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Preface

At the 37th Prandtl memorial lecture in Brunswick on Regions of Viscous
Flow, H. Oertel 1994 used L. Prandtl’s famous 1905 article On the Motion of
Fluids at Very Low Friction as a basis to treat for the first time the stability
theory of local perturbations in boundary layers and wake flows, as well as
their practical application in the flow control of the flow past vehicles and
the boundary layer of wings of civil aircraft. By means of stability theory of
local perturbations, the regions of expansion of perturbation waves can be
calculated for both laminar and turbulent flows, for which the boundary lines
can be considered to be characteristic lines of the viscous flow.

This article presents how the stability theory concept of absolute instability
has advanced and proven itself in practice in the last 15 years in terms of the
efficient flow control of laminar and turbulent boundary-layer flows and wake
flows, as well as for fluid mechanical resonators.

Karlsruhe, March 2010 Herbert Oertel
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1 Introduction

In 1904, on the occasion of the Third International Mathematics Congress in
Heidelberg, L. Prandtl presented a paper On the Motion of Fluids at Very
Low Friction. This resulted in the mathematical approach to boundary-layer
theory, which was further developed by his disciple H. Schlichting 1951 and
later H. Schlichting and K. Gersten 2003, 2006 for practical application in
aerodynamics. In boundary-layer theory the flow at large Reynolds numbers is
regarded as a perturbation of the corresponding potential flow without friction.
The classical Orr-Sommerfeld stability analysis of the laminar boundary layer,
which leads to the primary instability of Tollmien-Schlichting waves, may be
found in the chapter of H. Oertel 2003, 2006 on Onset of Turbulence. Stability
diagrams with pressure gradient, suction, heat transfer and wall roughness
offer the possibility of controlling boundary-layer flows.

Already in his first boundary-layer article, L. Prandtl 1905 demonstrated the
effect of boundary-layer suction on the flow past a circular cylinder. Figure 1.1
shows that separation of the flow is delayed on the side where the suction is
carried out and consequently the drag of the cylinder is considerably reduced.
In the wake, the periodic vortex shedding called the von Kármán vortex street
is supressed. Stability analysis of the flow with suction yields a stable wake
flow.

Prandtl describes the process of periodic flow separation at the cylinder with
a periodically varying interface between the fluid flowing past the body and
the fluid flowing backward behind the cylinder. If this interface is drawn off
at a slit behind the cylinder, the periodic flow separation behind the cylinder
vanishes and the drag of the body in the flow is reduced.

This explanation of Prandtl is contrasted with a mathematically rigorous ex-
planation of the supression of periodic vortex shedding in the wake of a cylin-
der. This leads to the topic of the article on flow control and the theory of
stability of convective and absolute instability (H. Oertel 1989, 1990, 1994,
1995, 1997).

without suction with slit suction

Fig. 1.1. Flow control with boundary-layer suction, L. Prandtl 1905
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In Fig. 1.2, showing the direct wake of a cylinder, there is a distinction between
the absolutely unstable region downstream of the resonance point R and the
convectively unstable region of the wake flow. The absolutely unstable region
is defined as the viscous flow region in which locally introduced perturbations
are amplified in space and in time and affect the entire absolutely unstable
flow region as time progresses. In the convectively unstable region, locally
introduced perturbations are swept downstream and can no longer influence
the original position of the perturbation as time progresses. Therefore the
resonance point R shown in Fig. 1.2 is upstream from the first point at which
an effect of the flow on the cylinder is possible. W. Koch 1985 concluded
from this that the onset of the von Kármán vortex street can be understood
as a resonance phenomenon in the absolutely unstable region of the wake of
the cylinder. This idea has since been confirmed, and as a consequence the
inviscid theory of the von Kármán vortex street formulated for the far field
of the cylinder wake flow cannot provide the correct theoretical explanation
for its onset. This had remained unaccounted for until now only because the
experimentally determined shedding frequencies behind the cylinder differ by
only around 10% from the original values of the von Kármán theory.

The classification of a flow field into different flow regions is known from gas
dynamics. For mathematical reasons, for inviscid flows this has led to flow re-
gions with elliptical, parabolic or hyperbolic differential equations. As shown
in Fig. 1.3, the elliptical region of (inviscid) supersonic flow past a cylinder
corresponds to the absolutely unstable region in the wake of viscous flow past a
cylinder. In both regions locally introduced perturbations are amplified in time
and space and affect the entire elliptical (or, correspondingly, absolutely un-
stable) region as time progresses. In the hyperbolic region of inviscid wake flow,
as for the convectively unstable region of viscous flow past a cylinder, locally
introduced perturbations are swept downstream. Thus it can be concluded
that efficient flow control may be applied for inviscid flow in the elliptical
region and for viscous flow in the absolutely unstable region.

A further impressive experiment on control of the wake flow of a cylinder was

Fig. 1.2. Flow regions in the wake flow
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convectively
unstable

absolutely
unstable

gas dynamics viscous flow

elliptical  hyperbolic

Fig. 1.3. Classification of regions of gas dynamics and of viscous flow

carried out 90 years after Prandtl by P.J. Strykowski 1990 and was demon-
strated by H. Oertel 1994 in the Prandtl memorial lecture as an optical con-
firmation of the existence of absolutely unstable regions in the lecture hall.
In order to suppress the von Kármán vortex street, instead of the suction
technique of Prandtl, a perturbation cylinder is placed in the wake of the
main cylinder, as shown in Fig. 1.4. At small Reynolds numbers, the flow past
the perturbation cylinder causes the absolutely unstable region to be swept
downstream. The formation of periodic flow separation, which leads to the
von Kármán vortex street, is then no longer possible.

In the following chapters, the classical Orr-Sommerfeld stability analysis is
supplemented by treating the perturbation calculation of local wave packet
perturbations for laminar flows and applying this treatment then to turbulent
flows. The perturbation differential equations of the Navier-Stokes equations
are replaced by the time-averaged perturbation differential equations of the
Reynolds equations. The mathematical analysis for locating absolutely un-

without perturbation cylinder with perturbation cylinder

Fig. 1.4. Flow control with a perturbation cylinder, P.J. Strykowski 1990, H. Oertel
1994
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stable regions is the same for both laminar and turbulent flows. This is also
valid for the extension to the general perturbation differential equations of
compressible flows.

Application of the theory of wave-packet perturbations to the flow past cars
and in the design of wings of civil aircraft will show that suitable flow control
with the aim of preventing absolutely unstable regions in the flow field leads
to a technically useful reduction in drag. In fluidic oscillators the resonator
effect of absolute instability can be exploited to generate periodically oscillat-
ing perturbations. These can be used in practice, for example, in windsceen
washing systems of cars or as periodic switches.

The basics of fluid mechanics and the mathematical details of stability theory,
as well as the basics of numerical fluid mechanics, may be found, in supplement
to this article, in our textbooks H. Oertel ed. Prandtl’s Essentials of Fluid
Mechanics, 2008, 2009, H. Oertel, M. Böhle, Strömungsmechanik 1995, 2009,
E. Laurien, H. Oertel, Numerische Strömungsmechanik 2009 and H. Oertel,
J. Delfs, Strömungsmechanische Instabilitäten 1995, 2005.
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2 Stability Theory

During the last 120 years, a great deal of ingenuity has been expended, on
both mathematical and experimental fronts, on answering the question of
how turbulence arises and the role played by linear stability theory of small
perturbations. Qualitatively, the transition from the laminar to the turbulent
state occurs if the momentum exchange by molecular transport cannot com-
pete sufficiently effectively with the transport due to macroscopic fluctuations
in flow velocity. Making use of the ideas of dynamic similarity, O. Reynolds
1883, 1894 argued that the transition from the laminar to the turbulent state
occurs when a dimensionless parameter exceeds a certain critical value. The
Reynolds number is defined as U∞L/ν, where U∞ is a characteristic velocity
of the flow, L its characteristic size, and ν the kinematic viscosity of the fluid.

A generic case of instability to consider in a carefully prepared experiment
is one in which the perturbations are small. This idea has prompted a vast
development of linear stability theory, the theory that calculates the Reynolds
number at which laminar motion becomes unstable to small perturbations.
Starting with Lord Rayleigh in the 1880s, O. Reynolds 1883, W. M. F. Orr
1907, A. Sommerfeld 1908, G. I. Taylor 1923, W. Heisenberg 1924, C. C. Lin
1955, S. Chandrasekhar 1961, and others (see, for example, P. G. Drazin and
W. H. Reid 1981, H. Oertel and J. Delfs 1996, 2005 for details) have made
lasting contributions to the subject.

Since the instabilities grow only at relatively high Reynolds numbers, or equiv-
alently, at small viscosities, it appears reasonable at first to treat the problem
as essentially inviscid. Indeed, inviscid instability is often able to explain cer-
tain observations concerning the behavior of fluids with finite viscosity. This
turns out to be the case particularly for flows for which the maximum vorticity
occurs within the bulk of the fluid rather than on the boundaries.

Inviscid instability yields implausible answers for certain other flows. For in-
stance, the inviscid theory yields the result that the flow between two parallel
plates, one of which is stationary while the other moves with finite velocity,
called plane Couette flow, is stable at all Reynolds numbers. Experiments, on
the other hand, show that the flow does indeed become unstable at some finite
Reynolds number on the order of a thousand. This phenomenon is puzzling at
first sight because, if a flow is stable in the absence of viscosity, the additional
damping provided by viscosity may be thought reasonably to make it even
more stable, not less so. However, viscosity plays a role that is not so obvious,
as explained by W. Tollmien 1929, and more fully by C. C. Lin 1955, and can
promote instability.

These issues are best explained for the case of a convectively unstable bound-
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ary layer on a thin flat plate, for which extensive literature is available. This
is an important flow in practice because it will be seen that turbulence often
arises within a boundary layer. To study the initial growth of the perturba-
tion in the boundary layer of a viscous fluid, W. M. F. Orr 1907 and A.
Sommerfeld 1908 derived from the Navier–Stokes equations a linear differen-
tial equation, the Orr–Sommerfeld equation. The solutions of this equation
are of the form shown in Figure 2.1. Inside the neutral curve (ωi = 0), the
two-dimensional wave perturbations are unstable (ωi > 0), and outside, they
are stable (ωi < 0). In regions of instability, the perturbations grow exponen-
tially with time if they are spatially homogeneous. The perturbations grow
exponentially with space if introduced at some point in space and allowed to
grow as they propagate, or in both space and time if the perturbations are in
the form of a wave packet, which is convectively unstable.

Further investigation shows that a second characteristic layer is formed at the
position in the flow where the velocity of the main flow is the same as the
phase velocity of the oscillation. In the absence of friction this would lead to
singularities in the motion of fluid particles, since they are subject to the same
pressure gradient for a very long time. However, if viscosity is postulated in
this second layer also, then the disturbance is free from singularities. With the
presence of viscosity, the phase displacement of longitudinal motion produces
a damping effect, which, in conjunction with the amplification due to the
secondary boundary layer, gives a critical value for the Reynolds number.
Here the basic physics is only hinted at, but it was the notable achievement of
W. Tollmien 1929 to carry out the calculation needed to compute the critical
Reynolds number.

The so-called Tollmien–Schlichting waves are spatially amplified downstream.
Via several intermediate states in the transition regime, the state of fully
developed turbulence is reached. Above a second critical Reynolds number,
plane Tollmien–Schlichting waves initially become unstable to cross-wave per-
turbations. Downstream, they form the so-called lambda structures with local
shear layers in the boundary layer. It is only when these shear layers lose their

Fig. 2.1. Stability diagram of Tollmien-Schlichting waves in a flat plate boundary
layer
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identity that the turbulent boundary-layer flow is fully developed (see Figure
2.2).

In three-dimensional boundary layers, such as those that occur on a swept
wing of a civil aircraft, the cross flow along the wing can also lead to further
instabilities as well as the Tollmien–Schlichting transition. These cross-flow
instabilities occur downstream from the stagnation line of the wing. They
form traveling waves and a steady vortex pattern along the cross-flow compo-
nent of the three-dimensional boundary layer. This pattern decays with the
same mechanisms as the Tollmien–Schlichting transition and passes over to
the turbulent boundary layer close to the stagnation line.

For numerous flow problems, the loss of linear stability of the laminar state
is the first step in the transition to turbulence. The next step of the tran-
sition process is nonlinear, in which the perturbations grow to a sufficiently
large amplitude and the interaction with the basic flow causes them to be
exponentially amplified.

The definition of fluid-mechanical instability depends on whether one considers
temporal or spatial perturbation development. The flow field is perturbed with
a harmonic periodic perturbation wave u′ with small amplitude:

u′(x, z, t) = û(z) · exp(i · a · x− i · ω · t). (2.1)

For a given wavelength λ = 2 · π/a, the laminar initial state is regarded as
temporally unstable with respect to this wavelength if the flow causes the wave
amplitude to be amplified in time (Im(ω(a)) > 0). If the perturbing wave is
damped in time (Im(ω(a)) < 0), the laminar initial flow is temporally sta-
ble with respect to the given wavelength. The temporally neutral state is the
limiting case of a temporally constant perturbation amplitude. Instead of tem-
poral perturbation development, the concept of stability can also be defined
with respect to the purely spatial (ω real, a complex), or, more generally,
the spatiotemporal (ω, a complex) development of perturbations. In the latter
case, the division into so-called absolute and convective instabilities is con-
venient. A convective instability is present when the temporally amplifying
perturbation energy moves downstream with the flow. On the other hand, if
the perturbation remains in one place, the instability is absolutely unstable.

Fig. 2.2. Transition process in a flat plate boundary layer
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In the mathematical definition of stability, a steady flow state U0
i (x, y, z) is

assumed, which is completely defined by, for example, its dimensionless den-
sity distribution ρ0, temperature distribution T0, and the three components
of the velocity vector (u0, v0, w0) at each spatial position (x, y, z). The state
U0

i = (ρ0, u0, v0, w0, T0) satisfies the fluid-mechanical equations. The question
is whether further solutions, that is, additional equilibrium states of the sys-
tem, exist. In order to be able to answer this question, the flow state U0

i is
disturbed out of its basic state with a small perturbation u′i(x, y, z, t). This
disturbance must be physically possible; i.e., the new flow state ui(x, y, z, t)
occurring at the time t = 0 must satisfy the boundary conditions of the flow
problem.

Then:

ui(x, y, z, t) = U0
i (x, y, z) + u′i(x, y, z, t). (2.2)

The size of the perturbation is introduced with

|u′i| =
∫

V

|u′i(x, y, z)2| · dV. (2.3)

This is a measure of the deviation of the perturbed flow ui from the basic flow
U0

i in the entire flow field V . In what follows, the quantity |u′i| will be called
the perturbation energy in the flow field.

The basic flow is stable as long as the size of a perturbation remains smaller
than a given number ε for all times t ≥ 0:

|u′i|t < ε with t ≥ 0, (2.4)

for all initial perturbations u′i(x, y, z, t = 0) with perturbation energy smaller
than a constant. Otherwise, the basic flow is unstable. Figure 2.3 shows exam-
ples that can be divided into stable and unstable flows by applying the above
definition to the temporal behavior of the perturbation energy in the flow.
Various initial perturbations, e.g. u′i1(t = 0), u′i2(t = 0), u′i3(t = 0), u′i4(t = 0)
are superimposed on the fundamental flow U0

i . It is noted that, of the in-
finitely many possible perturbations, there are those excited in unstable flow
that then die away over time, such as the perturbation u′i3(t = 0). In general,
flows U0

i are investigated for asymptotic stability, which is then present when
any given perturbation dies away over time:

lim
t→∞ |u

′
i(t)| = 0. (2.5)
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Fig. 2.3. The definition of stability

In this case the perturbed system again takes on its temporally asymptotic
initial state U0

i .

Note that the definition of stable and unstable flow is not a statement about
the spatiotemporal expansion of unstable perturbations.

To clarify the problem, two unstable basic flows U0
i are compared, which have

qualitatively different behaviors after the onset of the perturbation. Under the
idealizing assumption of freedom from perturbations, a steady wake behind a
body in the flow could be generated even for supercritical Reynolds numbers,
so that no Kármán vortex street would occur, in contrast to the situation
in Figure 2.4. Similarly, an ideal perturbation-free longitudinal flow past a
flat plate would be laminar, although unstable, even at supercritical Reynolds
numbers.

In the example of the wake flow, if a local perturbation is quickly placed close
to the steady wake region of the body at time t0, over time a Kármán vortex
street will form. Such a perturbation in the unstable plate boundary-layer flow
behaves qualitatively quite differently. The size of the perturbation also grows
here, but the perturbation simultaneously moves downstream, as in the sketch.
Clearly, the instability in the wake flow leads to a self-excited oscillation of the
system at a fixed position while, in the boundary-layer flow, perturbations at a
fixed position vanish over time. Perturbation energy at a fixed position can be
observed here only if continuous perturbation energy is introduced upstream,
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from outside the system.

In order to be able to make a statement regarding the spatial behavior of the
perturbation, a measure for the local size of the perturbations clearly needs to
be introduced. To do this, the region of integration V is shrunk to one small
region. This shrinking is carried out until the region of integration has been
reduced to an infinitesimally small size dV . From (2.3) then

d|u′i| = |u′i|2dV.

Dividing by the volume element dV , a perturbation energy density A is ob-
tained with

A(x, y, z, t) =
d|u′i|
dV

= |u′i|2, (2.6)

which will be defined in what follows as a measure of the size of the pertur-
bation at position x, y, z at time t. If the perturbation energy density A in
an initially perturbation-free unstable flow dies away time-asymptotically at
the position where the perturbation was introduced, this flow is convectively
unstable. Otherwise, the flow is absolutely unstable. The wake flow shown in
Figure 2.4 is therefore absolutely unstable, while the plate boundary layer is
convectively unstable.

2.1 Perturbation Equations

The theoretical treatment of the stability analysis begins with the classical
Orr–Sommerfled perturbation differential equations for three-dimensional per-
turbations in, initially, incompressible boundary-layer flows. The formulation
of the stability analysis for the wake flow is carried out analogously.

In the plate boundary layer, the instability occurs with two-dimensional

Fig. 2.4. Expansion of unstable perturbations in convective and absolute instability

12



Tollmien–Schlichting waves at the critical Reynolds number Rex,crit = 5 · 105

or, with d =
√

ν · x/Uδ at Red,crit = 302, which corresponds to the displace-
ment thickness Reynolds number Reδ∗,crit = 520. The wave fronts are shown
in Figure 2.2. The primary perturbation amplitudes grow downstream, and
so the flow in this region becomes unstable to three-dimensional secondary
perturbations (region (2) in Figure 2.5). The vortex lines are deformed in a
wavelike shape. Further downstream, the vortex tubes deformed with the vor-
tex lines are stretched and form the lambda structures (3). The subsequent
decay of these structures and the spatial and temporal irregular appearance
of quickly growing turbulent spots (4) completes the transition process at po-
sition xt, called the position of complete transition. Following this is the de-
veloped turbulent state (5). Even fully developed turbulence is not without
structure, since longitudinal stripe-shaped regions with greatly reduced down-
stream components of the velocity (streaks) are observed close to the wall.
Other structures also exist.

Throughout the entire transition process (1)–(4), there is a significant increase
in the thickness of the boundary layer. This is because the ever growing pertur-
bation amplitudes, particularly the vertical oscillations, result in distributing
the time average of the downstream momentum more evenly within the bound-
ary layer. The greatest oscillation intensity initially takes place directly at the
surface, causing the time-averaged wall shear stress in the transition regime to
take on an even higher value than that in the region of full turbulence. Note
particularly that the transition described does not take place at one position,
but rather over an extended distance xcrit < x < xt.

The unstable primary perturbation (1) of the laminar flow (0) causes lasting
change to the flow field only downstream of the critical position xcrit. Up-
stream of this position, the flow remains laminar. If a local perturbation is
introduced into the boundary layer at a point x > xcrit, the perturbing wave
packet expands downstream with a characteristic velocity and simultaneously
disintegrates, while the perturbation intensity due to the instability grows. If
such an unstable wave packet does not continue to affect the original position
of the perturbation, the instability is convectively unstable (see Figure 2.4).
Thus, the primary perturbation of the boundary layer is convectively unstable.

(0)

x x t

(1) (3) (4)(2) (5)

crit

Fig. 2.5. Transition process in the boundary layer of a rotationally symmetric body,
F. N. M. Brown 1957
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The stability analysis begins with the determination of the basic flow. Usu-
ally, it consists of solving the Navier–Stokes or boundary-layer equations by
numerical methods, which are described in Chapter 3.

In the stability analysis of boundary layers the increase of the boundary-layer
thickness δ in the downstream direction x has to be considered. The flow
quantities are therefore not only dependent on the position z in the normal
direction on the boundary layer, but also on x and y. Therefore, as well as z,
x and y are also inhomogeneous directions.

However, if boundary-layer flows are considered in the large Reynolds number
regime, the boundary-layer thickness δ(x, y) typically varies only moderately
(for example, in the case of a plate, δ ∼ x/

√
Rex), and so the dependence of

the flow velocity on x, y is considerably weaker than that on z.

It is known from experimental results that the dependence of the perturbations
on the parallel directions x, y is, in contrast to the basic flow, not at all weak.
All perturbation velocities are referred to the free stream velocity U∞, the
lengths to δ, and the perturbation pressure to ρ ·U2

∞. The perturbation ansatz
for the incompressible boundary layer reads

u = U∞ · (u0(x, y, z) + ε · u′),
v = U∞ · (v0(x, y, z) + ε · v′),
w = U∞ · (ε · w0(x, y, z) + ε · w′), (2.7)

p = ρ · U2
∞ · (p0(x, y, z) + ε · p′).

Here, ε is a suitable expansion parameter, chosen for the boundary layer after
careful consideration to be ε = 1/Reδ. The problem depends on two different
length scales, namely, a long scale d = δ/ε and the much shorter scale δ.
Because these scales are so different, it is appropriate to formulate the general
dependence of the solution on x or y as separate dependencies on both long-
scale variables x and y and on short-scale variables x̃ and ỹ. This method is
called the method of multiple scales. Their relation to the original variable x
or y is found as follows:

x̃ = x, x = ε · x,

ỹ = y, y = ε · y. (2.8)

It is understood that all perturbation quantities are functions of both variables,
for example u′ = u′(t, x, y, z) = u′(t, x̃, x, ỹ, y, z). Derivatives with respect to x
are then written in the form ∂u′/∂x = (∂u′/∂x̃) · dx̃/dx + (∂u′/∂x) · dx/dx =
∂u′/∂x̃ + ε · ∂u′/∂x.

This yields the linearized perturbation differential equations
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∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0, (2.9)

∂u′

∂t
+ u0 · ∂u′

∂x
+ v0 · ∂u′

∂y
+

du0

dz
· w′ +

∂p′

∂x
(2.10)

− 1

Red

·
(

∂2u′

∂x2
+

∂2u′

∂y2
+

∂2u′

∂z2

)
= 0,

∂v′

∂t
+ u0 · ∂v′

∂x
+ v0 · ∂v′

∂y
+

dv0

dz
· w′ +

∂p′

∂y
(2.11)

− 1

Red

·
(

∂2v′

∂x2
+

∂2v′

∂y2
+

∂2v′

∂z2

)
= 0,

∂w′

∂t
+ u0 · ∂w′

∂x
+ v0 · ∂w′

∂y
+

∂p′

∂z
(2.12)

− 1

Red

·
(

∂2w′

∂x2
+

∂2w′

∂y2
+

∂2w′

∂z2

)
= 0.

It is essential that the coefficients, e.g. u0(x, y, z), of this homogeneous linear
system of partial differential equations in the variables t, x̃, ỹ, z depend only
on the variables x, y, z and not on the small-scale variables x̃, ỹ. It can be
seen that no explicit derivatives with respect to x or y appear in (2.9)–(2.12).
Within the framework of the above approximation, the solution of the system
of differential equations is therefore only algebraically dependent on the spatial
variables x, y and not differentially dependent. This stability analysis is then
called a local stability analysis. The constant basic solution with respect to
the short-scale parallel coordinates x̃, ỹ is given at the fixed selected position
x, y, and the stability analysis is carried out locally here. It is also noted that
the perturbation differential equation is homogeneous in t, x̃, and ỹ.

In deriving the perturbation differential equations, the dependence on the
normal component w0 of the basic flow drops away. This is called the parallel
flow assumption.

The perturbations satisfy the boundary conditions

u′(x, y, z = zw, t) = v′(x, y, z = zw, t) = w′(x, y, z = zw, t) = 0, (2.13)

at the wall z = zw, and additionally, the far-field boundary conditions

v′(x, y, z →∞, t) = 0, p′(x, y, z →∞, t) = 0. (2.14)

The system of perturbation differential equations (2.9)–(2.12) is homogeneous
in x̃, ỹ, and t. A separation trial solution (wave ansatz) can be carried out
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


ũ′(x̃, ỹ, z, t; x, y)

ṽ′(x̃, ỹ, z, t; x, y)

w̃′(x̃, ỹ, z, t; x, y)

p̃′(x̃, ỹ, z, t; x, y)




=Fx(x̃; x, y)· Fy(ỹ; x, y)· Ft(t; x, y) ·




û(z; x, y)

v̂(z; x, y)

ŵ(z; x, y)

p̂(z; x, y)




, (2.15)

because the boundary conditions depend only on z. Inserting (2.15) into the
continuity equation (2.9), then

(
1

Fx

· dFx

dx̃

)
· û +

dŵ

dz
+

(
1

Fy

dFy

dỹ

)
· v̂ = 0,

where the two terms on the right are independent of x̃, and the two terms
on the left are independent of ỹ, so that the expressions in parentheses are
each constants with respect to x̃ and ỹ. The same procedure can be carried
out with the function Ft. Inserting the separation ansatz into equation (2.12),
then

1

Fx

· dFx

dx̃
= i · a(x, y),

1

Fy

· dFy

dỹ
= i · b(x, y),

1

Ft

· dFt

dt
= −i · ω(x, y),

where the three separation parameters a, b, and ω have been introduced, and
these are still functions of the long-scale variables. From the equations for Fx,
Fy, and Ft it follows that




ũ′(x̃, ỹ, z, t)

ṽ′(x̃, ỹ, z, t)

w̃′(x̃, ỹ, z, t)

p̃′(x̃, ỹ, z, t)




= exp(i · a · x̃ + i · b · ỹ − i · ω · t)




û(z)

v̂(z)

ŵ(z)

p̂(z)




, (2.16)

where the dependence of the functions on x and y has not been indicated
here. The exponent a(x, y) · x̃ + b(x, y) · ỹ− ω(x, y) · t is also called the phase.
The separation parameters a, b, and ω are initially any, generally complex,
numbers.

Inserting the wave ansatz (2.16) into the system of equations (2.9)–(2.12),
then
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a · û + b · v̂ = i · dŵ

dz
, (2.17)

(a · u0 + b · v0 − ω)· û− i ·du0

dz
· ŵ = −a · p̂ +

i

Red

·
(
a2 + b2 − d2

dz2

)
û, (2.18)

(a · u0 + b · v0 − ω)· v̂ − i ·dv0

dz
· ŵ = b · p̂ +

i

Red

·
(
a2 + b2 − d2

dz2

)
v̂, (2.19)

(a · u0 + b · v0 − ω) · ŵ = i ·dp̂

dz
+

i

Red

·
(
a2 + b2 − d2

dz2

)
ŵ. (2.20)

With the boundary conditions (2.13) and (2.14),

û(z = zw) = v̂(z = zw) = 0 , ŵ(z = zw) = 0, (2.21)

v̂i(z →∞) = 0 , p̂(z →∞) = 0, (2.22)

where the eigenvalue problem is formulated for the wave instabilities. It is
a linear system of homogeneous differential equations that contains the four
parameters Red, a, b, and ω. The Reynolds number is given as a real number.
Apart from the trivial solution, the system of equations is solvable only for
certain a, b, and ω. This defines a mutual relation among these three relations,
called the dispersion relation:

D(a, b, ω) = 0. (2.23)

In the eigenvalue problem described, two of the quantities a, b, and ω are given,
and the remaining one is to be computed as an eigenvalue from the equations.

The stability analysis is concerned with the variation of the perturbation am-
plitude |u′i| of a perturbation u′i introduced into a flow U0

i . As seen in the
beginning of the section, the stability is defined via the temporal amplifica-
tion of the perturbation amplitudes. In boundary layers the perturbations are
represented as waves that run along the directions x and y:

u′i(x, y, z, t) = ui(z) · exp(i · a · x + i · b · y − i · ω · t). (2.24)

The tilde above the x and y has again been left out for clarity. According to the
definition of stability, an eigenform is given by the wave number components a
and b, and the associated value ω = ωr +i ·ωi is computed from the eigenvalue
problem. If spatially periodic waves (i.e. real a = ar and b = br) are given, the
problem is then a temporal stability analysis. Since the system can develop
further only in the positive time direction, a wave perturbation with given
a = ar and b = br is then temporally unstable only if its amplitude is amplified
in time, i.e. if ωi > 0. Here ωi is the temporal amplification rate. A perturbation
for which ωi = 0 holds is called an indifferent or neutral perturbation. The
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quantity ω may also be given and the associated eigenform (represented by
a and b) computed. The problem becomes one of spatial stability analysis if
ω = ωr is given as a real value (i.e. consideration of all possible waves with
a given frequency), and, for example, a is computed for a given b. The real
part ar of the computed number a is then the wave number, and the imaginary
part ai is a measure for the spatial amplification in x. An explicit definition for
spatial amplification is clearly obtained only when a direction of consideration
is given. Let it be represented by the unit vector eφ = ex · cos(φ) + ey · sin(φ)
(Figure 2.6).

The variation in the amplitude |u′i| = |ûi| ·exp(−ai ·x−bi ·y+ωi ·t) of the wave
is determined along the given direction φ as d|u′i|/dxφ = eφ ·∇|u′i|. It is found
that d|u′i|/dxφ = −(ai · cos(φ) + bi · sin(φ)) · |u′i|. The amplitude grows along
eφ if d|u′i|/dxφ is positive. The wave is amplified with respect to the direction
φ if

ai · cos(φ) + bi · sin(φ) < 0.

The quantities ai and bi are also called spatial amplification rates. It is noted
that the necessity to specify a direction φ is to a certain degree arbitrary. For
this reason it is necessary to check whether the wave with the phase velocity
vector ci = (cx, cy, 0) = ωr/(a

2
r + b2

r) · (ar, br, 0) moves in the direction of
increasing amplitude. The direction of consideration eφ is allowed to lie along

the direction of motion of the wave ecrit = (ar, br, 0) · sgn(ωr)/
√

a2
r + b2

r, where

sgn(ωr) = ωr/|ωr| (cf. Figure 2.6). A temporally periodic wave experiences an
increase in amplitude along its direction of motion if

ωr · (ar · ai + br · bi) < 0.

A two-dimensional wave (b = 0) can be called spatially amplified if for ωr > 0,
the imaginary part satisfies ai < 0. However, which wave actually contributes
to the spatial amplification of perturbations can be answered precisely within
the framework of the concept of the stability analysis of local perturbations

Fig. 2.6. Expansion of a wave perturbation
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for convective instabilities.

The eigenvalue problem can deliver either a for a given b = br + i · br and
ω = ωr or b for a given a = ar + i · ar and ω = ωr. Rather than specifying
a complex wave number, it is clearer in the spatial analysis to determine, for
example, the amplification φ = 1/ tan(bi/ai). This corresponds to determining
the ratio of the imaginary parts ai and bi of a and b.

It is noted that the temporal stability analysis is simpler to carry out than
the spatial stability analysis. In the eigenvalue problem (2.17)–(2.20), ω ap-
pears only linearly, whereas a and b appear quadratically. The solution of a
quadratic eigenvalue problem requires considerably more computational effort
than the solution of a linear problem. Therefore, a method by which temporal
amplifications could be transformed into spatial amplifications was examined.
Such a relation was given by M. Gaster 1962 for b = 0. The transformation
of the temporal amplification ωi of a spatially periodic wave with given real
wave number ar and associated frequency ωr to a temporally periodic wave
(i.e. ωi = 0) with the same wave number ar and frequency ωr is performed
using

ai ≈ − 1
∂ωr

∂ar

· ωi.

This yields the spatial amplification of the wave from the temporal ampli-
fication of the associated wave using the group velocity ∂ωr/∂ar. The above
relation is called the Gaster transformation. It is valid only for small ampli-
fication rates ai, ωi, since it is based on a Taylor expansion of the dispersion
relation D(a, ω) = 0 about the neutral state ai = 0, ωi = 0.

The system of perturbation differential equations (2.17)–(2.20) has a remark-
able property. It can be summarized by a single fourth-order differential equa-
tion that represents an extension to the Orr–Sommerfeld equation for obliquely
traveling waves, with û, v̂, and p̂ eliminated. Using the Squire transformation

aϕ · u0,ϕ = a · u0 + b · v0, a2
ϕ = a2 + b2,

which represents a coordination rotation in the direction of expansion, the
Orr–Sommerfeld equation is obtained
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[
(aϕ · u0,ϕ − ω) ·

(
d2

dz2
− a2

ϕ

)
− aϕ · d2u0,ϕ

dz2
(2.25)

+ i · 1

Red

·
(

d2

dz2
− a2

ϕ

)2

 ŵ = 0,

with the following boundary conditions for ŵ:

ŵ = 0,
dŵ

dz
= 0 for z = zw, (2.26)

ŵ = 0,
dŵ

dz
= 0 for z →∞. (2.27)

If in equation (2.25), aϕ is replaced by a, and aϕ · u0,ϕ by a · u0, this repre-
sents the two-dimensional case. In Figure 2.7, the stability diagram has been
supplemented by a typical eigenfunction. It is pointed out that the vertical
component |ŵ| of the perturbation velocity has been enlarged 10 times. It is
very small compared to the amplitude of the downstream component |û|. The
largest perturbation amplitudes for û are assumed to be largest directly at
the wall. Now, the perturbations have not died away when the boundary-layer
thickness is reached. They extend far out of the boundary layer. The sharp
minimum of |û| at a distance from the wall of about 2/3 of the boundary-layer
thickness δ is only a consequence of forming the magnitude of û. In fact, the
function û passes through zero at this position, a fact that is related to a phase
change of the wave of 180◦.

In three-dimensional boundary layers, Tollmien–Schlichting waves occur and
also, because of the cross-flow component of the basic profile, do the cross-flow
instabilities. Which waves have cross-flow instabilities is shown in the wave
number diagram of Figure 2.8, using the instability region for fixed Reynolds
number. Tollmien–Schlichting waves occur downstream only when the critical
Reynolds number is exceeded. Note, however, that the Reynolds number in
this regime is very small, and therefore there is a strong viscous effect, in this

Fig. 2.7. Stability diagram for real a, b = 0 for the flat plate and eigenfunction for
a = 0, 16, b = 0, Red,crit = 302
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Fig. 2.8. Unstable waves for boundary layers with and without cross-flow component
V 0

i (z)

case damping. For comparison, an instability region for the two-dimensional
velocity profile U0(z) is also included. It is typical that instability waves with
considerably larger king pin inclinations ϕ = 1/ tan(b/a) exist than in the
three-dimensional boundary layer. Because of its characteristic form, the neu-
tral curve ωi = 0 in the wave number diagram for two-dimensional boundary
layers is also called a kidney curve.

Equally typical for cross-flow instabilities is the appearance of standing per-
turbation vortices. Since the angular frequency of these standing perturbation
waves is ωr = 0, they are also called 0-Hertz modes. Their wave normal is
almost perpendicular to the downstream direction at the edge of the bound-
ary layer. These standing waves can be made visible in experiment, with, for
example, smoke introduced into the flow, and then have a clear structure in

Fig. 2.9. Unstable cross-flow vortex in a three-dimensional boundary layer, Y. Ko-
hama 1989
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the downstream direction (see Figure 2.9). The perturbation waves that are
amplified the most are, however, generally unsteady and travel at a large angle
ϕ transverse to the downstream direction x.

2.2 Local Perturbations

Now that the classical Orr-Sommerfeld stability analysis has been developed
for harmonic three-dimensional perturbation waves, the stability theory that
is relevant in practice is derived, namely the stability theory of local perturba-
tions of the compressible boundary-layer flow. Three-dimensional compressible
boundary layers occur, for example, on transonic wings of civil aircraft and
on turbine blades.

Local perturbations arise, for example, because of roughness on the surface.
Figure 2.10 shows a sketch of the amplification of a wave packet perturbation
that is swept downstream in the boundary layer. Of interest here is the angu-
lar range encompassed by the unstable perturbation. In accordance with the
descriptions in Chapter 1, the boundary lines of the perturbation region are
called characteristics of the inviscid flow. If, with increasing time, the local
perturbation leaves the position at which it arose, as shown in Figure 2.11, as
for boundary layers, it is convectively unstable. However, if the perturbation
increases further at the position at which it arose, it is known, as in the wake
flow, as an absolutely unstable wave-packet perturbation.

The starting point of the perturbation calculation for local wave-packet per-
turbations in compressible flows is the conservation equations for mass, mo-
mentum and energy:

Fig. 2.10. Local perturbation of the basic flow through initially point-sized pulse
excitation of a three-dimensional wave packet
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Fig. 2.11. Path–time diagram of unstable wave packets

∂ρ

∂t
+

∂(ρuk)

∂xk

= 0, (2.28)

ρ

(
∂ui

∂t
+ uk

∂ui

∂xk

)
=

1

κM2∞

∂p

∂xi

+
1

ReL

∂τik

∂xk

, (2.29)

ρ

(
∂e

∂t
+ uk

∂e

∂xk

)
= −(κ− 1)p

∂uk

∂xk

(2.30)

+
κ

ReL

(
(κ− 1)M∞τik

∂ui

∂xk

− 1

Pr

∂qk

∂xk

)
,

with the velocity vector ui, the pressure p and the density ρ in dimensionless
notation. These are extended by the thermodynamic equations of state for the
specific internal energy e and the pressure p as dependents on the temperature
T :

e = e(T, p), p = p(T, ρ). (2.31)

The shear stress component τik is calculated with the Newton shear stress
ansatz and the Stokes hypothesis as:

τik = µ(T, p)

(
∂ui

∂xk

+
∂uk

∂xi

− 2

3

∂uj

∂xj

δik

)
, (2.32)

where µ describes the dynamic viscosity. To calculate the heat flux term qk,
the Fourier law of heat conduction with the thermal conductivity λ is used:

qk = −λ(T, p)
∂T

∂xk

. (2.33)

All quantities are referred to the associated value in the unperturbed approach
flow, the coordinates are made dimensionless with the characteristic length
L of the flow problem and the time is referred to L/U∞. In doing this the
following dimensionless characteristic numbers appear: the Reynolds number
ReL = ρ∞U∞L/µ∞, the Prandtl number Pr = cpµ∞/λ∞, the Mach number
M∞ = U∞/a∞ with the speed of sound in the free stream a∞, as well as the
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ratio of the specific heat capacities at constant pressure cp and at constant
volume cv, κ = cp/cv.

The differential equations are made complete by taking account of the initial
and boundary conditions. For boundary-layer flow and wake flow, the no slip
condition on the body and a temperature boundary condition hold as well as
the unperturbed free stream at infinity. In the framework of a perturbation
calculation, solution ansatz is made for the local perturbations, e.g. for the
velocity vector:

ui(x, y, z, t) = U0
i (z) + u′i(x, y, z, t). (2.34)

Here U0
i denotes a steady solution of the Navier Stokes equations (2.28) –

(2.31) and describes the locally observed velocity profile at the location of the
perturbation analysis. Neglecting nonlinear terms in the perturbation quan-
tities, the following differental equations hold for the perturbation quantities
u′i, T

′, ρ′:

L[(u′i, T
′, ρ′)(x, y, z, t)] = G(x, y, z, t), (2.35)

where L denotes the linear differential operator obtained by linearization
around the steady state solution and G is the given perturbation function,
which may be, for example, a spatio-temporal pulse excitation. For G = 0,
from (2.35) the well-known eigenvalue problem of primary stability theory is
obtained, which corresponds for incompressible flows to the Orr-Sommerfeld
equation of Section 2.1. The concrete shape of L =t(Lµ, Lu, Lv, Lw, LT ) may be
found in H. Oertel, J. Delfs 1995. For the perturbation waves, either harmonic
waves are assumed

u′i(x, y, z, t) = ûi(z)ei(ax+by−ωt) (2.36)

or else wave packets

u′i(a, b, z, ω) =

∞∫

0




∞∫

−∞

∞∫

−∞
u′i(x, y, z, t)e−i(ax+by) dx dy


 eiωt dt. (2.37)

In the case of a complex a (or b), this is known as a spatially amplified per-
turbation wave. If ω is complex, the perturbation waves are amplified in time.
If a (or b) and ω are complex, then, in accordance with the definition of flow
regions for temporally and spatially amplified waves, the flow at the location
of consideration is absolutely unstable. The mathematical analysis of the de-
velopment in time and space of wave packets was developed in the 1950s by
R. J. Briggs 1964 and A. Bers 1973 for stability problems in plasma physics.
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The wave-packet method has been further developed for the subdivision of
regions of viscous flows and has been carried over in general in the framework
of such flow calcuations to laminar and turbulent flows. The mathematical
details may be found in H. Oertel, J. Delfs 1995.

Figure 2.12 provides an introduction to the procedure for the mathematical
analysis. It plots the temporal rates of amplification ωi against the angular
frequency ωr of the wave-packet perturbation and the spatial rates of am-
plification ai against the wave number ar for a given direction of expansion
ϕ = tan−1(ar/br) of the perturbation wave. The mathematical analysis shows
that the inverse transform of the wave-packet perturbations to real space can
be written in the form

u′i(x, y, z, t) =

∞+iσ∫

−∞+iσ




∞∫

−∞

∞∫

−∞

Z(a, b, z, ω)

D(a, b, ω)
ei(ax+by) da db


 e−iωt dω. (2.38)

The inverse transform depends only on the roots of the dispersion relation
D(a, b, ω) that corresponds to the perturbation differential equation. Accord-
ingly, for the parts of the wave with a given region of expansion ϕ in the wave
packet, the associated value ai may be plotted against the wave number ar

for D = 0 for positive rates of amplification in time ωi. As the value ωi is re-
duced (second figure, Figure 2.12), without changing the solution (2.38), both

Fig. 2.12. Temporal and spatial rates of amplification ωi and ai for the dispersion
relation D = 0
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branches of ai(ar) move towards each other. If, as ωi > 0 is further reduced,
they form a double root, i.e. a saddle point, the flow field is absolutely unstable
in respect of the direction ϕ. At the saddle point the group velocity component
of the perturbation wave in the direction ϕ is (∂ω

∂a
, ∂ω

∂b
)(sin ϕ, cos ϕ)T = 0. If

this saddle point is not found as ωi is reduced, the flow is convectively unstable
in respect of ϕ.

For incompressible flows, the perturbation differential equations of local wave
packets are simpler. The source of perturbation consists of a perturbation
volume flux Gρ to describe local blowing or sucking, and the perturbation
force vector Gi = t(Gu, Gv, Gw) as shown in Figure 2.10:

∂(U0
k + εu′k)
∂xk

= εGρ,

∂(U0
i + εu′i)
∂t

+ (U0
k + εu′k)

∂(U0
i + εu′i)
∂xk

(2.39)

+
∂(p0 + εp′)

∂xi

−Re−1
d

∂2(U0
i + εu′i)
∂xk

2
= εGi.

The perturbation vector functions Gρ(t, x, y, z), Gi(t, x, y, z) are nonzero only
in a spatially limited region, e.g. ((Gρ, Gi) = gt(t)δ(x)δ(y)(fzρ(z), fzi(z)) for
an x-y spatial perturbation. Differentiating (2.39) with respect to ε and then
setting it to zero ε → 0, the following system of inhomogeneous perturbation
differential equations is obtained:

∂u′k
∂xk

= Gρ, (2.40)

∂u′i
∂t

+ U0
k

∂u′i
∂xk

+ u′k
∂U0

i

∂xk

+
∂p′

∂xi

−Re−1
d

∂2u′i
∂xk

2
= Gi.

As with the derivation of the Orr-Sommerfeld equation, after elimination a
fourth-order differential equation for the wall normal components w′(t, x, y, z)
of the perturbation response can be stated:

L[w′] = G, (2.41)

where L := ( ∂
∂t

+ U0
k

∂
∂xk

− Re−1
d

∂2

∂xk
2 )

∂2

∂xk
2 − d2U0

k

dz2
∂

∂xk
is the linear differential

expression that respresents the left-hand side of the Orr-Sommerfeld equation
and which acts on w′. The perturbation term G is found as a consequence
of transformations from Gρ and the components Gi to G = ( ∂

∂t
+ U0

k
∂

∂xk
−

Re−1
d

∂2

∂xk
2 )

∂Gρ

∂z
+

d2U0
k

dz2
∂

∂xk
Gρ + ∂2Gw

∂xk
2 − ∂Gk

∂xk
. For G = 0, i.e. with no perturbation

in the field, (2.41) becomes the Orr-Sommerfeld equation, complemented by
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problem-specific linear boundary conditions and a compatible initial condition
w′

0(x, y, z) = w′(t = 0, x, y, z). Typically only such cases where the flow is per-
turbation free for time t < 0 are considered, i.e w′

0(x, y, z) = 0. The aim is to
compute the time-asymptotic solution of this initial-boundary value problem.

2.3 Perturbations of Turbulent Flows

For turbulent flows the mathematical analysis to determine the absolutely
unstable flow regions is the same. Here the starting point is the Favre-averaged
Reynolds equations:

∂ρ̄

∂t
+

∂(ρ̄ũk)

∂xk

= 0, (2.42)

ρ̄

(
∂ũi

∂t
+ ũk

∂ũi

∂xk

)
= − 1

κM2∞

∂p̄

∂xi

+
1

ReL

∂τ̃ik

∂xk

+ Ru
i , (2.43)

ρ̄

(
∂ẽ

∂t
+ ūk

∂ẽ

∂xk

)
= −(κ− 1)p̄

∂ũk

∂xk

(2.44)

+
κ

ReL

(
(κ− 1)M2

∞τ̃ik
∂ũi

∂xk

− 1

Pr

∂q̃k

∂xk

)
+ Re,

Ru
i =

∂

∂xk

(
−ρ̄(ũ′′i u

′′
j ) +

1

ReL

τ ′′ik

)
,

Re = −κ


∂ρ̄(T̃ ′′u′′k)

∂xk

+ (κ− 1)M2
∞ρ̄(ũ′′i u

′′
j )

∂ũi

∂xk




+
κ(κ− 1)M2

∞
ReL

(
τ̄ ′′ik

∂ūi

∂xk

+
∂(τiku′′i )

∂xk

)
− κ

ReLPr

∂q′′k
∂xk

.

A quantity with a bar over it f̄ denotes in each case the time averaged value
f̄(t) = T−1

m

∫ Tm
0 f(t + τ) dτ of the function f . The quantities ũi = ρui/ρ̄

and T̃ = ρT/ρ̄ are the Favre-averaged velocity and temperature. The Favre-
averaged fluctuations are by definition u′′i = ui − ũi and T ′′ = T − T̃ , and
the usual time fluctuation of a quantity f is introduced with f ′ = f − f̄ . To
facilitate the comparison with the non-averaged equations (2.28) − (2.30), the
mean average internal energy has been summarized with the average turbulent

kinetic energy kt = 1
2
(ũ′′i u

′′
i ) to ẽ = T̃ + κ(κ − 1)M2

∞kt. The shear stress τik

is obtained from (2.32). For the sake of clearer notation, the average viscous
stress tensor τ̃ik has been formed with the Favre-averaged velocities ũi and the
mean dynamic viscosity µ̄, and, with the corresponding fluctuation τ ′′ik, may
be written:

27



τ̃ik = µ̄

(
∂ũi

∂xk

+
∂ũk

∂xi

− 2

3

∂ũj

∂xj

δik

)
,

τ ′′ik = µ

(
∂u′′i
∂xk

+
∂u′′k
∂xi

− 2

3

∂u′′j
∂xj

δik

)
.

The mean heat flux from heat conduction q̄k and its fluctuation q′′k are given
by

q̃k − λ̄
∂T̃

∂xk

, q′′k − λ
∂T ′′

∂xk

.

The averaged equations (2.42) − (2.44) assume an ideal gas p = ρT , for which
after averaging the simple relation

p̄ = ρ̄T̄ (2.45)

is obtained. The parts of the averaged fluctuation quantities Ru
i and Re that

are dependent on the Reynolds number can generally be neglected. In any
case Ru

i and Re may be considered as being given via a turbulence model.

For incompressible, turbulent flows of media with constant transport coeffi-
cients, the differential equation system (2.42) − (2.44) is simplified:

∂ūk

∂xk

= 0, (2.46)
(

∂ūi

∂u
+ ūk

∂ūi

∂xk

)
= − ∂p̄

∂xi

+
1

ReL

∂2ūi

∂xk
2

+ Ru
i , (2.47)

Ru
i = −∂u′iu

′
k

∂xk

.

The pressure has not been referred to its value in the free stream, but rather to
the doubly dynamic pressure of the free stream ρ∞U2

∞. The energy equation is
not required to close the system of equations. With the perturbation ansatz, for
example for the Favre-averaged velocities ũ0

i at the location of the perturbation
analysis

ũi(x, y, z, t) = ũ0
i (z) + ũ′i(x, y, z, t), (2.48)

the following linear perturbation differential equations are found

L̃[(ũ′i, T̃
′, ρ̄′)(x, y, z, t)] = G(x, y, z, t), (2.49)
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where again the nonlinear terms of the perturbation quantities have been
neglected. In addition it is assumed that the perturbation quantities of the
Reynolds shear stresses may be neglected, so that the entire information about
the turbulent flow is contained in the basic profile ũ0

i , T̃ 0, ρ̃0. With these as-
sumptions the linear operator L̃ is obtained from (2.49), by formally replacing
the laminar basic flow u0, T 0, ρ0 in L by the averaged turbulent flow ũ0

i , T̃ 0,
ρ̄0. The rest of the procedure corresponds to that for laminar basic flow.
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3 Flow Simulation

At the time of the Prandtl memorial lecture H. Oertel 1994, the calcula-
tion of the basic flow U0

i as the basis for the perturbation ansatz of laminar
flow (2.2), (2.34) and of turbulent flow Ũ0

i (2.48) was carried out by fluid
mechanical software developed at universities. To calculate the laminar, in-
compressible basic flow, a special finite-difference Galerkin method was de-
veloped K. Hannemann, H. Oertel 1989, and for the compressible basic flow
the finite-volume software packet KAPPA (Karlsruhe Parallel Program for
Aerodynamics) H. Oertel 1996.

The solution of the eigenvalue problem of the stability analysis of local per-
turbations was carried out using a collocation-spectral method. To validate
the stability analysis in the case of the boundary-layer flow and wake flow,
the time and spatial development of the local perturbation was numerically
simulated by direct solution of the Navier-Stokes equations (DNS). To do
this, special Galerkin and spectral methods were developed K. Hannemann,
H. Oertel 1989 and M.T. Stoynov, H. Oertel 2002. The mathematical details
of the progressive development of the numerical algorithms can be found in
seven editions of the textbook Fluid Mechanics H. Oertel, M. Böhle 1995–
2010 and three editions of Numerical Fluid Mechanics H. Oertel, E. Laurien
1995–2009. In the following sections the numerical methods of calculating the
basic flow and the ansatz to the eigenvalue problem of stability analysis will
be described.

By now the university software packet has been replaced by commercial fluid
mechanics software, which however has the disadvantage that the details of
the numerical alogorithm used and the models of the source code are not
available. Their application in research and practice requires solid verification
of the numerical algorithms and validation of the numerical models, which are
also described extensively in the above textbooks. A new approach for further
development of the university software is the OpenFOAM software packet,
which provides a CFD toolbox of source code of numerical algorithms, which
can be adapted to the flow problem to be solved.

3.1 Basic Flow

To calculate the laminar basic flow, the finite-difference Galerkin method was
developed. A feature of this is that it leads to a stable approximation solu-
tion with little numerical dissipation and permits elimination of the pressure
of the incompressible flow via the Galerkin algorithm. The finite-difference
Galerkin method enables the discrete pressure to be removed by projecting
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the discretized Navier-Stokes equations into a divergence-free subspace using
a Galerkin technique. Consider the following discretized form of the Navier-
Stokes equations and the boundary conditions at time step tn:

∂uh
k

∂xh
k

= 0 on ωh, (3.1)

∂uh
i

∂t
+

(
uh

k

∂

∂xh
k

)
uh

i = −∂ph

∂xh
i

+
1

ReL

∂2uh
i

∂xh
k
2 on Ωh, (3.2)

uh
i = βh

i on ΩRh
, (3.3)

with the index h indicating discrete quantities, spaces and operators. The
boundary data are given by βh

i .

The equations are discretized on a staggered grid. Ωh and ωh represent the
inner mesh points for vectors and scalar quantities respectively, and ΩRh

con-
tains the mesh points on the boundary (see Figure 3.1). The discrete gradient
and divergence operators must be adjoint in order to eliminate the pressure
from the system of equations. In this application this was achieved by using
central differencing on the staggered grid. The following discrete approxima-
tion can be made for the velocity vector:

uh
i = rh

i +
m∑

i=1

ai(t)Φ
h
i , (3.4)

where Φh
i are discrete divergence-free base functions defined on Ωh only. For

a uniform grid containing n2 inner grid points, the base functions are defined
as follows:

Φ
l+ 1

2
,m+ 1

2
i,j = (1,−1)t, i = l, j = m,

= (1, 1)t, i = l + 1, j = m,

= (−1, 1)t, i = l + 1, j = m + 1,

= (−1,−1)t, i = l, j = m + 1, (3.5)

= (0, 0)t, all other i, j,

l = 1, . . . , n− 1; m = 1, . . . , n− 1.

On the boundary ΩRh
, these internal base functions are zero. The boundary

vector rh
i must fulfil the boundary conditions (3.5) and can be expressed with

a sum similar to that in (3.4). The structure of the base functions remains
unchanged, except that they must be defined on the boundary. The boundary
vector can easily be computed for Dirichlet boundary conditions. However, if
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the boundaries are time dependent, rh
i must be recalculated after each time

step. The system of equations for determining the unknown coefficients ai can
be derived with a discrete Galerkin technique, i.e. the scalar product of (3.3)
with every base function must be zero:

(
∂uh

i

∂t
+

(
uh

k

∂

∂xh
k

)
uh

i +
∂ph

∂xh
i

− 1

ReL

∂2uh
i

∂xh
k
2 , Φh

i

)

Ωh

= 0, i = 1, . . . , m. (3.6)

Using a discrete analogue of integration by parts, the component of the scalar
product containing the pressure can be written as

(
∂ph

∂xh
i

, Φh
i

)

Ωh

=
(
ph, Φh

i

)
ΩRh

−
(
ph,

∂Φh
i

∂xh
i

)

ωh

= 0, i = 1, . . . ,m. (3.7)

The base functions are divergence free and vanish on ΩRh
. Therefore the pres-

sure is eliminated from the system of equations and only the following equation
is solved:

(
∂uh

i

∂t
+

(
uh

k

∂

∂xh
k

)
uh

i −
1

ReL

∂2uh
i

∂xh
k
2 , Φh

i

)

Ωh

= 0, i = 1, . . . , m. (3.8)

The integration in time is performed with explicit Runge–Kutta time stepping.
Therefore all quantities at the time step tn are known and the system

Mat = f (3.9)

must be solved for the time derivative at of the coefficient a. The right-hand
side f contains the contribution of the convective and the diffusion term. It can
be shown that the matrix M is symmetric and positive definite. The solution
of at is found iteratively by a conjugate gradient method.

Fig. 3.1. Definition of the discrete spaces
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The description of the finite-difference Galerkin method is restricted to the
case of a uniform mesh only. Arbitrary geometries with non-uniform mesh
can be handled by transforming them onto a computation space with uniform
mesh, where the algorithm just described can then be applied.

To start the numerical simulation of the basic flow, a converged solution of the
steady Navier-Stokes equation, obtained at a supercritical Reynolds number
of ReD = 200 is used. Figure 3.2 shows the disturbuance evolution detected
in the wake behind a flat plate up to a dimensionless time t = 500. The
top frame shows the maximum, within the entire flow field, of the unsteady
term |∂u/∂t| at each time step. Since the entire flow field was searched to
determine |∂u/∂t|max, inferences could not be made about the behavior at a
fixed point. An overall impression, however, was attained about the proximity
of the entire flow to steady-state conditions. In interpreting the top frame of
Figure 3.2, it can be concluded that after the symmetry restriction is relaxed
at t = 0, two competing processes take place. First, the flow proceeds towards
the steady solution for a dimensionless time of about 200. Since the maximum
unsteadiness in the entire flow field is less than 10−6 for 0 < t < 200, it
might be concluded that the flow is indeed quasi-steady at this supercritical
Reynolds number. Consequenctly, the overall flow unsteadiness, indicated by

A

Fig. 3.2. Temporal development of the flat-plate wake, ReD = 200
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Fig. 3.3. U0 velocity profiles of the quasi-steady wake flow, ReD = 200

|∂u/∂t|max, reaches a turning point that has been referred to as the quasi-
steady state at t = 0 in Figure 3.2. This is the basic state for the stability
analysis, for which the velocity profiles in the wake of a flat plate are shown
in Figure 3.3. After the quasi-steady state is reached, the antisymmetrical
disturbance continues to grow exponentially, which indicates linear stability
behavior, until the nonlinear saturation or vortex-shedding state is finally
reached. The velocity components, minus the mean velocity um, in connection
with the amplitude growth A show a well-defined exponential growth rate of
the vortex-shedding fluctuations occurring simultaneously with the increase
of the maximum |∂u/∂t|. In the nonlinear transitional region, the transition
to the saturated state occurs.

Figure 3.4 shows the development of the wake flow in terms of instantaneous
streamline plots. At time t0, the streamline pattern of the quasi-steady solution
shows a symmetric backflow region extending 3.6D downstream of the trailing
edge. The first effect, seen in the streamline plots occurring for t > t0, is a
change in the topological structure of the streamline patterns at the saddle
point located at the end of the backflow region. Here the symmetry is removed
and the backflow region breaks open. The time sequence in Figure 3.4 also
shows the flow at the end of the linear growth region at t = 240 and the
Kármám vortex street at t = 466.

The calculation of the turbulent basic flow Ũ0
i as the basis for the stability anal-

ysis of local perturbations is carried out using the commercial software Star
CD c© (Computational Dynamics Ltd. London) and FLUENT R© (ANSYS R©

Inc.). The Reynolds-averaged basic equations (2.46) – (2.47) for the com-
pressible flow and (2.42) – (2.44) for incompressible flow are solved numeri-
cally using the finite-volume method. The finite-volume algorithms are based
on the fundamential equations in conservative form, for which the derivation
is described in detail in our textbook H. Oertel, M. Böhle 2009.

The conservative form of the fundamental equations is obtained by starting
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Fig. 3.4. Temporal development of the wake

from a control volume fixed in space that does not move with the flow. With
the solution vector Ūi, the time averaged convective fluxes F̄i, the dissipative
fluxes Ḡi and the vector of an algebraic turbulence model R̄i,m, which is com-

bined with Ḡi,m to form Ḡalg
i,m for the calculation of, for example, the flow past

a transonic wing, as follows:

∂Ūi

∂t
+

3∑

m=1

∂F̄i,m

∂xm

− 1

ReL

·
3∑

m=1

∂Ḡalg
i,m

∂xm

= 0. (3.10)

For the modeling of anisotropic turbulence, for example the wake flow of a
car, it is not possible to add the dissipative fluxes algebraically and additional
nonlinear transport equations have to be formulated for the turbulent kinetic
energy K, the turbulent dissipation ε or the vorticity ω.

As the finite-volume method starts with the discretization of the spatial region
of integration V , equation (3.10) first needs to be brought to the corresponding
integral form of the fundamental equations. Integrating over the entire volume
V of the flow field, the following expression is obtained:
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∫

V

∂Ūi

∂t
· dV +

∫

V




3∑

m=1

∂F̄i,m

∂xm

− 1

ReL

·
3∑

m=1

∂Ḡalg
i,m

∂xm


 · dV = 0. (3.11)

The divergence theorem (Gauss’ theorem) is required for further maniputla-
tion of equation (3.11). For a general vector function fi this reads:

∫

V

div fi · dV =
∫

V

·∇fi · dV =
∫

O

fi ni · dO. (3.12)

This theorem states that the volume integral of the divergence of a vector
function fi is equal to the surface integral of the scalar product of the vector
function fi with the external surface normal vector ni of the surface O, there-
fore the fluxes passing through the surface of the volume. O is the surface of
the volume of calculation and ni = (n1, n2, n3) is the outward pointing normal
vector

∫

V

∂Ūi

∂t
· dV +

∫

O

(
3∑

m=1

F̄i,m − 1

ReL

·
3∑

m=1

Ḡalg
i,m

)
· ni · dO = 0. (3.13)

As the fundamental equations in conservative form were set up for a control
volume fixed in space, the region of integration V is not dependent on time.
This means that the time derivative in equation (3.13) can be pulled in front
of the integral. It follows then that

∂

∂t

∫

V

Ūi · dV +
∫

O

(
3∑

m=1

F̄i,m − 1

ReL

·
3∑

m=1

Ḡalg
i,m

)
· ni · dO = 0. (3.14)

The first step of the discretization of the continuous region of integration V
consists of dividing V into individual discrete volume cells Vijk each with six
surfaces Ol · ni, where l = 1, . . . , 6 is the index for the surface. Ol denotes
the magnitude of the surface of the l-th surface and nl

i = (nlx, nly, nlz) the
corresponding external normal unit vector.

Figure 3.5 shows a discrete volume element Vijk with the six normal unit
vectors.

The values of the flow quantities Ui,ijk in the center of each volume cell Vijk are
required. The next step therefore consists of approximating the fundamental
equations (3.14) for each individual volume cell Vijk. The following is obtained:

d

dt
Ui,ijk · Vijk +

3∑

m=1

6∑

l=1

(
F̄i,ml ·Oml

)
ijk
− 1

Re∞

3∑

m=1

6∑

l=1

(
Ḡalg

i,ml ·Oml

)
ijk

= 0.(3.15)
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The fluxes Fil and Galg
il are now approximated at the center of every side

surface. In order to calculate them, the conservative variables are averaged
between the two cells touching at one surface, e.g. for any variable Φ:

(Φl=1)i,j,k =
1

2
· (Φi,j,k + Φi−1,j,k) , (Φl=2)i,j,k =

1

2
· (Φi+1,j,k + Φi,j,k) ,

(Φl=3)i,j,k =
1

2
· (Φi,j,k + Φi,j−1,k) , (Φl=4)i,j,k =

1

2
· (Φi,j+1,k + Φi,j,k) , (3.16)

(Φl=5)i,j,k =
1

2
· (Φi,j,k + Φi,j,k−1) , (Φl=6)i,j,k =

1

2
· (Φi,j,k+1 + Φi,j,k) .

For variables that appear as derivatives, for example in the calculation of shear
stresses and the heat flux in Galg

i,ml, a local transformation must be carried out
for each side surface l. The direction of the grid lines with constant indices
i,j,k are denoted with ξ, η and ζ.

The total differential of a variable Φ then leads to




∂Φ
∂ξ

∂Φ
∂η

∂Φ
∂ζ




l

=




∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ




l

·




∂Φ
∂x

∂Φ
∂y

∂Φ
∂z




l

, (3.17)

where the matrix is denoted Tl (transformation matrix). Inverting this equa-
tion yields

6

3

2

5

1

4

n
i,j−1,k

n

i−1,j,k

i,j,k+1

i,j+1,k

n

n

n

i+1,j,k

i,j,k−1

n

Fig. 3.5. Volume cell and normal unit vectors
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


∂Φ
∂x

∂Φ
∂y

∂Φ
∂z




l

= T−1
l ·




∂Φ
∂ξ

∂Φ
∂η

∂Φ
∂ζ




l

. (3.18)

The differential quotients appearing here are expressed by means of differences
in the solution variables or the mid-points of the cells along the local directions
ξ, η and ζ, e.g. for the surface l = 1:

(
∂Φ

∂ξ

∣∣∣∣∣
l=1

)

ijk

= Φi,j,k − Φi−1,j,k,

(
∂Φ

∂η

∣∣∣∣∣
l=1

)

ijk

=
1

2
·
[
1

2
· (Φi,j+1,k + Φi−1,j+1,k)− 1

2
· (Φi,j−1,k + Φi−1,j−1,k)

]
, (3.19)

(
∂Φ

∂ζ

∣∣∣∣∣
l=1

)

ijk

=
1

2
·
[
1

2
· (Φi,j,k+1 + Φi−1,j,k+1)− 1

2
· (Φi,j,k−1 + Φi−1,j,k−1)

]
.

Here Φ may be either a solution variable or a coordinate (x, y, z). The final
result of the spatial discretization is a system of coupled ordinary differential
equations for each cell i,j,k:

d

dt
Ui,i,j,k + Q(Ui,i,j,k, Ui,i±1,j±1,k±1) = 0, (3.20)

with the spatial discretization operator Q(Ui) which contains the coupling.
The equation (3.20) is nothing other than equation (3.15) divided by the
volume of the cell Vijk.

This system needs to be integrated in time. For this, the classic explicit fourth
order Runge-Kutta method, for example, may be chosen. In calculating incom-
pressible flows the difficulty that always arises is that the pressure field is not
known. Rather only the pressure gradients appear in the source terms of the
Navier-Stokes equations. In order to calculate consistent pressure and velocity
fields, there are at present two basically different approaches.

In the first method, the continuity equation is used to determine an arti-
ficially introduced density. Using an equation of state (e.g. the equation of
state for ideal gases), the pressure can then be determined. This approach
permits all derived algorithms for compressible flows to be carried over to
incompressible flows. The mathematical details are set out in Chapter 5 of
Strömungsmechanik, H. Oertel jr., M. Böhle 1999. In this method of artificial
compressibility, an arbitrarily weak coupling is set between the pressure and
the density.
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Another method to determine the velocity and pressure fields of incompress-
ible flows is a method related to the pressure. In replication of the momentum
equation and the continuity equation, the pressure is determined from a sep-
arate equation that results from the Navier-Stokes and continuity equations.
Various solution algorithms have been developed for this pressure-referred
method. In what follows, the so-called pressure-correction method and the re-
sulting SIMPLE algorithm will be described.

First a preliminary pressure field p∗ is estimated. Using this estimated pressure
field, the Navier-Stokes equations can be discretized and solved. In order to
solve the Navier-Stokes equations, the finite-volume method is also used. An
algebraic system of equations for the unknown velocity components u∗i , v

∗
i and

w∗
i in the nodes of the finite-volume computational grid is obtained:

au
i · u∗i =

3∑

nb

au
nb · unb + bu + (p∗i+1 − p∗i−1) · Ai,

av
i · v∗i =

3∑

nb

av
nb · vnb + bv + (p∗j+1 − p∗j−1) · Aj, (3.21)

aw
i · w∗

i =
3∑

nb

aw
nb · wnb + bw + (p∗k+1 − p∗k−1) · Ak.

In these equations, the coefficients au
i , a

v
i , a

w
i or au

nb, a
v
nb, a

w
nb, which result from

discretizing the convective and dissipative terms at the node currently under
consideration i or at neighboring nodes, respectively, are sorted and summa-
rized. The coefficients bu, bv, bw contain all source terms. The pressure gradient
is represented by the pressure differences in the x, y and z directions multi-
plied by the corresponding side surfaces Ai, Aj and Ak. The summation

∑
nb is

carried out over all neighboring nodes of the node under consideration i. The
resulting velocity field ui will generally not satisfy the continuity equation.
The aim of the next steps is therefore to improve the pressure estimate p∗

so that the velocity field ui does satisfy the continuity equation. To do this,
the pressure and velocity corrections p′ and v′, v′ and w′ (not to be confused
with perturbation or fluctuation quantities) are introduced. If pressure field is
assumed to be correct

p = p∗ + p′, (3.22)

then it needs to be investigated how the velocity components u, v and w

u = u∗ + u′, v = v∗ + v′, w = w∗ + w′ (3.23)

change with the pressure correction p′. If the discretized Navier-Stokes equa-
tion for the preliminary velocity field (3.21) is subtracted from the discretized
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Navier-Stokes equation for the exact velocity u, terms are found of the form
u = u∗− du(p′i+1−p′i−1), which are called velocity correction equations. It then
remains to derive an equation for the pressure correction p′ from the continuity
equation. The velocities that occur are also replaced by the velocity correction
equation and the terms that arise are finally solved for the unknown pressure
corrections p′. In this manner all the equations that are necessary to calculate
an incompressible flow are established.

This algorithm is contained in various forms in almost all commercial software
packets and since it was developed it has undergone numerous improvements
with respect to its convergence rate. It provides the numerical basis for the
calculation of the turbulent basic flow Ũ0

i for the stability analysis of local
perturbations that is implemented in the university program KAPPA and
currently available commercial software.

The boundary-layer flow of a transonic wing calculated in this manner is shown
in Figure 3.6. First the geometry of the wing in the flow discretized with a
finite-volume grid is shown. The fine resolution in the region of the stagnation
line and in the wake of the wing, as well as in the region of the shock wave,
is clearly visisble. The result of the finite-volume calculation for the Mach
number M∞ = 0.78, the Reynolds number ReL = 26.6 · 106 and the sweep
angle φ = 20◦ is shown in the form of isotachs, i.e. lines of constant Mach

calculation
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= 1.12
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Fig. 3.6. Finite-volume discretization, pressure and Mach number distribution of a
transonic wing
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number. The numerical solutions shows the supersonic field and the shock
wave that terminates this downstream. For the given lift coefficient ca = 0.0506
of a model wing of the Airbus A 320, a drag coefficient of cw = 0.0184 is
calculated. This is the value that can be reached if a transonic laminar wing
can be realized, as will be treated further in Section 4.1.2.

Whereas the flow past a wing is solved with the Favre-averaged compressible
fundamental equations, for the flow past a car the Reynolds-averaged equa-
tions are solved. As a turbulence model for the anisotropic turbulent wake
flow, a nonlinear K-ε turbulence model is applied. In the cp diagrams in Fig-
ure 3.7, the dimensionless pressure distributions on the upper and lower sides
of the car are shown for the Reynolds number ReL = 8 ·106 (U∞ = 130km/hr)
in comparison with experimental results in a wind tunnel. In comparison to
the flow past a wing, in calculations of the flow past a car, the road must also
be taken into account. The calculation is then carried out following a trans-
formation of reference frame from a moving car in air at rest to a car at rest
in a wind flow. Therefore the road also needs to be discretized in order to take
account in the calculation of boundary-layer effects between the underside of
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Fig. 3.7. Finite-volume discretization of the flow past a car and the pressure distri-
bution in the symmetry plane, U∞ = 130km/hr,ReL = 8 · 106
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the car and the road. The boundary condition for the road is then prescribed
as the velocity of the free stream of air, while on the underside of the car
it is required that ui = 0. The condition of the moving road is challenging
to achieve in a wind tunnel using a moving band, which is why frequently a
simplified experiment is resorted to in a wind tunnel with a road at rest and a
car at rest in free stream of air. Therefore the calculations of the basic flow for
the stability analysis, as in Section 4.2.3, were carried out with a road at rest
and a car at rest. Figure 3.7 it can be seen that the measured and calculated
pressure distributions agree very well with each other. The numerical solu-
tion also shows that the structure of the wake flow was correctly represented.
Downstream from the trunk a horseshoe vortex forms which is energized on
the one hand by the shear layer at the spoiler lip on the trunk and on the
other hand by the diffusor flow between the underside of the car and the road.

3.2 Local Perturbations

As confirmation of the existence of absolutely unstable regions in the wave
flow, simulation calculations of local wave packets are carried out using the
finite-difference Galerkin method described in Section 3.1. The laminar ba-
sic flow in the wake of a flat plate, shown in Figure 3.4, was superimposed
with sine-wave perturbations at various positions in the wake flow. Figure 3.8
shows a selection of sinusoidal impulse responses. The sine units and veloc-
ity components return the impulse response at the marked points after onset
of the impulse, which is analogous to the asymptotic behavior at large time

Fig. 3.8. Numerical simulation of the impulse response for the quasi-steady basic
state ReL = 200
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Fig. 3.9. Absolutely unstable region ReL = 200

steps. The solid lines represent the velocity signals after the onset of the dis-
turbance; the dashed lines represent the original disturbances. It is noticeable
that the disturbaces initiated by the impulse are, after sufficient time has
passed, larger at each point than the natural impulses present. This situation
can be attributed to the absolute instability of the flow region. Evaluation of
the impulse responses reveals that they are of two differing types. At points
1 and 4 the induced disturbances immediately increase, and their amplitudes
lie, at all points in time, significantly above those of the natural disturbances.
Conversely, the induced disturbances at points 2, 3 and 5 are damped at first
and after a certain amount of time are of the same magnitude as the natu-
ral disturbances, only to increase again. Moreover, it can be shown that the
early damping, which is evident from signal 2, becomes larger upstream. Fig-
ure 3.9 gives the complete results. The area of quasi-steady backflow and the
corresponding area of absolute instability are illustrated. From the random
tests taken, it can be concluded that the region in which the disturbances
are immediately amplified enlarges when larger amplitudes are introduced. In
comparison, Figure 3.10 shows the development of amplitude disturbances at
a subcritical Reynolds number. All of the induced disturbances are temporally
and spatially damped. The existence of and knowledge about absolutely un-
stable regions offers the possibility of effective wake control, as mentioned in
the introductory Chapter 1. Figure 3.11 shows the effect of a base bleed and

Fig. 3.10. Impulse response at a subcritical Reynolds number ReL = 80
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of a perturbation cylinder on the periodic vortex shedding at blunt bodies.
With flow control, the Kármán vortex street in the wake is supressed.

At the time of the Prandtl memorial lecture H. Oertel 1994, the Orr-Sommerfeld
stability analysis of Section 2.1 had been carried out numerically using the as-
sumption of parallel flow with the Chebyshev collocation method. The unknown
amplitude function ψ̂(z) should be obtained in the range [−∞,∞]. Chebyshev
polynomials TK(η) of order K have been used to approximate ψ̂(z) in the
transformed coordinate η = η(z):

ψ̂(η) =
N−1∑

K=0

bKTK(η). (3.24)

The range is mapped into [−1, 1] via an exponential transformation. The ap-
proximation of ψ̂(z) and its derivatives is not performed using an expansion
with respect to the Chebyshev coefficient bK . Instead the Chebyshev colloca-
tion method is applied to obtain directly the values of ψ̂(z) at the collocation
points:

ηj = cos
πj

N − 1
; j = 0, . . . , N − 1. (3.25)

To distinguish between absolute and convective instability, the eigenvalue
spectrum of the Orr-Sommerfeld equation for complex wave number a and
complex frequency ω is necessary.

Fig. 3.11. Supression of vortex shedding by means of base bleed, ReL = 200 (left)
and perturbation cylinder, ReL = 55 (right)
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Figure 3.12, showing the corresponding quasi-steady local wake-flow profile
from the numerical solution, reveals that the well-known resonance in Figure
2.12 disappears with base bleeds larger than a critical value. This indicates
that the most efficient wake control can be achieved by avoiding absolutely
unstable regions in the wake.

Nowadays the commercial software COMSOL Multiphysics is available to
solve the stability analysis of local perturbations. COMSOL is based on the
programming environment MATLAB and is an effective tool to solve arbi-
trary systems of partial differential equations. In addition, COMSOL contains
an environment for defining and implementing grids for geometries. For two-
dimensional problems, the triangulation is based on triangular shaped cells.
Routines exist to solve steady and unsteady linear and nonlinear problems, as
well as eigenvalue problems. The finite-element method is used to discretize
the differential equations.

The formulation of the differential equations is kept very general and therefore
there is a large degree of flexibility to investigate a wide spectrum of stability
problems.

The general system of partial differential equations reads:

Fig. 3.12. Spatial amplification rate with and without base bleed for a flat plate,
ReL = 200
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eiA
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In COSMOL notation, the conservation equations for mass and momentum
read:

diA
∂ui

∂t
+

∂

∂xk

Γk = Fi. (3.27)

Here di are the mass coefficients, Γi the flux matrix
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and Fi are the source terms:

Fi =




−ρ
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∂x
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−
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+ ∂v
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)




. (3.29)

The general fomulation of the Dirichlet boundary conditions Ri and the Neu-
mann boundary conditions Gi at the boundaries of the flow region ∂V reads:

Ri = 0 , −ni · Γi = Gi +
∂Ri

∂ui

µL. (3.30)

The resulting eigenvalue problem is solved with the finite-element method
(see E. Laurien, H. Oertel 2009). With the finite-element method, in contrast
to the finite-volume method described in the previous section, it is not the
differential quotients that are discretized, but rather the solution functions.

The starting point for the finite-element method is the spatial discretization of
the geometry into N grid elements. Within these elements, ansatz functions
Φi are defined. By means of a linear combination of ansatz functions with
the coefficient Ui, the approximation solution for the unknown quantity u is
obtained:

u =
N∑

i=1

Ui · Φi. (3.31)
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The Lagrange elements used have the following properties:

the ith node of the grid Φi = 1,
at all other nodes Φi = 0,
within the elements to which the ith node of the grid belongs, Φi is a poly-
nomial of a certain prescribed order.

Depending on the order of the polynomial, this results in intermediate nodes
within an element.

In the COMSOL software packet, the order of the form functions is given by
a lower index in the following notation: PmPn. The index m stands for the
order of the ansatz functions to determine the velocity, while the pressure is
approximated by nth order ansatz functions.

The properties of the elements in combination with equation (3.31) mean
that the approximation for the solution function u at a node i is given by the
value of the coefficient Ui. Between the nodes the solution function has a form
defined by the ansatz functions. Instead of the solution function u, therefore,
the unknown parameters Ui need to be determined. These are also known as
the degrees of freedom of the problem.

3.3 Software Verification

Every fluid mechanics software requires, because of the discretization errors
of the algorithms and the rounding errors on the computer, verification using
qualified experiments or, if possible, with analytical solutions. In our fluid
mechanics textbook H. Oertel, M. Böhle 2009, numerous verification examples
are provided for the various regions of the flow. In this article we summarize
the examples that are relevant for flow control in the applications described
in Chapter 4.

fc

0.025

0.005

0.015

numerical solution

x/L0 0.2 0.4 0.6

analytical solution

Fig. 3.13. Local friction coefficient cf of the laminar plate boundary layer,
ReL = 1 · 105
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The classical example for boundary-layer flows is the laminar and turbulent
boundary layer of a plate in a longitudinal flow. Figure 3.13 shows the result of
the calculated laminar plate boundary layer in comparison with the analytical
solution of Blasius:

cf (x) =
0.664√
Re(x)

, (3.32)

for various spatial discretizations. Here Re(x) = ρ · U∞ · x/µ is the local
Reynolds number formed with x. The dimensionless wall shear stress cf =
τw/((1/2) · ρ · U2

∞) is in agreement for all discretization schemes tested.

The two-dimensional turbulent plate boundary layer without a pressure gradi-
ent is an important example for verification and validation for the adaption of
turbulent models. By means of a correspondingly fine computational grid the
effect of the discretization error on the numerical solution can be kept very
small. The Reynolds number is ReL = 2 · 106 and the degree of turbulence is
precribed with Tu∞ = 0.5%. The transition is fixed with a Reynolds number
of Reδ = 770 formed with the momentum-loss thickness. For these param-
eters the average velocity profile at the position x/L = 1 and the variation
of the friction coefficient Cf along the plate is compared in Figure 3.14 with
experimental data.

The time-averaged velocity profiles calculated with the standard K-ε turbu-
lence model and the quadratic K-ε model are slightly broader that the mea-
sured profile. However, this has no effect of the calculated friction coefficient
cf .

For verification of the software for the calculation of compressible transonic
wing boundary layers, the flow past the two-dimensional RAE2822 wing is first
calculated. This is used for verification of the spatial discretization and effect
of the far-field boundary on the numerical results. There are experimental
data for free streams with Mach number M∞ = 0.73, the Reynolds number

0.5 1 u/U 8

experiment

numerical solution

= 1x/L

x/L
0

0
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0 0.25 0.50 0.75

0.006

0.004

0.002

velocity friction coeficient

z/L c f

Fig. 3.14. Turbulent plate boundary layer, ReL = 2 · 106
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Fig. 3.15. Pressure distribution cp of the transonic wing profile (RAE2822),
ReL = 6 · 106, M∞ = 0.73

ReL = 6 ·106 and for the angle of attack α = 3◦. Prescribing these parameters,
fixing the transition at x/L = 0.05 and with the Baldwin-Lomax turbulence
model, the calculated pressure distributions on the top side and under side of
the profile are compared to experimental results.

c   = const.p

= 0.90

y/s

y/s

0
−1.0

0.25 0.5 1

0.750.50.250

−0.5

0

0.5

1.0

−1.0

−0.5

0

0.5

−c

−c p

p

1.0

1 x/L

0.75 x/L

c

0.05

= 0.44

−0.15

  = −0.05

0.05

p

Fig. 3.16. Pressure distributions and isobars of the transonic wing (ONERA M6),
ReL = 1.17 · 107, M∞ = 0.84
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The degree of turbulence in the free stream is Tu∞ = 0.3%. The turbulence
length scale is estimated using the molecular viscosity and the Prandtl mixing
length approach with

lt ∼ µ

ρ · √K∞
, K∞ = Tu∞ · U∞. (3.33)

The pressure distributions of Figure 3.16 and the calculated shock position
agree very well with the experimental values. The calculated lift coefficient
ca = 0.795 and the drag coefficient cw = 1.7 · 10−2 are also in good agreement
with experiment.

For the three-dimensional steady flow, the transonic flow past the test wing
ONERA M6 is selected as the verification example. A double shock occurs on
the suction side of this wing, which then merges to form one shock at the tip
of the wing. The following data are selected for the free stream: Mach number
M∞ = 0.84, Reynolds number ReL = 1.17 · 106 and angle of attack α = 3.06◦.
The numerical calculation is carried out using the Baldwin-Lomax turbulence
model. The degree of turbulence is given with Tu∞ = 0.3%. To evaluate the
solution, the results are compared with experimental data in various sections
through the span of the wing.

In both sections the merging of the shock waves can clearly be seen in the
computational grid used (see Figure 3.16). Because the finite-volume grid is
too coarse, the shock waves merge too early on the wing. Close to the wing
tip y/s = 0.9, apart from some insignificant merging of the shock waves, the
pressure distribution is reproduced well compared to experiment.

The verification of the software for the incompressible flow past a car is carried
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Fig. 3.17. SAE car body, ReL = 1 · 107
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out with the SAE (Society of Automotive Engineering) model body, which the
car industry has agreed upon. Using this, the effect of the computational grid
and the various turbulence models on the lift and drag coefficients can be
investigated systematically. The Reynolds number formed with the running
length is ReL = 1 · 107, which corresponds to an unperturbed free stream
velocity of 36m/s or 130km/hr and a length of the model body of L = 4.2.
The turbulence quantities of the K-ε turbulence model are given as 1%. The
logarithmic law of the wall is carried forward into the viscous sublayer of the
boundary layer and correspondingly adapted, so that the calculation of the
integral coefficients is possible to a first approach, even without resolving the
viscous sublayer. To improve in particular the calculated lift coefficient, the
two-layer turbulence model is used to ensure that the viscous sublayer is taken
into account.

Figure 3.17 shows the calculated isobars and pressure distributions of the
model body on the top and under sides each in the mid section. Starting
from the stagnation point (cp = 1), the flow accelerates on the upper side
until the front edge of the roof is reached (cp = −2). After this the flow
decelerates and then accelerates again to the back edge of the roof. Finally the
flow decelerates in the direction of the lid of the trunk. On the under side the
flow accelerates, starting from the stagnation point, and then decelerates along
the undercarriage. The start of the diffusor can be clearly recognized with the
small suction peak. The calculations with different computational grids show
that the necessary independence from the finite-volume computational grid
is achieved at about 4 million cells, and the calculated pressure distributions
agree with the experimental values, as long as the wing tunnel geometry is
taken into account in the calculation and discretized with about 4.8 million
cells.

Two-equation turbulence models used with an optimal computational grid
lead to only small variations in the calculated lift and drag coefficients. The
calculated drag coefficient in the wind tunnel is cw = 0.169 in comparison to
the experimental value of cw = 0.165. For the lift coefficient, the variations
are larger. The calculated value for the front axle lift ca == 0.116 is compared
to the measured value of ca = −0.136. For the back axle lift ca = −0.036 is
calculated and ca = −0.151 is measured. In the experimental values, the usual
wind tunnel corrections such as boundary-layer suction and a moving band
are not taken into account.

The classical verification example for the calculation of an unsteady wake flow
is the laminar and turbulent Kármán vortex street of a cylinder in a flow, which
has already been used in the previous sections. Here the most important thing
is the analysis of the time accuracy of the software. The Reynolds number
formed with the cylinder diameter D for the laminar flow past a cylinder is
ReD = 500.
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Figure 3.18 shows a snapshot of the velocity distribution and the change in
time of the u component of the velocity for the laminar Kármán vortex street
in comparison to the turbulent Kármán vortex street at a Reynolds number
ReD = 1.4 · 104. The calculated Strouhal number Str = f · D/U∞ = 0.22
agrees with the experimental value Str = 0.20− 0.22 for the laminar Kármán
vortex street. The drag coefficient is calculated in agreement with experiment
as cw = 1.3. This provides confirmation of the time accuracy of the software
and of the drag coefficient for unsteady flow past a cylinder.

With turbulent flow past a cylinder, the effect of different turbulence models
for unsteady flows can be demonstrated. The Reynolds number ReD = 1.4·104

is given, and various two-equation turbulence models are tested for unsteady
turbulent flow.

It turns out that the standard K-ε turbulence model is not suitable for cal-
culating turbulent vortex shedding because of the assumed isotropy. For this
reason the quadratic K-ε turbulence model is used. For the degree of turbu-
lence Tu∞ = 0.5% is given and for the length scale l∞ = 0.01. The calculated
drag coefficient cw = 1.3 is in agreement with experiment. The calculated
Strouhal number Str = 0.235 is 10 % higher than the experimental value
Str = 0.2. This is because the transition from the laminar boundary layer on
the surface of the cylinder to the turbulent wake is not correctly modeled by
the quadratic turbulence model.

Calculation of the vortex street at the Reynolds number ReD = 5.25 · 105 in
the transition region to the turbulent boundary layer on the cylinder yields
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Fig. 3.18. Laminar and turbulent Kármán vortex street
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agreement of the values of the Strouhal number Str = 0.21.

Verification of the software for steady flow past three-dimensional bodies is
carried out using the example of flow past a sphere. At the selected Reynolds
number ReD = 5.25 · 105 the boundary layer on the sphere separates transi-
tionally and passes via a transition process into the turbulent wake. Therefore
it is useful to calculate the laminar flow past the sphere up to the separation
line using the Navier-Stokes equations and the finite-volume method, and in
the turbulent wake to use coarse structure direct numerical simulation DNS
of the periodically separating turbulent ring vortices.

Another possibility for the calculation is time-precision solution of the Reynolds
equations and adaption of a suitable turbulence model. To calculate the flow
past the sphere, the nonlinear low-Reynolds-number K-ε and K-ω turbulence
models are selected. In the laminar region of the boundary-layer flow on the
sphere, with Reynolds-averaged simulation calculations, the prescribed degree
of turbulence Tu∞ = 1% and the characteristic turbulence length l∞ = 0.1
are retained. The computational grid consists of 2.9 · 106 grid points.

Figure 3.19 shows the calculated pressure distribution in the azimuthal di-
rection on the sphere, in agreement with experimental values, as well as the
calculated isotachs and streamlines. In the wind tunnel experiment the sphere
is held with a rod in the wake. The simulation results shows that the flow
separation on the sphere is predicted too late by the K-ε turbulence model
and too soon by the K-ω turbulence model. This leads to deviations in the
pressure distribution on the back side of the sphere.

= 1.2u
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= 0.85u

velocity

aeroacoustic sources streamlines

pressure, top side

Fig. 3.19. Flow past a sphere, ReD = 5.25 · 105
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If it is only the integral coefficients of the unsteady flow past a sphere that are
of interest, there is also the possibility to determine the quasi-steady solution
directly (as is required for the stability analysis) without precise time solution.
These results are shown in Figure 3.19. In addition to this the iso-surfaces of
the quadrupole acoustic noise determined from the quasi-steady solution are
shown; these will be necessary in Section 4.3 on the resonator.

Therefore, depending on the problem, the three different numerical models as
described can be applied for the calculation of the flow past three-dimensional
bodies.

A verification example for turbulent unsteady internal flow is the three-dimen-
sional flow past a stagnation body in a pipe flow, as will be treated in Section
4.2.4. The stagnation body shown in Figure 3.20 is in a fully developed tur-
bulent pipe flow. The diameter ratio of pipe to stagnation body is D/d = 3.6.
At the wall of the pipe a horseshoe vortex forms around the stagnation body,
which then passes over into the periodic vortex shedding in the wake of the
stagnation body.

The flow calculation is carried out with the nonlinear low-Reynolds number
K-ε turbulence model with a hybrid law of the wall and a correspondingly
fine grid in the wall boundary layer. In the fully developed pipe flow a degree
of turbulence of Tu∞ = 5% and the turblence length l = 0.01m are given.
Figure 3.20 shows the snapshot lines of the vorticity and the dependence
of the constant value of the Strouhal number Str = 0.237 on the Reynolds
number, which can be used for the measurement of the volume flow in the
pipe. The small systematic variation between the simulation calculation and
the experiment lies within the measurement error tolerance of 5 %.
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Fig. 3.20. Stagnation body in a pipe flow
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Absolutely unstable resonators are responsible for the onset and expansion
of fluid-mechanically generated noise in piping systems. The pipe flow with
two screens that form a resonator is selected as the verification example for
the software with respect to the localization of acoustic noise. Figure 3.20
shows the geometric arrangement as well as the result of direct numerical
simulation DNS of the Navier-Stokes equations. The pipe has a diameter of
D = 5·10−2m with the Reynolds number ReD = 1.7·104 at the average velocity
um = 5m/s. The inner diameter of the screens is DB = 2.8·10−2m. The screens
each produce a periodic vortex shedding, which causes the indicated frequency
spectrum of the noise expansion. The velocity profile and the turbulent kinetic
energy are given via a fully developed velocity profile. Particular formulation
of the boundary conditions avoids reflection of the sound waves at the free
ends of the flow region.

Depending on the distance L between the two aperatures, after the flow sep-
arates at the first aperature a characteristic interaction and reflection occur
with the second aperature. As well as the classical quadrupole noise of the
shear flow, there there is also the tonal component of the screen resonator.
Figure 3.21 shows for L = D a snapshot of the streamlines in the pipe cross-
section. For further aeroacoustic evaluation, the frequency spectrum of the
pressure is shown at three characteristic positions. One location for evalua-
tion is between the aperatures. The other two locations are at a distance D in
front of the first aperature and after the second cross-sectional narrowing, re-
spectively. The frequency spectra evaluated with direct numerical simulation
DNS are in agreement with the spectra measured by experiment.
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Fig. 3.21. Aeroacoustic resonator
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3.4 Model Validation

Validation of the stability theory model of absolute instability and its applica-
tion for flow control is carried out with the perturbation cylinder experiment
in the wake of the flow past a cylinder, as described in Chapter 1 and Sec-
tion 3.2. Periodic vortex shedding behind circular cylinders can be reduced by
suitable placing of a second, smaller perturbation cylinder in the absolutely
unstable region of the wake. Introducing the perturbation cylinder means that
the time amplified perturbations in the part of the wake close to the cylinder
are supressed, so that a convectively unstable wake occurs.

For the validation the free, two-dimensional and incompressible flow past a
cylinder with diameter D, shown in Figure 3.22, is calculated. At the intake
a constant velocity U∞ is prescribed. At the side walls the absence of stress is
forced by means of the natural boundary condition σijnij = 0. At the outlet
a constant pressure is prescribed, while the no-slip condition holds on the
surface of both cylinders.

The position of the perturbation cylinder with diameter d is selected in accor-
dance with the experimental setup of P.J. Strykowski 1990 as xS = 1.2D, yS =
1.0D. The ratio of the diameters of the two cylinders is D/d = 10. The ge-
ometrical grid is set up with the software package COMSOL, described in
Section 3.2, using triangular cells. The number of degrees of freedom is ini-
tially increased successively in preliminary investigations, until the calculated
eigenvalues no longer indicate any dependence on the grid.

The basic flow used for the global stability analysis are the calculated quasi-
steady flow fields. Figure 3.23 shows isolines of vorticity for the two basic
flows with and without the perturbation cylinder, respectively, at a Reynolds
number of 55. These indicate a very good agreement with the streamlines of
Figure 3.11.

The eigenfunctions of the two velocity components of the configurations with
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Fig. 3.22. Arrangement of cylinder and perturbation cylinder

57



−0.5

0.5

−0.2
0.2

0.2

−0.2

1.0

1.0

−0.2

−0.5

−1.0

1.0

0.5

−0.5
0.2

Fig. 3.23. Isolines of vorticity of the quasi-steady solution with and without pertur-
bation cylinder, ReD = 55

and without perturbation cylinder that are associated with the most unstable
eigenvalue are shown in Figure 3.24 for ReD = 55.

velocity u 1 velocity u 3without perturbation cylinder

with perturbation cylinder

Fig. 3.24. Eigenfunctions of the amplified and damped eigenvalue of the flow past
a cylinder without and with a perturbation cylinder, ReD = 55

58



The eigenvalue in the case without the perturbation cylinder, for the Reynolds
number given here, leads to an amplification of the perturbation. After the
perturbation cylinder is introduced the initially absolutely unstable region
becomes convectively stable. The calculated eigenvalue signals a stable flow.
In the configuration with a perturbation cylinder the periodic vortex shedding
occurs only at higher Reynolds numbers.

Following this, the Reynolds number of the flow past the circular cylinder with
and without the perturbation cylinder is varied incrementally and compared
with the experimental values. In order to guarantee that the results can be
compared with the experimental results, the amplification rate λr is made
dimensionless:

A =
−λr ·D2

ν
. (3.34)

The dimensionless amplification rate is shown in Figure 3.25. Without a per-
turbation cylinder there is very good agreement of the calculated amplification
rates with the experimentally determined values. The perturbations superim-
posed on the basic state decay as long as the real part of the eigenvalue is pos-
itive. If the sign changes the initially stable state becomes unstable. Therefore
the critical Reynolds number can be determined from the root of the real part
of the eigenvalue. For the flow past the cylinder the critical Reynolds number
is Recrit = 45.5. The critical Reynolds number is also in good agreement with
the experimentally determined value of 46.0.

For the flow past a cylinder with perturbation cylinder, the change in am-
plification rate as determined by the global stability analysis is also in good
agreement with the experimental results. In principle, however, the calculated
amplificate rates are smaller than the experimentally determined values.

The calculated and measured frequencies of the periodic vortex shedding can-

Fig. 3.25. Dependence of the rates of amplification on the Reynolds number
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not be compared directly, as corresponding to Figure 3.2 the linear stability
analysis calculates the frequency of the quasi-steady basic state. The exper-
iment, however, measures the frequency in the nonlinear saturation region,
which differs in order of magnitude by 10 %.
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4 Flow Control Applications

Now that the theoretical fundamentals of the stability analysis of local per-
turbations and the stability theory concept of absolute instability for flow
control have been introduced, the practical application of convectively un-
stable boundary-layer flows and absolutely unstable wake flows follows. The
laminar–turbulent transition in a boundary-layer flow takes place via the tran-
sition process described in Chapter 2, which can be controlled by means of a
suitable pressure distribution to ensure a transonic laminar wing. The period-
ically oscillating wake flow was described as a resonator phenomenon in the
absolutely unstable region, which can also be controlled via a suitable pressure
distribution at the rear of a car of by means of blowing (base bleed) or suction
at the back. This stability theory concept of a fluid-mechanical resonator can
also be transferred to fluidic oscillators.

4.1 Boundary Layer

4.1.1 Transition

In accordance with the description in Section 2.1, for a three-dimensional
boundary layer on a swept transonic wing, downstream it is Tollmien-Schlicht-
ing waves and along the stagnation line it is cross-flow instabilities that deter-
mine the laminar–turbulent transition. In addition to the stability analysis,
direct simulation of the transition process up to turbulent boundary-layer flow
by numerical solution of the compressible Navier-Stokes equations DNS has
also been performed. Figure 4.1 shows the simulation results of the Tollmien–
Schlichting transition and the transition of the cross-flow vortices in a three-
dimensional wing boundary layer at Mach number M∞ = 0.62 and Reynolds
number ReL = 26 · 106. Contour surfaces of the rotation ωi = ∂

∂xi
× ui are

shown. The transition process of the Tollmien–Schlichting waves begins with
downstream traveling plane waves. As in Figure 2.5, three-dimensional per-
turbations are superimposed, and Λ-structures form. The Λ-structures are
regions of local shearing and excess velocity in the peaks. They are lined up
periodically in the span and form several rows periodically ordered behind
each other. The occurrence of the Λ-structures is associated with the appear-
ance of strong free-shear layers. These are prominent local maxima of the
shear stress far from the wall. As the transition proceeds, the high shear rates
decay into increasingly smaller structures, leading eventually to the turbulent
state. The decay of the shear layers takes place within a few wavelengths of
the Tollmien–Schlichting waves.

The mechanisms of the transition process of cross-flow vortices are similar.
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Figure 4.1 shows the formation of the Λ-structures associated with high shear
rates and fluctuation in the perturbation quantities in the peaks. In the final
state of the transition, they decay within a short distance into a turbulent
boundary-layer flow.

Figure 4.2 shows a sketch of local perturbations of the Tollmien–Schlichting
transition and the transition of cross-flow instabilities in the three-dimensional
boundary layer of a swept transonic wing. Both instabilities are convectively
unstable in the boundary layer.

In what follows the behavior of three-dimensional wave packets in a three-
dimensional compressible boundary layer is briefly analyzed. In contrast to the
investigation into two-dimensional perturbations, the transverse wave number
b now also appears in the dispersion relation function D(ω, a, b), whose roots

transition of Tollmien−Schlichting waves

transition of cross−flow vortices

Fig. 4.1. Laminar–turbulent transition in the compressible wing boundary layer,
M∞ = 0.62, ReL = 26 · 106
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Fig. 4.2. Local cross-flow (CFI) and Tollmien–Schlichting instabilities (TSI) in the
three-dimensional boundary layer of a swept wing

are indeed given by those combinations (ω, a, b) representing the solutions of
the stability eigenvalue problem for complex ω, a, b. The change in amplitude
of a perturbation wave packet in the plane reference frame, moving with the
group velocity (U , V ) is considered. The frequency observed is then

ω′ = ω − a · U − b · V. (4.1)

As in the two-dimensional case, again those waves whose group velocity vec-
tor (∂Ω/∂a, ∂Ω/∂b) is real have to be found. The complex frequency function
Ω(a, b) is then defined by D(Ω(a, b), a, b) ≡ 0. The relative temporal ampli-
fication ω′i is then plotted, not just as a function of U = ∂Ω/∂a, but also
in the group velocity plane (U, V ). The line of height ω′i = 0 is of particu-
lar interest, since it encloses the region in the (U, V ) plane in which ω′i > 0.
Therefore, this region represents the parts of the perturbation that contribute
time-asymptotically to the wave packet. Figure 4.3 contains diagrams with the
regions of temporal amplification at two representative positions on a swept
wing. The lower diagram in the figure shows a typical curve ω′i = 0, which

Fig. 4.3. Regions of relative temporal amplification of the Tollmien–Schlichting in-
stabilities (TSI) and cross-flow instabilities (CFI) in the group velocity plane (U, V )
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is computed for a position close to the leading edge of the swept wing, i.e.
in the cross-flow instability region. The upper diagram shows the same curve
at a position further downstream on the wing, where Tollmien–Schlichting in-
stabilities are present. It can be seen that both instabilities have convective
character, since in both cases the origin (U, V ) = (0, 0) is not contained in the
ω′i > 0 region. The growing perturbation energy is transported downstream
in both cases. The tangents at the curves ω′i = 0 determine the angular re-
gion within which these amplified perturbations remain. In the case of the
cross-flow instabilities, the angular range is very narrow and lies essentially
downstream. Note that the associated instabilities are waves that travel prac-
tically perpendicular to the downstream direction. This clearly indicates the
fundamental difference between group velocity and phase velocity.

As it was determined that the cross-flow instabilities are convective in nature
and that they induce a spatially extended transition process downstream, the
associated spatial wave packet amplification rates (gmax = [(ωi−ai ·U−bi ·V )/√

U2 + V 2]max) for the transonic swept-wing boundary layer were computed.
Figure 4.4 shows the eigenvalues, eigenfunctions, and unstable regions of wave
packet perturbations for angles of sweep from 15◦ to 25◦. In developing a
swept laminar wing, it is essential to avoid cross-flow instabilities, since they
induce a transition process already directly at the leading edge. Using the

Fig. 4.4. Eigenvalues, eigenfunctions, and unstable regions of the cross-flow instabil-
ity in the compressible boundary layers of swept wings, M∞ = 0.78, ReL = 26 · 106
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methods of stability analysis, the range of the design parameters of a swept
wing can be determined within which active control measures are not needed
(corresponding to the natural laminar behavior). One of these parameters is
the angle of sweep. In an otherwise identical free stream, there is a critical
range of angle of sweep within which the transition process changes from TSI-
dominated to CFI-dominated (Figure 4.2). Stability theory therefore yields a
limit for the angle of sweep of a laminar transonic wing.

4.1.2 Laminar Wing

Transonic civil aircraft fly with so-called supercritical profiles. The shape of
the front region of the wing was chosen so that the subsonic regime is extended
downstream and a weakened shock wave occurs in the rear region of the wing.
The resultant pressure distribution for a free-stream Mach number of 0.75 is
shown as a dashed line in Figure 4.5. If the friction drag cf of the wing is to be
reduced, the wing has to be shaped so that the laminar–turbulent transition in
the wing boundary layer is shifted downstream. In addition, the suction tip on
the upper side of the wing has to be avoided and a continuous acceleration as
far as the shock wave achieved. Such a pressure distribution is shown in Figure
4.5 as a heavy line. It leads to smaller leading-edge radii and steeper pressure
increases at the trailing edge. The shape of the profile is chosen so that the
onset of the Tollmien–Schlichting waves TS is shifted downstream into the
shock–boundary-layer interaction region. The sweep of the wing also has to
be reduced so that no cross-flow instabilities occur at the leading edge. The
solution of the Reynolds equations for such a laminar wing at the transonic
free-stream Mach number 0.78 is shown in Figure 3.6. A sweep angle of φ =
20◦ is chosen, at which the amplification rate of the cross-flow instabilities
close to the leading edge is considerably smaller than the amplification rate

Fig. 4.5. Conventional supercritical profile and laminar profile, M∞ = 0.75, ca = 0.5,
Rel = 25 · 106
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Fig. 4.6. Drag contributions of a civil airplane

of the Tollmien–Schlichting instabilities. The laminar boundary-layer flow is
retained right into the shock–boundary-layer interaction region. The extended
supersonic region on the transonic wing is concluded by a weak shock wave.

The drag contributions for the entire airplane are summarized in Figure 4.6.
The contribution due to the wing is 46%. By making the selected wing laminar,
a decrease of 15% in the drag is attained, as shown in the polar diagram of
Figure 4.7 (H. Oertel, R. Stauk 1998). For the airplane this means a reduction
potential of about 7%.

An important result of the stability analysis is the areas of spatial amplifi-
cation of local cross-flow disturbances in the group-velocity plane of Figure
4.4 at different angles of sweep and at the wing position where the spatial
amplification rate is maximal near the stagnation line (x/L ≈ 0.0015) .

The area of amplified disturbances in the group-velocity plane is enclosed by
different neutral curves g = 0 calculated for the corresponding angles of sweep.
The zero point of the group velocity is not located within the unstable region,

Fig. 4.7. Drag polars of the laminar and turbulent swept wing,
Φ = 20◦, M∞ = 0.78, ReL = 26.6 · 106
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and so the perturbation energy does not remain at the location of its origin,
but is convected downstream with the mean flow. This result shows that the
instability mechanism of the flow is convective instability. Furthermore it can
be seen that the disturbances remain within a small wedge-shaped range of
the acute angle γ, which increases with increasing angle of sweep Φ. For an
angle of sweep Φ = 15◦, the corresponding acute angle γ within which the
disturbances remain amounts to γ ≈ 4.0◦, and increases to γ ≈ 9.2◦ for an
angle of sweep of Φ = 25◦.

In conclusion it can be said that a transonic laminar swept wing can only be
realised for a certain range of angles of sweep. At realistic angles of sweep of
Φ = 30◦ to Φ = 35◦, the cross-flow disturbances have to be suppressed, for
example by suction near the stagnation line of the wing.

4.2 Wake

4.2.1 Flow Control

The basics of flow control in the absolutely unstable wake flow has been de-
scribed in the previous chapters, with the suction in Figure 1.1, the pertur-
bation cylinder in Figures 1.4 and 3.23, as well as with the base bleed into
the wake flow in Figure 3.11. A prerequisite is knowledge of the dependence
of the various laminar and turbulent flow structures behind blunt bodies on
the Reynolds number ReD. Following on from the flow past a sphere of diam-
eter D in Figure 3.18, the Reynolds number dependence of the drag coefficent
cw(ReD) (Figure 4.8) and of the Strouhal number Str = Str(ReD) (Figure
4.9) are discussed.

The dimensionless shedding frequencey Str is defined as the ratio of the local
acceleration to the convective inertia:

Str =
ρ · U∞/T

ρ · U2∞/D
=

f ·D
U∞

, (4.2)

with the shedding frequency f = 1/T , the inverse of the period of oscillation
T .

The discussion of the Reynolds-number dependence cw starts first for Reynolds
numbers ReD ≤ 1. At such Reynolds numbers, the friction forces dominate
by far the inertial forces. This is a creeping flow, which can be described
analytically. For the drag force W of a sphere in a steady flow at ReD ≤ 1,
the analytical solution of the Navier-Stokes equation reads:
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Fig. 4.8. Dependence on the Reynolds number ReD = (U∞ · D)/ν of flow shapes
and drag coefficient cw for a sphere in a flow
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W = 6 · π · µ · D

2
· U∞. (4.3)

One third of this drag force W originates in the pressure gradient and two
thirds in the friction forces. Furthermore it is noteworthy that the drag force
W in the creeping flow regime is proportional to the first power of the velocity
of the free stream U∞. Taking account of the definition of the cw value, the
following relation is obtained for cw = cw(ReD):

cw =
W

1
2
· ρ · U2∞ · π

4
·D2

=
24 · µ

ρ · U∞ ·D =
24

ReD

. (4.4)

The relation cw = (24/ReD) is also called Stokes’ law and is valid in the
Reynolds number regime ReD < 20.

If the Reynolds number is increased to a value of ReD = 130, downstream from
the sphere a state of steady flow separation is reached. Owing to the strong
friction forces, the fluid particles directly at the wall lose so much kinetic
energy that they are unable to offset the pressure increase in the back half
of the sphere. This results in flow separation downstream from the equator
of the sphere. A steady backflow region is found in the wake region directly
behind the sphere. In calculating steady wake flows, the inertial terms can no
longer be neglected and the full Navier-Stokes equations have to be solved.

At a Reynolds number ReD = 300 the wake flow becomes unstable and a
periodic wave-shaped wake forms. A further increase of the Reynolds number
up to a value of ReD = 800 first leads to unsteady periodic vortex shedding
of the laminar boundary layer on the surface of the sphere with a laminar
vortex street in the wake. Spiral vortex loops, also called hairpin vortices, form
and propagate periodically in the wake. For Reynolds numbers larger than
ReD = 420, an irregular oscillation of the wake flow normal to the direction

Fig. 4.9. Dependence on the Reynolds number ReD of the dimensionless shedding
frequency for a sphere in a flow
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of flow is superimposed onto the periodic shedding of the vortex loops. The
dimensionless shedding frequency is Str = 0.18− 0.2.

At Reynolds numbers greater than ReD = 800 the transition takes place
to turbulent wake flow. First transitional and then turbulent, periodically
shedding vortex loops form with a Strouhal number of Str = 0.2 − 0.22. In
addition to the shedding frequency of the wake flow, a second, higher frequency
arises (see Figure 4.9), which is caused by secondary instabilities of the local
shear layers in the vortex loops. In the Reynolds number region 3000 ≤ ReD <
4 · 105 the discrete vortex loops are shed by periodic shedding of rotating ring
vortices, which form a helical wave-like wake. The Strouhal number decreases
until it reaches a constant value of Str = 0.18− 0.2.

In the Reynolds number region 3 ·105 ≤ ReD ≤ 4·105, the boundary-layer flow
on the sphere becomes turbulent. The shedding region is displaced downstream
on the surface of the sphere and this causes a tapering of the wake flow.
Associated with this is a drastic reduction of the cw value from 0.48 to 0.12,
as shown in Figure 4.8. The friction drag is greater for a turbulent boundary
layer, so the drop in the cw value is caused by the reduction in pressure drag. A
time average of the flow portrait indicates horseshoe-like shedding of a vortex
surface.

In the region 4 · 105 ≤ ReD < 106 the laminar–turbulent transition region
moves forward on the surface of the sphere, and the friction drag increases,
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Fig. 4.10. Friction coefficient cw and reciprocal values of the dimensionless shedding
frequency 1/Str for the flow past a cylinder
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while the pressure drag remains essentially constant. The cw value therefore
increases again. In the Reynolds number region ReD > 106 the boundary layer
on the surface of the sphere is turbulent downstream from the front stagnation
point, thus fixing the shedding point, which no longer changes with further
increase of the Reynolds number. The cw value of the sphere therefore becomes
independent of ReD. A periodically oscillating and rotating streamline-shaped
vortex pair forms in the turbulent wake.

The dependence of the friction coefficient cw on the Reynolds number displays
similar behavior for the flow past a cylinder. Figure 4.10 shows all known
experimental values cw together with the measured reciprocal values of the
dimensionless shedding frequency 1/Str. Figure 4.11 completes the flow por-
trait for the flow past a cylinder for the region of steady flow separation in
the Reynolds number region 3 ≤ ReD < 40 and the region of the laminar von
Kármán vortex street 40 ≤ ReD ≤ 200.

The periodic vortex shedding of the von Kármán vortex street commences
at the Reynolds number ReD = 40. With increasing Reynolds number 1/Str
decreases sharply, the shedding frequency increases correspondingly, in order
to take on almost constant values of Str = 0.21 at Reynolds numbers be-
tween 103 and 105. With the transition to turbulent boundary-layer flow on
the cylinder, 1/Str drops sharply in accordance with the drop in drag coef-
ficient cw. For Reynolds numbers greater than 107 a constant shedding fre-
quency is also found in the turbulent wake flow for constant cw values, as the
laminar–turbulent transition in the boundary layer of the cylinder has moved
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Fig. 4.11. Flow past a cylinder and laminar von Kármán vortex street
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to the stagnation point and no change of the turbulent flow is found for fur-
ther increasing Reynolds number. For the Reynolds number region of 104 to
105, Figure 4.12 summarizes various three-dimensional and two-dimensional
shapes and the dependence of the drag coefficient cw on the Reynolds number
extended for various rotationally symmetric bodies.

The circular disk has its greatest drag for turbulent Reynolds numbers. As
the flow separation is fixed by the geometrically determined trailing edge, the
drop-off in the drag at Reynolds number 4 · 105 does not occur. For ellipsoids
this drop-off is shifted to smaller Reynolds numbers because of the body shape.
For streamline bodies the drop in the drag also does not occur, as the laminar–
turbulent transition takes place initially in the boundary layer on the body
and then moves continuously into the wake.
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Fig. 4.13. Wake control by splitter plates

4.2.2 Elastic Splitter Plate

One common method in aerodynamics to suppress the periodically oscillating
wake flow is to place a splitter plate in the wake of the cylinder, and so
to suppress the absolutely unstable region. Figure 4.13 shows the pressure
coefficient cp without and with a splitter plate. It is clear that the pressure
drag with no absolutely unstable wake is reduced. The question arises of how
an elastic splitter plate behaves in the wake.

To this end a flow–structure coupled calculation of the flow field sketched in
Figure 4.14 as well as a structure-mechanical calculation of the splitter plate
are necessary. The necessary coupling algorithm and the structure-mechanical
finite-element method are described in our textbook on biofluid mechanics
H. Oertel 2008.

Figure 4.14 shows the geometrical arrangement of the cylinder with the elastic
splitter plate in a channel. The velocity profile at the entrance to the channel is
prescribed analytically. The slightly asymmetrical shape of the channel causes
an initial perturbation and, above a critical Reynolds number ReD = 100, an
unsteady flow past the cylinder and the flexible structure forms, so that peri-
odic oscillations are instigated in the latter. Whereas the laminar flow past a
cylinder is absolutely unstable in the wake and vortices are shed periodically
at the Reynolds number ReD = 40, periodic vortex shedding occurs at a higher
Reynolds number for the elastic splitter plate. As a result of the initial per-

Fig. 4.14. Geometry of the elastic splitter plate
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Fig. 4.15. Velocity field and motion of the structure for one period of oscillation,
ReD = 100

turbation in the channel, a resonance of the eigen-oscillations of the structure
with the periodically separation flow occurs. Figure 4.15 shows the velocity
field for the absolutely unstable resonance oscillation for one oscillation cycle.

4.2.3 Car Aerodynamics

The prime example of the practical application of stability-theory concepts to
control absolutely unstable wake flows is the flow past a vehicle. The boundary
layer that separates at the rear of the car, after it passes the spoiler lip on the
lid of the trunk, generates a part of the wake flow of the vehicle as a free shear
layer (Fig 4.16). It forms a horseshoe vortex in which the edge vortex and
the backflow on the lide of the trunk merge into one another. Superimposed
onto this is a second backflow region, that is energized by the diffusor flow

Fig. 4.16. Flow separation at the back of a car

74



Fig. 4.17. Wake flow of the car in a wind tunnel, ReL = 5 · 106

between the street and the vehicle. The shear layers as well as the global flow
structure of the wake flow are periodically unstable, which can be seen as an
oscillation of the horseshoe edge vortex downstream from the trunk. A typical
method of flow control is suitable shaping of the back end of the car, to keep
the absolutely unstable region of the wake flow as small as possible. This leads
to tapering of the back end, where the pressure distribution is shaped so that
a reduction of the absolutely unstable wake region is ensured. The calculation
of the basic solution for the stability analysis of local perturbations in the
wake has already been seen in Figure 3.7.

In addition to this, the time-averaged velocity profile in the mid section of
the wake flow of the car model was measured in a wind tunnel. Figure 4.17
shows the wake flow at a Reynolds number of ReL = 5 · 106 with the shaded
region the expected absolutely unstable region. Figure 4.18 shows the wind-
tunnel model and the measured velocity profiles behind the car without and
with flow control at the Reynolds number ReL = 1.33 · 106. The expert can
see immediately that the measured boundary-layer flow on the floor of the
wind tunnel does not correspond to the reality of a car driving on the street.
However, the results of the perturbation calculation show that the eigenvalues

wind tunnel model

Fig. 4.18. Wind-tunnel measurement of the time-averaged wake flow of a car,
ReL = 1.33 · 106
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of the experimentally incorrectly simulated boundary-layer flow can be sepa-
rated from the eigenvalues of the wake flow that is of interest. Therefore, in
the perturbation calculation the incorrectly simulated boundary-layer profile
can be separated from the measured basic profile ū0

i .

Inactive flow control for a car is realized by means of a flow channel integrated
into the fender. In the diffusor between the street and the vehicle, a few percent
of the mass flux in the flow channel is deviated such that it reduces the shear
layer behind the spoiler lip on the trunk and thus prevent the absolutely
unstable region in the wake of the car. Initial measurements of the time-
averaged velocity profile with base bleed shows that the flow control could not
yet be optimized, but that a measured drag reduction of 10% was achieved
through prevention of the absolutely unstable region in the mid section of the
wake flow.

The result of the wave-packet perturbation analysis is summarized in Figure
4.19. The larges rate of amplification ωi of the wave packets is plotted against
the downstream coordinate x/H (H the height of the car) for the group ve-
locity g = 0. Positive rates of amplification ωi of the perturbation waves
identify the absolutely unstable region behind the vehicle. Negative rates of
amplification indicate the convectively unstable region. With base bleed the
perturbation calculation yields a convectively unstable turbulent wake flow in
the entire region with a measured drag reduction of 10%.

4.2.4 Vortex

Flow rate measurement of liquid, steam and gas is one of the most important
areas of application for today’s field instrumentation. Vortex meters are used

Fig. 4.19. Rate of amplification ωi in the wake of a car
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in numerous branches of industry to measure the volumetric flow by exploit-
ing the unsteady vortex flow behind a blunt body. Among the wide variety of
measurement principles, the vortex-shedding flow meter is well regarded to be
reliable, robust and flexible. The range of application of the vortex-shedding
device reaches from liquids through saturated steam to pure gases. The mea-
surement principle of vortex flow meters is based on the formation of vortices
shed from an obstacle spread over the span of a pipe.

Figure 4.20 shows the investigated CAD geometry corresponding to Figure
3.19 and a picture of the triangular vortex-shedding device in a pipe (d/D =
0.23, d diameter of the vortex-shedding device, D pipe diameter) as well as the
results of numerical flow simulation of the turbulent flow. The upstream flow
is a turbulent pipe flow. The flow structure reveals a horseshoe vortex at the
connection of the shedding device with the wall. Downstream from the blunt
body, the horseshoe vortex near the pipe wall interacts with a turbulent, three-
dimensional shedding wake flow. The corresponding shedding frequency allows
the flow rate to be determined. The relation between the Strouhal number Str
and the Reynolds number Red is:

Str = a +
b

Red

, (4.5)

with constants a and b.

Most of the work on vortex shedding is related to the wake of a cylindri-
cal body at velocities resulting in Reynolds numbers in the laminar range
of Red = 50 − 150, as described in Section 4.2.4. In state-of-the-art indus-
trial flow meters, rectangular or triangular shaped blunt bodies are employed,

flow simulation

geometry of vortex shedding device

Fig. 4.20. Vortex-shedding device and flow simulation in a pipe
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operating at Reynolds numbers of Red = 3000 and beyond in the turbulent
vortex-shedding region. In contrast to the majority of academic work on vortex
shedding, the boundary conditions in industrial flow meters are significantly
different. Von Kármán (and many of his successors) used long, thin rods in
a flow with constant upstream velocity. In vortex flow meters, the turbulent
flow is confined by the pipe wall which produces a flow with a significant ve-
locity profile. At the junction between the blunt body and the pipe wall, a
horseshoe vortex exists. Despite these difference, the formation of vortices is to
some extent similar to that of a von Kármán vortex street. The most common
similarity is the fact that the frequency of vortex shedding is directly propor-
tional to the flow velocity. This behavior is employed in vortex flow meters.
In the simplest case the vortex shedding frequency is counted and multiplied
by a constant calibration factor yielding the volumetric flow rate

V̇ = K · f.

This, however, implies that industrial flow meters are operated assuming a
constant Strouhal number, indicated by a single calibration factor K associ-
ated with a flow meter.

u · A = K · f,
u

f · d · A · d = K, (4.6)

1

Str
· A · d = K,

with the pipe area A.

In fact, the Strouhal number is found to be a function of the Reynolds number,
as shown in Figure 4.21. To estimate the Strouhal-Reynolds-number depen-
dence for the triangular vortex-shedding device of Figure 4.20, experiments as

Fig. 4.21. Strouhal-Reynolds-number dependence of vortex shedding
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well as numerical simulations have been performed. The decay of the Strouhal
number with increasing Reynolds number is theoretically confirmed by the
stability analysis of local perturbations.

A vortex flow meter as commercial available was investigated to produce ex-
perimental data directly comparable with numerical simulations. For the tests
a flow meter of nominal diameter DN150 was used. Figure 4.22 shows the ge-
ometry of the experimental and numerical set up, with the triangular vortex-
shedding device and the paddle for measuring the shedding frequency.

The vortex-sensing element is a paddle-shaped device mounted in an opening
of the blunt body close the the pipe wall. It senses the pressure fluctuations
at the trailing edge of the blunt body caused by the alternating flow sepa-
ration. The paddle is held by a membrane sealing the pipe. At the opposite
side (outside the flow) a cylinder is attached to the membrane. The cylinder
performs the same movement as the paddle as it is moved by the pressure fluc-
tuations. The cylinder is embedded in two semicircular shells but separated
by a small gap, forming a capacitor. A charge amplifier amplifies the charge
of the capacity.

To validate the numerical model for the calculation of the stability analysis
of the time-averaged basic flow Ū0

i , the results of numerical simulation were
compared with the results of measurements. For this purpose an experimental
rig was build. The validation measurements were performed for a geometrically
similar (d/D = 0.27) but smaller flow meter owing to restrictions in laboratory
space. The experiment fluid was air at ambient pressure and temperature.
The measurements were done in a Reynolds number range of 1 · 104 < Red <
2.8 · 104. The necessary pressure was provided by a radial flow pump. The
mass flow through the pipe was measured using an impeller flow meter. The
shedding frequency was evaluated from the raw data of the vortex-shedding
flow meter.

Fig. 4.22. Geometry of experimental set up
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simulation (accuracy +/− 2%)
experiment (accuracy +/− 5%)

Fig. 4.23. Results of the validation

Figure 4.23 shows the comparison between the measured and the simulated
Strouhal number over the Reynolds number. There is very good agreement in
the perfectly linear Str-Re relation over the measurement range with a slight
offset, which is within the experimental uncertainty.

The numerical simulations reveal a complex flow structure around and behind
the blunt body (see Figure 4.24). At the junction of the blunt body with
the pipe wall, a horseshoe vortex can be detected. The size of it depends on
the Reynolds number. In the center plane of the blunt body, periodic vortex
shedding similar to the structure of the von Kármán vortex street occurs.
Towards the upper and lower pipe walls the influence of the horseshoe vortex
and the smaller distance to the side wall change the flow characteristics and
create a complex periodic three-dimensional vortex-shedding structure. Figure
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Fig. 4.24. Three-dimensional flow in the vortex-shedding device at 4 time steps of
one period T0
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4.24 shows the periodic three-dimensional flow structure by visualization of
the isovolume of the vorticity.

In contrast to Figure 4.10 showing the von Kármán vortex street, in which
1/Str is plotted, the results of the numerical simulation show an increase of
the Strouhal number with decreasing Reynolds number, starting at a Reynolds
number of Red = 4800. Figure 4.25 shows the Strouhal-Reynolds number
dependence determined by the numerical flow simulation in comparison with
the results of the stability analysis. Additionally the experimental results are
displayed in the same illustration.

Figure 4.25 shows an increase of the Strouhal number for small Reynolds
numbers in the simulations. The same tendency can be observed in the ex-
perimental data. The absolute discrepancy arises from the tolerances in the
geometry of the blunt body in the experimental set up.

The increase of the Strouhal number for small Reynolds numbers is also con-
firmed by the results of the stability analysis. Differences in the absolute val-
ues of the Strouhal numbers for higher Reynolds numbers are due to the
constraints of the stability analysis of local perturbations with regard to the
assumed parallel flow condition of the classical Orr-Sommerfeld stability anal-
ysis of Section 3.2. In order to reconcile the absolute values of the Strouhal
number with the values from experiment and simulation, a stability theory
calculation with the commercial software packet COMSOL is necessary.

experimental data
stability analysis
simulation

Fig. 4.25. Comparison between the Strouhal numbers determined by the numerical
flow simulation and by the stability analysis
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4.3 Resonator

Fluid-mechanical resonators are basically absolutely unstable because of the
feedback. This is the case for an aeroacoustic resonator between two di-
aphragms in a pipe flow and a fluidic oscillator applied as a fan nozzle for
cleaning the windshields of cars.

4.3.1 Double-Diaphragm Resonator

The double-diaphragm resonator in a pipe flow (Figure 3.20) has already been
used in Section 3.3 to verify the software for the flow calculation and to local-
ize the source of acoustic noise in the resonator. The reduction of aeroacoustic
noise emission plays a major role in modern product development processes.
In particular, aviation tasks are focused on the difficulty of aeroacoustic prop-
agation owing to an increasing demand for passenger comfort and protection
of the environment. Reynolds-averaged Navier-Stokes (RANS) approaches, as
decribed in Section 3.1, were developed in order to determine source term dis-
tributions on the basis of K-ε turbulence models and synthetic energy spectra.
However, in order to describe the real sound propagation, a direct resolution
of fluctuation terms must be taken into account. Since the acoustic field is
determined by the large turbulent scales, detached eddy simulations (DES)
can be applied for aeroacoustic investigations.

In accordance with the publication of S. Höttges et al. 2010, on the basis of
the classical wave equation with source terms, three source mechanisms for
sound can be distinguished:

Monopole: fluctuation of pressure due to pulsating mass flux
Dipole: fluctuation of pressure due to change of forces over time
Quadrupole: fluctuation of pressure due to turbulence

Based on Lilley’s modifications of source terms, terms describing the interac-
tion of flow and sound-field convection and refraction are moved beside the
wave operator. Therefore the right-hand side of equation (4.7) contains no
terms with contribution to propagation but only source terms formulated for
shear-layer dominant flow

d

dt

[
d2Π

dt2
− ∂

∂xi

(
a2 ∂Π

∂xj

)]
+ 2

∂uj

∂xi

∂
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(
a2 ∂Π
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)
= − 2

∂uj

∂xi

∂uk

∂xj

∂ui
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A

+Ψ, (4.7)

where
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Π =
1

κ
· ln

(
p

p ref

)
. (4.9)

and

A: effects of fluctuation and shear layer
B: effects of fluid viscosity
C: effects of entropy fluctuations

For flows with high Reynolds numbers, the effect of fluid viscosity can be
neglected. The fluctuation of entropy can also be neglected as long as neither
heat transfer nor combustion are taken into account. The remaining source
term A can be further divided using a linear perturbation approach for ui

that is similar to Reynolds decomposition.

Assuming quasi-steady flow of an incompressible fluid, the source term A is
further simplified:

A = −2
∂u′j
∂xi

∂u′k
∂xj

∂u′i
∂xk

. (4.10)

The velocity fluctuations are obtained from the turbulent flow simulation using
a synthetic turbulence method.

The investigation of mean properties of the turbulent flow and the derived
fluctuating components already provides an insight into the source regions for
shear-layer dominant noise. For an accurate prediction of noise in the double-
diaphragm resonator, however, an investigation of unsteady flow properties is
mandatory. In order to obtain accurate noice prediction, the detached eddy
simulation (DES) method was chosen. This approach is reasonable since the
acoustic behavior is dominated by large-scale turbulence which is directly
resolved.

Basically all eddy-viscosity models can be adapted for DES use. In this work
a modified K-ε model is utilized. Here the dissipative source term D = ρε is
replaced by an expression containing a characteristic length l̃:

D = ρ · k3/2

l̃
. (4.11)

The turbulence model used acts either as the original RANS model or as a
DES sub-gridscale model, depending on the distance from the wall and the
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grid size. Hence in all areas the best method regarding accuracy and simulation
effort is used

l̃ = min

(
k3/2

ε
, CDES ·∆

)
, (4.12)

where ∆ ≡ max(∆x, ∆y, ∆z).

Validation of the aeroacoustic model is carried out using the experimental set
up shown in Figure 4.26. Air enters the domain from the left-hand side with
U = 5m/s and passes the double diaphragm device. Pressure fluctuations are
measured and detected numerically a distance 1D upstream (1) and 1D down-
stream (3) from the restrictors of the pipe, as well as in the cavity in between
(2). The distance between the two diaphragms is 1D. Figure 4.27 shows ex-
perimental and calculated frequency spectra for microphone position 2 only in
order to reduce the amount of information given. Microphone positions 1 and
3 behave accordingly, so the major simulation outcomes can be concentrated
on microphone position 2 which is, as expected, the most interesting location
owing to diaphragm resonator effects. The spectra show the dominant res-
onator frequency at f = 550Hz both in experiment and with the aeroacoustic
model of the unsteady simulation calculation.

At f = 320Hz a further low frequency resonance frequency occurs. The
high-frequency oscillations are replaced by the shear layers caused by the
diaphragms, where the tonal component of the diaphragm resonator domi-
nates. In addition to the spectra, Figure 4.28 shows the steady field of the
aeroacoustic sources whose time-averaged velocity profile Ū0

i is used for the
stability analysis of local perturbations, as well as snapshots of the unsteady
distributions of the velocity magnitude, dissipation rate and turbulent kinetic
energy in the mid section of the double-diaphragm resonator.

With the experimental and numerically validated spectra of Figure 4.27, in

1 2 3

Fig. 4.26. Experimental set up and flow simulation of the double-diaphragm res-
onator
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addition to the stability analysis, this aeroacoustic development tool can be
used to control the tonal and shear-layer frequencies through suitable geomet-
rical shaping of resonators, so that such frequencies are no longer irritating
for the human ear. The air conditioning of the cockpit and the cabin of the
new generation of Airbus airplanes were designed using the methods described
here.

4.3.2 Fluidic Oscillator

The fluidic oscillator combines the absolutely unstable fluid-mechanical res-
onator with circuit technology in order to realise analogue and digital switch-
ing for measuring and control tasks. The area of application extends from
measuring technology to medical technology, to switching mechanisms for
aerospace engineering. With the rapid development and increasing miniatur-
ization of electronic components, however, it is electronics that has become
established. While logic switches made of several fluidic components have been
almost completely superseded because of their high energy requirements, in-
dividual fluidic components are widely applied until today.

As fluidic components can do without moving parts they are very robust
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Fig. 4.27. Power spectral density distributions
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and reliable. They can be used in regimes in which electronic components
reach their limits of application. Fluidic components can be applied in extreme
environmental conditions, such as at high temperatures, in electromagnetic
radiation, strong magnetic fields, radioactivity, aggresive media and at high
accelerations. A further classical area of application is in measuring technology,
for example for measuring flow rates or temperatures.

In recent years interest has been renewed in fluidic components. Possibilities
for application of fluidic oscillators have been tested in flow control, to reduce
or avoid separation regions, to avoid resonance noise in the flow past cavities,
to improve combustion processes or for efficient cooling of turbine blades or
electronic components.

The main area of application of fluidic components at present is in the car
industry as nozzles for cleaning windshields. A fluidic oscillator used as a fan
nozzle is currently used in most cars. In such fan nozzles, a flat distribution of
water is sprayed onto the windshield with an automatically oscillating point
jet. The motion of the jet is achieved only by suitable shaping of the nozzle ge-
ometry and of the fluid-mechanical resonator, so that no moving components
or external sources of energy are necessary. In comparison to standard nozzles,
the advantage here is the considerably lower requirement for cleaning agents
combined with a considerably large wetting area on the front windshield, as

aeroacoustic sources

dissipation rate

turbulent kinetic energy

velocity magnitude

Fig. 4.28. Flow simulation of the double-diaphragm resonator

86



well as higher stability of the jet against head-wind effects. If the Reynolds
number in the fan nozzle falls below a critical Reynolds number at low ex-
ternal temperatures, the oscillation of the jet is disrupted and the cleaning
agent leaves the nozzle as a compact point jet. Particularly in winter at low
temperatures, and thus higher viscosity of the cleaning agent, this leads to
insufficient cleaning efficiency on the windshield.

In this case stability theory with determination of the critical Reynolds num-
ber can help to shape the feedback of the fan resonator so that it remains
functional even at low temperatures.

Figure 4.29 shows the geometrical arrangement of the fan nozzle with the
resonator volume and the fluidic feedback (S. Höttges 2010). The feed line
of the cleaning agent into the fan nozzle is from below through a circular
opening. After a right-angled deviation this connects to convergent intake
region, which terminates with a narrow cross-section. The adjacent resonator
chamber consists of a continuously divergent region, a region with constant
chamber width and a second divergent region. On both sides of the front face
of the main chamber are beam splitters. These divert a part of the oscillating
jet and lead it back through the feedback. Via the control input, the fed back
medium is added to the main jet perpendicular to the direction of flow. Most
of the cleaning agent departs the main chamber via the outlet opening. The
applicability at low temperatures is achieved by the linearly increasing depth
of the resonator chamber donwstream from the crosspoint. It is shaped so that
even at relatively high viscosities the oscillation of the jet is ensured.

Calculation of the oscillating flow was carried out using the commercial soft-

resonator

feed backinlet

H

beam splitter

nozzle

Fig. 4.29. Geometry of the fan nozzle
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ware described in Section 3.1. The result of the simulation calculation is shown
in Figure 4.30 for one cycle of oscillation. At each point in time the projection
of the three-dimensional streamlines in longitudinal section of the resonator
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Fig. 4.30. Flow simulation
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and the nozzle is shown, where the magnitude of the velocity is color coded. In
addition, at each point in time the same section through jet of cleaning agent
is shown in the nozzle outlet and in the adjoining exit volume as iso-surfaces
of constant water-ethanol concentration.

At the first point in time, the lower vortex in the resonator is dominant and
the main jet is deviated upwards. At the exit from the nozzle the jet has
a vanishing velocity in the z-direction. Because of its inertia, the main jet is
curved in the exit volume. Later the lower vortex moves further to the right to
the front limits of the main chamber and increases further in size. This causes
the main jet in the main chamber to be deviated further upwards. Following
this a part of the main jet is diverted by a beam splitter placed at the front face
of the main chamber and fed back via the upper feedback line. At the interface
between the main chamber and the feedback line a vortex is induced which,
however, does not contribute to the functionality of the nozzle and can be
avoided by suitable shaping of the geometry in this area. The volume flux via
the upper feedback line increases with increasing deviation of the main jet and,
in the second picture, it reaches its maximum. As a consequence of this the
upper separation region grows because of the continuous inflow. The jet outside
the nozzle is now in its lower end position. As the backflow is maintained,
the upper vortex in the main chamber increases further and moves to the
right in the main chamber, while the lower vortex is increasingly dissipated.
Through the growth of the upper vortex the jet in the main chamber is now
deviated further downwards. Because of the curvature of the jet, and through
the overflow of the side bulge, a small vortex arises already at the start of the
main chamber. Outside the nozzle the jet is still in its lower end position.

In the third picture the jet in the main chamber is curved so far downwards,
because of the growing upper vortex, that the jet now departs its lower end
position outside the fan nozzle. Then the upper vortex grows further and
moves in the direction of the front face of the main chamber. The main jet in
the main chamber is deviated so far downwards that a part of the main jet is
diverted by the beam splitter and the backflow starts via the lower feedback
line. The volume flux through the feedback fline then increases, causing the
lower vortex to increase and the main jet in the lower part of the main chamber
is already deviated upwards. In the fourth picture the jet outside the fan
nozzle reaches its upper end position. As the flow in the lower feedback line
is maintained, the lower vortex increases further and moves to the right in
the main chamber. With increasing size of the lower vortex, the jet in the
main chamber is deviated further upwards. The vortex that will later cause
the deviation on the opposite side now forms on the upper side in the region of
the side bulge of the main chamber. The lower vortex has grown so much that
the jet outside the nozzle leaves its upper end position and moves downwards,
so that the cycle of oscillation can begin again.
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Fig. 4.31. Time dependence of the velocity, ReH = 252

With the time-averaged velocity profile, the stability analysis to determine
the critical Reynolds number is carried out using the commerical software
COMSOL. Figure 4.31 shows the calculated basic solution U0

3 of the oscillator
at the Reynolds number ReH = 252 formed with the height of the intake
(see Figure 4.29). Small disturbances grow exponentially starting from the
quasi-steady or time-averaged basic state. The region of constant exponential

velocity magnitude (m/s) pressure (Pa)

u  (m/s)u  (m/s)
1 3

Fig. 4.32. Eigenfunctions of the eigenvalue with the smallest real part
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amplification is called the linear growth region.

In the transition region B the exponential growth of the perturbations is
nonlinearly bounded. These gain importance with increasing amplitude and
eventually lead to the formation of self-perpetuating oscillation of constant
maximum amplitude in the fan nozzle in the nonlinear saturation state. The
periodic solution of the underlying nonlinear system of equations is also called
a limit cycle. The amplitude of the limit cycle in the fan nozzle increases with
increasing Reynolds number.

Figure 4.32 shows the eigenfunctions of the stability analysis and the smallest
real part. The eigenfunctions and the eigenvalues are both complex, and only
shown for one particular phase. As the real part is negative, small perturba-
tions are amplified in time. The basic flow is therefore unstable at ReH = 252.

To determine the critical Reynolds number of the oscillator, the eigenvalues
and eigenfunctions are determined at different intake pressures of the fan noz-
zle. The form of the eigenfunction of the eigenvalue with the smallest real part
does not change. Only the amplitude of the eigenfunction deviates from the
values shown in Figure 4.32 with variation in the pressure and therefore in the
Reynolds number.

The distribution of the resulting eigenvalues for various Reynolds numbers is
shown in Figure 4.33 in the complex plane. The eigenvalues are symmetric with
respect to the x axis and therefore form a complex conjugate pair. It can also be
seen that for increasing Reynolds number the eigenvalues with the smallest real
part are shifted to the left. This means that the solutions become ever more
unstable with increasing Reynolds number. The perturbations superimposed
on the basic state decay as long as the real part of the eigenvalue is positive.
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.
.
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.
.

Fig. 4.33. Change in eigenvalue with variation of the Reynolds number
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The basic state is therefore stable.

The change in sign in the real part of the eigenvalue is characteristic of the
transition from the stable to the unstable state. The root of the real part
and thus the rate of amplification can be determined from the results of the
stability analysis. In accordance with Figure 4.33 the change in sign of the
real part of the eigenvalue lies at the critical Reynolds number Recrit = 159.6.

Figure 4.34 shows a comparison of the frequencies of the fan nozzle determined
with the stability analysis and flow simulation in the basic state for different
intake velociies UH in the resonator. Very good agreement is found for the
results of the stability analysis both for the quasi-steady flow as well as for
the time-averaged basic flow, where the maximum frequency in the linear
growth region determined from the unsteady flow simulations can easily be
seen. The change in the frequency also agrees with a validation experiment
carried out.

The linear change in the frequency corresponds to the constant Strouhal num-
ber of Figure 4.23 of the wake flow of a vortex damming body as well as the
perturbation cylinder experiment of Sections 1.1 and 3.4. This confirms the
statement made at the start of this chapter that the stability theory con-
cept of absolute instability can also be used for flow control and to design
fluid-mechanical resonators.
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flow simulation

stability analysis (quasi−steady)

Fig. 4.34. Comparison of frequencies
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5 Conclusions

Based on the Prandtl memorial lecture H. Oertel 1994, the stability-theory
concept of absolute instability was developed into efficient flow control for
laminar and turbulent flows. Through the stability theory of local perturba-
tions the flow regions can be determined in which temporally and spatially
amplified perturbations propagate, and this provides the opportunity of con-
trolling the flow in these convectively or absolutely unstable regions through
suitable shaping, surface properties, perturbation bodies, suction or blowing.
In addition to calculation of the flow and experiments in test facilities, a
stability-theory development tool for flow control based on commercial fluid-
mechanical software is also available. The mathematical methods of Laplace
transform and Fourier transform of wave packets that it uses were developed
long ago, but for their first time their application to perturbation differential
equations of laminar and turbulent flows has led to a classification of viscous
flows that enables efficient flow control.

With the examples of the von Kármán vortex street in the wake of a cylinder
of a stagnation body in a pipe flow for measuring the volume flux, the flow past
a car, and the laminar–turbulent transition in the three-dimensional transonic
boundary layer of a wing, we have demonstrated how the drag may be reduced
by eliminating the absolutely unstable regions in the flow field. Based on the
wave-packet perturbation calculation, a design criterion for transonic laminar
wings was presented. This restricts the angle of sweep of the transonic wing
and is based on avoiding the onset of the convectively unstable cross-flow
waves in the three-dimensional boundary layer on the wing. The stability-
theory analysis of fluid-mechanical resonators extends the range of application
to aeroacoustic design of air conditioning sytems of cars and airplanes. The
tonal frequencies of the systems of piping can be controlled through suitable
selection of the geometry to enable low noise air conditioning systems.

The theoretical basis of the stability theory of local perturbations was de-
veloped already in the 1990s. However, its application to practical three-
dimensional turbulent flows became possible only in the last 15 years through
the availability of commercial fluid-mechanical software.
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H. Oertel. Strömungsmechanik Software KAPPA für Ausbildung, Forschung
und Industrieprojekte. Bericht 96/2, Institut für Strömungslehre, Univer-
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