devise an iterative algorithm that computes ex-

ponentials with a logarithmic number of steps (see Exercise 1.16), al-

though, as is oen the case with iterative algorithms, this is not wrien

down so straightforwardly as the recursive algorithm.39

Exercise 1.16: Design a procedure that evolves an itera

tive exponentiation process that uses successive squaring

37More precisely, the number of multiplications required is equal to 1 less than the

log base 2 of n plus the number of ones in the binary representation of n. is total

is always less than twice the log base 2 of n. e arbitrary constants k1 and k2 in the

definition of order notation imply that, for a logarithmic process, the base to which

logarithms are taken does not maer, so all such processes are described as Θ(logn).

38You
may wonder why anyone would care about raising numbers to the 1000th

power. See Section 1.2.6.

39is iterative algorithm is ancient. It appears in the Chandah-sutra by Áchárya

Pingala, wrien before 200 .. See Knuth 1981, section 4.6.3, for a full discussion and

analysis of this and other methods of exponentiation.

59

and uses a logarithmic number of steps, as does fast-expt.

(Hint: Using the observation that (bn/2)2 = (b2)n/2, keep,

along with the exponent n and the base b, an additional

state variablea, and define the state transformation in such

a way that the productabn isunchangedfrom state to state.

At the beginning of the process a is taken to be 1, and the

answer is given by the value ofa at the end of the process.

In general, the technique of defining an invariant quantity

that remains unchanged from state to state is a powerful

way to think about the design ofiterative algorithms.)

Exercise 1.17: e exponentiation algorithms in this sec-

tion are based on performing exponentiation by means of

repeated multiplication. In a similar way, one can perform

integer multiplication by means of repeated addition. e

following multiplication procedure (in which it is assumed

that our language can only add, not multiply) is analogous

to the expt procedure:

(define (* a b)

(if (= b 0)

0

(+ a (* a (- b 1)))))

is algorithm takes a number of steps that is linear in b.

Now suppose we include, together with addition, opera-

tions double, which doubles an integer, and halve, which

divides an (even) integer by 2. Using these, design a mul-

tiplication procedure analogous to fast-expt that uses a

logarithmic number of steps.

60

Exercise 1.18: Using the results of Exercise 1.16 and Exer-

cise 1.17, devise aprocedurethat generatesaniterativepro-

cess for multiplying two integers in terms of adding, dou-

bling,andhalvingandusesalogarithmicnumberofsteps.40

Exercise 1.19: ere is a clever algorithm for computing

the Fibonacci numbers in a logarithmic number of steps.

Recall the transformation of the state variables a and b in

the fib-iter process ofSection 1.2.2:a ← a+b andb ← a.

Call this transformation T, and observe that applying T

over and over againn times, starting with 1 and 0, produces

the pair Fib(n + 1) and Fib(n). In other words, the Fibonacci

numbers are produced by applyingT n, thenth power ofthe

transformationT,startingwiththepair(1,0).Nowconsider

T to be the special case ofp = 0 and q = 1 in a family of

transformations Tpq, where Tpq transforms the pair (a,b)according to a ← bq + aq + ap and b ← bp + aq. Show

that if we apply such a transformationTpq twice, the effect

is the same as using a single transformation Tp′q′ of the

same form, and compute p′and q′in terms ofp and q. is

gives us an explicit way to square these transformations,

and thus we can computeTn using successive squaring, as

in the fast-expt procedure. Put this all together to com-

plete the following procedure, which runs in a logarithmic

number of steps:41

from an even older document) by an Egyptian scribe named A’h-mose.

40is algorithm, which is sometimes known as the “Russian peasant method” of

multiplication, is ancient. Examplesof itsuseare found in theRhind Papyrus, oneof the

two oldest mathematical documents in existence, wrien about 1700 .. (and copied

41is exercise was suggested to us by Joe Stoy, based on an example in Kaldewaij

1990.

61

(define (fib n)

(fib-iter 1 0 0 1 n))

(define (fib-iter a b p q count)

(cond ((= count 0) b)

((even? count)

(fib-iter a

b

⟨??⟩ ;compute p′

⟨??⟩ ; compute q′

(/ count 2)))

(else (fib-iter (+ (* b q) (* a q) (* a p))

(+ (* b p) (* a q))

p

q

(- count 1)))))

1.2.5 Greatest Common Divisors

e greatest common divisor () of two integersa andb is defined to

be the largest integer that divides both a and b with no remainder. For

example, the of 16 and 28 is 4. In Chapter 2, when we investigate

how to implement rational-number arithmetic, we will need to be able

to compute s in order to reduce rational numbers to lowest terms.

(To reduce a rational number to lowest terms, we must divide both the

numerator and the denominator by their . For example, 16/28 re-

duces to 4/7.) One way to find the of two integers is to factor them

and search for common factors, but there is a famous algorithm that is

much more efficient.

e idea of the algorithm is based on the observation that, ifr is the

remainder when a is divided by b, then the common divisors ofa and b

are precisely the same as the common divisors ofb andr. us, we can

62

use the equation

GCD(a,b) = GCD(b,r)

to successively reduce the problem of computing a to the problem

of computing the of smaller and smaller pairs of integers. For ex-

ample,

GCD(206,40) = GCD(40,6)

= GCD(6,4)

= GCD(4,2)

= GCD(2,0)

= 2

reduces (206, 40) to (2, 0), which is 2. It is possible to show that

starting with any two positive integers and performing repeated reduc-

tions will always eventually produce a pair where the second number is

0. en the is the other number in the pair. is method for com-

puting the is known as Euclid’s Algorithm.42

It is easy to express Euclid’s Algorithm as a procedure:

(define (gcd a b)

(if (= b 0)

a

(gcd b (remainder a b))))

is generates an iterative process, whose number of steps grows as the

logarithm of the numbers involved.

42Euclid’s Algorithm is so called because it appears in Euclid’s Elements (Book 7, ca.

300 ..). According to Knuth (1973), it can be considered the oldest known nontrivial

algorithm. e ancient Egyptian method ofmultiplication (Exercise 1.18) is surely older,

but, as Knuth explains, Euclid’s algorithm is the oldest known to have been presented

as a general algorithm, rather than as a set of illustrative examples.

63

The fact that the number of steps required by Euclid’s Algorithm

has logarithmic growth bears an interesting relation to the Fibonacci

numbers:

Lamé’s Theorem: IfEuclid’s Algorithm requires k steps to

compute the GCD of some pair, then the smaller number in

the pair must be greater than or equal to the kth Fibonacci

number.43

We can use this theorem to get an order—of—growth estimate for Euclid’s

Algorithm. Let n be the smaller of the two inputs to the procedure. If the

process takes k steps, then we must have n 2 Fib(k) z (pk/V5. Therefore

the number of steps k grows as the logarithm (to the base (p) of n. Hence,

the order of growth is O(log n).

43This theorem was proved in 1845 by Gabriel Lamé, a French mathematician and

engineer known chiefly for his contributions to mathematical physics. To prove the

theorem, we consider pairs (ak, bk), where ak 2 bk, for which Euclid’s Algorithm

terminates in k steps. The proofis based on the claim that, if (akfl , bk+1) —> (a;< , bk) —>

(ak_1, bk_1) are three successive pairs in the reduction process, then we must have

bkil 2 bk + bk_1. To verify the claim, consider that a reduction step is defined by

applying the transformation ak_1 I bk, bk_1 I remainder of ak divided by bk. The

second equation means that ak I qbk + bk_1 for some positive integer q. And since q

must be at least 1 we have ak I qbk + bk_1 2 bk + bk_1. But in the previous reduction

step we have bkil I ak. Therefore, bkil I ak 2 bk + bk_1. This verifies the claim. Now

we can prove the theorem by induction on k, the number of steps that the algorithm

requires to terminate. The result is true for k I 1, since this merely requires that b be at

least as large as Fib(l) I 1. Now, assume that the result is true for all integers less than or

equal to k and establish the result for k+ 1. Let (akH , bk+1)—> (ak, bk) —> (ak_1, bk_1)

be successive pairs in the reduction process. By our induction hypotheses, we have

bk_1 2 Fib(k — 1) and bk 2 Fib(k). Thus, applying the claim we just proved together

with the definition of the Fibonacci numbers gives bkil 2 bk + bk_1 2 Fib(k) + Fib(k —

1) I Fib(k + 1), which completes the proof of Lamé’s Theorem.

64

Exercise 1.20: e process that a procedure generates is

of course dependent on the rules used by the interpreter.

As an example, consider the iterative gcd procedure given

above. Suppose we were to interpret this procedure using

normal-order evaluation, as discussed in Section 1.1.5. (e

normal-order-evaluationrulefor ifisdescribedinExercise

1.5.)Usingthesubstitutionmethod(fornormalorder),illus-

trate the process generatedinevaluating (gcd 206 40) and

indicate the remainder operations that are actually per-

formed. How many remainder
operations are actually per-

formed in the normal-order evaluation of (gcd 206 40)?

In the applicative-order evaluation?

1.2.6 Example: Testing for Primality

is section describes two methods for checking the primality of an in-
tegern, one with order of growth Θ(√n), and a “probabilistic” algorithm

with order of growth Θ(logn). e exercises at the end of this section

suggest programming projects based on these algorithms.

Searching for divisors

Since ancient times, mathematicians have been fascinated by problems

concerning prime numbers, and many people have worked on the prob-

lem of determining ways to test if numbers are prime. One way to test

ifa number is prime is to find the number’s divisors. e following pro-

gram finds the smallest integral divisor (greater than 1) ofa given num

ber n. It does this in a straightforward way, by testing n for divisibility

by successive integers starting with 2.

(define (smallest-divisor n) (find-divisor n 2))

65

(define (find-divisor n test-divisor)

(cond ((> (square test-divisor) n) n)

((divides? test-divisor n) test-divisor)

(else (find-divisor n (+ test-divisor 1)))))

(define (divides? a b) (= (remainder b a) 0))

We can test whether a numberisprime as follows:n is prime if and only

if n is its own smallest divisor.

(define (prime? n)

(= n (smallest-divisor n)))

eendtestfor find-divisorisbasedonthefact that ifn isnotprimeit
must have a divisor less than or equal to √

n.44 is means that the algo-

rithmneedonlytestdivisorsbetween1and

√

n.Consequently,thenum-ber of steps required to identify n as prime will have order of growth

Θ(

√
n).

The Fermat test

e Θ(logn) primality test is based on a result from number theory

known as Fermat’s Lile eorem.45

44Ifdisadivisorofn,thensoisn/d.Butdandn/dcannotbothbegreaterthan

√
n.

45
PierredeFermat(1601-1665) isconsideredtobethefounderofmodern numberthe-ory. He obtained many important number-theoretic results, but he usually announced

just the results, without providing his proofs. Fermat’s Lile eorem was stated in a

leer he wrote in 1640. e first published proof was given by Euler in 1736 (and an

earlier, identical proof was discovered in the unpublished manuscripts of Leibniz). e

most famous of Fermat’s results—known as Fermat’s Last eorem—was joed down

in 1637 in his copy of the book Arithmetic (by the third-century Greek mathematician

Diophantus) with the remark “I have discovered a truly remarkable proof, but this mar-

gin is too small to contain it.” Finding a proof of Fermat’s Last eorem became one of

the most famous challenges in number theory. A complete solution was finally given

in 1995 by Andrew Wiles of Princeton University.

66

Fermat’s Lile Theorem: If n is a prime number and a

is any positive integer less than n, then a raised to the nth

power is congruent to a modulo n.

(Two numbers are said to be congruent modulo n if they both have the

same remainder when divided by n. e remainder ofa numbera when

divided byn is also referred to as the remainder of a modulon, or simply

as a modulo n.)

If n is not prime, then, in general, most of the numbers a < n will

not satisfy the above relation. is leads to the following algorithm for

testing primality: Given a number n, pick a random number a < n and

compute the remainder of an modulo n. If the result is not equal to a,

then n is certainly not prime. If it is a, then chances are good that n is

prime. Now pick another random number a and test it with the same

method. If it also satisfies the equation, then we can be even more con

fident that n is prime. By trying more and more values of a, we can

increase our confidence in the result. is algorithm is known as the

Fermat test.

To implement the Fermat test, we need a procedure that computes

the exponential of a number modulo another number:

(define (expmod base exp m)

(cond ((= exp 0) 1)

((even? exp)

(remainder

(square (expmod base (/ exp 2) m))

m))

(else

(remainder

(* base (expmod base (- exp 1) m))

m))))

67

is is very similar to the fast-expt procedure of Section 1.2.4. It uses

successive squaring, so that the number of steps grows logarithmically

with the exponent.46

e Fermat test is performed by choosing at random a numbera be-

tween1 andn−1 inclusive and checkingwhethertheremaindermodulo

n of thenth power ofa is equal toa. e random numbera is chosen us-

ing the procedure random, which we assume is included as a primitive

in Scheme. Random returns a nonnegative integer less than its integer

input. Hence, to obtain a random number between 1 and n − 1, we call

random with an input ofn − 1 and add 1 to the result:

(define (fermat-test n)

(define (try-it a)

(= (expmod a n n) a))

(try-it (+ 1 (random (- n 1)))))

e following procedure runs the test a given number of times, as spec-

ified by a parameter. Its value is true if the test succeeds every time, and

false otherwise.

(define (fast-prime? n times)

(cond ((= times 0) true)

((fermat-test n) (fast-prime? n (- times 1)))

(else false)))

46e reduction steps in the cases where the exponent e is greater than 1 are based

on the fact that, for any integers x, y, and m, we can find the remainder of x times y

modulo m by computing separately the remainders of x modulo m and y modulo m,

multiplying these, and then taking the remainder of the result modulom. For instance,

in the case where e is even, we compute the remainder of be/2 modulo m, square this,

and take the remainder modulo m. is technique is useful because it means we can

perform our computation without ever having to deal with numbers much larger than

m. (Compare Exercise 1.25.)

68

Probabilistic methods

e Fermat test differs in character from most familiar algorithms, in

which one computes an answer that is guaranteed to be correct. Here,

the answer obtained is only probably correct. More precisely, if n ever

fails the Fermat test, we can be certain that n is not prime. But the fact

that n passes the test, while an extremely strong indication, is still not

a guarantee that n is prime. What we would like to say is that for any

number n, if we perform the test enough times and find that n always

passes the test, then the probability of error in our primality test can be

made as small as we like.

Unfortunately,thisassertionisnotquitecorrect.eredoexistnum-

bers that fool theFermat test:numbersn that are not prime and yet have

the property that an is congruent to a modulo n for all integers a < n.

Such numbers are extremely rare, so the Fermat test is quite reliable in

practice.47

erearevariationsofthe Fermattestthatcannot be fooled.Inthesetests, as with the Fermat method, one tests the primality of an integernby choosing a random integer a < n and checking some condition that

depends uponn and a. (See Exercise 1.28 for an example of such a test.)

On the other hand, in contrast to the Fermat test, one can prove that,

for any n, the condition does not hold for most of the integers a < n

unless n is prime. us, if n passes the test for some random choice of

47 Numbers that fool the Fermat test are called Carmichael numbers, and lile is

known about them other than that they are extremely rare. ere are 255 Carmichael

numbers below 100,000,000. e smallest few are 561, 1105, 1729, 2465, 2821, and 6601.

In testing primality of very large numbers chosen at random, the chance of stumbling

upon a value that fools the Fermat test is less than the chance that cosmic radiation will

cause the computer to make an error in carrying out a “correct” algorithm. Considering

an algorithm to be inadequate for the first reason but not for the second illustrates the

difference between mathematics and engineering.

69

a, the chances are beer than even that n is prime. If n passes the test

for two random choices of a, the chances are beer than 3 out of4 that

n is prime. By running the test with more and more randomly chosen

values ofa we can make the probability of error as small as we like.

e existence of tests for which one can prove that the chance of

errorbecomesarbitrarily smallhassparkedinterest inalgorithmsofthistype, which have come to be known as probabilistic algorithms. ere is

agreat dealof research activity in thisarea,andprobabilistic algorithms

have been fruitfully applied to many fields.48

Exercise1.21:Usethe smallest-divisorproceduretofindthe smallest divisor of each of the following numbers: 199,

1999, 19999.

Exercise 1.22: Most Lisp implementations include a prim-

itive called runtime that returns an integer that specifies

the amount of time the system has been running (mea

sured, for example, inmicroseconds). e following timed-

prime-testprocedure,whencalledwithanintegern,prints

n and checks to see ifn is prime. Ifn is prime, the procedure

prints three asterisks followed by the amount of time used

in performing the test.

48One of the most striking applications of probabilistic prime testing has been to the

field of cryptography. Although it is now computationally infeasible to factor an arbi-

trary 200-digit number, the primality of such a number can be checked in a few seconds

with the Fermat test. is fact forms the basis of a technique for constructing “unbreak-

able codes” suggested by Rivest et al. (1977). e resulting RSA algorithm has become

a widely used technique for enhancing the security of electronic communications. Be-

cause of this and related developments, the study of prime numbers, once considered

the epitome of a topic in “pure” mathematics to be studied only for its own sake, now

turns out to have important practical applications to cryptography, electronic funds

transfer, and information retrieval.

70

(define (timed-prime-test n)

(newline)

(display n)

(start-prime-test n (runtime)))

(define (start-prime-test n start-time)

(if (prime? n)

(report-prime (- (runtime) start-time))))

(define (report-prime elapsed-time)

(display " *** ")

(display elapsed-time))

Usingthisprocedure,writeaprocedure search-for-primes

that checks the primality of consecutive odd integers in a

specified range. Use your procedure to find the three small-

est primes larger than 1000; larger than 10,000; larger than

100,000; larger than 1,000,000. Note the time needed to test

each prime. Since the testingalgorithm has orderof growth
of Θ(√n), you should expect that testing for primes around

10,000 should take about √10 times as long as testing for

primes around 1000. Do your timing data bear this out?

How well do the data for 100,000 and 1,000,000 support the
Θ(√n)prediction?Isyourresult compatiblewith the notion

that programs on your machine run in time proportional to

the number of steps required for the computation?

Exercise1.23: e smallest-divisor procedure shown at

the start ofthis section does lots of needlesstesting:Aer it

checks toseeifthe number isdivisibleby2 thereisno point

in checking to see if it is divisible by any larger even num

bers. is suggests that the values used for test-divisor

should not be 2, 3, 4, 5, 6, ..., but rather 2, 3, 5, 7, 9,

71

To implement this change, define a procedure next that re-

turns 3 ifits input is equal to 2 and otherwise returns its in-

put plus 2. Modify the smallest-divisor procedure to use

(next test-divisor) instead of (+ test-divisor 1).

With timed-prime-test incorporating this modified ver

sion of smallest-divisor, run the test for each of the 12

primesfoundinExercise1.22.Sincethismodificationhalves

the number of test steps, you should expect it to run about

twice as fast. Is this expectation confirmed? If not, what is

the observed ratio of the speeds of the two algorithms, and

how do you explain the fact that it is different from 2?

Exercise1.24: Modify the timed-prime-testprocedure of

Exercise 1.22 to use fast-prime? (the Fermat method), and

test each of the 12 primes you found in that exercise. Since

the Fermat test has Θ(logn) growth, how would you expect

the time to test primes near 1,000,000 to compare with the

time needed to test primes near 1000? Do your data bear

this out? Can you explain any discrepancy you find?

Exercise 1.25: Alyssa P. Hacker complains that we went to

a lot of extra work in writing expmod. Aer all, she says,

since we already know how to compute exponentials, we

could have simply wrien

(define (expmod base exp m)

(remainder (fast-expt base exp) m))

Is she correct? Would this procedure serve as well for our

fast prime tester? Explain.

72

Exercise1.26: Louis Reasoner is havinggreat difficulty do-

ing Exercise 1.24. His fast-prime? test seems to run more

slowly than his prime? test. Louis calls his friend Eva Lu

Ator over to help. When they examine Louis’s code, they

find that he has rewrien the expmod procedure to use an

explicit multiplication, rather than calling square:

(define (expmod base exp m)

(cond ((= exp 0) 1)

((even? exp)

(remainder (* (expmod base (/ exp 2) m)

(expmod base (/ exp 2) m))

m))

(else

(remainder (* base

(expmod base (- exp 1) m))

m))))

“I don’t see what difference that could make,” says Louis.

“I do.” says Eva. “By writing the procedure like that, you

have transformed the Θ(logn) process into a Θ(n) process.”

Explain.

Exercise 1.27: Demonstrate that the Carmichael numbers

listed in Footnote 1.47 really do fool the Fermat test. at is,

write a procedure that takes an integern and tests whether

an is congruent to a modulon for everya < n, and try your

procedure on the given Carmichael numbers.

Exercise 1.28: One variant of the Fermat test that cannot

be fooled is called the Miller-Rabin test (Miller 1976; Rabin

1980). is starts from an alternate form of Fermat’s Lile

73

eorem, which states that ifn is a prime number and a is

anypositiveintegerlessthann,thena raisedtothe(n−1)-st

power is congruent to 1 modulon. To test the primality ofa

numbern by the Miller-Rabin test, we pick a random num-

bera < n and raisea to the (n−1)-st power modulon using

the expmod procedure. However, whenever we perform the

squaring step in expmod, we check to see ifwe have discov-

ereda “nontrivial square root of1 modulon,” that is,a num-

ber not equal to 1 orn−1 whose square isequalto1 modulo

n. It is possible to prove that if such a nontrivial square root

of1 exists, then n is not prime. It is also possible to prove

that ifn isanodd numberthatisnot prime,then, foratleast

half the numbers a < n, computing an−1 in this way will

reveal a nontrivial square root of1 modulo n. (is is why

the Miller-Rabin test cannot be fooled.) Modify the expmod

procedure to signal if it discovers a nontrivial square root

of 1, and use this to implement the Miller-Rabin test with

a procedure analogous to fermat-test. Check your pro-

cedure by testing various known primes and non-primes.

Hint: One convenient way to make expmod signal is to have

it return 0.

1.3 Formulating Abstractions

with Higher-Order Procedures

We have seen that procedures are, in effect, abstractions that describe

compound operations on numbers independent of the particular num-

bers. For example, when we

74

(define (cube x) (* x x x))

we are not talking about the cube of a particular number, but rather

about a method for obtaining the cube of any number. Of course we

could get along without ever defining this procedure, by always writing

expressions such as

(*333)

(*xxx)

(*yyy)

and never mentioning
cube explicitly. is would place us at a serious

disadvantage, forcingustoworkalwaysat the level ofthe particular op-

erations that happen to be primitives in the language (multiplication, in

this case) rather than in terms of higher-level operations. Our programs

would be able to compute cubes, but ourlanguage would lack the ability

to express the concept of cubing. One of the things we should demand

from a powerful programming language is the ability to build abstrac-

tionsby assigningnamestocommonpaernsand thentoworkinterms

of the abstractions directly. Procedures provide this ability. is is why

all but the most primitive programming languages include mechanisms

for defining procedures.

Yet even in numerical processing we will be severely limited in our

abilitytocreateabstractionsifwearerestrictedtoprocedureswhosepa-

rameters must be numbers. Oen the same programming paern will

be used with a number of different procedures. Toexpress such paerns

as concepts, we will need to construct procedures that can accept pro-

cedures as arguments or return procedures as values. Procedures that

manipulate procedures are called higher-order procedures. is section

shows how higher-order procedures can serve as powerful abstraction

mechanisms, vastly increasing the expressive power of our language.

75

1.3.1 Procedures as Arguments

Consider the following three procedures. e first computes the sum of

the integers from a
through

b:

(define (sum-integers a b)

(if (> a b)

0

(+ a (sum-integers (+ a 1) b))))

e second computes the sum of the cubes of the integers in the given

range:

(define (sum-cubes a b)

(if (> a b)

0

(+ (cube a)

(sum-cubes (+ a 1) b))))

e third computes the sum ofa sequence of terms in the series

1

9 ·11

11 ·3 + 1

5 ·7

+ +...,

which converges to π/8 (very slowly):49

(define (pi-sum a b)

(if (> a b)

0

(+(/1.0 (* a (+ a 2)))

(pi-sum (+ a 4) b))))

49is series, usually wrien in the equivalent form π4 = 1 − 13 + 15 −
17 + ..., is due

to Leibniz. We’ll see how to use this as the basis for some fancy numerical tricks in

Section 3.5.3.

76

ese three procedures clearly share a common underlying paern.

ey are for the most part identical, differing only in the name of the

procedure, the function of a used to compute the term to be added, and

the function that provides the next value of a. We could generate each

of the procedures by filling in slots in the same template:

(define (⟨name⟩ a b)

(if (> a b)

0

(+ (⟨term⟩ a)

(⟨name⟩ (⟨next⟩ a) b))))

e presence of such a common paern is strong evidence that there is

a useful abstraction waiting to be brought to the surface. Indeed, math

ematicians long ago identified the abstraction of summation ofa series

and invented “sigma notation,” for example

b∑

n=a

f (n) = f (a) + ··· + f (b),

to express this concept. e power of sigma notation is that it allows

mathematicianstodealwiththeconceptofsummationitself ratherthanonly with particular sums—for example, to formulate general results

about sums that are independent ofthe particular series being summed.

Similarly, as program designers, we would like our language to be

powerful enough so that we can write a procedure that expresses the

concept of summation itself rather than only procedures that compute

particular sums. We can do so readily in our procedural language by

taking the common template shown above and transforming the “slots”

into formal parameters:

(define (sum term a next b)

(if (> a b)

77

0

(+ (term a)

(sum term (next a) next b))))

Notice that sum takes as its arguments the lower and upper bounds a

and b together with the procedures term and next. We can use sumjust

as we would any procedure. For example, we can use it (along with a

procedure inc that increments its argument by 1) to define sum-cubes:

(define (inc n) (+ n 1))

(define (sum-cubes a b)

(sum cube a inc b))

Using this, we can compute the sum of the cubes of the integers from 1

to 10:

(sum-cubes 1 10)

3025

Withtheaidofanidentityproceduretocomputetheterm,wecandefine

sum-integers in terms of sum:

(define (identity x) x)

(define (sum-integers a b)

(sum identity a inc b))

en we can add up the integers from 1 to 10:

(sum-integers 1 10)

55

We can also define pi-sum in the same way:50

50Notice that we have used block structure (Section 1.1.8) to embed the definitions of

pi-next and pi-term within pi-sum, since these procedures are unlikely to be useful

for any other purpose. We will see how to get rid of them altogether in Section 1.3.2.

78

(define (pi-sum a b)

(define (pi-term x)

(/1.0 (* x (+ x 2))))

(define (pi-next x)

(+ x 4))

(sum pi-term a pi-next b))

Using these procedures, we can compute an approximation to π:

(* 8 (pi-sum 1 1000))

3.139592655589783

Once we have sum, we can use it as a building block in formulating fur-

therconcepts.Forinstance, thedefiniteintegralof afunctionf between

the limits a and b can be approximated numerically using the formula

∫
baf=

[

f

(

a+dx2

)
+f

(

a+dx+dx2

)
+f

(

a+2dx+dx2

)

+...

]
dx

for small values of dx. We can express this directly as a procedure:

(define (integral f a b dx)

(define (add-dx x)

(+ x dx))

(* (sum f (+ a (/ dx 2.0)) add-dx b)

dx))

(integral cube 0 1 0.01)

.24998750000000042

(integral cube 0 1 0.001)

.249999875000001

(e exact value of the integral of cube between 0 and 1 is 1/4.)

79

Exercise 1.29: Simpson’s Rule is a more accurate method

of numerical integration thanthe method illustrated above.

Using Simpson’s Rule, the integral of a functionf between

a and b is approximated as

h

3(y0 + 4y1 + 2y2 + 4y3 + 2y4 + ···+ 2yn−2 + 4yn−1 +yn),

where h = (b − a)/n, for some even integer n, and yk =

f(a + kh). (Increasing n increases the accuracy of the ap-

proximation.) Define a procedure that takes as arguments

f, a, b, and n and returns the value of the integral, com-

puted using Simpson’s Rule. Use your procedure to inte-

grate
cube between 0 and 1 (with n = 100 and n = 1000),

andcompare the resultsto those ofthe integral procedure

shown above.

Exercise 1.30: e sum procedure above generates a linear

recursion. e procedure can be rewrien so that the sum

is performed iteratively. Show how to do this by filling in

the missing expressions in the following definition:

(define (sum term a next b)

(define (iter a result)

(if ⟨??⟩

⟨??⟩

(iter ⟨??⟩ ⟨??⟩)))

(iter ⟨??⟩ ⟨??⟩))

Exercise 1.31:

a. e sum procedure is only the simplest of a vast num-

berofsimilarabstractionsthatcanbecapturedashigher-

80

orderprocedures.51 Writeananalogousprocedurecalled

product that returns the product of the values of a

functionatpointsoveragivenrange.Showhowtode-

fine factorialintermsof product.Alsouse product

to compute approximations to π using the formula52

π

4 =

2 · 4 · 4 · 6 · 6 · 8···

3·3·5·5·7·7···

.

b. If your product procedure generates a recursive pro-

cess, write one that generates an iterative process. If

it generates an iterative process, write one that gen-

erates a recursive process.

Exercise 1.32:

a. Show that sum and product (Exercise 1.31) are both

specialcasesofastillmoregeneralnotioncalled accumulate

that combines a collection of terms, using some gen-

eral accumulation function:

(accumulate combiner null-value term a next b)

51e intent of Exercise 1.31 through Exercise 1.33 is to demonstrate the expressive

power that is aained by using an appropriate abstraction to consolidate many seem-

ingly disparate operations. However, though accumulation and filtering are elegant

ideas, our hands are somewhat tied in using them at this point since we do not yet

have data structures to provide suitable means of combination for these abstractions.

We will return to these ideas in Section 2.2.3 when we show how to use sequences as

interfaces for combining filters and accumulators to build even more powerful abstrac-

tions. We will see there how these methods really come into their own as a powerful

and elegant approach to designing programs.

52is formula was discovered by the seventeenth-century English mathematician

John Wallis.

81

Accumulate takes as arguments the same term and

rangespecificationsas sumand product,togetherwith

a combiner procedure (of two arguments) that speci-

fies how the current term is to be combined with the

accumulationoftheprecedingtermsanda null-value

that specifies what base value to use when the terms

run out. Write accumulate and show how sum and

productcanbothbedefinedassimplecallsto accumulate.

b. If your accumulate procedure generates a recursive

process, write one that generates an iterative process.

Ifit generates an iterative process, write one that gen

erates a recursive process.

Exercise 1.33: You can obtain an even more general ver

sion of accumulate (Exercise 1.32) by introducing the no-

tionofafilter onthetermsto be combined.at is,combine

only those terms derived from values in the range that sat

isfyaspecifiedcondition.eresulting filtered-accumulate

abstraction takes the same arguments as accumulate, to

gether with an additional predicate of one argument that

specifies the filter. Write filtered-accumulate as a proce

dure. Show how to express the following using
filtered-

accumulate:

a. the sum of the squares of the prime numbers in the

intervala tob (assumingthatyou have a prime? pred-

icate already wrien)

b. the product of all the positive integers less thann that

are relatively primeton (i.e., allpositiveintegersi < n

such that GCD(i,n) = 1).

82

1.3.2 Constructing Procedures Using Lambda

In using
sum as in Section 1.3.1, it seems terribly awkward to have to

define trivial procedures such as pi-term and pi-next just so we can

use them as arguments to our higher-order procedure. Rather than de-

fine pi-next and pi-term, it would be more convenient to have a way

to directly specify “the procedure that returns its input incremented by

4” and “the procedure that returns the reciprocal of its input times its

input plus 2.” We can do this by introducing the special form lambda,

which creates procedures. Using lambda we can describe what we want

as

(lambda (x) (+ x 4))

and

(lambda (x) (/ 1.0 (* x (+ x 2))))

en our pi-sum procedure can be expressed without defining any aux-

iliary procedures as

(define (pi-sum a b)

(sum (lambda (x) (/ 1.0 (* x (+ x 2))))

a

(lambda (x) (+ x 4))

b))

Againusing lambda,we canwrite the integral procedurewithouthav-

ing to define the auxiliary procedure add-dx:

(define (integral f a b dx)

(* (sum f

(+ a (/ dx 2.0))

(lambda (x) (+ x dx))

b)

dx))

83

In general, lambda is used to create procedures in the same way as

define, except that no name is specified for the procedure:

(lambda (⟨formal-parameters⟩) ⟨body⟩)

e resulting procedure is just as much a procedure as one that is cre-

ated using define.e only difference is that it has not been associated

with any name in the environment. In fact,

(define (plus4 x) (+ x 4))

is equivalent to

(define plus4 (lambda (x) (+ x 4)))

We can read a lambda expression as follows:

(lambda (x) (+ x 4))

| | | | |

the procedure of an argument x that adds x and 4

Like any expression that has a procedure as its value, a lambda expres-

sion can be used as the operator in a combination such as

((lambda (x y z) (+ x y (square z)))

1 2 3)

12

or, more generally, in any context where we would normally use a pro-

cedure name.53

53It would be clearer and less intimidating to people learning Lisp if a name more

obvious than lambda, such as make-procedure, were used. But the convention is firmly

entrenched. e notation is adopted from the λ-calculus, a mathematical formalism in-

troduced by the mathematical logician Alonzo Church (1941). Church developed the

λ-calculus to provide a rigorous foundation for studying the notions of function and

function application. e λ-calculus has become a basic tool for mathematical investi-

gations of the semantics of programming languages.

84

Using let to create local variables

Another use of lambda is in creating local variables. We oen need lo-

cal variables in our procedures other than those that have been bound

as formal parameters. For example, suppose we wish to compute the

function

f(x,y) = x(1+ xy)2 +y(1− y) + (1 + xy)(1 −y),

which we could also express as

a=1+xy,

b=1−y,

f(x,y)=xa2+yb+ab.

In writing a procedure to compute f , we would like to include as local

variables not only x andy but also the names ofintermediate quantities

likea andb. One way toaccomplish this is to use an auxiliary procedure

to bind the local variables:

(define (f x y)

(define (f-helper a b)

(+ (* x (square a))

(* y b)

(* a b)))

(f-helper (+ 1 (* x y))

(- 1 y)))

Of course, we could use a lambda expression to specify an anonymous

procedure for binding our local variables. e body of f then becomes

a single call to that procedure:

(define (f x y)

((lambda (a b)

85

(+ (* x (square a))

(* y b)

(* a b)))

(+ 1 (* X W)

(- 1 y)))

This construct is so useful that there is a special form called let to make

its use more convenient. Using let, the f procedure could be written as

(define (f x y)

(1811((6 (+1 (* X Y)))

(b (- 1 y)))

(+ (* x (square a))

(* y b)

(* a b))))

The general form ofa let expression is

(16t (“716171) (EXPO)

((116172) (696192))

((41%) (expnm

(bodw)

which can be thought of as saying

let (van) have the value (expl) and

(0am) have the value (expz) and

(warn) have the value (expn)

in (body)

The first part of the let expression is a list of name—expression pairs.

When the let is evaluated, each name is associated with the value of

the corresponding expression. The body of the let is evaluated with

these names bound as local variables. The way this happens is that the

let expression is interpreted as an alternate syntax for

86

((lambda (⟨var1⟩ ... ⟨varn⟩)

⟨body⟩)

⟨exp1⟩

...

⟨expn⟩)

No new mechanism is required in the interpreter in order to provide

local variables. A let expression is simply syntactic sugar for the un-

derlying
lambda application.

We can see from this equivalence that the scope ofa variable spec-

ified by a let expression is the body of the let. is implies that:

• Let allows one to bind variables as locally as possible to where

they are to be used. For example, if the value of x is 5, the value

of the expression

(+ (let ((x 3))

(+ x (* x10)))

x)

is 38. Here, the x in the body of the let is 3, so the value of the

let expression is 33. On the other hand, the x that is the second

argument to the outermost + is still 5.

• e variables’ values are computed outside the let. is maers

when the expressions that provide the values for the local vari

ables depend upon variables having the same names as the local

variables themselves. For example, if the value of x is 2, the ex-

pression

(let ((x 3)

(y (+ x 2)))

(* x y))

87

will have the value 12 because, inside the body of the let, x will

be 3 and y will be 4 (which is the outer x plus 2).

Sometimes we can use internal definitions to get the same effect as with

let. For example, we could have defined the procedure f above as

(define (f x y)

(define a (+ 1 (* x y)))

(define b (- 1 y))

(+ (* x (square a))

(* y b)

(* a b)))

We prefer, however, to use let in situations like this and to use internal

define only for internal procedures.54

Exercise 1.34: Suppose we define the procedure

(define (f g) (g 2))

en we have

(f square)

4

(f (lambda (z) (* z (+ z 1))))

6

Whathappensif we (perversely)askthe interpreter toeval-

uate the combination (f f)? Explain.

54Understanding internal definitions well enough to be sure a program means what

we intend it to mean requires a more elaborate model of the evaluation process than we

have presented in this chapter. e subtleties do not arise with internal definitions of

procedures, however. We will return to this issue in Section 4.1.6, aer we learn more

about evaluation.

88

1.3.3 Procedures as General Methods

We introduced compound procedures in Section 1.1.4 as a mechanism

for abstracting paerns of numerical operations so as to make them in-

dependent of the particular numbers involved. With higher-order pro-

cedures, such as the integral procedure of Section 1.3.1, we began to

see a more powerful kind of abstraction: procedures used to express

general methods of computation, independent of the particular func-

tionsinvolved.Inthissectionwe discusstwomoreelaborateexamples—

general methods for finding zeros and fixed points of functions—and

show how these methods can be expressed directly as procedures.

Finding roots of equations by the half-interval method

e half-interval method is a simple but powerful technique for finding

roots of an equation f(x) = 0, where f is a continuous function. e

idea is that, if we are given points a and b such that f(a) < 0 < f(b),

then f must have at least one zero between a and b. To locate a zero,

let x be the average of a and b, and compute f(x). If f(x) > 0, then

f must have a zero between a and x. Iff(x) < 0, then f must have a

zero between x and b. Continuing in this way, we can identify smaller

and smaller intervals on which f must have a zero. When we reach a

point where the interval is small enough, the process stops. Since the

interval of uncertainty is reduced by half at each step of the process, the

number of steps required grows as Θ(log(L/T)), where L is the length

of the original interval and T is the error tolerance (that is, the size of

the interval we will consider “small enough”). Here is a procedure that

implements this strategy:

(define (search f neg-point pos-point)

(let ((midpoint (average neg-point pos-point)))

89

(if (close-enough? neg-point pos-point)

midpoint

(let ((test-value (f midpoint)))

(cond ((positive? test-value)

(search f neg-point midpoint))

((negative? test-value)

(search f midpoint pos-point))

(else midpoint))))))

We assume that we are initially given the function f together with

points at which its values are negative and positive. We first compute

the midpoint of the two given points. Next we check to see if the given

interval is small enough, and if so we simply return the midpoint as our

answer.Otherwise, we compute as atest value the value off at the mid-

point. If the test value is positive, then we continue the process with a

new interval running from the original negative point to the midpoint.

If the test value is negative, we continue with the interval from the mid-

point to the positive point. Finally, there is the possibility that the test

value is 0, in which case the midpoint is itself the root we are searching

for.

To test whether the endpoints are “close enough” we can use a pro-

cedure similar to the one used in Section 1.1.7 for computing square

roots:55

(define (close-enough? x y) (< (abs (- x y)) 0.001))

Search is awkward to use directly, because we can accidentally give it

points at which f’s values do not have the required sign, in which case

55We have used 0.001 as a representative “small” number to indicate a tolerance for

the acceptable error in a calculation. e appropriate tolerance for a real calculation

depends upon the problem to be solved and the limitations of the computer and the

algorithm. is is oen a very subtle consideration, requiring help from a numerical

analyst or some other kind of magician.

90

we get a wrong answer. Instead we will use search via the following

procedure, which checks to see which of the endpoints has a negative

function value and which has a positive value, and calls the search pro

cedure accordingly. If the function has the same sign on the two given

points, the half-interval method cannot be used, in which case the pro

cedure signals an error.56

(define (half-interval-method f a b)

(let ((a-value (f a))

(b-value (f b)))

(cond ((and (negative? a-value) (positive? b-value))

(search f a b))

((and (negative? b-value) (positive? a-value))

(search f b a))

(else

(error "Values are not of opposite sign" a b)))))

e following example uses the half-interval method to approximate π

as the root between 2 and 4 of sinx = 0:

(half-interval-method sin 2.0 4.0)

3.14111328125

Here is another example, using the half-interval method to search for a

root of the equation x3 − 2x − 3 = 0 between 1 and 2:

(half-interval-method (lambda (x) (- (* x x x) (* 2 x) 3))

1.0

2.0)

1.89306640625

56iscan beaccomplished using error, whichtakesasargumentsanumber ofitems

that are printed as error messages.

91

Finding fixed points of functions

A number x is called afixed point of a function f ifx satisfies the equa-

tion f(x) = x. For some functions f we can locate a fixed point by

beginning with an initial guess and applying f repeatedly,

f(x), f(f(x)), f(f(f(x))), ...,

until the value does not change very much. Using this idea, we can de-

vise a procedure fixed-point that takes as inputs a function and an

initial guessandproducesanapproximation to afixedpoint ofthe func-

tion. We apply the function repeatedly until we find two successive val-

ues whose difference is less than some prescribed tolerance:

(define tolerance 0.00001)

(define (fixed-point f first-guess)

(define (close-enough? v1 v2)

(< (abs (- v1 v2))

tolerance))

(define (try guess)

(let ((next (f guess)))

(if (close-enough? guess next)

next

(try next))))

(try first-guess))

For example, we can use this method to approximate the fixed point of

the cosine function, starting with 1 as an initial approximation:57

(fixed-point cos 1.0)

.7390822985224023

Similarly, we can find a solution to the equation y = siny + cosy:

57Try this during a boring lecture: Set your calculator to radians mode and then

repeatedly press the cos buon until you obtain the fixed point.

92

(fixed-point (lambda (y) (+ (sin y) (cos y)))

1.0)

1.2587315962971173

e fixed-point processisreminiscentofthe processwe used forfinding

square roots in Section 1.1.7. Both are based on the idea of repeatedly

improvingaguessuntiltheresultsatisfiessome criterion.Infact,wecan

readily formulate the square-root computation as a fixed-point search.

Computing the square root of some number x requires finding ay such

that y2 = x. Puing this equation into the equivalent form y = x/y,

we recognize that we are looking for a fixed point of the function58

y→ x/y, and we can therefore try to compute square roots as

(define (sqrt x)

(fixed-point (lambda (y) (/ x y))

1.0))

Unfortunately, this fixed-point search does not converge. Consider an

initial guess y1. e next guess is y2 = x/y1 and the next guess is y3 =

x/y2 = x/(x/y1) = y1. is results in an infinite loop in which the two

guesses y1 and y2 repeat over and over, oscillating about the answer.

One way to control such oscillations is to prevent the guesses from

changing so much. Since the answer is always between our guessy and

x/y, we can make a new guess that is not as far from y as x/y by av-

eraging y with x/y, so that the next guess aer y is 12(y + x/y) instead

ofx/y. e process of making such a sequence of guesses is simply the

process oflooking for a fixed point ofy→ 12(y + x/y):

(define (sqrt x)

(fixed-point (lambda (y) (average y (/ x y)))

1.0))

58→ (pronounced “maps to”) is the mathematician’s way of writing lambda.y→ x/ymeans (lambda (y) (/ x y)), that is, the function whose value at y is x/y.

93

(Note that y = 12(y + x/y) is a simple transformation of the equation

y = x/y; to derive it, add y to both sides of the equation and divide by

2.)

With this modification, the square-root procedure works. In fact, if

we unravel the definitions, we can see that the sequence of approxi-

mations to the square root generated here is precisely the same as the

one generated by our original square-root procedure of Section 1.1.7.

is approach of averaging successive approximations to a solution, a

technique that we call average damping, oen aids the convergence of

fixed-point searches.

Exercise 1.35: Show that the golden ratio ϕ (Section 1.2.2)

is a fixed point of the transformation x→ 1 + 1/x, and

use this fact to compute ϕ by means of the fixed-point

procedure.

Exercise 1.36: Modify fixed-point so that it prints the

sequenceofapproximationsitgenerates,usingthe newline

and display primitives shown in Exercise 1.22. en find

a solution to xx = 1000 by finding a fixed point of x→

log(1000)/log(x). (Use Scheme’s primitive log procedure,

which computes natural logarithms.) Compare the number

ofstepsthistakeswithandwithoutaveragedamping.(Note

that you cannot start fixed-point with a guess of 1, as this

would cause division by log(1) = 0.)

Exercise 1.37:

a. An infinite continuedfraction is an expression of the

94

form

f =

N1

D1 +

N2

N3

D2 + D3 + ...

.

As an example, one can show that the infinite con-

tinued fraction expansion with the Ni and the Di all

equal to 1 produces 1/ϕ, where ϕ is the golden ratio

(described in Section 1.2.2). One way to approximate

aninfinite continuedfractionistotruncate theexpan-

sionaeragivennumberofterms.Suchatruncation—

aso-calledk-termfinitecontinuedfraction—hastheform

N1

D1 +

N2

.
.
. + Nk

Dk

.

Suppose that n and d are procedures of one argument

(the term index i) that return the Ni and Di of the

terms of the continued fraction. Define a procedure

cont-frac such that evaluating (cont-frac n d k)

computesthevalueofthek-termfinitecontinuedfrac-

tion. Check your procedure by approximating 1/ϕ us-

ing

(cont-frac (lambda (i) 1.0)

(lambda (i) 1.0)

k)

95

for successive values of k. How large must you make

k in order to get an approximation that is accurate to

4 decimal places?

b. Ifyour
cont-fracproceduregeneratesarecursivepro-

cess, write one that generates an iterative process. If

it generates an iterative process, write one that gen-

erates a recursive process.

Exercise 1.38: In 1737, the Swiss mathematician Leonhard

Euler published a memoir De Fractionibus Continuis, which

included a continued fraction expansion for e − 2, where

e is the base of the natural logarithms. In this fraction, the

Ni are all 1, and the Di are successively 1, 2, 1, 1, 4, 1, 1,

6, 1, 1, 8, Write a program that uses your cont-frac

procedure from Exercise 1.37 to approximate e, based on

Euler’s expansion.

Exercise 1.39: A continued fraction representation of the

tangentfunctionwaspublishedin1770bytheGermanmath-

ematician J.H. Lambert:

tanx= x

1 −

x2

3 −

x2

5 − ...

,

wherex isinradians.Defineaprocedure (tan-cf x k)that

computes an approximation to the tangent function based

on Lambert’s formula. k specifies the number of terms to

compute, as in Exercise 1.37.

96

1.3.4 Procedures as Returned Values

e above examples demonstrate how the ability to pass procedures as

argumentssignificantlyenhancestheexpressive powerof ourprogram-

minglanguage. Wecanachieveevenmoreexpressive powerbycreating

procedures whose returned values are themselves procedures.

We can illustrate this idea by looking again at the fixed-point exam

ple described at the end of Section 1.3.3. We formulated a new version

of the square-root procedure as a fixed-point search, starting with the
observation that √x is a fixed-point of the function y→ x/y. en we

used average damping to make the approximations converge. Average

dampingis auseful generaltechnique in itself.Namely, given afunction

f, we consider the function whose value at x is equal to the average of

x and f(x).

We can express the idea of average damping by means of the fol-

lowing procedure:

(define (average-damp f)

(lambda (x) (average x (f x))))

Average-damp is a procedure that takes as its argument a procedure

f and returns as its value a procedure (produced by the lambda) that,

when applied to a number x, produces the average of x and (f x). For

example, applying average-damp to the square procedure produces a

procedure whose value at some number x is the average of x and x2.

Applying this resulting procedure to 10 returns the average of 10 and

100, or 55:59

59Observe that this is a combination whose operator is itself a combination. Exercise

1.4 already demonstrated the ability to form such combinations, but that was only a toy

example. Here we begin to see the real need for such combinations—when applying a

procedure that is obtained as the value returned by a higher-order procedure.

97

((average-damp square) 10)

55

Using average-damp, we can reformulate the square-root procedure as

follows:

(define (sqrt x)

(fixed-point (average-damp (lambda (y) (/ x y)))

1.0))

Noticehowthisformulationmakesexplicitthethreeideasinthemethod:

fixed-point search, average damping, and the functiony→ x/y. It is in

structive to compare this formulation of the square-root method with

the original version given in Section 1.1.7. Bear in mind that these pro-

ceduresexpressthe same process, and notice how much clearer the idea

becomes when we express the process in terms of these abstractions. In

general, there are many ways to formulate a process as a procedure. Ex-

perienced programmers know how to choose procedural formulations

that are particularly perspicuous, and where useful elements ofthe pro-

cess are exposed as separate entities that can be reused in other appli-

cations. As a simple example ofreuse, notice that the cube root ofx is a

fixed point of the functiony→ x/y2, so we can immediately generalize

our square-root procedure to one that extracts cube roots:60

(define (cube-root x)

(fixed-point (average-damp (lambda (y) (/ x (square y))))

1.0))

Newton’s method

Whenwefirstintroducedthesquare-rootprocedure,inSection1.1.7,we

mentioned that this was a special case of Newton’s method. If x→ д(x)

60See Exercise 1.45 for a further generalization.

98

is a differentiable function, then a solution of the equation д(x) = 0 is a

fixed point of the function x→ f(x), where

−

д(x)

Dд(x)

and Dд(x) is the derivative ofд evaluated at x. Newton’s method is the

f(x)=x

use of the fixed-point method we saw above to approximate a solution

of the equation by finding a fixed point of the function f.61

For many functions д and for sufficiently good initial guesses for x,

Newton’s method converges very rapidly to a solution of д(x) = 0.62

In order to implement Newton’s method as a procedure, we must

first express the idea of derivative. Note that “derivative,” like average

damping, issomethingthat transformsafunctionintoanotherfunction.

For instance, the derivative of the function x→ x3 is the function x→

3x2. In general, if д is a function and dx is a small number, then the

derivative Dд of д is the function whose value at any number x is given

(in the limit of small dx) by

д(x + dx) − д(x)

dx .

us,we canexpressthe ideaof derivative (takingdx to be, say,0.00001)

Dд(x) =

as the procedure

(define (deriv g)

(lambda (x) (/ (- (g (+ x dx)) (g x)) dx)))

61Elementary calculus books usually describe Newton’s method in terms of the se-

quenceofapproximationsxn+1 = xn −д(xn)/Dд(xn). Havinglanguagefor talkingaboutprocesses and using the idea of fixed points simplifies the description of the method.

62Newton’s method does not always converge to an answer, but it can be shown

that in favorable cases each iteration doubles the number-of-digits accuracy of the ap-

proximation to the solution. In such cases, Newton’s method will converge much more

rapidly than the half-interval method.

99

along with the definition

(define dx 0.00001)

Like average-damp, deriv is a procedure that takes a procedure as ar-

gument and returns a procedure as value. For example, to approximate

the derivative of x→ x3 at 5 (whose exact value is 75) we can evaluate

(define (cube x) (* x x x))

((deriv cube) 5)

75.00014999664018

Withthe aidof deriv,we canexpressNewton’smethodasafixed-point

process:

(define (newton-transform g)

(lambda (x) (- x (/ (g x) ((deriv g) x)))))

(define (newtons-method g guess)

(fixed-point (newton-transform g) guess))

e newton-transform procedure expresses the formula at the begin-

ning of this section, and newtons-method is readily defined in terms of

this. It takes as arguments a procedure that computes the function for

which we want to find a zero, together with an initial guess. For in-

stance, to find the square root ofx, we can use Newton’s method to find

a zero of the functiony→ y2 − x starting with an initial guess of 1.63

is provides yet another form of the square-root procedure:

(define (sqrt x)

(newtons-method

(lambda (y) (- (square y) x)) 1.0))

63For finding square roots, Newton’s method converges rapidly to the correct solu-

tion from any starting point.

100

Abstractions and first-class procedures

We’ve seen two ways to express the square-root computation as an in-

stance ofa more general method, once as a fixed-point search and once

using Newton’s method. Since Newton’s method was itself expressed

as a fixed-point process, we actually saw two ways to compute square

roots as fixed points. Each method begins with a function and finds a

fixed point of some transformation of the function. We can express this

general idea itself as a procedure:

(define (fixed-point-of-transform g transform guess)

(fixed-point (transform g) guess))

is very general procedure takes as its arguments a procedure g that

computes some function, a procedure that transforms g, and an initial

guess. e returned result is a fixed point of the transformed function.

Using this abstraction, we can recast the first square-root computa-

tion from this section (where we look for a fixed point of the average-

damped version of y→ x/y) as an instance of this general method:

(define (sqrt x)

(fixed-point-of-transform

(lambda (y) (/ x y)) average-damp 1.0))

Similarly, we can express the second square-root computation from this

section (an instance of Newton’s method that finds a fixed point of the

Newton transform of y→ y2 − x) as

(define (sqrt x)

(fixed-point-of-transform

(lambda (y) (- (square y) x)) newton-transform 1.0))

We began Section 1.3 with the observation that compound procedures

are a crucial abstraction mechanism, because they permit us to express

general methods of computing asexplicit elementsin our programming

101

language. Now we’ve seen how higher-order procedures permit us to

manipulate these general methods to create further abstractions.

As programmers, we should be alert to opportunities to identify the

underlying abstractions in our programs and to build upon them and

generalize them to create more powerful abstractions. is is not to

say that one should always write programs in the most abstract way

possible; expert programmers know how to choose the level of abstrac-

tion appropriate to their task. But it is important to be able to think in

terms of these abstractions, so that we can be ready to apply them in

new contexts. e significance of higher-order procedures is that they

enable us to represent these abstractions explicitly as elements in our

programminglanguage, so that they canbe handledjust like other com-

putational elements.

Ingeneral, programminglanguagesimpose restrictionson the ways

in which computational elements can be manipulated. Elements with

the fewest restrictions are said to have first-class status. Some of the

“rights and privileges” of first-class elements are:64

• ey may be named by variables.

• ey may be passed as arguments to procedures.

• ey may be returned as the results of procedures.

• ey may be included in data structures.65

Lisp,unlikeother commonprogramminglanguages,awardsprocedures

full first-class status. isposes challengesfor efficient implementation,

64e notion of first-class status of programming-language elements is due to the

British computer scientist Christopher Strachey (1916-1975).

65We’ll see examples of this aer we introduce data structures in Chapter 2.

102

but the resulting gain in expressive power is enormous.66

Exercise 1.40: Define a procedure cubic that can be used

togetherwiththe newtons-methodprocedureinexpressions

of the form

(newtons-method (cubic a b c) 1)

to approximate zeros of the cubic x3 + ax2 +bx +c.

Exercise 1.41: Define a procedure double that takes a pro-

cedure of one argument as argument and returns a proce

dure that applies the original procedure twice. For exam

ple, if inc is a procedure that adds 1 to its argument, then

(double inc) should be a procedure that adds 2. What

value is returned by

(((double (double double)) inc) 5)

Exercise 1.42: Letf and д be two one-argument functions.

e compositionf aer д is defined to be the function x→

f(д(x)). Define a procedure compose that implements com-

position. For example, if inc is a procedure that adds 1 to

its argument,

((compose square inc) 6)

49

66
emajorimplementationcostoffirst-classproceduresisthatallowingprocedures

to be returned as values requires reserving storage for a procedure’s free variables even

while the procedure is not executing. In the Scheme implementation we will study in

Section 4.1, these variables are stored in the procedure’s environment.

103

Exercise 1.43: Iff is a numerical function and n is a posi-

tive integer, then we can form the nth repeated application

of f , which is defined to be the function whose value at

x is f (f (... (f (x))...)). For example, iff is the function

x→ x + 1, then the nth repeated application off is the

functionx→ x +n. Iff is the operation of squaring a num-

ber, then the nth repeated application off is the function

that raises its argument to the 2n-th power. Write a proce-

dure that takesas inputsa procedure that computesf and a

positive integern and returns the procedure that computes

thenth repeated application off. Your procedure should be

able to be used as follows:

((repeated square 2) 5)

625

Hint: You may find it convenient to use compose from Ex-

ercise 1.42.

Exercise 1.44: e idea of smoothing a function is an im-

portant concept in signal processing. Iff is a function and

dx is some small number, then the smoothed version off is

the functionwhosevalueat apointx is the average off(x−dx),f(x),and f(x+dx). Writeaprocedure smooththattakes

as input a procedure that computes f and returns a proce-

dure that computes the smoothed f . It is sometimes valu-

able to repeatedly smooth a function (that is, smooth the

smoothed function,andso on) to obtain the n-fold smoothed

function. Show how to generate the n-fold smoothed func-

tionofany givenfunctionusing smooth and repeatedfromExercise 1.43.

104

Exercise 1.45: We saw in Section 1.3.3 that aempting to

compute square roots by naively finding a fixed point of

y→ x/y does not converge, and that this can be fixed by

average damping. e same method works for finding cube

roots as fixed points of the average-dampedy→ x/y2. Un-

fortunately, the process does not work for fourth roots—a

single average damp is not enough to make a fixed-point

search for y→ x/y3 converge. On the other hand, if we

average damp twice (i.e., use the average damp of the av-

erage damp of y→ x/y3) the fixed-point search does con-

verge. Do some experiments to determine how many av-

erage damps are required to compute nth roots as a fixed-

point search based upon repeated average damping ofy→

x/yn−1. Use this to implement a simple procedure for com-

putingnth rootsusing fixed-point, average-damp,andtherepeatedprocedureofExercise1.43.Assumethatanyarith-

metic operations you need are available as primitives.

Exercise 1.46: Several of the numerical methods described

in this chapter are instances of an extremely general com-

putational strategy known as iterative improvement. Itera-

tiveimprovementsaysthat,tocomputesomething,westart

with an initial guess for the answer, test ifthe guess is good

enough, and otherwise improve the guess and continue the

process using the improved guess as the new guess. Write

a procedure iterative-improve that takestwo procedures

as arguments: a method for telling whether a guess is good

enough and a method for improving a guess. Iterative-

improve should return as its value a procedure that takes a

guess asargument and keeps improving the guess until it is

105

good enough. Rewrite the sqrt procedure of Section 1.1.7

andthefixed-pointprocedureofSection1.3.3intermsof

iterative-improve.

106

Building Abstractions with Data

We now come to the decisive step of mathematical abstrac-

tion: we forget about what the symbols stand for. ...[e

mathematician] neednotbeidle;there aremanyoperations

which he may carry out with these symbols, without ever

having to look at the things they stand for.

—Hermann Weyl, e Mathematical Way of inking

W Chapter 1 on computational processes and

on the role of procedures in program design. We saw how to

use primitive data (numbers) and primitive operations (arithmetic op-

erations), how to combine procedures to form compound procedures

through composition, conditionals, and the use of parameters, and how

to abstract procedures by using
define. We saw that a procedure can

be regarded as a paern for the local evolution of a process, and we

classified, reasoned about, and performed simple algorithmic analyses

of some common paerns for processes as embodied in procedures. We

107

also saw that higher-order procedures enhance the power of our lan-

guage by enabling us to manipulate, and thereby to reason in terms of,

general methods of computation. is is much of the essence of pro-

gramming.

In this chapter we are going to look at more complex data. All the

procedures in chapter 1 operate on simple numerical data, and simple

data are not sufficient for many of the problems we wish to address

using computation. Programs are typically designed to model complex

phenomena, andmore oenthannot onemust constructcomputational

objects that have several parts in order to model real-world phenom-

ena that have several aspects. us, whereas our focus in chapter 1 was

on building abstractions by combining procedures to form compound

procedures, we turn in this chapter to another key aspect of any pro-

gramming language: the means it provides for building abstractions by

combining data objects to form compound data.

Why do we want compound data in a programming language? For

the same reasons that we want compound procedures: to elevate the

conceptual level at which we can design our programs, to increase the

modularity of our designs, and to enhance the expressive power of our

language.Just as the ability to define procedures enables us to deal with

processes at a higher conceptual level than that of the primitive oper

ations of the language, the ability to construct compound data objects

enables us to deal with data at a higher conceptual level than that of the

primitive data objects of the language.

Consider the task of designing a system to perform arithmetic with

rational numbers. We could imagine an operation
add-rat that takes

two rational numbers and produces their sum. In terms of simple data,

a rational number can be thought of as two integers: a numerator and

a denominator. us, we could design a program in which each ratio-

nal number would be represented by two integers (a numerator and a

108

denominator) and where add-rat would be implemented by two proce-

dures (one producing the numerator of the sum and one producing the

denominator). But thiswouldbe awkward,becausewe wouldthen need

to explicitly keep track ofwhich numerators corresponded to which de-

nominators. In a system intended to perform many operations on many

rational numbers, such bookkeeping details would cluer the programs

substantially, to say nothing of what they would do to our minds. It

would be much beer if we could “glue together” a numerator and de-

nominator to form a pair—a compound data object—that our programs

could manipulate in a way that would be consistent with regarding a

rational number as a single conceptual unit.

e use of compound data also enables us to increase the modular-

ity of our programs. If we can manipulate rational numbers directly as

objects in their own right, then we can separate the part of our program

that deals with rational numbers per se from the details of how rational

numbers may be represented as pairs ofintegers. e general technique

ofisolating the parts of a program that deal with how data objects are

represented from the parts ofa program that deal with how data objects

are used is a powerful design methodology called data abstraction. We

will see how data abstraction makes programs much easier to design,

maintain, and modify.

e use of compound data leads to a real increase in the expressive

power of our programming language. Consider the idea of forming a

“linear combination” ax + by. We might like to write a procedure that

would accepta,b, x, andy as arguments and return the value ofax +by.

is presents no difficulty if the arguments are to be numbers, because

we can readily define the procedure

(define (linear-combination a b x y)

(+ (* a x) (* b y)))

109

But suppose we are not concerned only with numbers. Suppose we

would like to express, in procedural terms, the idea that one can form

linearcombinationswheneveradditionandmultiplicationare defined—

for rational numbers, complex numbers, polynomials, or whatever. We

could express this as a procedure of the form

(define (linear-combination a b x y)

(add (mul a x) (mul b y)))

where add and mul are not the primitive procedures + and * but rather

more complex things that will perform the appropriate operations for

whatever kinds of data we pass in as the arguments a, b, x, and y. e

key point is that the only thing linear-combination should need to

know about a, b, x, and y is that the procedures add and mul will per-

form the appropriate manipulations. From the perspective of the pro-

cedure linear-combination, it is irrelevant what a, b, x, and y are and

evenmore irrelevant how they might happento be representedintermsof more primitive data. is same example shows why it is important

that our programming language provide the ability to manipulate com-

pound objects directly: Without this, there is no way for a procedure

such as linear-combination to pass its arguments along to add and

mul without having to know their detailed structure.1

1e
ability to directly manipulateprocedures providesan analogousincreasein the

expressive power of a programming language. For example, in Section 1.3.1 we intro-

duced the sum procedure, which takes a procedure term as an argument and computes

the sum of the values of term over some specified interval. In order to define sum, it

is crucial that we be able to speak of a procedure such as term as an entity in its own

right, without regard for how term might be expressed with more primitive operations.

Indeed, if we did not have the notion of “a procedure,” it is doubtful that we would ever

even think of the possibility of defining an operation such as sum. Moreover, insofar as

performing the summation is concerned, the details of how term may be constructed

from more primitive operations are irrelevant.

110

We begin this chapter by implementing the rational-number arith-

metic system mentioned above. is will form the background for our

discussion of compound data and data abstraction. As with compound

procedures, the main issue to be addressed is that of abstraction as a

technique for coping with complexity, and we will see how data ab-

straction enables us to erect suitable abstraction barriers between differ-

ent parts of a program.

We will see that the key to forming compound data is that a pro-

gramming language should provide some kind of “glue” so that data

objects can be combined to form more complex data objects. ere are

many possible kinds of glue. Indeed, we will discover how to form com-

pound data using no special “data” operations at all, only procedures.

is will further blur the distinction between “procedure” and “data,”

which was already becoming tenuous toward the end of chapter 1. We

willalsoexploresomeconventionaltechniquesforrepresentingsequences

and trees. One key idea in dealing with compound data is the notion of

closure—that the glue we use for combining data objects should allow

us to combine not only primitive data objects, but compound data ob-

jects as well. Another key idea is that compound data objects can serve

as conventional interfaces for combining program modules in mix-and-

match ways. We illustrate some of these ideas by presenting a simple

graphics language that exploits closure.

We will then augment the representational power of our language

by introducing symbolic expressions—data whose elementary parts can

be arbitrary symbols rather than only numbers. We explore various al-

ternatives for representing sets of objects. We will find that, just as a

given numerical function can be computed by many different computa-

tional processes, there are many ways in which a given data structure

can be represented in terms of simpler objects, and the choice of rep-

resentation can have significant impact on the time and space require-

111

ments of processes that manipulate the data. We will investigate these

ideas in the context of symbolic differentiation, the representation of

sets, and the encoding of information.

Next we will take up the problem of working with data that may be

represented differently by different parts ofa program. is leads to the

needtoimplementgenericoperations,whichmusthandle many different

types of data. Maintaining modularity in the presence of generic oper-

ations requires more powerful abstraction barriers than can be erected

with simple data abstraction alone. In particular, we introduce data-

directed programming as a technique that allows individual data repre-

sentationsto be designed in isolation and then combined additively (i.e.,

without modification). To illustrate the power of this approach to sys-

tem design, we close the chapter by applying what we have learned to

the implementation of apackage for performing symbolic arithmetic on

polynomials, in which the coefficients of the polynomials can be inte-

gers, rational numbers, complex numbers, and even other polynomials.

2.1 Introduction to Data Abstraction

In Section 1.1.8, we noted that a procedure used as an element in creat-

ingamorecomplex procedurecouldberegardednot onlyasacollection

ofparticular operations but also as a procedural abstraction. at is, the

details of how the procedure was implemented could be suppressed,

and the particular procedure itself could be replaced by any other pro-

cedure with the same overall behavior. In other words, we could make

anabstractionthatwouldseparate the way the procedurewouldbeused

from the details of how the procedure would be implemented in terms

ofmore primitive procedures. e analogous notion for compound data

iscalleddataabstraction. Dataabstractionis amethodology thatenables

112

usto isolate howacompound dataobject isusedfromthe detailsofhowit is constructed from more primitive data objects.

e basic idea of data abstraction is to structure the programs that

aretouse compounddataobjectssothat they operate on“abstract data.”

at is, our programs should use data in such a way as to make no as-

sumptions about the data that are not strictly necessary for performing

the task at hand. At the same time, a “concrete” data representation is

defined independent ofthe programs that use the data. e interface be-

tweenthesetwopartsofoursystemwillbeasetofprocedures,calledse-

lectors and constructors, that implement the abstract data in terms of the

concrete representation. To illustrate this technique, we will consider

how to design a set of procedures for manipulating rational numbers.

2.1.1 Example: Arithmetic Operations

for Rational Numbers

Suppose we want to do arithmetic with rational numbers. We want to

be able to add, subtract, multiply, and divide them and to test whether

two rational numbers are equal.

Let us begin by assuming that we already have a way of construct-

ing a rational number from a numerator and a denominator. We also

assume that, given a rational number, we have a way of extracting (or

selecting)its numerator and its denominator. Let us further assume that

the constructor and selectors are available as procedures:

• (make-rat ⟨n⟩ ⟨d⟩) returns the rational number whose numera

tor is the integer ⟨n⟩ and whose denominator is the integer ⟨d⟩.

• (numer ⟨x⟩) returns the numerator of the rational number ⟨x⟩.

• (denom ⟨x⟩) returnsthe denominatoroftherationalnumber⟨x⟩.

113

We are using here a powerful strategy of synthesis: wishful thinking.

We haven’t yet said how a rational number is represented, or how the

procedures numer, denom, and make-rat should be implemented. Even

so, if we did have these three procedures, we could then add, subtract,

multiply, divide, and test equality by using the following relations:

n1 n2 n1d2 +n2d1

d1 + d2 = d1d2 ,

n1d1 − n2d2 = n1d2 − n2d1

d1d2

,

n1d1 · n2d2 = n1n2

d1d2

,

n1/d1n2/d2 =
n1d2

d1n2

,

n1
d1 =

n2
d2

ifand only if n1d2 = n2d1.

We can express these rules as procedures:

(define (add-rat x y)

(make-rat (+ (* (numer x) (denom y))

(* (numer y) (denom x)))

(* (denom x) (denom y))))

(define (sub-rat x y)

(make-rat (- (* (numer x) (denom y))

(* (numer y) (denom x)))

(* (denom x) (denom y))))

(define (mul-rat x y)

(make-rat (* (numer x) (numer y))

(* (denom x) (denom y))))

(define (div-rat x y)

(make-rat (* (numer x) (denom y))

(* (denom x) (numer y))))

114

(define (equal-rat? x y)

(= (* (numer x) (denom y))

(* (numer y) (denom x))))

Now we have the operations on rational numbers defined in terms

ofthe selector and constructor procedures numer, denom, and make-rat.

But we haven’t yet defined these. What we need is some way to glue

together a numerator and a denominator to form a rational number.

Pairs

To enable us to implement the concrete level of our data abstraction,

our language provides a compound structure called a pair, which can

be constructed with the primitive procedure cons. is procedure takes

two arguments and returns a compound data object that contains the

two arguments as parts. Given a pair, we can extract the parts using the

primitive procedures car and cdr.2 us, we can use cons, car, and cdr

as follows:

(define x (cons 1 2))

(car x)

1

(cdr x)

2

Notice that a pair is a data object that can be given a name and manip-

ulated, just like a primitive data object. Moreover, cons can be used to

form pairs whose elements are pairs, and so on:

2e name cons stands for “construct.” e names car and cdr derive from the orig-

inal implementation of Lisp on the IBM 704. at machine had an addressing scheme

that allowedonetoreference the “address”and“decrement”partsofa memorylocation.

Car stands for “Contents of Address part of Register” and cdr
(pronounced “could-er”)

stands for “Contents of Decrement part of Register.”

115

(define x (cons 1 2))

(define y (cons 3 4))

(define z (cons x y))

(car (car z))

1

(car (cdr z))

3

In Section 2.2 we will see how this ability to combine pairs means that

pairs can be used as general-purpose building blocks to create all sorts

of complex data structures. e single compound-data primitive pair,

implemented by the procedures cons, car, and cdr, is the only glue we

need. Data objects constructed from pairs are called list-structured data.

Representing rational numbers

Pairs offer a natural way to complete the rational-number system. Sim-

ply represent a rational number as a pair of two integers: a numerator

and a denominator. en make-rat, numer, and denom are readily im

plemented as follows:3

(define make-rat cons)

(define numer car)

(define denom cdr)

3Another
way to define the selectors and constructor is

e first definition associates the name make-rat with the value of the expression

cons, which is the primitive procedure that constructs pairs. us make-rat and cons

are names for the same primitive constructor.

Defining selectors and constructors in this way is efficient: Instead of make-rat call-

ing cons, make-rat is cons, so there is only one procedure called, not two, when make-

rat is called. On the other hand, doing this defeats debugging aids that trace procedure

calls or put breakpoints on procedure calls: You may want to watch make-rat being

called, but you certainly don’t want to watch every call to cons.

We have chosen not to use this style of definition in this book.

116

(define (make-rat n d) (cons n d))

(define (numer x) (car x))

(define (denom x) (cdr x))

Also, in order to display the results of our computations, we can print

rational numbers by printing the numerator, a slash, and the denomi-

nator:4

(define (print-rat x)

(newline)

(display (numer x))

(display "/")

(display (denom x)))

Now we can try our rational-number procedures:

(define one-half (make-rat 1 2))

(print-rat one-half)

1/2

(define one-third (make-rat 1 3))

(print-rat (add-rat one-half one-third))

5/6

(print-rat (mul-rat one-half one-third))

1/6

(print-rat (add-rat one-third one-third))

6/9

As the final example shows, our rational-number implementation does

not reduce rational numbers to lowest terms. We can remedy this by

changing
make-rat. If we have a gcd procedure like the one in Section

1.2.5 that produces the greatest common divisor oftwo integers, we can

4Display is the Scheme primitive for printing data. e Scheme primitive newline

starts a new line for printing. Neither of these procedures returns a useful value, so

in the uses of print-rat below, we show only what print-rat prints, not what the

interpreter prints as the value returned by print-rat.

117

use gcd to reduce the numerator and the denominator to lowest terms

before constructing the pair:

(define (make-rat n d)

(let ((g (gcd n d)))

(cons (/ n g) (/ d g))))

Now we have

(print-rat (add-rat one-third one-third))

2/3

as desired. is modification was accomplished by changing the con-

structor make-rat without changing any of the procedures (such as

add-rat and mul-rat) that implement the actual operations.

Exercise2.1: Define a beer version of make-rat that han-

dlesbothpositiveandnegativearguments. Make-ratshould

normalize the signsothat if the rationalnumberispositive,

both the numerator and denominator are positive, and if

the rational number is negative, only the numerator is neg

ative.

2.1.2 Abstraction Barriers

Before continuing with more examples of compound data and data ab-

straction,letusconsidersomeoftheissuesraisedbytherational-number

example. We defined the rational-number operations in terms ofa con-

structor make-rat andselectors numer and denom. In general,the under-

lying idea of data abstraction is to identify for each type of data object

a basic set of operations in terms of which all manipulations of data

objects of that type will be expressed, and then to use only those oper-

ations in manipulating the data.

118

Programs that use rational numbers

Rational numbers in problem domain

add-rat sub-rat ...

Rational numbers as numerators and denominators

make-rat numer denom

Rational numbers as pairs

cons car cdr

However pairs are implemented

Figure 2.1: Data-abstraction barriers in the rational-

number package.

We can envision the structure of the rational-number system as

shown in Figure 2.1. e horizontal lines represent abstraction barriers

that isolate different “levels” of the system. At each level, the barrier

separates the programs (above) that use the data abstraction from the

programs (below) that implement the data abstraction. Programs that

use rational numbers manipulate them solely in terms of the proce-

dures supplied “for public use” by the rational-number package: add-

rat, sub-rat, mul-rat, div-rat, and equal-rat?. ese, in turn, are

implemented solely in terms of the constructor and selectors make-rat,

numer, and denom, which themselves are implemented in terms of pairs.

e details of how pairs are implemented are irrelevant to the rest of

the rational-number package so long as pairs can be manipulated by

the use of cons, car, and cdr. In effect, procedures at each level are the

119

interfaces that define the abstraction barriers and connect the different

levels.

is simple idea has many advantages. One advantage is that it

makes programs much easier to maintain and to modify. Any complex

data structure can be represented in a variety of ways with the prim-

itive data structures provided by a programming language. Of course,

the choice ofrepresentation influences the programs that operate on it;

thus, if the representation were to be changed at some later time, all

such programs might have to be modified accordingly. is task could

be time-consuming and expensive in the case of large programs unless

the dependence on the representation were to be confined by design to

a very few program modules.

For example, an alternate way to address the problem of reducing

rational numbers to lowest terms is to perform the reduction whenever

we accessthe parts ofa rationalnumber, rather than when we construct

it. is leads to different constructor and selector procedures:

(define (make-rat n d) (cons n d))

(define (numer x)

(let ((g (gcd (car x) (cdr x))))

(/ (car x) g)))

(define (denom x)

(let ((g (gcd (car x) (cdr x))))

(/ (cdr x) g)))

e difference between this implementation and the previous one lies

in when we compute the gcd. If in our typical use of rational numbers

we access the numerators and denominators of the same rational num-

bers many times, it would be preferable to compute the gcd when the

rational numbers are constructed. If not, we may be beer off waiting

until access time to compute the gcd. In any case, when we change from

120

one representation to the other, the procedures add-rat, sub-rat, and

so on do not have to be modified at all.

Constraining the dependence on the representation to a few in-

terface procedures helps us design programs as well as modify them,

because it allows us to maintain the flexibility to consider alternate

implementations. To continue with our simple example, suppose we

are designing a rational-number package and we can’t decide initially

whether to perform the gcd at construction time or at selection time.

e data-abstraction methodology gives us a way to defer that decision

without losing the ability to make progress on the rest of the system.

Exercise 2.2: Consider the problem of representing line

segments in a plane. Each segment is represented as a pair

of points: a starting point and an ending point. Define a

constructor make-segmentandselectors start-segmentandend-segment that define the representation of segments in

terms of points. Furthermore, a point can be represented

as a pair of numbers: the x coordinate and the y coordi-

nate. Accordingly, specify a constructor make-point and

selectors x-point and y-point that define this representa-

tion. Finally, usingyour selectors and constructors, define a

procedure midpoint-segment that takes a line segment as

argument and returns its midpoint (the point whose coor-

dinatesare the average ofthe coordinatesoftheendpoints).

To try your procedures, you’ll need a way to print points:

(define (print-point p)

(newline)

(display "(")

(display (x-point p))

(display ",")

121

(display (y-point p))

(display ")"))

Exercise 2.3: Implement a representation for rectangles in

aplane.(Hint:Youmaywanttomake useofExercise2.2.)Interms ofyour constructors and selectors, create procedures

that compute the perimeter and the area of a given rectan-

gle. Now implement a different representation for rectan-

gles. Can you design your system with suitable abstraction

barriers, so that the same perimeter and area procedures

will work using either representation?

2.1.3 What Is Meant by Data?

We began the rational-number implementation in Section 2.1.1 by im-

plementing the rational-number operations add-rat, sub-rat, and so

onintermsofthreeunspecifiedprocedures: make-rat, numer,and denom.

At that point, we could think ofthe operations as being definedintermsofdataobjects—numerators,denominators,andrationalnumbers—whose

behavior was specified by the laer three procedures.

But exactly whatismeant by data?It isnot enough tosay“whatever

is implemented by the given selectors and constructors.” Clearly, not

every arbitrary set ofthree procedurescanserve as an appropriate basis

for the rational-number implementation. We need to guarantee that, if

we construct a rational number x from a pair of integers n and d, then

extracting the numer and the denom of x and dividing them should yield

the same result as dividing
n
by

d. In other words, make-rat, numer,

and denom must satisfy the condition that, for any integer n and any

122

non-zero integer d, if x is (make-rat n d), then

(numer x) n

(denom x) = d

.

Infact,thisistheonlyconditionmake-rat,numer,anddenommustfulfill

in order to form a suitable basis for a rational-number representation.

In general, we can think of data as defined by some collection of se-

lectors and constructors, together with specified conditions that these

procedures must fulfill in order to be a valid representation.5

is point ofview can serve to define not only “high-level” data ob-

jects,such asrationalnumbers,butlower-levelobjectsaswell.Consider

the notion ofa pair, which we used in order to define our rational num-

bers. We never actually said what a pair was, only that the language

supplied procedures cons, car, and cdr for operating on pairs. But the

only thing we need to know about these three operations is that if we

glue two objects together using cons we can retrieve the objects using

car and cdr. at is, the operations satisfy the condition that, for any

objects x and y, if z is (cons x y) then (car z) is x and (cdr z) is y.

5Surprisingly, this idea is very difficult to formulate rigorously. ere are two ap-

proaches to giving such a formulation. One, pioneered by C. A. R. Hoare (1972), is

known as the method of abstract models. It formalizes the “procedures plus conditions”

specification as outlined in the rational-number example above. Note that the condi-

tion on the rational-number representation was stated in terms of facts about integers

(equality and division). In general, abstract models define new kinds of data objects

in terms of previously defined types of data objects. Assertions about data objects can

therefore be checked by reducing them to assertions about previously defined data ob-

jects. Another approach, introduced by Zilles at , by Goguen, atcher, Wagner,

and Wright at IBM (see atcher et al. 1978), and by Guag at Toronto (see Guag

1977), is called algebraic specification. It regards the “procedures” as elements of an ab-

stract algebraic system whose behavior is specified by axioms that correspond to our

“conditions,” and uses the techniques of abstract algebra to check assertions about data

objects. Both methods are surveyed in the paper by Liskov and Zilles (1975).

123

Indeed, we mentioned that these three procedures are included asprim-

itives in our language. However, any triple of procedures that satisfies

the above condition can be used as the basis for implementing pairs.

is point is illustrated strikingly by the fact that we could implement

cons, car, and cdr without using any data structures at all but only

using procedures. Here are the definitions:

(define (cons x y)

(define (dispatch m)

(cond ((= m 0) x)

((= m1) y)

(else (error "Argument not 0 or 1: CONS" m))))

dispatch)

(define (car z) (z 0))

(define (cdr z) (z 1))

is use of procedures corresponds to nothing like our intuitive notion

of what data should be. Nevertheless, all we need to do to show that

this is a valid way to represent pairs is to verify that these procedures

satisfy the condition given above.

e subtle point tonotice is that the value returnedby (cons x y) is

a procedure—namely the internally defined procedure dispatch, which

takes one argument and returns either x or y depending on whether the

argument is 0 or 1. Correspondingly, (car z) is defined to apply z to 0.

Hence, if z is the procedure formed by (cons x y), then z applied to 0

will yield
x. us, we have shown that (car (cons x y)) yields x, as

desired. Similarly, (cdr (cons x y)) applies the procedure returned by

(cons x y) to 1, which returns y. erefore, this procedural implemen-

tation of pairs is a valid implementation, and if we access pairs using

only cons, car,and cdrwecannotdistinguishthisimplementationfrom

one that uses “real” data structures.

e point of exhibiting the procedural representation of pairs is not

124

that our language works this way (Scheme, and Lisp systems in general,

implement pairs directly, for efficiency reasons) but that it could work

thisway.e proceduralrepresentation, although obscure,isaperfectly

adequate way to represent pairs, since it fulfills the only conditions that

pairs need to fulfill. is example also demonstrates that the ability to

manipulate procedures as objects automatically provides the ability to

represent compound data. is may seem a curiosity now, but procedu-

ral representations of data will play a central role in our programming

repertoire. is style of programming is oen called message passing,

and we will be using it as a basic tool in Chapter 3 when we address the

issues of modeling and simulation.

Exercise 2.4: Here is an alternative procedural representa

tionofpairs.Forthisrepresentation,verifythat (car (cons

x y)) yields
x for any objects x and y.

(define (cons x y)

(lambda (m) (m x y)))

(define (car z)

(z (lambda (p q) p)))

What is the corresponding definition of cdr? (Hint: To ver-

ify that this works, make use of the substitution model of

Section 1.1.5.)

Exercise 2.5: Show that we can represent pairs of nonneg-

ative integers using only numbers and arithmetic opera-

tions if we represent the pair a and b as the integer that is

the product 2a3b. Give the corresponding definitions ofthe

procedures cons, car, and cdr.

125

Exercise2.6:Incaserepresentingpairsasprocedureswasn’t

mind-boggling enough, consider that, in a language that

canmanipulateprocedures,wecangetby withoutnumbers

(at least insofar as nonnegative integers are concerned) by

implementing 0 and the operation of adding 1 as

(define zero (lambda (f) (lambda (x) x)))

(define (add-1 n)

(lambda (f) (lambda (x) (f ((n f) x)))))

is representation is known as Church numerals, aer its

inventor, Alonzo Church, the logician who invented the λ-

calculus.

Define one and two directly (not in terms of zero and add-

1). (Hint: Use substitution to evaluate (add-1 zero)). Give

a direct definition of the addition procedure + (not in terms

of repeated application of add-1).

2.1.4 Extended Exercise: Interval Arithmetic

Alyssa P. Hacker is designing a system to help people solve engineer

ing problems. One feature she wants to provide in her system is the

ability to manipulate inexact quantities (such as measured parameters

of physical devices) with known precision, so that when computations

are done with such approximate quantities the results will be numbers

of known precision.

Electrical engineers will be using Alyssa’s system to compute elec-

trical quantities. It is sometimes necessary for them to compute the

value ofa parallel equivalent resistance Rp of two resistors R1, R2 using

the formula

1

Rp =

1/R1+1/R2

.

126

Resistance values are usually known only up to some tolerance guaran-

teed by the manufacturer of the resistor. For example, ifyou buy a resis-

tor labeled “6.8 ohms with 10% tolerance” you can only be sure that the

resistor has a resistance between 6.8−0.68 = 6.12 and 6.8+0.68 = 7.48

ohms.us,ifyouhave a6.8-ohm10%resistorinparallelwitha4.7-ohm

5% resistor, the resistance ofthe combination can range from about 2.58

ohms (if the two resistors are at the lower bounds) to about 2.97 ohms

(if the two resistors are at the upper bounds).

Alyssa’s idea is to implement “interval arithmetic” as a set of arith-

metic operations for combining “intervals” (objects that represent the

range of possible values of an inexact quantity). e result of adding,

subtracting, multiplying, or dividing two intervals is itself an interval,

representing the range of the result.

Alyssa postulates the existence of an abstract object called an “in-

terval” that has two endpoints: a lower bound and an upper bound. She

also presumes that, given the endpoints of an interval, she can con-

struct the interval using the data constructor make-interval. Alyssa

first writes a procedure for adding two intervals. She reasons that the

minimum value the sum could be is the sum of the two lower bounds

and the maximum value it could be is the sum of the two upper bounds:

(define (add-interval x y)

(make-interval (+ (lower-bound x) (lower-bound y))

(+ (upper-bound x) (upper-bound y))))

Alyssa also works out the product of two intervals by finding the min-

imum and the maximum of the products of the bounds and using them

as the bounds of the resulting interval. (Min and max are primitives that

find the minimum or maximum of any number of arguments.)

(define (mul-interval x y)

(let ((p1 (* (lower-bound x) (lower-bound y)))

127

(p2 (* (lower-bound x) (upper-bound y)))

(p3 (* (upper-bound x) (lower-bound y)))

(p4 (* (upper-bound x) (upper-bound y))))

(make-interval (min p1 p2 p3 p4)

(max p1 p2 p3 p4))))

To divide two intervals, Alyssa multiplies the first by the reciprocal of

the second. Note that the bounds of the reciprocal interval are the re-

ciprocal of the upper bound and the reciprocal of the lower bound, in

that order.

(define (div-interval x y)

(mul-interval

x

(make-interval (/ 1.0 (upper-bound y))

(/ 1.0 (lower-bound y)))))

Exercise 2.7: Alyssa’s program is incomplete because she

has not specified the implementation of the interval ab-

straction. Here is a definition of the interval constructor:

(define (make-interval a b) (cons a b))

Defineselectors upper-boundand lower-boundtocompletethe implementation.

Exercise 2.8: Using reasoning analogous to Alyssa’s, de-

scribe how the difference of two intervals may be com-

puted.Defineacorrespondingsubtractionprocedure,called

sub-interval.

Exercise 2.9: e width of an interval is half of the differ-

ence between its upper and lower bounds. e width is a

128

measure of the uncertainty of the number specified by the

interval. For some arithmetic operations the width of the

result of combining two intervals is a function only of the

widths of the argument intervals, whereas for others the

width of the combination is not a function of the widths of

the argument intervals. Show that the width of the sum (or

difference) of two intervals is a function only of the widths

of the intervals being added (or subtracted). Give examples

to show that this is not true for multiplication or division.

Exercise 2.10: Ben Bitdiddle, an expert systems program-

mer, looks over Alyssa’s shoulder and comments that it is

not clear what it means to divide by an interval that spans

zero. Modify Alyssa’s code to check for this condition and

to signal an error if it occurs.

Exercise 2.11: In passing, Ben also cryptically comments:

“By testing the signs of the endpoints of the intervals, it is

possible to break mul-interval into nine cases, only one

of which requires more than two multiplications.” Rewrite

this procedure using Ben’s suggestion.

Aer debugging her program, Alyssa shows it to a poten-

tialuser, who complains that her programsolvesthe wrong

problem. He wants a program that can deal with numbers

represented as a center value and an additive tolerance; for

example, he wants to work with intervals such as 3.5±0.15

rather than[3.35, 3.65]. Alyssareturns to her desk and fixes

this problem by supplying an alternate constructor and al-

ternate selectors:

129

(define (make-center-width c w)

(make-interval (- c w) (+ c w)))

(define (center i)

(/ (+ (lower-bound i) (upper-bound i)) 2))

(define (width i)

(/ (- (upper-bound i) (lower-bound i)) 2))

Unfortunately, most of Alyssa’s users are engineers. Real

engineering situations usually involve measurements with

only a small uncertainty, measured as the ratio ofthe width

of the interval to the midpoint of the interval. Engineers

usually specify percentage tolerances on the parameters of

devices, as in the resistor specifications given earlier.

Exercise2.12: Define a constructor make-center-percent

that takes a center and a percentage tolerance and pro-

duces the desired interval. You must also define a selector

percent that produces the percentage tolerance for a given

interval. e center selector is the same as the one shown

above.

Exercise 2.13: Show that under the assumption of small

percentage tolerances there is a simple formula for the ap-

proximate percentage tolerance of the product of two in

tervals in terms of the tolerances of the factors. You may

simplify the problem by assuming that all numbersare pos

itive.

Aer considerable work, Alyssa P. Hacker delivers her fin-

ished system. Several years later, aer she has forgoen all

about it, she gets a frenzied call from an irate user, Lem E.

Tweakit. It seems that Lem has noticed that the formula for

130

parallel resistors can be wrien in two algebraically equiv-

alent ways:

R1R2

R1 + R2

and

1

1/R1 + 1/R2 .

He has wrien the following two programs, each of which

computes the parallel-resistors formula differently:

(define (par1 r1 r2)

(div-interval (mul-interval r1 r2)

(add-interval r1 r2)))

(define (par2 r1 r2)

(let ((one (make-interval 1 1)))

(div-interval

one (add-interval (div-interval one r1)

(div-interval one r2)))))

Lem complains that Alyssa’s program gives different an-

swersfor the twowaysof computing. isis aseriouscom-plaint.

Exercise 2.14: Demonstrate that Lem is right. Investigate

the behavior of the system on a variety of arithmetic ex-

pressions. Make some intervals A and B, and use them in

computing the expressions A/A and A/B. You will get the

most insight by using intervals whose width is a small per-

centage ofthe centervalue.Examine the results ofthe com-

putation in center-percent form (see Exercise 2.12).

131

Exercise 2.15: Eva Lu Ator, another user, has also noticed

thedifferentintervalscomputedbydifferentbutalgebraically

equivalent expressions. She says that a formula to compute

with intervals using Alyssa’s system will produce tighter

error bounds ifit canbe wrien in such a form that no vari-

able that represents an uncertain number is repeated. us,

she says,
par2 is a “beer” program for parallel resistances

than par1. Is she right? Why?

Exercise 2.16: Explain, in general, why equivalent alge-

braic expressions may lead to different answers. Can you

devise an interval-arithmetic package that does not have

this shortcoming, or is this task impossible? (Warning: is

problem is very difficult.)

2.2 Hierarchical Data and the Closure Property

As we have seen, pairs provide a primitive “glue” that we can use to

construct compound data objects. Figure 2.2 shows a standard way to

visualize a pair—in this case, the pair formed by (cons 1 2). In this

representation, which is called box-and-pointer notation, each object is

shown as a pointer to a box. e box for a primitive object contains a

representation ofthe object. For example, the box fora number contains

a numeral. e box for a pair is actually a double box, the le part con-

taining (a pointer to) the car of the pair and the right part containing

the cdr.

We have already seen that cons can be used to combine not only

numbers but pairs as well. (You made use of this fact, or should have,

in doing Exercise 2.2 and Exercise 2.3.) As a consequence, pairs pro-

vide a universal building block from which we can construct all sorts of

132

2

1

Figure2.2: Box-and-pointer representationof (cons 1 2).

1

4

2

(cons (cons 1 2) (cons (cons 1

(cons 3 4)) (cons 2 3))

4)

3

3 4

1 2

Figure 2.3: Two ways to combine 1, 2, 3, and 4 using pairs.

data structures. Figure 2.3 shows two ways to use pairs to combine the

numbers 1, 2, 3, and 4.

e ability to create pairs whose elements are pairs is the essence

oflist structure’s importance as a representational tool. We refer to this

ability as the closure property of cons. In general, an operation for com-

bining data objects satisfies the closure property if the results of com-

biningthingswith that operationcanthemselvesbecombined usingthesame operation.6 Closure is the key to power in any means ofcombina

6e use of the word “closure” here comes from abstract algebra, where a set of

133

tion because it permits us to create hierarchical structures—structures

made up of parts, which themselves are made up of parts, and so on.

From the outset of Chapter 1, we’ve made essential use of closure

in dealing with procedures, because all but the very simplest programs

rely on the fact that the elements of a combination can themselves be

combinations. In this section, we take up the consequences of closure

for compound data. We describe some conventional techniques for us-

ing pairs to represent sequences and trees, and we exhibit a graphics

language that illustrates closure in a vivid way.7

2.2.1 Representing Sequences

One of the useful structures we can build with pairs is a sequence—an

ordered collection of data objects. ere are, of course, many ways to

elements is said to be closed under an operation if applying the operation to elements

in the set produces an element that is again an element of the set. e Lisp community

also (unfortunately) uses the word “closure” to describe a totally unrelated concept: A

closure isan implementation technique for representingprocedureswith free variables.

We do not use the word “closure” in this second sense in this book.

7e notion that a means of combination should satisfy closure is a straightfor-

ward idea. Unfortunately, the data combiners provided in many popular programming

languages do not satisfy closure, or make closure cumbersome to exploit. In Fortran

or Basic, one typically combines data elements by assembling them into arrays—but

one cannot form arrays whose elements are themselves arrays. Pascal and C admit

structures whose elements are structures. However, this requires that the program-

mer manipulate pointers explicitly, and adhere to the restriction that each field of a

structure can contain only elements of a prespecified form. Unlike Lisp with its pairs,

these languages have no built-in general-purpose glue that makes it easy to manipulate

compound data in a uniform way. is limitation lies behind Alan Perlis’s comment in

his foreword to this book: “In Pascal the plethora of declarable data structures induces

a specialization within functions that inhibits and penalizes casual cooperation. It is

beer to have 100 functions operate on one data structure than to have 10 functions

operate on 10 data structures.”

134

1 42 3

Figure 2.4: e sequence 1, 2, 3, 4 represented as a chain

of pairs.

represent sequences in terms of pairs. One particularly straightforward

representation is illustrated in Figure 2.4, where the sequence 1, 2, 3, 4 is

represented asachainofpairs.e car ofeach pairisthecorresponding

item in the chain, and the cdr of the pair is the next pair in the chain.

e cdr of the final pair signals the end of the sequence by pointing to

a distinguished value that is not a pair, represented in box-and-pointer

diagrams as a diagonal line and in programs as the value of the variable

nil. e entire sequence is constructed by nested cons operations:

(cons 1

(cons 2

(cons 3

(cons 4 nil))))

Such a sequence of pairs, formed by nested conses, is called a list,

and Scheme provides a primitive called list to help in constructing

lists.8 e above sequence could be produced by (list 1 2 3 4). In

general,

(list ⟨a1⟩ ⟨a2⟩ ... ⟨an⟩)

8In this book, we use list to mean a chain of pairs terminated by the end-of-list

marker. In contrast, the term list structure refers to any data structure made out of pairs,

not just to lists.

135

is equivalent to

(cons ⟨a1⟩

(cons ⟨a2⟩

(cons ...

(cons ⟨an⟩

nil)...)))

Lisp systems conventionally print lists by printing the sequence of el-

ements, enclosed in parentheses. us, the data object in Figure 2.4 is

printed as (1 2 3 4):

(define one-through-four (list 1 2 3 4))

one-through-four

(1 2 3 4)

Be careful not to confuse the expression (list 1 2 3 4) with the list

(1 2 3 4), which is the result obtained when the expression is evalu-

ated. Aempting to evaluate the expression (1 2 3 4) will signal an

error when the interpreter tries to apply the procedure 1 to arguments

2, 3, and 4.

We can think of car as selecting the first item in the list, and of

cdr as selecting the sublist consisting of all but the first item. Nested

applications of car and cdr can be used to extract the second, third,

and subsequent items in the list.9 e constructor cons makes a list like

the original one, but with an additional item at the beginning.

9Since nested applications of car and cdr are cumbersome to write, Lisp dialects

provide abbreviations for them—for instance,

(cadr ⟨arд⟩) = (car (cdr ⟨arд⟩))

e names of all such procedures start with c and end with r. Each a between them

stands for a car
operation and each d for a cdr operation, to be applied in the same

order in which they appear in the name. e names car and cdr persist because simple

combinations like cadr are pronounceable.

136

(car one-through-four)

1

(cdr one-through-four)

(2 3 4)

(car (cdr one-through-four))

2

(cons 10 one-through-four)

(10 1 2 3 4)

(cons 5 one-through-four)

(5 1 2 3 4)

e value of nil, used to terminate the chain of pairs, can be thought of

asasequence ofnoelements,the emptylist.e wordnil isacontraction

of the Latin word nihil, which means “nothing.”10

List operations

e use of pairs to represent sequences of elements as lists is accompa

niedby conventional programmingtechniquesformanipulatinglistsby

successively “cdring down” the lists. For example, the procedure list-

ref takes as arguments a list and a number n and returns the nth item

of the list. It is customary to number the elements of the list beginning

with 0. e method for computing list-ref is the following:

10It’s remarkable how much energy in the standardization of Lisp dialects has been

dissipated in arguments that are literally over nothing: Should nil be an ordinary

name? Should the value of nil be a symbol? Should it be a list? Should it be a pair?

In Scheme, nil is an ordinary name, which we use in this section as a variable whose

valueistheend-of-list marker (just as true isan ordinary variablethat hasatruevalue).

Other dialects of Lisp, including Common Lisp, treat nil as a special symbol. e au-

thors of thisbook, who have enduredtoo many languagestandardization brawls, would

like to avoid the entire issue. Once we have introduced quotation in Section 2.3, we will

denote the empty list as '() and dispense with the variable nil entirely.

137

• For n = 0,list-ref should return the car of the list.

• Otherwise, list-ref should return the (n − 1)-st item of the cdr

of the list.

(define (list-ref items n)

(if (= n 0)

(car items)

(list-ref (cdr items) (- n 1))))

(define squares (list 1 4 9 16 25))

(list-ref squares 3)

16

Oen we cdr down the whole list. To aid in this, Scheme includes a

primitivepredicate null?,whichtestswhetheritsargumentistheempty

list. e procedure length, which returns the number ofitems in a list,

illustrates this typical paern of use:

(define (length items)

(if (null? items)

0

(+ 1 (length (cdr items)))))

(define odds (list 1 3 5 7))

(length odds)

4

e length procedure implements a simple recursive plan. e reduc-

tion step is:

• e length of any list is 1 plus the length of the cdr ofthe list.

is is applied successively until we reach the base case:

• e length of the empty list is 0.

138

We could also compute length in an iterative style:

(define (length items)

(define (length-iter a count)

(if (null? a)

count

(length-iter (cdr a) (+ 1 count))))

(length-iter items 0))

Another conventional programming technique is to “cons up” an an-

swer list while cdring down a list, as in the procedure append, which

takestwolistsasargumentsand combinestheirelementstomake anew

list:

(append squares odds)

(14916251357)

(append odds squares)

(1 3 5 7 1 4 9 16 25)

Appendisalsoimplementedusingarecursiveplan.To appendlists list1

and list2, do the following:

• If list1 is the empty list, then the result is just
list2.

• Otherwise, append the cdr of list1 and list2, and cons the car

of list1 onto the result:

(define (append list1 list2)

(if (null? list1)

list2

(cons (car list1) (append (cdr list1) list2))))

Exercise 2.17: Define a procedure last-pair that returns

thelistthatcontainsonlythelastelementofagiven(nonempty)

list:

139

(last-pair (list 23 72 149 34))

(34)

Exercise 2.18: Define a procedure reverse that takes a list

as argument and returns a list of the same elements in re-

verse order:

(reverse (list 1 4 9 16 25))

(25 16 9 4 1)

Exercise 2.19: Consider the change-counting program of

Section1.2.2. It wouldbe nicetobe able to easily change the

currency used by the program, so that we could compute

the number ofwaysto change a British pound,for example.

Asthe program is wrien, the knowledge ofthe currency is

distributed partly into the procedure first-denomination

and partly into the procedure count-change (which knows

that there are five kinds of U.S. coins). It would be nicer

to be able to supply a list of coins to be used for making

change.

We want to rewrite the procedure cc so that its second ar-

gument is a list of the values of the coins to use rather than

an integer specifying which coins to use. We could then

have lists that defined each kind of currency:

(define us-coins (list 50 25 10 5 1))

(define uk-coins (list 100 50 20 10 5 2 1 0.5))

We could then call cc as follows:

(cc 100 us-coins)

292

140

To do this will require changing the program cc somewhat.

It will still have the same form, but it will access its second

argument differently, as follows:

(define (cc amount coin-values)

(cond ((= amount 0) 1)

((or (< amount 0) (no-more? coin-values)) 0)

(else

(+ (cc amount

(except-first-denomination

coin-values))

(cc (- amount

(first-denomination

coin-values))

coin-values)))))

Definetheprocedures first-denomination, except-first-de- nomination, and no-more? in terms of primitive op-

erations on list structures. Does the order of the list coin-

valuesaffect theanswerproducedby cc?Whyorwhynot?

Exercise 2.20: e procedures +, *, and list take arbitrary

numbers of arguments. One way to define such procedures

is to use define with doed-tail notation. In a procedure

definition, a parameter list that has a dot before the last pa-

rameter name indicates that, when the procedure is called,

the initial parameters (if any) will have as values the initial

arguments, as usual, but the final parameter’s value will be

a list of any remaining arguments. For instance, given the

definition

(define (f x y . z) ⟨body⟩)

141

the procedure f can be called with two or more arguments.

If we evaluate

(f123456)

then in the body of f, x will be 1, y will be 2, and z will be

the list (3 4 5 6). Given the definition

(define (g . w) ⟨body⟩)

the procedure g can be called with zero or more arguments.

If we evaluate

(g123456)

then in the body of g,wwillbe the list (1 2 3 4 5 6).11

Use this notation to write a procedure same-parity that

takes one or more integers and returns a list of all the ar-

guments that have the same even-odd parity as the first

argument. For example,

(same-parity 1 2 3 4 5 6 7)

(1 3 5 7)

(same-parity 2 3 4 5 6 7)

(2 4 6)

11To define f and g using lambda we would write

(define f (lambda (x y . z) ⟨body⟩))

(define g (lambda w ⟨body⟩))

142

Mapping over lists

One extremely usefuloperationisto apply some transformationtoeachelement in alist and generate the list of results. For instance, the follow-

ing procedure scales each number in a list by a given factor:

(define (scale-list items factor)

(if (null? items)

nil

(cons (* (car items) factor)

(scale-list (cdr items)

factor))))

(scale-list (list 1 2 3 4 5) 10)

(10 20 30 40 50)

We can abstract this general idea and capture it as a common paern

expressedasahigher-orderprocedure,justasinSection1.3.ehigher-

order procedure here is called map. Map takes as arguments a procedure

of one argument and a list, and returns a list of the results produced by

applying the procedure to each element in the list:12

(define (map proc items)

(if (null? items)

12 Scheme standardly provides a map procedure that is more general than the one

described here. is more general map takes a procedure of n arguments, together with

n lists, and applies the procedure to all the first elements of the lists, all the second

elements of the lists, and so on, returning a list of the results. For example:

(map + (list 1 2 3) (list 40 50 60) (list 700 800 900))

(741 852 963)

(map (lambda (x y) (+ x (* 2 y)))

(list 1 2 3)

(list 4 5 6))

(9 12 15)

143

nil

(cons (proc (car items))

(map proc (cdr items)))))

(map abs (list -10 2.5 -11.6 17))

(10 2.5 11.6 17)

(map (lambda (x) (* x x)) (list 1 2 3 4))

(1 4 9 16)

Now we can give a new definition of scale-list in terms of map:

(define (scale-list items factor)

(map (lambda (x) (* x factor))

items))

Map is an important construct, not only because it captures a common

paern,butbecause itestablishesahigherlevelofabstractionindealing

with lists. In the original definition of scale-list, the recursive struc-

tureof the program drawsaentiontothe element-by-element process

ingofthelist.Defining scale-listintermsof mapsuppressesthatlevel

of detail and emphasizes that scaling transforms a list of elements to a

list ofresults. e difference between the two definitions is not that the

computer is performing a different process (it isn’t) but that we think

about the process differently. In effect, map helps establish an abstrac-

tion barrier that isolates the implementation of procedures that trans-

form lists from the details of how the elements of the list are extracted

and combined. Like the barriers shown in Figure 2.1, this abstraction

gives us the flexibility to change the low-level details of how sequences

are implemented, while preserving the conceptual framework of oper-

ations that transform sequences to sequences. Section 2.2.3 expands on

this use of sequences as a framework for organizing programs.

Exercise 2.21: e procedure square-list takes a list of

numbers as argument and returns a list of the squares of

144

those numbers.

(square-list (list 1 2 3 4))

(1 4 9 16)

Here are two different definitions of square-list. Com

plete both of them by filling in the missing expressions:

(define (square-list items)

(if (null? items)

nil

(cons ⟨??⟩ ⟨??⟩)))

(define (square-list items)

(map ⟨??⟩ ⟨??⟩))

Exercise2.22:LouisReasonertriestorewritethefirst square-

list procedure of Exercise 2.21 so that it evolves an itera

tive process:

(define (square-list items)

(define (iter things answer)

(if (null? things)

answer

(iter (cdr things)

(cons (square (car things))

answer))))

(iter items nil))

Unfortunately,defining square-listthiswayproducesthe

answer list in the reverse order of the one desired. Why?

Louis then tries to fix his bug by interchanging the argu

ments to cons:

(define (square-list items)

145

(define (iter things answer)

(if (null? things)

answer

(iter (cdr things)

(cons answer

(square (car things))))))

(iter items nil))

is doesn’t work either. Explain.

Exercise 2.23: e procedure for-each is similar to map. It

takesasargumentsaprocedureandalistofelements.How-

ever, rather than forming a list of the results, for-each just

applies the procedure to each of the elements in turn, from

le to right. e values returned by applying the procedure

to the elements are not used at all—for-each is used with

proceduresthat performan action, such as printing. Forex-

ample,

(for-each (lambda (x)

(newline)

(display x))

(list 57 321 88))

57

321

88

e value returned by the call to for-each (not illustrated

above) can be something arbitrary, such as true. Give an

implementation of for-each.

146

(12)

4

1 2

3

(3 4)

((12)34)

Figure 2.5:Structure formedby (cons (list 1 2) (list

3 4)).

2.2.2 Hierarchical Structures

e representation of sequences in terms of lists generalizes naturally

to represent sequences whose elements may themselves be sequences.

For example, we can regard the object ((1 2) 3 4) constructed by

(cons (list 1 2) (list 3 4))

as alist of three items, the first ofwhich is itself alist, (1 2). Indeed, this

issuggestedby the forminwhichthe result isprinted by the interpreter.

Figure 2.5 shows the representation of this structure in terms of pairs.

Another way to think of sequences whose elements are sequences

isas trees.e elementsof the sequence are the branchesof the tree, and

elements that are themselves sequences are subtrees. Figure 2.6 shows

the structure in Figure 2.5 viewed as a tree.

Recursion is a natural tool for dealing with tree structures, since we

can oen reduce operations on trees to operations on their branches,

which reduce in turn to operations onthe branches ofthe branches, and

so on, until we reach the leaves of the tree. As an example, compare the

147

((1 2) 3 4)

(1 2)

3 4

1 2

Figure 2.6: e list structure in Figure 2.5 viewed as a tree.

length procedure of Section 2.2.1 with the count-leaves procedure,

which returns the total number of leaves of a tree:

(define x (cons (list 1 2) (list 3 4)))

(length x)

3

(count-leaves x)

4

(list x x)

(((1 2) 3 4)((12)3 4))

(length (list x x))

2

(count-leaves (list x x))

8

To implement count-leaves, recall the recursive plan for computing

length:

• Length ofa list x is 1 plus length ofthe cdr of x.

• Length ofthe empty list is 0.

Count-leaves is similar. e value for the empty list is the same:

• Count-leaves ofthe empty list is 0.

148

But in the reduction step, where we strip off the car of the list, we must

take into account that the car may itself be a tree whose leaves we need

to count. us, the appropriate reduction step is

• Count-leaves ofa tree x is count-leaves of the car of x
plus

count-leaves ofthe cdr of x.

Finally, by taking
cars we reach actual leaves, so we need another base

case:

• Count-leaves ofa leafis 1.

To aid in writing recursive procedures on trees, Scheme provides the

primitive predicate pair?, which tests whether its argument is a pair.

Here is the complete procedure:13

(define (count-leaves x)

(cond ((null? x) 0)

((not (pair? x)) 1)

(else (+ (count-leaves (car x))

(count-leaves (cdr x))))))

Exercise 2.24: Suppose we evaluate the expression (list

1 (list 2 (list 3 4))). Give the result printed by the

interpreter, the corresponding box-and-pointer structure,

and the interpretation of this as a tree (as in Figure 2.6).

Exercise 2.25: Give combinations of cars and cdrs that

will pick 7 from each of the following lists:

13e order of the first two clauses in the cond maers, since the empty list satisfies

null? and also is not a pair.

149

(1 3 (5 7) 9)

((7))

(1 (2 (3 (4 (5 (6 7))))))

Exercise 2.26: Suppose we define x and y to be two lists:

(define x (list 1 2 3))

(define y (list 4 5 6))

Whatresultisprintedbytheinterpreterinresponsetoeval-

uating each of the following expressions:

(append x y)

(cons x y)

(list x y)

Exercise 2.27: Modify your
reverse procedure ofExercise

2.18 to produce a deep-reverse procedure that takes a list

as argument and returns as its value the list with its ele-

ments reversed and with all sublists deep-reversed as well.

For example,

(define x (list (list 1 2) (list 3 4)))

x

((1 2) (3 4))

(reverse x)

((3 4) (12))

(deep-reverse x)

((4 3) (2 1))

Exercise2.28:Writeaprocedure fringethattakesasargu-

ment a tree (represented as a list) and returns a list whose

elements are all the leaves of the tree arranged in le-to-

right order. For example,

150

(define x (list (list 1 2) (list 3 4)))

(fringe x)

(1 2 3 4)

(fringe (list x x))

(1 2 3 4 1 2 3 4)

Exercise 2.29: A binary mobile consists of two branches,

a le branch and a right branch. Each branch is a rod of

a certain length, from which hangs either a weight or an-

other binary mobile. We can represent a binary mobile us-

ing compound data by constructing it from two branches

(for example, using list):

(define (make-mobile left right)

(list left right))

A branch is constructed from a length (which must be a

number) together with a structure, which may be either a

number (representing a simple weight) or another mobile:

(define (make-branch length structure)

(list length structure))

a. Write the corresponding selectors left-branch and

right-branch,whichreturnthe branchesof amobile,

andbranch-lengthand branch-structure,whichre-

turn the components ofa branch.

b. Usingyourselectors,defineaprocedure total-weight

that returns the total weight of a mobile.

c. Amobile issaid to be balanced ifthe torque appliedbyits top-le branch is equal to that applied by its top-

151

right branch (that is, if the length of the le rod mul-

tiplied by the weight hanging from that rod is equal

to the corresponding product for the right side) and if

each ofthe submobileshanging off its branches isbal-

anced. Design a predicate that tests whether a binary

mobile is balanced.

d. Suppose we change the representation of mobiles so

that the constructors are

(define (make-mobile left right) (cons left right))

(define (make-branch length structure)

(cons length structure))

How much do you need to change your programs to

convert to the new representation?

Mapping over trees

Just as map is a powerful abstraction for dealing with sequences, map

together with recursion is a powerful abstraction for dealing with trees.

For instance, the scale-tree procedure, analogous to scale-list of

Section 2.2.1, takes as arguments a numeric factor and a tree whose

leaves are numbers. It returns a tree of the same shape, where each

number is multiplied by the factor. e recursive plan for scale-tree

is similar to the one for count-leaves:

(define (scale-tree tree factor)

(cond ((null? tree) nil)

((not (pair? tree)) (* tree factor))

(else (cons (scale-tree (car tree) factor)

(scale-tree (cdr tree) factor)))))

(scale-tree (list 1 (list 2 (list 3 4) 5) (list 6 7)) 10)

(10 (20 (30 40) 50) (60 70))

152

Another way to implement scale-tree is to regard the tree as a se-

quence of sub-trees and use map. We map over the sequence, scaling

each sub-tree in turn, and return the list of results. In the base case,

where the tree is a leaf, we simply multiply by the factor:

(define (scale-tree tree factor)

(map (lambda (sub-tree)

(if (pair? sub-tree)

(scale-tree sub-tree factor)

(* sub-tree factor)))

tree))

Many tree operations can be implemented by similar combinations of

sequence operations and recursion.

Exercise 2.30: Define a procedure square-tree analogous

tothe square-listprocedureofExercise2.21.atis, square-

tree should behave as follows:

(square-tree

(list 1

(list 2 (list 3 4) 5)

(list 6 7)))

(1 (4 (9 16) 25) (36 49))

Define square-tree both directly (i.e., without using any

higher-order procedures) and also by using map and recur-

sion.

Exercise 2.31: Abstract your answer to Exercise 2.30 to

produceaprocedure tree-mapwiththepropertythat square-

tree could be defined as

(define (square-tree tree) (tree-map square tree))

153

Exercise 2.32: We can represent a set as a list of distinct

elements, and we can represent the set of all subsets of the

set as a list of lists. For example, if the set is (1 2 3), then

the set of all subsets is (() (3) (2) (2 3) (1) (1 3)

(1 2) (1 2 3)). Complete the following definition of a

procedure that generates the set of subsets ofa set and give

a clear explanation of why it works:

(define (subsets s)

(if (null? s)

(list nil)

(let ((rest (subsets (cdr s))))

(append rest (map ⟨??⟩ rest)))))

2.2.3 Sequences as Conventional Interfaces

In working with compound data, we’ve stressed how data abstraction

permits us to design programs without becoming enmeshed in the de-

tails of data representations, and how abstraction preserves for us the

flexibility to experiment with alternative representations. In this sec-

tion, we introduce another powerful design principle for working with

data structures—the use of conventional interfaces.

In Section 1.3 we saw how program abstractions, implemented as

higher-order procedures, can capture common paerns in programs

that deal with numerical data. Our ability to formulate analogous oper-

ations for working with compound data depends crucially on the style

in which we manipulate our data structures. Consider, for example, the

following procedure, analogous to the count-leaves procedure of Sec

tion 2.2.2, which takes a tree as argument and computes the sum of the

squares of the leaves that are odd:

154

(define (sum-odd-squares tree)

(cond ((null? tree) 0)

((not (pair? tree))

(if (odd? tree) (square tree) 0))

(else (+ (sum-odd-squares (car tree))

(sum-odd-squares (cdr tree))))))

On the surface, this procedure is very different from the following one,

which constructs a list of all the even Fibonacci numbers Fib(k), where

k is less than or equal to a given integer n:

(define (even-fibs n)

(define (next k)

(if (> k n)

nil

(let ((f (fib k)))

(if (even? f)

(cons f (next (+ k 1)))

(next (+ k1))))))

(next 0))

Despite the fact that these two procedures are structurally very differ-

ent, a more abstract description ofthe two computations reveals a great

deal of similarity. e first program

• enumerates the leaves ofa tree;

• filters them, selecting the odd ones;

• squares each of the selected ones; and

• accumulates the results using +, starting with 0.

e second program

155

accumulate:

+,0

enumerate: filter: map:

tree leaves odd? square

enumerate:integers map:fib filter:even? accumulate:

cons, ()

Figure 2.7: e signal-flow plans for the procedures sum-

odd-squares (top)and even-fibs (boom)reveal the com-

monality between the two programs.

• enumerates the integers from 0 to n;

• computes the Fibonacci number for each integer;

• filters them, selecting the even ones; and

• accumulates the results using cons, starting with the empty list.

Asignal-processingengineerwouldfinditnaturaltoconceptualizethese

processes in terms of signals flowing through a cascade of stages, each

of which implements part of the program plan, as shown in Figure 2.7.

In sum-odd-squares, we begin with an enumerator, which generates a

“signal” consisting of the leaves of a given tree. is signal is passed

through a filter, which eliminates all but the odd elements. e result-

ing signal is in turn passed through a map, which is a “transducer” that

applies the square procedure to each element. e output of the map

is then fed to an accumulator, which combines the elements using +,

starting from an initial 0. e plan for even-fibs is analogous.

Unfortunately, the two procedure definitions above fail to exhibit

this signal-flow structure. For instance, if we examine the sum-odd

156

squaresprocedure, we find that the enumerationis implementedpartlyby the null? and pair? tests and partly by the tree-recursive structure

ofthe procedure. Similarly, the accumulation is found partly in the tests

and partly in the addition used in the recursion. In general, there are no

distinct parts of either procedure that correspond to the elements in the

signal-flow description. Our two procedures decompose the computa-

tions in a different way, spreading the enumeration over the program

and mingling it with the map, the filter, and the accumulation. If we

could organize our programstomake the signal-flow structure manifest

in the procedures we write, this would increase the conceptual clarity

of the resulting code.

Sequence Operations

e key to organizing programs so as to more clearly reflect the signal-

flowstructureistoconcentrate onthe“signals” that flowfromonestage

in the process to the next. If we represent these signals as lists, then we

canuse listoperationstoimplementtheprocessingat eachofthe stages.

For instance, we can implement the mapping stages of the signal-flow

diagrams using the map procedure from Section 2.2.1:

(map square (list 1 2 3 4 5))

(1 4 9 16 25)

Filtering a sequence to select only those elements that satisfy a given

predicate is accomplished by

(define (filter predicate sequence)

(cond ((null? sequence) nil)

((predicate (car sequence))

(cons (car sequence)

(filter predicate (cdr sequence))))

(else (filter predicate (cdr sequence)))))

157

For example,

(filter odd? (list 1 2 3 4 5))

(135)

Accumulations can be implemented by

(define (accumulate op initial sequence)

(if (null? sequence)

initial

(op (car sequence)

(accumulate op initial (cdr sequence)))))

(accumulate + 0 (list 1 2 3 4 5))

15

(accumulate * 1 (list 1 2 3 4 5))

120

(accumulate cons nil (list 1 2 3 4 5))

(1 2 3 4 5)

All that remains to implement signal-flow diagrams is to enumerate the

sequence of elements to be processed. For even-fibs, we need to gen-

erate the sequence of integers in a given range, which we can do as

follows:

(define (enumerate-interval low high)

(if (> low high)

nil

(cons low (enumerate-interval (+ low 1) high))))

(enumerate-interval 2 7)

(2 3 4 5 6 7)

To enumerate the leaves ofa tree, we can use14

14is is, in fact, precisely the fringe procedure from Exercise 2.28. Here we’ve re-

named it to emphasize that it is part of a family of general sequence-manipulation

procedures.

158

(define (enumerate-tree tree)

(cond ((null? tree) nil)

((not (pair? tree)) (list tree))

(else (append (enumerate-tree (car tree))

(enumerate-tree (cdr tree))))))

(enumerate-tree (list 1 (list 2 (list 3 4)) 5))

(1 2 3 4 5)

Now we can reformulate sum-odd-squares and even-fibs as in the

signal-flowdiagrams.For sum-odd-squares,weenumeratethesequence

of leaves of the tree, filter this to keep only the odd numbers in the se-

quence, square each element, and sum the results:

(define (sum-odd-squares tree)

(accumulate

+ 0 (map square (filter odd? (enumerate-tree tree)))))

For even-fibs, we enumerate the integers from 0 ton, generate the Fi-

bonacci number for each of these integers, filter the resulting sequence

to keep only the even elements, and accumulate the results into a list:

(define (even-fibs n)

(accumulate

cons

nil

(filter even? (map fib (enumerate-interval 0 n)))))

e value of expressing programs as sequence operations is that this

helps us make program designs that are modular, that is, designs that

are constructed by combining relativelyindependent pieces. We canen-

courage modular design by providing a library of standard components

together with a conventional interface for connecting the components

in flexible ways.

159

Modular construction is a powerful strategy for controlling com-

plexity in engineering design. In real signal-processing applications, for

example, designers regularly build systems by cascading elements se-

lected from standardized families of filters and transducers. Similarly,

sequence operations provide a library of standard program elements

that we can mix and match. For instance, we can reuse pieces from the

sum-odd-squares and even-fibs procedures in a program that con-

structs a list of the squares of the first n + 1 Fibonacci numbers:

(define (list-fib-squares n)

(accumulate

cons

nil

(map square (map fib (enumerate-interval 0 n)))))

(list-fib-squares 10)

(0 1 1 4 9 25 64 169 441 1156 3025)

We can rearrange the pieces and use them in computing the product of

the squares of the odd integers in a sequence:

(define (product-of-squares-of-odd-elements sequence)

(accumulate * 1 (map square (filter odd? sequence))))

(product-of-squares-of-odd-elements (list 1 2 3 4 5))

225

Wecanalsoformulateconventionaldata-processingapplicationsinterms

ofsequenceoperations.Supposewehaveasequenceofpersonnelrecords

and we want to find the salary ofthe highest-paid programmer. Assume

that we have a selector salary that returns the salary ofa record, and a

predicate programmer? that tests if a record is for a programmer. en

we can write

(define (salary-of-highest-paid-programmer records)

(accumulate max 0 (map salary (filter programmer? records))))

160

ese examples give just a hint of the vast range of operations that can

be expressed as sequence operations.15

Sequences, implemented here as lists, serve as a conventional in-

terface that permits us to combine processing modules. Additionally,

when we uniformly represent structures as sequences, we have local-

izedthe data-structure dependenciesinourprogramsto asmall number

of sequence operations. By changing these, we can experiment with al-

ternative representations of sequences, while leaving the overall design

of our programs intact. We will exploit this capability in Section 3.5,

when we generalize the sequence-processing paradigm to admit infi-

nite sequences.

Exercise 2.33: Fill in the missing expressions to complete

the following definitions of some basic list-manipulation

operations as accumulations:

(define (map p sequence)

(accumulate (lambda (x y) ⟨??⟩) nil sequence))

(define (append seq1 seq2)

(accumulate cons ⟨??⟩ ⟨??⟩))

(define (length sequence)

(accumulate ⟨??⟩ 0 sequence))

15Richard Waters (1979) developed a program that automatically analyzes traditional

Fortran programs, viewing them in terms of maps, filters, and accumulations. He found

that fully 90 percent of the code in the Fortran Scientific Subroutine Package fits neatly

into this paradigm. One of the reasons for the success of Lisp as a programming lan-

guage is that lists provide a standard medium for expressing ordered collections so that

they can be manipulated using higher-order operations. e programming language

APL owes much of its power and appeal to a similar choice. In APL all data are repre-

sented as arrays, and there is a universal and convenient set of generic operators for all

sorts of array operations.

161

Exercise2.34:Evaluatingapolynomialinx atagivenvalue

ofx can be formulated as an accumulation. We evaluate the

polynomial

anxn + an−1xn−1 + ··· + a1x + a0

using a well-known algorithm called Horner’s rule, which

structures the computation as

(... (anx + an−1)x + ··· + a1)x +a0.

In other words, we start with an, multiply by x, add an−1,

multiply by x, and so on, until we reach a0.16

Fill in the following template to produce a procedure that

evaluates a polynomial using Horner’s rule. Assume that

thecoefficientsofthepolynomialarearrangedinasequence,

from a0 through an.

(define (horner-eval x coefficient-sequence)

(accumulate (lambda (this-coeff higher-terms) ⟨??⟩)

0

coefficient-sequence))

16According to Knuth 1981, this rule was formulated by W. G. Horner early in the

nineteenth century, but the method was actually used by Newton over a hundred years

earlier. Horner’s rule evaluates the polynomial using fewer additions and multipli-

cations than does the straightforward method of first computing anxn, then adding

an−1xn−1, and so on. In fact, it is possible to prove that any algorithm for evaluating

arbitrary polynomials must use at least as many additions and multiplications as does

Horner’srule, andthusHorner’sruleisan optimalalgorithmforpolynomialevaluation.

is was proved (for the number of additions) by A. M. Ostrowski in a 1954 paper that

essentially founded the modern study of optimal algorithms. e analogous statement

for multiplications was proved by V. Y. Pan in 1966. e book by Borodin and Munro

(1975) provides an overview of these and other results about optimal algorithms.

162

Forexample,tocompute 1+3x+5x3+x5 atx = 2 you would

evaluate

(horner-eval 2 (list 1 3 0 5 0 1))

Exercise 2.35: Redefine count-leaves from Section 2.2.2

as an accumulation:

(define (count-leaves t)

(accumulate ⟨??⟩ ⟨??⟩ (map ⟨??⟩ ⟨??⟩)))

Exercise 2.36: e procedure
accumulate-n is similar to

accumu-late except that it takes as its third argument a

sequence of sequences, which are all assumed to have the

same number of elements. It applies the designated accu-

mulation procedure to combine all the first elements of the

sequences, all the second elements of the sequences, and so

on, and returns a sequence of the results. For instance, if s

is a sequence containingfour sequences, ((1 2 3) (4 5 6)

(7 8 9) (10 11 12)), then the value of (accumulate-n +

0 s) should be the sequence (22 26 30).Fill in the missing

expressions in the following definition of accumulate-n:

(define (accumulate-n op init seqs)

(if (null? (car seqs))

nil

(cons (accumulate op init ⟨??⟩)

(accumulate-n op init ⟨??⟩))))

Exercise2.37: Suppose we represent vectorsv = (vi)asse-

quences of numbers, and matrices m = (mij) as sequences

163

ofvectors (the rows ofthe matrix). For example, the matrix

1 2 3 4

4 5 6 6

6 7 8 9

is represented as the sequence ((1 2 3 4) (4 5 6 6)

(6 7 8 9)).With this representation, we can use sequence

operations to concisely express the basic matrix and vector

operations. These operations (which are described in any

book on matrix algebra) are the following:

(dot—product v w) returns the sum Ziviwi,

(matrix—*—vector m v) returns the vector t,

where t,- I ijijvj,

(matrix—*—matrix m n) returns the matrix p,

where pij I kaiknkj,

(transpose m) returns the matrix 11,

where nij I mji.

We can define the dot product as17

(define (dot—product v w)

(accumulate + 0 (map * v w)))

Fill in the missing expressions in the following procedures

for computing the other matrix operations. (The procedure

accumulate—n is defined in Exercise 2.36.)

(define (matrix—*—vector m v)

(map (7?) m))

17This definition uses the extended version of map described in Footnote 12.

164

(define (transpose mat)

(accumulate-n ⟨??⟩ ⟨??⟩ mat))

(define (matrix-*-matrix m n)

(let ((cols (transpose n)))

(map ⟨??⟩ m)))

Exercise 2.38: e accumulate procedure is also known as

fold-right,because it combinesthe firstelementofthese-

quence with the result of combining all the elements to the

right. ere is also a fold-left, which is similar to fold-

right, except that it combines elements working in the op-

posite direction:

(define (fold-left op initial sequence)

(define (iter result rest)

(if (null? rest)

result

(iter (op result (car rest))

(cdr rest))))

(iter initial sequence))

What are the values of

(fold-right / 1 (list 1 2 3))

(fold-left / 1 (list 1 2 3))

(fold-right list nil (list 1 2 3))

(fold-left list nil (list 1 2 3))

Give a property that op should satisfy to guarantee that

fold-right and fold-left will produce the same values

for any sequence.

165

Exercise2.39:Completethefollowingdefinitionsof reverse

(Exercise2.18)intermsof fold-right and fold-leftfromExercise 2.38:

(define (reverse sequence)

(fold-right (lambda (x y) ⟨??⟩) nil sequence))

(define (reverse sequence)

(fold-left (lambda (x y) ⟨??⟩) nil sequence))

Nested Mappings

We can extend the sequence paradigm to include many computations

that are commonly expressed using nested loops.18 Consider this prob-

lem: Given a positive integern, find all ordered pairs of distinct positive

integers i and j, where 1 ≤ j < i ≤ n, such that i + j is prime. For

example, ifn is 6, then the pairs are the following:

i 2 3 4 4 5 6 6

j 1 2 1 3 2 1 5

i+j 3 5 5 7 7 7 11

A natural way to organize this computation is to generate the sequence

of all ordered pairs of positive integers less than or equal to n, filter to

select those pairs whose sum is prime, and then, for each pair (i,j) that

passes through the filter, produce the triple (i,j,i + j).

Here is a way to generate the sequence of pairs: For each integer

i ≤ n, enumerate the integers j < i, and for each such i and j gener-

ate the pair (i,j). In terms of sequence operations, we map along the

18is approach to nested mappings was shown to us by David Turner, whose lan-

guages KRC and Miranda provide elegant formalisms for dealing with these constructs.

e examples in this section (see also Exercise 2.42) are adapted from Turner 1981. In

Section 3.5.3, we’ll see how this approach generalizes to infinite sequences.

166

sequence (enumerate-interval 1 n). For each i in this sequence, we

map along the sequence (enumerate-interval 1 (- i 1)).For each

j in this laer sequence, we generate the pair (list i j). is gives

us a sequence of pairs for each i. Combining all the sequences for all

thei (by accumulating with append) produces the required sequence of

pairs:19

(accumulate

append nil (map (lambda (i)

(map (lambda (j) (list i j))

(enumerate-interval 1 (- i 1))))

(enumerate-interval 1 n)))

e combination of mapping and accumulating with append is so com-

mon in this sort of program that we will isolate it as a separate proce-

dure:

(define (flatmap proc seq)

(accumulate append nil (map proc seq)))

Now filter this sequence of pairs to find those whose sum is prime. e

filterpredicateiscalledforeachelement ofthe sequence;itsargumentis

a pair and it must extract the integers from the pair. us, the predicate

to apply to each element in the sequence is

(define (prime-sum? pair)

(prime? (+ (car pair) (cadr pair))))

Finally, generate the sequence of results by mapping over the filtered

pairsusingthefollowingprocedure,whichconstructsatripleconsisting

of the two elements of the pair along with their sum:

19We’re representing a pair here as a list of two elements rather than as a Lisp pair.

us, the “pair” (i,j) is represented as (list i j), not (cons i j).

167

(define (make-pair-sum pair)

(list (car pair) (cadr pair) (+ (car pair) (cadr pair))))

Combining all these steps yields the complete procedure:

(define (prime-sum-pairs n)

(map make-pair-sum

(filter prime-sum? (flatmap

(lambda (i)

(map (lambda (j) (list i j))

(enumerate-interval 1 (- i 1))))

(enumerate-interval 1 n)))))

Nested mappings are also useful for sequences other than those that

enumerate intervals. Suppose we wish to generate all the permutations

of a set S; that is, all the ways of ordering the items in the set. For in-

stance, the permutations of{1,2, 3} are {1,2, 3}, {1, 3,2}, {2, 1, 3}, {2,3, 1},

{3,1, 2},and {3, 2, 1}.Here is aplanfor generating the permutations ofS:

For each item x in S, recursively generate the sequence of permutations

ofS − x,20 and adjoin x to the front of each one. is yields, for each x

in S, the sequence of permutations of S that begin with x. Combining

these sequences for all x gives all the permutations of S:21

(define (permutations s)

(if (null? s) ;empty set?

(list nil) ;sequencecontainingemptyset

(flatmap (lambda (x)

(map (lambda (p) (cons x p))

(permutations (remove x s))))

s)))

20e set S − x is the set of all elements of S, excluding x.

21Semicolons in Scheme code are used to introduce comments. Everything from the

semicolon to the end of the line is ignored by the interpreter. In this book we don’t use

many comments; we try to make our programs self-documenting by using descriptive

names.

168

Notice how this strategy reduces the problem of generating permuta-

tions of S to the problem of generating the permutations of sets with

fewer elements than S. In the terminal case, we work our way down to

the empty list, which represents a set of no elements. For this, we gen-

erate (list nil), which is a sequence with one item, namely the set

with no elements. e remove procedure used in permutations returns

all the items in a given sequence except for a given item. is can be

expressed as a simple filter:

(define (remove item sequence)

(filter (lambda (x) (not (= x item)))

sequence))

Exercise2.40:Defineaprocedure unique-pairsthat,givenan integern, generates the sequence of pairs (i,j) with 1 ≤

j < i ≤ n. Use unique-pairs to simplify the definition of

prime-sum-pairs given above.

Exercise 2.41: Write a procedure to find all ordered triples

of distinct positive integersi, j, and k less than or equal to

a given integer n that sum to a given integer s.

Exercise2.42: e “eight-queens puzzle”asks how to place

eight queens on a chessboard so that no queen is in check

fromany other(i.e., no twoqueensareinthe same row,col-

umn, or diagonal). One possible solutionis shown in Figure

2.8. One way to solve the puzzle istoworkacrosstheboard,

placing a queen in each column. Once we have placed k −1

queens, we must place the kth queen in a position where it

does not check any of the queens already on the board. We

can formulate this approach recursively: Assume that we

169

Figure 2.8: A solution to the eight-queens puzzle.

have already generated the sequence of all possible ways

to place k −1 queens in the first k −1 columns of the board.

For each of these ways, generate an extended set of posi-

tions by placing a queen in each row of the kth column.

Now filter these, keeping only the positions for which the

queen in the kth column is safe with respect to the other

queens. is produces the sequence of all ways to place k

queens in the first k columns. By continuing this process,

we will produce not only one solution, but all solutions to

the puzzle.

We implement this solution as a procedure queens, which

returns a sequence of all solutions to the problem of plac-

ing n queens on an n × n chessboard. Queens has an inter-

nal procedure queen-cols that returns the sequence of all

ways to place queens in the first k columns of the board.

170

(define (queens board-size)

(define (queen-cols k)

(if (= k 0)

(list empty-board)

(filter

(lambda (positions) (safe? k positions))

(flatmap

(lambda (rest-of-queens)

(map (lambda (new-row)

(adjoin-position

new-row k rest-of-queens))

(enumerate-interval 1 board-size)))

(queen-cols (- k 1))))))

(queen-cols board-size))

In this procedure rest-of-queens is a way to place k − 1

queensinthe firstk−1 columns, and new-row isa proposed

row in which to place the queen for the kth column. Com-

plete the program by implementing the representation for

sets of board positions, including the procedure adjoin-

position, which adjoins a new row-column position to a

setofpositions,and empty-board,whichrepresentsanempty

set of positions. You must also write the procedure safe?,

which determines for a set of positions, whether the queen

in the kth column is safe with respect to the others. (Note

that we need only check whether the new queen is safe—

the other queens are already guaranteed safe with respect

to each other.)

Exercise 2.43: Louis Reasoner is having a terrible time do

ing Exercise 2.42. His queens procedure seems to work, but

it runs extremely slowly. (Louis never does manage to wait

171

long enough for it to solve even the 6×6 case.) When Louis

asks Eva Lu Ator for help, she points out that he has inter-

changed the order of the nested mappings in the flatmap,

writing it as

(flatmap

(lambda (new-row)

(map (lambda (rest-of-queens)

(adjoin-position new-row k rest-of-queens))

(queen-cols (- k 1))))

(enumerate-interval 1 board-size))

Explainwhythisinterchangemakestheprogramrunslowly.

Estimate how long it will take Louis’s program to solve the

eight-queenspuzzle,assumingthat the program inExercise

2.42 solves the puzzle in timeT.

2.2.4 Example: A Picture Language

is section presents a simple language for drawing pictures that il-

lustrates the power of data abstraction and closure, and also exploits

higher-order procedures in an essential way. e language is designed

to make it easy to experiment with paerns such as the ones in Fig

ure 2.9, which are composed of repeated elements that are shied and

scaled.22 In this language, the data objects being combined are repre-

sented as procedures rather than as list structure. Just as cons, which

satisfies the closure property, allowed us to easily build arbitrarily com-

plicated list structure, the operations in this language, which also sat

22
epicturelanguageisbasedonthelanguagePeterHenderson createdtoconstruct

images like M.C. Escher’s “Square Limit” woodcut (see Henderson 1982). e woodcut

incorporates a repeated scaled paern, similar to the arrangements drawn using the

square-limit procedure in this section.

172

Figure 2.9: Designs generated with the picture language.

isfy the closure property, allow ustoeasily buildarbitrarily complicated

paerns.

The picture language

When we began our study of programming in Section 1.1, we empha-

sized the importance of describing a language by focusing on the lan-

guage’s primitives, its means of combination, and its means of abstrac-

tion. We’ll follow that framework here.

Part of the elegance ofthis picture language is that there is only one

kindofelement,calledapainter.Apainterdrawsanimagethatisshied

and scaled to fit within a designated parallelogram-shaped frame. For

example, there’s a primitive painter we’ll call wave that makes a crude

line drawing, as shown in Figure 2.10. e actual shape of the drawing

dependsonthe frame—all fourimagesinfigure 2.10 areproducedby the

173

Figure 2.10: Images produced by the wave painter, with

respect to four different frames. e frames, shown with

doed lines, are not part of the images.

same wave painter, but with respect to four different frames. Painters

can be more elaborate than this: e primitive painter called rogers

paints a picture of ’s founder, William Barton Rogers, as shown in

Figure 2.11.23 e four images in figure 2.11 are drawn with respect to

23William Barton Rogers (1804-1882) was the founder and first president of .

A geologist and talented teacher, he taught at William and Mary College and at the

University of Virginia. In 1859 he moved to Boston, where he had more time for re-

search, worked on a plan for establishing a “polytechnic institute,” and served as Mas-

sachuses’s first State Inspector of Gas Meters.

When was established in 1861, Rogers was elected its first president. Rogers

espoused an ideal of “useful learning” that was different from the university education

of the time, with its overemphasis on the classics, which, as he wrote, “stand in the way

of the broader, higher and more practical instruction and discipline of the natural and

social sciences.” is education was likewise to be different from narrow trade-school

174

the same four frames as the wave images in figure 2.10.

To combine images, we use various operations that construct new

painters from given painters. For example, the beside
operation takes

twopainters and produces anew, compoundpainterthat drawsthe first

education. In Rogers’s words:

e world-enforced distinction between the practical and the scientific

worker is uerly futile, and the whole experience of modern times has

demonstrated its uer worthlessness.

Rogers served as president of until 1870, when he resigned due to ill health.

In 1878 the second president of , John Runkle, resigned under the pressure of a

financial crisis brought on by the Panic of 1873 and strain of fighting off aempts by

Harvard to take over . Rogers returned to hold the office of president until 1881.

Rogers collapsed and died while addressing ’s graduating class at the commence-

ment exercises of 1882. Runkle quoted Rogers’s last words in a memorial address de-

livered that same year:

“As I stand here today and see what the Institute is, ... I call to mind

the beginnings of science. I remember one hundred and fiy years ago

Stephen Hales published a pamphlet on the subject of illuminating gas,

in which he stated that his researches had demonstrated that 128 grains

of bituminous coal – ” “Bituminous coal,” these were his last words on

earth. Here he bent forward, as if consulting some notes on the table

before him, then slowly regaining an erect position, threw up his hands,

and was translated from the scene of his earthly labors and triumphs

to “the tomorrow of death,” where the mysteries of life are solved, and

the disembodied spirit finds unending satisfaction in contemplating the

new and still unfathomable mysteries of the infinite future.

In the words of Francis A. Walker (’s third president):

All his life he had borne himself most faithfully and heroically, and he

died as so good a knight would surely have wished, in harness, at his

post, and in the very part and act of public duty.

175

Figure2.11:ImagesofWilliamBartonRogers,founderand

first president of , painted with respect to the same four

frames as in Figure 2.10 (original image from Wikimedia

Commons).

painter’s image in the le half ofthe frame and the second painter’s im-

age inthe right halfoftheframe.Similarly, below takestwopaintersand

producesacompound painter that drawsthe first painter’simage below

the second painter’s image. Some operations transform a single painter

to produce a new painter. For example, flip-vert takes a painter and

produces a painter that draws its image upside-down, and flip-horiz

produces a painter that draws the original painter’s image le-to-right

reversed.

Figure 2.12 shows the drawing ofa painter called wave4 that is built

up in two stages starting from wave:

(define wave2 (beside wave (flip-vert wave)))

(define wave4 (below wave2 wave2))

176

Figure 2.12: Creating a complex figure, starting from the

wave
painter of Figure 2.10.

Inbuildingupa complex image inthismanner we are exploitingthefactthatpaintersareclosedunderthelanguage’smeansofcombination.

e beside or below oftwo painters is itself apainter;therefore, we can

use it as an element in making more complex painters. As with building

up list structure using cons, the closure of our data under the means of

combination is crucial to the ability to create complex structures while

using only a few operations.

Once we can combine painters, we would like to be able to abstract

typical paerns of combining painters. We will implement the painter

operations as Scheme procedures. is means that we don’t need a spe-

cial abstraction mechanism in the picture language: Since the means of

combination are ordinary Scheme procedures, we automatically have

the capability to do anything with painter operations that we can do

with procedures. For example, we can abstract the paern in wave4 as

(define (flipped-pairs painter)

(let ((painter2 (beside painter (flip-vert painter))))

(below painter2 painter2)))

and define wave4 as an instance of this paern:

(define wave4 (flipped-pairs wave))

177

right-splitidentity

right-split

right-split

corner-split

up-splitn--1up-split right-split

identity

n--1n--1 n--1

n--1

n--1n--1

right-split n corner-split n

Figure 2.13: Recursive plans for right-split and corner-split.

We can also define recursive operations. Here’s one that makes painters

split and branch towards the right as shown in Figure 2.13 and Figure

2.14:

(define (right-split painter n)

(if (= n 0)

painter

(let ((smaller (right-split painter (- n 1))))

(beside painter (below smaller smaller)))))

We can produce balanced paerns by branching upwards as well as

towards the right (see exercise Exercise 2.44 and figures Figure 2.13 and

Figure 2.14):

(define (corner-split painter n)

(if (= n 0)

painter

178

(let ((up (up-split painter (- n 1)))

(right (right-split painter (- n 1))))

(let ((top-left (beside up up))

(bottom-right (below right right))

(corner (corner-split painter (- n 1))))

(beside (below painter top-left)

(below bottom-right corner))))))

By placing four copies of a corner-split appropriately, we obtain a

paern called square-limit, whose application to wave and rogers is

shown in Figure 2.9:

(define (square-limit painter n)

(let ((quarter (corner-split painter n)))

(let ((half (beside (flip-horiz quarter) quarter)))

(below (flip-vert half) half))))

Exercise2.44:Definetheprocedure up-splitusedby corner-

split. It is similar to right-split, except that it switches

the roles of below and beside.

Higher-order operations

In addition to abstracting paerns of combining painters, we can work

at a higher level, abstracting paerns of combining painter operations.

at is, we can view the painter operations as elements to manipulate

and can write means of combination for these elements—procedures

that take painter operations as arguments and create new painter oper-

ations.

For example, flipped-pairs and square-limit each arrange four

copies of a painter’s image in a square paern; they differ only in how

179

(right-split wave 4) (right-split rogers 4)

(corner-split wave 4) (corner-split rogers 4)

Figure 2.14: e recursive operations right-split and

corner-split applied to the painters
wave and rogers.

Combining four corner-split figures produces symmet

ric square-limit designs as shown in Figure 2.9.

180

they orient the copies. One way to abstract this paern of painter com-

binationiswiththefollowingprocedure,whichtakesfourone-argument

painter operations and produces a painter operation that transforms a

given painter with those four operations and arranges the results in a

square. Tl, tr, bl, and br are the transformations to apply to the top

le copy, the top right copy, the boom le copy, and the boom right

copy, respectively.

(define (square-of-four tl tr bl br)

(lambda (painter)

(let ((top (beside (tl painter) (tr painter)))

(bottom (beside (bl painter) (br painter))))

(below bottom top))))

en flipped-pairs can be defined in terms of square-of-four as

follows:24

(define (flipped-pairs painter)

(let ((combine4 (square-of-four identity flip-vert

identity flip-vert)))

(combine4 painter)))

and square-limit can be expressed as25

(define (square-limit painter n)

(let ((combine4 (square-of-four flip-horiz identity

rotate180 flip-vert)))

24Equivalently, we could write

(define flipped-pairs

(square-of-four identity flip-vert identity flip-vert))

25Rotate180 rotates a painter by 180 degrees (see Exercise 2.50). Instead of ro-

tate180 we could say (compose flip-vert flip-horiz),using the compose pro-

cedure from Exercise 1.42.

181

(combine4 (corner-split painter n))))

Exercise2.45: Right-splitand up-splitcanbeexpressed

as instances of a general spliing operation. Define a pro-

cedure split with the property that evaluating

(define right-split (split beside below))

(define up-split (split below beside))

produces procedures right-split and up-split with the

same behaviors as the ones already defined.

Frames

Beforewecanshowhowtoimplementpaintersandtheirmeansofcom-

bination, we must first consider frames. A frame can be described by

three vectors—an origin vector and two edge vectors. e origin vector

specifies the offset of the frame’s origin from some absolute origin in

the plane, and the edge vectors specify the offsets of the frame’s cor-

ners from its origin. If the edges are perpendicular, the frame will be

rectangular. Otherwise the frame will be a more general parallelogram.

Figure 2.15 shows a frame and its associated vectors. In accordance

with data abstraction, we need not be specific yet about how frames are

represented, other than to say that there is a constructor make-frame,

which takes three vectors and produces a frame, and three correspond-

ing selectors origin-frame, edge1-frame, and edge2-frame (see Exer-

cise 2.47).

We will use coordinates in the unit square (0 ≤ x,y ≤ 1) to specify

images. With each frame, we associate a frame coordinate map, which

will be used to shi and scale images to fit the frame. e map trans-

forms the unit square into the frame by mapping the vector v = (x,y)

182

frame

edge1

vector

frame

edge2vector

frame

originvector (0, 0) point on

display screen

Figure 2.15: A frame is described by three vectors — an

origin and two edges.

to the vector sum

Origin(Frame) + x · Edge1(Frame) + y · Edge2(Frame).

For example, (0, 0) is mapped to the origin of the frame, (1, 1) to the

vertex diagonally opposite the origin, and (0.5, 0.5) to the center of the

frame. We can create a frame’s coordinate map with the following pro-

cedure:26

(define (frame-coord-map frame)

(lambda (v)

(add-vect

(origin-frame frame)

26Frame-coord-map uses the vector operations described in Exercise 2.46 below,

which we assume have been implemented using some representation for vectors. Be-

cause of data abstraction, it doesn’t maer what this vector representation is, so long

as the vector operations behave correctly.

183

(add-vect (scale-vect (xcor-vect v) (edge1-frame frame))

(scale-vect (ycor-vect v) (edge2-frame frame))))))

Observe that applying frame-coord-map toa frame returnsa procedure

that, givenavector,returns avector. Ifthe argumentvectorisinthe unit

square, the result vector will be in the frame. For example,

((frame-coord-map a-frame) (make-vect 0 0))

returns the same vector as

(origin-frame a-frame)

Exercise 2.46: A two-dimensional vector v running from

the origin to a point can be represented as a pair consisting

of an x-coordinate and a y-coordinate. Implement a data

abstraction for vectors by giving a constructor make-vect

and corresponding selectors xcor-vect and ycor-vect. In

terms of your selectors and constructor, implement proce

dures add-vect, sub-vect, and scale-vect that perform

theoperationsvectoraddition,vectorsubtraction,andmul-

tiplying a vector by a scalar:

(x1,y1)+(x2,y2) = (x1 + x2,y1 + y2),

(x1,y1)−(x2,y2) = (x1 − x2,y1− y2),

s · (x,y) = (sx,sy).

Exercise2.47:Herearetwopossibleconstructorsforframes:

(define (make-frame origin edge1 edge2)

(list origin edge1 edge2))

(define (make-frame origin edge1 edge2)

(cons origin (cons edge1 edge2)))

For each constructor supply the appropriate selectors to

produce an implementation for frames.

184

Painters

Apainter isrepresented as a procedure that, givena frame as argument,

draws a particular image shied and scaled to fit the frame. at is to

say, if p is a painter and f is a frame, then we produce p’s image in f by

calling
p with f as argument.

e details of how primitive painters are implemented depend on

the particular characteristics of the graphics system and the type ofim-

age to be drawn. For instance, suppose we have a procedure draw-line

that draws a line on the screen between two specified points. en we

can create painters for line drawings, such as the wave painter in Figure

2.10, from lists ofline segments as follows:27

(define (segments->painter segment-list)

(lambda (frame)

(for-each

(lambda (segment)

(draw-line

((frame-coord-map frame)

(start-segment segment))

((frame-coord-map frame)

(end-segment segment))))

segment-list)))

esegmentsaregivenusingcoordinateswithrespecttotheunitsquare.

For each segment in the list, the painter transforms the segment end

points with the frame coordinate map and draws a line between the

transformed points.

Representing painters as procedures erects a powerful abstraction

barrier in the picture language. We can create and intermix all sorts of

27Segments->painter uses the representation for line segments described in Exer-

cise 2.48 below. It also uses the for-each procedure described in Exercise 2.23.

185

primitive painters, based on a variety of graphics capabilities. e de-

tails of their implementation do not maer. Any procedure can serve as

a painter, provided that it takes a frame as argument and draws some-

thing scaled to fit the frame.28

Exercise 2.48: A directed line segment in the plane can be

represented as a pair of vectors—the vector running from

the origin to the start-point of the segment, and the vector

running from the origin to the end-point of the segment.

Use your vector representation from Exercise 2.46 to de

fine arepresentationforsegmentswithaconstructor make-

segment and selectors start-segment and end-segment.

Exercise 2.49: Use segments->painter to define the fol

lowing primitive painters:

a. e painter that draws the outline of the designated

frame.

b. e painter that draws an “X” by connecting opposite

corners of the frame.

c. e painter that draws a diamond shape by connect-

ing the midpoints of the sides of the frame.

d. e wave painter.

28For example, the rogers painter of Figure 2.11 was constructed from a gray-level

image. For each point in a given frame, the rogers painter determines the point in the

image that is mapped to it under the frame coordinate map, and shades it accordingly.

By allowing different types of painters, we are capitalizing on the abstract data idea

discussedin Section2.1.3,wherewearguedthata rational-numberrepresentationcould

be anything at all that satisfies an appropriate condition. Here we’re using the fact

that a painter can be implemented in any way at all, so long as it draws something

in the designated frame. Section 2.1.3 also showed how pairs could be implemented as

procedures. Painters are our second example of a procedural representation for data.

186

Transforming and combining painters

An operation on painters (such as flip-vert or beside) works by cre-

ating a painter that invokes the original painters with respect to frames

derivedfromtheargumentframe.us, forexample, flip-vertdoesn’thave to know how apainter works inorder to flip it—itjust has to know

how to turn a frame upside down: e flipped painterjust uses the orig

inal painter, but in the inverted frame.

Painter operations are based on the procedure transform-painter,which takes as arguments a painter and information on how to trans-

form a frame and produces a new painter. e transformed painter,

when called on a frame, transforms the frame and calls the original

painteronthetransformedframe.eargumentstotransform-painter

are points (represented as vectors) that specify the corners of the new

frame: When mapped into the frame, the first point specifies the new

frame’s origin and the other two specify the ends of its edge vectors.

us,argumentswithintheunitsquarespecifyaframecontainedwithin

the original frame.

(define (transform-painter painter origin corner1 corner2)

(lambda (frame)

(let ((m (frame-coord-map frame)))

(let ((new-origin (m origin)))

(painter (make-frame

new-origin

(sub-vect (m corner1) new-origin)

(sub-vect (m corner2) new-origin)))))))

Here’s how to flip painter images vertically:

(define (flip-vert painter)

(transform-painter painter

(make-vect 0.0 1.0) ;neworigin

187

(make-vect 1.0 1.0) ;newendofedge1

(make-vect 0.0 0.0))) ;newendofedge2

Using transform-painter, we can easily define new transformations.

For example,we candefine apainter that shrinksits image to the upper-

right quarter of the frame it is given:

(define (shrink-to-upper-right painter)

(transform-painter

painter (make-vect 0.5 0.5)

(make-vect 1.0 0.5) (make-vect 0.5 1.0)))

Other transformations rotate images counterclockwise by 90 degrees29

(define (rotate90 painter)

(transform-painter painter

(make-vect 1.0 0.0)

(make-vect 1.0 1.0)

(make-vect 0.0 0.0)))

or squash images towards the center of the frame:30

(define (squash-inwards painter)

(transform-painter painter

(make-vect 0.0 0.0)

(make-vect 0.65 0.35)

(make-vect 0.35 0.65)))

Frame transformation is also the key to defining means of combining

two or more painters. e beside procedure, for example, takes two

painters, transforms them to paint in the le and right halves of an

argument frame respectively, and produces a new, compound painter.

29Rotate90 is a pure rotation only for square frames, because it also stretches and

shrinks the image to fit into the rotated frame.

30e diamond-shaped images in Figure 2.10 and Figure 2.11 were created with

squash-inwards applied to wave and rogers.

188

When the compound painter is given a frame, it calls the first trans-

formed painter to paint in the le half of the frame and calls the second

transformed painter to paint in the right half of the frame:

(define (beside painter1 painter2)

(let ((split-point (make-vect 0.5 0.0)))

(let ((paint-left

(transform-painter

painter1

(make-vect 0.0 0.0)

split-point

(make-vect 0.0 1.0)))

(paint-right

(transform-painter

painter2

split-point

(make-vect 1.0 0.0)

(make-vect 0.5 1.0))))

(lambda (frame)

(paint-left frame)

(paint-right frame)))))

Observe how the painter data abstraction, and in particular the repre-

sentation of painters as procedures, makes beside easy to implement.

e beside procedure need not know anything about the details of the

component painters other than that each painter will draw something

in its designated frame.

Exercise2.50:Definethetransformation flip-horiz,whichflips painters horizontally, and transformations that rotate

painters counterclockwise by 180 degrees and 270 degrees.

Exercise2.51:Definethe belowoperationforpainters. Below

takestwopaintersasarguments.eresultingpainter,given

189

a frame, draws with the first painter in the boom of the

frame and with the second painter in the top. Define below

in two different ways—first by writing a procedure that is

analogous to the beside procedure given above, and again

in terms of beside and suitable rotation operations (from

Exercise 2.50).

Levels of language for robust design

e picture language exercises some of the critical ideas we’ve intro-

duced about abstraction with procedures and data. e fundamental

dataabstractions, painters,are implemented using proceduralrepresen-tations, which enables the language to handle different basic drawing

capabilities in a uniform way. e means of combination satisfy the

closure property, which permits us to easily build up complex designs.

Finally, all the tools for abstracting procedures are available to us for

abstracting means of combination for painters.

We have also obtained a glimpse of another crucial idea about lan-

guages and program design. is is the approach of stratified design,

the notion that a complex system should be structured as a sequence

oflevels that are described using a sequence oflanguages. Each level is

constructed by combining parts that are regarded as primitive at that

level, and the parts constructed at each level are used as primitives at

the next level. e language used at each level ofa stratified design has

primitives,meansofcombination,and meansofabstractionappropriate

to that level of detail.

Stratified design pervades the engineering of complex systems. For

example, in computer engineering, resistors and transistors are com-

bined (and described using a language of analog circuits) to produce

parts such as and-gates and or-gates, which form the primitives of a

190

language for digital-circuit design.31 ese parts are combined to build

processors,busstructures,andmemorysystems,whichare inturncom-

bined to form computers, using languages appropriate to computer ar-

chitecture. Computers are combined to form distributed systems, using

languages appropriate for describing network interconnections, and so

on.

As a tiny example of stratification, our picture language uses prim-

itive elements (primitive painters) that are created using a language

that specifies points and lines to provide the lists of line segments for

segments->painter, or the shading details for a painter like rogers.

e bulk of our description of the picture language focused on com

bining these primitives, using geometric combiners such as beside and

below. We also worked at a higher level, regarding beside and below

as primitives to be manipulated in a language whose operations, such

as square-of-four, capture common paerns of combining geometric

combiners.

Stratified design helps make programs robust, that is, it makes it

likely that small changes in a specification will require correspondingly

smallchangesintheprogram.Forinstance,supposewewantedtochange

the image based on wave shown in Figure 2.9. We could work at the

lowest level to change the detailed appearance of the wave element;

we could work at the middle level to change the way corner-split

replicates the wave; we could work at the highest level to change how

square-limit arranges the four copies of the corner. In general, each

level of a stratified design provides a different vocabulary for express-

ing the characteristics of the system, and a different kind of ability to

change it.

31Section 3.3.4 describes one such language.

191

Exercise 2.52: Make changes to the square limit of wave

shown in Figure 2.9 by working at each of the levels de

scribed above. In particular:

a. Add some segments to the primitive wave painter of

Exercise 2.49 (to add a smile, for example).

b. Change the paernconstructedby corner-split(forexample, by using only one copy of the up-split and

right-split images instead of two).

c. Modifytheversionof square-limitthatuses square-

of-four so as to assemble the corners in a different

paern. (For example, you might make the big Mr.

Rogers look outward from each corner of the square.)

2.3 Symbolic Data

All the compound data objects we have used so far were constructed ul-

timately from numbers. In this section we extend the representational

capability of our language by introducing the ability to work with arbi-

trary symbols as data.

2.3.1 otation

If we can form compound data using symbols, we can have lists such as

(a b c d)

(23 45 17)

((Norah 12) (Molly 9) (Anna 7) (Lauren 6) (Charlotte 4))

Lists containing symbols can look just like the expressions of our lan-

guage:

192

(* (+ 23 45)

(+ x 9))

(define (fact n)

(if (= n 1) 1 (* n (fact (- n 1)))))

Inordertomanipulate symbolswe needa newelement in ourlanguage:

the ability to quote a data object. Suppose we want to construct the list

(a b).We can’t accomplish this with (list a b), because this expres-

sion constructs a list of the values of a and b rather than the symbols

themselves.isissueiswellknowninthe context ofnaturallanguages,

where words and sentences may be regarded either as semantic entities

or as character strings (syntactic entities). e common practice in nat-

ural languages is to use quotation marks to indicate that a word or a

sentence is to be treated literally as a string of characters. For instance,

the first leer of “John” is clearly “J.” If we tell somebody “say your

name aloud,” we expect to hear that person’s name. However, if we tell

somebody “say ‘your name’ aloud,” we expect to hear the words “your

name.” Note that we are forced tonest quotationmarksto describe what

somebody else might say.32

We can follow this same practice to identify lists and symbols that

are to be treated as data objects rather than as expressions to be evalu

32Allowing quotation in a language wreaks havoc with the ability to reason about

the language in simple terms, because it destroys the notion that equals can be sub-

stituted for equals. For example, three is one plus two, but the word “three” is not the

phrase “one plus two.” otation is powerful because it gives us a way to build expres-

sions that manipulate other expressions (as we will see when we write an interpreter in

Chapter 4). But allowing statements in a language that talk about other statements in

that language makes it very difficult to maintain any coherent principle ofwhat “equals

can be substituted for equals” should mean. For example, if we know that the evening

star is the morning star, then from the statement “the evening star is Venus” we can

deduce “the morning star is Venus.” However, given that “John knows that the evening

star is Venus” we cannot infer that “John knows that the morning star is Venus.”

193

ated. However, our format for quoting differs from that of natural lan-

guagesin that we place a quotation mark (traditionally, the single quote

symbol ') only at the beginning of the object to be quoted. We can get

away with this in Scheme syntax because we rely on blanks and paren-

thesestodelimitobjects.us,themeaningofthesinglequotecharacter

is to quote the next object.33

Now we can distinguish between symbols and their values:

(define a 1)

(define b 2)

(list a b)

(1 2)

(list 'a 'b)

(a b)

(list 'a b)

(a 2)

otation also allows us to type in compound objects, using the con-

ventional printed representation for lists:34

33e single quote is different from the double quote we have been using to enclose

character strings to be printed. Whereas the single quote can be used to denote lists or

symbols, the double quote is used only with character strings. In this book, the only

use for character strings is as items to be printed.

34Strictly, our use of the quotation mark violates the general rule that all compound

expressions in our language should be delimited by parentheses and look like lists. We

can recover this consistency by introducing a special form quote, which serves the

same purpose as the quotation mark. us, we would type (quote a) instead of 'a,

and we would type (quote (a b c)) instead of '(a b c). is is precisely how

the interpreter works. e quotation mark is just a single-character abbreviation for

wrapping the next complete expression with quote to form (quote ⟨expression⟩).

is is important because it maintains the principle that any expression seen by the

interpreter can be manipulated as a data object. For instance, we could construct the

expression (car '(a b c)), which isthesameas (car (quote (a b c))), by evaluating

(list 'car (list 'quote '(a b c))).

194

(car '(a b c))

a

(cdr '(a b c))

(b c)

In keeping with this, we can obtain the empty list by evaluating '(),

and thus dispense with the variable nil.

Oneadditionalprimitiveusedinmanipulatingsymbolsis eq?,which

takes two symbols as arguments and tests whether they are the same.35

Using eq?, we can implement a useful procedure called memq. is takes

two arguments, a symbol and a list. Ifthe symbol is not contained in the

list (i.e., is not eq? to any item inthe list), then memq returnsfalse.Other-

wise, it returns the sublist of the list beginning with the first occurrence

of the symbol:

(define (memq item x)

(cond ((null? x) false)

((eq? item (car x)) x)

(else (memq item (cdr x)))))

For example, the value of

(memq 'apple '(pear banana prune))

is false, whereas the value of

(memq 'apple '(x (apple sauce) y apple pear))

is (apple pear).

Exercise2.53:Whatwouldtheinterpreterprintinresponse

to evaluating each of the following expressions?

35Wecan considertwosymbolstobe“thesame” ifthey consist ofthesamecharacters

in the same order. Such a definition skirts a deep issue that we are not yet ready to

address: the meaning of “sameness” in a programming language. We will return to this

in Chapter 3 (Section 3.1.3).

195

(list 'a 'b 'c)

(list (list 'george))

(cdr '((x1 x2) (y1 y2)))

(cadr '((x1 x2) (y1 y2)))

(pair? (car '(a short list)))

(memq 'red '((red shoes) (blue socks)))

(memq 'red '(red shoes blue socks))

Exercise 2.54: Two lists are said to be equal? if they con-

tain equal elements arranged in the same order. For exam

ple,

(equal? '(this is a list) '(this is a list))

is true, but

(equal? '(this is a list) '(this (is a) list))

is false. To be more precise, we can define equal? recur-

sively in terms of the basic eq? equality of symbols by say-

ing that a and b are equal? if they are both symbols and

the symbols are eq?, or if they are both lists such that (car

a) is equal? to (car b) and (cdr a) is equal? to (cdr b).

Using this idea, implement equal? as a procedure.36

Exercise 2.55: Eva Lu Ator types to the interpreter the ex-

pression

36In practice, programmers use equal? to compare lists that contain numbers as

well as symbols. Numbers are not considered to be symbols. e question of whether

two numerically equal numbers (as tested by =) are also eq? is highly implementation-

dependent. A beer definition of equal? (such as the one that comes as a primitive in

Scheme) would also stipulate that if a and b are both numbers, then a and b are equal?

if they are numerically equal.

196

(car ''abracadabra)

To her surprise, the interpreter prints back quote. Explain.

2.3.2 Example: Symbolic Differentiation

As an illustration of symbol manipulation and a further illustration of

data abstraction, consider the design ofa procedure that performs sym-

bolic differentiation of algebraic expressions. We would like the proce-

dure to take as arguments an algebraic expression and a variable and to

return the derivative of the expression with respect to the variable. For

example, if the arguments to the procedure are ax2 + bx + c and x, the

procedure should return 2ax + b. Symbolic differentiation is of special

historical significance in Lisp. It was one of the motivating examples

behind the development of a computer language for symbol manipula-

tion. Furthermore, it marked the beginning of the line of research that

led to the development of powerful systems for symbolic mathematical

work, which are currently being used by a growing number of applied

mathematicians and physicists.

In developing the symbolic-differentiation program, we will follow

the same strategy of data abstraction that we followed in developing

the rational-number system of Section 2.1.1. at is, we will first de-

fine a differentiation algorithm that operates on abstract objects such as

“sums,” “products,” and “variables” without worrying about how these

aretobe represented.Only aerwardwillwe addresstherepresentation

problem.

The differentiation program with abstract data

In order to keep things simple, we will consider a very simple symbolic-

differentiation program that handles expressions that are built up using

197

only the operations of addition and multiplication with two arguments.

Differentiation of any such expression can be carried out by applying

the following reduction rules:

dcdx = 0, for c a constant or a variable different from x,

dx

dx = 1,

d(u+ v)dx = dudx + dv

dx

,

d(uv)dx = udvdx +vdu

dx.

Observe that the laer two rules are recursive in nature. at is, to ob-

tain the derivative of a sum we first find the derivatives of the terms and

add them. Each of the terms may in turn be an expression that needs

to be decomposed. Decomposing into smaller and smaller pieces will

eventually produce pieces that are either constants or variables, whose

derivatives will be either 0 or 1.

To embody these rules in a procedure we indulge in a lile wishful

thinking, as we did in designing the rational-number implementation.

If we had a means for representing algebraic expressions, we should

be able to tell whether an expression is a sum, a product, a constant,

or a variable. We should be able to extract the parts of an expression.

For a sum, for example we want to be able to extract the addend (first

term)and the augend(second term). We should alsobe able toconstruct

expressions from parts. Let us assume that we already have procedures

to implement the following selectors, constructors, and predicates:

(variable? e) Iseavariable?

(same-variable? v1 v2) Are v1 and v2 the same variable?

198

(sum? e) Is e a sum?

(addend e) Addendofthesume.

(augend e) Augendofthesume.

(make-sum a1 a2) Constructthesumofa1 anda2.

(product? e) Iseaproduct?

(multiplier e) Multiplier of the product e.

(multiplicand e) Multiplicand of the product
e.

(make-product m1 m2) Constructtheproductofm1 andm2.

Using these, and the primitive predicate number?,which identifiesnum-bers,wecanexpressthedifferentiationrulesasthefollowingprocedure:

(define (deriv exp var)

(cond ((number? exp) 0)

((variable? exp) (if (same-variable? exp var) 1 0))

((sum? exp) (make-sum (deriv (addend exp) var)

(deriv (augend exp) var)))

((product? exp)

(make-sum

(make-product (multiplier exp)

(deriv (multiplicand exp) var))

(make-product (deriv (multiplier exp) var)

(multiplicand exp))))

(else

(error "unknown expression type: DERIV" exp))))

is deriv procedure incorporates the complete differentiation algo-

rithm. Since it is expressed in terms of abstract data, it will work no

maer how we choose to represent algebraic expressions, as long as we

design a proper set of selectors and constructors. is is the issue we

must address next.

199

Representing algebraic expressions

We can imagine many ways to use list structure to represent algebraic

expressions. For example, we could use lists of symbols that mirror

the usual algebraic notation, representing ax + b as the list (a * x +

b). However, one especially straightforward choice is to use the same

parenthesized prefix notation that Lisp uses for combinations; that is,

to represent ax +b as (+ (* a x) b). en our data representation for

the differentiation problem is as follows:

• e variables are symbols. ey are identified by the primitive

predicate symbol?:

(define (variable? x) (symbol? x))

• Two variables are the same if the symbols representing them are

eq?:

(define (same-variable? v1 v2)

(and (variable? v1) (variable? v2) (eq? v1 v2)))

• Sums and products are constructed as lists:

(define (make-sum a1 a2) (list '+ a1 a2))

(define (make-product m1 m2) (list '* m1 m2))

• A sum is a list whose first element is the symbol +:

(define (sum? x) (and (pair? x) (eq? (car x) '+)))

• e addend is the second item of the sum list:

(define (addend s) (cadr s))

200

• e augend is the third item of the sum list:

(define (augend s) (caddr s))

• A product is a list whose first element is the symbol *:

(define (product? x) (and (pair? x) (eq? (car x) '*)))

• e multiplier is the second item of the product list:

(define (multiplier p) (cadr p))

• e multiplicand is the third item of the product list:

(define (multiplicand p) (caddr p))

us, we need only combine these with the algorithm as embodied by

deriv in order to have a working symbolic-differentiation program. Let

us look at some examples of its behavior:

(deriv '(+ x 3) 'x)

(+ 1 0)

(deriv '(* x y) 'x)

(+ (* x 0) (* 1y))

(deriv '(* (* x y) (+ x 3)) 'x)

(+ (* (* xy) (+ 1 0))

(* (+ (* x 0) (* 1 y))

(+ x 3)))

e program produces answers that are correct; however, they are un-

simplified. It is true that

d(xy)

dx

=x·0+1·y,

201

but we would like the program to know that x · 0 = 0, 1 · y = y, and

0 +y = y. e answer for the second example should have been simply

y. As the third example shows, this becomes a serious issue when the

expressions are complex.

Ourdifficultyismuchliketheoneweencounteredwiththerational-

number implementation: we haven’t reduced answers to simplest form.

Toaccomplishtherational-numberreduction,weneededtochangeonly

the constructors and the selectors of the implementation. We can adopt

a similar strategy here. We won’t change deriv at all. Instead, we will

change make-sum so that ifboth summands are numbers, make-sum will

add them and return their sum. Also, if one of the summands is 0, then

make-sum will return the other summand.

(define (make-sum a1 a2)

(cond ((=number? a1 0) a2)

((=number? a2 0) a1)

((and (number? a1) (number? a2))

(+ a1 a2))

(else (list '+ a1 a2))))

is uses the procedure =number?, which checks whether anexpression

is equal to a given number:

(define (=number? exp num) (and (number? exp) (= exp num)))

Similarly,we will change make-productto buildinthe rulesthat0 times

anything is 0 and 1 times anything is the thing itself:

(define (make-product m1 m2)

(cond ((or (=number? m1 0) (=number? m2 0)) 0)

((=number? m1 1) m2)

((=number? m2 1) m1)

((and (number? m1) (number? m2)) (* m1 m2))

(else (list '* m1 m2))))

202

Here is how this version works on our three examples:

(deriv '(+ x 3) 'x)

1

(deriv '(* x y) 'x)

y

(deriv '(* (* x y) (+ x 3)) 'x)

(+ (* x y) (* y (+ x 3)))

Although this is quite an improvement, the third example shows that

there is still a long way to go before we get a program that puts ex-

pressions into a form that we might agree is “simplest.” e problem

of algebraic simplification is complex because, among other reasons, a

form that may be simplest for one purpose may not be for another.

Exercise 2.56: Show how to extend the basic differentiator

to handle more kinds of expressions. For instance, imple-

ment the differentiation rule

d(un) = nun−1dudx

dx

by adding a new clause to the deriv program and defining

appropriateprocedures exponentiation?, base, exponent,

and make-exponentiation. (You may use the symbol **

to denote exponentiation.) Build in the rules that anything

raised to the power 0 is 1 and anything raised to the power

1 is the thing itself.

Exercise 2.57: Extend the differentiation program to han-

dlesumsandproductsofarbitrarynumbersof(twoormore)

terms. en the last example above could be expressed as

(deriv '(* x y (+ x 3)) 'x)

203

Try to dothis by changing only the representation forsums

and products, without changing the deriv procedure at all.

For example, the addend of a sum would be the first term,

and the augend would be the sum of the rest of the terms.

Exercise 2.58: Suppose we want to modify the differentia-

tion program so that it works with ordinary mathematical

notation,inwhich +and *areinfixratherthanprefixopera-

tors.Sincethedifferentiationprogramisdefinedintermsof

abstractdata,wecanmodify it toworkwithdifferentrepre-

sentationsofexpressionssolely by changingthepredicates,

selectors, andconstructorsthat define therepresentationofthe algebraic expressions on which the differentiator is to

operate.

a. Show how to do this in order to differentiate algebraic

expressions presented in infix form, such as (x + (3

* (x + (y + 2)))).To simplify the task, assume that

+ and *
always take two arguments and that expres-

sions are fully parenthesized.

b. e problembecomes substantially harder ifwe allow

standard algebraic notation, such as (x + 3 * (x +

y + 2)), which drops unnecessary parentheses and

assumes that multiplication is done before addition.

Can you design appropriate predicates, selectors, and

constructors for this notation such that our derivative

program still works?

204

2.3.3 Example: Representing Sets

In the previous examples we built representations for two kinds ofcom-

pound data objects: rational numbers and algebraic expressions. In one

of these examples we had the choice of simplifying (reducing) the ex-

pressions at either construction time or selection time, but other than

that the choice of a representation for these structures in terms of lists

was straightforward. When we turn to the representation of sets, the

choice of a representation is not so obvious. Indeed, there are a num-

ber of possible representations, and they differ significantly from one

another in several ways.

Informally, a set is simply a collection of distinct objects. To give

a more precise definition we can employ the method of data abstrac-

tion. at is, we define “set” by specifying the operations that are to be

used on sets. ese are union-set, intersection-set, element-of-

set?, and adjoin-set. Element-of-set? is a predicate that determines

whether a given element is a member ofa set. Adjoin-set takes an ob-

ject and a set as arguments and returns a set that contains the elements

of the original set and also the adjoined element. Union-set computes

the union of two sets, which is the set containing each element that

appears in either argument. Intersection-set computes the intersec-

tion of two sets, which is the set containing only elements that appear

in both arguments. From the viewpoint of data abstraction, we are free

to design any representation that implements these operations in a way

consistent with the interpretations given above.37

37If we want to be more formal, we can specify “consistent with the interpretations

given above” to mean that the operations satisfy a collection of rules such as these:

• For any set S and any object x, (element-of-set? x (adjoin-set x S)) is true

(informally: “Adjoining an object to a set produces a set that contains the object”).

• For any sets S and T and any object x, (element-of-set? x (union-set S T)) is

205

Sets as unordered lists

One way to represent a set is as a list of its elements in which no el-

ement appears more than once. e empty set is represented by the

empty list. In this representation, element-of-set? is similar to the

procedure memq of Section 2.3.1. It uses equal? instead of eq? so that

the set elements need not be symbols:

(define (element-of-set? x set)

(cond ((null? set) false)

((equal? x (car set)) true)

(else (element-of-set? x (cdr set)))))

Using this, we can write adjoin-set. If the object to be adjoined is al-

ready in the set, we just return the set. Otherwise, we use cons to add

the object to the list that represents the set:

(define (adjoin-set x set)

(if (element-of-set? x set)

set

(cons x set)))

For intersection-set we canuse a recursive strategy. Ifwe knowhowto form the intersection of set2 and the cdr of set1, we only need to

decide whether to include the car of set1 in this. But this depends on

whether (car set1) is also in set2. Here is the resulting procedure:

(define (intersection-set set1 set2)

(cond ((or (null? set1) (null? set2)) '())

((element-of-set? (car set1) set2)

(cons (car set1) (intersection-set (cdr set1) set2)))

(else (intersection-set (cdr set1) set2))))

equal to (or (element-of-set? x S) (element-of-set? x T)) (informally: “e

elements of (union S T) are the elements that are in S or in T”).

• For any object x, (element-of-set? x '()) is false (informally: “No object is an

element of the empty set”).

206

In designing a representation, one of the issues we should be concerned

with is efficiency. Consider the number of steps required by our set

operations. Since they all use element-of-set?, the speed ofthis oper-

ation has a major impact on the efficiency of the set implementation as

a whole. Now, in order to check whether an object is a member ofa set,

element-of-set? may have to scan the entire set. (In the worst case,

the object turns out not tobe in the set.)Hence,if the set hasn elements,

element-of-set? might take up to n steps. us, the number of steps

required grows as Θ(n). e number of steps required by adjoin-set,

which uses this operation, also grows as Θ(n). For intersection-set,

which does an element-of-set? check for each element of set1, the

number of steps required grows as the product of the sizes of the sets

involved, or Θ(n2) for two sets of sizen. e same will be true of union-

set.

Exercise 2.59: Implement the union-set operation for the

unordered-list representation of sets.

Exercise2.60: Wespecified that aset would be represented

as a list with no duplicates. Now suppose we allow dupli-

cates. For instance, the set {1,2,3} could be represented as

the list (2 3 2 1 3 2 2). Design procedures element-

of-set?, adjoin-set, union-set, and intersection-set

thatoperate onthisrepresentation.Howdoestheefficiency

of each compare with the corresponding procedure for the

non-duplicaterepresentation?Arethereapplicationsforwhich

you would use this representation in preference to the non-

duplicate one?

207

Sets as ordered lists

One way to speed up our set operations is to change the representation

so that the set elements are listed in increasing order. To do this, we

need some way to compare two objects so that we can say which is

bigger. For example, we could compare symbols lexicographically, or

we could agree on some method for assigning a unique number to an

object and then compare the elements by comparing the corresponding

numbers. To keep our discussion simple, we will consider only the case

where the set elements are numbers, so that we can compare elements

using > and <. We will represent a set of numbers by listing its elements

in increasing order. Whereas our first representation above allowed us

to represent the set {1,3, 6, 10} by listing the elements in any order, our

new representation allows only the list (1 3 6 10).

Oneadvantageoforderingshowsupin element-of-set?:Incheck-ing for the presence of an item, we no longer have to scan the entire set.

If we reach a set element that is larger than the item we are looking for,

then we know that the item is not in the set:

(define (element-of-set? x set)

(cond ((null? set) false)

((= x (car set)) true)

((< x (car set)) false)

(else (element-of-set? x (cdr set)))))

How many steps does this save? In the worst case, the item we are

looking for may be the largest one in the set, so the number of steps

is the same as for the unordered representation. On the other hand, if

we search for items of many different sizes we can expect that some-

times we will be able to stop searching at a point near the beginning of

the list and that other times we will still need to examine most of the

list. On the average we should expect to have to examine about half of

208

the items in the set. us, the average number of steps required will be

about n/2. is is still Θ(n) growth, but it does save us, on the average,

a factor of 2 in number of steps over the previous implementation.

We obtain a more impressive speedup with intersection-set. In

the unordered representation this operation required Θ(n2) steps, be-

cause we performed a complete scan of set2 for each element of set1.

But with the ordered representation, we can use a more clever method.

Begin by comparing the initial elements, x1 and x2, of the two sets. If

x1
equals x2, then that gives an element ofthe intersection, and the rest

of the intersection is the intersection of the cdr-s of the two sets. Sup-

pose, however, that x1 is less than x2. Since x2 is the smallest element

in set2, we can immediately conclude that x1 cannot appear anywhere

in set2 and hence is not in the intersection. Hence, the intersection is

equal to the intersection of set2 with the cdr of set1. Similarly, if x2

is less than x1, then the intersection is given by the intersection of set1

with the cdr of set2. Here is the procedure:

(define (intersection-set set1 set2)

(if (or (null? set1) (null? set2))

'()

(let ((x1 (car set1)) (x2 (car set2)))

(cond ((= x1 x2)

(cons x1 (intersection-set (cdr set1)

(cdr set2))))

((< x1 x2)

(intersection-set (cdr set1) set2))

((< x2 x1)

(intersection-set set1 (cdr set2)))))))

To estimate the number of steps required by this process, observe that

at each step we reduce the intersection problem to computing inter

sections of smaller sets—removing the first element from set1 or set2

209

or both. us, the number of steps required is at most the sum of the

sizes of set1 and set2, rather than the product of the sizes as with the

unorderedrepresentation. isis Θ(n) growth rather than Θ(n2)—a con-

siderable speedup, even for sets of moderate size.

Exercise 2.61: Give an implementation of adjoin-set us-

ing the ordered representation. By analogy with element-

of-set? show how to take advantage of the ordering to

produce aprocedurethatrequiresonthe averageabout half

as many steps as with the unordered representation.

Exercise 2.62: Give a Θ(n) implementation of union-set

for sets represented as ordered lists.

Sets as binary trees

We can do beer than the ordered-list representation by arranging the

set elements in the form of a tree. Each node of the tree holds one ele-

ment of the set, called the “entry” at that node, and a link to each of two

other (possibly empty) nodes. e “le” link points to elements smaller

than the one at the node, and the “right” link to elements greater than

the one at the node. Figure 2.16 shows some trees that represent the set

{1,3, 5, 7, 9, 11}. e same set may be represented by a tree in a number

of different ways. e only thing we require for a valid representation

is that all elements in the le subtree be smaller than the node entry

and that all elements in the right subtree be larger.

e advantage ofthe tree representationisthis: Suppose we want to

check whethera numberx is containedina set. We begin by comparing

x with the entry in the top node. Ifx is less than this, we know that we

need only search the le subtree; if x is greater, we need only search

the right subtree. Now, if the tree is “balanced,” each of these subtrees

210

7 3 5

3 9 1 7 93

1 11 5 9 1 7 11

11

5

Figure 2.16: Various binary trees that represent the set

{1,3,5,7,9,11}.

will be about half the size of the original. us, in one step we have

reduced the problem of searching a tree of size n to searching a tree

of size n/2. Since the size of the tree is halved at each step, we should

expect that the number of steps needed to search a tree of size n grows

as Θ(logn).38 For large sets, this will be a significant speedup over the

previous representations.

We canrepresenttreesby usinglists.Each node willbealist ofthree

items: the entry at the node, the le subtree, and the right subtree.A le

or a right subtree of the empty list will indicate that there is no subtree

connected there. We can describe this representation by the following

procedures:39

38Halving the size of the problem at each step is the distinguishing characteristic of

logarithmic growth, as we saw with the fast-exponentiation algorithm of Section 1.2.4

and the half-interval search method of Section 1.3.3.

39We are representing sets in terms of trees, and trees in terms of lists—in effect, a

data abstraction built upon a data abstraction. We can regard the procedures entry,

left-branch, right-branch, and make-tree as a way ofisolating the abstraction ofa

“binary tree” from the particular way we might wish to represent such a tree in terms

of list structure.

211

(define (entry tree) (car tree))

(define (left-branch tree) (cadr tree))

(define (right-branch tree) (caddr tree))

(define (make-tree entry left right)

(list entry left right))

Now we can write the element-of-set? procedure using the strategy

described above:

(define (element-of-set? x set)

(cond ((null? set) false)

((= x (entry set)) true)

((< x (entry set))

(element-of-set? x (left-branch set)))

((> x (entry set))

(element-of-set? x (right-branch set)))))

Adjoining an item to a set is implemented similarly and also requires

Θ(logn) steps. To adjoin an item x, we compare x with the node en-

try to determine whether x should be added to the right or to the le

branch, and having adjoined
x to the appropriate branch we piece this

newlyconstructedbranch togetherwiththeoriginalentryandthe other

branch. If x isequalto the entry, we just return the node. Ifwe are asked

to adjoin x to an empty tree, we generate a tree that has x as the entry

and empty right and le branches. Here is the procedure:

(define (adjoin-set x set)

(cond ((null? set) (make-tree x '() '()))

((= x (entry set)) set)

((< x (entry set))

(make-tree (entry set)

(adjoin-set x (left-branch set))

(right-branch set)))

((> x (entry set))

212

(make-tree (entry set) (left-branch set)

(adjoin-set x (right-branch set))))))

e above claim that searching the tree can be performed in a logarith-

mic number of steps rests on the assumption that the tree is “balanced,”

i.e., that the le and the right subtree of every tree have approximately

the same number of elements, so that each subtree contains about half

the elements ofits parent. But how can we be certain that the trees we

construct will be balanced? Even ifwe start with abalanced tree, adding

elements with adjoin-set may produce anunbalancedresult. Since the

position of anewly adjoined element dependson how the element com-

pares with the items already in the set, we can expect that ifwe add ele-

ments “randomly” the tree will tend to be balanced on the average. But

this is not a guarantee. For example, if we start with an empty set and

adjoin the numbers 1 through 7 in sequence we end up with the highly

unbalanced tree shown in Figure 2.17. In this tree all the le subtrees

are empty, so it has no advantage over a simple ordered list. One way to

solve this problem is to define an operation that transforms an arbitrary

tree into a balanced tree with the same elements. en we can perform

this transformation aer every few adjoin-set operations to keep our

set in balance. ere are also other ways to solve this problem, most of

which involve designing new data structures for which searching and

insertion both can be done in Θ(logn) steps.40

Exercise 2.63: Each of the following two procedures con-

verts a binary tree to a list.

(define (tree->list-1 tree)

(if (null? tree)

40Examples of such structures include B-trees and red-black trees. ere is a large

literature on data structures devoted to this problem. See Cormen et al. 1990.

213

1

2

3

4

5

6

7

Figure 2.17: Unbalanced tree produced by adjoining 1

through 7 in sequence.

'()

(append (tree->list-1 (left-branch tree))

(cons (entry tree)

(tree->list-1

(right-branch tree))))))

(define (tree->list-2 tree)

(define (copy-to-list tree result-list)

(if (null? tree)

result-list

(copy-to-list (left-branch tree)

(cons (entry tree)

(copy-to-list

(right-branch tree)

result-list)))))

(copy-to-list tree '()))

a. Do the two procedures produce the same result for

every tree?If not,how dothe resultsdiffer?What lists

214

do the two procedures produce for the trees in Figure

2.16?

b. Do the two procedures have the same order ofgrowth

in the number of steps required to convert a balanced

tree with n elements to a list? If not, which one grows

more slowly?

Exercise 2.64: e following procedure list->tree con-

verts an ordered list to a balanced binary tree. e helper

procedure partial-tree takes as arguments an integer n

and list of at least n elements and constructs a balanced

tree containing the firstn elements ofthe list. e result re-

turnedby partial-treeisapair(formedwith cons)whose

car is the constructed tree and whose cdr is the list of ele-

ments not included in the tree.

(define (list->tree elements)

(car (partial-tree elements (length elements))))

(define (partial-tree elts n)

(if (= n 0)

(cons '() elts)

(let ((left-size (quotient (- n 1) 2)))

(let ((left-result

(partial-tree elts left-size)))

(let ((left-tree (car left-result))

(non-left-elts (cdr left-result))

(right-size (- n (+ left-size 1))))

(let ((this-entry (car non-left-elts))

(right-result

(partial-tree

(cdr non-left-elts)

right-size)))

215

(let ((right-tree (car right-result))

(remaining-elts

(cdr right-result)))

(cons (make-tree this-entry

left-tree

right-tree)

remaining-elts))))))))

a. Write a short paragraph explaining as clearly as you

canhow partial-treeworks.Drawthetreeproduced

by
list->tree for the list (1 3 5 7 9 11).

b. What is the orderof growth inthe numberof steps re-

quired by
list->tree to convert a list ofn elements?

Exercise 2.65: Use the results of Exercise 2.63 and Exer-

cise 2.64 to give Θ(n) implementations of union-set and

intersection-set for sets implemented as (balanced) bi-

nary trees.41

Sets and information retrieval

We have examined options for using lists to represent sets and have

seen how the choice ofrepresentation for a data object can have a large

impact on the performance of the programs that use the data. Another

reason for concentrating on sets is that the techniques discussed here

appear again and again in applications involving information retrieval.

Consideradatabasecontainingalargenumberofindividualrecords,

such as the personnel files for a company or the transactions in an ac-

counting system. A typical data-management system spends a large

41Exercise 2.63 through Exercise 2.65 are due to Paul Hilfinger.

216

amount of time accessing or modifying the data in the records and

thereforerequiresanefficient methodforaccessingrecords.isisdone

by identifying a part of each record to serve as an identifying key. A

key can be anything that uniquely identifies the record. For a personnel

file, it might be an employee’s ID number. For an accounting system, it

might be atransactionnumber.Whateverthekeyis, whenwedefinethe

record as a data structure we should include a key selector procedure

that retrieves the key associated with a given record.

Now we represent the data base as a set of records. To locate the

record with a given key we use a procedure lookup, which takes as

arguments a key and a data base and which returns the record that has

that key, or false if there is no such record. Lookup is implemented in

almost the same way as element-of-set?. For example, if the set of

records is implemented as an unordered list, we could use

(define (lookup given-key set-of-records)

(cond ((null? set-of-records) false)

((equal? given-key (key (car set-of-records)))

(car set-of-records))

(else (lookup given-key (cdr set-of-records)))))

Of course, there are beer ways to represent large sets than as un-

ordered lists. Information-retrieval systems in which records have to be

“randomlyaccessed” are typically implementedby atree-basedmethod,such as the binary-tree representation discussed previously. In design-

ing such a system the methodology of data abstraction can be a great

help. e designer can create an initial implementation using a sim-

ple, straightforward representation such as unordered lists. is will be

unsuitable for the eventual system, but it can be useful in providing a

“quick and dirty” data base with which to test the rest of the system.

Later on, the data representation can be modified to be more sophisti

217

cated. If the data base is accessed in terms of abstract selectors and con-

structors, this change in representation will not require any changes to

the rest of the system.

Exercise2.66:Implementthe lookupprocedureforthecase

where the set of records is structured as a binary tree, or-

dered by the numerical values of the keys.

2.3.4 Example: Huffman Encoding Trees

is section provides practice in the use of list structure and data ab-

straction to manipulate sets and trees. e application is to methods for

representing data as sequences of ones and zeros (bits). For example,

the ASCII standard code used to represent text in computers encodes

each character as a sequence of seven bits. Using seven bits allows us

to distinguish 27, or 128, possible different characters. In general, if we

want to distinguish n different symbols, we will need to use log2n bits

per symbol. If all our messages are made up of the eight symbols A, B,

C, D, E, F, G, and H, we can choose a code with three bits per character,

for example

A 000 C 010 E 100 G 110

B 001 D 011 F 101 H 111

With this code, the message

BACADAEAFABBAAAGAH

is encoded as the string of 54 bits

001000010000011000100000101000001001000000000110000111

218

Codes such as ASCII and the A-through-H code above are known as

fixed-length codes, because they represent each symbol in the message

withthesamenumberofbits.Itissometimesadvantageoustousevariable-

length codes, in which different symbols may be represented by differ-

ent numbers of bits. For example, Morse code does not use the same

number of dots and dashes for each leer of the alphabet. In particular,

E, the most frequent leer, is represented by a single dot. In general, if

our messages are such that some symbols appear very frequently and

some very rarely, we can encode data more efficiently (i.e., using fewer

bits per message) if we assign shorter codes to the frequent symbols.

Consider the following alternative code for the leers A through H:

A 0 C 1010 E 1100 G 1110

B 100 D 1011 F 1101 H 1111

With this code, the same message as above is encoded as the string

100010100101101100011010100100000111001111

is string contains 42 bits, so it saves more than 20% in space in com-

parison with the fixed-length code shown above.

One of the difficulties of using a variable-length code is knowing

when you have reached the end of a symbol in reading a sequence of

zeros and ones. Morse code solves this problem by using a special sep-

arator code (in this case, a pause) aer the sequence of dots and dashes

for each leer. Another solution is to design the code in such a way that

no complete code for any symbol is the beginning (or prefix) of the code

for another symbol. Such a code is called a prefix code. In the example

above, A is encoded by 0 and B is encoded by 100, so no other symbol

can have a code that begins with 0 or with 100.

219

Ingeneral,wecanaainsignificantsavingsifweusevariable-length

prefix codes that take advantage of the relative frequencies of the sym-

bols in the messages to be encoded. One particular scheme for doing

this is called the Huffman encoding method, aer its discoverer, David

Huffman. A Huffman code can be represented as a binary tree whose

leaves are the symbols that are encoded. At each non-leaf node of the

tree there is a set containing all the symbols in the leaves that lie below

the node. In addition, each symbol at a leafis assigned a weight (which

is its relative frequency), and each non-leaf node contains a weight that

is the sum of all the weights of the leaves lying below it. e weights

are not used in the encoding or the decoding process. We will see below

how they are used to help construct the tree.

Figure 2.18 shows the Huffman tree for the A-through-H code given

above. e weights at the leaves indicate that the tree was designed for

messages in which A appears with relative frequency 8, B with relative

frequency 3, and the other leers each with relative frequency 1.

Given a Huffman tree, we can find the encoding of any symbol by

starting at the root and moving down until we reach the leaf that holds

the symbol. Each time we move down a le branch we add a 0 to the

code, and each time we move down a right branch we add a 1. (We

decide which branch to follow by testing to see which branch either

is the leaf node for the symbol or contains the symbol in its set.) For

example, starting from the root of the tree in Figure 2.18, we arrive at

the leaf for Dby followingaright branch,thenale branch,thena right

branch, then a right branch; hence, the code for D is 1011.

To decode a bit sequence using a Huffman tree, we begin at the root

and use the successive zeros and ones of the bit sequence to determine

whether to move down the le or the right branch. Each time we come

to a leaf, we have generated a new symbol in the message, at which

220

{ABCDEFGH}17

{BCDEFGH}9

A 8

{EFGH}4

{BCD}5

{C D} 2

D 1C 1

B 3

{G H}2

{E F} 2

E 1 F 1

H 1G 1

Figure 2.18: A Huffman encoding tree.

point we start over from the root of the tree to find the next symbol.

For example, suppose we are given the tree above and the sequence

10001010. Starting at the root, we move down the right branch, (since

the firstbitofthestringis1),thendownthe lebranch(sincethesecond

bit is 0), then down the le branch (since the third bit is also 0). is

brings us to the leaf for B, so the first symbol of the decoded message is

B. Now we start again at the root, and we make a le move because the

next bit in the string is 0. is brings us to the leaf for A. en we start

again at the root with the rest of the string 1010, so we move right, le,

right, le and reach C. us, the entire message is BAC.

Generating Huffman trees

Given an “alphabet” of symbols and their relative frequencies, how do

we construct the “best” code? (In other words, which tree will encode

messages with the fewest bits?) Huffman gave an algorithm for doing

221

this and showed that the resulting code is indeed the best variable-

length code for messages where the relative frequency of the symbols

matches the frequencies with which the code was constructed. We will

not prove this optimality of Huffman codes here, but we will show how

Huffman trees are constructed.42

ealgorithmforgeneratingaHuffmantreeisvery simple. e idea

is to arrange the tree so that the symbols with the lowest frequency

appear farthest away from the root. Begin with the set of leaf nodes,

containing symbols and their frequencies, as determined by the initial

datafromwhich the code istobe constructed.Now findtwo leaveswiththe lowest weights and merge them to produce a node that has these

two nodes as its le and right branches. e weight of the new node is

the sum of the two weights. Remove the two leaves from the original

set and replace them by this new node. Now continue this process. At

each step, merge two nodes with the smallest weights, removing them

from the set and replacing them with a node that has these two as its

le and right branches. e process stops when there is only one node

le, which is the root of the entire tree. Here is how the Huffman tree

of Figure 2.18 was generated:

Initial leaves {(A 8) (B 3) (C 1) (D 1) (E 1) (F 1) (G 1) (H 1)}

Merge {(A 8) (B 3) ({C D} 2) (E 1) (F 1) (G 1) (H 1)}

Merge {(A 8) (B 3) ({C D} 2) ({E F} 2) (G 1) (H 1)}

Merge {(A 8) (B 3) ({C D} 2) ({E F} 2) ({G H} 2)}

Merge {(A 8) (B 3) ({C D} 2) ({E F G H} 4)}

Merge {(A 8) ({B C D} 5) ({E F G H} 4)}

Merge {(A 8) ({B C D E F G H} 9)}

Final merge {({A B C D E F G H} 17)}

42See Hamming 1980 for a discussion of the mathematical properties of Huffman

codes.

222

e algorithm does not always specify a unique tree, because there may

not be unique smallest-weightnodesat each step. Also,the choice ofthe

order in which the two nodes are merged (i.e., which will be the right

branch and which will be the le branch) is arbitrary.

Representing Huffman trees

In the exercises below we will work with a system that uses Huffman

trees to encode and decode messages and generates Huffman trees ac-

cording to the algorithm outlined above. We will begin by discussing

how trees are represented.

Leaves of the tree are represented by a list consisting of the symbol

leaf, the symbol at the leaf, and the weight:

(define (make-leaf symbol weight) (list 'leaf symbol weight))

(define (leaf? object) (eq? (car object) 'leaf))

(define (symbol-leaf x) (cadr x))

(define (weight-leaf x) (caddr x))

A general tree will be a list of a le branch, a right branch, a set of

symbols, and a weight. e set of symbols will be simply a list of the

symbols, rather thansome more sophisticatedset representation. When

we make a tree by merging two nodes, we obtain the weight of the

tree as the sum of the weights of the nodes, and the set of symbols as

the union of the sets of symbols for the nodes. Since our symbol sets

are represented as lists, we can form the union by using the append

procedure we defined in Section 2.2.1:

(define (make-code-tree left right)

(list left

right

(append (symbols left) (symbols right))

(+ (weight left) (weight right))))

223

If we make a tree in this way, we have the following selectors:

(define (left-branch tree) (car tree))

(define (right-branch tree) (cadr tree))

(define (symbols tree)

(if (leaf? tree)

(list (symbol-leaf tree))

(caddr tree)))

(define (weight tree)

(if (leaf? tree)

(weight-leaf tree)

(cadddr tree)))

e procedures symbols and weight must do something slightly differ-

ent depending on whether they are called with a leaf or a general tree.

ese are simple examples of generic procedures (procedures that can

handle more than one kind of data), which we will have much more to

say about in Section 2.4 and Section 2.5.

The decoding procedure

e following procedure implements the decoding algorithm. It takes

as arguments a list of zeros and ones, together with a Huffman tree.

(define (decode bits tree)

(define (decode-1 bits current-branch)

(if (null? bits)

'()

(let ((next-branch

(choose-branch (car bits) current-branch)))

(if (leaf? next-branch)

(cons (symbol-leaf next-branch)

(decode-1 (cdr bits) tree))

(decode-1 (cdr bits) next-branch)))))

(decode-1 bits tree))

224

(define (choose-branch bit branch)

(cond ((= bit 0) (left-branch branch))

((= bit 1) (right-branch branch))

(else (error "bad bit: CHOOSE-BRANCH" bit))))

e procedure decode-1 takes two arguments: the list of remaining bits

and the current position in the tree. It keeps moving “down” the tree,

choosing ale ora right branch according to whether the next bit inthe

list is a zero or a one. (is is done with the procedure choose-branch.)

When it reaches a leaf, it returns the symbol at that leaf as the next

symbol in the message by consing it onto the result of decoding the

rest of the message, starting at the root of the tree. Note the error check

in the final clause of choose-branch, which complains if the procedure

finds something other than a zero or a one in the input data.

Sets of weighted elements

In our representation of trees, each non-leaf node contains a set of sym-

bols, which we have represented as a simple list. However, the tree-

generating algorithm discussed above requires that we also work with

sets of leaves and trees, successively merging the two smallest items.

Since we will be required to repeatedly find the smallest item in a set, it

is convenient to use an ordered representation for this kind of set.

We will represent a set of leaves and trees as a list of elements, ar-

ranged in increasing order of weight. e following adjoin-set pro-

cedure for constructing sets is similar to the one described in Exercise

2.61; however, items are compared by their weights, and the element

being added to the set is never already in it.

(define (adjoin-set x set)

(cond ((null? set) (list x))

((< (weight x) (weight (car set))) (cons x set))

225

(else (cons (car set)

(adjoin-set x (cdr set))))))

e following procedure takes a list of symbol-frequency pairs such as

((A 4) (B 2) (C 1) (D 1)) and constructs an initial ordered set of

leaves, ready to be merged according to the Huffman algorithm:

(define (make-leaf-set pairs)

(if (null? pairs)

'()

(let ((pair (car pairs)))

(adjoin-set (make-leaf (car pair) ;symbol

(cadr pair)) ;frequency

(make-leaf-set (cdr pairs))))))

Exercise 2.67: Define an encoding tree and a sample mes-

sage:

(define sample-tree

(make-code-tree (make-leaf 'A 4)

(make-code-tree

(make-leaf 'B 2)

(make-code-tree

(make-leaf 'D 1)

(make-leaf 'C 1)))))

(define sample-message '(0 1 1 0 0 1 0 1 0 1 1 1 0))

Use the decode procedure to decode the message, and give

the result.

Exercise 2.68: e encode procedure takes as arguments a

message and a tree and produces the list of bits that gives

the encoded message.

226

(define (encode message tree)

(if (null? message)

'()

(append (encode-symbol (car message) tree)

(encode (cdr message) tree))))

Encode-symbol is a procedure, which you must write, that

returns the list of bits that encodes a given symbol accord-

ing to a given tree. You should design encode-symbol so

that it signals an error if the symbol is not in the tree at all.

Test your procedure by encoding the result you obtained in

Exercise 2.67 with the sample tree and seeing whether it is

the same as the original sample message.

Exercise 2.69: e following procedure takes as its argu-

ment a list of symbol-frequency pairs (where no symbol

appears in more than one pair) and generates a Huffman

encoding tree according to the Huffman algorithm.

(define (generate-huffman-tree pairs)

(successive-merge (make-leaf-set pairs)))

Make-leaf-set is the procedure given above that trans

formsthelistofpairsintoanorderedsetofleaves.Successive-

merge is the procedure you must write, using make-code-

tree to successively merge the smallest-weight elements

of the set until there is only one element le, which is the

desired Huffman tree. (is procedure is slightly tricky, but

notreallycomplicated.Ifyoufindyourselfdesigningacom-

plex procedure, then you are almost certainly doing some-

thing wrong. You can take significant advantage of the fact

that we are using an ordered set representation.)

227

Exercise 2.70: e following eight-symbol alphabet with

associated relative frequencies was designed to efficiently

encode the lyrics of 1950s rock songs. (Note that the “sym-

bols” of an “alphabet” need not be individual leers.)

A 2 GET 2 SHA 3 WAH 1

BOOM 1 JOB 2 NA 16 YIP 9

Use generate-huffman-tree (Exercise 2.69) to generate a

correspondingHuffmantree,anduse encode(Exercise2.68)

to encode the following message:

Get a job

Sha na na na na na na na na

Get a job

Sha na na na na na na na na

Wah yip yip yip yip yip yip yip yip yip

Sha boom

How many bits are required for the encoding? What is the

smallestnumberofbitsthat wouldbe neededtoencode this

song if we used a fixed-length code for the eight-symbol

alphabet?

Exercise 2.71: Suppose we have a Huffman tree for an al-

phabet of n symbols, and that the relative frequencies of

the symbols are 1, 2, 4,..., 2n−1. Sketch the tree for n = 5;

for n = 10. In such a tree (for general n) how many bits

are required to encode the most frequent symbol? e least

frequent symbol?

228

Exercise 2.72: Consider the encoding procedure that you

designed in Exercise 2.68. What is the order of growth in

the number of steps needed to encode a symbol? Be sure

to include the number of steps needed to search the sym-

bol list at each node encountered. To answer this question

in general is difficult. Consider the special case where the

relative frequencies ofthen symbols are as describedinEx-ercise 2.71, and give the order of growth (as a function ofn)of the number of steps needed to encode the most frequent

and least frequent symbols in the alphabet.

2.4 Multiple Representations for Abstract Data

We have introduced data abstraction, a methodology for structuring

systemsinsuch a way that much of aprogramcanbe specified indepen-

dent of the choices involved in implementing the data objects that the

program manipulates. For example, we saw in Section 2.1.1 how to sep-

arate the task of designing a program that uses rational numbers from

the task of implementing rational numbers in terms of the computer

language’s primitive mechanisms for constructing compound data. e

key idea was to erect an abstraction barrier—in this case, the selec-

tors and constructors for rational numbers (make-rat, numer, denom)—

that isolates the way rational numbers are used from their underlying

representation in terms of list structure. A similar abstraction barrier

isolates the details of the procedures that perform rational arithmetic

(add-rat, sub-rat, mul-rat, and div-rat) from the “higher-level” pro-

cedures that use rational numbers. e resulting program has the struc-

ture shown in Figure 2.1.

ese data-abstraction barriers are powerful tools for controlling

229

complexity. By isolating the underlying representations of data objects,

we can divide the task of designing a large program into smaller tasks

that can be performed separately.But thiskind of dataabstraction is not

yet powerful enough, because it may not always make sense to speak

of “the underlying representation” for a data object.

For one thing, there might be more than one useful representation

for a data object, and we might like to design systems that can deal with

multiple representations. To take a simple example, complex numbers

may be represented in two almost equivalent ways: in rectangular form

(real and imaginary parts) and in polar form (magnitude and angle).

Sometimes rectangular form is more appropriate and sometimes polar

form is more appropriate. Indeed, it is perfectly plausible to imagine a

system in which complex numbers are represented in both ways, and

in which the procedures for manipulating complex numbers work with

either representation.

Moreimportantly,programmingsystemsareoendesignedbymany

people working over extended periods of time, subject to requirements

that change over time. In such an environment, it is simply not possi-

ble for everyone to agree in advance on choices of data representation.

So in addition to the data-abstraction barriers that isolate representa-

tion from use, we need abstraction barriers that isolate different de-

sign choices from each other and permit different choices to coexist in

a single program. Furthermore, since large programs are oen created

by combining pre-existing modules that were designed in isolation, we

needconventionsthat permit programmerstoincorporatemodulesinto

largersystems additively, that is, without having to redesignor reimple-

ment these modules.

In this section, we will learn how to cope with data that may be

represented in different ways by different parts of a program. is re-

230

quires constructing generic procedures—procedures that can operate on

datathat may be representedinmore thanoneway. Ourmaintechnique

for building generic procedures will be to work in terms of data objects

that have type tags, that is, data objects that include explicit information

about how they are to be processed. We will also discuss data-directed

programming, a powerful and convenient implementation strategy for

additively assembling systems with generic operations.

We begin with the simple complex-number example. We will see

how type tags and data-directed style enable us to design separate rect

angular and polar representations for complex numbers while main-

tainingthe notionof anabstract “complex-number” dataobject. We will

accomplishthisbydefiningarithmetic proceduresforcomplexnumbers

(add-complex, sub-complex, mul-complex, and div-complex) in terms

of generic selectors that access parts ofa complex number independent

of how the number is represented. e resulting complex-number sys-

tem, as shown in Figure 2.19, contains two different kinds of abstrac-

tion barriers. e “horizontal” abstraction barriers play the same role

as the ones in Figure 2.1. ey isolate“higher-level” operations from

“lower-level” representations. In addition, there is a “vertical” barrier

that gives us the ability to separately design and install alternative rep-

resentations.

In Section 2.5 we will show how to use type tags and data-directed

style to develop a generic arithmetic package. is provides procedures

(add, mul, and so on) that can be used to manipulate all sorts of “num-

bers” and can be easily extended when a new kind of number is needed.

In Section 2.5.3, we’ll show how to use generic arithmetic in a system

that performs symbolic algebra.

231

Programs that use complex numbers

add-complex sub-complex mul-complex div-complex

Complex-arithmetic package

Rectangularrepresentation Polar

representation

List structure and primitive machine arithmetic

Figure 2.19: Data-abstraction barriers in the complex-

number system.

2.4.1 Representations for Complex Numbers

We will develop a system that performs arithmetic operations on com-

plex numbers asa simple but unrealistic example ofa program that uses

generic operations. We begin by discussing two plausible representa-

tions for complex numbers as ordered pairs: rectangular form (real part

and imaginary part) and polar form (magnitude and angle).43 Section

2.4.2 will show how both representations can be made to coexist in a

single system through the use of type tags and generic operations.

Like rational numbers, complex numbers are naturally represented

as ordered pairs. e set of complex numbers can be thought of as a

two-dimensionalspace with twoorthogonalaxes,the“real”axisandthe

43In actual computational systems, rectangular form is preferable to polar form most

of the time because of roundoff errors in conversion between rectangular and polar

form. is is why the complex-number example is unrealistic. Nevertheless, it provides

a clear illustration of the design of a system using generic operations and a good intro-

duction to the more substantial systems to be developed later in this chapter.

232

Imaginary

z=x+iy=reiA

A

y

x

r

Real

Figure 2.20: Complex numbers as points in the plane.

“imaginary” axis. (See Figure 2.20.) From this point ofview, the complex

number z = x +iy (wherei2 = −1) can be thought of as the point in the

plane whose real coordinate is x and whose imaginary coordinate is y.

Additionof complex numbers reduces in this representation to addition

of coordinates:

Real-part(z1) + Real-part(z2),Real-part(z1 + z2)

=Imaginary-part(z1 + z2) = Imaginary-part(z1) + Imaginary-part(z2).

When multiplying complex numbers, it is more natural to think in

terms of representing a complex number in polar form, as a magnitude

and an angle (r and A in Figure 2.20). e product of two complex num-

bers is the vector obtained by stretching one complex number by the

length of the other and then rotating it through the angle of the other:

Magnitude(z1 · z2) = Magnitude(z1) · Magnitude(z2),

Angle(z1·z2) = Angle(z1) + Angle(z2).

us,therearetwodifferentrepresentationsforcomplexnumbers,which

233

areappropriatefordifferentoperations.Yet,fromtheviewpointofsome-

one writing a program that uses complex numbers, the principle of data

abstraction suggests that all the operations for manipulating complex

numbers should be available regardless ofwhich representation is used

by the computer. For example, it is oen useful to be able to find the

magnitude of a complex number that is specified by rectangular coor-

dinates. Similarly, it is oen useful to be able to determine the real part

of a complex number that is specified by polar coordinates.

To design such a system, we can follow the same data-abstraction

strategy we followed in designing the rational-number package in Sec

tion 2.1.1. Assume that the operations on complex numbers are imple-

mented in terms of four selectors: real-part, imag-part, magnitude

and angle. Also assume that we have two procedures for construct

ing complex numbers: make-from-real-imag returns a complex num-

ber with specified real and imaginary parts, and make-from-mag-ang

returns a complex number with specified magnitude and angle. ese

procedures have the property that, for any complex number z, both

(make-from-real-imag (real-part z) (imag-part z))

and

(make-from-mag-ang (magnitude z) (angle z))

produce complex numbers that are equal to z.

Using these constructors and selectors, we can implement arith-

metic on complex numbers using the “abstract data” specified by the

constructors and selectors, just as we did for rational numbers in Sec-

tion 2.1.1. As shown in the formulas above, we can add and subtract

complex numbers in terms of real and imaginary parts while multiply-

ing and dividing complex numbers in terms of magnitudes and angles:

234

(define (add-complex z1 z2)

(make-from-real-imag (+ (real-part z1) (real-part z2))

(+ (imag-part z1) (imag-part z2))))

(define (sub-complex z1 z2)

(make-from-real-imag (- (real-part z1) (real-part z2))

(- (imag-part z1) (imag-part z2))))

(define (mul-complex z1 z2)

(make-from-mag-ang (* (magnitude z1) (magnitude z2))

(+ (angle z1) (angle z2))))

(define (div-complex z1 z2)

(make-from-mag-ang (/ (magnitude z1) (magnitude z2))

(- (angle z1) (angle z2))))

To complete the complex-number package, we must choose a represen-

tation and we must implement the constructors and selectors in terms

of primitive numbers and primitive list structure. ere are two obvi-

ouswaystodothis:We canrepresentacomplex numberin“rectangular

as a pairform” as a pair (real part, imaginary part) or in “polar form”

(magnitude, angle). Which shall we choose?

In order to make the different choices concrete, imagine that there

are two programmers, Ben Bitdiddle and Alyssa P. Hacker, who are

independently designing representations for the complex-number sys-

tem. Ben chooses to represent complex numbers in rectangular form.

With this choice, selecting the real and imaginary parts of a complex

number is straightforward, as is constructing a complex number with

given real and imaginary parts. To find the magnitude and the angle, or

to construct a complex number with a given magnitude and angle, he

uses the trigonometric relations

x=rcosA, r=
√
x2+y2,

y = r sin A, A = arctan(y,x),

whichrelatetherealandimaginaryparts(x,y)tothemagnitudeandthe

235

angle (r, A).44 Ben’s representation is therefore given by the following

selectors and constructors:

(define (real-part z) (car z))

(define (imag-part z) (cdr z))

(define (magnitude z)

(sqrt (+ (square (real-part z))

(square (imag-part z)))))

(define (angle z)

(atan (imag-part z) (real-part z)))

(define (make-from-real-imag x y) (cons x y))

(define (make-from-mag-ang r a)

(cons (* r (cos a)) (* r (sin a))))

Alyssa,incontrast,choosestorepresentcomplexnumbersinpolarform.

For her, selecting the magnitude and angle is straightforward, but she

has to use the trigonometric relations to obtain the real and imaginary

parts. Alyssa’s representation is:

(define (real-part z) (* (magnitude z) (cos (angle z))))

(define (imag-part z) (* (magnitude z) (sin (angle z))))

(define (magnitude z) (car z))

(define (angle z) (cdr z))

(define (make-from-real-imag x y)

(cons (sqrt (+ (square x) (square y)))

(atan y x)))

(define (make-from-mag-ang r a) (cons r a))

e discipline of dataabstraction ensures that the same implementation

of add-complex, sub-complex, mul-complex,and div-complexwillworkwith either Ben’s representation or Alyssa’s representation.

44e arctangent function referred to here, computed by Scheme’s atan procedure,

is defined so as to take two arguments y and x and to return the angle whose tangent

is y/x. e signs of the arguments determine the quadrant of the angle.

236

2.4.2 Tagged data

One way to view data abstraction is as an application of the “princi-

ple ofleast commitment.” Inimplementing the complex-number system

in Section 2.4.1, we can use either Ben’s rectangular representation or

Alyssa’s polar representation. e abstraction barrier formed by the se-

lectors and constructors permits us to defer to the last possible moment

the choice of a concrete representation for our data objects and thus

retain maximum flexibility in our system design.

e principle of least commitment can be carried to even further

extremes. If we desire, we can maintain the ambiguity of representation

even aer we have designed the selectors and constructors, and elect

to use both Ben’s representation and Alyssa’s representation. If both

representations are included in a single system, however, we will need

some way to distinguish data in polar form from data in rectangular

form. Otherwise, if we were asked, for instance, to find the magnitude

of the pair (3, 4), we wouldn’t know whether to answer 5 (interpreting

the number in rectangular form) or 3 (interpreting the number in polar

form).Astraightforwardwaytoaccomplish thisdistinctionistoinclude

a type tag—the symbol rectangular or polar—as part of each complex

number. en when we need to manipulate a complex number we can

use the tag to decide which selector to apply.

In order to manipulate tagged data, we will assume that we have

procedures type-tag and contents that extract from a data object the

tag and the actual contents (the polar or rectangular coordinates, in the

case of a complex number). We will also postulate a procedure attach-

tag that takes a tag and contents and produces a tagged data object. A

straightforward way to implement this is to use ordinary list structure:

(define (attach-tag type-tag contents)

(cons type-tag contents))

237

(define (type-tag datum)

(if (pair? datum)

(car datum)

(error "Bad tagged datum: TYPE-TAG" datum)))

(define (contents datum)

(if (pair? datum)

(cdr datum)

(error "Bad tagged datum: CONTENTS" datum)))

Using these procedures, we can define predicates rectangular? and

polar?, which recognize rectangular and polar numbers, respectively:

(define (rectangular? z)

(eq? (type-tag z) 'rectangular))

(define (polar? z) (eq? (type-tag z) 'polar))

With type tags, Ben and Alyssa can now modify their code so that their

two different representations can coexist in the same system. When-

ever Ben constructs a complex number, he tags it as rectangular. When-

ever Alyssa constructs a complex number, she tags it as polar. In addi-

tion, Ben and Alyssa must make sure that the names of their proce-

dures do not conflict. One way to do this is for Ben to append the suffix

rectangular to the name of each of his representation procedures and

for Alyssa to append polar to the names of hers. Here is Ben’s revised

rectangular representation from Section 2.4.1:

(define (real-part-rectangular z) (car z))

(define (imag-part-rectangular z) (cdr z))

(define (magnitude-rectangular z)

(sqrt (+ (square (real-part-rectangular z))

(square (imag-part-rectangular z)))))

(define (angle-rectangular z)

(atan (imag-part-rectangular z)

(real-part-rectangular z)))

238

(define (make-from-real-imag-rectangular x y)

(attach-tag 'rectangular (cons x y)))

(define (make-from-mag-ang-rectangular r a)

(attach-tag 'rectangular

(cons (* r (cos a)) (* r (sin a)))))

and here is Alyssa’s revised polar representation:

(define (real-part-polar z)

(* (magnitude-polar z) (cos (angle-polar z))))

(define (imag-part-polar z)

(* (magnitude-polar z) (sin (angle-polar z))))

(define (magnitude-polar z) (car z))

(define (angle-polar z) (cdr z))

(define (make-from-real-imag-polar x y)

(attach-tag 'polar

(cons (sqrt (+ (square x) (square y)))

(atan y x))))

(define (make-from-mag-ang-polar r a)

(attach-tag 'polar (cons r a)))

Each generic selector is implemented as a procedure that checks the tag

of its argument and calls the appropriate procedure for handling data

of that type. For example, to obtain the real part of a complex number,

real-part examines the tag to determine whether to use Ben’s real-

part-rectangular or Alyssa’s real-part-polar. In eithercase, we use

contents to extract the bare, untagged datum and send this to the rect

angular or polar procedure as required:

(define (real-part z)

(cond ((rectangular? z)

(real-part-rectangular (contents z)))

((polar? z)

(real-part-polar (contents z)))

(else (error "Unknown type: REAL-PART" z))))

239

(define (imag-part z)

(cond ((rectangular? z)

(imag-part-rectangular (contents z)))

((polar? z)

(imag-part-polar (contents z)))

(else (error "Unknown type: IMAG-PART" z))))

(define (magnitude z)

(cond ((rectangular? z)

(magnitude-rectangular (contents z)))

((polar? z)

(magnitude-polar (contents z)))

(else (error "Unknown type: MAGNITUDE" z))))

(define (angle z)

(cond ((rectangular? z)

(angle-rectangular (contents z)))

((polar? z)

(angle-polar (contents z)))

(else (error "Unknown type: ANGLE" z))))

To implement the complex-number arithmetic operations, we can use

thesameprocedures add-complex, sub-complex, mul-complex,and div-

complex from Section 2.4.1, because the selectors they call are generic,

and sowill work with either representation.For example, the procedure

add-complex is still

(define (add-complex z1 z2)

(make-from-real-imag (+ (real-part z1) (real-part z2))

(+ (imag-part z1) (imag-part z2))))

Finally, we must choose whether to construct complex numbers using

Ben’s representation or Alyssa’s representation. One reasonable choice

is to construct rectangular numbers whenever we have real and imag-

inary parts and to construct polar numbers whenever we have magni-

tudes and angles:

240

Programs that use complex numbers

add-complex sub-complex mul-complex div-complex

Complex-arithmetic package

real-part magnitude

Rectangular Polar

imag-part angle

representation representation

List structure and primitive machine arithmetic

Figure 2.21: Structure of the generic complex-arithmetic system.

(define (make-from-real-imag x y)

(make-from-real-imag-rectangular x y))

(define (make-from-mag-ang r a)

(make-from-mag-ang-polar r a))

e resulting complex-number system has the structure shown in Fig

ure 2.21. e system has been decomposed into three relatively inde-

pendent parts:the complex-number-arithmetic operations, Alyssa’spo-lar implementation, and Ben’s rectangular implementation. e polar

and rectangular implementations could have been wrien by Ben and

Alyssa working separately, and both of these can be used as underly-

ing representations by a third programmer implementing the complex-

arithmetic procedures in terms of the abstract constructor/selector in-

terface.

Since each data object is tagged with its type, the selectors operate

on the data in a generic manner. at is, each selector is defined to have

a behavior that depends upon the particular type of data it is applied to.

241

Notice the general mechanism for interfacing the separate representa-

tions: Within a given representation implementation (say, Alyssa’s po-

lar package) a complex number is an untyped pair (magnitude, angle).

Whenagenericselectoroperatesonanumberof polartype,itstripsoff

the tag and passes the contents on to Alyssa’s code. Conversely, when

Alyssa constructs a number for general use, she tags it with a type so

that it can be appropriately recognized by the higher-level procedures.

is discipline of stripping off and aaching tags as data objects are

passed from level to level can be an important organizational strategy,

as we shall see in Section 2.5.

2.4.3 Data-Directed Programming and Additivity

e general strategy of checking the type of a datum and calling an

appropriate procedure is called dispatching on type. is is a powerful

strategy for obtaining modularity in system design. On the other hand,

implementing the dispatch as in Section 2.4.2 has two significant weak

nesses. One weakness is that the generic interface procedures (real-

part, imag-part, magnitude, and angle) must know about all the dif-

ferent representations. For instance, suppose we wanted to incorporate

a new representation for complex numbers into our complex-number

system. We would need to identify this new representation with a type,

and then add a clause to each of the generic interface procedures to

check for the new type and apply the appropriate selector for that rep-

resentation.

Another weakness of the technique is that even though the indi-

vidual representations can be designed separately, we must guarantee

that no two procedures in the entire system have the same name. is

is why Ben and Alyssa had to change the names oftheir original proce

dures from Section 2.4.1.

242

e issue underlying both of these weaknesses is that the technique

for implementing generic interfaces is not additive. e person imple-

menting the generic selector procedures must modify those procedures

each time a new representation is installed, and the people interfacing

the individual representations must modify their code to avoid name

conflicts. In each of these cases, the changes that must be made to the

code are straightforward, but they must be made nonetheless, and this

is a source of inconvenience and error. is is not much of a problem

for the complex-number system as it stands, but suppose there were

not two but hundredsof different representations forcomplex numbers.

And suppose that there were many generic selectors to be maintained

in the abstract-data interface. Suppose, in fact, that no one program-

mer knew all the interface procedures or all the representations. e

problem is real and must be addressed in such programs as large-scale

data-base-management systems.

What we need is a means for modularizing the system design even

further. is is provided by the programming technique known as data-

directed programming. To understand how data-directed programming

works, begin with the observation that whenever we deal with a set of

generic operations that are common to a set of different types we are,

in effect, dealing with a two-dimensional table that contains the possi-

ble operations on one axis and the possible types on the other axis. e

entries in the table are the procedures that implement each operation

for each type of argument presented. In the complex-number system

developed in the previous section, the correspondence between opera-

tion name, data type, and actual procedure was spread out among the

various conditional clauses in the generic interface procedures. But the

same information could have been organized in a table, as shown in

Figure 2.22.

243

Types

real-partimag-partmagnitudeangle real-part-polarimag-part-polarmagnitude-polarangle-polar real-part-rectangular

imag-part-rectangular

magnitude-rectangular

angle-rectangular

Polar Rectangular

Figure 2.22: Table of operations for the complex-number system.

Data-directed programming is the technique of designing programs

to work with such a table directly. Previously, we implemented the

mechanism that interfaces the complex-arithmetic code with the two

representation packages as a set of procedures that each perform an

explicit dispatch on type. Here we will implement the interface as a sin-

gle procedure that looks up the combination of the operation name and

argument type in the table to find the correct procedure to apply, and

then applies it to the contents of the argument. If we do this, then to

add a new representation package to the system we need not change

any existing procedures; we need only add new entries to the table.

To implement this plan, assume that we have two procedures, put

and get, for manipulating the operation-and-type table:

• (put ⟨op⟩ ⟨type⟩ ⟨item⟩) installs the ⟨item⟩ in the table, indexed

by the ⟨op⟩ and the ⟨type⟩.

• (get ⟨op⟩ ⟨type⟩) looks up the ⟨op⟩, ⟨type⟩ entry in the table and

returnsthe item foundthere.If no itemisfound, get returnsfalse.

For now, we can assume that put and get are included in our language.

In Chapter 3 (Section 3.3.3) we will see how to implement these and

244

other operations for manipulating tables.

Hereishowdata-directedprogrammingcanbeusedinthecomplex-

number system. Ben, who developed the rectangular representation,

implements his code just as he did originally. He defines a collection

of procedures, or a package, and interfaces these to the rest of the sys-

tem by adding entries to the table that tell the system how to operate

on rectangular numbers. is is accomplished by calling the following

procedure:

(define (install-rectangular-package)

;;internalprocedures

(define (real-part z) (car z))

(define (imag-part z) (cdr z))

(define (make-from-real-imag x y) (cons x y))

(define (magnitude z)

(sqrt (+ (square (real-part z))

(square (imag-part z)))))

(define (angle z)

(atan (imag-part z) (real-part z)))

(define (make-from-mag-ang r a)

(cons (* r (cos a)) (* r (sin a))))

;; interface to the rest of the system

(define (tag x) (attach-tag 'rectangular x))

(put 'real-part '(rectangular) real-part)

(put 'imag-part '(rectangular) imag-part)

(put 'magnitude '(rectangular) magnitude)

(put 'angle '(rectangular) angle)

(put 'make-from-real-imag 'rectangular

(lambda (x y) (tag (make-from-real-imag x y))))

(put 'make-from-mag-ang 'rectangular

(lambda (r a) (tag (make-from-mag-ang r a))))

'done)

245

Notice that the internal procedures here are the same procedures from

Section 2.4.1 that Ben wrote when he was working in isolation. No

changes are necessary in order to interface them to the rest of the sys-

tem. Moreover, since these procedure definitions are internal to the in-

stallationprocedure,Benneedn’tworryaboutnameconflictswith other

procedures outside the rectangular package. To interface these to the

rest of the system, Ben installs his real-part procedure under the op-

erationnamereal-partandthetype(rectangular),andsimilarlyfor

the other selectors.45 e interface also defines the constructors to be

used by the external system.46 ese are identical to Ben’s internally

defined constructors, except that they aach the tag.

Alyssa’s polar package is analogous:

(define (install-polar-package)

;;internalprocedures

(define (magnitude z) (car z))

(define (angle z) (cdr z))

(define (make-from-mag-ang r a) (cons r a))

(define (real-part z) (* (magnitude z) (cos (angle z))))

(define (imag-part z) (* (magnitude z) (sin (angle z))))

(define (make-from-real-imag x y)

(cons (sqrt (+ (square x) (square y)))

(atan y x)))

;; interface to the rest of the system

(define (tag x) (attach-tag 'polar x))

(put 'real-part '(polar) real-part)

(put 'imag-part '(polar) imag-part)

(put 'magnitude '(polar) magnitude)

45We use the list (rectangular) rather than the symbol rectangular to allow for

the possibility of operations with multiple arguments, not all of the same type.

46etype theconstructorsare installed under needn’t bea listbecause a constructor

is always used to make an object of one particular type.

246

(put 'angle '(polar) angle)

(put 'make-from-real-imag 'polar

(lambda (x y) (tag (make-from-real-imag x y))))

(put 'make-from-mag-ang 'polar

(lambda (r a) (tag (make-from-mag-ang r a))))

'done)

Even though Ben and Alyssa both still use their original procedures

defined with the same names as each other’s (e.g., real-part), these

definitions are now internal to different procedures (see Section 1.1.8),

so there is no name conflict.

e complex-arithmetic selectors access the table by means of a

general “operation” procedure called apply-generic, which applies a

generic operation to some arguments. Apply-generic looks in the ta-

ble under the name ofthe operation and the types ofthe arguments and

applies the resulting procedure if one is present:47

(define (apply-generic op . args)

(let ((type-tags (map type-tag args)))

(let ((proc (get op type-tags)))

(if proc

(apply proc (map contents args))

(error

47Apply-generic usesthedoed-tailnotationdescribedinExercise2.20,becausedif-

ferent generic operations may take different numbers of arguments. In apply-generic,

op has as its value the first argument to apply-generic and args has as its value a list

of the remaining arguments.

Apply-generic also usestheprimitiveprocedure apply, which takestwo arguments,

a procedure and a list. Apply applies the procedure, using the elements in the list as

arguments. For example,

(apply + (list 1 2 3 4))

returns 10.

247

"No method for these types: APPLY-GENERIC"

(list op type-tags))))))

Using apply-generic, we can define our generic selectors as follows:

(define (real-part z) (apply-generic 'real-part z))

(define (imag-part z) (apply-generic 'imag-part z))

(define (magnitude z) (apply-generic 'magnitude z))

(define (angle z) (apply-generic 'angle z))

Observe that these do not change at all ifa new representation is added

to the system.

We can also extract from the table the constructorstobe used by the

programs external to the packages in making complex numbers from

real and imaginary partsand from magnitudesand angles.AsinSection

2.4.2, we construct rectangular numbers whenever we have real and

imaginary parts, and polar numbers wheneverwe have magnitudes and

angles:

(define (make-from-real-imag x y)

((get 'make-from-real-imag 'rectangular) x y))

(define (make-from-mag-ang r a)

((get 'make-from-mag-ang 'polar) r a))

Exercise 2.73: Section 2.3.2 described a program that per-

forms symbolic differentiation:

(define (deriv exp var)

(cond ((number? exp) 0)

((variable? exp)

(if (same-variable? exp var) 1 0))

((sum? exp)

(make-sum (deriv (addend exp) var)

(deriv (augend exp) var)))

248

((product? exp)

(make-sum (make-product

(multiplier exp)

(deriv (multiplicand exp) var))

(make-product

(deriv (multiplier exp) var)

(multiplicand exp))))

⟨more rules can be added here⟩

(else (error "unknown expression type:

DERIV" exp))))

We can regard this program as performing a dispatch on

the type of the expression to be differentiated. In this situ-

ation the “type tag” of the datum is the algebraic operator

symbol (such as +) and the operation being performed is

deriv. We can transform this program into data-directed

style by rewriting the basic derivative procedure as

(define (deriv exp var)

(cond ((number? exp) 0)

((variable? exp) (if (same-variable? exp var) 1 0))

(else ((get 'deriv (operator exp))

(operands exp) var))))

(define (operator exp) (car exp))

(define (operands exp) (cdr exp))

a. Explain what was done above. Why can’t we assim-

ilate the predicates
number? and variable? into the

data-directed dispatch?

b. Writetheproceduresforderivativesofsumsandprod-

ucts, and the auxiliary code required toinstall them in

the table used by the program above.

249

c. Choose any additional differentiation rule that you

like, such asthe one for exponents(Exercise 2.56),andinstall it in this data-directed system.

d. In this simple algebraic manipulator the type of an

expression is the algebraic operator that binds it to-

gether. Suppose, however, we indexed the procedures

in the opposite way, so that the dispatch line in deriv

looked like

((get (operator exp) 'deriv) (operands exp) var)

What corresponding changes to the derivative system

are required?

Exercise 2.74: Insatiable Enterprises, Inc., is a highly de-

centralizedconglomeratecompanyconsistingofalargenum-

ber ofindependent divisions located all over the world. e

company’scomputerfacilitieshavejustbeeninterconnected

bymeansofaclevernetwork-interfacingschemethatmakes

the entire network appear to any user to be a single com-

puter. Insatiable’s president, in her first aempt to exploit

the ability of the network to extract administrative infor-

mation from division files, is dismayed to discover that, al-

though all the division files have been implemented as data

structuresinScheme,theparticulardatastructureusedvaries

from division to division. A meeting of division managers

is hastily called to search for a strategy to integrate the files

that will satisfy headquarters’ needs while preserving the

existing autonomy of the divisions.

Show how such a strategy can be implemented with data-

directed programming. As an example, suppose that each

250

division’s personnel records consist of a single file, which

contains a set of records keyed on employees’ names. e

structure of the set varies from division to division. Fur-

thermore, each employee’s record is itselfa set (structured

differently fromdivision to division)that contains informa-

tion keyed under identifiers such as address and salary.

In particular:

a. Implement for headquarters a get-record procedure

that retrieves a specified employee’s record from a

specified personnel file. e procedure should be ap-

plicabletoanydivision’sfile.Explainhowtheindivid-

ual divisions’ files should be structured. In particular,

what type information must be supplied?

b. Implement for headquarters a get-salary procedure

that returns the salary information from a given em-

ployee’srecordfromanydivision’spersonnelfile.How

should the record be structured in order to make this

operation work?

c. Implementforheadquartersa find-employee-record

procedure. is should search all the divisions’ files

fortherecordofagivenemployeeandreturntherecord.

Assume that this procedure takes as arguments an

employee’s name and a list of all the divisions’ files.

d. WhenInsatiabletakesoveranewcompany,whatchanges

must be made inordertoincorporate the new person-

nel information into the central system?

251

Message passing

e key idea of data-directed programming is to handle generic opera-

tions in programs by dealing explicitly with operation-and-type tables,

such as the table in Figure 2.22. e style of programming we used in

Section 2.4.2 organized the requireddispatching ontype by havingeachoperationtakecareofitsowndispatching.Ineffect,thisdecomposesthe

operation-and-type table into rows, with each generic operation proce-

dure representing a row of the table.

An alternative implementation strategy is to decompose the table

into columnsand,instead of using “intelligent operations” that dispatch

on data types, to work with “intelligent data objects” that dispatch on

operation names. We can do this by arranging things so that a data

object, such as a rectangular number, is represented as a procedure that

takes as input the required operation name and performs the operation

indicated. In such a discipline, make-from-real-imag could be wrien

as

(define (make-from-real-imag x y)

(define (dispatch op)

(cond ((eq? op 'real-part) x)

((eq? op 'imag-part) y)

((eq? op 'magnitude) (sqrt (+ (square x) (square y))))

((eq? op 'angle) (atan y x))

(else (error "Unknown op: MAKE-FROM-REAL-IMAG" op))))

dispatch)

e corresponding apply-generic procedure, which applies a generic

operation to an argument, now simply feeds the operation’s name to

the data object and lets the object do the work:48

48One limitation of this organization is it permits only generic procedures of one

argument.

252

(define (apply-generic op arg) (arg op))

Note that the value returned by make-from-real-imag is a procedure—

the internal dispatch procedure. is is the procedure that is invoked

when apply-generic requests an operation to be performed.

isstyleofprogrammingiscalledmessagepassing.enamecomes

from the image that adataobject is an entity that receives the requested

operation name as a “message.” We have already seen an example of

message passing in Section 2.1.3, where we saw how cons, car, and cdr

could be defined with no data objects but only procedures. Here we see

that message passing is not a mathematical trick but a useful technique

fororganizingsystemswith generic operations. Inthe remainder ofthis

chapter we willcontinue to use data-directedprogramming, ratherthanmessage passing, to discuss generic arithmetic operations. In Chapter 3

we will return to message passing, and we will see that it can be a pow-

erful tool for structuring simulation programs.

Exercise2.75: Implementtheconstructor make-from-mag-

anginmessage-passingstyle.isprocedureshouldbeanal-

ogoustothe make-from-real-imagproceduregivenabove.

Exercise 2.76: As a large system with generic operations

evolves, new types of data objects or new operations may

be needed. For each of the three strategies—generic opera-

tionswithexplicitdispatch,data-directedstyle,andmessage-

passing-style—describe the changes that must be made to a

systeminordertoaddnew typesornewoperations. Which

organization would be most appropriate for a system in

which new types must oen be added? Which would be

most appropriate for a system in which new operations

must oen be added?

253

2.5 Systems with Generic Operations

In the previous section, we saw how to design systems in which data

objects can be represented in more than one way. e key idea is to

link the code that specifies the data operations to the several represen-

tations by means of generic interface procedures. Now we will see how

to use this same idea not only to define operations that are generic over

different representations but also to define operations that are generic

over different kinds of arguments. We have already seen several dif-

ferent packages of arithmetic operations: the primitive arithmetic (+, -,

*, /) built into our language, the rational-number arithmetic (add-rat,

sub-rat, mul-rat, div-rat) of Section 2.1.1, and the complex-number

arithmetic that we implemented in Section 2.4.3. We will now use data-

directed techniques to construct apackage of arithmetic operations that

incorporates all the arithmetic packages we have already constructed.

Figure 2.23 shows the structure of the system we shall build. Notice

the abstraction barriers. From the perspective of someone using “num-

bers,” there is a single procedure add that operates on whatever num-

bers are supplied. Add is part of a generic interface that allows the sep-

arate ordinary-arithmetic, rational-arithmetic, and complex-arithmetic

packages to be accessed uniformly by programs that use numbers. Any

individual arithmetic package (such as the complex package) may it

selfbe accessed through generic procedures (such as add-complex) that

combine packages designed for different representations (such as rect-

angular and polar). Moreover, the structure of the system is additive, so

that one can design the individual arithmetic packages separately and

combine them to produce a generic arithmetic system.

254

Programs that use numbers

add sub mul div

Generic arithmetic package

add-complexmul-complex sub-complexdiv-complexsub-ratdiv-ratadd-ratmul-rat + -- *

/

Complex arithmetic

Rectangular Polar

Rationalarithmetic Ordinary

arithmetic

List structure and primitive machine arithmetic

Figure 2.23: Generic arithmetic system.

2.5.1 Generic Arithmetic Operations

e task of designing generic arithmetic operations is analogous to that

of designing the generic complex-number operations. We would like,

for instance, to have a generic addition procedure add that acts like or-

dinary primitive addition + on ordinary numbers, like add-rat on ra-

tional numbers, and like add-complex on complex numbers. We can

implement add, and the other generic arithmetic operations, by follow-

ing the same strategy we used in Section 2.4.3 to implement the generic

selectors for complex numbers. We will aach atype tag to each kind of

number and cause the generic procedure to dispatch to an appropriate

package according to the data type ofits arguments.

e generic arithmetic procedures are defined as follows:

(define (add x y) (apply-generic 'add x y))

255

(define (sub x y) (apply-generic 'sub x y))

(define (mul x y) (apply-generic 'mul x y))

(define (div x y) (apply-generic 'div x y))

We begin by installing a package for handling ordinary numbers, that

is, the primitive numbers of our language. We will tag these with the

symbol scheme-number. e arithmetic operations in this package are

the primitive arithmetic procedures (so there is no need to define extra

procedures to handle the untagged numbers). Since these operations

each take two arguments, they are installed in the table keyed by the

list (scheme-number scheme-number):

(define (install-scheme-number-package)

(define (tag x) (attach-tag 'scheme-number x))

(put 'add '(scheme-number scheme-number)

(lambda (x y) (tag (+ x y))))

(put 'sub '(scheme-number scheme-number)

(lambda (x y) (tag (- x y))))

(put 'mul '(scheme-number scheme-number)

(lambda (x y) (tag (* x y))))

(put 'div '(scheme-number scheme-number)

(lambda (x y) (tag (/ x y))))

(put 'make 'scheme-number (lambda (x) (tag x)))

'done)

UsersoftheScheme-numberpackagewillcreate(tagged)ordinarynum-

bers by means of the procedure:

(define (make-scheme-number n)

((get 'make 'scheme-number) n))

Now that the framework of the generic arithmetic system is in place,

we can readily include new kinds of numbers. Here is a package that

performs rational arithmetic. Notice that, as a benefit of additivity, we

256

can use without modification the rational-number code from Section

2.1.1 as the internal procedures in the package:

(define (install-rational-package)

;;internalprocedures

(define (numer x) (car x))

(define (denom x) (cdr x))

(define (make-rat n d)

(let ((g (gcd n d)))

(cons (/ n g) (/ d g))))

(define (add-rat x y)

(make-rat (+ (* (numer x) (denom y))

(* (numer y) (denom x)))

(* (denom x) (denom y))))

(define (sub-rat x y)

(make-rat (- (* (numer x) (denom y))

(* (numer y) (denom x)))

(* (denom x) (denom y))))

(define (mul-rat x y)

(make-rat (* (numer x) (numer y))

(* (denom x) (denom y))))

(define (div-rat x y)

(make-rat (* (numer x) (denom y))

(* (denom x) (numer y))))

;; interface to rest of the system

(define (tag x) (attach-tag 'rational x))

(put 'add '(rational rational)

(lambda (x y) (tag (add-rat x y))))

(put 'sub '(rational rational)

(lambda (x y) (tag (sub-rat x y))))

(put 'mul '(rational rational)

(lambda (x y) (tag (mul-rat x y))))

(put 'div '(rational rational)

(lambda (x y) (tag (div-rat x y))))

257

(put 'make 'rational

(lambda (n d) (tag (make-rat n d))))

'done)

(define (make-rational n d)

((get 'make 'rational) n d))

We can install a similar package to handle complex numbers, using the

tag complex. In creating the package, we extract from the table the op-

erations make-from-real-imag and make-from-mag-ang that were de-

fined by the rectangular and polar packages. Additivity permits us to

use, as the internal operations, the same add-complex, sub-complex,

mul-complex, and div-complex procedures from Section 2.4.1.

(define (install-complex-package)

;; imported procedures from rectangular and polar packages

(define (make-from-real-imag x y)

((get 'make-from-real-imag 'rectangular) x y))

(define (make-from-mag-ang r a)

((get 'make-from-mag-ang 'polar) r a))

;;internalprocedures

(define (add-complex z1 z2)

(make-from-real-imag (+ (real-part z1) (real-part z2))

(+ (imag-part z1) (imag-part z2))))

(define (sub-complex z1 z2)

(make-from-real-imag (- (real-part z1) (real-part z2))

(- (imag-part z1) (imag-part z2))))

(define (mul-complex z1 z2)

(make-from-mag-ang (* (magnitude z1) (magnitude z2))

(+ (angle z1) (angle z2))))

(define (div-complex z1 z2)

(make-from-mag-ang (/ (magnitude z1) (magnitude z2))

(- (angle z1) (angle z2))))

;; interface to rest of the system

(define (tag z) (attach-tag 'complex z))

258

(put 'add '(complex complex)

(lambda (z1 z2) (tag (add-complex z1 z2))))

(put 'sub '(complex complex)

(lambda (z1 z2) (tag (sub-complex z1 z2))))

(put 'mul '(complex complex)

(lambda (z1 z2) (tag (mul-complex z1 z2))))

(put 'div '(complex complex)

(lambda (z1 z2) (tag (div-complex z1 z2))))

(put 'make-from-real-imag 'complex

(lambda (x y) (tag (make-from-real-imag x y))))

(put 'make-from-mag-ang 'complex

(lambda (r a) (tag (make-from-mag-ang r a))))

'done)

Programs outside the complex-number package can construct complex

numbers either from real and imaginary parts or from magnitudes and

angles. Notice how the underlying procedures, originally defined in the

rectangular and polar packages, are exported to the complex package,

and exported from there to the outside world.

(define (make-complex-from-real-imag x y)

((get 'make-from-real-imag 'complex) x y))

(define (make-complex-from-mag-ang r a)

((get 'make-from-mag-ang 'complex) r a))

What we have here is a two-level tag system. A typical complex num-

ber, such as 3 + 4i in rectangular form, would be represented as shown

in Figure 2.24. e outer tag (complex) is used to direct the number to

the complex package. Once within the complex package, the next tag

(rectangular) is used to direct the number to the rectangular package.

In a large and complicated system there might be many levels, each in-

terfaced with the next by means of generic operations. As a data object

is passed “downward,” the outer tag that is used to direct it to the ap-

259

3 4complex rectangular

Figure 2.24: Representation of3 + 4i in rectangular form.

propriate package is stripped off (by applying contents) and the next

level of tag (if any) becomes visible to be used for further dispatching.

Intheabovepackages,weused add-rat, add-complex,andtheotherarithmetic procedures exactly as originally wrien. Once these defini-

tions are internal to different installation procedures, however, they no

longer need names that are distinct from each other: we could simply

name them add, sub, mul, and div in both packages.

Exercise 2.77: Louis Reasoner tries to evaluate the expres-

sion (magnitude z) where z is the object shown in Figure

2.24.Tohissurprise,insteadoftheanswer5hegetsanerror

message from apply-generic, saying there is no method

for the operation magnitude on the types (complex). He

shows this interaction to Alyssa P. Hacker, who says “e

problem is that the complex-number selectors were never

definedfor complexnumbers,justfor polarand rectangular

numbers. All you have to do to make this work is add the

following to the complex package:”

(put 'real-part '(complex) real-part)

(put 'imag-part '(complex) imag-part)

(put 'magnitude '(complex) magnitude)

(put 'angle '(complex) angle)

260

Describe in detail why this works. As an example, trace

through all the procedures called in evaluating the expres-

sion (magnitude z) where z is the object shown in Figure

2.24. In particular, how many times is apply-generic in

voked? What procedure is dispatched to in each case?

Exercise2.78:einternalproceduresinthe scheme-number

packageareessentially nothingmorethancallstothe prim-

itive procedures +, -,etc.Itwasnotpossible tousetheprim-

itives of the language directly because our type-tag system

requires that each data object have a type aached to it. In

fact, however, all Lisp implementations do have a type sys-

tem, which they use internally. Primitive predicates such

as symbol? and number? determine whether data objects

have particular types. Modify the definitions of type-tag,

contents, and attach-tag from Section 2.4.2 so that our

generic system takes advantage of Scheme’s internal type

system. at is to say, the system should work as before ex-

cept that ordinary numbers should be represented simply

as Scheme numbers rather than as pairs whose car is the

symbol
scheme-number.

Exercise2.79:Defineagenericequalitypredicate equ?that

teststheequalityoftwonumbers,andinstallitinthegeneric

arithmetic package. is operation should work for ordi-

nary numbers, rational numbers, and complex numbers.

Exercise 2.80: Define a generic predicate =zero? that tests

if its argument is zero, and install it in the generic arith-

metic package. is operation should work for ordinary

numbers, rational numbers, and complex numbers.

261

2.5.2 Combining Data of Different Types

We have seen how to define a unified arithmetic system that encom-

passes ordinary numbers, complex numbers, rational numbers, and any

othertypeof number we mightdecide toinvent,butwe have ignoredanimportant issue. e operations we have defined so far treat the differ-

ent datatypesasbeingcompletelyindependent.us,thereare separate

packages for adding, say, two ordinary numbers, or two complex num-

bers. What we have not yet consideredisthe fact that it is meaningfultodefine operations that cross the type boundaries, such as the additionofa complex number to an ordinary number. We have gone to great pains

to introduce barriers between parts of our programs so that they can be

developed and understood separately. We would like to introduce the

cross-type operations in some carefully controlled way, so that we can

support them without seriously violating our module boundaries.

Onewaytohandlecross-type operationsistodesignadifferentpro-

cedure for each possible combination of types for which the operation

is valid. For example, we could extend the complex-number package so

that it provides a procedure for adding complex numbers to ordinary

numbers and installs this in the table using the tag (complex scheme-

number):49

;; to be included in the complex package

(define (add-complex-to-schemenum z x)

(make-from-real-imag (+ (real-part z) x) (imag-part z)))

(put 'add '(complex scheme-number)

(lambda (z x) (tag (add-complex-to-schemenum z x))))

is technique works, but it is cumbersome. With such a system, the

cost ofintroducing a new type is notjust the construction of the pack

49Wealso haveto supply an almost identical procedure to handle the types (scheme-

number complex).

262

age of procedures for that type but also the construction and installa-

tion of the procedures that implement the cross-type operations. is

can easily be much more code than is needed to define the operations

on the type itself. e method also undermines our ability to combine

separate packages additively, or at least to limit the extent to which the

implementors of the individual packages need to take account of other

packages. For instance, in the example above, it seems reasonable that

handling mixed operations on complex numbers and ordinary numbers

should be the responsibility of the complex-number package. Combin-

ing rational numbersand complex numbers, however, might be done by

the complex package, by the rational package, or by some third package

that uses operations extracted from these two packages. Formulating

coherent policies on the division of responsibility among packages can

be anoverwhelmingtask indesigningsystemswith many packagesandmany cross-type operations.

Coercion

In the general situation of completely unrelated operations acting on

completelyunrelatedtypes,implementingexplicitcross-typeoperations,

cumbersome though it may be, is the best that one can hope for. For-

tunately, we can usually do beer by taking advantage of additional

structure that may be latent in our type system. Oen the different data

types are not completely independent, and there may be ways by which

objectsofonetype may be viewedasbeingofanothertype.isprocess

iscalled coercion.For example, ifwe are askedtoarithmetically combine

an ordinary number with a complex number, we can view the ordinary

number as a complex number whose imaginary part is zero. is trans-

forms the problem to that of combining two complex numbers, which

can be handled in the ordinary way by the complex-arithmetic package.

263

In general, we can implement this idea by designing coercion pro-

cedures that transform an object of one type into an equivalent object

of another type. Here is a typical coercion procedure, which transforms

a given ordinary number to a complex number with that real part and

zero imaginary part:

(define (scheme-number->complex n)

(make-complex-from-real-imag (contents n) 0))

We install these coercion proceduresinaspecial coerciontable,indexed

under the names of the two types:

(put-coercion 'scheme-number

'complex

scheme-number->complex)

(We assume that thereare put-coercionand get-coercionproceduresavailable for manipulating this table.) Generally some of the slots in the

table will be empty, because it is not generally possible to coerce an ar-

bitrary data object of each type into all other types. For example, there

is no way to coerce an arbitrary complex number to an ordinary num-

ber, so there will be no general complex->scheme-number procedure

included in the table.

Once the coercion table has been set up, we can handle coercion

in a uniform manner by modifying the apply-generic procedure of

Section 2.4.3. When asked to apply anoperation, we first check whether

the operation is defined for the arguments’ types, just as before. If so,

we dispatch to the procedure found in the operation-and-type table.

Otherwise, we try coercion. For simplicity, we consider only the case

where there are two arguments.50 We check the coercion table to see

if objects of the first type can be coerced to the second type. If so, we

50See Exercise 2.82 for generalizations.

264

coerce the first argument and try the operation again. If objects of the

first type cannot in general be coerced to the second type, we try the

coercion the other way around to see if there is a way to coerce the

second argument to the type of the first argument. Finally, if there is no

known way to coerce either type to the other type, we give up. Here is

the procedure:

(define (apply-generic op . args)

(let ((type-tags (map type-tag args)))

(let ((proc (get op type-tags)))

(if proc

(apply proc (map contents args))

(if (= (length args) 2)

(let ((type1 (car type-tags))

(type2 (cadr type-tags))

(a1 (car args))

(a2 (cadr args)))

(let ((t1->t2 (get-coercion type1 type2))

(t2->t1 (get-coercion type2 type1)))

(cond (t1->t2

(apply-generic op (t1->t2 a1) a2))

(t2->t1

(apply-generic op a1 (t2->t1 a2)))

(else (error "No method for these types"

(list op type-tags))))))

(error "No method for these types"

(list op type-tags)))))))

is coercion scheme has many advantagesoverthe method of defining

explicitcross-type operations,as outlined above. Although we still need

to write coercion procedures to relate the types (possibly n2 procedures

for a system with n types), we need to write only one procedure for

each pair of types rather than a different procedure for each collection

265

of types and each generic operation.51 What we are counting on here

is the fact that the appropriate transformation between types depends

only on the types themselves, not on the operation to be applied.

On the other hand, there may be applications for which our coer-

cion scheme is not general enough. Even when neither of the objects to

be combined can be converted to the type of the other it may still be

possible to perform the operation by converting both objects to a third

type. In order to deal with such complexity and still preserve modular-

ity in our programs, it is usually necessary to build systems that take

advantage of still further structure in the relations among types, as we

discuss next.

Hierarchies of types

e coercion scheme presented above relied on the existence of natural

relations between pairs of types. Oen there is more “global” structure

in how the different types relate to each other. For instance, suppose

we are building a generic arithmetic system to handle integers, rational

numbers, real numbers, and complex numbers. In such a system, it is

quite natural to regard an integer as a special kind of rational number,

which is in turn a special kind ofreal number, which is in turn a special

kind of complex number. What we actually have is a so-called hierarchy

of types, in which, for example, integers are a subtype of rational num-

51If we are clever, we can usually get by with fewer than n2 coercion procedures.

For instance, if we know how to convert from type 1 to type 2 and from type 2 to

type 3, then we can use this knowledge to convert from type 1 to type 3. is can

greatly decrease the number of coercion procedures we need to supply explicitly when

we add a new type to the system. If we are willing to build the required amount of

sophistication into our system, we can have it search the “graph” of relations among

types and automatically generate those coercion procedures that can be inferred from

the ones that are supplied explicitly.

266

complex

real

rational

integer

Figure 2.25: A tower of types.

bers (i.e., any operation that can be applied to a rational number can

automatically be applied to an integer). Conversely, we say that ratio-

nal numbers form a supertype of integers. e particular hierarchy we

have here is of a very simple kind, in which each type has at most one

supertype and at most one subtype. Such a structure, called a tower, is

illustrated in Figure 2.25.

If we have a tower structure, then we can greatly simplify the prob-

lem of adding a new type to the hierarchy, for we need only specify

how the new type is embedded in the next supertype above it and how

it is the supertype of the type below it. For example, if we want to add

an integer to a complex number, we need not explicitly define a special

coercion procedure integer->complex. Instead, we define how aninte-

gercanbetransformed into arational number, how arationalnumberis

transformed into a real number, and how a real number is transformed

into a complex number. We then allow the system to transform the in-

teger into a complex number through these steps and then add the two

complex numbers.

We can redesign our apply-generic procedure in the following

way:Foreachtype,we needtosupplya raiseprocedure,which “raises”

267

objects of that type one level in the tower. en when the system is re-

quired to operate on objects of different types it can successively raise

the lower types until all the objects are at the same level in the tower.

(Exercise 2.83 and Exercise 2.84 concern the details of implementing

such a strategy.)

Another advantage of a tower is that we can easily implement the

notion that every type “inherits” all operations defined on a supertype.

For instance, ifwe do not supply a special procedure for finding the real

part of an integer, we should nevertheless expect that real-part will

be defined for integers by virtue of the fact that integers are a subtype

of complex numbers. In a tower, we can arrange for this to happen in a

uniform way by modifying apply-generic. If the required operation is

not directly defined for the type of the object given, we raise the object

toitssupertype and try again.We thuscrawlupthetower, transforming

our argument as we go, until we either find a level at which the desired

operation can be performed or hit the top (in which case we give up).

Yet another advantage of a tower over a more general hierarchy is

that it gives us a simple way to “lower” a data object to the simplest

representation. For example, if we add 2 + 3i to 4 − 3i, it would be nice

to obtain the answer as the integer 6 rather than as the complex num-

ber 6 + 0i. Exercise 2.85 discusses a way to implement such a lowering

operation. (e trick is that we need a general way to distinguish those

objects that can be lowered, such as 6+0i, from those that cannot, such

as 6 + 2i.)

Inadequacies of hierarchies

If the data types in our system can be naturally arranged in a tower,

this greatly simplifies the problems of dealing with generic operations

ondifferenttypes,aswehaveseen. Unfortunately,thisisusuallynotthe

case.Figure2.26illustratesamorecomplexarrangement ofmixedtypes,

268

polygon

quadrilateral

kite

trapezoidparallelogramtriangleisosceles right

triangle triangle

rectangle rhombus

isoscelesequilateral

square
right triangletriangle

Figure 2.26: Relations among types of geometric figures.

this one showing relations among different types of geometric figures.

We see that, in general, a type may have more than one subtype. Tri-

angles and quadrilaterals, for instance, are both subtypes of polygons.

In addition, a type may have more than one supertype. For example,

an isosceles right triangle may be regarded either as an isosceles trian-

gle or as a right triangle. is multiple-supertypes issue is particularly

thorny,since it meansthat thereisnouniqueway to“raise” atype inthe

hierarchy. Finding the “correct” supertype in which to apply an opera-

tion to an object may involve considerable searching through the entire

type network on the part ofa procedure such as apply-generic. Since

there generally are multiple subtypes for a type, there is a similar prob-

lem in coercing a value “down” the type hierarchy. Dealing with large

numbers of interrelated types while still preserving modularity in the

269

design oflarge systems is very difficult, and is an area of much current

research.52

Exercise2.81:LouisReasonerhasnoticedthat apply-generic

may try to coerce the arguments to each other’s type even

if they already have the same type. erefore, he reasons,

we need to put procedures in the coercion table to coerce

arguments of each type to their own type. For example, in

addition to the scheme-number->complex coercion shown

above, he would do:

(define (scheme-number->scheme-number n) n)

(define (complex->complex z) z)

(put-coercion 'scheme-number

'scheme-number

scheme-number->scheme-number)

(put-coercion 'complex 'complex complex->complex)

52is statement, which also appears in the first edition of this book, is just as true

now as it was when we wrote it twelve years ago. Developing a useful, general frame-

work for expressing the relations among different types of entities (what philosophers

call “ontology”) seems intractably difficult. e main difference between the confu-

sion that existed ten years ago and the confusion that exists now is that now a va-

riety of inadequate ontological theories have been embodied in a plethora of corre-

spondingly inadequate programming languages. For example, much of the complexity

of object-oriented programming languages—and the subtle and confusing differences

among contemporary object-oriented languages—centers on the treatment of generic

operationson interrelated types. Our own discussion of computational objects in Chap-

ter 3 avoids these issues entirely. Readers familiar with object-oriented programming

will notice that we have much to say in chapter 3 about local state, but we do not even

mention “classes” or “inheritance.” In fact, we suspect that these problems cannotbe ad-

equately addressed in terms of computer-language design alone, without also drawing

on work in knowledge representation and automated reasoning.

270

a. With Louis’scoercionproceduresinstalled,what hap-

pens if apply-generic is called with two arguments

oftype scheme-numberortwoargumentsoftype complex

foranoperationthat isnot foundinthe table forthose

types?Forexample,assumethatwe’vedefinedageneric

exponentiation operation:

(define (exp x y) (apply-generic 'exp x y))

and have put a procedure for exponentiation in the

Scheme-number package but not in any other pack-

age:

;; following added to Scheme-number package

(put 'exp '(scheme-number scheme-number)

(lambda (x y) (tag (expt x y))))

;using primitive expt

What happens if we call exp with two complex num-

bers as arguments?

b. Is Louis correct that something had to be done about

coercion with arguments of the same type, or does

apply-generic work correctly as is?

c. Modify apply-generic so that it doesn’t try coercion

if the two arguments have the same type.

Exercise 2.82: Show how to generalize apply-generic to

handle coercion in the general case of multiple arguments.

One strategy is to aempt to coerce all the arguments to

the type of the first argument, then to the type of the sec-

ond argument, and so on. Give an example of a situation

271

where this strategy (and likewise the two-argument ver

sion given above) is not sufficiently general. (Hint: Con-

sider the case where there are some suitable mixed-type

operations present in the table that will not be tried.)

Exercise 2.83: Suppose you are designing a generic arith-

metic system for dealing with the tower of types shown in

Figure 2.25: integer, rational, real, complex. For each type

(except complex), design a procedure that raises objects of

that type one level in the tower. Show how to install a

generic raise
operation that will work for each type (ex-

cept complex).

Exercise 2.84: Using the raise operation of Exercise 2.83,

modify the apply-generic procedure so that it coerces its

arguments to have the same type by the method of succes-

sive raising, as discussed in this section. You will need to

devise a way to test which of two types is higher in the

tower. Do this in a manner that is “compatible” with the

rest of the system and will not lead to problems in adding

new levels to the tower.

Exercise 2.85: is section mentioned a method for “sim-

plifying” a data object by lowering it in the tower of types

as far as possible. Design a procedure drop that accom-

plishes this for the tower described in Exercise 2.83. e

key is to decide, in some general way, whether an object

can be lowered. For example, the complex number 1.5 + 0i

can be lowered as far as real, the complex number 1 + 0i

can be lowered as far as integer, and the complex number

272

2 + 3i cannot be lowered at all. Here is a plan for determin-

ing whether an object can be lowered: Begin by defining

a generic operation project that “pushes” an object down

in the tower. For example, projecting a complex number

would involve throwing away the imaginary part. en a

number can be dropped if, when we project it and raise

the result back to the type we started with, we end up with

something equal to what we started with. Show how to im-

plement thisideaindetail,bywritinga dropprocedure that

drops an object as far as possible. You will need to design

the variousprojection operations53 and install project asa

generic operation in the system. You will also need to make

use of a generic equality predicate, such as described in

Exercise 2.79. Finally, use drop to rewrite apply-generic

from Exercise 2.84 so that it “simplifies” its answers.

Exercise 2.86: Suppose we want to handle complex num-

berswhoserealparts,imaginaryparts,magnitudes,andan-

gles can be either ordinary numbers, rational numbers, or

other numbers we might wish to add to the system. De-

scribe and implement the changes to the system needed to

accommodate this. You will have to define operations such

as sine and cosine that are generic over ordinary numbers

and rational numbers.

53A real number can be projected to an integer using the round primitive, which

returns the closest integer to its argument.

273

2.5.3 Example: Symbolic Algebra

e manipulation of symbolic algebraic expressions is a complex pro-

cess that illustrates many of the hardest problems that occur in the de-

sign of large-scale systems. An algebraic expression, in general, can

be viewed as a hierarchical structure, a tree of operators applied to

operands. We can construct algebraic expressions by starting with a

set of primitive objects, such as constants and variables, and combining

these by means of algebraic operators, such as addition and multipli-

cation. As in other languages, we form abstractions that enable us to

refer to compound objects in simple terms. Typical abstractions in sym-

bolic algebra are ideas such as linear combination, polynomial, rational

function, or trigonometric function. We can regard these as compound

“types,” which are oen useful for directing the processing of expres-

sions. For example, we could describe the expression

x2 sin(y2 + 1) + x cos2y + cos(y3 − 2y2)

as a polynomial in x with coefficients that are trigonometric functions

of polynomials in y whose coefficients are integers.

We will not aempt to develop a complete algebraic-manipulation

system here.Such systems are exceedingly complex programs, embody-

ing deep algebraic knowledge and elegant algorithms. What we will do

is look at a simple but important part of algebraic manipulation: the

arithmetic of polynomials. We will illustrate the kinds of decisions the

designer of such a system faces, and how to apply the ideas of abstract

data and generic operations to help organize this effort.

Arithmetic on polynomials

Our first task in designing a system for performing arithmetic on poly-

nomialsistodecidejustwhat apolynomialis.Polynomialsare normally

274

defined relative to certain variables (the indeterminates of the polyno-

mial). For simplicity, we will restrict ourselves to polynomials having

just one indeterminate (univariatepolynomials).54 We will define a poly-

nomial to be a sum of terms, each of which is either a coefficient, a

power of the indeterminate, or a product of a coefficient and a power

of the indeterminate. A coefficient is defined as an algebraic expression

that is not dependent upon the indeterminate of the polynomial. For

example,

5x2 + 3x + 7

is a simple polynomial in x, and

(y2 +1)x3 + (2y)x +1

is a polynomial in x whose coefficients are polynomials in y.

Alreadyweare skirtingsome thorny issues.Isthefirst ofthesepoly-nomials the same as the polynomial 5y2 + 3y + 7, or not? A reasonable

answer might be “yes, if we are considering a polynomial purely as a

mathematical function, but no, if we are considering a polynomial to

be a syntactic form.” e second polynomial is algebraically equivalent

to a polynomial in y whose coefficients are polynomials in x. Should

our system recognize this, or not? Furthermore, there are other ways to

represent a polynomial—for example, as a product of factors, or (for a

univariate polynomial) as the set ofroots, or as a listing of the values of

the polynomial at a specified set of points.55 We can finesse these ques

54On the other hand, we will allow polynomials whose coefficients are themselves

polynomials in other variables. is will give us essentially the same representational

power as a full multivariate system, although it does lead to coercion problems, as

discussed below.

55
For univariatepolynomials, givingthe value of a polynomial ata given set ofpoints

can be a particularly good representation. is makes polynomial arithmetic extremely

275

tions by deciding that in our algebraic-manipulation system a “polyno-

mial” will be a particular syntactic form, not its underlying mathemat-

ical meaning.

Now we mustconsiderhowtogoabout doingarithmeticonpolyno-

mials. In this simple system, we will consider only addition and multi-

plication. Moreover, we will insist that two polynomials to be combined

must have the same indeterminate.

We will approach the design of our systemby followingthe familiar

discipline of data abstraction. We will represent polynomials using a

data structure called a poly, which consists ofa variable and a collection

of terms. We assume that we have selectors variable and term-list

that extract those parts from a poly and a constructor make-poly that

assemblesa poly from a given variable and aterm list. Avariable will be

just a symbol, so we can use the same-variable? procedure of Section

2.3.2tocomparevariables.efollowingproceduresdefineadditionand

multiplication of polys:

(define (add-poly p1 p2)

(if (same-variable? (variable p1) (variable p2))

(make-poly (variable p1)

(add-terms (term-list p1) (term-list p2)))

(error "Polys not in same var: ADD-POLY" (list p1 p2))))

(define (mul-poly p1 p2)

(if (same-variable? (variable p1) (variable p2))

(make-poly (variable p1)

(mul-terms (term-list p1) (term-list p2)))

(error "Polys not in same var: MUL-POLY" (list p1 p2))))

simple. To obtain, for example, the sum of two polynomials represented in this way,

we need only add the values of the polynomials at corresponding points. To transform

back to a more familiar representation, we can use the Lagrange interpolation formula,

which shows how to recover the coefficients of a polynomial of degree n given the

values of the polynomial at n + 1 points.

276

Toincorporatepolynomialsintoourgenericarithmeticsystem,we need

to supply them with type tags. We’ll use the tag polynomial, and install

appropriate operations on tagged polynomials in the operation table.

We’ll embed allour code inaninstallationprocedure for the polynomial

package, similar to the ones in Section 2.5.1:

(define (install-polynomial-package)

;;internalprocedures

;; representation of poly

(define (make-poly variable term-list) (cons variable term-list))

(define (variable p) (car p))

(define (term-list p) (cdr p))

⟨procedures same-variable? and variable? from section 2.3.2⟩

;; representation of terms and term lists

⟨procedures adjoin-term ... coeff from text below⟩

(define (add-poly p1 p2) ...)

⟨procedures used by add-poly⟩

(define (mul-poly p1 p2) ...)

⟨procedures used by mul-poly⟩

;; interface to rest of the system

(define (tag p) (attach-tag 'polynomial p))

(put 'add '(polynomial polynomial)

(lambda (p1 p2) (tag (add-poly p1 p2))))

(put 'mul '(polynomial polynomial)

(lambda (p1 p2) (tag (mul-poly p1 p2))))

(put 'make 'polynomial

(lambda (var terms) (tag (make-poly var terms))))

'done)

Polynomial addition is performed termwise. Terms of the same order

(i.e., with the same power ofthe indeterminate) must be combined. is

isdone by forminganewtermofthe same orderwhose coefficient isthe

sum of the coefficients of the addends. Terms in one addend for which

277

there are no terms of the same order in the other addend are simply

accumulated into the sum polynomial being constructed.

In order to manipulate term lists, we will assume that we have a

constructor the-empty-termlist that returns an empty term list and

a constructor adjoin-term that adjoins a new term to a term list. We

willalsoassumethatwehaveapredicate empty-termlist?thattellsifagiventermlist isempty, aselector first-term that extractsthe highest-order term from a term list, and a selector rest-terms that returns all

but the highest-order term. To manipulate terms, we will suppose that

we have a constructor make-term that constructs a term with given or-

der and coefficient, and selectors order and coeff that return, respec-

tively, the order and the coefficient of the term. ese operations allow

us to consider both terms and term lists as data abstractions, whose

concrete representations we can worry about separately.

Here is the procedure that constructs the term list for the sum of

two polynomials:56

(define (add-terms L1 L2)

(cond ((empty-termlist? L1) L2)

((empty-termlist? L2) L1)

(else

(let ((t1 (first-term L1))

(t2 (first-term L2)))

(cond ((> (order t1) (order t2))

(adjoin-term

t1 (add-terms (rest-terms L1) L2)))

((< (order t1) (order t2))

56is
operation is very much like the ordered union-set operation we developed

in Exercise 2.62. In fact, if we think of the terms of the polynomial as a set ordered

according to the power of the indeterminate, then the program that produces the term

list for a sum is almost identical to union-set.

278

(adjoin-term

t2 (add-terms L1 (rest-terms L2))))

(else

(adjoin-term

(make-term (order t1)

(add (coeff t1) (coeff t2)))

(add-terms (rest-terms L1)

(rest-terms L2)))))))))

e most important point to note here is that we used the generic ad-

dition procedure add to add together the coefficients of the terms being

combined. is has powerful consequences, as we will see below.

In order to multiply two term lists, we multiply each term of the

first list by all the terms of the other list, repeatedly using mul-term-

by-all-terms, which multiplies a given term by all terms in a given

term list. e resulting term lists (one for each term of the first list) are

accumulated into a sum. Multiplying two terms forms a term whose

order is the sum of the orders of the factors and whose coefficient is the

product of the coefficients of the factors:

(define (mul-terms L1 L2)

(if (empty-termlist? L1)

(the-empty-termlist)

(add-terms (mul-term-by-all-terms (first-term L1) L2)

(mul-terms (rest-terms L1) L2))))

(define (mul-term-by-all-terms t1 L)

(if (empty-termlist? L)

(the-empty-termlist)

(let ((t2 (first-term L)))

(adjoin-term

(make-term (+ (order t1) (order t2))

(mul (coeff t1) (coeff t2)))

(mul-term-by-all-terms t1 (rest-terms L))))))

279

is is really all there is to polynomial addition and multiplication. No

tice that, since we operate on terms using the generic procedures add

and mul, our polynomial package is automatically able to handle any

type of coefficient that is known about by the generic arithmetic pack-

age. Ifwe include a coercion mechanism such as one of those discussed

inSection2.5.2,thenwe alsoare automatically abletohandle operations

on polynomials of different coefficient types, such as

[3x2+(2+3i)x+7]· [x4 +

2

3x2+(5+3i)

]

.

Because we installed the polynomial addition and multiplication proce-

dures add-poly and mul-poly in the generic arithmetic system as the

add and mul operations for type polynomial, our system is also auto-

matically able to handle polynomial operations such as

[

(y+1)x2+(y2+1)x+(y−1)

]

·

[

(y−2)x+(y3+7)

]

.

e reason is that when the system tries to combine coefficients, it will

dispatch through
add and mul. Since the coefficients are themselves

polynomials (in y), these will be combined using add-poly and mul-

poly. e result is a kind of “data-directed recursion” in which, for ex-

ample, a call to mul-poly will result in recursive calls to mul-poly in

order to multiply the coefficients. If the coefficients of the coefficients

were themselves polynomials (as might be used to represent polynomi-

als in three variables), the data direction would ensure that the system

wouldfollowthroughanotherlevelofrecursive calls,andsoonthrough

as many levels as the structure of the data dictates.57

57To make this work completely smoothly, we should also add to our generic arith-

metic system the ability to coerce a “number” to a polynomial by regarding it as a

280

Representing term lists

Finally, we must confront the job of implementing a good representa-

tion for term lists. A term list is, in effect, a set of coefficients keyed

by the order of the term. Hence, any of the methods for representing

sets, as discussed in Section 2.3.3, can be applied to this task. On the

other hand, our procedures
add-terms and mul-terms

always access

term lists sequentially from highest to lowest order. us, we will use

some kind of ordered list representation.

How should we structure the list that represents a term list? One

consideration is the “density” of the polynomials we intend to manip-

ulate. A polynomial is said to be dense if it has nonzero coefficients in

terms ofmost orders. Ifit has many zero terms it is said to be sparse. For

example,

A: x5+2x4+3x2−2x−5

is a dense polynomial, whereas

B: x100+2x2+1

is sparse.

e term lists of dense polynomials are most efficiently represented

as lists of the coefficients. For example, A above would be nicely rep-

resented as (1 2 0 3 -2 -5). e order of a term in this representa-

tion is the length of the sublist beginning with that term’s coefficient,

polynomial of degree zero whose coefficient is the number. is is necessary if we are

going to perform operations such as

[x2+(y+1)x+5]+[x2+2x+1],

which requires adding the coefficient y + 1 to the coefficient 2.

281

decremented by 1.58 is would be a terrible representation for a sparse

polynomial such as B: ere would be a giant list of zeros punctuated

by a few lonely nonzero terms. A more reasonable representation of the

term list of a sparse polynomial is as a list of the nonzero terms, where

each term is a list containing the order of the term and the coefficient

for that order. In such a scheme, polynomial B is efficiently represented

as ((100 1) (2 2) (0 1)). As most polynomial manipulations are

performed on sparse polynomials, we will use this method. We will as-

sume that term lists are represented as lists of terms, arranged from

highest-order to lowest-order term. Once we have made this decision,

implementing the selectors and constructors for terms and term lists is

straightforward:59

(define (adjoin-term term term-list)

(if (=zero? (coeff term))

term-list

(cons term term-list)))

(define (the-empty-termlist) '())

(define (first-term term-list) (car term-list))

(define (rest-terms term-list) (cdr term-list))

(define (empty-termlist? term-list) (null? term-list))

(define (make-term order coeff) (list order coeff))

58In these polynomial examples, we assume that we have implemented the generic

arithmetic system using the type mechanism suggested in Exercise 2.78. us, coeffi-

cients that are ordinary numbers will be represented as the numbers themselves rather

than as pairs whose car is the symbol scheme-number.

59Although we are assuming that term lists are ordered, we have implemented ad-

join-term to simply cons the new term onto the existing term list. We can get away

with this so long as we guarantee that the procedures (such as add-terms) that use ad-

join-term always call it with a higher-order term than appears in the list. If we did not

want to make such a guarantee, we could have implemented adjoin-term to be simi-

lar to the adjoin-set constructor for the ordered-list representation of sets (Exercise

2.61).

282

(define (order term) (car term))

(define (coeff term) (cadr term))

where =zero? is as defined in Exercise 2.80. (See also Exercise 2.87 be-

low.)

Users of the polynomial package will create (tagged) polynomials

by means of the procedure:

(define (make-polynomial var terms)

((get 'make 'polynomial) var terms))

Exercise2.87:Install =zero?forpolynomialsinthegeneric

arithmetic package. is will allow adjoin-term to work

for polynomials with coefficients that are themselves poly-

nomials.

Exercise 2.88: Extend the polynomial system to include

subtraction of polynomials. (Hint: You may find it helpful

to define a generic negation operation.)

Exercise2.89: Defineproceduresthatimplement the term-

list representationdescribedaboveasappropriatefor dense

polynomials.

Exercise 2.90: Suppose we want to have a polynomial sys-

tem that is efficient for both sparse and dense polynomials.

One way to do this is to allow both kinds of term-list repre-

sentations in our system. e situation is analogous to the

complex-number example of Section2.4, where we allowed

both rectangular and polar representations. To do this we

must distinguish different types of term lists and make the

operations on term lists generic. Redesign the polynomial

283

system to implement this generalization. is is a major ef

fort, not a local change.

Exercise 2.91: A univariate polynomial can be divided by

another one to produce a polynomial quotient and a poly-

nomial remainder. For example,

x5−1

x2−1

= x3 + x, remainder x − 1.

Division can be performed via long division. at is, divide

the highest-order termof the dividend by the highest-order

term of the divisor. e result is the first term of the quo-

tient. Next, multiply the result by the divisor, subtract that

fromthedividend,andproducetherestof the answerby re-

cursively dividing the difference by the divisor. Stop when

the order of the divisor exceeds the order of the dividend

and declare the dividend to be the remainder. Also, if the

dividend ever becomes zero, return zero as both quotient

and remainder.

We can design a div-poly procedure on the model of add-

poly and mul-poly. e procedure checks to see if the two

polys have the same variable. If so, div-poly strips off the

variable and passes the problem to div-terms, which per-

forms the division operation on term lists. Div-poly finally

reaaches the variable to the result supplied by div-terms.

It is convenient to design
div-terms to compute both the

quotient and the remainder of a division. Div-terms can

take two term lists as arguments and return a list of the

quotient term list and the remainder term list.

284

Complete the following definition of div-terms
by filling

inthemissingexpressions.Usethistoimplement div-poly,

which takestwopolysasargumentsandreturnsalist ofthe

quotient and remainder polys.

(define (div-terms L1 L2)

(if (empty-termlist? L1)

(list (the-empty-termlist) (the-empty-termlist))

(let ((t1 (first-term L1))

(t2 (first-term L2)))

(if (> (order t2) (order t1))

(list (the-empty-termlist) L1)

(let ((new-c (div (coeff t1) (coeff t2)))

(new-o (- (order t1) (order t2))))

(let ((rest-of-result

⟨compute rest of result recursively⟩))

⟨form complete result⟩))))))

Hierarchies of types in symbolic algebra

Our polynomial system illustrates how objects of one type (polynomi-

als) may in fact be complex objects that have objects of many different

types as parts. is poses no real difficulty in defining generic opera-

tions. We need only install appropriate generic operations for perform-

ing the necessary manipulations of the parts of the compound types.

In fact, we saw that polynomials form a kind of“recursive data abstrac-

tion,” in that parts of a polynomial may themselves be polynomials. Our

generic operations and ourdata-directed programmingstyle canhandle

this complication without much trouble.

On the other hand, polynomial algebra is a system for which the

data types cannot be naturally arranged in a tower. For instance, it is

possible to have polynomials in x whose coefficients are polynomials

in y. It is also possible to have polynomials in y whose coefficients are

285

polynomials in x. Neither of these types is “above” the other in any

natural way, yet it is oen necessary to add together elements from

each set. ere are several ways to do this. One possibility is to convert

one polynomial to the type of the other by expanding and rearrang-

ing terms so that both polynomials have the same principal variable.

One can impose a towerlike structure on this by ordering the variables

and thus always converting any polynomial to a “canonical form” with

the highest-priority variable dominant and the lower-priority variables

buried in the coefficients. is strategy works fairly well, except that

the conversion may expand a polynomial unnecessarily, making it hard

to read and perhaps less efficient to work with. e tower strategy is

certainly not natural for this domain or for any domain where the user

caninvent new types dynamically using old types in various combining

forms, such as trigonometric functions, power series, and integrals.

It should not be surprising that controlling coercion is a serious

problem in the design of large-scale algebraic-manipulation systems.

Much ofthe complexity of such systemsis concernedwith relationships

among diverse types. Indeed, it is fair to say that we do not yet com-

pletely understand coercion. In fact, we do not yet completely under-

stand the concept of a data type. Nevertheless, what we know provides

us with powerful structuring and modularity principles to support the

design oflarge systems.

Exercise 2.92: By imposing an ordering on variables, ex-

tend the polynomial package so that addition and multipli-

cation of polynomials works for polynomials in different

variables. (is is not easy!)

286

Extended exercise: Rational functions

We can extend our generic arithmetic system to include rationalfunc-

tions. eseare “fractions”whose numerator and denominator are poly-

nomials, such as

x + 1

x3 − 1

.

e system should be able to add, subtract, multiply, and divide rational

functions, and to perform such computations as

x+1 x x3+2x2+3x+1

x3−1 x2−1 x4+x3−x−1

.=+

(Here the sum has been simplified by removing common factors. Ordi-

nary “cross multiplication” would have produced a fourth-degree poly-

nomial over a fih-degree polynomial.)

If we modify our rational-arithmetic package so that it uses generic

operations, then it will do what we want, except for the problem of

reducing fractions to lowest terms.

Exercise 2.93: Modify the rational-arithmetic package to

use generic operations, but change make-rat so that it does

not aempt to reduce fractions to lowest terms. Test your

system by calling make-rational on two polynomials to

produce a rational function:

(define p1 (make-polynomial 'x '((2 1) (0 1))))

(define p2 (make-polynomial 'x '((3 1) (0 1))))

(define rf (make-rational p2 p1))

Now add rf to itself, using add. You will observe that this

additionproceduredoesnotreducefractionstolowestterms.

287

Wecanreduce polynomialfractionstolowest termsusingthe same idea

we used with integers: modifying make-rat to divide both the numera

tor and the denominator by their greatest common divisor. e notion

of “greatest common divisor” makes sense for polynomials. In fact, we

can compute the of two polynomials using essentially the same

Euclid’s Algorithm that works for integers.60 e integer version is

(define (gcd a b)

(if (= b 0)

a

(gcd b (remainder a b))))

Using this, we could make the obvious modification to define a

operation that works on term lists:

(define (gcd-terms a b)

(if (empty-termlist? b)

a

(gcd-terms b (remainder-terms a b))))

where remainder-terms picks out the remainder component of the list

returned by the term-list division operation div-terms that was imple-

mented in Exercise 2.91.

60e fact that Euclid’s Algorithm works for polynomials is formalized in algebra

by saying that polynomials form a kind of algebraic domain called a Euclidean ring. A

Euclidean ring is a domain that admits addition, subtraction, and commutative mul-

tiplication, together with a way of assigning to each element x of the ring a positive

integer “measure” m(x) with the properties that m(xy) ≥ m(x) for any nonzero x and

y and that, given any x and y, there exists a q such that y = qx + r and either r = 0

or m(r) < m(x). From an abstract point of view, this is what is needed to prove that

Euclid’s Algorithm works. For the domain of integers, the measure m of an integer is

the absolute value of the integer itself. For the domain of polynomials, the measure of

a polynomial is its degree.

288

Exercise 2.94: Using div-terms, implement the procedure

remainder-termsandusethistodefine gcd-termsasabove.Now write a procedure gcd-poly that computes the poly-

nomial of two polys. (e procedure should signal an

errorif thetwo polysare not inthe same variable.)Installinthe system a generic operation greatest-common-divisor

that reduces to gcd-poly for polynomials and to ordinary

gcd for ordinary numbers. As a test, try

(define p1 (make-polynomial

'x '((41) (3 -1) (2 -2)(12))))

(define p2 (make-polynomial 'x '((3 1) (1 -1))))

(greatest-common-divisor p1 p2)

and check your result by hand.

Exercise 2.95: Define P1, P2, and P3 to be the polynomials

P1: x2−2x+1,

P2: 11x2+7,

P3: 13x+5.

Now define Q1 to be the product of P1 and P2 and Q2 to

be the product of P1 and P3, and use greatest-common-

divisor (Exercise 2.94) to compute the of Q1 and Q2.

Note that the answer is not the same as P1.is example in-

troducesnonintegeroperationsinto the computation,caus-ing difficulties with the algorithm.61 To understand

61In an implementation like Scheme, this produces a polynomial that is indeed

a divisor of Q1 and Q2, but with rational coefficients. In many other Scheme systems,

in which division of integers can produce limited-precision decimal numbers, we may

fail to get a valid divisor.

289

what is happening, try tracing gcd-terms while comput-

ing the or try performing the division by hand.

Wecansolve the problemexhibitedinExercise2.95if we usethe follow-

ing modification of the algorithm (which really works only in the

case of polynomials with integer coefficients). Before performing any

polynomial division in the computation, we multiply the dividend

by an integer constant factor, chosen to guarantee that no fractions will

arise during the division process. Our answer will thus differ from the

actual by an integer constant factor, but this does not maer in the

case ofreducing rational functionsto lowest terms;the willbe used

to divide both the numerator and denominator, so the integer constant

factor will cancel out.

More precisely, ifP and Q are polynomials, let O1 be the order ofP

(i.e., the order ofthe largest term of P) and letO2 be the order ofQ. Letcbe the leading coefficient ofQ. en it can be shown that, ifwe multiply

P by the integerizingfactor c1+O1

dividedbyQ byusingthe div-termsalgorithmwithoutintroducingany

fractions. e operation of multiplying the dividend by this constant

and then dividing is sometimes called the pseudodivision of P by Q. e

remainder of the division is called the pseudoremainder.

−O2, the resulting polynomial can be

Exercise 2.96:

a. Implementtheprocedure pseudoremainder-terms,whichis just like remainder-terms except that it multiplies

thedividendbytheintegerizingfactordescribedabove

before calling
div-terms.

Modify gcd-terms to use

pseudoremainder-terms, and verify that greatest-

common-divisor now produces an answer with inte

ger coefficients on the example in Exercise 2.95.

290

b. e now has integer coefficients, but they are

larger than those of P1. Modify gcd-terms so that it

removes common factors from the coefficients of the

answer by dividing all the coefficients by their (inte-

ger) greatest common divisor.

us, here is how to reduce a rational function to lowest terms:

• Compute the of the numerator and denominator, using the

version of gcd-terms from Exercise 2.96.

• When you obtain the , multiply both numerator and denomi-

nator by the same integerizing factor before dividing through by

the , so that divisionby the will not introduce any nonin-

tegercoefficients.Asthefactoryoucanuse theleadingcoefficient

of the raised to the power 1 +O1 −O2, where O2 is the order

ofthe andO1 is the maximum of the orders ofthe numerator

and denominator. is will ensure that dividing the numerator

and denominator by the will not introduce any fractions.

• e result of this operation will be a numerator and denominator

with integer coefficients. e coefficients will normally be very

large because of all ofthe integerizingfactors, so the last stepisto

remove the redundant factors by computing the (integer)greatest

common divisor of all the coefficients of the numerator and the

denominator and dividing through by this factor.

Exercise 2.97:

a. Implementthisalgorithmasaprocedure reduce-terms

that takes two term lists n and d as arguments and re-

291

turns a list nn, dd, which are n and d reduced to low-

est terms via the algorithm given above. Also write a

procedure reduce-poly, analogous to add-poly, that

checks to see if the two polys have the same variable.

If so, reduce-poly strips off the variable and passes

theproblemto reduce-terms,thenreaachesthevari-

able to the two term lists supplied by reduce-terms.

b. Define a procedure analogous to reduce-terms that

does what the original
make-rat did for integers:

(define (reduce-integers n d)

(let ((g (gcd n d)))

(list (/ n g) (/ d g))))

and define reduce as a generic operation that calls

apply-generictodispatchtoeither reduce-poly(forpolynomialarguments)or reduce-integers(for scheme-

numberarguments).Youcannoweasilymaketherational-

arithmetic package reduce fractions to lowest terms

by having make-rat call reduce before combining the

given numerator and denominator to form a ratio-

nal number. e system now handles rational expres-

sions in either integers or polynomials. To test your

program, try the example at the beginning of this ex-

tended exercise:

(define p1 (make-polynomial 'x '((1 1) (0 1))))

'x '((31) (0 -1))))

(define p3 (make-polynomial 'x '((1 1))))

(define p4 (make-polynomial 'x '((2 1) (0 -1))))

(define rf1 (make-rational p1 p2))

(define rf2 (make-rational p3 p4))

(define p2 (make-polynomial

292

(add rf1 rf2)

See ifyou get the correct answer, correctly reduced to

lowest terms.

e computation is at the heart of any system that does opera-

tions on rational functions. e algorithm used above, although mathe-

matically straightforward, is extremely slow. e slowness is due partly

to the large number of division operations and partly to the enormous

size of the intermediate coefficients generated by the pseudodivisions.

One of the active areas in the development of algebraic-manipulation

systems is the design of beer algorithms for computing polynomial

s.62

62One extremely efficient and elegant method for computing polynomial s was

discovered by Richard Zippel (1979). e method is a probabilistic algorithm, as is the

fast test for primality that we discussed in Chapter 1. Zippel’s book (Zippel 1993) de-

scribes this method, together with other ways to compute polynomial s.

293

Modularity, Objects, and State

Mεταβάλλον ὰναπαύεται

(Even while it changes, it stands still.)

—Heraclitus

Plus ça change, plus c’est la même chose.

—Alphonse Karr

T introducedthebasicelementsfromwhich

programs are made. We saw how primitive procedures and primi-

tive data are combined to construct compound entities, and we learned

that abstraction is vital in helping us to cope with the complexity of

large systems. But these tools are not sufficient for designing programs.

Effective program synthesis also requires organizational principles that

can guide us in formulating the overall design of a program. In partic-

ular, we need strategies to help us structure large systems so that they

294

will be modular, that is, so that they can be divided “naturally” into co-

herent parts that can be separately developed and maintained.

One powerful design strategy, which is particularly appropriate to

the construction of programs for modeling physical systems, is to base

the structure of our programs onthe structure ofthe system beingmod-eled. For each object in the system, we construct a corresponding com-

putational object. For each system action, we define a symbolic opera-

tion in our computational model. Our hope in using this strategy is that

extending the model to accommodate new objects or new actions will

require no strategic changes to the program, only the addition of the

new symbolic analogs of those objects or actions. If we have been suc-

cessful in our system organization, then to add a new feature or debug

an old one we will have to work on only a localized part of the system.

To a large extent, then, the way we organize a large program is dic-

tated by our perception of the system to be modeled. In this chapter we

will investigate two prominent organizational strategies arising from

two rather different “world views” of the structure of systems. e first

organizational strategy concentrates on objects, viewing a large system

as a collection of distinct objects whose behaviors may change over

time.Analternativeorganizationalstrategyconcentratesonthe streams

of information that flow in the system, much as an electrical engineer

views a signal-processing system.

Boththeobject-basedapproachandthestream-processingapproach

raisesignificantlinguisticissuesinprogramming.Withobjects,wemust

beconcernedwithhowacomputationalobjectcanchangeandyetmain-

tainits identity.is will force us to abandon ourold substitutionmodelof computation (Section 1.1.5) in favor of a more mechanistic but less

theoretically tractable environment model of computation. e difficul-

tiesof dealing with objects, change, and identity are a fundamental con

295

sequence ofthe need to grapple with time inour computational models.

ese difficulties become even greater when we allow the possibility of

concurrent execution of programs. e stream approach can be most

fully exploited when we decouple simulated time in our model from the

order of the events that take place in the computer during evaluation.

We will accomplish this using a technique known as delayed evaluation.

3.1 Assignment and Local State

Weordinarily viewthe world aspopulatedby independentobjects,eachof which has a state that changes over time. An object is said to “have

state” if its behavior is influenced by its history. A bank account, for

example, has state in that the answer to the question “Can I withdraw

$100?” depends upon the history of deposit and withdrawal transac-

tions. We can characterize an object’s state by one or more state vari-

ables, which among them maintain enough information about history

to determine the object’s current behavior. In a simple banking system,

we couldcharacterize thestate ofanaccount by acurrentbalance rather

than by remembering the entire history of account transactions.

In a system composed of many objects, the objects are rarely com-

pletely independent. Each may influence the states of others through

interactions, which serve to couple the state variables of one object to

those of other objects. Indeed, the view that a system is composed of

separate objects is most useful when the state variables of the system

can be grouped into closely coupled subsystems that are only loosely

coupled to other subsystems.

is view of a system can be a powerful framework for organizing

computational models of the system. For such a model to be modular, it

should be decomposed into computational objects that model the actual

296

objects in the system. Each computational object must have its own lo-

cal state variables describing the actual object’s state. Since the states of

objects in the system being modeled change over time, the state vari-

ables of the corresponding computational objects must also change. If

we choose to model the flow of time in the system by the elapsed time

in the computer, then we must have a way to construct computational

objects whose behaviors change as our programs run. In particular, if

we wish to model state variables by ordinary symbolic names in the

programming language, then the language must provide an assignment

operator to enable us to change the value associated with a name.

3.1.1 Local State Variables

Toillustratewhatwe meanby havingacomputationalobject with time-

varying state, let us model the situation of withdrawing money from a

bank account. We will do this using a procedure withdraw, which takes

as argument an amount to be withdrawn. If there is enough money in

the account to accommodate the withdrawal, then withdraw should re-

turn the balance remaining aer the withdrawal. Otherwise, withdraw

should return the message Insufficientfunds. For example, if we begin

with $100 in the account, we should obtain the following sequence of

responses using
withdraw:

(withdraw 25)

75

(withdraw 25)

50

(withdraw 60)

"Insufficient funds"

(withdraw 15)

35

297

Observe that the expression (withdraw 25), evaluated twice, yields

different values. is is a new kind of behavior for a procedure. Until

now, all our procedures could be viewed as specifications for comput-

ing mathematical functions. Acall to aprocedure computedthe valueofthe function applied to the given arguments, and two calls to the same

procedure with the same arguments always produced the same result.1

To implement withdraw, we can use a variable balance to indicate

the balance ofmoney inthe account and define withdrawasaprocedure

thataccesses balance.e withdrawprocedurecheckstoseeif balance

is at least as large as the requested amount. If so, withdraw decrements

balance
by

amount and returns the new value of balance. Otherwise,

withdrawreturns the Insufficientfunds message.Here arethe definitions

of balance and withdraw:

(define balance 100)

(define (withdraw amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds"))

Decrementing balance is accomplished by the expression

(set! balance (- balance amount))

is uses the set! special form, whose syntax is

(set! ⟨name⟩ ⟨new-value⟩)

1Actually, this is not quite true. One exception was the random-number generator

in Section 1.2.6. Another exception involved the operation/type tables we introduced in

Section 2.4.3, where the values of two calls to get with the same arguments depended

on intervening calls to put. On the other hand, until we introduce assignment, we have

no way to create such procedures ourselves.

298

Here⟨name⟩isasymboland⟨new-value⟩isanyexpression. Set!changes

⟨name⟩sothat its value is the result obtained by evaluating⟨new-value⟩.

In the case at hand, we are changing balance so that its new value will

be theresult ofsubtracting amount from the previousvalue of balance.2

Withdraw also uses the begin special form to cause two expressions

to be evaluated in the case where the if test is true: first decrementing

balanceand thenreturningthe value of balance. Ingeneral,evaluating

the expression

(begin ⟨exp1⟩ ⟨exp2⟩ ... ⟨expk⟩)

causes the expressions ⟨exp1⟩ through ⟨expk⟩ to be evaluated in se-

quence and the value of the final expression ⟨expk⟩ to be returned as

the value of the entire begin form.3

Although withdraw works as desired, the variable balance presents

a problem. As specified above, balance is a name defined in the global

environment and is freely accessible to be examined or modified by any

procedure. It would be much beer ifwe could somehow make balance

internal to withdraw, so that withdraw would be the only procedure

that couldaccess balance directly andanyother procedurecouldaccess

balance
only indirectly (through calls to withdraw). is would more

accurately model the notion that balance is a local state variable used

2e value of a set! expression is implementation-dependent. Set! should be used

only for its effect, not for its value.

e name set! reflects anamingconvention usedin Scheme: Operations thatchange

the values of variables (or that change data structures, as we will see in Section 3.3) are

given names that end with an exclamation point. is is similar to the convention of

designating predicates by names that end with a question mark.

3We have already used begin implicitly in our programs, because in Scheme the

body of a procedure can be a sequence of expressions. Also, the ⟨consequent⟩ part of

each clause in a cond expression can be a sequence of expressions rather than a single

expression.

299

by
withdraw to keep track of the state of the account.

We can make balance internal to withdraw by rewriting the defi-

nition as follows:

(define new-withdraw

(let ((balance 100))

(lambda (amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds"))))

What we have done here is use let to establish an environment with a

local variable balance, bound to the initial value 100. Within this local

environment, we use lambda to create a procedure that takes amount as

an argument and behaves like our previous withdraw procedure. is

procedure—returned as the result of evaluating the let expression—is

new-withdraw, which behaves in precisely the same way as withdraw

but whose variable balance is not accessible by any other procedure.4

Combining
set! with local variables is the general programming

technique we will use for constructing computational objects with lo-

cal state. Unfortunately, using this technique raises a serious problem:

When we first introduced procedures, we also introduced the substi-

tution model of evaluation (Section 1.1.5) to provide an interpretation

of what procedure application means. We said that applying a proce-

dure should be interpreted as evaluating the body ofthe procedure with

the formal parameters replaced by their values. e trouble is that, as

4In programming-language jargon, the variable balance is said to be encapsulated

within the new-withdraw procedure. Encapsulation reflects the general system-design

principle known as the hiding principle: One can make a system more modular and ro-

bust by protectingparts of thesystemfromeach other; thatis, by providinginformation

access only to those parts of the system that have a “need to know.”

300

soon as we introduce assignment into our language, substitution is no

longer an adequate model of procedure application. (We will see why

this is so in Section 3.1.3.) As a consequence, we technically have at

this point no way to understand why the new-withdraw procedure be-

haves as claimed above. In order to really understand a procedure such

as new-withdraw, we will need to developa new model ofprocedure ap-

plication. In Section 3.2 we will introduce such a model, together with

an explanation of set! and local variables. First, however, we examine

some variations on the theme established by new-withdraw.

e following procedure, make-withdraw, creates “withdrawal pro

cessors.” e formal parameter balance in make-withdraw specifies the

initial amount of money in the account.5

(define (make-withdraw balance)

(lambda (amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds")))

Make-withdraw can be used as follows to create two objects
W1 and W2:

(define W1 (make-withdraw 100))

(define W2 (make-withdraw 100))

(W1 50)

50

(W2 70)

30

5In contrast with new-withdraw above, we do not have to use let to make balance

a local variable, since formal parameters are already local. is will be clearer aer the

discussion of the environment model of evaluation in Section 3.2. (See also Exercise

3.10.)

301

(W2 40)

"Insufficient funds"

(W1 40)

10

Observe that W1 and W2 are completely independent objects, each with

itsownlocalstatevariable balance.Withdrawalsfromone donot affect

the other.

We can also create objects that handle deposits as well as with-

drawals, and thus we can represent simple bank accounts. Here is a

procedure that returns a “bank-account object” with a specified initial

balance:

(define (make-account balance)

(define (withdraw amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount))

balance)

(define (dispatch m)

(cond ((eq? m 'withdraw) withdraw)

((eq? m 'deposit) deposit)

(else (error "Unknown request: MAKE-ACCOUNT"

m))))

dispatch)

Each call to make-account sets up an environment with a local state

variable balance. Within this environment, make-account defines pro-

cedures deposit and withdraw that access balance and an additional

procedure dispatch that takes a “message” as input and returns one of

302

the two local procedures. e dispatch procedure itself is returned as

the value that represents the bank-account object. is is precisely the

message-passing style of programming that we saw in Section 2.4.3, al-

though here we are using it in conjunction with the ability to modify

local variables.

Make-account can be used as follows:

(define acc (make-account 100))

((acc 'withdraw) 50)

50

((acc 'withdraw) 60)

"Insufficient funds"

((acc 'deposit) 40)

90

((acc 'withdraw) 60)

30

Each call to acc returns the locally defined deposit or withdraw pro

cedure, which is then applied to the specified amount. As was the case

with make-withdraw, another call to make-account

(define acc2 (make-account 100))

will produce a completely separate account object, which maintains its

own local balance.

Exercise 3.1: An accumulator is a procedure that is called

repeatedly with a single numeric argument and accumu

lates its arguments into a sum. Each time it is called, it

returns the currently accumulated sum. Write a procedure

make-accumulatorthatgeneratesaccumulators,eachmain-

taininganindependentsum.einputto make-accumulator

should specify the initial value of the sum; for example

303

(define A (make-accumulator 5))

(A 10)

15

(A 10)

25

Exercise 3.2: In soware-testing applications, it is useful

to be able to count the number of times a given procedure

is called during the course of a computation. Write a pro-

cedure make-monitored that takes as input a procedure, f,

that itself takes one input. e result returned by make-

monitored is a third procedure, say mf, that keeps track

of the number of times it has been called by maintaining

an internal counter. If the input to mf is the special symbol

how-many-calls?, then mf returns the value ofthe counter.

If the input is the special symbol reset-count, then mf re-

sets the counter to zero. For any other input, mf returns the

result of calling
f onthat input and increments the counter.

For instance, we could make a monitored version of the

sqrt procedure:

(define s (make-monitored sqrt))

(s 100)

10

(s 'how-many-calls?)

1

Exercise 3.3: Modify the make-account procedure so that

itcreatespassword-protectedaccounts.atis, make-account

should take a symbol as an additional argument, as in

(define acc (make-account 100 'secret-password))

304

e resulting account object should process a request only

if it is accompanied by the password with which the ac-

countwascreated,andshouldotherwisereturnacomplaint:

((acc 'secret-password 'withdraw) 40)

60

((acc 'some-other-password 'deposit) 50)

"Incorrect password"

Exercise 3.4: Modify the make-account procedure of Ex-

ercise 3.3 by adding another local state variable so that, if

an account is accessed more than seven consecutive times

with an incorrect password, it invokesthe procedure call-

the-cops.

3.1.2 The Benefits of Introducing Assignment

As we shall see, introducing assignment into our programming lan-

guage leads us into a thicket of difficult conceptual issues. Nevertheless,

viewing systems as collections of objects with local state is a powerful

technique for maintaining a modular design. As a simple example, con-

sider the design ofa procedure rand that, whenever it is called, returns

an integer chosen at random.

It is not at all clear what is meant by “chosen at random.” What we

presumably want is forsuccessive callsto randtoproduce asequence of

numbers that has statistical properties of uniform distribution. We will

not discuss methods for generating suitable sequences here. Rather, let

us assume that we have a procedure rand-update that has the property

that if we start with a given number x1 and form

x2 = (rand-update x1)

x3 = (rand-update x2)

305

thenthe sequence ofvaluesx1,x2,x3, ... will have the desiredstatistical

properties.6

We can implement
rand as a procedure with a local state variable

x that is initialized to some fixed value random-init. Each call to rand

computes rand-update of the current value of x, returns this as the

random number, and also stores this as the new value of x.

(define rand (let ((x random-init))

(lambda ()

(set! x (rand-update x))

x)))

Of course, we could generate the same sequence of random numbers

withoutusingassignmentbysimplycalling rand-updatedirectly.How-

ever, this would mean that any part of our program that used random

numbers would have to explicitly remember the current value of x to

be passed as an argument to rand-update. To realize what an annoy-

ance this would be, consider using random numbers to implement a

technique called Monte Carlo simulation.

e Monte Carlo method consists of choosing sample experiments

at random from a large set and then making deductions on the basis of

6One common way to implement rand-update is to use the rule that x is updated

to ax + b modulo m, where a, b, and m are appropriately chosen integers. Chapter 3

of Knuth 1981 includes an extensive discussion of techniques for generating sequences

of random numbers and establishing their statistical properties. Notice that the rand-

update procedure computes a mathematical function: Given the same input twice, it

produces the same output. erefore, the number sequence produced by rand-update

certainly is not “random,” if by “random” we insist that each number in the sequence

is unrelated to the preceding number. e relation between “real randomness” and so-

called pseudo-randomsequences, which areproduced by well-determinedcomputationsand yet have suitable statistical properties, is a complex question involving difficult

issuesin mathematicsandphilosophy.Kolmogorov,Solomonoff, andChaitin havemade

great progress in clarifying these issues; a discussion can be found in Chaitin 1975.

306

the probabilities estimated from tabulating the results of those experi-

ments. For example, we can approximate π using the fact that 6/π2 is

the probability that two integers chosen at random will have no fac-

tors in common; that is, that their greatest common divisor will be 1.7

To obtain the approximation to π, we perform a large number of ex-

periments. In each experiment we choose two integers at random and

perform a test to see if their is 1. e fraction of times that the test

is passed gives us our estimate of 6/π2, and from this we obtain our

approximation to π.

e heart of our program is a procedure monte-carlo, which takes

as arguments the number of times to try an experiment, together with

the experiment, represented as a no-argument procedure that will re-

turn either true or false each time it is run. Monte-carlo runs the exper-

iment for the designated number of trials and returns a number telling

the fraction of the trials in which the experiment was found to be true.

(define (estimate-pi trials)

(sqrt (/ 6 (monte-carlo trials cesaro-test))))

(define (cesaro-test)

(= (gcd (rand) (rand)) 1))

(define (monte-carlo trials experiment)

(define (iter trials-remaining trials-passed)

(cond ((= trials-remaining 0)

(/ trials-passed trials))

((experiment)

(iter (- trials-remaining 1)

(+ trials-passed 1)))

(else

7is theorem is due to E. Cesàro. See section 4.5.2 of Knuth 1981 for a discussion

and a proof.

307

(iter (- trials-remaining 1)

trials-passed))))

(iter trials 0))

Now let us try the same computation using rand-update directly rather

than rand, the way we would be forced to proceed if we did not use

assignment to model local state:

(define (estimate-pi trials)

(sqrt (/ 6 (random-gcd-test trials random-init))))

(define (random-gcd-test trials initial-x)

(define (iter trials-remaining trials-passed x)

(let ((x1 (rand-update x)))

(let ((x2 (rand-update x1)))

(cond ((= trials-remaining 0)

(/ trials-passed trials))

((= (gcd x1 x2) 1)

(iter (- trials-remaining 1)

(+ trials-passed 1)

x2))

(else

(iter (- trials-remaining 1)

trials-passed

x2))))))

(iter trials 0 initial-x))

While the program is still simple, it betrays some painful breaches of

modularity. In our first version of the program, using rand, we can ex-

press the Monte Carlo method directly as a general monte-carlo proce-

dure that takes as an argument an arbitrary experiment procedure. In

our second version of the program, with no local state for the random-

numbergenerator, random-gcd-testmustexplicitlymanipulatetheran-

dom numbers x1 and x2 and recycle x2 through the iterative loop as

the new input to rand-update. is explicit handling of the random

308

numbers intertwines the structure of accumulating test results with the

fact that our particular experiment uses two random numbers, whereas

otherMonte Carlo experimentsmight use one random numberor three.

Even the top-level procedure estimate-pi has to be concerned with

supplying an initial random number. e fact that the random-number

generator’sinsidesareleakingoutintootherpartsoftheprogrammakes

it difficult for us to isolate the Monte Carlo idea so that it can be applied

to other tasks. In the first version of the program, assignment encapsu-

lates the state of the random-number generator within the rand proce-

dure, so that the details ofrandom-number generation remain indepen-

dent of the rest of the program.

e general phenomenon illustrated by the Monte Carlo example is

this: From the point ofview of one part of a complex process, the other

parts appear to change with time. ey have hidden time-varying local

state. If we wish to write computer programs whose structure reflects

this decomposition, we make computational objects (such as bank ac-

counts and random-number generators) whose behavior changes with

time.Wemodelstatewithlocalstatevariables,andwemodelthechanges

of state with assignments to those variables.

It is tempting to conclude this discussion by saying that, by intro-

ducing assignment and the technique of hiding state in local variables,

we are able to structure systems in a more modular fashion than if all

statehadtobe manipulatedexplicitly,bypassingadditional parameters.

Unfortunately, as we shall see, the story is not so simple.

Exercise 3.5: Monte Carlo integration is a method of esti-

mating definite integrals by means of Monte Carlo simula-

tion. Consider computing the area of a region of space de-

scribed by a predicate P(x,y) that is true for points (x,y)in the region and false for points not in the region. For

309

example, the region contained within a circle of radius 3

centered at (5, 7) is described by the predicate that tests

whether (x −5)2 +(y −7)2 ≤ 32. To estimate the area of the

region described by such a predicate, begin by choosing a

rectangle that contains the region. For example, a rectangle

with diagonally opposite corners at (2, 4) and (8, 10) con-

tains the circle above. e desired integral is the area of

that portion of the rectangle that lies in the region. We can

estimate the integral by picking, at random, points (x,y)that lie in the rectangle, and testing P(x,y) for each point

to determine whether the point lies in the region. If we try

this with many points, then the fraction of points that fall

in the region should give an estimate of the proportion of

the rectangle that liesinthe region. Hence, multiplyingthisfraction by the area of the entire rectangle should produce

an estimate of the integral.

ImplementMonteCarlointegrationasaprocedure estimate-

integral that takes as arguments a predicate P, upper and

lower bounds x1, x2, y1, and y2 for the rectangle, and the

number of trials to perform in order to produce the esti

mate. Your procedure should use the same monte-carlo

procedurethatwasusedabovetoestimateπ.Useyour estimate-

integral to produce an estimate of π by measuring the

area of a unit circle.

You will find it useful to have a procedure that returns a

number chosen at random from a given range. e follow-

ing random-in-range procedure implements this in terms

of the random procedure used in Section 1.2.6, which re-

310

turns a nonnegative number less than its input.8

(define (random-in-range low high)

(let ((range (- high low)))

(+ low (random range))))

Exercise3.6:Itisusefultobeabletoresetarandom-number

generatortoproduceasequencestartingfromagivenvalue.

Design a new rand procedure that is called with an ar-

gument that is either the symbol generate or the symbol

reset and behaves as follows: (rand 'generate) produces

a new random number; ((rand 'reset) ⟨new-value⟩) re-

setstheinternalstatevariabletothedesignated⟨new-value⟩.

us, by reseing the state, one can generate repeatable se-

quences. ese are very handy to have when testing and

debugging programs that use random numbers.

3.1.3 The Costs of Introducing Assignment

As we have seen, the set!
operation enables us to model objects that

have local state. However, this advantage comes at a price. Our pro-

gramming language can no longer be interpreted in terms of the sub-

stitution model of procedure application that we introduced in Section

1.1.5. Moreover, no simple model with “nice” mathematical properties

can be an adequate framework for dealing with objects and assignment

in programming languages.

So long as we do not use assignments, two evaluations of the same

procedure with the same arguments will produce the same result, so

8 Scheme provides such a procedure. If random is given an exact integer (as in

Section 1.2.6) it returns an exact integer, but if it is given a decimal value (as in this

exercise) it returns a decimal value.

311

that procedures can be viewed as computing mathematical functions.

Programming without any use of assignments, as we did throughout

the first two chapters of this book, is accordingly known as functional

programming.

Tounderstandhowassignment complicatesmaers,considerasim-

plified version of the make-withdraw procedure of Section 3.1.1 that

does not bother to check for an insufficient amount:

(define (make-simplified-withdraw balance)

(lambda (amount)

(set! balance (- balance amount))

balance))

(define W (make-simplified-withdraw 25))

(W 20)

5

(W 10)

-5

Compare this procedure with the following
make-decrementer proce

dure, which does not use set!:

(define (make-decrementer balance)

(lambda (amount)

(- balance amount)))

Make-decrementer returns a procedure that subtracts its input from a

designated amount balance, but there is no accumulated effect over

successivecalls,aswithmake-simplified-withdraw:

(define D (make-decrementer 25))

(D 20)

5

(D 10)

15

312

We can use the substitution model to explain how make-decrementer

works. For instance, let us analyze the evaluation of the expression

((make-decrementer 25) 20)

We first simplify the operator of the combination by substituting 25 for

balance in the body of make-decrementer. is reduces the expression

to

((lambda (amount) (- 25 amount)) 20)

Now we apply the operator by substituting 20 for amount in the body

of the lambda expression:

(- 25 20)

e final answer is 5.

Observe,however,whathappensifweaemptasimilarsubstitution

analysis with make-simplified-withdraw:

((make-simplified-withdraw 25) 20)

Wefirst simplify the operatorby substituting25for
balance inthebody

of make-simplified-withdraw. is reduces the expression to9

((lambda (amount) (set! balance (- 25 amount)) 25) 20)

Now we apply the operator by substituting 20 for amount in the body

of the lambda expression:

(set! balance (- 25 20)) 25

If we adhered to the substitution model, we would have to say that the

meaningoftheprocedureapplicationistofirstset balanceto5andthen

9We don’t substitute for the occurrence of balance in the set! expression because

the ⟨name⟩ in a set! is not evaluated. If we did substitute for it, we would get (set!

25 (- 25 amount)), which makes no sense.

313

return 25 as the value of the expression. is gets the wrong answer. In

order to get the correct answer, we would have to somehow distinguish

the first occurrence of balance (before the effect of the set!) from the

second occurrence of balance (aer the effect of the set!), and the

substitution model cannot do this.

e trouble here is that substitution is based ultimately on the no-

tion that the symbols in our language are essentially names for values.

But as soon as we introduce set! and the idea that the value ofa vari

able can change, a variable can no longer be simply a name. Now a

variable somehow refers to a place where a value can be stored, and the

value stored at this place can change. In Section 3.2 we will see how

environments play this role of “place” in our computational model.

Sameness and change

e issue surfacing here is more profound than the mere breakdown of

aparticular model of computation. Assoon as we introduce change into

our computational models, many notions that were previously straight-

forward become problematical. Consider the concept of two things be

ing “the same.”

Suppose we call make-decrementer twice with the same argument

to create two procedures:

(define D1 (make-decrementer 25))

(define D2 (make-decrementer 25))

Are D1 and D2 the same? Anacceptable answer isyes, because D1 and D2

have the same computational behavior—each is a procedure that sub-

tracts its input from 25. In fact, D1 could be substituted for D2 in any

computation without changing the result.

Contrastthiswithmakingtwocallsto make-simplified-withdraw:

314

(define W1 (make-simplified-withdraw 25))

(define W2 (make-simplified-withdraw 25))

Are W1 and W2 the same? Surely not, because calls to W1 and W2 have

distinct effects, as shown by the following sequence ofinteractions:

(W1 20)

5

(W1 20)

-15

(W2 20)

5

Even though W1 and W2 are “equal” in the sense that they are both cre

ated by evaluating the same expression, (make-simplified-withdraw

25), it is not true that W1 could be substituted for W2 in any expression

without changing the result of evaluating the expression.

Alanguagethatsupportstheconcept that“equalscanbesubstituted

for equals” in an expression without changing the value of the expres-

sion is said to be referentially transparent. Referential transparency is

violated when we include set! in our computer language. is makes

it tricky to determine whenwe can simplify expressionsby substituting

equivalent expressions. Consequently, reasoning about programs that

use assignment becomes drastically more difficult.

Once we forgoreferential transparency, the notionof what it means

for computational objects to be “the same” becomes difficult to capture

inaformalway.Indeed,themeaningof“same”intherealworldthat our

programs model is hardly clear in itself. In general, we can determine

that two apparently identical objects are indeed “the same one” only by

modifying one object and then observing whether the other object has

changed in the same way. But how canwe tell if anobject has “changed”

other than by observing the “same” object twice and seeing whether

315

some property of the object differs from one observation to the next?

us, we cannot determine “change” without some a priori notion of

“sameness,” and we cannot determine sameness without observing the

effects of change.

As an example of how this issue arises in programming, consider

the situation where Peter and Paul have a bank account with $100 in it.

ere is a substantial difference between modeling this as

(define peter-acc (make-account 100))

(define paul-acc (make-account 100))

and modeling it as

(define peter-acc (make-account 100))

(define paul-acc peter-acc)

In the first situation, the two bank accounts are distinct. Transactions

made by Peter will not affect Paul’s account, and vice versa. In the sec-

ond situation, however, we have defined paul-acc to be the same thing

as peter-acc. In effect, Peter and Paul now have ajoint bank account,

and if Peter makes a withdrawal from peter-acc Paul will observe less

money in paul-acc. ese two similar but distinct situations can cause

confusion in building computational models. With the shared account,

in particular, it can be especially confusing that there is one object (the

bank account) that has two different names (peter-acc and paul-acc);

if we are searching for all the places in our program where paul-acc

can be changed, we must remember to look also at things that change

peter-acc.10

10ephenomenon ofa single computational object being accessedby more than one

name is known as aliasing. e joint bank account situation illustrates a very simple

example of an alias. In Section 3.3 we will see much more complex examples, such as

“distinct” compound data structures that share parts. Bugs can occur in our programs

316

With reference to the above remarks on “sameness” and “change,”

observe that if Peter and Paul could only examine their bank balances,

and could not perform operations that changed the balance, then the is-

sue ofwhether the two accounts are distinct would be moot. In general,

so long as we never modify data objects, we can regard a compound

data object to be precisely the totality ofits pieces. For example, a ratio-

nal number is determined by giving its numerator and its denominator.

But this view is no longer valid in the presence of change, where a com-

pound data object has an “identity” that is something different from the

pieces of which it is composed. A bank account is still “the same” bank

account even if we change the balance by making a withdrawal; con

versely, we could have two different bank accounts with the same state

information. is complication is a consequence, not of our program-

ming language, but of our perception ofa bank account as an object. We

do not, for example, ordinarily regard a rational number as a change-

able object with identity, such that we could change the numerator and

still have “the same” rational number.

Pitfalls of imperative programming

In contrast to functional programming, programming that makes ex

tensive use of assignment is known as imperative programming. In ad-

dition to raising complications about computational models, programs

wrien in imperative style are susceptible to bugs that cannot occur in

functional programs. For example, recall the iterative factorial program

if we forget that a change to an object may also, as a “side effect,” change a “different”

object because the two “different” objects are actually a single object appearing under

different aliases. ese so-called side-effect bugs are so difficult to locate and to analyze

that some people have proposed that programming languages be designed in such a

way as to not allow side effects or aliasing (Lampson et al. 1981; Morris et al. 1980).

317

from Section 1.2.1:

(define (factorial n)

(define (iter product counter)

(if (> counter n)

product

(iter (* counter product) (+ counter 1))))

(iter 1 1))

Instead of passing arguments in the internal iterative loop, we could

adopt a more imperative style by using explicit assignment to update

the values of the variables product and counter:

(define (factorial n)

(let ((product 1)

(counter 1))

(define (iter)

(if (> counter n)

product

(begin (set! product (* counter product))

(set! counter (+ counter 1))

(iter))))

(iter)))

is does not change the results produced by the program, but it does

introduce a subtle trap. Howdo we decide the orderof the assignments?

As it happens, the program is correct as wrien. But writing the assign

ments in the opposite order

(set! counter (+ counter 1))

(set! product (* counter product))

would have produced a different, incorrect result. In general, program-

ming with assignment forces us to carefully consider the relative orders

ofthe assignmentsto make sure that each statement is using the correct

318

version of the variables that have been changed. is issue simply does

not arise in functional programs.11

e complexity of imperative programs becomes even worse if we

consider applications in which several processes execute concurrently.

We will return to this in Section 3.4. First, however, we will address the

issue of providing a computational model for expressions that involve

assignment, and explore the usesof objects with local state in designing

simulations.

Exercise3.7: Consider the bank account objects created by

make-account, with the password modification described

in Exercise 3.3. Suppose that our banking system requires

theabilitytomakejointaccounts.Defineaprocedure make-

jointthataccomplishesthis. Make-jointshouldtakethree

arguments. e first is a password-protected account. e

second argument must match the password with which the

account was defined in order for the make-joint operation

to proceed. e third argument is a new password. Make-

joint is to create an additional access to the original ac-

count using the new password. For example, if peter-acc

is a bank account with password open-sesame, then

(define paul-acc

(make-joint peter-acc 'open-sesame 'rosebud))

11In view of this, it is ironic that introductory programming is most oen taught

in a highly imperative style. is may be a vestige of a belief, common throughout

the 1960s and 1970s, that programs that call procedures must inherently be less effi-

cient than programs that perform assignments. (Steele 1977 debunks this argument.)

Alternatively it may reflect a view that step-by-step assignment is easier for beginners

to visualize than procedure call. Whatever the reason, it oen saddles beginning pro-

grammers with “should I set this variable before or aer that one” concerns that can

complicate programming and obscure the important ideas.

319

willallowone tomaketransactionson peter-accusingthe

name paul-acc and the password rosebud. You may wish

tomodifyyoursolutiontoExercise 3.3toaccommodatethisnew feature.

Exercise 3.8: When we defined the evaluation model in

Section 1.1.3, we said that the first step in evaluating an

expression is to evaluate its subexpressions. But we never

specified the order in which the subexpressions should be

evaluated (e.g., le to right or right to le). When we in-

troduce assignment, the order in which the arguments to a

procedure are evaluated can make a difference to the result.

Define a simple procedure f such that evaluating

(+ (f 0) (f 1))

will return 0 ifthe arguments to + are evaluated from le to

right but will return 1 if the arguments are evaluated from

right to le.

3.2 The Environment Model of Evaluation

When we introduced compound procedures in Chapter 1, we used the

substitution model of evaluation (Section 1.1.5) to define what is meant

by applying a procedure to arguments:

• To apply a compound procedure to arguments, evaluate the body

ofthe procedure with each formal parameter replaced by the cor-

responding argument.

Once we admit assignment into our programming language, such a def-

inition is no longer adequate. In particular, Section 3.1.3 argued that, in

320

the presence of assignment, a variable can nolonger be considered to be

merely a name for a value. Rather, a variable must somehow designate

a “place” in which values can be stored. In our new model of evaluation,

these places will be maintained in structures called environments.

An environment is a sequence offrames. Each frame is a table (pos-

sibly empty) of bindings, which associate variable names with their cor-

responding values. (A single frame may contain at most one binding

for any variable.) Each frame also has a pointer to its enclosing environ-

ment, unless, for the purposes of discussion, the frame is considered to

be global. e value ofa variable with respect to an environment is the

value given by the binding of the variable in the first frame in the en-

vironment that contains a binding for that variable. If no frame in the

sequence specifies a binding for the variable, then the variable is said to

be unbound in the environment.

Figure 3.1 shows a simple environment structure consisting ofthree

frames, labeledI,II,and III.Inthe diagram,A,B,C,andDare pointerstoenvironments. C and D point to the same environment. e variables z

and xare boundinframeII,while yand x areboundinframeI.e value

of x in environment D is 3. e value of x with respect to environment

B is also 3. is is determined as follows: We examine the first frame in

the sequence (frame III) and do not find a binding for x, so we proceed

to the enclosing environment D and find the binding in frame I. On the

other hand, the value of x in environment A is 7, because the first frame

in the sequence (frame II) contains a binding of x to 7. With respect to

environment A, the binding of x to 7 in frame II is said to shadow the

binding of x to 3 in frame I.

e environment is crucial to the evaluation process, because it de-

termines the context in which an expression should be evaluated. In-

deed, one could say that expressions in a programming language do

321

A B

C D

I

II III

z:6

x:7

m:1

y:2

x:3

y:5

Figure 3.1: A simple environment structure.

not, in themselves, have any meaning. Rather, an expression acquires a

meaning only with respect to some environment in which it is evalu-

ated. Even the interpretation of an expression as straightforward as (+

1 1) depends on an understanding that one is operating in a context in

which + is the symbol for addition. us, in our model of evaluation we

willalwaysspeakofevaluatinganexpressionwithrespecttosomeenvi-

ronment. To describe interactions with the interpreter, we will suppose

that there is a global environment, consisting ofa single frame (with no

enclosing environment) that includes values for the symbols associated

with the primitive procedures. For example, the idea that + is the sym-

bol for addition is captured by saying that the symbol + is bound in the

global environment to the primitive addition procedure.

3.2.1 The Rules for Evaluation

e overall specificationof how the interpreter evaluatesa combination

remains the same as when we first introduced it in Section 1.1.3:

322

• To evaluate a combination:

1. Evaluate the subexpressions of the combination.12

2. Apply the value ofthe operator subexpressiontothe values ofthe

operand subexpressions.

e environmentmodelof evaluationreplaces the substitutionmodel in

specifying what it meansto apply a compound procedure to arguments.

Intheenvironmentmodelofevaluation,aprocedure isalwaysapairconsisting of some code and a pointer to an environment. Procedures

arecreatedinonewayonly:byevaluatingaλ-expression.isproduces

a procedure whose code is obtained from the text of the λ-expression

and whose environment is the environment in which the λ-expression

was evaluated to produce the procedure. For example, consider the pro-

cedure definition

(define (square x)

(* x x))

evaluated in the global environment. e procedure definition syntax

is just syntactic sugar for an underlying implicit λ-expression. It would

have been equivalent to have used

(define square

(lambda (x) (* x x)))

12Assignment introduces a subtlety into step 1 of the evaluation rule. As shown in

Exercise3.8, thepresenceofassignmentallows usto write expressionsthat willproduce

different values depending on the order in which the subexpressions in a combination

are evaluated. us, to be precise, we should specify an evaluation order in step 1 (e.g.,

le to right or right to le). However, this order should always be considered to be

an implementation detail, and one should never write programs that depend on some

particular order. For instance, a sophisticated compiler might optimize a program by

varying the order in which subexpressions are evaluated.

323

other variablesglobal

square:env

(define (square x)

(* x x))

parameters: x

body: (* x x)

Figure 3.2: Environment structure produced by evaluating

(define (square x) (* x x)) in the global environment.

which evaluates (lambda (x) (* x x)) and binds square to the re-

sulting value, all in the global environment.

Figure 3.2 shows the result of evaluating this define expression.

e procedure object is a pair whose code specifies that the procedure

has one formal parameter, namely x, and a procedure body (* x x).

e environment part of the procedure is a pointer to the global envi

ronment, since that is the environment in which the λ-expression was

evaluated to produce the procedure. A new binding, which associates

the procedure object with the symbol square, has been added to the

global frame. In general, define creates definitions by adding bindings

to frames.

Now that we have seenhowproceduresare created,we candescribe

how procedures are applied. e environment model specifies: To ap-

ply a procedure to arguments, create a new environment containing a

frame that binds the parameters to the values ofthe arguments. e en-

closing environment of this frame is the environment specified by the

324

global other variables

env square:

E1(square 5) x:5

(*xx)

parameters:x

body: (* x x)

Figure3.3: Environmentcreatedbyevaluating (square 5)

in the global environment.

procedure. Now, within this new environment, evaluate the procedure

body.

To show how this rule is followed, Figure 3.3 illustrates the environ

ment structure created by evaluating the expression (square 5) in the

global environment, where square is the procedure generated in Figure

3.2. Applying the procedure results in the creation of a new environ

ment, labeled E1 in the figure, that begins with a frame in which x, the

formal parameter for the procedure, is bound to the argument 5. e

pointer leading upward from this frame shows that the frame’s enclos

ing environment is the global environment. e global environment is

chosen here, because this is the environment that is indicated as part

of the square procedure object. Within E1, we evaluate the body of the

procedure, (* x x). Since the value of x in E1 is 5, the result is (* 5

5), or 25.

e environment model of procedure application can be summa

rized by two rules:

325

• A procedure object is applied to a set of arguments by construct-

ingaframe,bindingtheformalparametersofthe proceduretothearguments of the call, and then evaluating the body of the proce-

dure inthe context ofthe new environment constructed. e new

frame has as its enclosing environment the environment part of

the procedure object being applied.

• A procedure is created by evaluating a λ-expression relative to a

given environment. e resulting procedure object is a pair con-

sisting of the text of the λ-expression and a pointer to the envi-

ronment in which the procedure was created.

We also specify that defining a symbol using
define creates a binding

in the current environment frame and assigns to the symbol the indi-

cated value.13 Finally, we specify the behavior of set!, the operation

that forced us to introduce the environment model in the first place.

Evaluating the expression (set! ⟨variable⟩ ⟨value⟩) in some environ-

ment locatesthebindingofthe variable intheenvironment andchanges

that binding to indicate the new value. at is, one finds the first frame

in the environment that contains a binding for the variable and modi-

fies that frame. If the variable is unbound in the environment, then set!

signals an error.

ese evaluation rules, though considerably more complex than the

substitution model, are still reasonably straightforward. Moreover, the

evaluation model, though abstract, provides a correct description of

13
Ifthereis already a binding for thevariable in the current frame, then thebinding is

changed. is is convenient because it allows redefinition of symbols; however, it also

means that define can beused to change values, and this bringsup theissues ofassign-

ment without explicitly using set!. Because of this, some people prefer redefinitions

of existing symbols to signal errors or warnings.

326

how the interpreter evaluates expressions. In Chapter 4 we shall see

how this model can serve as a blueprint for implementing a working

interpreter. e following sections elaborate the details of the model by

analyzing some illustrative programs.

3.2.2 Applying Simple Procedures

When we introduced the substitution model in Section 1.1.5 we showed

how the combination (f 5) evaluates to 136, given the following pro

cedure definitions:

(define (square x)

(* x x))

(define (sum-of-squares x y)

(+ (square x) (square y)))

(define (f a)

(sum-of-squares (+ a 1) (* a 2)))

We can analyze the same example using the environment model. Figure

3.4 shows the three procedure objects created by evaluating the defini-

tionsof f, square,and sum-of-squaresintheglobalenvironment.Each

procedure object consists of some code, together with a pointer to the

global environment.

In Figure 3.5 we see the environment structure created by evaluat-

ing the expression (f 5). e call to f creates a new environment E1

beginning with a frame in which a, the formal parameter of f, is bound

to the argument 5. In E1, we evaluate the body of f:

(sum-of-squares (+ a 1) (* a 2))

To evaluate this combination, we first evaluate the subexpressions. e

first subexpression, sum-of-squares,has avalue that isa procedure ob-

ject. (Notice how this value is found: We first look in the first frame of

327

sum-of-squares:

square:f:globalenv

parameters: a parameters: x parameters: x,y

body: (sum-of-squares(+ a 1)(* a 2)) body:(* x x) body: (+ (square x)

(square y))

Figure 3.4: Procedure objects in the global frame.

E1, which contains no binding for sum-of-squares. en we proceed

to the enclosing environment, i.e. the global environment, and find the

binding shown in Figure 3.4.) e other two subexpressions are evalu-

ated by applying the primitive operations
+ and * to evaluate the two

combinations (+ a 1) and (* a 2) to obtain 6 and 10, respectively.

Now we apply the procedure object sum-of-squares to the argu-

ments 6 and 10. is results in a new environment E2 in which the

formal parameters x and y are bound to the arguments. Within E2 we

evaluate the combination (+ (square x) (square y)).is leads us to

evaluate (square x), where square is found in the global frame and x

is 6. Once again, we set up a new environment, E3, in which x is bound

to 6, and within this we evaluate the body of square, which is (* x x).

Also as part of applying sum-of-squares, we must evaluate the subex

pression (square y), where y is 10. is second call to square creates

another environment, E4, in which x, the formal parameter of square,

328

global

(* x x)

x:10E4(* x x)x:6E3(+ (square x)(square y))x:6

y:10
E2

(sum-of-squares(+ a 1)(* a 2))

a:5E1(f 5)

env

Figure 3.5: Environments created by evaluating (f 5) us-

ing the procedures in Figure 3.4.

is bound to 10. And within E4 we must evaluate (* x x).

e important point to observe is that each call to square creates a

new environment containing a binding for x. We can see here how the

different frames serve to keep separate the different local variables all

named x. Notice that each frame created by square points to the global

environment,since thisisthe environmentindicatedby the squarepro-

cedure object.

Aer the subexpressionsare evaluated, the resultsare returned. e

valuesgeneratedbythetwocallsto squareareaddedby sum-of-squares,and this result is returned by f. Since our focus here is on the environ

ment structures, we will not dwell on how these returned values are

passed from call to call; however, this is also an important aspect of the

evaluation process, and we will return to it in detail in Chapter 5.

Exercise3.9:InSection1.2.1weusedthesubstitutionmodel

toanalyzetwoproceduresforcomputingfactorials,arecur-

329

sive version

(define (factorial n)

(if (= n 1) 1 (* n (factorial (- n 1)))))

and an iterative version

(define (factorial n) (fact-iter 1 1 n))

(define (fact-iter product counter max-count)

(if (> counter max-count)

product

(fact-iter (* counter product)

(+ counter 1)

max-count)))

Show the environment structures created by evaluating

(factorial 6) using each version of the factorial pro-

cedure.14

3.2.3 Frames as the Repository of Local State

We can turn to the environment model to see how procedures and as-

signment can be used to represent objects with local state. As an exam-

ple, consider the “withdrawal processor” from Section 3.1.1 created by

calling the procedure

(define (make-withdraw balance)

(lambda (amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

14e environment model will not clarify our claim in Section 1.2.1 that the inter-

preter can execute a procedure such as fact-iter in a constant amount of space using

tail recursion. We will discuss tail recursion when we deal with the control structure

of the interpreter in Section 5.4.

330

global

env

make-withdraw:

parameters: balance

body: (lambda (amount)

(if (>= balance amount)

(begin (set! balance (-- balance amount))

balance)

"insufficient funds"))

Figure 3.6: Result of defining make-withdraw in the global

environment.

balance)

"Insufficient funds")))

Let us describe the evaluation of

(define W1 (make-withdraw 100))

followed by

(W1 50)

50

Figure 3.6 shows the result of defining the make-withdraw procedure in

the global environment. is produces a procedure object that contains

a pointer to the global environment. So far, this is no different from the

examples we have already seen, except that the body of the procedure

is itself a λ-expression.

331

make-withdraw:
global

env W1:

E1 balance: 100

parameters: balance

body: ...

parameters: amount

body: (if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"insufficient funds")

Figure 3.7: Result of evaluating (define W1 (make-withdraw 100)).

e interestingpart of the computationhappens whenwe apply the

procedure make-withdraw to an argument:

(define W1 (make-withdraw 100))

Webegin,asusual, byseingupanenvironmentE1 inwhich the formal

parameter balance is bound to the argument 100. Within this environ-

ment,weevaluatethebodyof make-withdraw,namelytheλ-expression.

is constructs a new procedure object, whose code is as specified by

the lambda and whose environment is E1, the environment in which

the lambda was evaluated to produce the procedure. e resulting pro-

cedure object is the value returned by the call to make-withdraw. is

is bound to W1 in the global environment, since the define itselfis be-

ing evaluated in the global environment. Figure 3.7 shows the resulting

environment structure.

332

make-withdraw:
global

...

E1

W1:

env balance: 100parameters: amountbody:... amount: 50

Here is the balance

that will be changed

by the set!

(if (>= balance amount)

(begin (set! balance

(- balance amount))

balance)

"insufficient funds")

Figure 3.8: Environments created by applying the procedure object
W1.

Now we can analyze what happens when W1 is applied to an argu-

ment:

(W1 50)

50

We begin by constructing a frame in which amount, the formal pa-

rameter of W1, is bound to the argument 50. e crucial point to ob-

serve is that this frame has as its enclosing environment not the global

environment, but rather the environment E1, because this is the envi-

ronment that is specified by the W1 procedure object. Within this new

environment, we evaluate the body of the procedure:

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds")

333

make-withdraw:global ...

W1:

env

E1 balance: 50

parameters: amount

body:
...

Figure 3.9: Environments aer the call to W1.

e resulting environment structure is shown in Figure 3.8. e expres

sion being evaluated references both amount and balance. Amount will

be found in the first frame in the environment, while balance will be

found by following the enclosing-environment pointer to E1.

Whenthe set! isexecuted,the bindingof balanceinE1is changed.

At the completion of the call to W1, balance is 50, and the frame that

contains balance is still pointed to by the procedure object
W1. e

frame that binds amount (in which we executed the code that changed

balance)is nolonger relevant, since the procedure call that constructed

it has terminated, and there are no pointers to that frame from other

parts of the environment. e next time W1 is called, this will build a

new frame that binds amount and whose enclosing environment is E1.

We see that E1 serves as the “place” that holds the local state variable

for the procedure object W1.
Figure 3.9 shows the situation aer the call

to W1.

Observe what happens when we create a second “withdraw” object

by making another call to make-withdraw:

334

W2:

make-withdraw: ...

W1:

global

E1env balance: 50 E2 balance: 100

parameters: amount

body: ...

Figure 3.10:Using (define W2 (make-withdraw 100)) to

create a second object.

(define W2 (make-withdraw 100))

isproducestheenvironmentstructureofFigure3.10,whichshows

that W2 is a procedure object, that is, a pair with some code and an en-

vironment. e environment E2 for W2 was created by the call to make-

withdraw. It contains a frame with its own local binding for balance.

On the other hand, W1 and W2 have the same code: the code specified

by the λ-expression in the body of make-withdraw.15 We see here why

W1 and W2 behave as independent objects. Calls to W1 reference the state

variable balance stored inE1, whereascallsto W2reference the balance

stored in E2. us, changes to the local state of one object do not affect

the other object.

15Whether W1 and W2sharethesamephysicalcodestoredin thecomputer,orwhether

they each keep a copy of the code, is a detail of the implementation. For the interpreter

we implement in Chapter 4, the code is in fact shared.

335

Exercise 3.10: In the make-withdraw procedure, the local

variable balanceiscreatedasaparameterof make-withdraw.We could also create the local state variable explicitly, us

ing let, as follows:

(define (make-withdraw initial-amount)

(let ((balance initial-amount))

(lambda (amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds"))))

Recall from Section 1.3.2 that let is simply syntactic sugar

for a procedure call:

(let ((⟨var⟩ ⟨exp⟩)) ⟨body⟩)

is interpreted as an alternate syntax for

((lambda (⟨var⟩) ⟨body⟩) ⟨exp⟩)

Use the environment model to analyze this alternate ver-

sionof make-withdraw,drawingfigureslikethe onesabove

to illustrate the interactions

(define W1 (make-withdraw 100))

(W1 50)

(define W2 (make-withdraw 100))

Show that the two versions of make-withdraw create ob

jectswiththesamebehavior.Howdotheenvironmentstruc-

tures differ for the two versions?

336

3.2.4 Internal Definitions

Section 1.1.8 introduced the idea that procedures can have internal def-

initions, thus leading to a block structure as in the following procedure

to compute square roots:

(define (sqrt x)

(define (good-enough? guess)

(< (abs (- (square guess) x)) 0.001))

(define (improve guess)

(average guess (/ x guess)))

(define (sqrt-iter guess)

(if (good-enough? guess)

guess

(sqrt-iter (improve guess))))

(sqrt-iter 1.0))

Now we can use the environment model to see why these internal defi-

nitions behave as desired. Figure 3.11 shows the point in the evaluation

ofthe expression (sqrt 2) where the internal procedure good-enough?

has been called for the first time with guess equal to 1.

Observe the structure of the environment. Sqrt is a symbol in the

global environment that is bound to a procedure object whose associ-

ated environment is the global environment. When sqrt was called, a

new environment E1 was formed, subordinate to the global environ

ment, in which the parameter x is bound to 2. e body of sqrt was

then evaluated in E1. Since the first expression in the body of sqrt is

(define (good-enough? guess)

(< (abs (- (square guess) x)) 0.001))

evaluating this expression defined the procedure good-enough? in the

environment E1. To be more precise, the symbol good-enough? was

added to the first frame ofE1, bound to a procedure object whose asso-

337

global

env

sqrt:

x:2

good-enough?:

improve: ...

sqrt-iter: ...

parameters:
x

E1

body: (define good-enough? ...)

(define improve ...)

(define sqrt-iter ...)

(sqrt-iter 1.0)

guess:1E2

callto sqrt-iter

parameters: guess

body: (< (abs ...)

...)

guess:1E3

callto good-enough?

Figure 3.11: Sqrt procedure with internal definitions.

ciated environment is E1. Similarly, improve and sqrt-iter were de-

fined as procedures in E1. For conciseness, Figure 3.11 shows only the

procedure object for good-enough?.

Aer the local procedures were defined, the expression (sqrt-iter

1.0) was evaluated, still in environment E1. So the procedure object

bound to sqrt-iter in E1 was called with 1 as an argument. is cre

ated an environment E2 in which guess, the parameter of sqrt-iter,

is bound to 1. Sqrt-iter in turn called good-enough? with the value of

guess (from E2) as the argument for good-enough?. is set up another

338

environment, E3, in which guess (the parameter of good-enough?) is

bound to 1. Although sqrt-iter and good-enough? both have a pa-

rameter named guess, these are two distinct local variables located in

different frames. Also, E2 and E3 both have E1 as their enclosing en-

vironment, because the sqrt-iter and good-enough? procedures both

have E1 as their environment part. One consequence of this is that the

symbol x that appears in the body of good-enough? will reference the

binding of x that appears in E1, namely the value of x with which the

original sqrt procedure was called.

e environment model thus explains the two key properties that

make local procedure definitions a useful technique for modularizing

programs:

• e names of the local procedures do not interfere with names

external to the enclosing procedure, because the local procedure

nameswillbeboundintheframethatthe procedurecreateswhen

it is run, rather than being bound in the global environment.

• e local procedures can access the arguments of the enclosing

procedure, simply by using parameter names as free variables.

is is because the body of the local procedure is evaluated in an

environment that is subordinate to the evaluation environment

for the enclosing procedure.

Exercise 3.11: In Section 3.2.3 we saw how the environ-

mentmodeldescribedthebehaviorofprocedureswithlocal

state. Now we have seen how internal definitions work. A

typical message-passing procedure contains both of these

aspects. Consider the bank account procedure of Section

3.1.1:

339

(define (make-account balance)

(define (withdraw amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount))

balance)

(define (dispatch m)

(cond ((eq? m 'withdraw) withdraw)

((eq? m 'deposit) deposit)

(else

(error "Unknown request: MAKE-ACCOUNT"

m))))

dispatch)

Showtheenvironment structuregeneratedby the sequence

ofinteractions

(define acc (make-account 50))

((acc 'deposit) 40)

90

((acc 'withdraw) 60)

30

Where is the local state for acc kept? Suppose we define

another account

(define acc2 (make-account 100))

How are the local states for the two accounts kept distinct?

Which parts of the environment structure are shared be-

tween acc and acc2?

340

3.3 Modeling with Mutable Data

Chapter 2 dealt with compound data as a means for constructing com-

putational objects that have several parts, in order to model real-world

objects that have several aspects. In that chapter we introduced the dis-

cipline of data abstraction, according to which data structures are spec-

ified in terms of constructors, which create data objects, and selectors,

which access the parts of compound data objects. But we now know

that there is another aspect of data that Chapter 2 did not address. e

desire to model systems composed of objects that have changing state

leads us to the need to modify compound data objects, as well as to con-

struct and select from them. In order to model compound objects with

changing state, we will design data abstractions to include, in addition

to selectors and constructors, operations called mutators, which mod-

ify data objects. For instance, modeling a banking system requires us to

change account balances. us, a data structure for representing bank

accounts might admit an operation

(set-balance! ⟨account⟩ ⟨new-value⟩)

that changes the balance of the designated account to the designated

new value. Data objects for which mutators are defined are known as

mutable data objects.

Chapter 2 introduced pairs as a general-purpose “glue” for synthe-

sizing compound data. We begin this section by defining basic mutators

for pairs, so that pairs can serve as building blocks for constructing mu-

table data objects. ese mutators greatly enhance the representational

power of pairs, enabling us to build data structures other than the se-

quences and trees that we worked with in Section 2.2. We also present

some examples of simulations in which complex systems are modeled

as collections of objects with local state.

341

3.3.1 Mutable List Structure

e basic operations on pairs—cons, car, and cdr—can be used to con-

struct list structure and to select parts from list structure, but they are

incapable of modifying list structure. e same is true of the list oper-

ations we have used so far, such as append and list, since these can

be defined in terms of cons, car, and cdr. To modify list structures we

need new operations.

e primitive mutators for pairs are set-car! and set-cdr!. Set-

car! takes two arguments, the first of which must be a pair. It modifies

this pair, replacing the car pointer by a pointer to the second argument

of set-car!.16

As an example, suppose that x is bound to the list ((a b) c d) and

y to the list (e f) as illustrated in Figure 3.12. Evaluatingthe expression

(set-car! x y) modifies the pair to which x is bound, replacing its car

by the value of y. e result of the operation is shown in Figure 3.13.

e structure x has been modified and would now be printed as ((e f)

c d).e pairs representing the list (a b), identified by the pointer that

was replaced, are now detached from the original structure.17

Compare Figure 3.13 with Figure 3.14, which illustrates the result of

executing (define z (cons y (cdr x))) with x and y bound to the

original lists of Figure 3.12. e variable z is now bound to a new pair

createdby the cons operation;the list to which x isboundis unchanged.

e set-cdr! operation is similar to set-car!.e only difference

isthatthe cdrpointerofthepair,ratherthanthe carpointer,isreplaced.

e effect of executing (set-cdr! x y) on the lists of Figure 3.12 is

16Set-car! and set-cdr! return implementation-dependent values. Like set!, they

should be used only for their effect.

17We see from this that mutation operations on lists can create “garbage” that is

not part of any accessible structure. We will see in Section 5.3.2 that Lisp memory-

managementsystemsincludea garbagecollector, whichidentifiesandrecyclesthemem-

ory space used by unneeded pairs.

342

x

c d

a b

y

e f

Figure 3.12: Lists x: ((a b) c d) and y: (e f).

x

c d

a b

y

e f

Figure 3.13: Effect of (set-car! x y) on the lists in Figure 3.12.

343

c d

y

x

e f

a bz

Figure 3.14: Effect of (define z (cons y (cdr x))) on

the lists in Figure 3.12.

c d

y

x

e f

a b

Figure 3.15: Effect of (set-cdr! x y) on the lists in Figure 3.12.

344

shown in Figure 3.15. Here the cdr
pointer of x has been replaced by

the pointer to (e f). Also, the list (c d), which used to be the cdr of

x, is now detached from the structure.

Consbuildsnewliststructureby creatingnewpairs,while set-car!

and set-cdr!
modify existing pairs. Indeed, we could implement cons

in terms of the two mutators, together with a procedure get-new-pair,which returns a new pair that is not part of any existing list structure.

We obtain the new pair, set its car and cdr
pointers to the designated

objects, and return the new pair as the result of the cons.18

(define (cons x y)

(let ((new (get-new-pair)))

(set-car! new x)

(set-cdr! new y)

new))

Exercise 3.12: e following procedure for appending lists

was introduced in Section 2.2.1:

(define (append x y)

(if (null? x)

y

(cons (car x) (append (cdr x) y))))

Append forms a new list by successively consing the el-

ements of x onto y. e procedure append! is similar to

append, but it is a mutator rather than a constructor. It ap-

pends the lists by splicing them together, modifying the fi-

nal pair of x so that its cdr is now y. (It is an error to call

append! with an empty x.)

18Get-new-pair is one of the operations that must be implemented as part of the

memory management required by a Lisp implementation. We will discuss this in Sec-

tion 5.3.1.

345

(define (append! x y)

(set-cdr! (last-pair x) y)

x)

Here last-pair is a procedure that returns the last pair in

its argument:

(define (last-pair x)

(if (null? (cdr x)) x (last-pair (cdr x))))

Consider the interaction

(define x (list 'a 'b))

(define y (list 'c 'd))

(define z (append x y))

z

(a b c d)

(cdr x)

⟨response⟩

(define w (append! x y))

w

(a b c d)

(cdr x)

⟨response⟩

What are the missing ⟨response⟩s? Draw box-and-pointer

diagrams to explain your answer.

Exercise 3.13: Consider the following make-cycle proce

dure, which uses the last-pair procedure defined in Exer-

cise 3.12:

(define (make-cycle x)

(set-cdr! (last-pair x) x)

x)

346

Draw a box-and-pointer diagram that shows the structure

z created by

(define z (make-cycle (list 'a 'b 'c)))

What happens ifwe try to compute (last-pair z)?

Exercise 3.14: e following procedure is quite useful, al-

though obscure:

(define (mystery x)

(define (loop x y)

(if (null? x)

y

(let ((temp (cdr x)))

(set-cdr! x y)

(loop temp x))))

(loop x '()))

Loop uses the “temporary” variable temp to hold the old

value of the cdr of x, since the set-cdr! on the next line

destroys the cdr.
Explain what mystery does in general.

Suppose v is defined by (define v (list 'a 'b 'c

'd)). Draw the box-and-pointer diagram that represents

the list to which v is bound. Suppose that we now evalu-

ate (define w (mystery v)). Draw box-and-pointer dia-

grams that show the structures v and w aer evaluating this

expression. What would be printed as the values of v and

w?

Sharing and identity

We mentioned in Section 3.1.3 the theoretical issues of “sameness” and

“change” raised by the introduction of assignment. ese issues arise in

347

practice when individual pairs are shared among different data objects.

For example, consider the structure formed by

(define x (list 'a 'b))

(define z1 (cons x x))

As shown in Figure 3.16, z1 is a pair whose car and cdr both point to

the same pair
x. is sharing of x by the car and cdr of z1 is a con-

sequence of the straightforward way in which cons is implemented. In

general, using cons to construct lists will result in an interlinked struc-

ture of pairs in which many individual pairs are shared by many differ-

ent structures.

In contrast to Figure 3.16, Figure 3.17 shows the structure created

by

(define z2 (cons (list 'a 'b) (list 'a 'b)))

In this structure, the pairs in the two (a b) lists are distinct, although

the actual symbols are shared.19

When thought of as a list, z1 and z2 both represent “the same” list,

((a b) a b). In general, sharing is completely undetectable ifwe oper-

ateonlistsusingonly cons, car,and cdr. However,ifweallowmutators

on list structure, sharing becomes significant. As an example of the dif-

ference that sharing can make, consider the following procedure, which

modifies the car of the structure to which it is applied:

(define (set-to-wow! x) (set-car! (car x) 'wow) x)

19e two pairs are distinct because each call to cons returnsa new pair. e symbols

are shared; in Scheme there is a unique symbol with any given name. Since Scheme

provides no way to mutate a symbol, this sharing is undetectable. Note also that the

sharingis what enablesusto compare symbolsusing eq?, which simply checks equality

ofpointers.

348

z1

x a b

Figure 3.16: e list z1 formed by (cons x x).

a b

z2

Figure 3.17: e list z2 formed by (cons (list 'a 'b)

(list 'a 'b)).

Even though z1 and z2 are “the same” structure, applying set-to-wow!

to them yields different results. With z1, altering the car also changes

the cdr, because in z1 the car and the cdr are the same pair. With z2,

the car and cdr are distinct, so set-to-wow! modifies only the car:

z1

((a b) a b)

(set-to-wow! z1)

((wow b) wow b)

z2

((a b) a b)

349

(set-to-wow! z2)

((wow b) a b)

One way to detect sharing in list structures is to use the predicate eq?,

which we introduced in Section 2.3.1 as a way to test whether two sym-

bols are equal. More generally, (eq? x y) tests whether x and y are

the same object (that is, whether x and y are equal as pointers). us,

with z1 and z2 as defined in Figure 3.16 and Figure 3.17, (eq? (car z1)

(cdr z1)) is true and (eq? (car z2) (cdr z2)) is false.

As will be seen in the following sections, we can exploit sharing to

greatly extend the repertoire of data structures that can be represented

by pairs. On the other hand, sharing can also be dangerous, since modi-

fications made to structures will also affect otherstructures that happen

tosharethemodifiedparts.emutationoperations set-car! and set-

cdr! should be used with care; unless we have a good understanding of

how our data objects are shared, mutation can have unanticipated re-

sults.20

Exercise 3.15: Draw box-and-pointer diagrams to explain

theeffectof set-to-wow!onthestructures z1and z2above.

Exercise 3.16: Ben Bitdiddle decides to write a procedure

to count thenumberof pairsinanylist structure.“It’s easy,”

20esubtletiesofdealing
withsharing ofmutable data objects reflectthe underlying

issues of“sameness” and “change” that wereraisedin Section 3.1.3. We mentioned there

that admiing change to our language requires that a compound object must have an

“identity” that is something different from the pieces from which it is composed. In

Lisp, we consider this “identity” to be the quality that is tested by eq?, i.e., by equality of

pointers. Since in most Lisp implementations a pointer is essentially a memory address,

we are “solvingthe problem” of definingthe identity ofobjectsby stipulatingthat a data

object “itself” is the information stored in some particular set of memory locations in

the computer. is suffices for simple Lisp programs, but is hardly a general way to

resolve the issue of “sameness” in computational models.

350

he reasons. “e number of pairs in any structure is the

number in the car plus the number in the cdr plus one

more to count the current pair.” So Benwrites the following

procedure:

(define (count-pairs x)

(if (not (pair? x))

0

(+ (count-pairs (car x))

(count-pairs (cdr x))

1)))

Show that this procedure is not correct. In particular, draw

box-and-pointerdiagramsrepresentingliststructuresmade

up of exactly three pairs for which Ben’s procedure would

return 3; return 4; return 7; never return at all.

Exercise3.17: Devise a correct versionof the count-pairsprocedure of Exercise 3.16 that returns the number of dis-

tinct pairs in any structure. (Hint: Traverse the structure,

maintaining an auxiliary data structure that is used to keep

track of which pairs have already been counted.)

Exercise 3.18: Write a procedure that examines a list and

determines whether it contains a cycle, that is, whether a

program that tried to find the end of the list by taking suc-

cessive cdrs would go into an infinite loop. Exercise 3.13

constructed such lists.

Exercise 3.19: Redo Exercise 3.18 using an algorithm that

takes only a constant amount of space. (isrequiresa very

clever idea.)

351

Mutation is just assignment

When we introduced compound data, we observed in Section 2.1.3 that

pairs can be represented purely in terms of procedures:

(define (cons x y)

(define (dispatch m)

(cond ((eq? m 'car) x)

((eq? m 'cdr) y)

(else (error "Undefined operation: CONS" m))))

dispatch)

(define (car z) (z 'car))

(define (cdr z) (z 'cdr))

e same observation is true for mutable data. We can implement mu-

table data objects as procedures using assignment and local state. For

instance, we can extend the above pair implementation to handle set-

car! and set-cdr! in a manner analogous to the way we implemented

bank accounts using
make-account in Section 3.1.1:

(define (cons x y)

(define (set-x! v) (set! x v))

(define (set-y! v) (set! y v))

(define (dispatch m)

(cond ((eq? m 'car) x)

((eq? m 'cdr) y)

((eq? m 'set-car!) set-x!)

((eq? m 'set-cdr!) set-y!)

(else

(error "Undefined operation: CONS" m))))

dispatch)

(define (car z) (z 'car))

(define (cdr z) (z 'cdr))

(define (set-car! z new-value)

((z 'set-car!) new-value) z)

352

(define (set-cdr! z new-value)

((z 'set-cdr!) new-value) z)

Assignment is all that is needed, theoretically, to account for the behav-

ior of mutable data. As soon as we admit set! to our language, we raise

all the issues, not only of assignment, but of mutable data in general.21

Exercise 3.20: Draw environment diagrams to illustrate

the evaluation of the sequence of expressions

(define x (cons 1 2))

(define z (cons x x))

(set-car! (cdr z) 17)

(car x)

17

using the procedural implementation of pairs given above.

(Compare Exercise 3.11.)

3.3.2 Representing eues

emutators set-car!and set-cdr!enableustouse pairstoconstruct

data structures that cannot be built with cons, car, and cdr alone. is

section shows how to use pairs to represent a data structure called a

queue. Section 3.3.3 will show how to represent data structures called

tables.

A queue is a sequence in which items are inserted at one end (called

the rear of the queue) and deleted from the other end (the front). Fig-

ure 3.18 shows an initially empty queue in which the items a and b are

21On the other hand, from the viewpoint of implementation, assignment requires us

to modify the environment, which is itself a mutable data structure. us, assignment

and mutation are equipotent: Each can be implemented in terms of the other.

353

Operation Resulting Queue

(define q (make-queue))

(insert-queue! q 'a) a

(insert-queue! q 'b) a b

(delete-queue! q) b

(insert-queue! q 'c) b c

(insert-queue! q 'd) b c d

(delete-queue! q) c d

Figure 3.18: eue operations.

inserted. en a is removed, c and d are inserted, and b is removed. Be

cause items are always removed in the order in which they are inserted,

a queue is sometimes called a FIFO (first in, first out) buffer.

In terms of data abstraction, we can regard a queue as defined by

the following set of operations:

• a constructor: (make-queue) returns an empty queue (a queue

containing no items).

• two selectors:

(empty-queue? ⟨queue⟩) tests if the queue is empty.

(front-queue ⟨queue⟩) returns the object at the front of the

queue, signaling anerror if the queue is empty; it does not modify

the queue.

• two mutators:

(insert-queue! ⟨queue⟩ ⟨item⟩) inserts the item at the rear of

the queue and returns the modified queue as its value.

354

(delete-queue! ⟨queue⟩) removes the item at the front of the

queue and returns the modified queue as its value, signaling an

error if the queue is empty before the deletion.

Because a queue is a sequence of items, we could certainly represent it

as an ordinary list; the front of the queue would be the car of the list,

inserting an item in the queue would amount to appending a new ele-

ment at the end of the list, and deleting an item from the queue would

just be taking the cdr of the list. However, this representation is ineffi

cient, because in order to insert an item we must scan the list until we

reach the end. Since the only method we have for scanning a list is by

successive cdr operations, this scanning requires Θ(n) steps for a list of

n items. A simple modification to the list representation overcomes this

disadvantage by allowing the queue operations to be implemented so

that they require Θ(1) steps; that is, so that the number of steps needed

is independent of the length of the queue.

e difficulty with the list representation arises from the need to

scan to find the end of the list. e reason we need to scan is that, al-

though the standard way of representing a list as a chain of pairs read-

ily provides us with a pointer to the beginning of the list, it gives us

no easily accessible pointer to the end. e modification that avoids the

drawback is to represent the queue as a list, together with an additional

pointer that indicates the final pair in the list. at way, when we go to

insert an item, we can consult the rear pointer and so avoid scanning

the list.

A queue is represented, then, as a pair of pointers, front-ptr and

rear-ptr, which indicate, respectively, the first and last pairs in an or-

dinarylist.Since wewouldlikethe queue tobeanidentifiableobject, we

can use cons to combine the two pointers. us, the queue itself will be

the cons of the two pointers. Figure 3.19 illustrates this representation.

355

c

front-ptrq rear-ptr

ab

Figure 3.19: Implementation ofa queue as a list with front

and rear pointers.

To define the queue operations we use the following procedures,

which enable us to select and to modify the front and rear pointers of a

queue:

(define (front-ptr queue) (car queue))

(define (rear-ptr queue) (cdr queue))

(define (set-front-ptr! queue item)

(set-car! queue item))

(define (set-rear-ptr! queue item)

(set-cdr! queue item))

Now we can implement the actual queue operations. We will consider

a queue to be empty if its front pointer is the empty list:

(define (empty-queue? queue)

(null? (front-ptr queue)))

e make-queue constructor returns, as an initially empty queue, a pair

whose car and cdr are both the empty list:

(define (make-queue) (cons '() '()))

356

front-ptr rear-ptr

q

a b c d

Figure3.20: Result ofusing (insert-queue! q 'd) on the

queue of Figure 3.19.

To select the item at the front ofthe queue, we return the car ofthe pair

indicated by the front pointer:

(define (front-queue queue)

(if (empty-queue? queue)

(error "FRONT called with an empty queue" queue)

(car (front-ptr queue))))

To insert an item in a queue, we follow the method whose result is in-

dicated in Figure 3.20. We first create a new pair whose car is the item

to be inserted and whose cdr is the empty list. If the queue was initially

empty, we set the front and rear pointers of the queue to this new pair.

Otherwise, we modify the final pair in the queue to point to the new

pair, and also set the rear pointer to the new pair.

(define (insert-queue! queue item)

(let ((new-pair (cons item '())))

(cond ((empty-queue? queue)

(set-front-ptr! queue new-pair)

(set-rear-ptr! queue new-pair)

queue)

357

front-ptrq rear-ptr

ab cd

Figure 3.21: Result of using (delete-queue! q) on the

queue of Figure 3.20.

(else

(set-cdr! (rear-ptr queue) new-pair)

(set-rear-ptr! queue new-pair)

queue))))

To delete the item at the front of the queue, we merely modify the front

pointer so that it now points at the second item in the queue, which

can be found by following the cdr pointer of the first item (see Figure

3.21):22

(define (delete-queue! queue)

(cond ((empty-queue? queue)

(error "DELETE! called with an empty queue" queue))

(else (set-front-ptr! queue (cdr (front-ptr queue)))

queue)))

22If the first item is the final item in the queue, the front pointer will be the empty

list aer the deletion, which will mark the queue as empty; we needn’t worry about

updating the rear pointer, which will still point to the deleted item, because empty-

queue?looksonlyatthefrontpointer.

358

Exercise 3.21: Ben Bitdiddle decides to test the queue im-

plementation described above. He types in the procedures

to the Lisp interpreter and proceeds to try them out:

(define q1 (make-queue))

(insert-queue! q1 'a)

((a) a)

(insert-queue! q1 'b)

((a b) b)

(delete-queue! q1)

((b) b)

(delete-queue! q1)

(() b)

“It’s all wrong!” he complains. “e interpreter’s response

shows that the last item is inserted into the queue twice.

And when I delete both items, the second b is still there,

so the queue isn’t empty, even though it’s supposed to be.”

Eva Lu Ator suggests that Ben has misunderstood what is

happening. “It’s not that the items are going into the queue

twice,” she explains. “It’s just that the standard Lisp printer

doesn’t know how to make sense of the queue representa-

tion. If you want to see the queue printed correctly, you’ll

have to define your own print procedure for queues.” Ex-

plain what Eva Lu is talking about. In particular, show why

Ben’s examples produce the printed results that they do.

Define a procedure print-queue that takes a queue as in-

put and prints the sequence ofitems in the queue.

Exercise 3.22: Instead of representing a queue as a pair of

pointers, we can build a queue as a procedure with local

state. e local state will consist of pointers to the begin-

359

ning and the end of an ordinary list. us, the make-queue

procedure will have the form

(define (make-queue)

(let ((front-ptr ...)

(rear-ptr ...))

⟨definitions of internal procedures⟩

(define (dispatch m) ...)

dispatch))

Complete the definition of make-queue and provide imple-

mentations of the queue operations using this representa-

tion.

Exercise3.23:Adeque (“double-endedqueue”)isasequencein which items can be inserted and deleted at either the

front or the rear. Operations on deques are the constructor

make-deque, the predicate empty-deque?, selectors front-

deque and rear-deque, mutators front-insert-deque!,

rear-insert-deque!, front-delete-deque!,and rear-delete-

deque!. Show how to represent deques using pairs, and

give implementations of the operations.23 All operations

should be accomplished in Θ(1) steps.

3.3.3 Representing Tables

When we studied various ways of representing sets in Chapter 2, we

mentioned in Section 2.3.3 the task of maintaining a table ofrecords in-

dexed by identifying keys. In the implementation of data-directed pro-

gramming in Section 2.4.3, we made extensive use of two-dimensional

23Be careful not to make the interpreter try to print a structure that contains cycles.

(See Exercise 3.13.)

360

a b c1 2 3

table

table

Figure 3.22: A table represented as a headed list.

tables,inwhichinformationisstoredandretrievedusingtwokeys.Here

we see how to build tables as mutable list structures.

We first consider a one-dimensional table, in which each value is

stored under a single key. We implement the table as a list of records,

each of which is implemented as a pair consisting of a key and the as-

sociated value. e records are glued together to form a list by pairs

whose cars point to successive records. ese gluing pairs are called

the backbone of the table. In order to have a place that we can change

whenweaddanewrecordtothetable,webuildthetableasaheadedlist.

A headed list has a special backbone pair at the beginning, which holds

a dummy “record”—in this case the arbitrarily chosen symbol *table*.

Figure 3.22 shows the box-and-pointer diagram for the table

a: 1

b: 2

c: 3

Toextract informationfroma table weuse the lookupprocedure, which

takes a key as argument and returns the associated value (or false if

361

there isnovaluestoredunderthatkey). Lookupisdefinedintermsofthe

assoc operation, which expects akey and a list ofrecords as arguments.

Note that assoc never sees the dummy record. Assoc returns the record

that has the given key as its car.24 Lookup then checks to see that the

resulting record returned by
assoc is not false, and returns the value

(the cdr) of the record.

(define (lookup key table)

(let ((record (assoc key (cdr table))))

(if record

(cdr record)

false)))

(define (assoc key records)

(cond ((null? records) false)

((equal? key (caar records)) (car records))

(else (assoc key (cdr records)))))

To insert a value in a table under a specified key, we first use assoc

to see if there is already a record in the table with this key. If not, we

form a new record by consing the key with the value, and insert this at

the head of the table’s list of records, aer the dummy record. If there

already is a record with this key, we set the cdr of this record to the

designated new value. e header of the table provides us with a fixed

location to modify in order to insert the new record.25

(define (insert! key value table)

(let ((record (assoc key (cdr table))))

24Because assoc uses equal?, it can recognize keys that are symbols, numbers, or

list structure.

25us, the first backbone pair is the object that represents the table “itself”; that is,

a pointer to the table is a pointer to this pair. is same backbone pair always starts

the table. If we did not arrange things in this way, insert! would have to return a new

value for the start of the table when it added a new record.

362

(if record

(set-cdr! record value)

(set-cdr! table

(cons (cons key value)

(cdr table)))))

'ok)

To construct a new table, we simply create a list containing the symbol

table:

(define (make-table)

(list '*table*))

Two-dimensional tables

In a two-dimensional table, each value is indexed by two keys. We can

construct such a table as a one-dimensional table in which each key

identifies a subtable. Figure 3.23 shows the box-and-pointer diagram

for the table

math: +: 43 letters: a: 97

-: 45 b: 98

*: 42

which has two subtables. (e subtables don’t need a special header

symbol, since the key that identifies the subtable serves this purpose.)

Whenwe look upanitem,we usethe first key toidentifythe correct

subtable. en we use the second key to identify the record within the

subtable.

(define (lookup key-1 key-2 table)

(let ((subtable

(assoc key-1 (cdr table))))

363

table

table

Figure 3.23: A two-dimensional table.

98

a b97

letters

+ - *43 45

42

math

(if subtable

(let ((record

(assoc key-2 (cdr subtable))))

(if record

(cdr record)

false))

false)))

364

To insert a new item under a pair of keys, we use assoc to see if

there is a subtable stored under the first key. If not, we build a new

subtable containing the single record (key-2, value) and insert it into

the table under the first key. Ifa subtable already exists for the first key,

we insert the new record into this subtable, using the insertion method

for one-dimensional tables described above:

(define (insert! key-1 key-2 value table)

(let ((subtable (assoc key-1 (cdr table))))

(if subtable

(let ((record (assoc key-2 (cdr subtable))))

(if record

(set-cdr! record value)

(set-cdr! subtable

(cons (cons key-2 value)

(cdr subtable)))))

(set-cdr! table

(cons (list key-1

(cons key-2 value))

(cdr table)))))

'ok)

Creating local tables

e lookup and insert! operations defined above take the table as an

argument. isenablesustouseprogramsthat accessmorethanone ta-

ble. Another way to deal with multiple tables is to have separate lookup

and insert! procedures for each table. We can do this by representing

atable procedurally, as an object that maintains aninternal table as part

ofits local state. When sent an appropriate message, this “table object”

suppliesthe procedure with which to operate onthe internaltable.Here

is a generator for two-dimensional tables represented in this fashion:

365

(define (make-table)

(let ((local-table (list '*table*)))

(define (lookup key-1 key-2)

(let ((subtable

(assoc key-1 (cdr local-table))))

(if subtable

(let ((record

(assoc key-2 (cdr subtable))))

(if record (cdr record) false))

false)))

(define (insert! key-1 key-2 value)

(let ((subtable

(assoc key-1 (cdr local-table))))

(if subtable

(let ((record

(assoc key-2 (cdr subtable))))

(if record

(set-cdr! record value)

(set-cdr! subtable

(cons (cons key-2 value)

(cdr subtable)))))

(set-cdr! local-table

(cons (list key-1 (cons key-2 value))

(cdr local-table)))))

'ok)

(define (dispatch m)

(cond ((eq? m 'lookup-proc) lookup)

((eq? m 'insert-proc!) insert!)

(else (error "Unknown operation: TABLE" m))))

dispatch))

Using make-table, we could implement the get and put operations

used in Section 2.4.3 for data-directed programming, as follows:

366

(define operation-table (make-table))

(define get (operation-table 'lookup-proc))

(define put (operation-table 'insert-proc!))

Get takes as arguments two keys, and put takes as arguments two keys

and a value. Both operations access the same local table, which is en

capsulated within the object created by the call to make-table.

Exercise3.24: Inthe tableimplementationsabove,thekeysare tested for equality using equal? (called by assoc). is

is not always the appropriate test. For instance, we might

have a table with numeric keys in which we don’t need an

exact match to the number we’re looking up, but only a

number within some tolerance of it. Design a table con-

structor make-tablethattakesasanargumenta same-key?

procedure that will be used to test “equality” ofkeys. Make-

table should return a dispatch procedure that can be used

to access appropriate lookup and insert! procedures for a

local table.

Exercise 3.25: Generalizing one- and two-dimensional ta

bles, show how to implement a table in which values are

stored under an arbitrary number of keys and different val-

ues may be stored under different numbers of keys. e

lookup and insert! proce- dures should take as input a

list of keys used to access the table.

Exercise3.26: Tosearch a table as implementedabove, one

needs to scan through the list of records. is is basically

the unordered list representation of Section 2.3.3. For large

tables,itmaybemore efficient tostructurethetable inadif-

ferent manner. Describe a table implementation where the

367

(key, value) records are organized using a binary tree, as-

suming that keys can be ordered in some way (e.g., numer-

ically or alphabetically). (Compare Exercise 2.66 of Chapter

2.)

Exercise3.27:Memoization(alsocalledtabulation)isatech-

nique that enables a procedure to record, in a local table,

values that have previously been computed. is technique

canmake avastdifferenceintheperformance ofaprogram.

A memoized procedure maintains a table in which values

of previous calls are stored using as keys the arguments

that produced the values. When the memoized procedure

is asked to compute a value, it first checks the table to see

ifthevalueisalready thereand,ifso,justreturnsthatvalue.

Otherwise, it computes the new value in the ordinary way

and stores this in the table. As an example of memoization,

recall from Section 1.2.2 the exponential process for com

puting Fibonacci numbers:

(define (fib n)

(cond ((= n 0) 0)

((= n 1) 1)

(else (+ (fib (- n 1)) (fib (- n 2))))))

e memoized version of the same procedure is

(define memo-fib

(memoize

(lambda (n)

(cond ((= n 0) 0)

((= n 1) 1)

(else (+ (memo-fib (- n 1))

(memo-fib (- n 2))))))))

368

where the memoizer is defined as

(define (memoize f)

(let ((table (make-table)))

(lambda (x)

(let ((previously-computed-result

(lookup x table)))

(or previously-computed-result

(let ((result (f x)))

(insert! x result table)

result))))))

Draw an environment diagram to analyze the computation

of (memo-fib 3). Explain why memo-fib
computes the nth

Fibonacci number in a number of steps proportional to n.

Wouldtheschemestillworkifwehadsimplydefined memo-

fib to be (memoize fib)?

3.3.4 A Simulator for Digital Circuits

Designing complex digital systems, such as computers, is an important

engineering activity. Digital systems are constructed by interconnect-

ingsimpleelements.Althoughthebehavioroftheseindividualelements

is simple, networks of them can have very complex behavior. Computer

simulation of proposedcircuit designsisan important tool used by digi-

tal systems engineers. In this section we design a system for performing

digital logic simulations. is system typifies a kind of program called

an event-driven simulation, in which actions (“events”) trigger further

events that happen at a later time, which in turn trigger more events,

and so on.

Our computational model of a circuit will be composed of objects

that correspond to the elementary components from which the circuit

369

Inverter And-gate Or-gate

Figure 3.24: Primitive functions in the digital logic simulator.

is constructed. ere are wires, which carry digital signals. A digital sig-

nal may at any moment have only one of two possible values, 0 and

1. ere are also various types of digital function boxes, which connect

wires carrying input signals to other output wires. Such boxes produce

output signals computed from their input signals. e output signal is

delayed by a time that depends on the type of the function box. For

example, an inverter is a primitive function box that inverts its input.

If the input signal to an inverter changes to 0, then one inverter-delay

later the inverter will change its output signal to 1. If the input signal to

an inverter changes to 1, then one inverter-delay later the inverter will

change its output signal to 0. We draw an inverter symbolically as in

Figure 3.24. An and-gate, also shown in Figure 3.24, is a primitive func-

tion box with two inputs and one output. It drives its output signal to

a value that is the logical and of the inputs. at is, if both of its input

signals become 1, then one and-gate-delay time later the and-gate will

force its output signal to be 1; otherwise the output will be 0. An or-gate

is a similar two-input primitive function box that drives its output sig-

nal to a value that is the logical or of the inputs. at is, the output will

become 1 if at least one of the input signals is 1; otherwise the output

will become 0.

Wecanconnectprimitivefunctionstogethertoconstructmorecom-

plex functions. Toaccomplish thiswe wire the outputs of some function

boxes to the inputs of other function boxes. For example, the half-adder

370

D

E

A

B

S

C

Figure 3.25: A half-adder circuit.

circuit shown in Figure 3.25 consists of an or-gate, two and-gates, and

an inverter. It takes two input signals, A and B, and has two output sig-

nals, S and C. S will become 1 whenever precisely one ofA and B is 1,

and C will become 1 whenever A and B are both 1. We can see from the

figure that, because of the delays involved, the outputs may be gener

ated at different times. Many of the difficulties in the design of digital

circuits arise from this fact.

We will now build a program for modeling the digital logic circuits

we wish to study. e program will construct computational objects

modeling the wires, which will “hold” the signals. Function boxes will

be modeled by procedures that enforce the correct relationships among

the signals.

One basic element of our simulation will be a procedure make-wire,which constructs wires. For example, we can construct six wires as fol

lows:

(define a (make-wire))

(define b (make-wire))

(define c (make-wire))

(define d (make-wire))

(define e (make-wire))

(define s (make-wire))

371

We aach a function box to a set of wires by calling a procedure that

constructsthat kind ofbox.e arguments tothe constructorprocedure

are the wires to be aached to the box. For example, given that we can

construct and-gates, or-gates, and inverters, we can wire together the

half-adder shown in Figure 3.25:

(or-gate a b d)

ok

(and-gate a b c)

ok

(inverter c e)

ok

(and-gate d e s)

ok

Beeryet,wecanexplicitlynamethisoperationbydefiningaprocedure

half-adder that constructs this circuit, given the four external wires to

be aached to the half-adder:

(define (half-adder a b s c)

(let ((d (make-wire)) (e (make-wire)))

(or-gate a b d)

(and-gate a b c)

(inverter c e)

(and-gate d e s)

'ok))

e advantage of making this definition is that we can use half-adder

itself as a building block in creating more complex circuits. Figure 3.26,

for example, shows a full-adder composed of two half-adders and an

or-gate.26 We can construct a full-adder as follows:

26A full-adder is a basic circuit element used in adding two binary numbers. Here

A and B are the bits at corresponding positions in the two numbers to be added, and

372

half-

adder

half-

adder

A

B

Cin

SUM

C
out

or

Figure 3.26: A full-adder circuit.

(define (full-adder a b c-in sum c-out)

(let ((s (make-wire)) (c1 (make-wire)) (c2 (make-wire)))

(half-adder b c-in s c1)

(half-adder a s sum c2)

(or-gate c1 c2 c-out)

'ok))

Havingdefinedfull-adderasaprocedure,wecannowuse itasabuild-

ing block for creating still more complex circuits. (For example, see Ex-

ercise 3.30.)

In essence, our simulator provides us with the tools to construct a

language of circuits. If we adopt the general perspective on languages

with which we approached the study of Lisp in Section 1.1, we can say

that the primitive function boxes form the primitive elements of the

language, that wiring boxes together provides a means of combination,

and that specifying wiring paerns as procedures serves as a means of

abstraction.

Cin is the carry bit from the addition one place to the right. e circuit generates SUM,

which is the sum bit in the corresponding position, and Cout, which is the carry bit to

be propagated to the le.

373

Primitive function boxes

e primitive function boxes implement the “forces” by which a change

in the signal on one wire influences the signals on other wires. To build

function boxes, we use the following operations on wires:

• (get-signal ⟨wire⟩)

returns the current value of the signal on the wire.

• (set-signal! ⟨wire⟩ ⟨new value⟩)

changes the value of the signal on the wire to the new value.

• (add-action! ⟨wire⟩ ⟨procedure of no arguments⟩)

asserts that the designated procedure should be run whenever

the signal on the wire changes value. Such procedures are the

vehicles by which changes in the signal value on the wire are

communicated to other wires.

In addition, we will make use of a procedure after-delay that takes a

time delay and a procedure to be run and executes the given procedure

aer the given delay.

Using these procedures, we can define the primitive digital logic

functions. To connect an input to an output through an inverter, we use

add-action! to associate with the input wire a procedure that will be

run whenever the signal on the input wire changes value. e proce-

dure computes the logical-not of the input signal, and then, aer one

inverter-delay, sets the output signal to be this new value:

(define (inverter input output)

(define (invert-input)

(let ((new-value (logical-not (get-signal input))))

374

(after-delay inverter-delay

(lambda () (set-signal! output new-value)))))

(add-action! input invert-input) 'ok)

(define (logical-not s)

(cond ((= s 0) 1)

((= s 1) 0)

(else (error "Invalid signal" s))))

An and-gate is a lile more complex. e action procedure must be run

if either of the inputs to the gate changes. It computes the logical-

and (using a procedure analogous to logical-not) of the values of the

signals on the input wires and sets up a change to the new value to

occur on the output wire aer one and-gate-delay.

(define (and-gate a1 a2 output)

(define (and-action-procedure)

(let ((new-value

(logical-and (get-signal a1) (get-signal a2))))

(after-delay

and-gate-delay

(lambda () (set-signal! output new-value)))))

(add-action! a1 and-action-procedure)

(add-action! a2 and-action-procedure)

'ok)

Exercise 3.28: Define an or-gate as a primitive function

box. Your or-gate constructor should be similar to and-

gate.

Exercise 3.29: Another way to construct an or-gate is as

a compound digital logic device, built from and-gates and

inverters. Define a procedure or-gate that accomplishes

375

A
1
B
1 C

1

A
2
B

2 C
2

A
3
B
3 C

3

A
n
B
n C

n
= 0

S1

C

S2 S3 Sn
C

n-1

FA FA FA FA

Figure 3.27: A ripple-carry adder for n-bit numbers.

this. What is the delay time of the or-gate in terms of and-

gate-delay and inverter-delay?

Exercise3.30:Figure3.27showsaripple-carryadder formed

by stringingtogethern full-adders.isisthesimplestform

of parallel adder for adding two n-bit binary numbers. e

inputs A1, A2, A3, ..., An and B1, B2, B3, ..., Bn are the

two binary numbers to be added (each Ak and Bk is a 0 or

a 1). e circuit generates S1, S2, S3, ..., Sn, the n bits of

the sum, and C, the carry from the addition. Write a proce-

dure ripple-carry-adder that generates this circuit. e

procedure should take as arguments three lists of n wires

each—the Ak, the Bk, and the Sk—and also another wire C.

e major drawback of the ripple-carry adder is the need

to wait for the carry signals to propagate. What is the delay

needed to obtain the complete output from ann-bit ripple-

carry adder, expressed in terms of the delays for and-gates,

or-gates, and inverters?

376

Representing wires

A wire in our simulation will be a computational object with two local

state variables: a signal-value (initially taken to be 0) and a collec-

tion of action-procedures to be run when the signal changes value.

We implement the wire, using message-passing style, as a collection of

localprocedurestogetherwith a dispatchprocedurethatselectstheap-

propriate local operation, just as we did with the simple bank-account

object in Section 3.1.1:

(define (make-wire)

(let ((signal-value 0) (action-procedures '()))

(define (set-my-signal! new-value)

(if (not (= signal-value new-value))

(begin (set! signal-value new-value)

(call-each action-procedures))

'done))

(define (accept-action-procedure! proc)

(set! action-procedures

(cons proc action-procedures))

(proc))

(define (dispatch m)

(cond ((eq? m 'get-signal) signal-value)

((eq? m 'set-signal!) set-my-signal!)

((eq? m 'add-action!) accept-action-procedure!)

(else (error "Unknown operation: WIRE" m))))

dispatch))

elocalprocedure set-my-signal!testswhetherthenewsignalvalue

changes the signal on the wire. If so, it runs each of the action proce-

dures, usingthe following procedure call-each, which calls each ofthe

items in a list of no-argument procedures:

(define (call-each procedures)

377

(if (null? procedures)

'done

(begin ((car procedures))

(call-each (cdr procedures)))))

e local procedure accept-action-procedure! adds the given proce-

dure tothe listof procedurestobe run, andthenrunsthenewprocedure

once. (See Exercise 3.31.)

With the local dispatch procedure set up as specified, we can pro-

vide the following procedures to access the local operations on wires:27

(define (get-signal wire) (wire 'get-signal))

(define (set-signal! wire new-value)

((wire 'set-signal!) new-value))

(define (add-action! wire action-procedure)

((wire 'add-action!) action-procedure))

Wires, which have time-varying signals and may be incrementally at-

tached todevices,aretypical ofmutable objects. We have modeledthemasprocedureswithlocalstatevariablesthataremodifiedbyassignment.

When a new wire is created, a new set of state variables is allocated

(by the let expression in make-wire) and a new dispatch procedure

is constructed and returned, capturing the environment with the new

state variables.

27 ese procedures are simply syntactic sugar that allow us to use ordinary pro-

cedural syntax to access the local procedures of objects. It is striking that we can in-

terchange the role of “procedures” and “data” in such a simple way. For example, if we

write (wire 'get-signal) we think of wire as a procedure that is called with the mes-

sage get-signal as input. Alternatively, writing (get-signal wire) encourages us to

think of wire as a data object that is the input to a procedure get-signal. e truth of

the maer is that, in a language in which we can deal with procedures as objects, there

is no fundamental difference between “procedures” and “data,” and we can choose our

syntactic sugar to allow us to program in whatever style we choose.

378

e wires are shared among the variousdevices that have been con-

nected to them. us, a change made by an interaction with one device

will affect all the other devices aached to the wire. e wire communi-

cates the change to its neighbors by calling the action procedures pro-

vided to it when the connections were established.

The agenda

e only thing needed to complete the simulator is after-delay. e

idea here is that we maintain a data structure, called an agenda, that

containsascheduleofthingstodo. e followingoperationsare defined

for agendas:

• (make-agenda) returns a new empty agenda.

• (empty-agenda? ⟨agenda⟩) is true if the specified agenda is

empty.

• (first-agenda-item ⟨agenda⟩) returns the first item on the

agenda.

• (remove-first-agenda-item! ⟨agenda⟩) modifies the agenda

by removing the first item.

• (add-to-agenda! ⟨time⟩ ⟨action⟩ ⟨agenda⟩) modifies the

agendabyaddingthegivenactionproceduretoberunatthespec-

ified time.

• (current-time ⟨agenda⟩) returns the current simulation time.

e particular agenda that we use is denoted by the-agenda. e pro-

cedure after-delay adds new elements to the-agenda:

379

(define (after-delay delay action)

(add-to-agenda! (+ delay (current-time the-agenda))

action

the-agenda))

e simulation is driven by the procedure propagate, which operates

on the-agenda, executing each procedureon the agenda insequence.In

general, as the simulation runs, new items will be added to the agenda,

and propagate will continue the simulation as long as there are items

on the agenda:

(define (propagate)

(if (empty-agenda? the-agenda)

'done

(let ((first-item (first-agenda-item the-agenda)))

(first-item)

(remove-first-agenda-item! the-agenda)

(propagate))))

A sample simulation

e following procedure, which places a “probe” on a wire, shows the

simulator in action. e probe tells the wire that, whenever its signal

changes value, it should print the new signal value, together with the

current time and a name that identifies the wire:

(define (probe name wire)

(add-action! wire

(lambda ()

(newline)

(display name) (display " ")

(display (current-time the-agenda))

(display " New-value = ")

(display (get-signal wire)))))

380

We begin by initializing the agenda and specifying delays for the prim-

itive function boxes:

(define the-agenda (make-agenda))

(define inverter-delay 2)

(define and-gate-delay 3)

(define or-gate-delay 5)

Now we define four wires, placing probes on two of them:

(define input-1 (make-wire))

(define input-2 (make-wire))

(define sum (make-wire))

(define carry (make-wire))

(probe 'sum sum)

sum 0 New-value = 0

(probe 'carry carry)

carry 0 New-value = 0

Next we connect the wires in a half-adder circuit (as in Figure 3.25), set

the signal on input-1 to 1, and run the simulation:

(half-adder input-1 input-2 sum carry)

ok

(set-signal! input-1 1)

done

(propagate)

sum 8 New-value = 1

done

e sum signal changes to 1 at time 8. We are now eight time units from

the beginning of the simulation. At this point, we can set the signal on

input-2 to 1 and allow the values to propagate:

381

(set-signal! input-2 1)

done

(propagate)

carry 11 New-value = 1

sum 16 New-value = 0

done

e carry changes to 1 at time 11 and the sum changes to 0 at time 16.

Exercise3.31:einternalprocedure accept-action-procedure!

defined in make-wire specifies that when a new actionpro-

cedure is added to a wire, the procedure is immediately

run. Explain why this initialization is necessary. In particu-

lar, trace through the half-adder example in the paragraphs

above andsay howthe system’sresponse woulddiffer ifwe

had defined accept-action-procedure! as

(define (accept-action-procedure! proc)

(set! action-procedures

(cons proc action-procedures)))

Implementing the agenda

Finally, we give details of the agenda data structure, which holds the

procedures that are scheduled for future execution.

e agenda is made up of time segments. Each time segment is a

pair consisting of a number (the time) and a queue (see Exercise 3.32)

that holds the procedures that are scheduled to be run during that time

segment.

(define (make-time-segment time queue)

(cons time queue))

382

(define (segment-time s) (car s))

(define (segment-queue s) (cdr s))

Wewilloperate onthetime-segment queuesusingthequeue operations

described in Section 3.3.2.

e agenda itself is a one-dimensional table of time segments. It

differsfromthetablesdescribedinSection3.3.3inthatthesegmentswill

be sorted in order of increasing time. In addition, we store the current

time (i.e., the time of the last action that was processed) at the head of

the agenda. A newly constructed agenda has no time segments and has

a current time of 0:28

(define (make-agenda) (list 0))

(define (current-time agenda) (car agenda))

(define (set-current-time! agenda time)

(set-car! agenda time))

(define (segments agenda) (cdr agenda))

(define (set-segments! agenda segments)

(set-cdr! agenda segments))

(define (first-segment agenda) (car (segments agenda)))

(define (rest-segments agenda) (cdr (segments agenda)))

An agenda is empty if it has no time segments:

(define (empty-agenda? agenda)

(null? (segments agenda)))

Toaddanactiontoanagenda,wefirst checkiftheagendaisempty.Ifso,

we create a time segment for the action and install this in the agenda.

Otherwise, we scan the agenda, examining the time of each segment.

If we find a segment for our appointed time, we add the action to the

28e agenda is a headed list, like the tables in Section 3.3.3, but since the list is

headed by the time, we do not need an additional dummy header (such as the *table*

symbol used with tables).

383

associated queue. If we reach a time later than the one to which we are

appointed, we insert a new time segment into the agendajust before it.

If we reach the end of the agenda, we must create a new time segment

at the end.

(define (add-to-agenda! time action agenda)

(define (belongs-before? segments)

(or (null? segments)

(< time (segment-time (car segments)))))

(define (make-new-time-segment time action)

(let ((q (make-queue)))

(insert-queue! q action)

(make-time-segment time q)))

(define (add-to-segments! segments)

(if (= (segment-time (car segments)) time)

(insert-queue! (segment-queue (car segments))

action)

(let ((rest (cdr segments)))

(if (belongs-before? rest)

(set-cdr!

segments

(cons (make-new-time-segment time action)

(cdr segments)))

(add-to-segments! rest)))))

(let ((segments (segments agenda)))

(if (belongs-before? segments)

(set-segments!

agenda

(cons (make-new-time-segment time action)

segments))

(add-to-segments! segments))))

e procedure that removes the first item from the agenda deletes the

item at the front of the queue in the first time segment. If this deletion

384

makesthetimesegmentempty,weremoveitfromthelistofsegments:29

(define (remove-first-agenda-item! agenda)

(let ((q (segment-queue (first-segment agenda))))

(delete-queue! q)

(if (empty-queue? q)

(set-segments! agenda (rest-segments agenda)))))

e first agenda item is found at the head of the queue in the first

time segment. Whenever we extract an item, we also update the cur-

rent time:30

(define (first-agenda-item agenda)

(if (empty-agenda? agenda)

(error "Agenda is empty: FIRST-AGENDA-ITEM")

(let ((first-seg (first-segment agenda)))

(set-current-time! agenda

(segment-time first-seg))

(front-queue (segment-queue first-seg)))))

Exercise 3.32: e procedures to be run during each time

segment of the agenda are kept in a queue. us, the pro-

cedures for each segment are called in the order in which

they were added to the agenda (first in, first out). Explain

why this order must be used. In particular, trace the behav-

ior of an and-gate whose inputs change from 0, 1 to 1, 0

29Observe that the if expression in this procedure has no ⟨alternative⟩ expression.

Such a “one-armed if statement” is used to decide whether to do something, rather

than to select between two expressions. An if expression returns an unspecified value

if the predicate is false and there is no ⟨alternative⟩.

30In this way, the current time will always be the time of the action most recently

processed. Storing this time at the head of the agenda ensures that it will still be avail-

able even if the associated time segment has been deleted.

385

in the same segment and say how the behavior would dif-

fer if we stored a segment’s procedures in an ordinary list,

adding and removing procedures only at the front (last in,

first out).

3.3.5 Propagation of Constraints

Computer programs are traditionally organized as one-directional com-

putations, which perform operations on prespecified arguments to pro-

duce desired outputs. On the other hand, we oen model systems in

termsofrelationsamongquantities.Forexample, amathematicalmodelofa mechanical structure might include the information that the deflec-

tion d of a metal rod is related to the force F on the rod, the length L

of the rod, the cross-sectional area A, and the elastic modulus E via the

equation

dAE = FL.

Such an equation is not one-directional. Given any four of the quanti-

ties, we can use it to compute the fih. Yet translating the equation into

a traditional computer language would force us to choose one of the

quantities to be computed in terms of the other four. us, a procedure

for computing the area A could not be used to compute the deflection

d, even though the computations ofA and d arise from the same equa-

tion.31

31Constraint propagation first appeared in the incredibly forward-looking

 system of Ivan Sutherland (1963). A beautiful constraint-propagation system based

on the Smalltalk language was developed by Alan Borning (1977) at Xerox Palo Alto

Research Center. Sussman, Stallman, and Steele applied constraint propagation to elec-

trical circuit analysis(Sussman andStallman 1975; Sussman and Steele1980). TK!Solver

(Konopasek and Jayaraman 1984) is an extensive modeling environment based on

constraints.

386

In this section, we sketch the design of a language that enables us

to work in terms of relations themselves. e primitive elements of the

languageare primitiveconstraints,whichstate that certainrelationshold

betweenquantities.Forexample, (adder a b c)specifiesthatthe
quan

tities a,b, and c must be related by the equation a +b = c, (multiplier

x y z) expresses the constraint xy = z, and (constant 3.14 x) says

that the value ofx must be 3.14.

Our language provides a means of combining primitive constraints

in order to express more complex relations. We combine constraints

by constructing constraint networks, in which constraints are joined by

connectors. A connector is an object that “holds” a value that may par-

ticipate in one or more constraints. For example, we know that the re-

lationship between Fahrenheit and Celsius temperatures is

9C = 5(F − 32).

Such aconstraint canbe thought of as anetwork consisting of primitive

adder, multiplier, and constant constraints (Figure 3.28). In the figure,

we see on the le a multiplier box with three terminals, labeled m1,

m2, and p. ese connect the multiplier to the rest of the network as

follows: em1 terminal is linked to a connectorC, which will hold the

Celsius temperature. em2 terminal is linked to a connectorw, which

is also linked to a constant box that holds 9. e p terminal, which the

multiplier box constrains to be the product of m1 and m2, is linked to

the p terminal of another multiplier box, whose m2 is connected to a

constant 5 and whose m1 is connected to one of the terms in a sum.

Computation by such a network proceeds as follows: When a con-

nector is given a value (by the user or by a constraint box to which

it is linked), it awakens all of its associated constraints (except for the

constraint that just awakened it) to inform them that it has a value.

387

m1

m2

p
*

p

m1

m2

*

u

v

3259

a1

a2

s+ F

C

w x y

Figure 3.28: e relation 9C = 5(F − 32) expressed as a

constraint network.

Each awakened constraint box then polls its connectors to see if there

is enough information to determine a value for a connector. If so, the

box sets that connector, which then awakens all of its associated con-

straints, and so on. For instance, in conversion between Celsius and

Fahrenheit, w, x, and y are immediately set by the constant boxes to 9,

5, and 32, respectively. e connectors awaken the multipliers and the

adder, which determine that there is not enough information to pro-

ceed. If the user (or some other part of the network) sets C to a value

(say 25), the lemost multiplier will be awakened, and it will set u to

25 · 9 = 225. en u awakens the second multiplier, which sets v to 45,

and v awakens the adder, which sets f to 77.

Using the constraint system

To use the constraint system to carry out the temperature computation

outlined above, we first create two connectors, C and F, by calling the

constructor make-connector, and link C and F in an appropriate net-

work:

(define C (make-connector))

(define F (make-connector))

388

(celsius-fahrenheit-converter C F)

ok

e procedure that creates the network is defined as follows:

(define (celsius-fahrenheit-converter c f)

(let ((u (make-connector))

(v (make-connector))

(w (make-connector))

(x (make-connector))

(y (make-connector)))

(multiplier c w u)

(multiplier v x u)

(adder v y f)

(constant 9 w)

(constant 5 x)

(constant 32 y)

'ok))

is procedure creates the internal connectors u, v, w, x, and y, and links

them as shown in Figure 3.28 using the primitive constraint construc-

tors adder, multiplier, and constant. Just as with the digital-circuit

simulator of Section 3.3.4, expressing these combinations of primitive

elements in terms of procedures automatically provides our language

with a means of abstraction for compound objects.

To watch the network in action, we can place probes on the con-

nectors C and F, using a probe procedure similar to the one we used to

monitorwires inSection3.3.4. Placinga probe ona connectorwillcause

a message to be printed whenever the connector is given a value:

(probe "Celsius temp" C)

(probe "Fahrenheit temp" F)

Next we set the value of C to 25. (e third argument to set-value!

tells C that this directive comes from the user.)

389

(set-value! C 25 'user)

Probe: Celsius temp = 25

Probe: Fahrenheit temp = 77

done

e probe on C awakens and reports the value. C also propagates its

value through the network as described above. is sets F to 77, which

is reported by the probe on F.

Now we can try to set F to a new value, say 212:

(set-value! F 212 'user)

Error! Contradiction (77 212)

e connector complains that it has sensed a contradiction: Its value is

77, and someone is trying to set it to 212. If we really want to reuse the

network with new values, we can tell C to forget its old value:

(forget-value! C 'user)

Probe: Celsius temp = ?

Probe: Fahrenheit temp = ?

done

C finds that the user, who set its value originally, is now retracting that

value, so C agrees to lose its value, as shown by the probe, and informs

the rest of the network of this fact. is information eventually prop-

agates to F, which now finds that it has no reason for continuing to

believe that its own value is 77. us, F also gives up its value, as shown

by the probe.

Now that F has no value, we are free to set it to 212:

(set-value! F 212 'user)

Probe: Fahrenheit temp = 212

Probe: Celsius temp = 100

done

390

is new value, when propagated through the network, forces C to have

a value of 100, and this is registered by the probe on C. Notice that the

very same network is being used to compute C
given

F and to compute

F given C. is nondirectionality of computation is the distinguishing

feature of constraint-based systems.

Implementing the constraint system

e constraint system is implemented via procedural objects with local

state, in a manner very similar to the digital-circuit simulator of Sec-

tion 3.3.4. Although the primitive objects of the constraint system are

somewhat more complex, the overall system is simpler, since there is

no concern about agendas and logic delays.

e basic operations on connectors are the following:

• (has-value? ⟨connector⟩) tells whether the connector has a

value.

• (get-value ⟨connector⟩) returns the connector’s current value.

• (set-value! ⟨connector⟩ ⟨new-value⟩ ⟨informant⟩) indicates

that the informant is requesting the connector to set its value to

the new value.

• (forget-value! ⟨connector⟩ ⟨retractor⟩) tells the connector

that the retractor is requesting it to forget its value.

• (connect ⟨connector⟩ ⟨new-constraint⟩) tells the connector

to participate in the new constraint.

e connectors communicate with the constraints by means of the pro-

cedures inform-about-value, which tells the given constraint that the

391

connector hasa value,and inform-about-no-value,whichtellsthe

constraintthattheconnectorhaslostitsvalue.

Adder constructs an adder constraint among summand connectors

a1 and a2 and a sum connector. An adder is implemented as a procedure

with local state (the procedure me below):

(define (adder a1 a2 sum)

(define (process-new-value)

(cond ((and (has-value? a1) (has-value? a2))

(set-value! sum

(+ (get-value a1) (get-value a2))

me))

((and (has-value? a1) (has-value? sum))

(set-value! a2

(- (get-value sum) (get-value a1))

me))

((and (has-value? a2) (has-value? sum))

(set-value! a1

(- (get-value sum) (get-value a2))

me))))

(define (process-forget-value)

(forget-value! sum me)

(forget-value! a1 me)

(forget-value! a2 me)

(process-new-value))

(define (me request)

(cond ((eq? request 'I-have-a-value) (process-new-value))

((eq? request 'I-lost-my-value) (process-forget-value))

(else (error "Unknown request: ADDER" request))))

(connect a1 me)

(connect a2 me)

(connect sum me)

me)

392

Adder connects the new adder to the designated connectors and returns

it as its value. e procedure me, which represents the adder, acts as a

dispatch to the local procedures. e following “syntax interfaces” (see

Footnote 27 in Section 3.3.4) are used in conjunction with the dispatch:

(define (inform-about-value constraint)

(constraint 'I-have-a-value))

(define (inform-about-no-value constraint)

(constraint 'I-lost-my-value))

eadder’slocalprocedure process-new-valueiscalledwhentheadder

is informed that one ofits connectors has a value. e adder first checks

to see if both a1 and a2 have values. If so, it tells sum to set its value to

the sum ofthe two addends. e informant
argument to set-value! is

me, which is the adder object itself. If a1 and a2 do not both have values,

then the adder checks to see if perhaps a1 and sum have values. If so, it

sets a2 to the difference of these two. Finally, if a2 and sum have values,

this gives the adder enough information to set a1. If the adder is told

that one ofits connectors has lost a value, it requests that all ofits con-

nectors now lose their values. (Only those values that were set by this

adder are actually lost.) en it runs process-new-value. e reason

for this last step is that one or more connectors may still have a value

(that is, a connector may have had a value that was not originally set by

the adder), and these values may need to be propagated back through

the adder.

A multiplier is very similar to an adder. It will set its product to 0 if

either of the factors is 0, even if the other factor is not known.

(define (multiplier m1 m2 product)

(define (process-new-value)

(cond ((or (and (has-value? m1) (= (get-value m1) 0))

(and (has-value? m2) (= (get-value m2) 0)))

393

(set-value! product 0 me))

((and (has-value? m1) (has-value? m2))

(set-value! product

(* (get-value m1) (get-value m2))

me))

((and (has-value? product) (has-value? m1))

(set-value! m2

(/ (get-value product)

(get-value m1))

me))

((and (has-value? product) (has-value? m2))

(set-value! m1

(/ (get-value product)

(get-value m2))

me))))

(define (process-forget-value)

(forget-value! product me)

(forget-value! m1 me)

(forget-value! m2 me)

(process-new-value))

(define (me request)

(cond ((eq? request 'I-have-a-value) (process-new-value))

((eq? request 'I-lost-my-value) (process-forget-value))

(else (error "Unknown request: MULTIPLIER"

request))))

(connect m1 me)

(connect m2 me)

(connect product me)

me)

A constant constructor simply sets the value of the designated con-

nector. Any I-have-a-value or I-lost-my-value message sent to the

constant box will produce an error.

394

(define (constant value connector)

(define (me request)

(error "Unknown request: CONSTANT" request))

(connect connector me)

(set-value! connector value me)

me)

Finally, a probe prints a message about the seing or unseing of the

designated connector:

(define (probe name connector)

(define (print-probe value)

(newline) (display "Probe: ") (display name)

(display " = ") (display value))

(define (process-new-value)

(print-probe (get-value connector)))

(define (process-forget-value) (print-probe "?"))

(define (me request)

(cond ((eq? request 'I-have-a-value) (process-new-value))

((eq? request 'I-lost-my-value) (process-forget-value))

(else (error "Unknown request: PROBE" request))))

(connect connector me)

me)

Representing connectors

A connector is represented as a procedural object with local state vari-

ables value, the current value of the connector; informant, the object

that set the connector’svalue; and constraints, a list ofthe constraints

in which the connector participates.

(define (make-connector)

(let ((value false) (informant false) (constraints '()))

(define (set-my-value newval setter)

395

(cond ((not (has-value? me))

(set! value newval)

(set! informant setter)

(for-each-except setter

inform-about-value

constraints))

((not (= value newval))

(error "Contradiction" (list value newval)))

(else 'ignored)))

(define (forget-my-value retractor)

(if (eq? retractor informant)

(begin (set! informant false)

(for-each-except retractor

inform-about-no-value

constraints))

'ignored))

(define (connect new-constraint)

(if (not (memq new-constraint constraints))

(set! constraints

(cons new-constraint constraints)))

(if (has-value? me)

(inform-about-value new-constraint))

'done)

(define (me request)

(cond ((eq? request 'has-value?)

(if informant true false))

((eq? request 'value) value)

((eq? request 'set-value!) set-my-value)

((eq? request 'forget) forget-my-value)

((eq? request 'connect) connect)

(else (error "Unknown operation: CONNECTOR"

request))))

me))

396

e connector’s local procedure set-my-value is called when there is

a request to set the connector’s value. If the connector does not cur-

rently have a value, it will set its value and remember as informant

the constraint that requested the value to be set.32 en the connector

will notify all of its participating constraints except the constraint that

requested the value to be set. is is accomplished using the follow-

ing iterator, which applies a designated procedure to all items in a list

except a given one:

(define (for-each-except exception procedure list)

(define (loop items)

(cond ((null? items) 'done)

((eq? (car items) exception) (loop (cdr items)))

(else (procedure (car items))

(loop (cdr items)))))

(loop list))

If a connector is asked to forget its value, it runs the local procedure

forget-my-value, which first checks to make sure that the request is

coming from the same object that set the value originally. If so, the con-

nector informs its associated constraints about the loss of the value.

e local procedure connect adds the designated new constraint to

the listofconstraintsifit isnotalreadyinthatlist.en,ifthe connector

has a value, it informs the new constraint of this fact.

e connector’s procedure me serves as a dispatch to the other in-

ternal procedures and also represents the connector as an object. e

following procedures provide a syntax interface for the dispatch:

(define (has-value? connector)

(connector 'has-value?))

32esettermightnotbeaconstraint.Inourtemperatureexample,weuseduser

asthesetter.

397

(define (get-value connector)

(connector 'value))

(define (set-value! connector new-value informant)

((connector 'set-value!) new-value informant))

(define (forget-value! connector retractor)

((connector 'forget) retractor))

(define (connect connector new-constraint)

((connector 'connect) new-constraint))

Exercise 3.33: Using primitive multiplier, adder, and con-

stant constraints, define a procedure averager that takes

three connectors a, b, and c as inputs and establishes the

constraint that the value of c is the average of the values of

a and b.

Exercise 3.34: Louis Reasoner wants to build a squarer, a

constraint device with two terminals such that the value

of connector b on the second terminal will always be the

square of the value a on the first terminal. He proposes the

following simple device made from a multiplier:

(define (squarer a b)

(multiplier a a b))

ere is a serious flaw in this idea. Explain.

Exercise 3.35: Ben Bitdiddle tells Louis that one way to

avoid the trouble in Exercise 3.34 is to define a squarer

as a new primitive constraint. Fill in the missing portions

in Ben’s outline for a procedure to implement such a con-

straint:

398

(define (squarer a b)

(define (process-new-value)

(if (has-value? b)

(if (< (get-value b) 0)

(error "square less than 0: SQUARER"

(get-value b))

⟨alternative1⟩)

⟨alternative2⟩))

(define (process-forget-value) ⟨body1⟩)

(define (me request) ⟨body2⟩)

⟨rest of definition⟩

me)

Exercise3.36:Supposeweevaluatethefollowingsequence

of expressions in the global environment:

(define a (make-connector))

(define b (make-connector))

(set-value! a 10 'user)

At some time during evaluation ofthe set-value!, the fol-

lowing expression from the connector’s local procedure is

evaluated:

(for-each-except

setter inform-about-value constraints)

Draw an environment diagram showing the environment

in which the above expression is evaluated.

Exercise 3.37: e celsius-fahrenheit-converter pro-

cedureiscumbersomewhencomparedwithamoreexpression-

oriented style of definition, such as

399

(define (celsius-fahrenheit-converter x)

(c+ (c* (c/ (cv 9) (cv 5))

x)

(cv 32)))

(define C (make-connector))

(define F (celsius-fahrenheit-converter C))

Here c+, c*, etc. are the “constraint” versions of the arith-

metic operations. For example, c+ takes two connectors as

arguments and returns a connector that is related to these

by an adder constraint:

(define (c+ x y)

(let ((z (make-connector)))

(adder x y z)

z))

Define analogous procedures c-, c*, c/, and cv (constant

value) that enable us to define compound constraints as in

the converter example above.33

33e expression-oriented format is convenient because it avoids the need to name

the intermediate expressions in a computation. Our original formulation of the con-

straint language is cumbersome in the same way that many languages are cumbersome

when dealing with operations on compound data. For example, if we wanted to com-

pute the product (a+b)·(c+d), where the variables represent vectors, we could work in

“imperative style,” using procedures that set the values of designated vector arguments

but do not themselves return vectors as values:

(v-sum a b temp1)

(v-sum c d temp2)

(v-prod temp1 temp2 answer)

Alternatively, we could deal with expressions, using procedures that return vectors as

values, and thus avoid explicitly mentioning temp1 and temp2:

(define answer (v-prod (v-sum a b) (v-sum c d)))

400

3.4 Concurrency: Time Is of the Essence

We’ve seen the power of computational objects with local state as tools

for modeling. Yet, as Section 3.1.3 warned, this power extracts a price:

the loss ofreferential transparency, giving rise to a thicket of questions

about sameness and change, and the need to abandon the substitution

model of evaluation in favor of the more intricate environment model.

e central issue lurking beneath the complexity of state, sameness,

and change is that by introducing assignment we are forced to admit

time into our computational models. Before we introduced assignment,

all our programs were timeless, in the sense that any expression that

has a value always has the same value. In contrast, recall the example of

modeling withdrawals from a bank account and returning the resulting

balance, introduced at the beginning of Section 3.1.1:

(withdraw 25)

75

(withdraw 25)

50

Since Lisp allows us to return compound objects as values of procedures, we can trans-

form our imperative-style constraint language into an expression-oriented style as

shown in this exercise. In languages that are impoverished in handling compound ob-

jects, such as Algol, Basic, and Pascal (unless one explicitly uses Pascal pointer vari-

ables), one is usually stuck with the imperative style when manipulating compound

objects. Given the advantage of the expression-oriented format, one might ask if there

is any reason to have implemented the system in imperative style, as we did in this

section. One reason is that the non-expression-oriented constraint language provides

a handle on constraint objects (e.g., the value of the adder procedure) as well as on

connector objects. is is useful if we wish to extend the system with new operations

that communicate with constraints directly rather than only indirectly via operations

on connectors. Although it is easy to implement the expression-oriented style in terms

of the imperative implementation, it is very difficult to do the converse.

401

Here successive evaluations of the same expression yield different val-

ues. is behavior arises from the fact that the execution of assignment

statements(inthiscase, assignmentstothe variable balance)delineates

moments in time when values change. e result of evaluating an ex-

pression depends not only on the expression itself, but also on whether

the evaluation occurs before or aer these moments. Building models

in terms of computational objects with local state forces us to confront

time as an essential concept in programming.

Wecangofurtherinstructuringcomputationalmodelstomatch our

perception of the physical world. Objects in the world do not change

one at a time in sequence. Rather we perceive them as acting concur-

rently—all at once. So it is oen natural to model systems as collections

of computational processes that execute concurrently. Just as we can

make our programs modular by organizing models in terms of objects

with separate local state, it is oen appropriate to divide computational

models into parts that evolve separately and concurrently. Even if the

programs are to be executed on a sequential computer, the practice of

writing programs as if they were to be executed concurrently forces

the programmer to avoid inessential timing constraints and thus makes

programs more modular.

In addition to making programs more modular, concurrent compu

tation can provide a speed advantage over sequential computation. Se-

quential computers execute only one operation at a time, so the amount

of time it takes to perform a task is proportional to the total number

of operations performed.34 However, if it is possible to decompose a

34Most real processors actually execute a few operations at a time, following a strat-

egy called pipelining. Although this technique greatly improves the effective utilization

of the hardware, it is used only to speed up the execution of a sequential instruction

stream, while retaining the behavior of the sequential program.

402

problem into pieces that are relatively independent and need to com-

municate only rarely, it may be possible to allocate pieces to separate

computingprocessors, producinga speed advantage proportionaltothenumber of processors available.

Unfortunately, the complexities introduced by assignment become

even more problematic in the presence of concurrency. e fact of con-

current execution, either because the world operates in parallel or be-

cause our computers do, entails additional complexity in our under-

standing of time.

3.4.1 The Nature of Time in Concurrent Systems

On the surface, time seems straightforward. It is an ordering imposed

on events.35 For any events A and B, either A occurs before B, A and

B are simultaneous, or A occurs aer B. For instance, returning to the

bankaccountexample,supposethatPeterwithdraws$10andPaulwith-

draws $25 from a joint account that initially contains $100, leaving $65

in the account. Depending on the order of the two withdrawals, the

sequence of balances in the account is either $100 → $90 → $65 or

$100 → $75 → $65. In a computer implementation of the banking sys-

tem, thischangingsequence ofbalancescouldbe modeled by successive

assignments to a variable balance.

In complex situations, however, such a view can be problematic.

Suppose that Peter and Paul, and other people besides, are accessingthesame bank account through a network of banking machines distributed

all over the world. e actual sequence of balances in the account will

depend critically on the detailed timing of the accesses and the details

of the communication among the machines.

35To
quote some graffiti seen on a Cambridge building wall: “Time is a device that

was invented to keep everything from happening at once.”

403

is indeterminacy in the order of events can pose serious prob-

lems in the design of concurrent systems. For instance, suppose that the

withdrawals made by Peter and Paul are implemented as two separate

processes sharing a common variable balance, each process specified

by the procedure given in Section 3.1.1:

(define (withdraw amount)

(if (>= balance amount)

(begin

(set! balance (- balance amount))

balance)

"Insufficient funds"))

If the two processes operate independently, then Peter might test the

balance and aempt to withdraw a legitimate amount. However, Paul

might withdraw some funds in between the time that Peter checks the

balance and the time Peter completes the withdrawal, thus invalidating

Peter’s test.

ings can be worse still. Consider the expression

(set! balance (- balance amount))

executedaspartofeachwithdrawalprocess.isconsistsofthreesteps:

(1) accessing the value of the balance variable; (2) computing the new

balance; (3) seing balance to this new value. If Peter and Paul’s with-

drawals execute this statement concurrently, then the two withdrawals

might interleave the order in which they access balance and set it to

the new value.

e timing diagram in Figure 3.29 depicts an order of events where

balance starts at 100, Peter withdraws 10, Paul withdraws 25, and yet

the final value of balance is75.As shown in the diagram, the reason for

this anomaly is that Paul’s assignment of 75 to balance is made under

the assumptionthat the value of balance tobe decremented is 100. at

404

Peter Bank Paul

$100

Accessbalance:$100

newvalue:100-25=75

Access balance: $100

new value: 100-10=90

set! balance to $90

$90

$75

set! balance to $75

time

Figure 3.29: Timing diagram showing how interleaving

the order of events in two banking withdrawals can lead

to an incorrect final balance.

405

assumption, however, became invalid when Peter changed balance to

90. is is a catastrophic failure for the banking system, because the

total amount of money in the system is not conserved. Before the trans-

actions, the total amount ofmoney was $100. Aerwards, Peter has $10,

Paul has $25, and the bank has $75.36

e general phenomenon illustrated here is that several processes

mayshareacommonstate variable.Whatmakesthiscomplicatedisthat

more than one process may be trying to manipulate the shared state at

the same time. For the bank account example, during each transaction,

each customer should be able to act as if the other customers did not

exist. When a customer changes the balance in a way that depends on

the balance, he must be able to assume that, just before the moment of

change, the balance is still what he thought it was.

Correct behavior of concurrent programs

e above example typifies the subtle bugs that can creep into concur-

rent programs. e root of this complexity lies in the assignments to

variables that are shared among the different processes. We already

know that we must be careful in writing programs that use set!, be-

cause the results of a computation depend on the order in which the

36An even worse failure for this system could occur if the two set! operations at-

tempt to change the balance simultaneously, in which case the actual data appearing

in memory might end up being a random combination of the information being writ-

ten by the two processes. Most computers have interlocks on the primitive memory-

write operations, which protect against such simultaneous access. Even this seemingly

simple kind of protection, however, raises implementation challenges in the design of

multiprocessing computers, where elaborate cache-coherence protocols are required to

ensure that the various processors will maintain a consistent view of memory contents,

despite the fact that data may be replicated (“cached”) among the different processors

to increase the speed of memory access.

406

assignments occur.37 With concurrent processes we must be especially

careful about assignments, because we may not be able to control the

orderof the assignmentsmade by the different processes.Ifseveral such

changes might be made concurrently (as with two depositors accessing

a joint account) we need some way to ensure that our system behaves

correctly. For example, in the case ofwithdrawals from ajoint bank ac-

count, we must ensure that money is conserved. To make concurrent

programs behave correctly, we may have to place some restrictions on

concurrent execution.

Onepossible restrictiononconcurrencywouldstipulatethat no two

operations that change any shared state variables can occur at the same

time. is is an extremely stringent requirement. For distributed bank-

ing, it would require the system designer to ensure that only one trans-

action could proceed at a time.is would be both inefficient and overly

conservative. Figure 3.30 shows Peter and Paul sharing a bank account,

where Paul has a private account as well. e diagram illustrates two

withdrawals from the shared account (one by Peter and one by Paul)

and a deposit to Paul’s private account.38 e two withdrawals from

the shared account must not be concurrent (since both access and up-

date the same account), and Paul’s deposit and withdrawal must not be

concurrent (since both access and update the amount in Paul’s wallet).

But there should be no problem permiing Paul’s deposit to his pri-

vate account to proceed concurrently with Peter’s withdrawal from the

shared account.

Aless stringent restrictiononconcurrency would ensure that acon-

37e factorial program in Section 3.1.3 illustrates thisfor a singlesequentialprocess.

38e columns show the contents of Peter’s wallet, the joint account (in Bank1),

Paul’s wallet, and Paul’s private account (in Bank2), before and aer each withdrawal

(W) and deposit (D). Peter withdraws $10 from Bank1; Paul deposits $5 in Bank2, then

withdraws $25 from Bank1.

407

Peter Bank1 Paul Bank2

$100$7

$5

$300

$0 $305

$305$25$65$17

$17 $90

W

W

D

time

Figure 3.30: Concurrent deposits and withdrawals from a

joint account in Bank1 and a private account in Bank2.

current system produces the same result as if the processes had run

sequentially in some order. ere are two important aspects to this re-

quirement. First, it does not require the processes to actually run se-

quentially, but only to produce results that are the same as if they had

run sequentially. For the example in Figure 3.30, the designer of the

bank account system can safely allow Paul’s deposit and Peter’s with

drawal to happen concurrently, because the net result will be the same

as if the two operations had happened sequentially. Second, there may

be more than one possible “correct” result produced by a concurrent

program, because we require only that the result be the same as for

408

some sequential order. For example, suppose that Peter and Paul’s joint

account starts out with $100, and Peter deposits $40 while Paul concur-

rently withdraws half the money in the account. en sequential exe-

cution could result in the account balance being either $70 or $90 (see

Exercise 3.38).39

ere are still weaker requirements for correct execution of con-

current programs. A program for simulating diffusion (say, the flow of

heat in an object) might consist of a large number of processes, each

one representing a small volume of space, that update their values con-

currently. Each process repeatedly changes its value to the average of

its own value and its neighbors’ values. is algorithm converges to the

right answerindependent ofthe orderinwhichthe operationsare done;

there isnoneed forany restrictionsonconcurrent use ofthe shared val-

ues.

Exercise 3.38: Suppose that Peter, Paul, and Mary share

a joint bank account that initially contains $100. Concur-

rently, Peter deposits $10, Paul withdraws $20, and Mary

withdraws half the money in the account, by executing the

following commands:

Peter: (set! balance (+ balance 10))

Paul: (set! balance (- balance 20))

Mary: (set! balance (- balance (/ balance 2)))

a. List all the different possible values for balance aer

these three transactions have beencompleted, assum

39 A more formal way to express this idea is to say that concurrent programs are

inherently nondeterministic. at is, they are described not by single-valued functions,

but by functions whose results are sets of possible values. In Section 4.3 we will study

a language for expressing nondeterministic computations.

409

ingthat the bankingsystemforcesthethree processes

to run sequentially in some order.

b. What are some other values that could be produced

if the system allows the processes to be interleaved?

Draw timing diagrams like the one in Figure 3.29 to

explain how these values can occur.

3.4.2 Mechanisms for Controlling Concurrency

We’ve seen that the difficulty in dealing with concurrent processes is

rooted in the need to consider the interleaving of the order of events in

the different processes. For example, suppose we have two processes,

onewiththreeorderedevents(a,b,c)andonewiththreeorderedevents

(x,y,z). If the two processes run concurrently, with no constraints on

how their execution is interleaved, then there are 20 different possible

orderings for the events that are consistent with the individual order-

ings for the two processes:

(a,b,c,x,y,z)

(a,b,x,c,y,z)

(a,b,x,y,c,z)

(a,b,x,y,z,c)

(a,x,b,c,y,z)

(a,x,b,y,c,z)

(a,x,b,y,z,c)

(a,x,y,b,c,z)

(a,x,y,b,z,c)

(a,x,y,z,b,c)

(x,a,b,c,y,z)

(x,a,b,y,c,z)

(x,a,b,y,z,c)

(x,a,y,b,c,z)

(x,a,y,b,z,c)

(x,a,y,z,b,c)

(x,y,a,b,c,z)

(x,y,a,b,z,c)

(x,y,a,z,b,c)

(x,y,z,a,b,c)

As programmers designing this system, we would have to consider the

effects of each of these 20 orderings and check that each behavior is

acceptable.Such anapproach rapidly becomesunwieldy asthenumbers

of processes and events increase.

A more practical approach to the design of concurrent systems is to

devisegeneralmechanismsthatallowustoconstraintheinterleavingof

concurrent processes so that we can be sure that the program behavior

410

is correct. Many mechanisms have been developed for this purpose. In

this section, we describe one of them, the serializer.

Serializing access to shared state

Serializationimplements the followingidea:Processeswill execute con-

currently, but there will be certain collections of procedures that cannot

be executed concurrently. More precisely, serialization creates distin-

guished sets of procedures such that only one execution of a procedure

ineach serializedset is permiedto happenat a time. If some procedure

in the set is being executed, then a process that aempts to execute any

procedure in the set will be forced to wait until the first execution has

finished.

We can use serialization to control access to shared variables. For

example, if we want to update a shared variable based on the previ-

ous value of that variable, we put the access to the previous value of

the variable and the assignment of the new value to the variable in the

same procedure. We then ensure that no other procedure that assigns

to the variable can run concurrently with this procedure by serializing

all of these procedures with the same serializer. is guarantees that

the value of the variable cannot be changed between an access and the

corresponding assignment.

Serializers in Scheme

To make the above mechanism more concrete, suppose that we have

extended Scheme to include a procedure called parallel-execute:

(parallel-execute ⟨p1⟩ ⟨p2⟩ ... ⟨pk⟩)

Each ⟨p⟩ must be a procedure ofno arguments. Parallel-execute cre-

ates a separate process for each ⟨p⟩, which applies ⟨p⟩ (to no argu

411

ments). ese processes all run concurrently.40

As an example of how this is used, consider

(define x 10)

(parallel-execute

(lambda () (set! x (* x x)))

(lambda () (set! x (+ x 1))))

is creates two concurrent processes—P1, which sets x to x times x,

and P2, which increments x. Aer execution is complete, x will be le

with one of five possible values, depending on the interleaving of the

events of P1 and P2:

101: P1 sets x to 100 and then P2 increments x to 101.

121: P2 increments x to 11 and then P1 sets x to x * x.

110: P2 changes x from 10 to 11 between the two times that

P1 accesses the value of x
during the evaluation of (* x x).

11: P2 accessesx,then P1setsx to100,thenP2setsx.

100: P1 accesses x (twice), then P2 sets x to 11, then P1 sets x.

Wecanconstraintheconcurrencybyusingserializedprocedures,which

arecreatedbyserializers.Serializersareconstructedby make-serializer,

whose implementation is given below. A serializer takes a procedure as

argument and returns a serialized procedure that behaves like the origi

nal procedure. All calls to a given serializer return serialized procedures

in the same set.

us, in contrast to the example above, executing

(define x 10)

40Parallel-execute is not part of standard Scheme, but it can be implemented in

 Scheme. In our implementation, the new concurrent processes also run concur-

rently with the original Scheme process. Also, in our implementation, the value re-

turned by
parallel-execute is a special control object that can be used to halt the

newly created processes.

412

(define s (make-serializer))

(parallel-execute

(s (lambda () (set! x (* x x))))

(s (lambda () (set! x (+ x 1)))))

can produce only two possible values for x, 101 or 121. e other pos-

sibilities are eliminated, because the execution of P1 and P2 cannot be

interleaved.

Here is a version ofthe make-account procedure from Section 3.1.1,

where the deposits and withdrawals have been serialized:

(define (make-account balance)

(define (withdraw amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount))

balance)

(let ((protected (make-serializer)))

(define (dispatch m)

(cond ((eq? m 'withdraw) (protected withdraw))

((eq? m 'deposit) (protected deposit))

((eq? m 'balance) balance)

(else (error "Unknown request: MAKE-ACCOUNT"

m))))

dispatch))

With this implementation, two processes cannot be withdrawing from

or depositing into a single account concurrently. is eliminates the

source of the error illustrated in Figure 3.29, where Peter changes the

account balance between the times when Paul accesses the balance to

compute the new value and when Paul actually performs the assign

413

ment. On the other hand, each account has its own serializer, so that

deposits and withdrawals for different accounts can proceed concur-

rently.

Exercise 3.39: Which of the five possibilities in the par-

allel execution shown above remain if we instead serialize

execution as follows:

(define x 10)

(define s (make-serializer))

(parallel-execute

(lambda () (set! x ((s (lambda () (* x x))))))

(s (lambda () (set! x (+ x 1)))))

Exercise 3.40: Give all possible values of x that can result

from executing

(define x 10)

(parallel-execute (lambda () (set! x (* x x)))

(lambda () (set! x (* x x x))))

Which of these possibilities remain if we instead use seri-

alized procedures:

(define x 10)

(define s (make-serializer))

(parallel-execute (s (lambda () (set! x (* x x))))

(s (lambda () (set! x (* x x x)))))

Exercise 3.41: Ben Bitdiddle worries that it would be bet-

ter to implement the bank account as follows (where the

commented line has been changed):

414

(define (make-account balance)

(define (withdraw amount)

(if (>= balance amount)

(begin (set! balance

(- balance amount))

balance)

"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount))

balance)

(let ((protected (make-serializer)))

(define (dispatch m)

(cond ((eq? m 'withdraw) (protected withdraw))

((eq? m 'deposit) (protected deposit))

((eq? m 'balance)

((protected

(lambda () balance)))) ;serialized

(else

(error "Unknown request: MAKE-ACCOUNT"

m))))

dispatch))

because allowing unserialized access to the bank balance

can result in anomalous behavior. Do you agree? Is there

any scenario that demonstrates Ben’s concern?

Exercise 3.42: Ben Bitdiddle suggests that it’s a waste of

time to create a new serialized procedure in response to

every withdraw and deposit message. He says that make-

account could be changed so that the calls to protected

are done outside the dispatch procedure. at is, an ac-

count would return the same serialized procedure (which

415

was created at the same time as the account) each time it is

asked for a withdrawal procedure.

(define (make-account balance)

(define (withdraw amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount))

balance)

(let ((protected (make-serializer)))

(let ((protected-withdraw (protected withdraw))

(protected-deposit (protected deposit)))

(define (dispatch m)

(cond ((eq? m 'withdraw) protected-withdraw)

((eq? m 'deposit) protected-deposit)

((eq? m 'balance) balance)

(else

(error "Unknown request: MAKE-ACCOUNT"

m))))

dispatch)))

Is this a safe change to make? In particular, is there any dif-

ference in what concurrency is allowed by these two ver-

sions of make-account?

Complexity of using multiple shared resources

Serializers provide a powerful abstraction that helps isolate the com-

plexitiesof concurrent programs so that they canbe dealt with carefully

and (hopefully) correctly. However, while using serializers is relatively

416

straightforward when there is only a single shared resource (such as

a single bank account), concurrent programming can be treacherously

difficult when there are multiple shared resources.

To illustrate one ofthe difficulties that canarise,suppose we wish to

swapthe balances intwo bank accounts. We accesseach account tofind

the balance, compute the difference between the balances, withdraw

this difference from one account, and deposit it in the other account.

We could implement this as follows:41

(define (exchange account1 account2)

(let ((difference (- (account1 'balance)

(account2 'balance))))

((account1 'withdraw) difference)

((account2 'deposit) difference)))

is procedure works well when only a single process is trying to do

the exchange. Suppose, however, that Peter and Paul both have access

to accounts a1, a2, and a3, and that Peter exchanges a1 and a2 while

Paul concurrently exchangesa1 anda3. Even with account deposits and

withdrawals serialized for individual accounts (as in the make-account

procedure shown above in this section), exchange can still produce in-

correct results. For example, Peter might compute the difference in the

balances for a1 and a2, but then Paul might change the balance in a1

before Peter is able to complete the exchange.42 For correct behavior,

we must arrange for the exchange procedure to lock out any other con-

current accesses to the accounts during the entire time of the exchange.

41We have simplified exchange by exploiting the fact that our deposit message ac-

cepts negative amounts. (is is a serious bug in our banking system!)

42If the account balances start out as $10, $20, and $30, then aer any number of

concurrent exchanges, the balances should still be $10, $20, and $30 in some order.

Serializing the deposits to individual accounts is not sufficient to guarantee this. See

Exercise 3.43.

417

One way we can accomplish this is by using both accounts’ seri-

alizers to serialize the entire exchange procedure. To do this, we will

arrange for access to an account’s serializer. Note that we are deliber-

ately breaking the modularity of the bank-account object by exposing

the serializer. e following version of make-account is identical to the

original version given in Section 3.1.1, except that a serializer is pro-

vided to protect the balance variable, and the serializer is exported via

message passing:

(define (make-account-and-serializer balance)

(define (withdraw amount)

(if (>= balance amount)

(begin (set! balance (- balance amount))

balance)

"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount))

balance)

(let ((balance-serializer (make-serializer)))

(define (dispatch m)

(cond ((eq? m 'withdraw) withdraw)

((eq? m 'deposit) deposit)

((eq? m 'balance) balance)

((eq? m 'serializer) balance-serializer)

(else (error "Unknown request: MAKE-ACCOUNT" m))))

dispatch))

We can use this to do serialized deposits and withdrawals. However,

unlike our earlier serialized account, it is now the responsibility of each

user of bank-account objects to explicitly manage the serialization, for

example as follows:43

43Exercise 3.45 investigates why deposits and withdrawals are no longer automati-

cally serialized by the account.

418

(define (deposit account amount)

(let ((s (account 'serializer))

(d (account 'deposit)))

((s d) amount)))

Exporting the serializer in this way gives us enough flexibility to imple-

ment a serialized exchange program. We simply serialize the original

exchange procedure with the serializers for both accounts:

(define (serialized-exchange account1 account2)

(let ((serializer1 (account1 'serializer))

(serializer2 (account2 'serializer)))

((serializer1 (serializer2 exchange))

account1

account2)))

Exercise 3.43: Suppose that the balances in three accounts

start out as $10, $20, and $30, and that multiple processes

run, exchanging the balances in the accounts. Argue that if

theprocessesarerunsequentially,aeranynumberofcon-

current exchanges, the account balances should be $10,$20,and $30 in some order. Draw a timing diagram like the one

in Figure 3.29 to show how this condition can be violated

if the exchanges are implemented using the first version of

the account-exchange program inthis section.Onthe other

hand, argue that evenwith this exchangeprogram,the sum

of the balances in the accounts will be preserved. Draw a

timing diagram to show how even this condition would be

violated if we did not serialize the transactions on individ-

ual accounts.

Exercise3.44:Considertheproblemoftransferringanamount

from one account to another. Ben Bitdiddle claims that this

419

can be accomplished with the following procedure, even if

there are multiple people concurrently transferring money

among multiple accounts, using any account mechanism

that serializes deposit and withdrawal transactions, for ex-

ample, the version of make-account in the text above.

(define (transfer from-account to-account amount)

((from-account 'withdraw) amount)

((to-account 'deposit) amount))

Louis Reasoner claims that there is a problem here, and

that we need to use a more sophisticated method, such as

the one required for dealing with the exchange problem. Is

Louis right? If not, what is the essential difference between

thetransferproblemandtheexchangeproblem?(Youshould

assumethatthebalancein from-accountisatleast amount.)

Exercise3.45:LouisReasonerthinksourbank-accountsys-

tem is unnecessarily complex and error-prone now that de-

posits and withdrawals aren’t automatically serialized. He

suggests that make-account-and-serializer should have

exportedtheserializer(forusebysuchproceduresas serialized-

exchange) in addition to (rather than instead o) using it

to serialize accounts and deposits as make-account did. He

proposes to redefine accounts as follows:

(define (make-account-and-serializer balance)

(define (withdraw amount)

(if (>= balance amount)

(begin (set! balance (- balance amount)) balance)

"Insufficient funds"))

(define (deposit amount)

(set! balance (+ balance amount)) balance)

420

(let ((balance-serializer (make-serializer)))

(define (dispatch m)

(cond ((eq? m 'withdraw) (balance-serializer withdraw))

((eq? m 'deposit) (balance-serializer deposit))

((eq? m 'balance) balance)

((eq? m 'serializer) balance-serializer)

(else (error "Unknown request: MAKE-ACCOUNT" m))))

dispatch))

endepositsarehandledaswiththeoriginal make-account:

(define (deposit account amount)

((account 'deposit) amount))

Explain what is wrong with Louis’s reasoning. In particu

lar, consider what happens when serialized-exchange is

called.

Implementing serializers

We implement serializers in terms of a more primitive synchroniza-

tion mechanism called a mutex. A mutex is an object that supports two

operations—the mutex can be acquired, and the mutex can be released.

Once a mutex has been acquired, no other acquire operations on that

mutex may proceed until the mutex is released.44 In our implementa

44e term “mutex” is an abbreviation for mutual exclusion. e general problem of

arranging a mechanism that permits concurrent processes to safely share resources is

called the mutual exclusion problem. Our mutex is a simple variant of the semaphore

mechanism (see Exercise 3.47), which was introduced in the “THE” Multiprogramming

System developed at the Technological University of Eindhoven and named for the

university’s initials in Dutch (Dijkstra 1968a). e acquire and release operations were

originally called P and V, from the Dutch words passeren (to pass) and vrijgeven (to

release), in reference to the semaphores used on railroad systems. Dijkstra’s classic

exposition (Dijkstra 1968b) was one of the first to clearly present the issues of concur

421

tion, each serializer has an associated mutex. Given a procedure p, the

serializer returns a procedure that acquires the mutex, runs p, and then

releases the mutex. is ensures that only one of the procedures pro-

duced by the serializer can be running at once, which is precisely the

serialization property that we need to guarantee.

(define (make-serializer)

(let ((mutex (make-mutex)))

(lambda (p)

(define (serialized-p . args)

(mutex 'acquire)

(let ((val (apply p args)))

(mutex 'release)

val))

serialized-p)))

e mutex is a mutable object (here we’ll use a one-element list, which

we’ll refer to as a cell) that can hold the value true or false. When the

value is false, the mutex is available to be acquired. When the value is

true, the mutex is unavailable, and any process that aempts to acquire

the mutex must wait.

Our mutex constructor make-mutex begins by initializing the cell

contents to false. To acquire the mutex, we test the cell. If the mutex

is available, we set the cell contents to true and proceed. Otherwise,

we wait in a loop, aempting to acquire over and over again, until we

find that the mutex is available.45 To release the mutex, we set the cell

rency control, and showed how to use semaphores to handle a variety of concurrency

problems.

45In most time-shared operating systems, processes that are blocked by a mutex do

not waste time “busy-waiting” as above. Instead, the system schedules another process

to run while the first is waiting, and the blocked process is awakened when the mutex

becomes available.

422

contents to false.

(define (make-mutex)

(let ((cell (list false)))

(define (the-mutex m)

(cond ((eq? m 'acquire)

(if (test-and-set! cell)

(the-mutex 'acquire))) ;retry

((eq? m 'release) (clear! cell))))

the-mutex))

(define (clear! cell) (set-car! cell false))

Test-and-set! tests the cell and returns the result of the test. In addi-

tion, if the test was false, test-and-set! sets the cell contents to true

before returning false. We can express this behavior as the following

procedure:

(define (test-and-set! cell)

(if (car cell) true (begin (set-car! cell true) false)))

However, this implementation of test-and-set! does not suffice as

it stands. ere is a crucial subtlety here, which is the essential place

where concurrency control enters the system: e test-and-set! op-

eration must be performed atomically. at is, we must guarantee that,

once a process has tested the cell and found it to be false, the cell con-

tents will actually be set to true before any other process can test the

cell. If we do not make this guarantee, then the mutex can fail in a way

similar to the bank-account failure in Figure 3.29. (See Exercise 3.46.)

e actual implementation of test-and-set!
depends on the de-

tails of how our system runs concurrent processes. For example, we

might be executing concurrent processes on a sequential processor us-

ing atime-slicing mechanismthat cycles through the processes,permit-

ting each process to run for a short time before interrupting it and mov

423

ing ontothe next process. Inthat case, test-and-set! canwork by dis

abling time slicing during the testing and seing.46 Alternatively, mul

tiprocessing computers provide instructions that support atomic oper-

ations directly in hardware.47

Exercise3.46: Suppose that we implement test-and-set!

using an ordinary procedure as shown in the text, without

aempting to make the operation atomic. Draw a timing

(define (test-and-set! cell)

(without-interrupts

(lambda ()

(if (car cell)

true

(begin (set-car! cell true)

46In Scheme for a single processor, which uses a time-slicing model, test-and-

set! can be implemented as follows:

false)))))

Without-interrupts disables time-slicing interrupts while its procedure argument is

being executed.

47ere are many variants of such instructions—including test-and-set, test-and-

clear, swap, compare-and-exchange, load-reserve, and store-conditional—whose design

must becarefullymatched to themachine’sprocessor-memoryinterface. Oneissue that

arises here is to determine what happens if two processes aempt to acquire the same

resource at exactly the same time by using such an instruction. is requires some

mechanism for making a decision about which process gets control. Such a mechanism

is called an arbiter. Arbiters usually boil down to some sort of hardware device. Un-

fortunately, it is possible to prove that one cannot physically construct a fair arbiter

that works 100% of the time unless one allows the arbiter an arbitrarily long time to

make its decision. e fundamental phenomenon here was originally observed by the

fourteenth-century French philosopher Jean Buridan in his commentary on Aristotle’s

De caelo. Buridan argued that a perfectly rational dog placed between two equally at-

tractive sources of food will starve to death, because it is incapable of deciding which

to go to first.

424

diagram like the one in Figure 3.29 to demonstrate how the

mutex implementation can fail by allowing two processes

to acquire the mutex at the same time.

Exercise3.47:Asemaphore (of sizen)isageneralizationofa mutex. Like a mutex, a semaphore supports acquire and

release operations, but it is more general in that up to n

processes can acquire it concurrently. Additional processes

thataempt toacquirethe semaphore mustwait for release

operations. Give implementations of semaphores

a. in terms of mutexes

b. in terms of atomic test-and-set! operations.

Deadlock

Now that we have seen how to implement serializers, we can see that

account exchanging still has a problem, even with the serialized-

exchange procedure above. Imagine that Peter aempts to exchange

a1 with a2 while Paul concurrently aempts to exchange a2 with a1.

Suppose that Peter’s process reaches the point where it has entered a

serializedprocedure protectinga1 and, just aerthat, Paul’s processen-

ters a serialized procedure protecting a2. Now Peter cannot proceed (to

enter a serialized procedure protectinga2) until Paul exits the serialized

procedure protectinga2. Similarly, Paul cannot proceed until Peter exits

the serialized procedure protecting a1. Each process is stalled forever,

waiting for the other. is situation is called a deadlock. Deadlock is al-

ways a danger in systems that provide concurrent access to multiple

shared resources.

One way to avoid the deadlock in this situation is to give each ac-

countauniqueidentificationnumberandrewrite serialized-exchange

425

so that a process willalways aempt toenteraprocedure protectingthelowest-numbered account first. Although this method works well for

the exchange problem, there are other situations that require more so-

phisticated deadlock-avoidance techniques, or where deadlock cannot

be avoided at all. (See Exercise 3.48 and Exercise 3.49.)48

Exercise3.48:Explainindetailwhythedeadlock-avoidance

method described above, (i.e., the accounts are numbered,

andeach processaemptsto acquire the smaller-numbered

account first)avoidsdeadlock inthe exchange problem.Re-write serialized-exchange to incorporate this idea. (You

willalsoneedtomodify make-accountsothateachaccount

is created with a number, which canbe accessed by sending

an appropriate message.)

Exercise 3.49: Give a scenario where the deadlock-avoid-

ance mechanism described above does not work. (Hint: In

theexchangeproblem,eachprocessknowsinadvancewhich

accounts it will need to get access to. Consider a situation

where a process must get access to some shared resources

beforeitcanknowwhich additionalshared resourcesit will

require.)

48e general technique for avoiding deadlock by numbering the shared resources

and acquiring them in order is due to Havender (1968). Situations where deadlock can-

not be avoided require deadlock-recovery methods, which entail having processes “back

out” of the deadlocked state and try again. Deadlock-recovery mechanisms are widely

used in database management systems, a topic that is treated in detail in Gray and

Reuter 1993.

426

Concurrency, time, and communication

We’ve seen how programming concurrent systems requires controlling

the ordering of events when different processes access shared state, and

we’ve seen how to achieve this control through judicious use of serial-

izers. But the problems of concurrency lie deeper than this, because,

from a fundamental point of view, it’s not always clear what is meant

by “shared state.”

Mechanisms such as test-and-set! require processesto examine a

global shared flag at arbitrary times. is is problematic and inefficient

to implement in modern high-speed processors, where due to optimiza-

tion techniques such as pipelining and cached memory, the contents

of memory may not be in a consistent state at every instant. In con-

temporary multiprocessing systems, therefore, the serializer paradigm

is being supplanted by new approaches to concurrency control.49

eproblematicaspectsofsharedstatealsoariseinlarge,distributed

systems.Forinstance,imagine adistributedbankingsystemwhere indi-

vidualbranchbanksmaintainlocalvaluesfor bank balancesand period-

ically compare these with values maintained by other branches. In such

a system the value of “the account balance” would be undetermined,

except right aer synchronization. If Peter deposits money in an ac-

count he holds jointly with Paul, when should we say that the account

balance has changed—when the balance in the local branch changes, or

not until aer the synchronization? And if Paul accesses the account

49One such alternative to serialization is called barrier synchronization. e program-

mer permits concurrent processes to execute as they please, but establishes certain

synchronization points (“barriers”) through which no process can proceed until all the

processes have reached the barrier. Modern processors provide machine instructions

that permit programmers to establish synchronization points at places where consis-

tency is required. e , for example, includesfor this purpose two instructions

called and (Enforced In-order Execution of Input/Output).

427

from a different branch, what are the reasonable constraints to place on

the banking system such that the behavior is “correct”? e only thing

that might maer for correctness is the behavior observed by Peter and

Paul individually and the “state” of the account immediately aer syn-

chronization. estions about the “real” account balance orthe orderofevents between synchronizations may be irrelevant or meaningless.50

e basic phenomenon here is that synchronizing different pro-

cesses, establishing shared state, or imposing an order on events re-

quires communication among the processes. In essence, any notion of

time in concurrency control must be intimately tied to communica-

tion.51 It is intriguing that a similar connection between time and com-

munication also arises in the eory of Relativity, where the speed of

light (the fastest signal that can be used to synchronize events) is a

fundamental constant relating time and space. e complexities we en

counterindealingwith timeandstate inourcomputationalmodelsmay

in fact mirror a fundamental complexity of the physical universe.

3.5 Streams

We’ve gainedagoodunderstandingofassignmentasatoolinmodeling,

as well as an appreciation of the complex problems that assignment

raises. It is time to ask whether we could have gone about things in a

different way, so as to avoid some of these problems. In this section,

50is may seem like a strange point of view, but there are systems that work this

way. International charges to credit-card accounts, for example, are normally cleared

on a per-country basis, and the charges made in different countries are periodically

reconciled. us the account balance may be different in different countries.

51For distributed systems, this perspective was pursued by Lamport (1978), who

showed how to use communication to establish “global clocks” that can be used to

establish orderings on events in distributed systems.

428

we explore an alternative approach to modeling state, based on data

structures called streams. As we shall see, streams can mitigate some of

the complexity of modeling state.

Let’s step back and review where this complexity comes from. In

an aempt to model real-world phenomena, we made some apparently

reasonable decisions: We modeled real-world objectswith local state by

computational objects with local variables. We identified time variation

in the real world with time variation in the computer. We implemented

the time variation of the states of the model objects in the computer

with assignments to the local variables of the model objects.

Is there another approach? Can we avoid identifying time in the

computer with time in the modeled world? Must we make the model

change with time in order to model phenomena in a changing world?

ink about the issue in terms of mathematical functions. We can de-

scribe the time-varying behavior of a quantity x as a function of time

x(t). Ifwe concentrate onx instant by instant, we think ofit as a chang-

ing quantity. Yet if we concentrate on the entire time history of values,

we do not emphasize change—the function itself does not change.52

If time is measured in discrete steps, then we can model a time func-

tion as a (possibly infinite) sequence. In this section, we will see how to

model change in terms of sequences that represent the time histories

of the systems being modeled. To accomplish this, we introduce new

data structures called streams. From an abstract point of view, a stream

is simply a sequence. However, we will find that the straightforward

implementation of streams as lists (as in Section 2.2.1) doesn’t fully re

52Physicists sometimes adopt this view by introducing the “world lines” of particles

as a device for reasoning about motion. We’ve also already mentioned (Section 2.2.3)

that this is the natural way to think about signal-processing systems. We will explore

applications of streams to signal processing in Section 3.5.3.

429

veal the power of stream processing. As an alternative, we introduce

the technique of delayed evaluation, which enables us to represent very

large (even infinite) sequences as streams.

Stream processing lets us model systems that have state without

everusingassignment ormutable data.ishasimportant implications,

both theoretical and practical, because we can build models that avoid

the drawbacks inherent in introducing assignment. On the other hand,

the stream framework raises difficulties of its own, and the question

of which modeling technique leads to more modular and more easily

maintained systems remains open.

3.5.1 Streams Are Delayed Lists

As we saw in Section 2.2.3, sequences can serve as standard interfaces

for combining program modules. We formulated powerful abstractions

for manipulating sequences, such as map, filter, and accumulate, that

capture a wide variety of operations in a manner that is both succinct

and elegant.

Unfortunately, if we represent sequences as lists, this elegance is

bought at the price of severe inefficiency with respect to both the time

and space required by our computations. When we represent manip-

ulations on sequences as transformations of lists, our programs must

construct and copy data structures (which may be huge) at every step

of a process.

To see why this is true, let us compare two programs for computing

the sum of all the prime numbers in an interval. e first program is

wrien in standard iterative style:53

53Assume that we have a predicate prime? (e.g., as in Section 1.2.6) that tests for

primality.

430

(define (sum-primes a b)

(define (iter count accum)

(cond ((> count b) accum)

((prime? count)

(iter (+ count 1) (+ count accum)))

(else (iter (+ count 1) accum))))

(iter a 0))

esecondprogramperformsthesamecomputationusingthesequence

operations of Section 2.2.3:

(define (sum-primes a b)

(accumulate +

0

(filter prime?

(enumerate-interval a b))))

In carrying out the computation, the first program needs to store only

the sum being accumulated. In contrast, the filter in the second pro-

gram cannot do any testing until enumerate-interval has constructed

a complete list of the numbers in the interval. e filter generates an-

other list, which in turn is passed to accumulate before being collapsed

to form a sum. Such large intermediate storage is not needed by the first

program, which we can think of as enumerating the interval incremen-

tally, adding each prime to the sum as it is generated.

e inefficiency in using lists becomes painfully apparent if we use

the sequence paradigm to compute the second prime in the interval

from 10,000 to 1,000,000 by evaluating the expression

(car (cdr (filter prime?

(enumerate-interval 10000 1000000))))

is expressiondoesfind the second prime, but the computational over-

head isoutrageous.We construct alist ofalmosta millionintegers,filter

431

this list by testing each element for primality, and then ignore almost

all of the result. In a more traditional programming style, we would in-

terleave the enumeration and the filtering, and stop when we reached

the second prime.

Streams are a clever idea that allows one to use sequence manipu-

lations without incurring the costs of manipulating sequences as lists.

With streams we can achieve the best of both worlds: We can formu-

late programs elegantly as sequence manipulations, while aaining the

efficiency of incremental computation. e basic idea is to arrange to

construct a stream only partially, and to pass the partial construction

to the program that consumes the stream. If the consumer aempts to

access a part ofthe stream that has not yet been constructed, the stream

will automatically construct just enough more of itself to produce the

required part, thus preserving the illusion that the entire stream exists.

In other words, although we will write programs as ifwe were process-

ing complete sequences, we design our stream implementation to au-

tomatically and transparently interleave the construction of the stream

with its use.

On the surface, streams are just lists with different names for the

procedures that manipulate them. ere is a constructor, cons-stream,

and two selectors, stream-car and stream-cdr, which satisfy the con

straints

(stream-car (cons-stream x y)) = x

(stream-cdr (cons-stream x y)) = y

ere is a distinguishable object, the-empty-stream, which cannot be

the result of any cons-stream operation, and which can be identified

with the predicate stream-null?.54 us we can make and use streams,

54In the implementation, the-empty-stream is the same as the empty list '(),

andstream-null?isthesameasnull?.

432

injust the samewayaswecanmakeanduselists,torepresentaggregate

data arranged in a sequence. In particular, we can build stream analogs

of the list operations from Chapter 2, such as list-ref, map, and for-

each:55

(define (stream-ref s n)

(if (= n 0)

(stream-car s)

(stream-ref (stream-cdr s) (- n 1))))

(define (stream-map proc s)

(if (stream-null? s)

the-empty-stream

(cons-stream (proc (stream-car s))

(stream-map proc (stream-cdr s)))))

(define (stream-for-each proc s)

(if (stream-null? s)

'done

(begin (proc (stream-car s))

(stream-for-each proc (stream-cdr s)))))

Stream-for-each is useful for viewing streams:

(define (display-stream s)

(stream-for-each display-line s))

(define (display-line x) (newline) (display x))

To make the stream implementation automatically and transparently

interleave the construction of a stream with its use, we will arrange for

55is should bother you. e fact that we are defining such similar procedures for

streams and lists indicates that we are missing some underlying abstraction. Unfor-

tunately, in order to exploit this abstraction, we will need to exert finer control over

the process of evaluation than we can at present. We will discuss this point further at

the end of Section 3.5.4. In Section 4.2, we’ll develop a framework that unifies lists and

streams.

433

the cdr of a stream to be evaluated when it is accessed by the stream-

cdr procedure rather than when the stream is constructed by cons-

stream. is implementation choice is reminiscent of our discussion of

rational numbers in Section 2.1.2, where we saw that we can choose

to implement rational numbers so that the reduction of numerator and

denominator to lowest terms is performed either at construction time

or at selectiontime. e two rational-number implementations produce

the same data abstraction, but the choice has an effect on efficiency.

ere is a similar relationship between streams and ordinary lists. As a

data abstraction, streams are the same as lists. e difference is the time

at which the elements are evaluated. With ordinary lists, both the car

and the cdr are evaluated at construction time. With streams, the cdr

is evaluated at selection time.

Ourimplementationofstreamswillbebasedonaspecialformcalled

delay.Evaluating (delay ⟨exp⟩)doesnotevaluatetheexpression⟨exp⟩,

but rather returns a so-called delayed object, which we can think of as

a “promise” to evaluate ⟨exp⟩ at some future time. As a companion to

delay, there is a procedure called force that takes a delayed object as

argument and performs the evaluation—in effect, forcing the delay to

fulfill its promise. We will see below how delay and force can be im-

plemented, but first let us use these to construct streams.

Cons-stream is a special form defined so that

(cons-stream ⟨a⟩ ⟨b⟩)

is equivalent to

(cons ⟨a⟩ (delay ⟨b⟩))

What this means is that we will construct streams using pairs. How

ever, rather than placing the value of the rest of the stream into the cdr

of the pair we will put there a promise to compute the rest if it is ever

434

requested. Stream-car and stream-cdr can now be defined as proce-

dures:

(define (stream-car stream) (car stream))

(define (stream-cdr stream) (force (cdr stream)))

Stream-car selects the car of the pair;
stream-cdr selects the cdr of

the pair and evaluates the delayed expression found there to obtain the

rest of the stream.56

The stream implementation in action

To see how this implementation behaves, let us analyze the “outra-

geous”primecomputationwesawabove,reformulatedintermsofstreams:

(stream-car

(stream-cdr

(stream-filter prime?

(stream-enumerate-interval

10000 1000000))))

We will see that it does indeed work efficiently.

We begin by calling stream-enumerate-interval with the argu

ments10,000 and 1,000,000. Stream-enumerate-interval is the stream

analog of enumerate-interval (Section 2.2.3):

(define (stream-enumerate-interval low high)

(if (> low high)

the-empty-stream

(cons-stream

56Althoughstream-carandstream-cdrcanbedefinedasprocedures,cons-stream

must be a special form. If cons-stream were a procedure, then, according to our model

of evaluation, evaluating (cons-stream ⟨a⟩ ⟨b⟩) would automatically cause ⟨b⟩ to be

evaluated, which is precisely what we do not want to happen. For the same reason,

delay must be a special form, though force can be an ordinary procedure.

435

low

(stream-enumerate-interval (+ low 1) high))))

and thus the result returned by stream-enumerate-interval, formed

by the cons-stream, is57

(cons 10000

(delay (stream-enumerate-interval 10001 1000000)))

at is, stream-enumerate-interval returns a stream represented as a

pair whose car is 10,000 and whose cdr is a promise to enumerate more

of the interval if so requested. is stream is now filtered for primes,

using the stream analog of the filter procedure (Section 2.2.3):

(define (stream-filter pred stream)

(cond ((stream-null? stream) the-empty-stream)

((pred (stream-car stream))

(cons-stream (stream-car stream)

(stream-filter

pred

(stream-cdr stream))))

(else (stream-filter pred (stream-cdr stream)))))

Stream-filter tests the stream-car ofthe stream (the car ofthe pair,

which is 10,000). Since this is not prime,
stream-filter examines the

stream-cdrofitsinputstream.ecallto stream-cdrforcesevaluation

of the delayed stream-enumerate-interval, which now returns

(cons 10001

(delay (stream-enumerate-interval 10002 1000000)))

57e numbers shown here do not really appear in the delayed expression. What

actually appears is the original expression, in an environment in which the variables

are bound to the appropriate numbers. For example, (+ low 1) with low bound to

10,000 actually appears where 10001 is shown.

436

Stream-filter now looks at the stream-car of this stream, 10,001,

sees that this is not prime either, forces another stream-cdr, and so on,

until stream-enumerate-interval yields the prime 10,007, whereupon

stream-filter,
according to its definition, returns

(cons-stream (stream-car stream)

(stream-filter pred (stream-cdr stream)))

which in this case is

(cons 10007

(delay (stream-filter

prime?

(cons 10008

(delay (stream-enumerate-interval

10009

1000000))))))

is result is now passed to stream-cdr in our original expression. is

forces the delayed stream-filter, which in turn keeps forcing the de-

layed stream-enumerate-interval until it finds the next prime, which

is 10,009. Finally, the result passed to stream-car in our original ex-

pression is

(cons 10009

(delay (stream-filter

prime?

(cons 10010

(delay (stream-enumerate-interval

10011

1000000))))))

Stream-car returns 10,009, and the computation is complete. Only as

many integers were tested for primality as were necessary to find the

437

second prime, and the interval was enumerated only as far as was nec

essary to feed the prime filter.

In general, we can think of delayed evaluation as “demand-driven”

programming, whereby each stage in the stream process is activated

only enough to satisfy the next stage. What we have done is todecouple

the actual order of events in the computation from the apparent struc-

tureofourprocedures.Wewriteproceduresasifthestreamsexisted“all

at once” when, in reality, the computation is performed incrementally,

as in traditional programming styles.

Implementing delay and force

Although delay and force
may seem like mysterious operations, their

implementation is really quite straightforward. Delay must package an

expression so that it can be evaluated later on demand, and we can ac-

complish this simply by treating the expression as the body of a proce-

dure. Delay can be a special form such that

(delay ⟨exp⟩)

is syntactic sugar for

(lambda () ⟨exp⟩)

Force
simply calls the procedure (of no arguments) produced by delay,

so we can implement force as a procedure:

(define (force delayed-object) (delayed-object))

is implementationsufficesfor delay and force toworkasadvertised,

but there is an important optimization that we can include. In many ap-

plications, we end up forcing the same delayed object many times. is

canleadtoseriousinefficiencyinrecursive programsinvolvingstreams.

(See Exercise 3.57.) e solution is to build delayed objects so that the

438

first time they are forced, they store the value that is computed. Subse-

quent forcingswillsimply return the stored value without repeatingthecomputation. In other words, we implement delay as a special-purpose

memoized procedure similar to the one described in Exercise 3.27. One

way to accomplish this is to use the followingprocedure, which takes as

argument a procedure (of no arguments) and returns a memoized ver

sion of the procedure. e first time the memoized procedure is run, it

savesthe computed result. Onsubsequent evaluations,it simply returns

the result.

(define (memo-proc proc)

(let ((already-run? false) (result false))

(lambda ()

(if (not already-run?)

(begin (set! result (proc))

(set! already-run? true)

result)

result))))

Delay is then defined so that (delay ⟨exp⟩) is equivalent to

(memo-proc (lambda () ⟨exp⟩))

and force is as defined previously.58

58ere are many possible implementations of streams other than the one described

in this section. Delayed evaluation, which is the key to making streams practical, was

inherent in Algol 60’s call-by-name parameter-passing method. e use of this mech-

anism to implement streams was first described by Landin (1965). Delayed evaluation

for streams was introduced into Lisp by Friedman and Wise (1976). In their implemen-

tation, cons always delays evaluating its arguments, so that lists automatically behave

as streams. e memoizing optimization is also known as call-by-need. e Algol com-

munity would refer to our original delayed objects as call-by-name thunks and to the

optimized versions as call-by-need thunks.

439

Exercise 3.50: Complete the following definition, which

generalizes stream-map to allow procedures that take mul-

tiple arguments, analogous to map inSection2.2.1, Footnote

12.

(define (stream-map proc . argstreams)

(if (⟨??⟩ (car argstreams))

the-empty-stream

(⟨??⟩

(apply proc (map ⟨??⟩ argstreams))

(apply stream-map

(cons proc (map ⟨??⟩ argstreams))))))

Exercise3.51:Inordertotakeacloserlookatdelayedeval-

uation, we will use the following procedure, which simply

returns its argument aer printing it:

(define (show x)

(display-line x)

x)

What does the interpreter print in response to evaluating

each expression in the following sequence?59

(define x

59Exercises such as Exercise 3.51 and Exercise 3.52 are valuable for testing our un-

derstanding of how delay works. On the other hand, intermixing delayed evaluation

with printing—and, even worse, with assignment—is extremely confusing, and instruc-

tors ofcourses on computer languages have traditionally tormented their students with

examination questions such as the ones in this section. Needless to say, writing pro-

grams that depend on such subtleties is odious programming style. Part of the power

of stream processing is that it lets us ignore the order in which events actually happen

in our programs. Unfortunately, this is precisely what we cannot afford to do in the

presence of assignment, which forces us to be concerned with time and change.

440

(stream-map show

(stream-enumerate-interval 0 10)))

(stream-ref x 5)

(stream-ref x 7)

Exercise 3.52: Consider the sequence of expressions

(define sum 0)

(define (accum x) (set! sum (+ x sum)) sum)

(define seq

(stream-map accum

(stream-enumerate-interval 1 20)))

(define y (stream-filter even? seq))

(define z

(stream-filter (lambda (x) (= (remainder x 5) 0))

seq))

(stream-ref y 7)

(display-stream z)

What isthe value of sum aereach ofthe above expressions

is evaluated? What is the printed response to evaluating

the stream-ref and display-stream expressions? Would

theseresponsesdifferifwehadimplemented (delay ⟨exp⟩)

simply as (lambda () ⟨exp⟩) without using the optimiza

tion provided by memo-proc? Explain

3.5.2 Infinite Streams

We have seen how to support the illusion of manipulating streams as

complete entities even though, in actuality, we compute only as much

ofthe stream as we need to access. We can exploit this technique to rep-

resent sequences efficiently as streams, even if the sequences are very

441

long. What is more striking, we can use streams to represent sequences

that are infinitely long. For instance, consider the following definition

of the stream of positive integers:

(define (integers-starting-from n)

(cons-stream n (integers-starting-from (+ n 1))))

(define integers (integers-starting-from 1))

is makes sense because integers will be a pair whose car is 1 and

whose cdr is a promise to produce the integers beginning with 2. is

is an infinitely long stream, but in any given time we can examine only

a finite portion ofit. us, our programs will never know that the entire

infinite stream is not there.

Using integers we can define other infinite streams, such as the

stream of integers that are not divisible by 7:

(define (divisible? x y) (= (remainder x y) 0))

(define no-sevens

(stream-filter (lambda (x) (not (divisible? x 7)))

integers))

en we can find integers not divisible by 7 simply by accessing ele

ments of this stream:

(stream-ref no-sevens 100)

117

Inanalogywith integers,we candefinetheinfinitestreamofFibonacci

numbers:

(define (fibgen a b) (cons-stream a (fibgen b (+ a b))))

(define fibs (fibgen 0 1))

Fibs is a pair whose car is 0 and whose cdr is a promise to evaluate

(fibgen 1 1). When we evaluate this delayed (fibgen 1 1), it will

442

produce a pair whose car is 1 and whose cdr is a promise to evaluate

(fibgen 1 2), and so on.

For a look at a more exciting infinite stream, we can generalize the

no-sevens example to construct the infinite stream of prime numbers,

using a method known as the sieve ofEratosthenes.60 We start with the

integers beginning with 2, which is the first prime. To get the rest of

the primes, we start by filtering the multiples of 2 from the rest of the

integers. is leavesa stream beginning with 3, which is the next prime.

Now we filter the multiples of 3 from the rest of this stream. is leaves

a stream beginning with 5, which is the next prime, and so on. In other

words, we construct the primes by a sieving process, described as fol-

lows: To sieve a stream S, form a stream whose first element is the first

element of S and the rest of which is obtained by filtering all multiples

of the first element of S out of the rest of S and sieving the result. is

process is readily described in terms of stream operations:

(define (sieve stream)

(cons-stream

(stream-car stream)

(sieve (stream-filter

(lambda (x)

(not (divisible? x (stream-car stream))))

(stream-cdr stream)))))

(define primes (sieve (integers-starting-from 2)))

60Eratosthenes, a third-century .. Alexandrian Greek philosopher, is famous for

giving the first accurate estimate of the circumference of the Earth, which he computed

by observing shadows cast at noon on the day of the summer solstice. Eratosthenes’s

sieve method, although ancient, has formed the basis for special-purpose hardware

“sieves” that, until recently, were the most powerful tools in existence for locating large

primes. Since the 70s, however, these methods have been superseded by outgrowths of

the probabilistic techniques discussed in Section 1.2.6.

443

sieve

car

cdr

cons

filter:

not

divisible?

sieve

Figure 3.31: e prime sieve viewed as a signal-processing

system.

Now to find a particular prime we need only ask for it:

(stream-ref primes 50)

233

It is interesting to contemplate the signal-processing system set up by

sieve, shown in the “Henderson diagram” in Figure 3.31.61 e input

stream feeds into an “unconser” that separates the first element of the

stream from the rest ofthe stream. e first element is used to construct

a divisibility filter, through which the rest is passed, and the output of

the filter is fed to another sieve box. en the original first element is

consed onto the output of the internal sieve to form the output stream.

us, not only is the stream infinite, but the signal processor is also

infinite, because the sieve contains a sieve within it.

61We have named these figures aer Peter Henderson, who was the first person to

show us diagrams of this sort as a way of thinking about stream processing. Each solid

line represents a stream of values being transmied. e dashed line from the car to

the cons and the filter indicates that this is a single value rather than a stream.

444

Defining streams implicitly

e integers and fibs streams above were defined by specifying “gen-

erating” procedures that explicitly compute the stream elements one by

one. An alternative way to specify streams is to take advantage of de-

layedevaluationtodefine streamsimplicitly.Forexample, thefollowing

expression defines the stream ones to be an infinite stream of ones:

(define ones (cons-stream 1 ones))

is works much like the definition of a recursive procedure: ones is

a pair whose car is 1 and whose cdr is a promise to evaluate ones.

Evaluating the cdr gives us again a 1 and a promise to evaluate ones,

and so on.

We can do more interesting things by manipulating streams with

operations such as add-streams, which produces the elementwise sum

of two given streams:62

(define (add-streams s1 s2) (stream-map + s1 s2))

Now we can define the integers as follows:

(define integers

(cons-stream 1 (add-streams ones integers)))

isdefines integerstobeastreamwhosefirstelementis1andtherest

ofwhich is the sum of ones and integers. us, the second element of

integers is 1 plus the first element of integers, or 2; the third element

of integers is 1 plus the second element of integers, or 3; and so on.

is definition works because, at any point, enough of the integers

stream has been generatedso that we can feed it back into the definition

to produce the next integer.

We can define the Fibonacci numbers in the same style:

62is uses the generalized version of stream-map from Exercise 3.50.

445

(define fibs

(cons-stream

0

(cons-stream 1 (add-streams (stream-cdr fibs) fibs))))

is definition says that fibs is a stream beginning with 0 and 1, such

that the rest of the stream can be generated by adding
fibs to itself

shied by one place:

1 1 2 3 5 8 13 21 ... = (stream-cdr fibs)

0 1 1 2 3 5 8 13 ... = fibs

0 1 1 2 3 5 8 13 21 34 ... = fibs

Scale-stream is another useful procedure in formulating such stream

definitions. is multiplies each item in a stream by a given constant:

(define (scale-stream stream factor)

(stream-map (lambda (x) (* x factor))

stream))

For example,

(define double (cons-stream 1 (scale-stream double 2)))

produces the stream ofpowers of 2: 1, 2, 4, 8, 16, 32,

Analternatedefinitionof thestreamofprimescanbe givenby start

ing with the integers and filtering them by testing for primality. We will

need the first prime, 2, to get started:

(define primes

(cons-stream

2

(stream-filter prime? (integers-starting-from 3))))

is definition is not so straightforward as it appears, because we will

test whether a numbern is prime by checking whether n is divisible by

a prime (not byjust any integer) less than or equal to √
n:

446

(define (prime? n)

(define (iter ps)

(cond ((> (square (stream-car ps)) n) true)

((divisible? n (stream-car ps)) false)

(else (iter (stream-cdr ps)))))

(iter primes))

is is a recursive definition, since primes is defined in terms of the

prime? predicate, which itself uses the primes stream. e reason this

procedure works is that, at any point, enough of the primes stream has

been generated to test the primality of the numbers we need to check

next. at is, for every n we test for primality, either n is not prime (in

which case there is a prime already generated that divides it) or n is

prime (in which case there is a prime already generated—i.e., a prime

less than n—that is greater than √n).63

Exercise 3.53: Without running the program, describe the

elements of the stream defined by

(define s (cons-stream 1 (add-streams s s)))

Exercise3.54: Define aprocedure mul-streams,analogousto add-streams, that produces the elementwise product of

its two input streams. Use this together with the stream of

integerstocompletethefollowingdefinitionofthestream

whose nth element (counting from 0) is n + 1 factorial:

63islastpoint isvery subtleand relieson thefactthat pn+1 ≤ p2n .(Here, pk denotes

the kth prime.) Estimates such as these are very difficult to establish. e ancient proof

by Euclid that there are an infinite number of primes shows that pn+1 ≤ p1p2 ··· pn +1,

and no substantially beer result was proved until 1851, when the Russian mathemati-

cian P. L. Chebyshev established that pn+1 ≤ 2pn for all n. is result, originally con-

jectured in 1845, is known as Bertrand’s hypothesis. A proofcan be found in section 22.3

of Hardy and Wright 1960.

447

(define factorials

(cons-stream 1 (mul-streams ⟨??⟩ ⟨??⟩)))

Exercise3.55: Defineaprocedure partial-sumsthattakesas argument a stream S and returns the stream whose ele

mentsareS0,S0+S1,S0+S1+S2,....Forexample, (partial-

sums integers) should be the stream 1, 3, 6, 10, 15,

Exercise 3.56: A famous problem, first raised by R. Ham-

ming, is to enumerate, in ascending order with no repeti-

tions, all positive integers with no prime factors other than

2, 3, or 5. One obvious way to do this is to simply test each

integer in turn to see whether it has any factors other than

2, 3, and 5. But this is very inefficient, since, as the integers

get larger, fewer and fewer of them fit the requirement. As

an alternative, let us call the required stream of numbers S

and notice the following facts about it.

• S begins with 1.

• e elements of (scale-stream S 2) are also ele-

ments of S.

• esameistruefor (scale-stream S 3)and (scale-

stream 5 S).

• ese are all the elements of S.

Nowallwehavetodoiscombineelementsfromthesesources.

For this we define aprocedure merge that combines two or-

dered streams into one ordered result stream, eliminating

repetitions:

448

(define (merge s1 s2)

(cond ((stream-null? s1) s2)

((stream-null? s2) s1)

(else

(let ((s1car (stream-car s1))

(s2car (stream-car s2)))

(cond ((< s1car s2car)

(cons-stream

s1car

(merge (stream-cdr s1) s2)))

((> s1car s2car)

(cons-stream

s2car

(merge s1 (stream-cdr s2))))

(else

(cons-stream

s1car

(merge (stream-cdr s1)

(stream-cdr s2)))))))))

en the required stream may be constructed with merge,

as follows:

(define S (cons-stream 1 (merge ⟨??⟩ ⟨??⟩)))

Fill in the missing expressions in the places marked ⟨⁇⟩

above.

Exercise 3.57: How many additions are performed when

we compute the nth Fibonacci number using the definition

of fibs based on the add-streams procedure? Show that

the number of additions would be exponentially greater

if we had implemented (delay ⟨exp⟩) simply as (lambda

449

() ⟨exp⟩), without using the optimization provided by the

memo-proc procedure described in Section 3.5.1.64

Exercise 3.58: Give an interpretation of the stream com

puted by the following procedure:

(define (expand num den radix)

(cons-stream

(quotient (* num radix) den)

(expand (remainder (* num radix) den) den radix)))

(Quotient is a primitive that returnsthe integer quotient of

two integers.) What are the successive elements produced

by (expand 1 7 10)? What is produced by (expand 3 8

10)?

Exercise 3.59: In Section 2.5.3 we saw how to implement

a polynomial arithmetic system representing polynomials

as lists of terms. In a similar way, we can work with power

series, such as

ex=1+x+ x22+ x33 ·2+ x4

4·3 · 2

+ ...,

cosx=1−

x22+ x4

4·3·2

−...,

x3 x5

sinx=x−

3·2 + 5·4·3·2

−...

64is exercise shows how call-by-need is closely related to ordinary memoization as

described in Exercise 3.27. In that exercise, we used assignment to explicitly construct

a local table. Our call-by-need stream optimization effectively constructs such a table

automatically, storing values in the previously forced parts of the stream.

450

represented as infinitestreams. We will represent the series

a0 + a1x + a2x2 + a3x3 + ... as the stream whose elements

are the coefficients a0, a1, a2, a3,

a. e integral of the series a0 + a1x + a2x2 + a3x3 + ...

is the series

c+a0x+ 12a1x2 + 13a2x3 + 1a3x4 +...,

4

wherec isanyconstant.Defineaprocedure integrate-

series that takes as input a stream a0, a1, a2, ... rep

resenting a power series and returns the stream a0,

12a1, 13a2, ... of coefficients of the non-constant terms

of the integral of the series. (Since the result has no

constantterm,itdoesn’trepresentapowerseries;when

we use integrate-series, we will cons on the ap-

propriate constant.)

b. e function x→ ex is its own derivative. is im

plies that ex and the integral of ex are the same se-

ries, except for the constant term, which is e0 = 1.

Accordingly, we can generate the series for ex as

(define exp-series

(cons-stream 1 (integrate-series exp-series)))

Show how to generate the series for sine and cosine,

starting from the facts that the derivative of sine is

cosine and the derivative of cosine is the negative of

sine:

(define cosine-series (cons-stream 1 ⟨??⟩))

(define sine-series (cons-stream 0 ⟨??⟩))

451

Exercise 3.60: With power series represented as streams

of coefficients as in Exercise 3.59, adding series is imple-

mentedby add-streams. Complete thedefinitionofthe fol-

lowing procedure for multiplying series:

(define (mul-series s1 s2)

(cons-stream ⟨??⟩ (add-streams ⟨??⟩ ⟨??⟩)))

Youcantestyourprocedurebyverifyingthatsin2x + cos2x = 1,

using the series from Exercise 3.59.

Exercise3.61:Let S beapowerseries(Exercise3.59)whose

constant term is 1. Suppose we want to find the power se-

ries 1/S, that is, the series X such that SX = 1. Write

S = 1 + SR where SR is the part of S aer the constant

term. en we can solve for X as follows:

S·X=1,

(1+SR)·X=1,

X+SR·X=1,

X=1−SR·X.

In other words, X is the power series whose constant term

is1andwhosehigher-ordertermsaregivenbythenegative

of SR times X. Use this idea to write a procedure invert-

unit-series that computes 1/S for a power series S with

constant term 1. You will need to use mul-series from Ex

ercise 3.60.

Exercise 3.62: Use the results of Exercise 3.60 and Exer-

cise 3.61 to define a procedure div-series that divides two

power series. Div-series should work for any two series,

452

providedthatthe denominatorseriesbeginswith anonzero

constantterm.(Ifthedenominatorhasazeroconstantterm,

then div-series should signal an error.) Show how to use

div-seriestogetherwiththe result ofExercise3.59to gen-

erate the power series for tangent.

3.5.3 Exploiting the Stream Paradigm

Streams with delayed evaluation can be a powerful modeling tool, pro-

viding many of the benefits of local state and assignment. Moreover,

they avoid some of the theoretical tangles that accompany the intro-

duction of assignment into a programming language.

e stream approach can be illuminating because it allows us to

build systems with different module boundariesthansystems organized

around assignment to state variables. For example, we can think of an

entire time series(or signal) asa focus ofinterest, ratherthan the values

of the state variables at individual moments. is makes it convenient

to combine and compare components of state from different moments.

Formulating iterations as stream processes

In Section 1.2.1, we introduced iterative processes, which proceed by

updating state variables. We know now that we can represent state as

a “timeless” stream of values rather than as a set of variables to be up-

dated. Let’s adopt this perspective in revisiting the square-root proce-

dure from Section 1.1.7. Recall that the idea is to generate a sequence of

beer and beer guesses for the square root ofx by applying over and

over again the procedure that improves guesses:

(define (sqrt-improve guess x)

(average guess (/ x guess)))

453

Inour original sqrt procedure,we made these guessesbethe successive

values ofa state variable. Instead we can generate the infinite stream of

guesses, starting with an initial guess of 1:65

(define (sqrt-stream x)

(define guesses

(cons-stream

1.0

(stream-map (lambda (guess) (sqrt-improve guess x))

guesses)))

guesses)

(display-stream (sqrt-stream 2))

1.

1.5

1.4166666666666665

1.4142156862745097

1.4142135623746899

...

We can generate more and more terms of the stream to get beer and

beerguesses.Ifwelike,wecanwriteaprocedurethatkeepsgenerating

terms until the answer is good enough. (See Exercise 3.64.)

Another iteration that we can treat in the same way is to generate

an approximation to π, based upon the alternating series that we saw

in Section 1.3.1:

π

4 = 1 −

13 + 1

5 −

1

7

+

We first generate the stream of summands of the series (the reciprocals

of the odd integers, with alternating signs). en we take the stream of

65We can’t use let to bind the local variable guesses, because the value of guesses

depends on guesses itself. Exercise 3.63 addresses why we want a local variable here.

454

sums of more and more terms (using the partial-sums procedure of

Exercise 3.55) and scale the result by 4:

(define (pi-summands n)

(cons-stream (/ 1.0 n)

(stream-map - (pi-summands (+ n 2)))))

(define pi-stream

(scale-stream (partial-sums (pi-summands 1)) 4))

(display-stream pi-stream)

4.

2.666666666666667

3.466666666666667

2.8952380952380956

3.3396825396825403

2.9760461760461765

3.2837384837384844

3.017071817071818

...

isgivesusastreamofbeerandbeerapproximationstoπ,although

the approximations converge rather slowly. Eight terms ofthe sequence

bound the value ofπ between 3.284 and 3.017.

So far, our use of the stream of states approach is not much different

from updating state variables. But streams give us an opportunity to do

some interesting tricks. For example, we can transform a stream with

a sequence accelerator that converts a sequence of approximations to a

new sequence that converges to the same value as the original, only

faster.

One such accelerator, due to the eighteenth-century Swiss math-

ematician Leonhard Euler, works well with sequences that are partial

sums of alternating series (series ofterms with alternatingsigns). InEu-

ler’s technique, if Sn is the nth term of the original sum sequence, then

455

the accelerated sequence has terms

(Sn+1 − Sn)2

Sn+1 −

Sn−1 − 2Sn + Sn+1

.

us, if the original sequence is represented as a stream of values, the

transformed sequence is given by

(define (euler-transform s)

(let ((s0 (stream-ref s 0)) ;Sn−1

(s1 (stream-ref s 1)) ;Sn

(s2 (stream-ref s 2))) ;Sn+1

(cons-stream (- s2 (/ (square (- s2 s1))

(+ s0 (* -2 s1) s2)))

(euler-transform (stream-cdr s)))))

We can demonstrate Euler acceleration with our sequence of approxi-

mations to π:

(display-stream (euler-transform pi-stream))

3.166666666666667

3.1333333333333337

3.1452380952380956

3.13968253968254

3.1427128427128435

3.1408813408813416

3.142071817071818

3.1412548236077655

...

Evenbeer, we canaccelerate the accelerated sequence, and recursively

accelerate that, and so on. Namely, we create a stream of streams (a

structure we’ll call a tableau) in which each stream is the transform of

the preceding one:

456

(define (make-tableau transform s)

(cons-stream s (make-tableau transform (transform s))))

e tableau has the form

s00 s01 s02 s03 s04 ...

s10 s11 s12 s13 ...

s20 s21 s22 ...

...

Finally, we form a sequence by taking the first term in each row of the

tableau:

(define (accelerated-sequence transform s)

(stream-map stream-car (make-tableau transform s)))

Wecandemonstrate thiskindof“super-acceleration”of theπ sequence:

(display-stream

(accelerated-sequence euler-transform pi-stream))

4.

3.166666666666667

3.142105263157895

3.141599357319005

3.1415927140337785

3.1415926539752927

3.1415926535911765

3.141592653589778

...

e result is impressive. Taking eight terms of the sequence yields the

correct value ofπ to 14 decimal places. If we had used only the original

π sequence, we would need to compute on the order of1013 terms (i.e.,

expanding the series far enough so that the individual terms are less

than 10−13) to get that much accuracy!

457

We could have implemented these acceleration techniques without

using streams. But the stream formulation is particularly elegant and

convenient because the entire sequence of states is available to us as a

datastructure that can be manipulated with a uniform set of operations.

Exercise 3.63: Louis Reasoner asks why the sqrt-stream

procedure was not wrien in the following more straight

forward way, without the local variable guesses:

(define (sqrt-stream x)

(cons-stream 1.0 (stream-map

(lambda (guess)

(sqrt-improve guess x))

(sqrt-stream x))))

Alyssa P. Hacker replies that this version of the procedure

is considerably less efficient because it performs redundant

computation. Explain Alyssa’s answer. Would the two ver

sionsstilldifferinefficiencyifourimplementationof delay

used only (lambda () ⟨exp⟩) without using the optimiza

tion provided by memo-proc (Section 3.5.1)?

Exercise 3.64: Write a procedure stream-limit that takes

asargumentsastreamandanumber(thetolerance).Itshould

examine the stream until it finds two successive elements

that differ in absolute value by less than the tolerance, and

return the second of the two elements. Using this, we could

compute square roots up to a given tolerance by

(define (sqrt x tolerance)

(stream-limit (sqrt-stream x) tolerance))

458

Exercise 3.65: Use the series

ln2=1−

12 + 13 − 1

4

+ ...

to compute three sequences of approximations to the nat-

ural logarithm of 2, in the same way we did above for π.

How rapidly do these sequences converge?

Infinite streams of pairs

In Section 2.2.3, we saw how the sequence paradigm handles traditional

nested loops as processesdefined on sequencesof pairs. Ifwe generalize

this technique to infinite streams, then we can write programs that are

not easily represented as loops, because the “looping” must range over

an infinite set.

For example, suppose we want to generalize the prime-sum-pairs

procedure of Section 2.2.3 to produce the stream of pairs of all integers

(i,j) withi ≤ j such that i + j is prime. If int-pairs is the sequence of

all pairs ofintegers (i,j) withi ≤ j, then our required stream is simply66

(stream-filter

(lambda (pair) (prime? (+ (car pair) (cadr pair))))

int-pairs)

Our problem, then, is to produce the stream int-pairs. More generally,

suppose we have two streams S = (Si) and T = (Tj), and imagine the

infinite rectangular array

(S0,T0) (S0,T1) (S0,T2) ...

(S1,T0) (S1,T1) (S1,T2) ...

(S2,T0) (S2,T1) (S2,T2) ...

...

66As in Section 2.2.3, we represent a pair of integers as a list rather than a Lisp pair.

459

We wish to generate a stream that contains all the pairs in the array

that lie on or above the diagonal, i.e., the pairs

(S0,T0) (S0,T1) (S0,T2) ...

(S1,T1) (S1,T2) ...

(S2,T2) ...

...

(If we take both S and T to be the stream of integers, then this will be

our desired stream int-pairs.)

Call the general stream of pairs (pairs S T), and consider it to be

composed ofthree parts: the pair (S0,T0), the rest ofthe pairs inthe first

row, and the remaining pairs:67

(S0,T0) (S0,T1) (S0,T2) ...

(S1,T1) (S1,T2) ...

(S2,T2) ...

...

Observe that the third piece in this decomposition (pairs that are not

in the first row) is (recursively) the pairs formed from (stream-cdr S)

and (stream-cdr T). Also note that the second piece (the rest of the

first row) is

(stream-map (lambda (x) (list (stream-car s) x))

(stream-cdr t))

us we can form our stream of pairs as follows:

(define (pairs s t)

(cons-stream

(list (stream-car s) (stream-car t))

67See Exercise 3.68 for some insight into why we chose this decomposition.

460

(⟨combine-in-some-way⟩

(stream-map (lambda (x) (list (stream-car s) x))

(stream-cdr t))

(pairs (stream-cdr s) (stream-cdr t)))))

In order to complete the procedure, we must choose some way to com-

bine the two inner streams. One idea is to use the stream analog of the

append procedure from Section 2.2.1:

(define (stream-append s1 s2)

(if (stream-null? s1)

s2

(cons-stream (stream-car s1)

(stream-append (stream-cdr s1) s2))))

is is unsuitable for infinite streams, however, because it takes all the

elements from the first stream before incorporating the second stream.

In particular, if we try to generate all pairs of positive integers using

(pairs integers integers)

our stream of results will first try to run through all pairs with the first

integer equal to 1, and hence will never produce pairs with any other

value of the first integer.

To handle infinite streams, we need to devise an order of combina-

tion that ensures that every element will eventually be reached if we

let our program run long enough. An elegant way to accomplish this is

with the following interleave procedure:68

68e precise statement of the required property on the order of combination is as

follows: ere should be a function f of two arguments such that the pair correspond-

ing to element i of the first stream and element j of the second stream will appear as

element number f(i, j) of the output stream. e trick of using interleave to accom-

plish this was shown to us by David Turner, who employed it in the language KRC

(Turner1981).

461

(define (interleave s1 s2)

(if (stream-null? s1)

s2

(cons-stream (stream-car s1)

(interleave s2 (stream-cdr s1)))))

Since interleave takes elements alternately from the two streams, ev

ery element of the second stream will eventually find its way into the

interleaved stream, even if the first stream is infinite.

We can thus generate the required stream of pairs as

(define (pairs s t)

(cons-stream

(list (stream-car s) (stream-car t))

(interleave

(stream-map (lambda (x) (list (stream-car s) x))

(stream-cdr t))

(pairs (stream-cdr s) (stream-cdr t)))))

Exercise3.66:Examinethestream (pairs integers integers).

Can you make any general comments about the order in

which the pairs are placed into the stream? For example,

approximately how many pairs precede the pair (1, 100)?

the pair(99, 100)? the pair (100, 100)? (Ifyou can make pre-

cise mathematical statements here, all the beer. But feel

free to give more qualitative answers if you find yourself

geing bogged down.)

Exercise 3.67: Modify the pairs procedure so that (pairs

integers integers) willproduce the stream of all pairs of

integers (i,j) (without the condition i ≤ j). Hint: You will

need to mix in an additional stream.

462

Exercise3.68:LouisReasonerthinksthatbuildingastream

of pairs from three parts is unnecessarily complicated. In-

steadofseparatingthe pair(S0,T0)fromtherest of thepairs

in the first row, he proposes to work with the whole first

row, as follows:

(define (pairs s t)

(interleave

(stream-map (lambda (x) (list (stream-car s) x))

t)

(pairs (stream-cdr s) (stream-cdr t))))

Doesthiswork?Considerwhathappensifweevaluate (pairs

integers integers) using Louis’s definition of pairs.

Exercise 3.69: Write a procedure triples that takes three

infinite streams, S, T, and U, and produces the stream of

triples (Si,Tj,Uk) such thati ≤ j ≤ k. Use triples to gen

erate the stream of all Pythagorean triples of positive inte

gers, i.e., the triples (i, j,k) such thati ≤ j andi2 + j2 = k2.

Exercise3.70:Itwouldbenicetobeabletogeneratestreams

in which the pairs appear in some useful order, rather than

in the order that results from an ad hoc interleaving pro-

cess. Wecanuseatechnique similartothe merge procedure

of Exercise 3.56, if we define a way to say that one pair of

integers is “less than” another. One way to do this is to de-

fine a “weighting function”W(i, j) and stipulate that (i1,j1)

is less than (i2,j2) if W(i1,j1) < W(i2,j2). Write a proce-

dure merge-weighted that is like merge, except that merge-

weighted takes an additional argument weight, which is a

procedure that computes the weight of a pair, and is used

463

to determine the order in which elements should appear in

the resulting merged stream.69 Using this, generalize pairs

to a procedure weighted-pairs that takes two streams, to-

gether with a procedure that computes a weighting func

tion, and generates the stream of pairs, ordered according

to weight. Use your procedure to generate

a. the stream of all pairs of positive integers (i,j) with

i ≤ j ordered according to the sumi + j,

b. the stream of all pairs of positive integers (i,j) with

i ≤ j,whereneitheri nor j isdivisible by 2, 3,or 5,and

the pairs are ordered according to the sum 2i+3j+5ij.

Exercise3.71: Numbersthatcanbeexpressedasthesumof

two cubes in more than one way are sometimes called Ra-

manujan numbers, in honor of the mathematician Srinivasa

Ramanujan.70 Ordered streams of pairs provide an elegant

solution to the problem of computing these numbers. To

find a number that can be wrien as the sum of two cubes

in two different ways, we need only generate the stream of

pairs ofintegers (i,j) weighted according to the sumi3 +j3

69We will require that the weighting function be such that the weight of a pair in-

creases as we move out along a row or down along a column of the array of pairs.

70To quote from G. H. Hardy’s obituary of Ramanujan (Hardy 1921): “It was Mr.

Lilewood (I believe) who remarked that ‘every positive integer was one of his friends.’

I remember once going to see him when he was lying ill at Putney. I had ridden in taxi-

cab No. 1729, and remarked that the number seemed to me a rather dull one, and that I

hoped it was not an unfavorable omen. ‘No,’ he replied, ‘it is a very interesting number;

it is the smallest number expressible as the sum of two cubes in two different ways.’ ”

e trick of using weighted pairs to generate the Ramanujan numbers was shown to

us by Charles Leiserson.

464

(see Exercise 3.70), then search the stream for two consecu-

tivepairswiththesameweight.Writeaproceduretogener-

ate the Ramanujan numbers. e first such number is1,729.

What are the next five?

Exercise 3.72: In a similar way to Exercise 3.71 generate a

stream of all numbers that can be wrien as the sum oftwo

squares in three different ways (showing how they can be

so wrien).

Streams as signals

We began our discussion of streams by describing them as computa-

tional analogs of the “signals” in signal-processing systems. In fact, we

can use streams to model signal-processing systems in a very direct

way, representing the values of a signal at successive time intervals as

consecutive elements of a stream. For instance, we can implement an

integrator or summer that, for an input stream x = (xi), an initial value

C, and a small increment dt, accumulates the sum

Si = C +

i∑

j=1

xjdt

and returns the stream of values S = (Si). e following integral pro

cedure is reminiscent of the “implicit style” definition of the stream of

integers (Section 3.5.2):

(define (integral integrand initial-value dt)

(define int

(cons-stream initial-value

(add-streams (scale-stream integrand dt)

int)))

int)

465

initial-value

add

cons

integralinput scale: dt

Figure 3.32: e integral procedure viewed as a signal-

processing system.

Figure 3.32 is a picture of a signal-processing system that corresponds

to the integral procedure. e input stream is scaled by dt and passed

through an adder, whose output is passed back through the same adder.

e self-reference in the definition of int is reflected in the figure by

the feedback loop that connects the output of the adder to one of the

inputs.

Exercise3.73:Wecanmodelelectricalcircuitsusingstreams

to represent the valuesofcurrentsor voltages at a sequence

of times. For instance, suppose we have an RC circuit con-

sisting ofa resistorof resistance R and a capacitor of capac-

itance C in series. e voltage response v of the circuit to

an injected current i is determined by the formula in Fig

ure 3.33, whose structure is shown by the accompanying

signal-flow diagram.

Write a procedure RC that models this circuit. RC should

take as inputs the values of R, C, and dt and should return

a procedure that takes as inputs a stream representing the

current i and an initial value for the capacitor voltage v0

466

R C

i+ --v

scale: R

integral

add

scale:1C

v=v0+1idt+Ri0tC
Z

v

v0

i

Figure 3.33: An RC circuit and the associated signal-flow diagram.

and produces as output the stream of voltages v. For ex-

ample, you should be able to use RC to model an RC circuit

with R = 5 ohms,C = 1 farad, and a 0.5-second time step by

evaluating (define RC1 (RC 5 1 0.5)). is defines RC1

as a procedure that takes a stream representing the time

sequence of currents and an initial capacitor voltage and

produces the output stream of voltages.

Exercise 3.74: Alyssa P. Hacker is designing a system to

process signals coming from physical sensors. One impor-

tant feature she wishes to produce is a signal that describes

the zero crossings of the input signal. at is, the resulting

signalshouldbe+1whenevertheinputsignalchangesfrom

negative to positive, −1 whenever the input signal changes

from positive to negative, and 0 otherwise. (Assume that

the sign of a 0 input is positive.) For example, a typical in-

467

put signal with its associated zero-crossing signal would be

... 1 2 1.5 1 0.5 -0.1 -2 -3 -2 -0.5 0.2 3 4 ...

... 0 0 0 0 0 -1 0 0 0 0 1 0 0 ...

InAlyssa’ssystem,thesignalfromthesensorisrepresented

as a stream sense-data and the stream zero-crossings

is the corresponding stream of zero crossings. Alyssa first

writes a procedure sign-change-detector that takes two

values as arguments and compares the signs of the values

to produce an appropriate 0, 1, or - 1. She then constructs

her zero-crossing stream as follows:

(define (make-zero-crossings input-stream last-value)

(cons-stream

(sign-change-detector

(stream-car input-stream)

last-value)

(make-zero-crossings

(stream-cdr input-stream)

(stream-car input-stream))))

(define zero-crossings

(make-zero-crossings sense-data 0))

Alyssa’s boss, Eva Lu Ator, walks by and suggests that this

program is approximately equivalent to the following one,

which usesthe generalizedversionof stream-map fromEx-ercise 3.50:

(define zero-crossings

(stream-map sign-change-detector

sense-data

⟨expression⟩))

468

Completetheprogrambysupplyingtheindicated⟨expression⟩.

Exercise 3.75: Unfortunately, Alyssa’s zero-crossing de-

tector in Exercise 3.74 proves to be insufficient, because the

noisy signal from the sensor leads to spurious zero cross-

ings. Lem E. Tweakit, a hardware specialist, suggests that

Alyssa smooth the signal to filter out the noise before ex-

tracting the zero crossings. Alyssa takes his advice and de-

cidestoextractthezerocrossingsfromthesignalconstructed

by averaging each value ofthe sense data with the previous

value. She explains the problem to her assistant, Louis Rea-

soner,whoaemptstoimplementtheidea,alteringAlyssa’s

program as follows:

(define (make-zero-crossings input-stream last-value)

(let ((avpt (/ (+ (stream-car input-stream)

last-value)

2)))

(cons-stream

(sign-change-detector avpt last-value)

(make-zero-crossings

(stream-cdr input-stream) avpt))))

is does not correctly implement Alyssa’s plan. Find the

bug that Louis has installed and fix it without changing the

structure of the program. (Hint: You will need to increase

the number of arguments to make-zero-crossings.)

Exercise 3.76: Eva Lu Ator has a criticism of Louis’s ap-

proach in Exercise 3.75. e program he wrote is not mod-

ular, because it intermixes the operation of smoothing with

thezero-crossingextraction.Forexample,theextractorshould

469

not have to be changed if Alyssa finds a beer way to con-

dition her input signal. Help Louis by writing a procedure

smooth that takes a stream as input and produces a stream

in which each element is the average of two successive in

put stream elements. en use smooth as a component to

implement the zero-crossing detector in a more modular

style.

3.5.4 Streams and Delayed Evaluation

e integral procedure at the end of the preceding section shows how

we can use streams to model signal-processing systems that contain

feedback loops. e feedback loop for the adder shown in Figure 3.32

is modeled by the fact that integral’s internal stream int is defined in

terms ofitself:

(define int

(cons-stream

initial-value

(add-streams (scale-stream integrand dt)

int)))

e interpreter’s ability to deal with such animplicit definition depends

onthe delaythatisincorporatedinto cons-stream.Withoutthis delay,

the interpreter could not construct int before evaluating both argu-

mentsto cons-stream,whichwouldrequirethat intalreadybedefined.

Ingeneral, delay is crucialfor usingstreamsto model signal-processing

systems that contain loops. Without delay, our models would have to

be formulated so that the inputs to any signal-processing component

would be fully evaluated before the output could be produced. is

would outlaw loops.

470

y0

dy y

integralmap: f

Figure 3.34: An “analog computer circuit” that solves the

equation dy/dt = f(y).

Unfortunately, stream models of systems with loops may require

uses of delay beyond the “hidden” delay supplied by cons-stream. For

instance, Figure 3.34 shows a signal-processing system for solving the

differential equation dy/dt = f(y) where f is a given function. e fig-

ure shows a mapping component, which applies f to its input signal,

linked in a feedback loop to an integrator in a manner very similar to

that of the analog computer circuits that are actually used to solve such

equations.

Assuming we are given an initial value y0 for y, we could try to

model this system using the procedure

(define (solve f y0 dt)

(define y (integral dy y0 dt))

(define dy (stream-map f y))

y)

is procedure does not work, because in the first line of solve the

call to integral requires that the input dy be defined, which does not

happen until the second line of solve.

On the other hand, the intent of our definition does make sense,

because we can, in principle, begin to generate the y stream without

471

knowing dy. Indeed, integral and many other stream operations have

properties similar to those of cons-stream, in that we can generate

part of the answer given only partial information about the arguments.

For integral, the first element of the output stream is the specified

initial-value. us, we can generate the first element of the output

stream without evaluating the integrand dy. Once we know the first

element of y, the stream-map in the second line of solve can begin

working to generate the first element of dy, which will produce the

next element of y, and so on.

To take advantage of this idea, we will redefine integral to expect

the integrand stream to be a delayed argument. Integral will force the

integrandtobe evaluatedonly whenit isrequiredtogenerate morethan

the first element of the output stream:

(define (integral delayed-integrand initial-value dt)

(define int

(cons-stream

initial-value

(let ((integrand (force delayed-integrand)))

(add-streams (scale-stream integrand dt) int))))

int)

Nowwe canimplement our solveprocedure by delayingthe evaluation

of dy in the definition of y:71

(define (solve f y0 dt)

(define y (integral (delay dy) y0 dt))

(define dy (stream-map f y))

y)

71is procedure is not guaranteed to work in all Scheme implementations, although

for any implementation there is a simple variation that will work. e problem has to

do with subtle differences in the ways that Scheme implementations handle internal

definitions. (See Section 4.1.6.)

472

In general, every caller of integral must now delay the integrand ar-

gument. We can demonstrate that the solve procedure works by ap-

proximating e ≈ 2.718 by computing the value at y = 1 of the solution

to the differential equation dy/dt = y with initial condition y(0) = 1:

(stream-ref (solve (lambda (y) y)

1

0.001)

1000)

2.716924

Exercise 3.77: e integral procedure used above was

analogous to the “implicit” definition of the infinite stream

ofintegers inSection 3.5.2. Alternatively,we can give a def

inition of integral that is more like integers-starting-

from (also in Section 3.5.2):

(define (integral integrand initial-value dt)

(cons-stream

initial-value

(if (stream-null? integrand)

the-empty-stream

(integral (stream-cdr integrand)

(+ (* dt (stream-car integrand))

initial-value)

dt))))

When used in systems with loops, this procedure has the

same problem as does our original version of integral.

Modify the procedure so that it expects the integrand as

a delayed argument and hence can be used in the solve

procedure shown above.

473

y0dy0

ddy dy y

integralintegral

scale: a

add

scale: b

Figure 3.35: Signal-flow diagram for the solution to a

second-order linear differential equation.

Exercise 3.78: Consider the problem of designing a signal-

processingsystem to study the homogeneous second-order

linear differential equation

d2y

dt2

− a

dy

dt

− by = 0.

e output stream, modeling y, is generated by a network

that contains a loop. is is because the value ofd2y/dt2 de

pends upon the values ofy and dy/dt and both of these are

determined by integrating d2y/dt2. e diagram we would

like to encode is shown in Figure 3.35. Write a procedure

solve-2nd that takes as arguments the constants a, b, and

dt and the initial valuesy0 anddy0 fory anddy/dt and gen-

474

+ --v
R

R

i
R

L v
L

+

--

i
L

C

i
C

v
C

+

--

Figure 3.36: A series RLC circuit.

erates the stream of successive values of y.

Exercise 3.79: Generalize the solve-2nd procedure of Ex-

ercise 3.78 so that it can be used to solve general second-

order differential equations d2y/dt2 = f(dy/dt,y).

Exercise 3.80: A series RLC circuit consists of a resistor, a

capacitor, and an inductor connected in series, as shown

in Figure 3.36. If R, L, and C are the resistance, inductance,

and capacitance, then the relations betweenvoltage (v)and

current (i) for the three components are described by the

equations

vR=iRR,
vL=L

diLdt,
iC=C

dvC

dt,

and the circuit connections dictate the relations

iR=iL=−iC, vC=vL+vR.

Combining these equations shows that the state of the cir-

cuit (summarized by vC, the voltage across the capacitor,

475

scale: 1/L

integral

di
L

vC0

i
L

v
C

dvC

scale:-1/C

integral

iL0

scale:-R/L

add

Figure 3.37: A signal-flow diagram for the solution to a

series RLC circuit.

andiL, the current in the inductor) is described by the pair

of differential equations

dvCdt=−iLC, diLdt=

1LvC−

RLiL.

e signal-flow diagram representing this system of differ-

ential equations is shown in Figure 3.37.

Write a procedure RLC that takes as arguments the param

eters R, L, and C of the circuit and the time increment dt.

476

In a manner similar to that of the RC procedure of Exercise

3.73, RLC should produce a procedure that takes the initial

values of the state variables, vC0 and iL0, and produces a

pair (using cons) of the streams of states vC and iL. Using

RLC, generate the pair of streams that models the behavior

ofa series RLC circuit with R = 1 ohm, C = 0.2 farad, L = 1

henry, dt = 0.1 second, and initial values iL0 = 0 amps and

vC0 = 10 volts.

Normal-order evaluation

e examples in this section illustrate how the explicit use of delay

and force provides great programming flexibility, but the same exam

plesalsoshowhowthiscanmakeourprogramsmore complex.Ournewintegral procedure, for instance, gives us the power to model systems

with loops, but we must now remember that integral should be called

with adelayed integrand, and every procedure that uses integral must

be aware of this. In effect, we have created two classes of procedures:

ordinary procedures and procedures that take delayed arguments. In

general, creating separate classes of procedures forces us to create sep-

arate classes of higher-order procedures as well.72

72is isa small reflection, in Lisp, of the difficulties that conventional strongly typed

languages such as Pascal have in coping with higher-order procedures. In such lan-

guages, the programmer must specify the data types of the arguments and the result

of each procedure: number, logical value, sequence, and so on. Consequently, we could

not express an abstraction such as “map a given procedure proc over all the elements in

a sequence” by a single higher-order procedure such as stream-map. Rather, we would

need a different mapping procedure for each different combination of argument and

result data types that might be specified for a proc. Maintaining a practical notion of

“data type” in the presence of higher-order procedures raises many difficult issues. One

way of dealing with this problem is illustrated by the language ML (Gordon et al. 1979),

477

One way to avoid the need for two different classes of procedures is

tomakeall procedurestake delayed arguments. We could adopt amodel

of evaluation in which all arguments to procedures are automatically

delayed and arguments are forced only when they are actually needed

(for example, when they are required by a primitive operation). is

would transform our language to use normal-order evaluation, which

we first describedwhenweintroducedthe substitutionmodelfor evalu-

ationinSection1.1.5.Converting to normal-order evaluationprovides a

uniform and elegant way to simplify the use of delayed evaluation, and

this would be a natural strategy to adopt if we were concerned only

with stream processing. In Section 4.2, aer we have studied the eval-

uator, we will see how to transform our language in just this way. Un-

fortunately, including delays in procedure calls wreaks havoc with our

ability to design programs that depend on the order of events, such as

programs that use assignment, mutate data, or perform input or output.

Even the single delay in cons-stream can cause great confusion, as

illustrated by Exercise 3.51 and Exercise 3.52. As far as anyone knows,

mutability and delayed evaluation do not mix well in programming lan-

guages, and devising ways to deal with both ofthese at once isan active

area of research.

whose “polymorphic data types” include templates for higher-order transformations

between data types. Moreover, data types for most procedures in ML are never explic-

itly declared by the programmer. Instead, ML includes a type-inferencing mechanism

that uses information in the environment to deduce the data types for newly defined

procedures.

478

3.5.5 Modularity of Functional Programs

and Modularity of Objects

As we saw in Section 3.1.2, one of the major benefits of introducing

assignment is that we can increase the modularity of our systems by

encapsulating, or “hiding,” parts of the state of a large system within

local variables. Stream models can provide an equivalent modularity

without the use of assignment. As an illustration, we can reimplement

the Monte Carlo estimation of π, which we examined in Section 3.1.2,

from a stream-processing point of view.

e key modularity issue was that we wished to hide the internal

state of a random-number generator from programs that used random

numbers. We began with a procedure rand-update, whose successive

values furnished our supply of random numbers, and used this to pro-

duce a random-number generator:

(define rand

(let ((x random-init))

(lambda ()

(set! x (rand-update x))

x)))

In the stream formulation there is no random-number generator per se,

just a stream ofrandom numbers produced by successive calls to rand-

update:

(define random-numbers

(cons-stream

random-init

(stream-map rand-update random-numbers)))

We use this to construct the stream of outcomes of the Cesàro experi

ment performed on consecutive pairs in the random-numbers stream:

479

(define cesaro-stream

(map-successive-pairs

(lambda (r1 r2) (= (gcd r1 r2) 1))

random-numbers))

(define (map-successive-pairs f s)

(cons-stream

(f (stream-car s) (stream-car (stream-cdr s)))

(map-successive-pairs f (stream-cdr (stream-cdr s)))))

e cesaro-stream is now fed to a monte-carlo procedure, which pro-

duces a stream of estimates of probabilities. e results are then con-

verted into a stream of estimates of π. is version of the program

doesn’tneedaparametertellinghowmanytrialstoperform.Beeresti-

matesofπ (fromperformingmoreexperiments)areobtainedbylooking

farther into the pi stream:

(define (monte-carlo experiment-stream passed failed)

(define (next passed failed)

(cons-stream

(/ passed (+ passed failed))

(monte-carlo

(stream-cdr experiment-stream) passed failed)))

(if (stream-car experiment-stream)

(next (+ passed 1) failed)

(next passed (+ failed 1))))

(define pi

(stream-map

(lambda (p) (sqrt (/ 6 p)))

(monte-carlo cesaro-stream 0 0)))

ere is considerable modularity in this approach, because we still can

formulateageneral monte-carloprocedure that candealwitharbitrary

experiments. Yet there is no assignment or local state.

480

Exercise3.81:Exercise3.6discussedgeneralizingtherandom-

numbergeneratortoallowonetoreset therandom-number

sequence so as to produce repeatable sequences of “ran-

dom” numbers. Produce a stream formulation of this same

generator that operates on an input stream of requests to

generate a new random number or to reset the sequence

to a specified value and that produces the desired stream of

random numbers. Don’t use assignment in your solution.

Exercise 3.82: Redo Exercise 3.5 on Monte Carlo integra

tion in terms of streams. e stream version of estimate-

integral will not have an argument telling how many tri

alstoperform. Instead, it will produce astreamof estimates

based on successively more trials.

A functional-programming view of time

Let us now return to the issues of objects and state that were raised at

the beginning of this chapter and examine them in a new light. We in-

troduced assignment and mutable objects to provide a mechanism for

modular construction of programs that model systems with state. We

constructed computational objects with local state variables and used

assignment to modify these variables. We modeled the temporal behav-

ior of the objects in the world by the temporal behavior of the corre-

sponding computational objects.

Now wehave seen that streamsprovide analternative way tomodel

objects with local state. We can model a changing quantity, such as the

local state of some object, using a stream that represents the time his-

tory of successive states. In essence, we represent time explicitly, using

streams, so that we decouple time in our simulated world from the se

481

quence of events that take place during evaluation. Indeed, because of

the presence of delay there may be lile relation between simulated

time in the model and the order of events during the evaluation.

In order to contrast these two approaches to modeling, let us recon-

sider the implementation ofa “withdrawal processor” that monitors the

balance in a bank account. In Section 3.1.3 we implemented a simplified

version of such a processor:

(define (make-simplified-withdraw balance)

(lambda (amount)

(set! balance (- balance amount))

balance))

Calls to make-simplified-withdraw produce computational objects,

each with a local state variable balance that is decremented by suc-

cessive calls to the object. e object takes an amount as an argument

and returns the new balance. We can imagine the user of a bank ac-

count typing a sequence of inputs to such an object and observing the

sequence of returned values shown on a display screen.

Alternatively, we can model a withdrawal processor as a procedure

that takes as input a balance and a stream of amounts to withdraw and

produces the stream of successive balances in the account:

(define (stream-withdraw balance amount-stream)

(cons-stream

balance

(stream-withdraw (- balance (stream-car amount-stream))

(stream-cdr amount-stream))))

Stream-withdrawimplementsawell-definedmathematicalfunctionwhose

output is fully determined by its input. Suppose, however, that the in-

put amount-stream is the stream of successive values typed by the user

and that the resulting stream of balances is displayed. en, from the

482

perspective of the user who is typing values and watching results, the

stream process has the same behavior as the object created by make-

simplified-withdraw. However, with the stream version, there is no

assignment, no local state variable, and consequently none of the theo-

retical difficulties that we encountered in Section 3.1.3. Yet the system

has state!

isisreallyremarkable.Eventhough stream-withdrawimplements

a well-defined mathematical function whose behavior does not change,

the user’s perception here is one ofinteracting with a system that has a

changingstate.One way toresolve this paradox isto realize that it isthe

user’s temporal existence that imposes state on the system. If the user

could step back from the interaction and think in terms of streams of

balances rather than individual transactions, the system would appear

stateless.73

From the point of view of one part of a complex process, the other

parts appear to change with time. ey have hidden time-varying lo-

cal state. If we wish to write programs that model this kind of natural

decomposition in our world (as we see it from our viewpoint as a part

of that world) with structures in our computer, we make computational

objects that are not functional—they must change with time. We model

state with local state variables, and we model the changes of state with

assignments to those variables. By doing this we make the time of ex-

ecution of a computation model time in the world that we are part of,

and thus we get “objects” in our computer.

Modelingwith objectsispowerfulandintuitive,largely because this

matches the perception of interacting with a world of which we are

73Similarly in physics, when we observe a moving particle, we say that the position

(state) of the particle is changing. However, from the perspective of the particle’s world

line in space-time there is no change involved.

483

part. However, as we’ve seen repeatedly throughout this chapter, these

models raise thorny problems of constraining the order of events and

of synchronizing multiple processes. e possibility of avoiding these

problems has stimulated the development offunctional programming

languages, which do not include any provision for assignment or mu-

table data. In such a language, all procedures implement well-defined

mathematical functions of their arguments, whose behavior does not

change.efunctionalapproach isextremelyaractive fordealingwithconcurrent systems.74

On the other hand, ifwe look closely, we can see time-related prob-

lems creeping into functional models as well. One particularly trou-

blesome area arises when we wish to design interactive systems, es-

pecially ones that model interactions between independent entities. For

instance, consider once more the implementationa bankingsystem that

permitsjoint bank accounts.In aconventionalsystemusingassignment

and objects, we would model the fact that Peter and Paul share an ac-

count by having both Peter and Paul send their transaction requests

to the same bank-account object, as we saw in Section 3.1.3. From the

stream point of view, where there are no “objects” per se, we have al-

ready indicated that a bank account can be modeled as a process that

operates on a stream of transaction requests to produce a stream of

responses. Accordingly, we could model the fact that Peter and Paul

have a joint bank account by merging Peter’s stream of transaction re-

quests with Paul’sstream of requestsand feeding the result to the bank-

account stream process, as shown in Figure 3.38.

74John Backus, the inventor of Fortran, gave high visibility to functional program-

ming when he was awarded the Turing award in 1978. His acceptance speech

(Backus 1978) strongly advocated the functional approach. A good overview of func-

tional programming is given in Henderson 1980 and in Darlington et al. 1982.

484

bank
Peter's requests

merge

accountPaul's requests

Figure 3.38: A joint bank account, modeled by merging

two streams of transaction requests.

e trouble with this formulation is in the notion of merge. It will

not do to merge the two streams by simply taking alternately one re-

quest from Peter and one request from Paul. Suppose Paul accesses the

account only very rarely. We could hardly force Peter to wait for Paul to

access the account before he could issue a second transaction. However

such a merge is implemented, it must interleave the two transaction

streams in some way that is constrained by “real time” as perceived

by Peter and Paul, in the sense that, if Peter and Paul meet, they can

agree that certain transactions were processed before the meeting, and

other transactions were processed aer the meeting.75 is is precisely

the same constraint that we had to deal with in Section 3.4.1, where

we found the need to introduce explicit synchronization to ensure a

“correct” order of events in concurrent processing of objects with state.

us, in an aempt to support the functional style, the need to merge

inputs from different agents reintroduces the same problems that the

functional style was meant to eliminate.

75Observe that, for any two streams, there is in general more than one acceptable or-

der of interleaving. us, technically, “merge” is a relation rather than a function—the

answer is not a deterministic function of the inputs. We already mentioned (Footnote

39) that nondeterminism is essential when dealing with concurrency. e merge rela-

tion illustrates the same essential nondeterminism, from the functional perspective. In

Section 4.3, we will look at nondeterminism from yet another point of view.

485

We beganthischapterwith thegoalofbuildingcomputationalmod-

els whose structure matches our perception of the real world we are

trying to model. We can model the world as a collection of separate,

time-bound, interacting objects with state, or we can model the world

asa single,timeless,statelessunity. Each viewhas powerful advantages,

but neither view alone is completely satisfactory. A grand unification

has yet to emerge.76

76e
object model approximates the world by dividing it into separate pieces. e

functional model does not modularize along object boundaries. e object model is

useful when the unshared state of the “objects” is much larger than the state that they

share. An example of a place where the object viewpoint fails is quantum mechanics,

where thinking of thingsas individual particles leadsto paradoxesand confusions. Uni-

fying the object view with the functional view may have lile to do with programming,

but rather with fundamental epistemological issues.

486

Metalinguistic Abstraction

...It’sinwordsthatthemagicis—Abracadabra,OpenSesame,

and the rest—but the magic words in one story aren’t magi-

calinthe next.erealmagic istounderstandwhich words

work, and when, and for what; the trick is to learn the trick.

... And those wordsare made from the leersof our alpha-

bet: a couple-dozen squiggles we can draw with the pen.

is is the key! And the treasure, too, if we can only get

our hands on it! It’s as if—as if the key to the treasure is the

treasure!

—John Barth, Chimera

I ,wehaveseenthatexpertprogram-

mers control the complexity of their designs with the same general

techniques used by designers of all complex systems. ey combine

primitive elements to form compound objects, they abstract compound

487

objects to form higher-level building blocks, and they preserve modu-

larity by adopting appropriate large-scale views of system structure. In

illustrating these techniques, we have used Lisp as a language for de-

scribing processes and for constructing computational data objects and

processes to model complex phenomena in the real world. However, as

we confront increasingly complex problems, we will find that Lisp, or

indeed any fixed programming language, is not sufficient for our needs.

We must constantly turn to new languages in order to express our ideas

more effectively. Establishing new languages is a powerful strategy for

controlling complexity inengineering design;we canoenenhance our

ability to deal with a complex problem by adopting a new language that

enables us to describe (and hence to think about) the problem in a dif-

ferent way, using primitives, means of combination, and means of ab-

straction that are particularly well suited to the problem at hand.1

Programming is endowed with a multitude of languages. ere are

1e same idea is pervasive throughout all of engineering. For example, electri-

cal engineers use many different languages for describing circuits. Two of these are

the language of electrical networks and the language of electrical systems. e network

language emphasizes the physical modeling of devices in terms of discrete electrical el-

ements. e primitive objects of the network language are primitive electrical compo-

nents such as resistors, capacitors, inductors, and transistors, which are characterized

in terms of physical variables called voltage and current. When describing circuits in

the network language, the engineer is concerned with the physical characteristics of a

design. In contrast, the primitive objects of the system language are signal-processing

modules such as filters and amplifiers. Only the functional behavior of the modules is

relevant, and signals are manipulated without concern for their physical realization as

voltages and currents. e system language is erected on the network language, in the

sense that the elements of signal-processing systems are constructed from electrical

networks. Here, however, the concerns are with the large-scale organization of elec-

trical devices to solve a given application problem; the physical feasibility of the parts

is assumed. is layered collection of languages is another example of the stratified

design technique illustrated by the picture language of Section 2.2.4.

488

physical languages, such as the machine languages for particular com-

puters. ese languages are concerned with the representation of data

and control in terms ofindividual bits of storage and primitive machine

instructions. e machine-language programmer is concerned with us-

ing the givenhardware to erect systemsandutilitiesforthe efficient im-

plementation of resource-limited computations. High-level languages,

erected on a machine-language substrate, hide concerns about the rep-

resentation of data as collections of bits and the representation of pro-

gramsassequencesofprimitiveinstructions.eselanguageshavemeans

of combination and abstraction, such as procedure definition, that are

appropriate to the larger-scale organization of systems.

Metalinguisticabstraction—establishingnewlanguages—playsanim-

portant role in all branches of engineering design. It is particularly im-

portant to computer programming, because in programming not only

can we formulate new languages but we can also implement these lan-

guages by constructing evaluators. An evaluator (or interpreter) for a

programming language is a procedure that, when applied to an expres-

sion of the language, performs the actions required to evaluate that ex-

pression.

It is no exaggeration to regard this as the most fundamental idea in

programming:

e evaluator, which determines the meaning of expres-

sions in a programming language, is just another program.

To appreciate this point is to change our images of ourselves as pro-

grammers. We come to see ourselves as designers of languages, rather

than only users of languages designed by others.

Infact, we canregard almost any program as the evaluator for some

language. For instance, the polynomial manipulation system of Section

489

2.5.3 embodies the rules ofpolynomial arithmetic and implementstheminterms ofoperationsonlist-structured data.Ifweaugment thissystem

with procedures to read and print polynomial expressions, we have the

core of a special-purpose language for dealing with problems in sym-

bolic mathematics. e digital-logic simulator of Section 3.3.4 and the

constraint propagator of Section 3.3.5 are legitimate languages in their

own right, each with its own primitives, means of combination, and

means of abstraction. Seen from this perspective, the technology for

coping with large-scale computer systems merges with the technology

for building new computer languages, and computer science itself be-

comes no more (and no less) than the discipline of constructing appro-

priate descriptive languages.

We nowembark on atourof the technology by which languages are

established in terms of other languages. In thischapter we shall use Lisp

as a base, implementing evaluators as Lisp procedures. Lisp is particu

larly well suited to this task, because ofits ability to represent and ma

nipulate symbolic expressions.Wewilltake thefirst stepin understand-

ing how languages are implemented by building an evaluator for Lisp

itself. e language implementedbyour evaluator willbe asubset ofthe

Scheme dialect of Lisp that we use in this book. Although the evaluator

described in thischapteriswrien fora particular dialect ofLisp, it con-

tains the essential structure of an evaluator for any expression-oriented

language designed for writing programs for a sequential machine. (In

fact, most language processors contain, deep within them, a lile “Lisp”

evaluator.) e evaluator has been simplified for the purposes of illus-

tration and discussion, and some features have been le out that would

be important to include in a production-quality Lisp system. Neverthe-

less, this simple evaluator is adequate to execute most of the programs

490

in this book.2

An important advantage of making the evaluator accessible as a

Lisp program is that we can implement alternative evaluation rules by

describing these as modifications to the evaluator program. One place

where we can use this power to good effect is to gain extra control over

the ways in which computational models embody the notion of time,

which wassocentraltothe discussionin Chapter 3. ere, we mitigated

some of the complexities of state and assignment by using streams to

decouple the representation of time in the world from time in the com

puter. Our stream programs, however, were sometimes cumbersome,

because they were constrained by the applicative-order evaluation of

Scheme. In Section 4.2, we’ll change the underlying language to provide

for a more elegant approach, by modifying the evaluator to provide for

normal-order evaluation.

Section4.3implementsamoreambitiouslinguisticchange,whereby

expressions have many values, rather than just a single value. In this

languageofnondeterministiccomputing,itisnaturaltoexpressprocesses

that generate all possible values for expressions and then search for

those values that satisfy certain constraints. In terms of models of com-

putation and time, this is like having time branch into a set of “possible

futures” and then searching for appropriate time lines. With our nonde-

terministic evaluator, keeping track of multiple values and performing

searches are handled automatically by the underlyingmechanism ofthe

language.

InSection4.4 we implement a logic-programming language inwhich

2e most important featuresthat our evaluator leaves out are mechanisms for han-

dling errors and supporting debugging. For a more extensive discussion of evaluators,

see Friedman et al. 1992, which gives an exposition of programming languages that

proceeds via a sequence of evaluators wrien in Scheme.

491

knowledge is expressed in terms of relations, rather than in terms of

computations with inputs and outputs. Even though this makes the lan-

guage drastically different from Lisp, or indeed from any conventional

language, we will see that the logic-programming evaluator shares the

essential structure of the Lisp evaluator.

4.1 The Metacircular Evaluator

Our evaluator for Lisp will be implemented as a Lisp program. It may

seem circular to think about evaluating Lisp programs using an evalua-

tor that is itself implemented in Lisp. However, evaluation is a process,

so it is appropriate to describe the evaluation process using Lisp, which,

aer all, is our tool for describing processes.3 An evaluator that is writ-

ten in the same language that it evaluates is said to be metacircular.

e metacircular evaluator is essentially a Scheme formulation of

the environment model of evaluation described in Section 3.2. Recall

that the model has two basic parts:

1. To evaluate a combination (a compound expression other than

a special form), evaluate the subexpressions and then apply the

value of the operator subexpression to the values of the operand

subexpressions.

2. To apply a compound procedure to a set of arguments, evaluate

the body of the procedure in a new environment. To construct

3Even so, there will remain important aspects of the evaluation process that are not

elucidated by our evaluator. e most important of these are the detailed mechanisms

by which procedures call other procedures and return values to their callers. We will

address these issues in Chapter 5, where we take a closer look at the evaluation process

by implementing the evaluator as a simple register machine.

492

this environment, extend the environment part of the procedure

objectbyaframeinwhichtheformalparametersoftheprocedure

are bound to the arguments to which the procedure is applied.

ese two rules describe the essence of the evaluation process, a basic

cycle in which expressions to be evaluated in environmentsare reduced

to procedures to be applied to arguments, which in turn are reduced to

new expressions to be evaluated in new environments, and so on, un-

til we get down to symbols, whose values are looked up in the envi-

ronment, and to primitive procedures, which are applied directly (see

Figure 4.1).4 is evaluation cycle will be embodied by the interplay

between the two critical procedures in the evaluator, eval and apply,

which are described in Section 4.1.1 (see Figure 4.1).

e implementation of the evaluator will depend upon procedures

4If we grant ourselves the ability to apply primitives, then what remains for us to

implement in the evaluator? e job of the evaluator is not to specify the primitives of

the language, but rather to provide the connective tissue—the means of combination

and the means of abstraction—that binds a collection of primitives to form a language.

Specifically:

• e evaluator enables us to deal with nested expressions. For example, although

simply applying primitiveswould suffice for evaluating the expression (+ 1 6), it is not

adequate for handling (+ 1 (* 2 3)). As far as the primitive procedure + is concerned,

its arguments must be numbers, and it would choke if we passed it the expression (*

2 3) as an argument. One important role of the evaluator is to choreograph procedure

composition so that (* 2 3) is reduced to 6 before being passed as an argument to +.

• e evaluator allows us to use variables. For example, the primitive procedure for

addition has no way to deal with expressions such as (+ x 1). We need an evaluator to

keeptrack ofvariablesand obtaintheirvaluesbeforeinvokingtheprimitiveprocedures.

• e evaluator allows us to define compound procedures. is involves keeping

track of procedure definitions, knowing how to use these definitions in evaluating ex-

pressions, and providing a mechanism that enables procedures to accept arguments.

•e evaluator provides the special forms, which must be evaluated differently from

procedure calls.

493

Eval Apply
Procedure,Arguments Expression,

Environment

Figure 4.1: e eval-apply cycle exposes the essence ofa

computer language.

that define the syntax of the expressions to be evaluated. We will use

data abstraction to make the evaluator independent of the representa-

tion of the language. For example, rather than commiing to a choice

that an assignment is to be represented by a list beginning with the

symbol set! we use an abstract predicate assignment? to test for an

assignment, and we use abstract selectors assignment-variable and

assignment-value to access the parts of an assignment. Implementa

tion of expressions will be described in detail in Section 4.1.2. ere are

also operations, described in Section 4.1.3, that specify the represen

tation of procedures and environments. For example, make-procedure

constructscompoundprocedures, lookup-variable-valueaccessesthe

values of variables, and apply-primitive-procedure applies a primi

tive procedure to a given list of arguments.

494

4.1.1 The Core of the Evaluator

e evaluation process can be described as the interplay between two

procedures: eval and apply.

Eval

Eval takes as arguments an expression and an environment. It classi-

fiesthe expression anddirectsitsevaluation. Eval isstructuredasacaseanalysis of the syntactic type of the expression to be evaluated. In or-

der to keep the procedure general, we express the determination of the

type of an expression abstractly, making no commitment to any partic-

ular representation for the various types of expressions. Each type of

expression has a predicate that tests for it and an abstract means for

selecting its parts. is abstract syntax makes it easy to see how we can

change the syntax ofthe language by usingthe same evaluator, but with

a different collection of syntax procedures.

Primitive expressions

• For self-evaluating expressions, such as numbers, eval returns

the expression itself.

• Eval must look up variables in the environment to find their val-

ues.

Special forms

• Forquotedexpressions, evalreturnstheexpressionthatwasquoted.

• An assignment to (or a definition o) a variable must recursively

call eval to compute the new value to be associated with the vari-

able. e environment must be modified to change (or create) the

binding of the variable.

495

• An if expression requires special processing of its parts, so as to

evaluate the consequent if the predicate is true, and otherwise to

evaluate the alternative.

• A lambda expression must be transformed into an applicable pro-

cedure by packaging together the parameters and body specified

by the lambda expressionwith the environment ofthe evaluation.

• A begin expression requires evaluating its sequence of expres-

sions in the order in which they appear.

• Acase analysis(cond)istransformedintoa nest of if expressions

and then evaluated.

Combinations

• For a procedure application, eval must recursively evaluate the

operator part and the operands of the combination. e resulting

procedure and arguments are passed to apply, which handles the

actual procedure application.

Here is the definition of eval:

(define (eval exp env)

(cond ((self-evaluating? exp) exp)

((variable? exp) (lookup-variable-value exp env))

((quoted? exp) (text-of-quotation exp))

((assignment? exp) (eval-assignment exp env))

((definition? exp) (eval-definition exp env))

((if? exp) (eval-if exp env))

((lambda? exp) (make-procedure (lambda-parameters exp)

(lambda-body exp)

env))

496

((begin? exp)

(eval-sequence (begin-actions exp) env))

((cond? exp) (eval (cond->if exp) env))

((application? exp)

(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))

(else

(error "Unknown expression type: EVAL" exp))))

For clarity, eval has been implemented as a case analysis using cond.

e disadvantage ofthis is that our procedure handles only a few distin

guishable typesof expressions, and no new ones can be defined without

editing the definition of eval. In most Lisp implementations, dispatch-

ing on the type of an expression is done in a data-directed style. is

allows a user to add new types of expressions that eval can distinguish,

without modifying the definition of eval itself. (See Exercise 4.3.)

Apply

Apply takes two arguments, a procedure and a list of arguments to

which the procedure should be applied. Apply classifies procedures into

two kinds: It calls apply-primitive-procedure to apply primitives; it

applies compound procedures by sequentially evaluating the expres

sions that make up the body of the procedure. e environment for

the evaluation of the body of a compound procedure is constructed by

extending the base environment carried by the procedure to include a

frame that binds the parameters of the procedure to the arguments to

which the procedure is to be applied. Here is the definition of apply:

(define (apply procedure arguments)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))

497

((compound-procedure? procedure)

(eval-sequence

(procedure-body procedure)

(extend-environment

(procedure-parameters procedure)

arguments

(procedure-environment procedure))))

(else

(error

"Unknown procedure type: APPLY" procedure))))

Procedure arguments

When eval processes a procedure application, it uses list-of-values

to produce the list of arguments to which the procedure is to be applied.

List-of-values takes as an argument the operands of the combina

tion. It evaluates each operand and returns a list of the corresponding

values:5

(define (list-of-values exps env)

(if (no-operands? exps)

'()

(cons (eval (first-operand exps) env)

(list-of-values (rest-operands exps) env))))

5We could have simplified the application? clause in eval by using map (and stip-

ulating that operands returns a list) rather than writing an explicit
list-of-values

procedure. We chose not to use map here to emphasize the fact that the evaluator can

be implemented without any use of higher-order procedures (and thus could be writ-

teninalanguagethatdoesn’thavehigher-orderprocedures),eventhoughthelanguage

that it supports will include higher-order procedures.

498

Conditionals

Eval-if evaluates the predicate part of an if expression in the given

environment. If the result is true, eval-if evaluates the consequent,

otherwise it evaluates the alternative:

(define (eval-if exp env)

(if (true? (eval (if-predicate exp) env))

(eval (if-consequent exp) env)

(eval (if-alternative exp) env)))

e use of true? in eval-if highlights the issue of the connection be-

tween an implemented language and an implementation language. e

if-predicate isevaluated in the language beingimplemented and thus

yields a value in that language. e interpreter predicate true? trans-

lates that value into a value that can be tested by the if in the imple-

mentationlanguage:e metacircularrepresentation oftruth might not

be the same as that of the underlying Scheme.6

Sequences

Eval-sequenceisusedby applytoevaluatethesequenceofexpressions

inaprocedure bodyand by evaltoevaluatethe sequence ofexpressions

in a begin expression. It takes as arguments a sequence of expressions

andanenvironment,andevaluatestheexpressionsintheorderinwhich

they occur. e value returned is the value of the final expression.

(define (eval-sequence exps env)

(cond ((last-exp? exps)

(eval (first-exp exps) env))

6In this case, the language being implemented and the implementation language are

the same. Contemplation of the meaning of true? here yields expansion of conscious-

ness without the abuse of substance.

499

(else

(eval (first-exp exps) env)

(eval-sequence (rest-exps exps) env))))

Assignments and definitions

e following procedure handles assignments to variables. It calls eval

to find the value to be assigned and transmits the variable and the re-

sulting value to set-variable-value! to be installed in the designated

environment.

(define (eval-assignment exp env)

(set-variable-value! (assignment-variable exp)

(eval (assignment-value exp) env)

env)

'ok)

Definitions of variables are handled in a similar manner.7

(define (eval-definition exp env)

(define-variable! (definition-variable exp)

(eval (definition-value exp) env)

env)

'ok)

We have chosen here to return the symbol ok as the value of an assign-

ment or a definition.8

Exercise4.1:Noticethatwecannottellwhetherthemetacir-

cularevaluatorevaluatesoperandsfromletorightorfrom

7is implementation of define ignores a subtle issue in the handling of internal

definitions, although it works correctly in most cases. We will see what the problem is

and how to solve it in Section 4.1.6.

8Aswe said whenweintroduced define and set!,thesevaluesareimplementation-

dependent in Scheme—that is, the implementor can choose what value to return.

500

right to le. Its evaluation order is inherited from the un

derlying Lisp: If the arguments to cons in list-of-values

are evaluated from le to right, then list-of-values will

evaluateoperandsfromletoright;andifthe argumentstocons are evaluated from right to le, then list-of-values

will evaluate operands from right to le.

Writeaversionof list-of-valuesthatevaluatesoperands

fromletoright regardlessof the orderof evaluationin the

underlying Lisp. Also write a version of list-of-values

that evaluates operands from right to le.

4.1.2 Representing Expressions

e evaluator is reminiscent of the symbolic differentiation program

discussed in Section 2.3.2. Both programs operate on symbolic expres-

sions. In both programs, the result of operating on a compound expres-

sion is determined by operating recursively on the pieces of the expres-

sion and combining the results in a way that depends on the type of

the expression. In both programs we used data abstraction to decouple

the general rules of operation from the details of how expressions are

represented. In the differentiation program this meant that the same

differentiation procedure could deal with algebraic expressions in pre-

fix form, in infix form, or in some other form. For the evaluator, this

means that the syntax of the language being evaluated is determined

solely by the procedures that classify and extract pieces of expressions.

Here is the specification of the syntax of our language:

• e only self-evaluating items are numbers and strings:

(define (self-evaluating? exp)

(cond ((number? exp) true)

501

((string? exp) true)

(else false)))

• Variables are represented by symbols:

(define (variable? exp) (symbol? exp))

• otations have the form (quote ⟨text-of-quotation⟩):9

(define (quoted? exp) (tagged-list? exp 'quote))

(define (text-of-quotation exp) (cadr exp))

Quoted?isdefinedintermsoftheprocedure tagged-list?,whichidentifies lists beginning with a designated symbol:

(define (tagged-list? exp tag)

(if (pair? exp)

(eq? (car exp) tag)

false))

• Assignments have the form (set! ⟨var⟩ ⟨value⟩):

(define (assignment? exp) (tagged-list? exp 'set!))

(define (assignment-variable exp) (cadr exp))

(define (assignment-value exp) (caddr exp))

• Definitions have the form

(define ⟨var⟩ ⟨value⟩)

or the form

9Asmentionedin Section2.3.1, theevaluatorseesa quotedexpressionasa listbegin-

ning with quote, even if the expression is typed with the quotation mark. For example,

the expression 'a would be seen by the evaluator as (quote a). See Exercise 2.55.

502

(define (⟨var⟩ ⟨parameter1⟩ ... ⟨parametern⟩)

⟨body⟩)

e laer form (standard procedure definition) is syntactic sugar

for

(define ⟨var⟩

(lambda (⟨parameter1⟩ ... ⟨parametern⟩)

⟨body⟩))

e corresponding syntax procedures are the following:

(define (definition? exp) (tagged-list? exp 'define))

(define (definition-variable exp)

(if (symbol? (cadr exp))

(cadr exp)

(caadr exp)))

(define (definition-value exp)

(if (symbol? (cadr exp))

(caddr exp)

(make-lambda (cdadr exp) ;formalparameters

(cddr exp)))) ;body

• Lambda expressions are lists that begin with the symbol lambda:

(define (lambda? exp) (tagged-list? exp 'lambda))

(define (lambda-parameters exp) (cadr exp))

(define (lambda-body exp) (cddr exp))

We also provide a constructor for lambda expressions, which is

used by definition-value, above:

(define (make-lambda parameters body)

(cons 'lambda (cons parameters body)))

503

• Conditionals begin with if and have a predicate, a consequent,

and an (optional) alternative. If the expression has no alternative

part, we provide false as the alternative.10

(define (if? exp) (tagged-list? exp 'if))

(define (if-predicate exp) (cadr exp))

(define (if-consequent exp) (caddr exp))

(define (if-alternative exp)

(if (not (null? (cdddr exp)))

(cadddr exp)

'false))

We also provide a constructor for if expressions, to be used by

cond->if to transform cond expressions into if expressions:

(define (make-if predicate consequent alternative)

(list 'if predicate consequent alternative))

• Begin packages a sequence of expressions into a single expres-

sion. We include syntax operations on begin expressions to ex-

tract the actual sequence from the begin expression, as well as

selectors that return the first expression and the rest of the ex-

pressions in the sequence.11

(define (begin? exp) (tagged-list? exp 'begin))

(define (begin-actions exp) (cdr exp))

10e value of an if expression when the predicate is false and there is no alternative

is unspecified in Scheme; we have chosen here to make it false. We will support the use

of the variables true and false in expressions to be evaluated by binding them in the

global environment. See Section 4.1.4.

11ese selectors for a list of expressions—and the corresponding ones for a list of

operands—are not intended as a data abstraction. ey are introduced as mnemonic

names for the basic list operations in order to make it easier to understand the explicit-

control evaluator in Section 5.4.

504

(define (last-exp? seq) (null? (cdr seq)))

(define (first-exp seq) (car seq))

(define (rest-exps seq) (cdr seq))

We also include a constructor sequence->exp (for use by cond-

>if) that transforms a sequence into a single expression, using

begin if necessary:

(define (sequence->exp seq)

(cond ((null? seq) seq)

((last-exp? seq) (first-exp seq))

(else (make-begin seq))))

(define (make-begin seq) (cons 'begin seq))

• A procedure application is any compound expression that is not

one of the above expression types. e car of the expression is

the operator, and the cdr is the list of operands:

(define (application? exp) (pair? exp))

(define (operator exp) (car exp))

(define (operands exp) (cdr exp))

(define (no-operands? ops) (null? ops))

(define (first-operand ops) (car ops))

(define (rest-operands ops) (cdr ops))

Derived expressions

Some special forms in our language can be defined in terms of expres-

sions involving other special forms, rather than being implemented di-

rectly. One example is cond, which can be implemented as a nest of if

expressions. For example, we can reduce the problem of evaluating the

expression

505

(cond ((> x 0) x)

((= x 0) (display 'zero) 0)

(else (- x)))

to the problem of evaluating the following expression involving if and

begin expressions:

(if (> x 0)

x

(if (= x 0)

(begin (display 'zero) 0)

(- x)))

Implementing the evaluation of cond in this way simplifies the evalua-

tor because it reduces the number of special forms for which the evalu-

ation process must be explicitly specified.

We include syntax procedures that extract the parts of a cond ex-

pression, and a procedure cond->if that transforms cond expressions

into if expressions. A case analysis begins with cond and has a list of

predicate-action clauses. A clause is an else clause ifits predicate is the

symbol else.12

(define (cond? exp) (tagged-list? exp 'cond))

(define (cond-clauses exp) (cdr exp))

(define (cond-else-clause? clause)

(eq? (cond-predicate clause) 'else))

(define (cond-predicate clause) (car clause))

(define (cond-actions clause) (cdr clause))

(define (cond->if exp) (expand-clauses (cond-clauses exp)))

(define (expand-clauses clauses)

(if (null? clauses)

'false ;no elseclause

12e value of a cond expression when all the predicates are false and there is no

else clause is unspecified in Scheme; we have chosen here to make it false.

506

(let ((first (car clauses))

(rest (cdr clauses)))

(if (cond-else-clause? first)

(if (null? rest)

(sequence->exp (cond-actions first))

(error "ELSE clause isn't last: COND->IF"

clauses))

(make-if (cond-predicate first)

(sequence->exp (cond-actions first))

(expand-clauses rest))))))

Expressions (such as cond) that we choose to implement as syntactic

transformations are called derived expressions. Let expressions are also

derived expressions (see Exercise 4.6).13

Exercise4.2:LouisReasonerplanstoreorderthe condclauses

in eval so that the clause for procedure applications ap-

pears before the clause for assignments. He argues that this

will make the interpreter more efficient: Since programs

usually contain more applications than assignments, def-

initions, and so on, his modified eval will usually check

fewer clauses than the original eval before identifying the

type of an expression.

a. What is wrong with Louis’s plan? (Hint: What will

13Practical
Lisp systems provide a mechanism that allows a user to add new de-

rived expressions and specify their implementation as syntactic transformations with-

out modifying the evaluator. Such a user-defined transformation is called a macro. Al-

though it is easy to add an elementary mechanism for defining macros, the result-

ing language has subtle name-conflict problems. ere has been much research on

mechanisms for macro definition that do not cause these difficulties. See, for example,

Kohlbecker 1986, Clinger and Rees 1991, and Hanson 1991.

507

Louis’s evaluator do with the expression (define x

3)?)

b. Louis is upset that his plan didn’t work. He is will

ing to go to any lengths to make his evaluator recog-

nize procedure applications before it checks for most

other kinds of expressions. Help him by changing the

syntax of the evaluated language so that procedure

applications start with call. For example, instead of

(factorial 3)wewillnowhavetowrite (call factorial

3) and instead of (+ 1 2) we will have to write (call

+ 1 2).

Exercise 4.3: Rewrite eval so that the dispatch is done

in data-directed style. Compare this with the data-directed

differentiationprocedure ofExercise 2.73. (You may use the

car of a compound expression as the type of the expres-

sion, as is appropriate for the syntax implemented in this

section.)

Exercise4.4: Recall the definitions ofthe special forms and

and or from Chapter 1:

• and: e expressions are evaluated from le to right.

If any expression evaluates to false, false is returned;

any remaining expressionsare not evaluated. If all the

expressions evaluate to true values, the value of the

last expression is returned. If there are no expressions

then true is returned.

• or: e expressions are evaluated from le to right.

If any expression evaluates to a true value, that value

508

is returned; any remaining expressions are not evalu

ated. If all expressions evaluate to false, or if there are

no expressions, then false is returned.

Install and and or as new special forms for the evaluator by

definingappropriatesyntaxproceduresandevaluationpro-

cedures eval-and and eval-or. Alternatively,show how to

implement
and and or as derived expressions.

Exercise 4.5: Scheme allows an additional syntax for cond

clauses, (⟨test⟩ => ⟨recipient⟩). If ⟨test⟩ evaluates to a

true value, then ⟨recipient⟩ is evaluated. Its value must be a

procedure of one argument; this procedure is then invoked

on the value of the ⟨test⟩, and the result is returned as the

value of the cond expression. For example

(cond ((assoc 'b '((a 1) (b 2))) => cadr)

(else false))

returns 2. Modify the handling of cond so that it supports

this extended syntax.

Exercise 4.6: Let expressions are derived expressions, be-

cause

(let ((⟨var1⟩ ⟨exp1⟩) ... (⟨varn⟩ ⟨expn⟩))

⟨body⟩)

is equivalent to

((lambda (⟨var1⟩ ...⟨varn⟩)

⟨body⟩)

⟨exp1⟩

...

⟨expn⟩)

509

Implement a syntactic transformation let->combination

that reduces evaluating let expressions to evaluating com

binations ofthe type shownabove, and add the appropriate

clause to eval to handle let expressions.

Exercise 4.7: Let* is similar to let, except that the bind-

ings of the let* variables are performed sequentially from

le to right, and each binding is made in anenvironment in

which all ofthe preceding bindings are visible. For example

(let* ((x 3) (y (+ x 2)) (z (+ x y 5)))

(* x z))

returns 39. Explain how a let* expression can be rewrien

as a set of nested let expressions, and write a procedure

let*->nested-lets that performs this transformation. If

we have already implemented let (Exercise 4.6) and we

want to extend the evaluator to handle let*, is it sufficient

to add a clause to eval whose action is

(eval (let*->nested-lets exp) env)

or must we explicitly expand let* in terms of non-derived

expressions?

Exercise 4.8: “Named let” is a variant of let that has the

form

(let ⟨var⟩ ⟨bindings⟩ ⟨body⟩)

e ⟨bindings⟩ and ⟨body⟩ are just as in ordinary let, ex-

ceptthat⟨var⟩isboundwithin⟨body⟩toaprocedurewhose

body is ⟨body⟩ and whose parameters are the variables in

510

the ⟨bindings⟩. us, one can repeatedly execute the ⟨body⟩

by invoking the procedure named ⟨var⟩. For example, the

iterative Fibonacci procedure (Section 1.2.2) can be rewrit

ten using named let as follows:

(define (fib n)

(let fib-iter ((a 1)

(b 0)

(count n))

(if (= count 0)

b

(fib-iter (+ a b) a (- count 1)))))

Modify
let->combination of Exercise 4.6 to also support

named let.

Exercise4.9:Manylanguagessupportavarietyofiteration

constructs, such as do, for, while, and until. In Scheme,

iterative processes can be expressed in terms of ordinary

procedure calls, so special iteration constructs provide no

essential gain in computational power. On the other hand,

such constructs are oen convenient. Design some itera-

tion constructs, give examples of their use, and show how

to implement them as derived expressions.

Exercise 4.10: By using data abstraction, we were able to

write an eval procedure that is independent of the particu-

lar syntax ofthe language to be evaluated.Toillustrate this,

design and implement a new syntax for Scheme by modify-

ing the procedures in this section, without changing eval

or apply.

511

4.1.3 Evaluator Data Structures

In addition to defining the external syntax of expressions, the evaluator

implementation must also define the data structures that the evaluator

manipulatesinternally,aspart ofthe executionofaprogram,suchasthe

representation of procedures and environments and the representation

of true and false.

Testing of predicates

For conditionals, we accept anything to be true that is not the explicit

false
object.

(define (true? x) (not (eq? x false)))

(define (false? x) (eq? x false))

Representing procedures

To handle primitives, we assume that we have available the following

procedures:

• (apply-primitive-procedure ⟨proc⟩ ⟨args⟩)

applies the given primitive procedure to the argument values in

the list ⟨args⟩ and returns the result of the application.

• (primitive-procedure? ⟨proc⟩)

tests whether ⟨proc⟩ is a primitive procedure.

ese mechanisms for handling primitives are further described in Sec-

tion 4.1.4.

Compound procedures are constructed from parameters, procedure

bodies, and environments using the constructor make-procedure:

512

(define (make-procedure parameters body env)

(list 'procedure parameters body env))

(define (compound-procedure? p)

(tagged-list? p 'procedure))

(define (procedure-parameters p) (cadr p))

(define (procedure-body p) (caddr p))

(define (procedure-environment p) (cadddr p))

Operations on Environments

e evaluator needs operations for manipulating environments. As ex-

plained in Section 3.2, an environment is a sequence of frames, where

each frame is a table of bindings that associate variables with their cor-

responding values. We use the following operations for manipulating

environments:

• (lookup-variable-value ⟨var⟩ ⟨env⟩)

returns the value that is bound to the symbol ⟨var⟩ in the envi-

ronment ⟨env⟩, or signals an error if the variable is unbound.

• (extend-environment ⟨variables⟩ ⟨values⟩ ⟨base-env⟩)

returns a new environment, consisting of a new frame in which

the symbols in the list ⟨variables⟩ are bound to the corresponding

elements in the list ⟨values⟩, where the enclosing environment is

the environment ⟨base-env⟩.

• (define-variable! ⟨var⟩ ⟨value⟩ ⟨env⟩)

adds to the first frame in the environment ⟨env⟩ a new binding

that associates the variable ⟨var⟩ with the value ⟨value⟩.

513

• (set-variable-value! ⟨var⟩ ⟨value⟩ ⟨env⟩)

changesthebindingofthevariable⟨var⟩intheenvironment⟨env⟩

so that the variable is now bound to the value ⟨value⟩, or signals

an error if the variable is unbound.

To implement these operations we represent an environment as a list of

frames. e enclosing environment of an environment is the cdr of the

list. e empty environment is simply the empty list.

(define (enclosing-environment env) (cdr env))

(define (first-frame env) (car env))

(define the-empty-environment '())

Each frame of an environment is represented as a pair of lists: a list of

the variables bound in that frame and a list of the associated values.14

(define (make-frame variables values)

(cons variables values))

(define (frame-variables frame) (car frame))

(define (frame-values frame) (cdr frame))

(define (add-binding-to-frame! var val frame)

(set-car! frame (cons var (car frame)))

(set-cdr! frame (cons val (cdr frame))))

Toextendanenvironmentbya new frame thatassociatesvariableswith

values, we make a frame consisting of the list of variables and the list

of values, and we adjoin this to the environment. We signal an error if

the number of variables does not match the number of values.

14Frames are not really a data abstraction in the following code: Set-variable-

value! and define-variable! use set-car! to directly modify the values in a frame.

e purpose of the frame procedures is to make the environment-manipulation proce-

dures easy to read.

514

(define (extend-environment vars vals base-env)

(if (= (length vars) (length vals))

(cons (make-frame vars vals) base-env)

(if (< (length vars) (length vals))

(error "Too many arguments supplied" vars vals)

(error "Too few arguments supplied" vars vals))))

To look up a variable in an environment, we scan the list of variables

in the first frame. If we find the desired variable, we return the corre-

sponding element in the list of values. If we do not find the variable

in the current frame, we search the enclosing environment, and so on.

If we reach the empty environment, we signal an “unbound variable”

error.

(define (lookup-variable-value var env)

(define (env-loop env)

(define (scan vars vals)

(cond ((null? vars)

(env-loop (enclosing-environment env)))

((eq? var (car vars)) (car vals))

(else (scan (cdr vars) (cdr vals)))))

(if (eq? env the-empty-environment)

(error "Unbound variable" var)

(let ((frame (first-frame env)))

(scan (frame-variables frame)

(frame-values frame)))))

(env-loop env))

To set a variable to a new value in a specified environment, we scan for

the variable, just as in lookup-variable-value, and change the corre-

sponding value when we find it.

(define (set-variable-value! var val env)

(define (env-loop env)

515

(define (scan vars vals)

(cond ((null? vars)

(env-loop (enclosing-environment env)))

((eq? var (car vars)) (set-car! vals val))

(else (scan (cdr vars) (cdr vals)))))

(if (eq? env the-empty-environment)

(error "Unbound variable: SET!" var)

(let ((frame (first-frame env)))

(scan (frame-variables frame)

(frame-values frame)))))

(env-loop env))

To define a variable, we search the first frame for a binding for the

variable, and change the binding if it exists (just as in set-variable-

value!). If no such binding exists, we adjoin one to the first frame.

(define (define-variable! var val env)

(let ((frame (first-frame env)))

(define (scan vars vals)

(cond ((null? vars)

(add-binding-to-frame! var val frame))

((eq? var (car vars)) (set-car! vals val))

(else (scan (cdr vars) (cdr vals)))))

(scan (frame-variables frame) (frame-values frame))))

e method described here is only one of many plausible ways to rep-

resent environments. Since we used data abstraction to isolate the rest

of the evaluator from the detailed choice of representation, we could

change the environment representation if we wanted to. (See Exercise

4.11.) In a production-quality Lisp system, the speed of the evaluator’s

environment operations—especially that of variable lookup—has a ma-

jor impact on the performance of the system. e representation de-

scribed here, although conceptually simple, is not efficient and would

516

not ordinarily be used in a production system.15

Exercise 4.11: Instead of representing a frame as a pair of

lists, we can represent a frame as a list of bindings, where

eachbindingisaname-valuepair.Rewritethe environment

operations to use this alternative representation.

Exercise4.12:eprocedures set-variable-value!, define-

variable! and lookup-variable-value can be expressed

in terms of more abstract procedures for traversing the en-

vironment structure. Define abstractions that capture the

commonpaernsandredefinethethreeproceduresinterms

of these abstractions.

Exercise4.13: Scheme allowsus to create new bindingsforvariables by means of define, but provides no way to get

rid of bindings. Implement for the evaluator a special form

make-unbound! that removesthe binding of agivensymbol

fromthe environment in which the make-unbound! expres-

sion is evaluated. is problem is not completely specified.

Forexample,should we remove only the binding inthe first

frame of the environment? Complete the specification and

justify any choices you make.

15e drawback of this representation (as well as the variant in Exercise 4.11) is that

the evaluator may have to search through many frames in order to find the binding for

a given variable. (Such an approach is referred to asdeep binding.) One way to avoid this

inefficiency is to make useof a strategy called lexicaladdressing, which will be discussed

in Section 5.5.6.

517

4.1.4 Running the Evaluator as a Program

Given the evaluator, we have in our hands a description (expressed in

Lisp) of the process by which Lisp expressions are evaluated. One ad-

vantage of expressing the evaluator as a program is that we can run the

program. is gives us, running within Lisp, a working model of how

Lisp itself evaluates expressions. is can serve as a framework for ex-

perimenting with evaluation rules, as we shall do later in this chapter.

Our evaluator program reduces expressions ultimately to the appli-

cation of primitive procedures. erefore, all that we need to run the

evaluator is to create a mechanism that calls on the underlying Lisp

system to model the application of primitive procedures.

ere must be a binding for each primitive procedure name, so that

when eval evaluatesthe operator of an applicationof aprimitive, it will

findanobject to passto apply. Wethusset upaglobalenvironment that

associates unique objects with the names of the primitive procedures

that can appear in the expressions we will be evaluating. e global

environment also includes bindings for the symbols true and false, so

that they can be used as variables in expressions to be evaluated.

(define (setup-environment)

(let ((initial-env

(extend-environment (primitive-procedure-names)

(primitive-procedure-objects)

the-empty-environment)))

(define-variable! 'true true initial-env)

(define-variable! 'false false initial-env)

initial-env))

(define the-global-environment (setup-environment))

It does not maer how we represent the primitive procedure objects,

so long as apply can identify and apply them by using the procedures

518

primitive-procedure?and apply-primitive-procedure.Wehavecho-sen to represent a primitive procedure as a list beginning with the sym-

bol primitive and containing a procedure in the underlying Lisp that

implements that primitive.

(define (primitive-procedure? proc)

(tagged-list? proc 'primitive))

(define (primitive-implementation proc) (cadr proc))

Setup-environment will get the primitive names and implementation

procedures from a list:16

(define primitive-procedures

(list (list 'car car)

(list 'cdr cdr)

(list 'cons cons)

(list 'null? null?)

⟨more primitives⟩))

(define (primitive-procedure-names)

(map car primitive-procedures))

(define (primitive-procedure-objects)

(map (lambda (proc) (list 'primitive (cadr proc)))

primitive-procedures))

To apply a primitive procedure, we simply apply the implementation

procedure to the arguments, using the underlying Lisp system:17

16Any procedure defined in the underlying Lisp can be used as a primitive for the

metacircular evaluator. e name of a primitive installed in the evaluator need not

be the same as the name of its implementation in the underlying Lisp; the names are

the same here because the metacircular evaluator implements Scheme itself. us, for

example, we could put (list 'first car) or (list 'square (lambda (x) (* x

x)))inthelistofprimitive-procedures.

17Apply-in-underlying-scheme isthe apply procedure we have used in earlier

chapters. e metacircular evaluator’s apply procedure (Section 4.1.1) models the

519

(define (apply-primitive-procedure proc args)

(apply-in-underlying-scheme

(primitive-implementation proc) args))

For convenience in running the metacircular evaluator, we provide a

driver loop that models the read-eval-print loop of the underlying Lisp

system. It prints a prompt, reads an input expression, evaluates this ex-

pression in the global environment, and prints the result. We precede

each printed result by an outputprompt so as to distinguish the value of

the expression from other output that may be printed.18

(define input-prompt ";;; M-Eval input:")

(define output-prompt ";;; M-Eval value:")

(define (driver-loop)

(prompt-for-input input-prompt)

(let ((input (read)))

(let ((output (eval input the-global-environment)))

(announce-output output-prompt)

(user-print output)))

(driver-loop))

working of this primitive. Having two different things called apply leads to a tech-

nical problem in running the metacircular evaluator, because defining the metacircular

evaluator’s apply will mask the definition of the primitive. One way around this is to

rename the metacircular apply to avoid conflict with the name of the primitive proce-

dure. We have assumed instead that we have saved a reference to the underlying apply

by doing

(define apply-in-underlying-scheme apply)

before defining the metacircular apply. is allows us to access the original version of

apply under a different name.

18e primitive procedure read waits for input from the user, and returns the next

complete expression that is typed. For example, ifthe user types (+ 23 x), read returns

a three-element list containing the symbol +, the number 23, and the symbol x. If the

user types 'x, read returns a two-element list containing the symbol quote and the

symbol x.

520

(define (prompt-for-input string)

(newline) (newline) (display string) (newline))

(define (announce-output string)

(newline) (display string) (newline))

We use a special printing procedure, user-print, to avoid printing the

environment part of a compound procedure, which may be a very long

list (or may even contain cycles).

(define (user-print object)

(if (compound-procedure? object)

(display (list 'compound-procedure

(procedure-parameters object)

(procedure-body object)

'<procedure-env>))

(display object)))

Now all we need to do to run the evaluator is to initialize the global

environment and start the driver loop. Here is a sample interaction:

(define the-global-environment (setup-environment))

(driver-loop)

;;; M-Eval input:

(define (append x y)

(if (null? x)

y

(cons (car x) (append (cdr x) y))))

;;; M-Eval value:

ok

;;; M-Eval input:

(append '(a b c) '(d e f))

;;; M-Eval value:

(a b c d e f)

521

Exercise 4.14: Eva Lu Ator and Louis Reasoner are each

experimenting with the metacircular evaluator. Eva types

in the definition of map, and runs some test programs that

use it. ey work fine. Louis, in contrast, has installed the

system version of map as a primitive for the metacircular

evaluator. When he tries it, things go terribly wrong. Ex-

plain why Louis’s map fails even though Eva’s works.

4.1.5 Data as Programs

In thinking about a Lisp program that evaluates Lisp expressions, an

analogy might be helpful. One operational view of the meaning of a

program is that a program is a description of an abstract (perhaps in-

finitely large) machine. For example, consider the familiar program to

compute factorials:

(define (factorial n)

(if (= n 1) 1 (* (factorial (- n 1)) n)))

We may regard this program as the description of a machine contain-

ing parts that decrement, multiply, and test for equality, together with

a two-position switch and another factorial machine. (e factorial ma

chine isinfinite because it contains anotherfactorial machine withinit.)Figure 4.2 is a flow diagram for the factorial machine, showing how the

parts are wired together.

In a similar way, we can regard the evaluator as a very special ma-

chine that takes as input a description of a machine. Given this input,

the evaluatorconfigures itselfto emulate the machine described. For ex-

ample, if we feed our evaluator the definition of factorial, as shown

in Figure 4.3, the evaluator will be able to compute factorials.

522

factorial

=6 720

1 1

1

factorial--

*

Figure 4.2: e factorial program, viewed as an abstract

machine.

From this perspective, our evaluator is seen to be a universal ma-

chine. It mimics other machines when these are described as Lisp pro-

grams.19 is is striking. Try to imagine an analogous evaluator for

19e fact that the machines are described in Lisp is inessential. If we give our eval-

uator a Lisp program that behaves as an evaluator for some other language, say C,

the Lisp evaluator will emulate the C evaluator, which in turn can emulate any ma-

chine described as a C program. Similarly, writing a Lisp evaluator in C produces a C

program that can execute any Lisp program. e deep idea here is that any evaluator

can emulate any other. us, the notion of “what can in principle be computed” (ig-

noring practicalities of time and memory required) is independent of the language or

the computer, and instead reflects an underlying notion of computability. is was first

demonstrated in a clear way by Alan M. Turing (1912-1954), whose 1936 paper laid the

foundations for theoretical computer science. In the paper, Turing presented a simple

computational model—now known as a Turing machine—and argued that any “effective

process” can be formulated as a program for such a machine. (is argument is known

523

(define (factorial n)

(if (= n 1)

1

(* (factorial (- n 1)) n)))

eval6 720

Figure 4.3: e evaluator emulating a factorial machine.

electrical circuits. is would be a circuit that takes as input a signal

encoding the plans for some other circuit, such as a filter. Given this in

put, the circuit evaluator would then behave like a filter with the same

description. Such a universal electrical circuit is almost unimaginably

complex. It is remarkable that the program evaluator is a rather simple

program.20

as the Church-Turing thesis.) Turing then implemented a universal machine, i.e., a Tur-

ing machine that behaves as an evaluator for Turing-machine programs. He used this

framework to demonstratethat there arewell-posed problems that cannot becomputed

by Turing machines (see Exercise 4.15), and so by implication cannot be formulated as

“effective processes.” Turing went on to make fundamental contributions to practical

computer science as well. For example, he invented the idea of structuring programs

using general-purpose subroutines. See Hodges 1983 for a biography of Turing.

20Some
people find it counterintuitive that an evaluator, which is implemented by

a relatively simple procedure, can emulate programs that are more complex than the

evaluator itself. e existence of a universal evaluator machine is a deep and wonderful

property of computation. Recursion theory, a branch of mathematical logic, is concerned

with logical limits of computation. Douglas Hofstadter’s beautiful book Gödel, Escher,

Bach explores some of these ideas (Hofstadter 1979).

524

Another striking aspect of the evaluator is that it acts as a bridge

between the data objectsthat are manipulated by ourprogramming lan-

guage and the programming language itself. Imagine that the evaluator

program (implemented in Lisp) is running, and that a user is typing ex-

pressions to the evaluator and observing the results. From the perspec-

tive of the user, an input expression such as (* x x) is an expression in

the programming language, which the evaluator should execute. From

the perspective of the evaluator, however, the expression is simply a list

(in this case, a list ofthree symbols: *, x, and x) that is to be manipulated

according to a well-defined set of rules.

at the user’s programs are the evaluator’s data need not be a

source of confusion. In fact, it is sometimes convenient to ignore this

distinction, and to give the user the ability to explicitly evaluate a data

object as a Lisp expression, by making eval available for use in pro-

grams.ManyLispdialectsprovidea primitive eval procedurethat takes

as arguments an expression and an environment and evaluates the ex-

pression relative to the environment.21 us,

(eval '(* 5 5) user-initial-environment)

and

(eval (cons '* (list 5 5)) user-initial-environment)

will both return 25.22

21Warning: is eval primitive is not identical to the eval procedure we imple-

mented in Section 4.1.1, because it uses actual Scheme environments rather than the

sample environment structures we built in Section 4.1.3. ese actual environments

cannot be manipulated by the user as ordinary lists; they must be accessed via eval or

other special operations. Similarly, the apply primitive we saw earlier is not identical

to the metacircular apply, because it uses actual Scheme procedures rather than the

procedure objects we constructed in Section 4.1.3 and Section 4.1.4.

22e implementation of Scheme includes eval, as well as a symbol user-

initial-environment that is bound to the initial environment in which the user’s in

525

Exercise 4.15: Given a one-argument procedure p and an

object a, p is said to “halt” on a if evaluating the expres-

sion (p a) returns a value (as opposed to terminating with

an error message or running forever). Show that it is im

possible to write a procedure
halts? that correctly deter-

mines whether p halts on a for any procedure p and object

a. Use the following reasoning: If you had such a procedure

halts?, you could implement the following program:

(define (run-forever) (run-forever))

(define (try p)

(if (halts? p p) (run-forever) 'halted))

Now consider evaluating the expression (try try) and

show that any possible outcome (either halting or running

forever) violates the intended behavior of halts?.23

4.1.6 Internal Definitions

Our environment model of evaluation and our metacircular evaluator

execute definitions in sequence, extending the environment frame one

definition at a time. is is particularly convenient for interactive pro-

gram development, in which the programmer needs to freely mix the

application of procedures with the definition of new procedures. How-

ever, if we think carefully about the internal definitions used to im-

plement block structure (introduced in Section 1.1.8), we will find that

put expressions are evaluated.

23Although we stipulated that halts? is given a procedure object, notice that this

reasoning still applies even if halts? can gain access to the procedure’s text and its

environment. is is Turing’s celebrated Halting eorem, which gave the first clear

example of a non-computable problem, i.e., a well-posed task that cannot be carried out

as a computational procedure.

526

name-by-name extension of the environment may not be the best way

to define local variables.

Consider a procedure with internal definitions, such as

(define (f x)

(define (even? n) (if (= n 0) true (odd? (- n 1))))

(define (odd? n) (if (= n 0) false (even? (- n 1))))

⟨rest of body of f⟩)

Our intention here is that the name odd? in the body of the procedure

even? should refer to the procedure odd? that is defined aer even?.

e scope of the name odd? is the entire body of f, notjust the portion

of the body of f starting at the point where the define for odd? occurs.

Indeed, when we consider that odd? is itself defined in terms of even?—

so that even? and odd? are mutually recursive procedures—we see that

the only satisfactory interpretationof the two definesisto regardthemas if the names even? and odd? were being added to the environment

simultaneously. More generally, in block structure, the scope of a local

name is the entire procedure body in which the define is evaluated.

As it happens, our interpreter will evaluate calls to f correctly, but

for an “accidental” reason: Since the definitions of the internal proce-

dures come first, no calls to these procedures will be evaluated until

all of them have been defined. Hence, odd? will have been defined by

the time even? is executed. In fact, our sequential evaluation mecha-

nism will give the same result as a mechanism that directly implements

simultaneous definition for any procedure in which the internal defini-

tions come first in a body and evaluation of the value expressions for

the defined variables doesn’t actually use any of the defined variables.

(For an example of a procedure that doesn’t obey these restrictions, so

that sequential definition isn’t equivalent to simultaneous definition,

527

see Exercise 4.19.)24

ere is, however, a simple way to treat definitions so that inter-

nally defined names have truly simultaneous scope—just create all local

variables that will be in the current environment before evaluating any

of the value expressions. One way to do this is by a syntax transfor-

mationonlambdaexpressions.Beforeevaluatingthebodyofalambda

expression, we “scan out” and eliminate all the internal definitions in

the body. e internally defined variables will be created with a let

and then set to their values by assignment. For example, the procedure

(lambda ⟨vars⟩

(define u ⟨e1⟩)

(define v ⟨e2⟩)

⟨e3⟩)

would be transformed into

(lambda ⟨vars⟩

(let ((u '*unassigned*)

(v '*unassigned*))

(set! u ⟨e1⟩)

(set! v ⟨e2⟩)

⟨e3⟩))

24Wanting programs to not depend on this evaluation mechanism is the reason for

the “management is not responsible” remark in Footnote 28 of Chapter 1. By insisting

that internal definitions come first and do not use each other while the definitions are

being evaluated, the standard for Scheme leaves implementors some choice in

the mechanism used to evaluate these definitions. e choice of one evaluation rule

rather than another here may seem like a small issue, affecting only the interpretation

of “badly formed” programs. However, we will see in Section 5.5.6 that moving to a

model of simultaneous scoping for internal definitions avoids some nasty difficulties

that would otherwise arise in implementing a compiler.

528

where *unassigned* is a special symbol that causes looking up a vari-

able to signal an error if an aempt is made to use the value of the

not-yet-assigned variable.

Analternativestrategyforscanningoutinternaldefinitionsisshown

in Exercise 4.18. Unlike the transformation shown above, this enforces

the restriction that the defined variables’ values can be evaluated with-

out using any of the variables’ values.25

Exercise 4.16: In this exercise we implement the method

just described for interpreting internal definitions. We as-

sume that the evaluator supports let (see Exercise 4.6).

a. Change lookup-variable-value(Section4.1.3)tosig-nalanerrorifthevalueitfindsisthesymbol *unassigned*.

b. Writeaprocedure scan-out-definesthattakesapro-cedure body and returns an equivalent one that has

no internal definitions, by making the transformation

described above.

c. Install scan-out-defines in the interpreter, either in

make-procedure or in procedure-body (see Section

4.1.3). Which place is beer? Why?

Exercise 4.17: Draw diagrams ofthe environment in effect

whenevaluatingtheexpression⟨e3⟩intheprocedure inthe

25e standard for Scheme allows for different implementation strategies by

specifying that it is up to the programmer to obey this restriction, not up to the imple-

mentation to enforce it. Some Scheme implementations, including Scheme, use the

transformation shown above. us, some programs that don’t obey this restriction will

in fact run in such implementations.

529

text, comparing how this will be structured when defini-

tions are interpreted sequentially with how it will be struc-

tured if definitions are scanned out as described. Why is

there an extra frame in the transformed program? Explain

whythisdifferenceinenvironmentstructurecannevermake

a difference in the behavior of a correct program. Design a

way to make the interpreter implement the “simultaneous”

scope rule for internal definitions without constructing the

extra frame.

Exercise 4.18: Consider an alternative strategy for scan-

ning out definitions that translates the example in the text

to

(lambda ⟨vars⟩

(let ((u '*unassigned*) (v '*unassigned*))

(let ((a ⟨e1⟩) (b ⟨e2⟩))

(set! u a)

(set! v b))

⟨e3⟩))

Here a and b are meant to represent new variable names,

created by the interpreter, that do not appear in the user’s

program. Consider the solve procedure from Section 3.5.4:

(define (solve f y0 dt)

(define y (integral (delay dy) y0 dt))

(define dy (stream-map f y))

y)

Will this procedure work if internal definitionsare scanned

out as shown in this exercise? What if they are scanned out

as shown in the text? Explain.

530

Exercise 4.19: Ben Bitdiddle, Alyssa P. Hacker, and Eva Lu

Ator are arguing about the desired result of evaluating the

expression

(let ((a1))

(define (f x)

(define b (+ a x))

(define a 5)

(+ a b))

(f10))

Ben asserts that the result should be obtained using the se-

quential rule for define: b is defined to be 11, then a is de-

fined to be 5, so the result is 16. Alyssa objects that mutual

recursion requires the simultaneous scope rule for internal

procedure definitions, and that it is unreasonable to treat

procedure names differently from other names. us, she

argues for the mechanism implemented in Exercise 4.16.

is would lead to a being unassigned at the time that the

value for b is to be computed. Hence, in Alyssa’s view the

procedure should produce anerror.Evahasa third opinion.

She says that if the definitions of a and b are truly meant

to be simultaneous, then the value 5 for a should be used in

evaluating b.Hence,inEva’sview ashouldbe5, bshouldbe15,andtheresultshouldbe20.Which(ifany)of these view-

points do you support? Can you devise a way to implement

internal definitions so that they behave as Eva prefers?26

26e implementors of Scheme support Alyssa on the following grounds: Eva is

in principle correct—the definitions should be regarded as simultaneous. But it seems

difficult to implement a general, efficient mechanism that does what Eva requires. In

the absence of such a mechanism, it is beer to generate an error in the difficult cases

of simultaneous definitions (Alyssa’s notion) than to produce an incorrect answer (as

Ben would have it).

531

Exercise 4.20: Because internal definitions look sequen-

tial but are actually simultaneous, some people prefer to

avoid them entirely, and use the special form letrec in-

stead. Letrec looks like let, so it is not surprising that the

variables it binds are bound simultaneously and have the

same scope as each other. e sample procedure f above

can be wrien without internal definitions, but with ex-

actly the same meaning, as

(define (f x)

(letrec

((even? (lambda (n)

(if (= n 0) true (odd? (- n 1)))))

(odd? (lambda (n)

(if (= n 0) false (even? (- n 1))))))

⟨rest of body of f⟩))

Letrec expressions, which have the form

(letrec ((⟨var1⟩ ⟨exp1⟩) ... (⟨varn⟩ ⟨expn⟩))

⟨body⟩)

are a variation on let in which the expressions ⟨expk⟩ that

provide the initial values for the variables ⟨vark⟩ are eval

uated in an environment that includes all the letrec bind

ings. is permits recursion in the bindings, such as the

mutual recursion of even? and odd? in the example above,

or the evaluation of 10 factorial with

(letrec

((fact (lambda (n)

(if (= n 1) 1 (* n (fact (- n1)))))))

(fact 10))

532

a. Implement letrec as a derived expression, by trans-

forming a letrec expression into a let expression as

shown in the text above or in Exercise 4.18. at is,

the letrec variables should be created with a let and

then be assigned their values with set!.

b. LouisReasonerisconfusedby allthisfussabout inter-

nal definitions. e way he sees it, if you don’t like to

use define inside a procedure, you can just use let.

Illustrate what is loose about his reasoning by draw-

ing an environment diagram that shows the environ-

ment in which the ⟨rest ofbody off⟩ is evaluated dur-

ing evaluation of the expression (f 5), with f defined

as in this exercise. Draw an environment diagram for

the same evaluation, but with let in place of letrec

in the definition of f.

Exercise4.21:Amazingly,Louis’sintuitioninExercise4.20

is correct. It is indeed possible to specify recursive proce-

dures without using
letrec (or even define), although the

method for accomplishing this is much more subtle than

Louis imagined. e following expression computes 10 fac-

torial by applying a recursive factorial procedure:27

((lambda (n)

((lambda (fact) (fact fact n))

(lambda (ft k) (if (= k 1) 1 (* k (ft ft (- k 1)))))))

10)

27is
example illustrates a programming trick for formulating recursive procedures

without using define.emost general trick ofthis sort is theY operator, which can be

used to give a “pure λ-calculus” implementation of recursion. (See Stoy 1977 for details

on the λ-calculus, and Gabriel 1988 for an exposition of the Y operator in Scheme.)

533

a. Check (by evaluating the expression) that this really

does compute factorials. Devise an analogous expres-

sion for computing Fibonacci numbers.

b. Considerthefollowingprocedure,whichincludesmu-

tually recursive internal definitions:

(define (f x)

(define (even? n)

(if (= n 0) true (odd? (- n 1))))

(define (odd? n)

(if (= n 0) false (even? (- n 1))))

(even? x))

Fill inthe missing expressionsto complete an alterna-

tive definition of f, which uses neither internal defi-

nitions nor letrec:

(define (f x)

((lambda (even? odd?) (even? even? odd? x))

(lambda (ev? od? n)

(if (= n 0) true (od? ⟨??⟩ ⟨??⟩ ⟨??⟩)))

(lambda (ev? od? n)

(if (= n 0) false (ev? ⟨??⟩ ⟨??⟩ ⟨??⟩)))))

4.1.7 Separating Syntactic Analysis from Execution

e evaluator implemented above is simple, but it is very inefficient,

because the syntactic analysis of expressions is interleaved with their

execution. us if a program is executed many times, its syntax is an

alyzed many times. Consider, for example, evaluating (factorial 4)

using the following definition of factorial:

(define (factorial n)

(if (= n 1) 1 (* (factorial (- n 1)) n)))

534

Each time factorial is called, the evaluator must determine that the

body is an if expression and extract the predicate. Only then can it

evaluate the predicate and dispatch on its value. Each time it evaluates

the expression (* (factorial (- n 1)) n), or the subexpressions

(factorial (- n 1)) and (- n 1), the evaluator must perform the

case analysis in eval to determine that the expression is an application,

and must extract its operator and operands. is analysis is expensive.

Performing it repeatedly is wasteful.

We can transform the evaluator to be significantly more efficient

by arranging things so that syntactic analysis is performed only once.28

We split eval, which takes an expression and an environment, into two

parts. e procedure analyze takes only the expression. It performs the

syntactic analysis and returns a new procedure, the execution procedure,

that encapsulates the work to be done inexecutingthe analyzed expres

sion. e execution procedure takes an environment as its argument

and completes the evaluation. is saves work because analyze will be

called only once on an expression, while the execution procedure may

be called many times.

With the separationinto analysis and execution, eval now becomes

(define (eval exp env) ((analyze exp) env))

e result of calling analyze is the execution procedure to be applied

to the environment. e analyze procedure is the same case analysis as

performed by the original
eval of Section 4.1.1, except that the proce-

dures to which we dispatch perform only analysis, not full evaluation:

(define (analyze exp)

28
istechniqueisanintegralpartofthecompilation process, which weshall discuss

in Chapter 5. Jonathan Rees wrote a Scheme interpreter like this in about 1982 for the T

project (Rees and Adams 1982). Marc Feeley (1986) (see also Feeley and Lapalme 1987)

independently invented this technique in his master’s thesis.

535

(cond ((self-evaluating? exp) (analyze-self-evaluating exp))

((quoted? exp) (analyze-quoted exp))

((variable? exp) (analyze-variable exp))

((assignment? exp) (analyze-assignment exp))

((definition? exp) (analyze-definition exp))

((if? exp) (analyze-if exp))

((lambda? exp) (analyze-lambda exp))

((begin? exp) (analyze-sequence (begin-actions exp)))

((cond? exp) (analyze (cond->if exp)))

((application? exp) (analyze-application exp))

(else (error "Unknown expression type: ANALYZE" exp))))

Here is the simplest syntactic analysis procedure, which handles self-

evaluating expressions. It returns an execution procedure that ignores

its environment argument and just returns the expression:

(define (analyze-self-evaluating exp)

(lambda (env) exp))

For a quoted expression, we can gain a lile efficiency by extracting the

text of the quotation only once, in the analysis phase, rather than in the

execution phase.

(define (analyze-quoted exp)

(let ((qval (text-of-quotation exp)))

(lambda (env) qval)))

Looking up a variable value must still be done in the execution phase,

since this depends upon knowing the environment.29

(define (analyze-variable exp)

(lambda (env) (lookup-variable-value exp env)))

29ere is, however, an important part of the variable search that can be done as

part of the syntactic analysis. As we will show in Section 5.5.6, one can determine the

position in theenvironmentstructurewherethevalueofthevariablewillbefound,thus

obviating the need to scan the environment for the entry that matches the variable.

536

Analyze-assignment also must defer actually seing the variable un-

til the execution, when the environment has been supplied. However,

the fact that the assignment-value expression can be analyzed (re-

cursively) during analysis is a major gain in efficiency, because the

assignment-valueexpressionwillnowbeanalyzedonlyonce.esame

holds true for definitions.

(define (analyze-assignment exp)

(let ((var (assignment-variable exp))

(vproc (analyze (assignment-value exp))))

(lambda (env)

(set-variable-value! var (vproc env) env)

'ok)))

(define (analyze-definition exp)

(let ((var (definition-variable exp))

(vproc (analyze (definition-value exp))))

(lambda (env)

(define-variable! var (vproc env) env)

'ok)))

For if expressions, we extract and analyze the predicate, consequent,

and alternative at analysis time.

(define (analyze-if exp)

(let ((pproc (analyze (if-predicate exp)))

(cproc (analyze (if-consequent exp)))

(aproc (analyze (if-alternative exp))))

(lambda (env) (if (true? (pproc env))

(cproc env)

(aproc env)))))

Analyzing a lambda expression also achieves a major gain in efficiency:

We analyze the lambda body only once, even though procedures result-

ing from evaluation of the lambda may be applied many times.

537

(define (analyze-lambda exp)

(let ((vars (lambda-parameters exp))

(bproc (analyze-sequence (lambda-body exp))))

(lambda (env) (make-procedure vars bproc env))))

Analysis of a sequence of expressions (as in a begin or the body of a

lambda expression) is more involved.30 Each expression in the sequence

is analyzed, yielding an execution procedure. ese execution proce-

dures are combined to produce an execution procedure that takes an

environment as argument and sequentially calls each individual execu-

tion procedure with the environment as argument.

(define (analyze-sequence exps)

(define (sequentially proc1 proc2)

(lambda (env) (proc1 env) (proc2 env)))

(define (loop first-proc rest-procs)

(if (null? rest-procs)

first-proc

(loop (sequentially first-proc (car rest-procs))

(cdr rest-procs))))

(let ((procs (map analyze exps)))

(if (null? procs) (error "Empty sequence: ANALYZE"))

(loop (car procs) (cdr procs))))

To analyze an application, we analyze the operator and operands and

construct an execution procedure that calls the operator execution pro-

cedure (to obtain the actual procedure to be applied) and the operand

execution procedures (to obtain the actual arguments). We then pass

these to execute-application, which is the analog of apply in Section

4.1.1. Execute-application differs from apply in that the procedure

body for a compound procedure has already been analyzed, so there is

30See Exercise 4.23 for some insight into the processing of sequences.

538

no need to do further analysis. Instead, we just call the execution pro-

cedure for the body on the extended environment.

(define (analyze-application exp)

(let ((fproc (analyze (operator exp)))

(aprocs (map analyze (operands exp))))

(lambda (env)

(execute-application

(fproc env)

(map (lambda (aproc) (aproc env))

aprocs)))))

(define (execute-application proc args)

(cond ((primitive-procedure? proc)

(apply-primitive-procedure proc args))

((compound-procedure? proc)

((procedure-body proc)

(extend-environment

(procedure-parameters proc)

args

(procedure-environment proc))))

(else

(error "Unknown procedure type: EXECUTE-APPLICATION"

proc))))

Our new evaluator uses the same data structures, syntax procedures,

and run-time support procedures as in sections Section 4.1.2, Section

4.1.3, and Section 4.1.4.

Exercise 4.22: Extend the evaluator in this section to sup-

port the special form let. (See Exercise 4.6.)

Exercise 4.23: Alyssa P. Hacker doesn’t understand why

analyze-sequenceneedstobesocomplicated.Alltheother

analysisprocedures are straightforward transformations of

539

the corresponding evaluation procedures (or eval clauses)

in Section 4.1.1. She expected analyze-sequence to look

like this:

(define (analyze-sequence exps)

(define (execute-sequence procs env)

(cond ((null? (cdr procs))

((car procs) env))

(else

((car procs) env)

(execute-sequence (cdr procs) env))))

(let ((procs (map analyze exps)))

(if (null? procs)

(error "Empty sequence: ANALYZE"))

(lambda (env)

(execute-sequence procs env))))

Eva Lu Ator explains to Alyssa that the version in the text

does more of the work of evaluating a sequence at analysis

time. Alyssa’s sequence-execution procedure, rather than

havingthecallstotheindividualexecutionproceduresbuilt

in, loops through the procedures in order to call them: In

effect, although the individual expressions in the sequence

have been analyzed, the sequence itself has not been.

Compare the two versions of analyze-sequence. For ex-

ample,considerthecommoncase(typicalofprocedurebod-

ies)wherethesequencehasjustoneexpression.Whatwork

willtheexecutionprocedure producedbyAlyssa’sprogram

do? What about the execution procedure produced by the

program in the text above? How do the two versions com-

pare for a sequence with two expressions?

540

Exercise 4.24: Design and carry out some experiments to

compare the speed of the original metacircular evaluator

with the version in this section. Use your results to esti-

mate the fraction of time that is spent in analysis versus

execution for various procedures.

4.2 Variations on a Scheme — Lazy Evaluation

Now that we have an evaluator expressed as a Lisp program, we can

experiment with alternative choices in language design simply by mod-

ifying the evaluator. Indeed, new languages are oen invented by first

writing an evaluator that embeds the new language within an exist-

ing high-level language. For example, ifwe wish to discuss some aspect

of a proposed modification to Lisp with another member of the Lisp

community, we can supply an evaluator that embodies the change. e

recipient can then experiment with the new evaluator and send back

comments as further modifications. Not only does the high-level imple-

mentation base make it easier to test and debug the evaluator; in addi-

tion, the embedding enables the designer to snarf31 features from the

underlying language, just as our embedded Lisp evaluator uses primi-

tives and control structure from the underlying Lisp. Only later (if ever)

need the designer go to the trouble of building a complete implemen-

tation in a low-level language or in hardware. In this section and the

next we explore some variations on Scheme that provide significant ad-

ditional expressive power.

31Snarf: “To grab, especially a large document or file for the purpose of using it ei-

ther with or without the owner’s permission.” Snarf down: “To snarf, sometimes with

the connotation of absorbing, processing, or understanding.” (ese definitions were

snarfed from Steele et al. 1983. See also Raymond 1993.)

541

4.2.1 Normal Order and Applicative Order

In Section 1.1, where we began our discussion of models of evaluation,

we noted that Scheme is an applicative-order language, namely, that all

the arguments to Scheme procedures are evaluated when the procedure

is applied. In contrast, normal-order languages delay evaluation of pro-

cedure arguments until the actual argument values are needed. Delay-

ing evaluation of procedure arguments until the last possible moment

(e.g., until they are required by a primitive operation) is called lazy eval-

uation.32 Consider the procedure

(define (try a b) (if (= a 0) 1 b))

Evaluating (try 0 (/ 1 0)) generates an error in Scheme. With lazy

evaluation, there would be no error. Evaluating the expression would

return 1, because the argument (/ 1 0) would never be evaluated.

An example that exploits lazy evaluation is the definition of a pro-

cedure unless

(define (unless condition usual-value exceptional-value)

(if condition exceptional-value usual-value))

that can be used in expressions such as

(unless (= b 0)

(/ a b)

(begin (display "exception: returning 0") 0))

iswon’tworkinanapplicative-orderlanguagebecauseboththeusual

value and the exceptional value will be evaluated before unlessiscalled

32e difference between the “lazy” terminology and the “normal-order” terminol-

ogy is somewhat fuzzy. Generally, “lazy” refers to the mechanisms of particular eval-

uators, while “normal-order” refers to the semantics of languages, independent of any

particular evaluation strategy. But this is not a hard-and-fast distinction, and the two

terminologies are oen used interchangeably.

542

(compare Exercise 1.6). An advantage of lazy evaluation is that some

procedures, such as unless, can do useful computation even if evalu-

ation of some of their arguments would produce errors or would not

terminate.

If the body of a procedure is entered before an argument has been

evaluated we say that the procedure is non-strict inthat argument. If the

argument is evaluated before the body of the procedure is entered we

saythattheprocedureisstrict inthatargument.33 Inapurelyapplicative-

order language, all procedures are strict in each argument. In a purely

normal-order language, all compound procedures are non-strict in each

argument, and primitive procedures may be either strict or non-strict.

ere are also languages (see Exercise 4.31) that give programmers de-

tailed control over the strictness of the procedures they define.

A striking example of a procedure that can usefully be made non-

strict is cons (or, in general, almost any constructor for data structures).One can do useful computation, combiningelements to form datastruc-

tures and operating on the resulting data structures, even if the values

of the elements are not known. It makes perfect sense, for instance, to

compute the length of a list without knowing the values of the indi-

vidual elements in the list. We will exploit this idea in Section 4.2.3 to

implement the streams of Chapter 3 as lists formed of non-strict cons

pairs.

Exercise 4.25: Suppose that (in ordinary applicative-order

Scheme) we define unless as shown above and then define

33e “strict” versus “non-strict” terminology means essentially the same thing as

“applicative-order” versus “normal-order,” except that it refers to individual procedures

andargumentsratherthan to thelanguageasa whole. Ata conferenceon programming

languages you might hear someone say, “e normal-order language Hassle has certain

strict primitives. Other procedures take their arguments by lazy evaluation.”

543

factorial in terms of unless as

(define (factorial n)

(unless (= n 1)

(* n (factorial (- n 1)))

1))

What happens if we aempt to evaluate (factorial 5)?

Will our definitions work in a normal-order language?

Exercise4.26: Ben Bitdiddle and Alyssa P. Hacker disagree

over the importance of lazy evaluation for implementing

things such as unless. Ben points out that it’s possible to

implement
unless in applicative order as a special form.

Alyssacountersthat,ifonedidthat, unlesswouldbemerely

syntax, not a procedure that could be used in conjunction

with higher-order procedures. Fill in the details on both

sides of the argument. Show how to implement unless as

a derived expression (like cond or let), and give an exam

ple of a situation where it might be useful to have unless

available as a procedure, rather than as a special form.

4.2.2 An Interpreter with Lazy Evaluation

In this section we will implement a normal-order language that is the

sameasScheme exceptthatcompoundproceduresarenon-strict ineach

argument. Primitive procedures will still be strict. It is not difficult to

modify the evaluator of Section 4.1.1 so that the language it interprets

behaves this way. Almost all the required changes center around pro-

cedure application.

e basic idea is that, when applying a procedure, the interpreter

must determine which arguments are to be evaluated and which are to

544

be delayed. e delayed arguments are not evaluated; instead, they are

transformed into objects called thunks.34 e thunk must contain the

information required to produce the value of the argument when it is

needed, as if it had been evaluated at the time of the application. us,

the thunk must contain the argument expression and the environment

in which the procedure application is being evaluated.

e process of evaluating the expression in a thunk is called forc

ing.35 In general, a thunk will be forced only when its value is needed:

when it is passed to a primitive procedure that will use the value of the

thunk; when it isthe value ofa predicate of a conditional; and when it is

the value of an operator that is about to be applied as a procedure. One

designchoice we have available is whether or not to memoize thunks, as

we did with delayed objectsinSection3.5.1. With memoization,the first

time a thunk is forced, it stores the value that is computed. Subsequent

forcings simply return the stored value without repeating the computa-

tion. We’ll make our interpreter memoize, because this is more efficient

for many applications. ere are tricky considerations here, however.36

34e word thunk was invented by an informal working group that was discussing

the implementation ofcall-by-namein Algol60. ey observed thatmostofthe analysis

of (“thinking about”) the expression could be done at compile time; thus, at run time,

the expression would already have been “thunk” about (Ingerman et al. 1960).

35is is analogous to the use of force on the delayed objects that were introduced

in Chapter 3 to represent streams. e critical difference between what we are doing

here and what we did in Chapter 3 is that we are building delaying and forcing into the

evaluator, and thus making this uniform and automatic throughout the language.

36Lazy evaluation combined with memoization is sometimes referred to as call-by-

need argument passing, in contrast to call-by-name argument passing. (Call-by-name,

introduced in Algol 60, is similar to non-memoized lazy evaluation.) As language de-

signers, we can build our evaluator to memoize, not to memoize, or leave this an option

for programmers (Exercise 4.31). As you might expect from Chapter 3, these choices

raise issues that become both subtle and confusing in the presence of assignments. (See

Exercise 4.27 and Exercise 4.29.) An excellent article by Clinger (1982) aempts to clar-

545

Modifying the evaluator

e main difference between the lazy evaluator and the one in Section

4.1 is in the handling of procedure applications in eval and apply.

e application? clause of eval becomes

((application? exp)

(apply (actual-value (operator exp) env)

(operands exp)

env))

is is almost the same as the application? clause of eval in Sec-

tion 4.1.1. For lazy evaluation, however, we call apply with the operand

expressions, rather than the arguments produced by evaluating them.

Since we will need the environment to construct thunks if the argu-

ments are to be delayed, we must pass this as well. We still evaluate

the operator, because apply needs the actual procedure to be applied in

order to dispatch on its type (primitive versus compound) and apply it.

Whenever we need the actual value of an expression, we use

(define (actual-value exp env)

(force-it (eval exp env)))

instead ofjust eval, so that if the expression’s value is a thunk, it will

be forced.

Our new version of apply is also almost the same as the version

in Section 4.1.1. e difference is that eval has passed in unevaluated

operand expressions: For primitive procedures (which are strict), we

evaluate all the arguments before applying the primitive; for compound

procedures (which are non-strict) we delay all the arguments before ap-

plying the procedure.

ify the multiple dimensions of confusion that arise here.

546

(define (apply procedure arguments env)

(cond ((primitive-procedure? procedure)

(apply-primitive-procedure

procedure

(list-of-arg-values arguments env))) ;changed

((compound-procedure? procedure)

(eval-sequence

(procedure-body procedure)

(extend-environment

(procedure-parameters procedure)

(list-of-delayed-args arguments env) ;changed

(procedure-environment procedure))))

(else (error "Unknown procedure type: APPLY"

procedure))))

eproceduresthatprocesstheargumentsarejustlikelist-of-values

fromSection4.1.1,exceptthatlist-of-delayed-argsdelaystheargu

mentsinsteadofevaluatingthem,andlist-of-arg-valuesusesactual-

valueinsteadofeval:

(define (list-of-arg-values exps env)

(if (no-operands? exps)

'()

(cons (actual-value (first-operand exps)

env)

(list-of-arg-values (rest-operands exps)

env))))

(define (list-of-delayed-args exps env)

(if (no-operands? exps)

'()

(cons (delay-it (first-operand exps)

env)

(list-of-delayed-args (rest-operands exps)

env))))

547

e other place we must change the evaluator is in the handling of if,

where we must use actual-value instead of eval to get the value of

the predicate expression before testing whether it is true or false:

(define (eval-if exp env)

(if (true? (actual-value (if-predicate exp) env))

(eval (if-consequent exp) env)

(eval (if-alternative exp) env)))

Finally, we must change the driver-loop procedure (Section 4.1.4) to

use actual-value instead of eval, so that if a delayed value is prop-

agated back to the read-eval-print loop, it will be forced before being

printed. We also change the prompts to indicate that this is the lazy

evaluator:

(define input-prompt ";;; L-Eval input:")

(define output-prompt ";;; L-Eval value:")

(define (driver-loop)

(prompt-for-input input-prompt)

(let ((input (read)))

(let ((output

(actual-value

input the-global-environment)))

(announce-output output-prompt)

(user-print output)))

(driver-loop))

With these changes made, we can start the evaluator and test it. e

successful evaluation of the try expression discussed in Section 4.2.1

indicates that the interpreter is performing lazy evaluation:

(define the-global-environment (setup-environment))

(driver-loop)

;;; L-Eval input:

(define (try a b) (if (= a 0) 1 b))

548

;;; L-Eval value:

ok

;;; L-Eval input:

(try 0 (/ 1 0))

;;; L-Eval value:

1

Representing thunks

Our evaluator must arrange to create thunks when procedures are ap-

plied to arguments and to force these thunks later. A thunk must pack-

age an expression together with the environment, so that the argument

can be produced later. To force the thunk, we simply extract the ex-

pression and environment from the thunk and evaluate the expression

in the environment. We use actual-value rather than eval so that in

case the value of the expression is itselfa thunk, we will force that, and

so on, until we reach something that is not a thunk:

(define (force-it obj)

(if (thunk? obj)

(actual-value (thunk-exp obj) (thunk-env obj))

obj))

One easy way to package an expression with an environment is to make

a list containing the expression and the environment. us, we create a

thunk as follows:

(define (delay-it exp env)

(list 'thunk exp env))

(define (thunk? obj)

(tagged-list? obj 'thunk))

(define (thunk-exp thunk) (cadr thunk))

(define (thunk-env thunk) (caddr thunk))

549

Actually, what we want for our interpreter is not quite this, but rather

thunks that have been memoized. When a thunk is forced, we will turn

it into an evaluated thunk by replacing the stored expression with its

value and changingthe thunk tag so that it can be recognized asalready

evaluated.37

(define (evaluated-thunk? obj)

(tagged-list? obj 'evaluated-thunk))

(define (thunk-value evaluated-thunk)

(cadr evaluated-thunk))

(define (force-it obj)

(cond ((thunk? obj)

(let ((result (actual-value (thunk-exp obj)

(thunk-env obj))))

(set-car! obj 'evaluated-thunk)

(set-car! (cdr obj)

result) ;replace exp with its value

(set-cdr! (cdr obj)

'()) ;forgetunneededenv

result))

((evaluated-thunk? obj) (thunk-value obj))

(else obj)))

Notice that the same delay-it procedure works both with and without

memoization.

37Notice that we also erase the env from the thunk once the expression’s value has

been computed. is makes no difference in the values returned by the interpreter. It

does help save space, however, because removing the reference from the thunk to the

env once it isnolonger needed allowsthis structure tobe garbage-collected and its space

recycled, as we will discuss in Section 5.3.

Similarly, we could have allowed unneeded environments in the memoized delayed

objects of Section 3.5.1 to be garbage-collected, by having memo-proc do something like

(set! proc '()) to discard the procedure proc (which includes the environment in

which the delay was evaluated) aer storing its value.

550

Exercise4.27:Supposewetypeinthefollowingdefinitions

to the lazy evaluator:

(define count 0)

(define (id x) (set! count (+ count 1)) x)

Give the missing values in the following sequence ofinter-

actions, and explain your answers.38

(define w (id (id 10)))

;;; L-Eval input:

count

;;; L-Eval value:

⟨response⟩

;;; L-Eval input:

w

;;; L-Eval value:

⟨response⟩

;;; L-Eval input:

count

;;; L-Eval value:

⟨response⟩

Exercise 4.28: Eval uses actual-value rather than eval

to evaluate the operator before passing it to apply, in or-

der to force the value of the operator. Give an example that

demonstrates the need for this forcing.

Exercise 4.29: Exhibit a program that you would expect

to run much more slowly without memoization than with

38is exercise demonstrates that the interaction between lazy evaluation and side

effects can be very confusing. is is just what you might expect from the discussion

in Chapter 3.

551

memoization.Also,considerthefollowinginteraction,where

the id procedure is defined as in Exercise 4.27 and count

starts at 0:

(define (square x) (* x x))

;;; L-Eval input:

(square (id 10))

;;; L-Eval value:

⟨response⟩

;;; L-Eval input:

count

;;; L-Eval value:

⟨response⟩

Give the responses both when the evaluator memoizes and

when it does not.

Exercise 4.30: Cy D. Fect, a reformed C programmer, is

worried that some side effects may never take place, be-

cause the lazy evaluator doesn’t force the expressions in a

sequence. Since the value of an expression in a sequence

other than the last one is not used (the expression is there

only for its effect, such as assigning to a variable or print-

ing), there canbe no subsequent use of thisvalue (e.g.,asanargument to a primitive procedure) that will cause it to be

forced. Cy thus thinks that when evaluating sequences, we

must force all expressions in the sequence except the final

one. He proposes to modify eval-sequence from Section

4.1.1 to use actual-value rather than eval:

(define (eval-sequence exps env)

(cond ((last-exp? exps) (eval (first-exp exps) env))

(else (actual-value (first-exp exps) env)

552

(eval-sequence (rest-exps exps) env))))

a. Ben Bitdiddle thinks Cy is wrong. He shows Cy the

for-each procedure described inExercise 2.23, which

gives an important example of a sequence with side

effects:

(define (for-each proc items)

(if (null? items)

'done

(begin (proc (car items))

(for-each proc (cdr items)))))

He claims that the evaluatorinthe text (with the orig

inal eval-sequence) handles this correctly:

;;; L-Eval input:

(for-each (lambda (x) (newline) (display x))

(list 57 321 88))

57

321

88

;;; L-Eval value:

done

Explain why Ben is right about the behavior of for-

each.

b. Cy agrees that Ben is right about the for-each exam

ple, but says that that’s not the kind of program he

was thinking about when he proposed his change to

eval-sequence. He defines the following two proce-

dures in the lazy evaluator:

553

(define (p1 x)

(set! x (cons x '(2)))

x)

(define (p2 x)

(define (p e)

e

x)

(p (set! x (cons x '(2)))))

What are the values of (p1 1) and (p2 1) with the

original eval-sequence? What would the values be

with Cy’s proposed change to eval-sequence?

c. Cy alsopointsoutthatchanging eval-sequenceasheproposes does not affect the behavior of the example

in part a. Explain why this is true.

d. How do you think sequences ought to be treated in

the lazy evaluator?Do you like Cy’sapproach, the ap-

proach in the text, or some other approach?

Exercise 4.31: e approach taken in this section is some-

what unpleasant, because it makes an incompatible change

to Scheme. It might be nicer to implement lazy evaluation

as an upward-compatible extension, that is, so that ordinary

Scheme programs will work as before. We can do this by

extending the syntax of procedure declarations to let the

user control whether or not arguments are to be delayed.

While we’re at it, we may as well also give the user the

choice between delaying with and without memoization.

For example, the definition

(define (f a (b lazy) c (d lazy-memo))

...)

554

would define f to be a procedure of four arguments, where

the first and third arguments are evaluated when the pro-

cedure is called, the second argument is delayed, and the

fourth argument is both delayed and memoized. us, or-

dinary procedure definitions will produce the same behav-

ior as ordinary Scheme, while adding the lazy-memo dec-

laration to each parameter of every compound procedure

will produce the behavior of the lazy evaluator defined in

this section. Design and implement the changes required

to produce such an extension to Scheme. You will have to

implement new syntax procedures to handle the new syn-

tax for define. You must also arrange for eval or apply to

determine when arguments are to be delayed, and to force

or delay arguments accordingly, and you must arrange for

forcing to memoize or not, as appropriate.

4.2.3 Streams as Lazy Lists

In Section 3.5.1, we showed how to implement streams as delayed lists.

We introduced special forms delay and cons-stream, which allowed

us to construct a “promise” to compute the cdr of a stream, without

actually fulfilling that promise until later. We could use this general

technique ofintroducing special forms whenever we need more control

over the evaluation process, but this is awkward. For one thing, a spe-

cial form is not a first-class object like a procedure, so we cannot use it

together with higher-order procedures.39 Additionally, we were forced

tocreate streamsas anewkindof data object similarbut not identicaltolists, and this required us to reimplement many ordinary list operations

39is is precisely the issue with the unless procedure, as in Exercise 4.26.

555

(map, append, and so on) for use with streams.

With lazy evaluation, streams and lists can be identical, so there is

no need for special forms or for separate list and stream operations. All

we need to do is to arrange maers so that cons is non-strict. One way

to accomplish this is to extend the lazy evaluator to allow for non-strict

primitives,andtoimplement consasoneofthese.Aneasierwayistore-

call (Section 2.1.3) that there is no fundamental need to implement cons

as a primitive at all. Instead, we can represent pairs as procedures:40

(define (cons x y) (lambda (m) (m x y)))

(define (car z) (z (lambda (p q) p)))

(define (cdr z) (z (lambda (p q) q)))

In terms of these basic operations, the standard definitions of the list

operations will work with infinite lists (streams) as well as finite ones,

and the stream operations can be implemented as list operations. Here

are some examples:

(define (list-ref items n)

(if (= n 0)

(car items)

(list-ref (cdr items) (- n 1))))

(define (map proc items)

(if (null? items)

'()

(cons (proc (car items)) (map proc (cdr items)))))

(define (scale-list items factor)

(map (lambda (x) (* x factor)) items))

40is is the procedural representation described in Exercise 2.4. Essentially any pro-

cedural representation (e.g., a message-passing implementation) would do as well. No-

tice that we can install these definitions in the lazy evaluator simply by typing them

at the driver loop. If we had originally included cons, car, and cdr as primitives in the

global environment, they will be redefined. (Also see Exercise 4.33 and Exercise 4.34.)

556

(define (add-lists list1 list2)

(cond ((null? list1) list2)

((null? list2) list1)

(else (cons (+ (car list1) (car list2))

(add-lists (cdr list1) (cdr list2))))))

(define ones (cons 1 ones))

(define integers (cons 1 (add-lists ones integers)))

;;; L-Eval input:

(list-ref integers 17)

;;; L-Eval value:

18

Note that these lazy lists are even lazier than the streams of Chapter 3:

e car ofthe list,aswell asthe cdr, isdelayed.41 Infact, evenaccessing

the car or cdr of a lazy pair need not force the value of a list element.

e value will be forced only when it is really needed—e.g., for use as

the argument of a primitive, or to be printed as an answer.

Lazypairsalsohelpwiththeproblemthat arosewith streamsinSec-

tion 3.5.4, where we found that formulating stream models of systems

with loops may require us to sprinkle our programs with explicit delay

operations, beyond the ones supplied by cons-stream. With lazy evalu

ation, all arguments to procedures are delayed uniformly. For instance,

we can implement procedures to integrate lists and solve differential

equations as we originally intended in Section 3.5.4:

(define (integral integrand initial-value dt)

(define int

(cons initial-value

(add-lists (scale-list integrand dt) int)))

int)

41is
permits us to create delayed versions of more general kinds of list structures,

not just sequences. Hughes 1990 discusses some applications of “lazy trees.”

557

(define (solve f y0 dt)

(define y (integral dy y0 dt))

(define dy (map f y))

y)

;;; L-Eval input:

(list-ref (solve (lambda (x) x) 1 0.001) 1000)

;;; L-Eval value:

2.716924

Exercise 4.32: Give some examples that illustrate the dif-

ference between the streams of Chapter 3 and the “lazier”

lazy lists described in this section. How can you take ad-

vantage of this extra laziness?

Exercise 4.33: Ben Bitdiddle tests the lazy list implemen-

tation given above by evaluating the expression:

'(a b c))(car

To his surprise, this produces an error. Aer some thought,

he realizes that the “lists” obtained by reading in quoted

expressions are different from the lists manipulated by the

new definitions of cons, car, and cdr.
Modify the evalua-

tor’s treatment of quoted expressions so that quoted lists

typed at the driver loop will produce true lazy lists.

Exercise 4.34: Modify the driver loop for the evaluator so

that lazy pairs and lists will print in some reasonable way.

(What are you going to do about infinite lists?) You may

also need to modify the representation oflazy pairs so that

the evaluator can identify them in order to print them.

558

4.3 Variations on a Scheme — Nondeterministic

Computing

In this section, we extend the Scheme evaluator to support a program-

ming paradigm called nondeterministic computing by building into the

evaluator a facility to support automatic search. is is a much more

profound change to the language than the introduction of lazy evalua-

tion in Section 4.2.

Nondeterministic computing, like stream processing, is useful for

“generate and test” applications. Consider the task of starting with two

listsofpositiveintegersandfindingapairofintegers—one fromthe first

list and one from the second list—whose sum is prime. We saw how to

handle this with finite sequence operations in Section 2.2.3 and with

infinite streams in Section 3.5.3. Our approach was to generate the se-

quence of all possible pairsandfilter these to select thepairs whose sum

isprime. Whether we actually generate the entire sequence ofpairs first

as in Chapter 2, or interleave the generating and filtering as in Chap-

ter 3, is immaterial to the essential image of how the computation is

organized.

e nondeterministic approach evokes a different image. Imagine

simply that we choose (in some way) a number from the first list and a

number from the second list and require (using some mechanism) that

their sum be prime. is is expressed by following procedure:

(define (prime-sum-pair list1 list2)

(let ((a (an-element-of list1))

(b (an-element-of list2)))

(require (prime? (+ a b)))

(list a b)))

It might seem as if this procedure merely restates the problem, rather

than specifying a way to solve it. Nevertheless, this is a legitimate non

559

deterministic program.42

e key idea here is that expressionsin anondeterministic language

can have more than one possible value. For instance, an-element-of

might return any element of the given list. Our nondeterministic pro-

gram evaluator will work by automatically choosing a possible value

and keeping track of the choice. Ifa subsequent requirement is not met,

the evaluator will try a different choice, and it will keep trying new

choices until the evaluation succeeds, or until we run out of choices.

Just as the lazy evaluator freed the programmer from the details of how

values are delayed and forced, the nondeterministic program evaluator

will free the programmer from the details of how choices are made.

It is instructive to contrast the different images of time evoked by

nondeterministic evaluation and stream processing. Stream processing

uses lazy evaluation to decouple the time when the stream of possible

answersisassembledfromthetimewhentheactualstreamelementsare

produced. e evaluator supports the illusion that all the possible an-

swers are laid out before us in a timeless sequence. With nondetermin-

istic evaluation, an expression representsthe exploration ofa set ofpos-

sible worlds, each determined by a set of choices. Some of the possible

worlds lead to dead ends, while others have useful values. e nonde-

terministic program evaluator supports the illusion that time branches,

andthat ourprogramshavedifferentpossibleexecutionhistories.When

42We assume that we have previously defined a procedure prime? that tests whether

numbers are prime. Even with prime? defined, the prime-sum-pair procedure may

look suspiciously like the unhelpful “pseudo-Lisp” aempt to define the square-root

function, which we described at the beginning of Section 1.1.7. In fact, a square-root

procedure along those lines can actually be formulated as a nondeterministic program.

By incorporating a search mechanism into the evaluator, we are eroding the distinc-

tion between purely declarative descriptions and imperative specifications of how to

compute answers. We’ll go even farther in this direction in Section 4.4.

560

we reach a dead end, we can revisit a previous choice point and proceed

along a different branch.

enondeterministicprogramevaluatorimplementedbelowiscalled

the amb evaluator because it is based on a new special form called amb.

We can type the above definition of prime-sum-pair at the amb evalu-

ator driver loop (along with definitions of prime?, an-element-of, and

require) and run the procedure as follows:

;;; Amb-Eval input:

(prime-sum-pair '(1 3 5 8) '(20 35 110))

;;; Starting a new problem

;;; Amb-Eval value:

(3 20)

e value returned was obtained aer the evaluator repeatedly chose

elements from each of the lists, until a successful choice was made.

Section 4.3.1 introduces amb and explains how it supports nondeter-

minism through the evaluator’s automatic search mechanism. Section

4.3.2 presents examplesof nondeterministic programs,and Section4.3.3gives the details of how to implement the amb evaluator by modifying

the ordinary Scheme evaluator.

4.3.1 Amb and Search

To extend Scheme to support nondeterminism, we introduce anew spe-

cial form called amb.43 e expression

(amb ⟨e1⟩ ⟨e2⟩ ... ⟨en⟩)

returns the value of one of the n expressions ⟨ei⟩ “ambiguously.” For

example, the expression

43e idea of amb for nondeterministic programming was first described in 1961 by

John McCarthy (see McCarthy 1963).

561

(list (amb 1 2 3) (amb 'a 'b))

can have six possible values:

(1 a) (1 b) (2 a) (2 b) (3 a) (3 b)

Amb with a single choice produces an ordinary (single) value.

Amb with no choices—the expression (amb)—is an expression with

noacceptable values. Operationally,wecanthinkof (amb) asanexpres-

sion that when evaluated causes the computation to “fail”: e compu-

tation aborts and no value is produced. Using this idea, we can express

the requirement that a particular predicate expression p must be true as

follows:

(define (require p) (if (not p) (amb)))

With amb and require, we can implement the an-element-of proce

dure used above:

(define (an-element-of items)

(require (not (null? items)))

(amb (car items) (an-element-of (cdr items))))

An-element-of fails if the list is empty. Otherwise it ambiguously re-

turns either the first element of the list or an element chosen from the

rest of the list.

We can also express infinite ranges of choices. e following proce

dure potentially returns any integer greater than or equal tosome given

n:

(define (an-integer-starting-from n)

(amb n (an-integer-starting-from (+ n 1))))

is is like the stream procedure integers-starting-from described

in Section 3.5.2, but with an important difference: e stream procedure

562

returns an object that represents the sequence of all integers beginning

with n, whereas the amb procedure returns a single integer.44

Abstractly, we canimagine thatevaluatingan ambexpressioncausestime to split into branches, where the computation continues on each

branch with one of the possible values of the expression. We say that

ambrepresentsanondeterministicchoicepoint.Ifwehadamachinewith a

sufficient number of processors that could be dynamically allocated, we

could implement the search in a straightforward way. Execution would

proceed as in a sequential machine, until an amb expression is encoun-

tered. At this point, more processors would be allocated and initialized

to continue all of the parallel executions implied by the choice. Each

processor would proceed sequentially as if it were the only choice, until

it either terminates by encountering a failure, or it further subdivides,

or it finishes.45

On the other hand, if we have a machine that can execute only one

process (or a few concurrent processes), we must consider the alterna-

tives sequentially. One could imagine modifying an evaluator to pick

at random a branch to follow whenever it encounters a choice point.

44In actuality, the distinction between nondeterministically returning a single choice

and returning all choices depends somewhat on our point of view. Fromthe perspective

of the code that uses the value, the nondeterministic choice returns a single value. From

the perspective of the programmer designing the code, the nondeterministic choice

potentially returns all possible values, and the computation branches so that each value

is investigated separately.

45One might object that this is a hopelessly inefficient mechanism. It might require

millions of processors to solve some easily stated problem this way, and most of the

time most of those processors would be idle. is objection should be taken in the

context of history. Memory used to be considered just such an expensive commodity.

In 1964 a megabyte of RAM cost about $400,000. Now every personal computer has

many megabytes of RAM, and most of the time most of that RAM is unused. It is hard

to underestimate the cost of mass-produced electronics.

563

Random choice, however, can easily lead to failing values. We might

try running the evaluator over and over, making random choices and

hoping to find anon-failing value, but it is beer to systematically search

all possible execution paths. e amb evaluator that we will develop and

work with in this section implements a systematic search as follows:

When the evaluator encounters an application of amb, it initially selects

thefirstalternative.isselectionmayitselfleadtoafurtherchoice.e

evaluator will always initially choose the first alternative at each choice

point. If a choice results in a failure, then the evaluator automagically46

backtracks to the most recent choice point and tries the next alternative.

If it runs out of alternatives at any choice point, the evaluator will back

up to the previous choice point and resume from there. is process

leads to a search strategy known as depth-first search or chronological

backtracking.47

46Automagically: “Automatically, but in a way which, for some reason (typically be-

cause it is too complicated, or too ugly, or perhaps even too trivial), the speaker doesn’t

feel like explaining.” (Steele et al. 1983, Raymond 1993)

47e integration of automatic search strategies into programming languages has

had a long and checkered history. e first suggestions that nondeterministic algo-

rithms might be elegantly encoded in a programming language with search and au-

tomatic backtracking came from Robert Floyd (1967). Carl Hewi (1969) invented a

programming language called Planner that explicitly supported automatic chronolog-

ical backtracking, providing for a built-in depth-first search strategy. Sussman et al.

(1971) implemented a subset of this language, called MicroPlanner, which was used

to support work in problem solving and robot planning. Similar ideas, arising from

logic and theorem proving, led to the genesis in Edinburgh and Marseille of the ele-

gant language Prolog (which we will discuss in Section 4.4). Aer sufficient frustration

with automatic search, McDermo and Sussman (1972) developed a language called

Conniver, which included mechanisms for placing the search strategy under program-

mer control. is proved unwieldy, however, and Sussman and Stallman 1975 found a

more tractable approach while investigating methods of symbolic analysis for electrical

circuits. ey developed a non-chronological backtracking scheme that was based on

564

Driver loop

e driver loop for the amb evaluator has some unusual properties. It

reads an expression and prints the value of the first non-failing execu-

tion, as in the prime-sum-pair example shown above. Ifwe want to see

the value of the next successful execution, we can ask the interpreter to

backtrack and aempt to generate a second non-failing execution. is

is signaled by typing the symbol try-again. If any expression except

try-again is given, the interpreter will start a new problem, discarding

the unexplored alternatives in the previous problem. Here is a sample

interaction:

;;; Amb-Eval input:

(prime-sum-pair '(1 3 5 8) '(20 35 110))

;;; Starting a new problem

;;; Amb-Eval value:

(3 20)

;;; Amb-Eval input:

try-again

;;; Amb-Eval value:

tracing out the logical dependencies connecting facts, a technique that has come to be

known asdependency-directed backtracking. Although their methodwascomplex, itpro-

duced reasonably efficient programs because it did lile redundant search. Doyle (1979)

and McAllester (1978; 1980) generalized and clarified the methodsof Stallman and Suss-

man, developing a new paradigm for formulating search that is now called truth main-

tenance. Modern problem-solving systems all use some form of truth-maintenance sys-

tem as a substrate. See Forbus and deKleer 1993 for a discussion of elegant ways to

build truth-maintenance systems and applications using truth maintenance. Zabih et

al. 1987 describes a nondeterministic extension to Scheme that is based on amb; it is

similar to the interpreter described in this section, but more sophisticated, because it

uses dependency-directed backtracking rather than chronological backtracking. Win-

ston 1992 gives an introduction to both kinds of backtracking.

565

(3 110)

;;; Amb-Eval input:

try-again

;;; Amb-Eval value:

(8 35)

;;; Amb-Eval input:

try-again

;;; There are no more values of

(prime-sum-pair (quote (1 3 5 8)) (quote (20 35 110)))

;;; Amb-Eval input:

(prime-sum-pair '(19 27 30) '(11 36 58))

;;; Starting a new problem

;;; Amb-Eval value:

(30 11)

Exercise4.35:Writeaprocedure an-integer-betweenthatreturns an integer between two given bounds. is can be

usedtoimplementaprocedurethatfindsPythagoreantriples,

i.e., triples of integers (i, j,k) between the given bounds

such thati ≤ j andi2 + j2 = k2, as follows:

(define (a-pythagorean-triple-between low high)

(let ((i (an-integer-between low high)))

(let ((j (an-integer-between i high)))

(let ((k (an-integer-between j high)))

(require (= (+ (* i i) (* j j)) (* k k)))

(list i j k)))))

Exercise 4.36: Exercise 3.69 discussed how to generate the

stream of all Pythagorean triples, with no upper bound on

566

the size of the integers to be searched. Explain why simply

replacing an-integer-betweenby an-integer-starting-

from in the procedure in Exercise 4.35 is not an adequate

way to generate arbitrary Pythagorean triples. Write a pro-

cedure that actually will accomplish this. (at is, write a

procedure forwhich repeatedly typing try-again wouldinprinciple eventually generate all Pythagorean triples.)

Exercise4.37:BenBitdiddleclaimsthatthefollowingmethod

for generating Pythagorean triples is more efficient than

the one in Exercise 4.35. Is he correct? (Hint: Consider the

number of possibilities that must be explored.)

(define (a-pythagorean-triple-between low high)

(let ((i (an-integer-between low high))

(hsq (* high high)))

(let ((j (an-integer-between i high)))

(let ((ksq (+ (* i i) (* j j))))

(require (>= hsq ksq))

(let ((k (sqrt ksq)))

(require (integer? k))

(list i j k))))))

4.3.2 Examples of Nondeterministic Programs

Section 4.3.3 describes the implementation of the amb evaluator. First,

however, we give some examples of how it can be used. e advantage

of nondeterministic programming is that we can suppress the details of

how search is carried out, thereby expressing our programs at a higher

level of abstraction.

567

Logic Puzzles

e following puzzle (taken from Dinesman 1968) is typical of a large

class of simple logic puzzles:

Baker, Cooper, Fletcher, Miller, and Smith live on differ-

ent floors of an apartment house that contains only five

floors. Baker does not live on the top floor. Cooper does

not live on the boom floor. Fletcher does not live on ei-

ther the top or the boom floor. Miller lives on a higher

floor than does Cooper. Smith does not live on a floor adja-

cent to Fletcher’s. Fletcher does not live on a floor adjacent

to Cooper’s. Where does everyone live?

We can determine who lives on each floor in a straightforward way by

enumerating all the possibilities and imposing the given restrictions:48

(define (multiple-dwelling)

(let ((baker (amb 1 2 3 4 5)) (cooper (amb 1 2 3 4 5))

(fletcher (amb 1 2 3 4 5)) (miller (amb 1 2 3 4 5))

(smith (amb 1 2 3 4 5)))

(require

(distinct? (list baker cooper fletcher miller smith)))

(require (not (= baker 5)))

48Our program uses the following procedure to determine if the elements of a list

are distinct:

(define (distinct? items)

(cond ((null? items) true)

((null? (cdr items)) true)

((member (car items) (cdr items)) false)

(else (distinct? (cdr items)))))

Member is like memq except that it uses equal? instead of eq? to test for equality.

568

(require (not (= cooper 1)))

(require (not (= fletcher 5)))

(require (not (= fletcher 1)))

(require (> miller cooper))

(require (not (= (abs (- smith fletcher)) 1)))

(require (not (= (abs (- fletcher cooper)) 1)))

(list (list 'baker baker) (list 'cooper cooper)

(list 'fletcher fletcher) (list 'miller miller)

(list 'smith smith))))

Evaluating the expression (multiple-dwelling) produces the result

((baker 3) (cooper 2) (fletcher 4) (miller 5) (smith 1))

Although this simple procedure works, it is very slow. Exercise 4.39 and

Exercise 4.40 discuss some possible improvements.

Exercise 4.38: Modify the multiple-dwelling procedure to

omit the requirement that Smith and Fletcher do not live

on adjacent floors. How many solutions are there to this

modified puzzle?

Exercise4.39:Doestheorderoftherestrictionsinthemultiple-

dwelling procedure affect the answer? Does it affect the

time to findan answer?Ifyou think it maers, demonstrate

afasterprogramobtained from the givenone by reordering

the restrictions. If you think it does not maer, argue your

case.

Exercise4.40:Inthemultipledwellingproblem,howmany

sets of assignments are there of people to floors, both be

fore and aer the requirement that floor assignments be

distinct? It isvery inefficient togenerate all possible assign-

ments of people to floors and then leave it to backtracking

569

to eliminate them. For example, most of the restrictions de-

pend on only one or two of the person-floor variables, and

can thus be imposed before floors have been selected for

all the people. Write and demonstrate a much more effi-

cient nondeterministic procedure that solves this problem

based upon generating only those possibilities that are not

already ruled out by previous restrictions. (Hint: is will

require a nest of let expressions.)

Exercise 4.41: Write an ordinary Scheme program to solve

the multiple dwelling puzzle.

Exercise4.42:Solvethefollowing“Liars”puzzle(fromPhillips

1934):

Five schoolgirls sat for an examination. eir parents—so

they thought—showed an undue degree of interest in the

result. ey therefore agreed that, in writing home about

the examination, each girl should make one true statement

andoneuntrueone.efollowingaretherelevantpassages

from their leers:

• Bey: “Kiy was second in the examination. I was

only third.”

• Ethel: “You’ll be glad to hear that I was on top. Joan

was 2nd.”

• Joan: “I was third, and poor old Ethel was boom.”

• Kiy: “I came out second. Mary was only fourth.”

• Mary: “I was fourth. Top place was taken by Bey.”

570

What in fact was the order in which the five girls were

placed?

Exercise 4.43: Use the amb evaluator to solve the following

puzzle:49

Mary Ann Moore’s father has a yacht and so has each of

his four friends: Colonel Downing, Mr. Hall, Sir Barnacle

Hood, and Dr. Parker. Each of the five also has one daugh-

ter and each has named his yacht aer a daughter of one of

the others. Sir Barnacle’s yacht is the Gabrielle, Mr. Moore

owns the Lorna; Mr. Hall the Rosalind. e Melissa, owned

by Colonel Downing, is named aer Sir Barnacle’s daugh-

ter. Gabrielle’s father owns the yacht that is named aer

Dr. Parker’s daughter. Who is Lorna’s father?

Try to write the program so that it runs efficiently (see Ex

ercise 4.40). Also determine how many solutions there are

if we are not told that Mary Ann’s last name is Moore.

Exercise 4.44: Exercise 2.42 described the “eight-queens

puzzle”ofplacingqueensonachessboardsothat notwoat-

tack each other. Write a nondeterministic program to solve

this puzzle.

Parsing natural language

Programs designed to accept natural language as input usually start by

aempting to parse the input, that is, to match the input against some

grammatical structure. For example, we might try to recognize simple

49is is taken from a booklet called “Problematical Recreations,” published in the

1960s by Lion Industries, where it is aributed to the Kansas State Engineer.

571

sentences consistingofanarticle followedby anounfollowedby a verb,

such as “e cat eats.” To accomplish such an analysis, we must be able

to identify the parts of speech ofindividual words. We could start with

some lists that classify various words:50

(define nouns '(noun student professor cat class))

(define verbs '(verb studies lectures eats sleeps))

(define articles '(article the a))

We also need a grammar, that is, a set of rules describing how gram-

matical elements are composed from simpler elements. A very simple

grammarmight stipulate thata sentence alwaysconsistsoftwo pieces—a noun phrase followed by a verb—and that a noun phrase consists of

an article followed by a noun. With this grammar, the sentence “e cat

eats” is parsed as follows:

(sentence (noun-phrase (article the) (noun cat))

(verb eats))

We can generate such a parse with a simple program that has separate

procedures for each of the grammatical rules. To parse a sentence, we

identify its two constituent pieces and return a list of these two ele-

ments, tagged with the symbol sentence:

(define (parse-sentence)

(list 'sentence

(parse-noun-phrase)

(parse-word verbs)))

A noun phrase, similarly, is parsed by finding an article followed by a

noun:

50Here we use the convention that the first element of each list designates the part

of speech for the rest of the words in the list.

572

(define (parse-noun-phrase)

(list 'noun-phrase

(parse-word articles)

(parse-word nouns)))

At the lowest level, parsing boils down to repeatedly checking that the

next unparsedwordisamemberofthelistofwordsfortherequiredpart

ofspeech.Toimplementthis,wemaintainaglobalvariable *unparsed*,

which is the input that has not yet been parsed. Each time we check a

word,werequirethat *unparsed*mustbenon-emptyandthat itshould

begin with a word from the designated list. If so, we remove that word

from *unparsed* and return the word together with its part of speech

(which is found at the head of the list):51

(define (parse-word word-list)

(require (not (null? *unparsed*)))

(require (memq (car *unparsed*) (cdr word-list)))

(let ((found-word (car *unparsed*)))

(set! *unparsed* (cdr *unparsed*))

(list (car word-list) found-word)))

To start the parsing, all we need to do is set *unparsed* to be the entire

input, try to parse a sentence, and check that nothing is le over:

(define *unparsed* '())

(define (parse input)

(set! *unparsed* input)

(let ((sent (parse-sentence)))

(require (null? *unparsed*)) sent))

We can now try the parser and verify that it works for our simple test

sentence:

51Notice that parse-word uses set! to modify the unparsed input list. For this to

work, our amb evaluator must undo the effects of set!
operations when it backtracks.

573

;;; Amb-Eval input:

(parse '(the cat eats))

;;; Starting a new problem

;;; Amb-Eval value:

(sentence (noun-phrase (article the) (noun cat)) (verb eats))

e amb evaluator is useful here because it is convenient to express

the parsing constraints with the aid of require. Automatic search and

backtracking really pay off, however, when we consider more complex

grammars where there are choices for how the units can be decom-

posed.

Let’s add to our grammar a list of prepositions:

(define prepositions '(prep for to in by with))

and define a prepositional phrase (e.g., “for the cat”) to be a preposition

followed by a noun phrase:

(define (parse-prepositional-phrase)

(list 'prep-phrase

(parse-word prepositions)

(parse-noun-phrase)))

Now we can define a sentence to be a noun phrase followed by a verb

phrase, where a verb phrase can be either a verb or a verb phrase ex-

tended by a prepositional phrase:52

(define (parse-sentence)

(list 'sentence (parse-noun-phrase) (parse-verb-phrase)))

(define (parse-verb-phrase)

(define (maybe-extend verb-phrase)

(amb verb-phrase

52Observe that this definition is recursive—a verb may be followed by any number

of prepositional phrases.

574

(maybe-extend

(list 'verb-phrase

verb-phrase

(parse-prepositional-phrase)))))

(maybe-extend (parse-word verbs)))

While we’re at it, we can also elaborate the definition of noun phrases

to permit such things as “a cat in the class.” What we used to call a

noun phrase, we’ll now call a simple noun phrase, and a noun phrase

will now be either a simple noun phrase or a noun phrase extended by

a prepositional phrase:

(define (parse-simple-noun-phrase)

(list 'simple-noun-phrase

(parse-word articles)

(parse-word nouns)))

(define (parse-noun-phrase)

(define (maybe-extend noun-phrase)

(amb noun-phrase

(maybe-extend

(list 'noun-phrase

noun-phrase

(parse-prepositional-phrase)))))

(maybe-extend (parse-simple-noun-phrase)))

Our new grammar lets us parse more complex sentences. For example

(parse '(the student with the cat sleeps in the class))

produces

(sentence

(noun-phrase

(simple-noun-phrase (article the) (noun student))

(prep-phrase

(prep with)

575

(simple-noun-phrase (article the) (noun cat))))

(verb-phrase

(verb sleeps)

(prep-phrase

(prep in)

(simple-noun-phrase (article the) (noun class)))))

Observe that a given input may have more than one legal parse. In the

sentence “e professor lectures to the student with the cat,” it may be

that the professor is lecturing with the cat, or that the student has the

cat. Our nondeterministic program finds both possibilities:

(parse '(the professor lectures to the student with the cat))

produces

(sentence

(simple-noun-phrase (article the) (noun professor))

(verb-phrase

(verb-phrase

(verb lectures)

(prep-phrase

(prep to)

(simple-noun-phrase (article the) (noun student))))

(prep-phrase

(prep with)

(simple-noun-phrase (article the) (noun cat)))))

Asking the evaluator to try again yields

(sentence

(simple-noun-phrase (article the) (noun professor))

(verb-phrase

(verb lectures)

(prep-phrase

(prep to)

576

(noun-phrase

(simple-noun-phrase (article the) (noun student))

(prep-phrase

(prep with)

(simple-noun-phrase (article the) (noun cat)))))))

Exercise 4.45: With the grammar given above, the follow-

ing sentence can be parsed in five different ways: “e pro-

fessor lectures to the student in the class with the cat.” Give

thefiveparsesandexplainthedifferencesinshadesofmean-

ing among them.

Exercise4.46: e evaluators in Section 4.1 and Section 4.2

do not determine what order operands are evaluated in.We

will see that the amb evaluator evaluates them from le to

right. Explain why our parsing program wouldn’t work if

the operands were evaluated in some other order.

Exercise 4.47: Louis Reasoner suggests that, since a verb

phraseiseithera verb ora verb phrasefollowed by aprepo-

sitional phrase, it would be much more straightforward to

define the procedure parse-verb-phrase as follows (and

similarly for noun phrases):

(define (parse-verb-phrase)

(amb (parse-word verbs)

(list 'verb-phrase

(parse-verb-phrase)

(parse-prepositional-phrase))))

Does this work? Does the program’s behavior change ifwe

interchange the order of expressions in the amb?

577

Exercise 4.48: Extend the grammar given above to handle

more complex sentences. For example, you could extend

noun phrases and verb phrases to include adjectives and

adverbs, or you could handle compound sentences.53

Exercise 4.49: Alyssa P. Hacker is more interested in gen-

eratinginterestingsentencesthaninparsingthem.She rea-

sons that by simply changing the procedure parse-word so

that it ignores the “input sentence” and instead always suc-

ceeds and generates an appropriate word, we can use the

programswe had built for parsingtodo generationinstead.Implement Alyssa’s idea, and show the first half-dozen or

so sentences generated.54

4.3.3 Implementing the Amb Evaluator

e evaluation of an ordinary Scheme expression may return a value,

mayneverterminate,ormaysignalanerror.InnondeterministicScheme

the evaluation of an expression may in addition result in the discovery

of a dead end, in which case evaluation must backtrack to a previous

53is kind of grammar can become arbitrarily complex, but it is only a toy as

far as real language understanding is concerned. Real natural-language understand-

ing by computer requires an elaborate mixture of syntactic analysis and interpretation

of meaning. On the other hand, even toy parsers can be useful in supporting flexi-

ble command languages for programs such as information-retrieval systems. Winston

1992 discusses computational approaches to real language understanding and also the

applications of simple grammars to command languages.

54Although Alyssa’s idea works just fine (and is surprisingly simple), the sentences

that it generates are a bit boring—they don’t sample the possible sentences of this lan-

guage in a very interestingway. In fact, the grammar ishighly recursivein many places,

and Alyssa’s technique “falls into” one of these recursions and gets stuck. See Exercise

4.50 for a way to deal with this.

578

choice point. e interpretation of nondeterministic Scheme is compli-

cated by this extra case.

We will construct the amb evaluatorfornondeterministic Scheme by

modifying the analyzing evaluator of Section 4.1.7.55 As in the analyz-

ing evaluator, evaluation of an expression is accomplished by calling an

execution procedure produced by analysis of that expression. e dif-

ference between the interpretation of ordinary Scheme and the inter-

pretation of nondeterministic Scheme will be entirely in the execution

procedures.

Execution procedures and continuations

Recall that the executionprocedures forthe ordinary evaluator take one

argument: the environment of execution. In contrast, the executionpro-cedures in the amb evaluator take three arguments: the environment,

and two procedures called continuation procedures. e evaluation of

an expression will finish by calling one of these two continuations: If

the evaluation results in a value, the success continuation is called with

that value; if the evaluation results in the discovery of a dead end, the

failure continuation is called. Constructing and calling appropriate con-

tinuations is the mechanism by which the nondeterministic evaluator

implements backtracking.

It is the job of the success continuation to receive a value and pro-

ceed with the computation. Along with that value, the success contin-

uation is passed another failure continuation, which is to be called sub-

sequently if the use of that value leads to a dead end.

55We chose to implement the lazy evaluator in Section 4.2 as a modification of the

ordinary metacircular evaluator of Section 4.1.1. In contrast, we will base the amb eval-

uator on the analyzing evaluator of Section 4.1.7, because the execution procedures in

that evaluator provide a convenient framework for implementing backtracking.

579

It is the job of the failure continuation to try another branch of the

nondeterministic process.eessence ofthe nondeterministic language

isinthefact thatexpressionsmayrepresent choicesamongalternatives.

e evaluation of such an expressionmust proceed with one ofthe indi-

catedalternative choices, eventhough it isnot knownin advance which

choices will lead to acceptable results. To deal with this, the evaluator

picks one of the alternatives and passes this value to the success con-

tinuation. Together with this value, the evaluator constructs and passes

along a failure continuation that can be called later to choose a different

alternative.

A failure is triggered during evaluation (that is, a failure continua-

tion is called) when a user program explicitly rejects the current line of

aack (for example, a call to require may result in execution of (amb),

an expression that always fails—see Section 4.3.1). e failure continu-

ation in hand at that point will cause the most recent choice point to

choose another alternative. If there are no more alternatives to be con-

sidered at that choice point, a failure at an earlier choice point is trig-

gered, and so on. Failure continuations are also invoked by the driver

loop in response to a try-again request, to find another value of the

expression.

In addition, ifa side-effect operation (such as assignment to a vari

able)occursonabranch ofthe processresultingfromachoice,itmay be

necessary, when the process finds a dead end, to undo the side effect be-

foremakinganewchoice.isisaccomplishedbyhavingthe side-effect

operation produce a failure continuation that undoes the side effect and

propagates the failure.

In summary, failure continuations are constructed by

• ambexpressions—toprovideamechanismtomakealternativechoices

if the current choice made by the amb expression leads to a dead

end;

580

• the top-level driver—to provide a mechanism to report failure

when the choices are exhausted;

• assignments—to intercept failures and undo assignments during

backtracking.

Failures are initiated only when a dead end is encountered. is occurs

• if the user program executes (amb);

• if the user types try-again at the top-level driver.

Failure continuations are also called during processing of a failure:

• When the failure continuation created by an assignment finishes

undoing a side effect, it calls the failure continuation it inter-

cepted, in order to propagate the failure back to the choice point

that led to this assignment or to the top level.

• When the failure continuation for an amb runs out of choices, it

calls the failure continuation that was originally given to the amb,

in order to propagate the failure back tothe previouschoice point

or to the top level.

Structure of the evaluator

e syntax- and data-representation procedures for the amb evaluator,

and also the basic analyze procedure, are identical to those in the eval-

uator of Section 4.1.7, except for the fact that we need additional syntax

procedures to recognize the amb special form:56

56We assume that the evaluator supports let (see Exercise 4.22), which we have used

in our nondeterministic programs.

581

(define (amb? exp) (tagged-list? exp 'amb))

(define (amb-choices exp) (cdr exp))

We must also add to the dispatch in analyze a clause that will recognize

this special form and generate an appropriate execution procedure:

((amb? exp) (analyze-amb exp))

e top-level procedure ambeval (similar to the version of eval
given

in Section 4.1.7) analyzes the given expression and applies the resulting

execution procedure to the given environment, together with two given

continuations:

(define (ambeval exp env succeed fail)

((analyze exp) env succeed fail))

A success continuation is a procedure of two arguments: the value just

obtained and another failure continuation to be used if that value leads

to a subsequent failure. A failure continuation is a procedure of no ar-

guments. So the general form of an execution procedure is

(lambda (env succeed fail)

;;succeedis(lambda (value fail) ...)

;;failis(lambda () ...)

...)

For example, executing

(ambeval ⟨exp⟩

the-global-environment

(lambda (value fail) value)

(lambda () 'failed))

will aempt to evaluate the given expression and will return either the

expression’s value (if the evaluation succeeds) or the symbol failed (if

the evaluationfails). e call to ambeval in the driver loop shown below

582

uses much more complicated continuation procedures, which continue

the loop and support the try-again request.

Most of the complexity of the amb evaluator results from the me-

chanics of passing the continuations around as the execution proce-

dures call each other. In going through the following code, you should

compare each of the execution procedures with the corresponding pro-

cedure for the ordinary evaluator given in Section 4.1.7.

Simple expressions

e execution procedures for the simplest kinds of expressions are es-

sentially the same as those for the ordinary evaluator, except for the

need to manage the continuations. e execution procedures simply

succeed with the value of the expression, passing along the failure con-

tinuation that was passed to them.

(define (analyze-self-evaluating exp)

(lambda (env succeed fail)

(succeed exp fail)))

(define (analyze-quoted exp)

(let ((qval (text-of-quotation exp)))

(lambda (env succeed fail)

(succeed qval fail))))

(define (analyze-variable exp)

(lambda (env succeed fail)

(succeed (lookup-variable-value exp env) fail)))

(define (analyze-lambda exp)

(let ((vars (lambda-parameters exp))

(bproc (analyze-sequence (lambda-body exp))))

(lambda (env succeed fail)

(succeed (make-procedure vars bproc env) fail))))

583

Noticethatlookingupavariablealways‘succeeds.’If lookup-variable-

value fails to find the variable, it signals an error, as usual. Such a “fail

ure” indicates a program bug—a reference to an unbound variable; it is

not an indication that we should try another nondeterministic choice

instead of the one that is currently being tried.

Conditionals and sequences

Conditionals are also handled in a similar way as in the ordinary eval-

uator. e execution procedure generated by analyze-if invokes the

predicate execution procedure pproc with a success continuation that

checks whether the predicate value is true and goes on to execute ei-

ther the consequent or the alternative. If the execution of pproc fails,

the original failure continuation for the if expression is called.

(define (analyze-if exp)

(let ((pproc (analyze (if-predicate exp)))

(cproc (analyze (if-consequent exp)))

(aproc (analyze (if-alternative exp))))

(lambda (env succeed fail)

(pproc env

;; success continuation for evaluating the predicate

;;toobtainpred-value

(lambda (pred-value fail2)

(if (true? pred-value)

(cproc env succeed fail2)

(aproc env succeed fail2)))

;; failure continuation for evaluating the predicate

fail))))

Sequencesarealsohandledinthesamewayasinthepreviousevaluator,

except for the machinations in the subprocedure sequentially that are

required for passing the continuations. Namely, to sequentially execute

584

a and then b, we call a with a success continuation that calls b.

(define (analyze-sequence exps)

(define (sequentially a b)

(lambda (env succeed fail)

(a env

;; success continuation for calling a

(lambda (a-value fail2)

(b env succeed fail2))

;; failure continuation for calling a

fail)))

(define (loop first-proc rest-procs)

(if (null? rest-procs)

first-proc

(loop (sequentially first-proc

(car rest-procs))

(cdr rest-procs))))

(let ((procs (map analyze exps)))

(if (null? procs)

(error "Empty sequence: ANALYZE"))

(loop (car procs) (cdr procs))))

Definitions and assignments

Definitions are another case where we must go to some trouble to man

age the continuations, because it is necessary to evaluate the definition

value expression before actually defining the new variable. To accom

plish this, the definition-value execution procedure vproc is called with

the environment, a success continuation, and the failure continuation.

Ifthe execution of vproc succeeds, obtaininga value val for the defined

variable, the variable is defined and the success is propagated:

(define (analyze-definition exp)

585

(let ((var (definition-variable exp))

(vproc (analyze (definition-value exp))))

(lambda (env succeed fail)

(vproc env

(lambda (val fail2)

(define-variable! var val env)

(succeed 'ok fail2))

fail))))

Assignments are more interesting.is is the first place where we really

use the continuations, rather than just passing them around. e exe-

cution procedure for assignments starts out like the one for definitions.

It first aempts to obtain the new value to be assigned to the variable.

If this evaluation of vproc fails, the assignment fails.

If vproc succeeds, however, and we go on to make the assignment,

we must consider the possibility that this branch of the computation

might later fail, which will require us to backtrack out of the assign-

ment. us, we must arrange to undo the assignment as part of the

backtracking process.57

isisaccomplishedbygiving vprocasuccesscontinuation(marked

with the comment “*1*” below) that saves the old value of the variable

before assigning the new value to the variable and proceeding from the

assignment. e failure continuation that is passed along with the value

of the assignment (marked with the comment “*2*” below) restores the

old value of the variable before continuing the failure. at is, a suc-

cessful assignment provides a failure continuation that will intercept a

subsequent failure;whatever failure would otherwise have called fail2callsthisprocedure instead, toundothe assignmentbefore actually call

ing fail2.

57We didn’t worry about undoing definitions, since we can assume that internal def-

initions are scanned out (Section 4.1.6).

586

(define (analyze-assignment exp)

(let ((var (assignment-variable exp))

(vproc (analyze (assignment-value exp))))

(lambda (env succeed fail)

(vproc env

(lambda (val fail2) ;*1*

(let ((old-value

(lookup-variable-value var env)))

(set-variable-value! var val env)

(succeed 'ok

(lambda () ;*2*

(set-variable-value!

var old-value env)

(fail2)))))

fail))))

Procedure applications

e execution procedure for applications contains no new ideas except

for the technical complexity of managing the continuations. is com-

plexity arisesin analyze-application, due to the need to keep track of

the success and failure continuations as we evaluate the operands. We

use a procedure get-args to evaluate the list of operands, rather than

a simple map as in the ordinary evaluator.

(define (analyze-application exp)

(let ((fproc (analyze (operator exp)))

(aprocs (map analyze (operands exp))))

(lambda (env succeed fail)

(fproc env

(lambda (proc fail2)

(get-args aprocs

env

587

(lambda (args fail3)

(execute-application

proc args succeed fail3))

fail2))

fail))))

In get-args, notice how cdr-ing down the list of aproc execution pro-

cedures and consing up the resulting list of args is accomplished by

calling each aproc in the list with a success continuation that recur-

sively calls get-args. Each of these recursive calls to get-args has a

success continuation whose value is the cons of the newly obtained ar-

gument onto the list of accumulated arguments:

(define (get-args aprocs env succeed fail)

(if (null? aprocs)

(succeed '() fail)

((car aprocs)

env

;;successcontinuationforthisaproc

(lambda (arg fail2)

(get-args

(cdr aprocs)

env

;;success continuation for

;;recursivecalltoget-args

(lambda (args fail3)

(succeed (cons arg args) fail3))

fail2))

fail)))

eactualprocedureapplication,whichisperformedby execute-appli-cation, is accomplished in the same way as for the ordinary evaluator,

except for the need to manage the continuations.

588

(define (execute-application proc args succeed fail)

(cond ((primitive-procedure? proc)

(succeed (apply-primitive-procedure proc args)

fail))

((compound-procedure? proc)

((procedure-body proc)

(extend-environment

(procedure-parameters proc)

args

(procedure-environment proc))

succeed

fail))

(else

(error "Unknown procedure type: EXECUTE-APPLICATION"

proc))))

Evaluating amb expressions

e amb
special form is the key element in the nondeterministic lan-

guage. Here we see the essence of the interpretation process and the

reason for keeping track of the continuations. e execution procedure

for amb defines a loop try-next that cycles through the execution pro-

cedures for all the possible values of the amb expression. Each execution

procedure iscalled with afailure continuation that willtry the next one.

When there are no more alternatives to try, the entire amb expression

fails.

(define (analyze-amb exp)

(let ((cprocs (map analyze (amb-choices exp))))

(lambda (env succeed fail)

(define (try-next choices)

(if (null? choices)

(fail)

589

((car choices)

env

succeed

(lambda () (try-next (cdr choices))))))

(try-next cprocs))))

Driver loop

e driver loop for the amb evaluator is complex, due to the mecha-

nism that permits the user to try again in evaluating an expression. e

driver usesaprocedure called internal-loop,which takes as argument

a procedure try-again. e intent is that calling try-again should go

on to the next untried alternative in the nondeterministic evaluation.

Internal-loop either calls try-again in response to the user typing

try-again at the driver loop, or else starts a new evaluation by calling

ambeval.

e failure continuation for this call to ambeval informs the user

that there are no more values and re-invokes the driver loop.

e success continuation for the call to ambeval is more subtle.

We print the obtained value and then invoke the internal loop again

with a try-again procedure that will be able to try the next alterna-

tive.is next-alternativeprocedureisthesecondargumentthatwas

passed to the success continuation. Ordinarily, we think of this second

argument as a failure continuation to be used if the current evaluation

branch later fails. In this case, however, we have completed a successful

evaluation, so we can invoke the “failure” alternative branch in order to

search for additional successful evaluations.

(define input-prompt ";;; Amb-Eval input:")

(define output-prompt ";;; Amb-Eval value:")

590

(define (driver-loop)

(define (internal-loop try-again)

(prompt-for-input input-prompt)

(let ((input (read)))

(if (eq? input 'try-again)

(try-again)

(begin

(newline) (display ";;; Starting a new problem ")

(ambeval

input

the-global-environment

;; ambeval success

(lambda (val next-alternative)

(announce-output output-prompt)

(user-print val)

(internal-loop next-alternative))

;; ambevalfailure

(lambda ()

(announce-output

";;; There are no more values of")

(user-print input)

(driver-loop)))))))

(internal-loop

(lambda ()

(newline) (display

";;;(driver-loop))))

There is no current problem")

e initial call to internal-loop usesa try-again procedure that com-

plains that there is no current problem and restarts the driver loop. is

is the behavior that will happen if the user types try-again when there

is no evaluation in progress.

Exercise 4.50: Implement a new special form ramb that is

591

like amb except that it searches alternatives in a random or-

der, rather than from le to right. Show how this can help

with Alyssa’s problem in Exercise 4.49.

Exercise 4.51: Implement a new kind of assignment called

permanent-set! that is not undone upon failure. For ex-

ample, we can choose two distinct elements from a list and

count the number of trials required to make a successful

choice as follows:

(define count 0)

(let ((x (an-element-of '(a b c)))

(y (an-element-of '(a b c))))

(permanent-set! count (+ count 1))

(require (not (eq? x y)))

(list x y count))

;;; Starting a new problem

;;; Amb-Eval value:

(a b 2)

;;; Amb-Eval input:

try-again

;;; Amb-Eval value:

(a c 3)

What values would have been displayed if we had used

set! here rather than permanent-set! ?

Exercise 4.52: Implement a new construct called if-fail

that permits the user to catch the failure of an expression.

If-fail takestwoexpressions.It evaluatesthefirst expres-

sion as usual and returns as usual if the evaluation suc-

ceeds. If the evaluation fails, however, the value of the sec-

ond expression is returned, as in the following example:

592

;;; Amb-Eval input:

(if-fail (let ((x (an-element-of '(1 3 5))))

(require (even? x))

x)

'all-odd)

;;; Starting a new problem

;;; Amb-Eval value:

all-odd

;;; Amb-Eval input:

(if-fail (let ((x (an-element-of '(1 3 5 8))))

(require (even? x))

x)

'all-odd)

;;; Starting a new problem

;;; Amb-Eval value:

8

Exercise 4.53: With permanent-set! as described in Exer-

cise 4.51 and if-fail as in Exercise 4.52, what will be the

result of evaluating

(let ((pairs '()))

(if-fail

(let ((p (prime-sum-pair '(1 3 5 8)

'(20 35 110))))

(permanent-set! pairs (cons p pairs))

(amb))

pairs))

Exercise 4.54: Ifwe had not realized that require could be

implemented as an ordinary procedure that uses amb, to be

defined by the user as part of a nondeterministic program,

593

we would have had to implement it as a special form. is

would require syntax procedures

(define (require? exp)

(tagged-list? exp 'require))

(define (require-predicate exp)

(cadr exp))

and a new clause in the dispatch in analyze

((require? exp) (analyze-require exp))

aswelltheprocedure analyze-requirethathandles require

expressions.Completethefollowingdefinitionof analyze-

require.

(define (analyze-require exp)

(let ((pproc (analyze (require-predicate exp))))

(lambda (env succeed fail)

(pproc env

(lambda (pred-value fail2)

(if ⟨??⟩

⟨??⟩

(succeed 'ok fail2)))

fail))))

4.4 Logic Programming

In Chapter 1 we stressed that computer science deals with imperative

(how to) knowledge, whereas mathematics deals with declarative (what

is) knowledge. Indeed, programming languages require that the pro-

grammer express knowledge in a form that indicates the step-by-step

methods for solving particular problems. On the other hand, high-level

594

languagesprovide,aspartofthelanguageimplementation,asubstantial

amount of methodological knowledge that frees the user from concern

with numerous details of how a specified computation will progress.

Most programming languages, including Lisp, are organizedaroundcomputing the values of mathematical functions. Expression-oriented

languages (such as Lisp, Fortran, and Algol) capitalize on the “pun” that

an expression that describes the value of a function may also be inter-

preted as a means of computing that value. Because of this, most pro-

gramming languages are strongly biased toward unidirectional compu-

tations (computations with well-defined inputs and outputs). ere are,

however,radicallydifferent programminglanguagesthat relax thisbias.

We saw one such example in Section 3.3.5, where the objects of compu-

tation were arithmetic constraints. In a constraint system the direction

and the order of computation are not so well specified; in carrying out a

computation the system must therefore provide more detailed “how to”

knowledge than would be the case with an ordinary arithmetic compu-

tation. is does not mean, however, that the user is released altogether

from the responsibility of providing imperative knowledge. ere are

many constraint networks that implement the same set of constraints,

and the user must choose from the set of mathematically equivalent

networks a suitable network to specify a particular computation.

e nondeterministic program evaluator of Section 4.3 also moves

away fromthe viewthat programming isabout constructingalgorithmsforcomputing unidirectionalfunctions.Ina nondeterministic language,

expressions can have more than one value, and, as a result, the compu-

tationisdealingwith relationsratherthanwith single-valuedfunctions.Logic programming extends this idea by combining a relational vision

of programming with a powerful kind of symbolic paern matching

595

called unification.58

is approach, when it works, can be a very powerful way to write

programs. Part of the power comes from the fact that a single “what is”

factcanbe used tosolve anumberof different problemsthat wouldhavedifferent “how to” components. As an example, consider the append op-

eration,whichtakestwolistsasargumentsandcombinestheirelements

to form a single list. In a procedural language such as Lisp, we could

define append in terms of the basic list constructor cons, as we did in

Section 2.2.1:

58Logic programming has grown out of a long history of research in automatic the-

orem proving. Early theorem-proving programs could accomplish very lile, because

they exhaustively searched the space of possible proofs. e major breakthrough that

made such a search plausible was the discovery in the early 1960s of the unification

algorithm and the resolution principle (Robinson 1965). Resolution was used, for exam-

ple, by Green and Raphael (1968) (see also Green 1969) as the basis for a deductive

question-answering system. During most of this period, researchers concentrated on

algorithms that are guaranteed to find a proof if one exists. Such algorithms were dif-

ficult to control and to direct toward a proof. Hewi (1969) recognized the possibility

of merging the control structure of a programming language with the operations of a

logic-manipulation system, leading to the work in automatic search mentioned in Sec-

tion 4.3.1 (Footnote 4.47). At the same time that this was being done, Colmerauer, in

Marseille, was developing rule-based systems for manipulating natural language (see

Colmerauer et al. 1973). He invented a programming language called Prolog for repre-

senting those rules. Kowalski (1973; 1979), in Edinburgh, recognized that execution of

a Prolog program could be interpreted as proving theorems (using a proof technique

called linear Horn-clause resolution). e merging of the last two strands led to the

logic-programming movement. us, in assigning credit for the development of logic

programming, the French can point to Prolog’s genesis at the University of Marseille,

while the British can highlight the work at the University of Edinburgh. According to

people at , logic programming was developed by these groups in an aempt to fig-

ure out what Hewi was talking about in his brilliant but impenetrable Ph.D. thesis.

For a history oflogic programming, see Robinson 1983.

596

(define (append x y)

(if (null? x) y (cons (car x) (append (cdr x) y))))

is procedure can be regarded as a translation into Lisp of the follow-

ing two rules, the first of which covers the case where the first list is

empty and the second of which handles the case of a nonempty list,

which is a cons of two parts:

• For any list y, the empty list and y append to form y.

• For any u, v, y, and z, (cons u v) and y append to form (cons u

z) if v and y append to form z.59

Using the append procedure, we can answer questions such as

Find the append of (a b) and (c d).

But the same two rules are also sufficient for answering the following

sorts of questions, which the procedure can’t answer:

Find a list y that appends with (a b) to produce (a b c d).

Find all x and y that append to form (a b c d).

In a logic programming language, the programmer writes an append

“procedure” by stating the two rules about append given above. “How

to” knowledge is provided automatically by the interpreter to allow this

59To see the correspondence between the rules and the procedure, let x in the pro-

cedure (where x is nonempty) correspond to (cons u v) in the rule. en z in the rule

corresponds to the append of (cdr x) and y.

597

single pair of rules to be used to answer all three types of questions

about append.60

Contemporary logic programming languages (including the one we

implementhere)havesubstantialdeficiencies,inthattheirgeneral“how

to” methods can lead them into spurious infinite loops or other unde-

sirable behavior. Logic programming is an active field of research in

computer science.61

Earlier in this chapter we explored the technology ofimplementing

interpreters and described the elements that are essential to an inter-

preter for a Lisp-like language (indeed, to an interpreter for any con-

ventional language). Now we will apply these ideas to discuss an in-

terpreter for a logic programming language. We call this language the

query language, because it is very useful for retrieving information from

data bases by formulating queries, or questions, expressed in the lan-

guage. Even though the query language is very different from Lisp, we

60is certainly does not relieve the user of the entire problem of how to compute

the answer. ere are many different mathematically equivalent sets of rules for for-

mulating the append relation, only some of which can be turned into effective devices

for computing in any direction. In addition, sometimes “what is” information gives no

clue “how to” compute an answer. For example, consider the problem of computing the

y such that y2 = x.

61Interest in logic programming peaked during the early 80s when the Japanese gov-

ernment began an ambitious project aimed at building superfast computers optimized

to run logic programming languages. e speed of such computers was to be measured

in LIPS (Logical Inferences Per Second) rather than the usual FLOPS (FLoating-point

Operations Per Second). Although the project succeeded in developing hardware and

soware as originally planned, the international computer industry moved in a dif-

ferent direction. See Feigenbaum and Shrobe 1993 for an overview evaluation of the

Japanese project. e logic programming community has also moved on to consider

relational programming based on techniques other than simple paern matching, such

as the ability to deal with numerical constraints such as the ones illustrated in the

constraint-propagation system of Section 3.3.5.

598

willfinditconvenienttodescribethelanguageintermsofthe samegen-

eralframeworkwe have beenusingallalong:asacollectionofprimitive

elements, together with means of combination that enable us to com-

bine simple elementstocreatemore complexelementsandmeansof ab-

stractionthatenableustoregardcomplexelementsassingle conceptual

units. An interpreter for a logic programming language is considerably

more complex than an interpreter for a language like Lisp. Neverthe-

less, we will see that our query-language interpreter contains many of

the same elements found in the interpreter of Section 4.1. In particu-

lar, there will be an “eval” part that classifies expressions according to

type and an “apply” part that implements the language’s abstraction

mechanism (procedures in the case ofLisp, and rules in the case oflogic

programming). Also, a central role is played in the implementation by

a frame data structure, which determines the correspondence between

symbols and their associated values. One additional interesting aspect

of our query-language implementation is that we make substantial use

of streams, which were introduced in Chapter 3.

4.4.1 Deductive Information Retrieval

Logic programming excels in providing interfaces to data bases for in-

formationretrieval.equerylanguageweshallimplementinthischap-

ter is designed to be used in this way.

In order to illustrate what the query system does, we will show how

it can be used to manage the data base of personnel records for Mi-

crosha, a thriving high-technology company in the Boston area. e

languageprovidespaern-directedaccesstopersonnel informationandcan also take advantage of general rules in order to make logical deduc-

tions.

599

A sample data base

e personnel data base for Microsha contains assertions about com-

pany personnel. Here is the information about Ben Bitdiddle, the resi-

dent computer wizard:

(address (Bitdiddle Ben) (Slumerville (Ridge Road) 10))

(job (Bitdiddle Ben) (computer wizard))

(salary (Bitdiddle Ben) 60000)

Each assertion is a list (in this case a triple) whose elements can them-

selves be lists.

As resident wizard, Ben is in charge of the company’s computer

division, and he supervises two programmers and one technician. Here

is the information about them:

(address (Hacker Alyssa P) (Cambridge (Mass Ave) 78))

(job (Hacker Alyssa P) (computer programmer))

(salary (Hacker Alyssa P) 40000)

(supervisor (Hacker Alyssa P) (Bitdiddle Ben))

(address (Fect Cy D) (Cambridge (Ames Street) 3))

(job (Fect Cy D) (computer programmer))

(salary (Fect Cy D) 35000)

(supervisor (Fect Cy D) (Bitdiddle Ben))

(address (Tweakit Lem E) (Boston (Bay State Road) 22))

(job (Tweakit Lem E) (computer technician))

(salary (Tweakit Lem E) 25000)

(supervisor (Tweakit Lem E) (Bitdiddle Ben))

ere is also a programmer trainee, who is supervised by Alyssa:

(address (Reasoner Louis) (Slumerville (Pine Tree Road) 80))

(job (Reasoner Louis) (computer programmer trainee))

600

(salary (Reasoner Louis) 30000)

(supervisor (Reasoner Louis) (Hacker Alyssa P))

All of these people are in the computer division, as indicated by the

word computer as the first item in theirjob descriptions.

Ben is a high-level employee. His supervisor is the company’s big

wheel himself:

(supervisor (Bitdiddle Ben) (Warbucks Oliver))

(address (Warbucks Oliver) (Swellesley (Top Heap Road)))

(job (Warbucks Oliver) (administration big wheel))

(salary (Warbucks Oliver) 150000)

Besides the computer division supervised by Ben, the company has an

accounting division, consisting ofa chief accountant and his assistant:

(address (Scrooge Eben) (Weston (Shady Lane) 10))

(job (Scrooge Eben) (accounting chief accountant))

(salary (Scrooge Eben) 75000)

(supervisor (Scrooge Eben) (Warbucks Oliver))

(address (Cratchet Robert) (Allston (N Harvard Street) 16))

(job (Cratchet Robert) (accounting scrivener))

(salary (Cratchet Robert) 18000)

(supervisor (Cratchet Robert) (Scrooge Eben))

ere is also a secretary for the big wheel:

(address (Aull DeWitt) (Slumerville (Onion Square) 5))

(job (Aull DeWitt) (administration secretary))

(salary (Aull DeWitt) 25000)

(supervisor (Aull DeWitt) (Warbucks Oliver))

e data base also contains assertions about which kinds ofjobs can be

done by people holding other kinds ofjobs. For instance, a computer

601

wizard can do the jobs ofboth a computer programmer and a computer

technician:

(can-do-job (computer wizard) (computer programmer))

(can-do-job (computer wizard) (computer technician))

A computer programmer could fill in for a trainee:

(can-do-job (computer programmer)

(computer programmer trainee))

Also, as is well known,

(can-do-job (administration secretary)

(administration big wheel))

Simple queries

e query language allows users to retrieve information from the data

base by posing queriesin response tothe system’sprompt. Forexample,

to find all computer programmers one can say

;;; Query input:

(job ?x (computer programmer))

e system will respond with the following items:

;;; Query results:

(job (Hacker Alyssa P) (computer programmer))

(job (Fect Cy D) (computer programmer))

e input query specifies that we are looking forentries in the database

that match a certain paern. In this example, the paern specifies en-

triesconsistingofthreeitems,ofwhich the firstistheliteralsymbol job,

the second can be anything, and the third is the literal list (computer

programmer).e “anything” that can be the second item in the match-

inglist isspecifiedby apaernvariable, ?x.egeneralformofapaern

602

variable is a symbol, taken to be the name of the variable, preceded by

a question mark. We will see below why it is useful to specify names

for paern variables rather than just puing ? into paerns to repre

sent “anything.” e system responds to a simple query by showing all

entries in the data base that match the specified paern.

A paern can have more than one variable. For example, the query

(address ?x ?y)

will list all the employees’ addresses.

A paern can have no variables, in which case the query simply

determines whether that paern is an entry in the data base. If so, there

will be one match; if not, there will be no matches.

e same paern variable can appear more than once in a query,

specifying that the same “anything” must appear in each position. is

is why variables have names. For example,

(supervisor ?x ?x)

finds all people who supervise themselves (though there are no such

assertions in our sample data base).

e query

(job ?x (computer ?type))

matchesalljob entrieswhose thirditemisatwo-elementlistwhose first

item is computer:

(job (Bitdiddle Ben) (computer wizard))

(job (Hacker Alyssa P) (computer programmer))

(job (Fect Cy D) (computer programmer))

(job (Tweakit Lem E) (computer technician))

is same paern does not match

(job (Reasoner Louis) (computer programmer trainee))

603

because the third item in the entry is a list of three elements, and the

paern’s third item specifies that there should be two elements. If we

wanted to change the paern so that the third item could be any list

beginning with computer, we could specify62

(job ?x (computer . ?type))

For example,

(computer . ?type)

matches the data

(computer programmer trainee)

with ?type as the list (programmer trainee). It also matches the data

(computer programmer)

with ?type as the list (programmer), and matches the data

(computer)

with ?type as the empty list ().

We can describe the query language’s processing of simple queries

as follows:

• e system finds all assignments to variables in the query paern

that satisfy the paern—that is, all sets of values for the variables

such that if the paern variables are instantiated with (replaced

by) the values, the result is in the data base.

• e system responds to the query by listing all instantiations of

the query paern with the variable assignments that satisfy it.

62is uses the doed-tail notation introduced in Exercise 2.20.

604

Note that if the paern has no variables, the query reduces to a deter-

mination of whether that paern is in the data base. If so, the empty

assignment, which assigns no values to variables, satisfies that paern

for that data base.

Exercise4.55: Give simple queriesthat retrieve the follow-

ing information from the data base:

1. all people supervised by Ben Bitdiddle;

2. the names and jobs of all people in the accounting di-

vision;

3. thenamesandaddressesofallpeoplewholiveinSlumerville.

Compound queries

Simple queries form the primitive operations of the query language.

In order to form compound operations, the query language provides

means of combination. One thing that makes the query language a logic

programming language is that the means of combination mirror the

means of combination used in forming logical expressions: and, or, and

not. (Here and, or, and not are not the Lisp primitives, but rather oper-

ations built into the query language.)

We can use and as follows to find the addresses of all the computer

programmers:

(and (job ?person (computer programmer))

(address ?person ?where))

e resulting output is

(and (job (Hacker Alyssa P) (computer programmer))

(address (Hacker Alyssa P) (Cambridge (Mass Ave) 78)))

605

(and (job (Fect Cy D) (computer programmer))

(address (Fect Cy D) (Cambridge (Ames Street) 3)))

In general,

(and ⟨query1⟩ ⟨query2⟩ ... ⟨queryn⟩)

is satisfied by all sets of values for the paern variables that simultane-

ously satisfy ⟨query1⟩ ... ⟨queryn⟩.

As for simple queries, the system processes a compound query by

finding all assignments to the paern variables that satisfy the query,

then displaying instantiations of the query with those values.

Another means of constructing compound queries is through
or.

For example,

(or (supervisor ?x (Bitdiddle Ben))

(supervisor ?x (Hacker Alyssa P)))

will find all employees supervised by Ben Bitdiddle or Alyssa P. Hacker:

(or (supervisor (Hacker Alyssa P) (Bitdiddle Ben))

(supervisor (Hacker Alyssa P) (Hacker Alyssa P)))

(or (supervisor (Fect Cy D) (Bitdiddle Ben))

(supervisor (Fect Cy D) (Hacker Alyssa P)))

(or (supervisor (Tweakit Lem E) (Bitdiddle Ben))

(supervisor (Tweakit Lem E) (Hacker Alyssa P)))

(or (supervisor (Reasoner Louis) (Bitdiddle Ben))

(supervisor (Reasoner Louis) (Hacker Alyssa P)))

In general,

(or ⟨query1⟩ ⟨query2⟩ ... ⟨queryn⟩)

is satisfied by all sets of values for the paern variables that satisfy at

least one of ⟨query1⟩ ... ⟨queryn⟩.

Compound queries can also be formed with not. For example,

606

(and (supervisor ?x (Bitdiddle Ben))

(not (job ?x (computer programmer))))

finds all people supervised by Ben Bitdiddle who are not computer pro-

grammers. In general,

(not ⟨query1⟩)

is satisfied by all assignments to the paern variables that do not satisfy

⟨query1⟩.63

e final combining form is called lisp-value. When lisp-value

is the first element of a paern, it specifies that the next element is a

Lisp predicate to be applied to the rest of the (instantiated) elements as

arguments. In general,

(lisp-value ⟨predicate⟩ ⟨arд1⟩ ... ⟨arдn⟩)

will be satisfied by assignments to the paern variables for which the

⟨predicate⟩ applied to the instantiated ⟨arд1⟩ ... ⟨arдn⟩ is true. For ex-

ample, to find all people whose salary is greater than $30,000 we could

write64

(and (salary ?person ?amount) (lisp-value > ?amount 30000))

Exercise 4.56: Formulate compound queries that retrieve

the following information:

63Actually, this description of not is valid only for simple cases. e real behavior of

not is more complex. We will examine not’s peculiarities in sections Section 4.4.2 and

Section 4.4.3.

64Lisp-value should be used only to perform an operation not provided in the query

language. In particular, it should not be used to test equality (since that is what the

matching in the query language is designed to do) or inequality (since that can be done

with the same rule shown below).

607

a. the names of all people who are supervised by Ben

Bitdiddle, together with their addresses;

b. all people whose salary is less than Ben Bitdiddle’s,

together with their salary and Ben Bitdiddle’s salary;

c. all people who are supervised by someone who is not

in the computer division, together with the supervi-

sor’s name andjob.

Rules

In addition to primitive queries and compound queries, the query lan-

guage provides means for abstracting queries. ese are given by rules.

e rule

(rule (lives-near ?person-1 ?person-2)

(and (address ?person-1 (?town . ?rest-1))

(address ?person-2 (?town . ?rest-2))

(not (same ?person-1 ?person-2))))

specifies that two people live near each other if they live in the same

town. e final not clause prevents the rule from saying that all peo-

ple live near themselves. e same relation is defined by a very simple

rule:65

(rule (same ?x ?x))

65Notice that we do not need same in order to make two things be the same: We

just use the same paern variable for each—in effect, we have one thing instead of two

things in the first place. For example, see ?town in the lives-near rule and ?middle-

manager in the wheel rule below. Same is useful when we want to force two things to

be different, such as ?person-1 and ?person-2 in the lives-near rule. Although using

the same paern variable in two parts of a query forces the same value to appear in

both places, using different paern variables does not force different values to appear.

(e values assigned to different paern variables may be the same or different.)

608

e following rule declaresthat a person is a“wheel” in anorganization

if he supervises someone who is in turn a supervisor:

(rule (wheel ?person)

(and (supervisor ?middle-manager ?person)

(supervisor ?x ?middle-manager)))

e general form ofa rule is

(rule ⟨conclusion⟩ ⟨body⟩)

where ⟨conclusion⟩ is a paern and ⟨body⟩ is any query.66 We can think

ofa rule as representing a large (even infinite) set of assertions, namely

all instantiations of the rule conclusion with variable assignments that

satisfy the rule body. When we described simple queries (paerns), we

said that anassignment to variables satisfies apaern if the instantiated

paern is in the data base. But the paern needn’t be explicitly in the

data base as an assertion. It can be an implicit assertion implied by a

rule. For example, the query

(lives-near ?x (Bitdiddle Ben))

results in

(lives-near (Reasoner Louis) (Bitdiddle Ben))

(lives-near (Aull DeWitt) (Bitdiddle Ben))

To find all computer programmers who live near Ben Bitdiddle, we can

ask

(and (job ?x (computer programmer))

(lives-near ?x (Bitdiddle Ben)))

66We will also allow rules without bodies, as in same, and we will interpret such a

rule to mean that the rule conclusion is satisfied by any values of the variables.

609

As in the case of compound procedures, rules can be used as parts of

other rules (as we saw with the lives-near rule above) or even be de-

fined recursively. For instance, the rule

(rule (outranked-by ?staff-person ?boss)

(or (supervisor ?staff-person ?boss)

(and (supervisor ?staff-person ?middle-manager)

(outranked-by ?middle-manager ?boss))))

says that a staff person is outranked by a boss in the organization if the

bossistheperson’ssupervisoror(recursively)iftheperson’ssupervisor

is outranked by the boss.

Exercise 4.57: Define a rule that says that person 1 can re-

placeperson2ifeitherperson1doesthesamejob asperson

2orsomeonewhodoesperson1’sjobcanalsodoperson2’s

job, and if person 1 and person 2 are not the same person.

Using your rule, give queries that find the following:

a. all people who can replace Cy D. Fect;

b. allpeoplewhocanreplacesomeone whois beingpaidmore than they are, together with the two salaries.

Exercise4.58: Define a rule that saysthat a person is a“big

shot” in a division if the person works in the division but

does not have a supervisor who works in the division.

Exercise 4.59: Ben Bitdiddle has missed one meeting too

many. Fearing that his habit of forgeing meetings could

cost him his job, Ben decides to do something about it. He

adds all the weekly meetings of the firm to the Microsha

data base by asserting the following:

610

(meeting accounting (Monday 9am))

(meeting administration (Monday 10am))

(meeting computer (Wednesday 3pm))

(meeting administration (Friday 1pm))

Each ofthe above assertionsisfor a meeting of an entire di-

vision. Ben also adds an entry for the company-wide meet-

ing that spans all the divisions. All of the company’s em-

ployees aend this meeting.

(meeting whole-company (Wednesday 4pm))

a. On Friday morning, Ben wants to query the data base

for all the meetings that occur that day. What query

should he use?

b. Alyssa P. Hacker is unimpressed. She thinks it would

bemuchmoreusefultobeable toaskforhermeetings

by specifyinghername.Soshedesignsarulethatsays

that a person’s meetings include all whole-company

meetings plus all meetings of that person’s division.

Fill in the body of Alyssa’s rule.

(rule (meeting-time ?person ?day-and-time)

⟨rule-body⟩)

c. Alyssa arrives at work on Wednesday morning and

wonders what meetings she has to aend that day.

Havingdefined the above rule, what query should she

make to find this out?

Exercise 4.60: By giving the query

(lives-near ?person (Hacker Alyssa P))

611

Alyssa P. Hacker is able to find people who live near her,

with whom she can ride to work. On the other hand, when

she tries to find all pairs of people who live near each other

by querying

(lives-near ?person-1 ?person-2)

she notices that each pair of people who live near each

other is listed twice; for example,

(lives-near (Hacker Alyssa P) (Fect Cy D))

(lives-near (Fect Cy D) (Hacker Alyssa P))

Why doesthishappen?Isthere awaytofindalistofpeople

who live near each other, in which each pair appears only

once? Explain.

Logic as programs

We can regard a rule as a kind of logical implication: If an assignment

ofvalues to paern variables satisfies the body, then it satisfies the con

clusion. Consequently, we can regard the query language as having the

ability to perform logical deductions based upon the rules. As an exam

ple, consider the append operation describedat the beginning of Section

4.4. As we said, append can be characterized by the following two rules:

• For any list y, the empty list and y append to form y.

• For any u, v, y, and z, (cons u v) and y append to form (cons u

z) if v and y append to form z.

To express this in our query language, we define two rules for a relation

(append-to-form x y z)

612

which we can interpret to mean “x and y append to form z”:

(rule (append-to-form () ?y ?y))

(rule (append-to-form (?u . ?v) ?y (?u . ?z))

(append-to-form ?v ?y ?z))

e first rule has no body, which means that the conclusion holds for

any value of ?y. Note how the second rule makes use of doed-tail no-

tation to name the car and cdr of a list.

Given these two rules, we can formulate queries that compute the

append of two lists:

;;; Query input:

(append-to-form (a b) (c d) ?z)

;;; Query results:

(append-to-form (a b) (c d) (a b c d))

What is more striking, we can use the same rules to ask the question

“Which list, when appended to (a b), yields (a b c d)?” is is done

as follows:

;;; Query input:

(append-to-form (a b) ?y (a b c d))

;;; Query results:

(append-to-form (a b) (c d) (a b c d))

We can also ask for all pairs of lists that append to form (a b c d):

;;; Query input:

(append-to-form ?x ?y (a b c d))

;;; Query results:

(append-to-form () (a b c d) (a b c d))

(append-to-form (a) (b c d) (a b c d))

(append-to-form (a b) (c d) (a b c d))

(append-to-form (a b c) (d) (a b c d))

(append-to-form (a b c d) () (a b c d))

613

e query system may seem toexhibit quite abit ofintelligenceinusingthe rules to deduce the answers to the queries above. Actually, as we

will see in the next section, the system is following a well-determined

algorithm in unraveling the rules. Unfortunately, although the system

works impressively in the append case, the general methods may break

down in more complex cases, as we will see in Section 4.4.3.

Exercise 4.61: e following rules implement a next-to

relation that finds adjacent elements of a list:

(rule (?x next-to ?y in (?x ?y . ?u)))

(rule (?x next-to ?y in (?v . ?z))

(?x next-to ?y in ?z))

What will the response be to the following queries?

(?x next-to ?y in (1 (2 3) 4))

(?x next-to 1 in (2 1 3 1))

Exercise 4.62: Define rules to implement the last-pair

operation of Exercise 2.17, which returns a list containing

the last element of a nonempty list. Check your rules on

queries such as (last-pair (3) ?x),(last-pair (1 2

3) ?x) and (last-pair (2 ?x) (3)).Do your rules work

correctly on queries such as (last-pair ?x (3)) ?

Exercise4.63:efollowingdatabase(seeGenesis4)traces

the genealogy of the descendants of Ada back to Adam, by

way of Cain:

(son Adam Cain)

(son Cain Enoch)

(son Enoch Irad)

614

(son Irad Mehujael)

(son Mehujael Methushael)

(son Methushael Lamech)

(wife Lamech Ada)

(son Ada Jabal)

(son Ada Jubal)

Formulate rules such as “If S is the son of f , and f is the

son of G, then S is the grandson of G” and “IfW is the wife

of M, and S is the son ofW , then S is the son of M” (which

was supposedly more true in biblical times than today) that

will enable the query system to find the grandson of Cain;

the sons of Lamech; the grandsons of Methushael. (See Ex-

ercise 4.69 for some rules to deduce more complicated re-

lationships.)

4.4.2 How the ery System Works

In Section 4.4.4 we will present an implementation of the query inter-

preter as a collection of procedures. In this section we give an overview

that explains the general structure of the system independent of low-

levelimplementationdetails.Aerdescribingtheimplementationofthe

interpreter,wewillbe ina positionto understandsomeof itslimitations

and some of the subtle ways in which the query language’s logical op-

erations differ from the operations of mathematical logic.

It should be apparent that the query evaluator must perform some

kind of search in order to match queries against facts and rules in the

data base. One way to do this would be to implement the query system

as a nondeterministic program, using the amb evaluator of Section 4.3

(see Exercise 4.78). Another possibility is to manage the search with the

aid of streams. Our implementation follows this second approach.

615

e query system is organized around two central operations called

paernmatching and unification. We first describe paernmatchingandexplain how this operation, together with the organization ofinforma-

tion in terms of streams of frames, enables us to implement both simple

and compound queries. We next discuss unification, a generalization of

paern matching needed to implement rules. Finally, we show how the

entire query interpreter fits together through a procedure that classifies

expressions in a manner analogous to the way eval classifies expres-

sions for the interpreter described in Section 4.1.

Paern matching

A paern matcher is a program that tests whether some datum fits a

specified paern. For example, the data list ((a b) c (a b)) matches

the paern (?x c ?x) with the paern variable ?x bound to (a b).

e same data list matches the paern (?x ?y ?z) with ?x and ?z both

bound to (a b) and ?y bound to c. It also matches the paern ((?x ?y)

c (?x ?y)) with ?x bound to a and ?y bound to b. However, it does not

match the paern (?x a ?y), since that paern specifies a list whose

second element is the symbol a.

e paern matcher used by the query system takes as inputs a

paern, a datum, and aframe that specifies bindings for various paern

variables.Itcheckswhetherthedatummatchesthepaerninaway that

is consistent with the bindings already in the frame. If so, it returns the

givenframeaugmentedbyanybindingsthatmayhavebeendetermined

by the match. Otherwise, it indicates that the match has failed.

For example, using the paern (?x ?y ?x) to match (a b a) given

an empty frame will return a frame specifying that ?x is bound to a

and ?y is bound to b. Trying the match with the same paern, the same

datum, and a frame specifying that ?y is bound to a will fail. Trying the

616

match with the same paern, the same datum, and a frame in which ?y

is bound to b and ?x is unbound will return the given frame augmented

by a binding of ?x to a.

e paern matcher is all the mechanism that is needed to pro-

cess simple queries that don’t involve rules. For instance, to process the

query

(job ?x (computer programmer))

we scan through all assertions in the data base and select those that

match the paern with respect to an initially empty frame. For each

match we find, we use the frame returned by the match to instantiate

the paern with a value for ?x.

Streams of frames

e testing of paerns against frames is organized through the use of

streams. Given a single frame, the matching process runs through the

data-base entries one byone. For each data-base entry, the matchergen-erates either a special symbol indicating that the match has failed or an

extension to the frame. e results for all the data-base entries are col-

lected into a stream, which is passed through a filter to weed out the

failures. e result is a stream of all the frames that extend the given

frame via a match to some assertion in the data base.67

67Because matching is generally very expensive, we would like to avoid applying

the full matcher to every element of the data base. is is usually arranged by breaking

up the process into a fast, coarse match and the final match. e coarse match filters

the data base to produce a small set of candidates for the final match. With care, we

can arrange our data base so that some of the work of coarse matching can be done

when the data base is constructed rather then when we want to select the candidates.

is is called indexing the data base. ere is a vast technology built around data-base-

indexing schemes. Our implementation, described in Section 4.4.4, contains a simple-

minded form of such an optimization.

617

input stream output stream of frames,

of frames filtered and extended
query

(job ?x ?y)

stream of assertions

from data base

Figure 4.4: A query processes a stream of frames.

In our system, a query takes an input stream of frames and per-

forms the above matching operation for every frame in the stream, as

indicated in Figure 4.4. at is, for each frame in the input stream, the

query generates a new stream consisting of all extensions to that frame

by matches to assertions in the data base. All these streams are then

combined to form one huge stream, which contains all possible exten-

sions of every frame in the input stream. is stream is the output of

the query.

To answer a simple query, we use the query with an input stream

consistingofasingleempty frame.eresultingoutput streamcontains

all extensions to the empty frame (that is, all answers to our query).

is stream of frames is then used to generate a stream of copies of the

original query paern with the variables instantiated by the values in

each frame, and this is the stream that is finally printed.

Compound queries

e real elegance of the stream-of-frames implementation is evident

when we deal with compound queries. e processing of compound

618

(and A B)inputstreamofframes outputstream

offrames

A B

data base

Figure4.5:e andcombinationoftwoqueriesisproduced

by operating on the stream of frames in series.

queries makes use of the ability of our matcher to demand that a match

be consistent with a specified frame. For example, to handle the and of

two queries, such as

(and (can-do-job ?x (computer programmer trainee))

(job ?person ?x))

(informally, “Find all people who can do the job of a computer program-

mer trainee”), we first find all entries that match the paern

(can-do-job ?x (computer programmer trainee))

is produces a stream of frames, each of which contains a binding for

?x. en for each frame in the stream we find all entries that match

(job ?person ?x)

in a way that is consistent with the given binding for ?x. Each such

match will produce a frame containing bindings for ?x and ?person.

e and of two queries can be viewed as a series combination of the

two component queries, as shown in Figure 4.5. e frames that pass

619

(or A B)

input streamofframes output stream

offrames

merge

A

B

data base

Figure 4.6: e or combination of two queries is produced

by operating on the stream of frames in parallel and merg-

ing the results.

through the first query filter are filtered and further extended by the

second query.

Figure 4.6 shows the analogous method for computing the or oftwo

queries as a parallel combination of the two component queries. e

input stream of frames is extended separately by each query. e two

resulting streams are then merged to produce the final output stream.

Even from this high-level description, it is apparent that the pro-

cessing of compound queries can be slow. For example, since a query

may produce more than one output frame for each input frame, and

each query in an and gets its input frames from the previous query, an

andquerycould,inthe worstcase,havetoperformanumberofmatches

620

thatisexponentialinthenumberofqueries(seeExercise4.76).68 ough

systems for handling only simple queries are quite practical, dealing

with complex queries is extremely difficult.69

From the stream-of-frames viewpoint, the not of some query acts

as a filter that removes all frames for which the query can be satisfied.

For instance, given the paern

(not (job ?x (computer programmer)))

we aempt, for each frame in the input stream, to produce extension

frames that satisfy (job ?x (computer programmer)). We remove

from the input stream all frames for which such extensions exist. e

result is a stream consisting of only those frames in which the binding

for ?x doesnot satisfy (job ?x (computer programmer)). Forexample,

in processing the query

(and (supervisor ?x ?y)

(not (job ?x (computer programmer))))

the first clausewillgenerate frameswith bindingsfor ?x and ?y.e not

clause will thenfilter these by removingall frames inwhich the binding

for ?x satisfies the restriction that ?x is a computer programmer.70

e lisp-value special form is implemented as a similar filter on

frame streams. We use each frame in the stream to instantiate any vari-

ables in the paern, then apply the Lisp predicate. We remove from the

input stream all frames for which the predicate fails.

68But this kind of exponential explosion is not common in and queries because the

added conditions tend to reduce rather than expand the number of frames produced.

69
ereisalargeliteratureon data-base-managementsystemsthatisconcerned with

how to handle complex queries efficiently.

70ere is a subtle difference between this filter implementation of not and the usual

meaning of not in mathematical logic. See Section 4.4.3.

621

Unification

In order to handle rules in the query language, we must be able to find

the rules whose conclusions match a given query paern. Rule conclu-

sions are like assertions except that they can contain variables, so we

will need a generalization of paern matching—called unification—in

which both the “paern” and the “datum” may contain variables.

A unifier takes two paerns, each containing constants and vari

ables, and determines whether it is possible to assign values to the vari

ables that will make the two paerns equal. If so, it returns a frame

containing these bindings. For example, unifying (?x a ?y) and (?y

?z a) will specify a frame in which ?x, ?y, and ?z must all be bound

to a. On the other hand, unifying (?x ?y a) and (?x b ?y) will fail,

because there is no value for ?y that can make the two paerns equal.

(For the second elements of the paerns to be equal, ?y would have to

be b; however, for the third elements to be equal, ?y would have to be

a.)e unifier used in the query system, like the paern matcher, takes

a frame as input and performs unifications that are consistent with this

frame.

e unificationalgorithm is the most technically difficult part ofthe

query system.With complexpaerns,performingunificationmayseem

to require deduction. To unify (?x ?x) and ((a ?y c) (a b ?z)), for

example, the algorithm must infer that ?x should be (a b c), ?y should

be b, and ?z should be c. We may think of this process as solving a

set of equations among the paern components. In general, these are

simultaneous equations, which may require substantial manipulation

to solve.71 For example, unifying (?x ?x) and ((a ?y c) (a b ?z))

may be thought of as specifying the simultaneous equations

71In one-sided paern matching, all the equations that contain paern variables are

explicit and already solved for the unknown (the paern variable).

622

?x = (a ?y c)

?x = (a b ?z)

ese equations imply that

(a ?y c) = (a b ?z)

which in turn implies that

a = a,

?y = b,

c = ?z,

and hence that

?x = (a b c)

In a successful paern match, all paern variables become bound, and

the values to which they are bound contain only constants. is is also

true of all the examples of unification we have seen so far. In general,

however, a successful unification may not completely determine the

variable values; some variables may remain unbound and others may

be bound to values that contain variables.

Consider theunificationof (?x a)and ((b ?y) ?z).We candeduce

that ?x = (b ?y) and a = ?z, but we cannot further solve for ?x or

?y.e unification doesn’t fail, since it is certainly possible to make the

two paerns equal by assigning values to ?x and ?y. Since this match

in no way restricts the values ?y can take on, no binding for ?y is put

into the result frame. e match does, however, restrict the value of ?x.

Whatevervalue ?yhas, ?xmustbe (b ?y).Abindingof
?xtothepaern

(b ?y)isthusput intotheframe.Ifavaluefor ?yislaterdeterminedandadded to the frame (by a paern match or unification that is required

to be consistent with this frame), the previously bound ?x will refer to

this value.72

72Another
way to think of unification is that it generates the most general paern

623

Applying rules

Unification is the key to the component ofthe query system that makes

inferences from rules. To see how this is accomplished, consider pro-

cessing a query that involves applying a rule, such as

(lives-near ?x (Hacker Alyssa P))

Toprocessthisquery,wefirstusethe ordinary paern-matchproceduredescribed above to see if there are any assertions in the data base that

matchthispaern.(erewillnotbeanyinthiscase,sinceourdatabase

includes no direct assertionsabout who lives near whom.)e next step

istoaempt to unify the query paernwith the conclusion of each rule.

We find that the paern unifies with the conclusion of the rule

(rule (lives-near ?person-1 ?person-2)

(and (address ?person-1 (?town . ?rest-1))

(address ?person-2 (?town . ?rest-2))

(not (same ?person-1 ?person-2))))

resulting in a frame specifying that ?person-2 is bound to (Hacker

Alyssa P) and that ?x should be bound to (have the same value as)

?person-1.Now,relativetothisframe,weevaluatethecompoundquery

given by the body of the rule. Successful matches will extend this frame

by providing a binding for ?person-1, and consequently a value for ?x,

which we can use to instantiate the original query paern.

In general, the query evaluator uses the following method to apply

a rule when trying to establish a query paern in a frame that specifies

bindings for some of the paern variables:

that is a specialization of the two input paerns. at is, the unification of (?x a) and

((b ?y) ?z) is ((b ?y) a), andthe unification of (?x a ?y) and (?y ?z a), discussed

above, is (a a a). For our implementation, it is more convenient to think of the result

of unification as a frame rather than a paern.

624

• Unify the query with the conclusion of the rule to form, if suc-

cessful, an extension of the original frame.

• Relative to the extended frame, evaluate the query formed by the

body of the rule.

Notice how similar this is to the method for applying a procedure in the

eval/apply evaluator for Lisp:

• Bind the procedure’s parameters to its arguments to form a frame

that extends the original procedure environment.

• Relative to the extended environment, evaluate the expression

formed by the body of the procedure.

e similarity between the two evaluators should come as no surprise.

Just as procedure definitions are the means of abstraction in Lisp, rule

definitions are the means of abstraction in the query language. In each

case, we unwind the abstraction by creating appropriate bindings and

evaluating the rule or procedure body relative to these.

Simple queries

We saw earlier in this section how to evaluate simple queries in the

absence of rules. Now that we have seen how to apply rules, we can

describe how to evaluate simple queries by using both rules and asser-

tions.

Given the query paern and a stream of frames, we produce, for

each frame in the input stream, two streams:

• a stream of extended frames obtained by matching the paern

against all assertions in the data base (using the paern matcher),

and

625

• a stream of extended frames obtained by applying all possible

rules (using the unifier).73

Appending these two streams produces a stream that consists of all the

ways that the given paern can be satisfied consistent with the original

frame. ese streams (one for each frame in the input stream) are now

all combined to form one large stream, which therefore consists of all

the ways that any of the frames in the original input stream can be

extended to produce a match with the given paern.

The query evaluator and the driver loop

Despite the complexity of the underlying matching operations, the sys-

tem is organized much like an evaluator for any language. e proce-

dure that coordinates the matching operations is called qeval, and it

plays a role analogous to that of the eval procedure for Lisp. Qeval

takes as inputs a query and a stream of frames. Its output is a stream of

frames, corresponding to successful matches to the query paern, that

extend some frame in the input stream, as indicated in Figure 4.4. Like

eval, qeval classifies the different types of expressions (queries) and

dispatches to an appropriate procedure for each. ere is a procedure

for each special form (and, or, not, and lisp-value) and one for simple

queries.

e driver loop, which is analogous to the driver-loop procedure

for the other evaluators in this chapter, reads queries from the terminal.

For each query, it calls qeval with the query and a stream that consists

73Since unification is a generalization of matching, we could simplify the system

by using the unifier to produce both streams. Treating the easy case with the simple

matcher, however, illustrates how matching (as opposed to full-blown unification) can

be useful in its own right.

626

of a single empty frame. is will produce the stream of all possible

matches (all possible extensions to the empty frame). For each frame in

the resulting stream, it instantiates the original query using the values

of the variables found in the frame. is stream of instantiated queries

is then printed.74

e driver also checks for the special command assert!, which sig-

nals that the input is not a query but rather an assertion or rule to be

added to the data base. For instance,

(assert! (job (Bitdiddle Ben)

(computer wizard)))

(assert! (rule (wheel ?person)

(and (supervisor ?middle-manager ?person)

(supervisor ?x ?middle-manager))))

4.4.3 Is Logic Programming Mathematical Logic?

e means of combination used in the query language may at first seem

identical to the operations and, or, and not of mathematical logic, and

the application of query-language rules is in fact accomplished through

a legitimate method ofinference.75 is identification of the query lan-

guage with mathematical logic is not really valid, though, because the

74e reason we use streams (rather than lists) of frames is that the recursive appli-

cation of rules can generate infinite numbers of values that satisfy a query. e delayed

evaluation embodied in streams is crucial here: e system will print responses one by

one as they are generated, regardless of whether there are a finite or infinite number

of responses.

75at a particular method of inference is legitimate is not a trivial assertion. One

must prove that if one starts with true premises, only true conclusions can be derived.

e method of inference represented by rule applications is modus ponens, the familiar

method of inference that says that if A is true and A implies B is true, then we may

conclude that B is true.

627

query language provides a control structure that interprets the logical

statements procedurally. We can oen take advantage of this control

structure. For example, to find all of the supervisors of programmers

we could formulate a query in either of two logically equivalent forms:

(and (job ?x (computer programmer)) (supervisor ?x ?y))

or

(and (supervisor ?x ?y) (job ?x (computer programmer)))

If a company has many more supervisors than programmers (the usual

case), it is beer to use the first form rather than the second because the

databasemustbescannedforeachintermediateresult(frame)produced

by the first clause of the and.

e aim of logic programming is to provide the programmer with

techniquesfordecomposingacomputationalproblem intotwo separate

problems:“what”istobecomputed,and“how”thisshouldbecomputed.

is is accomplished by selecting a subset of the statements of mathe-

matical logic that is powerful enough to be able to describe anything

one might want to compute, yet weak enough to have a controllable

procedural interpretation. e intention here is that, on the one hand, a

program specified in a logic programming language should be an effec-

tive program that can be carried out by a computer. Control (“how” to

compute) is effected by using the order of evaluation of the language.

We should be able to arrange the order of clauses and the order of sub-

goals within each clause so that the computation is done in an order

deemed to be effective and efficient. At the same time, we should be

able to view the result of the computation (“what” to compute) as a

simple consequence of the laws of logic.

Our query language can be regarded as just such a procedurally in-

terpretable subset ofmathematical logic. An assertion represents a sim

628

ple fact (an atomic proposition). A rule represents the implication that

the rule conclusion holds for those cases where the rule body holds. A

rule has a natural procedural interpretation: To establish the conclusion

of the rule, establish the body of the rule. Rules, therefore, specify com

putations. However, because rules can also be regarded as statements

of mathematical logic, we can justify any “inference” accomplished by

a logic program by asserting that the same result could be obtained by

working entirely within mathematical logic.76

Infinite loops

Aconsequenceoftheproceduralinterpretationoflogicprogramsisthat

it is possible to construct hopelessly inefficient programs for solving

certain problems. An extreme case ofinefficiency occurs when the sys-

tem falls into infinite loops in making deductions. As a simple example,

suppose we are seing up a data base of famous marriages, including

(assert! (married Minnie Mickey))

Ifwe now ask

(married Mickey ?who)

76We must qualify this statement by agreeing that, in speaking of the “inference”

accomplished by a logic program, we assume that the computation terminates. Unfor-

tunately, even this qualified statement is false for our implementation of the query lan-

guage (and also false for programs in Prolog and most other current logic programming

languages) because of our use of not and lisp-value. As we will describe below, the

not implemented in the query language is not always consistent with the not of math-

ematical logic, and lisp-value introduces additional complications. We could imple-

ment a language consistent with mathematical logic by simply removing not and lisp-

value fromthelanguageandagreeingtowriteprogramsusingonlysimplequeries, and,

and or. However, this would greatly restrict the expressive power of the language. One

of the major concerns of research in logic programming is to find ways to achieve more

consistency with mathematical logic without unduly sacrificing expressive power.

629

we will get no response, because the system doesn’t know that if A is

married to B, then B is married to A. So we assert the rule

(assert! (rule (married ?x ?y) (married ?y ?x)))

and again query

(married Mickey ?who)

Unfortunately, thiswilldrive the systemintoaninfiniteloop,asfollows:

• e system finds that the married rule is applicable; that is, the

rule conclusion (married ?x ?y) successfully unifies with the

query paern (married Mickey ?who) to produce a frame in

which ?x isbound to Mickey and ?yisboundto ?who.Sothe inter-

preter proceedsto evaluate the rule body (married ?y ?x)inthis

frame—in effect, to process the query (married ?who Mickey).

• One answer appears directly as an assertion in the data base:

(married Minnie Mickey).

• e married rule is also applicable, so the interpreter again eval-

uates the rule body, which this time is equivalent to (married

Mickey ?who).

e system is now in an infinite loop. Indeed, whether the system will

find the simple answer (married Minnie Mickey) before it goes into

the loop depends on implementation details concerning the order in

which the system checks the items in the data base. is is a very sim-

ple example of the kinds ofloops that can occur. Collections ofinterre-

lated rules can lead to loops that are much harder to anticipate, and the

appearance of a loop can depend on the order of clauses in an and (see

630

Exercise 4.64) or on low-level details concerning the order in which the

system processes queries.77

Problems with not

Another quirk in the query system concerns not. Given the data base

of Section 4.4.1, consider the following two queries:

(and (supervisor ?x ?y)

(not (job ?x (computer programmer))))

(and (not (job ?x (computer programmer)))

(supervisor ?x ?y))

ese twoqueriesdo not produce thesame result.e first query begins

by finding all entries in the data base that match (supervisor ?x ?y),

and then filters the resulting frames by removing the ones in which the

value of ?x satisfies (job ?x (computer programmer)). e second

query begins by filtering the incoming frames to remove those that can

satisfy (job ?x (computer programmer)). Since the only incoming

frame is empty, it checks the data base to see if there are any paerns

that satisfy (job ?x (computer programmer)). Since there generally

77is is not a problem of the logic but one of the procedural interpretation of the

logic provided by our interpreter. We could write an interpreter that would not fall

into a loop here. For example, we could enumerate all the proofs derivable from our

assertions and our rules in a breadth-first rather than a depth-first order. However,

such a system makes it more difficult to take advantage of the order of deductions

in our programs. One aempt to build sophisticated control into such a program is

described in deKleer et al. 1977. Another technique, which does not lead to such serious

controlproblems,isto putin specialknowledge, such asdetectorsforparticular kindsofloops(Exercise 4.67). However, there can beno general scheme for reliably preventingasystem from going down infinite paths in performing deductions. Imagine a diabolical

rule of the form “To show P(x) is true, show that P(f (x)) is true,” for some suitably

chosen function f .

631

are entries of this form, the not clause filters out the empty frame and

returns an empty stream offrames. Consequently, the entire compound

query returns an empty stream.

e trouble is that our implementation of not
really is meant to

serve as a filter on values for the variables. If a not clause is processed

with a frame in which some of the variables remain unbound (as does

?x in the example above), the system will produce unexpected results.

Similar problems occur with the use of lisp-value—the Lisp predicate

can’t work if some ofits arguments are unbound. See Exercise 4.77.

ereisalsoamuch more seriousway inwhich the not of thequery

language differs from the not of mathematical logic. In logic, we inter-

pret the statement “not P” to mean that P is not true. In the query sys-

tem,however,“not P”meansthat P isnotdeduciblefromtheknowledge

in the data base. For example, given the personnel data base of Section

4.4.1, the system would happily deduce all sorts of not statements, such

as that Ben Bitdiddle is not a baseball fan, that it is not raining outside,

and that 2 + 2 is not 4.78 In other words, the not of logic programming

languages reflects the so-called closed world assumption that all relevant

information has been included in the data base.79

Exercise4.64:LouisReasonermistakenlydeletesthe outranked-

by rule (Section 4.4.1) from the data base. When he real

izes this, he quickly reinstalls it. Unfortunately, he makes a

slight change in the rule, and types it in as

78Consider the query (not (baseball-fan (Bitdiddle Ben))). e system finds

that (baseball-fan (Bitdiddle Ben)) is not in the data base, so the empty frame

does not satisfy the paern and is not filtered out of the initial stream of frames. e

result of the query is thus the empty frame, which is used to instantiate the input query

to produce (not (baseball-fan (Bitdiddle Ben))).

79A discussion and justification of this treatment of not can be found in the article

by Clark (1978).

632

(rule (outranked-by ?staff-person ?boss)

(or (supervisor ?staff-person ?boss)

(and (outranked-by ?middle-manager ?boss)

(supervisor ?staff-person

?middle-manager))))

Just aer Louis types this information into the system, De-

Wi Aull comes by to find out who outranks Ben Bitdiddle.

He issues the query

(outranked-by (Bitdiddle Ben) ?who)

Aer answering, the system goes into an infinite loop. Ex-

plain why.

Exercise4.65: Cy D. Fect, lookingforward to the day when

he will rise in the organization, gives a query to find all the

wheels (using the wheel rule of Section 4.4.1):

(wheel ?who)

To his surprise, the system responds

;;; Query results:

(wheel (Warbucks Oliver))

(wheel (Bitdiddle Ben))

(wheel (Warbucks Oliver))

(wheel (Warbucks Oliver))

(wheel (Warbucks Oliver))

Why is Oliver Warbucks listed four times?

Exercise 4.66: Ben has been generalizing the query sys-

tem to provide statistics about the company. For example,

633

to find the total salaries of all the computer programmers

one will be able to say

(sum ?amount (and (job ?x (computer programmer))

(salary ?x ?amount)))

Ingeneral,Ben’snewsystemallowsexpressionsoftheform

(accumulation-function ⟨variable⟩ ⟨query pattern⟩)

where accumulation-functioncanbethingslike sum, average,

or maximum. Ben reasons that it should be a cinch to imple

ment this. He will simply feed the query paern to qeval.

is will produce a stream of frames. He will then pass this

stream through a mapping function that extracts the value

of the designated variable from each frame in the stream

and feed the resulting stream ofvalues to the accumulation

function. Just as Ben completes the implementation and is

abouttotryitout,Cywalksby,stillpuzzlingoverthe wheel

query result in Exercise 4.65. When Cy shows Ben the sys

tem’s response, Ben groans, “Oh, no, my simple accumula

tion scheme won’t work!”

What has Ben just realized? Outline a method he can use

to salvage the situation.

Exercise4.67: Devise away toinstall a loopdetector in the

query system so as to avoid the kinds of simple loops illus-

trated in the text and in Exercise 4.64. e general idea is

that the system should maintain some sort of history ofits

current chain of deductions and should not begin process-

ing a query that it is already working on. Describe what

kind of information (paerns and frames) is included in

634

this history, and how the check should be made. (Aer you

study the details of the query-system implementation in

Section 4.4.4, you may want to modify the system to in-

clude your loop detector.)

Exercise 4.68: Define rules to implement the reverse op-

eration of Exercise 2.18, which returns a list containing the

same elements as a given list in reverse order. (Hint: Use

append-to-form.) Can your rules answer both (reverse

(1 2 3) ?x) and (reverse ?x (1 2 3)) ?

Exercise 4.69: Beginning with the data base and the rules

you formulated in Exercise 4.63, devise a rule for adding

“greats” to a grandson relationship. is should enable the

system to deduce that Irad is the great-grandson of Adam,

orthatJabalandJubalarethegreat-great-great-great-great-

grandsonsofAdam.(Hint:RepresentthefactaboutIrad,for

example, as ((great grandson) Adam Irad). Write rules

that determine if a list ends in the word grandson. Use this

to express a rule that allows one to derive the relationship

((great . ?rel) ?x ?y), where ?rel is a list ending in

grandson.) Check your rules on queries such as ((great

grandson) ?g ?ggs) and (?relationship Adam Irad).

4.4.4 Implementing the ery System

Section 4.4.2 described how the query system works. Now we fill in the

details by presenting a complete implementation of the system.

635

4.4.4.1 The Driver Loop and Instantiation

edriverloopforthequerysystemrepeatedlyreadsinput expressions.

If the expression is a rule or assertion to be added to the data base, then

the information is added. Otherwise the expression is assumed to be

a query. e driver passes this query to the evaluator qeval together

with an initial frame stream consisting of a single empty frame. e

result of the evaluation is a stream of frames generated by satisfying

the query with variable values found in the data base. ese frames are

used to form a new stream consisting of copies of the original query in

which the variables are instantiated with values supplied by the stream

of frames, and this final stream is printed at the terminal:

(define input-prompt ";;; Query input:")

(define output-prompt ";;; Query results:")

(define (query-driver-loop)

(prompt-for-input input-prompt)

(let ((q (query-syntax-process (read))))

(cond ((assertion-to-be-added? q)

(add-rule-or-assertion! (add-assertion-body q))

(newline)

(display "Assertion added to data base.")

(query-driver-loop))

(else

(newline)

(display output-prompt)

(display-stream

(stream-map

(lambda (frame)

(instantiate

q

frame

636

(lambda (v f)

(contract-question-mark v))))

(qeval q (singleton-stream '()))))

(query-driver-loop)))))

Here, as in the other evaluators in this chapter, we use an abstract syn-

taxfortheexpressionsofthequerylanguage.e implementationoftheexpression syntax, including the predicate
assertion-to-be-added?

and the selector add-assertion-body, is given in Section 4.4.4.7. Add-

rule-or-assertion! is defined in Section 4.4.4.5.

Before doing any processing on an input expression, the driver loop

transforms it syntactically into a form that makes the processing more

efficient. isinvolves changing the representationof paern variables.

When the query is instantiated, any variables that remain unbound

are transformed back to the input representation before being printed.

ese transformations are performed by the two procedures query-

syntax-process and contract-question-mark (Section 4.4.4.7).

To instantiate an expression, we copy it, replacing any variables in

the expression by their values in a given frame. e values are them

selves instantiated, since they could contain variables (for example, if

?x in exp is bound to ?y as the result of unification and ?y is in turn

bound to 5). e action to take if a variable cannot be instantiated is

given by a procedural argument to instantiate.

(define (instantiate exp frame unbound-var-handler)

(define (copy exp)

(cond ((var? exp)

(let ((binding (binding-in-frame exp frame)))

(if binding

(copy (binding-value binding))

(unbound-var-handler exp frame))))

((pair? exp)

637

(cons (copy (car exp)) (copy (cdr exp))))

(else exp)))

(copy exp))

e procedures that manipulate bindings are defined in Section 4.4.4.8.

4.4.4.2 The Evaluator

e qeval procedure, called by the query-driver-loop, is the basic

evaluator ofthe query system. It takes as inputs a query and a stream of

frames, and it returns a stream of extended frames. It identifies special

forms by a data-directed dispatch using get and put, just as we did in

implementing generic operations in Chapter 2. Any query that is not

identified as a special form is assumed to be a simple query, to be pro-

cessed by simple-query.

(define (qeval query frame-stream)

(let ((qproc (get (type query) 'qeval)))

(if qproc

(qproc (contents query) frame-stream)

(simple-query query frame-stream))))

Type and contents, defined in Section 4.4.4.7, implement the abstract

syntax of the special forms.

Simple queries

e simple-query procedure handles simple queries. It takes as argu-

ments a simple query (a paern) together with a stream of frames, and

it returns the stream formed by extending each frame by all data-base

matches of the query.

(define (simple-query query-pattern frame-stream)

(stream-flatmap

638

(lambda (frame)

(stream-append-delayed

(find-assertions query-pattern frame)

(delay (apply-rules query-pattern frame))))

frame-stream))

For each frame in the input stream, we use find-assertions (Section

4.4.4.3) to match the paern against all assertions in the data base, pro

ducing a stream of extended frames, and we use apply-rules (Sec-

tion 4.4.4.4) to apply all possible rules, producing another stream of ex

tendedframes.esetwostreamsare combined(using stream-append-

delayed, Section 4.4.4.6) to make a stream of all the ways that the given

paern can be satisfied consistent with the original frame (see Exer

cise 4.71). e streams for the individual input frames are combined us-

ing stream-flatmap (Section 4.4.4.6) to form one large stream of all the

waysthat anyof theframesintheoriginalinput streamcanbeextended

to produce a match with the given paern.

Compound queries

And
queries are handled as illustrated in Figure 4.5 by the conjoin pro

cedure. Conjoin takes as inputs the conjuncts and the frame stream

and returns the stream of extended frames. First, conjoin processes the

stream of frames to find the stream of all possible frame extensions that

satisfy the first query in the conjunction. en, using this as the new

frame stream, it recursively applies conjoin to the rest of the queries.

(define (conjoin conjuncts frame-stream)

(if (empty-conjunction? conjuncts)

frame-stream

(conjoin (rest-conjuncts conjuncts)

(qeval (first-conjunct conjuncts) frame-stream))))

639

e expression

(put 'and 'qeval conjoin)

sets up qeval to dispatch to conjoin when an and form is encountered.

Or
queries are handled similarly, as shown in Figure 4.6. e output

streams for the various disjuncts of the or are computed separately and

merged using the interleave-delayed procedure from Section 4.4.4.6.

(See Exercise 4.71 and Exercise 4.72.)

(define (disjoin disjuncts frame-stream)

(if (empty-disjunction? disjuncts)

the-empty-stream

(interleave-delayed

(qeval (first-disjunct disjuncts) frame-stream)

(delay (disjoin (rest-disjuncts disjuncts) frame-stream)))))

(put 'or 'qeval disjoin)

e predicates and selectors for the syntax of conjuncts and disjuncts

are given in Section 4.4.4.7.

Filters

NotishandledbythemethodoutlinedinSection4.4.2.Weaempttoex-

tend each frame in the input stream to satisfy the query being negated,

and we include a given frame in the output stream only if it cannot be

extended.

(define (negate operands frame-stream)

(stream-flatmap

(lambda (frame)

(if (stream-null?

(qeval (negated-query operands)

(singleton-stream frame)))

(singleton-stream frame)

640

the-empty-stream))

frame-stream))

(put 'not 'qeval negate)

Lisp-value is a filter similar to not. Each frame in the stream is used

to instantiate the variables in the paern, the indicated predicate is ap-

plied, and the frames for which the predicate returns false are filtered

out of the input stream. An error results if there are unbound paern

variables.

(define (lisp-value call frame-stream)

(stream-flatmap

(lambda (frame)

(if (execute

(instantiate

call

frame

(lambda (v f)

(error "Unknown pat var: LISP-VALUE" v))))

(singleton-stream frame)

the-empty-stream))

frame-stream))

(put 'lisp-value 'qeval lisp-value)

Execute, which applies the predicate to the arguments, must eval the

predicate expressionto get the procedure to apply.However, it must not

evaluate the arguments, since they are already the actual arguments,

not expressions whose evaluation (in Lisp) will produce the arguments.

Note that execute is implemented using eval and apply from the un

derlying Lisp system.

(define (execute exp)

(apply (eval (predicate exp) user-initial-environment)

(args exp)))

641

e always-true special form provides for a query that is always satis-

fied. It ignores its contents (normally empty)and simply passes through

all the frames in the input stream. Always-true is used by the rule-

body selector (Section 4.4.4.7) to provide bodies for rules that were de

fined without bodies (that is, rules whose conclusions are always satis

fied).

(define (always-true ignore frame-stream) frame-stream)

(put 'always-true 'qeval always-true)

e selectors that define the syntax of not and lisp-value are given in

Section 4.4.4.7.

4.4.4.3 Finding Assertions

by Paern Matching

Find-assertions, called by simple-query (Section 4.4.4.2), takes as in

put a paern and a frame. It returns a stream of frames, each extending

the given one by a data-base match of the given paern. It uses fetch-

assertions (Section 4.4.4.5) to get a stream of all the assertions in the

database that shouldbe checked for a match against the paernand the

frame. e reason for fetch-assertions here is that we can oen ap-

ply simple tests that will eliminate many of the entries in the data base

from the pool of candidates for a successful match. e system would

still work if we eliminated fetch-assertions and simply checked a

stream of all assertions in the data base, but the computation would be

less efficient because we would need to make many more calls to the

matcher.

(define (find-assertions pattern frame)

(stream-flatmap

(lambda (datum) (check-an-assertion datum pattern frame))

(fetch-assertions pattern frame)))

642

Check-an-assertion takesas arguments apaern, a data object (asser-

tion), and a frame and returns either a one-element stream containing

the extended frame or the-empty-stream if the match fails.

(define (check-an-assertion assertion query-pat query-frame)

(let ((match-result

(pattern-match query-pat assertion query-frame)))

(if (eq? match-result 'failed)

the-empty-stream

(singleton-stream match-result))))

e basic paern matcher returns either the symbol
failed or an ex-

tension of the given frame. e basic idea of the matcher is to check the

paern against the data, element by element,accumulating bindings for

the paern variables. If the paern and the data object are the same, the

match succeeds and we returnthe frame ofbindings accumulated sofar.

Otherwise, if the paern is a variable we extend the current frame by

binding the variable to the data, so long as this is consistent with the

bindings already in the frame. If the paern and the data are both pairs,

we (recursively) match the car ofthe paern against the car of the data

to produce a frame; in this frame we then match the cdr of the paern

against the cdr of the data. If none of these cases are applicable, the

match fails and we return the symbol failed.

(define (pattern-match pat dat frame)

(cond ((eq? frame 'failed) 'failed)

((equal? pat dat) frame)

((var? pat) (extend-if-consistent pat dat frame))

((and (pair? pat) (pair? dat))

(pattern-match

(cdr pat)

(cdr dat)

(pattern-match (car pat) (car dat) frame)))

643

(else 'failed)))

Here is the procedure that extends a frame by adding a new binding, if

this is consistent with the bindings already in the frame:

(define (extend-if-consistent var dat frame)

(let ((binding (binding-in-frame var frame)))

(if binding

(pattern-match (binding-value binding) dat frame)

(extend var dat frame))))

If there is no binding for the variable in the frame, we simply add the

binding of the variable to the data. Otherwise we match, in the frame,

the data against the value of the variable in the frame. If the stored

value contains only constants, as it must if it was stored during pat-

tern matching by extend-if-consistent, then the match simply tests

whether the stored and new values are the same. If so, it returns the un-

modified frame; if not, it returns a failure indication. e stored value

may, however, contain paern variables if it was stored during unifi-

cation (see Section 4.4.4.4). e recursive match of the stored paern

against the new data will add or check bindings for the variables in this

paern. For example, suppose we have a frame in which ?x is bound

to (f ?y) and ?y is unbound, and we wish to augment this frame by

a binding of ?x to (f b). We look up ?x and find that it is bound to

(f ?y). is leads us to match (f ?y) against the proposed new value

(f b) in the same frame. Eventually this match extends the frame by

adding a binding of ?y to b. ?X remains bound to (f ?y). We never

modify a stored binding and we never store more than one binding for

a given variable.

eproceduresusedby extend-if-consistenttomanipulatebind-ings are defined in Section 4.4.4.8.

644

Paerns with doed tails

If a paern contains a dot followed by a paern variable, the paern

variable matches the rest of the data list (rather than the next element

of the data list), just as one would expect with the doed-tail notation

described in Exercise 2.20. Although the paern matcher we have just

implemented doesn’t look for dots, it does behave as we want. is is

because the Lisp
read primitive, which is used by query-driver-loop

to read the query and represent it as a list structure, treats dots in a

special way.

When read sees a dot, instead of making the next item be the next

element ofa list (the car ofa cons whose cdr will be the rest of the list)

it makes the next item be the cdr of the list structure. For example, the

list structure produced by read for the paern (computer ?type) could

be constructed by evaluating the expression (cons 'computer (cons

'?type '())), and that for (computer . ?type) could be constructed

by evaluating the expression (cons 'computer '?type).

us, as pattern-match recursively compares cars and cdrs of a

data list and a paern that had a dot, it eventually matches the variable

aer the dot (which is a cdr of the paern) against a sublist of the data

list, binding the variable to that list. For example, matching the paern

(computer . ?type) against (computer programmer trainee) will

match ?type against the list (programmer trainee).

4.4.4.4 Rules and Unification

Apply-rules is the rule analog of find-assertions (Section 4.4.4.3).

It takes as input a paern and a frame, and it forms a stream of exten-

sionframesby applyingrulesfromthedatabase. Stream-flatmap maps

apply-a-rule down the stream of possibly applicable rules (selected

645

by fetch-rules, Section 4.4.4.5) and combines the resulting streams of

frames.

(define (apply-rules pattern frame)

(stream-flatmap (lambda (rule)

(apply-a-rule rule pattern frame))

(fetch-rules pattern frame)))

Apply-a-rule applies rules using the method outlined in Section 4.4.2.

It first augments its argument frame by unifying the rule conclusion

with the paern in the given frame. If this succeeds, it evaluates the

rule body in this new frame.

Before any of this happens, however, the program renames all the

variables in the rule with unique new names. e reason for this is to

prevent the variablesfor different rule applicationsfrom becoming con-

fused with each other. For instance, if two rules both use a variable

named ?x, then each one may add a binding for ?x to the frame when it

is applied. ese two ?x’s have nothing to do with each other, and we

should not be fooled into thinking that the two bindings must be con-

sistent. Rather than rename variables, we could devise a more clever

environment structure; however, the renaming approach we have cho-

sen here is the most straightforward, even if not the most efficient. (See

Exercise 4.79.) Here is the apply-a-rule procedure:

(define (apply-a-rule rule query-pattern query-frame)

(let ((clean-rule (rename-variables-in rule)))

(let ((unify-result (unify-match query-pattern

(conclusion clean-rule)

query-frame)))

(if (eq? unify-result 'failed)

the-empty-stream

(qeval (rule-body clean-rule)

(singleton-stream unify-result))))))

646

e selectors rule-body and conclusion that extract parts ofa rule are

defined in Section 4.4.4.7.

We generate unique variable names by associating a unique identi-

fier (such as a number) with each rule application and combining this

identifier with the original variable names. For example, if the rule

application identifier is 7, we might change each ?x in the rule to ?x-7

and each ?y in the rule to ?y-7. (Make-new-variable and new-rule-

application-id are included with the syntax procedures in Section

4.4.4.7.)

(define (rename-variables-in rule)

(let ((rule-application-id (new-rule-application-id)))

(define (tree-walk exp)

(cond ((var? exp)

(make-new-variable exp rule-application-id))

((pair? exp)

(cons (tree-walk (car exp))

(tree-walk (cdr exp))))

(else exp)))

(tree-walk rule)))

e unification algorithm is implemented as a procedure that takes as

inputs two paerns and a frame and returns either the extended frame

or the symbol
failed. e unifier is like the paern matcher except

that it is symmetrical—variables are allowed on both sides ofthe match.

Unify-match is basically the same as pattern-match, except that there

is extra code (marked “***” below) to handle the case where the object

on the right side of the match is a variable.

(define (unify-match p1 p2 frame)

(cond ((eq? frame 'failed) 'failed)

((equal? p1 p2) frame)

((var? p1) (extend-if-possible p1 p2 frame))

647

((var? p2) (extend-if-possible p2 p1 frame)) ; ***

((and (pair? p1) (pair? p2))

(unify-match (cdr p1)

(cdr p2)

(unify-match (car p1)

(car p2)

frame)))

(else 'failed)))

In unification, as in one-sided paern matching, we want to accept a

proposed extension of the frame only if it is consistent with existing

bindings. e procedure extend-if-possible used in unification is the

sameasthe extend-if-consistentusedinpaernmatchingexcept for

twospecial checks,marked “***” inthe programbelow. In the first case,

if the variable we are trying to match is not bound, but the value we are

trying to match it with is itself a (different) variable, it is necessary to

check to see if the value is bound, and if so, to match its value. If both

parties to the match are unbound, we may bind either to the other.

e second check deals with aempts to bind a variable to a pat-

tern that includes that variable. Such a situation can occur whenever a

variable is repeated in both paerns. Consider, for example, unifying

the two paerns (?x ?x) and (?y ⟨expression involving ?y⟩) in a

frame where both ?x and ?y are unbound. First ?x is matched against

?y, making a binding of ?x to ?y. Next, the same ?x is matched against

the given expression involving ?y. Since ?x is already bound to ?y, this

results in matching ?y against the expression. If we think of the unifier

as findinga set ofvaluesfor the paern variablesthat make the paerns

the same, then these paerns imply instructions to find a ?y such that

?y is equal to the expression involving ?y. ere is no general method

for solving such equations, so we reject such bindings; these cases are

648

recognized by the predicate depends-on?.80 On the other hand, we do

not want to reject aempts to bind avariable to itself. For example, con

sider unifying (?x ?x) and (?y ?y). e second aempt to bind ?x to

?y matches ?y (the stored value of ?x) against ?y (the new value of ?x).

is is taken care ofby the equal? clause of unify-match.

(define (extend-if-possible var val frame)

(let ((binding (binding-in-frame var frame)))

(cond (binding

80In general, unifying ?y with an expression involving ?y would require our being

able to find a fixed point of the equation ?y = ⟨expression involving ?y⟩. It is sometimes

possible to syntactically form an expression that appears to be the solution. For exam-

ple, ?y = (f ?y) seems to have the fixed point (f (f (f ...))), which we can produce

by beginning with the expression (f ?y) and repeatedly substituting (f ?y) for ?y.

Unfortunately, not every such equation has a meaningful fixed point. e issues that

arise here are similar to the issues of manipulating infinite series in mathematics. For

example, we know that 2 is the solution to the equation y = 1 + y/2. Beginning with

the expression 1 +y/2 and repeatedly substituting 1 +y/2 for y gives

2=y=1+y2 = 1+12 (1+y2)

= 1 +

1

2

+

y

4

= ...,

which leads to

2=1+

12 + 14 + 1

8

+....

However, if we try the same manipulation beginning with the observation that -1 is the

solution to the equationy = 1 + 2y, we obtain

−1=y=1+2y=1+2(1+2y)=1+2+4y=...,

which leads to

−1=1+2+4+8+....

Although the formal manipulations used in deriving these two equations are identical,

thefirstresultisavalidassertionaboutinfiniteseriesbutthesecondisnot. Similarly,forourunification results,reasoningwith anarbitrarysyntactically constructedexpressionmay lead to errors.

649

(unify-match (binding-value binding) val frame))

((var? val) ;***

(let ((binding (binding-in-frame val frame)))

(if binding

(unify-match

var (binding-value binding) frame)

(extend var val frame))))

((depends-on? val var frame) ;***

'failed)

(else (extend var val frame)))))

Depends-on? is a predicate that tests whether an expression proposed

to be the value of a paern variable depends on the variable. is must

be done relative to the current frame because the expression may con-

tain occurrences of a variable that already has a value that depends on

our test variable. e structure of depends-on? is a simple recursive

tree walk in which we substitute for the values of variables whenever

necessary.

(define (depends-on? exp var frame)

(define (tree-walk e)

(cond ((var? e)

(if (equal? var e)

true

(let ((b (binding-in-frame e frame)))

(if b

(tree-walk (binding-value b))

false))))

((pair? e)

(or (tree-walk (car e))

(tree-walk (cdr e))))

(else false)))

(tree-walk exp))

650

4.4.4.5 Maintaining the Data Base

One important problem in designing logic programming languages is

that of arranging things so that as few irrelevant data-base entries as

possible will be examined in checking a given paern. In our system, in

addition to storing all assertions in one big stream, we store all asser-

tions whose cars are constant symbols in separate streams, in a table

indexed by the symbol. To fetch an assertion that may match a paern,

we first check to see if the car of the paern is a constant symbol. If

so, we return (to be tested using the matcher) all the stored assertions

that have the same car. If the paern’s car is not a constant symbol,

we return all the stored assertions. Cleverer methods could also take

advantage of information in the frame, or try also to optimize the case

where the car of the paern is not a constant symbol. We avoid build-

ing our criteria for indexing (using the car, handling only the case of

constant symbols) into the program; instead we call on predicates and

selectors that embody our criteria.

(define THE-ASSERTIONS the-empty-stream)

(define (fetch-assertions pattern frame)

(if (use-index? pattern)

(get-indexed-assertions pattern)

(get-all-assertions)))

(define (get-all-assertions) THE-ASSERTIONS)

(define (get-indexed-assertions pattern)

(get-stream (index-key-of pattern) 'assertion-stream))

Get-stream looks up a stream in the table and returns an empty stream

if nothing is stored there.

(define (get-stream key1 key2)

(let ((s (get key1 key2)))

(if s s the-empty-stream)))

651

Rules are stored similarly, using the car of the rule conclusion. Rule

conclusions are arbitrary paerns, however, so they differ from asser-

tions in that they can contain variables. A paern whose car is a con-

stant symbol can match ruleswhose conclusions start with a variable as

well as rules whose conclusions have the same car. us, when fetch-

ing rules that might match a paern whose car is a constant symbol we

fetch all rules whose conclusions start with a variable as well as those

whose conclusions have the same car as the paern. For this purpose

we store all rules whose conclusions start with a variable in a separate

stream in our table, indexed by the symbol ?.

(define THE-RULES the-empty-stream)

(define (fetch-rules pattern frame)

(if (use-index? pattern)

(get-indexed-rules pattern)

(get-all-rules)))

(define (get-all-rules) THE-RULES)

(define (get-indexed-rules pattern)

(stream-append

(get-stream (index-key-of pattern) 'rule-stream)

(get-stream '? 'rule-stream)))

Add-rule-or-assertion! is used by query-driver-loop to add asser-

tions and rules to the data base. Each item is stored in the index, if ap-

propriate, and in a stream of all assertions or rules in the data base.

(define (add-rule-or-assertion! assertion)

(if (rule? assertion)

(add-rule! assertion)

(add-assertion! assertion)))

(define (add-assertion! assertion)

(store-assertion-in-index assertion)

(let ((old-assertions THE-ASSERTIONS))

652

(set! THE-ASSERTIONS

(cons-stream assertion old-assertions))

'ok))

(define (add-rule! rule)

(store-rule-in-index rule)

(let ((old-rules THE-RULES))

(set! THE-RULES (cons-stream rule old-rules))

'ok))

To actually store an assertion or a rule, we check to see if it can be

indexed. If so, we store it in the appropriate stream.

(define (store-assertion-in-index assertion)

(if (indexable? assertion)

(let ((key (index-key-of assertion)))

(let ((current-assertion-stream

(get-stream key 'assertion-stream)))

(put key

'assertion-stream

(cons-stream

assertion

current-assertion-stream))))))

(define (store-rule-in-index rule)

(let ((pattern (conclusion rule)))

(if (indexable? pattern)

(let ((key (index-key-of pattern)))

(let ((current-rule-stream

(get-stream key 'rule-stream)))

(put key

'rule-stream

(cons-stream rule

current-rule-stream)))))))

e followingproceduresdefine how the data-base index isused. Apat-

tern (an assertion or a rule conclusion) will be stored in the table if it

653

starts with a variable or a constant symbol.

(define (indexable? pat)

(or (constant-symbol? (car pat))

(var? (car pat))))

e key underwhich apaernis storedinthe table is either ? (ifit starts

with a variable) or the constant symbol with which it starts.

(define (index-key-of pat)

(let ((key (car pat)))

(if (var? key) '? key)))

e index will be used to retrieve items that might match a paern if

the paern starts with a constant symbol.

(define (use-index? pat) (constant-symbol? (car pat)))

Exercise 4.70: What is the purpose of the let bindings

in the procedures
add-assertion! and add-rule! ? What

wouldbewrongwiththefollowingimplementationof add-

assertion!?Hint:Recallthedefinitionoftheinfinitestream

of ones in Section 3.5.2: (define ones (cons-stream 1

ones)).

(define (add-assertion! assertion)

(store-assertion-in-index assertion)

(set! THE-ASSERTIONS

(cons-stream assertion THE-ASSERTIONS))

'ok)

4.4.4.6 Stream Operations

e query system uses a few stream operations that were not presented

in Chapter 3.

654

Stream-append-delayedand interleave-delayedarejustlike stream-

append and interleave (Section 3.5.3), except that they take a delayed

argument (like the integral procedure in Section 3.5.4). ispostpones

looping in some cases (see Exercise 4.71).

(define (stream-append-delayed s1 delayed-s2)

(if (stream-null? s1)

(force delayed-s2)

(cons-stream

(stream-car s1)

(stream-append-delayed

(stream-cdr s1)

delayed-s2))))

(define (interleave-delayed s1 delayed-s2)

(if (stream-null? s1)

(force delayed-s2)

(cons-stream

(stream-car s1)

(interleave-delayed

(force delayed-s2)

(delay (stream-cdr s1))))))

Stream-flatmap, which is used throughout the query evaluator to map

a procedure over a stream of frames and combine the resulting streams

of frames, is the stream analog of the flatmap procedure introduced

for ordinary lists in Section 2.2.3. Unlike ordinary flatmap, however,

we accumulate the streams with an interleaving process, rather than

simply appending them (see Exercise 4.72 and Exercise 4.73).

(define (stream-flatmap proc s)

(flatten-stream (stream-map proc s)))

(define (flatten-stream stream)

(if (stream-null? stream)

655

the-empty-stream

(interleave-delayed

(stream-car stream)

(delay (flatten-stream (stream-cdr stream))))))

e evaluator also uses the following simple procedure to generate a

stream consisting of a single element:

(define (singleton-stream x)

(cons-stream x the-empty-stream))

4.4.4.7 ery Syntax Procedures

Typeand contents,usedby qeval(Section4.4.4.2),specifythataspecial

form is identified by the symbol in its car. ey are the same as the

type-tag and contents procedures in Section 2.4.2, except for the error

message.

(define (type exp)

(if (pair? exp)

(car exp)

(error "Unknown expression TYPE" exp)))

(define (contents exp)

(if (pair? exp)

(cdr exp)

(error "Unknown expression CONTENTS" exp)))

efollowingprocedures,usedby query-driver-loop(inSection4.4.4.1),specify that rules and assertions are added to the data base by expres-

sions ofthe form (assert! ⟨rule-or-assertion⟩):

(define (assertion-to-be-added? exp)

(eq? (type exp) 'assert!))

(define (add-assertion-body exp) (car (contents exp)))

656

Here are the syntax definitions for the and, or, not, and lisp-value

special forms (Section 4.4.4.2):

(define (empty-conjunction? exps) (null? exps))

(define (first-conjunct exps) (car exps))

(define (rest-conjuncts exps) (cdr exps))

(define (empty-disjunction? exps) (null? exps))

(define (first-disjunct exps) (car exps))

(define (rest-disjuncts exps) (cdr exps))

(define (negated-query exps) (car exps))

(define (predicate exps) (car exps))

(define (args exps) (cdr exps))

e following three procedures define the syntax of rules:

(define (rule? statement)

(tagged-list? statement 'rule))

(define (conclusion rule) (cadr rule))

(define (rule-body rule)

(if (null? (cddr rule)) '(always-true) (caddr rule)))

Query-driver-loop(Section4.4.4.1)calls query-syntax-processtotrans-form paern variables in the expression, which have the form ?symbol,

into the internal format (? symbol). at is to say, a paern such as

(job ?x ?y) is actually represented internally by the system as (job

(? x) (? y)). is increases the efficiency of query processing, since

it means that the system can check to see if an expression is a paern

variable by checking whether the car of the expression is the symbol

?, rather than having to extract characters from the symbol. e syntax

transformation is accomplished by the following procedure:81

81Most Lisp systems give the user the ability to modify the ordinary
read

pro-

cedure to perform such transformations by defining reader macro characters. oted

expressions are already handled in this way: e reader automatically translates

657

(define (query-syntax-process exp)

(map-over-symbols expand-question-mark exp))

(define (map-over-symbols proc exp)

(cond ((pair? exp)

(cons (map-over-symbols proc (car exp))

(map-over-symbols proc (cdr exp))))

((symbol? exp) (proc exp))

(else exp)))

(define (expand-question-mark symbol)

(let ((chars (symbol->string symbol)))

(if (string=? (substring chars 0 1) "?")

(list '?

(string->symbol

(substring chars 1 (string-length chars))))

symbol)))

Oncethevariablesaretransformedinthisway,the variablesinapaern

are lists starting with ?, and the constant symbols (which need to be

recognized for data-base indexing, Section 4.4.4.5) are just the symbols.

(define (var? exp) (tagged-list? exp '?))

(define (constant-symbol? exp) (symbol? exp))

Unique variables are constructed during rule application (in Section

4.4.4.4) by means of the following procedures. e unique identifier for

a rule application is a number, which is incremented each time a rule is

applied.

(define rule-counter 0)

'expression into (quote expression) before the evaluator sees it. We could arrange

for ?expression to be transformed into (? expression) in the same way; however,

for the sake of clarity we have included the transformation procedure here explicitly.

Expand-question-markand contract-question-mark useseveralprocedureswith

string in their names. ese are Scheme primitives.

658

(define (new-rule-application-id)

(set! rule-counter (+ 1 rule-counter))

rule-counter)

(define (make-new-variable var rule-application-id)

(cons '? (cons rule-application-id (cdr var))))

When query-driver-loop instantiates the query to print the answer,

it converts any unbound paern variables back to the right form for

printing, using

(define (contract-question-mark variable)

(string->symbol

(string-append "?"

(if (number? (cadr variable))

(string-append (symbol->string (caddr variable))

"-"

(number->string (cadr variable)))

(symbol->string (cadr variable))))))

4.4.4.8 Frames and Bindings

Frames are represented as lists of bindings, which are variable-value

pairs:

(define (make-binding variable value)

(cons variable value))

(define (binding-variable binding) (car binding))

(define (binding-value binding) (cdr binding))

(define (binding-in-frame variable frame)

(assoc variable frame))

(define (extend variable value frame)

(cons (make-binding variable value) frame))

659

Exercise 4.71: Louis Reasoner wonders why the simple-

query and disjoin procedures (Section 4.4.4.2) are imple

mented using explicit delay operations, rather than being

defined as follows:

(define (simple-query query-pattern frame-stream)

(stream-flatmap

(lambda (frame)

(stream-append

(find-assertions query-pattern frame)

(apply-rules query-pattern frame)))

frame-stream))

(define (disjoin disjuncts frame-stream)

(if (empty-disjunction? disjuncts)

the-empty-stream

(interleave

(qeval (first-disjunct disjuncts)

frame-stream)

(disjoin (rest-disjuncts disjuncts)

frame-stream))))

Can you give examples of queries where these simpler def-

initions would lead to undesirable behavior?

Exercise 4.72: Why do disjoin and stream-flatmap in-

terleave the streams rather than simply append them? Give

examplesthatillustratewhyinterleavingworksbeer.(Hint:

Why did we use interleave in Section 3.5.3?)

Exercise 4.73: Why does flatten-stream use delay ex-

plicitly? What would be wrong with defining it as follows:

(define (flatten-stream stream)

660

(if (stream-null? stream)

the-empty-stream

(interleave

(stream-car stream)

(flatten-stream (stream-cdr stream)))))

Exercise 4.74: Alyssa P. Hacker proposes to use a sim

pler version of stream-flatmap in negate, lisp-value,

and find-assertions.Sheobservesthattheprocedurethat

is mapped over the frame stream in these cases always pro-

duces either the empty stream or a singleton stream, so no

interleaving is needed when combining these streams.

a. Fill in the missing expressions in Alyssa’s program.

(define (simple-stream-flatmap proc s)

(simple-flatten (stream-map proc s)))

(define (simple-flatten stream)

(stream-map ⟨??⟩

(stream-filter ⟨??⟩ stream)))

b. Doesthequerysystem’sbehaviorchangeifwechange

it in this way?

Exercise 4.75: Implement for the query language a new

special form called unique. Unique should succeed if there

is precisely one item in the data base satisfying a specified

query. For example,

(unique (job ?x (computer wizard)))

should print the one-item stream

(unique (job (Bitdiddle Ben) (computer wizard)))

661

since Ben is the only computer wizard, and

(unique (job ?x (computer programmer)))

should print the empty stream, since there is more thanonecomputer programmer. Moreover,

(and (job ?x ?j) (unique (job ?anyone ?j)))

should list all the jobs that are filled by only one person,

and the people who fill them.

ere are two parts to implementing unique. e first is to

write a procedure that handles this special form, and the

second is to make qeval dispatch to that procedure. e

second part is trivial, since qeval does its dispatching in

a data-directed way. If your procedure is called uniquely-asserted, all you need to do is

(put 'unique 'qeval uniquely-asserted)

and qeval will dispatch to this procedure for every query

whose type (car) is the symbol unique.

erealproblemistowritetheprocedure uniquely-asserted.

is should take as input the contents (cdr) ofthe unique

query, together with a stream of frames. For each frame

in the stream, it should use qeval to find the stream of all

extensions to the frame that satisfy the given query. Any

stream that does not have exactly one item in it should be

eliminated. e remaining streams should be passed back

to be accumulated into one big stream that is the result of

the unique query. is is similar to the implementation of

the not special form.

662

Test your implementation by forming a query that lists all

people who supervise precisely one person.

Exercise 4.76: Our implementation of and as a series com-

bination of queries (Figure 4.5) is elegant, but it is ineffi-

cient because in processing the second query of the and we

must scan the data base for each frame produced by the

first query. If the data base has n elements, and a typical

query produces a number of output frames proportional to

n (sayn/k), then scanning the data base for each frame pro-

ducedbythefirst querywillrequiren2/k callstothepaern

matcher. Another approach would be to process the two

clauses of the and separately, then look for all pairs of out

put frames that are compatible. If each query producesn/koutput frames, then thismeans that we must performn2/k2compatibility checks—a factor of k fewer than the number

of matches required in our current method.

Devise an implementation of and that uses this strategy.

You must implement a procedure that takes two frames as

inputs, checks whether the bindings in the frames are com

patible, and, if so, produces a frame that merges the two

sets of bindings. is operation is similar to unification.

Exercise 4.77: In Section 4.4.3 we saw that not and lisp

value can cause the query language to give “wrong” an

swers if these filtering operations are applied to frames in

which variablesareunbound.Deviseawaytofixthisshort-

coming. One idea is to perform the filtering in a “delayed”

manner by appending to the frame a “promise” to filter that

is fulfilled only when enough variables have been bound

663

to make the operation possible. We could wait to perform

filtering until all other operations have been performed.

However, for efficiency’s sake, we would like to perform

filtering as soon as possible so as to cut down on the num-

ber ofintermediate frames generated.

Exercise 4.78: Redesign the query language as a nonde-

terministic program to be implemented using the evalua-

tor of Section 4.3, rather than as a stream process. In this

approach, each query will produce a single answer (rather

than the stream of all answers) and the user can type try-

again to see more answers. You should find that much of

the mechanismwe built in thissectionis subsumed by non-

deterministic search and backtracking. You will probably

also find, however, that your new query language has sub-

tle differences in behavior from the one implemented here.

Can you find examples that illustrate this difference?

Exercise4.79:Whenweimplementedthe LispevaluatorinSection 4.1, we saw how to use local environments to avoid

name conflicts between the parameters of procedures. For

example, in evaluating

(define (square x) (* x x))

(define (sum-of-squares x y)

(+ (square x) (square y)))

(sum-of-squares 3 4)

there is no confusion between the x in square and the x

in sum-of-squares, because we evaluate the body of each

procedure in an environment that is specially constructed

664

to contain bindings for the local variables. In the query sys-

tem, we used a different strategy to avoid name conflicts in

applying rules. Each time we apply a rule we rename the

variableswith newnamesthatare guaranteed tobe unique.

e analogous strategy for the Lisp evaluator would be to

do away with local environments and simply rename the

variables in the body of a procedure each time we apply

the procedure.

Implementforthequerylanguagearule-applicationmethod

that uses environments rather than renaming. See if you

canbuildonyourenvironmentstructuretocreateconstructs

in the query language for dealing with large systems, such

as the rule analog of block-structured procedures. Can you

relate any of this to the problem of making deductions in a

context(e.g.,“IfIsupposedthat P weretrue,thenIwouldbe

able to deduce A and B.”) as a method of problem solving?

(is problem is open-ended. A good answer is probably

worth a Ph.D.)

665

Computing with Register Machines

My aim is to show that the heavenly machine is not a kind

of divine, live being, but a kind of clockwork (and he who

believes that a clock has soul aributes the maker’s glory

to the work), insofar as nearly all the manifold motions are

caused by a most simple and material force,just as all mo

tions of the clock are caused by a single weight.

—Johannes Kepler (leer to Herwart von Hohenburg, 1605)

W bystudyingprocessesandbydescribingpro-

cessesintermsofprocedureswrieninLisp.Toexplainthemean-

ings of these procedures, we used a succession of models of evaluation:

the substitution model of Chapter 1, the environment model of Chap

ter 3, and the metacircular evaluator of Chapter 4. Our examination of

the metacircular evaluator, in particular, dispelled much of the mys

tery of how Lisp-like languages are interpreted. But even the metacir

666

cular evaluator leaves important questions unanswered, because it fails

to elucidate the mechanisms of control in a Lisp system. For instance,

the evaluator does not explain how the evaluation of a subexpression

manages to return a value to the expression that uses this value, nor

does the evaluator explain how some recursive procedures generate it-

erative processes (that is, are evaluated using constant space) whereas

other recursive procedures generate recursive processes. ese ques-

tions remain unanswered because the metacircular evaluator is itself a

Lisp program and hence inherits the control structure ofthe underlying

Lisp system. Inorder toprovide a more complete descriptionof the con-

trol structure of the Lisp evaluator, we must work at a more primitive

level than Lisp itself.

In this chapter we will describe processes in terms of the step-by-

step operation of a traditional computer. Such a computer, or register

machine,sequentially executesinstructions that manipulatethe contents

of a fixed set of storage elements called registers. A typical register-

machine instruction applies a primitive operation to the contents of

some registers and assigns the result to another register. Our descrip-

tions of processes executed by register machines will look very much

like “machine-language” programs for traditional computers. However,

instead of focusing on the machine language of any particular com-

puter, we will examine several Lisp procedures and design a specific

register machine to execute each procedure. us, we will approach our

task from the perspective of a hardware architect rather than that of

a machine-language computer programmer. In designing register ma-

chines, we will develop mechanisms for implementing important pro-

grammingconstructs such asrecursion.We willalsopresent alanguage

for describing designs for register machines. In Section 5.2 we will im

plement a Lispprogram that uses these descriptions to simulate the ma

667

chines we design.

Most of the primitive operations of our register machines are very

simple. For example, an operation might add the numbers fetched from

two registers, producing a result to be stored into a third register. Such

an operation can be performed by easily described hardware. In order

to deal with list structure, however, we will also use the memory opera-

tions car, cdr, and cons, which require an elaborate storage-allocation

mechanism. In Section 5.3 we study their implementation in terms of

more elementary operations.

In Section 5.4, aer we have accumulated experience formulating

simple procedures as register machines, we will design a machine that

carriesout thealgorithmdescribedby themetacircularevaluatorofSec-

tion 4.1. is will fill inthe gapinour understandingof howScheme ex-

pressions are interpreted, by providing an explicit model for the mech-

anisms of control in the evaluator. In Section 5.5 we will study a simple

compiler that translates Scheme programs into sequences of instruc-

tions that can be executed directly with the registers and operations of

the evaluator register machine.

5.1 Designing Register Machines

To design a register machine, we must design its data paths (registers

and operations) and the controller that sequences these operations. To

illustrate the design of a simple register machine, let us examine Eu-

clid’s Algorithm, which is used to compute the greatest common divi

sor ()of twointegers. As we sawin Section 1.2.5, Euclid’sAlgorithm

can be carried out by an iterative process, as specified by the following

procedure:

668

(define (gcd a b)

(if (= b 0)

a

(gcd b (remainder a b))))

A machine to carry out this algorithm must keep track of two numbers,

a andb, so let us assume that these numbers are stored in two registers

with thosenames.e basic operationsrequiredare testingwhetherthe

contents of register
b is zero and computing the remainder of the con-

tents of register
a divided by the contents of register b. e remainder

operationisacomplex process,butassume forthe moment that we have

a primitive device that computes remainders. On each cycle of the

algorithm, the contents of register
a must be replaced by the contents

of register b, and the contents of b must be replaced by the remainder

of the old contents of a divided by the old contents of b. It would be

convenient if these replacements could be done simultaneously, but in

our model of register machines we will assume that only one register

can be assigned a new value at each step. To accomplish the replace-

ments, our machine will use a third “temporary” register, which we call

t. (First the remainder will be placed in t, then the contents of b will be

placed in a, and finally the remainder stored in t will be placed in b.)

We can illustrate the registers and operations required for this ma-

chine by using the data-path diagram shown in Figure 5.1. In this di

agram, the registers (a, b, and t) are represented by rectangles. Each

way to assign a value to a register is indicated by an arrow with an X

behind the head, pointing from the source of data to the register. We

can think of the X as a buon that, when pushed, allows the value at

the source to “flow” into the designated register. e label next to each

buon is the name we will use to refer to the buon. e names are

arbitrary, and can be chosen to have mnemonic value (for example, a←b

669

a b

t

rem

a←b

t←r

b←t

0

=

Figure 5.1: Data paths for a machine.

denotes pushing the buon that assigns the contents of register
b to

register a). e source of data for a register can be another register (as

in the a←b assignment), an operation result (as in the t←r assignment),

or a constant (a built-in value that cannot be changed, represented in a

data-path diagram by a triangle containing the constant).

An operation that computes a value from constants and the con-

tents of registers is represented in a data-path diagram by a trapezoid

containing a name for the operation. For example, the box marked rem

in Figure 5.1 represents an operation that computes the remainder of

the contents of the registers
a and b to which it is aached. Arrows

(without buons) point from the input registers and constants to the

box, and arrows connect the operation’s output value to registers. A

test is represented by a circle containing a name for the test. For exam

ple, our machine has an operation that tests whether the contents

of register b is zero. A test also has arrows from its input registers and

constants, but it has no output arrows; itsvalue isused by the controller

rather than by the data paths. Overall, the data-path diagram shows the

registersandoperations that are requiredfor the machine and howthey

670

start

no

done

yes

= t←r

a←b

b←t

Figure 5.2: Controller for a machine.

must be connected. Ifwe view the arrows as wires and the X buons as

switches, the data-path diagram is very like the wiring diagram for a

machine that could be constructed from electrical components.

In order for the data paths to actually compute s, the buons

must be pushed in the correct sequence. We will describe this sequence

in terms of a controller diagram, as illustrated in Figure 5.2. e ele-

mentsofthe controllerdiagramindicate howthe data-path components

should be operated. e rectangular boxes in the controller diagram

identify data-path buons to be pushed, and the arrows describe the

sequencing from one step to the next. e diamond in the diagram rep-

resents a decision. One of the two sequencing arrows will be followed,

depending on the value of the data-path test identified in the diamond.

We can interpret the controller in terms of a physical analogy: ink

of the diagram as a maze in which a marble is rolling. When the mar

ble rolls into a box, it pushes the data-path buon that is named by the

box. When the marble rolls into a decision node (such as the test for

671

b = 0), it leaves the node on the path determined by the result of the

indicated test. Taken together, the data paths and the controller com-

pletely describe a machine for computing s. We start the controller

(the rolling marble) at the place marked start, aer placing numbers

in registers
a and b. When the controller reaches done, we will find the

value of the in register
a.

Exercise 5.1: Design a register machine to compute facto-

rialsusingtheiterativealgorithmspecifiedby the following

procedure. Draw data-path and controller diagramsfor this

machine.

(define (factorial n)

(define (iter product counter)

(if (> counter n)

product

(iter (* counter product)

(+ counter 1))))

(iter 1 1))

5.1.1 A Language for Describing Register Machines

Data-path and controller diagrams are adequate for representing simple

machines such as , but they are unwieldy for describing large ma

chines such as a Lisp interpreter. To make it possible to deal with com

plex machines, we will create a language that presents, in textual form,

all the information given by the data-path and controller diagrams. We

will start with a notation that directly mirrors the diagrams.

We define the data paths of a machine by describing the registers

and the operations. To describe a register, we give it a name and specify

the buons that control assignment to it. We give each of these buons

672

a name and specify the source of the data that enters the register under

the buon’s control. (e source is a register, a constant, or an opera-

tion.) To describe an operation, we give it a name and specify its inputs

(registers or constants).

We define the controller of a machine as a sequence of instructions

together with labels that identify entry points in the sequence. An in

struction is one of the following:

• e name of a data-path buon to push to assign a value to a

register. (is corresponds to a box in the controller diagram.)

• A test instruction, that performs a specified test.

• A conditional branch (branch instruction) to a location indicated

by a controller label, based on the result of the previous test. (e

test and branch together correspond to a diamond in the con-

troller diagram.) If the test is false, the controller should continue

with the next instruction in the sequence. Otherwise, the con-

troller should continue with the instruction aer the label.

• An unconditional branch (goto instruction) naming a controller

label at which to continue execution.

e machine starts at the beginning of the controller instruction se-

quence and stops when execution reaches the end of the sequence. Ex-

cept when a branch changes the flow of control, instructions are exe-

cuted in the order in which they are listed.

Figure 5.3: ↓A specification of the machine.

(data-paths

(registers

673

((name a)

(buttons ((name a<-b) (source (register b)))))

((name b)

(buttons ((name b<-t) (source (register t)))))

((name t)

(buttons ((name t<-r) (source (operation rem))))))

(operations

((name rem) (inputs (register a) (register b)))

((name =) (inputs (register b) (constant 0)))))

(controller

test-b ;label

(test =) ;test

(branch (label gcd-done)) ;conditionalbranch

(t<-r) ;buonpush

(a<-b) ;buonpush

(b<-t) ;buonpush

(goto (label test-b)) ;unconditionalbranch

gcd-done) ;label

Figure 5.3 shows the machine described in this way. is example

only hintsat the generality of these descriptions, since the machine

isa very simple case:Each register hasonly one buon,and each buon

and test is used only once in the controller.

Unfortunately, it is difficult to read such a description. In order to

understand the controller instructions we must constantly refer back

to the definitions of the buon names and the operation names, and to

understand what the buons do we may have to refer to the definitions

ofthe operationnames.We will thustransform ournotationto combine

the information from the data-path and controller descriptions so that

we see it all together.

To obtain this form of description, we will replace the arbitrary but

ton and operation names by the definitions of their behavior. at is,

674

instead of saying (in the controller) “Push buon t←r” and separately

saying (in the data paths) “Buon t←r assigns the value of the rem op-

eration to register
t” and “e rem operation’s inputs are the contents

of registers
a and b,” we will say (in the controller) “Push the buon

that assigns to register t the value of the rem
operation on the con-

tents ofregisters a and b.” Similarly, instead of saying (in the controller)

“Perform the = test” and separately saying (in the data paths) “e =

test operates on the contents of register
b and the constant 0,” we will

say “Perform the = test on the contents of register
b and the constant

0.” We will omit the data-path description, leaving only the controller

sequence. us, the machine is described as follows:

(controller

test-b

(test (op =) (reg b) (const 0))

(branch (label gcd-done))

(assign t (op rem) (reg a) (reg b))

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))

gcd-done)

is form of description is easier to read than the kind illustrated in

Figure 5.3, but it also has disadvantages:

• It is more verbose for large machines, because complete descrip-

tions of the data-path elements are repeated whenever the ele-

ments are mentioned in the controller instruction sequence. (is

is not a problem in the example, because each operation and

buon is used only once.) Moreover, repeating the data-path de-

scriptions obscures the actual data-path structure ofthe machine;

it is not obvious for a large machine how many registers, opera

675

tions, and buons there are and how they are interconnected.

• Because the controller instructions in a machine definition look

like Lispexpressions,itiseasytoforget that theyarenotarbitrary

Lisp expressions. ey can notate only legal machine operations.

For example, operations can operate directly only on constants

and the contents of registers, not on the results of other opera-

tions.

In spite of these disadvantages, we will use this register-machine lan-

guage throughout this chapter, because we will be more concernedwithunderstanding controllers than with understanding the elements and

connections in data paths. We should keep in mind, however, that data-

path design is crucial in designing real machines.

Exercise5.2:Usetheregister-machinelanguagetodescribe

the iterative factorial machine of Exercise 5.1.

Actions

Let us modify the machine so that we can type in the numbers

whose we want and get the answer printed at our terminal. We

will not discuss how to make a machine that can read and print, but

will assume (as we do when we use read and display in Scheme) that

they are available as primitive operations.1

Read is like the operations we have been using in that it produces

a value that can be stored in a register. But read does not take inputs

fromany registers;itsvaluedependsonsomethingthathappensoutside

the parts of the machine we are designing. We will allow our machine’s

1is assumption glosses over a great deal of complexity. Usually a large portion of

the implementation of a Lisp system is dedicated to making reading and printing work.

676

(controller

gcd-loop

(assign a (op read))

(assign b (op read))

test-b

(test (op =)

(reg b)

(const 0))

(branch (label gcd-done))

(assign t

(op rem)

(reg a)

(reg b))

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))

gcd-done

(perform (op print)

(reg a))

(goto (label gcd-loop)))

read

a b

t

rem

a←b

t←r

b←t

0

=

print

a←rd b←rd

P

Figure 5.4: A machine that reads inputs and prints results.

operations to have such behavior, and thus will draw and notate the use

of read
just as we do any other operation that computes a value.

Print, on the other hand, differs from the operations we have been

using in a fundamental way: It does not produce an output value to be

stored in a register. ough it has an effect, this effect is not on a part of

the machine we are designing. We will refer to this kind of operation as

an action. We will represent an action in a data-path diagram just as we

represent an operation that computes a value—as a trapezoid that con-

tains the name of the action. Arrows point to the action box from any

inputs (registers or constants). We also associate a buon with the ac-

tion. Pushing the buon makes the action happen. To make a controller

677

push an action buon we use a new kind ofinstruction called perform.

us, the action of printing the contents of register
a is represented in

a controller sequence by the instruction

(perform (op print) (reg a))

Figure 5.4showsthedatapathsand controllerforthe new machine.

Instead of having the machine stop aer printing the answer, we have

made it start over, so that it repeatedly reads a pair of numbers, com-

putes their , and prints the result. is structure is like the driver

loops we used in the interpreters of Chapter 4.

5.1.2 Abstraction in Machine Design

We will oen define a machine to include “primitive” operations that

are actually very complex. For example, in Section 5.4 and Section 5.5

we will treat Scheme’s environment manipulations as primitive. Such

abstraction is valuable because it allows us to ignore the details of parts

ofa machine so that we can concentrate on other aspects of the design.

e fact that we have swept a lot of complexity under the rug, however,

does not mean that a machine design is unrealistic. We can always re-

place the complex “primitives” by simpler primitive operations.

Consider the machine. e machine has an instruction that

computes the remainder of the contents of registers
a and b and as-

signs the result to register t. If we want to construct the machine

without using a primitive remainder operation, we must specify how

to compute remainders in terms of simpler operations, such as subtrac-

tion. Indeed, we can write a Scheme procedure that finds remainders in

this way:

678

(define (remainder n d)

(if (< n d)

n

(remainder (- n d) d)))

We can thus replace the remainder operation in the machine’s

data paths with a subtraction operation and a comparison test. Figure

5.5 shows the data paths and controller for the elaborated machine. e

instruction

(assign t (op rem) (reg a) (reg b))

inthe controllerdefinitionis replaced by asequence ofinstructions

that contains a loop, as shown in Figure 5.6.

Figure 5.6: ↓ Controller instruction sequence for the

machine in Figure 5.5.

(controller test-b

(test (op =) (reg b) (const 0))

(branch (label gcd-done))

(assign t (reg a))

rem-loop

(test (op <) (reg t) (reg b))

(branch (label rem-done))

(assign t (op -) (reg t) (reg b))

(goto (label rem-loop))

rem-done

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))

gcd-done)

Exercise 5.3: Design a machine to compute square roots

using Newton’s method, as described in Section 1.1.7:

679

a b<—t

Figure 5.5: Data paths and controller for the elaborated

GCD machine.

680

(define (sqrt x)

(define (good-enough? guess)

(< (abs (- (square guess) x)) 0.001))

(define (improve guess)

(average guess (/ x guess)))

(define (sqrt-iter guess)

(if (good-enough? guess)

guess

(sqrt-iter (improve guess))))

(sqrt-iter 1.0))

Begin by assuming that good-enough? and improve opera-

tions are available as primitives. en show how to expand

these in terms of arithmetic operations. Describe each ver-

sion of the sqrt machine design by drawing a data-path

diagram and writing a controller definition in the register-

machine language.

5.1.3 Subroutines

When designing a machine to perform a computation, we would oen

prefer to arrange for components to be shared by different parts of the

computationratherthanduplicate thecomponents.Consider amachine

that includes two computations—one that finds the ofthe con-

tents of registers
a and b and one that finds the of the contents of

registers c and d. We might start by assuming we have a primitive gcd

operation, then expand the two instances of gcd in terms of more prim-

itive operations. Figure 5.7 shows just the portions of the resulting

machine’s data paths, without showing how they connect to the rest of

the machine. e figure also shows the corresponding portions of the

machine’s controller sequence.

681

gcd-2gcd-1

(test (op =) (reg b) (const 0))(branch (label after-gcd-1))(assign t (op rem) (reg a) (reg b))(assign a (reg b))(assign b (reg t))(goto (label gcd-1)) (test (op =) (reg d) (const 0))

(branch (label after-gcd-2))

(assign s (op rem) (reg c) (reg d))

(assign c (reg d))

(assign d (reg s))

(goto (label gcd-2))

after-gcd-1 after-gcd-2

c d

s

rem

c←d

s←r

d←s

0

=a b

t

rem

a← b

t←r

b←t

0

=

Figure 5.7: Portions of the data paths and controller se-

quence for a machine with two computations.

is machine has two remainder operation boxes and two boxes for

testing equality. If the duplicated components are complicated, as is the

remainder box,thiswillnot be aneconomical way tobuild the machine.

We can avoid duplicating the data-path components by using the same

components for both computations, provided that doing so will

not affect the rest of the larger machine’s computation. If the values in

registers a and b are not needed by the time the controller gets to gcd-

2 (or if these values can be moved to other registers for safekeeping),

we can change the machine so that it uses registers a and b, rather than

registers c and d, in computing the second as well as the first. Ifwe

682

do this, we obtain the controller sequence shown in Figure 5.8.

Figure 5.8: ↓ Portions of the controller sequence for a ma

chine that uses the same data-path componentsfor two dif

ferent computations.

gcd-1

(test (op =) (reg b) (const 0))

(branch (label after-gcd-1))

(assign t (op rem) (reg a) (reg b))

(assign a (reg b))

(assign b (reg t))

(goto (label gcd-1))

after-gcd-1

...

gcd-2

(test (op =) (reg b) (const 0))

(branch (label after-gcd-2))

(assign t (op rem) (reg a) (reg b))

(assign a (reg b))

(assign b (reg t))

(goto (label gcd-2))

after-gcd-2

We have removed the duplicate data-path components (so that the data

paths are again as in Figure 5.1), but the controller now has two

sequences that differ only in their entry-point labels. It would be beer

to replace these two sequences by branches to a single sequence—a gcd

subroutine—at the end of which we branch back to the correct place

in the main instruction sequence. We can accomplish this as follows:

Before branching to gcd, we place a distinguishing value (such as 0 or

1) into a special register, continue. At the end of the gcd subroutine

683

we return either to after-gcd-1 or to after-gcd-2, depending on the

value of the continue register. Figure 5.9 shows the relevant portion of

the resulting controller sequence, which includes only a single copy of

the gcd instructions.

Figure 5.9: ↓Using a continue register to avoid the dupli-

cate controller sequence in Figure 5.8.

gcd

(test (op =) (reg b) (const 0))

(branch (label gcd-done))

(assign t (op rem) (reg a) (reg b))

(assign a (reg b))

(assign b (reg t))

(goto (label gcd))

gcd-done

(test (op =) (reg continue) (const 0))

(branch (label after-gcd-1))

(goto (label after-gcd-2))

...

;; Before branching to gcd from the first place where

;; it is needed, we place 0 in the continue register

(assign continue (const 0))

(goto (label gcd))

after-gcd-1

...

;; Before the second use of gcd, we place 1

;;inthecontinueregister

(assign continue (const 1))

(goto (label gcd))

after-gcd-2

684

is is a reasonable approach for handling small problems, but it would

be awkward if there were many instances of computations in the

controller sequence. To decide where to continue executing aer the

gcd subroutine, we would need tests in the data paths and branch in-

structions in the controller for all the places that use gcd. A more pow-

erful methodfor implementingsubroutinesis to have the continue reg-

isterholdthe label of theentry point inthe controllersequenceat which

execution should continue when the subroutine is finished. Implement-

ing this strategy requires a new kind of connection between the data

paths and the controller of a register machine: ere must be a way

to assign to a register a label in the controller sequence in such a way

that this value can be fetched from the register and used to continue

execution at the designated entry point.

To reflect this ability, we will extend the assign instruction of the

register-machine language to allow a register to be assigned as value a

label from the controller sequence (as a special kind of constant). We

will also extend the goto instruction to allow execution to continue at

theentrypointdescribedbythecontentsofaregisterratherthanonlyat

anentry point describedby aconstant label.Usingthese new constructs

wecanterminatethe gcdsubroutinewithabranch tothelocationstored

in the continue register. is leads to the controller sequence shown in

Figure 5.10.

Figure 5.10: ↓ Assigning labels to the continue register

simplifies and generalizes the strategy shown in Figure 5.9.

gcd

(test (op =) (reg b) (const 0))

(branch (label gcd-done))

(assign t (op rem) (reg a) (reg b))

(assign a (reg b))

685

(assign b (reg t))

(goto (label gcd))

gcd-done

(goto (reg continue))

...

;; Before calling gcd, we assign to continue

;; the label to which gcd should return.

(assign continue (label after-gcd-1))

(goto (label gcd))

after-gcd-1

...

;; Here is the second call to gcd,

;; with a different continuation.

(assign continue (label after-gcd-2))

(goto (label gcd))

after-gcd-2

A machine with more than one subroutine could use multiple continu-

ation registers (e.g., gcd-continue, factorial-continue) or we could

have all subroutines share a single continue register. Sharing is more

economical, but we must be careful if we have a subroutine (sub1) that

callsanothersubroutine(sub2).Unless sub1savesthecontentsof continue

in some other register before seing up continue for the call to sub2,

sub1 will not know where to go when it is finished. e mechanism de-

veloped in the next section to handle recursion also provides a beer

solution to this problem of nested subroutine calls.

5.1.4 Using a Stack to Implement Recursion

With the ideas illustrated so far, we can implement any iterative pro-

cess by specifying a register machine that has a register corresponding

to each state variable of the process. e machine repeatedly executes

686

a controller loop, changing the contents of the registers, until some ter-

minationconditionissatisfied. At each point inthe controller sequence,

the state of the machine (representing the state of the iterative process)

is completely determined by the contents of the registers (the values of

the state variables).

Implementing recursive processes, however, requires an additional

mechanism. Consider the following recursive method for computing

factorials, which we first examined in Section 1.2.1:

(define (factorial n)

(if (= n 1) 1 (* (factorial (- n 1)) n)))

Aswe see fromthe procedure,computingn! requirescomputing(n−1)!.

Our machine, modeled on the procedure

(define (gcd a b)

(if (= b 0) a (gcd b (remainder a b))))

similarly had to compute another . But there is an important differ-

ence between the gcd procedure, which reduces the original computa-

tion to a new computation, and factorial, which requires com-

puting another factorial as a subproblem. In , the answer to the new

 computation is the answer to the original problem. To compute the

next , we simply place the new arguments in the input registers of

the machine and reuse the machine’s data paths by executing the

same controller sequence. When the machine is finished solving the fi-

nal problem, it has completed the entire computation.

In the case of factorial (or any recursive process) the answer to the

new factorial subproblem is not the answer to the original problem. e

value obtained for(n−1)!must be multipliedbyn toget thefinalanswer.

If we try to imitate the design, and solve the factorial subproblem

by decrementing the n
register and rerunning the factorial machine,

687

we will no longer have available the old value of n
by which to mul-

tiply the result. We thus need a second factorial machine to work on

the subproblem. is second factorial computation itself has a factorial

subproblem, which requires a third factorial machine, and so on. Since

each factorial machine contains another factorial machine within it, the

total machine contains an infinite nest of similar machines and hence

cannot be constructed from a fixed, finite number of parts.

Nevertheless, we can implement the factorial process as a regis-

ter machine if we can arrange to use the same components for each

nested instance of the machine. Specifically, the machine that computes

n! should use the same components to work on the subproblem of com-

puting (n − 1)!, on the subproblem for (n − 2)!, and so on. is is plausi-

ble because, although the factorial process dictates that an unbounded

number of copies of the same machine are needed to perform a com-

putation, only one of these copies needs to be active at any given time.

When the machine encounters a recursive subproblem, it can suspend

work on the main problem, reuse the same physical parts to work on

the subproblem, then continue the suspended computation.

In the subproblem, the contents of the registers will be different

than they were in the main problem. (In this case the n register is decre-

mented.) In order to be able to continue the suspended computation,

the machine must save the contents of any registers that will be needed

aer the subproblem is solved so that these can be restored to continue

the suspended computation. In the case of factorial, we will save the old

value of n, to be restored when we are finished computing the factorial

of the decremented n register.2

2One might argue that we don’t need to save the old n; aer we decrement it and

solve the subproblem, we could simply increment it to recover the old value. Although

this strategy works for factorial, it cannot work in general, since the old value of a

register cannot always be computed from the new one.

688

Since there is no a priori limit on the depth of nested recursive calls,

we may need to save an arbitrary number of register values. ese val-

ues must be restored in the reverse of the order in which they were

saved, since in a nest of recursions the last subproblem to be entered is

the first to be finished. is dictates the use of a stack, or “last in, first

out” data structure, to save register values. We can extend the register-

machine language to include a stack by adding two kinds of instruc-

tions: Values are placed on the stack using a save instruction and re-

stored from the stack using a restore instruction. Aer a sequence of

valueshasbeen savedonthe stack, asequenceof restoreswill retrieve

these values in reverse order.3

With the aid of the stack, we can reuse a single copy of the fac-

torial machine’s data paths for each factorial subproblem. ere is a

similar design issue in reusing the controller sequence that operates

the data paths. To reexecute the factorial computation, the controller

cannot simply loop back to the beginning, as with an iterative process,

because aer solving the (n − 1)! subproblem the machine must still

multiply the result by n. e controller must suspend its computation

ofn!, solve the (n−1)! subproblem, then continue its computation ofn!.

is view of the factorial computation suggests the use of the subrou-

tine mechanism described in Section 5.1.3, which has the controller use

a continue register to transfer to the part of the sequence that solves

a subproblem and then continue where it le off on the main problem.

We can thus make a factorial subroutine that returns to the entry point

stored in the continue register. Around each subroutine call, we save

and restore continue just as we do the n register, since each “level” of

the factorial computation will use the same continue register. at is,

3In Section 5.3 we will see how to implement a stack in terms of more primitive

operations.

689

the factorial subroutine must put a new value in continue when it calls

itself for a subproblem, but it will need the old value in order to return

to the place that called it to solve a subproblem.

Figure 5.11 shows the data paths and controller for a machine that

implementstherecursive factorialprocedure.emachinehasastack

and three registers, called n, val, and continue. To simplify the data-

path diagram,we have not namedthe register-assignment buons, only

the stack-operation buons (sc and sn to save registers, rc and rn to

restore registers). To operate the machine, we put in register
n the num-

ber whose factorial we wish to compute and start the machine. When

the machine reaches fact-done, the computation is finished and the

answer will be found in the val register. In the controller sequence, n

and continue are saved before each recursive call and restored upon

return from the call. Returning from a call is accomplished by branch-

ing to the location stored in continue. Continue is initialized when the

machine starts so that the last return will go to fact-done.e val reg-

ister, which holds the result of the factorial computation, is not saved

before the recursive call, because the old contents of val is not useful

aer the subroutine returns. Only the new value, which is the value

produced by the subcomputation, is needed.

Although in principle the factorial computation requires an infinite

machine, the machine in Figure 5.11 is actually finite except for the

stack, which is potentially unbounded. Any particular physical imple-

mentation of a stack, however, will be of finite size, and this will limit

the depth ofrecursive callsthat canbe handledby the machine. is im-

plementationof factorial illustratesthe generalstrategy for realizingre-cursive algorithms as ordinary register machines augmented by stacks.

When a recursive subproblem is encountered, we save on the stack the

registers whose current values will be required aer the subproblem is

690

val n stack

continue

rn

scrc

after-

fact

fact-

done

(controller

(assign continue (label fact-done)) ;set up final return address

fact-loop

* -- controller

sn

(test (op =) (reg n) (const 1))

(branch (label base-case))

;; Set up for the recursive call by saving n and continue.

;; Set up continue so that the computation will continue

;; at after-fact when the subroutine returns.

(save continue)

(save n)

(assign n (op -) (reg n) (const 1))

(assign continue (label after-fact))

(goto (label fact-loop))

after-fact

(restore n)

(restore continue)

(assign val (op *) (reg n) (reg val)) ;val now contains n(n - 1)!

(goto (reg continue)) ;return to caller

base-case

(assign val (const 1)) ;base case: 1! = 1

(goto (reg continue)) ;return to caller

fact-done)

1

=

Figure 5.11: A recursive factorial machine.

691

solved, solve the recursive subproblem, then restore the saved registers

and continue execution on the main problem. e continue
register

must always be saved. Whether there are other registers that need to be

saved depends on the particular machine, since not all recursive com-

putations need the original values of registers that are modified during

solution of the subproblem (see Exercise 5.4).

A double recursion

Let us examine a more complex recursive process, the tree-recursive

computation of the Fibonacci numbers, which we introduced in Section

1.2.2:

(define (fib n)

(if (< n 2)

n

(+ (fib (- n1)) (fib (- n 2)))))

Just as with factorial, we can implement the recursive Fibonacci com

putation as a register machine with registers n, val, and continue. e

machine is more complex than the one for factorial, because there are

two places in the controller sequence where we need to perform recur-

sive calls—once to compute Fib(n−1)and once to compute Fib(n−2). To

set up for each of these calls, we save the registers whose values will be

needed later, set the n register to the number whose Fib we need to com-

pute recursively (n −1 orn −2), and assign to continue the entry point

in the main sequence to which to return (afterfib-n-1 or afterfib-

n-2, respectively). We then go to fib-loop. When we return from the

recursive call, the answer is in val. Figure 5.12 shows the controller

sequence for this machine.

692

Figure 5.12: ↓ Controller for a machine to compute Fi-

bonacci numbers.

(controller

(assign continue (label fib-done))

fib-loop

(test (op <) (reg n) (const 2))

(branch (label immediate-answer))

;; set up to compute Fib(n − 1)

(save continue)

(assign continue (label afterfib-n-1))

(save n) ;saveoldvalueofn

(assign n (op -) (reg n) (const 1)) ;clobbern ton-1

(goto (label fib-loop)) ;performrecursivecall

afterfib-n-1 ;uponreturn,valcontainsFib(n−1)

(restore n)

(restore continue)

;; set up to compute Fib(n − 2)

(assign n (op -) (reg n) (const 2))

(save continue)

(assign continue (label afterfib-n-2))

(save val) ;saveFib(n−1)

(goto (label fib-loop))

afterfib-n-2 ;uponreturn,valcontainsFib(n−2)

(assign n (reg val)) ;n nowcontainsFib(n−2)

(restore val) ; val now contains Fib(n − 1)

(restore continue)

(assign val ;Fib(n−1)+Fib(n−2)

(op +) (reg val) (reg n))

(goto (reg continue)) ;return tocaller, answerisin

val

immediate-answer

(assign val (reg n)) ;basecase:Fib(n)= n

(goto (reg continue))

693

fib-done)

Exercise5.4:Specifyregistermachinesthatimplementeach

ofthe followingprocedures. For each machine, write acon-

troller instruction sequence and draw a diagram showing

the data paths.

a. Recursive exponentiation:

(define (expt b n)

(if (= n 0)

1

(* b (expt b (- n1)))))

b. Iterative exponentiation:

(define (expt b n)

(define (expt-iter counter product)

(if (= counter 0)

product

(expt-iter (- counter 1)

(* b product))))

(expt-iter n 1))

Exercise5.5:Hand-simulatethefactorialandFibonaccima-

chines, using some nontrivial input (requiring execution of

at least one recursive call). Show the contents of the stack

at each significant point in the execution.

Exercise5.6: BenBitdiddle observesthatthe Fibonacci ma

chine’s controller sequence has an extra save and an extra

restore, which can be removed to make a faster machine.

Where are these instructions?

694

5.1.5 Instruction Summary

A controller instruction in our register—machine language has one ofthe

following forms, where each (input,) is either (reg (register—name))

or (const (constant—value)). These instructions were introduced in

Section 5.1.1:

(assign (register—name) (reg (register—name)))

(assign (register—name) (const (constant—value)))

(assign (register—name)

(op (operation—name))

(inputl) (inputn))

(perform (op (operation—name)) (inputl) (inputn))

(test (op (operation—name)) (inputl) (inputn))

(branch (label (label—name)))

(goto (label (label—name)))

The use of registers to hold labels was introduced in Section 5.1.3:

(assign (register—name) (label (Iabel—name)))

(goto (reg (register—name)))

Instructions to use the stack were introduced in Section 5.1.4:

(save (register—name))

(restore (register—name))

The only kind of (constant—value) we have seen so far is a number, but

later we will use strings, symbols, and lists. For example,

(const "abc") is the string "abc",

(const abc) is the symbol abc,

(const (a b c)) is the list (a b c),

and (const O) is the empty list.

695

5.2 A Register-Machine Simulator

Inordertogainagoodunderstandingofthedesignofregistermachines,

we must test the machines we design to see if they perform as expected.

One way to test a design is to hand-simulate the operation of the con-

troller, as in Exercise 5.5. But this is extremely tedious for all but the

simplestmachines.Inthissectionweconstructasimulatorformachines

described in the register-machine language. e simulator is a Scheme

program with four interface procedures. e first uses a descriptionof a

register machine to construct a model of the machine (a data structure

whose parts correspond to the parts of the machine to be simulated),

and the other three allow us to simulate the machine by manipulating

the model:

(make-machine ⟨register-names⟩ ⟨operations⟩ ⟨controller⟩)

constructs and returns a model of the machine with the

given registers, operations, and controller.

(set-register-contents! ⟨machine-model⟩

⟨register-name⟩

⟨value⟩)

stores a value in a simulated register in the given machine.

(get-register-contents ⟨machine-model⟩ ⟨register-name⟩)

returns the contents of a simulated register in the given

machine.

(start ⟨machine-model⟩)

simulatesthe execution of the given machine, startingfromthebeginningofthecontrollersequenceandstoppingwhen

it reaches the end of the sequence.

696

As an example of how these procedures are used, we can define gcd-

machine to be a model of the machine of Section 5.1.1 as follows:

(define gcd-machine

(make-machine

'(a b t)

(list (list 'rem remainder) (list '= =))

'(test-b (test (op =) (reg b) (const 0))

(branch (label gcd-done))

(assign t (op rem) (reg a) (reg b))

(assign a (reg b))

(assign b (reg t))

(goto (label test-b))

gcd-done)))

e first argument to make-machine is a list ofregister names. e next

argument is a table (a list of two-element lists) that pairs each operation

name with a Scheme procedure that implements the operation (that is,

produces the same output value given the same input values). e last

argument specifies the controller as a list oflabels and machine instruc-

tions, as in Section 5.1.

To compute s with this machine, we set the input registers, start

the machine, and examine the result when the simulation terminates:

(set-register-contents! gcd-machine 'a 206)

done

(set-register-contents! gcd-machine 'b 40)

done

(start gcd-machine)

done

(get-register-contents gcd-machine 'a)

2

697

iscomputationwillrunmuch more slowlythana gcdprocedure writ-

teninScheme,because wewillsimulate low-level machine instructions,

such as assign, by much more complex operations.

Exercise 5.7: Use the simulator to test the machines you

designed in Exercise 5.4.

5.2.1 The Machine Model

e machine model generated by make-machine is represented as a pro-

cedure with local state using the message-passing techniques devel-

oped in Chapter 3. To build this model, make-machine begins by calling

the procedure make-new-machine to construct the parts of the machine

model that are common to all register machines. is basic machine

model constructed by make-new-machine is essentially a container for

some registers and a stack, together with an execution mechanism that

processes the controller instructions one by one.

Make-machine then extends this basic model (by sending it mes-

sages) to include the registers, operations, and controller of the partic-

ular machine being defined. First it allocates a register in the new ma

chine for each ofthe supplied register names and installs the designated

operations in the machine. en it uses an assembler (described below

in Section 5.2.2) to transform the controller list into instructions for the

new machine and installs these as the machine’s instruction sequence.

Make-machine returns as its value the modified machine model.

(define (make-machine register-names ops controller-text)

(let ((machine (make-new-machine)))

(for-each

(lambda (register-name)

((machine 'allocate-register) register-name))

register-names)

698

((machine 'install-operations) ops)

((machine 'install-instruction-sequence)

(assemble controller-text machine))

machine))

Registers

Wewillrepresentaregisterasaprocedurewith localstate,asinChapter

3. e procedure make-register creates a register that holds a value

that can be accessed or changed:

(define (make-register name)

(let ((contents '*unassigned*))

(define (dispatch message)

(cond ((eq? message 'get) contents)

((eq? message 'set)

(lambda (value) (set! contents value)))

(else

(error "Unknown request: REGISTER" message))))

dispatch))

e following procedures are used to access registers:

(define (get-contents register) (register 'get))

(define (set-contents! register value)

((register 'set) value))

The stack

We can also represent a stack as a procedure with local state. e pro-

cedure make-stack creates a stack whose local state consists ofa list of

the items onthe stack. Astack accepts requeststo push anitem ontothestack, to pop the top item off the stack and return it, and to initialize

the stack to empty.

699

(define (make-stack)

(let ((s '()))

(define (push x) (set! s (cons x s)))

(define (pop)

(if (null? s)

(error "Empty stack: POP")

(let ((top (car s)))

(set! s (cdr s))

top)))

(define (initialize)

(set! s '())

'done)

(define (dispatch message)

(cond ((eq? message 'push) push)

((eq? message 'pop) (pop))

((eq? message 'initialize) (initialize))

(else (error "Unknown request: STACK" message))))

dispatch))

e following procedures are used to access stacks:

(define (pop stack) (stack 'pop))

(define (push stack value) ((stack 'push) value))

The basic machine

e make-new-machine procedure, shown in Figure 5.13, constructs an

object whose local state consists of a stack, an initially empty instruc-

tion sequence, a list of operations that initially contains an operation to

initialize the stack, and a register table that initially contains two reg-

isters, named flag and pc (for “program counter”). e internal proce-

dure allocate-register adds new entries to the register table, and the

internal procedure lookup-register looks up registers in the table.

700

e flag register is used to control branching in the simulated ma-

chine. Test instructions set the contents of flag to the result ofthe test

(true or false). Branch instructions decide whether or not to branch by

examining the contents of flag.

e pcregisterdeterminesthe sequencing ofinstructionsasthema-chine runs. is sequencing is implemented by the internal procedure

execute. In the simulation model, each machine instruction is a data

structure that includes a procedure of no arguments, called the instruc-

tion execution procedure, such that calling this procedure simulates ex-

ecuting the instruction. As the simulation runs, pc points to the place

in the instruction sequence beginning with the next instruction to be

executed. Execute gets that instruction, executes it by calling the in-

struction execution procedure, and repeats this cycle until there are no

more instructions to execute (i.e., until pc points to the end of the in

struction sequence).

Figure 5.13: ↓e make-new-machine procedure, which

implements the basic machine model.

(define (make-new-machine)

(let ((pc (make-register 'pc))

(flag (make-register 'flag))

(stack (make-stack))

(the-instruction-sequence '()))

(let ((the-ops

(list (list 'initialize-stack

(lambda () (stack 'initialize)))))

(register-table

(list (list 'pc pc) (list 'flag flag))))

(define (allocate-register name)

(if (assoc name register-table)

(error "Multiply defined register: " name)

701

(set! register-table

(cons (list name (make-register name))

register-table)))

'register-allocated)

(define (lookup-register name)

(let ((val (assoc name register-table)))

(if val

(cadr val)

(error "Unknown register:" name))))

(define (execute)

(let ((insts (get-contents pc)))

(if (null? insts)

'done

(begin

((instruction-execution-proc (car insts)))

(execute)))))

(define (dispatch message)

(cond ((eq? message 'start)

(set-contents! pc the-instruction-sequence)

(execute))

((eq? message 'install-instruction-sequence)

(lambda (seq)

(set! the-instruction-sequence seq)))

((eq? message 'allocate-register)

allocate-register)

((eq? message 'get-register)

lookup-register)

((eq? message 'install-operations)

(lambda (ops)

(set! the-ops (append the-ops ops))))

((eq? message 'stack) stack)

((eq? message 'operations) the-ops)

(else (error "Unknown request: MACHINE"

702

message))))

dispatch)))

As part of its operation, each instruction execution procedure modifies

pc to indicate the next instruction to be executed. Branch and goto in

structions change pc to point to the new destination. All other instruc-

tions simply advance pc, making it point to the next instruction in the

sequence. Observe that each call to execute calls execute again, but

this does not produce an infinite loop because running the instruction

execution procedure changes the contents of pc.

Make-new-machine returns a dispatch procedure that implements

message-passing access to the internal state. Notice that starting the

machine is accomplished by seing pc to the beginning of the instruc-

tion sequence and calling
execute.

For convenience, we provide an alternate procedural interface to a

machine’s start operation, as well as procedures to set and examine

register contents, as specified at the beginning of Section 5.2:

(define (start machine) (machine 'start))

(define (get-register-contents machine register-name)

(get-contents (get-register machine register-name)))

(define (set-register-contents! machine register-name value)

(set-contents! (get-register machine register-name)

value)

'done)

ese procedures (and many procedures in Section 5.2.2 and Section

5.2.3) use the following to look up the register with a given name in a

given machine:

(define (get-register machine reg-name)

((machine 'get-register) reg-name))

703

5.2.2 The Assembler

e assembler transforms the sequence of controller expressions for a

machine into a corresponding list of machine instructions, each with its

execution procedure. Overall, the assembler is much like the evaluators

we studied in Chapter 4—there is an input language (in this case, the

register-machine language)and we must perform an appropriate action

for each type of expression in the language.

e technique of producing an execution procedure for each in-

struction is just what we used in Section 4.1.7 to speed up the evaluator

by separating analysis from runtime execution. As we saw in Chapter 4,

much useful analysis of Scheme expressions could be performed with-

out knowing the actual values of variables. Here, analogously, much

useful analysis of register-machine-language expressions can be per-

formed without knowing the actual contents of machine registers. For

example, we can replace references to registers by pointers to the reg-

ister objects, and we can replace references to labels by pointers to the

place in the instruction sequence that the label designates.

Before it can generate the instruction execution procedures, the as-

sembler must know what all the labels refer to, so it begins by scanning

the controller text to separate the labels from the instructions. As it

scans the text, it constructs both a list of instructions and a table that

associates each label with a pointer into that list. en the assembler

augments the instruction list by inserting the execution procedure for

each instruction.

e assemble procedure is the main entry to the assembler. It takes

the controller text and the machine model as arguments and returns the

instructionsequencetobestoredinthe model. Assemble calls extract-

labels to build the initial instruction list and label table from the sup

plied controller text. e second argument to extract-labels is a pro

704

cedure to be calledto processtheseresults:isprocedure uses update-

insts!togeneratetheinstructionexecutionproceduresandinsertthem

into the instruction list, and returns the modified list.

(define (assemble controller-text machine)

(extract-labels

controller-text

(lambda (insts labels)

(update-insts! insts labels machine)

insts)))

Extract-labels takes as arguments a list text (the sequence of con

troller instruction expressions) and a receive procedure. Receive will

be called with two values: (1) a list insts ofinstruction data structures,

each containing an instruction from text; and (2) a table called labels,

which associates each label from text with the position inthe list insts

that the label designates.

(define (extract-labels text receive)

(if (null? text)

(receive '() '())

(extract-labels

(cdr text)

(lambda (insts labels)

(let ((next-inst (car text)))

(if (symbol? next-inst)

(receive insts

(cons (make-label-entry next-inst

insts)

labels))

(receive (cons (make-instruction next-inst)

insts)

labels)))))))

705

Extract-labels works by sequentially scanning the elements of the

text and accumulating the insts and the labels. If an element is a

symbol (and thus a label) an appropriate entry is added to the labels

table. Otherwise the element is accumulated onto the insts list.4

Update-insts! modifiestheinstruction list, which initially con

4Using the receive procedure here is a way to get extract-labels to effectively

return two values—labels and insts—without
explicitly making a compound data

structure to hold them. An alternative implementation, which returns an explicit pair

of values, is

(define (extract-labels text)

(if (null? text)

(cons '() '())

(let ((result (extract-labels (cdr text))))

(let ((insts (car result)) (labels (cdr result)))

(let ((next-inst (car text)))

(if (symbol? next-inst)

(cons insts

(cons (make-label-entry next-inst insts)

labels))

(cons (cons (make-instruction next-inst) insts)

labels)))))))

which would be called by assemble as follows:

(define (assemble controller-text machine)

(let ((result (extract-labels controller-text)))

(let ((insts (car result)) (labels (cdr result)))

(update-insts! insts labels machine)

insts)))

You can consider our use of receive as demonstrating an elegant way to return mul-

tiple values, or simply an excuse to show off a programming trick. An argument like

receive that is the next procedure to be invoked is called a “continuation.” Recall that

we also used continuations to implement the backtracking control structure in the amb

evaluator in Section 4.3.3.

706

tains only the text of the instructions, to include the corresponding ex

ecution procedures:

(define (update-insts! insts labels machine)

(let ((pc (get-register machine 'pc))

(flag (get-register machine 'flag))

(stack (machine 'stack))

(ops (machine 'operations)))

(for-each

(lambda (inst)

(set-instruction-execution-proc!

inst

(make-execution-procedure

(instruction-text inst)

labels machine pc flag stack ops)))

insts)))

e machine instruction data structure simply pairs the instructiontextwith the corresponding execution procedure. e execution procedure

is not yet available when extract-labels constructs the instruction,

and is inserted later by update-insts!.

(define (make-instruction text) (cons text '()))

(define (instruction-text inst) (car inst))

(define (instruction-execution-proc inst) (cdr inst))

(define (set-instruction-execution-proc! inst proc)

(set-cdr! inst proc))

e instruction text is not used by our simulator, but it is handy to keep

around for debugging (see Exercise 5.16).

Elements of the label table are pairs:

(define (make-label-entry label-name insts)

(cons label-name insts))

Entries will be looked up in the table with

707

(define (lookup-label labels label-name)

(let ((val (assoc label-name labels)))

(if val

(cdr val)

(error "Undefined label: ASSEMBLE"

label-name))))

Exercise 5.8: e following register-machine code is am

biguous, because the label here is defined more than once:

start

(goto (label here))

here

(assign a (const 3))

(goto (label there))

here

(assign a (const 4))

(goto (label there))

there

With the simulator as wrien, what will the contents of

register
abewhencontrolreaches there?Modifythe extract-

labels procedure so that the assembler will signal an er-

ror if the same label name is used to indicate two different

locations.

5.2.3 Generating Execution Procedures

for Instructions

e assembler calls make-execution-procedure to generate the exe-

cution procedure for an instruction. Like the analyze procedure in the

evaluator of Section 4.1.7, this dispatches on the type of instruction to

generate the appropriate execution procedure.

708

(define (make-execution-procedure

inst labels machine pc flag stack ops)

(cond ((eq? (car inst) 'assign)

(make-assign inst machine labels ops pc))

((eq? (car inst) 'test)

(make-test inst machine labels ops flag pc))

((eq? (car inst) 'branch)

(make-branch inst machine labels flag pc))

((eq? (car inst) 'goto)

(make-goto inst machine labels pc))

((eq? (car inst) 'save)

(make-save inst machine stack pc))

((eq? (car inst) 'restore)

(make-restore inst machine stack pc))

((eq? (car inst) 'perform)

(make-perform inst machine labels ops pc))

(else

(error "Unknown instruction type: ASSEMBLE"

inst))))

For each type of instruction in the register-machine language, there is

a generator that builds an appropriate execution procedure. e details

of these procedures determine both the syntax and meaning of the in-

dividual instructions in the register-machine language. We use data ab-

straction to isolate the detailed syntax of register-machine expressions

from the general execution mechanism, as we did for evaluators in Sec-

tion 4.1.2, by using syntax procedures to extract and classify the parts

of an instruction.

Assign instructions

e make-assign procedure handles assign instructions:

709

(define (make-assign inst machine labels operations pc)

(let ((target

(get-register machine (assign-reg-name inst)))

(value-exp (assign-value-exp inst)))

(let ((value-proc

(if (operation-exp? value-exp)

(make-operation-exp

value-exp machine labels operations)

(make-primitive-exp

(car value-exp) machine labels))))

(lambda () ;executionprocedureforassign

(set-contents! target (value-proc))

(advance-pc pc)))))

Make-assign extracts the target register name (the second element of

the instruction) and the value expression (the rest of the list that forms

the instruction) from the assign instruction using the selectors

(define (assign-reg-name assign-instruction)

(cadr assign-instruction))

(define (assign-value-exp assign-instruction)

(cddr assign-instruction))

e registernameislookedupwith get-registerto producethe target

register object. e value expression is passed to make-operation-exp

if the value is the result of an operation, and to make-primitive-exp

otherwise. ese procedures (shown below) parse the value expression

and produce an execution procedure for the value. is is a procedure

of no arguments, called value-proc, which will be evaluated during

the simulation to produce the actual value to be assigned to the regis-

ter. Notice that the work of looking up the register name and parsing

the value expression is performed just once, at assembly time, not ev-

ery time the instruction is simulated. is saving of work is the reason

710

we use execution procedures, and corresponds directly to the saving in

work we obtained by separating programanalysisfromexecutioninthe

evaluator of Section 4.1.7.

e result returned by make-assign is the execution procedure for

the assign instruction. When this procedure is called (by the machine

model’s execute procedure), it sets the contents ofthe target register to

the result obtained by executing value-proc. en it advances the pc

to the next instruction by running the procedure

(define (advance-pc pc)

(set-contents! pc (cdr (get-contents pc))))

Advance-pc isthenormalterminationforallinstructionsexcept branch

and goto.

Test, branch, and goto instructions

Make-test handles test instructions in a similar way. It extracts the

expression that specifies the condition to be tested and generates an

execution procedure for it. At simulation time, the procedure for the

condition is called, the result is assigned to the flag register, and the pc

is advanced:

(define (make-test inst machine labels operations flag pc)

(let ((condition (test-condition inst)))

(if (operation-exp? condition)

(let ((condition-proc

(make-operation-exp

condition machine labels operations)))

(lambda ()

(set-contents! flag (condition-proc))

(advance-pc pc)))

711

(error "Bad TEST instruction: ASSEMBLE" inst))))

(define (test-condition test-instruction)

(cdr test-instruction))

e execution procedure for a branch instruction checks the contents

of the flag register and either sets the contents of the pc to the branch

destination (if the branch is taken) or else just advances the pc (if the

branch is not taken). Notice that the indicated destination in a branch

instruction must be a label, and the make-branch procedure enforces

this. Notice also that the label is looked up at assembly time, not each

time the branch instruction is simulated.

(define (make-branch inst machine labels flag pc)

(let ((dest (branch-dest inst)))

(if (label-exp? dest)

(let ((insts

(lookup-label

labels

(label-exp-label dest))))

(lambda ()

(if (get-contents flag)

(set-contents! pc insts)

(advance-pc pc))))

(error "Bad BRANCH instruction: ASSEMBLE" inst))))

(define (branch-dest branch-instruction)

(cadr branch-instruction))

A gotoinstructionissimilartoabranch,exceptthat thedestinationmaybe specified either as a label or as a register, and there is no condition

to check—the pc is always set to the new destination.

(define (make-goto inst machine labels pc)

(let ((dest (goto-dest inst)))

(cond ((label-exp? dest)

712

(let ((insts (lookup-label

labels

(label-exp-label dest))))

(lambda () (set-contents! pc insts))))

((register-exp? dest)

(let ((reg (get-register

machine

(register-exp-reg dest))))

(lambda ()

(set-contents! pc (get-contents reg)))))

(else (error "Bad GOTO instruction: ASSEMBLE" inst)))))

(define (goto-dest goto-instruction)

(cadr goto-instruction))

Other instructions

e stack instructions save and restore simply use the stack with the

designated register and advance the pc:

(define (make-save inst machine stack pc)

(let ((reg (get-register machine

(stack-inst-reg-name inst))))

(lambda ()

(push stack (get-contents reg))

(advance-pc pc))))

(define (make-restore inst machine stack pc)

(let ((reg (get-register machine

(stack-inst-reg-name inst))))

(lambda ()

(set-contents! reg (pop stack))

(advance-pc pc))))

(define (stack-inst-reg-name stack-instruction)

(cadr stack-instruction))

713

e final instruction type, handled by make-perform, generates an ex-

ecution procedure for the action to be performed. At simulation time,

the action procedure is executed and the pc advanced.

(define (make-perform inst machine labels operations pc)

(let ((action (perform-action inst)))

(if (operation-exp? action)

(let ((action-proc

(make-operation-exp

action machine labels operations)))

(lambda () (action-proc) (advance-pc pc)))

(error "Bad PERFORM instruction: ASSEMBLE" inst))))

(define (perform-action inst) (cdr inst))

Execution procedures for subexpressions

e value of a reg, label, or const expression may be needed for as-

signmenttoaregister(make-assign)orforinputtoanoperation(make-

operation-exp, below). e following procedure generates execution

procedures to produce values for these expressions during the simula-

tion:

(define (make-primitive-exp exp machine labels)

(cond ((constant-exp? exp)

(let ((c (constant-exp-value exp)))

(lambda () c)))

((label-exp? exp)

(let ((insts (lookup-label

labels

(label-exp-label exp))))

(lambda () insts)))

((register-exp? exp)

(let ((r (get-register machine (register-exp-reg exp))))

714

(lambda () (get-contents r))))

(else (error "Unknown expression type: ASSEMBLE" exp))))

e syntax of reg, label, and const expressions is determined by

(define (register-exp? exp) (tagged-list? exp 'reg))

(define (register-exp-reg exp) (cadr exp))

(define (constant-exp? exp) (tagged-list? exp 'const))

(define (constant-exp-value exp) (cadr exp))

(define (label-exp? exp) (tagged-list? exp 'label))

(define (label-exp-label exp) (cadr exp))

Assign, perform, and test instructions may include the application of

a machine operation (specified by an op expression) to some operands

(specified by reg and const expressions). e following procedure pro-

duces an execution procedure for an “operation expression”—a list con-

taining the operation and operand expressions from the instruction:

(define (make-operation-exp exp machine labels operations)

(let ((op (lookup-prim (operation-exp-op exp)

operations))

(aprocs

(map (lambda (e)

(make-primitive-exp e machine labels))

(operation-exp-operands exp))))

(lambda ()

(apply op (map (lambda (p) (p)) aprocs)))))

e syntax of operation expressions is determined by

(define (operation-exp? exp)

(and (pair? exp) (tagged-list? (car exp) 'op)))

(define (operation-exp-op operation-exp)

(cadr (car operation-exp)))

(define (operation-exp-operands operation-exp)

(cdr operation-exp))

715

Observe that the treatment of operation expressions is very much like

the treatment of procedure applications by the analyze-application

procedure in the evaluator of Section 4.1.7 in that we generate an ex-

ecution procedure for each operand. At simulation time, we call the

operand procedures and apply the Scheme procedure that simulates the

operation to the resulting values. e simulation procedure is found by

looking up the operation name in the operation table for the machine:

(define (lookup-prim symbol operations)

(let ((val (assoc symbol operations)))

(if val

(cadr val)

(error "Unknown operation: ASSEMBLE"

symbol))))

Exercise 5.9: e treatment of machine operations above

permits them to operate on labels as well as on constants

andthecontentsofregisters.Modifytheexpression-processing

procedures to enforce the condition that operations can be

used only with registers and constants.

Exercise 5.10: Design a new syntax for register-machine

instructions and modify the simulatortouse yournew syn-

tax.Canyouimplementyournewsyntax withoutchanging

any part of the simulator except the syntax procedures in

this section?

Exercise 5.11: When we introduced save and restore in

Section 5.1.4, we didn’t specify what would happen if you

tried to restore a register that was not the last one saved, as

in the sequence

716

(save y) (save x) (restore y)

ere are several reasonable possibilities for the meaning

of restore:

a. (restore y) puts into y the last value saved on the

stack,regardlessofwhatregisterthatvaluecamefrom.

is is the way our simulator behaves. Show how to

take advantage of this behavior to eliminate one in-

struction from the Fibonacci machine of Section 5.1.4

(Figure 5.12).

b. (restore y) puts into y the last value saved on the

stack, but only if that value was saved from y; other-

wise, it signals an error. Modify the simulator to be-

have this way. You will have to change save to put

the register name on the stack along with the value.

c. (restore y) puts into y the last value saved from

y
regardless of what other registers were saved aer

y and not restored. Modify the simulator to behave

this way. You will have to associate a separate stack

with each register. You should make the initialize-

stack operation initialize all the register stacks.

Exercise5.12: e simulator can be used to help determine

the data paths required for implementing a machine with a

given controller. Extend the assembler to store the follow-

ing information in the machine model:

• alistofallinstructions,withduplicatesremoved,sorted

by instruction type (assign, goto, and so on);

717

• a list (without duplicates) of the registers used to hold

entrypoints(thesearetheregistersreferencedby goto

instructions);

• alist(withoutduplicates)oftheregistersthatare saved

or restored;

• foreachregister,alist(withoutduplicates)ofthesources

fromwhich it isassigned (for example, the sources for

register
val inthe factorial machine ofFigure 5.11 are

(const 1) and ((op *) (reg n) (reg val))).

Extendthemessage-passinginterfacetothemachinetopro-

vide access to this new information. To test your analyzer,

define the Fibonacci machine fromFigure 5.12 and examine

the lists you constructed.

Exercise5.13: Modify the simulator so that it usesthe con-

troller sequence to determine what registers the machine

has rather than requiring a list of registers as an argument

to make-machine. Instead of pre-allocating the registers in

make-machine, you can allocate them one at a time when

they are first seen during assembly of the instructions.

5.2.4 Monitoring Machine Performance

Simulation is useful not only for verifying the correctness ofa proposed

machine design but also for measuring the machine’s performance. For

example, we can install in our simulation program a “meter” that mea-

sures the number of stack operations used in a computation. To do this,

we modify our simulated stack to keep track of the number of times

registers are saved on the stack and the maximum depth reached by the

718

stack, and add a message to the stack’s interface that prints the statis-

tics, as shown below. We also add an operation to the basic machine

model to print the stack statistics, by initializing the-ops in make-new-

machine to

(list (list 'initialize-stack

(lambda () (stack 'initialize)))

(list 'print-stack-statistics

(lambda () (stack 'print-statistics))))

Here is the new version of make-stack:

(define (make-stack)

(let ((s '())

(number-pushes 0)

(max-depth 0)

(current-depth 0))

(define (push x)

(set! s (cons x s))

(set! number-pushes (+ 1 number-pushes))

(set! current-depth (+ 1 current-depth))

(set! max-depth (max current-depth max-depth)))

(define (pop)

(if (null? s)

(error "Empty stack: POP")

(let ((top (car s)))

(set! s (cdr s))

(set! current-depth (- current-depth 1))

top)))

(define (initialize)

(set! s '())

(set! number-pushes 0)

(set! max-depth 0)

(set! current-depth 0)

'done)

719

(define (print-statistics)

(newline)

(display (list 'total-pushes '= number-pushes

'maximum-depth '= max-depth)))

(define (dispatch message)

(cond ((eq? message 'push) push)

((eq? message 'pop) (pop))

((eq? message 'initialize) (initialize))

((eq? message 'print-statistics)

(print-statistics))

(else (error "Unknown request: STACK" message))))

dispatch))

Exercise 5.15 through Exercise 5.19 describe other useful monitoring

and debugging features that can be added to the register-machine sim-

ulator.

Exercise5.14:Measure thenumberofpushesandthe max

imum stack depth required to compute n! for various small

values of n using the factorial machine shown in Figure

5.11. From your data determine formulas in terms of n for

thetotalnumberofpushoperationsandthemaximumstack

depth used in computing n! for any n > 1. Note that each

of these is a linear function ofn and is thus determined by

two constants. Inorder to get the statistics printed, you will

have to augment the factorial machine with instructions to

initialize the stack and print the statistics. You may want to

also modify the machine so that it repeatedly reads a value

for n, computes the factorial, and prints the result (as we

did for the machine in Figure 5.4), so that you will not

have to repeatedly invoke get-register-contents, set-

register-contents!, and start.

720

Exercise 5.15: Add instruction counting to the register ma

chine simulation. at is, have the machine model keep

track of the number of instructions executed. Extend the

machine model’s interface to accept a new message that

printsthevalueoftheinstructioncountandresetsthecount

to zero.

Exercise 5.16: Augment the simulator to provide for in-

structiontracing.atis,beforeeachinstructionisexecuted,

the simulator should print the text of the instruction. Make

the machine model accept
trace-on and trace-off mes

sages to turn tracing on and off.

Exercise 5.17: Extend the instruction tracing of Exercise

5.16 so that before printing an instruction, the simulator

prints any labels that immediately precede that instruction

in the controller sequence. Be careful to do this in a way

that does not interfere with instruction counting (Exercise

5.15). You will have to make the simulator retain the neces-

sary label information.

Exercise5.18:Modifythe make-registerprocedureofSec-

tion 5.2.1 so that registers can be traced. Registers should

accept messages that turn tracing on and off. When a reg-

ister is traced, assigning a value to the register should print

the name of the register, the old contents of the register,

and the new contents being assigned. Extend the interface

to the machine model to permit you to turn tracing on and

off for designated machine registers.

721

Exercise 5.19: Alyssa P. Hacker wants a breakpoint feature

inthesimulatortohelpherdebughermachinedesigns.You

have been hired to install this feature for her. She wants to

be able to specify a place in the controller sequence where

the simulator will stop and allow her to examine the state

of the machine. You are to implement a procedure

(set-breakpoint ⟨machine⟩ ⟨label⟩ ⟨n⟩)

that sets a breakpoint just before the nth instruction aer

the given label. For example,

(set-breakpoint gcd-machine 'test-b 4)

installs a breakpoint in gcd-machine just before the assign-

ment to register
a. When the simulator reaches the break-

point it should print the label and the offset of the break-

point and stop executing instructions. Alyssa can then use

get-register-contentsand set-register-contents! to

manipulate the state of the simulated machine. She should

then be able to continue execution by saying

(proceed-machine ⟨machine⟩)

She should also be able to remove a specific breakpoint by

means of

(cancel-breakpoint ⟨machine⟩ ⟨label⟩ ⟨n⟩)

or to remove all breakpoints by means of

(cancel-all-breakpoints ⟨machine⟩)

722

5.3 Storage Allocation and Garbage Collection

In Section 5.4, we will show how to implement a Scheme evaluator as

a register machine. In order to simplify the discussion, we will assume

that our register machines can be equipped with a list-structured mem-

ory, in which the basic operations for manipulating list-structured data

are primitive. Postulating the existence of such a memory is a useful

abstraction when one is focusing on the mechanisms of control in a

Scheme interpreter, but this does not reflect a realistic view of the ac-

tual primitive data operations of contemporary computers. To obtain a

more complete picture of how a Lisp system operates, we must inves-

tigate how list structure can be represented in a way that is compatible

with conventional computer memories.

ere are two considerations in implementing list structure. e

first is purely an issue ofrepresentation:how to represent the “box-and-

pointer” structure of Lisp pairs, using only the storage and addressing

capabilities of typical computer memories. e second issue concerns

the management of memory as a computation proceeds. e operation

of a Lisp system depends crucially on the ability to continually create

new data objects. ese include objectsthat are explicitly created by the

Lispproceduresbeinginterpretedaswellasstructurescreatedbythein-

terpreter itself, such as environments and argument lists. Although the

constant creation of new data objects would pose no problem on a com-

puter with an infinite amount of rapidly addressable memory, computer

memories are available only in finite sizes (more’s the pity). Lisp sys-

tems thus provide an automatic storage allocation facility to support the

illusion of an infinite memory. When a data object is no longer needed,

the memory allocated to it is automatically recycled and used to con-

struct newdata objects.ere are varioustechniquesfor providing such

723

automaticstorageallocation.emethodweshalldiscussinthissection

is called garbage collection.

5.3.1 Memory as Vectors

Aconventional computer memory can be thought of as an array of cub-

byholes, each of which can contain a piece of information. Each cub-

byhole has a unique name, called its address or location. Typical mem-

ory systems provide two primitive operations: one that fetches the data

stored in a specified location and one that assigns new data to a speci-

fiedlocation. Memory addressescanbe incremented to support sequen-

tial access to some set of the cubbyholes. More generally, many impor-

tant data operations require that memory addresses be treated as data,

which can be stored in memory locations and manipulated in machine

registers. e representation of list structure is one application of such

address arithmetic.

To model computer memory, we use a new kind of data structure

called a vector. Abstractly, a vector is a compound data object whose

individual elements can be accessed by means of an integer index in an

amount of time that is independent of the index.5 In order to describe

memory operations, we use two primitive Scheme procedures for ma

nipulating vectors:

• (vector-ref ⟨vector⟩ ⟨n⟩) returnsthenth element ofthe vector.

• (vector-set! ⟨vector⟩ ⟨n⟩ ⟨value⟩) sets thenth element ofthe

vector to the designated value.

5We could represent memory as lists of items. However, the access time would then

not be independent of the index, since accessing then
th

element of a list requires n − 1

cdr operations.

724

For example, if v is a vector, then (vector-ref v 5) gets the fih entry

in the vector v and (vector-set! v 5 7) changes the value of the fih

entry of the vector v to 7.6 For computer memory, this access can be

implemented through the use of address arithmetic to combine a base

address that specifies the beginning location of a vectorin memory with

an index that specifies the offset of a particular element of the vector.

Representing Lisp data

We can use vectors to implement the basic pair structures required for

a list-structured memory. Let us imagine that computer memory is di-

vided into two vectors: the-cars and the-cdrs. We will represent list

structure as follows: A pointer to a pair is an index into the two vectors.

e car of the pair is the entry in the-cars with the designated index,

and the cdr of the pair is the entry in the-cdrs with the designated in-

dex. We also need a representation for objects other than pairs (such as

numbers and symbols) and a way to distinguish one kind of data from

another. ere are many methods of accomplishing this, but they all re-

duce to using typed pointers, that is, to extending the notion of “pointer”

to include information on data type.7 e data type enables the system

to distinguish a pointer to a pair (which consists of the “pair” data type

and an index into the memory vectors) from pointers to other kinds of

data (which consist of some other data type and whatever is being used

to represent data ofthat type). Two dataobjectsare considered tobe the

6For completeness, we should specify a make-vector operation that constructs vec-

tors. However, in the present application we will use vectors only to model fixed divi-

sions of the computer memory.

7is isprecisely thesame“tagged data” idea we introduced in Chapter 2 for dealing

with generic operations. Here, however, the data types are included at the primitive

machine level rather than constructed through the use of lists.

725

same (eq?) if their pointers are identical.8 Figure 5.14 illustrates the use

ofthis methodtorepresent the list ((1 2) 3 4), whose box-and-pointer

diagram is also shown. We use leer prefixes to denote the data-type

information. us, a pointer to the pair with index 5 is denoted p5, the

empty list is denoted by the pointer e0, and a pointer to the number 4

is denoted n4. In the box-and-pointer diagram, we have indicated at the

lower le of each pair the vector index that specifies where the car and

cdr of the pair are stored. e blank locations in the-cars and the-

cdrs may contain parts of other list structures (not of interest here).

A pointer to a number, such as n4, might consist ofa type indicating

numeric data together with the actual representation of the number 4.9

To deal with numbers that are too large to be represented in the fixed

amount of space allocated for a single pointer, we could use a distinct

bignum data type, for which the pointer designates a list in which the

parts of the number are stored.10

8Type information may be encoded in a variety of ways, depending on the details of

the machine on which the Lisp system is to be implemented. e execution efficiency

of Lisp programs will be strongly dependent on how cleverly this choice is made, but it

is difficult to formulate general design rules for good choices. e most straightforward

way to implement typed pointers is to allocate a fixed set of bits in each pointer to be a

type field that encodes the data type. Important questions to be addressed in designing

such a representation include the following: How many type bits are required? How

large must the vector indices be? How efficiently can the primitive machine instruc-

tions be used to manipulate the type fields of pointers? Machines that include special

hardware for the efficient handling of type fields are said to have tagged architectures.

9is decision on the representation of numbers determines whether eq?, which

tests equality of pointers, can be used to test for equality of numbers. If the pointer

contains the number itself, then equal numbers will have the same pointer. But if the

pointer contains the index of a location where the number is stored, equal numbers

will be guaranteed to have equal pointers only if we are careful never to store the same

number in more than one location.

10is is just like writing a number as a sequence of digits, except that each “digit”

726

((12)34) 1 2 4

0 1 2 3 4 5 6 7 8 ...Index

5 7

4

1 2

3

the-cars
p5 n3 n4 n1 n2 ...

the-cdrs
p2 p4 e0 p7 e0 ...

Figure 5.14: Box-and-pointer and memory-vector repre-

sentations ofthe list ((1 2) 3 4).

A symbol might be represented as a typed pointer that designates a

sequence of the characters that form the symbol’s printed representa-

tion.is sequence isconstructedby the Lisp readerwhenthe character

string is initially encountered in input. Since we want two instances of

a symbol to be recognized as the “same” symbol by eq? and we want

eq? to be a simple test for equality of pointers, we must ensure that

if the reader sees the same character string twice, it will use the same

pointer (to the same sequence of characters) to represent both occur-

rences. To accomplish this, the reader maintains a table, traditionally

called the obarray, of all the symbols it has ever encountered. When the

reader encounters a character string and is about to construct a symbol,

is a number between 0 and the largest number that can be stored in a single pointer.

727

it checks the obarray to see if it has ever before seen the same character

string. If it has not, it uses the characters to construct a new symbol (a

typed pointer to a new character sequence) and enters this pointer in

the obarray. If the reader has seen the string before, it returns the sym-

bol pointer stored in the obarray. is process of replacing character

strings by unique pointers is called interning symbols.

Implementing the primitive list operations

Given the above representation scheme, we can replace each “primi-

tive” list operation of a register machine with one or more primitive

vector operations. We will use two registers,
the-cars and the-cdrs,

to identify the memory vectors, and will assume that vector-ref and

vector-set! are available as primitive operations. We also assume that

numeric operations on pointers (such as incrementing a pointer, using

a pair pointer to index a vector, or adding two numbers) use only the

index portion of the typed pointer.

For example, we can make a register machine support the instruc-

tions

(assign ⟨reд1⟩ (op car) (reg ⟨reд2⟩))

(assign ⟨reд1⟩ (op cdr) (reg ⟨reд2⟩))

if we implement these, respectively, as

(assign ⟨reд1⟩ (op vector-ref) (reg the-cars) (reg ⟨reд2⟩))

(assign ⟨reд1⟩ (op vector-ref) (reg the-cdrs) (reg ⟨reд2⟩))

e instructions

(perform (op set-car!) (reg ⟨reд1⟩) (reg ⟨reд2⟩))

(perform (op set-cdr!) (reg ⟨reд1⟩) (reg ⟨reд2⟩))

are implemented as

728

(perform

(op vector-set!) (reg the-cars) (reg ⟨reд1⟩) (reg ⟨reд2⟩))

(perform

(op vector-set!) (reg the-cdrs) (reg ⟨reд1⟩) (reg ⟨reд2⟩))

Cons is performed by allocating an unused index and storing the argu-

ments to cons in the-cars and the-cdrs at that indexed vector posi-

tion. We presume that there isa special register, free, that alwaysholdsa pair pointer containing the next available index, and that we can in-

crement the index part of that pointer to find the next free location.11

For example, the instruction

(assign ⟨reд1⟩ (op cons) (reg ⟨reд2⟩) (reg ⟨reд3⟩))

is implemented as the following sequence of vector operations:12

(perform

(op vector-set!) (reg the-cars) (reg free) (reg ⟨reд2⟩))

(perform

(op vector-set!) (reg the-cdrs) (reg free) (reg ⟨reд3⟩))

(assign ⟨reд1⟩ (reg free))

(assign free (op +) (reg free) (const 1))

e eq? operation

(op eq?) (reg ⟨reд1⟩) (reg ⟨reд2⟩)

simply teststhe equality of allfieldsinthe registers,andpredicates such

as pair?, null?, symbol?, and number? need only check the type field.

11ere are other ways of finding free storage. For example, we could link together

all the unused pairs into a free list. Our free locations are consecutive (and hence can

be accessed by incrementing a pointer) because we are using a compacting garbage

collector, as we will see in Section 5.3.2.

12isisessentiallytheimplementationofconsintermsofset-car!andset-cdr!,

as described in Section 3.3.1. e operation get-new-pair used in that implementation

is realized here by the free pointer.

729

Implementing stacks

Although our register machines use stacks, we need do nothing special

here, since stacks can be modeled in terms of lists. e stack can be a

list ofthe saved values,pointed to by aspecial register the-stack. us,

(save ⟨reg⟩) can be implemented as

(assign the-stack (op cons) (reg ⟨reg⟩) (reg the-stack))

Similarly, (restore ⟨reg⟩) can be implemented as

(assign ⟨reg⟩ (op car) (reg the-stack))

(assign the-stack (op cdr) (reg the-stack))

and (perform (op initialize-stack)) can be implemented as

(assign the-stack (const ()))

ese operations can be further expanded in terms of the vector opera-

tions given above. In conventional computer architectures, however, it

is usually advantageous to allocate the stack as a separate vector. en

pushing and popping the stack can be accomplished by incrementing

or decrementing an index into that vector.

Exercise 5.20: Draw the box-and-pointer representation

and the memory-vector representation (as in Figure 5.14)

of the list structure produced by

(define x (cons 1 2))

(define y (list x x))

with the free pointer initially p1. What is the final value of

free ? What pointers represent the values of x and y ?

Exercise5.21: Implement register machinesforthe follow-

ing procedures. Assume that the list-structure memory op-

erations are available as machine primitives.

730

a. Recursive count-leaves:

(define (count-leaves tree)

(cond ((null? tree) 0)

((not (pair? tree)) 1)

(else (+ (count-leaves (car tree))

(count-leaves (cdr tree))))))

b. Recursive count-leaves with explicit counter:

(define (count-leaves tree)

(define (count-iter tree n)

(cond ((null? tree) n)

((not (pair? tree)) (+ n 1))

(else

(count-iter (cdr tree)

(count-iter (car tree)

n)))))

(count-iter tree 0))

Exercise 5.22: Exercise 3.12 of Section 3.3.1 presented an

append procedure that appends two lists to form a new list

and an append! procedure that splices two lists together.

Design a register machine to implement each of these pro-

cedures. Assume that the list-structure memory operations

are available as primitive operations.

5.3.2 Maintaining the Illusion of Infinite Memory

e representation method outlined in Section 5.3.1 solves the problem

ofimplementinglist structure,providedthatwehave aninfiniteamount

of memory. With a real computer we will eventually run out of free

731

space in which to construct new pairs.13 However, most of the pairs

generated in a typical computation are used only to hold intermediate

results. Aerthese results are accessed, the pairs are no longerneeded—

they are garbage. For instance, the computation

(accumulate + 0 (filter odd? (enumerate-interval 0 n)))

constructs two lists: the enumeration and the result of filtering the enu-

meration. When the accumulation is complete, these lists are no longer

needed, and the allocated memory can be reclaimed. If we can arrange

to collect all the garbage periodically, and if this turns out to recycle

memory at about thesamerate atwhich weconstructnewpairs,wewill

have preserved the illusion that there is an infinite amount of memory.

In order to recycle pairs, we must have a way to determine which

allocated pairs are not needed (in the sense that their contents can no

longer influence the future of the computation). e method we shall

examine for accomplishing this is known as garbage collection. Garbage

collection is based on the observation that, at any moment in a Lisp

interpretation, the only objects that can affect the future of the compu-

tation are those that can be reached by some succession of car and cdr

operations starting from the pointers that are currently in the machine

13is may not be true eventually, because memories may get large enough so that

it would be impossible to run out of free memory in the lifetime of the computer. For

example, there are about 3 · 1013 microseconds in a year, so if we were to cons once

per microsecond we would need about 1015 cells of memory to build a machine that

could operate for 30 years without running out of memory. at much memory seems

absurdly large by today’s standards, but it is not physically impossible. On the other

hand, processors are geing faster and a future computer may have large numbers of

processors operating in parallel on a single memory, so it may be possible to use up

memory much faster than we have postulated.

732

registers.14 Any memory cell that is not so accessible may be recycled.

ere are many ways to perform garbage collection. e method

we shall examine here is called stop-and-copy. e basic idea is to divide

memory into two halves: “working memory” and “free memory.” When

consconstructspairs,itallocatestheseinworkingmemory.Whenwork-

ing memory is full, we perform garbage collection by locating all the

use- ful pairs in working memory and copying these into consecutive

locations in free memory. (e useful pairs are located by tracing all the

car and cdr pointers, starting with the machine registers.) Since we do

not copy the garbage, there will presumably be additional free memory

that we can use to allocate new pairs. In addition, nothing in the work-

ing memory is needed, since all the useful pairs in it have been copied.

us, if we inter- change the roles of working memory and free mem-

ory, we can continue processing; new pairs will be allocated in the new

working memory (which was the old free memory). When this is full,

we can copy the useful pairs into the new free memory (which was the

old working memory).15

14We assume here that the stack is represented as a list as described in Section 5.3.1,

so that items on the stack are accessible via the pointer in the stack register.

15is idea was invented and first implemented by Minsky, as part of the imple-

mentation of Lisp for the PDP-1 at the Research Laboratory of Electronics. It was

further developed by Fenichel and Yochelson (1969) for use in the Lisp implementa-

tion for the Multics time-sharing system. Later, Baker (1978) developed a “real-time”

version of the method, which does not require the computation to stop during garbage

collection. Baker’s idea was extended by Hewi, Lieberman, and Moon (see Lieberman

and Hewi 1983) to take advantage of the fact that some structure is more volatile and

other structure is more permanent.

An alternative commonly used garbage-collection technique is the mark-sweep

method. is consists of tracing all the structure accessible from the machine registers

and marking each pair we reach. We then scan all of memory, and any location that is

unmarked is “swept up” as garbage and made available for reuse. A full discussion of

733

Implementation of a stop-and-copy garbage collector

We now use our register-machine language to describe the stop-and-

copy algorithm in more detail. We will assume that there is a register

called root that contains a pointer to a structure that eventually points

at all accessible data. is can be arranged by storing the contents of

all the machine registers in a pre-allocated list pointed at by root
just

before starting garbage collection.16 We also assume that, in addition to

the current workingmemory,there isfree memory available into which

we can copy the useful data. e current working memory consists of

vectors whose base addresses are in registers called the-cars and the-

cdrs,andthefreememoryisinregisterscalled new-cars and new-cdrs.

Garbage collection is triggered when we exhaust the free cells in

the current working memory, that is, when a cons operation aempts

to increment the free pointer beyond the end of the memory vector.

When the garbage-collection process is complete, the root pointer will

point into the new memory, all objects accessible from the root will

have been moved to the new memory,andthe freepointerwillindicate

the next place in the new memory where a new pair can be allocated.

In addition, the roles of working memory and new memory will have

the mark-sweep method can be found in Allen 1978.

eMinsky-Fenichel-Yochelson algorithmisthedominantalgorithmin useforlarge-

memory systems becauseitexaminesonly the useful part ofmemory. isis in contrast

to mark-sweep, in which the sweep phase must check all of memory. A second advan-

tage of stop-and-copy is that it is a compacting garbage collector. at is, at the end

of the garbage-collection phase the useful data will have been moved to consecutive

memory locations, with all garbage pairs compressed out. is can be an extremely

important performance consideration in machines with virtual memory, in which ac-

cesses to widely separated memory addresses may require extra paging operations.

16is list of registers does not include the registers used by the storage-allocation

system—root, the-cars, the-cdrs, and the other registers that will be introduced in

this section.

734

been interchanged—new pairs will be constructed in the new memory,

beginning at the place indicated by free, and the (previous) working

memory will be available as the new memory for the next garbage col-

lection. Figure 5.15 shows the arrangement of memory just before and

just aer garbage collection.

e state of the garbage-collection process is controlled by main-

taining two pointers:
free and scan. ese are initialized to point to

the beginning of the new memory. e algorithm begins by relocating

the pair pointed at by root to the beginning of the new memory. e

pair is copied, the root pointer is adjusted to point to the new location,

and the free pointer is incremented. In addition, the old location of the

pair is marked to show that its contents have been moved. is mark

ing is done as follows: In the car position, we place a special tag that

signalsthat this is analready-moved object. (Such an object is tradition

ally called a broken heart.)17 In the cdr
position we place aforwarding

address that points at the location to which the object has been moved.

Aer relocating the root, the garbage collector enters its basic cy-

cle. At each step in the algorithm, the scan
pointer (initially pointing

at the relocated root) points at a pair that has been moved to the new

memory but whose car and cdr
pointers still refer to objects in the old

memory. ese objects are each relocated, and the scan pointer is in-

cremented. To relocate an object (for example, the object indicated by

the car pointer ofthe pair we are scanning)we check to see ifthe object

has already been moved (as indicated by the presence ofa broken-heart

tag in the car position of the object). If the object has not already been

moved, we copy it to the place indicated by free, update free, set up

a broken heart at the object’s old location, and update the pointer to

17e term broken heart was coined by David Cressey, who wrote a garbage collector

for MDL, a dialect of Lisp developed at during the early 1970s.

735

the-cars

the-cdrs

new-cars

new-cdrs

new-cars

new-cdrs

the-cars

the-cdrs

Just before garbage collection

mixture of useful data and garbage

free

free memoryJustaergarbagecollection

discarded memory

useful data free area

free

working

memory

free

memory

new

free

memory

new

working

memory

Figure 5.15: Reconfiguration of memory by the garbage

collection process.

736

the object (in this example, the car pointer of the pair we are scanning)

to point to the new location. If the object has already been moved, its

forwarding address (found in the cdr
position of the broken heart) is

substituted for the pointer in the pair being scanned. Eventually, all ac-

cessible objects will have been moved and scanned, at which point the

scan
pointer will overtake the free pointer and the process will termi-

nate.

We can specify the stop-and-copy algorithm as a sequence of in-

structions for a register machine. e basic step of relocating an object

is accomplished by a subroutine called relocate-old-result-in-new.

is subroutine gets its argument, a pointer to the object to be relo-

cated, from a register named old. It relocates the designated object (in-

crementing
free in the process), puts a pointer to the relocated object

into a register called new, and returns by branching to the entry point

stored in the register relocate-continue. To begin garbage collection,

we invoke this subroutine to relocate the root pointer, aer initializing

free and scan. Whenthe relocationof root has beenaccomplished, we

install the new pointer as the new root and enter the main loop of the

garbage collector.

begin-garbage-collection

(assign free (const 0))

(assign scan (const 0))

(assign old (reg root))

(assign relocate-continue (label reassign-root))

(goto (label relocate-old-result-in-new))

reassign-root

(assign root (reg new))

(goto (label gc-loop))

In the main loop of the garbage collector we must determine whether

there are any more objects to be scanned. We do thisby testing whether

737

the scan pointer is coincident with the free pointer. If the pointers are

equal, then all accessible objects have been relocated, and we branch

to gc-flip, which cleans things up so that we can continue the inter-

rupted computation. If there are still pairs to be scanned, we call the

relocate subroutine to relocate the car of the next pair (by placing the

car
pointer in old). e relocate-continue register is set up so that

the subroutine will return to update the car pointer.

gc-loop

(test (op =) (reg scan) (reg free))

(branch (label gc-flip))

(assign old (op vector-ref) (reg new-cars) (reg scan))

(assign relocate-continue (label update-car))

(goto (label relocate-old-result-in-new))

At update-car, we modify the car
pointer of the pair being scanned,

then proceed to relocate the cdr of the pair. We return to update-cdr

when that relocation has been accomplished. Aer relocating and up

dating the cdr, we are finished scanning that pair, so we continue with

the main loop.

update-car

(perform (op vector-set!)

(reg new-cars)

(reg scan)

(reg new))

(assign old (op vector-ref) (reg new-cdrs) (reg scan))

(assign relocate-continue (label update-cdr))

(goto (label relocate-old-result-in-new))

update-cdr

(perform (op vector-set!)

(reg new-cdrs)

(reg scan)

(reg new))

738

(assign scan (op +) (reg scan) (const 1))

(goto (label gc-loop))

e subroutine relocate-old-result-in-new relocates objects as fol-

lows: If the object to be relocated (pointed at by old) is not a pair, then

we returnthe same pointer to the object unchanged (in new). (For exam-

ple, we may be scanning a pair whose car is the number 4. If we repre-

sent the car by n4, as described in Section 5.3.1, then we want the “relo-

cated” car pointer to still be n4.) Otherwise, we must perform the relo-

cation. If the car position of the pair to be relocated contains a broken-

heart tag, then the pair has in fact already been moved, so we retrieve

the forwarding address (from the cdr position of the broken heart) and

return this in new. If the pointer in old
points at a yet-unmoved pair,

then we move the pair to the first free cell in new memory (pointed at

by free) and set up the broken heart by storing a broken-heart tag and

forwarding address at the old location. Relocate-old-result-in-new

uses a register oldcr to hold the car or the cdr ofthe object pointed at

by old.18

relocate-old-result-in-new

(test (op pointer-to-pair?) (reg old))

(branch (label pair))

(assign new (reg old))

(goto (reg relocate-continue))

pair

(assign oldcr (op vector-ref) (reg the-cars) (reg old))

18e garbage collector uses the low-level predicate
pointer-to-pair? instead of

the list-structure pair? operation becausein arealsystemtheremightbevariousthings

that are treated as pairs for garbage-collection purposes. For example, in a Scheme

system that conforms to the standard a procedure object may be implemented as

aspecial kind of“pair” thatdoesn’tsatisfy the pair?predicate. Forsimulation purposes,

pointer-to-pair? can be implemented as pair?.

739

(test (op broken-heart?) (reg oldcr))

(branch (label already-moved))

(assign new (reg free)) ;newlocationforpair

;;Updatefreepointer.

(assign free (op +) (reg free) (const 1))

;;Copythecarandcdrtonewmemory.

(perform (op vector-set!)

(reg new-cars) (reg new) (reg oldcr))

(assign oldcr (op vector-ref) (reg the-cdrs) (reg old))

(perform (op vector-set!)

(reg new-cdrs) (reg new) (reg oldcr))

;; Construct the broken heart.

(perform (op vector-set!)

(reg the-cars) (reg old) (const broken-heart))

(perform

(op vector-set!) (reg the-cdrs) (reg old) (reg new))

(goto (reg relocate-continue))

already-moved

(assign new (op vector-ref) (reg the-cdrs) (reg old))

(goto (reg relocate-continue))

At the very end of the garbage-collection process, we interchange the

role of old and new memories by interchanging pointers: interchanging

the-cars with new-cars, and the-cdrs with new-cdrs. We will then

be ready to perform another garbage collection the next time memory

runs out.

gc-flip

(assign temp (reg the-cdrs))

(assign the-cdrs (reg new-cdrs))

(assign new-cdrs (reg temp))

(assign temp (reg the-cars))

(assign the-cars (reg new-cars))

(assign new-cars (reg temp))

740

5.4 The Explicit-Control Evaluator

In Section 5.1 we saw how to transform simple Scheme programs into

descriptionsofregistermachines.Wewillnowperformthistransforma-

tion on a more complex program, the metacircular evaluator of Section

4.1.1–Section 4.1.4, which shows how the behavior of a Scheme inter-

preter can be described in terms ofthe procedures eval and apply. e

explicit-control evaluator that we develop in this section shows how the

underlying procedure-calling and argument-passing mechanisms used

intheevaluationprocesscanbedescribedintermsof operationsonreg-isters and stacks. In addition, the explicit-control evaluator can serve as

an implementation of a Scheme interpreter, wrien in a language that

is very similar to the native machine language of conventional comput-

ers. e evaluator can be executed by the register-machine simulator

of Section 5.2. Alternatively, it can be used as a starting point for build-

ing a machine-language implementation ofa Scheme evaluator, or even

a special-purpose machine for evaluating Scheme expressions. Figure

5.16 shows such a hardware implementation: a silicon chip that acts as

an evaluator for Scheme. e chip designers started with the data-path

and controller specifications for a register machine similar to the evalu-

ator described in this section and used design automation programs to

construct the integrated-circuit layout.19

Registers and operations

In designing the explicit-control evaluator, we must specify the opera-

tions to be used in our register machine. We described the metacircular

evaluator in terms of abstract syntax, using procedures such as quoted?

19See Batali et al. 1982 for more information on the chip and the method by which it

was designed.

741

Figure5.16: Asilicon-chipimplementationofanevaluator

for Scheme.

and make-procedure. In implementing the register machine, we could

expand these procedures into sequences of elementary list-structure

memory operations, and implement these operations on our register

machine. However, this would make our evaluator very long, obscur-

ing the basic structure with details. To clarify the presentation, we will

include as primitive operations of the register machine the syntax pro-

cedures given in Section 4.1.2 and the procedures for representing en-

vironments and other run-time data given in sections Section 4.1.3 and

Section 4.1.4. In order to completely specify an evaluator that could be

programmed in a low-level machine language or implemented in hard

742

ware, we would replace these operations by more elementary opera-

tions, using the list-structure implementation we described in Section

5.3.

Our Scheme evaluator register machine includes a stack and seven

registers: exp, env, val, continue, proc, argl, and unev. Exp is used to

hold the expression to be evaluated, and env contains the environment

in which the evaluation is to be performed. At the end of an evalua

tion, val contains the value obtained by evaluating the expression in

the designated environment. e continue register is used to imple-

ment recursion, as explained in Section 5.1.4. (e evaluator needs to

call itself recursively, since evaluating an expression requires evaluat-

ing its subexpressions.) e registers proc, argl, and unev are used in

evaluating combinations.

We will not provide a data-path diagram to show how the regis-

ters and operations of the evaluator are connected, nor will we give the

complete list of machine operations. ese are implicit in the evalua-

tor’s controller, which will be presented in detail.

5.4.1 The Core of the Explicit-Control Evaluator

e central element in the evaluator is the sequence ofinstructions be-

ginning at eval-dispatch. is corresponds to the eval procedure of

the metacircular evaluator described in Section 4.1.1. When the con-

troller starts at eval-dispatch, it evaluates the expression specified by

exp in the environment specified by env. When evaluation is complete,

the controller will go to the entry point stored in continue, and the val

register will hold the value of the expression. As with the metacircular

eval, the structure of eval-dispatch is a case analysis on the syntactic

743

type of the expression to be evaluated.20

eval-dispatch

(test (op self-evaluating?) (reg exp))

(branch (label ev-self-eval))

(test (op variable?) (reg exp))

(branch (label ev-variable))

(test (op quoted?) (reg exp))

(branch (label ev-quoted))

(test (op assignment?) (reg exp))

(branch (label ev-assignment))

(test (op definition?) (reg exp))

(branch (label ev-definition))

(test (op if?) (reg exp))

(branch (label ev-if))

(test (op lambda?) (reg exp))

(branch (label ev-lambda))

(test (op begin?) (reg exp))

(branch (label ev-begin))

(test (op application?) (reg exp))

(branch (label ev-application))

(goto (label unknown-expression-type))

Evaluating simple expressions

Numbers and strings (which are self-evaluating), variables, quotations,

and lambda expressions have no subexpressions to be evaluated. For

20In our controller, the dispatch is wrien as a sequence of test and branch in-

structions. Alternatively, it could have been wrien in a data-directed style (and in a

real system it probably would have been) to avoid the need to perform sequential tests

and to facilitate the definition of new expression types. A machine designed to run Lisp

would probably include a dispatch-on-type instruction that would efficiently execute

such data-directed dispatches.

744

these, the evaluator simply places the correct value in the val register

and continues execution at the entry point specified by continue. Eval

uation of simple expressions is performed by the following controller

code:

ev-self-eval

(assign val (reg exp))

(goto (reg continue))

ev-variable

(assign val (op lookup-variable-value) (reg exp) (reg env))

(goto (reg continue))

ev-quoted

(assign val (op text-of-quotation) (reg exp))

(goto (reg continue))

ev-lambda

(assign unev (op lambda-parameters) (reg exp))

(assign exp (op lambda-body) (reg exp))

(assign val (op make-procedure) (reg unev) (reg exp) (reg env))

(goto (reg continue))

Observe how ev-lambda uses the unev and exp registers to hold the pa-

rameters and body of the lambda expression so that they can be passed

to the make-procedure operation, along with the environment in env.

Evaluating procedure applications

Aprocedure applicationisspecified by a combinationcontainingan op-

erator and operands. e operator is a subexpression whose value is a

procedure, and the operands are subexpressions whose values are the

arguments to which the procedure should be applied. e metacircu-

lar eval handles applications by calling itself recursively to evaluate

each element of the combination, and then passing the results to apply,

which performs the actual procedure application. e explicit-control

745

evaluator does the same thing; these recursive calls are implemented

by goto instructions, together with use of the stack to save registers

that will be restored aer the recursive call returns. Before each call we

will be careful to identify which registers must be saved (because their

values will be needed later).21

We begin the evaluation of an application by evaluating the opera-

tor to produce a procedure, which will later be applied to the evaluated

operands.Toevaluatetheoperator,wemoveittothe expregisterandgo

to eval-dispatch. e environment in the env register is already the

correct one in which to evaluate the operator. However, we save env

because we will need it later to evaluate the operands. We also extract

the operands into unev and save this on the stack. We set up continue

so that eval-dispatch will resume at ev-appl-did-operator aer the

operator has been evaluated. First, however, we save the old value of

continue, which tells the controller where to continue aer the appli-

cation.

ev-application

(save continue)

(save env)

(assign unev (op operands) (reg exp))

(save unev)

(assign exp (op operator) (reg exp))

(assign continue (label ev-appl-did-operator))

(goto (label eval-dispatch))

21is is an important but subtle point in translating algorithms from a procedural

language, such as Lisp, to a register-machine language. As an alternative to saving only

what is needed, we could save all the registers (except val) before each recursive call.

is is called a framed-stack discipline. is would work but might save more registers

than necessary; this could be an important consideration in a system where stack op-

erations are expensive. Saving registers whose contents will not be needed later may

also hold onto useless data that could otherwise be garbage-collected, freeing space to

bereused.

746

Upon returning from evaluating the operator subexpression, we pro-

ceed to evaluate the operands ofthe combination and to accumulate the

resulting arguments in a list, held in argl. First we restore the unevalu-

ated operands and the environment. We initialize argl to an empty list.

en we assign to the proc register the procedure that was produced

by evaluating the operator. If there are no operands, we go directly to

apply-dispatch. Otherwise we save proc on the stack and start the

argument-evaluation loop:22

ev-appl-did-operator

(restore unev) ;the operands

(restore env)

(assign argl (op empty-arglist))

(assign proc (reg val)) ;the operator

(test (op no-operands?) (reg unev))

(branch (label apply-dispatch))

(save proc)

Each cycle of the argument-evaluation loop evaluates an operand from

the list in unev and accumulates the result into argl. To evaluate an

operand, we place it in the exp register and go to eval-dispatch, af-

ter seing continue so that execution will resume with the argument

accumulation phase. But first we save the arguments accumulated so

22We add to the evaluator data-structure procedures in Section 4.1.3 the following

two procedures for manipulating argument lists:

(define (empty-arglist) '())

(define (adjoin-arg arg arglist) (append arglist (list arg)))

We also use an additional syntax procedure to test for the last operand in a combi-

nation:

(define (last-operand? ops) (null? (cdr ops)))

747

far (held in argl), the environment (held in env), and the remaining

operands to be evaluated (held in unev). A special case is made for the

evaluation of the last operand, which is handled at ev-appl-last-arg.

ev-appl-operand-loop

(save argl)

(assign exp (op first-operand) (reg unev))

(test (op last-operand?) (reg unev))

(branch (label ev-appl-last-arg))

(save env)

(save unev)

(assign continue (label ev-appl-accumulate-arg))

(goto (label eval-dispatch))

When an operand has been evaluated, the value is accumulated into the

list held in argl. e operand is then removed from the list of unevalu-

ated operands in unev, and the argument-evaluation continues.

ev-appl-accumulate-arg

(restore unev)

(restore env)

(restore argl)

(assign argl (op adjoin-arg) (reg val) (reg argl))

(assign unev (op rest-operands) (reg unev))

(goto (label ev-appl-operand-loop))

Evaluation of the last argument is handled differently. ere is no need

tosavetheenvironmentorthelistofunevaluatedoperandsbeforegoing

to eval-dispatch, since they will not be required aer the last operand

isevaluated.us,wereturnfromtheevaluationtoaspecialentrypoint

ev-appl-accum-last-arg, which restores the argument list, accumu-

lates the new argument, restores the saved procedure, and goes off to

perform the application.23

23e optimization of treating the last operand specially is known as evlis tail recur

748

ev-appl-last-arg

(assign continue (label ev-appl-accum-last-arg))

(goto (label eval-dispatch))

ev-appl-accum-last-arg

(restore argl)

(assign argl (op adjoin-arg) (reg val) (reg argl))

(restore proc)

(goto (label apply-dispatch))

edetailsoftheargument-evaluationloopdeterminetheorderinwhich

theinterpreterevaluatestheoperandsofacombination(e.g.,letoright

or right to le—see Exercise 3.8). is order is not determined by the

metacircular evaluator, which inherits its control structure from the

underlying Scheme in which it is implemented.24 Because the first-

operand selector (used in ev-appl-operand-loop to extract successive

operands from unev) is implemented as car and the rest-operands se-

lectorisimplementedas cdr, the explicit-control evaluatorwill evaluate

the operands ofa combination in le-to-right order.

Procedure application

e entry point apply-dispatch corresponds to the apply procedure

of the metacircular evaluator. By the time we get to apply-dispatch,

the proc register contains the procedure to apply and argl contains

sion (see Wand 1980). We could be somewhat more efficient in the argument evaluation

loop if we made evaluation of the first operand a special case too. is would permit us

to postpone initializing argl until aer evaluating the first operand, so as to avoid sav-

ing argl in this case. e compiler in Section 5.5 performs this optimization. (Compare

the construct-arglist procedure of Section 5.5.3.)

24e order of operand evaluation in the metacircular evaluator is determined by

the order of evaluation of the arguments to cons in the procedure list-of-values of

Section 4.1.1 (see Exercise 4.1).

749

the list of evaluated arguments to which it must be applied. e saved

valueof continue(originallypassedto eval-dispatchandsavedat ev-

application), which tells where to return with the result of the proce-

dure application, is on the stack. When the application is complete, the

controller transfers to the entry point specified by the saved continue,

with theresultofthe applicationin val.Aswiththe metacircular apply,

there are two cases to consider. Either the procedure to be applied is a

primitive or it is a compound procedure.

apply-dispatch

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-apply))

(test (op compound-procedure?) (reg proc))

(branch (label compound-apply))

(goto (label unknown-procedure-type))

We assume that each primitive is implemented so as to obtain its argu-

mentsfrom argl and place its result in val. Tospecify how the machine

handles primitives, we would have to provide a sequence of controller

instructions to implement each primitive and arrange for primitive-

apply to dispatch to the instructions for the primitive identified by the

contents of proc. Since we are interested in the structure of the evalua-

tionprocessratherthanthedetailsofthe primitives,we willinsteadjust

use an apply-primitive-procedure operation that applies the proce-

dure in proc to the arguments in argl. For the purpose of simulating

the evaluator with the simulator of Section 5.2 we use the procedure

apply-primitive-procedure, which calls on the underlying Scheme

system to perform the application, just as we did for the metacircular

evaluator in Section 4.1.4. Aer computing the value of the primitive

application, we restore continue and go to the designated entry point.

750

primitive-apply

(assign val (op apply-primitive-procedure)

(reg proc)

(reg argl))

(restore continue)

(goto (reg continue))

To apply a compound procedure, we proceed just as with the metacir

cular evaluator. We construct a frame that binds the procedure’s pa

rameters to the arguments, use this frame to extend the environment

carried by the procedure, and evaluate in this extended environment

the sequence of expressions that forms the body of the procedure. Ev-

sequence, described below in Section 5.4.2, handles the evaluation of

the sequence.

compound-apply

(assign unev (op procedure-parameters) (reg proc))

(assign env (op procedure-environment) (reg proc))

(assign env (op extend-environment)

(reg unev) (reg argl) (reg env))

(assign unev (op procedure-body) (reg proc))

(goto (label ev-sequence))

Compound-apply is the only place in the interpreter where the env reg-

ister is ever assigned a new value. Just as in the metacircular evaluator,

the new environment is constructed from the environment carried by

the procedure, together with the argument list and the corresponding

list of variables to be bound.

5.4.2 Sequence Evaluation and Tail Recursion

e portion of the explicit-control evaluator at ev-sequence is analo

gous to the metacircular evaluator’s eval-sequence procedure. It han

751

dles sequences of expressions in procedure bodies or in explicit begin

expressions.

Explicit begin expressions are evaluated by placing the sequence of

expressions to be evaluated in unev, saving continue on the stack, and

jumping to ev-sequence.

ev-begin

(assign unev (op begin-actions) (reg exp))

(save continue)

(goto (label ev-sequence))

e implicit sequences in procedure bodies are handled by jumping to

ev-sequence from compound-apply,at which point continueisalready

on the stack, having been saved at ev-application.

eentriesat ev-sequenceand ev-sequence-continueformaloopthat successively evaluates each expression in a sequence. e list of

unevaluated expressions is kept in unev. Before evaluating each expres-

sion, we check to see if there are additional expressions to be evaluated

in the sequence. If so, we save the rest of the unevaluated expressions

(held in unev) and the environment in which these must be evaluated

(held in env) and call eval-dispatch to evaluate the expression. e

two saved registers are restored upon the return from this evaluation,

at ev-sequence-continue.

efinal expressioninthe sequence ishandleddifferently,at theen-

try point ev-sequence-last-exp. Since there are no more expressions

to be evaluated aer this one, we need not save unev or env before go-

ing to eval-dispatch. e value of the whole sequence is the value of

the last expression, so aer the evaluation of the last expression there is

nothing le to do except continue at the entry point currently held on

the stack (which was saved by ev-application or ev-begin.) Rather

than seing up continue to arrange for eval-dispatch to return here

752

and then restoring
continue from the stack and continuing at that en

try point, we restore continue from the stack before going to eval-

dispatch, so that eval-dispatch will continue at that entry point af-

ter evaluating the expression.

ev-sequence

(assign exp (op first-exp) (reg unev))

(test (op last-exp?) (reg unev))

(branch (label ev-sequence-last-exp))

(save unev)

(save env)

(assign continue (label ev-sequence-continue))

(goto (label eval-dispatch))

ev-sequence-continue

(restore env)

(restore unev)

(assign unev (op rest-exps) (reg unev))

(goto (label ev-sequence))

ev-sequence-last-exp

(restore continue)

(goto (label eval-dispatch))

Tail recursion

In Chapter 1 we said that the process described by a procedure such as

(define (sqrt-iter guess x)

(if (good-enough? guess x)

guess

(sqrt-iter (improve guess x) x)))

is an iterative process. Even though the procedure is syntactically re-

cursive (defined in terms of itsel), it is not logically necessary for an

evaluator to save information in passing from one call to sqrt-iter to

753

thenext.25 Anevaluatorthatcanexecuteaproceduresuch as sqrt-iter

without requiring increasing storage as the procedure continues to call

itself is called a tail-recursive evaluator. e metacircular implementa-

tion of the evaluator in Chapter 4 does not specify whether the eval-

uator is tail-recursive, because that evaluator inherits its mechanism

for saving state from the underlying Scheme. With the explicit-control

evaluator, however, we can trace through the evaluation process to see

when procedure calls cause a net accumulation of information on the

stack.

Our evaluator is tail-recursive, because in order to evaluate the final

expressionofasequencewetransferdirectly to eval-dispatchwithoutsavingany informationon the stack. Hence, evaluatingthe final expres-

sion in asequence—evenif it isa procedure call (as in sqrt-iter, where

the if expression, which is the last expression in the procedure body,

reduces to a call to sqrt-iter)—will not cause any information to be

accumulated on the stack.26

Ifwe did not think to take advantage of the fact that it was unneces

sary tosaveinformationinthiscase, we might haveimplemented eval-

sequencebytreatingalltheexpressionsinasequenceinthesameway—

saving the registers, evaluating the expression, returning to restore the

registers, and repeating this until all the expressions have been evalu-

ated:27

25We saw in Section 5.1 how to implement such a process with a register machine

that had no stack; the state of the process was stored in a fixed set of registers.

26is implementation of tail recursion in ev-sequence is one variety of a well-

known optimization technique used by many compilers. In compiling a procedure that

ends with a procedure call, one can replace the call by a jump to the called procedure’s

entry point. Building this strategy into the interpreter, as we have done in this section,

provides the optimization uniformly throughout the language.

27We can define no-more-exps? as follows:

(define (no-more-exps? seq) (null? seq))

754

ev-sequence

(test (op no-more-exps?) (reg unev))

(branch (label ev-sequence-end))

(assign exp (op first-exp) (reg unev))

(save unev)

(save env)

(assign continue (label ev-sequence-continue))

(goto (label eval-dispatch))

ev-sequence-continue

(restore env)

(restore unev)

(assign unev (op rest-exps) (reg unev))

(goto (label ev-sequence))

ev-sequence-end

(restore continue)

(goto (reg continue))

is may seem like a minor change to our previous code for evaluation

of asequence:e only difference is that wego through thesave-restore

cycle for the last expression in a sequence as well as for the others. e

interpreter will still give the same value for any expression. But this

change is fatal to the tail-recursive implementation, because we must

now return aer evaluating the final expression in a sequence in order

to undo the (useless) register saves. ese extra saves will accumulate

during a nest ofprocedure calls. Consequently, processes such as sqrt-

iter will require space proportional to the number ofiterations rather

than requiring constant space. is difference can be significant. For

example, with tail recursion, an infinite loop can be expressed using

only the procedure-call mechanism:

(define (count n)

(newline) (display n) (count (+ n 1)))

755

Without tail recursion, such a procedure would eventually run out of

stack space, and expressing a true iteration would require some control

mechanism other than procedure call.

5.4.3 Conditionals, Assignments, and Definitions

As with the metacircular evaluator, special forms are handled by selec-

tively evaluating fragments of the expression. For an if expression, we

must evaluate the predicate and decide, based on the value of predicate,

whether to evaluate the consequent or the alternative.

Before evaluating the predicate, we save the if expression itself so

that we can later extract the consequent or alternative. We also save

the environment, which we will need later in order to evaluate the con-

sequent or the alternative, and we save continue, which we will need

laterinordertoreturntotheevaluationoftheexpressionthatiswaiting

for the value of the if.

ev-if

(save exp) ;saveexpressionforlater

(save env)

(save continue)

(assign continue (label ev-if-decide))

(assign exp (op if-predicate) (reg exp))

(goto (label eval-dispatch)) ;evaluatethepredicate

When we return from evaluating the predicate, we test whether it was

true or false and, depending on the result, place either the consequent

or the alternative in exp before going to eval-dispatch. Notice that

restoring env and continue here sets up eval-dispatch to have the

correct environment and to continue at the right place to receive the

value of the if expression.

756

ev-if-decide

(restore continue)

(restore env)

(restore exp)

(test (op true?) (reg val))

(branch (label ev-if-consequent))

ev-if-alternative

(assign exp (op if-alternative) (reg exp))

(goto (label eval-dispatch))

ev-if-consequent

(assign exp (op if-consequent) (reg exp))

(goto (label eval-dispatch))

Assignments and definitions

Assignments are handled by ev-assignment, which is reached from

eval-dispatch with the assignment expression in exp.e code at ev-

assignment first evaluates the value part of the expression and then

installs the new value in the environment. Set-variable-value! is as-

sumed to be available as a machine operation.

ev-assignment

(assign unev (op assignment-variable) (reg exp))

(save unev) ;save variableforlater

(assign exp (op assignment-value) (reg exp))

(save env)

(save continue)

(assign continue (label ev-assignment-1))

(goto (label eval-dispatch)) ;evaluatethe assignmentvalue

ev-assignment-1

(restore continue)

(restore env)

(restore unev)

(perform

757

(op set-variable-value!) (reg unev) (reg val) (reg env))

(assign val (const ok))

(goto (reg continue))

Definitions are handled in a similar way:

ev-definition

(assign unev (op definition-variable) (reg exp))

(save unev) ;save variableforlater

(assign exp (op definition-value) (reg exp))

(save env)

(save continue)

(assign continue (label ev-definition-1))

(goto (label eval-dispatch)) ;evaluatethedefinitionvalue

ev-definition-1

(restore continue)

(restore env)

(restore unev)

(perform

(op define-variable!) (reg unev) (reg val) (reg env))

(assign val (const ok))

(goto (reg continue))

Exercise 5.23: Extend the evaluator to handle derived ex-

pressions such as cond, let, and so on (Section 4.1.2). You

may “cheat” and assume that the syntax transformers such

as cond->if are available as machine operations.28

Exercise 5.24: Implement cond as a new basic special form

without reducing it to if. You will have to construct a loop

28is isn’treally cheating. In an actual implementation built fromscratch, wewould

use our explicit-control evaluator to interpret a Scheme program that performs source-

level transformations like cond->if in a syntax phase that runs before execution.

758

thatteststhepredicatesofsuccessive cond clausesuntilyou

find one that is true, and then use ev-sequence to evaluate

the actions of the clause.

Exercise 5.25: Modify the evaluator so that it uses normal-

order evaluation, based onthe lazy evaluator of Section 4.2.

5.4.4 Running the Evaluator

With the implementation of the explicit-control evaluator we come to

the end of a development, begun in Chapter 1, in which we have ex-

plored successively more precise models of the evaluation process. We

started with the relatively informal substitution model, then extended

this in Chapter 3 to the environment model, which enabled us to deal

with state and change. In the metacircular evaluator of Chapter 4, we

used Scheme itself as a language for making more explicit the environ-

ment structure constructed during evaluation of an expression. Now,

with register machines, we have taken a close look at the evaluator’s

mechanisms for storage management, argument passing, and control.

At each new level of description, we have had to raise issuesandresolve

ambiguities that were not apparent at the previous, less precise treat-

ment of evaluation. To understand the behavior of the explicit-control

evaluator, we can simulate it and monitor its performance.

We will install adriverloop inour evaluator machine. isplaysthe

role of the driver-loop procedure of Section 4.1.4. e evaluator will

repeatedly print a prompt, read an expression, evaluate the expression

by going to eval-dispatch, and print the result. e following instruc-

tions form the beginning of the explicit-control evaluator’s controller

sequence:29

29We assume here that read and the various printing operations are available as

759

read-eval-print-loop

(perform (op initialize-stack))

(perform

(op prompt-for-input) (const ";;EC-Eval input:"))

(assign exp (op read))

(assign env (op get-global-environment))

(assign continue (label print-result))

(goto (label eval-dispatch))

print-result

(perform (op announce-output) (const ";;EC-Eval value:"))

(perform (op user-print) (reg val))

(goto (label read-eval-print-loop))

When we encounter an error in a procedure (such as the “unknown

procedure type error” indicated at apply-dispatch), we print an error

message and return to the driver loop.30

unknown-expression-type

(assign val (const unknown-expression-type-error))

(goto (label signal-error))

unknown-procedure-type

(restore continue) ;cleanupstack(fromapply-dispatch)

(assign val (const unknown-procedure-type-error))

primitive machine operations, which is useful for our simulation, but completely un-

realistic in practice. ese are actually extremely complex operations. In practice, they

would be implemented using low-level input-output operations such as transferring

single characters to and from a device.

To support the get-global-environment operation we define

(define the-global-environment (setup-environment))

(define (get-global-environment) the-global-environment)

30ere are other errors that we would like the interpreter to handle, but these are

not so simple. See Exercise 5.30.

760

(goto (label signal-error))

signal-error

(perform (op user-print) (reg val))

(goto (label read-eval-print-loop))

For the purposes of the simulation, we initialize the stack each time

through the driver loop, since it might not be empty aer an error (such

as an undefined variable) interrupts an evaluation.31

If we combine all the code fragments presented in Section 5.4.1–

Section 5.4.4, we can create an evaluator machine model that we can

run using the register-machine simulator of Section 5.2.

(define eceval

(make-machine

'(exp env val proc argl continue unev)

eceval-operations

'(read-eval-print-loop

⟨entire machine controller as given above⟩)))

We must define Scheme procedures to simulate the operations used as

primitives by the evaluator. ese are the same procedures we used for

the metacircular evaluator in Section 4.1, together with the few addi-

tional ones defined in footnotes throughout Section 5.4.

(define eceval-operations

(list (list 'self-evaluating? self-evaluating)

⟨complete list of operations for eceval machine⟩))

Finally, we can initialize the global environment and run the evaluator:

(define the-global-environment (setup-environment))

(start eceval)

;;; EC-Eval input:

31Wecould perform thestack initialization only aer errors, but doing it in the driver

loop will be convenientformonitoringtheevaluator’sperformance,as described below.

761

(define (append x y)

(if (null? x) y (cons (car x) (append (cdr x) y))))

;;; EC-Eval value:

ok

;;; EC-Eval input:

(append '(a b c) '(d e f))

;;; EC-Eval value:

(a b c d e f)

Of course, evaluating expressions in this way will take much longer

than if we had directly typed them into Scheme, because of the mul-

tiple levels of simulation involved. Our expressions are evaluated by

the explicit-control-evaluator machine, which is being simulated by a

Scheme program, which is itself being evaluated by the Scheme inter-

preter.

Monitoring the performance of the evaluator

Simulation can be a powerful tool to guide the implementation of eval-

uators. Simulations make it easy not only to explore variations of the

register-machinedesignbutalsotomonitortheperformance ofthesim-ulated evaluator. For example, one important factor in performance is

howefficiently the evaluator usesthe stack. We canobservethe number

of stack operations required to evaluate various expressions by defin-

ingthe evaluatorregistermachine with theversionofthesimulator that

collects statistics on stack use (Section 5.2.4), and adding an instruction

at the evaluator’s print-result entry point to print the statistics:

print-result

(perform (op print-stack-statistics)) ;addedinstruction

(perform

(op announce-output) (const ";;; EC-Eval value:"))

... ;same as before

762

Interactions with the evaluator now look like this:

;;; EC-Eval input:

(define (factorial n)

(if (= n 1) 1 (* (factorial (- n 1)) n)))

(total-pushes = 3 maximum-depth = 3)

;;; EC-Eval value:

ok

;;; EC-Eval input:

(factorial 5)

(total-pushes = 144 maximum-depth = 28)

;;; EC-Eval value:

120

Note that the driver loop of the evaluator reinitializes the stack at the

start of each interaction, so that the statistics printed will refer only to

stack operations used to evaluate the previous expression.

Exercise 5.26: Use the monitored stack to explore the tail-

recursive property of the evaluator (Section 5.4.2). Start the

evaluatoranddefinetheiterative factorialprocedurefrom

Section 1.2.1:

(define (factorial n)

(define (iter product counter)

(if (> counter n)

product

(iter (* counter product) (+ counter 1))))

(iter 1 1))

Run the procedure with some small values of n. Record the

maximum stack depth and the number of pushes required

to compute n! for each of these values.

763

a. Youwillfindthatthemaximumdepthrequiredtoeval-

uate n! is independent of n. What is that depth?

b. Determine from your data a formula in terms ofn for

the total number of push operations used in evaluat-

ing n! for any n ≥ 1. Note that the number of opera-

tions used is a linear function of n and is thus deter-

mined by two constants.

Exercise 5.27: For comparison with Exercise 5.26, explore

the behavior of the following procedure for computing fac-

torials recursively:

(define (factorial n)

(if (= n 1) 1 (* (factorial (- n 1)) n)))

By running this procedure with the monitored stack, deter-

mine, as a function of n, the maximum depth of the stack

and the total number of pushes used in evaluating n! for

n ≥ 1. (Again, these functions will be linear.) Summarize

your experiments by filling in the following table with the

appropriate expressions in terms of n:

Maximum depth Number of pushes

Recursive

factorial

Iterative

factorial

e maximum depth is a measure of the amount of space

used by the evaluator in carrying out the computation, and

thenumberofpushescorrelateswellwiththetimerequired.

764

Exercise 5.28: Modify the definition of the evaluator by

changing eval-sequence as described in Section 5.4.2 so

that the evaluator is no longer tail-recursive. Rerun your

experimentsfromExercise 5.26andExercise5.27todemon-

strate that both versions of the factorial procedure now

require space that grows linearly with their input.

Exercise 5.29: Monitor the stack operations in the tree-

recursive Fibonacci computation:

(define (fib n)

(if (< n 2)

n

(+ (fib (- n1)) (fib (- n 2)))))

a. Give a formula in terms ofn for the maximum depth

ofthestackrequiredtocomputeFib(n)forn ≥ 2.Hint:

In Section 1.2.2 we argued that the space used by this

process grows linearly with n.

b. Give a formula for the total number of pushes used

to compute Fib(n) for n ≥ 2. You should find that

the number of pushes (which correlates well with the

time used) grows exponentially with n. Hint: Let S(n)

be the number of pushes used in computing Fib(n).

You should be able to argue that there is a formula

that expresses S(n) in terms ofS(n − 1), S(n − 2), and

some fixed “overhead” constant k that is independent

of n. Give the formula, and say what k is. en show

that S(n) can be expressed as a ·Fib(n+1)+b and give

the values ofa and b.

765

Exercise 5.30: Our evaluator currently catches and signals

only two kinds of errors—unknown expression types and

unknown procedure types. Other errors will take us out of

the evaluator read-eval-print loop. When we run the evalu

ator using the register-machine simulator, these errors are

caught by the underlyingScheme system. is is analogous

to the computer crashing when a user program makes an

error.32 It is a large project to make a real error system

work, but it is well worth the effort to understand what

is involved here.

a. Errors that occur in the evaluation process, such as

an aempt to access an unbound variable, could be

caught by changing the lookup operation to make it

return a distinguished condition code, which cannot

be a possible value of any user variable. e evaluator

can test for this condition code and then do what is

necessarytogoto signal-error.Findalloftheplaces

in the evaluator where such achange is necessary and

fix them. is is lots of work.

b. Much worse is the problem of handling errors that

aresignaledbyapplyingprimitiveprocedures,suchas

an aempt to divide by zero or an aempt to extract

the car of a symbol. In a professionally wrien high-

quality system, each primitive application is checked

for safety as part of the primitive. For example, every

32Regreably, this is the normal state of affairs in conventional compiler-

based language systems such as C. In (tm) the system “dumps core,” and in

/Windows(tm) it becomes catatonic. e Macintosh(tm) displays a picture of an ex-

ploding bomb and offers you the opportunity to reboot the computer—if you’re lucky.

766

callto carcouldfirstcheckthattheargumentisapair.

If the argument is not a pair, the application would

return a distinguished condition code to the evalu-

ator, which would then report the failure. We could

arrange for this in our register-machine simulator by

makingeachprimitiveprocedurecheckforapplicabil-

ity and returning an appropriate distinguished condi-

tion code on failure. en the primitive-apply code

in the evaluator can check for the condition code and

go to signal-error if necessary. Build this structure

and make it work. is is a major project.

5.5 Compilation

e explicit-control evaluator of Section5.4 is aregistermachine whose

controller interprets Scheme programs. In this section we will see how

to run Scheme programs on a register machine whose controller is not

a Scheme interpreter.

e explicit-control evaluatormachine isuniversal—it cancarry out

any computational process that can be described in Scheme. e evalu-

ator’scontroller orchestrates the use ofits data paths to perform the de-

sired computation. us, the evaluator’s data paths are universal: ey

are sufficient to perform any computation we desire, given an appro-

priate controller.33

Commercial general-purpose computers are register machines or

33is is a theoretical statement. We are not claiming that the evaluator’s data

paths are a particularly convenient or efficient set of data paths for a general-purpose

computer. For example, they are not very good for implementing high-performance

floating-point calculations or calculations that intensively manipulate bit vectors.

767

ganized around a collection of registers and operations that constitute

an efficient and convenient universal set of data paths. e controller

for a general-purpose machine is an interpreter for a register-machine

language like the one we have been using. is language is called the

native language of the machine, or simply machine language. Programs

wrien in machine language are sequences ofinstructions that use the

machine’s data paths. For example, the explicit-control evaluator’s in-

struction sequence can be thought of as a machine-language program

for a general-purpose computer rather than as the controller for a spe-

cialized interpreter machine.

erearetwocommonstrategiesforbridgingthegapbetweenhigher-

level languages and register-machine languages. e explicit-control

evaluator illustrates the strategy ofinterpretation. An interpreter writ-

ten in the native language of a machine configures the machine to exe-

cute programs wrien in a language (called the source language) that

may differ from the native language of the machine performing the

evaluation. e primitive procedures of the source language are imple-

mented as a library of subroutines wrien in the native language of the

given machine. A program to be interpreted (called the source program)

is represented as a data structure. e interpreter traverses this data

structure, analyzing the source program. As it does so, it simulates the

intended behavior of the source program by calling appropriate primi-

tive subroutines from the library.

In this section, we explore the alternative strategy of compilation. A

compiler for a given source language and machine translates a source

program into an equivalent program (called the objectprogram) wrien

in the machine’s native language. e compiler that we implement in

thissection translatesprograms wrieninScheme intosequences ofin-

structions to be executed using the explicit-control evaluator machine’s

768

data paths.34

Compared with interpretation, compilation can provide a great in-

crease in the efficiency of program execution, as we will explain be-

low in the overview of the compiler. On the other hand, an interpreter

provides a more powerful environment for interactive program devel-

opment and debugging, because the source program being executed is

available at run time to be examined and modified. In addition, because

the entire library of primitives is present, new programs can be con-

structed and added to the system during debugging.

In view of the complementary advantages of compilation and inter-

pretation, modern program-development environments pursue a mixed

strategy. Lisp interpreters are generally organized so that interpreted

procedures and compiled procedures can call each other. is enables

a programmer to compile those parts of a program that are assumed

to be debugged, thus gaining the efficiency advantage of compilation,

while retaining the interpretive mode of execution for those parts of

the program that are in the flux of interactive development and debug-

ging. In Section 5.5.7, aer we have implemented the compiler, we will

show how to interface it with our interpreter to produce an integrated

interpreter-compiler development system.

34Actually, the machine that runs compiled code can be simpler than the interpreter

machine, because we won’tusethe exp and unev registers. e interpreter used these to

hold pieces of unevaluated expressions. With the compiler, however, these expressions

get built into the compiled code that the register machine will run. For the same reason,

we don’t need the machine operations that deal with expression syntax. But compiled

code will use a few additional machine operations (to represent compiled procedure

objects) that didn’t appear in the explicit-control evaluator machine.

769

An overview of the compiler

Our compiler is much like our interpreter, both in its structure and in

the functionit performs. Accordingly,themechanismsused by the com-

pilerfor analyzingexpressionswillbe similartothose used by the inter-

preter. Moreover, to make it easy to interface compiled and interpreted

code, we will design the compiler to generate code that obeys the same

conventions of register usage as the interpreter: e environment will

be kept inthe env register, argument lists will be accumulated in argl, a

procedure to be applied will be in proc, procedures will return their an-

swers in val, and the location to which a procedure should return will

be kept in continue. In general, the compiler translates a source pro-

gram into an object program that performs essentially the same register

operations as would the interpreter in evaluating the same source pro-

gram.

is description suggests a strategy for implementing a rudimen-

tary compiler: We traverse the expression in the same way the inter-

preter does. When we encounter a register instruction that the inter-

preter would perform in evaluating the expression, we do not execute

the instruction but instead accumulate it into a sequence. e resulting

sequence of instructions will be the object code. Observe the efficiency

advantage of compilation over interpretation. Each time the interpreter

evaluates an expression—for example, (f 84 96)—it performs the work

of classifying the expression (discovering that this is a procedure ap-

plication) and testing for the end of the operand list (discovering that

there are two operands). With a compiler, the expression is analyzed

only once, when the instruction sequence is generated at compile time.

e objectcodeproducedby thecompilercontainsonly the instructions

thatevaluatetheoperatorandthe twooperands,assemble the argument

list, and apply the procedure (in proc) to the arguments (in argl).

770

is is the same kind of optimization we implemented in the ana-

lyzing evaluator of Section 4.1.7. But there are further opportunities to

gain efficiency in compiled code. As the interpreter runs, it follows a

process that must be applicable to any expression in the language. In

contrast, a given segment of compiled code is meant to execute some

particular expression. is can make a big difference, for example in

the use of the stack to save registers. When the interpreter evaluates an

expression, it must be prepared for any contingency. Before evaluating

a subexpression, the interpreter saves all registers that will be needed

later, because the subexpression might require an arbitrary evaluation.

A compiler, on the other hand, can exploit the structure of the particu-

lar expression it is processing to generate code that avoids unnecessary

stack operations.

As a case in point, consider the combination (f 84 96). Before the

interpreter evaluates the operator of the combination, it prepares for

this evaluation by saving the registers containing the operands and the

environment, whose values will be needed later. e interpreter then

evaluatestheoperatorto obtainthe result in val, restoresthe saved reg-

isters, and finally moves the result from val to proc. However, in the

particular expression we are dealing with, the operator is the symbol f,

whose evaluation is accomplished by the machine operation lookup-

variable-value, which does not alter any registers. e compiler that

we implement in this section will take advantage of this fact and gen-

erate code that evaluates the operator using the instruction

(assign proc (op lookup-variable-value)

(const f)

(reg env))

is code not only avoids the unnecessary saves and restores but also

assigns the value ofthe lookup directly to proc, whereasthe interpreter

771

would obtain the result in val and then move this to proc.

Acompiler canalso optimize access to the environment. Having an-

alyzed the code, the compiler can in many cases know in which frame a

particular variable will be located and access that frame directly, rather

than performing the lookup-variable-value search. We will discuss

howto implement such variable access inSection5.5.6. Until then,how-

ever, we will focus on the kind of register and stack optimizations de-

scribed above. ere are many other optimizations that can be per-

formed by a compiler, such as coding primitive operations “in line” in-

stead of using a general apply mechanism (see Exercise 5.38); but we

will not emphasize these here. Our main goal in this section is to illus

trate the compilation process in a simplified (but still interesting) con

text.

5.5.1 Structure of the Compiler

InSection4.1.7wemodifiedouroriginalmetacircularinterpretertosep-

arate analysis from execution. We analyzed each expression to produce

an executionprocedure that took an environment as argument and per-

formed the required operations. In our compiler, we will do essentially

the same analysis. Instead ofproducing execution procedures, however,

we will generate sequences ofinstructions to be run by our register ma

chine.

e procedure compile is the top-level dispatch in the compiler. It

corresponds to the eval procedure of Section 4.1.1, the analyze proce-

dure ofSection 4.1.7, and the eval-dispatch entry point ofthe explicit-

control-evaluator in Section 5.4.1. e compiler, like the interpreters,

usestheexpression-syntaxproceduresdefinedinSection4.1.2.35 Compile

35Notice, however, thatourcompilerisa Schemeprogram, and thesyntax procedures

that it uses to manipulate expressions are the actual Scheme procedures used with the

772

performs a case analysis on the syntactic type of the expression to be

compiled. For each type of expression, it dispatchesto aspecialized code

generator:

(define (compile exp target linkage)

(cond ((self-evaluating? exp)

(compile-self-evaluating exp target linkage))

((quoted? exp) (compile-quoted exp target linkage))

((variable? exp)

(compile-variable exp target linkage))

((assignment? exp)

(compile-assignment exp target linkage))

((definition? exp)

(compile-definition exp target linkage))

((if? exp) (compile-if exp target linkage))

((lambda? exp) (compile-lambda exp target linkage))

((begin? exp)

(compile-sequence

(begin-actions exp) target linkage))

((cond? exp)

(compile (cond->if exp) target linkage))

((application? exp)

(compile-application exp target linkage))

(else

(error "Unknown expression type: COMPILE" exp))))

metacircular evaluator. For the explicit-control evaluator, in contrast, we assumed that

equivalent syntax operations were available as operations for the register machine. (Of

course, when we simulated the register machine in Scheme, we used the actual Scheme

procedures in our register machine simulation.)

773

Targets and linkages

Compile and the code generators that it calls take two arguments in

addition to the expression to compile. ere is a target, which specifies

the register in which the compiled code is to return the value of the

expression. ere is also a linkage descriptor, which describes how the

code resulting from the compilation of the expression should proceed

when it has finished its execution. e linkage descriptor can require

that the code do one of the following three things:

• continue at the next instruction in sequence (this is specified by

the linkage descriptor next),

• return from the procedure being compiled (this is specified by the

linkage descriptor
return), or

• jump to a named entry point (this is specified by using the desig-

nated label as the linkage descriptor).

For example, compiling the expression 5 (which is self-evaluating) with

a target of the val register and a linkage of next should produce the

instruction

(assign val (const 5))

Compiling the same expression with a linkage of return should pro-

duce the instructions

(assign val (const 5))

(goto (reg continue))

In the first case, execution will continue with the next instruction in the

sequence. In the second case, we will return from a procedure call. In

both cases, the value of the expression will be placed into the target val

register.

774

Instruction sequences and stack usage

Each code generator returns an instruction sequence containing the ob-

ject code it has generatedforthe expression.Code generationfor acom-

pound expression is accomplished by combining the output from sim-

pler code generators for component expressions, just as evaluation of

a compound expression is accomplished by evaluating the component

expressions.

e simplest method for combining instruction sequences is a pro-

cedure called append-instruction-sequences. It takes as arguments

any number of instruction sequences that are to be executed sequen-

tially; it appends them and returns the combined sequence. at is, if

⟨seq1⟩ and ⟨seq2⟩ are sequences ofinstructions, then evaluating

(append-instruction-sequences ⟨seq1⟩ ⟨seq2⟩)

produces the sequence

⟨seq1⟩

⟨seq2⟩

Whenever registers might need to be saved, the compiler’s code gen-

erators use preserving, which is a more subtle method for combining

instructionsequences. Preservingtakesthreearguments:aset ofregis-

ters and two instruction sequences that are to be executed sequentially.

It appends the sequences in such a way that the contents of each reg-

ister in the set is preserved over the execution of the first sequence, if

this is needed for the execution of the second sequence. at is, if the

first sequence modifies the register and the second sequence actually

needs the register’s original contents, then preserving wraps a save

and a restore of the register around the first sequence before append-

ing the sequences. Otherwise, preserving simply returns the appended

instruction sequences. us, for example,

775

(preserving (list ⟨reд1⟩ ⟨reд2⟩) ⟨seд1⟩ ⟨seд2⟩)

produces one of the following four sequences of instructions, de-

pending on how ⟨seq1⟩ and ⟨seq2⟩ use ⟨reд1⟩ and ⟨reд2⟩:

⟨seq1⟩ (save ⟨reд1⟩) (save ⟨reд2⟩) (save ⟨reд2⟩)

⟨seq2⟩ ⟨seq1⟩ ⟨seq1⟩ (save ⟨reд1⟩)

(restore ⟨reд1⟩) (restore ⟨reд2⟩) ⟨seq1⟩

⟨seq2⟩ ⟨seq2⟩ (restore ⟨reд1⟩)

(restore ⟨reд2⟩)

⟨seq2⟩

By using preserving to combine instruction sequences the compiler

avoids unnecessary stack operations. is also isolates the details of

whether or not to generate save and restore instructions within the

preserving procedure, separating them from the concerns that arise

in writing each of the individual code generators. In fact no save or

restore instructions are explicitly produced by the code generators.

In principle, we could represent an instruction sequence simply as

a list ofinstructions. Append-instruction-sequences could then com-

bineinstructionsequencesbyperforminganordinarylist append.How-ever, preserving would then be a complex operation, because it would

have to analyze each instruction sequence to determine how the se-

quence uses its registers. Preserving would be inefficient as well as

complex, because it would have to analyze each of its instruction se-

quencearguments,eventhough thesesequencesmightthemselveshave

beenconstructedbycallsto preserving,inwhichcasetheirpartswould

have already been analyzed. To avoid such repetitious analysis we will

associate with each instruction sequence some information about its

register use. When we construct a basic instruction sequence we will

provide this information explicitly, and the procedures that combine

776

instruction sequences will derive register-use information for the com-

bined sequence from the information associated with the component

sequences.

An instruction sequence will contain three pieces ofinformation:

• the set of registers that must be initialized before the instructions

in the sequence are executed (these registers are said to be needed

by the sequence),

• the set of registers whose values are modified by the instructions

in the sequence, and

• the actual instructions (also called statements) in the sequence.

We will represent an instruction sequence as a list of its three parts. e

constructor for instruction sequences is thus

(define (make-instruction-sequence

needs modifies statements)

(list needs modifies statements))

Forexample, the two-instructionsequencethat looksupthevalueofthe

variable xinthe currentenvironment,assignsthe result to val,andthen

returns, requires registers env and continue to have been initialized,

andmodifiesregister val.issequencewouldtherefore be constructed

as

(make-instruction-sequence

'(env continue)

'(val)

'((assign val

(op lookup-variable-value) (const x) (reg env))

(goto (reg continue))))

777

We sometimes need to construct an instruction sequence with no state-

ments:

(define (empty-instruction-sequence)

(make-instruction-sequence '() '() '()))

e procedures for combining instruction sequences are shown in Sec-

tion 5.5.4.

Exercise 5.31: In evaluating a procedure application, the

explicit-controlevaluatoralwayssavesand restoresthe env

register around the evaluation of the operator, saves and

restores env around the evaluation of each operand (except

the final one), saves and restores argl around the evalua-

tion of each operand, and saves and restores proc around

the evaluation of the operand sequence. For each ofthe fol-

lowingcombinations, say which ofthese save and restore

operations are superfluous and thus could be eliminated by

the compiler’s preserving mechanism:

(f 'x 'y)

((f) 'x 'y)

(f (g 'x) y)

(f (g 'x) 'y)

Exercise5.32: Usingthe preserving mechanism, the com-

piler willavoidsavingandrestoring envaround the evalua-

tion of the operator ofa combination in the case where the

operator is a symbol. We could also build such optimiza-

tions into the evaluator. Indeed, the explicit-control eval-

uator of Section 5.4 already performs a similar optimiza-

tion, by treating combinations with no operands as a spe

cial case.

778

a. Extend the explicit-control evaluator to recognize as

a separate class of expressions combinations whose

operator is a symbol, and to take advantage of this

fact in evaluating such expressions.

b. Alyssa P. Hacker suggests that by extending the eval-

uator to recognize more and more special cases we

couldincorporateallthecompiler’soptimizations,and

that this would eliminate the advantage of compila-

tion altogether. What do you think of this idea?

5.5.2 Compiling Expressions

In this section and the next we implement the code generators to which

the compile procedure dispatches.

Compiling linkage code

Ingeneral,theoutputofeachcodegeneratorwillendwithinstructions—

generated by the procedure compile-linkage—that implement the re-

quired linkage. If the linkage is return then we must generate the in-

struction (goto (reg continue)). is needs the continue
register

anddoesnotmodifyanyregisters.Ifthelinkageis next,thenweneedn’t

include any additional instructions. Otherwise, the linkage is a label,

and we generate a goto to that label, an instruction that does not need

or modify any registers.36

36is procedure uses a feature of Lisp called backquote (or quasiquote) that is handy

for constructing lists. Preceding a list with a backquote symbol is much like quoting it,

except that anything in the list that is flagged with a comma is evaluated.

For example, if the value of linkage is the symbol branch25, then the expression

`((goto (label ,linkage)))

779

(define (compile-linkage linkage)

(cond ((eq? linkage 'return)

(make-instruction-sequence '(continue) '()

'((goto (reg continue)))))

((eq? linkage 'next)

(empty-instruction-sequence))

(else

(make-instruction-sequence '() '()

`((goto (label ,linkage)))))))

e linkage code is appendedto an instructionsequence by preserving

the continue register, since a return linkage will require the continue

register: If the given instruction sequence modifies continue and the

linkage code needs it, continue will be saved and restored.

(define (end-with-linkage linkage instruction-sequence)

(preserving '(continue)

instruction-sequence

(compile-linkage linkage)))

Compiling simple expressions

ecodegeneratorsforself-evaluatingexpressions,quotations,andvari-

ables construct instruction sequences that assign the required value to

evaluates to the list

((goto (label branch25)))

Similarly, if the value of x is the list (a b c), then

`(1 2 ,(car x))

evaluates to the list

(1 2 a).

780

the target register and then proceed as specified by the linkage descrip-

tor.

(define (compile-self-evaluating exp target linkage)

(end-with-linkage linkage

(make-instruction-sequence '() (list target)

`((assign ,target (const ,exp))))))

(define (compile-quoted exp target linkage)

(end-with-linkage linkage

(make-instruction-sequence '() (list target)

`((assign ,target (const ,(text-of-quotation exp)))))))

(define (compile-variable exp target linkage)

(end-with-linkage linkage

(make-instruction-sequence '(env) (list target)

`((assign ,target

(op lookup-variable-value)

(const ,exp)

(reg env))))))

Allthese assignment instructionsmodify thetargetregister,andthe one

that looks up a variable needs the env register.

Assignments and definitions are handled much as they are in the

interpreter. We recursively generate code that computes the value to be

assigned to the variable, and append to it a two-instruction sequence

that actually sets or defines the variable and assigns the value of the

whole expression (the symbol ok) to the target register. e recursive

compilation has target val and linkage next so that the code will put

its result into val and continue with the code that is appended aer it.

e appending is done preserving env, since the environment is needed

for seing or defining the variable and the code for the variable value

could be the compilationof acomplex expression that might modify the

registers in arbitrary ways.

781

(define (compile-assignment exp target linkage)

(let ((var (assignment-variable exp))

(get-value-code

(compile (assignment-value exp) 'val 'next)))

(end-with-linkage linkage

(preserving '(env)

get-value-code

(make-instruction-sequence '(env val) (list target)

`((perform (op set-variable-value!)

(const ,var)

(reg val)

(reg env))

(assign ,target (const ok))))))))

(define (compile-definition exp target linkage)

(let ((var (definition-variable exp))

(get-value-code

(compile (definition-value exp) 'val 'next)))

(end-with-linkage linkage

(preserving '(env)

get-value-code

(make-instruction-sequence '(env val) (list target)

`((perform (op define-variable!)

(const ,var)

(reg val)

(reg env))

(assign ,target (const ok))))))))

e appended two-instruction sequence requires env and val and mod-

ifies the target. Note that although we preserve env for this sequence,

we do not preserve val, because the get-value-code is designed to ex-

plicitly place its result in val for use by this sequence. (In fact, if we

did preserve val, we would have a bug, because this would cause the

previous contents of val to be restored right aer the get-value-code

is run.)

782

Compiling conditional expressions

e code for an if expression compiled with a given target and linkage

has the form

⟨compilation of predicate, target val, linkage next⟩

(test (op false?) (reg val))

(branch (label false-branch))

true-branch

⟨compilation of consequent with given target

and given linkage or after-if⟩

false-branch

⟨compilation of alternative with given target and linkage⟩

after-if

To generate this code, we compile the predicate, consequent, and al-

ternative, and combine the resulting code with instructions to test the

predicate result and with newly generated labels to mark the true and

false branches and the end of the conditional.37 In this arrangement of

37We can’t just use the labels true-branch, false-branch, and after-if as shown

above, because there might be more than one if in the program. e compiler uses the

procedure make-label to generate labels. Make-label takes a symbol as argument and

returns a new symbol that begins with the given symbol. For example, successive calls

to (make-label 'a) would return a1, a2, and so on. Make-label can be implemented

similarly to the generation of unique variable names in the query language, as follows:

(define label-counter 0)

(define (new-label-number)

(set! label-counter (+ 1 label-counter))

label-counter)

(define (make-label name)

(string->symbol

(string-append (symbol->string name)

(number->string (new-label-number)))))

783

code,we must branch around the truebranchifthe test isfalse.e only

slight complication is in how the linkage for the true branch should be

handled. If the linkage for the conditional is return or a label, then the

true and false branches will both use this same linkage. If the linkage

is next, the true branch ends with a jump around the code for the false

branch to the label at the end of the conditional.

(define (compile-if exp target linkage)

(let ((t-branch (make-label 'true-branch))

(f-branch (make-label 'false-branch))

(after-if (make-label 'after-if)))

(let ((consequent-linkage

(if (eq? linkage 'next) after-if linkage)))

(let ((p-code (compile (if-predicate exp) 'val 'next))

(c-code

(compile

(if-consequent exp) target

consequent-linkage))

(a-code

(compile (if-alternative exp) target linkage)))

(preserving '(env continue)

p-code

(append-instruction-sequences

(make-instruction-sequence '(val) '()

`((test (op false?) (reg val))

(branch (label ,f-branch))))

(parallel-instruction-sequences

(append-instruction-sequences t-branch c-code)

(append-instruction-sequences f-branch a-code))

after-if))))))

Env is preserved around the predicate code because it could be needed

by the true and false branches, and continue is preserved because it

784

could be needed by the linkage code in those branches. e code for

the true and false branches (which are not executed sequentially) is

appended using aspecialcombiner parallel-instruction-sequences

described in Section 5.5.4.

Note that cond isa derived expression,soall that the compiler needs

to do handle it is to apply the cond->if transformer (from Section 4.1.2)

and compile the resulting if expression.

Compiling sequences

e compilation of sequences (from procedure bodies or explicit begin

expressions) parallels their evaluation. Each expression of the sequence

is compiled—the last expression with the linkage specified for the se-

quence, and the other expressions with linkage next (to execute the

rest of the sequence). e instruction sequences for the individual ex-

pressions are appended to form a single instruction sequence, such that

env (needed forthe rest ofthe sequence)and continue (possibly needed

for the linkage at the end of the sequence) are preserved.

(define (compile-sequence seq target linkage)

(if (last-exp? seq)

(compile (first-exp seq) target linkage)

(preserving

'(env continue)

(compile (first-exp seq) target 'next)

(compile-sequence (rest-exps seq) target linkage))))

Compiling lambda expressions

Lambda expressions construct procedures. e object code for a lambda

expression must have the form

785

⟨construct procedure object and assign it to target register⟩

⟨linkage⟩

When we compile the lambda expression, we also generate the code for

the procedure body. Although the body won’t be executed at the time

of procedure construction, it is convenient to insert it into the object

code right aer the code for the lambda. If the linkage for the lambda

expression is a label or return, this is fine. But if the linkage is next,

we will need to skip around the code for the procedure body by using a

linkage that jumps to a label that is inserted aer the body. e object

code thus has the form

⟨construct procedure object and assign it to target register⟩

⟨code for given linkage⟩ or (goto (label after-lambda))

⟨compilation of procedure body⟩

after-lambda

Compile-lambda generates the code for constructing the procedure ob-

ject followed by the code for the procedure body. e procedure object

will be constructed at run time by combining the current environment

(the environment at the point of definition) with the entry point to the

compiled procedure body (a newly generated label).38

38 We need machine operations to implement a data structure for representing com-

piled procedures, analogous to the structure for compound procedures described in

Section 4.1.3:

(define (make-compiled-procedure entry env)

(list 'compiled-procedure entry env))

(define (compiled-procedure? proc)

(tagged-list? proc 'compiled-procedure))

(define (compiled-procedure-entry c-proc) (cadr c-proc))

(define (compiled-procedure-env c-proc) (caddr c-proc))

786

(define (compile-lambda exp target linkage)

(let ((proc-entry (make-label 'entry))

(after-lambda (make-label 'after-lambda)))

(let ((lambda-linkage

(if (eq? linkage 'next) after-lambda linkage)))

(append-instruction-sequences

(tack-on-instruction-sequence

(end-with-linkage lambda-linkage

(make-instruction-sequence '(env) (list target)

`((assign ,target

(op make-compiled-procedure)

(label ,proc-entry)

(reg env)))))

(compile-lambda-body exp proc-entry))

after-lambda))))

Compile-lambdausesthespecialcombiner tack-on-instruction-sequence

rather than append-instruction-sequences (Section 5.5.4) to append

the procedure body to the lambda expression code, because the body is

not part of the sequence ofinstructions that will be executed when the

combined sequence is entered; rather, it is in the sequence only because

that was a convenient place to put it.

Compile-lambda-body constructs the code for the body of the pro-

cedure. is code begins with a label for the entry point. Next come in-

structionsthatwillcausetherun-timeevaluationenvironmenttoswitch

to the correct environment for evaluating the procedure body—namely,

the definition environment of the procedure, extended to include the

bindings of the formal parameters to the arguments with which the

procedure is called. Aer this comes the code for the sequence of ex-

pressions that makes up the procedure body. e sequence is compiled

with linkage return and target val so that it will end by returning from

the procedure with the procedure result in val.

787

(define (compile-lambda-body exp proc-entry)

(let ((formals (lambda-parameters exp)))

(append-instruction-sequences

(make-instruction-sequence '(env proc argl) '(env)

`(,proc-entry

(assign env

(op compiled-procedure-env)

(reg proc))

(assign env

(op extend-environment)

(const ,formals)

(reg argl)

(reg env))))

(compile-sequence (lambda-body exp) 'val 'return))))

5.5.3 Compiling Combinations

e essence of the compilation process is the compilation of procedure

applications. e code for a combination compiled with a given target

and linkage has the form

⟨compilation of operator, target proc, linkage next⟩

⟨evaluate operands and construct argument list in argl⟩

⟨compilation of procedure call with given target and linkage⟩

e registers env, proc, and argl may have to be saved and restored

during evaluation of the operator and operands. Note that this is the

only place in the compiler where a target other than val is specified.

e required code is generated by compile-application. is re-

cursivelycompilestheoperator,toproduce code thatputstheprocedure

tobe appliedinto proc,andcompilesthe operands,toproduce code that

evaluates the individual operands of the application. e instruction se-

quences for the operands are combined (by construct-arglist) with

788

code that constructs the list of arguments in argl, and the resulting

argument-list code is combined with the procedure code and the code

that performs the procedure call (produced by compile-procedure-

call). In appending the code sequences, the env
register must be pre-

served around the evaluation ofthe operator(since evaluatingthe oper-

ator might modify env, which will be needed to evaluate the operands),

and the proc register must be preserved around the construction of the

argument list (since evaluating the operands might modify proc, which

willbe neededfortheactualprocedureapplication). Continuemustalso

be preserved throughout, since it is needed for the linkage in the pro-

cedure call.

(define (compile-application exp target linkage)

(let ((proc-code (compile (operator exp) 'proc 'next))

(operand-codes

(map (lambda

(operand) (compile operand 'val 'next))

(operands exp))))

(preserving '(env continue)

proc-code

(preserving '(proc continue)

(construct-arglist operand-codes)

(compile-procedure-call target linkage)))))

e code to construct the argument list will evaluate each operand into

val and then cons that value onto the argument list being accumulated

in argl. Since we cons the arguments onto argl in sequence, we must

startwiththelastargument andendwiththefirst,sothatthearguments

will appear in order from first to last in the resulting list. Rather than

waste an instruction by initializing argl to the empty list to set up for

this sequence of evaluations, we make the first code sequence construct

the initial argl. e general form of the argument-list construction is

789

thus as follows:

⟨compilation of last operand, targeted to val⟩

(assign argl (op list) (reg val))

⟨compilation of next operand, targeted to val⟩

(assign argl (op cons) (reg val) (reg argl))

...

⟨compilation of first operand, targeted to val⟩

(assign argl (op cons) (reg val) (reg argl))

Argl must be preservedaround each operand evaluation except the first

(so that arguments accumulated so far won’t be lost), and env must be

preserved around each operand evaluation except the last (for use by

subsequent operand evaluations).

Compiling this argument code is a bit tricky, because of the special

treatment of the first operand to be evaluated and the need to preserve

argl and env in different places. e construct-arglist procedure

takes as arguments the code that evaluates the individual operands. If

there are no operands at all, it simply emits the instruction

(assign argl (const ()))

Otherwise, construct-arglist creates code that initializes argl with

the last argument, and appends code that evaluates the rest of the argu

ments and adjoins them to argl in succession. In order to process the

arguments from last to first, we must reverse the list of operand code

sequences from the order supplied by compile-application.

(define (construct-arglist operand-codes)

(let ((operand-codes (reverse operand-codes)))

(if (null? operand-codes)

(make-instruction-sequence '() '(argl)

'((assign argl (const ()))))

(let ((code-to-get-last-arg

790

(append-instruction-sequences

(car operand-codes)

(make-instruction-sequence '(val) '(argl)

'((assign argl (op list) (reg val)))))))

(if (null? (cdr operand-codes))

code-to-get-last-arg

(preserving '(env)

code-to-get-last-arg

(code-to-get-rest-args

(cdr operand-codes))))))))

(define (code-to-get-rest-args operand-codes)

(let ((code-for-next-arg

(preserving '(argl)

(car operand-codes)

(make-instruction-sequence '(val argl) '(argl)

'((assign argl

(op cons) (reg val) (reg argl)))))))

(if (null? (cdr operand-codes))

code-for-next-arg

(preserving '(env)

code-for-next-arg

(code-to-get-rest-args (cdr operand-codes))))))

Applying procedures

Aerevaluatingthe elements of acombination, the compiled code must

apply the procedure in proc to the arguments in argl. e code per-

formsessentiallythesamedispatchasthe applyprocedureinthemetacir-

cular evaluator of Section 4.1.1 or the apply-dispatch entry point in

the explicit-control evaluator of Section 5.4.1. It checks whether the

procedure to be applied is a primitive procedure or a compiled proce-

791

dure. For a primitive procedure, it uses apply-primitive-procedure;

we will see shortly how it handles compiled procedures. e procedure

application code has the following form:

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-branch))

compiled-branch

⟨code to apply compiled procedure with given target

and appropriate linkage⟩

primitive-branch

(assign ⟨target⟩

(op apply-primitive-procedure)

(reg proc)

(reg argl))

⟨linkage⟩

after-call

Observethatthecompiledbranchmustskiparoundtheprimitivebranch.

erefore, if the linkage for the original procedure call was next, the

compound branch must use a linkage that jumps to a label that is in-

serted aer the primitive branch. (is is similar to the linkage used for

the true branch in compile-if.)

(define (compile-procedure-call target linkage)

(let ((primitive-branch (make-label 'primitive-branch))

(compiled-branch (make-label 'compiled-branch))

(after-call (make-label 'after-call)))

(let ((compiled-linkage

(if (eq? linkage 'next) after-call linkage)))

(append-instruction-sequences

(make-instruction-sequence '(proc) '()

`((test (op primitive-procedure?) (reg proc))

(branch (label ,primitive-branch))))

792

(parallel-instruction-sequences

(append-instruction-sequences

compiled-branch

(compile-proc-appl target compiled-linkage))

(append-instruction-sequences

primitive-branch

(end-with-linkage linkage

(make-instruction-sequence '(proc argl)

(list target)

`((assign ,target

(op apply-primitive-procedure)

(reg proc)

(reg argl)))))))

after-call))))

e primitive and compound branches, like the true and false branches

in compile-if,areappendedusing parallel-instruction-sequences

ratherthantheordinary append-instruction-sequences,becausetheywill not be executed sequentially.

Applying compiled procedures

e code that handles procedure application is the most subtle part of

the compiler, even though the instruction sequences it generates are

very short. A compiled procedure (as constructed by compile-lambda)

has an entry point, which is a label that designates where the code for

the procedure starts. e code at this entry point computes a result in

val and returns by executing the instruction (goto (reg continue)).us,wemightexpectthecodeforacompiled-procedureapplication(to

be generated by compile-proc-appl) with a giventarget and linkage to

look like this if the linkage is a label

(assign continue (label proc-return))

793

(assign val (op compiled-procedure-entry) (reg proc))

(goto (reg val))

proc-return

(assign ⟨target⟩ (reg val)) ;includediftargetisnotval

(goto (label ⟨linkage⟩)) ;linkagecode

or like this if the linkage is return.

(save continue)

(assign continue (label proc-return))

(assign val (op compiled-procedure-entry) (reg proc))

(goto (reg val))

proc-return

(assign ⟨target⟩ (reg val)) ;includediftargetisnotval

(restore continue)

(goto (reg continue)) ;linkagecode

is code sets up continue so that the procedure will return to a la-

bel proc-return and jumps to the procedure’s entry point. e code

at proc-return transfers the procedure’s result from val to the tar-

get register (if necessary) and then jumps to the location specified by

the linkage. (e linkage is always return or a label, because compile-

procedure-call replaces a next linkage for the compound-procedure

branch by an after-call label.)

In fact, if the target is not val, that is exactly the code our compiler

will generate.39 Usually, however, the target is val (the only time the

compiler specifies a different register is when targeting the evaluation

of an operator to proc), so the procedure result is put directly into the

target register and there is no need to return to a special location that

copies it. Instead, we simplify the code by seing up continue so that

39Actually, we signal an error when the target is not val and the linkage is return,

since the only place we request return linkages is in compiling procedures, and our

convention is that procedures return their values in val.

794

the procedure will “return” directly to the place specified by the caller’s

linkage:

⟨set up continue for linkage⟩

(assign val (op compiled-procedure-entry) (reg proc))

(goto (reg val))

If the linkage is a label, we set up continue so that the procedure will

return to that label. (atis, the (goto (reg continue)) the procedure

ends with becomes equivalent to the (goto (label ⟨linkage⟩)) at

proc-return above.)

(assign continue (label ⟨linkage⟩))

(assign val (op compiled-procedure-entry) (reg proc))

(goto (reg val))

If the linkage is return, we don’t need to set up continue at all: It al

ready holds the desired location. (at is, the (goto (reg continue))

the procedureendswithgoesdirectlytotheplacewhere the (goto (reg

continue)) at proc-return would have gone.)

(assign val (op compiled-procedure-entry) (reg proc))

(goto (reg val))

With this implementation ofthe return linkage, the compiler generates

tail-recursive code. Calling a procedure as the final step in a procedure

bodydoesadirecttransfer,withoutsavinganyinformationonthestack.

Suppose instead that we had handled the case of a procedure call

with a linkage of return and a target of val as shown above for a non-

valtarget.iswoulddestroytailrecursion.Oursystemwouldstillgive

the same value for any expression. But each time we called a procedure,

we would save continue and return aer the call to undo the (useless)

save. ese extra saves would accumulate during a nest of procedure

795

calls.40

Compile-proc-applgeneratestheaboveprocedure-applicationcode

by considering four cases, depending on whether the target for the call

is val and whether the linkage is return. Observe that the instruction

sequences are declared to modify all the registers, since executing the

procedure body can change the registers in arbitrary ways.41 Also note

that the code sequence for the case with target val and linkage return

is declared to need continue: Even though
continue is not explicitly

used in the two-instruction sequence, we must be sure that continue

will have the correct value when we enter the compiled procedure.

(define (compile-proc-appl target linkage)

(cond ((and (eq? target 'val) (not (eq? linkage 'return)))

(make-instruction-sequence '(proc) all-regs

`((assign continue (label ,linkage))

40Making a compiler generate tail-recursive code might seem like a straightforward

idea. But most compilers for common languages, including C and Pascal, do not do this,

and therefore these languages cannot represent iterative processes in terms of proce-

dure call alone. e difficulty with tail recursion in these languages is that their imple-

mentations use the stack to store procedure arguments and local variables as well as

return addresses. e Scheme implementations described in this book store arguments

and variables in memory to be garbage-collected. e reason for using the stack for

variables and arguments is that it avoids the need for garbage collection in languages

that would not otherwise require it, and is generally believed to be more efficient. So-

phisticated Lisp compilers can, in fact, use the stack for arguments without destroying

tail recursion. (See Hanson 1990 for a description.) ere is also some debate about

whether stack allocation is actually more efficient than garbage collection in the first

place, but the details seem to hinge on fine points of computer architecture. (See Appel

1987 and Miller and Rozas 1994 for opposing views on this issue.)

41e variable all-regs is bound to the list of names of all the registers:

(define all-regs '(env proc val argl continue))

796

(assign val (op compiled-procedure-entry)

(reg proc))

(goto (reg val)))))

((and (not (eq? target 'val))

(not (eq? linkage 'return)))

(let ((proc-return (make-label 'proc-return)))

(make-instruction-sequence '(proc) all-regs

`((assign continue (label ,proc-return))

(assign val (op compiled-procedure-entry)

(reg proc))

(goto (reg val))

,proc-return

(assign ,target (reg val))

(goto (label ,linkage))))))

((and (eq? target 'val) (eq? linkage 'return))

(make-instruction-sequence

'(proc continue)

all-regs

'((assign val (op compiled-procedure-entry)

(reg proc))

(goto (reg val)))))

((and (not (eq? target 'val))

(eq? linkage 'return))

(error "return linkage, target not val: COMPILE"

target))))

5.5.4 Combining Instruction Sequences

is section describes the details on how instruction sequences are rep-

resented and combined. Recall from Section 5.5.1 that an instruction

sequence is represented as a list of the registers needed, the registers

modified,and the actual instructions.Wewill alsoconsideralabel(sym

797

bol) to be a degenerate case of an instruction sequence, which doesn’t

need or modify any registers. So to determine the registers needed and

modified by instruction sequences we use the selectors

(define (registers-needed s)

(if (symbol? s) '() (car s)))

(define (registers-modified s)

(if (symbol? s) '() (cadr s)))

(define (statements s)

(if (symbol? s) (list s) (caddr s)))

and to determine whether a given sequence needs or modifies a given

register we use the predicates

(define (needs-register? seq reg)

(memq reg (registers-needed seq)))

(define (modifies-register? seq reg)

(memq reg (registers-modified seq)))

Intermsofthese predicatesandselectors,wecanimplement thevarious

instruction sequence combiners used throughout the compiler.

e basic combiner is append-instruction-sequences. is takes

as arguments an arbitrary number of instruction sequences that are to

be executed sequentially and returns an instruction sequence whose

statements are the statements of all the sequences appended together.

e subtle point is to determine the registers that are needed and modi-

fied by the resulting sequence. It modifies those registers that are mod-

ified by any of the sequences; it needs those registers that must be ini-

tialized before the first sequence can be run (the registers needed by the

first sequence), together with those registersneeded by any of the other

sequences that are not initialized (modified) by sequences preceding it.

e sequences are appended two at a time by append-2-sequences.

is takes two instruction sequences seq1 and seq2 and returns the in

798

struction sequence whose statements are the statements of seq1 fol-

lowed by the statements of seq2, whose modified registers are those

registers that are modified by either seq1 or seq2, and whose needed

registers are the registers needed by seq1 together with those registers

needed by seq2 that are not modified by seq1. (In terms of set opera-

tions, the new set of needed registers is the union of the set of regis-

ters needed by seq1 with the set difference of the registers needed by

seq2 and the registers modified by seq1.) us, append-instruction-

sequences is implemented as follows:

(define (append-instruction-sequences . seqs)

(define (append-2-sequences seq1 seq2)

(make-instruction-sequence

(list-union

(registers-needed seq1)

(list-difference (registers-needed seq2)

(registers-modified seq1)))

(list-union (registers-modified seq1)

(registers-modified seq2))

(append (statements seq1) (statements seq2))))

(define (append-seq-list seqs)

(if (null? seqs)

(empty-instruction-sequence)

(append-2-sequences

(car seqs)

(append-seq-list (cdr seqs)))))

(append-seq-list seqs))

is procedure uses some simple operations for manipulating sets rep-

resented as lists, similar to the (unordered) set representation described

in Section 2.3.3:

(define (list-union s1 s2)

(cond ((null? s1) s2)

799

((memq (car s1) s2) (list-union (cdr s1) s2))

(else (cons (car s1) (list-union (cdr s1) s2)))))

(define (list-difference s1 s2)

(cond ((null? s1) '())

((memq (car s1) s2) (list-difference (cdr s1) s2))

(else (cons (car s1)

(list-difference (cdr s1) s2)))))

Preserving, the second major instruction sequence combiner, takes

a list of registers regs and two instruction sequences seq1 and seq2

that are to be executed sequentially. It returns an instruction sequence

whosestatementsare thestatementsof seq1followedbythestatements

of seq2, with appropriate save and restore instructions around seq1

to protect the registers in regs that are modified by seq1 but needed by

seq2. To accomplish this, preserving first creates a sequence that has

the required saves followed by the statements of seq1 followed by the

required restores. is sequence needs the registers being saved and

restored in addition to the registers needed by seq1, and modifies the

registers modified by seq1 except forthe ones being saved and restored.

is augmentedsequence and seq2 are then appended inthe usual way.

e following procedure implements this strategy recursively, walking

down the list of registers to be preserved:42

(define (preserving regs seq1 seq2)

(if (null? regs)

(append-instruction-sequences seq1 seq2)

(let ((first-reg (car regs)))

(if (and (needs-register? seq2 first-reg)

(modifies-register? seq1 first-reg))

42Note that preserving calls append with three arguments. ough the definition of

append shown in this book accepts only two arguments, Scheme standardly provides

an append procedure that takes an arbitrary number of arguments.

800

(preserving (cdr regs)

(make-instruction-sequence

(list-union (list first-reg)

(registers-needed seq1))

(list-difference (registers-modified seq1)

(list first-reg))

(append `((save ,first-reg))

(statements seq1)

`((restore ,first-reg))))

seq2)

(preserving (cdr regs) seq1 seq2)))))

Another sequence combiner, tack-on-instruction-sequence, is used

by compile-lambda to append a procedure body to another sequence.

Because the procedure body is not “in line” to be executed as part of the

combined sequence, its register use has no impact on the register use

of the sequence in which it is embedded. We thus ignore the procedure

body’s sets of needed and modified registers when we tack it onto the

other sequence.

(define (tack-on-instruction-sequence seq body-seq)

(make-instruction-sequence

(registers-needed seq)

(registers-modified seq)

(append (statements seq)

(statements body-seq))))

Compile-ifand compile-procedure-calluseaspecialcombinercalled

parallel-instruction-sequencestoappendthetwoalternativebranchesthat follow a test. e two brancheswill never be executed sequentially;

for any particular evaluation of the test, one branch or the other will be

entered. Because of this, the registers needed by the second branch are

still needed by the combined sequence, evenif these are modified by the

801

first branch.

(define (parallel-instruction-sequences seq1 seq2)

(make-instruction-sequence

(list-union (registers-needed seq1)

(registers-needed seq2))

(list-union (registers-modified seq1)

(registers-modified seq2))

(append (statements seq1)

(statements seq2))))

5.5.5 An Example of Compiled Code

Now that we have seen all the elements of the compiler, let us examine

an example of compiled code to see how things fit together. We will

compile the definition of a recursive factorial procedure by calling

compile:

(compile

'(define (factorial n)

(if (= n 1)

1

(* (factorial (- n 1)) n)))

'val

'next)

We have specified that the value of the define expression should be

placed in the val register. We don’t care what the compiled code does

aer executing the define, so our choice of next asthe linkage descrip-

tor is arbitrary.

Compile determines that the expression is a definition, so it calls

compile-definition to compile code to compute the value to be as-

signed (targeted to val), followed by code to install the definition, fol

802

lowed by code to put the value of the define (which is the symbol ok)

into the target register, followed finally by the linkage code. Env is pre-

served around the computation of the value, because it is needed in

order to install the definition. Because the linkage is next, there is no

linkage code in this case. e skeleton of the compiled code is thus

⟨save env if modified by code to compute value⟩

⟨compilation of definition value, target val, linkage next⟩

⟨restore env if saved above⟩

(perform (op define-variable!)

(const factorial)

(reg val)

(reg env))

(assign val (const ok))

e expression that is to be compiled to produce the value for the vari

able factorialisa lambdaexpressionwhosevalueistheprocedurethat

computes factorials. Compile handles this by calling compile-lambda,

which compiles the procedure body, labels it as a new entry point, and

generates the instruction that will combine the procedure body at the

new entry point with the run-time environment and assign the result

to val. e sequence then skips around the compiled procedure code,

which is inserted at this point. e procedure code itself begins by ex-

tending the procedure’s definition environment by a frame that binds

the formal parameter n to the procedure argument. en comes the ac-

tual procedure body. Since this code forthe value ofthe variable doesn’t

modify the env register, the optional save and restore shown above

aren’t generated. (e procedure code at entry2 isn’t executed at this

point, so its use of env is irrelevant.) erefore, the skeleton for the

compiled code becomes

(assign val

(op make-compiled-procedure)

803

(label entry2)

(reg env))

(goto (label after-lambda1))

entry2

(assign env (op compiled-procedure-env) (reg proc))

(assign env

(op extend-environment)

(const (n))

(reg argl)

(reg env))

⟨compilation of procedure body⟩

after-lambda1

(perform (op define-variable!)

(const factorial)

(reg val)

(reg env))

(assign val (const ok))

A procedure body is always compiled (by compile-lambda-body) as a

sequence with target val and linkage return.e sequence in this case

consists of a single
if expression:

(if (= n 1)

1

(* (factorial (- n 1)) n))

Compile-if generates code that first computes the predicate (targeted

to val), then checks the result and branches around the true branch if

the predicate is false. Env and continue are preserved around the pred-

icate code, since they may be needed for the rest of the if expression.

Since the if expression is the final expression (and only expression)

in the sequence making up the procedure body, its target is val and

its linkage is return, so the true and false branches are both compiled

withtarget valandlinkage return.(atis,thevalue oftheconditional,

804

which is the value computed by either ofits branches, isthe value ofthe

procedure.)

⟨save continue, env if modified by predicate and needed by branches⟩

⟨compilation of predicate, target val, linkage next⟩

⟨restore continue, env if saved above⟩

(test (op false?) (reg val))

(branch (label false-branch4))

true-branch5

⟨compilation of true branch, target val, linkage return⟩

false-branch4

⟨compilation of false branch, target val, linkage return⟩

after-if3

e predicate (= n 1) is a procedure call. is looks up the opera-

tor (the symbol =) and places this value in proc. It then assembles the

arguments 1 and the value of n into argl. en it tests whether proc

containsaprimitiveoracompoundprocedure,anddispatchestoaprim-

itive branch or a compound branch accordingly. Both branches resume

at the after-call label. e requirements to preserve registers around

the evaluation of the operator and operands don’t result in any sav-

ing of registers, because in this case those evaluations don’t modify the

registers in question.

(assign proc

(op lookup-variable-value) (const =) (reg env))

(assign val (const 1))

(assign argl (op list) (reg val))

(assign val

(op lookup-variable-value) (const n) (reg env))

(assign argl (op cons) (reg val) (reg argl))

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-branch17))

compiled-branch16

805

(assign continue (label after-call15))

(assign val (op compiled-procedure-entry) (reg proc))

(goto (reg val))

primitive-branch17

(assign val

(op apply-primitive-procedure)

(reg proc)

(reg argl))

after-call15

e true branch, which is the constant 1, compiles (with target val and

linkage return) to

(assign val (const 1))

(goto (reg continue))

e code for the false branch isanotherprocedure call,wherethe proce-

dure is the value ofthe symbol *, and the argumentsare n and the result

of another procedure call (a call to factorial). Each of these calls sets

up proc and argl and itsown primitiveandcompound branches. Figure

5.17 shows the complete compilation of the definition of the factorial

procedure. Notice that the possible
save and restore of continue and

env around the predicate, shown above, are in fact generated, because

these registers are modified by the procedure call in the predicate and

needed for the procedure call and the return linkage in the branches.

Exercise 5.33: Consider the following definition of a fac-

torial procedure, which is slightly different from the one

given above:

(define (factorial-alt n)

(if (= n 1)

1

(* n (factorial-alt (- n 1)))))

806

Compilethisprocedureandcomparetheresultingcodewith

that produced for factorial. Explain any differences you

find. Does either program execute more efficiently than the

other?

Exercise 5.34: Compile the iterative factorial procedure

(define (factorial n)

(define (iter product counter)

(if (> counter n)

product

(iter (* counter product)

(+ counter 1))))

(iter 1 1))

Annotate the resulting code, showing the essential differ-

ence between the code for iterative and recursive versions

of factorial that makes one process build up stack space

and the other run in constant stack space.

Figure5.17:↓Compilationofthedefinitionofthe factorial

procedure.

;; construct the procedure and skip over code for the procedure body

(assign val

(op make-compiled-procedure)

(label entry2)

(reg env))

(goto (label after-lambda1))

entry2 ;callsto factorialwillenterhere

(assign env (op compiled-procedure-env) (reg proc))

(assign env

(op extend-environment)

(const (n))

(reg argl)

807

(reg env))

;; begin actual procedure body

(save continue)

(save env)

;;compute (= n 1)

(assign proc

(op lookup-variable-value)

(const =)

(reg env))

(assign val (const 1))

(assign argl (op list) (reg val))

(assign val

(op lookup-variable-value)

(const n)

(reg env))

(assign argl (op cons) (reg val) (reg argl))

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-branch17))

compiled-branch16

(assign continue (label after-call15))

(assign val (op compiled-procedure-entry) (reg proc))

(goto (reg val))

primitive-branch17

(assign val

(op apply-primitive-procedure)

(reg proc)

(reg argl))

after-call15 ;val nowcontainsresultof(= n 1)

(restore env)

(restore continue)

(test (op false?) (reg val))

(branch (label false-branch4))

true-branch5 ;return1

(assign val (const 1))

(goto (reg continue))

false-branch4

808

;; compute and return (* (factorial (- n 1)) n)

(assign proc

(op lookup-variable-value)

(const *)

(reg env))

(save continue)

(save proc) ;save* procedure

(assign val

(op lookup-variable-value)

(const n)

(reg env))

(assign argl (op list) (reg val))

(save argl) ; save partial argument list for *

;; compute (factorial (- n 1)), which is the other argument for *

(assign proc

(op lookup-variable-value)

(const factorial)

(reg env))

(save proc) ; save factorial procedure

;; compute (- n 1), which is the argument for factorial

(assign proc

(op lookup-variable-value)

(const -)

(reg env))

(assign val (const 1))

(assign argl (op list) (reg val))

(assign val

(op lookup-variable-value)

(const n)

(reg env))

(assign argl (op cons) (reg val) (reg argl))

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-branch8))

compiled-branch7

(assign continue (label after-call6))

(assign val (op compiled-procedure-entry) (reg proc))

809

(goto (reg val))

primitive-branch8

(assign val

(op apply-primitive-procedure)

(reg proc)

(reg argl))

after-call6 ;val nowcontainsresult of(- n 1)

(assign argl (op list) (reg val))

(restore proc) ;restorefactorial

;;applyfactorial

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-branch11))

compiled-branch10

(assign continue (label after-call9))

(assign val (op compiled-procedure-entry) (reg proc))

(goto (reg val))

primitive-branch11

(assign val

(op apply-primitive-procedure)

(reg proc)

(reg argl))

after-call9 ;val nowcontainsresultof(factorial (- n 1))

(restore argl) ; restore partial argument list for *

(assign argl (op cons) (reg val) (reg argl))

(restore proc) ;restore*

(restore continue)

;; apply * and return its value

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-branch14))

compiled-branch13

;; note that a compound procedure here is called tail-recursively

(assign val (op compiled-procedure-entry) (reg proc))

(goto (reg val))

primitive-branch14

(assign val

(op apply-primitive-procedure)

810

(reg proc)

(reg argl))

(goto (reg continue))

after-call12

after-if3

after-lambda1

;; assign the procedure to the variable factorial

(perform (op define-variable!)

(const factorial)

(reg val)

(reg env))

(assign val (const ok))

Exercise 5.35: What expression was compiled to produce

the code shown in Figure 5.18?

Figure5.18:↓Anexampleof compileroutput.See Exercise

5.35.

(assign val

(op make-compiled-procedure)

(label entry16)

(reg env))

(goto (label after-lambda15))

entry16

(assign env (op compiled-procedure-env) (reg proc))

(assign env

(op extend-environment)

(const (x))

(reg argl)

(reg env))

(assign proc

(op lookup-variable-value)

(const +)

(reg env))

(save continue)

811

(save proc)

(save env)

(assign proc

(op lookup-variable-value)

(const g)

(reg env))

(save proc)

(assign proc

(op lookup-variable-value)

(const +)

(reg env))

(assign val (const 2))

(assign argl (op list) (reg val))

(assign val

(op lookup-variable-value)

(const x)

(reg env))

(assign argl (op cons) (reg val) (reg argl))

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-branch19))

compiled-branch18

(assign continue (label after-call17))

(assign val (op compiled-procedure-entry) (reg proc))

(goto (reg val))

primitive-branch19

(assign val

(op apply-primitive-procedure)

(reg proc)

(reg argl))

after-call17

(assign argl (op list) (reg val))

(restore proc)

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-branch22))

compiled-branch21

(assign continue (label after-call20))

812

(assign val (op compiled-procedure-entry) (reg proc))

(goto (reg val))

primitive-branch22

(assign val

(op apply-primitive-procedure)

(reg proc)

(reg argl))

after-call20

(assign argl (op list) (reg val))

(restore env)

(assign val

(op lookup-variable-value)

(const x)

(reg env))

(assign argl (op cons) (reg val) (reg argl))

(restore proc)

(restore continue)

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-branch25))

compiled-branch24

(assign val

(op compiled-procedure-entry)

(reg proc))

(goto (reg val))

primitive-branch25

(assign val

(op apply-primitive-procedure)

(reg proc)

(reg argl))

(goto (reg continue))

after-call23

after-lambda15

(perform (op define-variable!)

(const f)

(reg val)

(reg env))

813

(assign val (const ok))

Exercise 5.36: What order of evaluation does our compiler

produce for operands of a combination? Is it le-to-right,

right-to-le, or some other order? Where in the compiler is

this order determined? Modify the compiler so that it pro-

ducessome otherorder ofevaluation. (See the discussionoforderof evaluationforthe explicit-control evaluatorinSec-tion 5.4.1.) How does changing the order of operand eval-

uation affect the efficiency of the code that constructs the

argument list?

Exercise5.37:Onewaytounderstandthecompiler’s preserving

mechanism for optimizing stack usage is to see what ex-

tra operations would be generated if we did not use this

idea. Modify preserving so that it always generates the

saveand restoreoperations.Compilesomesimpleexpres-

sions and identify the unnecessary stack operations that

are generated.Compare the code to that generated with the

preserving mechanism intact.

Exercise 5.38: Our compiler is clever about avoiding un

necessary stack operations, but it is not clever at all whenitcomes to compiling calls to the primitive procedures of the

language in terms of the primitive operations supplied by

the machine.For example, consider how much code iscom-

piled to compute (+ a 1): e code sets up an argument

list in argl, puts the primitive addition procedure (which it

finds by looking up the symbol + in the environment) into

814

proc, and tests whether the procedure is primitive or com-

pound. e compiler always generates code to perform the

test, as well as code for primitive and compound branches

(only one of which will be executed). We have not shown

the part of the controller that implements primitives, but

we presume that these instructions make use of primitive

arithmeticoperationsinthemachine’sdatapaths.Consider

how much less code would be generated if the compiler

couldopen-code primitives—that is,if it couldgenerate code

to directly use these primitive machine operations. e ex-

pression (+ a 1) might be compiled into somethingas sim-

ple as43

(assign

val (op lookup-variable-value) (const a) (reg env))

(assign val (op +) (reg val) (const 1))

Inthisexercisewewillextendourcompilertosupportopen

coding of selected primitives. Special-purpose code will be

generated for calls to these primitive procedures instead of

the general procedure-application code. In order to support

this, we will augment our machine with special argument

registers arg1 and arg2. e primitive arithmetic opera

tions of the machine will take their inputs from arg1 and

arg2. e results may be put into val, arg1, or arg2.

ecompilermustbe abletorecognizetheapplicationofan

open-coded primitive in the source program. We will aug-

ment the dispatch in the compile procedure to recognize

43We have used the same symbol + here to denote both the source-language proce-

dure and the machine operation. In general there will not be a one-to-one correspon-

dence between primitives of the source language and primitives of the machine.

815

the names of these primitives in addition to the reserved

words(thespecialforms)it currently recognizes.44 Foreach

special form our compiler has a code generator. In this ex-

ercise we will construct a family of code generators for the

open-coded primitives.

a. e open-coded primitives, unlike the special forms,

all need their operands evaluated. Write acode gener-

ator spread-argumentsforuseby alltheopen-coding

code generators. Spread-arguments should take an

operand list and compile the given operands targeted

tosuccessiveargumentregisters.Notethatanoperand

may contain a call to an open-coded primitive, so ar-

gumentregisterswillhavetobepreservedduringoperand

evaluation.

b. For each of the primitive procedures =, *, -, and +,

write a code generator that takes a combination with

that operator, together with a target and a linkage de-

scriptor, and produces code to spread the arguments

into the registers and then perform the operation tar

geted to the given target with the given linkage. You

needonlyhandleexpressionswithtwooperands.Make

compile dispatch to these code generators.

c. Try your new compiler on the factorial example.

Compare the resulting code with the result produced

without open coding.

44Making the primitives into reserved words is in general a bad idea, since a user

cannot then rebind these names to different procedures. Moreover, if we add reserved

words to a compiler that is in use, existing programs that define procedures with these

names will stop working. See Exercise 5.44 for ideas on how to avoid this problem.

816

d. Extend your code generators for + and * so that they

canhandleexpressionswitharbitrarynumbersofoperands.

Anexpressionwith more thantwooperandswillhave

to be compiled into a sequence of operations, each

with only two inputs.

5.5.6 Lexical Addressing

One of the most common optimizations performed by compilers is the

optimization ofvariable lookup. Our compiler, as we have implemented

it so far, generates code that uses the lookup-variable-value opera-

tionof the evaluatormachine.is searchesfor avariable by comparing

it with each variable that is currently bound, working frame by frame

outward through the run-time environment. is search can be expen-

sive if the frames are deeply nested or if there are many variables. For

example, consider the problem of looking up the value of x while eval-

uating the expression (* x y z) in an application of the procedure that

is returned by

(let ((x 3) (y 4))

(lambda (a b c d e)

(let ((y (* a b x)) (z (+ c d x)))

(* x y z))))

Since a let expression is just syntactic sugar for a lambda combination,

this expression is equivalent to

((lambda (x y)

(lambda (a b c d e)

((lambda (y z) (* x y z))

(* a b x)

(+ c d x))))

3

4)

817

Each time lookup-variable-value searches for x, it must determine

that the symbol x is not eq? to y or z (in the first frame), nor to a, b,

c, d, or e (in the second frame). We will assume, for the moment, that

our programs do not use define—that variables are bound only with

lambda. Because our language is lexically scoped, the run-time environ-

ment for any expression will have a structure that parallels the lexical

structure of the program in which the expression appears.45 us, the

compiler can know, when it analyzes the above expression, that each

time the procedure is applied the variable x in (* x y z) will be found

two frames out from the current frame and will be the first variable in

that frame.

We can exploit this fact by inventing a new kind ofvariable-lookup

operation, lexical-address-lookup, that takes as arguments an envi-

ronmentandalexicaladdress that consistsoftwonumbers:aframenum-

ber, which specifies how many frames to pass over, and a displacement

number, which specifies how many variables to pass over in that frame.

Lexical-address-lookup will produce the value of the variable stored

at that lexical address relative to the current environment. Ifwe add the

lexical-address-lookup operation to our machine, we can make the

compiler generate code that references variables using this operation,

rather than lookup-variable-value. Similarly, our compiled code can

use a new lexical-address-set!
operation instead of set-variable-

value!.

In order to generate such code, the compiler must be able to deter-

mine the lexical address of a variable it is about to compile a reference

to. e lexical address ofa variable in a program depends on where one

is in the code. For example, in the following program, the address of x

45is is not true if we allow internal definitions, unless we scan them out. See Ex-

ercise 5.43.

818

in expression ⟨e1⟩ is (2, 0)—two frames back and the first variable in the

frame. At that point y is at address (0, 0) and c is at address (1, 2). In

expression ⟨e2⟩, x is at (1, 0), y is at (1, 1), and c is at (0, 2).

((lambda (x y)

(lambda (a b c d e)

((lambda (y z) ⟨e1⟩)

⟨e2⟩

(+ c d x))))

3

4)

One way for the compiler to produce code that uses lexical address-

ing is to maintain a data structure called a compile-time environment.

is keeps track of which variables will be at which positions in which

frames in the run-time environment when a particular variable-access

operation is executed. e compile-time environment is a list offrames,

each containing a list of variables. (ere will of course be no values

bound to the variables, since values are not computed at compile time.)

ecompile-timeenvironmentbecomesanadditionalargumentto compile

and ispassedalongto each code generator. e top-level callto compile

uses an empty compile-time environment. When a lambda body is com

piled, compile-lambda-body extends the compile-time environment by

a frame containing the procedure’s parameters, so that the sequence

making up the body is compiled with that extended environment. At

eachpointinthecompilation, compile-variableand compile-assignment

use the compile-time environment in order to generate the appropriate

lexical addresses.

Exercise 5.39 through Exercise 5.43 describe how to complete this

sketch of the lexical-addressing strategy in order to incorporate lexical

lookup into the compiler. Exercise 5.44 describes another use for the

819

compile-time environment.

Exercise5.39:Writeaprocedure lexical-address-lookup

that implements the new lookup operation. It should take

twoarguments—alexicaladdressandarun-timeenvironment—

and return the value of the variable stored at the specified

lexical address. Lexical-address-lookup should signal an

errorifthevalueofthevariableisthesymbol *unassigned*.46

Also write a procedure lexical-address-set! that imple

ments the operation that changes the value of the variable

at a specified lexical address.

Exercise5.40:Modifythecompilertomaintainthecompile-

timeenvironmentasdescribedabove.atis,addacompile-

time-environment argument to compile and the various

code generators, and extend it in compile-lambda-body.

Exercise5.41:Writeaprocedure find-variablethattakesas arguments a variable and a compile-time environment

and returns the lexical address of the variable with respect

to that environment. For example, in the program fragment

that is shown above, the compile-time environment during

the compilation of expression ⟨e1⟩ is ((y z) (a b c d e)

(x y)). Find-variable should produce

(find-variable 'c '((y z) (a b c d e) (x y)))

(1 2)

(find-variable 'x '((y z) (a b c d e) (x y)))

46is is the modification to variable lookup required if we implement the scanning

method to eliminate internal definitions (Exercise 5.43). We will need to eliminate these

definitions in order for lexical addressing to work.

820

(2 0)

(find-variable 'w '((y z) (a b c d e) (x y)))

not-found

Exercise 5.42: Using find-variable from Exercise 5.41,

rewrite compile-variableand compile-assignmenttoout-putlexical-addressinstructions.Incaseswhere find-variable

returns not-found (that is, where the variable is not in the

compile-time environment), you should have the code gen

erators use the evaluator operations, as before, to search

for the binding. (e only place a variable that is not found

at compile time can be is in the global environment, which

is part of the run-time environment but is not part of the

compile-time environment.47 us, if you wish, you may

havetheevaluatoroperationslookdirectlyinthe global en

vironment, which can be obtained with the operation (op

get-global-environment), instead of having them search

the whole run-time environment found in env.) Test the

modified compiler ona few simple cases, such asthe nested

lambda combination at the beginning of this section.

Exercise 5.43: We argued in Section 4.1.6 that internal def-

initions for block structure should not be considered “real”

defines. Rather, a procedure body should be interpreted as

if the internal variables being defined were installed as or-

dinary lambda variables initialized to their correct values

47Lexical addresses cannot be used to access variables in the global environment, be-

cause these names can be defined and redefined interactively at any time. With internal

definitions scanned out, as in Exercise 5.43, the only definitions the compiler sees are

those at top level, which act on the global environment. Compilation of a definition

does not cause the defined name to be entered in the compile-time environment.

821

using
set!. Section 4.1.6 and Exercise 4.16 showed how to

modify the metacircular interpreter to accomplish this by

scanning out internal definitions. Modify the compiler to

perform the same transformation before it compiles a pro-

cedure body.

Exercise5.44: Inthissectionwe have focusedonthe use of

thecompile-timeenvironmenttoproducelexicaladdresses.

But there are other uses for compile-time environments.

For instance, in Exercise 5.38 we increased the efficiency of

compiled code by open-coding primitive procedures. Our

implementation treated the names of open-coded proce-

dures asreserved words. If aprogram were to rebind such a

name, the mechanism described in Exercise 5.38 would still

open-code it as a primitive, ignoring the new binding. For

example, consider the procedure

(lambda (+ * a b x y)

(+ (* a x) (* b y)))

which computes a linear combination of x and y.We might

call itwith arguments +matrix, *matrix,andfourmatrices,

but the open-coding compiler would still open-code the +

and the * in (+ (* a x) (* b y)) as primitive + and *.

Modify the open-coding compiler to consult the compile-

time environment in order to compile the correct code for

expressions involving the names of primitive procedures.

(e code will work correctly as long as the program does

not define or set! these names.)

822

5.5.7 Interfacing Compiled Code to the Evaluator

We have not yet explained how to load compiled code into the evalua-

tor machine or how to run it. We will assume that the explicit-control-

evaluator machine has been defined as in Section 5.4.4, with the addi-

tional operations specified in Footnote 38. We will implement a pro-

cedure compile-and-go that compiles a Scheme expression, loads the

resulting object code into the evaluator machine, and causes the ma-

chine to run the code in the evaluator global environment, print the

result, and enter the evaluator’s driver loop. We will also modify the

evaluator so that interpreted expressions can call compiled procedures

as well as interpreted ones. We can then put a compiled procedure into

the machine and use the evaluator to call it:

(compile-and-go

'(define (factorial n)

(if (= n 1)

1

(* (factorial (- n 1)) n))))

;;; EC-Eval value:

ok

;;; EC-Eval input:

(factorial 5)

;;; EC-Eval value:

120

To allow the evaluator to handle compiled procedures (for example, to

evaluate the call to factorial above), we need to change the code at

apply-dispatch (Section 5.4.1) so that it recognizes compiled proce-

dures(asdistinctfromcompoundorprimitive procedures)andtransfers

823

control directly to the entry point of the compiled code:48

apply-dispatch

(test (op primitive-procedure?) (reg proc))

(branch (label primitive-apply))

(test (op compound-procedure?) (reg proc))

(branch (label compound-apply))

(test (op compiled-procedure?) (reg proc))

(branch (label compiled-apply))

(goto (label unknown-procedure-type))

compiled-apply

(restore continue)

(assign val (op compiled-procedure-entry) (reg proc))

(goto (reg val))

Note the restore of continue at compiled-apply. Recall that the eval-

uator was arranged so that at apply-dispatch, the continuation would

be at the top of the stack. e compiled code entry point, on the other

hand, expects the continuation to be in continue, so continue must be

restored before the compiled code is executed.

To enableustorunsome compiled code whenwe start the evaluator

machine, we add a branch instruction at the beginning of the evaluator

machine, which causes the machine to go to a new entry point if the

flag register is set.49

48Of course, compiled procedures as well as interpreted procedures are compound

(nonprimitive). For compatibility with the terminology used in the explicit-control

evaluator, in this section we will use “compound” to mean interpreted (as opposed to

compiled).

49Now that the evaluator machine starts with a branch, we must always initialize the

flag register before starting the evaluator machine. To start the machine at its ordinary

read-eval-print loop, we could use

(define (start-eceval)

(set! the-global-environment (setup-environment))

824

(branch (label external-entry)) ;branchesifflagisset

read-eval-print-loop

(perform (op initialize-stack))

...

External-entry assumes that the machine is started with val contain

ing the location of an instruction sequence that puts a result into val

and ends with (goto (reg continue)). Starting at this entry point

jumps to the location designated by val, but first assigns continue so

that execution will return to print-result, which prints the value in

val and then goes to the beginning of the evaluator’s read-eval-print

loop.50

external-entry

(perform (op initialize-stack))

(assign env (op get-global-environment))

(assign continue (label print-result))

(goto (reg val))

(set-register-contents! eceval 'flag false)

(start eceval))

50Since a compiled procedure is an object that the system may try to print, we also

modify the system print operation user-print (from Section 4.1.4) so that it will not

aempt to print the components of a compiled procedure:

(define (user-print object)

(cond ((compound-procedure? object)

(display (list 'compound-procedure

(procedure-parameters object)

(procedure-body object)

'<procedure-env>)))

((compiled-procedure? object)

(display '<compiled-procedure>))

(else (display object))))

825

Now we can use the following procedure to compile a procedure defini-

tion, execute the compiled code, and run the read-eval-print loop so we

can try the procedure. Because we want the compiled code to return to

the location in continue with its result in val, we compile the expres-

sion with a target of val and a linkage of return. In order to transform

the object code produced by the compiler into executable instructions

forthe evaluator registermachine,we use the procedure assemble from

the register-machinesimulator(Section5.2.2).Wetheninitializethe val

register to point to the list ofinstructions, set the flag so that the eval-

uator will go to external-entry, and start the evaluator.

(define (compile-and-go expression)

(let ((instructions

(assemble

(statements

(compile expression 'val 'return))

eceval)))

(set! the-global-environment (setup-environment))

(set-register-contents! eceval 'val instructions)

(set-register-contents! eceval 'flag true)

(start eceval)))

Ifwe have set up stack monitoring, as at the end ofSection 5.4.4, we can

examine the stack usage of compiled code:

(compile-and-go

'(define (factorial n)

(if (= n 1)

1

(* (factorial (- n 1)) n))))

(total-pushes = 0 maximum-depth = 0)

;;; EC-Eval value:

ok

;;; EC-Eval input:

826

(factorial 5)

(total-pushes = 31 maximum-depth = 14)

;;; EC-Eval value:

120

Compare this example with the evaluation of (factorial 5) using the

interpreted version of the same procedure, shown at the end of Sec-

tion 5.4.4. e interpreted version required 144 pushes and a maximum

stack depth of 28. is illustrates the optimization that results from our

compilation strategy.

Interpretation and compilation

With the programs in this section, we can now experiment with the al-

ternative execution strategies of interpretation and compilation.51 An

interpreter raises the machine to the level of the user program; a com-

piler lowers the user program to the level of the machine language. We

can regard the Scheme language (or any programming language) as a

coherent family of abstractions erected on the machine language. In-

terpreters are good for interactive program development and debug-

ging because the steps of program execution are organized in terms of

these abstractions, and are therefore more intelligible to the program-

mer. Compiled code can execute faster, because the steps of program

executionare organizedintermsof the machine language, and the com-

piler is free to make optimizations that cut across the higher-level ab-

stractions.52

51We can do even beer by extending the compiler to allow compiled code to call

interpreted procedures. See Exercise 5.47.

52Independent of the strategy of execution, we incur significant overhead if we in-

sist that errors encountered in execution of a user program be detected and signaled,

rather than being allowed to kill the system or produce wronganswers. For example, an

827

e alternatives of interpretation and compilation also lead to dif-

ferent strategies for porting languages to new computers. Suppose that

we wish to implement Lisp for a new machine. One strategy is to be-

gin with the explicit-control evaluator of Section 5.4 and translate its

instructions to instructions for the new machine. A different strategy

is to begin with the compiler and change the code generators so that

they generate code for the new machine. e second strategy allows us

to run any Lisp program on the new machine by first compiling it with

the compiler running on our original Lisp system, and linking it with a

compiled version of the run-time library.53 Beer yet, we can compile

the compiler itself, and run this on the new machine to compile other

Lisp programs.54 Or we can compile one of the interpreters of Section

out-of-bounds array reference can be detected by checking the validity of the reference

before performing it. e overhead of checking, however, can be many times the cost of

the array reference itself, and a programmer should weigh speed against safety in de-

termining whether such a check is desirable. A good compiler should be ableto produce

code with such checks, should avoid redundant checks, and should allow programmers

to control the extent and type of error checking in the compiled code.

Compilers for popular languages, such as C and C++, put hardly any error-checking

operations into running code, so as to make things run as fast as possible. As a result, it

falls to programmers to explicitly provide error checking. Unfortunately, people oen

neglect to do this, even in critical applications where speed is not a constraint. eir

programs lead fast and dangerous lives. For example, the notorious “Worm” that par-

alyzed the Internet in 1988 exploited the (tm) operating system’s failure to check

whether the input buffer has overflowed in the finger daemon. (See Spafford 1989.)

53Of course, with either the interpretation or the compilation strategy we must also

implementforthe new machine storage allocation, input and output, and all the various

operations that we took as “primitive” in our discussion of the evaluator and compiler.

One strategy for minimizing work here is to write asmany of these operations as possi-

ble in Lisp and then compile them for the new machine. Ultimately, everything reduces

to a small kernel (such as garbage collection and the mechanism for applying actual

machine primitives) that is hand-coded for the new machine.

54is strategy leads to amusing tests of correctness of the compiler, such as check

828

4.1 to produce an interpreter that runs on the new machine.

Exercise 5.45: By comparing the stack operations used by

compiled code to the stack operations used by the evalua-

tor for the same computation, we can determine the extent

to which the compiler optimizes use of the stack, both in

speed (reducing the total number of stack operations) and

in space (reducing the maximum stack depth). Comparing

this optimized stack use to the performance of a special-

purpose machine for the same computation gives some in-

dication of the quality of the compiler.

a. Exercise 5.27 asked you to determine, as a function

of n, the number of pushes and the maximum stack

depth needed by the evaluator to compute n! using

the recursive factorial procedure given above. Exer

cise 5.14 asked you to do the same measurements for

the special-purpose factorial machine shown in Fig

ure 5.11. Now perform the same analysis using the

compiled factorial procedure.

Taketheratioofthenumberofpushesinthecompiled

version to the number of pushes in the interpreted

version,anddothesameforthemaximumstackdepth.

Since the number of operations and the stack depth

used to computen! are linear inn, these ratios should

approachconstantsasn becomeslarge.Whatarethese

ing whether the compilation of a program on the new machine, using the compiled

compiler, is identical with the compilation of the program on the original Lisp system.

Tracking down the source of differences is fun but oen frustrating, because the results

are extremely sensitive to minuscule details.

829

constants? Similarly, find the ratios of the stack usage

in the special-purpose machine to the usage in the in-

terpreted version.

Compare the ratios for special-purpose versus inter

preted code to the ratios for compiled versus inter-

preted code. You should find that the special-purpose

machine does much beer than the compiled code,

sincethehand-tailoredcontrollercodeshouldbemuch

beerthanwhatisproducedbyourrudimentarygeneral-

purpose compiler.

b. Can you suggest improvements to the compiler that

would help it generate code that would come closer

in performance to the hand-tailored version?

Exercise 5.46: Carry out an analysis like the one in Ex

ercise 5.45 to determine the effectiveness of compiling the

tree-recursive Fibonacci procedure

(define (fib n)

(if (< n 2)

n

(+ (fib (- n 1))

(fib (- n 2)))))

compared to the effectiveness of using the special-purpose

Fibonacci machine of Figure 5.12. (For measurement of the

inter-pretedperformance, see Exercise5.29.)For Fibonacci,

the time resource used is not linear inn; hence the ratios of

stack oper- ations will not approach a limiting value that is

independent of n.

830

Exercise 5.47: is section described how to modify the

explicit-control evaluator so that interpreted code can call

compiled procedures. Show how to modify the compiler so

that compiled procedures can call not only primitive proce-

dures and compiled procedures, but interpreted procedures

as well. is requires modifying compile-procedure-call

to handle the case of compound (interpreted) procedures.

Be sure to handle all the same target and linkage combi-

nations as in compile-proc-appl. To do the actual proce-

dure application, the code needs to jump to the evaluator’s

compound-apply entry point. is label cannot be directly

referenced in object code (since the assembler requires that

all labels referenced by the code it is assembling be defined

there), so we will add a register called compapp to the eval-

uator machine to hold this entry point, and add an instruc-

tion to initialize it:

(assign compapp (label compound-apply))

(branch (label external-entry)) ;branches if flag is set

read-eval-print-loop ...

Totestyourcode,startbydefiningaprocedure fthatcallsa

procedure g. Use compile-and-go to compile the definition

of f and start the evaluator. Now, typing at the evaluator,

define g and try to call f.

Exercise5.48:e compile-and-gointerfaceimplemented

in this section is awkward, since the compiler can be called

only once (when the evaluator machine is started). Aug-

mentthecompiler-interpreterinterfacebyprovidinga compile-and-runprimitivethatcanbecalledfromwithintheexplicit-

831

control evaluator as follows:

;;; EC-Eval input:

(compile-and-run

'(define (factorial n)

(if (= n 1) 1 (* (factorial (- n 1)) n))))

;;; EC-Eval value:

ok

;;; EC-Eval input:

(factorial 5)

;;; EC-Eval value:

120

Exercise5.49:Asanalternativetousingtheexplicit-control

evaluator’s read-eval-print loop, design a register machine

that performs a read-compile-execute-print loop. at is,

the machine should run a loop that reads an expression,

compiles it, assembles and executes the resulting code, and

prints the result. is is easy to run in our simulated setup,

since we can arrange to call the procedures compile and

assemble as “register-machine operations.”

Exercise 5.50: Use the compiler to compile the metacir

cular evaluator of Section 4.1 and run this program using

the register-machine simulator. (To compile more than one

definition at a time, you can package the definitions in a

begin.) e resulting interpreter will run very slowly be-

cause of the multiple levels of interpretation, but geing

all the details to work is an instructive exercise.

Exercise 5.51: Develop a rudimentary implementation of

Scheme in C (or some other low-level language of your

832

choice) by translating the explicit-control evaluator ofSec-

tion5.4intoC.Inordertorunthiscodeyouwillneedtoalso

provide appropriate storage-allocation routines and other

run-time support.

Exercise 5.52: As a counterpoint to Exercise 5.51, modify

the compiler so that it compiles Scheme proceduresintose-quences of C instructions. Compile the metacircular evalu-

ator of Section 4.1 to produce a Scheme interpreter wrien

in C.

833

References

Abelson, Harold, Andrew Berlin, Jacob Katzenelson, William McAllis-

ter, Guillermo Rozas, Gerald Jay Sussman, and Jack Wisdom. 1992. e

Supercomputer Toolkit: A general framework for special-purpose com-

puting.InternationalJournalofHigh-SpeedElectronics3(3):337-361. (Onl)

Allen, John. 1978. Anatomy ofLisp. New York: McGraw-Hill.

 X3.226-1994. American National Standard for Information Sys-

tems—Programming Language—Common Lisp.

Appel, Andrew W. 1987. Garbage collection can be faster than stack

allocation. Information Processing Leers 25(4): 275-279. (Online)

Backus, John. 1978. Can programming be liberated from the von

Neumann style? Communications ofthe 21(8): 613-641. (Online)

Baker, Henry G., Jr. 1978. List processing in real time on a serial

computer. Communications ofthe 21(4): 280-293. (Online)

Batali, John, Neil Mayle, Howard Shrobe, Gerald Jay Sussman, and

Daniel Weise. 1982. e Scheme-81 architecture—System and chip. In

Proceedings of the Conference on Advanced Research in , edited by

Paul Penfield, Jr. Dedham, MA: Artech House.

Borning,Alan.1977.ingLab—Anobject-orientedsystemforbuild-

ing simulations using constraints. In Proceedings ofthe 5th International

Joint Conference on Artificial Intelligence. (Online)

834

Borodin, Alan, and Ian Munro. 1975. e Computational Complexity

ofAlgebraic and Numeric Problems. New York: American Elsevier.

Chaitin, GregoryJ. 1975. Randomness and mathematical proof. Sci-

entific American 232(5): 47-52.

Church, Alonzo. 1941. e Calculi ofLambda-Conversion. Princeton,

N.J.: Princeton University Press.

Clark, Keith L. 1978. Negation as failure. In Logic and Data Bases.

New York: Plenum Press, pp. 293-322. (Online)

Clinger, William. 1982. Nondeterministic call by need is neither lazy

nor by name. In Proceedings ofthe Symposium on Lispand Functional

Programming, pp. 226-234.

Clinger,William,andJonathanRees. 1991. Macrosthat work.In Pro-

ceedings of the 1991 Conference on Principles of Programming Lan-

guages, pp. 155-162. (Online)

Colmerauer A., H. Kanoui, R. Pasero, and P. Roussel. 1973. Un sys-

tème de communication homme-machine en français. Technical report,

Groupe Intelligence Artificielle, Université d’Aix Marseille, Luminy.

Cormen, omas, Charles Leiserson, and Ronald Rivest. 1990. Intro-

duction to Algorithms. Cambridge, MA: Press.

Darlington, John, Peter Henderson, and David Turner. 1982. Func-

tional Programming and Its Applications. New York: Cambridge Univer-

sity Press.

Dijkstra,Edsger W. 1968a. e structure ofthe “” multiprogram-

ming system. Communications ofthe 11(5): 341-346. (Online)

Dijkstra, EdsgerW. 1968b. Cooperating sequential processes. In Pro-

gramming Languages, edited by F. Genuys. New York: Academic Press,

pp. 43-112. (Online)

Dinesman,HowardP.1968.SuperiorMathematicalPuzzles.NewYork:Simon and Schuster.

835

deKleer, Johan, Jon Doyle, Guy Steele, and Gerald J. Sussman. 1977.

: Explicit control of reasoning. In Proceedings ofthe Sympo-

sium on Artificial Intelligence and Programming Languages, pp. 116-125.

(Online)

Doyle, Jon. 1979. A truth maintenance system. Artificial Intelligence

12: 231-272. (Online)

Feigenbaum, Edward, and Howard Shrobe. 1993. e Japanese Na-

tional Fih Generation Project: Introduction, survey, and evaluation. In

Future Generation Computer Systems, vol. 9, pp. 105-117.

Feeley, Marc. 1986. Deux approches à l’implantation du language

Scheme. Masters thesis, Université de Montréal.

Feeley, Marc and Guy Lapalme. 1987. Using closures for code gen-

eration. Journal ofComputer Languages 12(1): 47-66. (Online)

Feller, William. 1957. An Introduction to Probability eory and Its

Applications, volume 1. New York: John Wiley & Sons.

Fenichel, R., and J. Yochelson. 1969. A Lisp garbage collector for vir

tual memory computer systems. Communications ofthe 12(11): 611

612.

Floyd, Robert. 1967. Nondeterministic algorithms. , 14(4): 636-

644.

Forbus,KennethD.,andJohandeKleer.1993.BuildingProblemSolvers.

Cambridge, MA: Press.

Friedman, Daniel P., and David S. Wise. 1976. should not eval-

uate its arguments. In Automata, Languages, and Programming: ird In-

ternational Colloquium, edited by S. Michaelson and R. Milner, pp. 257

284.(Online)

Friedman, Daniel P., Mitchell Wand, and Christopher T. Haynes.

1992. Essentials ofProgramming Languages. Cambridge, MA: Press/

McGraw-Hill.

836

Gabriel, Richard P. 1988. e Why of Y. Lisp Pointers 2(2): 15-25.

(Online)

Goldberg, Adele, and David Robson. 1983. Smalltalk-80: e Lan-

guage and Its Implementation. Reading, MA: Addison-Wesley.

Gordon, Michael, Robin Milner, and Christopher Wadsworth. 1979.

Edinburgh LCF. Lecture Notes in Computer Science, volume 78. New

York: Springer-Verlag.

Gray,Jim,andAndreasReuter.1993.TransactionProcessing:Concepts

and Models. San Mateo, CA: Morgan-Kaufman.

Green, Cordell. 1969. Application of theorem proving to problem

solving. In Proceedings of the International Joint Conference on Artificial

Intelligence, pp. 219-240. (Online)

Green, Cordell, and Bertram Raphael. 1968. e use of theorem-

provingtechniques in question-answering systems. In Proceedingsof the

 National Conference, pp. 169-181.

Griss, Martin L. 1981. Portable Standard Lisp, a brief overview. Utah

Symbolic Computation Group Operating Note 58, University of Utah.

Guag, John V. 1977. Abstract data types and the development of

data structures. Communications of the 20(6): 396-404. (Online)

Hamming, Richard W. 1980. Coding and Information eory. Engle-

wood Cliffs, N.J.: Prentice-Hall.

Hanson,ChristopherP.1990.Efficientstackallocationfortail-recur-

sive languages. In Proceedings of Conference on Lisp and Functional

Programming, pp. 106-118.

Hanson, Christopher P. 1991. A syntactic closures macro facility.

Lisp Pointers, 4(3). (Online)

Hardy, Godfrey H. 1921. Srinivasa Ramanujan. Proceedings of the

London Mathematical Society XIX(2).

Hardy, Godfrey H., and E. M. Wright. 1960. An Introduction to the

837

eory ofNumbers. 4th edition. New York: Oxford University Press.

Havender,J.1968.Avoidingdeadlocksinmulti-taskingsystems.IBM

Systems Journal 7(2): 74-84.

Hearn, Anthony C. 1969. Standard Lisp. Technical report -90,

Artificial Intelligence Project, Stanford University. (Online)

Henderson,Peter.1980.FunctionalProgramming:ApplicationandIm-plementation. Englewood Cliffs, N.J.: Prentice-Hall.

Henderson. Peter. 1982. Functional Geometry. In Conference Record

ofthe 1982 Symposium on Lisp and Functional Programming, pp. 179-

187. (Online) (2002 version)

Hewi, Carl E. 1969. : A language for proving theorems in

robots. In Proceedings of the International Joint Conference on Artificial

Intelligence, pp. 295-301. (Online)

Hewi, Carl E. 1977. Viewing control structures as paerns of pass-

ing messages. Journal ofArtificial Intelligence 8(3): 323-364. (Online)

Hoare, C. A. R. 1972. Proof of correctness of data representations.

Acta Informatica 1(1).

Hodges, Andrew. 1983. Alan Turing: e Enigma. New York: Simon

and Schuster.

Hofstadter, Douglas R. 1979. Gödel, Escher, Bach: An Eternal Golden

Braid. New York: Basic Books.

Hughes, R.J. M. 1990. Why functional programming maers. In Re-

search Topics in Functional Programming, edited by David Turner. Read-

ing, MA: Addison-Wesley, pp. 17-42. (Online)

 Std 1178-1990. 1990. Standardfor the Scheme Programming

Language.

Ingerman, Peter, Edgar Irons, Kirk Saley, and Wallace Feurzeig; as-

sisted by M. Lind, Herbert Kanner, and Robert Floyd. 1960. : A

way of compiling procedure statements, with some comments on pro

838

cedure declarations. Unpublished manuscript. (Also, private communi-

cation from Wallace Feurzeig.)

Kaldewaij, Anne. 1990. Programming: e Derivation ofAlgorithms.

New York: Prentice-Hall.

Knuth,DonaldE. 1973. FundamentalAlgorithms.Volume1 of eArt

ofComputer Programming. 2nd edition. Reading, MA: Addison-Wesley.

Knuth, Donald E. 1981. Seminumerical Algorithms. Volume 2 of e

ArtofComputerProgramming.2ndedition.Reading,MA:Addison-Wesley.

Kohlbecker, Eugene Edmund, Jr. 1986. Syntactic extensions in the

programming language Lisp. Ph.D. thesis, Indiana University. (Online)

Konopasek, Milos, and Sundaresan Jayaraman. 1984. e TK!Solver

Book: A Guide to Problem-Solving in Science, Engineering, Business, and

Education. Berkeley, CA: Osborne/McGraw-Hill.

Kowalski, Robert. 1973. Predicate logic as a programming language.

Technical report 70, Department of Computational Logic, School ofAr

tificial Intelligence, University of Edinburgh. (Online)

Kowalski, Robert. 1979. Logicfor Problem Solving. New York: North-

Holland.

Lamport, Leslie. 1978. Time, clocks, and the ordering of events in a

distributed system. Communications of the 21(7): 558-565. (Online)

Lampson, Butler, J. J. Horning, R. London, J. G. Mitchell, and G.

K. Popek. 1981. Report on the programming language Euclid. Techni-

cal report, Computer Systems Research Group, University of Toronto.

(Online)

Landin,Peter.1965.AcorrespondencebetweenAlgol60andChurch’s

lambda notation: Part I. Communications ofthe 8(2): 89-101.

Lieberman, Henry, and Carl E. Hewi. 1983. A real-time garbage

collector based on the lifetimes of objects. Communications of the

26(6): 419-429. (Online)

839

Liskov, Barbara H., and Stephen N. Zilles. 1975. Specification tech-

niques for data abstractions. Transactions on Soware Engineering

1(1):7-19.(Online)

McAllester, David Allen. 1978. A three-valued truth-maintenance

system. Memo 473, Artificial Intelligence Laboratory. (Online)

McAllester, David Allen. 1980. An outlook on truth maintenance.

Memo 551, Artificial Intelligence Laboratory. (Online)

McCarthy, John. 1960. Recursive functions of symbolic expressions

andtheircomputationbymachine.Communicationsofthe 3(4):184-195.(Online)

McCarthy, John. 1963. A basis for a mathematical theory of com-

putation. In Computer Programming and Formal Systems, edited by P.

Braffort and D. Hirschberg. North-Holland. (Online)

McCarthy, John. 1978. e history of Lisp. In Proceedings ofthe

 Conference on the History of Programming Languages. (Online)

McCarthy, John, P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. I.

Levin. 1965. Lisp 1.5Programmer’s Manual. 2nd edition. Cambridge, MA:

 Press. (Online)

McDermo, Drew, and Gerald Jay Sussman. 1972. Conniver refer-

encemanual.Memo259, ArtificialIntelligenceLaboratory. (Online)

Miller, Gary L. 1976. Riemann’s Hypothesis and tests for primality.

Journal of Computer and System Sciences 13(3): 300-317. (Online)

Miller, James S., and Guillermo J. Rozas. 1994. Garbage collection is

fast, but a stack is faster. Memo 1462, Artificial Intelligence Labo-

ratory. (Online)

Moon, David. 1978. MacLisp reference manual, Version 0. Technical

report, Laboratory for Computer Science. (Online)

Moon,David,andDanielWeinreb.1981.Lispmachinemanual.Tech-

nical report, Artificial Intelligence Laboratory. (Online)

840

Morris, J.H., Eric Schmidt, and PhilipWadler. 1980. Experience with

an applicative string processing language. In Proceedings of the 7th An-

nual / Symposium on the Principles of Programming

Languages.

Phillips, Hubert. 1934. e Sphinx Problem Book. London: Faber and

Faber.

Pitman, Kent. 1983. e revised MacLisp Manual (Saturday evening

edition). Technical report 295, Laboratory for Computer Science.

(Online)

Rabin, Michael O.1980. Probabilistic algorithm fortesting primality.

Journal ofNumber eory 12: 128-138.

Raymond, Eric. 1993. eNewHacker’sDictionary. 2nd edition.Cam-bridge, MA: Press. (Online)

Raynal, Michel. 1986. Algorithms for Mutual Exclusion. Cambridge,

MA: Press.

Rees, Jonathan A., and Norman I. Adams IV. 1982. T: A dialect of

Lisp or, lambda: e ultimate soware tool. In Conference Record of the

1982 Symposium on Lisp and Functional Programming, pp. 114-122.

(Online)

Rees,Jonathan, and William Clinger (eds). 1991. e revised4 report

on the algorithmic language Scheme. Lisp Pointers, 4(3). (Online)

Rivest, Ronald, Adi Shamir, and Leonard Adleman. 1977. A method

for obtaining digital signatures and public-key cryptosystems. Techni-

cal memo LCS/TM82, Laboratory for Computer Science. (Online)

Robinson,J. A. 1965. A machine-oriented logic based on the resolu-

tion principle. Journal ofthe 12(1): 23.

Robinson,J. A. 1983. Logic programming—Past, present, and future.

New Generation Computing 1: 107-124.

Spafford, Eugene H. 1989. e Internet Worm: Crisis and aermath.

841

Communications ofthe 32(6): 678-688. (Online)

Steele, Guy Lewis, Jr. 1977. Debunking the “expensive procedure

call” myth. In Proceedings of the National Conference of the , pp. 153-

62.(Online)

Steele, Guy Lewis, Jr. 1982. An overview of Common Lisp. In Pro

ceedings of the Symposium on Lisp and Functional Programming, pp.

98-107.

Steele, Guy Lewis,Jr. 1990. Common Lisp: e Language. 2nd edition.

Digital Press. (Online)

Steele, Guy Lewis, Jr., and Gerald Jay Sussman. 1975. Scheme: An

interpreter for the extended lambda calculus. Memo 349, Artificial

Intelligence Laboratory. (Online)

Steele, Guy Lewis, Jr., Donald R. Woods, Raphael A. Finkel, Mark

R. Crispin, Richard M. Stallman, and Geoffrey S. Goodfellow. 1983. e

Hacker’s Dictionary. New York: Harper & Row. (Online)

Stoy, Joseph E. 1977. Denotational Semantics. Cambridge, MA:

Press.

Sussman, Gerald Jay, and Richard M. Stallman. 1975. Heuristic tech-

niques in computer-aided circuit analysis. Transactions on Circuits

and Systems CAS-22(11):857-865. (Online)

Sussman, Gerald Jay, and Guy Lewis Steele Jr. 1980. Constraints—A

language for expressing almost-hierachical descriptions. AI Journal 14:

1-39. (Online)

Sussman, Gerald Jay, and Jack Wisdom. 1992. Chaotic evolution of

the solar system. Science 257: 256-262. (Online)

Sussman, Gerald Jay, Terry Winograd, and Eugene Charniak. 1971.

Microplanner reference manual. Memo 203A, Artificial Intelligence

Laboratory. (Online)

Sutherland,IvanE.1963.:Aman-machinegraphicalcom

842

municationsystem.Technicalreport296, LincolnLaboratory. (Onl.)

Teitelman, Warren. 1974. Interlisp reference manual. Technical re-

port, Xerox Palo Alto Research Center.

atcher, James W., Eric G. Wagner, and Jesse B. Wright. 1978. Data

typespecification:Parameterizationandthepowerofspecificationtech-

niques. In Conference Record ofthe Tenth Annual Symposium on e-

ory of Computing, pp. 119-132.

Turner, David. 1981. e future of applicative languages. In Proceed-

ingsofthe3rdEuropean ConferenceonInformatics,Lecture NotesinCom-

puter Science, volume 123. New York: Springer-Verlag, pp. 334-348.

Wand, Mitchell. 1980. Continuation-based program transformation

strategies. Journal ofthe 27(1): 164-180. (Online)

Waters, Richard C. 1979. A method for analyzing loop programs.

 Transactions on Soware Engineering 5(3): 237-247.

Winograd, Terry. 1971. Procedures as a representation for data in

a computer program for understanding natural language. Technical re-

port AI TR-17, Artificial Intelligence Laboratory. (Online)

Winston, Patrick. 1992. Artificial Intelligence. 3rd edition. Reading,

MA: Addison-Wesley.

Zabih, Ramin, David McAllester, and David Chapman. 1987. Non-

deterministic Lisp with dependency-directed backtracking. -87, pp.

59-64. (Online)

Zippel, Richard. 1979. Probabilistic algorithms for sparse polynomi-

als. Ph.D. dissertation, Department of Electrical Engineering and Com-

puter Science, .

Zippel,Richard.1993.EffectivePolynomialComputation.Boston,MA:

Kluwer Academic Publishers.

843

List of Exercises

Chapter 1

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10

1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20

1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30

1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40

1.41 1.42 1.43 1.44 1.45 1.46

Chapter 2

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10

2.11 2.12 2.13 2.14 2.15 2.16 2.17 2.18 2.19 2.20

2.21 2.22 2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.30

2.31 2.32 2.33 2.34 2.35 2.36 2.37 2.38 2.39 2.40

2.41 2.42 2.43 2.44 2.45 2.46 2.47 2.48 2.49 2.50

2.51 2.52 2.53 2.54 2.55 2.56 2.57 2.58 2.59 2.60

2.61 2.62 2.63 2.64 2.65 2.66 2.67 2.68 2.69 2.70

2.71 2.72 2.73 2.74 2.75 2.76 2.77 2.78 2.79 2.80

2.81 2.82 2.83 2.84 2.85 2.86 2.87 2.88 2.89 2.90

2.91 2.92 2.93 2.94 2.95 2.96 2.97

844

Chapter 3

3.1

3.11

3.21

3.31

3.41

3.51

3.61

3.71

3.81

3.2

3.12

3.22

3.32

3.42

3.52

3.62

3.72

3.82

Chapter 4

4.1

4.11

4.21

4.31

4.41

4.51

4.61

4.71

4.2

4.12

4.22

4.32

4.42

4.52

4.62

4.72

Chapter 5

5.1

5.11

5.21

5.31

5.41

5.51

5.2

5.12

5.22

5.32

5.42

5.52

3.3

3.13

3.23

3.33

3.43

3.53

3.63

3.73

4.3

4.13

4.23

4.33

4.43

4.53

4.63

4.73

5.3

5.13

5.23

5.33

5.43

3.4

3.14

3.24

3.34

3.44

3.54

3.64

3.74

4.4

4.14

4.24

4.34

4.44

4.54

4.64

4.74

5.4

5.14

5.24

5.34

5.44

3.5

3.15

3.25

3.35

3.45

3.55

3.65

3.75

4.5

4.15

4.25

4.35

4.45

4.55

4.65

4.75

5.5

5.15

5.25

5.35

5.45

3.6

3.16

3.26

3.36

3.46

3.56

3.66

3.76

4.6

4.16

4.26

4.36

4.46

4.56

4.66

4.76

5.6

5.16

5.26

5.36

5.46

3.7

3.17

3.27

3.37

3.47

3.57

3.67

3.77

4.7

4.17

4.27

4.37

4.47

4.57

4.67

4.77

5.7

5.17

5.27

5.37

5.47

3.8

3.18

3.28

3.38

3.48

3.58

3.68

3.78

4.8

4.18

4.28

4.38

4.48

4.58

4.68

4.78

5.8

5.18

5.28

5.38

5.48

3.9

3.19

3.29

3.39

3.49

3.59

3.69

3.79

4.9

4.19

4.29

4.39

4.49

4.59

4.69

4.79

5.9

5.19

5.29

5.39

5.49

3.10

3.20

3.30

3.40

3.50

3.60

3.70

3.80

4.10

4.20

4.30

4.40

4.50

4.60

4.70

5.10

5.20

5.30

5.40

5.50

845

List of Figures

Chapter 1

1.1 1.2

Chapter 2

2.1 2.2

2.11 2.12

2.21 2.22

Chapter 3

3.1 3.2

3.11 3.12

3.21 3.22

3.31 3.32

Chapter 4

4.1 4.2

1.3 1.4

2.3

2.13

2.23

3.3

3.13

3.23

3.33

4.3

1.5

2.4

2.14

2.24

3.4

3.14

3.24

3.34

4.4 4.5

2.5

2.15

2.25

3.5

3.15

3.25

3.35

4.6

2.6

2.16

2.26

3.6

3.16

3.26

3.36

2.7

2.17

3.7

3.17

3.27

3.37

2.8

2.18

3.8

3.18

3.28

3.38

2.9

2.19

3.9

3.19

3.29

2.10

2.20

3.10

3.20

3.30

846

Chapter 5

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10

5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18

847

Index

Any inaccuraciesin this index may be explained by the fact

that it has been prepared with the help of a computer.

—Donald E. Knuth, Fundamental Algorithms

(Volume 1 of e Art of Computer Programming)

Symbols

k-term finite continued fraction . . . 95

n-fold smoothed function 104

A

abstract models 123

abstract syntax495

abstraction barriers 111, 119

accumulator 156, 303

acquired. 421

action . 677

additive . 243

additively 112, 230

address . 724

address arithmetic.724

agenda . 379

algebraic specification 123

aliasing. .316

and-gate. .370

applicative-order 542

applicative-order evaluation.21

arbiter. .424

arguments . 8

assembler. .698

assertions. .600

assignment operator.297

atomically . 423

automatic storage allocation.723

average damping 94

B

B-trees . 213

backbone . 361

backquote . 779

backtracks . 564

balanced. .151

848

barrier synchronization 427

base address . 725

Bertrand’s hypothesis 447

bignum. .726

bindings. 321

binds . 36

binomial coefficients.54

block structure. 39

bound variable 36

box-and-pointer notation 132

breakpoint. .722

broken heart . 735

bugs. .2

C

cache-coherence 406

call-by-name 439, 545

call-by-name thunks.439

call-by-need 439, 545

call-by-need thunks 439

capturing . 37

Carmichael numbers.69

case analysis . 22

cell. .422

chronological backtracking.564

Church numerals.126

Church-Turing thesis 524

clauses . 23

closed world assumption.632

closure . 111

closure property 133

code generator 773

coerce. 270

coercion . 263

combinations . 8

comments . 168

compacting . 734

compilation. .768

compile-time environment 819

composition . 103

compound data 108

compound data object 109

compound procedure 16

computability 523

computational process 1

concurrently . 402

congruent modulo.67

connectors. .387

consequent expression. 23

constraint networks 387

constructors . 113

continuation procedures 579

continued fraction.94

control structure 628

controller. .668

conventional interfaces 111, 154

current time . 383

D

data. .1, 122

data abstraction.109, 112

data paths . 668

data-directed.231

data-directed programming . . 112, 243

deadlock. .425

deadlock-recovery.426

debug . 2

deep binding.517

deferred operations.44

delayed argument 472

delayed evaluation 296, 430

delayed object 434

849

dense . 281

dependency-directed backtracking565

depth-first search 564

deque . 360

derived expressions.507

digital signals 370

dispatching on type 242

displacement number.818

doed-tail notation.141

driver loop. .520

E

empty list. .137

encapsulated.300

enclosing environment 321

entry points . 673

enumerator . 156

environment . 11

environment model.295

environments 321

Euclid’s Algorithm 63

Euclidean ring 288

evaluating . 7

evaluator . 489

event-driven simulation.369

evlis tail recursion.748

execution procedure 535

explicit-control evaluator 741

expression . 7

F

failure continuation 579

FIFO . 354

filter . 82, 156

first-class . 102

fixed point . 92

fixed-length. .219

forcing . 545

forwarding address 735

frame . 616

frame coordinate map 182

frame number.818

framed-stack.746

frames. .321

free . 37

free list . 729

front . 353

full-adder. .372

function boxes 370

functional programming 312

functional programminglanguages484

G

garbage. .732

garbage collection.724, 732

garbage collector 342

garbage-collected.550

generic operations.112

generic procedures 224, 231

glitches. .2

global .41, 321

global environment.11

golden ratio. .49

grammar . 572

H

half-adder . 370

half-interval method.89

Halting eorem 526

headed list .361

hiding principle 300

hierarchical .134

850

hierarchy of types 266

higher-order procedures 75

Horner’s rule 162

I

imperative programming.317

indeterminates 275

index. .725

indexing. .617

instantiated with 604

instruction counting.721

instruction execution procedure . . 701

instruction sequence.775

instruction tracing 721

instructions 667, 673

integerizing factor.290

integers . 7

integrator . 465

interning . 728

interpreter.3, 489

invariant quantity 60

inverter . 370

iterative improvement 105

iterative process.44

K

key . 217

L

labels. .673

lazy evaluation.542

lexical address 818

lexical addressing 517

lexical scoping 39

linear iterative process. 44

linear recursive process 44

linkage descriptor 774

list. ..135, 141

list structure . 135

list-structured.116

list-structured memory 723

local evolution 40

local state variables.297

location . 724

logic-programming.491

logical and. .370

logical deductions 612

logical or . 370

M

machine language 768

macro . 507

map .156

mark-sweep . 733

Memoization.368

memoization . 53

memoize . 545

merge . 485

message passing 125, 253

message-passing 303

metacircular . 492

Metalinguistic abstraction.489

Miller-Rabin test 73

modular . 295

modulo. 67

modus ponens 627

moments in time 402

Monte Carlo integration 309

Monte Carlo simulation.306

mutable data objects.341

mutators . 341

mutex . 421

851

mutual exclusion 421

N

native language 768

needed . 777

networks . 488

Newton’s method 98

nil . 137

non-computable.526

non-strict. .543

nondeterministic 409

nondeterministic choice point 563

nondeterministic computing . 491, 559

normal-order 542

normal-order evaluation 21, 491

O

obarray. .727

object program.768

objects . 295

open-code . 815

operands . 8

operator. .8, 533

or-gate . 370

order of growth 54

ordinary. .256

output prompt 520

P

package . 245

painter . 173

pair ..115,116

parse. 571

Pascal’s triangle. 53

paern . 602

paern matcher 616

paern matching.616

paern variable 602

pipelining . 402

pointer . 132

poly. .276

power series . 450

predicate . 23

prefix . 219

prefix code. .219

prefix notation . 8

prey-printing . 9

primitive constraints 387

probabilistic algorithms. 70

procedural abstraction 35

procedural epistemology xxiii

procedure . 45

procedure definitions 15

procedures. .5

process . 45

program . 2

programming languages 2

prompt . 520

pseudo-random 306

pseudodivision290

pseudoremainder.290

Q

quasiquote. .779

queries . 598

query language 598

queue . 353

quote. .193

R

Ramanujan numbers.464

rational functions 287

852

RC circuit . 466

read-eval-print loop 10

reader macro characters 657

real numbers. .7

rear . 353

recursion equations.3

Recursion theory524

recursive . 12, 33

recursive process 44

red-black trees 213

referentially transparent 315

register machine 667

register table.700

registers. 667

released . 421

remainder of . 67

resolution principle.596

ripple-carry adder 376

robust . 191

RSA algorithm 70

rules . 599, 608

S

satisfy .604

scope. .37

selectors. .113

semaphore. .421

separator code 219

sequence . 134

sequence accelerator.455

sequences . 81

serializer . 411

serializers . 412

series RLC circuit 475

shadow. .321

shared. .348

side-effect bugs 317

sieve of Eratosthenes 443

smoothing . 104

source language768

source program 768

sparse . 281

special forms. .14

stack .45, 689

state variables 44, 296

statements. .777

stop-and-copy 733

stratified design 190

stream processing 22

streams . 295, 429

strict . 543

subroutine. 683

substitution . 20

substitution model 19

subtype . 266

success continuation.579

summation of a series.77

summer . 465

supertype. .267

symbolic expressions 111

syntactic sugar 15

syntax. .494

systematically search 564

systems . 488

T

tableau . 456

tabulation 53, 368

tagged architectures 726

tail-recursive 46, 754

target . 774

thrashing . ix

853

thunk . 545

thunks . 545

time. .401

time segments 382

tower . 267

tree accumulation 13

tree recursion . 47

trees . 147

truth maintenance.565

Turing machine 523

type field . 726

type tag . 237

type tags . 231

type-inferencing 478

typed pointers 725

U

unbound . 321

unification 596, 616, 622

unification algorithm 596

univariate polynomials 275

universal machine.523

upward-compatible extension 554

V

value . 10

value of a variable.321

values . 193

variable . 10

variable-length.219

vector . 724

W

width . 128

wires. .370

wishful thinking 114

Z

zero crossings.467

854

Colophon

O
 is Agostino Ramelli’s bookwheel mechanism

from 1588. It could be seen as an early hypertext navigation aid.

is image of the engraving is hosted byJ. E.Johnson of New Goland.

e typefaces are Linux Libertine for body text and Linux Biolinum

for headings, both by Philipp H. Poll. Typewriter face is Inconsolata

created by Raph Levien and supplemented by Dimosthenis Kaponis and

Takashi Tanigawa in the form of Inconsolata LGC.

Graphic design and typography are done by Andres Raba. Texinfo

source is converted to LaTeX by a Perl script and compiled to by

XeLaTeX. Diagrams are drawn with Inkscape.

855

	Front Cover
	Unofficial Texinfo Format
	Dedication
	Foreword
	Preface to the Second Edition
	Preface to the First Edition
	Acknowledgments
	Building Abstractions with Procedures
	Building Abstractions with Data
	Modularity, Objects, and State
	Metalinguistic Abstraction
	Computing with Register Machines
	References
	List of Exercises
	List of Figures
	Index
	Colophon

