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Abstract

Model-Based Performance Prediction (MBPP, [BDIS0O4a]) is a software engineering
discipline which systematically deals with the evaluation of software performance.
MBPP’s central idea is to predict the performance of a software system based on
performance models. MBPP can be applied at design-time to avoid bottlenecks when
designing a software architecture but also for existing software systems. For existing
software systems, one is interested in scalability analysis and resource sizing without
actually buying expensive hardware and setting up the execution environment for
each possible execution scenario. Additionally, when extending an existing software
system by a new component, software performance models allow to estimate the
impact of the extension and help avoiding the introduction of bottlenecks. Consider
the example of a legacy accounting application: When extending such an application
by a new reporting component, it should be estimated how the overall performance
(e.g. response time) of the system is affected.

Applying MBPP requires the presence of up-to-date software performance mo-
dels. To reason on software architectures, these models must capture the architecture
itself as well as the behaviour of each architecture component. Unfortunately, cur-
rent reverse engineering techniques often aim at the static software architecture and
understanding of software systems [CZvD™09]. No approach reverse engineers soft-
ware performance models at an architectural level which are required to enable soft-
ware performance engineering. Thus, currently performance models must be created
manually when aiming at the support of design decisions for software architectures.

The contribution of this thesis is a new integrated reverse engineering approach
for the reconstruction of parameterised software component architectures and soft-
ware component behaviour models which can serve as software performance models
due to the execution semantics of the target model. This approach allows reverse
engineering behaviour models for each component’s service from code using static,
dynamic, and statistical analysis techniques. For performance prediction, the Palla-
dio Component Model Approach [BKR09] is used.

The new reverse engineering approach reconstructs static architecture information
(components, interfaces, and connectors) as well as a performance behaviour mo-
del capturing control and data flow for each provided service of a component. The
reverse engineered models are semantically rich so they can serve for performance
simulation approaches without requiring manual complements. Since these models
are highly parameterised (avoiding constants) they not only help understanding the
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current state of a software system, the reverse engineered models help planning and
changing a software system in an efficient way at the model level. The reverse en-
gineered models support a large variety of design decisions at the model level with
respect to their performance impact: architectural refactorings, exchanging compo-
nents, extensions of legacy software systems (e.g. introducing new components),
performance optimisations (e.g. introducing caches or distribution), sizing of the
hardware environment (e.g. required hardware to support 100 concurrent users for
an existing application), and scalability analysis (up to how much load will an appli-
cation scale until bottlenecks become crucial).

For reverse engineering of software component architectures, the so-called “So-
MoX” approach has been developed. It employs various source code metrics and
combines them in a flexible way into detection strategies for architectural elements.
At the same time, the detection strategies respect interdependencies among metrics.
A graph-based hierarchical clustering approach then creates components and com-
posite components including their interfaces and connectors. Behaviour models are
reverse engineered by an approach (“Beagle”) combining static and dynamic source
code analysis. The system under investigation is therefore executed by a test driver
and monitored. Using the monitoring results as guide, a genetic programming ap-
proach combines results from static, dynamic, and statistical analysis to create the
behaviour model which out-performs the results of each single analysis approach. To
back up any reverse engineering results, trace models allow to identify the origins of
each result model element.

Unlike existing approaches, the reverse engineered models make no assumptions
on either of the following so-called contexts of a software system or component:

e Usage context. Neither the number of concurrent users nor their interaction
with the software system or parameters are assumed to be fixed.

e Assembly context. Neither the caller nor the callee of a component can ge-
nerally be known to a component. Accordingly, no fixed connection to other
components is assumed for a component.

e Allocation context. For a component it cannot be known at design time, in
which hardware and software environment it will be executed. For example,
which version of a virtual machine, middleware, or processor serve for execu-
tion is not fixed. This is also reflected in the reverse engineered models.

Additionally, existing approaches either focus on reverse engineering the architecture
of a software system following a relaxed definition of a software component which
contradicts use within simulation approaches (e.g. [SAGT06, YGST04, RLvV06])
with focus on understanding of software systems [CZvD"09] or deal with reverse
engineering of not fully parameterised behaviour models (e.g. [HMWR99, IWF07,
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CWO00, ZWL08, WHSBO01]). No approach converges architecture and behaviour mo-
del reverse engineering. Consequently, none of the above design decisions is suppor-
ted.

The approach presented in this thesis has been successfully validated in a total
of 11 industrial case studies and reference applications, including among others Co-
CoME, Palladio FileShare, SPECjvm2008, and SPECjbb2005 [CKKO08, KKR10].
Models were reverse engineered with an overall precision of 78% and a recall of
89% when compared to reference architecture. Performance predictions based on
the reverse engineered models deviated 12% in average and 30% in the worst case
from measurements of the systems.
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Zusammenfassung

Die modellbasierte Performance-Vorhersage (MBPP, [BDIS04a]) ist eine Software-
Ingenieursdisziplin, die sich mit der systematischen Evaluation von Software-
Leistungsfahigkeit beschiftigt. Die zentrale Idee von MBPP ist die Vorhersage
der zu erwartenden Performance eines Software-Systems auf der Basis von
Performance-Modellen. MBPP kann bereits zur Entwurfszeit eingesetzt werden,
um Flaschenhilse beim Entwurf einer Software-Architektur zu verhindern oder um
Flaschenhilse bestehender Software-Systeme auszurdumen. Im Falle existierender
Software-Systeme mochte man Skalierbarkeitsanalysen durchfiihren und Resour-
cendimensionierungsfragestellungen beantworten ohne die zur Ausfiihrung fiir jedes
Szenario benétigte teure Hardware tatsidchlich kaufen oder die Ausfiihrungsumge-
bung aufsetzen zu miissen. Software-Performance-Modelle erlauben es daneben
zu untersuchen, wie sich die Erweiterung eines Software-Systems um eine neue
Komponente auf die Gesamtarchitektur auswirkt, ob dabei eventuell Flaschenhélse
eingefiihrt werden oder sich potentielle Flaschenhilse negativ auf die Performance
auswirken wiirden. Soll beispielsweise eine bestehende Buchhaltungsanwendung
um eine neue Berichtskomponente erweitert werden, sollte zunichst untersucht
werden, wie sich die neue Komponente auf die Gesamt-Performance (bspw.
Antwortzeitverhalten) auswirkt.

Um MBPP-Techniken anzuwenden, ist es notwendig, dass aktuelle Software-
Performance-Modelle vorliegen. Um Entwurfsentscheidungen auf der Ebene
von Software-Architekturen abwidgen zu konnen, miissen Software-Performance-
Modelle die Architektur selbst sowie das Verhalten einer jeden Komponente der
Architektur erfassen.  Derzeit verfiigbare Reverse-Engineering-Techniken, die
Modelle aus Programmcode erzeugen konnen, konzentrieren sich auf die sta-
tische Software-Architektur und die Unterstiitzung von Architekturverstindnis von
Software-Systemen [CZvD'09]. Es gibt keinen Reverse-Engineering-Ansatz, der
Software-Performance-Modelle auf der Architekturebene erzeugt, bei dem es die
rekonstruierten Modelle erlauben Software-Performance-Engineering-Ansdtze auf
diesen Modellen anzuwenden. Daher werden Software-Performance-Modelle derzeit
manuell erstellt, wenn es um Entwurfsentscheidungen fiir Software-Architekturen
geht.

Der Beitrag dieser Arbeit ist ein neuartiger integrierter Reverse-Engineering-
Ansatz fiir die Rekonstruktion von parametrisierten komponentenbasierten Software-
Architekturen und Verhaltensmodellen fiir Software-Komponenten. Das Zielmodell
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besitzt Ausfithrungssemantik, um fiir Software-Performance-Vorhersagen dienen zu
konnen. Der entwickelte Ansatz erlaubt das Reverse-Engineering der Dienste von
Komponenten aus Programmcode auf der Grundlage von statischer, dynamischer
und statistischer Analysetechniken. Zur Performance-Vorhersage setzt der Ansatz
auf das Palladio Komponentenmodell [BKR09].

Der neu entwickelte Reverse-Engineering-Ansatz rekonstruiert statische Archi-
tekturinformationen (Komponenten, Schnittstellen und Konnektoren) sowie ein
Performance-Modell des Verhaltens von Komponenten, das den Kontroll- und
Datenfluss eines jeden angebotenen Komponentendienstes enthélt. Die rekons-
truierten Modelle sind semantisch derart reichhaltig, dass sie fiir Performance-
Simulationsansdtze dienen, ohne, dass manuelle Ergédnzungen notwendig sind. Da
die rekonstruierten Modelle hochgradig parametrisiert sind (und dabei Konstanten
im Modell vermeiden), konnen Sie nicht nur beim Verstehen des aktuellen Zustands
eines Software-Systems dienen, sondern auch bei der Planung und Anderungen
eines Software-Systems helfen. Die Analyse kann dank der Parametrisierung der
Modelle auf der Modellebene erfolgen. Die rekonstruierten Modelle unterstiitzen
eine Vielzahl von Entwurfsentscheidungen auf der Modellebene in Bezug auf ihre
Performance-Auswirkung: Architekturrefaktorisierung, Austausch von Kompo-
nenten, Erweiterung von Altsystemen (bspw. Einfilhrung neuer Komponenten),
Performance-Optimierung (bspw. Einfiihrung von Puffern oder Verteilung), Bemes-
sung von Ausfithrungsumgebungen (bspw. benétigte Hardware um 100 parallele
Nutzer bei einer bestehenden Applikation zu unterstiitzen) und Skalierbarkeitsa-
nalyse (bspw. wie viel Last kann eine Anwendung maximal verarbeiten bevor
Performance-Flaschenhilse kritisch werden).

Zur Rekonstruktion von komponentenbasierten Software-Architekturen wurde der
sogenannte SoMoX-Ansatz entwickelt. Er verwendet eine Vielzahl von Quellco-
demetriken und kombiniert diese in einer flexiblen Weise zu Erkennungsstrategien
fiir Software-Architekturelemente. Die Erkennungsstrategien beriicksichtigen dabei
auch Abhingigkeiten zwischen Metriken. Ein graph-basierter hierarchischer Ansatz
zur Analyse von Biindeln dient dabei der Erstellung von Komponenten und zusam-
mengesetzten Komponenten inklusive ihrer Schnittstellen und Konnektoren. Verhal-
tensmodelle von Komponentendiensten werden vom sogenannten Beagle-Ansatz re-
konstruiert, der statische und dynamische Quellcodeanalyse kombiniert. Die unter-
suchten Systeme werden dabei von einem Testtreiber ausgefiihrt und beobachtet. Mit
den beobachteten Ergebnissen als Referenz kombiniert dann ein Ansatz zur gene-
tischen Programmierung aus statischer, dynamischer und statistischer Analyse ein
Verhaltensmodell, das die Qualitét eines jeden einzelnen Ansatzes iibertrifft. Zur
Vervollstindigung der Reverse-Engineering-Ergebnisse wird ein Modell zur Ablauf-
verfolgung (Tracing) erstellt, das die Riickverfolgung aller rekonstruierten Architek-
turelemente auf ihren Ursprung im Programmcode ermoglicht.
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Im Gegensatz zu bestehenden Ansidtzen, machen die rekonstruierten Modelle des
entwickelten Reverse-Engineering-Ansatzes keine Annahmen iiber einen der folgen-
den sogenannten Kontexte eines Software-Systems oder einer Komponente:

e Benutzungskontext. Weder die Anzahl der gleichzeitigen Benutzer noch ihre
Art der Interaktion mit dem Software-System oder die verwendeten Aufrufpa-
rameter werden als fest angenommen.

e Verbindungskontext. Weder der Aufrufer noch die Aufgerufenen kdnnen ei-
ner Komponente im Allgemeinen bekannt sein. Daher werden keine festen
Verbindungen zwischen Komponenten angenommen.

e Allokationskontext. Fiir eine Komponente kann zur Entwurfszeit nicht be-
kannt sein, auf welcher Hardware- oder in welcher Software-Umgebung diese
ausgefiihrt werden wird. Zum Beispiel ist fiir eine Komponente unbekannt,
welche Version einer virtuellen Maschine, Middleware oder welcher Prozes-
sor sie zur Ausfithrung bringt. Diese Unabhingigkeit wird ebenfalls in den
rekonstruierten Modellen widergespiegelt.

Es ist festzuhalten, dass bestehende Ansitze hdufig das Reverse-Engineering von
Architekten fokussieren, die einer schwachen Komponentendefinition folgen und
damit einer Nutzung in Simulationsansitzen (fiir Software-Performance) zuwider
laufen (bspw. [SAGT06, YGST04, RLvV06]). Solche Modelle eignen sich vor
allem zum Verstehen von Software-Systemen [CZvD'09]. In anderen Fillen
sind die rekonstruierten Modelle unvollstindig parametrisierte Verhaltensmodelle
(bspw. [HMWR99, IWF07, CW00, ZWL08, WHSBO1]). Kein Ansatz fiihrt das
Reverse-Engineering von Architektur- und Verhaltensmodellen zusammen. Daher
werden die zuvor genannten Entwurfsentscheidungen auf der Architekturebene nicht
oder nur bruchstiickhaft unterstiitzt.

Der in dieser Arbeit vorgestellte Reverse-Engineering-Ansatz wurde erfol-
greich in insgesamt elf industriellen Fallstudien und Referenzapplikationen,
inklusive CoCoME, Palladio FileShare, SPECjvm2008 und SPECjbb255 validiert
[CKKO08, KKR10]. Im Vergleich mit der Referenzarchitektur dieser Systeme hatten
die rekonstruierten Modelle insgesamt eine Prézision (precision) von 78% und
einen Riickruf (recall) von 89%. Die auf den rekonstruierten Modellen basierenden
Performance-Vorhersagen wichen nur um durchschnittlich 12% — im schlechtesten
Fall um 30% von Messungen dieser Systeme ab.
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1. Introduction

The ability to design a system and predict its properties before actually implemen-
ting it is one of the core properties of any engineering discipline. Design rules, basic
principles, theoretical background, and prediction approaches help engineering disci-
plines to avoid trial-and-error cycles which would require the actual implementation
of a system in order to assess its properties. Engineering disciplines can reason on
the base of theoretical models.

Nowadays, engineering approaches are also available for software systems. Such
approaches for software systems support for example reasoning on software design at
an architectural level [WFP07a, Koz10]. These approaches rely on software models
and allow a predictable assembly of components at design time without actually de-
veloping code, deploying applications to execution environments, configuring them,
or writing integration code for the integration with existing software systems. Depen-
ding on the approach, functional and non-functional properties such as performance,
reliability, or maintainability can be estimated from models.

The remainder of this thesis focuses on performance properties of software sys-
tems which are well-supported by engineering approaches (e.g. [BKR09, BCdK07,
FNNS06, MGO00, Kou06]). These approaches enable what-if analyses of software ar-
chitectures and help answering questions in the following scenarios which are crucial
to software performance engineering [SWO02]:

1. Sizing (e.g. estimate required hardware to handle certain workload situations,
reliability after changes in usage profile, or performance on a new target plat-
form)

2. Extensions of legacy software systems (estimate quality properties of a soft-
ware after adding new components and guide design of the extension part)

3. Reusing existing components (what is the impact of using an existing com-
ponent within an application or when designing a new application from partly
existing components)

4. Design optimisation of software systems (e.g. what performance or reliability
can be expected for later implementations)

All these engineering approaches have in common that for existing or partially
existing software systems, they first need to determine the status quo — 1.e. a model

1
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representation of a software system under study. The above scenarios, which are ex-
plained in more detail in Section 1.2, become feasible with the availability of reverse
engineered software architecture performance models.

Although model-based reasoning of performance properties is becoming increasin-
gly important (cf. [WFP0O7b, BDIS04b, Koz10]), no approach exists which is able to
reverse engineer the required performance models for component-based software ar-
chitectures from code. The four above scenarios require parameterised performance
models of existing software systems in order to become feasible.

Existing reverse engineering approaches for software architectures (see [CHDPO7,
MIJS*00, TTBSO07] for an overview) aim at reverse engineering models with loose
semantics, e.g. components possess no explicit interface, have no or incomplete
connectors, support no composite structures, the models make no performance pro-
perties available for components, or the result models possess no execution seman-
tics. If such models are reverse engineered, they can help humans understanding
a software architecture but do not support software performance engineering ap-
proaches in the introduced scenarios. Furthermore, the reverse engineered architec-
tures of such approaches often possess little abstractions which makes dealing with
large applications cumbersome.

Also for behavioural models no satisfying reverse engineering approach exists.
Behaviour models of components need to be highly parameterised to reflect the chan-
ging contexts a component has to cope with: changing usage (number of users, user
interaction, varying amounts of data to be processed), changing assembly (different
components connected), and changing execution platforms (fast and slow servers)
— Section 2.6 details on component contexts. Existing approaches (e.g. [CDH"00,
Ros06]) assume all or at least one of the contexts of a component to be fixed. This
assumptions cannot hold for components which, by definition, are a subject of re-
composition and reuse.

This thesis focuses on the reverse engineering of component-based software ar-
chitectures for the design and evaluation of performance properties in early deve-
lopment phases. The reverse engineering approach presented in this thesis enables
the application of model-based prediction techniques to real world software systems
by overcoming the need for manual reverse engineering. It provides an integrated
method for:

e Reconstruction of the static architectures and behaviour specification of
component-based software systems and to

e reverse engineer highly parameterised and abstracted performance models
which enable reasoning in sizing, legacy software extension, reuse, and design
optimisation scenarios.

The core contributions are automated approaches for (i) architectural reverse en-
gineering, (ii) reverse engineering behavioural models, iii) reconstruction of model
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parameterisation (control and data flow), iv) creation of performance abstractions
of software systems, and v) an integrating approximation approach for parametric
dependencies in models (combining static, dynamic, and statistical analysis). The
approach combines static, dynamic, and statistical analysis techniques and machine
learning for reverse engineering.

This thesis introduces an integrated approach that deals with reverse engineering of
component-based architectures and also reverse engineers behavioural models from
code. Source and binary code (for Java: Bytecode) are supported as sources. The
Palladio Component Model (PCM) [BKRO09] serves as output model as it allows
model-based reasoning on software architectures and supports the four introduced
scenarios for performance prediction.

Section 1.5 highlights the contributions and goals of this thesis in more detail.
Section 1.1 pursues the motivation.

1.1. Motivation

The previous section already introduced the motivation to enable performance pre-
dictions for component-based software systems, and the four scenarios on sizing,
extension of legacy software systems, reuse of components, and design optimisation
(details in Section 1.2) which are desirable for the engineering of software systems.

Whenever different design alternatives of a software system are being analysed,
where the software system at least partially comprises existing software, the exis-
ting source code must first be translated into a performance model. This model then
serves as input to performance prediction approaches like Palladio [BKR09] which
allow the evaluation of design alternatives or of the performance scenarios from the
introduction (bullets 1 to 4 in Section 1). The creation of performance models can
either be performed manually or automated with support of reverse engineering ap-
proaches.

Only small portions of software development projects are greenfield projects which
do not depend on any existing software system. Existing software systems conse-
quently must be captured by models when aiming at the analysis of the performance
of software systems. As models usually grow with the size of applications, it is cum-
bersome, expensive, and error-prone to manually reverse engineer models for today’s
software systems which comprise hundreds of thousand of lines of code.

Manually reverse engineering software architectures and performance models
implies large effort, error-proneness, potential modelling inconsistencies, over-
simplification to handle large software systems, and a lack of parameterisation since
parameterisation results in additional effort. With the approach which is developed
in this thesis, manual reverse engineering can be replaced by an automated approach
which addresses all of these issues. Section 1.4 addresses the issues in more detail.
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1.1.1. Advantages of model-based Approaches

The proposed approach reverse engineers component-based software performance
models of existing software from code. Operating on the base of models instead of
existing code of software systems helps avoiding efforts in the following areas:

e Estimating the impact of design decisions does not require implementing the
design decisions in code. Design alternatives can be modeled and then — based
on the model — be evaluated. Thus, it becomes easy to enable what-if analyses
of design alternatives.

e No glue code for integration purposes is required. At the model level, no
configuration and implementation effort is required for evaluating single de-
sign alternatives which incorporate existing software components.

e No deployment effort is required at the model level beyond assigning software
to hardware. For instance, no deployment descriptors (such as EJB deploy-
ment descriptors) are required and the cumbersome task of setting up execu-
tion environments (e.g. application servers and databases) is not needed.

e To answer sizing questions or analyse scalability of a software architecture,
it is not necessary to actually buy hardware. Instead, models of hardware are
sufficient to predict the impact of hardware.

e Some scalability and sizing questions cannot be answered in practice. For
example, it is infeasible to stress a large distributed execution environment (no-
wadays sometimes called “cloud”) at 100%, as hardware resources are really
huge and require an equivalent amount of load generators to stress the servers.
Furthermore, servers are globally distributed and not fully accessible from a
single location (requests are answered locally). Thus, only models can be used
in these cases to estimate scalability.

Again, in all of the above cases, models of existing software architectures are requi-
red. The next two sections introduce further advantages of having reverse engineering
approaches for software performance models available.

1.1.2. Software Architectures for Performance Predictions

Reverse engineering only the static architecture of a software system is not sufficient
to predict Quality of Service (QoS, e.g. reliability or performance) properties of that
software system. QoS prediction only become feasible if performance specifications
of the behaviour of components of the architecture are available. If no behaviour
specifications are available, it would be unknown what happens inside of components
when calling a certain provided service.
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If performance specifications of the behaviour are available, performance pre-
diction approaches like Palladio [BKR09], KLAPER [GMSO05], or SOFA [BHPO06,
BDHT"08b] can be applied. Then, for a given component-based software architec-
ture, performance metrics like response time, execution time, or throughput can be
predicted based on models which capture the full software architecture.

Since the reverse engineering approach which is presented in this thesis aims at
the support of performance predictions for existing software systems, it targets full
software architectures which subsume the static architecture, a behavioural model for
components, and performance annotations for the behavioural model. Hereafter, the
“full” software architecture will simply be referred to as “software architecture”.

1.1.3. Automated Reverse Engineering

Reverse engineering approaches can be classified as either quasi-manual, semi-
automatic, or quasi-automatic (see classification by [PDP*07, DP09]). Obviously,
an automated reverse engineering approach is appreciated for a number of reasons:

e Increased productivity can be expected due to less effort for single reverse
engineering tasks

e Reverse engineering can be expected to be less error-prone than manual re-
verse engineering since sporadic errors typically do not occur in automation.

e Increased precisions can be expected as even for large systems all necessary
model details can be captured by automation: Reverse engineering models are
not rough estimates of humans but calculated.

e Automated reverse engineering can also reduce complexity if built-in simpli-
fication and abstraction mechanisms are made available. Then, analysing even
large and complex software systems becomes feasible.

1.1.4. Programme understanding

Through the developed approach, static architecture models and behaviour abstrac-
tions of component services become available which can help in programme unders-
tanding. Since the developed approach is going to be automated, a tight feedback
cycle between software architecture and the actual implementation can be establi-
shed.

The reverse engineering architecture models of the envisioned reverse engineering
approach can help in programme understanding for:

e existing applications that are going to be refactored. Software systems which
possibly exist for a long period of time naturally evolve. Gradually, architec-
tural erosion can take place, leading to poorly understood systems, or systems
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which do not match the requirements for maintainability for other reasons.
Before refactoring a software system it first needs to be understood.

e existing applications that are going to be enhanced. To support meaningful
enhancements of software, the existing software first should be completely
understood. Architecture documentation should actually match the software
system it describes. Once up-to-date architecture documents are available,
enhancements for the existing system can be planned.

e migration and legacy system support. For example if legacy systems need to
be integrated into new software systems, there is a need to understand the basic
architecture of legacy systems. The need for integration can originate from the
software system’s evolution where previously independent software systems
need to cooperate from a certain point in time.

For legacy systems there often is little (up-to-date) documentation available.
People involved in the development of the legacy system are no more available.
Hence, the architecture of the legacy system is not known and must first be
extracted from the code.

All the above cases require the reconstruction of software architectures from given
software systems. It can be stated that having an available up-to-date software archi-
tecture is a common problem for software development and software engineering.

1.2. Application Scenarios

The developed reverse engineering approach supports four core performance predic-
tion scenarios, which will be presented in detail in the following. Each scenarios
involves a number of sub-scenarios which the reverse engineering approach must ac-
count for. All of the scenarios require the presence of a up-to-date component-based
software performance model of an existing software system to allow the analysis of
the scenario.

1.2.1. Sizing

Figure 1.1 visualises typical sizing scenarios. Sizing is the relation between usage
of a software systems by users (which can also be other software systems) and the
resource environment (servers, network) which executes the software system. Sizing
can be further divided into the following sub-scenarios:

e Sizing of hardware: How much server infrastructure is required to support a
certain number of concurrent users (e.g. server requirements for 100 concur-
rent users)?
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VS.

(a) Resource Sizing (b) Scalability

Figure 1.1.: Sizing scenarios involve, among others, resource sizing and the sca-
lability for different usage profiles. Images sources: left server by
Craig Spurrier licensed under Creative Commons Attribution 2.5 Ge-
neric; right server (¢)Liquidlmage Fotolia.com

e Relocation of running applications: How does a business application perform
on different servers (e.g. 128 GB main memory instead of 32 GB)?

e Platform selection: Does an application perform better on application server
A or B (e.g. does a WebSphere application server perform better than a JBoss
application server for a certain software system)?

e Changes in the usage profile

— Estimate the impact of changes in the usage profile: For up to how many
concurrent users does a software system scale until bottlenecks take ef-
fect?

— Changes in user behaviour: How much will an application slow down
if users change their interaction frequency with the system or the kind
and volume of data (e.g. upload high definition videos instead of low
resolution ones)?

1.2.2. Extension of Legacy Software Systems

Only few software systems are developed from scratch. Most of today’s software
must integrate with existing software systems. The integration can take place on
different detail level: loosely via calling the existing software system or tightly by
actually changing the existing software system. Figure 1.2 illustrates the extension
of a legacy software system.

In both cases, the extension of legacy software systems should be analysed prior
to actually extending the legacy software system on the code level. If changed usage
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O_

Figure 1.2.: Extension of legacy applications

scenarios due to the extensions are not considered, the extended functionality but also
the legacy software system can suffer from poor performance. The sub-scenarios for
existing software systems are:

e Investigate the extension of legacy applications: How much will the new front
end or business case stress my legacy applications?

e Reuse of existing components: How will an existing component perform on a
new execution platform?

1.2.3. Reuse of Components

System 1
2] 2 | g ]
O A _CO_ Component A _CO_ B _C
System 2
2]
O c —C\\
\ 2 | g2 ]
$:| /}{}_ Component A _CO_ E _C
O D —(

Figure 1.3.: Component reuse

The reuse of a software component (see figure 1.3) implies changes in its contexts.
The assembly, allocation, or usage profile of a reused component change although
the component itself does not change. In the example, different components (A for
System 1; C and D for System 2) access a single Component A which is being reused
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(changing usage context). In System 1, Component A is connected to B, while in
System 2 it is connected to component E (changing assembly context). Furthermore,
the allocation of Component A could have changed between System 1 and System 2.

When reusing a component implementation, the implementation remains the same.
In the same way, the possibility of reusing a component in different contexts should
not be limited on the model level.

1.2.4. Design optimisation

O A $j—@— B\E—C

a

Settings
compress = false
profile = 1

VS.

O c E—Co— B\E—C

a

Settings
compress = true
profile = 3

Figure 1.4.: Design optimisation

When designing and engineering new software systems or new components, often
at least portions of the employed components are subject to reuse.
Examples for design optimisation scenarios are:

e Design and engineer new applications and new components: Is it worth spen-
ding 15,000 EUR for load balancing hardware or will 1,000 EUR for software
caching be sufficient?

e Bottleneck avoidance: Does a software system architecture contain a potential
bottleneck when using a non-threaded sorting component?

e Design optimisation: Which size should a SQL connection pool have to reach
optimal performance for 100 concurrent users?
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The availability of parametric performance models for existing components allows
to reasons on the quality of a new design more precisely, since the variation of expec-
ted performance values for existing components can be reduced. The availability of
reliable software performance models (due to relying on existing implementations)
of existing components helps reducing the possible design space (values must not be
purely guessed) and the likelihood to provide performance results which match the
performance of a later implementation of the software system (cf. [BecO8a]).

1.3. Target Model

The Palladio Component Model (PCM, [BKR09]) is the target model of the deve-
loped reverse engineering approach. The PCM supports the analysis of all of the
scenarios from Section 1.2, if it operates on fully parameterised models (details in
Section 2.6).

According to [Sta73], a model posseses a pragmatism which defines the goal of
a model, abstraction, and an isomorphism relationship to what is modelled. When
analysing the PCM with respect to these model properties, one can identify the model
properties which must hold to apply the PCM for the scenarios from Section 1.2.
Details of the PCM are presented in Section 2.5.

Figure 1.5 shows an example of the model and an implementation of a software
system. There are two design alternatives in the example (“Scenario A” and “Sce-
nario B”’) which are reflected in the model and in the implementation. The design
alternatives differ in the usage of the system (two versus six users), the assembly
(Component “B” versus component “C”), and the execution environment (four cores
versus two cores).

Pragmatism The aim of the PCM is the performance prediction for design alter-
natives of component-based software architectures.

Abstraction The PCM abstracts software systems to entities of component-based
software architecture (e.g. components, interfaces), the execution environment, and
the usage profile (i.e. users interaction with a software system). Furthermore, only
performance-relevant properties of such system are maintained.

Isomorphism The isomorphism is a very important aspect for reverse enginee-
ring. Changes in the implementation of a software system must be reflected in the
reverse engineered model (if not abstracted and within the pragmatism) and vice
versa changes of the software model must hold for the implementation of the soft-
ware system.
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Model

Scenario A

e

Scenario B

Implementation

Abstraction,
Isomorphism

Pragmatism,

Users: Execution interface class Al { interface class Bl { |
Smith Environment: m.f_ class A2 { IB { , | ctass 22 ¢
Meyer 4 Core } y
128 GB RAM }| class a3 { }
L

Scenario A
Users: Execution interface class Al { interface class C1 {
Smith Environment: m.f class A2 { ZCH class €2 {
Meyer 2 Core } y
Michels 64 GB RAM V| class a3 ¢ class C3 (
Tanner }"' )"'
West
Wayne
Scenario B
Legend:

Changed Behaviour e | Implementation Execution

element

&

Model

def

Artefact

Environment

Component

%User

Figure 1.5.: Example: Model pragmatism, abstraction, and isomorphism
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If in the example, the number of users of component A changes or users interact
differently between “Scenario A” and “Scenario B”, the performance implications
from the model must be reflected in the implementation and vice versa. Likewise,
changes in the execution environment and in the assembly of component A must be
isomorph between model and implementation.

The required isomorphism is a driver of parameterisation of the model which will
be further discussed in Section 2.6 and 2.7. Non-parameterised models cannot ac-
count for the isomorphism of implementation and model.

1.4. Problem Statement

This section briefly summarises the problems which can be identified for the current
state of the art in reverse engineering when aiming at support of the scenarios from
previous sections. Section 4.1 and Section 5.1 will highlight the problems specific
to the reverse engineering of static archtitectures and behavioural models. A detailed
discussion of the current state of the art is part of the related work in Section 8.

The current state of the art in reverse engineering does not properly support
component-based software architectures following a strong component definition
— which is required for the scenarios from Section 1.2. The current state of the
art lacks support for the reverse engineering of models which 1) are suitable for
performance predictions, 11) possess execution semantics, ii1) have explicit context
dependencies and thus allow third party composition at the model-level. iv) A
missing parameterisation of the reverse engineered component models makes them
hardly usable for changing component contexts (i.e. usage profiles, component
assembly, or execution environments are assumed to be fixed in existing approaches).

1.5. Contributions and Goals

This section summarises the contributions and goals of this thesis. The contributions
to reverse engineering in general are presented in Section 3.2. More detailed contri-
butions for the reverse engineering of static architectures are presented in Section 4.3
while Section 5.3 details on contributions for the reverse engineering of behavioural
models.

Architectural Reverse Engineering This thesis contributes an integrated
automated architectural reverse engineering approach for the static architecture of
component-based software systems and behavioural models of individual component
services. The following characteristics hold for the approach:
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e The reverse engineered component models are fully parameterised compo-
nents over usage profile, assembly context, and execution environment.

e The target model possesses executions semantics and is created such that per-
formance analyses can immediately operate on the reverse engineered models.

e The reverse engineered components are strict components as defined by Szy-
perski [SGMO2] and form a hierarchical component model.

e The reverse engineering approach is robust against design and component
structure violation and can be adapted to properties which are specific to single
software systems.

e The approach is language-independent and thus applicable to object-oriented
and imperative code (C code).

Reverse Engineering Approach for Parametric Dependencies of Software
Components This thesis contributes a reverse engineering approach for parame-
tric dependencies which are suitable to parameterise the control and data flow of
component behaviour. The developed approach contributes as follows:

e It creates performance abstractions aligned with the component abstraction
level.

e The approach make a component’s dependencies to the environment explicit
parameters.

e The approach provides an analysis method for complex parametric dependen-
cies covering possibly thousands of lines of code.

Genetic Programming This thesis contributes the application of genetic pro-
gramming to the field of reverse engineering and provides extensions of genetic pro-
graming for the specific requirements of reverse engineering. The adaptations of
genetic programming include:

e Domain knowledge from the performance analysis and performance modeling
is encoded into genetic programming. Special enhancement of genetic pro-
gramming’s mutation, crossover, and fitness function are provided. Adapted
gene and chromosome structures and an improved mechanism for generating
the initial generation are proposed.

e Static, dynamic and statistical analyses are infegrated in a genetic program-
ming approach which is able to further evolve and combine the results of each
input analysis approach. The reverse engineered models are (by construction)
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granted to be never worse than models created by the best available static,
dynamic, and statistical analysis technique.

1.6. Outline

The remainder of this thesis is organised as follows. Chapter 2 introduces the founda-
tions for this work. The core contribution chapters are Chapters 3 to 5. Chapter 3 first
provides an overview of the reverse engineering approach. Chapter 4 then deals with
the reverse engineering of static architectures and Chapter 5 deals with the reverse en-
gineering of behavioural models. In Chapter 6 the crosscutting aspect “Traceability”
1s addressed.

The validation of the reverse engineering approach is presented in Chapter 7,
Chapter 8 discusses related work, whereas Chapter 9 details on the results and lessons
learned. Finally, Chapter 9.12 briefly summarises and concludes this thesis.
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2. Foundations

This section breifly introduces foundations and general terminology which will be
used throughout the remainder of this thesis. The topics which are covered by this
section are reverse engineering, genetic, component-based software engineering, and
the Palladio Component Model. The Palladio Component Model is the central meta-
model dealt with in this thesis. Furthermore, basic knowledge on so-called parame-
tric dependencies in software component models will be presented.

2.1. Component-Based Software Engineering

Component-based software engineering (CBSE, [SGMO02, HCO01]) is a software de-
velopment paradigm. In it, software systems are built from a reusable entity called
“software component”. The term software component was first coined in 1968 at
the NATO conference on software engineering [Mcl69]. Since then, components
have resulted in popular implementations and frameworks including Microsoft COM
[Cor], Sun EJB [EJBO7], OSGi [OSGO09], and the Corba Component Model by the
OMG [Obj06a].

It must be emphasised that the term “software component” is highly overloaded.
Some people see software components as classes or modules while others see it as a
high-level entity [LWO05, LW07, SGMO02]. Section 2.9 presents a short definition of
the term “software component” which is used throughout this thesis. The remainder
of this thesis assumes CBSE characteristics of software architectures.

CBSE implies a development process (see e.g. [KBHRO8]) which enables the
division of labour. Multiple developer roles participate in the creation of component-
based software systems. The development process is intended to allow for concurrent
and distributed work an a component-based software system such that the developer
roles’ responsibilities do not overlap. For example component developers and soft-
ware architects interact with component deployers. The division of labour reduces
the complexity for individuals (e.g. component developers) and allows the creation
of large and complex software systems.

One key idea of software-based software development is the reuse of individual
components (see for example [BC88, BR8E, BP89, Est95, HCI91]). Due to better tes-
ting of reused components, a higher quality of single components is expected. Addi-

15



Chapter 2. Foundations

tionally, reuse can lower the costs of software development, if single components of
a software system are reused multiple times.

Components are software entities which can be composed from other components.
The composite pattern [GHJV95] allows the creation of higher-level components.
For example, the components Accounting, Authentification, and Reporting
can be composed to a higher-level component SalesManagement.

Software components are contractually specified entities. They possess explicit
provided and required interfaces which determine pre and post conditions (the re-
quired interface determines the pre condition — the services a component needs to
operate; the provided interface the post condition — the services a component offers
to other components). Systems manufactured from components with contractually
specified properties are common to engineering disciplines (e.g. voltage and resis-
tance of components in electrical engineering or the dimension of structural elements
in building construction).

Software component models describe or specify the properties of component-
based software systems. They are abstractions of implementations of component-
based software systems and can highlight aspects like architecture, deployment, per-
formance, reliability, or composition of a software system. A survey on software
component models can be found in [LWO05, Lau06].

2.2. Performance Prediction

General Performance Prediction Approaches Performance prediction ap-
proaches (surveys in [BDISO4a, BJH'05]) estimate the expected performance of
software systems from model representations or other formalisations. Common
performance formalisations include Petri nets [Rei85, BK96, BKO02], queuing
networks [BGAMT98], markov chains [Tri01, BGAMT98], and process algebras
[HHKO2]. Of each formalisation, various extensions exist to overcome limitations
of a certain formalisation (e.g. Petri nets [Pet80] as original form, stochastic Petri
nets [BKO02] which include stochastic timing behaviour, queued Petri nets [Bau93]
to account for queuing effects of, for example, resources with contention).

Performance prediction approaches allow reasoning on the performance of soft-
ware systems (e.g. bottleneck detection, capacity planning) and provide various me-
trics like response time, throughput, and resource utilisation to estimate the perfor-
mance. The Software Performance Engineering approach (SPE, [Smi90]) is among
the best-known approaches which systematically tackles the design of software sys-
tems with respect to performance. SPE aims at equally capturing the software ar-
chitecture and the resource environment during early design phases. Prior to starting
the implementation of a software system, the design is critically evaluated in SPE
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to identify potential bottlenecks in the design and avoid them in the design phase
already. Only designs with promising performance properties are then implemented.
Hence, SPE aims at saving development effort for poorly performing software de-
sign alternatives [SWO02]. The key idea behind SPE is that fixing the design of a
software system in early development stages is less costly than optimizing the imple-
mentation. The effort for fixing implementations includes potentially the re-design,
re-implementations, data migration, buying new hardware, and new setup of the exe-
cution environment while the effort for the design phase is only the re-design.

Component-Based Performance Prediction Approaches For component-
based software systems, special performance prediction approaches (e.g.
[WMWO03, WW04a, Kou06, EFH04, DMMO03, Yac02, BM03, CLGLOS]) exist
which account for the specifics of component-based software systems (e.g. reuse
of components). A recent survey on component-based performance prediction
approaches can be found in [Koz10].

Some software component models (e.g. [BKR09, WWO04b, BHP06, GMSO05,
GLO03]) allow the analysis (numeric, analytic, or simulation) of properties of a
component-based software-system based on the model. Since models are not ne-
cessarily related to an implementation, model-based predictions (e.g. performance,
reliability) become feasible for component-based software systems. For example,
design decisions, architecture evaluations, and the analysis of “what-if-scenarios”
for component-based software systems can then be met at the model level when
using such approaches.

Depending on the component model, components carry values for the response
time of single component services [GMSO05], the resource demand of component
services is mapped to queuing networks [WWO04b], or components include behaviour

models for single component services with annotated execution time of single actions
of the behaviour [BKRO09].

Related Prediction Approaches Beside performance prediction, various ap-
proaches exist for the prediction of software reliability (e.g. [MIO87, GWTHO9S,
RSPO03, KB09]). These approaches also incorporate a software model. Opposed to
performance prediction approaches, these model do not carry timing-related values
but transition probabilities and error probabilities of software systems. Based on
these models, metrics like the probability of failures on requesting a service are
calculated to estimate the overall reliability of a software system.

Performability is the combination of performance and reliability. Performability
respects that the residence time of software in faulty components or states that impact
the reliability. As for performance and reliability, various performability prediction
approaches exist (e.g. [CMST90, HMRTO01]).
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Since software reliability and performability models can have many commonalities
with software performance models, the applicability of reliability and performability
prediction approaches to the models reverse engineered by the approach which is
presented in this thesis, is discussed later (see Section 9.7).

2.3. Reverse Engineering

Reverse engineering is the process of reconstructing properties of a system and crea-
ting a higher level of abstraction of that system [CC90]. In the context of software
systems, those properties include the architecture, allocation, deployment, and beha-
viour which are reverse engineered from the source code of a system under study. In
a broader scope, reverse engineering is used to create lost documentation, helps un-
derstanding software systems, and provides a basis for reviews. Reverse engineering
can be considered at the initial step of reengineering [CC90] activities which aims at
refactoring a system. For example, in order to refactor the architecture of a system
under test, its architecture must first be known and understood. Reverse engineering
can help in identifying the software architecture and help understanding the system.

Furthermore, a subset of reverse engineering techniques targets models like the
above introduced component models (e.g. [KSRP99, SAG'06]) and performance
models (e.g. [CW00, HMWR99]) as primary output (see Section 2.1 and 2.2). Per-
formance predictions are then based on reverse engineering models. When applying
(automated) reverse engineering techniques for the creation of these models, the ef-
fort for creating performance models can be reduced compared to the manual creation
of performance models.

Code Analysis Most reverse engineering approaches itself either rely on static
code analysis or dynamic analysis approaches. Static analysis approaches analyse
code without actually executing the code. Code can either be binary or source code.
Static analysis approaches investigate for example class structures, statements, and
declarations in the code. Typical results of static analysis are abstract syntax trees
(cf. [PE88]) or metrics (e.g. lines of code, number of classes, or code complexity
measures).

Dynamic analysis approaches actually execute the code and monitor the code’s be-
haviour an runtime. Therefore, the code is typically executed in a test bed. Test cases
or load drivers then run the code and the code execution (e.g. control or data flow) is
recorded. To record data, either the code can be instrumented (e.g. via source code
instrumentation, bytecode instrumentation, or aspect logging) or recording facilities
of the execution environment (e.g. virtual machine or application server monitors)
can be used.
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Generally, static and dynamic code analysis techniques complement each other
(see for example [Ern03, Sys00, RR02, Par93]). Static code analyses generally have
a higher precision and partially provide soundness of their results, while dynamic
analysis techniques rely on representative test cases to create complete results. Most
static code analyses are limited with respect to code complexity and the size of the
systems under study while dynamic analysis mostly is able to handle very large sys-
tems with hundreds of thousands lines of code. For example, dynamic bindings are
hard to handle statically, while at runtime bindings are readily available to dynamic
analysis.

Various analysis techniques which complement reverse engineering build on static
and dynamic analysis. These techniques include model checking (automatic che-
cking whether a given specification is met by code), data flow analysis (the calcula-
tion of possible variables values for various places in code), and symbolic execution
(a pseudo execution of code with symbolic values).

2.4. Genetic Programming

Genetic programming (GP, [Koz93, BNKF98]) is a meta-heuristic machine learning
technique [WFO05] which, by means of evolution, creates a solution to a given search
problem, optimised according to a fitness function. Individuals, representing poten-
tial solutions to the search problem, are realised by genes.

Genetic programming is a special kind of genetic algorithm (GA, [GH88, Whi04])
with genes forming a tree structure. The original idea of genetic programming was
to automate the implementation of code by specifying a problem (requirement) and
source code which solves the problem is being generated automatically. In such
cases, the genes represent of computer programme. Nowadays, genetic programming
is broadly applied as a meta-heuristic optimisation technique (see [VGM109] for an
overview).

Figure 2.1 highlights and relates the most important terms from genetic program-
ming to each other. Genes reside in a gene repository which itself is the base for
creating a chromosome repository. The chromosome repository holds a set of chro-
mosomes (also called indidividuals), where each chromosome is realised by a set
of genes. Chromosomes represent potential genetic programming solutions, while
genes are the “atoms” that are required to express the solutions. A set of chromo-
somes represents a so-called generation.

During genetic programming, multiple generations evolve. A typical genetic pro-
gramming process, as it will be used in later sections of this thesis, covers multiple
steps which are illustrated in Figure 2.2. The steps are repeated in multiple itera-
tions. In the first iteration, a random initial generation is created from individuals in
the gene repository (“fill generation”). Next, the so-called crossover and mutation
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Figure 2.2.: Overview: Steps of genetic programming

take place. During crossover (analogous to reproduction and biological crossover),
parent chromosomes are recombined to form new children. Mutation changes single
or multiple genes of a chromosome to create genetic diversity. For example, if a gene
represents a constant, that constant can be changed.

The fitness function then judges how “good” the solutions represented by the chro-
mosome are. Typically, the fitness function encodes domain knowledge on properties
of an expected optimal solution (e.g. small error) to decide how “good” a chromo-
some is. During selection, a subset of chromosomes is then selected for survival in
the next generation. This can for example be the best chromosomes and a number
of randomly selected other chromosomes (to ensure diversity). After the selection,
genetic programming decides whether to evolve another generation or to stop evolu-
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tion. Evolution is for example stopped, if an optimal solution has been found or a
fixed number of generations has evolved. Usually, the best chromosome (determined
again by the fitness function) is the result of a genetic programming run. For the
case in which the evolution is not terminated, another generation is evolved. In gene-
tic programming settings where generations possess a fixed population size, prior to
evolving, first new individuals are (randomly) generated to fill up the generation until
the fixed size is reached. In other cases, the evolution starts again with crossover and
mutation.

Genetic algorithms in general, and genetic programming as a special form, are
known to be robust machine learning techniques which are suitable for large search
space and multi-dimensional optimisation problems (cf. [BNKF98, Su09]). Since
genetic algorithms exist since the 1960’s, a large variety of genetic algorithm ap-
proaches and extensions exist. Many approaches stick with the basic processing
steps described above and extend crossover, mutation, selection, and termination for
genetic algorithms in general (e.g. [SP94, AGP03]). Other approaches apply ge-
netic algorithm to a certain domain (e.g. [WAWO04a, WAWO04b, Gar06, Dol01]) or
enrich the capabilities of genetic algorithms by domain-specific requirements (e.g.
[DMM99, CDPEVO05)).

Section 5.11 formalises the above terms and introduces the developed extensions
of genetic programming which go beyond the state presented in this section.

2.5. The Palladio Component Model

The Palladio Component Model (PCM, [BKRO09]) is a well-validated (e.g.
[MBKRO8b, KBHO7, BDHO8a, BecO8b, BKR07, Koz08a, Hap08]) and broadly
applied (e.g. [KRO8b, RK09, KR08a, HBR" 10, CMRT10, BKK09, BKBR10]) soft-
ware component model for the prediction and evaluation of software performance
and reliability at the design level. The PCM enables the analysis of component-
based software architectures before actually implementing the software system.
For example, for performance prediction, potential bottlenecks can be discovered,
resource contention be estimated, response time and throughput be predicted. For
reliability, metrics like the probability for failures on demand can be predicted.

To capture a software system, models for the static architecture (components and
their connections), component behaviour (comparable to UML activity diagrams
[Obj05b]), resource environment (hardware servers, application servers, and net-
work), usage profile (user interaction with the software system and data passed to
the system)), and component allocation to the resource environment exist. All of the
afore mentioned models are meta-models [Obj05b, Obj06b] for instances which hold
properties for a concrete software system.
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PCM models are performance abstractions of software systems (for models which
also carry reliability information: reliability abstractions). Only performance-
relevant aspects of a software system are covered by the model. For example,
the real implementation of an interface might contain eight parameters. The
parameter representation in the PCM component interface could be a subset of only
5 performance-relevant parameters from the source code. Parameters which do not
affect the performance of a software system, e.g. a flag which changes the color of a
reporting table, can be omitted in the PCM.

Note that the PCM itself does not provide a mapping to source code. To ease
understandability, the following sections will point typical relations to source code.
A component in the PCM can cover an arbitrary number of source code classes but a
class must not belong to multiple components. Further abstractions from source code
are: Public methods in the source code do not necessarily correspond to provided
component services and interfaces implemented by classes do not necessarily map to
provided interfaces of a corresponding component.

Since the PCM is the central model which the reverse engineering approach pre-
sented in this thesis targets, its model structures will be briefly discussed in the fol-
lowing. Due to space restrictions, (the PCM contains more than 130 meta-classes)
only a subset of the meta-classes which are relevant for the thesis will be presented.
For further details refer to [Koz08a, BecO8b]. Names given in a Typewriter font
describe meta-classes in the following.

Tl e s T | i | |

O
Repository System / Resource Allocation Usage
Composition Environment
Assembly Context Allocation Context Usage Context

Figure 2.3.: Overview on PCM models and component contexts

2.5.1. Component Contexts

The PCM distinguished three so-called component contexts [BDD 06, Koz08b]: as-
sembly, allocation, and usage context. These contexts are generally applicable to
component-based software development. Contexts specify different kinds of ins-
tances of components. Opposed to object-oriented programming for which mostly
only classes (types) and objects (instances) are distinguished, the differentiation for

22



2.5. The Palladio Component Model

components is more fine-grained. It must be emphasised, that none of the contexts
can be assumed to be fixed or known to a component type due to the reuse of com-
ponents in different contexts — the component contexts instead explicitly capture the
variable environment, a component is exposed to. The sections 2.6 and 1.2 further
detail on this.

Each component context is captured by a single PCM model. Figure 2.3 provides
an overview on the relation between the models and the contexts. The repository and
resource environment model are not related to a component context.

Assembly The assembly context captures the composition and connections among
components. A component in an assembly context are component instances in a
system, subsystem, or composite component (see Section 2.5.2). Furthermore, the
assembly context determines the binding to other components (the components, a
components is connected to). The meta-class AssemblyContext captures the as-
sembly context.

Allocation The allocation context determines in which execution environment a
component is executed. Since components can be reused, the actual execution envi-
ronment is not known to components. The allocation context binds components to
a certain execution environment (e.g. server, application server). The meta-class is
AllocationContext.

Usage The same software system can be reused in different usage scenarios. For
example, once 10 users concurrently interact with the system and upload files to
a file sharing application with a size of 10 KB, while in another scenario 100 users
upload files with a size of 1 GB. The usage scenario obviously has a strong impact on
the performance of a software system. The allocation context determines the usage
scenarios in which a software system and its components are being executed.

2.5.2. Static Architecture

The static architecture of the PCM comprises components, interfaces, and connectors
(cf. Figure 2.4). Interfaces and components are first class entities in the PCM which
reside independently in repositories. Components either provide or require interfaces
through a ProvidedRole and RequiredRole, respectively. Each interfaces holds a
number of service signatures, which describe the service the provision of an interface
implies.

The PCM is a performance abstraction of component implementations. For
each parameter of a signature defined in interfaces (e.g. boolean doSth(List
1, MyType mt)), so-called parameter characterisations exist which abstract from
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Figure 2.4.: Example: PCM composite component (from [Koz0O8b])

concrete values and introduce further properties. Parameter characterisations
identify performance-relevant characteristics of data types. For example, lists are
characterised by their size and own data types (“MyType”’) can be characterised by
specifically defined properties (e.g. value of a flag, their bytesize, etc). The unders-
tanding of parameter characterisations is essential for this thesis. Thus, Section 2.7.1
discusses parameter characterisations in the context of model parameterisation.

Connectors can be AssemblyConnector, ProvidedDelegationConnector, or
RequiredDelegationsConnector as know from UML?2 [ObjO5b]. All connectors
connect roles of components, since the same interfaces can be shared among multiple
components (imagine for example a chain of responsibility [GHIV95] in which all
participating components must provide and require the same interface). An Assem-
blyConnector, for example, connects the tuple (RequiredRole, AssemblyCon-
text) with (ProvidedRole, AssemblyContext), where the AssemblyContext is
the above introduced mean to identify component instances in assemblies.

The PCM distinguishes multiple component types. The relevant ones for
this thesis are composite component (CompositeComponent) and basic com-
ponents (BasicComponent). A composite component is realised from further
sub-components, while a basic component is an atom component entity which
realises its component services via so-called Resource Demanding Service Effect
Specifications (RDSEFF, see Section 2.5.3).

Like a composite component, a system (System) is a special kind of composite
structure with special semantics. A system is the outer-most structure of a software
system and describes the system boundary. All interfaces provided by the system
are externally available and can be accessed by users or external systems which are
out of scope of a certain PCM analysis. A system itself can also have required inter-
faces. Calls to the required interfaces of systems are out of scope for PCM analyses.
For example, if a database is not going to be analysed, the corresponding interface
becomes a required interface of the system. In order to still allow analyses of sys-
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tems with external dependencies, Quality of Service (QoS) values can be specified
for external services. For example, the average response time and throughput of the
database component could be specified as QoS values.

2.5.3. Service Effect Specifications

The PCM behaviour model is called Resource Demanding Service Effect Specifi-
cations (RDSEFF). Each provided service of a basic component is specified by a
RDSEFF. A RDSEFF specifies the behaviour of a component service including its
control flow, data flow, and effects on other components (which required services
are called in which order and with which parameters). A RDSEFF is comparable
to UML activity models, but more powerful with respect to data flow specification
and parameterisation. Figure 5.6 on page 115 introduces an example RDSEFF mo-
del for the uploadFile(..) service of the component BusinessLogic. Note that
Figure 5.6 utilises an abbreviated concrete syntax for RDSEFFs.

As pointed out earlier, the PCM is a performance abstraction of components. Ad-
ditionally, RDSEFFs abstract details of component source code, which becomes ob-
vious when seeing that components and thus single component services can span
multiple classes and methods. The behaviour of component services is intentionally
aggregated to as few as possible RDSEFF actions as possible. The formalisation of
the RDSEFF abstraction and its relation to source code are pointed out in Section 5.

RDSEFFs consist of sequences of actions (ResourceDemandingBehaviour)
which can be nested (e.g. control flow alternatives or parallel executions). Those
actions which describe the internals of a component service are internal control flow
actions and comprise:

e StartAction/ StopAction represent the start and stop nodes of a RDSEFFE.
(Start and stop node in Figure 5.6.)

e InternalAction specifies internal behaviour of a component which does not
depend on other components (i.e. the behaviour represented by an Internal-
Action does not call required services). An InternalAction can cover an
arbitrary amount of internal behaviour of a component service (i.e. multiple
classes and methods). (Action “StoreFile” in Figure 5.6.)

e LoopAction captures behaviour which is executed in a loop. The loop body is
itself represented by ResourceDemandingBehaviour. For each loop, a loop
condition specifies the number of iterations of that loop. For, while, and do-
while loops are not distinguished in the PCM. (Not present in Figure 5.6.)

e BranchAction specifies alternatives in the control flow. Each BranchAction
has 2..* branches which each are represented by ResourceDemandingBeha-
viour. Furthermore, each branch has a branch condition associated which
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specifies when a branch is entered. From source code, if-then-else and switch
statements can be mapped to BranchAction. (Branches visualised by the
rhombus in Figure 5.6.)

ForkAction specifies component-internal behaviour which is executed in pa-
rallel. If for example, a component service creates multi-threaded behaviour,
this is captured by a ForkAction. Each ForkAction holds 2..* Resource-
DemandingBehaviours which are executed in parallel. By default, the beha-
viour of ForkActions is not synchronised (there is no synchronisation point).
Optionally, a SynchronisationPoint allows all forked behaviour of a Fork-
Action to wait for all other threads to finish until continuing. (Not present in
Figure 5.6.)

AcquireAction / ReleaseAction allow the modelling of the acquire and
release of a semaphore (PassiveResources). The behaviour of a RDSEFF
stops, until an acquire is successful (the semaphore becomes available). Ac-
quireAction/ReleaseAction allow the specification of mutex logic and en-
able synchronisations among multiple services of the same component. (Not
present in Figure 5.6.)

All of the above internal control flow actions carry resource demands (Parametric-
ResourceDemand) which allow the specification of demands to the execution envi-
ronment underlying a component. For example, accesses to the CPU and hard disks
are captured by such resource demands. Resource demands (in general) are not ti-
ming values. Instead, they are abstract resource demands like “number of utilised
CPU cycles™.

Further actions (which are not internal control flow actions and thus have no re-

source demand directly attached) complement the RDSEFFs:
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e ExternalCall is an action which represents the call to a required service of

a component. Thus, indirectly, another component is called by an External-
Call. Each ExternalCall has a specification of the parameters which are
passed to the called service. Vice versa, each ExternalCall specifies how
the parameters returned by a called service are handled in the calling RDSEFF
(i.e. which local variables result from the return value). (Actions “checkFile”
and “compress” in Figure 5.6.)

SetVariableAction specifies which values a service captured by the RD-
SEFF itself returns. (Attached to the stop node in Figure 5.6.)

InternalCallAction specifies the call of internal behaviour. RDSEFFs can
have internal behaviour (comparable to private methods of classes). It must
be noted that RDSEFFs allow only one level of internal behaviour to force



2.5. The Palladio Component Model

abstraction (i.e. within internal behaviour no further InternalCallActions
are allowed). Note that not every method call inside a component in source
code results in an InternalCallAction. (Not present in Figure 5.6.)

To allow the specification of data flow and parameterise control flow, so-called
random variable (PCMRandomVariable) allow the specification of branch conditions,
loop conditions, resource demands, variables set in SetVariableActions, and call
parameters of ExternalCall. These parameterisations depend on the parameter
characterisations introduced above and represent a so-called parametric dependency.
For example, a RDSEFF can specify that a loop iterates twice as often as elements
in an input parameter list exist. Section 2.7.2 further details on the parameterisation
options of the PCM.

2.5.4. Further Models

Resource Environment The PCM resource environment captures proces-
sing resources (ResourceType) which are bundled in resource containers
(ResourceContainer) and linking resources (LinkingResource) which connect
resource containers. A resource container covers for example servers and application
servers on which components run. Linking resources are for example local area
networks.

Resource types have a processing rate (e.g. “l1 CPU cylce/s”) which allows the
conversion of resource demands of internal control flow actions into timing values.
Every resource type acts using a configurable scheduling policy to process resource
demands (e.g. “first come first serve” or “processor sharing”; cf. [Hap08]).

Allocation The allocation is a mapping between components (the component’s
AssemblyContext) and resource containers. In the allocation, each component is
assigned to a resource container, the component is running on. Resource demands of
components deploy load on the resource containers they are allocated on.

Usage The usage model describes the interaction of users with a software systems.
Users can be human users or other software systems. Usage models specify typical
interaction sequences with the software system (i.e. which provided service of the
System are called in which order). Alternatives can be specified using branches and
repeated behaviour can be specified by loops in the usage model. Furthermore, the
use model characterises the data (parameter characterisations) which the provided
services of the system need to process (e.g. “10 files each of a bytesize of 1 MB” or
2 files each of a bytesize of 10 GB”).
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Prediction The Palladio approach automatically creates a performance simulation
model from instances of the PCM. This thesis does not detail on the performance mo-
del and concentrates on the static architecture and RDSEFF behaviour model of the
PCM. Reverse engineering of the usage, resource environment, and allocation mo-
del are not subject of this thesis and must be complemented manually. The resource
environment model is topic of another thesis [Kup10].

2.6. Component Performance Influence Factors

The performance of a component has four major influence factors which are visuali-
sed in Figure 2.5. Only if all four factors are known, one can determine the perfor-
mance of a component. When reverse engineering a performance model, the reverse
engineering approach must account for these factors.

Figure 2.5.: Component performance influence factors. Images sources: left server
by Craig Spurrier licensed under Creative Commons Attribution 2.5 Ge-
neric; right server (¢)Liquidlmage Fotolia.com

The four performance influence factors are:

1. Component implementation. The implementation of a component impacts
its performance. Fast or slow algorithms (e.g. quicksort vs. bubblesort), cho-
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sen data structures, and the utilisation of resources (e.g. use of multiple cores)
result in different performance.

2. Connected components. Whether a component is connected to fast respon-
ding components which have a high throughput or not, impacts performance.
For example, if a component relies or the lookup of names through an name
service, being connected to a fast or slow DNS server affects the performance
of a component. The corresponding component context is the assembly
context.

3. Execution environment. A component which is executed on fast hardware
will usually serve responses faster than the same component component run-
ning on slow hardware. The allocation context corresponds to this factor.

4. Usage profile. The way users or other components interact with a component
impact the performance. For example, 2 vs. 100 concurrent user requests
cause a different load of component. The usage profile can either directly
stem from user or be propagated via intermediate components, which pass and
transform requests to a component. The usage context captures this factor.

In a component model, all factors should be explicit parameters so that all factors
become exchangeable without affecting the component model. If for example, the
hardware of the execution environment changes (faster CPU), the component model
must not change to reflect the impact of the execution environment on the modeled
component.

2.7. Parametric Dependencies in Code

The so-called parametric dependencies (see “parameter dependencies” in [Koz08b])
model a relation between input data and a variable. Parametric dependencies para-
meterise the control and data flow of the Palladio Component Model. They describe
for example the number of loop iterations, express branch conditions, and specify
how input data of a component is passed to required services of that component.

An example for a parametric dependency of variable a (e.g. describing the number
of loop iterations) is IF(b > 5) THEN 3 * b ELSE 2 * c, where b and c are input
parameters which stem from either arguments of a method call or return values of
method calls. Listing 2.1 shows a corresponding source code example in which a
determines the number of executions of the lower loop.

A parametric dependency is a variable which depends on (..n input parameters,
where input parameters are input data from method call arguments or return values
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1 void doSth(int b, int c¢) {

> inta=2x%c;

3 if(b>5) {

4 a=3x*b;

s}

6 // further calculations

7 for(int i = 0; 1 < a; i++) {

8 // some external call

Listing 2.1: Source code example for parametric dependencies

of methods. Since 0 input parameters are allowed, a constant is also a valid parame-
tric dependency. Opposed to slices, a parametric dependency qualifies the relation
between input parameters and a variable.

Formally, a parametric dependency is mapping of a number of input parameters to
a typed value:

ParametricDependency == IV — v

where IV is a set of input parameter (component service arguments, return va-
lues of called services) and v is a value of a type in {boolean, integer, double,
string, enum}.

Parametric dependencies follow the grammar of the so-called Stochastic Expres-
sions (“StoEx”, see [Bec08a, pp. 86] and [Koz08a, pp. 93]), an expression language
including stochastic elements introduced for the Palladio Component Model and the
Q-ImPrESS EU project [qim09]. They will be used to model the number of itera-
tions of a loop, the values of method call parameters, the return value of methods, the
conditions of branches, and the resource demand within Internal Actions.

2.7.1. Parameter Characterisations

In the PCM, so-called parameter characterisations are used to describe data (para-
meters, arguments, variables). Instead of using the actual values of data, such as [2,
4, 3, 5, ..] for an integer array, the PCM uses these parameter characterisations
to provide additional information for data such as the bytesize while at the same time
reducing the amount of data.
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For example, a List can often be sufficiently described by its number of contai-
ned elements and the bytesize when abstracting it to performance-relevant aspects.
Whether the first element of a list is a true or false boolean, usually does not impact
the performance, while exchanging the boolean by a double increases the size of the
data structure and therefore can impact computation time or network usage. In cases
where single data elements are important, they can be modeled nonetheless.

On the one hand, parameter characterisations force abstractions, on the other hand
they help lowering the amount of data which needs to be handled during model si-
mulation. Thereby, parameter characterisations help keeping the simulation time
low. An additional benefit of parameter characterisations are information which are
not directly available from data structure like its bytesize.

The PCM supports the following characterisations out-of-the-box:

e VALUE (the actual value)
e NUMBER_OF_ELEMENTS (size of an array or size of an collection type)
e BYTESIZE (the size of a data structure in bytes)

Accordingly, these parameter characterisations will be dealt with in this thesis.

2.7.2. Parametric Dependencies in the Behaviour Model

For understanding the behavioural reverse engineering part of the thesis, it is cru-
cial to understand the abstraction criteria underlying the control and data flow repre-
sentation in the PCM, specifically the RDSEFF. Figure 2.6 introduces an example
illustrating the various parametric dependencies which must be captured during re-
verse engineering. Details on parametric dependencies are presented in Section 5.7,
page 5.7.

Overall, there are three different types of parametric dependencies which must be
captured:

1. Resource demands of internal actions
2. Control flow (branches and loops)

3. Data flow (data passed to other components; “parameter output” and “return
value output” in Figure 2.6)

It must be emphasised that parametric dependencies are intended to be approxi-
mations of the real dependencies expressed in source code. Parametric dependencies
should balance precision and abstractness to allow precise performance predictions

31



Chapter 2. Foundations

publicjiBgoleamlluploadFiles (List<File> files, boolean saveEnabled) f{

// some simple internal action

for(int x = 0; x < files.size(); x++) {E
//...

}

boolean success = true;
for (File £ : files) { ¢

//external call:
—— boolean|isCopyrighted =
Cl.isCopyrighted (f) ;¢
if (isCopyrighted) {
success = false;

}

L5 if(!'isCopyrighted && saveEnabled) ({
//external call:
C2.store(f); «

}
} Legend

B return value output
return value input
} control flow
parameter output
parameter input
resource demand
—> data flow

3y return success;

Figure 2.6.: Parametric dependencies in code at a component abstraction level

based on models but at the same time they should not overly increase analysis com-
plexity due to complex parametric dependency expressions. Thus, parametric depen-
dencies do not need to be sound for all input parameters. This stress field is further
discussed in Section 5.11.4.1.

In Figure 2.6, a simple example is given covering all the above dependencies.
In the example, a service for uploading files uploadFiles is depicted having two
arguments (files and saveEnabled), itself returning a boolean for indicating the
success of an execution. The service depends on two components C1 and C2, were
C1 offers a lookup service for detecting copyrightes files isCopyrighted and C2 a
service to persist files in an external store system through store.

Resource Demand In the example, the resource demand (light grey area) de-
pends on the number of files uploaded, indicated by the for loop iterating over the
elements of files. A rough parametric dependency for the CPU demand could
be files.NUMBER_OF_ELEMENTS * 0.243 where files.NUMBER_OF_ELEMENTS is
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the number of elements of the files argument and 0.243 an estimate of the CPU
demand per element to be processed. The resource demand could also be an esti-
mation of hundreds or thousands lines of code if the covered code section does not
contain any call for another component.

Control Flow Control flow (pink areas) has to be determined in two cases in the
example as there are calls for external components inside these statements (the cri-
terion for making this control flow statements explicit in the model is thus fulfilled;
cf. Section 5.7.2). The first control flow statement for(File f : files) hasa
dependency to the number of files passed as argument to the uploadFiles service.
The resulting expression for the loop is consequently files.NUMBER_OF _ELEMENTS.

The second control flow statement if (!isCopyrighted && saveEnabled)
has more complicated parametric dependencies. @ The isCopyrighted flag
depends on the return value of a previous external call for C1, which is consi-
dered as input to the uploadFiles service. saveEnabled is an input argument
of uploadFiles. The resulting expression for the branch is consequently
IC1.isCopyrighted() .RETURN.VALUE AND saveEnabled.VALUE. The internal
variable isCopyrighted is not known to the parametric dependencies and thus
replaced by the direct dependency to the return value. Expressing dependencies in
terms of input parameters is comparable to symbolic execution [Kin76].

Data Flow The same argument f is passed the external services of C1 and C2,
which consequently must be captured in the data flow (orange area). The argument is
a single element of the files List argument of uploadFiles. A possible estimation
of the data flow would result in the expression files.INNER.VALUE, where INNER
holds parameter characterisations (VALUE in the example) of inner elements of the
list. From the List input parameter files, the expression would care for passing
parameter characterisations of single elements of that list to the external services of
C1 and C2.

Finally, the return value (green background area) of uploadFiles needs to be
characterised. The return value depends on the previously chosen control flow sta-
tements, i.e. whether the the loop statement is executed at all and what the results
of the external call of C1 are. The default value is true. If a single copyrighted
file is to be uploaded, isCopyrighted returns false. The resulting expression for
the parametric dependency thus must respect the return values of all external calls
and concatenate them using logical ANDs. To perform the logic concatenation, an
intermediate return value is being updated within the loop in an SetVariableAc-
tion. The resulting expression for the parametric dependency is thus determining
return.VALUE: isCopyrighted.RETURN.VALUE AND return.VALUE, where re-
turn.VALUE is a local variable which is ultimately returned.
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When assuming a fixed assembly context (which is limiting the expressiveness and
parameterisation; see Section 2.8), the parametric dependency can be simplified. In
such a case, an approximation of the return value of isCopyrighted can be used (the
actual behaviour of a called service can be known with fixed assembly contexts). A
probability value indicates the likelihood of a having to return false. This likelihood
depends on the number of files uploaded: files.NUMBER_OF_ELEMENTS * 0.01,
where 0.01 is the probability of a single file being copyrighted.

2.8. Model Parameterisation

Section 2.6 introduced the performance influence factors for components. This sec-
tion will briefly highlight the importance of making the influence factor explicit para-
meters in a component performance model. Every influence factor which is not made
an explicit parameter limits the prediction capabilities of a software component mo-
del since dependencies which exist in the implementation of a components are not
reflected on the model level.

If the contexts of a component are assumed to be fixed, neither the use profile,
execution environment, nor the assembly can be changed without implying changes
to all affecting elements of the model. For example, if the usage profile changes
from passing audio files to a provided service of a system to passing video files, all
models components which are processing the files must be adapted in the case of non-
parameterised models. Changing the execution environment would imply changes to
models of all components that are executed on that execution environment for non-
parameterised models and changing the assembly context (e.g. exchanging a slow
logging service by fast one) would again imply changes to models of all components
which directly or indirectly (via transitive calls) access the logging service.

If no global knowledge on a system exist (e.g. multiple component vendors), it is
even impossible to change a model consistently if no correct parameterisation exists.
Without parameterisation, none of the scenarios in Section 1.1.1 and Section 1.2
would be supported.

For few scenarios in which a certain context is known to be fixed (e.g. a constant
execution environment), a model with limited parameterisation can be created. Still,
in that case, the model is only valid as long at the fixed context does not change
(i.e. the same execution environment). These models generally have no prediction
capabilities for changes in contexts which are assumed to be fixed.
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2.9. Terminology

This section introduces central terms which are used throughout the remainder of
this thesis. Especially for overloaded terms, readers should refer to this section to
determine the intended semantics of terms.

Meta-Model A meta-model is a rule set for the construction of an arbitrary num-
ber of models (cf. definition in [BBJ*08]). In the context of this thesis, the employed
meta-models will be

e the Palladio Component Model (PCM) meta-model,

e the Service Architecture Meta Model (SAMM) from the Q-ImPrESS project
[qim09],

e the Generalised Abstract Syntax Tree (GAST) meta-model [qim09], and
e the source code decorator meta-model.

For each meta-model there will be multiple instances. If not pointing out that a meta-
model is meant, the corresponding model instance (see below) is meant.

Model A model —in the context of this thesis — instantiates an explicit meta-model.
Although a meta-model is as well a model, meta-models will be explicitly named
meta-model and not model. In figures in the remainder of this thesis, models are
visualised as “Artefact” (small file symbol).

Model Integrity Model integrity subsumes that all mandatory attributes and rela-
tions which are defined in the meta-model are set in the model and that all constraints
defined in the meta-model are fulfiled by the model. Furthermore, in the context of
this thesis, model integrity includes that additional constraints defined by analysis
approaches (i.e. the Palladio approach) hold for the model. Section 4.9 addresses
model integrity in more detail.

Reuse The reuse of a component is the usage of a component in a varying assem-
bly, allocation, or usage contexts. If one of the contexts is changed, a component is
being reused. For example, employing the same component in a heavy loaded system
and in a little loaded is a reuse due to changes in the usage context.

35



Chapter 2. Foundations

Optimality No global optimum is meant by the term optimality in the remainder
of this thesis. Instead, the quality of a reverse engineered parametric dependency is
judged according to a so-called fitness function. The fitness function does not only
account for precision of results but also for the calculation complexity of a result.
For example, a very long and hard to compute expression with high precision is
considered worse than a computation-in-intensive short expression. Section 5.11.4
details on further criteria for the optimality of a solution in the context of this thesis.

Parameter The arguments of a called method will be named “input parameters”,
while the parameters, when calling another method, will be named “output parame-
ters”. Consider the following simple example:

1 void doSth(int a, int b) {
> int ¢ = 0;

3 int d = component.do(c);
4 d=d+1;

5}

Listing 2.2: Source code example: Input and output parameters

Here, a and b are input parameters and c serves as the output parameter from the
perspective of doSth(). Additionally, the return value d is considered as a input
parameter for the code starting from line 3 since further calculations can depend on
it.

Parametric Dependency See Section 2.7.

Characteristic Curve In the context of this thesis, a characteristic curve' is an

approximation of the behaviour of a black-box component. Characteristic curves are
know from electrical engineering disciplines to characterise electrical components.
A characteristic curve is a parametric dependency, if the parametric dependency des-
cribes a black-box component.

Genetic Algorithms  Genetic programming is a special form of genetic algorithms
with a tree chromosome structure, which will be the core machine learning technique
in this thesis. If statements apply not only the genetic programming but to genetic
algorithm in general, the relation to genetic algorithms will be highlighted.

IGerman: “Kennlinie”
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Chromosome A chromosome is a set of genes. A single chromosome is in the de-
veloped Beagle approach used to represent a parametric dependency whose language
is the stochastic expression language. Figure 2.7 provides an overview on the related
terms. Chromosome is a synonym to individual.

Generation
Synonym:
| Individual
«has» s 7
« s
* . Parametric
Gene K—«realised by»— Chromosome —«represents»— Dependency

\ /«can be translated to» «has language»

«realised by»  «subset of» \

Chromosome Stochastic
Sequence Expression

Figure 2.7.: Relation between genes, chromosomes, generations, stochastic expres-
sions, and parametric dependencies

Individual see Chromosome. Individual is a synonym of chromosome which is
preferably used in the context of evolution while “chromosome” represent a technical
term.

Chromosome sequence A chromosome sequence is a subset of a chromosomes;
a set of genes. It is sometimes referred to as gene sequence.

Architecture Comprises static structure (components) and behaviour (component
services).

Component “A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software component
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can be deployed independently and is subject to third-party composition.” (Szy-
perski, [SGMO2]). Especially a component — as used in the remainder of this thesis —
is not a class, module, or trait (cf. Scala [OSV08]). A component can comprise mul-
tiple classes, module, or traits when being realised in a object-oriented language.
Components can be composed from other components (referred to as composite
structure and composite component). Figure 2.8 summarises the core properties of
components.

No fixed execution B
envionment, usage
profile or componen
wiring assumed

N\ V4

N \ yi / Explicitly stated

Reusable first class J context dependencies
entity -~ - - Composite Component$:| J/

So—0] E1H60 $ZI\£Z:CC/

/ .
Provided services |>/ / \ ~ | No hidden
declared in reusable Vi X dependencies
interface definitions / \

/ \

No implicit
assumptions on the
execution environment

\

Realised by potentially

Composition )
multiple classes

Figure 2.8.: UML representation of the static view of a component with annotated
core properties.

Role The role of a component is the association between a component and an in-
terface. In the context of the Service Architecture Meta Model (SAMM) of the Q-
ImPrESS project [qim09], it is referred to as port.

Provided Interface The term provided interface is the short notion for the provi-
ded role with an associated interface of a component.

Required Interface The term required interface is the short notion for the required
role with associated interface of a component.
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3. Reverse Engineering Approach
for Component-Based Software
Architectures

The following chapter introduces the reverse engineering approach which is contri-
buted by this thesis. The chapter’s purpose is to provide an overview on the approach
and to highlight the relations between the two major steps of the approach. Fur-
thermore, the key challenges and contributions related to the overall approach are
presented. The Chapters 4 and 5 then detail on the major reverse engineering steps
and provide insights to findings which are specific to a single step.

The overall aim of this thesis is the development of an integrated reverse engi-
neering approach for parameterised component-based software performance models.
The approach must enable the reverse engineering of the static architecture of a soft-
ware system and for each identified component of that architecture the reverse engi-
neering of a behaviour model.

The reverse engineered models must be fully parameterised models of a
component-based architecture to enable analyses using the Palladio performance
prediction approach. Only parameterised models enable reasoning on sizing, legacy
software extension, reuse, and design optimisation scenarios. These scenarios have
been briefly introduced in Section 1 and detailed in Section 1.2.

Opposed to parameterised models, conventional monolithic models (e.g.
[SKK*01, Obj05a, Obj06c, CLGLO5, LFG05]) have limited prediction capabilities
for these scenarios. For example, execution environments or component assembly
are assumed to be fixed by such models. When exchanging, for example, a database
component or the application server of such monolithic models, all of the model
or at least large parts of the model need to be revised to account for the changed
assembly. If in a shopping system the number of items users buy varies, the way
users interact with the system changes, or product videos instead of only product
photos become available, the corresponding monolithic models need to be changed
to reflect the performance impact.

While many existing reverse engineering approaches claim to reverse engi-
neer software components (e.g. [AL99a, FDET01, IWF07, KSRP99, MMOla,
MOTU93, Sar03]), none of them reverse engineers components which follow a
strong component definition comparable to the one of Szyperski (see Section 2.9).
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Only when following such a strong definition, components become parameterised
(see Section 2.6) and the introduced scenarios become fully analysable. Further-
more, currently no integrated reverse engineering approach for static and dynamic
component-based architectures exists.

Models which are reverse engineered by the developed approach are subject to
performance prediction. Thus, the reverse engineering approach must be capable
of creating models with execution semantics. Opposed to various existing reverse
engineering approaches which mainly target program understanding of static archi-
tectures only (e.g. [AGCO02, FDE*01, Kos02, PMT*08, BBT06]), the presented
approach is able to deal with strong model semantics — which enable for example
performance simulations.

In order to enable performance analyses of large systems, reverse engineered static
architecture and behaviour must provide abstractions of source code details. Fine-
grained models would make the performance analysis infeasible due to long-running
analyses, CPU and memory demands. Component performance models must there-
fore be abstractions of the underlying classes. The behaviour of components must
be abstracted in a way which provides sufficient information to analyse the presented
performance prediction scenarios but at the same time keeps down analysis com-
plexity. In the presented approach, the reverse engineered behaviour model has the
same abstraction level as the identified components to provide a consistent result
model with full execution semantics (discussion of the abstraction in Chapter 4 and
5).

Furthermore, the developed reverse engineering approach targets program and
component architecture understanding of legacy component-based software appli-
cations. The reverse engineered models (static architecture and behaviour abstrac-
tion model) assist in investigating a component-based software system starting at a
coarse-grained level. Due to component compositions, more detailed model levels
are available for coarse-grained components.

The key features of the developed approach are:

e Model parameterisation. Models have explicit parameters for external in-
fluence factors. They are parameterised over usage, assembly, and allocation
context.

For example, the number of loop iterations of component behaviour is ge-
nerally not a constant value. Instead, the reverse engineering approach de-
termines the number of loop executions depending on input parameters of a
component. If the same component is reused by different components or users
interact differently with that component, the reverse engineered model is still
valid due to its explicit parameterisations. The component model can be reu-
sed like a component.
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e Abstraction. The static architecture model abstraction is consistent with the
behaviour models.

The developed reverse engineering approach creates a consistent abstraction of
the control and data flow of component behaviour and reverse engineers mul-
tiple abstraction levels of the static component architecture. The data flow, for
example, captures only parameters which are likely to affect the performance
of a component. For the static component architecture, for example, multiple
classes are merged into a single component to increase the system’s level of
abstraction.

e Execution semantics. The resulting models are direct input for performance
analysis.

The reverse engineered models (instances of the PCM) can be analysed and
simulated using the Palladio Component Model approach. Due to full control
and data flow of the result models and executions semantics of the result meta
model (PCM), it is possible to predict performance metrics like throughput,
response time, and resource utilisation based on the reverse engineered PCM
models.

The developed approach supports performance predictions for all of the scenarios
introduced in Section 1.2, page 6. These are the major investigation scenarios for
component-based software engineering (cf. [Kru92, Sam97]):

® sizing,

e legacy software extension,
e reuse, and

e design optimisation.

In this introductory section, the scientific challenges, contributions, and the ove-
rall process of the reverse engineering approach will be discussed. More detailed

discussions follow in the Chapters 4 (Reverse Engineering of Static Architectures,
“SoMoX”) and 5 (Reverse Engineering of Behavioural Models, “Beagle”).

3.1. Scientific Challenges

The main scientific challenges for an integrated reverse engineering approach for
component-based software systems lie in the following areas:
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e Integration of reverse engineering for static architectures and component

behaviour. Static and dynamic aspects of a system are going to be reverse
engineered in a single approach. Here, it is specifically important to have
static and dynamic architecture at the same abstraction level corresponding to
the identified components such that static architecture and behaviour model
elements talk about the same components and component services.

Execution semantics of output model. The targeted Palladio performance
prediction approach requires input models with full execution semantics in or-
der to perform performance analyses. Consequently, the reverse engineering
approach must be able to create model instances of the PCM which already
proofed to have rich semantics. Such models not only help humans unders-
tanding a software system but facilitate performance analysis. For the static
architecture and behaviour model, an approach should be developed, which
produces fully specified output models.

Model parameterisation. To support the component paradigm, a reverse en-
gineering approach must be developed which ensures context independence
of reverse engineered component models (as claimed by Szyperski [SGMO2]).
To support the performance prediction scenarios introduced in Section 1.2 (si-
zing, extension of legacy applications, reuse, design optimisation) at the model
level, a fully parameterised performance model must be the output of reverse
engineering. A non-parameterised performance model could not predict the
performance impact of any changes in a component’s context due to the ab-
sence of calculation rules. The challenge is to reverse engineer components
which are parameterised in the static architecture and in the behaviour. Ulti-
mately, all performance impacts listed in Section 2.6 must be explicit parame-
ters in the result model. This implies a component specification with explicit
context dependencies, independence from the component usage, independence
from connected components, and platform-independence.

Abstractions. The reverse engineered components models must be perfor-
mance abstractions of component implementations to make large systems ana-
lyseable within feasible time. The abstraction requirement is a challenge in
two areas: In the static architecture, coarse-grained components must be iden-
tified to help performance analysis and to foster program understanding. For
component behaviour, analysing large software systems requires abstractions
of control and data flow to lower model complexity.

Traceability. In order to interpret performance prediction results correctly
(e.g. a certain component service or resource) and derive the right potential
architectural changes (e.g. bottleneck avoidance) based on reverse engineered
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models, all reverse engineered artefacts must be traceable. Traceability must
established throughout the whole reverse engineering process in the source
code, the reverse engineering steps, and the reverse engineered models.

For more detailed scientific challenges see Section 4.2 and 5.2.

3.2. Contributions in Reverse Engineering

To face the identified scientific challenges and to overcome the named limitations
from the introduction, this thesis contributes a novel reverse engineering approach
which combines

1. an iterative hierarchical clustering approach based on source code metrics for
the reverse engineering of component-based software architectures and

2. reverse engineering for behaviour models based on static, dynamic, and sta-
tistical analysis of source code. The approach contributes to genetic program-
ming in finding abstractions for component behaviour.

The resulting reverse engineered models follow the strong component definition by
Szyperski (cf. Section 2.9) and thus are fully parameterised (explicit context depen-
dencies) as introduced in Section 2.6 and thereby enable performance predictions for
all of the scenarios introduced in Section 1.2.

The developed reverse engineering approach furthermore has the following major
contributions. It is a reverse engineering approach:

e ...which creates fully parameterised component models. These models are
parameterised in the static architecture as well as in the control and data flow
of reverse-engineered component models.

e .. for abstracted performance models. It transfers genetic programming to the
field of reverse engineering of parametric dependencies of component models.
The approach extends genetic programming by abstraction capabilities.

e ..for behaviour models, the reverse engineering approach integrates multiple
static, dynamic, and statistical analysis approaches.

e ..for component-based software architectures which is capable of identifying
components for object-oriented languages. The approach is generally appli-
cable to object-oriented languages. Besides built-in support for Java, C/C++,
and Delphi it can be extended to for example EJB or Spring descriptors which
use dependency injection.

For detailed contributions see Section 4.3 and Section 5.3.
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3.3. Reverse Engineering Process Overview

Before presenting the details of the reverse engineering approach, this section pro-
vides an overview on the ideas for the developed reverse engineering approach. The
reverse engineering process is divided into two major steps: 1) an architecture re-
verse engineering approach called SoMoX and i1) a reverse engineering approach for
behavioural models called Beagle .

Reverse Engineering )
B - - ; -
Code Architecture Analysis ) Behaviour Analysis
N \ B
SoMoX B Y Beagle PCM
oMo. ; .
Clustering, Static el el Static, Dynamic, and
B Source C%de Analysis Boundaries Statistical Analysis,
Test Cases Genetic Programming
Code & ResourceIa
Sections Demand
Legend:
Bl [ ) SE Output- R o
Artefact Working 3rd Party Inout- ERalliEs)
Area npu_ Demand
Relation Counting

Figure 3.1.: Reverse engineering overview

Figure 3.1 shows the outline of the overall approach. The reverse engineering
approach first extracts the software architecture (“Architecture Analysis”, SoMoX)
and then reconstructs the behaviour model for each component (“Behaviour Analy-
sis”, Beagle). While SoMoX is primarily responsible for identifying components and
component interfaces, Beagle first reverse engineers the control flow of components
and then adds data flow information to the behaviour model. The component boun-
daries identified by SoMoX, source code, and test cases serve as input for Beagle to
find behaviour abstractions which match exactly the component abstraction provided
by SoMoX. Therefore, a specification of component boundaries serves as primary
interchange artefact for architecture and behaviour reverse engineering.

The reverse engineering process uses source code and test cases (left hand side in
Figure 3.1) as primary inputs and creates instances of the Palladio Component Mo-
del (PCM, right hand side in Figure 3.1) from these inputs. This output model is a
valid instance of the Palladio Component Meta-Model. The output model comprises
a PCM repository of basic and composite components. For every provided service of
a basic component, a valid RDSEFF serves as behaviour specification of that service.
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The RDSEFF is complete with respect to control and data flow and resource de-
mands. In order to estimate the resource demands, the developed approach integrates
the raw resource demands of components (counts of resource demands issued during
execution of components) delivered by a third-party approach (see Section 5.16).

The reverse engineering does not cover reverse engineering of usage models which
represent the interaction of users with a software system. Also, the execution environ-
ment of components (application server, virtual machines, operating system, servers,
and network) is not reverse engineered by the presented approach. Although the PCM
captures usage model, execution environment, and allocation, these sub-models are
no software components and consequently left out during reverse engineering. Please
note, that the reverse engineered models are nevertheless parameterised over usage
and allocation context.

3.3.1. Reverse Engineered Artefacts

Architecture The reverse engineering approach presented in this thesis covers the
reverse engineering of component-based software architectures and component beha-
viour models. The ultimate goal is to enable, among others, performance predictions
based on such models. This requires semantically rich, complete, and consistent
models. Otherwise, considerable manual effort would be required to complete the
reverse engineered models, which would contradict the idea of a broad use of soft-
ware performance prediction.

IUtil.java
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Figure 3.2.: Example for a reverse engineered architecture model

T

Figure 3.2 illustrates an example instance of a static architecture which SoMoX re-
verse engineers from source code. Additionally, fragments of the trace model which
is created concurrently with the reverse engineering process to establish trace links
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between original source and result model are indicated. Opposed to Figure 3.2, real
result models conform to the meta-model of the PCM and possess no reverse engi-
neered graphical layout.

As Figure 3.2 indicates, the reverse engineered architecture comprises basic com-
ponents, composite components (outer component), interfaces, assembly contexts
(the component “instance” within a composite component), containment relations
for the assembly contexts of inner components of a composite component, provided
and required roles (the relation between components and interfaces), delegation and
assembly connectors. The component architecture can have multiple abstraction le-
vels as composite components can have multiple levels of containment. The trace
model associates one class interface or class with each component interface and a
number of classes with each component.

Behaviour Model For the behaviour model parameterised control and data flow
are reverse engineered. For InternalActions the platform-independent resource
demand is estimated. Figure 5.6 on page 115 visualises an example instance of the
RDSEFF behaviour model. The reverse engineering approach reconstructs all Ac-
tions of the RDSEFF (cf. Section 2.5.3) including all StochasticExpressions to
express parametric dependencies. For each Action, its origin is preserved through
the trace model.

3.3.2. Independence from Timing Values during Construction
of the Architecture and Behaviour Model

Like a car body, a software component has no performance in the sense of response
time or throughput. Instead, when a software component is executed in an execution
environment, performance metrics become measurable. Since a component cannot
make assumptions on the actual execution environment, it, per se, possesses no per-
formance expressible in wall clock timing values. It must be highlighted that this is
intentionally reflected in the reverse engineering approach and the reverse engineered
component models. Both, the architecture and the behaviour model generally have
no timing values. To reflect the impact of the execution environment, the execution
environment (allocation context) is an explicit parameter in the reverse engineered
models.

Imagine a component which offers a compression service. Compression algo-
rithms heavily rely on CPU power. Thus, if the same compression component is
once executed in an execution environment with a fast virtual machine and a fast
CPU and the next time in a slow execution environment, the response time of the
compression service can vary heavily. Without knowing the actual execution envi-
ronment, the response time (in seconds) cannot be known. The specification of the
component and the execution environment hence must be split.
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Figure 3.3.: Calculation of timing information from resource demands in the Palladio
approach

The relation between components and execution environment is specified through
abstract resource demands. Resource demands contain, for example, the number of
CPU cycles a component algorithm’s computation requires. Timing values are calcu-
lated during the performance prediction of the PCM when the execution environment
model is available (see Figure 3.3). In the PCM, only the execution environment mo-
del introduced in Section 2.6 carries timing values (CPU frequency, HDD throughput,
Bytecode instruction execution duration).

Separate approaches [BecO8a, Kup10] which are out of scope for this thesis, are
capable of calculating timing values for PCM models. The approach by Kuperberg
[Kup10] for example benchmarks timing values of the execution environment and
then predicts the execution duration of component services from (reverse engineered)
component models based on Java bytecode. In these models, individual bytecode
instructions serve as fine-grained resource demands.

The major advantages of splitting timing values from component models are:
Component models become reusable across different platforms, a prediction for
different platforms can use the same component model, and the reverse engineered
component models do not make assumptions real components cannot make (i.e. the
concrete execution environment). Section 5.16 details on the integration of resource
demands into reverse engineering.
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Figure 3.4.: Detailed view on the integrated reverse engineering process

3.4. Realisation Overview

The complementation of reverse engineering for the structural architecture (SoMoX)
and the behaviour model (Beagle) is also reflected in the realisation. The main steps
of the integrated realisation are depicted in Figure 3.1. The architecture analysis steps
provide the component boundaries which are required by the behaviour analysis.

Full details on the architecture and behavioural reverse engineering approach fol-
low in Chapter 4 and 5. The following section emphasises the overview, interaction
of processing steps, and integrated third party approaches.

3.4.1. Architecture

The reverse engineering process starts with the architectural step (top-most in Fi-
gure 3.4). The major component of this step is the SoMoX tool. It is able to com-
bine various source code metrics to detect components, composite components, com-
ponent interfaces, and bindings from given code. Metrics can be both static and dy-
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namic, which are then evaluated by SoMoX. SoMoX internally weights the various
input metrics and then combines them in detection strategies which ultimately result
in a graph-based component detection approach comparable to hierarchical cluste-
ring (see [Sch07, Ber06]). SoMoX is kept flexible with respect to the number and
kind of input metrics, their weighting, and interdependencies among metrics.

SoMoX utilises SISSy [ABM*06, SSM06, TS05] as a major static code analy-
sis approach. SISSy allows static code analysis for C, C++, and Java code, which
is afterwards represented in a language independent format (Generalised Abstract
Syntax Tree, GAST). SoMoX implements a number of source code metric plugins
(e.g. coupling, name resemblance, and package mapping) which rely on the GAST
of SISSy.

The output of SoMox is an instance of the Q-ImPrESS Service Architecture Meta
Model (SAMM) [The09]. It is transformed into an instance of the Palladio Com-
ponent Model (PCM) using the SAMM?2PCM transformation [Cial0] which has been
developed in the context of the Q-ImPrESS project. The resulting PCM instance
comprises a hierarchical static component architecture.

3.4.2. Behaviour

The second major working area (see “Behaviour Analysis” in Figure 3.4) is the re-
verse engineering of behavioural model for component services. Here, abstractions
of component behaviour are gained from source code. These behavioural models,
called RDSEFF, include control and data flow information. RDSEFFs are part of the
PCM and parameterised over usage, allocation, and assembly context making them
reusable for different usage scenarios, changing execution environments, and various
connected components.

Component boundaries from the architectural reverse engineering step and source
code serve as input, while the result is a RDSEFF. Static and dynamic analysis are
combined with machine learning to reverse engineer the RDSEFF to create a perfor-
mance abstraction of a real component’s behaviour.

First a control flow abstraction is created. Only control flow statements affecting
other components are kept in this step. This leaves out for example internal loops
within which no other components are called. Component boundaries serve as input
to judge whether another component is affected by a certain statement. Section 5.8
will detail on this step.

The control flow abstraction is input for dynamic analysis, static code analysis, sta-
tistical analysis, and symbolic execution. These three analysis techniques contribute
in identifying parametric dependencies, for example, how often a loop is executed de-
pending on an input parameter. The individual results are then translated into “genes”
of the machine learning step.
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The “Dynamic Analysis” consists of three major steps: first, it instruments given
code with monitoring instructions; second, it executes the code in a test bed environ-
ment and gathers runtime monitoring data; third, the monitoring data is aggregated.
The dynamic analysis uses the control flow abstraction to determine the instrumen-
tation points in code. See Section 5.10 for details.

Machine learning is used to integrate static, statistical, and dynamic analysis and
to find abstractions of parametric dependencies in code. The aggregated monitoring
data provides information on typical control and data flow observations, which need
to be generalised, abstracted to performance-relevant information, and parameterised
over the contexts introduced in Section 2.5.1. The learned parametric dependencies
are then added to the control flow abstraction of the RDSEFF.

To estimate the resource demand of the RDSEFF for InternalActions based
on executed bytecode instructions, the reverse engineering approach integrates By-
Counter ([KKRO8b]; cf. “Resource Demand Counting” in Figure 3.4). ByCounter is
responsible for providing raw resource demand counts for InternalActions (e.g.
the number of executed Bytecode instructions). Source code sections representing
InternalActions are therefore passed to ByCounter, which then counts executed
resource demands for every InternalAction. The “Resource Demand Counting”
step outputs raw resource demands along with the input parameters of a component
which produced them. The “Machine Learning” step then identifies parametric de-
pendencies between input parameters and executed resource demands and annotates
the InternalActions with results.

Based on the reverse engineered model, performance predictions with the Palla-
dio approach can be conducted. Using Palladio together with the reverse engineered
models allows to investigate the performance analysis scenarios introduced in Sec-
tion 1.2.

3.5. Overview Visualisation

Figure 3.5 is used throughout this thesis to visualise to which part ==
of the overall approach a certain step belongs. The upper part of B2 —
Figure 3.5 symbolises the steps of SoMoX, the bottom part shows {“

the steps of Beagle. Either an excerpt from Figure 3.5 or a bold
rectangle highlights the step from the overall reverse engineering
approach which is presented in a certain section or chapter. Note that the steps in
Figure 3.5 are strongly aggregated. Further details are presented in the corresponding
sections.

The remainder of this thesis is structured following the steps from Figure 3.5. First
in Chapter 4 introduces SoMoX, Chapter 5 details on Beagle, and finally Chapter 6
presents how traceability was ensured for the reverse engineering approach. Chap-
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Figure 3.5.: Overview visualisation

ter 7 presents the validation of the appproach, Chaper 8 shows related work, Chap-
ter 9 details on the lessons learned and summarises the thesis, while Chapter 9.12
concludes the work.
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4. Reverse Engineering Static
Architectures

SoMoX > O—1-0{ &] {

o1 Hre-r=C

Figure 4.1.: The SoMoX approach reverse engineers a static component-based archi-
tecture from source code.

The first reverse engineering step in the developed approach is the
reconstruction of the static software architecture. In this step, the
SoMoX approach extracts the static part of a component-based
software architecture (i.e. component, interfaces, and connectors)
from source code.

The SoMoX approach is a graph and metric based, multiple abstraction level,
component-aware, and integrity keeping reverse engineering approach for software
component architectures. It utilises various detection strategies for components, in-
terfaces, and connectors. It is specifically designed for software component archi-
tectures and robust against architectural style violations. Metrics can have complex
interrelations (e.g. metric A is only valid if the preconditions metric B and C hold
with 90%) to enable high-level and complex strategies which are required to check
for example a component’s communication style.

Opposed to existing reverse engineering approaches (e.g. [AL99a, FDE101,
IWFO07, KSRP99, MMO1a, MOTU93, Sar03]), SoMoX follows the strong com-
ponent definition by Szyperski (see Section 2.9). According to this component
definition, components must state their context dependencies explicitly. This
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implies explicitly stated provided and required interfaces. Thereby, components are
specifically distinguishable from classes and modules.

SoMoX targets the reverse engineering of component-based software architectures
which are subject of later analysis approaches (e.g. performance analysis through
simulations). Components are thus required to be reverse engineered with full in-
terfaces and connectors since the inter-component control flow would be incomplete
otherwise. If required interfaces are incomplete, control flow which exists in the
source code cannot be reflected in the component model. Also if connectors are
not reverse engineered completely, communication would lead to undefined callees
which makes analyses of such systems impossible. Thus, model integrity is a prere-
quisite to model analyses.

The lifted abstraction level of components created by SoMoX helps analysis ap-
proaches to cope with model complexity. Abstract components imply less model
details which helps keeping analysis time short. In addition to analyses, the created
high-level components help in program understanding.

Since software systems can follow different implementation styles, design prin-
ciples, and architectural guidelines, SoMoX can be adapted to the specific needs of
a certain software reverse engineering project. For example, one software system
might emphasize interface communication, another follows fixed naming schemes,
and yet another prescribes a certain package structure for the realisation of a soft-
ware system. When detecting components, interfaces, and connectors, SoMoX can
be adjusted accordingly. Nevertheless, SoMoX is equipped with default settings for
C/C++ and Java projects to ease its application.

SoMoX is held extensible with respect to new metrics and strategies. Besides, it
has support for multiple so-called “fact extractors” which can for example enable
support for further programming languages (e.g. C#) and frameworks (e.g. EJB,
Spring). The SoMoX approach does not differentiate among metrics and thus can
deal with static and dynamic source code analysis approaches. Therefore, new me-
trics and strategies can take extra information from further fact extractors into account
(cf. Section 4.10).

4.1. Shortcomings of Existing Approaches

This section presents a brief overview of related work. The presented work is a
selection of related approaches which are discussed in full detail in Section 8.2. The
most distinguishing aspects of the SoMoX approach compared to existing work are
highlighted in the following.

Weak Components Many existing approaches [AL99a, FDET01, TWFO07,
KSRP99, MMO1a, MOTU93, Sar03] follow a weak component definition or reverse
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engineer modules. Some approaches claim to reverse engineer components but
actually reverse engineer detected source code patterns [KSRP99, Sar03]. Other
approaches assume components to be classes [SLLLO7] or do not support the
composition of components [Fav04, FDET01].

A relaxed component definitions implies limited reuse of reverse engineer models
due to implicit context dependencies (i.e. no explicit required interfaces exist or
some dependencies are not made explicit in required interfaces). Implicit context
dependencies cannot be know to the user of a component, which contradicts the third
party reuse of a component (cf. Section 2.9).

Program Understanding Other approaches focus on program understanding
[AGC02, FDE101, Kos02, PMT"08, BBT06]. The target of these reverse engineered
models are human. Thus, there is no requirement of model completeness which is
necessary when further approaches (like the developed Beagle approach for reverse
engineering of behaviour) use the reverse engineered static architecture model as
input.

No Execution Semantics Targeted Most of the existing reverse engineered ap-
proaches for static software architectures do no target models which are subject to
later execution (e.g. [Kos05, Kos02, MMO06]). Opposed, the presented SoMoX ap-
proach is suitable as a base to compute performance analyses of the reverse enginee-
red software system.

Limited Abstraction Some reverse engineering approach have limited abstrac-
tion capabilities [LLO3, KSRP99, Sar03]. They purely rely on programming lan-
guage constructs (e.g. classes, or packages). Thereby, the possible abstractions are
a) limited to what has originally been encoded into a software system, and b) limited
to the abstraction levels and constructs supported by the programming language.

4.2. Scientific Challenges

The scientific challenges in the field of reverse engineering static component-based
software architectures are:

e [t must be investigated how to reverse engineer components following a strong
component definition as introduced in Section 2.9. The reverse engineered
static architecture model must be complete and posses full model integrity.
Furthermore, the reverse engineering approach must create a model of a static
component-based software architecture which lays the foundations for execu-
tion semantics to enable later model analyses (e.g. performance analysis).
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e Reverse engineering of the static architecture

— It must be clarified how to reverse engineer components from
object-oriented languages which have no explicit language element
“component”.

— It is subject to research how to detect abstract high-level components.

— Composition of components (composite components) should be suppor-
ted by the approach to achieve multiple abstraction levels of components.

e Realistic reverse engineering scenarios imply mixed component implementa-
tion styles (also within a single system). It is subject to research how to cope
with different implementations styles and implementation techniques in an uni-
fied approach.

e A reverse engineering approach should be generic and not limited to a narrow
subset of technologies. Furthermore, a reverse engineering approach should
be held as extensible as possible. It must be investigated how to keep the ap-
proach independent from concrete object-oriented languages, or frameworks
of source systems. The developed approach must generally be agnostic to im-
plementation styles and implementation techniques and instead provide means
to support arbitrary implementation styles and implementations techniques
through extensions.

4.3. Contributions in Reverse Engineering

The SoMoX approach contributes in the following areas of reverse engineering for
static component-based architectures:

e SoMoX contributes multiple detection strategies for components, composite
components, provided and required interfaces, and connectors. These detec-
tion strategies have been developed for C/C++ and Java based systems. So-
MoX provides a number of strategies which propose the selection and com-
bination of source code metrics for the reconstruction of component-based
software architectures.

e SoMoX is areverse engineering approach suitable for hierarchical component-
based systems and held extensible to support new component implementations
styles and techniques.

— The reverse engineered output models Service Architecture Model
(SAMM) and Palladio Component Model (PCM) posses execution
semantics and have full model integrity. The reverse engineered models
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4.4.

represent the static architecture which the Palladio approach uses for
performance simulations.

— Its hierarchical output models enable the navigation through reverse en-
gineered architectures and thus help in program understanding.

The SoMoX approach helps reverse engineering large-scale software systems.
It is scalable for projects of more than 250,000 lines of code.

The implementation of the approach provides strong automation and mini-
mises the amount of required human interaction. Yet, it is configurable to
be adapted for specific project needs (e.g. selection of component detection
strategies).

Requirements for Reverse Engineering of
Static Architectures

The following requirements are derived from the scientific challenges and contribu-
tions sections.

R-Detection Mechanisms Detection mechanisms for components, composite
components, provided and required interfaces, and connectors must be provi-
ded.

R-Component Abstractions Component abstractions higher than classes must
be reverse engineered. Besides, multiple levels of composite component struc-
tures must be supported.

R-Completeness The completeness requirements subsume 1) model integrity
to have a base for model analyses, ii) the requirement of a complete static
architecture which does not miss elements like connectors etc., and 1i1) the
requirements to reverse engineer components which state explicit context de-
pendencies through required interfaces.

R-Extensibility The developed approach must not be limited to a single object-
oriented language or an implementation technology (e.g. EJB, Spring).

R-Scalability The approach must be scalable for up to 250,000 lines of code.

R-Automation The approach should be largely automated to make large system
analyseable with little effort. Manual interaction should not be needed during
a reverse engineering run.

Section 9.1 discusses the realisation of these Requirements.
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4.5. Solution ldea: Overview

Merge into Compose
Components Components

> Metrics
Metrics

Figure 4.2.: Overview on SoMoX reverse engineering

Figure 4.2 provides a rough overview on the reverse engineering process of SoMoX.
The following Listing 4.1 further details on the process of SoMoX. Please note that
the original result model of SoMoX is not a number of sets but the instance of a
meta-model (SAMM).

1 Inputs:

2 SC = SourceCode(System) //Set of source code of the system

3 AllBaseMetrics //Non empty set of all base metrics

4 //Non empty sets of strategies:

s ComponentStrategies, InterfaceStrategies, ConnectorStrategies
6 Outputs:

7 Components < ()

s Connectors < ()

o Architecture < ()

0 // (1) Extract source code information into a language independent representation
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11 GAST = SISSy(SC)

12 do {

13 ComponentCandidates = deriveComponentCandidates(GAST)
14 // (2) Evaluate basic source code metrics

15 for(ComponentCandidate : ComponentCandidates) {

16 for(Metric, : AllBaseMetrics) {

17 BaseMetricResults.add(M etric, (ComponentCandidate))

9}
20 for(ComponentCandidate : ComponentCandidates) {
21 // (3) Combine a number of base metrics in component detection strategies

2 for(Strategy, : ComponentStrategies) {

23 ComponentCandidate Ratings.add(

24 Strategy, (ComponentCandidate, BaseM etricResults) )
25 }

26 // (4) Try to merge components

27 if (passingThreshold(ComponentCandidate Ratings, ComponentCandidate,
mergeT hreshold)) {

28 Components.add(merge(ComponentCandidate Ratings, ComponentCandidate))

29 } else {

30 // (5) Try to compose components

31 if (passingThreshold(ComponentCandidate Ratings, ComponentCandidate,

compostel hreshold)) {

32 Components.add(compose(ComponentCandidate Ratings, ComponentCandidate)
)

33 }

34 }

35}

36 // (6) Integrate results in the architecture model

37 Architecture.add(Components)

38 // (7) Assign component interfaces

39 Inter faces = assignlnterfaces(Components, InterfaceStrategies)

s // (8) Create component connectors

a1 Connectors = createConnectors(Inter faces, Components, ConnectorStrategies)

4 } while (components found) // (9) Perform a new iteration starting with (2)
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Listing 4.1: The basic steps which are performed in the SoMoX approach.

The following section focuses on the steps of the component detection approach.
Individual steps will be further discussed in later sections.

Extract Source Code Information The reverse engineering process start with
the SISSy (1) approach which extracts a Generalised Abstract Syntax Tree (GAST)
from source code. The employed GAST is a language-independent representation
of object-oriented source code. This enables SoMoX to reverse engineer any object
oriented code which can be mapped to the GAST representation. SISSy [ABM06]
is a third party approach which is reused in the reverse engineering process. The
GAST is extracted once per reverse engineering run and is a prerequisite to the re-
verse engineering run.

Component Detection Approach In this step, the core of the iterative reverse
engineering process of SoMoX is performed. SoMoX starts extracting low abstrac-
tion level components which comprise just a few classes. Each iteration builds on the
results of the previous iterations and aims at higher abstraction levels of components.
Each iteration results in an architecture model which describes the components de-
tected until that iteration. These components associate encapsulated GAST classes
through the trace model. The iterations stop if no further component abstractions are
found.

Evaluate basic Metrics In each iteration, first a number of basic source code
metrics (2) like coupling, name resemblance, package mapping etc. are evaluated
based on the GAST representation. Metrics are always evaluated for so-called com-
ponent candidates. A component candidate is a tuple C;, C; of two sets of classes
C, = {classy, class,,..}. A component candidate is a subject to merge and com-
position in subsequent steps. Ultimately, sets of component candidates result in new
components of a higher abstraction level.

In the first iterations, C,, x € {i,j} consists of only a single class. In later ite-
rations, C, contains the classes of previously identified components. For example,
C, of an existing composite component comprises all inner associated classes. Thus,
component candidates are a uniform base for the evaluation of metrics, merge, and
compose.

Merge and Compose The next two steps then decide on converting a component
candidate into a component. SoMoX first tries to merge (4) component candidates.
If merging component candidates is not beneficial because this would result in a
poor component quality, SoMoX tries to compose (5) composite components from
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component candidates. The decision when to convert component candidates will be
detailed below.

1. The first step (4) merges the component candidate with an existing component.
In a first iteration, this results in a basic component comprising the classes
C;UC). The classes of the component candidate are then merged into a single
basic component of a higher abstraction level.

In later iterations, this step can also result in composite components (with the
associated set of classes Co¢) to which further classes are attached: C'rc U
C; U C};. In that case, Cce, C;, and O represent the classes of components of
previous iterations which are merged into a single composite component of a
higher abstraction level.

2. The second step (5) composes composite components from component candi-
dates. The components represented by C; and C; are preserved and encapsula-
ted into a composite component. Later iterations then operate on the resulting
composite component which comprises the classes C; U C.

To decide whether to merge (4) or compose (5) component candidates, a num-
ber of detection strategies (3), each representing a component detection heuristic, is
responsible for identifying components. There exist two different groups of strate-
gies: One for suggesting merges for step (4) and one for suggesting compositions
for step (5). Each strategy group consists of a number of strategies and results in a
“recommendation” whether to merge or compose.

The term strategy is used to emphasize that there are possible alternative realisa-
tions. The following sections will point out which alternative strategies exist. The
term strategy refers to the design pattern listed by Gamma et al. [GHJV935].

Component Detection Strategies Each strategy acts as a mean to identify cha-
racteristics of a potential component like interface communication, high coupling,
and name resemblance of implementing classes. Component detection strategies ope-
rate on component candidates and evaluate whether a component candidate should
become a component. The result of a detection strategy is a numeric value in the
interval [0..1] where 1 means accepting a component candidate and O suggests rejec-
ting a component candidate. Thus, a strategy is mapping from component candidates
to a numeric value:

Strategy(C;,C;) = veR : 0<v <1

All strategy evaluations of a component candidate are aggregated into a single value
Sau(C;, C;) which indicates the confidence of having a component represented by
the component candidate. The calculation of S,;(C;, C;) will be explained in detail
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in Section 4.8. In that section, strategies for component composition and merge will
be differentiated.

Intuitively speaking, the aggregated value S,;(C};, C;) is a kind of weighted sum
of strategy results. But strategies itself are composable to express for example inter-
dependencies among detection strategies in a higher level strategy.

Strategyeomposed(Ci, Cj) 1=
{Strategy.(C;, C;), Strategy,(C;,C;),..} v eR : 0<v <1

This allows to express for example, that similar names of classes (e.g. Custome-
rAccounting and CustomerRelations) of a component candidate do not indicate
a component, when the classes are not at all connected at the code-level.

The decision mechanism whether to merge or compose components from a com-
ponent candidate operates on a graph structure and reuses existing graph algorithms.
Each element of a component candidate (C};, C}) is therefore considered as a vertice
in a weighted directed graph G = (V, E) with directed edges € = (Vstart, Vend) €
E : Ugart, Veng € V, edge weights w(e) € [0..1] € R, and vertices C, — V deri-
ved for every set of a component candidate. The set of all evaluations of S, (C;, C;)
serves as adjacency matrix. For all S,;(C;, C;) > 0 a directed edge with a corres-
ponding weight w(e) = S, (C;, C;) > 0 is derived.

In a first graph transformation step, edges’ weights are merged into weights of a
single non-directed edge where the weight of the non directed edge is the sum of the
directed edges

wpa(e) = w(er)+w(er) : e1,es € EAVga(€1) = Vena(€2) NVena(€1) = Vgiari(€2)

with v,,¢(€) being the start vertex and v,,4(e) being the end vertex of a directed
edge. Converting the directed graph into a non-directed graph is necessary since
metrics and derived component detection strategies can be directed. A directed graph
is not required for component detection but only for deriving connectors.

In the next graph transformation step, all edges whose weights fall below a pre-
viously selected threshold (Ejerea = E \ {€ | wha(e) < threshold}) are remo-
ved from the graph. Based on that graph, all weakly connected components of the
graph structure (cf. [Die05]) are converted into components. While Sy;(C;, C'j) is
an evaluation of a component candidate of two sets of classes, the weakly connected
components from the graph can comprise n > 2 classes which is ensured by the
definition of weakly connected components. This intentionally allows the creation of
component abstractions with strong aggregation.

Weakly connected components in the graph are first determined for the merge step
(4) and then, if (4) does not produce components, for the compose step (5). The steps
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(4) and (5) operate with the same graph structure. Only the component detection
strategies from which the graph is built (and thus the edge weights) differ.

Integrate Results After step (5), the detected components of an iteration are inte-
grated in the architecture result model. Component candidates that have been conver-
ted into components are therefore removed from the graph structure and a new vertex
representing the newly created component is introduced. Next, the base metric are
recalculated for the changed parts of the graph, and a new iteration can start.

Dynamic Threshold SoMoX is using two separate dynamic thresholds: ,,¢,4¢
for merging in step (4) and £.yp0se fOr composition in step (5). These thresholds are
dynamically changed from iteration to iteration to reflect the increasing abstraction
in later iterations. ¢4 1 increased over the iterations to lower the probability of
component merging. While merging is useful for early iteration to build BasicCom-
ponents, adding classes to CompositeComponents in later iterations becomes less
important. Instead, in later iterations, composing components of components which
exist in that iteration becomes important. For that reason, ;.05 18 decreased over
the iterations.

Each threshold ¢, (for x € {compose, merge}) has a configurable initial va-
lue t, ;nit, @ decrementation / incrementation stepwidth ¢, gcpiaen, and a final value
t2 tinai associated. The ¢, values are changed over the defined interval [t%mit, 7% fmal]-

Large values for €. pose. stepwiarn T€SUlL In fewer component abstraction levels (less
composite component nesting). t, ;,;; determines the initial abstraction level. Lar-
ger values for £ ompose.init fOster smaller composite components, while smaller values
for €compose, finar determine the maximum abstraction level in later iterations. For
merging, the values induce a complementary behaviour: Larger values for ¢, gc init
result in a smaller number of primitive components which have a smaller size. Smal-
ler final values for merging t,,c,4e. finas 1imit the overall number of detected primi-
tive components. Small values for ¢.ompose, stepwidrn, inCrease the chance that existing
composite components are merged with existing composite components in the first
iterations.

The threshold is only adapted, if in an iteration, no new component has been identi-
fied. Since the graph structure 1s changed by each detected component, the threshold
does not need to be lowered after an iteration in which at least one component has
been found.

Interface and Connector Creation After the component detection has run, inter-
faces are assigned (7) to components and connectors are created (8). Since interface
communication can be checked by component detection strategies, interfaces must
be created along with components (after each iteration, the component architecture
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is complete including connectors). For the detection of interfaces there exist separate
strategies. These strategies for example decide whether to expose the interfaces of
inner components contained in a composite component. Section 4.8 details on these
strategies.

SoMoX directly derives component connectors from the graph. Since the original
edges are directed, connectors can be derived directly from the graph. Depending
on the component types (basic or composite component) which are created from the
vertices and the associated interfaces, provided or required delegation connectors and
assembly connectors are established. Connectors can only be established if compo-
nents have interfaces assigned in the previous step.

4.6. Integration of User Feedback

After each iteration, SoMoX results in a valid intermediate instance of the archi-
tecture model. This model can be displayed to users to enable interaction with the
reverse engineering process. For example, iterations can be stopped (i.e. when the
abstraction level is sufficient), or the assignment of component candidate elements to
components can be changed by the user. The user is provided with a visualisation of
the results of the last iteration using an existing editor for the architecture model.

4.7. Core Assumptions
The core assumptions which must hold for every supported system are:

1. The reverse engineering target must be mappable to a component-based archi-
tecture. Only architectures which are created with some notion of component
in mind are well-supported. If components are not recognisable from source
code structures in some way at all, the reverse engineering approach is not ap-
plicable. The internal representation of the reverse engineered system of this
approach is fixed to a component-based architecture.

2. Any fact extractor (e.g. SISSy in the above solution) must relate its informa-
tion to classes represented in the GAST (Generalised Abstract Syntax Tree)
representation. Additional input information can be easily supported, but any
information must have a mapping to GAST classes. For example, Spring
[Spr06] or EJB [EJBO7] deployment descriptors are not supported out-of-
the box. When supporting them, any bindings among classes, introduced by
for example dependency injection, must name the classes they connect. Sec-
tion 4.10 discusses the extension in more detail.

64



4.8. Reverse Engineering Strategies

4.8. Reverse Engineering Strategies

In its core, SoMoX relies on a number of strategies for component

recognition, interface assignment, and connector creation. Strate- ‘@,: by
gies are responsible for identifying for example components which

are implemented following a certain architecture or implementa-
tion style (cf. [BMR96]). Strategies themself comprise a number
of base metrics or are built from a number of sub-strategies. They L]
combine base metrics to form higher level recognition mechanisms

for architecture elements.

For systems which are implemented with object-oriented techniques, no com-
ponent terminology exist. Instead, components can only partially be reflected in
object-oriented code. Multiple strategies can be applied during reverse engineering,
each representing a heuristic, to detect components. Depending on an architectural
style and the intended component definition, different strategies must be applied to
reflect the expected style and component definition in the reverse engineered archi-
tecture. A single strategy usually is not sufficient to reverse engineer a system since
a large system might involve different implementation styles. Each implementation
style can then be covered by one or multiple strategies.

The following section will first provide an overview on possible reverse enginee-
ring strategies. This also covers strategies which have not been realised in SoMoX
to illustrate the possible design space for reverse engineering and point out possible
alternatives for reverse engineering. To structure the design space, two feature dia-
grams (Figure 4.3 and 4.4; introduction of feature diagrams in [CE0O]) are provided.
In these feature diagrams, strategies which have been selected for SoMoX are high-
lighted (“‘check symbol”) — the so-called Feature Configuration. Later, base metrics
(Section 4.8.3) and realised strategies will be presented in detail (Section 4.8.5).

4.8.1. Overview on Strategies

The following strategy variation points have been identified, which should be ac-
counted for during reverse engineering. Figure 4.3 provides an overview on possible
strategies which complement metrics for component recognition.

At the top level, there are two strategies for dealing with component candidates, na-
mely component merging and component composition represent the most important
strategies. Further top level strategies are filtering mechanisms through blacklisting,
strategies for creating provided and required interfaces for components, and finally
strategies for the creation of composite component structures like connectors and the
exposition of composite component interfaces.
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Figure 4.3.: Feature diagram of strategies for the creation of component candidates,

interfaces and connectors (capturing only cases for which multiple stra-

tegies exist)
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Figure 4.4 provides an overview on possible strategies for deciding whether to
merge or compose components from a component candidate. The following sections
will detail on the features and on the rational of each feature.

Strategies

Component Component
Merge Composition

Interface Consistent égigf;z Hierarchy Subsystem Interface
Bypassing / Naming / Balance / Mapping / Component/ Communicatio'n/
<2 P

Legend: 6 é
XtoY Mandatory Optional Referenced \ dependency4
1 outof n N ’,
MY out of n Feature Feature Feature -~ _ —

Figure 4.4.: Feature diagram of strategies for merging and composing Components

Every strategy can comprise a number of sub-strategies which contribute to a cer-
tain top-level strategy. Component merge and component composition strategies
share common sub-strategies. While a component merge strategy indicates when to
add classes from a component candidate to an existing component, component com-
position strategies indicate when to create a composite component from a component
candidate.

4.8.2. Process for Selection of Metrics and Strategies

Metrics and strategies for SoMoX have been selected in a demand-driven empiri-
cal process. In the process, the reference decompositions of multiple systems under
study were compared with reverse engineering results. SoMoX initially started with
a small set of metrics and strategies. When comparing the reference architecture of
the reverse engineered systems with the output of SoMoX, new metrics and strategies

67



Chapter 4. Reverse Engineering Static Architectures

were introduced to make previously unrecognized components identifiable. There-
fore, non recognised components were analysed for specific characteristics which
had not been identifiable with the existing metrics and strategies. New metrics and
strategies were then imagined to capture exactly these characteristics. The process
has been repeated until satisfactory results were achieved when comparing reverse
engineering results with the reference architecture.

4.8.3. Basic Metrics

In order to understand the strategy explanations in the following, first the employed
base metrics will be explained. The basic metrics have been derived purely from the
strategies. First the strategies have been identified and only those metrics which are
required by the strategies have been integrated into SoMoX.

For components only few metrics are available as Cho et al. [CKKO1] point out.
Source code metrics from object-oriented programs cannot necessarily be directly
reused for components since components comprise sets of classes and associate in-
terfaces. Therefore, basic metrics which are used in this section are adaptions of
existing object-oriented metrics where necessary. Of the available component me-
trics, most are dedicated to special purposes. For example, Washizaki et al. [WYF03]
provide a set of metrics to estimate the reusability of black-box software components,
Cho et al. [CKKO1] evaluate metrics for complexity, customizability, and reusability
of software components, and Ko and Park [KP05] present metrics for component
architecture redesign.

All of the following metrics are calculated for component candidates. Opposed
to pure object-oriented metrics, the required basic metrics must be able to deal with
sets of classes, which represent a component candidate. All basic metrics map the
evaluation of a component candidate to the interval between 0 and 1: C'(C;, C;) —
veR :0<v <1

A component candidate C;, C; can contain classes and class interfaces associated
to these classes (i.e. interfaces implemented by classes from C;; or C). For example,
a basic component could internally use interfaces of data structures which do not
necessarily become component interfaces but nevertheless should be associated to
components. Basic metrics are not aware of component interfaces, they operate on
class interfaces only. Component interfaces are created after the evaluation of basic
metrics.

Metrics (and strategies) are evaluated for two set of classes A and B. For the com-
ponents detection, these two sets of classes originate from a component candidate

C.,C,.

Coupling The coupling metric reuses the ideas of the afferent coupling (C,) and
efferent coupling (C',) metrics by Martin [Mar94]. The metrics have been transferred
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to components. The afferent coupling (C,) is the number of types outside a com-
ponent candidate that depend on types within the component candidate. The efferent
coupling (C.) is the number of types inside a component candidate that depend on
types that are outside the component candidate.

Coupling, in this context, is the ratio of accesses inside a component candidate to
the total number of accesses and thus based on efferent coupling C,.. Opposed to
efferent coupling, the number of accesses is counted

R(A,B)  InternalAccesses
R(A,all)  ExternalAccesses

Coupling(A, B) =

with R(A, B) the number of accesses of from A to B, where A and B are sets of
classes, all is the set of all classes of a system. An access subsumes accesses of a
type, a method, or a field, each counted separatly. Counting the number of accesses
helps quantifying the access relations between two sets of classes. Coupling is a
non-commutative normalised metric which composes the raw counts of internal and
external accesses.

Name Resemblance The name resemblance reflects how the names of classes
and interfaces of component candidates resemble each other. The metric counts si-
milar names for each of the classes in the component candidates and relates them to
the total number of class names. Prior to comparing the names, common prefixes
and suffixes are removed. Common prefixes and suffixes which misleadingly would
indicate name resemblance must be specified by the user. For example, EJB com-
ponents might be prefixed with “EJB” which still does not indicate classes which
belong together and thus would let this metric become partially misleading.

The calculation of the name resemblance relies on the Jaro-Winkler distance
[Win06] J R(string,, string,) which calculates the similarity of two names. The
similarity Ngy of classes and interfaces of a component candidate is then calculated
based on the pairwise similarity comparison of the cross product of all classes and
interfaces of a component candidate:

AUBxAUB
Ngy = Z JR(classy, classs)

classy,classa

with class, and class, being individual classes and interfaces of the cross product
of all classes and interfaces AU B x AU B.

The Jaro-Winkler distance metric was chosen since it respects the number of mat-
ching characters and the number of transpositions. It is well-suited to compute the
similarity of identifying names. Its result value is normalised to the interval [0..1]
where 1 is an exact match and O states no similarity.
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Alternative simplistic distance metrics on strings such as the Hamming distance
[Ham50] are tolerant against typing error, but are less meaningful for class naming
which often involves common pre and post fixes like in BusinessLogic, Business-
View, and BusinessFacade, where “Business” indicates classes belonging together.

Based on gy, the name resemblance can be calculated as follows:

Nsn

NameResemblance(A, B) = card(NoD)
car all

where Ny = AU B x AU B and card(Ny;) is thus the cardinality of the cross
product of all classes and interfaces of a component candidate. Name resemblance is
a commutative metric.

Interface Violations The interface violation metric captures the number of ac-
cesses between two sets of classes which bypass interfaces (i.e. direct type access).

: : __ RI(A,B)
Inter faceVioloation(A, B) := RUA. all)
where RI(A, B) is the number of accesses from A to B bypassing interfaces, and
R(A, all) is as above the number of all accesses. The interface violation metric lays
the foundation for detecting a communication style through interfaces. Section 4.8.6
will be dealing with the identification of interfaces as not all programming languages
have an explicit notion of interface. Interface violation is a non commutative metric
which is 1 if all communication from A to B uses interfaces.

Package Mapping The package mapping metric indicates that a component can-
didate is realised by classes that reside in the same package structure. The package
structure is therefore mapped to a separate tree structure formed by the package
containment relation.

PackageMapping(A, B) :=
commonRoot Height(A, B)
maxHeight(A, B) — commonRoot Height(A, B)

)

NonLinear M apping(

where maxz Height(A, B) is the maximum height of elements of A and B in the
package tree and common Root Height( A, B) is the height of the maximum com-
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mon tree node for all elements of A and B. Packagemapping(A, B) non-linearly
depends on the inner fraction with

z ifx>0.2

NonLinear Mapping(x) = {
0 else

where z = [0..1] € R. NonLinearMapping(z) realises a limiter which helps

avoiding a component indicator for classes which only share a very top-level package.

The limit of 0.2 is a configurable value which proved to be reasonable during the

validation of the approach. Package mapping is a commutative metric.

Directory Mapping The directory mapping metric is comparable to the package
mapping metric besides its applicability to programming languages which do not
support packages or implementations which do not make use of packages. For Java,
where directory and package structure are the same, directory and package mapping
result in the same value. For C++ namespaces, for example, the directory can deviate
from the namespaces structure. Instead of building a package tree from the package
containment relation, the directory tree is built from the directory containment rela-
tion for the directory mapping metric. Besides, directory mapping is calculated in
the same way as package mapping. Directory mapping is a commutative metric.

Although the directory of elements of A or B contain the full file system path,
the metric remains independent from where the sources are placed in the file system,
since no absolute root element is part of the calculation.

Instability The instability metric by Martin [Mar94] is the ratio of efferent cou-
pling to total coupling. It indicates whether the classes implementing a component
candidate have many external dependencies which make a component implementa-
tion likely to change if an external class or interface changes.

C.(A, B)

Instability(A, B) := C.(A, B) + C,(A, B)

Instability indicates a component candidate’s resilience to change. 0 indicates a com-
pletely stable component candidate, 1 indicates an instable component candidate.
Instability is a commutative metric.
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Abstractness When transferring the instability metric by Martin [Mar94] to com-
ponents, it is the ratio of abstract elements of a component candidate to the total
number of elements of a component candidate.

card(abstract(AU B))
card(A U B)

Abstractness(A, B) =

where abstract(S) = {s € S|sis abstract} is the selection of abstract elements
of the set .S. Abstract elements are abstract classes and interfaces. Abstractness is
commutative.

Distance from the Main Sequence The metric Distance from the Main Se-
quence (DMS) was first introduced by Martin [Mar94] and indicates a balance bet-
ween instability and abstractness (see Figure 4.5). The more abstract a component
candidate is (involving more internal interfaces), the more stable it should be. Vice
versa, it is acceptable for a component candidate to be instable if it is less abs-
tract. Fully instable and abstract component candidates are as unwanted as fully
non-abstract and stable ones. The first ones have no realisation and are unreliable
from the developer perspective, while the latter ones tend to be little accessible mo-
noliths. For further reading, please refer to [Mar94].

DMS(A, B) :=1— |Abstractness(A, B) + Instability(A, B) — 1]

where abstractness and instability are the metrics introduced above. The above for-
mula calculates the distance from the visualised “main sequence”. The prefixed 1 —x
is required to have a value of 1 indicating a good component candidate. DMS is a
commutative and composite metric.

Abstractness

1

N
> Worst
A values
-~
e

The ,main
| sequence” which
- is considered to
be ideal

0 1 Instability

Figure 4.5.: Distance from the Main Sequence visualised
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Slice Layer Architecture Quality The Slice Layer Architecture Quality (SLAQ)
metric captures how a broadly used architecture style of organising a system in slices
and layers is followed. Slices are service oriented cuts of a software system, like
for example contracting, billing, and customer data management. Layers are cross-
cutting technology induced cuts of a software system, like for example a view layer,
a middle-tier, and a database access layer. An element which resides in one layer and
one slice is called natural subsystem, like the view of the contracting slice in the
following example (see Listing 4.2).

The SLAQ metric can be interpreted as the similarity between the slice and layer
architecture style and its occurrence in the system under study. It judges to which
extend the slice and layer architecture style is followed by the implementation.

SLAQ expects slices and layers to be encoded into package names. For example:

1 edu. kit.ipd.mysystem. contracting . view

2 edu. kit.ipd.mysystem. contracting . business
3 edu. kit.ipd.mysystem.contracting .data

4 edu.kit.ipd.mysystem. billing . view

s edu. kit.ipd.mysystem. billing . business

6 edu.kit.ipd.mysystem. billing .data

Listing 4.2: Package names example of a project organised in slices and layers

Opposed to previous metrics, SLAQ is not related to a component candidate. It
is a basic metric which is reused by the subsystem component metric. SLAQ 1is the
ratio of found and expected natural subsystems.

card(S tound)
Card(sea:pected)

SLAQ =

with Sfyuna the set of identified subsystems and Se,peqeq the set of expected sub-
systems. Seypectea 1 derived from the package structure. S, contains all natural
subsystems of S;pcct. Which are present in the package structure. S pecreq r€present
the set of all natural subsystems of the system.

The problem of SLAQ is, that neither slices nor layers are know to the metric.
Both must be derived from the existing package structure of a software system using
a heuristic. Hence, also S,;pecteq is unknown. The following pseudo-algorithm in
Listing 4.3 calculates S pected-

1 C < classes(System) // Set of classes in the system
2 P« () // Set of packages
3 L« 0 // Set of layers
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4 S« 0 // Set of (packageSuffix, frequency) tuples

s Sexpected < O // the result; expected natural subsystems

7 calculateExpectedNaturalSubsystems(C') {

8 //determine the largest common package prefix and remove from package hierarchy:
9 P = packageHierarchy(C') \ commonPackagePrefix(C')

10 //layer identification:

1 L = layersFromPackageHierarchy ()

12 //determine common package suffixes (e.g. ’data’ 3x, ’view’ 2x):
13 S = packageSuffixes(C)

14 //minimum number of slice occurrences, at least 2:

15 fmin = min(card(L) * slicepercentage; 2)

16 //calculate the expected subsystems:

17 Seapected = L x {(prefiz, frequency) € S|frequency > fmin}

18 return S expected

Listing 4.3: SLAQ calculation

where SliC€percentage 15 the required percentage of occurrences of a slice among all
packages (e.g. 5%).

First, the algorithm computes the longest common package prefix of the elements
of a software system. The package structure of a software system does not deviate
in the hierarchy above the identified package. Then, the layers below the calculated
base package and the most common package suffixes and their quantity (e.g. 3x
“.data” and 2x “.view”) are calculated. From that, a configurable minimum number
of occurrences f,,;, of a slice is calculated (line 9). Each slice which is bypassing
the minimal frequency f,,;, becomes part of the cross product of identified layers
and slices. Each element of the cross product is considered as an expected natural
subsystem.

Natural Subsystem The natural subsystem metric indicates how likely a com-
ponent candidate is representing a natural subsystem identified by SLAQ. Figure 4.6
visualises the natural subsystems of an example system.

NaturalSubsystem(A, B) := SLAQ x SubsystemM atch(A, B)
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Slices 7
View
__ —1 Natural Subsystem
- edu.kit.ipd.business.billing.ClassA
Business edu.kit.ipd.business.billing.ClassB
edu.kit.ipd.business.billing.ClassC
(7]
3 aee
) Data
-

Contrac- Billing
ting

Figure 4.6.: Natural subsystems of a software system

where SLAQ) is the previously introduced metric and

card(subsystem,siq.(AU B))

SubsystemMatch(A. B) :=
ubsystemMateh(A, B) := 0 temumam(AU B))

is a value [0..1] € R which is the ratio between classes inside a natural subsystem
subsystem;,iq. and classes outside a natural subsystem subsystemy,isige. Since
there are multiple natural subsystems, the natural subsystem to check against is the
one where the largest number of classes of A N B is in:

SelectedSubsystem(A, B) :=$ € Seppectea | card(s N (AU B)) =
fmax( card(ns N (AU B)) ) Vns € Seupected

where fmaz(expression) determines the maximum value of expression (in this
case the calculation of the cardinality) for all ns € Seipectea- SULSYStEMinsiae
and subsystem,qq. are then evaluated on the subsystem selected by Selected-
Subsystem(A, B). The fact that multiple subsystems can have the same maximal
cardinality does not harm the result, since only its cardinality is used to calculate
the SubsystemMatch(A, B). If fmax(expression) is not resulting in a single
unique element, an arbitrary element of the result set is returned.

The maximum value of the subsystem component metric is the SLAQ metric value.
For architectures which are not organised in slices and layers, the natural subsystem
metric does not apply and results in a value of 0. Natural subsystem is a commutative
and composite metric.

4.8.4. Blacklisting and Filtering

All strategies can be combined with an optional blacklisting and filtering strategy
(cf. Figure 4.7). This strategy first of all allows limiting the scope of reverse engi-

75



Chapter 4. Reverse Engineering Static Architectures

neering. For example, infrastructure or system libraries can be excluded from reverse
engineering, but reverse engineering can also be focused on specific subsystems of
a software. Furthermore, this strategy allows filtering certain classes or data types.
For example, primitive data types or classes which are pure data structures with only
public fields are not subject of component reverse engineering. They can be part of
component interface definitions but should not be contributing to components. When
not filtering pure data types, basic metrics like coupling or interface violation could
be misleading (they could for example indicate an interface violation and high cou-

pling).

Blacklisting Filtering
Classes Classes & methods
edu.kit.ipd.project.ClassA edu.kit.ipd.project.Business
edu.kit.ipd.project.ClassB B updateReporting()
edu.kit.ipd.project.ClassC createReport()
—rrertriBete— Class-level blacklisting doSth(Set s) )
. . - T ] . . _| Filter pure data types
java.util. Hashtable : isReport() I S
java.util... getAccounts()
—fevexswing=— _ __ __| Package-level setAccounts()
—avercserret— blacklisting setReportingIntense(int i)
]

Figure 4.7.: Blacklisting and filtering

The blacklisting is a set projection based on the naming of its elements:
Blacklisting (S, namesyaerisica) := {s € S | s.name & namesyackiisted }

where S' is the set of classes, interfaces, and packages of a system’s GAST model
and namesy,qiisteqd 1S the set of blacklisted names. For classes and interfaces, the
name attribute is the fully qualified name, for packages the name is the full package
path name.

Typical applications of blacklisting are the removal of libraries and runtime envi-
ronment classes. For example, java.* and javax.* are removed in most Java-based
scenarios.

While blacklisted classes and interfaces are fully removed from input interpre-
tation, filters can be specific to certain reverse engineering steps (e.g. component
detection or interface creation). By default, structs, enumerations, primitive types,
and classes with only getters, setters and is*-methods are considered as pure data
structures and therefore filtered.

Data structures are filtered from the set of all types by first checking the data
type attributes available from the GAST model and then removing those types that
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represent pure data structures. The latter heuristic is based on regular expression
checks. The following term defines the white list filter which bypasses desired types:

Filter patasiructures(T) :={t € T'|

tasStruct = falseN

t.isPrimitive = falseN

t.isEnum = false}

\ {t € T |card(t.methods) = card({m € t.methods|
RegExz(”get. *”, m.name)V
RegEz(”set. x 7, m.name)V
RegEx("is. ", m.name)})

}

where T’ is the set of types of a system and ¢sStruct, is Primitive, 1s Enum, and
methods are properties directly available for types from GAST models. Additio-
nally, methods possess a name attribute.

RegEx is a regular pattern matching (cf. [Tho68]):

true if arg matches the regular
RegEx(pattern, arg) := expression pattern
false else

4.8.5. Component Detection Strategies

Strategies, among others, help identifying components and interfaces in SoMoX.
They rely on the basic metrics which have been introduced in the previous section.
Instead of calculating a weighted sum from the basic metrics, strategies allow SoMoX
to identify higher level structures of components which are not directly visible from
a single metric. Each strategy therefore can combine a number of basic metrics and
is able to take interdependencies into account. As explained before, for example the
naming of classes by itself is a bad indicator for componentisation, when ignoring the
coupling on the code level. If two classes have similar names but no code relation,
they form a bad component.

Principles like cohesion and coupling [Mye75] are well-known to be indicators for
software modularisation but have been identified to be not the ideal driver for mo-
dularisation [AGO1]. Furthermore, when dealing with software components instead
of modules, cohesion and coupling reflect only a small portion of the component
properties which are required by the developed reverse engineering approach. The-
refore, various strategies which go beyond cohesion and coupling are responsible for
detecting component-based architectures in the SoMoX approach.
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Component . .
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Figure 4.8.: Relations between strategies and metrics visualised an UML class
diagramme

The strategies for component identification (component merge and component
composition) are realised as a special form of composite metric. Other strategies
which do not rely on metrics will be pointed out separately. In SoMoX, the main
strategies component merge and component composition rely on a number of sub-
strategies (see Figure 4.8). These sub-strategies themselves rely on basic metrics
and composed metrics. Generally, strategies and metrics follow a composite pat-
tern [GHJV95] which does not limit the number of nesting levels. Strategies, sub-
strategies, and metrics are separated to clarify the concepts.

The following sections will detail on the strategies from the overview in Figure 4.3
and 4.4.

Component Candidates The GAST representation contains only constructs of
object-oriented programming languages. Thus, a strategy is required which turns the
constructs into component candidates. There are two different alternative strategies
for dealing with the creation of component candidates: The immediate transforma-
tion from source code to component candidates and the merging strategy which uses
the graph-based component creation as introduced in Section 4.5. The two alternative
strategies in detail are:

e [mmediately transform each initial component candidate into a basic com-
ponent. Using this strategy, low-level components are preserved since they
form the basic entity for creating further composite components. Here, a fixed
heuristic is used to identify low level components and directly convert them
into basic components. Such heuristics cover the creation of a basic com-
ponent for every class including its inner classes. The heuristic can be exten-
ded by strategies for specific technologies. For example for EJB components,
all classes which implement a single EJB component can be transformed into
a basic component (the required information on EJBs can for example be de-
rived from deployment descriptors).
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e Merging via metrics. More advanced strategies make use of metrics for mer-
ging classes into basic components. This is the same strategy as for later mer-
ging of components (see strategy “Component Merge”). In this step, metrics
identifying criteria for merging classes into a component are applied. For
example, a helper class which is accessed without interface use by a single
other class can be merged into the component of the accessing class. By using
the merging strategy, the lowest abstraction level of the reverse engineered
components can be significantly lifted.

High initial abstraction levels help keeping the result model small and assist
creating understandable initial component abstractions which can significantly
differ from classes. Furthermore, the abstraction level of basic components di-
rectly impacts the control flow abstraction level of the later reverse engineering
of behaviour models (cf. Section 5). The behaviour abstractions become more
fine-grained for smaller components. To increase the control flow abstraction
of behaviour models, high-level basic components are required.

In both cases, each class including its inner classes are considered minimal initial
component candidates. Component candidates at a sub-class-level (e.g. inner classes
or methods) are intentionally not supported by SoMoX for a number of reasons:

1) The selected minimal abstraction level forces abstraction, while sub-class-
level components would result in very fine-grained architectures,

i1) the identification of methods or inner classes interface’s is unclear, since they
do not posses an explicit interface notion, and

1i1) such components made from methods or inner classes would not be units of
independent deployment since they depend on their outer classes.

Both strategies (immediate transform and merging via metrics) have been reali-
sed during the development of SoMoX. Both strategies create reasonable component
abstractions but the “merging via metrics” strategy proved to be more flexible. This
strategy is configurable and can behave like the immediate transformation when lo-
wering the probability of merging. Especially for larger systems, low abstraction
level components help little in understanding a software system and at the same time
lower the abstraction level of behaviour reverse engineering. Therefore, the strategy
“merging via metrics” was finally selected to best fit the requirements.

Interface Adherence Interface adherence is based on the interface violation me-
tric. Interface adherence highlights component candidates with a clear interface com-
munication style. The interface adherence strategy checks whether components can-
didates are coupled at the code level prior to indicating interface communication. If
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a component candidate is not coupled at the code level, from the perspective of inter-
faces, all communication would use interfaces but no communication can be present.
Thus, if no coupling is present, interface adherence also results in a low rating. In all
other cases, interface adherence is derived from interface violations.

Inter faceAdherence(A, B) :=
1 —max(IV(A,B),IV(B,A)) if max(Coupling(A, B),
Coupling(B, A)) > €

0 else

with IV (A, B) being Inter faceViolation(A, B) as define above. Coupling is
not commutative. Therefore, the maximum coupling value is used which indicates
the highest coupling present within the component candidate. The check for coupling
is performed using an € environment to overcome numeric limitations.

—_—_———e— e e —— 4

Component Candidate

| |
! |
I
| ¢ £] ¢ £ |
|
|
: ClassA |~ ClassD :
N
o i —
: ClassB - Classk |
|
|
I ClassC / :
|
o __Z/_______ - _____ NS ___ K
Z . \

Component Interfaces Component

Candidate implemented by Candidate

Classes Ci classes of Cj Classes Cj

Legend:
Class _—> —————- >
Interface Interface
Class Bypassing Adherence

Figure 4.9.: Example: Interface adherence and bypassing

Figure 4.9 visualises a component candidate whose classes partially communicate
using interfaces (dashed line). Other communication is bypassing the interfaces (so-
lid line between classes). In the example, the classes A, B, and C on the left hand
side access classes on the right hand side (classes D and E).
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Interface Bypassing Interface bypassing is based on the interface violation me-
tric. While components should externally communicate through interfaces, inter-
nally no interface communication is required. Instead, communication bypassing
interfaces indicates the need to merge a component candidate. Interface bypassing
indicates when to merge or compose a component. Interface violations are only
considered as serious if the classes of a component candidate are coupled at the code
level.

Inter face Bypassing(A, B) :=
max(IV (A, B),IV(B,A)) if maz(Coupling(A, B),
Coupling(B, A)) > €

0 else

with IV (A, B) being Inter faceViolation(A, B) as define above. Interface by-
passing should not be mixed up with interface violation as the latter does not respect
coupling.

Consistent Naming Consistent naming indicates that the names of classes of a
component candidate have similarities. Component developers tend to name classes
of components according to naming schemes. For example classes realising an ac-
counting component could be named AccountingInitialisation, Accountin-
gInfrastructure, and AccountingRegistration. Since naming schemes are not
necessarily formal, deviations must be handled. The basic metric name resemblance,
which is used in this context, is sufficiently flexible to account for loose naming
conventions.

CNRaw(A, B) =
NameResemblance(A, B) if max(Coupling(A, B),
Coupling(B, A)) > €

0 else

The consistent naming strategy only applies if A and B from the component can-
didate are actually coupled at the code level. This avoids seeing classes of a com-
ponent candidate being related because of accidental naming clashes. For example
ContractingInitialisation is not necessarily related to AccountingInitiali-
sation.

The raw consistent naming value is non-linearly mapped to the consistent naming
value

ConsistentNaming(A, B) := NonLinear M appinguamins(C N Raw(A, B))
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with

1.0 if1.0 > 2 > 0.8
0.9 if0.8>z2>0.6
0.7 if0.6 >z > 0.5

0 else

NonLinear M apping,aming(T) 1=

Since names of classes can only be the same in special cases (different packages),
the non-linear mapping helps to boost candidates which comprise mostly similar
names. At the same time, only partially related names are rejected for identifying
components. As the consistent naming metric could be misleading otherwise, the
non-linear mapping is important to limit the impact of naming on componentisation.
The boundaries and assigned values are kept configurable; the presented values re-
present defaults. The general guideline when configuring the non-linear mapping is
to prefer similarly named classes and reject little similarly named classes as compo-
nents.

An alternative to the discrete mapping steps would be a continuous function. The
disadvantage of a continuous function is the complexity of configuring it as human.
When aiming at a certain effect, such continuous functions (e.g. a gamma distribution
[Lin93]) have parameters which are hard to guess.

Abstract/Concrete Balance The abstract/concrete balance strategy reuses the
composite basic metric Distance from the Main Sequence (DMS). It is universally
applicable to rate the quality of a component. The balance of abstract and concrete
elements of a component help ensuring extendability of a component and at the same
prohibits components which comprise extension mechanisms only.

AbstractConcrete Balance(A, B) := DM S(A, B)

Abstract/concrete balance lifts DMS metric to the strategy level. The DMS metric is
currently not extended for this.

Hierarchy Mapping The hierarchy mapping strategy combines the package map-
ping and directory mapping metrics to gain a language-independent component de-
tection mechanism which evaluates the adherence of component candidates to hie-
rarchies expressed in packages and directories. The idea behind this strategy is that
developers tend to place classes of components in a hierarchical structure.
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HierarchyMapping(A, B) =
( Package M apping(A, B) for Java-based systems
DirectoryMapping(A, B) for C-based systems

wpps-DirectoryMapping(A,B)+wp - Package Mapping(A,B)

< 2

C++-based systems/
systems using

packages and

\ directories

with wpys and wpyy in [0..1] being adjustable weights typically set to 1.0 each. As
neither package nor directory structure can be preferred in general. For Java-based
systems, the evaluation of packages is sufficient since directory and package structure
correspond to each other. For other systems, using directory or package structures
depends on the information available.

For other implementation technologies, this strategy can be further refined. For
example, Python-based systems comprise modules which can be respected during
analysis.

Subsystem Component A subsystem component is identified using the natural
subsystem metrics. To recall, the natural subsystem metric checked for a component
candidate being placed inside a slice and layer of a software system organised in
slices and layers. The aim of the subsystem component strategy is to convert natural
subsystems to components of the result model.

SubsystemComponent(A, B) := \/NatumlSubsystem(A, B)

Subsystem component is scaled compared to the natural subsystem metric by using
the square root (cf. Figure 4.10). Natural subsystem is a strong indicator for com-
ponents where also smaller values can contribute in detecting components which are
consequently pushed.

The employment of the square root creates a smooth continuous function (r =
1,y = 2). Nevertheless, it could be replaced by other continuous functions which
push small values further. Steeper functions are for example of the type

Natural Subsystem(A, B)»

where the parameters © = 1 and y = 4 are typical parameters which are suitable to
steer the scale-up of small values.
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Figure 4.10.: SubsystemComponent scales small values of NaturalSubsystem
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Figure 4.11.: The component merge strategy indicates when to merge the classes of
a component candidate into a single component

Component Merge Component merge is a strategy which decides whether
to merge the elements of a component candidate to a single component (see
Figure 4.11). If applied, the classes of a component candidate become members of
one component.

Merging is primarily applied in early iterations of reverse engineering to gain a
higher abstraction level of basic components. Merging is also meaningful for la-
ter iterations, but becomes less important from iteration to iteration. At low levels,
merging enables components having a non trivial initial abstraction level. In later ite-
rations, especially helper and utility classes can be merged into existing components.

Imagine a helper class which is shared among only two low-level components.
For these two separate components, the helper class cannot be assigned uniquely to
one of these components. If in a later iteration these two components are compo-
sed into a single composite component, the previously non-assignable helper class
would be tangling. In this case, the helper class should be merged into the composite
component, since no accesses from other components exist at that abstraction level.
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For later iterations, component merge avoids small helper components which com-
prise only one or very few classes. In early iterations, the base abstraction level can
be significantly raised.

Figure 4.4 (page 67) provides an overview on sub-strategies which component
merge involves. Component merge comprises interface bypassing, consistent na-
ming, hierarchy mapping, and abstract/concrete balance. Of those sub-strategies,
consistent naming, hierarchy mapping, and abstract/concrete balance are shared with
component composition.

Component merge calculates an adaptable weighted score for every component
candidate. If the dynamic “merge” threshold is exceeded, a component candidate is
merged as explained in Section 4.5.

Component merge is defined as:

ComponentMerge(A, B) :=( w,,, - Inter faceBypassing(A, B)+
Wpno - Consistent Naming(A, B)+
Wy - AbstractConcrete Balance(A, B)+
Wiy - HierarchyMapping(A, B)
)/4

where w,,; 4 € R : 0 < w,, < 1 represent weights for each sub-strategy.
Depending on the weights, the detection strategies can be adapted to system specifics.
If for example, the naming of components is not very consistent, the according weight
of the strategy can be lowered.

Component merge makes situations identifiable where classes of a component can-
didate are strongly coupled and internally communicate bypassing interfaces. Addi-
tionally, components are preferred which posses a consistent naming and reside in
the same area of the system hierarchy.

Component Composition Component composition is the top-level strategy
which is responsible for judging whether a component candidate should be conver-
ted into a composite component comprising sub-components from A and B (see
Figure 4.12). The strategy prefers components which communicate via interfaces.
This is the most important difference to the component merge strategy. Besides,
as for components resulting from a merge operation, components are identified by
naming, a balance of abstract and concrete elements, or alignment with the system
hierarchy. In addition to the component merge strategy, the subsystem component
strategy is used to identify composition scenarios. Since subsystem components
can comprise multiple low-level components, only composite components use this
strategy.
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Figure 4.12.: The component composition strategy indicates when to create a new
composite component from a component candidate

Figure 4.4 (page 67) provides an overview the sub-strategies which component
composition involves. Interface adherence, consistent naming, hierarchy mapping,
abstract/concrete balance, and subsystem component are used in component compo-
sition.

ComponentMerge(A, B) :=(w., - Inter faceAdherence(A, B)+
Wy - ConsistentNaming(A, B)+
wes - AbstractConcreteBalance(A, B)+
Wey - HierarchyMapping(A, B)+
Wes - SubsystemComponent(A, B)

)/5

where w. 5 € R : 0 < w,, < 1 represent weights for each sub-strategy. The
weights can differ when comparing with the component merge strategy. For example,
hierarchy mapping is an important strategy to identify high-level composite compo-
nents. The hierarchy of a software system can carry information for high abstraction
levels. Imagine two top-level components which reside in a common namespace and
beyond that only differ in being held in two different source folders in the file sys-
tem. Those components can be pure design entities which are not directly reflected
in the source code. Thus, hints on their existence can be beneficial for high-level
component detection.

The dynamic threshold for component composition, which is lowered over the ite-
rations of reverse engineering, helps identifying high-level components which have
only a weak manifestation in artefacts. Lower abstraction levels of components are
ensured to not be skipped as the threshold is lowered only if no components have
been found in an iteration. Hence, adding high-level abstractions does not squeeze
lower abstraction levels out.
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For high abstraction levels, consistent naming automatically becomes less impor-
tant since large components with dozens of classes seldomly have a consistent na-
ming scheme.

4.8.6. Interface Detection Strategies

Interface detection in SoMoX is based on a number of strategies which each represent
a heuristic to identify component interfaces. SoMoX distinguished between class
interfaces (e.g. indicated by the interface keyword in Java) and component inter-
faces (e.g. ICustomerAccounting of a business component), which are associated
via component roles and represent functionality which is exposed at the component-
level.

The strategies which will be presented in the following decide whether to turn a
class interface into a component interface. The class interface must not necessarily
correspond to a language feature “interface”. For example abstract classes can also
be interpreted as component interfaces. Vice versa, not every class interface must
result in a component interface. Overall, there are four different main strategies
(Section 4.8.6.1 to 4.8.6.4) which identify provided and required interfaces for basic
components and for composite components. Figure 4.3 (page 66) visualises these
strategies.

Generally, the interfaces of basic components are the superset of interfaces which
become part of higher abstraction levels of a reverse engineered software architec-
ture. For composite components it must be decided which interfaces shall be exposed
as provided interface. This can only be a subset of inner component interfaces. For
required interfaces of composite components, no other interfaces are exposed than
the actually internally required ones. Since every composite component is ultimately
built from basic components, the set of available interfaces is determined by basic
components.

The following sections first deal with the recognition of interfaces for basic com-
ponents. Second, the interface exposition for composite components is being dis-
cussed. For basic and composite components, the handling of provided and required
interfaces is distuinguished.

4.8.6.1. Provided Interface Recognition for Basic Components

An architecture should be able to provide different abstractions of a software system
(cf. [CBBT03]). Accordingly, interface recognition must be adaptable to different
granularity levels. Interfaces can capture business aspects (e.g. user management,
accounting) or infrastructure aspects (libraries, execution environment). Depending
on the settings, it might be desirable to limit interfaces recognition. Vice versa, not
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every programming language provides means to specify interfaces or interfaces are
not used in a certain system. SoMoX must also handle such cases.

Interfaces from Abstract Classes Strucjtu'ral Public Methods
Source Code Heuristics

Figure 4.13.: Interface identification fallback strategies

The interface identification of SoMoX comprises multiple strategies which serve
as fallback strategies if a major strategy fails. Figure 4.13 illustrates the strategy
fallback where strategies on the right hand side serve as fallback for strategies next to
them on the left. The strategies are organised as a chain of responsibility [GHJV95].
First, interfaces realised through source code constructs (e.g. Java interfaces) are
going to be identified. If none of them are present for a single component, abstract
classes are used and after that specific class structures (e.g. only virtual methods) and
public methods. These sub-strategies will be discussed below.

Any identified interface is translated into a component interface and a provided role
which associates the interface with the corresponding component. Interfaces can be
shared among multiple components. SoMoX ensures that no interface is duplicated.
If an interface already exists, only the provided role is created.

Language Interfaces In this strategy, interfaces reflected in underlying program-
ming languages (e.g. Java interfaces) are identified as component interfaces. An
interface is considered a component interface, if classes of the previously identified
components implement it. The language interfaces strategy and all following strate-
gies are binary decisions whether to consider a class interface as component interface.

Abstract Classes Comparable to the language interfaces strategy, the extends re-
lation of source code identifies component interfaces in this strategy. Any abstract
parent class of the classes realising a previously identified component is considered
as component interface.

Class Structure Heuristics Besides language interfaces and abstract classes, heu-
ristics can identify classes which are structured like interfaces. SoMoX realises
a strategy which identifies classes with virtual methods only as component inter-
faces. Especially for C/C++ based systems, this strategy allows the identification
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of interface-like structures although no explicit interface notion is present in these
languages.

Public Methods The last fallback strategy is the interpretation of public methods
as part of the component interface. This strategy can be applied even if no other
interface notion is available. Components should always have provided interfaces,
thus having a fallback strategy which ensures a provided interface for all cases like
the presented is required.

External Documents External documents (e.g. information from EJB deploy-
ment descriptors) can be used to identify component interfaces among the class in-
terfaces. EJB interfaces can for example be used as component interfaces. The usage
of external documents for identifying interfaces is also meaningful for languages
such as C/C++ which by default have no explicit interface notion. Here, template
libraries can be used to realise interfaces. The corresponding external artefacts then
can be analysed to identify interfaces. Besides, interface definition languages (IDL,
such as CORBA IDL [Obj07] or WSDL [CCMWO01]) become analysable using this
strategy. This strategy is currently not carried out by the SoMoX implementation.

Component Interface Service Identification By default, all methods of a class
interface become services of a component interface. Of the above identified elements
(interfaces, classes), the identification of component services can differ. Using all
methods 1s especially meaningful for interfaces which are declared in source code
(e.g. the interface keyword) and abstract classes.

An alternative identification strategy is the use of only those methods which are
actually used in a concrete architecture. This keeps the result model small. The
drawback 1s the reduced genericness of reverse engineered components. Since only
portions of the methods become part of the component interface, some services which
are provided by a component are left out. In other scenarios, these services could be
required but then would not be part of the component interface. This strategy helps
reverse engineering the de-factor architecture which comprises only those architec-
ture elements which are actually used in a software system. This is predominantly
useful for understanding an architecture since only a limited scope of a system is re-
verse engineered. Employing only the actually used methods is preferably combined
with the public methods strategy which, due to its fallback nature, tends to identify
low-level methods as component services.

SoMoX realises the all methods strategy to reverse engineer potentially reusable
components.
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4.8.6.2. Required Interfaces Recognition for Basic Components

For required interfaces it is essential to decide whether to follow a strict interface
communication style or to relax this architectural requirement. Additionally, one can
distinguish business and infrastructure interfaces as with provided interfaces. The
following basic strategies result from these requirements.

No Bypassing Any component-external communication must use component in-
terfaces in this strategy. Bypassing an interface is not allowed. This strategy results
in large required interfaces. Any call from classes of the considered component to
classes of another component are therefore realised through a required interface.

Disregard Infrastructure Calls Infrastructure calls (calls to libraries and exe-
cution environments) are not captured in interfaces in this strategy. Only business
interfaces are considered to be component interfaces. This strategy allows focusing
on business functionality of components. Business interfaces are distinguished from
infrastructure calls via the blacklisting mechanism which has been introduced in Sec-
tion 4.8.4. Non-blacklisted interfaces are identified as business interfaces.

The aim of SoMoX is reverse engineering for the sake of performance predictions.
Although infrastructure calls can be disregarded during architectural reverse enginee-
ring, the overall model integrity from the performance perspective can be ensured.
The performance impact of infrastructure calls is therefore captured during reverse
engineering of behaviour models. Infrastructure calls end up in InternalActions
of the RDSEFF as will be detailed in see Section 5.16.

Allow Bypassing Using this strategy, bypassing required interfaces (not only in-
frastructure calls) is accepted. This results in component architectures which inten-
tionally deviate from code. It can be used to reduce complexity and size of interfaces
and communication structures. Additional heuristics are required to identify the in-
terfaces which are kept in this strategy. This heuristic is project-specific and could
be based on naming conventions or namespaces which are considered to be part/not
part of the interface communication. SoMoX does not realise this strategy.

4.8.6.3. Provided Interface Exposition (for Composite Components)

For composite components it is questionable which interfaces of inner components
should be exposed to the outside world. The exposed interfaces are a subset of the
provided interfaces of the inner components which are contained in the composite
component. Only directly contained (not transitively contained) interfaces are subject
for exposition. Otherwise, the hierarchy of composite components could be broken.
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Expose all inner Interfaces Following this strategy, all interfaces of inner com-
ponents of a composite component are exposed as provided interfaces.

Expose used inner Interfaces This strategy exposes all inner interfaces which
are actually used inside the composite component. The idea behind this strategy is
that any interface which is successfully used as a component service internally, can
also be used from outside the component.

Expose externally used Interfaces Only interfaces which are actually used from
outside a composite component are exposed in this strategy. This strategy helps re-
verse engineering a de-facto architecture which employs only interfaces which are
used in a certain setting. The resulting architectures remain slim and by that can be
of benefit for understanding software architectures. Still, the reuse of components
which are reverse engineered using this strategy is limited as only portions of the full
interface functionality are exposed by composite components. The strategy corres-
ponds to the actually used strategy for the identification of component services.

4.8.6.4. Required Interface Exposition (for Composite Components)

To ensure model integrity, all inner required interfaces which are not internally
connected must be exposed. Otherwise, some call destinations would be undefined
in the model. Unlike for provided interfaces, exposing required interfaces which are
already connected within a composite component generally is not feasible since it
would blow up the required interface.

4.8.7. Connector Strategies

Connectors establish the control and data flow among components and must be esta-
blished for all composite components. During their creation it is crucial to connect
all required interfaces of components to ensure model integrity. Calls for a requi-
red service of a component must not end up in non-connected interfaces if a reverse
engineered model is subject to performance analysis. Other reverse engineering ap-
proaches which aim at program understanding only, can either fully omit connectors
or accept “dangling” interfaces without connectors attached. Figure 4.14 provides an
overview for the different connector strategies.

De-facto Connectors Assembly connectors should generally rely on de-facto
connections among component interfaces. To establish assembly connectors, they
can be derived from the graph structure. Since the graph structure has directed edges,
the direction of connectors can be directly derived.
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Figure 4.14.: Connector strategies overview

Not all dependencies among classes can be statically analysed (cf. [Ern03,
NNH99]). Hence, dependency information of components can be incomplete.
Advanced dependency analysis approaches can be of benefit for identifying depen-
dencies which cannot be analysed with the employed SISSy approach which creates
the GAST model. The results of these analyses would then be reflected in the graph
structure and allow establishing further assembly connectors.

Match Inner Interfaces For cases of dynamic binding, dependency injection, and
external connector definitions (e.g. EJB deployment descriptors) where no reliable
information on assembly connectors can be made available using a certain tooling,
the following heuristic can be used: If a couple of provided and required interfaces
within a composite component matches (the interface associated by required and
provided role are the same), composite component-internal connectors are preferable.
This forces component-internal communication of composite components.

This heuristic might introduce assembly connectors which never occur at runtime.
If multiple provided interfaces match for a single required interface, an arbitrarily
selected provided interface becomes part of the assembly connector.

An advanced version of this heuristic (the advanced form has not been realised
in this thesis), could use standard interface interoperability checks (e.g. [BORO04])
to determine valid matches of interfaces. For example, an required interface
I.., = {servicey,service,} can be interoperable with an provided interface
L0, = {service,, service,, services} although the interfaces are not equal. In
the example, every service of the required interface has a counterpart at the provides
side.
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Required Delegation Connectors If an assembly connector cannot be establi-
shed inside a composite component, a required delegation connector must be establi-
shed. Thus, any required call will have a determined callee and model consistency
is not harmed. For a composite component a required role with the corresponding
interface is therefore added (if it has not been present before) and a required dele-
gation connector connects the inner required role with the outer required role of the
composite component.

This strategy implies that the outer required role must be bound transitively until
either the “match inner interfaces” heuristic applies or the system boundary is rea-
ched. In the latter case, inner calls are delegated to required roles at the system boun-
dary. Cases in which calls are delegated to system boundaries can for example hap-
pen if the system scope is limited and only portions of a software system have been
reverse engineered of if calls of infrastructure services are considered as component
services which are realised outside the system scope. To ensure model integrity, mea-
sured quality attributes must be specified for the services realised by system-external
components (cf. Section 2.5).

Remove Required Interfaces An alternative strategy for required delegation
connectors is the removal of required interfaces. If connectors for required inter-
faces cannot be established successfully, required interfaces can be deleted from
components. This strategy ensures model integrity but has the major drawback that a
component must account for the performance impact of external calls in Internal-
Actions. The callees of external calls are generally unknown to components, thus
the performance impact of external calls cannot be known in general. Furthermore,
explicit dependency statements (the required interface) are neglected when applying
this strategy. This strategy can only be applied if the assembly and allocation context
of calling component and callee are fixed — and thus cannot be known during reverse
engineering of reusable components. This strategy has not been realised in SoMoX.

Provided Delegation Connectors All exposed provided interfaces must be map-
ped to inner provided interfaces of components. Otherwise, model integrity would be
violated. Hence, the creation of provided delegation connectors is a fixed mechanism
not a strategy. The strategy to not expose all inner provided interfaces is not affected
by this mechanism.

4.8.8. Characteristics of Target Components

This section summarises typical characteristics of components which are identified
by the previously introduced strategies. Components, which are reversed engineered
by SoMoX, have a subset of the following characteristics which are visualised in
Figure 4.15:
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Figure 4.15.: Typical characteristics of a basic component in the source code

e Components communicate with other component using interfaces.
e Components possess a consistent naming of inner classes.
e Components have a common code structure.

e Components follow a component architecture which is organised in layers and
slices.

e Components are well-balanced concerning abstract and concrete realising
source code artefacts (i.e. interface, abstract classes, and implementing classes
are balanced).

e Components have high cohesion in the source code.

4.8.9. Determining Weights

The SoMoX approach requires a number of weights to be calibrated. For example,
the weights of the component merge and component composition strategy need to be
specified when applying SOMOX. Meaningful weights are hard to guess for unexpe-
rienced users. Therefore, SoMoX provides two sets of default weights to ease the
applicability of the approach. One set serves as a starting point for Java-based sys-
tems, the other for C/C++-based systems. For example the absence of interfaces in C
requires an adaption of weights for interface communications strategies.
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The default weights have been determined when reverse engineering a number of
reference projects. For these projects, the reference architecture was known. During
various iterations, the default weights have been adapted to provide a baseline for
multiple projects. Weights were adapted until satisfactory results could be achieved
(i.e. a large ratio of reference components has been detected when using SoMoX).

For the application of SoMoX, the default weights serve as a starting point. Then,
the weights can be optionally adapted to match specific project needs (e.g. no strict
interface communication required). By adapting the weights, component detection
strategies can be emphasized or neglected. In any case, for every reverse engineering
project, a scope and optionally blacklists have to be defined. Furthermore, name
pre and post fixes can be set for name resemblance. This makes SoMoX broadly
customisable and adaptable to project-specific needs. It must be emphasized that
weights do not aim at encoding any static structures to be detected into a reverse
engineering run. Weights purely express preferences which strategies to apply and
hence what kinds of characteristics the target model is supposed to possess.

The calibration of weights and metrics is part of the validation in Section 7.

4.9. Ensuring Integrity

The architectural reverse engineering approach is explicitly designed to ensure inte-
grity of reverse engineered models. Model integrity subsumes that all mandatory mo-
del attributes and relations are set and all constraints defined on the model are fulfiled.
The PCM carries a number of built-in constraints. Furthermore, all model constraints
defined by the performance simulation (cf. definition in SimuCom [BecO8b]) must
hold. Only models with full integrity can be analysed for performance and the reverse
engineering of behaviour models (cf. Section 5) is only applicable for valid models.
Otherwise, model semantics would be broken, e.g. dangling references prevent in-
terpreting a model as an execution description of a software system. Hence, for the
strategies from the previous section, it has been pointed out how model integrity was
ensured. SoMoX grants integrity for reverse engineered models.

Model integrity also helps users to understand a software system. Especially, if the
control flow and data flow of systems is investigated manually, entities which have
just high cohesion and low coupling (cf. [MMO6] for an evaluation of cohesion and
coupling metrics) are not sufficient. These entities usually do not conform to what is
expected to be an architectural entity like a component.

4.10. Extendability of the SoMoX Approach

The SoMoX approach is held extensible with respect to metrics, strategies, and input
data. When extending SoMoX, source code information must be related to the GAST
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input model as stated in Section 4.7 but is not limited to the information available in
the GAST. Possible extensions include the support of Spring or EJB deployment
descriptors.

An extension has two options to enrich input data:

e Update GAST information. Following this kind of extension, additional in-
formation (e.g. binding among classes established via dependency injection)
is used to update GAST class access information. The information on existing
and additional GAST classes is represented by the GAST only. Existing me-
trics and strategies in this case evaluate the additional information such as any
other GAST model elements of a non-updated GAST model.

e Create an GAST decorator model with additional information. This op-
tion requires the creation of a GAST decorator model and corresponding me-
trics and strategies which evaluate the decorator model. Since for example
Spring and EJB have their own notion of components, it can be beneficial
to explicitly handle this information on components during metric evaluation
and application of strategies. If for example a number of classes is identified as
EJB component, the decorator model can hold the information on the classes
participating in an EJB component. New metrics and strategies can then pre-
fer EJB components when converting component candidates into components.
Comparable extensions are also imaginable for interfaces, which can be iden-
tified as EJB interfaces through a decorator. The interface creation strategies
could then prefer EJB interfaces as component interfaces.

For both options, metrics and strategies still evaluate component candidates. Thus,
their results are first always mapped to the graph structure and then to the SAMM ar-
chitecture model representation. New metrics and strategies can seamlessly integrate
with existing ones.

Generally, the reverse engineering process of SoMoX can start with an (unlimited)
number of source code analysis approaches. They operate on input source code and
either update the GAST model or create the instance of a GAST decorator. Analyses
can be both static or dynamic analysis approaches. The design of the SoMoX ap-
proach does not require modifications in order to support further analysis approaches.

Further options for extending the SoMoX approach are presented in Section 9.11.
Klatt [K1a08] discusses the general extendability of SoMoX.

4.11. Complexity and Scalability

SoMoX incorporates several performance optimisations and heuristics to improve
scalability. Systems with a size of more than 250,000 LOC are supposed to be sup-
ported. Please note that there is no strong correlation between LOC and complexity

96



4.11. Complexity and Scalability

of the reverse engineering, as not the LOC but the number of classes and the number
of relations among classes are more important for the execution time. Also, chosen
strategies influence the complexity at run time because for example naming-based
strategies are more computation intensive than others. Furthermore, due to scoping
not all classes of a system are evaluated. Blacklisted classes have no influence on the
execution time and thus reduce complexity.

One important optimisation SoMoX applies, is concerned with what is evaluated
by metrics. As the calculation of metrics is very time-consuming, metrics within
SoMoX are evaluated only for component candidate fuples (as already introduced
above in Section 4.5). This allows to dramatically reduce the number of required
metric and strategy evaluations, while the composition and merge phase can still use
transitivity properties of metrics to create components of more than one element. For
reasons of brevity, hereafter metrics will subsumed strategies.

Metrics need to be re-calculated from iteration to iteration — but only if a com-
ponent candidate has changed since the last iteration. Imagine an iteration compri-
sing 10 classes of which two are merged into a new component. Most classes are
potentially not affected by the component merge and metrics related to these classes
should not be re-calculated non-necessarily. SoMoX determines those vertices of
its graph structure which need to be re-calculated. Only graph vertices which are
adjacent to changed edges are recalculated in SoMoX.

Dependency Analysis For metrics, interdependencies can also be used for opti-
misations. In SoMoX, metrics explicitly state their dependencies. A metric which
another metric relies on can be seen as a precondition of the depending metric. So-
MoX analyses the dependencies (for example multiple metrics can depend on a single
basic metric), and calculates in which order to execute them. Depending metrics are
then only evaluated if the basic metrics return a non-null result. An example for
such a case are two classes that are residing in distinct packages without any relation
among them. If it is already known for packages that there are no relations, this must
not be checked again for classes of these packages.

The metrics themselves decide whether to interpret a result as a null result. The
decentralisation of termination logic is required as it generally cannot be know how
sub-metrics are used by a metric (e.g. name resemblance must only be evaluated
if a certain threshold different from null holds for coupling). If a termination cri-
terion holds for a sub-metric, the depending metric can return a null value as well.
Dependency cycles are assumed to be avoided by metric developers.

Parallelisation SoMoX is designed to allow parallelisat