
K
la

u
s

K
ro

g
m

an
n

4

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

Model-based performance prediction systematically deals with the evaluation of
software performance to avoid for example bottlenecks, estimate execution en-
vironment sizing, or identify scalability limitations for new usage scenarios. Such
performance predictions require up-to-date software performance models. Still,
no automated reverse engineering approach for software performance models
at an architectural level exists. This book describes a new integrated reverse en-
gineering approach for the reconstruction of software component architectures
and software component behaviour models which are parameterised over hard-
ware, component assembly, and control and data flow and as such can serve
as software performance models due to the execution semantics of the target
meta-model.

R
ec

o
n

st
ru

ct
io

n
 o

f
So

ft
w

ar
e

C
o

m
p

o
n

en
t

A
rc

h
it

ec
tu

re
s

an
d

 B
eh

av
io

u
r

M
o

d
el

s
u

si
n

g
 S

ta
ti

c
an

d
 D

yn
am

ic
 A

n
al

ys
is

Reconstruction of Software Component
Architectures and Behaviour Models
using Static and Dynamic Analysis

Klaus Krogmann

ISBN 978-3-86644-804-9
ISSN 1867-0067

9 783866 448049

ISBN 978-3-86644-804-9

The Karlsruhe Series on
Software Design

and Quality

4

Klaus Krogmann

Reconstruction of Software Component Architectures
and Behaviour Models using Static and Dynamic Analysis

The Karlsruhe Series on Software Design and Quality

Volume 4

Chair Software Design and Quality
Faculty of Computer Science
Karlsruhe Institute of Technology

and

Software Engineering Division
Research Center for Information Technology (FZI), Karlsruhe

Editor: Prof. Dr. Ralf Reussner

Reconstruction of Software
Component Architectures and
Behaviour Models using Static
and Dynamic Analysis

by
Klaus Krogmann

Dissertation, Karlsruher Institut für Technologie
Fakultät für Informatik,
Tag der mündlichen Prüfung: 02.11.2010
Referenten: Prof. Dr. Ralf Reussner, Prof. Dr.-Ing. Gregor Snelting

KIT Scientific Publishing 2012
Print on Demand

ISSN 1867-0067
ISBN 978-3-86644-804-9

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe
www.ksp.kit.edu

KIT – Universität des Landes Baden-Württemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

Diese Veröffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Abstract

Model-Based Performance Prediction (MBPP, [BDIS04a]) is a software engineering

discipline which systematically deals with the evaluation of software performance.

MBPP’s central idea is to predict the performance of a software system based on

performance models. MBPP can be applied at design-time to avoid bottlenecks when

designing a software architecture but also for existing software systems. For existing

software systems, one is interested in scalability analysis and resource sizing without

actually buying expensive hardware and setting up the execution environment for

each possible execution scenario. Additionally, when extending an existing software

system by a new component, software performance models allow to estimate the

impact of the extension and help avoiding the introduction of bottlenecks. Consider

the example of a legacy accounting application: When extending such an application

by a new reporting component, it should be estimated how the overall performance

(e.g. response time) of the system is affected.

Applying MBPP requires the presence of up-to-date software performance mo-

dels. To reason on software architectures, these models must capture the architecture

itself as well as the behaviour of each architecture component. Unfortunately, cur-

rent reverse engineering techniques often aim at the static software architecture and

understanding of software systems [CZvD+09]. No approach reverse engineers soft-

ware performance models at an architectural level which are required to enable soft-

ware performance engineering. Thus, currently performance models must be created

manually when aiming at the support of design decisions for software architectures.

The contribution of this thesis is a new integrated reverse engineering approach

for the reconstruction of parameterised software component architectures and soft-

ware component behaviour models which can serve as software performance models

due to the execution semantics of the target model. This approach allows reverse

engineering behaviour models for each component’s service from code using static,

dynamic, and statistical analysis techniques. For performance prediction, the Palla-

dio Component Model Approach [BKR09] is used.

The new reverse engineering approach reconstructs static architecture information

(components, interfaces, and connectors) as well as a performance behaviour mo-

del capturing control and data flow for each provided service of a component. The

reverse engineered models are semantically rich so they can serve for performance

simulation approaches without requiring manual complements. Since these models

are highly parameterised (avoiding constants) they not only help understanding the

i

current state of a software system, the reverse engineered models help planning and

changing a software system in an efficient way at the model level. The reverse en-

gineered models support a large variety of design decisions at the model level with

respect to their performance impact: architectural refactorings, exchanging compo-

nents, extensions of legacy software systems (e.g. introducing new components),

performance optimisations (e.g. introducing caches or distribution), sizing of the

hardware environment (e.g. required hardware to support 100 concurrent users for

an existing application), and scalability analysis (up to how much load will an appli-

cation scale until bottlenecks become crucial).

For reverse engineering of software component architectures, the so-called “So-

MoX” approach has been developed. It employs various source code metrics and

combines them in a flexible way into detection strategies for architectural elements.

At the same time, the detection strategies respect interdependencies among metrics.

A graph-based hierarchical clustering approach then creates components and com-

posite components including their interfaces and connectors. Behaviour models are

reverse engineered by an approach (“Beagle”) combining static and dynamic source

code analysis. The system under investigation is therefore executed by a test driver

and monitored. Using the monitoring results as guide, a genetic programming ap-

proach combines results from static, dynamic, and statistical analysis to create the

behaviour model which out-performs the results of each single analysis approach. To

back up any reverse engineering results, trace models allow to identify the origins of

each result model element.

Unlike existing approaches, the reverse engineered models make no assumptions

on either of the following so-called contexts of a software system or component:

• Usage context. Neither the number of concurrent users nor their interaction

with the software system or parameters are assumed to be fixed.

• Assembly context. Neither the caller nor the callee of a component can ge-

nerally be known to a component. Accordingly, no fixed connection to other

components is assumed for a component.

• Allocation context. For a component it cannot be known at design time, in

which hardware and software environment it will be executed. For example,

which version of a virtual machine, middleware, or processor serve for execu-

tion is not fixed. This is also reflected in the reverse engineered models.

Additionally, existing approaches either focus on reverse engineering the architecture

of a software system following a relaxed definition of a software component which

contradicts use within simulation approaches (e.g. [SAG+06, YGS+04, RLvV06])

with focus on understanding of software systems [CZvD+09] or deal with reverse

engineering of not fully parameterised behaviour models (e.g. [HMWR99, IWF07,

ii

CW00, ZWL08, WHSB01]). No approach converges architecture and behaviour mo-

del reverse engineering. Consequently, none of the above design decisions is suppor-

ted.

The approach presented in this thesis has been successfully validated in a total

of 11 industrial case studies and reference applications, including among others Co-

CoME, Palladio FileShare, SPECjvm2008, and SPECjbb2005 [CKK08, KKR10].

Models were reverse engineered with an overall precision of 78% and a recall of

89% when compared to reference architecture. Performance predictions based on

the reverse engineered models deviated 12% in average and 30% in the worst case

from measurements of the systems.

iii

Zusammenfassung

Die modellbasierte Performance-Vorhersage (MBPP, [BDIS04a]) ist eine Software-

Ingenieursdisziplin, die sich mit der systematischen Evaluation von Software-

Leistungsfähigkeit beschäftigt. Die zentrale Idee von MBPP ist die Vorhersage

der zu erwartenden Performance eines Software-Systems auf der Basis von

Performance-Modellen. MBPP kann bereits zur Entwurfszeit eingesetzt werden,

um Flaschenhälse beim Entwurf einer Software-Architektur zu verhindern oder um

Flaschenhälse bestehender Software-Systeme auszuräumen. Im Falle existierender

Software-Systeme möchte man Skalierbarkeitsanalysen durchführen und Resour-

cendimensionierungsfragestellungen beantworten ohne die zur Ausführung für jedes

Szenario benötigte teure Hardware tatsächlich kaufen oder die Ausführungsumge-

bung aufsetzen zu müssen. Software-Performance-Modelle erlauben es daneben

zu untersuchen, wie sich die Erweiterung eines Software-Systems um eine neue

Komponente auf die Gesamtarchitektur auswirkt, ob dabei eventuell Flaschenhälse

eingeführt werden oder sich potentielle Flaschenhälse negativ auf die Performance

auswirken würden. Soll beispielsweise eine bestehende Buchhaltungsanwendung

um eine neue Berichtskomponente erweitert werden, sollte zunächst untersucht

werden, wie sich die neue Komponente auf die Gesamt-Performance (bspw.

Antwortzeitverhalten) auswirkt.

Um MBPP-Techniken anzuwenden, ist es notwendig, dass aktuelle Software-

Performance-Modelle vorliegen. Um Entwurfsentscheidungen auf der Ebene

von Software-Architekturen abwägen zu können, müssen Software-Performance-

Modelle die Architektur selbst sowie das Verhalten einer jeden Komponente der

Architektur erfassen. Derzeit verfügbare Reverse-Engineering-Techniken, die

Modelle aus Programmcode erzeugen können, konzentrieren sich auf die sta-

tische Software-Architektur und die Unterstützung von Architekturverständnis von

Software-Systemen [CZvD+09]. Es gibt keinen Reverse-Engineering-Ansatz, der

Software-Performance-Modelle auf der Architekturebene erzeugt, bei dem es die

rekonstruierten Modelle erlauben Software-Performance-Engineering-Ansätze auf

diesen Modellen anzuwenden. Daher werden Software-Performance-Modelle derzeit

manuell erstellt, wenn es um Entwurfsentscheidungen für Software-Architekturen

geht.

Der Beitrag dieser Arbeit ist ein neuartiger integrierter Reverse-Engineering-

Ansatz für die Rekonstruktion von parametrisierten komponentenbasierten Software-

Architekturen und Verhaltensmodellen für Software-Komponenten. Das Zielmodell

v

besitzt Ausführungssemantik, um für Software-Performance-Vorhersagen dienen zu

können. Der entwickelte Ansatz erlaubt das Reverse-Engineering der Dienste von

Komponenten aus Programmcode auf der Grundlage von statischer, dynamischer

und statistischer Analysetechniken. Zur Performance-Vorhersage setzt der Ansatz

auf das Palladio Komponentenmodell [BKR09].

Der neu entwickelte Reverse-Engineering-Ansatz rekonstruiert statische Archi-

tekturinformationen (Komponenten, Schnittstellen und Konnektoren) sowie ein

Performance-Modell des Verhaltens von Komponenten, das den Kontroll- und

Datenfluss eines jeden angebotenen Komponentendienstes enthält. Die rekons-

truierten Modelle sind semantisch derart reichhaltig, dass sie für Performance-

Simulationsansätze dienen, ohne, dass manuelle Ergänzungen notwendig sind. Da

die rekonstruierten Modelle hochgradig parametrisiert sind (und dabei Konstanten

im Modell vermeiden), können Sie nicht nur beim Verstehen des aktuellen Zustands

eines Software-Systems dienen, sondern auch bei der Planung und Änderungen

eines Software-Systems helfen. Die Analyse kann dank der Parametrisierung der

Modelle auf der Modellebene erfolgen. Die rekonstruierten Modelle unterstützen

eine Vielzahl von Entwurfsentscheidungen auf der Modellebene in Bezug auf ihre

Performance-Auswirkung: Architekturrefaktorisierung, Austausch von Kompo-

nenten, Erweiterung von Altsystemen (bspw. Einführung neuer Komponenten),

Performance-Optimierung (bspw. Einführung von Puffern oder Verteilung), Bemes-

sung von Ausführungsumgebungen (bspw. benötigte Hardware um 100 parallele

Nutzer bei einer bestehenden Applikation zu unterstützen) und Skalierbarkeitsa-

nalyse (bspw. wie viel Last kann eine Anwendung maximal verarbeiten bevor

Performance-Flaschenhälse kritisch werden).

Zur Rekonstruktion von komponentenbasierten Software-Architekturen wurde der

sogenannte SoMoX-Ansatz entwickelt. Er verwendet eine Vielzahl von Quellco-

demetriken und kombiniert diese in einer flexiblen Weise zu Erkennungsstrategien

für Software-Architekturelemente. Die Erkennungsstrategien berücksichtigen dabei

auch Abhängigkeiten zwischen Metriken. Ein graph-basierter hierarchischer Ansatz

zur Analyse von Bündeln dient dabei der Erstellung von Komponenten und zusam-

mengesetzten Komponenten inklusive ihrer Schnittstellen und Konnektoren. Verhal-

tensmodelle von Komponentendiensten werden vom sogenannten Beagle-Ansatz re-

konstruiert, der statische und dynamische Quellcodeanalyse kombiniert. Die unter-

suchten Systeme werden dabei von einem Testtreiber ausgeführt und beobachtet. Mit

den beobachteten Ergebnissen als Referenz kombiniert dann ein Ansatz zur gene-

tischen Programmierung aus statischer, dynamischer und statistischer Analyse ein

Verhaltensmodell, das die Qualität eines jeden einzelnen Ansatzes übertrifft. Zur

Vervollständigung der Reverse-Engineering-Ergebnisse wird ein Modell zur Ablauf-

verfolgung (Tracing) erstellt, das die Rückverfolgung aller rekonstruierten Architek-

turelemente auf ihren Ursprung im Programmcode ermöglicht.

vi

Im Gegensatz zu bestehenden Ansätzen, machen die rekonstruierten Modelle des

entwickelten Reverse-Engineering-Ansatzes keine Annahmen über einen der folgen-

den sogenannten Kontexte eines Software-Systems oder einer Komponente:

• Benutzungskontext. Weder die Anzahl der gleichzeitigen Benutzer noch ihre

Art der Interaktion mit dem Software-System oder die verwendeten Aufrufpa-

rameter werden als fest angenommen.

• Verbindungskontext. Weder der Aufrufer noch die Aufgerufenen können ei-

ner Komponente im Allgemeinen bekannt sein. Daher werden keine festen

Verbindungen zwischen Komponenten angenommen.

• Allokationskontext. Für eine Komponente kann zur Entwurfszeit nicht be-

kannt sein, auf welcher Hardware- oder in welcher Software-Umgebung diese

ausgeführt werden wird. Zum Beispiel ist für eine Komponente unbekannt,

welche Version einer virtuellen Maschine, Middleware oder welcher Prozes-

sor sie zur Ausführung bringt. Diese Unabhängigkeit wird ebenfalls in den

rekonstruierten Modellen widergespiegelt.

Es ist festzuhalten, dass bestehende Ansätze häufig das Reverse-Engineering von

Architekten fokussieren, die einer schwachen Komponentendefinition folgen und

damit einer Nutzung in Simulationsansätzen (für Software-Performance) zuwider

laufen (bspw. [SAG+06, YGS+04, RLvV06]). Solche Modelle eignen sich vor

allem zum Verstehen von Software-Systemen [CZvD+09]. In anderen Fällen

sind die rekonstruierten Modelle unvollständig parametrisierte Verhaltensmodelle

(bspw. [HMWR99, IWF07, CW00, ZWL08, WHSB01]). Kein Ansatz führt das

Reverse-Engineering von Architektur- und Verhaltensmodellen zusammen. Daher

werden die zuvor genannten Entwurfsentscheidungen auf der Architekturebene nicht

oder nur bruchstückhaft unterstützt.

Der in dieser Arbeit vorgestellte Reverse-Engineering-Ansatz wurde erfol-

greich in insgesamt elf industriellen Fallstudien und Referenzapplikationen,

inklusive CoCoME, Palladio FileShare, SPECjvm2008 und SPECjbb255 validiert

[CKK08, KKR10]. Im Vergleich mit der Referenzarchitektur dieser Systeme hatten

die rekonstruierten Modelle insgesamt eine Präzision (precision) von 78% und

einen Rückruf (recall) von 89%. Die auf den rekonstruierten Modellen basierenden

Performance-Vorhersagen wichen nur um durchschnittlich 12% – im schlechtesten

Fall um 30% von Messungen dieser Systeme ab.

vii

Acknowledgements

A dissertation is not possible without the support of numerous people which contri-

bute in discussions, reviews, help in implementations, or other kinds of collabora-

tions. I will try to keep the acknowledgements brief and try to not forget someone.

First of all, I would like to thank my wife Taalke Krogmann, my family Johanna,

Eduard, and Martin Krogmann and Heidi, Götz-Ulrich, Ole, and Ulfert Reuss for

their enduring support throughout the last years.

Ralf Reussner is a great adivisor, mentor, group leader, and personality. It is always

a pleasure to work with him. He enabled me to write this thesis. Furthermore, I would

like to thank my supervisor Gregor Snelting for his fruitful comments, constructive

feedback, and valuable discussions. Michael Kuperberg, Thomas Goldschmidt, and

Martin Krogmann supported me during proof reading and provided very valueable

feedback on my research.

The whole Software Design and Quality group, its associated members, students,

and student researchers made the time of writing my dissertation enjoyable and exi-

ting research in an excellent atmosphere. Thank you: Andreas Rentschler, Anne Ko-

ziolek, Benjamin Klatt, Christof Momm, Christoph Rathfelder, Dennis Westermann,

Elena Kienhöfer, Elke Sauer, Erik Burger, Fabian Brosig, Fouad ben Nasr Omri,

Franz Brosch, Giovanni Falcone, Grischa Liebel, Heiko Koziolek, Heinz Hermann,

Henning Groenda, Iulia Chirila, Jens Happe, Jörg Henß, Johannes Stammel, Landry

Chouambe, Lucia Kapová, Martin Küster, Matthias Huber, Michael Hauck, Mircea

Trifu, Nikolaus Huber, Pierre Parrend, Qais Noorshams, Samuel Kounev, Steffen

Becker, Steffen Kruse, Tatiana Rhode, Thomas Fischer, Thomas Knapp, Tom Beyer,

Vanessa Martin Rodriguez, Viktoria Firus, and Zoya Durdik.

This thesis is further based on support and discussions in the fields of reverse en-

gineering, performance, component technology, symbolic execution, and validation

by the following people: Andrea Ciancone, Christian Hammer, Clemens Szyperski,

Frank Eichinger, František Plášil, Ivica Crnkovic, Jürgen Ebert, Jan Harder, Jan Ko-

froň, Jochen Quante, Lubomír Bulej, Lukáš Marek, Mattias Ulbrich, Michael Ernst,

Petr Hnětynka, Petr Tůma, Raffaela Mirandola, Rainer Koschke, Roland Klug, Wil-

helm Hasselbring, and Wolfgang Weck.

Thank you all! Thanks to all I forgot to thank to.

ix

Contents

1. Introduction 1
1.1. Motivation . 3

1.1.1. Advantages of model-based Approaches 4

1.1.2. Software Architectures for Performance Predictions 4

1.1.3. Automated Reverse Engineering 5

1.1.4. Programme understanding 5

1.2. Application Scenarios . 6

1.2.1. Sizing . 6

1.2.2. Extension of Legacy Software Systems 7

1.2.3. Reuse of Components . 8

1.2.4. Design optimisation . 9

1.3. Target Model . 10

1.4. Problem Statement . 12

1.5. Contributions and Goals . 12

1.6. Outline . 14

2. Foundations 15
2.1. Component-Based Software Engineering 15

2.2. Performance Prediction . 16

2.3. Reverse Engineering . 18

2.4. Genetic Programming . 19

2.5. The Palladio Component Model 21

2.5.1. Component Contexts . 22

2.5.2. Static Architecture . 23

2.5.3. Service Effect Specifications 25

2.5.4. Further Models . 27

2.6. Component Performance Influence Factors 28

2.7. Parametric Dependencies in Code 29

2.7.1. Parameter Characterisations 30

2.7.2. Parametric Dependencies in the Behaviour Model 31

2.8. Model Parameterisation . 34

2.9. Terminology . 35

xi

Contents

3. Reverse Engineering Approach 39
3.1. Scientific Challenges . 41

3.2. Contributions in Reverse Engineering 43

3.3. Reverse Engineering Process Overview 44

3.3.1. Reverse Engineered Artefacts 45

3.3.2. Independence from Timing Values during Construction of

the Architecture and Behaviour Model 46

3.4. Realisation Overview . 48

3.4.1. Architecture . 48

3.4.2. Behaviour . 49

3.5. Overview Visualisation . 50

4. Reverse Engineering Static Architectures 53
4.1. Shortcomings of Existing Approaches 54

4.2. Scientific Challenges . 55

4.3. Contributions in Reverse Engineering 56

4.4. Requirements for Reverse Engineering of Static Architectures 57

4.5. Solution Idea: Overview . 58

4.6. Integration of User Feedback . 64

4.7. Core Assumptions . 64

4.8. Reverse Engineering Strategies . 65

4.8.1. Overview on Strategies . 65

4.8.2. Process for Selection of Metrics and Strategies 67

4.8.3. Basic Metrics . 68

4.8.4. Blacklisting and Filtering 75

4.8.5. Component Detection Strategies 77

4.8.6. Interface Detection Strategies 87

4.8.6.1. Provided Interface Recognition for Basic Compo-

nents . 87

4.8.6.2. Required Interfaces Recognition for Basic Com-

ponents . 90

4.8.6.3. Provided Interface Exposition (for Composite

Components) 90

4.8.6.4. Required Interface Exposition (for Composite

Components) 91

4.8.7. Connector Strategies . 91

4.8.8. Characteristics of Target Components 93

4.8.9. Determining Weights . 94

4.9. Ensuring Integrity . 95

4.10. Extendability of the SoMoX Approach 95

4.11. Complexity and Scalability . 96

xii

Contents

4.12. Realisation . 99

4.13. Limitations and Assumptions . 100

4.13.1. Dynamic Binding . 100

4.13.2. Single Instance per Component Type 101

4.13.3. No Dynamic Architecture 101

5. Reverse Engineering Behavioural Models 103
5.1. Shortcomings of Existing Approaches 107

5.2. Scientific Challenges . 109

5.3. Contributions in Reverse Engineering of Behaviour Models 109

5.4. Requirements for Reverse Engineering of Behaviour Models 110

5.5. Solution Idea: Overview . 112

5.6. Core Assumptions . 114

5.7. Abstraction Criteria of the RDSEFF 114

5.7.1. Running Example . 114

5.7.2. Control Flow Abstractions of Resource Demanding Service

Effect Specifications . 116

5.7.3. Data Flow Abstractions of Resource Demanding Service Ef-

fect Specifications . 118

5.8. Static Control Flow Analysis for creating RDSEFFs 120

5.8.1. Control Flow Abstraction 120

5.8.2. Method Inlining . 126

5.8.3. Implementations . 128

5.8.4. Resulting Control Flow Abstraction 128

5.8.5. Identification of Parametric Dependency Input and Output . . 129

5.8.5.1. Inputs . 129

5.8.5.2. Outputs . 130

5.8.5.3. Potential Inputs Relation: A Model-Level Back-

ward Slice . 131

5.9. Implications of Component Boundaries on the RDSEFF Abstraction . 133

5.9.1. Interface Selection and Granularity 133

5.9.2. Example . 134

5.9.3. Size of the Resulting Control Flow 137

5.9.4. Conclusion: Increasing the Abstraction Level 139

5.10. Dynamic analysis for creating RDSEFFs 139

5.10.1. Dynamic Analysis in the Beagle Approach 140

5.10.2. Instrumentation Points . 143

5.10.3. Captured data per measuring point 144

5.10.4. Heuristics for Parameter Characterisations of Interfaces . . . 145

5.10.5. Uniqueness of Captured Data 149

5.10.6. Instrumentation . 151

xiii

Contents

5.10.7. Data Recording Infrastructure 151

5.10.8. Data aggregation . 153

5.11. Machine Learning . 155

5.11.1. Overview and Introduction 158

5.11.2. Abstraction Criteria . 161

5.11.3. Genes and Chromosomes 162

5.11.3.1. Variable Genes for Input Parameters 163

5.11.3.2. Constants Genes 164

5.11.3.3. Mathematical Operators 165

5.11.3.4. Characteristics of Genes 166

5.11.3.5. Design of Genes and Chromosomes 167

5.11.3.6. Gene Subsets 168

5.11.4. Fitness Function . 169

5.11.4.1. Balancing Precision and Abstractness 170

5.11.4.2. Fitness Criteria and Fitness Criteria Calculation . . 171

5.11.4.3. Determining Weights, Thresholds, and Normalisa-

tion . 179

5.11.5. Selection Operator . 182

5.11.6. Crossover . 184

5.11.7. Mutation . 188

5.11.7.1. Mutation: Deleting genes 188

5.11.7.2. Mutation: Reducing dimensionality 191

5.11.7.3. Mutation: Changing Operators 193

5.11.8. Application of Crossover and Mutation 194

5.11.9. Termination . 195

5.11.10.Integration with Static and Statistical Analysis 197

5.11.10.1.Benefits of using Static and Statistical Analyses . . 198

5.11.10.2.Generating an initial population 199

5.11.10.3.Deriving Genes and Chromosomes 206

5.11.11.Static Code Analysis of Byte Code 207

5.11.12.Numeric Precision . 208

5.11.13.Genetic Programming Configuration as Optimisation Problem 210

5.12. Static Analysis of Parametric Dependencies: Symbolic Execution . . 212

5.13. Static Analysis of Parametric Dependencies: Other Approaches . . . 214

5.14. Multivariate Adaptive Regression Splines 215

5.15. Adding Learned Parametric Dependencies to the RDSEFF 218

5.16. Integrate Resource Demands . 219

5.17. Black-Box Components . 223

5.18. Complexity and Scalability . 226

5.19. Realisation . 227

xiv

Contents

5.20. Limitations and Assumptions of Reverse Engineering Behaviour

Models . 227

5.20.1. Handling of Exceptions 227

5.20.2. Availability of a Test Bed 228

5.20.3. Monitored Data Properties 229

5.20.4. Component State . 230

5.20.5. Passive Resources . 232

5.20.6. Fork Behaviour . 232

5.20.7. Dynamic Binding . 233

6. Traceability 235
6.1. Architectural Reverse Engineering 237

6.2. Reverse Engineering Behavioural Models 238

7. Validation 241
7.1. Validation Scenarios . 241

7.2. Goals and Questions . 242

7.3. Validation Criteria – Metrics . 245

7.3.1. Static Architecture . 246

7.3.2. Behavioural Models . 247

7.3.3. Performance . 248

7.3.4. Other Metrics . 249

7.4. Type 2 Validation . 249

7.5. Case Study Selection . 250

7.6. Case Study Candidates . 250

7.6.1. Case Study Overview . 251

7.6.2. End-to-End Case Studies 253

7.7. CoCoME . 254

7.7.1. Static Architecture . 255

7.7.1.1. Components . 255

7.7.1.2. Interfaces . 257

7.7.1.3. Connectors . 258

7.7.2. Behaviour Analysis . 259

7.7.3. Performance Prediction 259

7.8. SPECjbb2005 . 259

7.8.1. Static Architecture . 260

7.8.1.1. Components . 260

7.8.1.2. Interfaces . 261

7.8.1.3. Connectors . 263

7.8.2. Behaviour Analysis . 263

7.8.3. Performance Prediction 264

xv

Contents

7.9. Palladio FileShare . 264

7.9.1. Static Architecture . 265

7.9.1.1. Components . 265

7.9.1.2. Interfaces . 266

7.9.1.3. Connectors . 267

7.9.2. Behaviour Analysis . 268

7.9.3. Performance Prediction 268

7.10. Effort Estimation . 269

7.11. Other Case Studies . 270

7.12. Scalability . 272

7.13. Discussion and Findings . 274

7.13.1. Component State . 276

7.13.2. Manual and Automated Reverse Engineering 276

7.13.3. Configuration . 278

7.13.4. Suitable Software Architectures 278

7.13.5. Machine Learning . 279

7.13.6. Threats to Validity . 279

7.13.7. Performance Impact Factors 280

7.13.8. Further Discussion . 281

8. Related Work 283
8.1. Overview . 283

8.1.1. Summary on Related Work 284

8.1.2. Classification of this Thesis 287

8.2. Related Work for Static Architecture Reverse Engineering 288

8.2.1. Static Analysis . 288

8.2.2. Pattern-based Architecture Recognition 290

8.2.3. Code analysis . 291

8.2.4. Dynamic Analysis . 292

8.2.5. Static and Dynamic Analysis 292

8.2.6. Code analysis . 293

8.2.7. Clustering . 293

8.2.8. Programme Comprehension 294

8.3. Related Work for Reverse Engineering Behavioural Models 294

8.3.1. Static Analysis . 294

8.3.2. Dynamic Analysis . 295

8.3.3. Instrumentation and Dynamic Analysis Foundations 296

8.3.4. Automated Complexity Analysis 297

8.3.5. Invariant detection . 298

8.3.6. Differentiation from Static Analysis 298

8.3.7. Static Analysis Approaches 298

xvi

Contents

8.4. Reconstruction of performance models 299

8.5. Machine Learning . 300

8.5.1. Genetic Algorithms and Genetic Programming 300

8.5.2. Statistical Approaches . 301

8.6. Performance Predictions . 302

8.7. Conclusion . 302

9. Conclusion 303
9.1. Requirements Fulfilment . 303

9.2. Benefits of integrated Architecture and Behaviour Reverse Engineering308

9.3. Reverse Engineering of Component-Based Architectures 308

9.4. Reverse Engineering of Behavioural Models 309

9.5. Integration through Genetic Programming 309

9.5.1. Improving Initial Generation and Inclusion of Domain

Knowledge . 311

9.5.2. Application to other reverse engineering problems 311

9.6. Genetic Programming as Approximation Approach 312

9.7. Reliability and Maintainability Analysis 312

9.8. Roundtrip Engineering . 313

9.9. Extending Object-Oriented Programming Languages 315

9.10. Limitations and Assumptions . 317

9.11. Future Work . 318

9.12. Conclusion . 320

A. Appendix 323
A.1. Case Study Reference Architectures 324

A.1.1. CoCoME . 324

A.1.2. Palladio FileShare . 327

A.2. Additional Reverse Engineered Models 328

List of figures 328

List of Listings 334

References 336

xvii

1. Introduction

The ability to design a system and predict its properties before actually implemen-

ting it is one of the core properties of any engineering discipline. Design rules, basic

principles, theoretical background, and prediction approaches help engineering disci-

plines to avoid trial-and-error cycles which would require the actual implementation

of a system in order to assess its properties. Engineering disciplines can reason on

the base of theoretical models.

Nowadays, engineering approaches are also available for software systems. Such

approaches for software systems support for example reasoning on software design at

an architectural level [WFP07a, Koz10]. These approaches rely on software models

and allow a predictable assembly of components at design time without actually de-

veloping code, deploying applications to execution environments, configuring them,

or writing integration code for the integration with existing software systems. Depen-

ding on the approach, functional and non-functional properties such as performance,

reliability, or maintainability can be estimated from models.

The remainder of this thesis focuses on performance properties of software sys-

tems which are well-supported by engineering approaches (e.g. [BKR09, BCdK07,

FNNS06, MG00, Kou06]). These approaches enable what-if analyses of software ar-

chitectures and help answering questions in the following scenarios which are crucial

to software performance engineering [SW02]:

1. Sizing (e.g. estimate required hardware to handle certain workload situations,

reliability after changes in usage profile, or performance on a new target plat-

form)

2. Extensions of legacy software systems (estimate quality properties of a soft-

ware after adding new components and guide design of the extension part)

3. Reusing existing components (what is the impact of using an existing com-

ponent within an application or when designing a new application from partly

existing components)

4. Design optimisation of software systems (e.g. what performance or reliability

can be expected for later implementations)

All these engineering approaches have in common that for existing or partially

existing software systems, they first need to determine the status quo – i.e. a model

1

Chapter 1. Introduction

representation of a software system under study. The above scenarios, which are ex-

plained in more detail in Section 1.2, become feasible with the availability of reverse

engineered software architecture performance models.

Although model-based reasoning of performance properties is becoming increasin-

gly important (cf. [WFP07b, BDIS04b, Koz10]), no approach exists which is able to

reverse engineer the required performance models for component-based software ar-

chitectures from code. The four above scenarios require parameterised performance

models of existing software systems in order to become feasible.

Existing reverse engineering approaches for software architectures (see [CHDP07,

MJS+00, TTBS07] for an overview) aim at reverse engineering models with loose

semantics, e.g. components possess no explicit interface, have no or incomplete

connectors, support no composite structures, the models make no performance pro-

perties available for components, or the result models possess no execution seman-

tics. If such models are reverse engineered, they can help humans understanding

a software architecture but do not support software performance engineering ap-

proaches in the introduced scenarios. Furthermore, the reverse engineered architec-

tures of such approaches often possess little abstractions which makes dealing with

large applications cumbersome.

Also for behavioural models no satisfying reverse engineering approach exists.

Behaviour models of components need to be highly parameterised to reflect the chan-

ging contexts a component has to cope with: changing usage (number of users, user

interaction, varying amounts of data to be processed), changing assembly (different

components connected), and changing execution platforms (fast and slow servers)

– Section 2.6 details on component contexts. Existing approaches (e.g. [CDH+00,

Ros06]) assume all or at least one of the contexts of a component to be fixed. This

assumptions cannot hold for components which, by definition, are a subject of re-

composition and reuse.

This thesis focuses on the reverse engineering of component-based software ar-

chitectures for the design and evaluation of performance properties in early deve-

lopment phases. The reverse engineering approach presented in this thesis enables

the application of model-based prediction techniques to real world software systems

by overcoming the need for manual reverse engineering. It provides an integrated

method for:

• Reconstruction of the static architectures and behaviour specification of

component-based software systems and to

• reverse engineer highly parameterised and abstracted performance models

which enable reasoning in sizing, legacy software extension, reuse, and design

optimisation scenarios.

The core contributions are automated approaches for (i) architectural reverse en-

gineering, (ii) reverse engineering behavioural models, iii) reconstruction of model

2

1.1. Motivation

parameterisation (control and data flow), iv) creation of performance abstractions

of software systems, and v) an integrating approximation approach for parametric

dependencies in models (combining static, dynamic, and statistical analysis). The

approach combines static, dynamic, and statistical analysis techniques and machine

learning for reverse engineering.

This thesis introduces an integrated approach that deals with reverse engineering of

component-based architectures and also reverse engineers behavioural models from

code. Source and binary code (for Java: Bytecode) are supported as sources. The

Palladio Component Model (PCM) [BKR09] serves as output model as it allows

model-based reasoning on software architectures and supports the four introduced

scenarios for performance prediction.

Section 1.5 highlights the contributions and goals of this thesis in more detail.

Section 1.1 pursues the motivation.

1.1. Motivation

The previous section already introduced the motivation to enable performance pre-

dictions for component-based software systems, and the four scenarios on sizing,

extension of legacy software systems, reuse of components, and design optimisation

(details in Section 1.2) which are desirable for the engineering of software systems.

Whenever different design alternatives of a software system are being analysed,

where the software system at least partially comprises existing software, the exis-

ting source code must first be translated into a performance model. This model then

serves as input to performance prediction approaches like Palladio [BKR09] which

allow the evaluation of design alternatives or of the performance scenarios from the

introduction (bullets 1 to 4 in Section 1). The creation of performance models can

either be performed manually or automated with support of reverse engineering ap-

proaches.

Only small portions of software development projects are greenfield projects which

do not depend on any existing software system. Existing software systems conse-

quently must be captured by models when aiming at the analysis of the performance

of software systems. As models usually grow with the size of applications, it is cum-

bersome, expensive, and error-prone to manually reverse engineer models for today’s

software systems which comprise hundreds of thousand of lines of code.

Manually reverse engineering software architectures and performance models

implies large effort, error-proneness, potential modelling inconsistencies, over-

simplification to handle large software systems, and a lack of parameterisation since

parameterisation results in additional effort. With the approach which is developed

in this thesis, manual reverse engineering can be replaced by an automated approach

which addresses all of these issues. Section 1.4 addresses the issues in more detail.

3

Chapter 1. Introduction

1.1.1. Advantages of model-based Approaches

The proposed approach reverse engineers component-based software performance

models of existing software from code. Operating on the base of models instead of

existing code of software systems helps avoiding efforts in the following areas:

• Estimating the impact of design decisions does not require implementing the

design decisions in code. Design alternatives can be modeled and then – based

on the model – be evaluated. Thus, it becomes easy to enable what-if analyses

of design alternatives.

• No glue code for integration purposes is required. At the model level, no

configuration and implementation effort is required for evaluating single de-

sign alternatives which incorporate existing software components.

• No deployment effort is required at the model level beyond assigning software

to hardware. For instance, no deployment descriptors (such as EJB deploy-

ment descriptors) are required and the cumbersome task of setting up execu-

tion environments (e.g. application servers and databases) is not needed.

• To answer sizing questions or analyse scalability of a software architecture,

it is not necessary to actually buy hardware. Instead, models of hardware are

sufficient to predict the impact of hardware.

• Some scalability and sizing questions cannot be answered in practice. For

example, it is infeasible to stress a large distributed execution environment (no-

wadays sometimes called “cloud”) at 100%, as hardware resources are really

huge and require an equivalent amount of load generators to stress the servers.

Furthermore, servers are globally distributed and not fully accessible from a

single location (requests are answered locally). Thus, only models can be used

in these cases to estimate scalability.

Again, in all of the above cases, models of existing software architectures are requi-

red. The next two sections introduce further advantages of having reverse engineering

approaches for software performance models available.

1.1.2. Software Architectures for Performance Predictions

Reverse engineering only the static architecture of a software system is not sufficient

to predict Quality of Service (QoS, e.g. reliability or performance) properties of that

software system. QoS prediction only become feasible if performance specifications

of the behaviour of components of the architecture are available. If no behaviour

specifications are available, it would be unknown what happens inside of components

when calling a certain provided service.

4

1.1. Motivation

If performance specifications of the behaviour are available, performance pre-

diction approaches like Palladio [BKR09], KLAPER [GMS05], or SOFA [BHP06,

BDH+08b] can be applied. Then, for a given component-based software architec-

ture, performance metrics like response time, execution time, or throughput can be

predicted based on models which capture the full software architecture.

Since the reverse engineering approach which is presented in this thesis aims at

the support of performance predictions for existing software systems, it targets full

software architectures which subsume the static architecture, a behavioural model for

components, and performance annotations for the behavioural model. Hereafter, the

“full” software architecture will simply be referred to as “software architecture”.

1.1.3. Automated Reverse Engineering

Reverse engineering approaches can be classified as either quasi-manual, semi-

automatic, or quasi-automatic (see classification by [PDP+07, DP09]). Obviously,

an automated reverse engineering approach is appreciated for a number of reasons:

• Increased productivity can be expected due to less effort for single reverse

engineering tasks

• Reverse engineering can be expected to be less error-prone than manual re-

verse engineering since sporadic errors typically do not occur in automation.

• Increased precisions can be expected as even for large systems all necessary

model details can be captured by automation: Reverse engineering models are

not rough estimates of humans but calculated.

• Automated reverse engineering can also reduce complexity if built-in simpli-

fication and abstraction mechanisms are made available. Then, analysing even

large and complex software systems becomes feasible.

1.1.4. Programme understanding

Through the developed approach, static architecture models and behaviour abstrac-

tions of component services become available which can help in programme unders-

tanding. Since the developed approach is going to be automated, a tight feedback

cycle between software architecture and the actual implementation can be establi-

shed.

The reverse engineering architecture models of the envisioned reverse engineering

approach can help in programme understanding for:

• existing applications that are going to be refactored. Software systems which

possibly exist for a long period of time naturally evolve. Gradually, architec-

tural erosion can take place, leading to poorly understood systems, or systems

5

Chapter 1. Introduction

which do not match the requirements for maintainability for other reasons.

Before refactoring a software system it first needs to be understood.

• existing applications that are going to be enhanced. To support meaningful

enhancements of software, the existing software first should be completely

understood. Architecture documentation should actually match the software

system it describes. Once up-to-date architecture documents are available,

enhancements for the existing system can be planned.

• migration and legacy system support. For example if legacy systems need to

be integrated into new software systems, there is a need to understand the basic

architecture of legacy systems. The need for integration can originate from the

software system’s evolution where previously independent software systems

need to cooperate from a certain point in time.

For legacy systems there often is little (up-to-date) documentation available.

People involved in the development of the legacy system are no more available.

Hence, the architecture of the legacy system is not known and must first be

extracted from the code.

All the above cases require the reconstruction of software architectures from given

software systems. It can be stated that having an available up-to-date software archi-

tecture is a common problem for software development and software engineering.

1.2. Application Scenarios

The developed reverse engineering approach supports four core performance predic-

tion scenarios, which will be presented in detail in the following. Each scenarios

involves a number of sub-scenarios which the reverse engineering approach must ac-

count for. All of the scenarios require the presence of a up-to-date component-based

software performance model of an existing software system to allow the analysis of

the scenario.

1.2.1. Sizing

Figure 1.1 visualises typical sizing scenarios. Sizing is the relation between usage

of a software systems by users (which can also be other software systems) and the

resource environment (servers, network) which executes the software system. Sizing

can be further divided into the following sub-scenarios:

• Sizing of hardware: How much server infrastructure is required to support a

certain number of concurrent users (e.g. server requirements for 100 concur-

rent users)?

6

1.2. Application Scenarios

(a) Resource Sizing (b) Scalability

Figure 1.1.: Sizing scenarios involve, among others, resource sizing and the sca-

lability for different usage profiles. Images sources: left server by

Craig Spurrier licensed under Creative Commons Attribution 2.5 Ge-

neric; right server c©LiquidImage Fotolia.com

• Relocation of running applications: How does a business application perform

on different servers (e.g. 128 GB main memory instead of 32 GB)?

• Platform selection: Does an application perform better on application server

A or B (e.g. does a WebSphere application server perform better than a JBoss

application server for a certain software system)?

• Changes in the usage profile

– Estimate the impact of changes in the usage profile: For up to how many

concurrent users does a software system scale until bottlenecks take ef-

fect?

– Changes in user behaviour: How much will an application slow down

if users change their interaction frequency with the system or the kind

and volume of data (e.g. upload high definition videos instead of low

resolution ones)?

1.2.2. Extension of Legacy Software Systems

Only few software systems are developed from scratch. Most of today’s software

must integrate with existing software systems. The integration can take place on

different detail level: loosely via calling the existing software system or tightly by

actually changing the existing software system. Figure 1.2 illustrates the extension

of a legacy software system.

In both cases, the extension of legacy software systems should be analysed prior

to actually extending the legacy software system on the code level. If changed usage

7

Chapter 1. Introduction

Figure 1.2.: Extension of legacy applications

scenarios due to the extensions are not considered, the extended functionality but also

the legacy software system can suffer from poor performance. The sub-scenarios for

existing software systems are:

• Investigate the extension of legacy applications: How much will the new front

end or business case stress my legacy applications?

• Reuse of existing components: How will an existing component perform on a

new execution platform?

1.2.3. Reuse of Components

A Component A B

C

Component A E

D

R
euse

System 1

System 2

Figure 1.3.: Component reuse

The reuse of a software component (see figure 1.3) implies changes in its contexts.

The assembly, allocation, or usage profile of a reused component change although

the component itself does not change. In the example, different components (A for

System 1; C and D for System 2) access a single Component A which is being reused

8

1.2. Application Scenarios

(changing usage context). In System 1, Component A is connected to B, while in

System 2 it is connected to component E (changing assembly context). Furthermore,

the allocation of Component A could have changed between System 1 and System 2.

When reusing a component implementation, the implementation remains the same.

In the same way, the possibility of reusing a component in different contexts should

not be limited on the model level.

1.2.4. Design optimisation

A B

vs.

Settings
compress = false
profile = 1

C B

Settings
compress = true
profile = 3

Figure 1.4.: Design optimisation

When designing and engineering new software systems or new components, often

at least portions of the employed components are subject to reuse.

Examples for design optimisation scenarios are:

• Design and engineer new applications and new components: Is it worth spen-

ding 15,000 EUR for load balancing hardware or will 1,000 EUR for software

caching be sufficient?

• Bottleneck avoidance: Does a software system architecture contain a potential

bottleneck when using a non-threaded sorting component?

• Design optimisation: Which size should a SQL connection pool have to reach

optimal performance for 100 concurrent users?

9

Chapter 1. Introduction

The availability of parametric performance models for existing components allows

to reasons on the quality of a new design more precisely, since the variation of expec-

ted performance values for existing components can be reduced. The availability of

reliable software performance models (due to relying on existing implementations)

of existing components helps reducing the possible design space (values must not be

purely guessed) and the likelihood to provide performance results which match the

performance of a later implementation of the software system (cf. [Bec08a]).

1.3. Target Model

The Palladio Component Model (PCM, [BKR09]) is the target model of the deve-

loped reverse engineering approach. The PCM supports the analysis of all of the

scenarios from Section 1.2, if it operates on fully parameterised models (details in

Section 2.6).

According to [Sta73], a model posseses a pragmatism which defines the goal of

a model, abstraction, and an isomorphism relationship to what is modelled. When

analysing the PCM with respect to these model properties, one can identify the model

properties which must hold to apply the PCM for the scenarios from Section 1.2.

Details of the PCM are presented in Section 2.5.

Figure 1.5 shows an example of the model and an implementation of a software

system. There are two design alternatives in the example (“Scenario A” and “Sce-

nario B”) which are reflected in the model and in the implementation. The design

alternatives differ in the usage of the system (two versus six users), the assembly

(Component “B” versus component “C”), and the execution environment (four cores

versus two cores).

Pragmatism The aim of the PCM is the performance prediction for design alter-

natives of component-based software architectures.

Abstraction The PCM abstracts software systems to entities of component-based

software architecture (e.g. components, interfaces), the execution environment, and

the usage profile (i.e. users interaction with a software system). Furthermore, only

performance-relevant properties of such system are maintained.

Isomorphism The isomorphism is a very important aspect for reverse enginee-

ring. Changes in the implementation of a software system must be reflected in the

reverse engineered model (if not abstracted and within the pragmatism) and vice

versa changes of the software model must hold for the implementation of the soft-

ware system.

10

1.3. Target Model

A B

Model

Implementation

interface
IA {
 ...
}

class A1 {
 ...
} class A2 {

 ...
} class A3 {

 ...
}

interface
IB {
 ...
}

class B1 {
 ...
} class B2 {

 ...
}

A C

Pr
ag

m
at

is
m

,
A

bs
tr

ac
tio

n,

Is
om

or
ph

is
m

Scenario A

Scenario B

Scenario A

Scenario B

Legend:
Changed
element

Users:
Smith
Meyer

interface
IA {
 ...
}

class A1 {
 ...
} class A2 {

 ...
} class A3 {

 ...
}

interface
IC {
 ...
}

class C1 {
 ...
} class C2 {

 ...
}

Users:
Smith
Meyer
Michels
Tanner
West
Wayne

class C3 {
 ...
}

Execution
Environment:
4 Core
128 GB RAM
...

Execution
Environment:
2 Core
64 GB RAM
...

Behaviour
Model

abc
def
...

Implementation
Artefact

UserExecution
Environment

Component

Figure 1.5.: Example: Model pragmatism, abstraction, and isomorphism

11

Chapter 1. Introduction

If in the example, the number of users of component A changes or users interact

differently between “Scenario A” and “Scenario B”, the performance implications

from the model must be reflected in the implementation and vice versa. Likewise,

changes in the execution environment and in the assembly of component A must be

isomorph between model and implementation.

The required isomorphism is a driver of parameterisation of the model which will

be further discussed in Section 2.6 and 2.7. Non-parameterised models cannot ac-

count for the isomorphism of implementation and model.

1.4. Problem Statement

This section briefly summarises the problems which can be identified for the current

state of the art in reverse engineering when aiming at support of the scenarios from

previous sections. Section 4.1 and Section 5.1 will highlight the problems specific

to the reverse engineering of static archtitectures and behavioural models. A detailed

discussion of the current state of the art is part of the related work in Section 8.

The current state of the art in reverse engineering does not properly support

component-based software architectures following a strong component definition

– which is required for the scenarios from Section 1.2. The current state of the

art lacks support for the reverse engineering of models which i) are suitable for

performance predictions, ii) possess execution semantics, iii) have explicit context

dependencies and thus allow third party composition at the model-level. iv) A

missing parameterisation of the reverse engineered component models makes them

hardly usable for changing component contexts (i.e. usage profiles, component

assembly, or execution environments are assumed to be fixed in existing approaches).

1.5. Contributions and Goals

This section summarises the contributions and goals of this thesis. The contributions

to reverse engineering in general are presented in Section 3.2. More detailed contri-

butions for the reverse engineering of static architectures are presented in Section 4.3

while Section 5.3 details on contributions for the reverse engineering of behavioural

models.

Architectural Reverse Engineering This thesis contributes an integrated

automated architectural reverse engineering approach for the static architecture of

component-based software systems and behavioural models of individual component

services. The following characteristics hold for the approach:

12

1.5. Contributions and Goals

• The reverse engineered component models are fully parameterised compo-

nents over usage profile, assembly context, and execution environment.

• The target model possesses executions semantics and is created such that per-

formance analyses can immediately operate on the reverse engineered models.

• The reverse engineered components are strict components as defined by Szy-

perski [SGM02] and form a hierarchical component model.

• The reverse engineering approach is robust against design and component

structure violation and can be adapted to properties which are specific to single

software systems.

• The approach is language-independent and thus applicable to object-oriented

and imperative code (C code).

Reverse Engineering Approach for Parametric Dependencies of Software
Components This thesis contributes a reverse engineering approach for parame-
tric dependencies which are suitable to parameterise the control and data flow of

component behaviour. The developed approach contributes as follows:

• It creates performance abstractions aligned with the component abstraction

level.

• The approach make a component’s dependencies to the environment explicit
parameters.

• The approach provides an analysis method for complex parametric dependen-
cies covering possibly thousands of lines of code.

Genetic Programming This thesis contributes the application of genetic pro-
gramming to the field of reverse engineering and provides extensions of genetic pro-

graming for the specific requirements of reverse engineering. The adaptations of

genetic programming include:

• Domain knowledge from the performance analysis and performance modeling

is encoded into genetic programming. Special enhancement of genetic pro-

gramming’s mutation, crossover, and fitness function are provided. Adapted

gene and chromosome structures and an improved mechanism for generating

the initial generation are proposed.

• Static, dynamic and statistical analyses are integrated in a genetic program-

ming approach which is able to further evolve and combine the results of each

input analysis approach. The reverse engineered models are (by construction)

13

Chapter 1. Introduction

granted to be never worse than models created by the best available static,

dynamic, and statistical analysis technique.

1.6. Outline

The remainder of this thesis is organised as follows. Chapter 2 introduces the founda-

tions for this work. The core contribution chapters are Chapters 3 to 5. Chapter 3 first

provides an overview of the reverse engineering approach. Chapter 4 then deals with

the reverse engineering of static architectures and Chapter 5 deals with the reverse en-

gineering of behavioural models. In Chapter 6 the crosscutting aspect “Traceability”

is addressed.

The validation of the reverse engineering approach is presented in Chapter 7,

Chapter 8 discusses related work, whereas Chapter 9 details on the results and lessons

learned. Finally, Chapter 9.12 briefly summarises and concludes this thesis.

14

2. Foundations

This section breifly introduces foundations and general terminology which will be

used throughout the remainder of this thesis. The topics which are covered by this

section are reverse engineering, genetic, component-based software engineering, and

the Palladio Component Model. The Palladio Component Model is the central meta-

model dealt with in this thesis. Furthermore, basic knowledge on so-called parame-
tric dependencies in software component models will be presented.

2.1. Component-Based Software Engineering

Component-based software engineering (CBSE, [SGM02, HC01]) is a software de-

velopment paradigm. In it, software systems are built from a reusable entity called

“software component”. The term software component was first coined in 1968 at

the NATO conference on software engineering [McI69]. Since then, components

have resulted in popular implementations and frameworks including Microsoft COM

[Cor], Sun EJB [EJB07], OSGi [OSG09], and the Corba Component Model by the

OMG [Obj06a].

It must be emphasised that the term “software component” is highly overloaded.

Some people see software components as classes or modules while others see it as a

high-level entity [LW05, LW07, SGM02]. Section 2.9 presents a short definition of

the term “software component” which is used throughout this thesis. The remainder

of this thesis assumes CBSE characteristics of software architectures.

CBSE implies a development process (see e.g. [KBHR08]) which enables the

division of labour. Multiple developer roles participate in the creation of component-

based software systems. The development process is intended to allow for concurrent

and distributed work an a component-based software system such that the developer

roles’ responsibilities do not overlap. For example component developers and soft-

ware architects interact with component deployers. The division of labour reduces

the complexity for individuals (e.g. component developers) and allows the creation

of large and complex software systems.

One key idea of software-based software development is the reuse of individual

components (see for example [BC88, BR88, BP89, Est95, HC91]). Due to better tes-

ting of reused components, a higher quality of single components is expected. Addi-

15

Chapter 2. Foundations

tionally, reuse can lower the costs of software development, if single components of

a software system are reused multiple times.

Components are software entities which can be composed from other components.

The composite pattern [GHJV95] allows the creation of higher-level components.

For example, the components Accounting, Authentification, and Reporting

can be composed to a higher-level component SalesManagement.

Software components are contractually specified entities. They possess explicit

provided and required interfaces which determine pre and post conditions (the re-

quired interface determines the pre condition – the services a component needs to

operate; the provided interface the post condition – the services a component offers

to other components). Systems manufactured from components with contractually

specified properties are common to engineering disciplines (e.g. voltage and resis-

tance of components in electrical engineering or the dimension of structural elements

in building construction).

Software component models describe or specify the properties of component-

based software systems. They are abstractions of implementations of component-

based software systems and can highlight aspects like architecture, deployment, per-

formance, reliability, or composition of a software system. A survey on software

component models can be found in [LW05, Lau06].

2.2. Performance Prediction

General Performance Prediction Approaches Performance prediction ap-

proaches (surveys in [BDIS04a, BJH+05]) estimate the expected performance of

software systems from model representations or other formalisations. Common

performance formalisations include Petri nets [Rei85, BK96, BK02], queuing

networks [BGdMT98], markov chains [Tri01, BGdMT98], and process algebras

[HHK02]. Of each formalisation, various extensions exist to overcome limitations

of a certain formalisation (e.g. Petri nets [Pet80] as original form, stochastic Petri

nets [BK02] which include stochastic timing behaviour, queued Petri nets [Bau93]

to account for queuing effects of, for example, resources with contention).

Performance prediction approaches allow reasoning on the performance of soft-

ware systems (e.g. bottleneck detection, capacity planning) and provide various me-

trics like response time, throughput, and resource utilisation to estimate the perfor-

mance. The Software Performance Engineering approach (SPE, [Smi90]) is among

the best-known approaches which systematically tackles the design of software sys-

tems with respect to performance. SPE aims at equally capturing the software ar-

chitecture and the resource environment during early design phases. Prior to starting

the implementation of a software system, the design is critically evaluated in SPE

16

2.2. Performance Prediction

to identify potential bottlenecks in the design and avoid them in the design phase

already. Only designs with promising performance properties are then implemented.

Hence, SPE aims at saving development effort for poorly performing software de-

sign alternatives [SW02]. The key idea behind SPE is that fixing the design of a

software system in early development stages is less costly than optimizing the imple-
mentation. The effort for fixing implementations includes potentially the re-design,

re-implementations, data migration, buying new hardware, and new setup of the exe-

cution environment while the effort for the design phase is only the re-design.

Component-Based Performance Prediction Approaches For component-

based software systems, special performance prediction approaches (e.g.

[WMW03, WW04a, Kou06, EFH04, DMM03, Yac02, BM03, CLGL05]) exist

which account for the specifics of component-based software systems (e.g. reuse

of components). A recent survey on component-based performance prediction

approaches can be found in [Koz10].

Some software component models (e.g. [BKR09, WW04b, BHP06, GMS05,

GL03]) allow the analysis (numeric, analytic, or simulation) of properties of a

component-based software-system based on the model. Since models are not ne-

cessarily related to an implementation, model-based predictions (e.g. performance,

reliability) become feasible for component-based software systems. For example,

design decisions, architecture evaluations, and the analysis of “what-if-scenarios”

for component-based software systems can then be met at the model level when

using such approaches.

Depending on the component model, components carry values for the response

time of single component services [GMS05], the resource demand of component

services is mapped to queuing networks [WW04b], or components include behaviour

models for single component services with annotated execution time of single actions

of the behaviour [BKR09].

Related Prediction Approaches Beside performance prediction, various ap-

proaches exist for the prediction of software reliability (e.g. [MIO87, GWTH98,

RSP03, KB09]). These approaches also incorporate a software model. Opposed to

performance prediction approaches, these model do not carry timing-related values

but transition probabilities and error probabilities of software systems. Based on

these models, metrics like the probability of failures on requesting a service are

calculated to estimate the overall reliability of a software system.

Performability is the combination of performance and reliability. Performability

respects that the residence time of software in faulty components or states that impact

the reliability. As for performance and reliability, various performability prediction

approaches exist (e.g. [CMST90, HMRT01]).

17

Chapter 2. Foundations

Since software reliability and performability models can have many commonalities

with software performance models, the applicability of reliability and performability

prediction approaches to the models reverse engineered by the approach which is

presented in this thesis, is discussed later (see Section 9.7).

2.3. Reverse Engineering

Reverse engineering is the process of reconstructing properties of a system and crea-

ting a higher level of abstraction of that system [CC90]. In the context of software

systems, those properties include the architecture, allocation, deployment, and beha-

viour which are reverse engineered from the source code of a system under study. In

a broader scope, reverse engineering is used to create lost documentation, helps un-

derstanding software systems, and provides a basis for reviews. Reverse engineering

can be considered at the initial step of reengineering [CC90] activities which aims at

refactoring a system. For example, in order to refactor the architecture of a system

under test, its architecture must first be known and understood. Reverse engineering

can help in identifying the software architecture and help understanding the system.

Furthermore, a subset of reverse engineering techniques targets models like the

above introduced component models (e.g. [KSRP99, SAG+06]) and performance

models (e.g. [CW00, HMWR99]) as primary output (see Section 2.1 and 2.2). Per-

formance predictions are then based on reverse engineering models. When applying

(automated) reverse engineering techniques for the creation of these models, the ef-

fort for creating performance models can be reduced compared to the manual creation

of performance models.

Code Analysis Most reverse engineering approaches itself either rely on static

code analysis or dynamic analysis approaches. Static analysis approaches analyse

code without actually executing the code. Code can either be binary or source code.

Static analysis approaches investigate for example class structures, statements, and

declarations in the code. Typical results of static analysis are abstract syntax trees

(cf. [PE88]) or metrics (e.g. lines of code, number of classes, or code complexity

measures).

Dynamic analysis approaches actually execute the code and monitor the code’s be-

haviour an runtime. Therefore, the code is typically executed in a test bed. Test cases

or load drivers then run the code and the code execution (e.g. control or data flow) is

recorded. To record data, either the code can be instrumented (e.g. via source code

instrumentation, bytecode instrumentation, or aspect logging) or recording facilities

of the execution environment (e.g. virtual machine or application server monitors)

can be used.

18

2.4. Genetic Programming

Generally, static and dynamic code analysis techniques complement each other

(see for example [Ern03, Sys00, RR02, Par93]). Static code analyses generally have

a higher precision and partially provide soundness of their results, while dynamic

analysis techniques rely on representative test cases to create complete results. Most

static code analyses are limited with respect to code complexity and the size of the

systems under study while dynamic analysis mostly is able to handle very large sys-

tems with hundreds of thousands lines of code. For example, dynamic bindings are

hard to handle statically, while at runtime bindings are readily available to dynamic

analysis.

Various analysis techniques which complement reverse engineering build on static

and dynamic analysis. These techniques include model checking (automatic che-

cking whether a given specification is met by code), data flow analysis (the calcula-

tion of possible variables values for various places in code), and symbolic execution

(a pseudo execution of code with symbolic values).

2.4. Genetic Programming

Genetic programming (GP, [Koz93, BNKF98]) is a meta-heuristic machine learning

technique [WF05] which, by means of evolution, creates a solution to a given search

problem, optimised according to a fitness function. Individuals, representing poten-

tial solutions to the search problem, are realised by genes.

Genetic programming is a special kind of genetic algorithm (GA, [GH88, Whi04])

with genes forming a tree structure. The original idea of genetic programming was

to automate the implementation of code by specifying a problem (requirement) and

source code which solves the problem is being generated automatically. In such

cases, the genes represent of computer programme. Nowadays, genetic programming

is broadly applied as a meta-heuristic optimisation technique (see [VGM+09] for an

overview).

Figure 2.1 highlights and relates the most important terms from genetic program-

ming to each other. Genes reside in a gene repository which itself is the base for

creating a chromosome repository. The chromosome repository holds a set of chro-
mosomes (also called indidividuals), where each chromosome is realised by a set

of genes. Chromosomes represent potential genetic programming solutions, while

genes are the “atoms” that are required to express the solutions. A set of chromo-

somes represents a so-called generation.

During genetic programming, multiple generations evolve. A typical genetic pro-

gramming process, as it will be used in later sections of this thesis, covers multiple

steps which are illustrated in Figure 2.2. The steps are repeated in multiple itera-

tions. In the first iteration, a random initial generation is created from individuals in

the gene repository (“fill generation”). Next, the so-called crossover and mutation

19

Chapter 2. Foundations

*

Gene «realised by» Chromosome

Synonym:
Individual

Generation

«has»
*

Gene Repository Chromosome
Repository

«contains»
*

«contains»
*

«filled from»

*

Figure 2.1.: Relations between gene, chromosome, generation, gene repository, and

chromosome repository

ArtefactProcessing

Legend:

Output-
Input-

Relation

Mutation Fitness
FunctionCrossoverFill

Generation Selection
Genes of
optimised
solution

Gene
Repository

Set of
chromosomes

Termination

Figure 2.2.: Overview: Steps of genetic programming

take place. During crossover (analogous to reproduction and biological crossover),

parent chromosomes are recombined to form new children. Mutation changes single

or multiple genes of a chromosome to create genetic diversity. For example, if a gene

represents a constant, that constant can be changed.

The fitness function then judges how “good” the solutions represented by the chro-

mosome are. Typically, the fitness function encodes domain knowledge on properties

of an expected optimal solution (e.g. small error) to decide how “good” a chromo-

some is. During selection, a subset of chromosomes is then selected for survival in

the next generation. This can for example be the best chromosomes and a number

of randomly selected other chromosomes (to ensure diversity). After the selection,

genetic programming decides whether to evolve another generation or to stop evolu-

20

2.5. The Palladio Component Model

tion. Evolution is for example stopped, if an optimal solution has been found or a

fixed number of generations has evolved. Usually, the best chromosome (determined

again by the fitness function) is the result of a genetic programming run. For the

case in which the evolution is not terminated, another generation is evolved. In gene-

tic programming settings where generations possess a fixed population size, prior to

evolving, first new individuals are (randomly) generated to fill up the generation until

the fixed size is reached. In other cases, the evolution starts again with crossover and

mutation.

Genetic algorithms in general, and genetic programming as a special form, are

known to be robust machine learning techniques which are suitable for large search

space and multi-dimensional optimisation problems (cf. [BNKF98, Su09]). Since

genetic algorithms exist since the 1960’s, a large variety of genetic algorithm ap-

proaches and extensions exist. Many approaches stick with the basic processing

steps described above and extend crossover, mutation, selection, and termination for

genetic algorithms in general (e.g. [SP94, AGP03]). Other approaches apply ge-

netic algorithm to a certain domain (e.g. [WAW04a, WAW04b, Gar06, Dol01]) or

enrich the capabilities of genetic algorithms by domain-specific requirements (e.g.

[DMM99, CDPEV05]).

Section 5.11 formalises the above terms and introduces the developed extensions

of genetic programming which go beyond the state presented in this section.

2.5. The Palladio Component Model

The Palladio Component Model (PCM, [BKR09]) is a well-validated (e.g.

[MBKR08b, KBH07, BDH08a, Bec08b, BKR07, Koz08a, Hap08]) and broadly

applied (e.g. [KR08b, RK09, KR08a, HBR+10, CMRT10, BKK09, BKBR10]) soft-

ware component model for the prediction and evaluation of software performance

and reliability at the design level. The PCM enables the analysis of component-

based software architectures before actually implementing the software system.

For example, for performance prediction, potential bottlenecks can be discovered,

resource contention be estimated, response time and throughput be predicted. For

reliability, metrics like the probability for failures on demand can be predicted.

To capture a software system, models for the static architecture (components and

their connections), component behaviour (comparable to UML activity diagrams

[Obj05b]), resource environment (hardware servers, application servers, and net-

work), usage profile (user interaction with the software system and data passed to

the system)), and component allocation to the resource environment exist. All of the

afore mentioned models are meta-models [Obj05b, Obj06b] for instances which hold

properties for a concrete software system.

21

Chapter 2. Foundations

PCM models are performance abstractions of software systems (for models which

also carry reliability information: reliability abstractions). Only performance-

relevant aspects of a software system are covered by the model. For example,

the real implementation of an interface might contain eight parameters. The

parameter representation in the PCM component interface could be a subset of only

5 performance-relevant parameters from the source code. Parameters which do not

affect the performance of a software system, e.g. a flag which changes the color of a

reporting table, can be omitted in the PCM.

Note that the PCM itself does not provide a mapping to source code. To ease

understandability, the following sections will point typical relations to source code.

A component in the PCM can cover an arbitrary number of source code classes but a

class must not belong to multiple components. Further abstractions from source code

are: Public methods in the source code do not necessarily correspond to provided

component services and interfaces implemented by classes do not necessarily map to

provided interfaces of a corresponding component.

Since the PCM is the central model which the reverse engineering approach pre-

sented in this thesis targets, its model structures will be briefly discussed in the fol-

lowing. Due to space restrictions, (the PCM contains more than 130 meta-classes)

only a subset of the meta-classes which are relevant for the thesis will be presented.

For further details refer to [Koz08a, Bec08b]. Names given in a Typewriter font

describe meta-classes in the following.

Repository System /
Composition
Assembly Context

Resource
Environment

Allocation

Allocation Context

Usage

Usage Context

Figure 2.3.: Overview on PCM models and component contexts

2.5.1. Component Contexts

The PCM distinguished three so-called component contexts [BDD+06, Koz08b]: as-

sembly, allocation, and usage context. These contexts are generally applicable to

component-based software development. Contexts specify different kinds of ins-

tances of components. Opposed to object-oriented programming for which mostly

only classes (types) and objects (instances) are distinguished, the differentiation for

22

2.5. The Palladio Component Model

components is more fine-grained. It must be emphasised, that none of the contexts

can be assumed to be fixed or known to a component type due to the reuse of com-

ponents in different contexts – the component contexts instead explicitly capture the

variable environment, a component is exposed to. The sections 2.6 and 1.2 further

detail on this.

Each component context is captured by a single PCM model. Figure 2.3 provides

an overview on the relation between the models and the contexts. The repository and

resource environment model are not related to a component context.

Assembly The assembly context captures the composition and connections among

components. A component in an assembly context are component instances in a

system, subsystem, or composite component (see Section 2.5.2). Furthermore, the

assembly context determines the binding to other components (the components, a

components is connected to). The meta-class AssemblyContext captures the as-

sembly context.

Allocation The allocation context determines in which execution environment a

component is executed. Since components can be reused, the actual execution envi-

ronment is not known to components. The allocation context binds components to

a certain execution environment (e.g. server, application server). The meta-class is

AllocationContext.

Usage The same software system can be reused in different usage scenarios. For

example, once 10 users concurrently interact with the system and upload files to

a file sharing application with a size of 10 KB, while in another scenario 100 users

upload files with a size of 1 GB. The usage scenario obviously has a strong impact on

the performance of a software system. The allocation context determines the usage

scenarios in which a software system and its components are being executed.

2.5.2. Static Architecture

The static architecture of the PCM comprises components, interfaces, and connectors

(cf. Figure 2.4). Interfaces and components are first class entities in the PCM which

reside independently in repositories. Components either provide or require interfaces

through a ProvidedRole and RequiredRole, respectively. Each interfaces holds a

number of service signatures, which describe the service the provision of an interface

implies.

The PCM is a performance abstraction of component implementations. For

each parameter of a signature defined in interfaces (e.g. boolean doSth(List

l, MyType mt)), so-called parameter characterisations exist which abstract from

23

Chapter 2. Foundations

Figure 2.4.: Example: PCM composite component (from [Koz08b])

concrete values and introduce further properties. Parameter characterisations

identify performance-relevant characteristics of data types. For example, lists are

characterised by their size and own data types (“MyType”) can be characterised by

specifically defined properties (e.g. value of a flag, their bytesize, etc). The unders-

tanding of parameter characterisations is essential for this thesis. Thus, Section 2.7.1

discusses parameter characterisations in the context of model parameterisation.

Connectors can be AssemblyConnector, ProvidedDelegationConnector, or

RequiredDelegationsConnector as know from UML2 [Obj05b]. All connectors

connect roles of components, since the same interfaces can be shared among multiple

components (imagine for example a chain of responsibility [GHJV95] in which all

participating components must provide and require the same interface). An Assem-

blyConnector, for example, connects the tuple (RequiredRole, AssemblyCon-

text) with (ProvidedRole, AssemblyContext), where the AssemblyContext is

the above introduced mean to identify component instances in assemblies.

The PCM distinguishes multiple component types. The relevant ones for

this thesis are composite component (CompositeComponent) and basic com-

ponents (BasicComponent). A composite component is realised from further

sub-components, while a basic component is an atom component entity which

realises its component services via so-called Resource Demanding Service Effect

Specifications (RDSEFF, see Section 2.5.3).

Like a composite component, a system (System) is a special kind of composite

structure with special semantics. A system is the outer-most structure of a software

system and describes the system boundary. All interfaces provided by the system

are externally available and can be accessed by users or external systems which are

out of scope of a certain PCM analysis. A system itself can also have required inter-

faces. Calls to the required interfaces of systems are out of scope for PCM analyses.

For example, if a database is not going to be analysed, the corresponding interface

becomes a required interface of the system. In order to still allow analyses of sys-

24

2.5. The Palladio Component Model

tems with external dependencies, Quality of Service (QoS) values can be specified

for external services. For example, the average response time and throughput of the

database component could be specified as QoS values.

2.5.3. Service Effect Specifications

The PCM behaviour model is called Resource Demanding Service Effect Specifi-

cations (RDSEFF). Each provided service of a basic component is specified by a

RDSEFF. A RDSEFF specifies the behaviour of a component service including its

control flow, data flow, and effects on other components (which required services

are called in which order and with which parameters). A RDSEFF is comparable

to UML activity models, but more powerful with respect to data flow specification

and parameterisation. Figure 5.6 on page 115 introduces an example RDSEFF mo-

del for the uploadFile(..) service of the component BusinessLogic. Note that

Figure 5.6 utilises an abbreviated concrete syntax for RDSEFFs.

As pointed out earlier, the PCM is a performance abstraction of components. Ad-

ditionally, RDSEFFs abstract details of component source code, which becomes ob-

vious when seeing that components and thus single component services can span

multiple classes and methods. The behaviour of component services is intentionally

aggregated to as few as possible RDSEFF actions as possible. The formalisation of

the RDSEFF abstraction and its relation to source code are pointed out in Section 5.

RDSEFFs consist of sequences of actions (ResourceDemandingBehaviour)

which can be nested (e.g. control flow alternatives or parallel executions). Those

actions which describe the internals of a component service are internal control flow
actions and comprise:

• StartAction / StopAction represent the start and stop nodes of a RDSEFF.

(Start and stop node in Figure 5.6.)

• InternalAction specifies internal behaviour of a component which does not

depend on other components (i.e. the behaviour represented by an Internal-

Action does not call required services). An InternalAction can cover an

arbitrary amount of internal behaviour of a component service (i.e. multiple

classes and methods). (Action “StoreFile” in Figure 5.6.)

• LoopAction captures behaviour which is executed in a loop. The loop body is

itself represented by ResourceDemandingBehaviour. For each loop, a loop

condition specifies the number of iterations of that loop. For, while, and do-

while loops are not distinguished in the PCM. (Not present in Figure 5.6.)

• BranchAction specifies alternatives in the control flow. Each BranchAction

has 2..* branches which each are represented by ResourceDemandingBeha-

viour. Furthermore, each branch has a branch condition associated which

25

Chapter 2. Foundations

specifies when a branch is entered. From source code, if-then-else and switch

statements can be mapped to BranchAction. (Branches visualised by the

rhombus in Figure 5.6.)

• ForkAction specifies component-internal behaviour which is executed in pa-

rallel. If for example, a component service creates multi-threaded behaviour,

this is captured by a ForkAction. Each ForkAction holds 2..* Resource-

DemandingBehaviours which are executed in parallel. By default, the beha-

viour of ForkActions is not synchronised (there is no synchronisation point).

Optionally, a SynchronisationPoint allows all forked behaviour of a Fork-

Action to wait for all other threads to finish until continuing. (Not present in

Figure 5.6.)

• AcquireAction / ReleaseAction allow the modelling of the acquire and

release of a semaphore (PassiveResources). The behaviour of a RDSEFF

stops, until an acquire is successful (the semaphore becomes available). Ac-

quireAction / ReleaseAction allow the specification of mutex logic and en-

able synchronisations among multiple services of the same component. (Not

present in Figure 5.6.)

All of the above internal control flow actions carry resource demands (Parametric-

ResourceDemand) which allow the specification of demands to the execution envi-

ronment underlying a component. For example, accesses to the CPU and hard disks

are captured by such resource demands. Resource demands (in general) are not ti-

ming values. Instead, they are abstract resource demands like “number of utilised

CPU cycles”.

Further actions (which are not internal control flow actions and thus have no re-

source demand directly attached) complement the RDSEFFs:

• ExternalCall is an action which represents the call to a required service of

a component. Thus, indirectly, another component is called by an External-

Call. Each ExternalCall has a specification of the parameters which are

passed to the called service. Vice versa, each ExternalCall specifies how

the parameters returned by a called service are handled in the calling RDSEFF

(i.e. which local variables result from the return value). (Actions “checkFile”

and “compress” in Figure 5.6.)

• SetVariableAction specifies which values a service captured by the RD-

SEFF itself returns. (Attached to the stop node in Figure 5.6.)

• InternalCallAction specifies the call of internal behaviour. RDSEFFs can

have internal behaviour (comparable to private methods of classes). It must

be noted that RDSEFFs allow only one level of internal behaviour to force

26

2.5. The Palladio Component Model

abstraction (i.e. within internal behaviour no further InternalCallActions

are allowed). Note that not every method call inside a component in source

code results in an InternalCallAction. (Not present in Figure 5.6.)

To allow the specification of data flow and parameterise control flow, so-called

random variable (PCMRandomVariable) allow the specification of branch conditions,

loop conditions, resource demands, variables set in SetVariableActions, and call

parameters of ExternalCall. These parameterisations depend on the parameter

characterisations introduced above and represent a so-called parametric dependency.

For example, a RDSEFF can specify that a loop iterates twice as often as elements

in an input parameter list exist. Section 2.7.2 further details on the parameterisation

options of the PCM.

2.5.4. Further Models

Resource Environment The PCM resource environment captures proces-

sing resources (ResourceType) which are bundled in resource containers

(ResourceContainer) and linking resources (LinkingResource) which connect

resource containers. A resource container covers for example servers and application

servers on which components run. Linking resources are for example local area

networks.

Resource types have a processing rate (e.g. “1 CPU cylce/s”) which allows the

conversion of resource demands of internal control flow actions into timing values.

Every resource type acts using a configurable scheduling policy to process resource

demands (e.g. “first come first serve” or “processor sharing”; cf. [Hap08]).

Allocation The allocation is a mapping between components (the component’s

AssemblyContext) and resource containers. In the allocation, each component is

assigned to a resource container, the component is running on. Resource demands of

components deploy load on the resource containers they are allocated on.

Usage The usage model describes the interaction of users with a software systems.

Users can be human users or other software systems. Usage models specify typical

interaction sequences with the software system (i.e. which provided service of the

System are called in which order). Alternatives can be specified using branches and

repeated behaviour can be specified by loops in the usage model. Furthermore, the

use model characterises the data (parameter characterisations) which the provided

services of the system need to process (e.g. “10 files each of a bytesize of 1 MB” or

”2 files each of a bytesize of 10 GB”).

27

Chapter 2. Foundations

Prediction The Palladio approach automatically creates a performance simulation

model from instances of the PCM. This thesis does not detail on the performance mo-

del and concentrates on the static architecture and RDSEFF behaviour model of the

PCM. Reverse engineering of the usage, resource environment, and allocation mo-

del are not subject of this thesis and must be complemented manually. The resource

environment model is topic of another thesis [Kup10].

2.6. Component Performance Influence Factors

The performance of a component has four major influence factors which are visuali-

sed in Figure 2.5. Only if all four factors are known, one can determine the perfor-

mance of a component. When reverse engineering a performance model, the reverse

engineering approach must account for these factors.

vs. vs.

vs.

4

1

3

2

Figure 2.5.: Component performance influence factors. Images sources: left server

by Craig Spurrier licensed under Creative Commons Attribution 2.5 Ge-

neric; right server c©LiquidImage Fotolia.com

The four performance influence factors are:

1. Component implementation. The implementation of a component impacts

its performance. Fast or slow algorithms (e.g. quicksort vs. bubblesort), cho-

28

2.7. Parametric Dependencies in Code

sen data structures, and the utilisation of resources (e.g. use of multiple cores)

result in different performance.

2. Connected components. Whether a component is connected to fast respon-

ding components which have a high throughput or not, impacts performance.

For example, if a component relies or the lookup of names through an name

service, being connected to a fast or slow DNS server affects the performance

of a component. The corresponding component context is the assembly

context.

3. Execution environment. A component which is executed on fast hardware

will usually serve responses faster than the same component component run-

ning on slow hardware. The allocation context corresponds to this factor.

4. Usage profile. The way users or other components interact with a component

impact the performance. For example, 2 vs. 100 concurrent user requests

cause a different load of component. The usage profile can either directly

stem from user or be propagated via intermediate components, which pass and

transform requests to a component. The usage context captures this factor.

In a component model, all factors should be explicit parameters so that all factors

become exchangeable without affecting the component model. If for example, the

hardware of the execution environment changes (faster CPU), the component model

must not change to reflect the impact of the execution environment on the modeled

component.

2.7. Parametric Dependencies in Code

The so-called parametric dependencies (see “parameter dependencies” in [Koz08b])

model a relation between input data and a variable. Parametric dependencies para-

meterise the control and data flow of the Palladio Component Model. They describe

for example the number of loop iterations, express branch conditions, and specify

how input data of a component is passed to required services of that component.

An example for a parametric dependency of variable a (e.g. describing the number

of loop iterations) is IF(b > 5) THEN 3 * b ELSE 2 * c, where b and c are input

parameters which stem from either arguments of a method call or return values of

method calls. Listing 2.1 shows a corresponding source code example in which a

determines the number of executions of the lower loop.

A parametric dependency is a variable which depends on 0..n input parameters,

where input parameters are input data from method call arguments or return values

29

Chapter 2. Foundations

1 void doSth(int b, int c) {

2 int a = 2 ∗ c;

3 i f (b > 5) {

4 a = 3 ∗ b;

5 }

6 / / further calculations

7 for(int i = 0; i < a; i++) {

8 / / some external call

9 }

10 }

Listing 2.1: Source code example for parametric dependencies

of methods. Since 0 input parameters are allowed, a constant is also a valid parame-

tric dependency. Opposed to slices, a parametric dependency qualifies the relation

between input parameters and a variable.

Formally, a parametric dependency is mapping of a number of input parameters to

a typed value:

ParametricDependency := IV → v

where IV is a set of input parameter (component service arguments, return va-

lues of called services) and v is a value of a type in {boolean, integer, double,
string, enum}.

Parametric dependencies follow the grammar of the so-called Stochastic Expres-
sions (“StoEx”, see [Bec08a, pp. 86] and [Koz08a, pp. 93]), an expression language

including stochastic elements introduced for the Palladio Component Model and the

Q-ImPrESS EU project [qim09]. They will be used to model the number of itera-

tions of a loop, the values of method call parameters, the return value of methods, the

conditions of branches, and the resource demand within InternalActions.

2.7.1. Parameter Characterisations

In the PCM, so-called parameter characterisations are used to describe data (para-

meters, arguments, variables). Instead of using the actual values of data, such as [2,

4, 3, 5, ..] for an integer array, the PCM uses these parameter characterisations

to provide additional information for data such as the bytesize while at the same time

reducing the amount of data.

30

2.7. Parametric Dependencies in Code

For example, a List can often be sufficiently described by its number of contai-

ned elements and the bytesize when abstracting it to performance-relevant aspects.

Whether the first element of a list is a true or false boolean, usually does not impact

the performance, while exchanging the boolean by a double increases the size of the

data structure and therefore can impact computation time or network usage. In cases

where single data elements are important, they can be modeled nonetheless.

On the one hand, parameter characterisations force abstractions, on the other hand

they help lowering the amount of data which needs to be handled during model si-

mulation. Thereby, parameter characterisations help keeping the simulation time

low. An additional benefit of parameter characterisations are information which are

not directly available from data structure like its bytesize.

The PCM supports the following characterisations out-of-the-box:

• VALUE (the actual value)

• NUMBER_OF_ELEMENTS (size of an array or size of an collection type)

• BYTESIZE (the size of a data structure in bytes)

Accordingly, these parameter characterisations will be dealt with in this thesis.

2.7.2. Parametric Dependencies in the Behaviour Model

For understanding the behavioural reverse engineering part of the thesis, it is cru-

cial to understand the abstraction criteria underlying the control and data flow repre-

sentation in the PCM, specifically the RDSEFF. Figure 2.6 introduces an example

illustrating the various parametric dependencies which must be captured during re-

verse engineering. Details on parametric dependencies are presented in Section 5.7,

page 5.7.

Overall, there are three different types of parametric dependencies which must be

captured:

1. Resource demands of internal actions

2. Control flow (branches and loops)

3. Data flow (data passed to other components; “parameter output” and “return

value output” in Figure 2.6)

It must be emphasised that parametric dependencies are intended to be approxi-

mations of the real dependencies expressed in source code. Parametric dependencies

should balance precision and abstractness to allow precise performance predictions

31

Chapter 2. Foundations

public boolean uploadFiles (List<File> files, boolean saveEnabled) {

// some simple internal action
for(int x = 0; x < files.size(); x++) {

//...
}

boolean success = true;
for(File f : files) {

//external call:
boolean isCopyrighted =

C1.isCopyrighted(f);
if(isCopyrighted) {

success = false;
}

if(!isCopyrighted && saveEnabled) {
//external call:
C2.store(f);

}
}

return success;
}

return value output
return value input
control flow
parameter output
parameter input
resource demand
data flow

Legend

Figure 2.6.: Parametric dependencies in code at a component abstraction level

based on models but at the same time they should not overly increase analysis com-

plexity due to complex parametric dependency expressions. Thus, parametric depen-

dencies do not need to be sound for all input parameters. This stress field is further

discussed in Section 5.11.4.1.

In Figure 2.6, a simple example is given covering all the above dependencies.

In the example, a service for uploading files uploadFiles is depicted having two

arguments (files and saveEnabled), itself returning a boolean for indicating the

success of an execution. The service depends on two components C1 and C2, were

C1 offers a lookup service for detecting copyrightes files isCopyrighted and C2 a

service to persist files in an external store system through store.

Resource Demand In the example, the resource demand (light grey area) de-

pends on the number of files uploaded, indicated by the for loop iterating over the

elements of files. A rough parametric dependency for the CPU demand could

be files.NUMBER_OF_ELEMENTS * 0.243 where files.NUMBER_OF_ELEMENTS is

32

2.7. Parametric Dependencies in Code

the number of elements of the files argument and 0.243 an estimate of the CPU

demand per element to be processed. The resource demand could also be an esti-

mation of hundreds or thousands lines of code if the covered code section does not

contain any call for another component.

Control Flow Control flow (pink areas) has to be determined in two cases in the

example as there are calls for external components inside these statements (the cri-

terion for making this control flow statements explicit in the model is thus fulfilled;

cf. Section 5.7.2). The first control flow statement for(File f : files) has a

dependency to the number of files passed as argument to the uploadFiles service.

The resulting expression for the loop is consequently files.NUMBER_OF_ELEMENTS.

The second control flow statement if(!isCopyrighted && saveEnabled)

has more complicated parametric dependencies. The isCopyrighted flag

depends on the return value of a previous external call for C1, which is consi-

dered as input to the uploadFiles service. saveEnabled is an input argument

of uploadFiles. The resulting expression for the branch is consequently

!C1.isCopyrighted().RETURN.VALUE AND saveEnabled.VALUE. The internal

variable isCopyrighted is not known to the parametric dependencies and thus

replaced by the direct dependency to the return value. Expressing dependencies in

terms of input parameters is comparable to symbolic execution [Kin76].

Data Flow The same argument f is passed the external services of C1 and C2,

which consequently must be captured in the data flow (orange area). The argument is

a single element of the files List argument of uploadFiles. A possible estimation

of the data flow would result in the expression files.INNER.VALUE, where INNER

holds parameter characterisations (VALUE in the example) of inner elements of the

list. From the List input parameter files, the expression would care for passing

parameter characterisations of single elements of that list to the external services of

C1 and C2.

Finally, the return value (green background area) of uploadFiles needs to be

characterised. The return value depends on the previously chosen control flow sta-

tements, i.e. whether the the loop statement is executed at all and what the results

of the external call of C1 are. The default value is true. If a single copyrighted

file is to be uploaded, isCopyrighted returns false. The resulting expression for

the parametric dependency thus must respect the return values of all external calls

and concatenate them using logical ANDs. To perform the logic concatenation, an

intermediate return value is being updated within the loop in an SetVariableAc-

tion. The resulting expression for the parametric dependency is thus determining

return.VALUE: isCopyrighted.RETURN.VALUE AND return.VALUE, where re-

turn.VALUE is a local variable which is ultimately returned.

33

Chapter 2. Foundations

When assuming a fixed assembly context (which is limiting the expressiveness and

parameterisation; see Section 2.8), the parametric dependency can be simplified. In

such a case, an approximation of the return value of isCopyrighted can be used (the

actual behaviour of a called service can be known with fixed assembly contexts). A

probability value indicates the likelihood of a having to return false. This likelihood

depends on the number of files uploaded: files.NUMBER_OF_ELEMENTS * 0.01,

where 0.01 is the probability of a single file being copyrighted.

2.8. Model Parameterisation

Section 2.6 introduced the performance influence factors for components. This sec-

tion will briefly highlight the importance of making the influence factor explicit para-

meters in a component performance model. Every influence factor which is not made

an explicit parameter limits the prediction capabilities of a software component mo-

del since dependencies which exist in the implementation of a components are not

reflected on the model level.

If the contexts of a component are assumed to be fixed, neither the use profile,

execution environment, nor the assembly can be changed without implying changes

to all affecting elements of the model. For example, if the usage profile changes

from passing audio files to a provided service of a system to passing video files, all

models components which are processing the files must be adapted in the case of non-

parameterised models. Changing the execution environment would imply changes to

models of all components that are executed on that execution environment for non-

parameterised models and changing the assembly context (e.g. exchanging a slow

logging service by fast one) would again imply changes to models of all components

which directly or indirectly (via transitive calls) access the logging service.

If no global knowledge on a system exist (e.g. multiple component vendors), it is

even impossible to change a model consistently if no correct parameterisation exists.

Without parameterisation, none of the scenarios in Section 1.1.1 and Section 1.2

would be supported.

For few scenarios in which a certain context is known to be fixed (e.g. a constant

execution environment), a model with limited parameterisation can be created. Still,

in that case, the model is only valid as long at the fixed context does not change

(i.e. the same execution environment). These models generally have no prediction

capabilities for changes in contexts which are assumed to be fixed.

34

2.9. Terminology

2.9. Terminology

This section introduces central terms which are used throughout the remainder of

this thesis. Especially for overloaded terms, readers should refer to this section to

determine the intended semantics of terms.

Meta-Model A meta-model is a rule set for the construction of an arbitrary num-

ber of models (cf. definition in [BBJ+08]). In the context of this thesis, the employed

meta-models will be

• the Palladio Component Model (PCM) meta-model,

• the Service Architecture Meta Model (SAMM) from the Q-ImPrESS project

[qim09],

• the Generalised Abstract Syntax Tree (GAST) meta-model [qim09], and

• the source code decorator meta-model.

For each meta-model there will be multiple instances. If not pointing out that a meta-

model is meant, the corresponding model instance (see below) is meant.

Model A model – in the context of this thesis – instantiates an explicit meta-model.

Although a meta-model is as well a model, meta-models will be explicitly named

meta-model and not model. In figures in the remainder of this thesis, models are

visualised as “Artefact” (small file symbol).

Model Integrity Model integrity subsumes that all mandatory attributes and rela-

tions which are defined in the meta-model are set in the model and that all constraints

defined in the meta-model are fulfiled by the model. Furthermore, in the context of

this thesis, model integrity includes that additional constraints defined by analysis

approaches (i.e. the Palladio approach) hold for the model. Section 4.9 addresses

model integrity in more detail.

Reuse The reuse of a component is the usage of a component in a varying assem-

bly, allocation, or usage contexts. If one of the contexts is changed, a component is

being reused. For example, employing the same component in a heavy loaded system

and in a little loaded is a reuse due to changes in the usage context.

35

Chapter 2. Foundations

Optimality No global optimum is meant by the term optimality in the remainder

of this thesis. Instead, the quality of a reverse engineered parametric dependency is

judged according to a so-called fitness function. The fitness function does not only

account for precision of results but also for the calculation complexity of a result.

For example, a very long and hard to compute expression with high precision is

considered worse than a computation-in-intensive short expression. Section 5.11.4

details on further criteria for the optimality of a solution in the context of this thesis.

Parameter The arguments of a called method will be named “input parameters”,

while the parameters, when calling another method, will be named “output parame-

ters”. Consider the following simple example:

1 void doSth(int a, int b) {

2 int c = 0;

3 int d = component.do(c) ;

4 d = d + 1;

5 }

Listing 2.2: Source code example: Input and output parameters

Here, a and b are input parameters and c serves as the output parameter from the

perspective of doSth(). Additionally, the return value d is considered as a input

parameter for the code starting from line 3 since further calculations can depend on

it.

Parametric Dependency See Section 2.7.

Characteristic Curve In the context of this thesis, a characteristic curve1 is an

approximation of the behaviour of a black-box component. Characteristic curves are

know from electrical engineering disciplines to characterise electrical components.

A characteristic curve is a parametric dependency, if the parametric dependency des-

cribes a black-box component.

Genetic Algorithms Genetic programming is a special form of genetic algorithms
with a tree chromosome structure, which will be the core machine learning technique

in this thesis. If statements apply not only the genetic programming but to genetic

algorithm in general, the relation to genetic algorithms will be highlighted.

1German: “Kennlinie”

36

2.9. Terminology

Chromosome A chromosome is a set of genes. A single chromosome is in the de-

veloped Beagle approach used to represent a parametric dependency whose language

is the stochastic expression language. Figure 2.7 provides an overview on the related

terms. Chromosome is a synonym to individual.

*
Gene Parametric

Dependency«realised by» Chromosome «represents»

Stochastic
Expression

«can be translated to» «has language»

Synonym:
Individual

Generation

«has»
*

Chromosome
Sequence

«realised by»

*

«subset of»

Figure 2.7.: Relation between genes, chromosomes, generations, stochastic expres-

sions, and parametric dependencies

Individual see Chromosome. Individual is a synonym of chromosome which is

preferably used in the context of evolution while “chromosome” represent a technical

term.

Chromosome sequence A chromosome sequence is a subset of a chromosomes;

a set of genes. It is sometimes referred to as gene sequence.

Architecture Comprises static structure (components) and behaviour (component

services).

Component “A software component is a unit of composition with contractually

specified interfaces and explicit context dependencies only. A software component

37

Chapter 2. Foundations

can be deployed independently and is subject to third-party composition.” (Szy-

perski, [SGM02]). Especially a component – as used in the remainder of this thesis –

is not a class, module, or trait (cf. Scala [OSV08]). A component can comprise mul-

tiple classes, module, or traits when being realised in a object-oriented language.

Components can be composed from other components (referred to as composite
structure and composite component). Figure 2.8 summarises the core properties of

components.

Composite Component .

Composition Realised by potentially
multiple classes

Explicitly stated
context dependencies

No hidden
dependencies

No implicit
assumptions on the
execution environment

No fixed execution
envionment, usage
profile or componen
wiring assumed

Provided services
declared in reusable
interface definitions

Reusable first class
entity

Figure 2.8.: UML representation of the static view of a component with annotated

core properties.

Role The role of a component is the association between a component and an in-

terface. In the context of the Service Architecture Meta Model (SAMM) of the Q-

ImPrESS project [qim09], it is referred to as port.

Provided Interface The term provided interface is the short notion for the provi-

ded role with an associated interface of a component.

Required Interface The term required interface is the short notion for the required

role with associated interface of a component.

38

3. Reverse Engineering Approach
for Component-Based Software
Architectures

The following chapter introduces the reverse engineering approach which is contri-

buted by this thesis. The chapter’s purpose is to provide an overview on the approach

and to highlight the relations between the two major steps of the approach. Fur-

thermore, the key challenges and contributions related to the overall approach are

presented. The Chapters 4 and 5 then detail on the major reverse engineering steps

and provide insights to findings which are specific to a single step.

The overall aim of this thesis is the development of an integrated reverse engi-

neering approach for parameterised component-based software performance models.

The approach must enable the reverse engineering of the static architecture of a soft-

ware system and for each identified component of that architecture the reverse engi-

neering of a behaviour model.

The reverse engineered models must be fully parameterised models of a

component-based architecture to enable analyses using the Palladio performance

prediction approach. Only parameterised models enable reasoning on sizing, legacy
software extension, reuse, and design optimisation scenarios. These scenarios have

been briefly introduced in Section 1 and detailed in Section 1.2.

Opposed to parameterised models, conventional monolithic models (e.g.

[SKK+01, Obj05a, Obj06c, CLGL05, LFG05]) have limited prediction capabilities

for these scenarios. For example, execution environments or component assembly

are assumed to be fixed by such models. When exchanging, for example, a database

component or the application server of such monolithic models, all of the model

or at least large parts of the model need to be revised to account for the changed

assembly. If in a shopping system the number of items users buy varies, the way

users interact with the system changes, or product videos instead of only product

photos become available, the corresponding monolithic models need to be changed

to reflect the performance impact.

While many existing reverse engineering approaches claim to reverse engi-

neer software components (e.g. [AL99a, FDE+01, IWF07, KSRP99, MM01a,

MOTU93, Sar03]), none of them reverse engineers components which follow a

strong component definition comparable to the one of Szyperski (see Section 2.9).

39

Chapter 3. Reverse Engineering Approach

Only when following such a strong definition, components become parameterised

(see Section 2.6) and the introduced scenarios become fully analysable. Further-

more, currently no integrated reverse engineering approach for static and dynamic

component-based architectures exists.

Models which are reverse engineered by the developed approach are subject to

performance prediction. Thus, the reverse engineering approach must be capable

of creating models with execution semantics. Opposed to various existing reverse

engineering approaches which mainly target program understanding of static archi-

tectures only (e.g. [AGC02, FDE+01, Kos02, PMT+08, BBT06]), the presented

approach is able to deal with strong model semantics – which enable for example

performance simulations.

In order to enable performance analyses of large systems, reverse engineered static

architecture and behaviour must provide abstractions of source code details. Fine-

grained models would make the performance analysis infeasible due to long-running

analyses, CPU and memory demands. Component performance models must there-

fore be abstractions of the underlying classes. The behaviour of components must

be abstracted in a way which provides sufficient information to analyse the presented

performance prediction scenarios but at the same time keeps down analysis com-

plexity. In the presented approach, the reverse engineered behaviour model has the

same abstraction level as the identified components to provide a consistent result

model with full execution semantics (discussion of the abstraction in Chapter 4 and

5).

Furthermore, the developed reverse engineering approach targets program and

component architecture understanding of legacy component-based software appli-

cations. The reverse engineered models (static architecture and behaviour abstrac-

tion model) assist in investigating a component-based software system starting at a

coarse-grained level. Due to component compositions, more detailed model levels

are available for coarse-grained components.

The key features of the developed approach are:

• Model parameterisation. Models have explicit parameters for external in-

fluence factors. They are parameterised over usage, assembly, and allocation

context.

For example, the number of loop iterations of component behaviour is ge-

nerally not a constant value. Instead, the reverse engineering approach de-

termines the number of loop executions depending on input parameters of a

component. If the same component is reused by different components or users

interact differently with that component, the reverse engineered model is still

valid due to its explicit parameterisations. The component model can be reu-

sed like a component.

40

3.1. Scientific Challenges

• Abstraction. The static architecture model abstraction is consistent with the

behaviour models.

The developed reverse engineering approach creates a consistent abstraction of

the control and data flow of component behaviour and reverse engineers mul-

tiple abstraction levels of the static component architecture. The data flow, for

example, captures only parameters which are likely to affect the performance

of a component. For the static component architecture, for example, multiple

classes are merged into a single component to increase the system’s level of

abstraction.

• Execution semantics. The resulting models are direct input for performance

analysis.

The reverse engineered models (instances of the PCM) can be analysed and

simulated using the Palladio Component Model approach. Due to full control

and data flow of the result models and executions semantics of the result meta

model (PCM), it is possible to predict performance metrics like throughput,

response time, and resource utilisation based on the reverse engineered PCM

models.

The developed approach supports performance predictions for all of the scenarios

introduced in Section 1.2, page 6. These are the major investigation scenarios for

component-based software engineering (cf. [Kru92, Sam97]):

• sizing,

• legacy software extension,

• reuse, and

• design optimisation.

In this introductory section, the scientific challenges, contributions, and the ove-

rall process of the reverse engineering approach will be discussed. More detailed

discussions follow in the Chapters 4 (Reverse Engineering of Static Architectures,

“SoMoX”) and 5 (Reverse Engineering of Behavioural Models, “Beagle”).

3.1. Scientific Challenges

The main scientific challenges for an integrated reverse engineering approach for

component-based software systems lie in the following areas:

41

Chapter 3. Reverse Engineering Approach

• Integration of reverse engineering for static architectures and component
behaviour. Static and dynamic aspects of a system are going to be reverse

engineered in a single approach. Here, it is specifically important to have

static and dynamic architecture at the same abstraction level corresponding to

the identified components such that static architecture and behaviour model

elements talk about the same components and component services.

• Execution semantics of output model. The targeted Palladio performance

prediction approach requires input models with full execution semantics in or-

der to perform performance analyses. Consequently, the reverse engineering

approach must be able to create model instances of the PCM which already

proofed to have rich semantics. Such models not only help humans unders-

tanding a software system but facilitate performance analysis. For the static

architecture and behaviour model, an approach should be developed, which

produces fully specified output models.

• Model parameterisation. To support the component paradigm, a reverse en-

gineering approach must be developed which ensures context independence

of reverse engineered component models (as claimed by Szyperski [SGM02]).

To support the performance prediction scenarios introduced in Section 1.2 (si-

zing, extension of legacy applications, reuse, design optimisation) at the model

level, a fully parameterised performance model must be the output of reverse

engineering. A non-parameterised performance model could not predict the

performance impact of any changes in a component’s context due to the ab-

sence of calculation rules. The challenge is to reverse engineer components

which are parameterised in the static architecture and in the behaviour. Ulti-

mately, all performance impacts listed in Section 2.6 must be explicit parame-

ters in the result model. This implies a component specification with explicit

context dependencies, independence from the component usage, independence

from connected components, and platform-independence.

• Abstractions. The reverse engineered components models must be perfor-

mance abstractions of component implementations to make large systems ana-

lyseable within feasible time. The abstraction requirement is a challenge in

two areas: In the static architecture, coarse-grained components must be iden-

tified to help performance analysis and to foster program understanding. For

component behaviour, analysing large software systems requires abstractions

of control and data flow to lower model complexity.

• Traceability. In order to interpret performance prediction results correctly

(e.g. a certain component service or resource) and derive the right potential

architectural changes (e.g. bottleneck avoidance) based on reverse engineered

42

3.2. Contributions in Reverse Engineering

models, all reverse engineered artefacts must be traceable. Traceability must

established throughout the whole reverse engineering process in the source

code, the reverse engineering steps, and the reverse engineered models.

For more detailed scientific challenges see Section 4.2 and 5.2.

3.2. Contributions in Reverse Engineering

To face the identified scientific challenges and to overcome the named limitations

from the introduction, this thesis contributes a novel reverse engineering approach

which combines

1. an iterative hierarchical clustering approach based on source code metrics for

the reverse engineering of component-based software architectures and

2. reverse engineering for behaviour models based on static, dynamic, and sta-

tistical analysis of source code. The approach contributes to genetic program-

ming in finding abstractions for component behaviour.

The resulting reverse engineered models follow the strong component definition by

Szyperski (cf. Section 2.9) and thus are fully parameterised (explicit context depen-

dencies) as introduced in Section 2.6 and thereby enable performance predictions for

all of the scenarios introduced in Section 1.2.

The developed reverse engineering approach furthermore has the following major

contributions. It is a reverse engineering approach:

• ...which creates fully parameterised component models. These models are

parameterised in the static architecture as well as in the control and data flow

of reverse-engineered component models.

• ...for abstracted performance models. It transfers genetic programming to the

field of reverse engineering of parametric dependencies of component models.

The approach extends genetic programming by abstraction capabilities.

• ...for behaviour models, the reverse engineering approach integrates multiple

static, dynamic, and statistical analysis approaches.

• ...for component-based software architectures which is capable of identifying

components for object-oriented languages. The approach is generally appli-

cable to object-oriented languages. Besides built-in support for Java, C/C++,

and Delphi it can be extended to for example EJB or Spring descriptors which

use dependency injection.

For detailed contributions see Section 4.3 and Section 5.3.

43

Chapter 3. Reverse Engineering Approach

3.3. Reverse Engineering Process Overview

Before presenting the details of the reverse engineering approach, this section pro-

vides an overview on the ideas for the developed reverse engineering approach. The

reverse engineering process is divided into two major steps: i) an architecture re-

verse engineering approach called SoMoX and ii) a reverse engineering approach for

behavioural models called Beagle .

Resource
Demand

Code
Sections

Resource
Demand
Counting

3rd

Behaviour AnalysisArchitecture Analysis

Artefact Working
Area

Legend:

Output-
Input-

Relation
3rd Party

3rd

Test Cases

Code

Reverse Engineering

Component
Boundaries

SoMoX
Clustering, Static
Source Code Analysis

Beagle
Static, Dynamic, and
Statistical Analysis,
Genetic Programming

PCM

Figure 3.1.: Reverse engineering overview

Figure 3.1 shows the outline of the overall approach. The reverse engineering

approach first extracts the software architecture (“Architecture Analysis”, SoMoX)

and then reconstructs the behaviour model for each component (“Behaviour Analy-

sis”, Beagle). While SoMoX is primarily responsible for identifying components and

component interfaces, Beagle first reverse engineers the control flow of components

and then adds data flow information to the behaviour model. The component boun-

daries identified by SoMoX, source code, and test cases serve as input for Beagle to

find behaviour abstractions which match exactly the component abstraction provided

by SoMoX. Therefore, a specification of component boundaries serves as primary

interchange artefact for architecture and behaviour reverse engineering.

The reverse engineering process uses source code and test cases (left hand side in

Figure 3.1) as primary inputs and creates instances of the Palladio Component Mo-

del (PCM, right hand side in Figure 3.1) from these inputs. This output model is a

valid instance of the Palladio Component Meta-Model. The output model comprises

a PCM repository of basic and composite components. For every provided service of

a basic component, a valid RDSEFF serves as behaviour specification of that service.

44

3.3. Reverse Engineering Process Overview

The RDSEFF is complete with respect to control and data flow and resource de-

mands. In order to estimate the resource demands, the developed approach integrates

the raw resource demands of components (counts of resource demands issued during

execution of components) delivered by a third-party approach (see Section 5.16).

The reverse engineering does not cover reverse engineering of usage models which

represent the interaction of users with a software system. Also, the execution environ-

ment of components (application server, virtual machines, operating system, servers,

and network) is not reverse engineered by the presented approach. Although the PCM

captures usage model, execution environment, and allocation, these sub-models are

no software components and consequently left out during reverse engineering. Please

note, that the reverse engineered models are nevertheless parameterised over usage

and allocation context.

3.3.1. Reverse Engineered Artefacts

Architecture The reverse engineering approach presented in this thesis covers the

reverse engineering of component-based software architectures and component beha-

viour models. The ultimate goal is to enable, among others, performance predictions

based on such models. This requires semantically rich, complete, and consistent

models. Otherwise, considerable manual effort would be required to complete the

reverse engineered models, which would contradict the idea of a broad use of soft-

ware performance prediction.

MyClass.java
Another.java
Converter.java

AClass.java
Calc.java

BClass.java
Util.java
Con.java

IUtil.java

ICon.java

ICalc.java

IConverter
.java

IDB.java

Figure 3.2.: Example for a reverse engineered architecture model

Figure 3.2 illustrates an example instance of a static architecture which SoMoX re-

verse engineers from source code. Additionally, fragments of the trace model which

is created concurrently with the reverse engineering process to establish trace links

45

Chapter 3. Reverse Engineering Approach

between original source and result model are indicated. Opposed to Figure 3.2, real

result models conform to the meta-model of the PCM and possess no reverse engi-

neered graphical layout.

As Figure 3.2 indicates, the reverse engineered architecture comprises basic com-

ponents, composite components (outer component), interfaces, assembly contexts

(the component “instance” within a composite component), containment relations

for the assembly contexts of inner components of a composite component, provided

and required roles (the relation between components and interfaces), delegation and

assembly connectors. The component architecture can have multiple abstraction le-

vels as composite components can have multiple levels of containment. The trace

model associates one class interface or class with each component interface and a

number of classes with each component.

Behaviour Model For the behaviour model parameterised control and data flow

are reverse engineered. For InternalActions the platform-independent resource

demand is estimated. Figure 5.6 on page 115 visualises an example instance of the

RDSEFF behaviour model. The reverse engineering approach reconstructs all Ac-

tions of the RDSEFF (cf. Section 2.5.3) including all StochasticExpressions to

express parametric dependencies. For each Action, its origin is preserved through

the trace model.

3.3.2. Independence from Timing Values during Construction
of the Architecture and Behaviour Model

Like a car body, a software component has no performance in the sense of response

time or throughput. Instead, when a software component is executed in an execution

environment, performance metrics become measurable. Since a component cannot

make assumptions on the actual execution environment, it, per se, possesses no per-

formance expressible in wall clock timing values. It must be highlighted that this is

intentionally reflected in the reverse engineering approach and the reverse engineered

component models. Both, the architecture and the behaviour model generally have

no timing values. To reflect the impact of the execution environment, the execution

environment (allocation context) is an explicit parameter in the reverse engineered

models.

Imagine a component which offers a compression service. Compression algo-

rithms heavily rely on CPU power. Thus, if the same compression component is

once executed in an execution environment with a fast virtual machine and a fast

CPU and the next time in a slow execution environment, the response time of the

compression service can vary heavily. Without knowing the actual execution envi-

ronment, the response time (in seconds) cannot be known. The specification of the

component and the execution environment hence must be split.

46

3.4. Realisation Overview

Model

Legend:

PCM Repository

Artefact
Derivation

PCM Resource
Environment

Wall-Clock
Timing
Information

PCM Allocation

PCM Usage

Performance
Prediction
Results

Palladio
Performance

Prediction

«references»

«references»

«references»

Processing

Resource
Demands

Figure 3.3.: Calculation of timing information from resource demands in the Palladio

approach

The relation between components and execution environment is specified through

abstract resource demands. Resource demands contain, for example, the number of

CPU cycles a component algorithm’s computation requires. Timing values are calcu-

lated during the performance prediction of the PCM when the execution environment

model is available (see Figure 3.3). In the PCM, only the execution environment mo-

del introduced in Section 2.6 carries timing values (CPU frequency, HDD throughput,

Bytecode instruction execution duration).

Separate approaches [Bec08a, Kup10] which are out of scope for this thesis, are

capable of calculating timing values for PCM models. The approach by Kuperberg

[Kup10] for example benchmarks timing values of the execution environment and

then predicts the execution duration of component services from (reverse engineered)

component models based on Java bytecode. In these models, individual bytecode

instructions serve as fine-grained resource demands.

The major advantages of splitting timing values from component models are:

Component models become reusable across different platforms, a prediction for

different platforms can use the same component model, and the reverse engineered

component models do not make assumptions real components cannot make (i.e. the

concrete execution environment). Section 5.16 details on the integration of resource

demands into reverse engineering.

47

Chapter 3. Reverse Engineering Approach

Control
Flow Ab-
straction

Static Code
Analysis

SoMoX

Dynamic
Analysis

Machine
Learning

RDSEFF
Construc-

tion

Behaviour Analysis

Architecture Analysis

Integration

Resource
Demand

Control
Flow

Component
Boundaries

Genes

Artefact Working
Area

Processing

Legend:

Output-
Input-

Relation
3rd Party

3rd

Test Cases

Source
Code

Code
Sections

PCM

Resource .
Demand
Counting

3rd

Symbolic
Execution

3rd

GASTSISSy
3rd

SAMM SAMM2
PCM

3rd

Parame-
tric Depen-

dencies

Statistical
Analysis

3rd

Figure 3.4.: Detailed view on the integrated reverse engineering process

3.4. Realisation Overview

The complementation of reverse engineering for the structural architecture (SoMoX)

and the behaviour model (Beagle) is also reflected in the realisation. The main steps

of the integrated realisation are depicted in Figure 3.1. The architecture analysis steps

provide the component boundaries which are required by the behaviour analysis.

Full details on the architecture and behavioural reverse engineering approach fol-

low in Chapter 4 and 5. The following section emphasises the overview, interaction

of processing steps, and integrated third party approaches.

3.4.1. Architecture

The reverse engineering process starts with the architectural step (top-most in Fi-

gure 3.4). The major component of this step is the SoMoX tool. It is able to com-

bine various source code metrics to detect components, composite components, com-

ponent interfaces, and bindings from given code. Metrics can be both static and dy-

48

3.4. Realisation Overview

namic, which are then evaluated by SoMoX. SoMoX internally weights the various

input metrics and then combines them in detection strategies which ultimately result

in a graph-based component detection approach comparable to hierarchical cluste-

ring (see [Sch07, Ber06]). SoMoX is kept flexible with respect to the number and

kind of input metrics, their weighting, and interdependencies among metrics.

SoMoX utilises SISSy [ABM+06, SSM06, TS05] as a major static code analy-

sis approach. SISSy allows static code analysis for C, C++, and Java code, which

is afterwards represented in a language independent format (Generalised Abstract

Syntax Tree, GAST). SoMoX implements a number of source code metric plugins

(e.g. coupling, name resemblance, and package mapping) which rely on the GAST

of SISSy.

The output of SoMox is an instance of the Q-ImPrESS Service Architecture Meta

Model (SAMM) [The09]. It is transformed into an instance of the Palladio Com-

ponent Model (PCM) using the SAMM2PCM transformation [Cia10] which has been

developed in the context of the Q-ImPrESS project. The resulting PCM instance

comprises a hierarchical static component architecture.

3.4.2. Behaviour

The second major working area (see “Behaviour Analysis” in Figure 3.4) is the re-

verse engineering of behavioural model for component services. Here, abstractions

of component behaviour are gained from source code. These behavioural models,

called RDSEFF, include control and data flow information. RDSEFFs are part of the

PCM and parameterised over usage, allocation, and assembly context making them

reusable for different usage scenarios, changing execution environments, and various

connected components.

Component boundaries from the architectural reverse engineering step and source

code serve as input, while the result is a RDSEFF. Static and dynamic analysis are

combined with machine learning to reverse engineer the RDSEFF to create a perfor-

mance abstraction of a real component’s behaviour.

First a control flow abstraction is created. Only control flow statements affecting

other components are kept in this step. This leaves out for example internal loops

within which no other components are called. Component boundaries serve as input

to judge whether another component is affected by a certain statement. Section 5.8

will detail on this step.

The control flow abstraction is input for dynamic analysis, static code analysis, sta-

tistical analysis, and symbolic execution. These three analysis techniques contribute

in identifying parametric dependencies, for example, how often a loop is executed de-

pending on an input parameter. The individual results are then translated into “genes”

of the machine learning step.

49

Chapter 3. Reverse Engineering Approach

The “Dynamic Analysis” consists of three major steps: first, it instruments given

code with monitoring instructions; second, it executes the code in a test bed environ-

ment and gathers runtime monitoring data; third, the monitoring data is aggregated.

The dynamic analysis uses the control flow abstraction to determine the instrumen-

tation points in code. See Section 5.10 for details.

Machine learning is used to integrate static, statistical, and dynamic analysis and

to find abstractions of parametric dependencies in code. The aggregated monitoring

data provides information on typical control and data flow observations, which need

to be generalised, abstracted to performance-relevant information, and parameterised

over the contexts introduced in Section 2.5.1. The learned parametric dependencies

are then added to the control flow abstraction of the RDSEFF.

To estimate the resource demand of the RDSEFF for InternalActions based

on executed bytecode instructions, the reverse engineering approach integrates By-

Counter ([KKR08b]; cf. “Resource Demand Counting” in Figure 3.4). ByCounter is

responsible for providing raw resource demand counts for InternalActions (e.g.

the number of executed Bytecode instructions). Source code sections representing

InternalActions are therefore passed to ByCounter, which then counts executed

resource demands for every InternalAction. The “Resource Demand Counting”

step outputs raw resource demands along with the input parameters of a component

which produced them. The “Machine Learning” step then identifies parametric de-

pendencies between input parameters and executed resource demands and annotates

the InternalActions with results.

Based on the reverse engineered model, performance predictions with the Palla-

dio approach can be conducted. Using Palladio together with the reverse engineered

models allows to investigate the performance analysis scenarios introduced in Sec-

tion 1.2.

3.5. Overview Visualisation

SoMoX

Beagle

<<LoopAction>>

data flow

con-
ditions

Legend:

Dynamic
Analysis

Genetic
Programming

Metrics /
Strategies

Static
Analysis

Figure 3.5 is used throughout this thesis to visualise to which part

of the overall approach a certain step belongs. The upper part of

Figure 3.5 symbolises the steps of SoMoX, the bottom part shows

the steps of Beagle. Either an excerpt from Figure 3.5 or a bold

rectangle highlights the step from the overall reverse engineering

approach which is presented in a certain section or chapter. Note that the steps in

Figure 3.5 are strongly aggregated. Further details are presented in the corresponding

sections.

The remainder of this thesis is structured following the steps from Figure 3.5. First

in Chapter 4 introduces SoMoX, Chapter 5 details on Beagle, and finally Chapter 6

presents how traceability was ensured for the reverse engineering approach. Chap-

50

3.5. Overview Visualisation

SoMoX

Beagle

<<LoopAction>>

data flow

con-
ditions

Legend:

Dynamic
Analysis

Genetic
Programming

Metrics /
Strategies

Static
Analysis

Figure 3.5.: Overview visualisation

ter 7 presents the validation of the appproach, Chaper 8 shows related work, Chap-

ter 9 details on the lessons learned and summarises the thesis, while Chapter 9.12

concludes the work.

51

4. Reverse Engineering Static
Architectures

SoMoX

Figure 4.1.: The SoMoX approach reverse engineers a static component-based archi-

tecture from source code.

SoMoX

Beagle

<<LoopAction>>

data flow

con-
ditions

The first reverse engineering step in the developed approach is the

reconstruction of the static software architecture. In this step, the

SoMoX approach extracts the static part of a component-based

software architecture (i.e. component, interfaces, and connectors)

from source code.

The SoMoX approach is a graph and metric based, multiple abstraction level,

component-aware, and integrity keeping reverse engineering approach for software

component architectures. It utilises various detection strategies for components, in-

terfaces, and connectors. It is specifically designed for software component archi-

tectures and robust against architectural style violations. Metrics can have complex

interrelations (e.g. metric A is only valid if the preconditions metric B and C hold

with 90%) to enable high-level and complex strategies which are required to check

for example a component’s communication style.

Opposed to existing reverse engineering approaches (e.g. [AL99a, FDE+01,

IWF07, KSRP99, MM01a, MOTU93, Sar03]), SoMoX follows the strong com-

ponent definition by Szyperski (see Section 2.9). According to this component

definition, components must state their context dependencies explicitly. This

53

Chapter 4. Reverse Engineering Static Architectures

implies explicitly stated provided and required interfaces. Thereby, components are

specifically distinguishable from classes and modules.

SoMoX targets the reverse engineering of component-based software architectures

which are subject of later analysis approaches (e.g. performance analysis through

simulations). Components are thus required to be reverse engineered with full in-

terfaces and connectors since the inter-component control flow would be incomplete

otherwise. If required interfaces are incomplete, control flow which exists in the

source code cannot be reflected in the component model. Also if connectors are

not reverse engineered completely, communication would lead to undefined callees

which makes analyses of such systems impossible. Thus, model integrity is a prere-

quisite to model analyses.

The lifted abstraction level of components created by SoMoX helps analysis ap-

proaches to cope with model complexity. Abstract components imply less model

details which helps keeping analysis time short. In addition to analyses, the created

high-level components help in program understanding.

Since software systems can follow different implementation styles, design prin-

ciples, and architectural guidelines, SoMoX can be adapted to the specific needs of

a certain software reverse engineering project. For example, one software system

might emphasize interface communication, another follows fixed naming schemes,

and yet another prescribes a certain package structure for the realisation of a soft-

ware system. When detecting components, interfaces, and connectors, SoMoX can

be adjusted accordingly. Nevertheless, SoMoX is equipped with default settings for

C/C++ and Java projects to ease its application.

SoMoX is held extensible with respect to new metrics and strategies. Besides, it

has support for multiple so-called “fact extractors” which can for example enable

support for further programming languages (e.g. C#) and frameworks (e.g. EJB,

Spring). The SoMoX approach does not differentiate among metrics and thus can

deal with static and dynamic source code analysis approaches. Therefore, new me-

trics and strategies can take extra information from further fact extractors into account

(cf. Section 4.10).

4.1. Shortcomings of Existing Approaches

This section presents a brief overview of related work. The presented work is a

selection of related approaches which are discussed in full detail in Section 8.2. The

most distinguishing aspects of the SoMoX approach compared to existing work are

highlighted in the following.

Weak Components Many existing approaches [AL99a, FDE+01, IWF07,

KSRP99, MM01a, MOTU93, Sar03] follow a weak component definition or reverse

54

4.2. Scientific Challenges

engineer modules. Some approaches claim to reverse engineer components but

actually reverse engineer detected source code patterns [KSRP99, Sar03]. Other

approaches assume components to be classes [SLLL07] or do not support the

composition of components [Fav04, FDE+01].

A relaxed component definitions implies limited reuse of reverse engineer models

due to implicit context dependencies (i.e. no explicit required interfaces exist or

some dependencies are not made explicit in required interfaces). Implicit context

dependencies cannot be know to the user of a component, which contradicts the third

party reuse of a component (cf. Section 2.9).

Program Understanding Other approaches focus on program understanding

[AGC02, FDE+01, Kos02, PMT+08, BBT06]. The target of these reverse engineered

models are human. Thus, there is no requirement of model completeness which is

necessary when further approaches (like the developed Beagle approach for reverse

engineering of behaviour) use the reverse engineered static architecture model as

input.

No Execution Semantics Targeted Most of the existing reverse engineered ap-

proaches for static software architectures do no target models which are subject to

later execution (e.g. [Kos05, Kos02, MM06]). Opposed, the presented SoMoX ap-

proach is suitable as a base to compute performance analyses of the reverse enginee-

red software system.

Limited Abstraction Some reverse engineering approach have limited abstrac-

tion capabilities [LL03, KSRP99, Sar03]. They purely rely on programming lan-

guage constructs (e.g. classes, or packages). Thereby, the possible abstractions are

a) limited to what has originally been encoded into a software system, and b) limited

to the abstraction levels and constructs supported by the programming language.

4.2. Scientific Challenges

The scientific challenges in the field of reverse engineering static component-based

software architectures are:

• It must be investigated how to reverse engineer components following a strong
component definition as introduced in Section 2.9. The reverse engineered

static architecture model must be complete and posses full model integrity.

Furthermore, the reverse engineering approach must create a model of a static

component-based software architecture which lays the foundations for execu-
tion semantics to enable later model analyses (e.g. performance analysis).

55

Chapter 4. Reverse Engineering Static Architectures

• Reverse engineering of the static architecture

– It must be clarified how to reverse engineer components from

object-oriented languages which have no explicit language element
“component”.

– It is subject to research how to detect abstract high-level components.

– Composition of components (composite components) should be suppor-

ted by the approach to achieve multiple abstraction levels of components.

• Realistic reverse engineering scenarios imply mixed component implementa-

tion styles (also within a single system). It is subject to research how to cope

with different implementations styles and implementation techniques in an uni-

fied approach.

• A reverse engineering approach should be generic and not limited to a narrow

subset of technologies. Furthermore, a reverse engineering approach should

be held as extensible as possible. It must be investigated how to keep the ap-

proach independent from concrete object-oriented languages, or frameworks

of source systems. The developed approach must generally be agnostic to im-

plementation styles and implementation techniques and instead provide means

to support arbitrary implementation styles and implementations techniques

through extensions.

4.3. Contributions in Reverse Engineering

The SoMoX approach contributes in the following areas of reverse engineering for

static component-based architectures:

• SoMoX contributes multiple detection strategies for components, composite

components, provided and required interfaces, and connectors. These detec-

tion strategies have been developed for C/C++ and Java based systems. So-

MoX provides a number of strategies which propose the selection and com-

bination of source code metrics for the reconstruction of component-based

software architectures.

• SoMoX is a reverse engineering approach suitable for hierarchical component-

based systems and held extensible to support new component implementations

styles and techniques.

– The reverse engineered output models Service Architecture Model

(SAMM) and Palladio Component Model (PCM) posses execution

semantics and have full model integrity. The reverse engineered models

56

4.4. Requirements for Reverse Engineering of Static Architectures

represent the static architecture which the Palladio approach uses for

performance simulations.

– Its hierarchical output models enable the navigation through reverse en-

gineered architectures and thus help in program understanding.

• The SoMoX approach helps reverse engineering large-scale software systems.

It is scalable for projects of more than 250,000 lines of code.

• The implementation of the approach provides strong automation and mini-

mises the amount of required human interaction. Yet, it is configurable to

be adapted for specific project needs (e.g. selection of component detection

strategies).

4.4. Requirements for Reverse Engineering of
Static Architectures

The following requirements are derived from the scientific challenges and contribu-

tions sections.

• R-Detection Mechanisms Detection mechanisms for components, composite

components, provided and required interfaces, and connectors must be provi-

ded.

• R-Component Abstractions Component abstractions higher than classes must

be reverse engineered. Besides, multiple levels of composite component struc-

tures must be supported.

• R-Completeness The completeness requirements subsume i) model integrity

to have a base for model analyses, ii) the requirement of a complete static

architecture which does not miss elements like connectors etc., and iii) the

requirements to reverse engineer components which state explicit context de-

pendencies through required interfaces.

• R-Extensibility The developed approach must not be limited to a single object-

oriented language or an implementation technology (e.g. EJB, Spring).

• R-Scalability The approach must be scalable for up to 250,000 lines of code.

• R-Automation The approach should be largely automated to make large system

analyseable with little effort. Manual interaction should not be needed during

a reverse engineering run.

Section 9.1 discusses the realisation of these Requirements.

57

Chapter 4. Reverse Engineering Static Architectures

4.5. Solution Idea: Overview

Evaluate
Base

Metrics

Combine
Metrics

0.7

0.7
0.3
0.6

Compose
Components

Merge into
Components

Sissy
1

2 3

4 5

6

7

8

Figure 4.2.: Overview on SoMoX reverse engineering

Figure 4.2 provides a rough overview on the reverse engineering process of SoMoX.

The following Listing 4.1 further details on the process of SoMoX. Please note that

the original result model of SoMoX is not a number of sets but the instance of a

meta-model (SAMM).

1 Inputs:

2 SC = SourceCode(System) / / Set of source code of the system

3 AllBaseMetrics / /Non empty set of all base metrics

4 / /Non empty sets of strategies :

5 ComponentStrategies , InterfaceStrategies , ConnectorStrategies

6 Outputs:

7 Components← ∅
8 Connectors← ∅
9 Architecture← ∅

10 / / (1) Extract source code information into a language independent representation

58

4.5. Solution Idea: Overview

11 GAST = SISSy(SC)

12 do {

13 ComponentCandidates = deriveComponentCandidates(GAST)

14 / / (2) Evaluate basic source code metrics

15 for(ComponentCandidate : ComponentCandidates) {

16 for(Metricn : AllBaseMetrics) {

17 BaseMetricResults .add(Metricn (ComponentCandidate))

18 }

19 }

20 for(ComponentCandidate : ComponentCandidates) {

21 / / (3) Combine a number of base metrics in component detection strategies

22 for(Strategyn : ComponentStrategies) {

23 ComponentCandidateRatings .add(

24 Strategyn (ComponentCandidate , BaseMetricResults))

25 }

26 / / (4) Try to merge components

27 i f (passingThreshold(ComponentCandidateRatings , ComponentCandidate ,

mergeThreshold)) {

28 Components .add(merge(ComponentCandidateRatings , ComponentCandidate))

29 } else {

30 / / (5) Try to compose components

31 i f (passingThreshold(ComponentCandidateRatings , ComponentCandidate ,

composteThreshold)) {

32 Components .add(compose(ComponentCandidateRatings , ComponentCandidate)

)

33 }

34 }

35 }

36 / / (6) Integrate results in the architecture model

37 Architecture .add(Components)

38 / / (7) Assign component interfaces

39 Interfaces = assignInterfaces(Components , InterfaceStrategies)

40 / / (8) Create component connectors

41 Connectors = createConnectors(Interfaces , Components , ConnectorStrategies)

42 } while (components found) / / (9) Perform a new iteration starting with (2)

59

Chapter 4. Reverse Engineering Static Architectures

Listing 4.1: The basic steps which are performed in the SoMoX approach.

The following section focuses on the steps of the component detection approach.

Individual steps will be further discussed in later sections.

Extract Source Code Information The reverse engineering process start with

the SISSy (1) approach which extracts a Generalised Abstract Syntax Tree (GAST)

from source code. The employed GAST is a language-independent representation

of object-oriented source code. This enables SoMoX to reverse engineer any object

oriented code which can be mapped to the GAST representation. SISSy [ABM+06]

is a third party approach which is reused in the reverse engineering process. The

GAST is extracted once per reverse engineering run and is a prerequisite to the re-

verse engineering run.

Component Detection Approach In this step, the core of the iterative reverse

engineering process of SoMoX is performed. SoMoX starts extracting low abstrac-

tion level components which comprise just a few classes. Each iteration builds on the

results of the previous iterations and aims at higher abstraction levels of components.

Each iteration results in an architecture model which describes the components de-

tected until that iteration. These components associate encapsulated GAST classes

through the trace model. The iterations stop if no further component abstractions are

found.

Evaluate basic Metrics In each iteration, first a number of basic source code

metrics (2) like coupling, name resemblance, package mapping etc. are evaluated

based on the GAST representation. Metrics are always evaluated for so-called com-
ponent candidates. A component candidate is a tuple Ci, Cj of two sets of classes

Cx = {class1, class2, ..}. A component candidate is a subject to merge and com-

position in subsequent steps. Ultimately, sets of component candidates result in new

components of a higher abstraction level.

In the first iterations, Cx, x ∈ {i, j} consists of only a single class. In later ite-

rations, Cx contains the classes of previously identified components. For example,

Cx of an existing composite component comprises all inner associated classes. Thus,

component candidates are a uniform base for the evaluation of metrics, merge, and

compose.

Merge and Compose The next two steps then decide on converting a component

candidate into a component. SoMoX first tries to merge (4) component candidates.

If merging component candidates is not beneficial because this would result in a

poor component quality, SoMoX tries to compose (5) composite components from

60

4.5. Solution Idea: Overview

component candidates. The decision when to convert component candidates will be

detailed below.

1. The first step (4) merges the component candidate with an existing component.

In a first iteration, this results in a basic component comprising the classes

Ci∪Cj . The classes of the component candidate are then merged into a single

basic component of a higher abstraction level.

In later iterations, this step can also result in composite components (with the

associated set of classes CCC) to which further classes are attached: CCC ∪
Ci ∪Cj . In that case, CCC , Ci, and Cj represent the classes of components of

previous iterations which are merged into a single composite component of a

higher abstraction level.

2. The second step (5) composes composite components from component candi-

dates. The components represented by Ci and Cj are preserved and encapsula-

ted into a composite component. Later iterations then operate on the resulting

composite component which comprises the classes Ci ∪ Cj .

To decide whether to merge (4) or compose (5) component candidates, a num-

ber of detection strategies (3), each representing a component detection heuristic, is

responsible for identifying components. There exist two different groups of strate-

gies: One for suggesting merges for step (4) and one for suggesting compositions

for step (5). Each strategy group consists of a number of strategies and results in a

“recommendation” whether to merge or compose.

The term strategy is used to emphasize that there are possible alternative realisa-

tions. The following sections will point out which alternative strategies exist. The

term strategy refers to the design pattern listed by Gamma et al. [GHJV95].

Component Detection Strategies Each strategy acts as a mean to identify cha-

racteristics of a potential component like interface communication, high coupling,

and name resemblance of implementing classes. Component detection strategies ope-

rate on component candidates and evaluate whether a component candidate should

become a component. The result of a detection strategy is a numeric value in the

interval [0..1] where 1 means accepting a component candidate and 0 suggests rejec-

ting a component candidate. Thus, a strategy is mapping from component candidates

to a numeric value:

Strategy(Ci, Cj)→ v ∈ R : 0 ≤ v ≤ 1

All strategy evaluations of a component candidate are aggregated into a single value

Sall(Ci, Cj) which indicates the confidence of having a component represented by

the component candidate. The calculation of Sall(Ci, Cj) will be explained in detail

61

Chapter 4. Reverse Engineering Static Architectures

in Section 4.8. In that section, strategies for component composition and merge will

be differentiated.

Intuitively speaking, the aggregated value Sall(Ci, Cj) is a kind of weighted sum

of strategy results. But strategies itself are composable to express for example inter-

dependencies among detection strategies in a higher level strategy.

Strategycomposed(Ci, Cj) :=

{Strategya(Ci, Cj), Strategyb(Ci, Cj), ...} → v ∈ R : 0 ≤ v ≤ 1

This allows to express for example, that similar names of classes (e.g. Custome-

rAccounting and CustomerRelations) of a component candidate do not indicate

a component, when the classes are not at all connected at the code-level.

The decision mechanism whether to merge or compose components from a com-

ponent candidate operates on a graph structure and reuses existing graph algorithms.

Each element of a component candidate (Ci, Cj) is therefore considered as a vertice

in a weighted directed graph G = (V,E) with directed edges e = (vstart, vend) ∈
E : vstart, vend ∈ V , edge weights w(e) ∈ [0..1] ∈ R, and vertices Cx → V deri-

ved for every set of a component candidate. The set of all evaluations of Sall(Ci, Cj)
serves as adjacency matrix. For all Sall(Ci, Cj) > 0 a directed edge with a corres-

ponding weight w(e) = Sall(Ci, Cj) > 0 is derived.

In a first graph transformation step, edges’ weights are merged into weights of a

single non-directed edge where the weight of the non directed edge is the sum of the

directed edges

wnd(e) = w(e1)+w(e2) : e1, e2 ∈ E∧vstart(e1) = vend(e2)∧vend(e1) = vstart(e2)

with vstart(e) being the start vertex and vend(e) being the end vertex of a directed

edge. Converting the directed graph into a non-directed graph is necessary since

metrics and derived component detection strategies can be directed. A directed graph

is not required for component detection but only for deriving connectors.

In the next graph transformation step, all edges whose weights fall below a pre-

viously selected threshold (Efiltered = E \ {e | wnd(e) < threshold}) are remo-

ved from the graph. Based on that graph, all weakly connected components of the

graph structure (cf. [Die05]) are converted into components. While Sall(Ci, Cj) is

an evaluation of a component candidate of two sets of classes, the weakly connected

components from the graph can comprise n ≥ 2 classes which is ensured by the

definition of weakly connected components. This intentionally allows the creation of

component abstractions with strong aggregation.

Weakly connected components in the graph are first determined for the merge step

(4) and then, if (4) does not produce components, for the compose step (5). The steps

62

4.5. Solution Idea: Overview

(4) and (5) operate with the same graph structure. Only the component detection

strategies from which the graph is built (and thus the edge weights) differ.

Integrate Results After step (5), the detected components of an iteration are inte-

grated in the architecture result model. Component candidates that have been conver-

ted into components are therefore removed from the graph structure and a new vertex

representing the newly created component is introduced. Next, the base metric are

recalculated for the changed parts of the graph, and a new iteration can start.

Dynamic Threshold SoMoX is using two separate dynamic thresholds: tmerge

for merging in step (4) and tcompose for composition in step (5). These thresholds are

dynamically changed from iteration to iteration to reflect the increasing abstraction

in later iterations. tmerge is increased over the iterations to lower the probability of

component merging. While merging is useful for early iteration to build BasicCom-

ponents, adding classes to CompositeComponents in later iterations becomes less

important. Instead, in later iterations, composing components of components which

exist in that iteration becomes important. For that reason, tcompose is decreased over

the iterations.

Each threshold tx (for x ∈ {compose,merge}) has a configurable initial va-

lue tx,init, a decrementation / incrementation stepwidth tx,stepwidth, and a final value

tx,final associated. The tx values are changed over the defined interval [tx,init, tx,final].
Large values for tcompose,stepwidth result in fewer component abstraction levels (less

composite component nesting). tx,init determines the initial abstraction level. Lar-

ger values for tcompose,init foster smaller composite components, while smaller values

for tcompose,final determine the maximum abstraction level in later iterations. For

merging, the values induce a complementary behaviour: Larger values for tmerge,init

result in a smaller number of primitive components which have a smaller size. Smal-

ler final values for merging tmerge,final limit the overall number of detected primi-

tive components. Small values for tcompose,stepwidth increase the chance that existing

composite components are merged with existing composite components in the first

iterations.

The threshold is only adapted, if in an iteration, no new component has been identi-

fied. Since the graph structure is changed by each detected component, the threshold

does not need to be lowered after an iteration in which at least one component has

been found.

Interface and Connector Creation After the component detection has run, inter-

faces are assigned (7) to components and connectors are created (8). Since interface

communication can be checked by component detection strategies, interfaces must

be created along with components (after each iteration, the component architecture

63

Chapter 4. Reverse Engineering Static Architectures

is complete including connectors). For the detection of interfaces there exist separate

strategies. These strategies for example decide whether to expose the interfaces of

inner components contained in a composite component. Section 4.8 details on these

strategies.

SoMoX directly derives component connectors from the graph. Since the original

edges are directed, connectors can be derived directly from the graph. Depending

on the component types (basic or composite component) which are created from the

vertices and the associated interfaces, provided or required delegation connectors and

assembly connectors are established. Connectors can only be established if compo-

nents have interfaces assigned in the previous step.

4.6. Integration of User Feedback

After each iteration, SoMoX results in a valid intermediate instance of the archi-

tecture model. This model can be displayed to users to enable interaction with the

reverse engineering process. For example, iterations can be stopped (i.e. when the

abstraction level is sufficient), or the assignment of component candidate elements to

components can be changed by the user. The user is provided with a visualisation of

the results of the last iteration using an existing editor for the architecture model.

4.7. Core Assumptions

The core assumptions which must hold for every supported system are:

1. The reverse engineering target must be mappable to a component-based archi-

tecture. Only architectures which are created with some notion of component

in mind are well-supported. If components are not recognisable from source

code structures in some way at all, the reverse engineering approach is not ap-

plicable. The internal representation of the reverse engineered system of this

approach is fixed to a component-based architecture.

2. Any fact extractor (e.g. SISSy in the above solution) must relate its informa-

tion to classes represented in the GAST (Generalised Abstract Syntax Tree)

representation. Additional input information can be easily supported, but any

information must have a mapping to GAST classes. For example, Spring

[Spr06] or EJB [EJB07] deployment descriptors are not supported out-of-

the box. When supporting them, any bindings among classes, introduced by

for example dependency injection, must name the classes they connect. Sec-

tion 4.10 discusses the extension in more detail.

64

4.8. Reverse Engineering Strategies

4.8. Reverse Engineering Strategies

SoMoX

Beagle

<<LoopAction>>

data flow

con-
ditions

In its core, SoMoX relies on a number of strategies for component

recognition, interface assignment, and connector creation. Strate-

gies are responsible for identifying for example components which

are implemented following a certain architecture or implementa-

tion style (cf. [BMR+96]). Strategies themself comprise a number

of base metrics or are built from a number of sub-strategies. They

combine base metrics to form higher level recognition mechanisms

for architecture elements.

For systems which are implemented with object-oriented techniques, no com-

ponent terminology exist. Instead, components can only partially be reflected in

object-oriented code. Multiple strategies can be applied during reverse engineering,

each representing a heuristic, to detect components. Depending on an architectural

style and the intended component definition, different strategies must be applied to

reflect the expected style and component definition in the reverse engineered archi-

tecture. A single strategy usually is not sufficient to reverse engineer a system since

a large system might involve different implementation styles. Each implementation

style can then be covered by one or multiple strategies.

The following section will first provide an overview on possible reverse enginee-

ring strategies. This also covers strategies which have not been realised in SoMoX

to illustrate the possible design space for reverse engineering and point out possible

alternatives for reverse engineering. To structure the design space, two feature dia-

grams (Figure 4.3 and 4.4; introduction of feature diagrams in [CE00]) are provided.

In these feature diagrams, strategies which have been selected for SoMoX are high-

lighted (“check symbol”) – the so-called Feature Configuration. Later, base metrics

(Section 4.8.3) and realised strategies will be presented in detail (Section 4.8.5).

4.8.1. Overview on Strategies

The following strategy variation points have been identified, which should be ac-

counted for during reverse engineering. Figure 4.3 provides an overview on possible

strategies which complement metrics for component recognition.

At the top level, there are two strategies for dealing with component candidates, na-

mely component merging and component composition represent the most important

strategies. Further top level strategies are filtering mechanisms through blacklisting,

strategies for creating provided and required interfaces for components, and finally

strategies for the creation of composite component structures like connectors and the

exposition of composite component interfaces.

65

Chapter 4. Reverse Engineering Static Architectures

N
o

B
yp

as
si

ng

D
is

re
ga

rd

In
fra

st
ru

ct
ur

e
C

al
ls

A
llo

w
 B

yp
as

si
ng

P
ub

lic
 M

et
ho

ds

E
xt

er
na

l
D

oc
um

en
ts

A
bs

tra
ct

 C
la

ss
es

La
ng

ua
ge

In

te
rfa

ce
s

A
ll

in
ne

r
In

te
rfa

ce
s

In
ne

r e
xt

er
na

lly

us
ed

 In
te

rfa
ce

s

In
ne

r i
nt

er
na

lly

us
ed

 In
te

rfa
ce

s

1.
.5

R
eq

ui
re

d
In

te
rfa

ce
s

P
ro

vi
de

d
In

te
rfa

ce
s

S
tra

te
gi

es

In
te

rfa
ce

C

re
at

io
n

C
om

po
ne

nt

C
an

di
da

te
s

P
ro

vi
de

d
In

te
rfa

ce
s

E
xp

os
iti

on

M
er

gi
ng

 v
ia

M

et
ric

s
Im

m
ed

ia
te

Tr
an

sf
or

m
at

io
n

C
on

ne
ct

or
s

C
om

po
ne

nt

M
er

ge

de
pe

nd
en

cy

M
an

da
to

ry
Fe

at
ur

e
O

pt
io

na
l

Fe
at

ur
e

X
 to

 Y
 o

ut
 o

f n

Le
ge

nd
: 1

ou
t o

f n
X

..Y

R
ef

er
en

ce
d

Fe
at

ur
e

C
la

ss
 S

tru
ct

ur
e

R
ea

lis
ed

D
ep

en
-

de
nc

y

R
eq

ui
re

d
D

el
eg

at
io

n
C

on
ne

ct
or

M
at

ch
 in

ne
r

In
te

rfa
ce

s
D

e-
fa

ct
o

C
on

ne
ct

or
s

R
em

ov
e

R
eq

ui
re

d
In

te
rfa

ce

C
om

po
si

te

C
om

po
ne

nt
S

tra
te

gi
es

C
om

po
ne

nt

C
om

po
si

tio
n

S
co

pi
ng

:
B

la
ck

lis
tin

g

Figure 4.3.: Feature diagram of strategies for the creation of component candidates,

interfaces and connectors (capturing only cases for which multiple stra-

tegies exist)

66

4.8. Reverse Engineering Strategies

Figure 4.4 provides an overview on possible strategies for deciding whether to

merge or compose components from a component candidate. The following sections

will detail on the features and on the rational of each feature.

Component
Merge

Interface
Communication

Subsystem
Component

Consistent
Naming

Abstract/
Concrete
Balance

1Mandatory
Feature

Optional
Feature

X to Y
 out of n

Legend:

1 out of n
X..Y

Referenced
Feature

1..4

Interface
Bypassing

dependency

dependency

1..5

Hierarchy
Mapping

Component
Composition

Strategies

Figure 4.4.: Feature diagram of strategies for merging and composing Components

Every strategy can comprise a number of sub-strategies which contribute to a cer-

tain top-level strategy. Component merge and component composition strategies

share common sub-strategies. While a component merge strategy indicates when to

add classes from a component candidate to an existing component, component com-

position strategies indicate when to create a composite component from a component

candidate.

4.8.2. Process for Selection of Metrics and Strategies

Metrics and strategies for SoMoX have been selected in a demand-driven empiri-

cal process. In the process, the reference decompositions of multiple systems under

study were compared with reverse engineering results. SoMoX initially started with

a small set of metrics and strategies. When comparing the reference architecture of

the reverse engineered systems with the output of SoMoX, new metrics and strategies

67

Chapter 4. Reverse Engineering Static Architectures

were introduced to make previously unrecognized components identifiable. There-

fore, non recognised components were analysed for specific characteristics which

had not been identifiable with the existing metrics and strategies. New metrics and

strategies were then imagined to capture exactly these characteristics. The process

has been repeated until satisfactory results were achieved when comparing reverse

engineering results with the reference architecture.

4.8.3. Basic Metrics

In order to understand the strategy explanations in the following, first the employed

base metrics will be explained. The basic metrics have been derived purely from the

strategies. First the strategies have been identified and only those metrics which are

required by the strategies have been integrated into SoMoX.

For components only few metrics are available as Cho et al. [CKK01] point out.

Source code metrics from object-oriented programs cannot necessarily be directly

reused for components since components comprise sets of classes and associate in-

terfaces. Therefore, basic metrics which are used in this section are adaptions of

existing object-oriented metrics where necessary. Of the available component me-

trics, most are dedicated to special purposes. For example, Washizaki et al. [WYF03]

provide a set of metrics to estimate the reusability of black-box software components,

Cho et al. [CKK01] evaluate metrics for complexity, customizability, and reusability

of software components, and Ko and Park [KP05] present metrics for component

architecture redesign.

All of the following metrics are calculated for component candidates. Opposed

to pure object-oriented metrics, the required basic metrics must be able to deal with

sets of classes, which represent a component candidate. All basic metrics map the

evaluation of a component candidate to the interval between 0 and 1: C(Ci, Cj) →
v ∈ R : 0 ≤ v ≤ 1.

A component candidate Ci, Cj can contain classes and class interfaces associated

to these classes (i.e. interfaces implemented by classes from Ci or Cj). For example,

a basic component could internally use interfaces of data structures which do not

necessarily become component interfaces but nevertheless should be associated to

components. Basic metrics are not aware of component interfaces, they operate on

class interfaces only. Component interfaces are created after the evaluation of basic

metrics.

Metrics (and strategies) are evaluated for two set of classes A and B. For the com-

ponents detection, these two sets of classes originate from a component candidate

Ci, Cj .

Coupling The coupling metric reuses the ideas of the afferent coupling (Ca) and

efferent coupling (Ce) metrics by Martin [Mar94]. The metrics have been transferred

68

4.8. Reverse Engineering Strategies

to components. The afferent coupling (Ca) is the number of types outside a com-

ponent candidate that depend on types within the component candidate. The efferent

coupling (Ce) is the number of types inside a component candidate that depend on

types that are outside the component candidate.

Coupling, in this context, is the ratio of accesses inside a component candidate to

the total number of accesses and thus based on efferent coupling Ce. Opposed to

efferent coupling, the number of accesses is counted

Coupling(A,B) :=
R(A,B)

R(A, all)
=

InternalAccesses

ExternalAccesses

with R(A,B) the number of accesses of from A to B, where A and B are sets of

classes, all is the set of all classes of a system. An access subsumes accesses of a

type, a method, or a field, each counted separatly. Counting the number of accesses

helps quantifying the access relations between two sets of classes. Coupling is a

non-commutative normalised metric which composes the raw counts of internal and

external accesses.

Name Resemblance The name resemblance reflects how the names of classes

and interfaces of component candidates resemble each other. The metric counts si-

milar names for each of the classes in the component candidates and relates them to

the total number of class names. Prior to comparing the names, common prefixes

and suffixes are removed. Common prefixes and suffixes which misleadingly would

indicate name resemblance must be specified by the user. For example, EJB com-

ponents might be prefixed with “EJB” which still does not indicate classes which

belong together and thus would let this metric become partially misleading.

The calculation of the name resemblance relies on the Jaro-Winkler distance
[Win06] JR(string1, string2) which calculates the similarity of two names. The

similarity NSN of classes and interfaces of a component candidate is then calculated

based on the pairwise similarity comparison of the cross product of all classes and

interfaces of a component candidate:

NSN :=
A∪B×A∪B∑
class1,class2

JR(class1, class2)

with class1 and class2 being individual classes and interfaces of the cross product

of all classes and interfaces A ∪ B × A ∪ B.

The Jaro-Winkler distance metric was chosen since it respects the number of mat-

ching characters and the number of transpositions. It is well-suited to compute the

similarity of identifying names. Its result value is normalised to the interval [0..1]
where 1 is an exact match and 0 states no similarity.

69

Chapter 4. Reverse Engineering Static Architectures

Alternative simplistic distance metrics on strings such as the Hamming distance

[Ham50] are tolerant against typing error, but are less meaningful for class naming

which often involves common pre and post fixes like in BusinessLogic, Business-

View, and BusinessFacade, where “Business” indicates classes belonging together.

Based on NSN , the name resemblance can be calculated as follows:

NameResemblance(A,B) :=
NSN

card(Nall)

where Nall = A ∪ B × A ∪ B and card(Nall) is thus the cardinality of the cross

product of all classes and interfaces of a component candidate. Name resemblance is

a commutative metric.

Interface Violations The interface violation metric captures the number of ac-

cesses between two sets of classes which bypass interfaces (i.e. direct type access).

InterfaceV ioloation(A,B) :=
RI(A,B)

R(A, all)

where RI(A,B) is the number of accesses from A to B bypassing interfaces, and

R(A, all) is as above the number of all accesses. The interface violation metric lays

the foundation for detecting a communication style through interfaces. Section 4.8.6

will be dealing with the identification of interfaces as not all programming languages

have an explicit notion of interface. Interface violation is a non commutative metric

which is 1 if all communication from A to B uses interfaces.

Package Mapping The package mapping metric indicates that a component can-

didate is realised by classes that reside in the same package structure. The package

structure is therefore mapped to a separate tree structure formed by the package

containment relation.

PackageMapping(A,B) :=

NonLinearMapping(
commonRootHeight(A,B)

maxHeight(A,B)− commonRootHeight(A,B)
)

where maxHeight(A,B) is the maximum height of elements of A and B in the

package tree and commonRootHeight(A,B) is the height of the maximum com-

70

4.8. Reverse Engineering Strategies

mon tree node for all elements of A and B. Packagemapping(A,B) non-linearly

depends on the inner fraction with

NonLinearMapping(x) :=

{
x if x > 0.2

0 else

where x = [0..1] ∈ R. NonLinearMapping(x) realises a limiter which helps

avoiding a component indicator for classes which only share a very top-level package.

The limit of 0.2 is a configurable value which proved to be reasonable during the

validation of the approach. Package mapping is a commutative metric.

Directory Mapping The directory mapping metric is comparable to the package

mapping metric besides its applicability to programming languages which do not

support packages or implementations which do not make use of packages. For Java,

where directory and package structure are the same, directory and package mapping

result in the same value. For C++ namespaces, for example, the directory can deviate

from the namespaces structure. Instead of building a package tree from the package

containment relation, the directory tree is built from the directory containment rela-

tion for the directory mapping metric. Besides, directory mapping is calculated in

the same way as package mapping. Directory mapping is a commutative metric.

Although the directory of elements of A or B contain the full file system path,

the metric remains independent from where the sources are placed in the file system,

since no absolute root element is part of the calculation.

Instability The instability metric by Martin [Mar94] is the ratio of efferent cou-

pling to total coupling. It indicates whether the classes implementing a component

candidate have many external dependencies which make a component implementa-

tion likely to change if an external class or interface changes.

Instability(A,B) :=
Ce(A,B)

Ce(A,B) + Ca(A,B)

Instability indicates a component candidate’s resilience to change. 0 indicates a com-

pletely stable component candidate, 1 indicates an instable component candidate.

Instability is a commutative metric.

71

Chapter 4. Reverse Engineering Static Architectures

Abstractness When transferring the instability metric by Martin [Mar94] to com-

ponents, it is the ratio of abstract elements of a component candidate to the total

number of elements of a component candidate.

Abstractness(A,B) :=
card(abstract(A ∪ B))

card(A ∪ B)

where abstract(S) = {s ∈ S|s is abstract} is the selection of abstract elements

of the set S. Abstract elements are abstract classes and interfaces. Abstractness is

commutative.

Distance from the Main Sequence The metric Distance from the Main Se-

quence (DMS) was first introduced by Martin [Mar94] and indicates a balance bet-

ween instability and abstractness (see Figure 4.5). The more abstract a component

candidate is (involving more internal interfaces), the more stable it should be. Vice

versa, it is acceptable for a component candidate to be instable if it is less abs-

tract. Fully instable and abstract component candidates are as unwanted as fully

non-abstract and stable ones. The first ones have no realisation and are unreliable

from the developer perspective, while the latter ones tend to be little accessible mo-

noliths. For further reading, please refer to [Mar94].

DMS(A,B) := 1− |Abstractness(A,B) + Instability(A,B)− 1|
where abstractness and instability are the metrics introduced above. The above for-

mula calculates the distance from the visualised ”main sequence”. The prefixed 1−x
is required to have a value of 1 indicating a good component candidate. DMS is a

commutative and composite metric.

Abstractness

Instability0

1

1

The „main
sequence“ which
is considered to

be ideal

Worst
values

Figure 4.5.: Distance from the Main Sequence visualised

72

4.8. Reverse Engineering Strategies

Slice Layer Architecture Quality The Slice Layer Architecture Quality (SLAQ)

metric captures how a broadly used architecture style of organising a system in slices

and layers is followed. Slices are service oriented cuts of a software system, like

for example contracting, billing, and customer data management. Layers are cross-

cutting technology induced cuts of a software system, like for example a view layer,

a middle-tier, and a database access layer. An element which resides in one layer and

one slice is called natural subsystem, like the view of the contracting slice in the

following example (see Listing 4.2).

The SLAQ metric can be interpreted as the similarity between the slice and layer

architecture style and its occurrence in the system under study. It judges to which

extend the slice and layer architecture style is followed by the implementation.

SLAQ expects slices and layers to be encoded into package names. For example:

1 edu. kit . ipd .mysystem. contracting .view

2 edu. kit . ipd .mysystem. contracting .business

3 edu. kit . ipd .mysystem. contracting . data

4 edu. kit . ipd .mysystem. billing .view

5 edu. kit . ipd .mysystem. billing .business

6 edu. kit . ipd .mysystem. billing . data

7 . . .

Listing 4.2: Package names example of a project organised in slices and layers

Opposed to previous metrics, SLAQ is not related to a component candidate. It

is a basic metric which is reused by the subsystem component metric. SLAQ is the

ratio of found and expected natural subsystems.

SLAQ :=
card(Sfound)

card(Sexpected)

with Sfound the set of identified subsystems and Sexpected the set of expected sub-

systems. Sexpected is derived from the package structure. Sfound contains all natural

subsystems of Sexpected which are present in the package structure. Sexpected represent

the set of all natural subsystems of the system.

The problem of SLAQ is, that neither slices nor layers are know to the metric.

Both must be derived from the existing package structure of a software system using

a heuristic. Hence, also Sexpected is unknown. The following pseudo-algorithm in

Listing 4.3 calculates Sexpected.

1 C ← classes(System) / / Set of classes in the system

2 P ← ∅ / / Set of packages

3 L← ∅ / / Set of layers

73

Chapter 4. Reverse Engineering Static Architectures

4 S ← ∅ / / Set of (packageSuffix , frequency) tuples

5 Sexpected ← ∅ / / the result ; expected natural subsystems

7 calculateExpectedNaturalSubsystems(C) {

8 / / determine the largest common package prefix and remove from package hierarchy:

9 P = packageHierarchy(C) \ commonPackagePrefix(C)

10 / / layer identification :

11 L = layersFromPackageHierarchy(P)

12 / / determine common package suffixes (e .g. ’data’ 3x , ’view’ 2x) :

13 S = packageSuffixes(C)

14 / /minimum number of slice occurrences , at least 2:

15 fmin = min(card(L) ∗ slicepercentage, 2)
16 / / calculate the expected subsystems:

17 Sexpected = L× {(prefix, frequency) ∈ S|frequency ≥ fmin}
18 return Sexpected

19 }

Listing 4.3: SLAQ calculation

where slicepercentage is the required percentage of occurrences of a slice among all

packages (e.g. 5%).

First, the algorithm computes the longest common package prefix of the elements

of a software system. The package structure of a software system does not deviate

in the hierarchy above the identified package. Then, the layers below the calculated

base package and the most common package suffixes and their quantity (e.g. 3x

“.data” and 2x “.view”) are calculated. From that, a configurable minimum number

of occurrences fmin of a slice is calculated (line 9). Each slice which is bypassing

the minimal frequency fmin becomes part of the cross product of identified layers

and slices. Each element of the cross product is considered as an expected natural

subsystem.

Natural Subsystem The natural subsystem metric indicates how likely a com-

ponent candidate is representing a natural subsystem identified by SLAQ. Figure 4.6

visualises the natural subsystems of an example system.

NaturalSubsystem(A,B) := SLAQ ∗ SubsystemMatch(A,B)

74

4.8. Reverse Engineering Strategies

Natural Subsystem
edu.kit.ipd.business.billing.ClassA
edu.kit.ipd.business.billing.ClassB
edu.kit.ipd.business.billing.ClassC
...

View

Business

Data

BillingContrac-
ting

...

La
ye

rs
Slices

Figure 4.6.: Natural subsystems of a software system

where SLAQ is the previously introduced metric and

SubsystemMatch(A,B) :=
card(subsysteminside(A ∪ B))

card(subsystemoutside(A ∪ B))

is a value [0..1] ∈ R which is the ratio between classes inside a natural subsystem

subsysteminside and classes outside a natural subsystem subsystemoutside. Since

there are multiple natural subsystems, the natural subsystem to check against is the

one where the largest number of classes of A ∩ B is in:

SelectedSubsystem(A,B) :=s ∈ Sexpected | card(s ∩ (A ∪ B)) =

fmax(card(ns ∩ (A ∪ B))) ∀ns ∈ Sexpected

where fmax(expression) determines the maximum value of expression (in this

case the calculation of the cardinality) for all ns ∈ Sexpected. subsysteminside

and subsystemoutside are then evaluated on the subsystem selected by Selected-

Subsystem(A,B). The fact that multiple subsystems can have the same maximal

cardinality does not harm the result, since only its cardinality is used to calculate

the SubsystemMatch(A,B). If fmax(expression) is not resulting in a single

unique element, an arbitrary element of the result set is returned.

The maximum value of the subsystem component metric is the SLAQ metric value.

For architectures which are not organised in slices and layers, the natural subsystem

metric does not apply and results in a value of 0. Natural subsystem is a commutative

and composite metric.

4.8.4. Blacklisting and Filtering

All strategies can be combined with an optional blacklisting and filtering strategy

(cf. Figure 4.7). This strategy first of all allows limiting the scope of reverse engi-

75

Chapter 4. Reverse Engineering Static Architectures

neering. For example, infrastructure or system libraries can be excluded from reverse

engineering, but reverse engineering can also be focused on specific subsystems of

a software. Furthermore, this strategy allows filtering certain classes or data types.

For example, primitive data types or classes which are pure data structures with only

public fields are not subject of component reverse engineering. They can be part of

component interface definitions but should not be contributing to components. When

not filtering pure data types, basic metrics like coupling or interface violation could

be misleading (they could for example indicate an interface violation and high cou-

pling).

Filtering

Classes
edu.kit.ipd.project.ClassA
edu.kit.ipd.project.ClassB
edu.kit.ipd.project.ClassC
java.util.Date
java.util.HashSet
java.util.Hashtable
java.util…
javax.swing.*
javax.servlet.*
...

Blacklisting

Package-level
blacklisting

Class-level blacklisting

Classes & methods
edu.kit.ipd.project.Business
 updateReporting()
 createReport()
 doSth(Set s)
edu.kit.ipd.project.DataType
 isReport()
 getAccounts()
 setAccounts()
 setReportingIntense(int i)
...

Filter pure data types
and structs

Figure 4.7.: Blacklisting and filtering

The blacklisting is a set projection based on the naming of its elements:

Blacklisting(S, namesblacklisted) := {s ∈ S | s.name /∈ namesblacklisted}
where S is the set of classes, interfaces, and packages of a system’s GAST model

and namesblacklisted is the set of blacklisted names. For classes and interfaces, the

name attribute is the fully qualified name, for packages the name is the full package

path name.

Typical applications of blacklisting are the removal of libraries and runtime envi-

ronment classes. For example, java.* and javax.* are removed in most Java-based

scenarios.

While blacklisted classes and interfaces are fully removed from input interpre-

tation, filters can be specific to certain reverse engineering steps (e.g. component

detection or interface creation). By default, structs, enumerations, primitive types,

and classes with only getters, setters and is*-methods are considered as pure data

structures and therefore filtered.

Data structures are filtered from the set of all types by first checking the data

type attributes available from the GAST model and then removing those types that

76

4.8. Reverse Engineering Strategies

represent pure data structures. The latter heuristic is based on regular expression

checks. The following term defines the white list filter which bypasses desired types:

FilterDataStructures(T) :={t ∈ T |
t.isStruct = false∧
t.isPrimitive = false∧
t.isEnum = false}
\ {t ∈ T |card(t.methods) = card({m ∈ t.methods|
RegEx(”get. ∗ ”,m.name)∨
RegEx(”set. ∗ ”,m.name)∨
RegEx(”is. ∗ ”,m.name)})
}

where T is the set of types of a system and isStruct, isPrimitive, isEnum, and

methods are properties directly available for types from GAST models. Additio-

nally, methods possess a name attribute.

RegEx is a regular pattern matching (cf. [Tho68]):

RegEx(pattern, arg) :=

⎧⎪⎨
⎪⎩
true if arg matches the regular

expression pattern

false else

4.8.5. Component Detection Strategies

Strategies, among others, help identifying components and interfaces in SoMoX.

They rely on the basic metrics which have been introduced in the previous section.

Instead of calculating a weighted sum from the basic metrics, strategies allow SoMoX

to identify higher level structures of components which are not directly visible from

a single metric. Each strategy therefore can combine a number of basic metrics and

is able to take interdependencies into account. As explained before, for example the

naming of classes by itself is a bad indicator for componentisation, when ignoring the

coupling on the code level. If two classes have similar names but no code relation,

they form a bad component.

Principles like cohesion and coupling [Mye75] are well-known to be indicators for

software modularisation but have been identified to be not the ideal driver for mo-

dularisation [AG01]. Furthermore, when dealing with software components instead

of modules, cohesion and coupling reflect only a small portion of the component

properties which are required by the developed reverse engineering approach. The-

refore, various strategies which go beyond cohesion and coupling are responsible for

detecting component-based architectures in the SoMoX approach.

77

Chapter 4. Reverse Engineering Static Architectures

Sub-Strategy

Composed Metric

Base Metric

*

*1

1

*

1
Component

Merge
Strategy *1

Component
Composition

Strategy

*1

Figure 4.8.: Relations between strategies and metrics visualised an UML class

diagramme

The strategies for component identification (component merge and component

composition) are realised as a special form of composite metric. Other strategies

which do not rely on metrics will be pointed out separately. In SoMoX, the main

strategies component merge and component composition rely on a number of sub-

strategies (see Figure 4.8). These sub-strategies themselves rely on basic metrics

and composed metrics. Generally, strategies and metrics follow a composite pat-

tern [GHJV95] which does not limit the number of nesting levels. Strategies, sub-

strategies, and metrics are separated to clarify the concepts.

The following sections will detail on the strategies from the overview in Figure 4.3

and 4.4.

Component Candidates The GAST representation contains only constructs of

object-oriented programming languages. Thus, a strategy is required which turns the

constructs into component candidates. There are two different alternative strategies

for dealing with the creation of component candidates: The immediate transforma-

tion from source code to component candidates and the merging strategy which uses

the graph-based component creation as introduced in Section 4.5. The two alternative

strategies in detail are:

• Immediately transform each initial component candidate into a basic com-

ponent. Using this strategy, low-level components are preserved since they

form the basic entity for creating further composite components. Here, a fixed

heuristic is used to identify low level components and directly convert them

into basic components. Such heuristics cover the creation of a basic com-

ponent for every class including its inner classes. The heuristic can be exten-

ded by strategies for specific technologies. For example for EJB components,

all classes which implement a single EJB component can be transformed into

a basic component (the required information on EJBs can for example be de-

rived from deployment descriptors).

78

4.8. Reverse Engineering Strategies

• Merging via metrics. More advanced strategies make use of metrics for mer-

ging classes into basic components. This is the same strategy as for later mer-

ging of components (see strategy “Component Merge”). In this step, metrics

identifying criteria for merging classes into a component are applied. For

example, a helper class which is accessed without interface use by a single

other class can be merged into the component of the accessing class. By using

the merging strategy, the lowest abstraction level of the reverse engineered

components can be significantly lifted.

High initial abstraction levels help keeping the result model small and assist

creating understandable initial component abstractions which can significantly

differ from classes. Furthermore, the abstraction level of basic components di-

rectly impacts the control flow abstraction level of the later reverse engineering

of behaviour models (cf. Section 5). The behaviour abstractions become more

fine-grained for smaller components. To increase the control flow abstraction

of behaviour models, high-level basic components are required.

In both cases, each class including its inner classes are considered minimal initial

component candidates. Component candidates at a sub-class-level (e.g. inner classes

or methods) are intentionally not supported by SoMoX for a number of reasons:

i) The selected minimal abstraction level forces abstraction, while sub-class-

level components would result in very fine-grained architectures,

ii) the identification of methods or inner classes interface’s is unclear, since they

do not posses an explicit interface notion, and

iii) such components made from methods or inner classes would not be units of

independent deployment since they depend on their outer classes.

Both strategies (immediate transform and merging via metrics) have been reali-

sed during the development of SoMoX. Both strategies create reasonable component

abstractions but the “merging via metrics” strategy proved to be more flexible. This

strategy is configurable and can behave like the immediate transformation when lo-

wering the probability of merging. Especially for larger systems, low abstraction

level components help little in understanding a software system and at the same time

lower the abstraction level of behaviour reverse engineering. Therefore, the strategy

“merging via metrics” was finally selected to best fit the requirements.

Interface Adherence Interface adherence is based on the interface violation me-

tric. Interface adherence highlights component candidates with a clear interface com-

munication style. The interface adherence strategy checks whether components can-

didates are coupled at the code level prior to indicating interface communication. If

79

Chapter 4. Reverse Engineering Static Architectures

a component candidate is not coupled at the code level, from the perspective of inter-

faces, all communication would use interfaces but no communication can be present.

Thus, if no coupling is present, interface adherence also results in a low rating. In all

other cases, interface adherence is derived from interface violations.

InterfaceAdherence(A,B) :=⎧⎪⎨
⎪⎩
1−max(IV (A,B), IV (B,A)) if max(Coupling(A,B),

Coupling(B,A)) > ε

0 else

with IV (A,B) being InterfaceV iolation(A,B) as define above. Coupling is

not commutative. Therefore, the maximum coupling value is used which indicates

the highest coupling present within the component candidate. The check for coupling

is performed using an ε environment to overcome numeric limitations.

Component Candidate

ClassA

Component
Candidate
Classes Ci

Ci Cj

ClassB

ClassC

ClassD

ClassE

Component
Candidate
Classes Cj

Legend:

Interface
Bypassing

Interface
AdherenceClass

Interfaces
implemented by
classes of Cj

Class

Figure 4.9.: Example: Interface adherence and bypassing

Figure 4.9 visualises a component candidate whose classes partially communicate

using interfaces (dashed line). Other communication is bypassing the interfaces (so-

lid line between classes). In the example, the classes A, B, and C on the left hand

side access classes on the right hand side (classes D and E).

80

4.8. Reverse Engineering Strategies

Interface Bypassing Interface bypassing is based on the interface violation me-

tric. While components should externally communicate through interfaces, inter-

nally no interface communication is required. Instead, communication bypassing

interfaces indicates the need to merge a component candidate. Interface bypassing

indicates when to merge or compose a component. Interface violations are only

considered as serious if the classes of a component candidate are coupled at the code

level.

InterfaceBypassing(A,B) :=⎧⎪⎨
⎪⎩
max(IV (A,B), IV (B,A)) if max(Coupling(A,B),

Coupling(B,A)) > ε

0 else

with IV (A,B) being InterfaceV iolation(A,B) as define above. Interface by-

passing should not be mixed up with interface violation as the latter does not respect

coupling.

Consistent Naming Consistent naming indicates that the names of classes of a

component candidate have similarities. Component developers tend to name classes

of components according to naming schemes. For example classes realising an ac-

counting component could be named AccountingInitialisation, Accountin-

gInfrastructure, and AccountingRegistration. Since naming schemes are not

necessarily formal, deviations must be handled. The basic metric name resemblance,

which is used in this context, is sufficiently flexible to account for loose naming

conventions.

CNRaw(A,B) :=⎧⎪⎨
⎪⎩
NameResemblance(A,B) if max(Coupling(A,B),

Coupling(B,A)) > ε

0 else

The consistent naming strategy only applies if A and B from the component can-

didate are actually coupled at the code level. This avoids seeing classes of a com-

ponent candidate being related because of accidental naming clashes. For example

ContractingInitialisation is not necessarily related to AccountingInitiali-

sation.

The raw consistent naming value is non-linearly mapped to the consistent naming

value

ConsistentNaming(A,B) := NonLinearMappingnaming(CNRaw(A,B))

81

Chapter 4. Reverse Engineering Static Architectures

with

NonLinearMappingnaming(x) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1.0 if 1.0 ≥ x > 0.8

0.9 if 0.8 ≥ x > 0.6

0.7 if 0.6 ≥ x > 0.5

0 else

Since names of classes can only be the same in special cases (different packages),

the non-linear mapping helps to boost candidates which comprise mostly similar

names. At the same time, only partially related names are rejected for identifying

components. As the consistent naming metric could be misleading otherwise, the

non-linear mapping is important to limit the impact of naming on componentisation.

The boundaries and assigned values are kept configurable; the presented values re-

present defaults. The general guideline when configuring the non-linear mapping is

to prefer similarly named classes and reject little similarly named classes as compo-

nents.

An alternative to the discrete mapping steps would be a continuous function. The

disadvantage of a continuous function is the complexity of configuring it as human.

When aiming at a certain effect, such continuous functions (e.g. a gamma distribution

[Lin93]) have parameters which are hard to guess.

Abstract/Concrete Balance The abstract/concrete balance strategy reuses the

composite basic metric Distance from the Main Sequence (DMS). It is universally

applicable to rate the quality of a component. The balance of abstract and concrete

elements of a component help ensuring extendability of a component and at the same

prohibits components which comprise extension mechanisms only.

AbstractConcreteBalance(A,B) := DMS(A,B)

Abstract/concrete balance lifts DMS metric to the strategy level. The DMS metric is

currently not extended for this.

Hierarchy Mapping The hierarchy mapping strategy combines the package map-

ping and directory mapping metrics to gain a language-independent component de-

tection mechanism which evaluates the adherence of component candidates to hie-

rarchies expressed in packages and directories. The idea behind this strategy is that

developers tend to place classes of components in a hierarchical structure.

82

4.8. Reverse Engineering Strategies

HierarchyMapping(A,B) :=⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

PackageMapping(A,B) for Java-based systems

DirectoryMapping(A,B) for C-based systems
wDM ·DirectoryMapping(A,B)+wPM ·PackageMapping(A,B)

2
C++-based systems/

systems using

packages and

directories

with wDM and wPM in [0..1] being adjustable weights typically set to 1.0 each. As

neither package nor directory structure can be preferred in general. For Java-based

systems, the evaluation of packages is sufficient since directory and package structure

correspond to each other. For other systems, using directory or package structures

depends on the information available.

For other implementation technologies, this strategy can be further refined. For

example, Python-based systems comprise modules which can be respected during

analysis.

Subsystem Component A subsystem component is identified using the natural

subsystem metrics. To recall, the natural subsystem metric checked for a component

candidate being placed inside a slice and layer of a software system organised in

slices and layers. The aim of the subsystem component strategy is to convert natural

subsystems to components of the result model.

SubsystemComponent(A,B) :=
√
NaturalSubsystem(A,B)

Subsystem component is scaled compared to the natural subsystem metric by using

the square root (cf. Figure 4.10). Natural subsystem is a strong indicator for com-

ponents where also smaller values can contribute in detecting components which are

consequently pushed.

The employment of the square root creates a smooth continuous function (x =
1, y = 2). Nevertheless, it could be replaced by other continuous functions which

push small values further. Steeper functions are for example of the type

NaturalSubsystem(A,B)
x
y

where the parameters x = 1 and y = 4 are typical parameters which are suitable to

steer the scale-up of small values.

83

Chapter 4. Reverse Engineering Static Architectures

Figure 4.10.: SubsystemComponent scales small values of NaturalSubsystem

Component .

A
ClassA
ClassB
ClassC

B
ClassD
ClassE
ClassF
ClassG

Component Candidate

ClassA, ClassB,
ClassC, ClassD,
ClassE, ClassF,
ClassG

Merge?

Figure 4.11.: The component merge strategy indicates when to merge the classes of

a component candidate into a single component

Component Merge Component merge is a strategy which decides whether

to merge the elements of a component candidate to a single component (see

Figure 4.11). If applied, the classes of a component candidate become members of

one component.

Merging is primarily applied in early iterations of reverse engineering to gain a

higher abstraction level of basic components. Merging is also meaningful for la-

ter iterations, but becomes less important from iteration to iteration. At low levels,

merging enables components having a non trivial initial abstraction level. In later ite-

rations, especially helper and utility classes can be merged into existing components.

Imagine a helper class which is shared among only two low-level components.

For these two separate components, the helper class cannot be assigned uniquely to

one of these components. If in a later iteration these two components are compo-

sed into a single composite component, the previously non-assignable helper class

would be tangling. In this case, the helper class should be merged into the composite

component, since no accesses from other components exist at that abstraction level.

84

4.8. Reverse Engineering Strategies

For later iterations, component merge avoids small helper components which com-

prise only one or very few classes. In early iterations, the base abstraction level can

be significantly raised.

Figure 4.4 (page 67) provides an overview on sub-strategies which component

merge involves. Component merge comprises interface bypassing, consistent na-
ming, hierarchy mapping, and abstract/concrete balance. Of those sub-strategies,

consistent naming, hierarchy mapping, and abstract/concrete balance are shared with

component composition.

Component merge calculates an adaptable weighted score for every component

candidate. If the dynamic “merge” threshold is exceeded, a component candidate is

merged as explained in Section 4.5.

Component merge is defined as:

ComponentMerge(A,B) :=(wm1 · InterfaceBypassing(A,B)+

wm2 · ConsistentNaming(A,B)+

wm3 · AbstractConcreteBalance(A,B)+

wm4 ·HierarchyMapping(A,B)

)/4

where wm1..4 ∈ R : 0 ≤ wmx ≤ 1 represent weights for each sub-strategy.

Depending on the weights, the detection strategies can be adapted to system specifics.

If for example, the naming of components is not very consistent, the according weight

of the strategy can be lowered.

Component merge makes situations identifiable where classes of a component can-

didate are strongly coupled and internally communicate bypassing interfaces. Addi-

tionally, components are preferred which posses a consistent naming and reside in

the same area of the system hierarchy.

Component Composition Component composition is the top-level strategy

which is responsible for judging whether a component candidate should be conver-

ted into a composite component comprising sub-components from A and B (see

Figure 4.12). The strategy prefers components which communicate via interfaces.

This is the most important difference to the component merge strategy. Besides,

as for components resulting from a merge operation, components are identified by

naming, a balance of abstract and concrete elements, or alignment with the system

hierarchy. In addition to the component merge strategy, the subsystem component

strategy is used to identify composition scenarios. Since subsystem components

can comprise multiple low-level components, only composite components use this

strategy.

85

Chapter 4. Reverse Engineering Static Architectures

Composite Component .

A
ClassA
ClassB
ClassC

B
ClassD
ClassE
ClassF
ClassG

Component Candidate

ClassA, ClassB,
ClassC

Compose?

ClassD, ClassE,
ClassF, ClassG

Figure 4.12.: The component composition strategy indicates when to create a new

composite component from a component candidate

Figure 4.4 (page 67) provides an overview the sub-strategies which component

composition involves. Interface adherence, consistent naming, hierarchy mapping,

abstract/concrete balance, and subsystem component are used in component compo-

sition.

ComponentMerge(A,B) :=(wc1 · InterfaceAdherence(A,B)+

wc2 · ConsistentNaming(A,B)+

wc3 · AbstractConcreteBalance(A,B)+

wc4 ·HierarchyMapping(A,B)+

wc5 · SubsystemComponent(A,B)

)/5

where wc1..5 ∈ R : 0 ≤ wcx ≤ 1 represent weights for each sub-strategy. The

weights can differ when comparing with the component merge strategy. For example,

hierarchy mapping is an important strategy to identify high-level composite compo-

nents. The hierarchy of a software system can carry information for high abstraction

levels. Imagine two top-level components which reside in a common namespace and

beyond that only differ in being held in two different source folders in the file sys-

tem. Those components can be pure design entities which are not directly reflected

in the source code. Thus, hints on their existence can be beneficial for high-level

component detection.

The dynamic threshold for component composition, which is lowered over the ite-

rations of reverse engineering, helps identifying high-level components which have

only a weak manifestation in artefacts. Lower abstraction levels of components are

ensured to not be skipped as the threshold is lowered only if no components have

been found in an iteration. Hence, adding high-level abstractions does not squeeze

lower abstraction levels out.

86

4.8. Reverse Engineering Strategies

For high abstraction levels, consistent naming automatically becomes less impor-

tant since large components with dozens of classes seldomly have a consistent na-

ming scheme.

4.8.6. Interface Detection Strategies

Interface detection in SoMoX is based on a number of strategies which each represent

a heuristic to identify component interfaces. SoMoX distinguished between class

interfaces (e.g. indicated by the interface keyword in Java) and component inter-

faces (e.g. ICustomerAccounting of a business component), which are associated

via component roles and represent functionality which is exposed at the component-

level.

The strategies which will be presented in the following decide whether to turn a

class interface into a component interface. The class interface must not necessarily

correspond to a language feature “interface”. For example abstract classes can also

be interpreted as component interfaces. Vice versa, not every class interface must

result in a component interface. Overall, there are four different main strategies

(Section 4.8.6.1 to 4.8.6.4) which identify provided and required interfaces for basic

components and for composite components. Figure 4.3 (page 66) visualises these

strategies.

Generally, the interfaces of basic components are the superset of interfaces which

become part of higher abstraction levels of a reverse engineered software architec-

ture. For composite components it must be decided which interfaces shall be exposed

as provided interface. This can only be a subset of inner component interfaces. For

required interfaces of composite components, no other interfaces are exposed than

the actually internally required ones. Since every composite component is ultimately

built from basic components, the set of available interfaces is determined by basic

components.

The following sections first deal with the recognition of interfaces for basic com-

ponents. Second, the interface exposition for composite components is being dis-

cussed. For basic and composite components, the handling of provided and required

interfaces is distuinguished.

4.8.6.1. Provided Interface Recognition for Basic Components

An architecture should be able to provide different abstractions of a software system

(cf. [CBB+03]). Accordingly, interface recognition must be adaptable to different

granularity levels. Interfaces can capture business aspects (e.g. user management,

accounting) or infrastructure aspects (libraries, execution environment). Depending

on the settings, it might be desirable to limit interfaces recognition. Vice versa, not

87

Chapter 4. Reverse Engineering Static Architectures

every programming language provides means to specify interfaces or interfaces are

not used in a certain system. SoMoX must also handle such cases.

Interfaces from
Source Code Abstract Classes Public MethodsStructural

Heuristics

Figure 4.13.: Interface identification fallback strategies

The interface identification of SoMoX comprises multiple strategies which serve

as fallback strategies if a major strategy fails. Figure 4.13 illustrates the strategy

fallback where strategies on the right hand side serve as fallback for strategies next to

them on the left. The strategies are organised as a chain of responsibility [GHJV95].

First, interfaces realised through source code constructs (e.g. Java interfaces) are

going to be identified. If none of them are present for a single component, abstract

classes are used and after that specific class structures (e.g. only virtual methods) and

public methods. These sub-strategies will be discussed below.

Any identified interface is translated into a component interface and a provided role

which associates the interface with the corresponding component. Interfaces can be

shared among multiple components. SoMoX ensures that no interface is duplicated.

If an interface already exists, only the provided role is created.

Language Interfaces In this strategy, interfaces reflected in underlying program-

ming languages (e.g. Java interfaces) are identified as component interfaces. An

interface is considered a component interface, if classes of the previously identified

components implement it. The language interfaces strategy and all following strate-

gies are binary decisions whether to consider a class interface as component interface.

Abstract Classes Comparable to the language interfaces strategy, the extends re-

lation of source code identifies component interfaces in this strategy. Any abstract

parent class of the classes realising a previously identified component is considered

as component interface.

Class Structure Heuristics Besides language interfaces and abstract classes, heu-

ristics can identify classes which are structured like interfaces. SoMoX realises

a strategy which identifies classes with virtual methods only as component inter-

faces. Especially for C/C++ based systems, this strategy allows the identification

88

4.8. Reverse Engineering Strategies

of interface-like structures although no explicit interface notion is present in these

languages.

Public Methods The last fallback strategy is the interpretation of public methods

as part of the component interface. This strategy can be applied even if no other

interface notion is available. Components should always have provided interfaces,

thus having a fallback strategy which ensures a provided interface for all cases like

the presented is required.

External Documents External documents (e.g. information from EJB deploy-

ment descriptors) can be used to identify component interfaces among the class in-

terfaces. EJB interfaces can for example be used as component interfaces. The usage

of external documents for identifying interfaces is also meaningful for languages

such as C/C++ which by default have no explicit interface notion. Here, template

libraries can be used to realise interfaces. The corresponding external artefacts then

can be analysed to identify interfaces. Besides, interface definition languages (IDL,

such as CORBA IDL [Obj07] or WSDL [CCMW01]) become analysable using this

strategy. This strategy is currently not carried out by the SoMoX implementation.

Component Interface Service Identification By default, all methods of a class

interface become services of a component interface. Of the above identified elements

(interfaces, classes), the identification of component services can differ. Using all
methods is especially meaningful for interfaces which are declared in source code

(e.g. the interface keyword) and abstract classes.

An alternative identification strategy is the use of only those methods which are

actually used in a concrete architecture. This keeps the result model small. The

drawback is the reduced genericness of reverse engineered components. Since only

portions of the methods become part of the component interface, some services which

are provided by a component are left out. In other scenarios, these services could be

required but then would not be part of the component interface. This strategy helps

reverse engineering the de-factor architecture which comprises only those architec-

ture elements which are actually used in a software system. This is predominantly

useful for understanding an architecture since only a limited scope of a system is re-

verse engineered. Employing only the actually used methods is preferably combined

with the public methods strategy which, due to its fallback nature, tends to identify

low-level methods as component services.

SoMoX realises the all methods strategy to reverse engineer potentially reusable

components.

89

Chapter 4. Reverse Engineering Static Architectures

4.8.6.2. Required Interfaces Recognition for Basic Components

For required interfaces it is essential to decide whether to follow a strict interface

communication style or to relax this architectural requirement. Additionally, one can

distinguish business and infrastructure interfaces as with provided interfaces. The

following basic strategies result from these requirements.

No Bypassing Any component-external communication must use component in-

terfaces in this strategy. Bypassing an interface is not allowed. This strategy results

in large required interfaces. Any call from classes of the considered component to

classes of another component are therefore realised through a required interface.

Disregard Infrastructure Calls Infrastructure calls (calls to libraries and exe-

cution environments) are not captured in interfaces in this strategy. Only business

interfaces are considered to be component interfaces. This strategy allows focusing

on business functionality of components. Business interfaces are distinguished from

infrastructure calls via the blacklisting mechanism which has been introduced in Sec-

tion 4.8.4. Non-blacklisted interfaces are identified as business interfaces.

The aim of SoMoX is reverse engineering for the sake of performance predictions.

Although infrastructure calls can be disregarded during architectural reverse enginee-

ring, the overall model integrity from the performance perspective can be ensured.

The performance impact of infrastructure calls is therefore captured during reverse

engineering of behaviour models. Infrastructure calls end up in InternalActions

of the RDSEFF as will be detailed in see Section 5.16.

Allow Bypassing Using this strategy, bypassing required interfaces (not only in-

frastructure calls) is accepted. This results in component architectures which inten-

tionally deviate from code. It can be used to reduce complexity and size of interfaces

and communication structures. Additional heuristics are required to identify the in-

terfaces which are kept in this strategy. This heuristic is project-specific and could

be based on naming conventions or namespaces which are considered to be part/not

part of the interface communication. SoMoX does not realise this strategy.

4.8.6.3. Provided Interface Exposition (for Composite Components)

For composite components it is questionable which interfaces of inner components

should be exposed to the outside world. The exposed interfaces are a subset of the

provided interfaces of the inner components which are contained in the composite

component. Only directly contained (not transitively contained) interfaces are subject

for exposition. Otherwise, the hierarchy of composite components could be broken.

90

4.8. Reverse Engineering Strategies

Expose all inner Interfaces Following this strategy, all interfaces of inner com-

ponents of a composite component are exposed as provided interfaces.

Expose used inner Interfaces This strategy exposes all inner interfaces which

are actually used inside the composite component. The idea behind this strategy is

that any interface which is successfully used as a component service internally, can

also be used from outside the component.

Expose externally used Interfaces Only interfaces which are actually used from

outside a composite component are exposed in this strategy. This strategy helps re-

verse engineering a de-facto architecture which employs only interfaces which are

used in a certain setting. The resulting architectures remain slim and by that can be

of benefit for understanding software architectures. Still, the reuse of components

which are reverse engineered using this strategy is limited as only portions of the full

interface functionality are exposed by composite components. The strategy corres-

ponds to the actually used strategy for the identification of component services.

4.8.6.4. Required Interface Exposition (for Composite Components)

To ensure model integrity, all inner required interfaces which are not internally

connected must be exposed. Otherwise, some call destinations would be undefined

in the model. Unlike for provided interfaces, exposing required interfaces which are

already connected within a composite component generally is not feasible since it

would blow up the required interface.

4.8.7. Connector Strategies

Connectors establish the control and data flow among components and must be esta-

blished for all composite components. During their creation it is crucial to connect

all required interfaces of components to ensure model integrity. Calls for a requi-

red service of a component must not end up in non-connected interfaces if a reverse

engineered model is subject to performance analysis. Other reverse engineering ap-

proaches which aim at program understanding only, can either fully omit connectors

or accept “dangling” interfaces without connectors attached. Figure 4.14 provides an

overview for the different connector strategies.

De-facto Connectors Assembly connectors should generally rely on de-facto

connections among component interfaces. To establish assembly connectors, they

can be derived from the graph structure. Since the graph structure has directed edges,

the direction of connectors can be directly derived.

91

Chapter 4. Reverse Engineering Static Architectures

B .
I1

A .

De-facto Connector
Class of A accesses
class of B through
interface

C .
I1

Match Inner
Interfaces
Interface of B and C
match inside the
composite component

I2

Required
Delegation Connector
Remove non-
assignable required
interface (see text!)

Required
Delegation Connector
No interface matching
I2 available inside the
composite component

Provided
Delegation Connector
All exposes interfaces
must be delegated

D .
I3

Figure 4.14.: Connector strategies overview

Not all dependencies among classes can be statically analysed (cf. [Ern03,

NNH99]). Hence, dependency information of components can be incomplete.

Advanced dependency analysis approaches can be of benefit for identifying depen-

dencies which cannot be analysed with the employed SISSy approach which creates

the GAST model. The results of these analyses would then be reflected in the graph

structure and allow establishing further assembly connectors.

Match Inner Interfaces For cases of dynamic binding, dependency injection, and

external connector definitions (e.g. EJB deployment descriptors) where no reliable

information on assembly connectors can be made available using a certain tooling,

the following heuristic can be used: If a couple of provided and required interfaces

within a composite component matches (the interface associated by required and

provided role are the same), composite component-internal connectors are preferable.

This forces component-internal communication of composite components.

This heuristic might introduce assembly connectors which never occur at runtime.

If multiple provided interfaces match for a single required interface, an arbitrarily

selected provided interface becomes part of the assembly connector.

An advanced version of this heuristic (the advanced form has not been realised

in this thesis), could use standard interface interoperability checks (e.g. [BOR04])

to determine valid matches of interfaces. For example, an required interface

Ireq = {service1, service2} can be interoperable with an provided interface

Iprov = {service1, service2, service3} although the interfaces are not equal. In

the example, every service of the required interface has a counterpart at the provides

side.

92

4.8. Reverse Engineering Strategies

Required Delegation Connectors If an assembly connector cannot be establi-

shed inside a composite component, a required delegation connector must be establi-

shed. Thus, any required call will have a determined callee and model consistency

is not harmed. For a composite component a required role with the corresponding

interface is therefore added (if it has not been present before) and a required dele-

gation connector connects the inner required role with the outer required role of the

composite component.

This strategy implies that the outer required role must be bound transitively until

either the “match inner interfaces” heuristic applies or the system boundary is rea-

ched. In the latter case, inner calls are delegated to required roles at the system boun-

dary. Cases in which calls are delegated to system boundaries can for example hap-

pen if the system scope is limited and only portions of a software system have been

reverse engineered of if calls of infrastructure services are considered as component

services which are realised outside the system scope. To ensure model integrity, mea-

sured quality attributes must be specified for the services realised by system-external

components (cf. Section 2.5).

Remove Required Interfaces An alternative strategy for required delegation

connectors is the removal of required interfaces. If connectors for required inter-

faces cannot be established successfully, required interfaces can be deleted from

components. This strategy ensures model integrity but has the major drawback that a

component must account for the performance impact of external calls in Internal-

Actions. The callees of external calls are generally unknown to components, thus

the performance impact of external calls cannot be known in general. Furthermore,

explicit dependency statements (the required interface) are neglected when applying

this strategy. This strategy can only be applied if the assembly and allocation context

of calling component and callee are fixed – and thus cannot be known during reverse

engineering of reusable components. This strategy has not been realised in SoMoX.

Provided Delegation Connectors All exposed provided interfaces must be map-

ped to inner provided interfaces of components. Otherwise, model integrity would be

violated. Hence, the creation of provided delegation connectors is a fixed mechanism

not a strategy. The strategy to not expose all inner provided interfaces is not affected

by this mechanism.

4.8.8. Characteristics of Target Components

This section summarises typical characteristics of components which are identified

by the previously introduced strategies. Components, which are reversed engineered

by SoMoX, have a subset of the following characteristics which are visualised in

Figure 4.15:

93

Chapter 4. Reverse Engineering Static Architectures

FileShare.CoreLogic

System Packages
edu.kit.ipd.fileshare.core.logic
edu.kit.ipd.fileshare.core.view
edu.kit.ipd.fileshare.core.data
edu.kit.ipd.fileshare.pers.logic
edu.kit.ipd.fileshare.pers.view
edu.kit.ipd.fileshare.pers.data
...

ICompress

IStorage
IFileShare

edu...core.logic.Shar
eFacade

edu...core.logic.Core
ShareLogic

edu...core.logic.Com-
pressionAccessor

2x
«a

cc
es

s»

3x «access»

4x
«access»

«inheritance»

1x
«a

cc
es

s»
2x

«a
cc

es
s»

Figure 4.15.: Typical characteristics of a basic component in the source code

• Components communicate with other component using interfaces.

• Components possess a consistent naming of inner classes.

• Components have a common code structure.

• Components follow a component architecture which is organised in layers and
slices.

• Components are well-balanced concerning abstract and concrete realising

source code artefacts (i.e. interface, abstract classes, and implementing classes

are balanced).

• Components have high cohesion in the source code.

4.8.9. Determining Weights

The SoMoX approach requires a number of weights to be calibrated. For example,

the weights of the component merge and component composition strategy need to be

specified when applying SoMOX. Meaningful weights are hard to guess for unexpe-

rienced users. Therefore, SoMoX provides two sets of default weights to ease the

applicability of the approach. One set serves as a starting point for Java-based sys-

tems, the other for C/C++-based systems. For example the absence of interfaces in C

requires an adaption of weights for interface communications strategies.

94

4.9. Ensuring Integrity

The default weights have been determined when reverse engineering a number of

reference projects. For these projects, the reference architecture was known. During

various iterations, the default weights have been adapted to provide a baseline for

multiple projects. Weights were adapted until satisfactory results could be achieved

(i.e. a large ratio of reference components has been detected when using SoMoX).

For the application of SoMoX, the default weights serve as a starting point. Then,

the weights can be optionally adapted to match specific project needs (e.g. no strict

interface communication required). By adapting the weights, component detection

strategies can be emphasized or neglected. In any case, for every reverse engineering

project, a scope and optionally blacklists have to be defined. Furthermore, name

pre and post fixes can be set for name resemblance. This makes SoMoX broadly

customisable and adaptable to project-specific needs. It must be emphasized that

weights do not aim at encoding any static structures to be detected into a reverse

engineering run. Weights purely express preferences which strategies to apply and

hence what kinds of characteristics the target model is supposed to possess.

The calibration of weights and metrics is part of the validation in Section 7.

4.9. Ensuring Integrity

The architectural reverse engineering approach is explicitly designed to ensure inte-

grity of reverse engineered models. Model integrity subsumes that all mandatory mo-

del attributes and relations are set and all constraints defined on the model are fulfiled.

The PCM carries a number of built-in constraints. Furthermore, all model constraints

defined by the performance simulation (cf. definition in SimuCom [Bec08b]) must

hold. Only models with full integrity can be analysed for performance and the reverse

engineering of behaviour models (cf. Section 5) is only applicable for valid models.

Otherwise, model semantics would be broken, e.g. dangling references prevent in-

terpreting a model as an execution description of a software system. Hence, for the

strategies from the previous section, it has been pointed out how model integrity was

ensured. SoMoX grants integrity for reverse engineered models.

Model integrity also helps users to understand a software system. Especially, if the

control flow and data flow of systems is investigated manually, entities which have

just high cohesion and low coupling (cf. [MM06] for an evaluation of cohesion and

coupling metrics) are not sufficient. These entities usually do not conform to what is

expected to be an architectural entity like a component.

4.10. Extendability of the SoMoX Approach

The SoMoX approach is held extensible with respect to metrics, strategies, and input

data. When extending SoMoX, source code information must be related to the GAST

95

Chapter 4. Reverse Engineering Static Architectures

input model as stated in Section 4.7 but is not limited to the information available in

the GAST. Possible extensions include the support of Spring or EJB deployment

descriptors.

An extension has two options to enrich input data:

• Update GAST information. Following this kind of extension, additional in-

formation (e.g. binding among classes established via dependency injection)

is used to update GAST class access information. The information on existing

and additional GAST classes is represented by the GAST only. Existing me-

trics and strategies in this case evaluate the additional information such as any

other GAST model elements of a non-updated GAST model.

• Create an GAST decorator model with additional information. This op-

tion requires the creation of a GAST decorator model and corresponding me-

trics and strategies which evaluate the decorator model. Since for example

Spring and EJB have their own notion of components, it can be beneficial

to explicitly handle this information on components during metric evaluation

and application of strategies. If for example a number of classes is identified as

EJB component, the decorator model can hold the information on the classes

participating in an EJB component. New metrics and strategies can then pre-

fer EJB components when converting component candidates into components.

Comparable extensions are also imaginable for interfaces, which can be iden-

tified as EJB interfaces through a decorator. The interface creation strategies

could then prefer EJB interfaces as component interfaces.

For both options, metrics and strategies still evaluate component candidates. Thus,

their results are first always mapped to the graph structure and then to the SAMM ar-

chitecture model representation. New metrics and strategies can seamlessly integrate

with existing ones.

Generally, the reverse engineering process of SoMoX can start with an (unlimited)

number of source code analysis approaches. They operate on input source code and

either update the GAST model or create the instance of a GAST decorator. Analyses

can be both static or dynamic analysis approaches. The design of the SoMoX ap-

proach does not require modifications in order to support further analysis approaches.

Further options for extending the SoMoX approach are presented in Section 9.11.

Klatt [Kla08] discusses the general extendability of SoMoX.

4.11. Complexity and Scalability

SoMoX incorporates several performance optimisations and heuristics to improve

scalability. Systems with a size of more than 250,000 LOC are supposed to be sup-

ported. Please note that there is no strong correlation between LOC and complexity

96

4.11. Complexity and Scalability

of the reverse engineering, as not the LOC but the number of classes and the number

of relations among classes are more important for the execution time. Also, chosen

strategies influence the complexity at run time because for example naming-based

strategies are more computation intensive than others. Furthermore, due to scoping

not all classes of a system are evaluated. Blacklisted classes have no influence on the

execution time and thus reduce complexity.

One important optimisation SoMoX applies, is concerned with what is evaluated

by metrics. As the calculation of metrics is very time-consuming, metrics within

SoMoX are evaluated only for component candidate tuples (as already introduced

above in Section 4.5). This allows to dramatically reduce the number of required

metric and strategy evaluations, while the composition and merge phase can still use

transitivity properties of metrics to create components of more than one element. For

reasons of brevity, hereafter metrics will subsumed strategies.

Metrics need to be re-calculated from iteration to iteration – but only if a com-

ponent candidate has changed since the last iteration. Imagine an iteration compri-

sing 10 classes of which two are merged into a new component. Most classes are

potentially not affected by the component merge and metrics related to these classes

should not be re-calculated non-necessarily. SoMoX determines those vertices of

its graph structure which need to be re-calculated. Only graph vertices which are

adjacent to changed edges are recalculated in SoMoX.

Dependency Analysis For metrics, interdependencies can also be used for opti-

misations. In SoMoX, metrics explicitly state their dependencies. A metric which

another metric relies on can be seen as a precondition of the depending metric. So-

MoX analyses the dependencies (for example multiple metrics can depend on a single

basic metric), and calculates in which order to execute them. Depending metrics are

then only evaluated if the basic metrics return a non-null result. An example for

such a case are two classes that are residing in distinct packages without any relation

among them. If it is already known for packages that there are no relations, this must

not be checked again for classes of these packages.

The metrics themselves decide whether to interpret a result as a null result. The

decentralisation of termination logic is required as it generally cannot be know how

sub-metrics are used by a metric (e.g. name resemblance must only be evaluated

if a certain threshold different from null holds for coupling). If a termination cri-

terion holds for a sub-metric, the depending metric can return a null value as well.

Dependency cycles are assumed to be avoided by metric developers.

Parallelisation SoMoX is designed to allow parallelisation. In each iteration, the

computation of metrics is largely independent from other metric calculations, besides

the stated dependencies. Furthermore, the metrics for each tuple can be calculated

97

Chapter 4. Reverse Engineering Static Architectures

fully independently from each other. Systems have a total of n2 component candi-

dates which need to evaluated, where n is the number of classes after the application

of blacklisting and scoping. From iteration to iteration, the number of component

candidates gets reduced. Hence, the first iteration is most computation intensive

since additionally, all metrics for all component candidates need to be calculated.

The number of component candidates is falling monotonically, while the size of com-

ponent candidates is monotonically rising.

Synchronisations (which are limiting the parallelisation) are required:

• After each iteration before applying the weakly connected component detec-

tion on the graph structure and

• For dependent metrics, sub-metrics which a metric depends on must be fini-

shed prior to evaluating the metric.

In the realised parallelisation, all metrics for one component candidate are calcu-

lated in parallel. Thus, the metric calculation for one component candidate is not

split among multiple threads to avoid overly small working units and to reduce syn-

chronisation overhead. The maximum degree of parallelisation is n2 which makes

the calculations parallelisation applicable for many core CPUs. The limited need for

sychronisation makes the approach applicable for distributed execution scenarios.

Results of a metric calculation can be written to distinct “cells” (the edges) of the

resulting graph structure. Thus, write conflicts cannot occur when building the graph

in an adjacent matrix graph data structure which holds only the edges.

The chosen solution requires to have the GAST model and the resulting adjacent

matrix in memory to enable fast data accesses. In former versions of SoMoX (see

also Section 4.12) database queries were used to access the GAST data structure,

which turned out to be heavily limiting the overall performance (due to I/O latency

and database query overhead). This solution had enabled holding GAST structures

larger than the main memory, but implied very expensive data queries. For nowadays

computers, the amount of main memory is sufficient to hold a GAST representation

together with the resulting graph structure and the internal architecture model for

software projects with much more than 1 MLOC. SoMoX is capable of fully utilising

CPU power. The validation Section 7 will further detail on typical execution times.

The calculation of weakly connected components is taken over by a third party

library (JGraphT, [Bar10]) which is not included into this scalability discussion. The

complexity of this calculation is larger for early iterations since the graph structure

only represents the component candidates of the latest iteration.

Overall Complexity Estimation The worst case complexity of a single iteration

is

O(n2)

98

4.12. Realisation

with n being the number of classes of a system. The first iteration is the most compu-

tation intensive one due to the large number of component candidates. The evaluation

of a single iteration is dominated by the computation of metrics.

The validation in Section 7 will further report on the scalability of the SoMoX

approach and name typical processing times for case studies.

4.12. Realisation

Working
Area

SoMoX Tooling

Tool /
Processing Artifact 3rd Party

3rd

SISSy
3rd

JGraphT
3rd

SAMM2
PCM

3rd

GAST SAMM

Legend:

Editors
3rd

Figure 4.16.: Overview on third party integration of SoMoX

The implementation of the SoMoX (cf. Figure 4.16) approach has been carried out

in the context of the EU project Q-ImPrESS. SoMoX is fully integrated in a platform

for reverse engineering, performance, maintainability, and reliability prediction of

service-oriented and thus component-based software systems. This platform allows

to evaluate different design alternatives for their specific advantages and drawbacks.

Hence, the results of SoMoX are used as a base for reliability and maintainability

predictions, which extends the application scope of SoMoX. Q-ImPrESS contributes

graphical and tree-based editors for the SAMM which can be used for SoMoX. The

Q-ImPrESS tooling (including SoMoX) is based on Eclipse.

The SoMoX tooling [Som10] is a complete rewrite of an earlier implementation of

the approach called ArchiRec [Cho07]. Compared to the SoMoX tooling, ArchiRec

was limited with respect to extendability and scalability. Furthermore, ArchiRec re-

lied on the proprietary Sotograph [helc] tool while SoMoX employs the open source

tool SISSy [TS05] for source code analysis.

SoMoX is realised as an Eclipse feature comprising various plugins. All plugins

are integrated into the Q-ImPrESS tooling. SoMoX contributes its own Eclipse run

99

Chapter 4. Reverse Engineering Static Architectures

configuration which integrates into the Q-ImPrESS run dialogs. Design alternatives

can be directly selected from the Q-ImPrESS run dialogs.

SoMoX possesses an EMF-based core model (the SAMM), and relies on models

being present as EMF models (such as the GAST model and the PCM model). It

makes heavy use of scalable EMF-based filters and queries. SoMoX intentionally

resigns the use of a database as its predecessor implementation ArchiRec showed

performance problems due to the use of a database. All data is held in-memory in

SoMoX to allow for fast computations.

JGraphT [Bar10] is used as graph library which holds component candidate

weights. Futhermore, it contributes the algorithm for the detection of weakly

connected components.

To transform the internal SAMM model into an instance of the PCM, SoMoX em-

ploys the so-called “SAMM2PCM” transformation [Cia10] which is based on QVT-

O. It converts components, interfaces, and connectors from the SAMM meta-model

into the PCM meta-model.

4.13. Limitations and Assumptions

Besides the assumptions listed in Section 4.7 (the target architecture must be a com-

ponent architecture, the source code must represent a component-based architecture,

and input must be mapped to GAST model) a few further assumptions and limita-

tions apply to SoMoX. The remaining limitations are caused by the fact that SoMoX

relies on the static analysis performed by SISSy.

4.13.1. Dynamic Binding

The GAST representation is created by SISSy from C/C++, Delphi or Java code.

SISSy has no capabilities to deal with dynamic binding. This frequent limitation to

many static analysis approaches (see for example [NNH99, Ern03]) is also present

for SISSy and thus inherited by SoMoX. If classes are bound dynamically, SISSy will

only recognise a dependency to the static type (typically an interface) but not an im-

plementing class bound dynamically. Without extending SoMoX (cf. Section 4.10),

required and provided interfaces can be correctly recognised but connectors must be

established via heuristics. If the binding is ambiguous (e.g. calls are actually dele-

gated to an external component and not to a component which is providing the same

interface inside the analysed software system), heuristics can possibly delegate to the

wrong component.

100

4.13. Limitations and Assumptions

4.13.2. Single Instance per Component Type

SoMoX cannot deal with multiple instances of a single component type. Each com-

ponent type is assumed to have only a single instance (assembly context). This li-

mitation is induced by the assignment of each class to a single component only and

the assumptions that there is a 1:1 relation between component types and component

instances.

4.13.3. No Dynamic Architecture

SoMoX assumes a static architecture which does not change at runtime. If architec-

tures are changing at runtime, i) dynamic binding cannot be resolved and ii) potential

states of the static architecture are not supported (neither by SISSy, SoMoX nor the

SAMM and PCM models).

101

5. Reverse Engineering
Behavioural Models

Sissy

Beagle

<<LoopAction>>

data flow

con-
ditions

Figure 5.1.: The Beagle approach reverse engineers behavioural models of com-

ponent services

SoMoX

Beagle

<<LoopAction>>

data flow

con-
ditions

After the static architecture of the system has been reverse en-

gineered, the behaviour of each provided service of a component

must be reverse engineered to allow performance predictions. A

static architecture without information on behaviour can help un-

derstanding a software system. Performance predictions, neverthe-

less, require a model with execution semantics.

Reverse engineering behaviour models for the sake of later performance simula-

tions and design space exploration requires a semantically rich output model (result

model of the reverse engineering approach) with execution semantics. In the context

of this thesis, the role of the output model is taken over by RDSEFFs of the Palladio

Component Model. Thus, the behaviour model dealt with in this thesis is a design-

level performance model for component performance (hereafter referred to simply as

behaviour model). Design-level means that no low-level performance model such as

a queuing network is used. For example, queuing networks represent performance

effects at a low level and thus disallow easily recognizing software components. Ins-

tead, the targeted behaviour model of the presented approach from this thesis is aware

103

Chapter 5. Reverse Engineering Behavioural Models

of components to allow reflecting changes in a component’s architecture also in the

behaviour model. For example, when comparing two design alternatives, the Palladio

Component Model allows the selection of that component where internal computa-

tions (behaviour) of a component are executed the fastest.

The need of Reverse Engineering Components If reverse engineering does

not account for components, the resulting behaviour model does not allow for deri-

ving architectural design decisions. Such a model which is not aware of components

becomes fully “fixed” with respect to design decisions which depend on the com-

ponent structure. Imagine a reverse engineering approach which merges two com-

ponents, which are running on the same machine, into a single node of a low-level

performance model. In such a setting it becomes impossible to exchange a single

component by another since each component’s performance impact cannot be distin-

guished from the impact of another component. It becomes obvious that a design-

level behaviour model must explicitly deal with components in order to support ar-

chitectural design decisions. The various influencing factors (see also Section 2.8)

which must be respected by a component behaviour model will be discussed further

below in the context of reverse engineering.

The need of Parameterisation To understand the requirements for a reverse en-

gineering approach for such behaviour models, one must first understand the short-

comings of a naïve reverse engineering approach for behaviour models. A straight-

forward naïve reverse engineering approach could first benchmark an application

using a test driver, and then create a look-up table containing the average response

times for each provided service of that component. For performance prediction, such

a model could simply return a measured value from the look-up table (see left part

of Figure 5.3). While this model can result in very precise performance values, the

prediction capabilities are limited: The resulting model is largely inflexible due to

the absence of any parameterisation. Only the setting which has previously been

measured can be directly predicted.

If such a model is for example used for a setting where a component under study is

connected to a different required component with a lower response time than during

the initial measurements for building the model, the performance impact of the newly

connected component cannot be predicted. The lookup table could not predict any

changes in the model and keeps predicting measured values.

Generally, components must be parameterised over usage, assembly, and execution

context as introduced in Section 2.6. After introducing a motivating example which

illustrates why parameterisation is required at all, means for parameterisation over

all contexts are introduced in the remainder of this chapter.

Figure 5.2 introduces the BusinessLogicComponent of an example file sharing

application. The component provides the services uploadFile(..) and requires the

104

BusinessLogic

int uploadFile(
byte[] fileInput,
bool compressed) byte[] compress(

byte[] cfile)

bool checkFile(
byte[] file)

Figure 5.2.: Example: Business logic component

uploadFile(..)

BusinessLogic

«ExternalCallAction»
compress

«InternalAction»
StoreFile

«ExternalCallAction»
checkFile

2false0

521true1000

1020false1000

………

56true100

108false100

11true20

21false20

5true10

10false10

2true0

Response
Time (ms)

compressedfileInput.
length

OutputInput

Simple Model
Parameterised
Model

compress(..)

checkFile(..)

Return values
depending on input
parameters

Resource demands
instead of timing
values

Control Flow
depending on inputs
parameters

Call Parameters
depending on inputs
parameters

Figure 5.3.: Example: Simple lookup table model (left) vs. parameterised model

with explicit control and data flow (right)

two services compress(..) and checkFile(..). When comparing a simple loo-

kup table model and a parameterised model for this component (see Figure 5.3), the

advantages of a parameterised model become obvious: The prediction capabilities of

the simple model are rather limited. The lookup table can only predict the response

time of the uploadFile service for given input parameters. For example, the res-

ponse time for intermediate values (e.g. byte size fileInput.length = 500) must

be approximated from values for a length of 100 and 1000 bytes. Overall, the lookup

table would become very large for many input parameters since the cross product of

parameter values must be captured.

Further limitations of the simple example model include:

• If the concurrency level or resource contention change (e.g. caused by concur-

rently active components and concurrently active users on the same hardware),

the model does not reflect this impact.

105

Chapter 5. Reverse Engineering Behavioural Models

• Which component services (i.e. compress and checkFile) are called, when

and how often is not captured. If, for example, the performance of the com-

press service itself depends on its load (i.e. frequency of calls), the perfor-

mance of that service cannot be correctly predicted as the load is not part of

the simple model.

• Call parameters are not propagated to other components (if users upload larger

files, the effects on the compress and checkFile service are not captured).

• The return value of the uploadFile service is not specified. If for example the

return value of uploadFile indirectly depends on the return value of check-

File, this cannot be expressed in the lookup table.

• As introduced above, when changing the assembly context, the performance

impact cannot be predicted (e.g. exchanging the component providing the

compress service by a faster one would likely impact the response time of the

uploadFile service which the simple model cannot reflect).

Figure 5.6 provides a more detailed view on the behaviour model of the parameterised

model.

To not contradict the component definition by Szyperski from Section 2.9, a com-

ponent behaviour model must be parameterised. Otherwise, a component would

have implicit context dependencies resulting in limited reusability and third-party

composition.

A component behaviour model which acts as surrogate for a component imple-

mentation during performance predictions must account for the following parame-

ters which cannot be assumed to be fixed for components (see right hand side of

Figure 5.3):

• The impact of changes in the usage context must be reflected since the number

of users, the behaviour of users (which services are called in which order), and

the usage parameters (e.g. number and size of uploaded files to a file sharing

service) can change. A behaviour model must not assume a fixed usage of a

component.

• A fixed execution environment (including middleware and hardware environ-

ment) cannot be assumed by a behaviour model in order to support sizing and

relocation scenarios. In general, a component can only make fundamental as-

sumptions on its execution environment, e.g. the presence of a x86 processor

and an implementation of a Java EE middleware. The concrete specification

(e.g. processor speed “3.0 GHz” or middleware implementation “JBoss 5”)

cannot be assumed to be fixed for a component.

106

5.1. Shortcomings of Existing Approaches

• Which actual components are connected to a component is not fixed for a

component. Components are units of third party reuse and thus connected

components should not be assumed to be fixed.

• Input parameters of component service generally have a continuous range. A

reverse engineering approach needs to deal with the full range of input para-

meter values a component can process.

Since all of the above three contexts (cf. Section 2.8) cannot be assumed to be fixed,

the impact of changing them must be explicitly reflected in a behaviour model. A

behaviour model of a component should be usable along with a component without

implying changes to the model. If one would need to adapt the behaviour model

of a component for every change in the context of a component, it would become

infeasible to perform model-based performance predictions. Thus, the naïve reverse

engineering approach described above is not sufficient for performance prediction. A

component behaviour model must be parameterised as pointed out.

5.1. Shortcomings of Existing Approaches

Existing approaches in the field of reverse engineering of behaviour models are limi-

ted with respect to a number of aspects which are realised in the Beagle approach:

• No parameterised control and data flow is reverse engineered (e.g. [CDH+00,

BLL06, HMWR99, CW00]).

• The output models have no execution semantics (e.g. [BLL06, WAW04b,

WAW04a]).

• The resulting models possess no performance abstraction (e.g. [BLL06,

WAW04b, WAW04a]).

• No component support. The behaviour model is not a component behaviour

model (e.g. [Ros06, HMWR99]).

The following section will briefly summarise the shortcomings of existing ap-

proaches and relate the Beagle approach to them. The full related work is covered in

Section 8.3.

Pure static analysis approaches [NNH99] like symbolic execution [Kin76, CC77]

cannot deal with complex code structures (e.g. variable values which are manipulated

inside loops) when determining parametric dependencies. In those cases at most ap-

proximations of real parametric dependencies can be reverse engineered. Other pro-

gramme analysis approaches like slicing (e.g. static [Wei81, Luc01, SRK06] or dyna-

mic [AH90]) do not provide sufficient information for creating stochastic expressions

107

Chapter 5. Reverse Engineering Behavioural Models

which represent parametric dependencies. Slicing, for example, does not qualify the

relation between variables. In its classical form, it only establishes a binary relation,

which indicates which programme statements are within one slice, with respect to a

slicing criterion (e.g. a variable declaration). While such techniques proved helpful

for debugging, information flow control, or maintenance [Luc01] (among others),

they cannot directly contribute for parametric dependencies. See Section 9.11 for

a further discussion on how to integrate slicing information into the developed ap-

proach.

Dynamic analysis approaches like [Rei08, BLL06, ECGN01] can lead to impre-

cisions due to the naturally limited coverage of control and data flow which can be

monitored at runtime with a finite number of test cases and within finite time. Parts

of a programme which are not monitored during execution (e.g. seldom execution

paths), cannot be found by dynamic analysis approaches. Still, they are well-suited

to represent frequent program executions. Cornelissen et al. [CZvD+09] provide a

summary on dynamic program understanding approaches.

Statistic analyses [HL00] like linear regression [SLS77] often have no support for

non-continuous behaviour which results from branches in code (i.e. if-then-else).

Only few approaches like multivariate adaptive regression splices [Fri91] support

non-continuous behaviour. Furthermore, regression approaches have limited support

for steering abstractions. Specifically performance abstractions have limited suppor-

ted. Jain [Jai91] further discusses regression approaches in the context of perfor-

mance analysis.

Regression approaches are complemented by machine learning approaches which

cover, among others, statistics, neural networks, and fuzzy logic. See [CM98] for

a review. Still, these approaches are no software engineering approaches and thus

not designed for component support or performance analysis. Yet, they provide a

substantial base for the reverse engineering of parametric dependencies which will

be utilised in the Beagle approach.

Ernst [Ern03] proposed the integration of static and dynamic analysis in 2003, but

no approach currently combines the individual advantages of static, dynamic, and

stochastic analysis. The Beagle approach tries to overcome the individual limitations

of each analysis field by combining them. The combination is performed by Ge-

netic Programming (GP, [Koz93, BNKF98]). The weaknesses of strength of static,

dynamic, and stochastic analysis are balanced in it. If for example static analysis ap-

proaches refuse the analysis of certain source code, dynamic and statistical analyses

can be used for this source code. Vice versa, if static analysis can provide fast and

precise reverse engineering, the convergence speed for a reverse engineering model

can be increased.

The individual limitations, the comparison to the Beagle approach, and further

related approaches will be discussed in detail in the related work Section 8.3.

108

5.2. Scientific Challenges

5.2. Scientific Challenges

The major scientific challenges for the reverse engineering of behaviour models are:

i) How to reverse engineer parameterised behaviour models of components

maintaining usage, assembly, and allocation context independence in the

result model?

(This challenge corresponds to requirement R-Context and R-Resource De-
mands from Section 5.4.)

ii) How to automatically create software component behaviour models which re-

present performance abstractions?

(This challenge corresponds to requirement R-Abstraction from Section 5.4.)

iii) How to seamlessly integrate static, dynamic, and statistical analysis techniques

for reverse engineering to overcome the limitations of each single approach

(e.g. data flow analysis for very large systems using static analysis; or the

runtime complexity of dynamic approaches)?

(This challenge corresponds to requirement R-Abstraction and R-Integration
from Section 5.4.)

For i) this includes challenges on how to create behaviour models for components

instead of low-level constructs like classes or methods. Some additional challenges

must also be mastered: how to create behaviour models which balance precision,

simulation efficiency, and understandability for humans.

Figure 5.4 illustrates the various inputs the approach for ii) must be able to handle

when creating a behaviour model. It is desirable to include existing reverse enginee-

ring approaches and combine them.

Further scientific challenges will be discussed in Section 5.11 in the context of ge-

netic programming which was selected as a integration technique for static, dynamic

and statistical analysis and also contributes to dynamic analysis.

5.3. Contributions in Reverse Engineering of
Behaviour Models

The reverse engineering approach for behaviour models which has been developed

in this thesis, fulfills the above stated requirements and thereby contributes to the

field of reverse engineering of behaviour models. The developed approach pioneers

in reverse engineering software component behaviour models which are independent

of usage, assembly, and allocation context and at the same time enable performance

109

Chapter 5. Reverse Engineering Behavioural Models

predictions without any manual effort for modeling static architecture or component

behaviour.

Furthermore, the approach provides a general mechanism for the integration of

static, dynamic, and statistical analysis by means of genetic programming. To push

the abilities of dynamic analysis further and make dynamic analysis aware of com-

ponents, a dynamic analysis approach for software component behaviour has been

developed. This dynamic analysis allows instrumentation of source code at the level

of components to overcome unnecessary low-level monitoring at an object-oriented

class level and by that lowers the number of monitoring points. Furthermore, the

dynamic analysis supports monitoring of distributed systems, and is capable of cap-

turing parameter characterisations according to the specification of component inter-

faces.

Genetic programming was extended to allow a seamless combination of static,

dynamic, and statistical analyses for creating behaviour models. The developed

approach is generally capable to integrate multiple reverse engineering approaches

through genetic programming and further optimise the input of each reverse enginee-

ring approach. For genetic programming, optimisation criteria have been developed.

They support the creation of abstract behaviour models.

Through its contributions, this thesis helps answering questions on how to integrate

multiple reverse engineering approaches – especially the convergence of static and

dynamic analyses – which has been identified as a challenge by Ernst in [Ern03].

Specifically, the presented approach helps to understand how to create parameterised

and thus context-independent [BHK06] behaviour models which are at the same time

simulatable performance abstractions of components.

The developed reverse engineering approach for behaviour models is called Beagle

(BEhaviour Analysis using Genetic Learning and Evolution), named after the sailing

ship “HMS Beagle”. On a survey voyage from 1831 to 1836, the naturalist Charles

Darwin was on board of “HMS Beagle”. Darwin’s work finally made the Beagle one

of the most famous ships in history.

5.4. Requirements for Reverse Engineering of
Behaviour Models

For the reverse engineering of component behaviour models, a number of requi-

rements have to be fulfilled, which are derived from the scientific challenges and

contributions:

• R-Integration The approach should be able to combine the specific advantages

of static, dynamic and statistical analysis and hence overcome the limitations

of each single approach.

110

5.4. Requirements for Reverse Engineering of Behaviour Models

Artifact

Raw
Resource
Demands

Component
Boundaries

Code

Behaviour
Model

Working
Area

Behaviour Analysis

Test Cases

Figure 5.4.: Setting for the reverse engineering of behavioural models

Figure 5.4 visualises the various information sources which should be consi-

dered during reverse engineering of behaviour models. In this step, the com-

ponent boundaries as recognised by the architectural reverse engineering from

Section 4 are assumed to be given. The component boundaries determine the

desired abstraction level for the behaviour model. Since static and dynamic

analysis are to be carried out during this step, the source code of an appli-

cation and test cases for the application under study must be provided to the

behaviour reverse engineering.

• R-Context The output model must be parameterised over all three contexts

introduced in Section 2.8.

The counterexample of a reverse engineering approach for behaviour models

in the previous Section 5 imposes some minimal requirements for an impro-

ved approach: A reverse engineering approach for behaviour models which

is suitable for performance analysis must account for the varying contexts a

component is faced with.

• R-Resource Demands The approach must be able to integrate and approximate

platform-independent resource demands.

The reverse engineering approach must be able to integrate resource demands

of software components (e.g. executed instructions on a CPU or executed ins-

tructions of a virtual machine) to parameterise over the execution environment.

The resource demand must be expressed in a parameterised form to account

for its dependencies to the usage and assembly context. For this thesis, it is as-

sumed that for each “section” of component behaviour raw resource demands

are provided by a separate approach which is not covered by this thesis. The

111

Chapter 5. Reverse Engineering Behavioural Models

ByCounter [KKR08b] tool is for example capable of counting executed byte

code instructions at runtime and can be used for gathering raw resource de-

mands.

• R-Abstraction The reverse engineering approach must work on a component

abstraction level.

Components can comprise multiple classes. Depending on the component

boundaries, the number of classes which must be merged into a single be-

haviour model of a component deviates. Internally, the control and data flow

must therefore be lifted to the component level (component internal behaviour

must be abstracted; only behaviour affecting other components should be pre-

served; cf. Section 5.7.2). The abstraction must be sufficiently strong to not

expose implementation internals or disclose intellectual properties.

Section 9.1 discusses the realisation of these Requirements.

5.5. Solution Idea: Overview

Control
Flow

Abstraction

Static Code
Analysis

Instrumen-
tation Monitoring

Data
Aggrega-

tion

Machine
Learning

RDSEFF
Construc-

tion

Resource
Demand

Control
FlowComponent

Boundaries

Code
Sections

Behaviour Analysis

Genes

Test Cases

Artefact /
Model Working

Area
Processing

Legend:

Output-
Input-

Relation
3rd Party

3rd

Source
Code

Statistical
Analysis

3rd

Symbolic
Execution

3rd

Parame-
tric Depen-

dencies
PCM

Dynamic Code Analysis

Figure 5.5.: Beagle: Behavioural reverse engineering (extract of Figure 3.4 with fur-

ther details on dynamic analysis)

112

5.5. Solution Idea: Overview

After the architectural reverse engineering step is finished, the reverse enginee-

ring of the behaviour model (Resource Demanding Service Effect Specification, RD-

SEFF) of each previously discovered component starts. The reverse engineered beha-

vioural model is the computation of an abstraction of components. Figure 5.5 depicts

an extract of the relevant parts of the reverse engineering process for behavioural

reverse engineering.

The main steps for the reverse engineering of behaviour models, are the creation

of a control flow abstraction which serves as a skeleton for data flow annotations.

Parametric dependencies (parameterised data flow annotations for e.g. loop itera-

tion counts or parameter values passed to other component) are reverse engineered

through an combination of dynamic and static code analysis, complemented by sta-

tistical analysis approaches for the approximation of dynamic analysis data. Static

code analysis includes simple techniques like the extraction of constants from source

code and symbolic execution as an advanced technique.

The integration of static, dynamic, and statistical analysis is taken over by genetic

programming (“Machine Learning” in Figure 5.5). Furthermore, genetic program-

ming contributes in creating parametric dependencies and finding performance abs-

tractions for them. Besides, genetic programming estimates resource demands (e.g.

CPU and HDD) from raw resource demand counts gather during an external dynamic

analysis approach.

The reverse engineering approach presented in the following is a reverse enginee-

ring approach for grey-box components (cf. [BW99]). It requires source code to be

available. Nevertheless, the source code does not need to be understood by humans

due to the automation of the Beagle approach. For scenarios in which no source

code is available, Section 5.17 presents an extension of the Beagle approach which

applicable to black-box components.

In the remainder of Chapter 5, the reverse engineering of Beagle is discussed step

by step. First, the control flow abstraction is discussed in Section 5.8, then the dy-

namic analysis (Section 5.10), machine learning (Section 5.11), the integration of

static and statistical analysis approaches (Section 5.12 and later), the integration of

resource demands (Section 5.16), and the applicability of the developed approach to

black-box components (Section 5.17) are presented. Complexity, scalability and the

realisation are discussed in the conclusion of this chapter.

The following section details on the behavioural reverse engineering approach,

starting with an example for the reverse engineering model and the abstraction criteria

for the RDSEFF. See Figure 2.7 (page 37) for an overview on terms.

113

Chapter 5. Reverse Engineering Behavioural Models

5.6. Core Assumptions

Beagle implies two core assumptions which must hold when applying it. These as-

sumptions are briefly introduced in the following. Further assumptions of the Beagle

approach are discussed in Section 5.20.

1. Since Beagle is an approach based on static and dynamic analysis, test data

(e.g. unit tests) must be available for the dynamic analysis part. The test data

must cover relevant parameter inputs of provided component services and vary

the input data. For example, if a math service is provided, the input integers

should be varied in the input parameter space (cf. Section 5.20).

Although Beagle targets at creating software performance component beha-

viour models, load drivers are generally not required as Beagle does not rely

on timing values but on abstract resource demands (cf. Section 5.16). Other

approaches which target at software performance prediction (e.g. [HMWR99,

CW00, ZWL08]), require special load drivers and not just test data.

2. Furthermore, Beagle requires the availability of a test bed in which the soft-

ware system under study can be executed. This can either be a fully running

software system or a software system where mock-ups realise required func-

tionality.

5.7. Abstraction Criteria of the RDSEFF

Resource Demanding Service Effect Specifications (RDSEFF) have specific abstrac-

tion criteria for their control and data flow. The following section will first introduce

a running example of a RDSEFF and then first introduce the control flow and se-

cond the data flow abstraction criteria. How this abstraction is created in the Beagle

approach will be detailed in Section 5.8.

5.7.1. Running Example

Figure 5.6 provides an example for a RDSEFF which has been introduced in Sec-

tion 2.5.3. Each RDSEFF describes a single provided service of a component. It is

important to understand how data and control flow are described and what the ab-

straction criteria of a RDSEFF are. In the example, the component BusinessLogic,

its interfaces, and its internal behaviour are shown. The component provides the

service uploadFile(fileInput, compressed) and requires the interfaces com-

press(cfile) and checkFile(file) which specify a single service. Business-

Logic is capable of compressing files, checks the files for being copyrighted, and

afterwards stores them on a harddisk.

114

5.7. Abstraction Criteria of the RDSEFF

byte[] compress(
byte[] cfile)

bool checkFile(
byte[] file)

int uploadFile(
byte[] fileInput,
bool compressed)

BusinessLogic

«ExternalCallAction»
compress

cfile.length = fileInput.length

«InternalAction»
StoreFile

HDD: file.length * 2 + 25
CPU: file.length * 5.34

«ExternalCallAction»
checkFile

if(compressed)
file.length = fileInput.length

else
file.length = compress.out.length

compressed == true compressed == false

checkFile.out == truecheckFile.out == false

Legend:
· Control flow
· Data flow
· Resource
demand

«SetVariableAction»

if(checkFile.out==true)
Status.OK

else
Status.FAILED

Figure 5.6.: Example RDSEFF for the service uploadFile(..)

The internal behaviour consists of multiple steps, including two branches. First

in the behaviour, the flag compressed is checked. If the uploaded file is not com-

pressed, it is passed via an external call action to a compression service (<<Call>

>Compress). Otherwise, the file is directly passed to an external service checking

for potential copyright violations (<<Call>>checkFile). If the file is not copyright

protected, it is then stored on a harddisk (<<Internal>>StoreFile) without utili-

sing other components. Finally, the BusinessLogic component returns its status

(whether the uploadFile service was successful or not).

1 class Status BusinessLogic implements IFileShare {

2 ICompress compressionComponent;

3 ICopyrightCheck copyrightCheckComponent;

5 public uploadFile(byte[] fileInput , boolean compressed) {

6 i f (!compressed) {

7 fileInput = compressionComponent.compress(fileInput) ;

8 }

9 boolean isFileCopyrighted = copyrightCheckComponent. checkFile(fileInput) ;

10 i f (! isFileCopyrighted) {

115

Chapter 5. Reverse Engineering Behavioural Models

11 / / store f i le on harddisk

12 / / . .

13 }

14 i f (isFileCopyrighted)) {

15 return Status .FAILED;

16 } else {

17 return Status .OK;

18 }

19 }

20 }

Listing 5.1: Source code example of the component BusinessLogic. IFileShare is

the provided interface; ICompress and ICopyrightCheck are required

interfaces

5.7.2. Control Flow Abstractions of Resource Demanding
Service Effect Specifications

RDSEFFs are abstractions at the component-level. They only capture control flow

elements of a component that directly affects component-external control flow (see

Section 5.8.1 for a definition). Component-internal control flow is merged into In-

ternalActions. The StoreFile action is for example not visible from outside and

consequently tagged as InternalAction (cf. Listing 5.1, lines 10 to 13). Store-

File might contain several loop and branch statements and might be using the Java

API, middleware service, or other frameworks. As these services are not identified

by component interfaces as being component services, they are subsumed in Inter-

nalAction to gain a higher abstraction level. Opposed to this, the branch deciding

on calling the compress service (see Listing 5.1, line 6) is made explicit because

compress is a service provided by another component.

Generally, only non-infrastructure services are considered being component ser-

vices. In the overall approach, the architectural reverse engineering step determines

which interfaces are being considered component interfaces. When reverse enginee-

ring for example Java code, not every Java interface is necessarily considered being

a component interface. Especially technical interfaces such as messaging (e.g. Java

Messaging Service) or security are not represented as component interfaces in PCM

models. Instead, their performance impact is captured in resource demands within

InternalActions.

The strict explicit handling of external actions arises from the desired assembly

context parameterisation (making connected components a parameter). If the same

116

5.7. Abstraction Criteria of the RDSEFF

component specification was reused in another assembly, the actually connected

component would change. It is therefore important to capture whether an external

service is called or not but make no assumptions on the actually connected compo-

nents. Only the interface of required components (their component type) is known to

a component. If the performance of an external service was captured in an Inter-

nalAction, this would imply a fixed connected component which cannot be known

to components at design time. InternalActions by design do not require such a

parameterisation as they only depend on component internals.

time

time

External
Call
Arrival

0
n

0 n

queue
length

queue
length

1
2
3
4

1
2
3
4

Queue
Length

Legend:

Processing time
per external call:
2 time units

Burst arrival

Uniform arrival

Figure 5.7.: Queue lengths for burst arrivals compared to uniform arrivals

A component’s data flow abstraction must not abstract external calls of other com-

ponents. While a single instance of a component and thus an InternalAction is

always running on a single hardware node. Hence, InternalActions have local

resource demand which can be accounted for locally. Local execution cannot be

assumed for components invoked via external calls. As external calls invoke com-

ponents which could be deployed for example on remote machines which utilise a

network, it makes a difference whether an external service is invoked in a “burst”

of calls or with uniform inter arrival times. External calls can result in load of dis-

117

Chapter 5. Reverse Engineering Behavioural Models

tributed resources. For example, a network which has to handle a burst of calls has

a different response time than a network which is processing uniformly distributed

request. Figure 5.7 depicts the arrival of external calls in a queue [GSTH08] (e.g. a

network queue). The burst (top) increases the response time due to the wait time in

the queue. For uniform arrivals (shorter than the processing time), no waiting time

is caused (bottom). Thus, opposed to InternalActions, a RDSEFF captures the

order of external calls. They are individual elements of a RDSEFF’s control flow.

Abstraction Criteria InternalActions imply an abstraction of a component’s

control flow. Any component-internal control flow is captured within Internal-

Actions of the RDSEFF.

• Only component-external control flow. Component-internal control flow is

abstracted to not expose component-internals. The corresponding performance

impact is captured by InternalActions.

• Execution order. InternalActions make no assertions on the execution or-

der of internal resource demands or internal method calls. Instead, all internal

behaviour is cumulated (e.g. all HDD read accesses can be reduced to the

number of accesses).

• Explicit external calls. Opposed to component-internal behaviour, external

calls must not be abstracted in order to create a reusable component behaviour

model which makes no assumptions on connected components.

• Order of external calls. As explained above, the order of external calls can

have a significant impact on the overall performance of a software system

which the abstraction must account for.

Section 5.8 will formalise and further detail the control flow abstraction.

5.7.3. Data Flow Abstractions of Resource Demanding
Service Effect Specifications

Data flow information is evaluated in control flow statements such as branches (as

branch conditions), in loops (number of executed loops), and for data flow as argu-

ments of external calls, in return values of external calls, and as return value of the

service described by the RDSEFF itself. Resource demands of internal actions can

also depend on data flow. The dependency of control flow on input data, data pas-

sed to other components, and resource demands is called parametric dependency (cf.

Section 2.7). Parametric dependencies can include if-then-else constructs, mathema-

tical expressions, and stochastic expressions.

118

5.7. Abstraction Criteria of the RDSEFF

For example, the return value of uploadFile in Listing 5.1 depends on the return

value of the required checkFile service. It is therefore determined by a parametric

dependency.

The definition of parametric dependencies bases on parameter characterisations as

introduced in Section 2.7.1 instead of concrete values. Therefore, they can be more

abstract than a dependency expressed in source code. For example, if a loop iterates

over the elements of a list, the NUMBER_OF_ELEMENTS characterisation of a parameter

is sufficient for describing a parametric dependency. The concrete elements of the list

are abstracted.

Parametric dependencies need not to cover all dependencies in full detail. If for

example, for a list with a size of x elements, a loop is executed x − 1 times if x
is larger than 1000, a parametric dependency stating x loop executions would still

be sufficient. A parametric dependency is intended to abstract details since details

would tend to increase complexity, endanger abstraction, and contradict the idea of

RDSEFFs.

Abstraction Criteria Abstraction demands of RDSEFF’s parametric dependen-

cies are:

• Simulation speed. RDSEFFs are behaviour models which serve as input for

performance simulations. To keep the simulation time small even for large

systems, the computation complexity of each parametric dependency must be

small. For example, additions and subtractions are less computation intensive

than calculating roots or evaluating if-then-else constructs.

• Human understanding. Humans should be able to understand reverse engi-

neered RDSEFFs to either identify performance issues at the model level or for

adapting a RDSEFF to create new design alternatives of components. Thus,

simple expressions involving only a few arguments are preferable.

• Intellectual property. In a distributed development scenario, component de-

velopers are forced to provide component models (including RDSEFFs) in the

Palladio scenario. This enables performance predictions and meeting design

decisions at the model level without requiring to buy and set up every single

component just for testing purposes. RDSEFFs should not contradict the pro-

tection of intellectual property of component internals. Hence, implementation

internals and internal algorithms should not be exposed in models.

119

Chapter 5. Reverse Engineering Behavioural Models

5.8. Static Control Flow Analysis for creating
RDSEFFs

The first step which is performed during the reverse engineering of behaviour mo-

dels (RDSEFFs) is the extraction of a control flow model. The control flow is in-

ferred from given source code and abstracted to the component-level (see previous

Section 5.7) using given component boundaries, specified as provided and required
interfaces of a component.

SoMoX

Beagle

<<LoopAction>>

data flow

con-
ditions

The static control flow abstraction is a prerequisite to the later

data flow analysis which parameterises the control and data flow.

The resulting parametric dependencies characterise those control

flow statements identified during the static control flow analysis

(i.e. the number of iterations of loops and the branching conditions

branches which are identified) which is described in the following.

5.8.1. Control Flow Abstraction

As already pointed out in the previous sections, each RDSEFF is

representing the behaviour of a single provided service. All component-internal be-

haviour resulting from that particular provided service is represented by a single RD-

SEFF.

Definition of Component-External Control Flow Consider the example from

Listing 5.1, here the branch statement from line 6 is relevant at the component-level

since it comprises an external call to a compression service. When removing the

branch during in the abstraction, the resulting behaviour model would include calls

of the compression component for all files – even those files which are already com-

pressed. Thus, the component source code behaviour and the behaviour model would

largely deviate as a compression service can consume a considerable amount of time.

Some executions of the component source code would not result in the external call,

but all executions of the behaviour model would. Since the branch statement is af-

fecting the call frequency of the external compress service, it is part of the control

flow which must be made explicit in the RDSEFF abstraction.

Component-external control flow. A call to a service which is provi-

ded by another component results in component-external control flow.

A particular control flow statement s of a component A is affecting

the component-external control flow of another component B iff the or-

der or frequency of the component-external control flow changes when

changing the control flow statement s of component A.

120

5.8. Static Control Flow Analysis for creating RDSEFFs

The following formula formalises the definition of component-external control

flow. It decides whether a control flow statement s is part of component-external

control flow. The algorithm from Listing 5.2 define the computation of the control

flow abstraction of a RDSEFF.

s ∈ P is Component-External Control Flow ⇔
(∃(pall ∈ P ∧ ps ∈ (P \ {s}) ∧ x ∈ X|freq(pall, x) �= freq(ps, x)))

∨ (P−s = (P \ {s}) ∧ x ∈ X ⇒ order(P, x) �= order(P−s, x))

with P being the set of all control flow statements of a component, X a set of sets

of the cross product of all possible input parameter combinations of a component,

and freq(p, x) the execution frequency of program statement p in an component

execution with a set of input parameters x. order(P, x) is the pairwise order of

executed control flow statements P for the input parameters x.

freq(p, x) does not respect the reachability of the code statement p. Instead, every

statement which is contained in another control flow statement (e.g. a loop or branch)

is assumed to be actually executed when executing the surrounding statement. Hence,

no control flow statement is eliminated due to missing reachability. As the above

formula is the base of the control flow structure but not the parametric dependencies,

the actual execution frequencies in the final behaviour model are not affected by this

assumption. If an external call is never executed due to missing reachability, the

corresponding parametric dependency which determines its execution frequency will

specify 0 executions in the final behaviour model.

The definition intentionally neglects data flow transformation effects of s. They

are accounted for in later data flow analysis. For example, if the statement s appends

an element to a list over which a loop later iterates, such changes of frequency are

not considered when deciding on component-external control flow. The parametric

dependency which later describes the number of iterations of a loop will be created

to account for added elements of a list.

Calculation of the Component Control Flow Abstraction
The control flow abstraction is created in a three phase algorithm (cf. Listing 5.2):

The creation of markers for external calls, the transitive marking of resulting relevant

control flow statements, and the creation of the RDSEFF control flow structure.

In the first phase of the algorithm (cf. Figure 5.8 and Listing 5.3), all provided and

required services of the component recognised in the architectural reverse enginee-

ring step (cf. Section 4), are marked (marker relation) in the Generalised Abstract

Syntax Tree (GAST) which is build from the input source code. Since not every

public method of a class or every method declared in an interface is a service at

the component-level, the marker relation indicates which method declaration or me-

121

Chapter 5. Reverse Engineering Behavioural Models

1 Inputs

2 gast := A GAST model

3 providedInterfaces := A set of provided interfaces

4 requiredInterface := A set of required interface

5 Outputs

6 rdseff := The resulting RDSEFF model containing the control flow abstraction

8 / / 1. marker relation

9 gast = markProvidedAndRequiredServices(gast , providedInterfaces , requiredInterfaces)

11 / / 2. transitive identification of parent control flow statements

12 gast = markParentControlFlowStatements(gast)

14 / / 3. collect marked control flow statements

15 rdseff = createRDSEFFFromMarkers(gast)

Listing 5.2: Pseudo code of the three main phases of the control flow abstraction

required
service
marker

1. marker relation

transitively
marked
statement

Legend:

branch

provided
service

external
call

branch

branch

provided
service

external
call

branch

provided
service
marker

branch

provided
service

external
call

branch

2. transitive identification 3. collect marked

Mapped
statement

scope of a
control flow
statement

further
control flow
statements

«RDSEFF»

«...»
«BranchAction»

«ExternalCallAction»

Figure 5.8.: Phases of the control abstraction applied at an abstract example. The

depicted phases must be repeated for all calls of required services. The

control abstraction then comprises the union of all marked control flow

statements of all repetitions.

122

5.8. Static Control Flow Analysis for creating RDSEFFs

1 Inputs

2 gast , providedInterfaces , requiredInterfaces / / as above

3 Outputs

4 gast / / with markers for statements relevant for the performance abstraction

5 markProvidedAndRequiredServices {

6 forall (Method m ∈ gast .Methods) {

7 i f (m. interface ∈ providedInterfaces) {

8 markProvided(m) ; / / mark m as a provided component service

9 }

10 }

11 forall (Call c ∈ gast . Calls) {

12 i f (c . interface ∈ requiredInterfaces({

13 markRequired(c) ; / / mark c as a required component call

14 }

15 }

16 }

Listing 5.3: Pseudo code of the marker creation

thod call statement in the GAST is relevant at the class level. Hence, every method

identified by the provided interface of the component and every call to the required

interface is marked in the GAST.

In the second phase of the algorithm (cf. Listings 5.4 and 5.5), a transitive rela-

tion (realised as recursion in the implementation) identifies control flow statements

which must be preserved at the component-level abstraction. The relation is defined

starting from required service calls and then transitively identifies control flow state-

ments which are relevant for the component behaviour model. The relation captures

all control flow statements up to the method declaration, starting from the external

method calls. When having marked all potential statements of a potential “path”

between the required service calls and the provided method, the second phase termi-

nates.

In the example from Listing 5.1 (page 115), for example the method call compress

from line 7 would be identified in the first step (marker relation). The second phase

would then (i) relate the method call with the surrounding branch statement (lines 6

to 8) and (ii) relate the method declaration from line 5 with the branch statement. Of

these statements, the external call, the branch, and the method call would be identified

as actions in the component behaviour. The remaining statements would be handled

123

Chapter 5. Reverse Engineering Behavioural Models

1 Inputs

2 gast / / marked GAST model

3 Outputs

4 gast / / with markers for statements relevant for the performance abstraction

5 markParentControlFlowStatements { / / for entrance

6 forall (Statement s ∈ gast .Statements) {

7 i f (isMarkedRequired(s)) {

8 markParentControlFlowStatements(s)

9 }

10 }

11 }

Listing 5.4: Pseudo code of marking parent statements: Initialisation

1 Inputs

2 statement / / current GAST statement

3 Outputs

4 gast / / with markers for statements relevant for the performance abstraction

5 markParentControlFlowStatements { / / for recursion

6 mark(statement) / / mark statement as relevant at the component level

7 i f (statement .Predecessor �= ∅) {

8 markParentControlFlowStatements(statement .Predecessor) / / recursion: predecessor

9 } else if (!isMarkedProvided(statement .Parent)) { / / check termination

10 markParentControlFlowStatements(statement .Parent) / / recursion: parent

11 }

12 }

Listing 5.5: Pseudo code of marking parent statements: Recursion

124

5.8. Static Control Flow Analysis for creating RDSEFFs

1 Inputs

2 gast / / marked GAST model

3 providedInterfaces / / marked GAST model

4 Outputs

5 rdseff / / resulting RDSEFF model

6 createRDSEFFFromMarkers {

7 forall (providedInterface ∈ providedInterfaces) {

8 / / top down order of transClosure result

9 forall (gast ∈ transClosure(

10 providedInterface , {’child’ , ’call’ , ’isMarked’ , !’isMarkedRequired’})) {

11 map(gast . call → rdseff .ExternalCallAction : isMarkedRequired(gast . call))

12 map(gast .method → rdseff . StartAction : isMarkedProvided(gast .method))

13 map(gast .method → rdseff .StopAction : isMarkedProvided(gast .method))

14 map(gast .branch → rdseff .BranchAction : isMarked(gast .branch))

15 map(gast . loop → rdseff .LoopAction : isMarked(gast . loop))

16 map(gast \ {call ,branch, loop} → rdseff . InternalAction : isMarkedRequired(gast \
{call ,branch, loop}))

17 map(gast .containments → rdseff .containments)

18 }

19 }

20 / / mapped in the code order: successors can be connected

21 connectSuccessors(rdseff)

22 }

Listing 5.6: Pseudo code of marking parent statements: Recursion

in the same way. Here, for example the branch in lines 10 to 13 has no inner external

method call and thus is not preserved for the component behaviour abstraction.

Finally, in the third phase, the algorithm (cf. Listing 5.6) is collecting all control

flow statements which are part of the relation of the second phase and transforms

them into the control flow of an RDSEFF model. Overall, the transformation from

GAST into RDSEFF follows strict conversion rules and does not make use of any

heuristics.

In the listing, transClosure() is extended such that it can also handle attributes

(isMarked / isMarkedRequired) which are evaluated on the elements of the

transitive closure.

125

Chapter 5. Reverse Engineering Behavioural Models

1 class A : IA {

2 public void providedMethod() {

3 subjectForInlining() ;

4 }

6 public void subjectForInlining() {

7 / / some code

8 / / external call

9 anotherComponent.doSth() ;

10 / / further code

11 }

12 }

14 class B : IB {

15 public void providedMethod() {

16 A. subjectForInlining() ;

17 }

18 }

Listing 5.7: Example: Method inlining vs. InternalCallAction

5.8.2. Method Inlining

A single provided service of a component, which is described by a RDSEFF, can

span multiple methods and multiple classes. Even a single InternalAction can

comprise multiple methods of multiple classes of a component. If a single provided

service covers multiple methods and classes, the corresponding code must be hand-

led within a single RDSEFF. For example, the first InternalAction of the service

providedMethod() would cover the lines 3 to 8 (see Listing 5.7).

Method inlining is a way to handle such provided services. The object-oriented

methods can therefore be inlined at the model level into a single provided service

of a component. Method inlining helps for example to increase simulation perfor-

mance (like compiler function inlining, cf. [CH89]) since less method calls need to

be performed during simulation and less overhead for maintaining stackframes for

simulated variables in the simulation incur.

However, method inlining can lead to inconsistencies in reverse engineered models

if they are later changed manually by humans to explore for example new design

alternatives. If the same source code is mapped to multiple sections of a RDSEFFs,

126

5.8. Static Control Flow Analysis for creating RDSEFFs

changing them consistently in a RDSEFF would become infeasible for humans as

argued below. In the simple example from Listing 5.7, the lines 7 to 11 would be

inlined for the provided methods of the classes A and B. To change the resulting

RDSEFF consistently, humans would first need to look up the original code in order

to find all places of inlining. The more classes inline a certain source code section

(generally unlimited), the harder it becomes for humans to completely find them.

Therefore, method inlining is only performed if no inconsistencies are being ex-

pected. For other cases, so-called ResourceDemandingInternalBehaviour helps

avoiding duplicated model sections. ResourceDemandingInternalBehaviour in-

troduces a kind of private method at the component-level which can be called from

multiple InternalCallActions of a RDSEFF.

Example In the example shown in Listing 5.7, both, method inlining and explicit

internal calls are illustrated. When considering only class A as a single component

(ignoring class B for the moment), the method subjectForInlining() (lines 6 to

11) would be inlined at line 3 as only class A is calling that method. If class A and

B would be merged into a single component, there would be two calls of subject-

ForInlining(). In this case, subjectForInlining() would be translated into

ResourceDemandingInternalBehaviour and lines 3 and 16 would result in In-

ternalCallActions.

Inlining Condition If a method declaration is not part of the marker relation, the

corresponding method is a potential subject of inlining. Whether to inline or to create

a ResourceDemandingInternalBehaviour depends on the usage of the method:

Iff a method is not called from at least two different control flow blocks within a

component, it will be inlined. Otherwise, that method is converted into a Resour-

ceDemandingInternalBehaviour of the provided service of the component and an

InternalCallAction calls that internal behaviour.

The binary decision whether to inline or not Inline(method) is:

Inline(method) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
true if ∀mc1,mc2 ∈MC(

(mc1.callee = method⇒ mc2.callee �= method)

|mc1 �= mc2)

false else

where MC is the set of all method calls of classes associated to a component for

which the RDSEFF is being constructed. Thus, calls of method from multiple RD-

SEFFs of the same component are explicitly part of MC .

When creating the RDSEFF, the component control flow of all methods

which are transitively reachable via the call relations of method calls for which

127

Chapter 5. Reverse Engineering Behavioural Models

Inline(method) = true holds, will be inserted at the place of the call statement of

that method. For method for which Inline(method) = false, the call statement

of that method is translated into an InternalCallAction and the called method

and its component-level control flow itself results in an ResourceDemandingIn-

ternalBehaviour.

5.8.3. Implementations

Currently, there are two different implementations of this transformation available.

Multiple implementations exist, since the transformation implementations use dif-

ferent inputs (e.g. Eclipse JDT vs. SISSy GAST), different transformation technolo-

gies with specific advantages and steem from different project contexts.

• Java2PCM [KKKR08] is a transformation approach written in Java based on

the Eclipse JDT AST. It runs directly on any Eclipse Java projects. This im-

plementation is not able to deal with InternalCallActions and limited to

components which span only one class.

• GAST2SEFF [BHT+10] is a transformation written in Java which uses the

SISSy GAST (which has been developed in the context of the Q-ImPrESS

project [qim09]) as input and thus can handle C/C++, Delphi and Java code.

Its implementation is based on EMF visitors which translate node by node of

the GAST. GAST2SEFF is the more recent transformation.

5.8.4. Resulting Control Flow Abstraction

After applying the presented algorithm, the GAST representation of source code is

translated into the control flow abstraction of a component and represented as RD-

SEFF. Such a RDSEFF includes the PCM control flow elements internal actions,

loops, branches and external calls but no parametric dependencies. All internal me-

thods which have a single fixed caller, are inlined in the component abstraction to

ensure a grey-box view of components which helps hiding implementation internals.

This thesis extended the PCM with InternalCallActions and ResourceDe-

mandingInternalBehaviour to support internal calls within RDSEFFs to avoid

model duplications and have an equivalent to coarse-grained private methods at the

component-level. Internal calls complement the method inlining concept of RD-

SEFFs. The introduced extensions of the PCM intentionally allow only one level of

internal calls to force model abstraction. This way, the extensions serve as a balance

between model abstraction and information hiding on the one hand and the avoidance

of model clones and inconsistency issues on the other hand.

128

5.8. Static Control Flow Analysis for creating RDSEFFs

5.8.5. Identification of Parametric Dependency Input and
Output

Data related to single parametric dependencies (cf. Section 2.7) must be tracked

over multiple steps of the Beagle reverse engineering process depicted in Figure 5.5

(page 112). For example, “dynamic code analysis”, “static code analysis”, “symbolic

execution”, and “statistic analysis” contribute in determining parametric dependen-

cies. Hence, the individual output of all processing steps must be related to each

other, which results in two sub-tasks:

• unique identification of parametric dependencies (output) and

• the identification which data serves as input for a certain parametric depen-

dency.

The identification of parametric dependency input and output is thus a preparation

step for the required tracking across multiple reverse engineering steps. Furthermore,

it is a prerequisite for the later machine learning which relies on this information.

In the following, first a running example for the various kinds of parametric depen-

dencies is introduced. Then, the terms input and output are defined to lay a founda-

tion to formally state potential dependencies between input and output for a certain

RDSEFF. The set of potential inputs for a certain parametric dependencies one infor-

mation source for the later base for machine learning step.

5.8.5.1. Inputs

Inputs indicate parameter characterisations and return value characterisations a para-

metric dependency can potentially depend on. These inputs are parameter characte-

risations of every parameter of a provided service and parameter characterisations of

return values of ExternalCalls. In Figure 5.9, for example, the parameter charac-

terisations “fileInput.NumberOfElements” (“fileInput.NoE”), “compressed.VALUE”

of the described uploadFile() service and the return values’ “numberOfElements”

of the external call to compress() are inputs.

A single input is a tuple that comprises a unique input “position” represented by an

annotated model element of the RDSEFF (i.e. method parameter or return value of an

external call) and a parameter characterisation (e.g. “NumberOfElements”, “Value”)

of that parameter:

input = (inputposition, parametercharacterisation)

where input ∈ Inputs and parametercharacterisation is a parameter charac-

terisation specified for the input position in the interface of the component which

contains the RDSEFF (see Foundation Section 2.7.1).

129

Chapter 5. Reverse Engineering Behavioural Models

<<BranchAction>>

<<ResourceDemandingSEFF>>
int uploadFile(byte[] fileInput,

bool compressed)

<<ExternalCall>>
byte[] compress(byte[] cfile)

<<SetVariableAction>>

if else

<<ExternalCall>>
bool checkFile(byte[] file)

Parameter
characterisations
RETURN.VALUE
fileInput.NoE
compressed.VALUE

<<BranchAction>>

if else

<<InternalAction>>

Branch Condition?

Required
Parameter
characterisations
RETURN.VALUE
file.NoE

Required
Parameter
characterisations
RETURN.NoE
cfile.NoE

RETURN.VALUE
Characterisation?

file.NoE
Characterisation?

Branch Condition?

cfile.NoE
Characterisation?

1

2

3

Figure 5.9.: RDSEFF BusinessLogic example showing input and output positions for

the service uploadFile()

5.8.5.2. Outputs

To ease a later identification of parametric dependencies and model elements of

the RDSEFF which require the specification of a parametric dependency, RDSEFFs

carry annotations to identify the corresponding model elements. All places which

require the specification of a parametric dependency are marked as outputs. outputs
annotate LoopAction (requires a loop iteration number), BranchAction (a selection

criterion for branches), and parameters characterisations for each parameter of an Ex-

ternalCall. An output represents the unique location of a parametric dependency,

not a parametric dependency (a concrete relation) itself. An output corresponds to a

single parametric dependency.

130

5.8. Static Control Flow Analysis for creating RDSEFFs

There are two kinds of outputs as external calls can have multiple arguments each

with multiple parameter characterisations and returns values can have multiple requi-

red parameter characterisations:

output =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(outputposition, for parameters

parameter characterisation of ExternalCalls

and Returns

outputposition for LoopAction

and BranchAction

where output ∈ Outputs and, for ExternalCalls, parametercharacterisation
is a parameter characterisation specified for a parameter in the interface of the called

service.

Outputs and Inputs are unique location identifiers for RDSEFFs and the correspon-

ding source code locations represented by the GAST model. Due to the presence in

the RDSEFF and in the GAST, one can track data across multiple steps of the reverse

engineering process.

5.8.5.3. Potential Inputs Relation: A Model-Level Backward Slice

In order to provide a working base for the later machine learning step of Beagle,

the potential inputs of a parametric dependency must be determined (comparable to

the data flow analysis for source code). Since machine learning relies on dynamic

analysis, it cannot be known which data is input to which outputs.

In the example in Figure 5.9 the branching condition (3) is unknown. It can poten-

tially depend on all data of predecessing actions of the RDSEFF. This are the return

value of the ExternalCalls (1) / (2) and the parameters of the uploadFile() service.

The potentialInputs relation determines the potential inputs for an output. It is

a backward slice (see [HH01] for an overview) on the control flow structure of the

RDSEFF model. The scope of the backward slice is limited to a single RDSEFF

131

Chapter 5. Reverse Engineering Behavioural Models

and based on the predecessor relation of RDSEFF control flow statements only.

potentialInputs(output) is defined as:

potentialInputs(output) :=

{x|x ∈ Input :

(x = {c ∈
⎛
⎝ ⋃

p∈Predecessors(output)

p.children

⎞
⎠

∧ c.type = ’ExternalCall’})
∨ (x = params ∈ (

⋃
p∈Predecessors(output)

p.parent.signature.parameters |

p.parent.type = ’ResourceDemandingSEFF’)

) }
where output ∈ Outputs.

For each set Inputsout returned by potentialInputs(output) holds

Inputsout ⊆ Inputs. Inputsout is a superset of parameters employed in an

actual parametric dependency. Predecessors(output) builds upon the transitive

closure of the predecessor and parent relation of control flow actions of the RDSEFF

and collects the inner ExternalCall statements of predecessor actions:

Predecessors(output) = transClosure(output, {’predecessor’, ’parent’}) :
parent.type �= ’ResourceDemandingSEFF’

where transClosure(output, {’predecessor’, ’parent’}) is the transitive closure

containing actions transitively reachable from output via the predecessor and

parent relation of any RDSEFF action. ‘ResourceDemandingSEFF’ represents a

boundary of the transitive closure (i.e. the top-most control flow element is reached).

Source code level (backward) slicing [Wei81, HH01] would not help for the deter-

mination of inputs, since it, i) is not able to deal with component boundaries, ii) is not

aware of component services, and iii) cannot deal with parameter characterisations.

The result set of potentialInputs(output) for a certain output will be referred

to Inputsout for reasons of brevity:

potentialInputs(output) := Inputsout = {input1, input2, ..}
Inputsout holds a set of all potential input parameter characterisations which can

serve as input for parametric dependencies in the position identified by output.

132

5.9. Implications of Component Boundaries on the RDSEFF Abstraction

5.9. Implications of Component Boundaries on the
RDSEFF Abstraction

Discussion: Implications of Component Boundaries on the RDSEFF Abstraction The

following section discusses the relation between the abstraction level of components

and the resulting abstraction of the behaviour model. The component abstraction

level has direct implications for the resulting RDSEFF abstraction.

As the reverse engineered behavioural model is an abstraction at the component-

level, it is a pre-requisite to have component boundaries as input. Component boun-

daries are used for finding the right abstraction level for control flow and also for

finding the right places for instrumentation for dynamic analysis (see Section 5.10).

Section 5.7 already pointed out how blocks of internal behaviour are abstracted into

single InternalActions. Calls through component interfaces are used to identify

component boundaries in the behaviour analysis. If calls bypass the explicitly sta-

ted interfaces, they are considered to be infrastructure calls which are merged into

InternalActions (for example calls to the Java API if the Java API is not conside-

red as component interface). Thus, the distinction of infrastructure calls and calls to

other components (ExternalCall) contributes directly to the abstraction of SEFFs.

A single InternalAction can comprise hundreds of lines of code (e.g. a sorting or

compression algorithm) and span multiple classes and packages.

5.9.1. Interface Selection and Granularity

Recognised required interfaces of architectural reverse engineering impact the ab-

straction level of component behaviour since the interfaces help to distinguish In-

ternalActions and ExternalCalls. The more required interfaces a component

has and the more services an interfaces has, the more fine-grained the resulting com-

ponents tend to become. If for example a logger is part of the required interface of a

component, each logger statement results in an ExternalCall. When the logger is

instead considered as part of the component (and not part of the required interface),

the size of the resulting behaviour model decreases as the logger statements are cove-

red by InternalActions. Consequently, the selection of component interfaces and

the quantity of contained services guides the possible abstraction level during reverse

engineering of behaviour models. The behaviour model of large coarse-grained com-

ponents can have a reduced complexity in relation to the overall lines of code covered

by a component compared to a small fine-grained component – which at first glance

might sound counterintuitive.

133

Chapter 5. Reverse Engineering Behavioural Models

A B C

MyInterface

+ providedService

FirstInterface

+ doService

Second
Interface

+ doSth

AnInterface

+ aService

FirstAndSe-
condInterface

Figure 5.10.: Classes and interfaces from Listing 5.8

C1-1MyInterface SecondInterface

AnInterface

C1-2FirstAndSecond
Interface

AnInterface

FirstInterface

C1-3AnInterface

class A

class B

class C

(a) Classes A, B, and C as separate components

C2-1MyInterface AnInterface

C2-2AnInterface

class C

class A
class B

(b) Classes A and B merged into a single com-

ponent

Figure 5.11.: Resulting components of classes A, B, and C before (a) and after (b)

merging classes A and B into a single component

5.9.2. Example

Listing 5.8 provides an example illustrating why the behaviour abstraction level of

coarse grained components is increasing for the components from Figure 5.11. The

inheritance relations at the class level are visualised in Figure 5.10. The example co-

vers interface selection, component boundaries, and sizes of the resulting RDSEFFs

for the code- and the component-level.

When considering each of the classes A, B, and C as separate fine-grained compo-

nents (named “C1-1” to “C1-3”; see Figure 5.11 (a), the control flow statements in

the lines 5 and 9 would be translated into control flow elements of the RDSEFF (cf.

Figure 5.12). Additionally, line 8 would become an InternalAction and line 12

would be translated into an ExternalCall. Of class B, line 19 would be translated

into a LoopAction, line 20 would become an ExternalCall and the lines 24 to 26

result in an InternalAction. aService of class C would result in a single Inter-

nalAction in this simplified example. A total of 10 control flow statements would

result from the three classes. In this case, MyInterface would be the provided inter-

134

5.9. Implications of Component Boundaries on the RDSEFF Abstraction

1 class A implements MyInterface {

2 FirstAndSecondInterface classB = . . ; / / FirstAndSecondInterface implements

FirstInterface and SecondInterface

3 AnInterface classC = . . ;

4 public void providedService(int a) {

5 for (. .) {

6 classB.providedService(a) ;

7 }

8 / / some internal calculation

9 i f (. .) {

10 classB.doSth() ;

11 }

12 classC.aService(a) ;

13 }

14 }

16 class B implements FirstAndSecondInterface {

17 AnInterface classC = . . ;

18 public void doService(int a) { / / declared in FirstInterface

19 for (. .) {

20 classC.aService(a) ;

21 }

22 }

23 public void doSth() { / / declared in SecondInterface

24 i f (. .) {

25 / / some mathematical operations

26 }

27 }

28 }

30 class C implements AnInterface {

31 public void aService(int a) {

32 / /some calculations

33 }

34 }

Listing 5.8: Source code example demonstrating the increasing behaviour abstraction

for large components
135

Chapter 5. Reverse Engineering Behavioural Models

face of the component formed by class A, FirstInterface, SecondInterface and

AnInterface would be the required interfaces. For class B, FirstInterface and

SecondInterface are provided interfaces for the corresponding component, AnIn-

terface the required interface and class C would only have the provided interface

AnInterface.

<<BranchAction>>

<<InternalAction>>

<<ExternalCall>>
SecondInterface.providedService()

<<ResourceDemandingSEFF>>
C1-1: providedService(int a)

<<LoopAction>>
<<InternalAction>>

<<ResourceDemandingSEFF>>
C1-3: aService(int a)

<<ExternalCall>>
SecondInterface.doSth()

<<ExternalCall>>
AnInterface.aService()

if else

<<ResourceDemandingSEFF>>
C1-2: doSth()

<<InternalAction>>

<<ResourceDemandingSEFF>>
C1-2: doService()

<<LoopAction>>

<<ExternalCall>>
AnInterface.aService()

Figure 5.12.: RDSEFFs for the fine-grained components C1-1, C1-2, and C1-3

When instead considering the classes A and B as a merged coarse-grained com-

ponent “C2-1” (Figure 5.11) which only accesses the external component formed by

class C “C2-2”, the number of control flow statements would be reduced to 6 state-
ments in total (see Figure 5.13). Of class A, lines 9 to 11 would be eliminated and

merged with the InternalAction from line 8. A RDSEFF does not allow two sub-

sequent InternalActions. They must be merged into a single InternalAction.

The InternalAction of the method doSth of class B (lines 23 to 26) would also

be merged into this InternalAction. Due to the merge of class A and B, the pro-

vided interface SecondInterface of class B could be removed from “C2-1” which

eliminates doSth from the list of provided services.

The ExternalCall in line 6 would be removed as class B is now component-

internal and the loop from lines 19 to 21 would be inlined. The ExternalCall

136

5.9. Implications of Component Boundaries on the RDSEFF Abstraction

in line 20 would be preserved. The remaining behaviour model would stay the same

including the component representing class C. This lowers the number of control flow

statements by 5 compared to the previous version where the classes A and B where

separated into different components.

<<InternalAction>>

<<ResourceDemandingSEFF>>
C2-1: providedService(int a)

<<LoopAction>>
<<InternalAction>>

<<ResourceDemandingSEFF>>
C2-2: aService(int a)

<<ExternalCall>>
AnInterface.aService()

<<LoopAction>>

<<ExternalCall>>
AnInterface.aService()

Figure 5.13.: RDSEFFs for the coarse-grained components C2-1 and C2-2

5.9.3. Size of the Resulting Control Flow

The example illustrates how larger coarse-grained components can result in stronger

abstractions (with less complexity in total) although more lines of code are cove-

red. Generally, also counterexamples can be found. In the worst case, the number

of control flow statements of two classes (Ctrl1 and Ctrl2) which are merged into

a single component is the sum of both control flow statements. Compared to sepa-

rate components for each class, no additional statements can originate from merging

classes into larger components:

card(Ctrlmax) ≤ card(Ctrl1) + card(Ctrl2)

with card(x) being the cardinality of a set x. In the worst case:

137

Chapter 5. Reverse Engineering Behavioural Models

• No two consecutive InternalActions result from method inlining (the are no

two consecutive class methods that end and start with an InternalAction)

and

• no ExternalCall can be removed as no two classes exist in the merged com-

ponent that access each other (Ctrln has no direct call invoking Ctrlm, with

m �= n).

Most complexity is generally removed due to method inlining and merging conse-

cutive InternalActions which are not allowed in a sequence. If the control flow

of a class’ method ends with an InternalAction and the control flow of the next

class’ method starts with an InternalAction, both InternalActions are merged

into a single one. Hence, the selection of component boundaries is suitable to steer

the abstraction level of behaviour models.

Generally, the number of control flow elements (InternalActions, Branches,

Loops, ExternalCalls, ...) of two merged classes is

card(Ctrlmerged) = card(Ctrl1) + card(Ctrl2)

− card(consecutiveInternalActions(Ctrl1, Ctrl2))/2

− card(callsBecomingInternal(Ctrl1, Ctrl2))

− card(transitivelyDependingOn(

callsBecomingInternal(Ctrl1, Ctrl2)))

where all of the above methods are applied to classes as if they where components,

with:

• consecutiveInternalActions(Ctrl1, Ctrl2) returns those Internal-

Actions which after merging Ctrl1 and Ctrl2 are directly successive.

• The set of method calls which become internal is:

callsBecomingInternal(Ctrl1, Ctrl2) = p(Ctrl1, ExternalCall)

+ p(Ctrl2, ExternalCall)

− p(Ctrl1 ∪ Ctrl2,

ExternalCall)

is the selection of all ExternalCalls which are considered component-

internal due to the merge, with the projection p(A, t) := {a ∈
A | typeof(a) = t}. typeof(a) determines the types of element

a as introduced earlier. Ctrl1 ∪ Ctrl2 is the merged control flow.

callsBecomingInternal(Ctrl1, Ctrl2) directly depends on a component’s

interfaces and thus on component granularity.

138

5.10. Dynamic analysis for creating RDSEFFs

• transitivelyDependingOn(Ctrl) are all control flow statements transiti-

vely selected by the second phase of the algorithm described in Section 5.8.1.

Due to the transitive selection, the selection applies to multiple recursion le-

vels.

5.9.4. Conclusion: Increasing the Abstraction Level

Since the control flow abstraction of RDSEFFs follows fixed rules, the only way

to increase the abstraction in the control flow of RDSEFFs is to use coarse-grained

components which comprise a large number of classes. As this section showed, in

general, the control flow size of coarse-grained components is smaller than for fine-

grained components.

Scalability and time complexity of the static control flow analysis will be discussed

in Section 5.18 together with the dynamic analysis.

The dynamic analysis which is presented in the next section, operates directly on

the reverse engineered control flow structures and uses the RSEFF control flow to

find instrumentation points. An increased control flow abstraction is thus suitable to

reduce the number of instrumentation point and by that lowers the effort of dynamic

analysis. The data flow can be abstracted further without needing to increase the

granularity of components, as will be pointed out in the next sections.

5.10. Dynamic analysis for creating RDSEFFs

SoMoX

Beagle

<<LoopAction>>

data flow

con-
ditions

Dynamic program analysis means executing a program and moni-

toring its behaviour at runtime (cf. [NNH99]). When monitoring

for example two classes A and B, from the data captured at run-

time, typical dynamic analysis approaches can derive the number

of calls from A to B which occur at runtime. Using static analysis

approaches, the number of method invocations between two classes

is hard to analyse [Ern03]. If for example A calls B within a loop,

the number of iterations for which that loop is executed, must be

calculated from code. Opposed to static analysis, dynamic analysis can monitor the

number of executions of a loop or the number of invocation of a certain method

instead of performing complex static analyses like symbolic execution [Kin76].

Besides call relations and the number of executions of control flow statements, the

propagated usage profile of an application is available at runtime. If an application is

executed, parameter values can be monitored along with the program execution. The

propagated usage profile are the input parameters of a component or software system

after their transformation through methods executed before entering those sections

of a software system which are under study. In static code analysis, parameter va-

139

Chapter 5. Reverse Engineering Behavioural Models

lues, except for constants cannot be known. Parameter values are only a property

of executed code since the usage profile of a software system which determines the

parameter values generally is not fixed.

The remainder of this section first introduces dynamic analysis in the context of

the developed Beagle approach and presents the purpose of dynamic analysis in the

approach. This introduction is accompanied by a discussion of the execution test bed

and specialties of dynamic analysis in Beagle. Then, in Section 5.10.2, instrumenta-

tion points which are derived from the RDSEFF control flow structure are presented,

before Section 5.10.3 details on captured data and Section5.10.4 introduces heuris-

tics for data capturing. Section 5.10.5 discusses how data is uniquely captured across

space and time, Section5.10.6 briefly introduces the instrumentation strategy, Sec-

tion 5.10.7 shows the data recording infrastructure, while Section 5.10.8 concludes

with the aggregation of monitoring data.

5.10.1. Dynamic Analysis in the Beagle Approach

Beagle uses dynamic analysis as a base to reverse engineer parametric dependencies.

Opposed to the previous static analysis step, the dynamic analysis does not directly

result in a reverse engineered model element, instead it forms the base for further

analyses (machine learning, statistical analysis). The ultimate goal of dynamic ana-

lysis in the Beagle approach is to reverse engineered parametric dependencies (i.e.

parameterised data flow and parameterisation of control flow; see Section 2.7 for the

definition).

Instrumen-
tation Monitoring

Data
Aggrega-

tion

Machine
Learning

Control
Flow

Behaviour Analysis

Genes

Test Cases

Artefact Working
Area

Processing

Legend:

Output-
Input-

Relation
3rd Party

3rd

Statistical
Analysis

3rd Parame-
tric Depen-

dencies
Dynamic Code Analysis

Figure 5.14.: Dynamic analysis: Excerpt of behaviour analysis

140

5.10. Dynamic analysis for creating RDSEFFs

Figure 5.14 highlights the relevant parts of dynamic analysis in the overall ap-

proach. The control flow abstraction introduced in the previous Section 5.8 is a pre-

condition to dynamic analysis as it identifies the control and data flow elements for

which parametric dependencies must be reverse engineering during dynamic analy-

sis.

In the Beagle approach, dynamic analysis serves two purposes:

• Base for Statistical Analysis. Monitoring results serve as input of the statis-
tical analysis, which approximates parametric dependencies. Statistical ana-

lysis is used to complement the results from static and dynamic analysis. So-

called Multivariate Adaptive Regression Splines (MARS, [Fri91]) are used to

approximate the parametric dependencies between input and output values.

Section 5.14 will detail on MARS.

MARS contributes rapidly computable approximations of parametric depen-

dencies which improve the initial generation of machine learning. Precedent

statistical analysis increases the convergence speed of machine learning. Sec-

tion 5.11 details on machine learning.

• Judge Precision. Monitoring results serve as “reference” to judge on the pre-
cision of the later machine learning step. At runtime the developed dyna-

mic analysis approach monitors the input and call parameter values, selected

branches, and the number of loop executions (cf. Section 2.7). The monitored

results are fed into the machine learning approach which from these values

judges on the quality of its results by comparing predicted values and monito-

red values.

If, for example, the parameter a of providedService(int a) in Listing 5.8

is monitored as 5 which results in a call parameter of value 15 in line 6 but

a parametric dependency created during machine learning results in a value

of 14, the deviation is used to estimate the precision of the machine learning

results. Details will be discussed further in Section 5.11.4.

To enable dynamic analysis, the executed code or the execution environment need

to be instrumented to capture data (cf. Figure 5.15, “Instrumentation ”). This implies

a certain overhead compared to execution without instrumentation. As the approach

presented in this thesis does not rely on timing values during the creation of its model

(cf. discussion in Section 3.3.2), monitoring overhead does not impact the precision

of the approach. The envisioned dynamic analysis is precise by construction, since

monitored values are non-timing values and can be measured without disturbance.

For example, the input parameters of a provided service or the call arguments of an

external call can be directly measured opposed to response time or throughput which

would be impacted by any overhead of monitoring.

141

Chapter 5. Reverse Engineering Behavioural Models

Instrumen-
tation Monitoring

Data
Aggrega-

tion

Instru-
mented

Java Code

Gathered
Raw DataJava Code Aggre-

gated Data

Test Bed

Test Cases

Control
Flow

ArtefactProcessing

Legend:

Output-
Input-

Relation

Instrumen-
tation Monitoring

Data
Aggrega-

tion
Dynamic Code Analysis

Genes

Gene
representation of
aggregated data

Figure 5.15.: Dynamic code analysis

Performing dynamic analyses requires a program to be executed. Load drivers

or unit tests [ZHM97, MPP07, CL02] can serve for driving the execution (cf. Fi-

gure 5.15, “Test Cases” and “Test Bed”) . To gain discriminative values, the exe-

cution should result in a simple branch coverage (cf. [MBTS04]) plus each loop

being executed with at least two different numbers of iterations. Discriminative va-

lues are required to make parametric dependencies identifiable. If for example input

integer values of a method in the range from 0 to 10 always result in the selec-

tion of an if branch and any other values in execution of the else branch, unit

tests must contain values larger and smaller than the threshold of the if branch.

Otherwise, the else branch would not become identifiable for the dynamic ana-

lysis approach. For this approach, we assume unit tests to be available (see for

example the corresponding approaches for deriving test cases from source code in

[BALS08, TS06, PV09, McM04, LMS+99]). This will be discussed further in the

limitations and assumptions Section 9.10.

If the application under study has been successfully executed in the test bed, the

raw data gathered at runtime is being aggregated (cf. Figure 5.15, “Data Aggrega-

tion”). Besides the aggregated data, a gene representation of the aggregated data is

created which can be handled by the machine learning approach.

The dynamic analysis of Beagle assumes to deal with oblivious algorithms which

have a deterministic behaviour and do not possess an internal state. Further limita-

tions and assumptions are discussed in Section 9.10.

The following sections will detail on the dynamic analysis of Beagle.

142

5.10. Dynamic analysis for creating RDSEFFs

5.10.2. Instrumentation Points

Before monitoring data can be captured, the code needs to be instrumented. During

dynamic analysis, sufficient information needs to be captured to enable the reverse

engineering of parametric dependencies for control and data flow. Too few instru-

mentation points prevent reverse engineering the full behaviour of a component. At

the same time, it is desirable to avoid unnecessary instrumentation points to limit

the measuring overhead. The places where to instrument the source code depend

on the abstraction level and thus on the component boundaries. For example, any

control flow which is inside an InternalAction (including private method calls at

the class level) results in just a single node. Hence, any internals should not be consi-

dered during monitoring. No corresponding instrumentation for such control flow

elements is required. The performance impact of InternalAction is accounted for

by a separate approach which is presented in Section 5.16.

To facilitate an instrumentation which is aligned with the component abstraction

level, the static control flow analysis from Section 5.8 is a prerequisite. From the

control flow abstraction produced in static analysis, the required instrumentation

points can be directly derived. For example, those loops (for or while) which re-

sult in a LoopAction are identified. Only points identified in the static analysis as

component-level control flow are instrumented in this step.

To recapitulate, the component-level control flow of RDSEFFs identifies Exter-

nalCalls and differentiates them from method calls to API or private (component-

internal) methods, LoopActions which are relevant at the component-level (i.e., they

recursively contain ExternalCalls), and BranchActions which are relevant at the

component-level.

At the class-level, this results in a number of instrumentation points to capture

the full control and data flow at runtime. The monitoring is then, in a second step,

inserted at the following places, PositionTypes:

• MethodCall. At the beginning of each provided component service the input

parameters are captured. For each input parameter its parameter characterisa-

tions are recorded. Furthermore, the fact that a method is entered is recorded.

This helps in a later stage to uniquely identify call traces within components.

• InIteratorStatement. Inside each loop identified in the RDSEFF. Here, the

number of loop executions is captured. No further data is captured.

• InBranchStatement. In each branch to record selected branches. For if-then-

else constructs, if and else branches are distinguished. For switch statements

or multiple if-then-else statements, also each case is identified uniquely.

143

Chapter 5. Reverse Engineering Behavioural Models

• BeforeReturn. Before the return statement of a provided component service the

fact that a method is exited is recorded. For non void methods, the parameter

characterisations of the return values are recorded.

• BeforeExternalCall. Before every ExternalCall to capture input data for

external services. For each input parameter of that method the parameter cha-

racterisation are captured.

• AfterExternalCall. After every ExternalCall to capture the return data of an

external service as that data serves as input data to the monitored method. The

return value of that method is captured in terms of its parameter characterisa-

tions as specified in the component interface.

All other loops, branches and method calls are omitted for the monitoring step. This

also keeps the later monitoring overhead exactly at the level required for a RDSEFF

reconstruction.

5.10.3. Captured data per measuring point

The Beagle approach intentionally does not capture the full data flow in detail to

avoid unnecessary instrumentation overhead. For performance, often strong data

abstractions are sufficient to capture the performance behaviour of a component. For

example, in general the second byte of a list does not determine the remainder of

the control flow and thus impact the performance. Instead, the number of elements

of a list in most cases is determining the performance as each iteration over that list

consumes computation power. These parameter characterisations were first introdu-

ced by Koziolek [Koz08a].

At each instrumentation point, the monitoring captures those parameter characteri-

sations (cf. Section 2.7.1) which have been identified as performance-relevant in the

component interface. If for example a List input parameter of a method is passed to

another component (ExternalCall), most likely the NUMBER_OF_ELEMENTS

attribute is identified as performance relevant in the interface and consequently cap-

tured during monitoring. For each instrumentation point, the parameter characterisa-

tions which must be monitored are derived from the component’s interfaces.

Apart from the parameter characterisations specified in the component interfaces,

a number of heuristics is available with the approach. These heuristics identify pa-

rameter characterisations which can be recorded in addition to the interfaces or can

be applied as a fallback if no parameter characterisations are specified in interfaces.

Section 5.10.4 will further detail on these heuristics.

144

5.10. Dynamic analysis for creating RDSEFFs

5.10.4. Heuristics for Parameter Characterisations of
Interfaces

Parameter characterisations can either be manually specified in the component in-

terface as described above or heuristically derived. In cases where enriched com-

ponent interfaces (holding information on performance-relevant parameter characte-

risations) are not available, the heuristics presented in this section can serve as helper

and fallback mechanisms (see Figure 5.16). For reverse engineering scenarios, these

heuristics can complement the specified parameter characterisations. Users do not

have to specify all parameter characterisations but select from a number of parameter

characterisation proposed by heuristics and add further self-defined characterisations

for complex cases where heuristics cannot propose the right parameter characterisa-

tions. This lowers the overall effort for reverse engineering component-based models

and complements the reverse engineering capabilities of interfaces introduced in Sec-

tion 4.8.6.

As any for parameter, performance-relevant characteristics are captured by the pa-

rameter characterisations and for more complex cases by complex data types which

both belong to the component interfaces (cf. Section 2.5). Hence, manually specified

interfaces and heuristically identified parameter properties are both translated into

regular structures of PCM component interfaces.

Default
Heuristics

Selection of proposed Characteristics

(Optional)
User-defined

Heuristics

Recursion
Heuristics

Interface-Specified
Parameter

Characteristics

Instrumentation

Interface
Parameter

Characterisations

Specified by User

Provided by User

External
Domain Expert

Domain Expert

Reverse
Engineer

Figure 5.16.: Heuristics for selection of parameter characterisations

145

Chapter 5. Reverse Engineering Behavioural Models

Generally, it cannot be decided which data properties are of importance for the

reverse engineered models. During monitoring, heuristics are used to identify im-

portant parameter characterisations. These heuristics capture best effort rules for

potentially important performance characteristics. Please note that these properties

are optimised for capturing performance effects and intentionally leave out functional

aspects.

Heuristics The heuristics for the parameter characterisations indicate which data

properties to monitor. The application of heuristic depends on the type of the para-

meter. The heuristics are:

• For primitive types (i.e. int, float, boolean etc.): their actual values

(VALUE characterisation). The value of primitive data types can for example di-

rectly impact the number of executions of a loop or decide on executing an if

or else branch and are thus likely to impact the performance of a component.

• For all one-dimensional arrays (e.g. int[], String[]), Collection, or Map

types: the number of their elements (NUMBER_OF_ ELEMENTS characterisation).

As already pointed out in the examples above, arrays and collection types are

often subject for iterations. Iterations per se are subject for impacting the

performance. Opposed to that, the concrete content of the array is often not

impacting performance since the calculation time does only vary little from

element to element.

• For one-dimensional arrays of primitive type (e.g. int[], boolean[]), ad-

ditionally aggregated data, such as number of occurrences of specific values

in an array (e.g. the number of ‘0’s and ‘1’s in an int[]) is proposed by

the heuristics. A PCM ComplexDataType is therefore derived which speci-

fies for example the VALUE characterisation of INNER.one/INNER.zero. The

idea behind the heuristic is that when for example filtering a data structures,

this is decided based on primitive data types for performance reasons to allow

fast element comparison. If filtering is based on primitive types, counting the

number of occurrences gives hints on the size of a filtered array (of less size;

e.g. an array of zeros) which is then further processed.

• For a multi-dimensional array (e.g. String[][]): its size, plus results of

individual recording of each included array (as described above) are propo-

sed. The above heuristics can be applied to the elements of the array which

itself represent an array type. A PCM ComplexDataType is derived for the

multi-dimensional array which holds the properties of the inner array (INNER

property of the complex data type).

146

5.10. Dynamic analysis for creating RDSEFFs

The described heuristics can be applied to component interfaces without a-priori

knowledge about their semantics. In general, supporting complex data types (e.g. ob-

jects, structs, or any self-defined type) requires domain knowledge to identify impor-

tant performance properties of these data types. Still, generic data types are used very

often, and the presented approach can support the selection of parameter characteri-

sations or even handle these cases automatically through heuristics. The validation

in Section 7 will investigate the applicability of the presented heuristics.

Complex Data Type Heuristics To complement heuristics for primitive data

types, a heuristic for the handling complex data types is proposed: A default heu-

ristic for complex data types is to traverse all public fields and getters of an object

recursively. In a transitive query, fields and getters of a data type are queried until fin-

ding primitive data types or data types for which the above listed data properties can

be captured. For each recursion step, all primitive and collection data type properties

are recorded.

complexDataTypeProperties = transClosure(t,

{tsub ∈ t.fields | tsub.visibility = “public”}
∪ getters(t)

)

where t is a data type of a parameter for which to apply the complex data

type heuristic, getters(t) are getter methods of type t, and, as earlier,

transClosure(t, Attributes) is the transitive closure, starting from t for the

attributes of the set Attributes.

To avoid infinite or unwanted complex recursion, additional stop criteria can be

applied:

• This approach can also be limited to either public fields or getters, by reducing

the set Attributes to the first or second element.

• The recursion underlying the transitive closure computation can be stopped

after a certain depth n.

The approach is held extensible. Users can add own type-specific heuristics (cf.

Figure 5.16) to describe important (performance-relevant) parameter characterisa-

tion of a data structure. For each data type a chain of responsibility is applied: First

user-defined heuristics, then default heuristics (as described above), and finally a full

recursion (for complex data types) can be applied. The PCM supports parameter

characterisations for an unlimited number of properties of ComplexDataTypes and

adding additional information does not harm the dynamic analysis. Thus additio-

nal heuristics cannot conflict with each other. The user has to limit the number of

147

Chapter 5. Reverse Engineering Behavioural Models

heuristics only for limiting the monitoring overhead associated with extensive instru-

mentation.

Manually specified Information If users input information on parameter cha-

racterisations for a certain data type to the approach (cf. Figure 5.16, “specified by

user”), this information is directly translated into the PCM interfaces. Such informa-

tion is especially valuable for complex self-defined data types. No further heuristics

need to be applied in this cases – still, heuristics can be used for complementing

parameter characterisations.

For standard libraries (e.g. Middleware), corresponding PCM components and

interfaces can be created. These interfaces can be offered from a repository and in-

clude pre-defined parameter characterisations. This reduces the effort of dealing with

software which uses standard libraries since the procedure of identifying parameter

characterisations is required only once.

Combining Information Sources All parameter characterisations identified by

heuristics are ultimately proposed to the user (cf. Figure 5.16, “Selection of proposed

Characteristics”), selected heuristics are translated into parameter characterisations

of component interfaces. Hence, the selected parameter characteristics identified via

heuristics extend the previously specified component interfaces contributed by So-

MoX. Both sources of parameter characterisations (heuristics and specified ones)

are combined to have an unique and consistent model representation of required pa-

rameter characterisations. Performance affecting properties of parameters are thus

formally captured in the model. The instrumentation phase can then look up the

parameter characterisations in the components interfaces.

For scenarios which aim at full automation, the manual selection of parameter cha-

racterisations can be omitted. In these cases, all parameter characterisations proposed

by the heuristics are used during dynamic analysis.

Applications of Static Analysis In the existing implementation of Beagle, heu-

ristics for the identification of parameter characterisations are not based on static

analysis techniques. Still, it would be beneficial to employ techniques such as sli-

cing. If an input parameter is part of the same slice as an output parameter, the

parameter should be respected in the corresponding component interface – otherwise

the parameter should not be monitored at all.

For future work a more complex heuristic could statically analyse the methods or

classes under investigation (which are being monitoring at runtime after instrumen-

tation) and find out the fields and getters that are accessed directly. Then monitoring

can limit recording to attributes of data structures that are actually used. For these

fields and getters the above heuristics can be applied again. For example, a public

field which is additionally available via a getter should not be monitored twice.

148

5.10. Dynamic analysis for creating RDSEFFs

5.10.5. Uniqueness of Captured Data

During monitoring, each call to the system and each logging position in the system

must be uniquely identifiable to enable later analysis of monitored data. If a user

requests a provided service of a component, control and data flow which is issued by

that request should be traceable throughout the component to allow to relate moni-

toring statements to each other. For example, an input parameter of type List over

which a loop iterates can only be traced in dynamic analysis, if the request can be uni-

quely identified at the time of the method call and in the loop iterations. The unique

identifier of a request is hereafter referred to as LoggingTraceID. LoggingTraceID

is unique for a request. If systems have multiple requests (even in parallel) this ID

remains unique.

Execution

Threads

Class

invoke1, invoke2, invoke3, ...

Lo
gg

in
gP

os
iti

on
ID

Logging
TraceID

Figure 5.17.: LoggingTraceID and LoggingPositionID

Besides the trace of monitored data, the position of single instrumentation points

must be captured to later match multiple runs of the same event type (e.g. method

call, loop entrance, etc.) to each other. Such a position must be unique across a

whole software project and have a resolution of a single line. This position identifier

is referred to as LoggingPositionID. The LoggingPositionID is unique for the logger

position which means being identifyable across all classes, methods, lines and control

flow statements of a software system.

Both, LoggingTraceID and LoggingPositionID together, allow tracing calls over

time and space in software systems. Figure 5.17 illustrates the two IDs. Horizontally,

the trace and vertically the position is visualised.

149

Chapter 5. Reverse Engineering Behavioural Models

For each execution of a instrumentation point, a tuple the following data is moni-

tored and logged:

datapoint := (pt ∈ PositionTypes, e.g. MethodCall or BeforeExternalCall

datatype, e.g. Integer, Boolean

datavalue, e.g. ‘1’ or ‘true’

LoggingTraceID,

LoggingPositionID)

LoggingTraceID and LoggingPositionID are defined below, datatype is the

fully qualified name of the data type. The data value itself is stored as a string to

enable a unique database representation which. Since the data type is available from

the recorded data, type safety is ensured.

LoggingTraceID LoggingTraceID ensures an unique identification of each re-

quest within the provided services of a component, i.e. the logging intentionally

does not distinguish component-internal method calls:

LoggingTraceID := hash(tid, run,methodprovided, classfqn, count, loggerid)

where: tid the current thread id, run the test run number maintained by the developed

monitoring (cf. Section 5.10.7), methodprovided the name of the provided method,

classfqn the fully qualified name of the class holding the provided method, loggerid
the local instance name of the logger, and hash() a hash function. count is the count

of the provided method’s invocations. It is only increased for method invocations of

the provided method from the component interface.

LoggingPositionID For the LoggingPositionID less information is required to

uniquely identify a position in the source code:

LoggingPositionID := hash(classfqn,methodfqn, line)

where classfqn is the fully qualified class name of the encapsulated statement,

methodfqn the fully qualified name of the encapsulating method (e.g., void

doSth(int, long)), and line the line number in the code (original line number

before instrumentation).

This allows a distinction of the logging position at the line level. No further lo-

wer granularity (e.g. token number) is required for the presented approach, but could

be easily integrated. If a program is written in a “single-line-style” (do a=a++;

b=b++; while(..)), the code is first unrolled to multiple code lines prior to ins-

150

5.10. Dynamic analysis for creating RDSEFFs

trumentation. Otherwise, the line number of LoggingPositionID would not be unique

for a logging position. Alternatively, the LoggingPositionID calculation could be ex-

tended by the token number to support a unique LoggingPositionID for such a code

style.

5.10.6. Instrumentation

During instrumentation, for each measurement point identified in Section 5.10.2, a

logger statement is inserted into the source code. The logger statement is responsible

for monitoring the code execution. An aspect-based solution (e.g. based on AspectJ

[Ecl09]), is not sufficient, since AspectJ cannot insert aspects into control flow state-

ments (e.g., in a loop), which is required in this approach. Only method caller / callee

granularity is supported by AspectJ. Unlike Briand et al. [BLL05, BLL06], the ap-

proach presented in this thesis, does not introduce artificial method calls at control

flow statements to overcome the limitations of AspectJ, but directly manipulates the

abstract syntax tree of Java programs through the Eclipse Java Development Tools

(JDT).

To ensure limited overhead at runtime, the logging is fully unrolled at instrumen-

tation time, i.e., all parameters are named explicitly and the corresponding parame-

ter characterisations are fixed after instrumentation time. Specifically, no reflection

mechanisms etc. are required by the logging. Calculating the LoggingPositionID re-

quires line numbers to be available. Any Java-based approach which needs to access

line numbers at runtime must throw an exception, parse the stack trace and only then

can infer the line number (cf. [Apa09], documentation on the class LocationInfo).

This results in a high overhead. Although the developed logging supports the infe-

rence of line numbers via the stack trace (in the same way Apache log4j [Apa09]

does), the approach by default intentionally writes the line numbers to the logger sta-

tements at instrumentation time to lower the measurement overhead at runtime (i.e.

the line number do not need to determined at runtime in the developed approach).

When writing the line numbers, the original line numbers (before inserting logger

statements) are preserved to ensure traceability.

5.10.7. Data Recording Infrastructure

Collecting measuring data during the execution of a component-based application

requires a corresponding data recording infrastructure. Measurement data should be

centrally available to ease data aggregation. The storage and integration of data in a

database eases the data aggregation since data can be easily accessed by formulating

data queries. Due to the nature of the target applications, the recording infrastructure

must support distributes scenarios, run with application servers which might have

restrictive security policies, and support concurrent executions. For convenience rea-

151

Chapter 5. Reverse Engineering Behavioural Models

sons, the infrastructure should be easily set up and perform well. The infrastructure

should also help keeping LoggingTraceIDs (cf. Section 5.10.5) unique across mul-

tiple analysis runs.

Specific Requirements to the Monitoring Framework The required monito-

ring framework has to deal with a number of specific requirements, which are not all

covered by any single existing monitoring framework. Nevertheless, a large number

of monitoring frameworks exist (e.g. [Apa09, RvHG+08, KLM+06]) which cover a

subset of the required aspects. Unfortunately, no framework exists which exactly fits

the requirements:

• Distribution. Systems running in distributed environments must be supported.

• Concurrency. Systems Under Test (SUT) are potentially installed within envi-

ronments that are concurrently accessed and might contain additional internal

concurrency (threading).

• Parameter Characterisations. Method and constructor parameter characteri-

sations must be tracked instead of only parameter values. Heuristics for the

identification of parameter characterisations should be supported.

• No class loader control. The monitoring framework must not rely on load time

changes to classes. As for example application servers need to be supported as

environment for SUTs, no control over class loading etc. is generally available.

Communication and multi threading must conform to the specific requirements

of application servers.

• Request tracking. Single user request should be able to be related to each

other. Multiple calls of the same provided service need to be distinguishable

(introduced before as LoggingTraceID).

• Location identification. The class, method, code line and parameter origina-

ting in a monitoring log must be tracked. If there are multiple monitors in

the same code section, they must be uniquely and individually tracked back to

positions in code (introduced before as LoggingPositionID).

Developed Solution Figure 5.18 gives an overview on the facilities required for

recording data in a distributed environment. The Beagle approach uses this infra-

structure to also support distributed execution. Control facilities (upper left box)

can be separated from the database server (lower left box) and deal with arbitrarily

distributed sensors. The initialisation and configuration still is centralised as the sen-

sors first contact the control facilities to set up themselves. Also the configuration

is responsible for setting up the database. The dynamical configuration of sensors

152

5.10. Dynamic analysis for creating RDSEFFs

Logging-Framework: Core

Sensors

Database: In-Memory or HDD

Aggregation
(offline)

Initialisation/
Configuration

Legend:

s

s

s

s

Figure 5.18.: Monitoring infrastructure in distributed scenarios

allows to install sensors with identical configurations but unique IDs. If for example

the database server is to be exchanged, the database access data can be configured

centrally.

For performance reasons, in this approach, collecting data is strictly separated from

aggregating and analysing data. First, all required data is collected with as little

overhead as possible; afterwards, time-consuming processing is applied.

To further enhance performance of the data recording framework, monitoring data

is locally cached for each sensor node. After a test run has finished, it then can be

transferred to the central node asynchronously. This reduces the runtime overhead

while performing the monitoring step, enables batch data transfers and thus results in

less overall runtime.

The developed data recording infrastructure is not tied to the RDSEFF control

flow structures. Instead, it is generally applicable to capture control and data flow of

source code elements identified via instrumentation points.

5.10.8. Data aggregation

After all data has been collected through the data recording infrastructure, data re-

sides in a database. At that stage, only raw data is present. For example, loop counts

are not available, as only “ticks” for each loop execution exists. In the data aggre-

gation phase, the raw data is converted to, for example, loop execution counts which

ease the later interpretation in the machine learning step.

During data aggregation, three basic actions are performed (see Listing 5.9). The

first steps aggregates loop counts, the second step aggregated data from multiple

153

Chapter 5. Reverse Engineering Behavioural Models

executions (i.e. multiple traces), and the third step provides the set of all inputs

across all traces for a certain output position.

1 Inputs

2 Ticks := Set of all monitored single loop executions

3 ExecutedBranches := Set of all monitored branch executions

4 ExternalCallParameters , ReturnValues := Sets of monitored data values

5 Inputsout := Result set of the potentialInputs relation

6 Traces := Set of all traces

8 / / 1) Loop execution ‘‘ ticks ’’ are aggregated to loop counts , branch executions are

transferred to non−executed branches (only the executed branch is ‘‘aware’’ of i ts

execution; the fact that a branch has not been executed is not recorded and must

therefore be calculated for other branches)

9 / / Set of (outputPositionId , aggregatedOutputData) tuples:

10 AggregatedDataPerPosition ← ∅
11 AggregatedDataPerPosition = aggregateLoops(Ticks) ∪ aggregateBranches(ExecutedBranches

) ∪ ExternalCallParameters ∪ ReturnValues

13 / / 2) Data is aggregated over multiple execution runs such that the measured results of

multiple runs for the same LoggingPositionID become available . This data serves as

a base for the following machine learning and statistical analysis steps .

14 / / Set of (traceId , outputPositionId , aggregatedOutputData) tuples:

15 AggregatedDataPerPositionAndTrace ← ∅
16 AggregatedDataPerPositionAndTrace = aggregateTraces(AggregatedDataPerPosition , Traces)

18 / / 3) Provide trace−specific input data for output position data .

19 / / Set of (traceId , inputPositionId , inputData, outputPositionId , outputData) tuples:

20 InputOutputRelatedTraceData ← ∅
21 InputOutputRelatedTraceData = aggregateInputOutput(AggregatedDataPerPositionAndTrace,

Inputsout)

Listing 5.9: Data aggregation steps

The data aggregation relies on the potentialInputs relation which has been in-

troduced in Section 5.8.5.3. potentialInputs relates input and output data to each

other, i.e. for each output LoggingPositionID (return value, method call arguments,

loop execution numbers, branch conditions) the valid input LoggingPositionIDs are

calculated.

154

5.11. Machine Learning

5.11. Machine Learning

SoMoX

Beagle

<<LoopAction>>

data flow

con-
ditions

Machine learning is central to the Beagle reverse engineering ap-

proach. It serves two purposes:

1. the calculation of parametric dependencies from dynamic

analysis data and

2. the integration of static, dynamic, and statistical analysis ap-

proaches; optimising the results of a single reverse enginee-

ring approach.

Thereby, the developed approach

• provides automated abstraction capabilities of parametric dependencies and

• allows a seamless integration of multiple reverse engineering approaches for

parametric dependencies.

For reverse engineering, multiple approaches exist, which have individual advan-

tages and disadvantages. As Ernst [Ern03] points out, static analyses are mostly

sound and precise but lack support of large-scale applications or are insufficient when

dealing with complex code (e.g. loops which have breaking conditions manipulated

inside the loop). Dynamic analysis approaches require the execution of broad para-

meter ranges of an application to be representative and can be time-consuming. But,

if they are applied at the right granularity, they can cover large and complex appli-

cations and for example deal with dynamic binding and runtime state. Statistical

analyses often can only provide approximations of parametric dependencies but are

robust and applicable to large amounts of data.

Generally, little approaches exist which integrate multiple reverse engineering ap-

proaches [BLL06, BLL05, WSH08]. Of these, none supports parametric dependen-

cies, performance abstractions, or integrate static, dynamic, statistical analyses. Only

few approaches claim component support (e.g. [WW04a]) of which most approaches

mean modules and clusters when saying “component” ([Kos02, MM06], cf. Sec-

tion 8), conflicting with the context independence of components presented in Sec-

tion 2.6.

Scientific Challenges of Abstract Performance Specifications There are

multiple scientific challenges in the field of reverse engineering which must be sol-

ved by the presented approach. First of all, the approach must enable the integration

of multiple analysis approaches (static, dynamic, and statistical) for the purpose of

reverse engineering. To be extensible, a seamless integration of analysis approaches

is required. To contribute to the field of reverse engineering, the integrated reverse

155

Chapter 5. Reverse Engineering Behavioural Models

engineering approach should exceed the capabilities of each single approach and the

optimality (cf. Section 2.9) of the results of the integrated approach should outper-

form the results of each single approach.

Since the approach is using machine learning as a form of meta-heuristics, the

optimisation criteria (e.g. abstractness and precision) need to be captured and the

optimisation problem (i.e. the search space and the search problem) needs to be

formulated. The key challenge for the field of reverse engineering performance mo-

dels is finding a performance abstraction from given input data provided by static,

dynamic, and statistical analysis. Related challenges arise from the field of genetic

programming [BNKF98] which is the selected machine learning technique in this

thesis. Genetic programming must be adapted for reverse engineering of behaviour

models.

Challenges and Contributed Concepts The three major research questions and

the corresponding concepts which Beagle contributes to the field of research of ma-

chine learning are:

1. ChallAbstraction: How to automatically provide abstractions for software per-

formance models?

ContribAbstraction is a model abstraction approach which handles the abstrac-

tion requirements of performance models (e.g. computation costs, precision,

understandability). The approach automates the finding of abstractions for

software performance models. The identification and formalisation of domain

knowledge on performance abstractions enable the automatic finding of per-

formance abstractions for model parameters which depend on a number of

other parameters.

Given an input model, the approach can create more abstract representations

of that model. The developed approach can also be used for manually crea-

ted models. If it is applied to manually created models, fine-grained details in

parametric dependencies of the performance models which contradict analy-

sability are automatically abstracted. The automation increases the usability

of performance modeling approaches and their applicability to large-scale sys-

tems.

Simple example: If a parametric dependency depends on 10 variables, covers

10 lines of text representation, and includes terms like 1 · 10−50 · x where x
is a variable, that parametric dependency is missing abstraction. In this case,

the abstraction capabilities of the Beagle approach could for example identify

the 5 most influential variables, reduce the length of the text representation to

2 lines, and remove the cited term to increase abstraction.

156

5.11. Machine Learning

2. ChallCombination: How to integrate and combine existing reverse engineering

approaches for the purpose of reverse engineering parametric dependencies?

ContribCombination is a general approach for the integration of multiple source

code analyses (e.g. static and dynamic analyses). Furthermore, the approach

enables the optimisations of the outputs of these source code analysis ap-

proaches with respect to a given fitness function which expresses optimisation

criteria (e.g. performance abstraction). The approach shows how to integrate

partial, faulty, and contradicting knowledge on approximations of parametric

dependencies.

The developed approach is agnostic of the original source of information (e.g.

static or dynamic analysis) and only relies on a common representation. For

a different approach of each field, a translation of input information to the

common representation is exemplarily shown. Through the general problem

representation and the optimisation approaches based on that problem repre-

sentation, this thesis contributes bringing static and dynamic analysis together

as claimed by Ernst [Ern03]. The developed approach even goes one step fur-

ther by allowing the optimisation of each single input.

Simple example: If the static analysis approach a is capable of identifying the

number of iterations of a loop to be dependent on parameter x and y, static

analysis approach b states the dependency to be y + z for that loop, while

a dynamic approach c claims that parameter y is invariant during execution

of the method surrounding the loop, this represents partial and contradicting

knowledge on a parametric dependency. The real parametric dependency de-

termining the number of loop executions could for example be y + 2 ∗ z.

The Beagle approach uses the combination of the inputs from a, b, and c to

determine an abstraction of the real parametric dependency.

3. ChallCharCurves: How to approximate software performance behaviour via

abstract models with multi-dimensional influence factors?

ContribCharCurves is a reverse engineering approach for performance beha-

viour models through genetic programming. Multi dimensional approxima-

tion problems of large search spaces can be effectively searched without a

priori knowledge.

The approach can also be used to estimate characteristic curves1 for multi di-

mensional performance behaviour approximation problems. Genetic program-

ming has been extended in such a way that it is applicable to performance

approximation problems which have multiple input parameters. The resulting

performance approximations are able to describe software components and

systems based on black box performance data [KKR08a].

1German: “Kennlinien”; cf. Section 2.9

157

Chapter 5. Reverse Engineering Behavioural Models

Simple example: Components have a large number of parameters, their per-

formance could potentially depend on (e.g. all input parameters and all return

values of called components). In order to establish a characteristic curve, re-

levant dimensions must be identified in the search space. Imagine a simple

component with 7 provided and 6 required interfaces, each containing 5 ser-

vices with 4 parameters. Assume that only 2 parameter characterisations for

each parameter are available (e.g. NUMBER_OF_ELEMENTS, BYTESIZE).

Each required service has a return value and is called from 3 different places

in the component. The number of potentially relevant parameters is then

7 · 5 · 4 · 2 + 6 · 5 · 3 · 2 = 280 + 180 = 460.

If no a priori knowledge is available internals (i.e. control flow structure and

parameter propagation), the combination of the 460 parameters forms a large

search space. Imagine simple control flow with just one branch with the condi-

tion p23 > 123 && p24 > 123, which is surrounding an ExternalCall. To es-

timate when the ExternalCall is triggered, the parameters p23 and p24 need

to have a value larger than 123. This could be specified by a characteristic

curve. The Beagle approach is able to create characteristic curves for large

search problems.

The following sections present details of the solutions which realise the contributions.

Solution Idea The solution idea to the above sketched challenges ChallAbstraction,

ChallCombination, ChallCharCurves is to use genetic programming, formulate the ab-

straction and optimisation needs in the genetic programming’s fitness function, and

capture the performance model in the genetic programming’s data structure. A uni-

fied representation of the results of each analysis approach as genes of genetic pro-

gramming enables further optimisations of the reverse engineering results. Further-

more, domain knowledge is encoded into the means of genetic programming (e.g.

mutation, crossover, and fitness function) to improve the reverse engineering results.

Genetic programming serves well in the desired scenarios since both, the abstract

syntax tree of the Stochastic Expressions language of parametric dependencies and

the genes of genetic programming are tree structures.

5.11.1. Overview and Introduction

A major contribution of this thesis is the application of machine learning to the re-

verse engineering of parametric dependencies of behavioural models. The applica-

tion of machine learning is handled at different levels in the following section. It will

be pointed out how the algorithm it set up, what the genes, fitness function etc. are,

which specific improvements were made to the field of machine learning (specifically

158

5.11. Machine Learning

genetic programming), how the abstraction level of RDSEFFs is handled, and how

parameteric dependencies are calculated.

To recall the importance of parametric dependencies (see Section 2.7 for a defi-

nition) which are reverse engineered through machine learning, consider Figure 5.6

from page 115. Parametric dependencies describe resource demands, parameter cha-

racterisations of parameters passed to other components, return values, loop itera-

tions, and branch conditions. Any parameterisation of RDSEFFs that depends on

data flow is realised via parametric dependencies.

Genetic Programming The Beagle approach uses genetic programming as ma-

chine learning approach – a specific form of genetic algorithms (cf. [Koz93]) suppor-

ting tree-like structured genes. Here, genes are a data structure to capture informa-

tion. Genetic programming is a heuristic optimisation technique which is applicate

to a large problem space which is present in the shown setting (cf. Section 5.11 and

Section 2.4 for an introduction).

Genetic programming is in the Beagle approach used to reengineer parametric de-

pendencies. Control and data flow are parameterised over input parameters of a pro-

vided service. Learned dependencies parameterise for example the number of times

a loop is executed, when a certain control flow branch is executed (the branching

condition), which data is passed to other components and how this data is related to

the input parameters.

Genetic programming is able to select appropriate input values and reject those

that are not relevant for a parametric dependency. This is especially important for

estimating control and data flow as the potential input space is large due to multiple

data characteristics monitored, of which not all need to be important. The following

sections will detail on the chosen genetic programming approach.

Extensions of Genetic Programming Figure 5.19 provides an overview on ge-

netic programming as applied in the Beagle approach. It combines inputs from static,

dynamic, and statistical analyses (left hand side) and creates optimised approxima-

tions of parametric dependencies (“Genes of optimised solution”, right hand side)

from them. The optimisation criteria are summarised in the next Section 5.11.2.

The contributed genetic programming approach is structurally equivalent to com-

monly used genetic programming [Koz93] as introduced in Section 2.4, but incorpo-

rates various extensions and adaptations. These extension and adaptations are neces-

sary to address ChallAbstraction, ChallCombination, and ChallCharCurves.

The specific enhancements are in summary:

• A gene repository which is filled with genes which encode domain knowledge.

So-called pre-configured genes represent knowledge which helps in reverse

engineering software performance models.

159

Chapter 5. Reverse Engineering Behavioural Models

Monitoring
Data

Artefact Working
Area

Processing

Legend:

Output-
Input-

Relation
3rd Party

3rd

Mutation Fitness
FunctionCrossoverFill

Generation Selection

Extension
Create valid
individuals via
crossover

Static
Analysis

Dynamic
Analysis

Statistical
Analysis

Chromo-
some

Repository

Extension
Pre-Configured
Genes

Termination
Fitness OK:
Stop evolution

Genes of
optimised
solution

Extension
Force abstractions

Extension
Balance
abstraction and
precision

Extension
Integration of
Monitoring Result
Data

Extension
Tree structure
chromosomes for
universal crossover
and mutation

Extension
Initial generation
built from analysis
results

Gene
Repository

Termination
Fitness not OK:
Evolve further

Figure 5.19.: Genetic programming overview

• A chromosome repository which holds individuals which represent results
from static, dynamic, and statistical analysis for the reverse engineering of

a single parametric dependency.

• Tree genes possess evaluation rules for determination of their value which

allow arbitrary subtrees resulting from mutation and crossover.

• Crossover and mutation operators are designed to foreclose the creation of
structurally invalid individuals.

• Mutations and fitness function are supporting abstraction.

• The fitness function is extended to balance abstraction and precision of re-

sults.

• If, due to the selection operator, a generation is incomplete, missing indivi-

duals of that generations are filled by special strategies from the gene reposi-

tory.

• Monitoring data from dynamic analysis is integrated into genetic program-

ming to estimate the precision of results.

Each step of genetic programming will be detailed in the following. The transferred

data between all steps from Figure 5.19 are genes; except for an additional fitness

value between the “Fitness Function” and “Selection” step.

160

5.11. Machine Learning

5.11.2. Abstraction Criteria

All of the following steps are designed to force strong component abstractions to

fulfill the aim of reverse engineering: a model which is a performance abstraction

of component behaviour. A good abstraction enables analyses of complex software

systems with hundreds of thousands of lines of code as case studies show [HBR+10,

BKR09, Bec08b]. Additionally, abstract models tend to be easier to understand for

humans, if also readability and understandability are abstraction criteria.

In this point, the presented approach especially overcomes the limitations of exis-

ting analysis approaches, which are generally not designed to generate performance
abstractions of component behaviour. Existing approaches from the field of sta-

tic analysis [CC77, Kin76] mostly emphasize correctness and soundness for their

analyses. Dynamic analysis approaches mostly focus on completeness (coverage of

executed programs) [EPG+07, NE02]. Statistical approaches provide means of abs-

tractions [Fri91, Lin93], but are not designed to provide performance abstractions.

Abstraction criteria for parametric dependencies include (details in Sec-

tion 5.11.4.1):

• Computation complexity

• Number of arguments

• Length of expressions

The following example illustrates parametric dependencies of different abstrac-

tions levels. In the following example, the If-Then-Else constructs of the expression

have only very limited impact on the precision of the results:

1000.0 ∗X.VALUE ∗ EXP(Z .VALUE) +

IF(Y.VALUE > 0) THEN (0.001 ∗X .VALUE) ELSE (0.002 ∗X .VALUE)

Here, both branches of the If-Then-Else construct add less than 2 ·10−4 percent to the

overall result of the expression and therefore can be omitted without loosing much

precision. Furthermore, the parameter Y could be removed since, independent of its

value, the overall expression is not changed much. Hence, a typical abstraction of

the above example could result in the following expression:

1000.0 ∗X.VALUE ∗ EXP(Z .VALUE)

This expression can be computer faster, involves less dimensions (Y is removed),

and has a smaller length which human would need to understand when reading the

expression. Still, in this example the introduced error due to the abstraction is less

than 2 · 10−4 percent. Section 5.11.4 presents the details of abstraction criteria.

161

Chapter 5. Reverse Engineering Behavioural Models

5.11.3. Genes and Chromosomes

The approach combines genes, each representing mathematical functions, to express

parametric dependencies of the RDSEFF model. As introduced in Section 2.4, the

genes in genetic programming are organised in a tree structure which represents a

chromosome. Each chromosome is an individual. In the following example, a simple

chromosome called IndividualA is shown in a linearised form. IndividualA could

for example specify the value of a parameter of an ExternalCall. It will be used as

a running example.

IndividualA = 0.001 ∗X .VALUE + IF(Y .VALUE > 0) THEN 1

The same chromosome has the following tree structure visible from Figure 5.20.

In the example, the “>” comparison is encoded into the IF-THEN gene and thus not

an argument.

Multiplication
*

Constant
"0.001"

Addition
+

Variable
"X.VALUE"

Variable
"Y.VALUE"

IF-THEN

Constant
"0"

Constant
"1"

Figure 5.20.: Tree structure of the genes

It can be seen that the gene tree structure of IndividualA is comparable to the

abstract syntax tree of parsed source code. Since parametric dependencies ultimately

must abstract parametric dependencies from source code (e.g. the one from Lis-

ting 5.10), the chosen gene structure basically has the same form like source code

structures.

Individuals which are composed from these genes can have a varying length in

the developed approach. As the length and tree structure (binary tree vs. trees with

arbitrarily many children) of the parametric dependency, which is going to be reverse

engineered, are unknown at the beginning of a genetic programming run, neither

length nor tree structure can be fixed.

162

5.11. Machine Learning

1 boolean calculateTax(int x, int y, List<Person> z) {

2 double tax = 0.001 ∗ x;

3 i f (y > 0) {

4 tax = tax + 1;

5 }

6 boolean result = C2. persistTax(tax , z) ; / / external call

7 return result ;

8 }

Listing 5.10: Source code example: The parametric dependency expressed by

IndividualA calculates the value of tax in persistTax(..)

The following sections introduce the different kinds of genes which are available in

the developed genetic programming approach, discuss characteristics of the chosen

genes, and reflect the design of genes and chromosomes.

5.11.3.1. Variable Genes for Input Parameters

For every input parameter characterisation of a provided service (e.g. size of an input

array, or value of a primitive type; in the example X .VALUE and Y .VALUE), a gene

representing that parameter characterisation in the resulting model is introduced. It

is representing that parameter as a variable. The input parameter characterisations

are available from the interface specification and have previously also been respected

during monitoring (monitoring data is available for them).

The mapping from parameter characterisations to genes results in symbolic re-

presentations of parameter characterisations. Each parameter characterisation pc is

represented by a tuple:

gene(pc) := (pc.parameter.name, pc.characterisation)

Such a “variable gene” is abbreviated to e.g. “X .VALUE” in textual representations.

The resulting set of genes representing input parameter charactersations is:

Genesinputs := {gene(pc) | pc ∈ Paramchar}

163

Chapter 5. Reverse Engineering Behavioural Models

where Paramchar are all parameter characterisations which are available for poten-

tial input parameters of a parametric dependency (output) which is to be reverse

engineered:

Paramchar :=
⋃

i∈potentialInputs(output)
i.collect(“characterisations”)

where potentialInputs(output) is as defined in Section 5.8.5.3 and collect-
(“characterisations”) collects the set of parameter characterisations for an potential

input parameter available via the “characterisations” attribute of parameters. For

example, consider the parameter z from Listing 5.10 and assume that the two

parameter characterisations are defined for z: NUMBER_OF_ELEMENTS and

BYTESIZE. Both parameter characterisations would result from collect(..) if it is

applied to z.

5.11.3.2. Constants Genes

To increase the convergence speed of the search, special constants genes

Genesconstants that have a predefined set of possible values V aluesCG or

ranges of allowed values (lower ≤ value ≤ upper either integer or float)

have been introduced to genetic programming. The value of a constant gene

constantGene ∈ Genesconstants is defined as:

constantGenevalue :=⎧⎪⎪⎪⎨
⎪⎪⎪⎩
v : v = random(V aluesCG) for discrete

values

v ∈ [lower, upper] : v, lower, upper ∈ R ∧ lower < upper if !integer

v ∈ [lower, upper] : v, lower, upper ∈ Z ∧ lower < upper if integer

where v is a random but constant value per instance of that gene, integer is a boolean

flag which indicates integer values if set to true, and random(Set) selects a random

element of Set.
These constants genes reside by default in the set Genes and can be used inde-

pendently of prior analysis approaches. For example, float values in between 0.0

and 1.0 (e.g. V aluesscaleDown = {0.1, 0.5, ..}) can be used instead of the full

float range to scale values down (e.g. 0.1 · x scales down x). Integer sets like

V aluesscaleUp = {10, 100, 10000, ..} can be used to scale up values (e.g. 100 · x)

and then can be refined by mutations (e.g. 102.3 · x). Although these kinds of

genes could be randomly created during mutations from a constant gene, the availa-

bility of “out-of-the-box” genes with such values increases the chances of selecting

them. Besides using these genes as predefined constants, they can also be used for

164

5.11. Machine Learning

1 float y;

2 i f (x < 0.4 | | x > 0.8) {

3 y = 0.5 ∗ x;

4 } else {

5 y = 0.5 ∗ x + 0.2;

6 }

7 for(i = 0; i < y ∗ 1000; i++) {

8 / / . .

9 }

Listing 5.11: Example: Non-continuous behaviour

the initial generation and be initialised with data from static or statistical analysis

V aluesstatisticalAnalysis. The resulting set of pre-defined values is thus specific to a

certain reverse engineering task:

V aluesCG := V aluesscaleUp ∪ V aluesscaleDown ∪ V aluesstatisticalAnalysis

The creation of the initial generation will be further discussed in Section 5.11.10.2.

5.11.3.3. Mathematical Operators

In addition to variables and constants, mathematical operations are used as genes.

Additionally, genes are made available for inequations (a ≤ b), if-then, and if-then-

else to support non-continuous behaviour (e.g. to reflect jumps caused by “if-then-

else” in the code). The support of non-continuous behaviour is especially important

due to the nature of calculations in source code.

Consider the example from Listing 5.11. Here, the calculation of a parametric

dependency is split into two branches. Hence, the function to be expressed by the

parametric dependency needs to be non-continuous. The number of iterations of the

for loop non-continuously depends on the value of x. The resulting values of y are

scattered (see Figure 5.21 for an visualisation).

In order to correctly approximate parametric dependencies from source code, cor-

responding genes are introduced. The set of mathematical operators genes is:

Genesmath ={power,multiplication,multiplication3, addition, addition3,

subtraction, subtraction3, division, sine, exponentialfunction,

inequations, if − then, if − then− else}
165

Chapter 5. Reverse Engineering Behavioural Models

Figure 5.21.: Example: Non-continuous function values introduced by branched cal-

culations depending on the value of X.

where genes ending with “3” are mathematical operators with three arguments (e.g.

addition3: a+b+c, subtraction3: a−b−c). The explanation of further semantics

of these genes is omitted here for brevity. More complex genes like if − then and

if−then−else are explained in the context of the fitness function in Section 5.11.4.

The varying number of arguments for each gene is discussed below together with the

definition of genes.

The precedence of gene arguments for their evaluation is encoded into the genes

themselves. Each gene states explicit precedence rules. Hence, the evaluation of

chromosomes is never ambiguous.

5.11.3.4. Characteristics of Genes

Genes have different numbers of arguments as can be seen from Figure 5.20. While

the multiplication has two arguments (sub nodes in the tree), if-then-else has three. To

ease later mutations of genes (the number of arguments must fit for valid mutations;

cf. Section 5.11.7), multiple versions of some genes exits. For example, multipli-

cation is also available as a three argument version which multiplies three numbers.

Hence, each gene with three arguments (e.g. addition with three arguments) can be

replaced by that version of the multiplication gene during mutation.

A (non-variable) gene ∈ Genesmath ∪Genesconstants is a triple:

gene :=(value, numberOfArguments, SubGenes) :

card(SubGenes) = numberOfArguments ∧
numberOfArguments ∈ N

0 ∧
value ∈ R (5.1)

166

5.11. Machine Learning

where value is the represented value (e.g. for an addition the value arg1 + arg2),
numberOfArguments is the integer number of sub-genes, and SubGenes is an

ordered set of sub-genes which contribute in the calculation of value. In the case of

mathematic genes gene ∈ Genesmath, the value can be calculated from the argu-

ments (numberOfArguments > 0). For constant genes gene ∈ Genesconstants,
the value is fixed.

A variable gene gene ∈ Genesinputs has only a variable value, which is assigned

by variableV alue with values recorded during monitoring (cf. Section 5.10):

variableV alue := gene→ v ∈ R

Section 5.11.4 details on the evaluation of variable genes.

The overall set of genes on which Beagle operates is:

Genes := Genesinputs ∪Genesconstants ∪Genesmath

The different genes (variables, constants, mathematical operator) presented before,

represent the set of available gene types, while Genes holds instances of genes. For

reasons of compactness, the following sections deal with instances of genes only.

Gene types are only discussed where necessary.

5.11.3.5. Design of Genes and Chromosomes

In the developed approach which is based on JGAP [Mef], each gene must return

a floating point number as its result. This unifies the type of arguments and return

types. The unification allows to omit type inference (resulting in reduced calculation

time for genetic programming) and simplifies mutation and crossover. Due to the

unification of type arguments, mutation can change single genes without affecting

whole individuals (e.g. replace an if − then gene by an addition3 gene; cf. Sec-

tion 5.11.7). Furthermore, crossover can interbreed arbitrary sequences of genes (e.g.

the condition of a if − then gene can be cut and replaced by arbitrary other genes;

cf. Section 5.11.6).

In order to map all arguments and return types to floating point numbers, the

inequation gene is for example returning 1 (representing true) or 0 (representing

false) when comparing two arguments. To avoid floating point arithmetic problems,

the comparison employs an ε environment.

Type inference, although being generally desirable in programming languages, for

a number of reasons is not supported in genetic programming.

i) Mutation would be strongly limited when using different types for arguments.

Due to the usage of a single result type, genes with the same number of argu-

ments can be replaced by each other without further overhead. If static analysis

167

Chapter 5. Reverse Engineering Behavioural Models

approaches would provide an integer, using the integer in a if-then-else gene

would not be possible straight forward as an argument in the condition which

would require a boolean argument. With the chosen unified representation,

an integer can be used directly in two different ways: as a constant argument

in the condition (IF(integer) THEN) or in an inequation (integer < X or

integer > X). Thus, every gene can replace every other gene.

ii) Without type inference, crossover and mutation cannot result in invalid indi-

viduals. This helps avoiding runtime overhead for the recognition of invalid

individuals. Usual genetic algorithms create individuals through crossover and

mutations, then perform a validity check, throw away invalid individuals (cf.

[Mef]), re-apply crossover and mutation until a valid individual arises. Hence,

avoiding invalid individuals by design helps saving computation time.

The arbitrary combination possibilities of genes ease the creation of diversity

among individuals. Diversity is required for genetic programming to overcome

local minima and cover the search space. If some points in the search space

could only be reached via “small paths”, it would become unlikely that they are

explored during evolution. Imagine a gene which had three typed arguments of

a certain type (e.g. string, boolean, and integer). If there are five incompatible

types in total, the chance of picking the right one during evolution is 1
5
. For the

combination of all three arguments, the chance of creating a valid chromosome

would be 1
5
· 1
5
· 1
5
= 1

125
. Thus, further means would be required to ensure valid

individuals. With the chosen design of genes, these means are not necessary.

iii) Chromosomes are not written manually by humans. Programming errors (er-

rors in the gene structure) are therefore not possible and do not need to be

recognisable based on the chromosome structure.

iv) The genetic algorithm framework JGAP which is used for the implementation

does not support type inference.

5.11.3.6. Gene Subsets

Ultimately, all genes can be made available for genetic programming. Genes are used

for the initial generation and the later evolution of individuals. During evolution,

mutations can exchange genes by others (with the same number of arguments).

For each genetic programming run, the number of available genes can be limited.

If static analysis states for example that there is no branching to be covered by a

parametric dependency, all if-then and if-then-else genes could be deactivated. This

could potentially increase the convergence speed due to less options in the solution

space. Still, in the approach used in this thesis, the full set of genes is used to not

artificially limit the expressiveness. The two reasons are:

168

5.11. Machine Learning

• The selection applied during genetic programming forms “natural” subsets of

genes after evolving a certain number of generations. Only genes which are ac-

tively present in individuals are used often in crossover. Mutation only brings

in a small portion of remaining genes. Thus, genetic programming is working

on a problem-specific subset of genes which does does not require a subset of

genes.

• Reducing genes to a subset can also be conflicting with the required expres-

siveness. If for example static analysis indicates that there are no branches in

the source code, jump statements can still be present in the code. A loop with

labels might require to have branches in the reverse engineered parametric de-

pendencies.

5.11.4. Fitness Function

The fitness function in the Beagle approach is used as a central element to find and

evaluate abstractions of component behaviour. A number of measures is taken to

provide abilities to deal with abstractions. The fitness function is always evaluated

for a whole individual. Since the fitness function is steering the evolution process,

it must provide gradual differences in the fitness evaluations of individuals to ensure

guidance. If for example two individuals only differ in a single gene which affects

the desired results (e.g. the first individual IndividualA is a little more abstract than

the second one IndividualB), this difference should be expressed by the fitness

function. During selection, those individuals with better fitness can be preferred.

Consider the following individuals of which IndividualA is from the running

example:

IndividualA := 0.001 ∗X.VALUE + IF(Y.VALUE > 0) THEN 1

IndividualB := 0.001 ∗ 0.9 + IF(Y.VALUE > 0) THEN 1

Here, IndividualA and IndividualB are nearly identical, except for X.VALUE

being exchanged by 0.9. IndividualA involves two variables (X and Y) while

IndividualB has only one variable Y . Thus, from the perspective of “abstraction”,

IndividualB is preferable over IndividualA. The fitness function should express

that IndividualB is more abstract.

The fitness of individuals is judged according to two basic criteria: The precision

and abstractness (cf. Figure 5.22). The precision is given by the deviation between

monitored values (see Section 5.10) and values predicted by the mathematical ex-

pression found by genetic programming. Abstraction is captured by the inverse of

complexity of expressions represented by individuals. Complexity should be lowe-

red so that expressions are understandable for humans if possible; low complexity of

expressions also increases the abstraction level provided by the overall expression. A

169

Chapter 5. Reverse Engineering Behavioural Models

number of complexity criteria is therefore evaluated to judge on the abstractness of

individuals and balanced with abstraction through weighted sums. Section 5.11.4.1

details how precision and abstractness are balanced.

In the above example, IndividualB was considered to be more abstract than

IndividualA but IndividualA could be more precise than IndividualB. Imagine

that X.VALUE would be a variable with a constant value of 10,000. Then, the values

calculated by IndividualB would be off. The precision of IndividualB would be

lower than the one of IndividualA. As a consequence, precision and abstractness

must be balanced.

The fitness function maps an chromosome c to a numerical fitness value:

FitnessFunction(c) := c→ fitness ∈ R

where c ∈ Generation is a chromosome of a Generation:

Generation = {c1, c2, ..}

and a chromosome c ∈ Chromosomes is a set of genes c ⊆ Genes which must

include all transitively reachable sub-genes of each a gene:

∀ gene ∈ c : g ∈ transClosure(gene, {‘subGenes’})⇒ g ∈ c

where transClosure(..) is applied to a set of a single element with semantics as

defined before.

5.11.4.1. Balancing Precision and Abstractness

Figure 5.22 visualises the stress field between precision and abstractness. Both, pre-

cision and abstractness, summarise a number of sub-criteria like expression compu-

tations costs or depth of chromosomes. The trade-off between precision and abs-

tractness cannot generally be decided since neither precision dominates abstraction

nor vice versa. As the example of IndividualA and IndividualB shows, various

cases are imaginable which require and a trade-off decision between precision and

abstractness.

In Beagle, the trade-off decision must be met automatically (without user interac-

tion), since every individual of genetic programming is evaluated in every generation.

Thousands of fitness function evaluations result from a single genetic programming

run which makes user interaction infeasible.

The developed fitness function employs weights for precision and abstractness

which proved to successfully balance precision and abstractness during evaluation.

Nevertheless, if more computation complexity resulting in longer simulation time

170

5.11. Machine Learning

Stress Field
Competing
Interests

Precision Abstractness

Measurements

Predictions by
Individuals

Human
Readability

Computation
Complexity

Expression
Length

Expression
Computation

Costs

Number of
Variables

Number of
Gene Arguments

Depth of
Chromosome

Legend:

Input to Measure /
Fitness Criterion

Figure 5.22.: Stress field of the fitness function: Precision vs. abstractness

and reduced human readability of parametric dependency expressions are acceptable

in a certain scenario, the weights can be adapted to prefer precision.

The weights have been balanced with respect to the application scenarios of the

Palladio approach. For precision, human readability, and computation complexity

(the latter are input to abstractness) boundaries have been derived for typical appli-

cation scenarios of Palladio. For example, human readability of expressions drops if

expression become to long and complex. An expression covering more than one line

is unlikely to be understandable. Furthermore, simulation of the reverse engineered

Palladio models should not last more than 10 minutes for quick response scenarios

which shall allow interaction with the PCM model performance simulation. These

boundaries helped in identifying default weights. The weights were determined for

multiple example systems such that the boundaries are not hit. Precision and abstrac-

tion are equally balanced. Precision has a default weight of wprecision = 50% and

abstractness wabstractness = 50% in the fitness function results.

Section 5.11.4.3 will further detail on all weights employed in the fitness function.

The conceptual elements of the fitness function are intentionally presented separate

from the concrete values. The calculation of the fitness function and criteria for

precision and abstraction will be presented in the following.

5.11.4.2. Fitness Criteria and Fitness Criteria Calculation

The presented fitness function picks up the ideas of the Generalized Cross Valida-

tion (GCV) (cf. [Sta09]) error measure which also incorporates model complexity.

It overcomes the limitations of error measures like least square error and generalises

171

Chapter 5. Reverse Engineering Behavioural Models

the problem of balancing model complexity and precision. As GCV is a general

error measure, it does not include domain knowledge. The introduced fitness func-

tions transfers GCV to the field of genetic programming and adds domain knowledge

represented as specialised abstraction criteria.

To compute for example the expression complexity, the fitness function considers,

among others, the depth of the tree of genes and the length of the resulting ma-

thematical expression. If a certain threshold is passed, the fitness of individuals is

reduced. For example, if the length of an expression exceeds a certain number of

genes, the fitness of the evaluated individual representing the expression is reduced

(Section 5.11.4.3 presents an overview the values of thresholds). Beyond this, a pa-

rametric dependency should conform to a number of additional criteria to provide

better abstractions. The following metrics evaluate the abstraction criteria of a single

individual (see also Figure 5.22) and its precision:

• For each mathematic expression, its computation complexity is determined.

For example, additions, subtractions and multiplications are less computation

intensive than square roots. Thus, easy to evaluate expressions are preferred.

The computation costs also depend on the number of terms in the expressions.

Each mathematical operation has costs attached. The computation costs for an

individual are the sum of costs of all its operations.

– The length of an expression is calculated from the individual string

lengths of each gene

mExpressionLength(c) :=
∑

gene∈c
StringLength(gene)

where StringLength(gene) determines the length of the string repre-

sentation of each gene. For example, the introduction of Section 5.11.3

and IndividualA show the string representation of chromosomes. The

length mExpressionLength(IndividualA) is 32.

– The expression computation costs depend on the type of genes a chromo-

some comprises. In order to determine the computation costs of a gene,

the gene definition is extended by computationCosts:

gene :=(value, numberOfArguments, SubGenes,

computationCosts) : computationCosts ∈ R

other arguments as introduced in Equation 5.1

172

5.11. Machine Learning

The constraints on the previously introduced attributes of the gene re-

main the same. Using this extended definition, the expression computa-
tion costs are determined by:

mExpressionComputationCosts(c) :=
∑

gene∈c
(gene.computationCosts)

For example, in general, the addition in IndividualA can be calcula-

ted faster than the conditional branch (if-then-else). Hence, addition

has lower computation costs associated than conditional branches. Sec-

tion 5.11.4.3 will detail on the costs per gene.

– The computation complexity is impacted by mExpressionLength(c) and

mExpressionComputationCosts(c) (see Figure 5.22). Small computation

complexity is considered to be more optimal than large computation

complexity. The calculation of the overall fitness will be detailed below.

Computation complexity is not calculated separately, but together with

the fitness function.

• Since the parametric dependencies which are learned in genetic programming

are a potential subject for later manual editing during architecture refactoring

at the model level, they should be understandable to humans. Longer expres-

sions become hard to grasp for human.

The human readability of expressions represented by chromosomes relates

to the length of expressions, the number of involved variables, the number of

gene arguments, and is indirectly reflected by the depth of chromosomes, i.e.

the depth of nesting of expressions.

When comparing IndividualA with the following two examples, it becomes

obvious that the length of expressions is a major impact factor for readability

(variable characterisations are omitted for brevity reasons):

IndividualComplex := 0.00001 + 0.005 ∗X∗
(Y + IF(Z > A) THEN (0.002 ∗B) ELSE

(0.0004 ∗ C + 0.00001 ∗D ∗ EXP(E)))

IndividualSimple := 0.001 ∗X
The meaning of IndividualSimple is much easier to understand than

IndividualComplex while the complexity of IndividualA ranges in the

middle. Variables imply additional complexity since their values can change

and thus impact the overall value of a chromosome. Furthermore, constants

(with no arguments) are easier to understand than conditional branches with

many arguments which must be understood separately. Higher depths of

173

Chapter 5. Reverse Engineering Behavioural Models

chromosomes results in brackets where pairs of opening and closing brackets

are hard to map for humans (see IndividualComplex).

– The depth of the chromosome is derived from the tree formed by its

genes. For example, Figure 5.20 illustrates a typical tree structure of

a chromosome. In the example, the depth of the chromosome is 3.

First the top most gene of a chromosome has to be calculated since a

chromosome is a flat set which does not indicate the root gene of the tree

structure formed by the gene’s “SubGenes” relation:

TopGene(c) := gene ∈ c :

fmax(card(transClosure(gene, {’SubGenes’})))
∀gene ∈ c

where fmax(expression) (as introduced before; returns a single repre-

sentative if the expression is maximal for multiple elements) determines

the maximum value of expression and thus in this case determines the

largest transitive closure for all genes in c. Then for the top most gene of

c, the maximum tree height can be calculated:

mChromosomeDepth(c) :=maxTreeHeight(TopGene(c),

{ ’SubGenes’ })

where maxTreeHeight(gene, attribute)→ height ∈ R is an algo-

rithm which determines the maximum height of a tree data structure for

the root element gene and the child node attribute attribute. An algo-

rithm for the determination of the maximum tree height is for example

documented by Edmonds [Edm08, p. 136].

– The number of involved variables and the number of arguments of used

genes are evaluated to prefer more simple expressions over those invol-

ving dozens of arguments. Expressions with just a few arguments make

it more likely that removing a dimension (parameter or variable) during

mutation is successful without side effects.

– The number of involved variables is defined as:

mV ariables(c) :=
∑

gene∈c

{
1 if type(gene) = ‘variable’

0 else

where type(gene) determines the type of a gene.

174

5.11. Machine Learning

– The number of arguments is defined as:

mArguments(c) :=
∑

gene∈c
gene.numberOfArguments

For example, an addition has two operands, whereas an if-then-else has

four (two for the condition and two for the branches).

– The metric for the length of the expression mExpressionLength(c) is used

as defined above.

– Human readability is impacted by mChromosomeDepth(c),
mChromosomeDepth(c), mV ariables(c), mArguments(c), and

mExpressionLength(c) (see Figure 5.22). Lower values of the metrics men-

tioned above indicate increased human readability of a chromosome.

Thus, lower values are more optimal than larger ones. The calculation

of the overall fitness will be detailed below, since the metric values are

transformed prior to calculating the overall fitness from them.

• The precision of a chromosome is determined by the deviation between mea-

sured and predicted values for a parametric dependency. The error measure is

the mean squared error of values (cf. [LC98]):

merror(c) :=
1

n

n∑
i=1

e2i

with ei = predi − measi being the predicted minus the measured values.

measi stems from results during monitoring, predi is the value predicted by

the individual for which the fitness is evaluated. Every individual must predict

every measured value. The input data (input parameter values) stems from

monitoring. i = 1..n indexes each single pair of measured and predicted

values.

Consider the example chromosome IndividualA which depends on the

parameter characterisations X .VALUE and Y .VALUE. The first columns of

Table 5.1 show measured values which might have been gathered during the

execution of code for which a certain parametric dependency (e.g. characte-

risation of the parameter of an ExternalCall) must be reverse engineered.

The real parametric dependency PDreal represents an optimal solution.

IndividualA = 0.001 ∗X .VALUE + IF(Y .VALUE > 0) THEN 1

PDreal = 0.05 ∗X .VALUE + IF(Y .VALUE > 1) THEN 2

175

Chapter 5. Reverse Engineering Behavioural Models

i Measured Input Measured Value Predicted Value

X .VALUE Y .VALUE Z .NoE (Output, measi) (Output, predi)

1 0 -3 2 0 0

2 1 0 5 0.001 0.05

3 2 2 4 1.002 2.1

4 3 1 7 1.003 0.15

5 4 -1 -3 0.004 0.2

6 5 4 -2 1.005 2.25

..

Table 5.1.: Measured and predicted values for a single parametric dependency

In the table, “NoE” abbreviates the NumberOfElements variable characteri-

sation. The Z .NoE variable characterisation was measured but does not im-

pact the measured output value. An optimal solution like PDreal thus can

omit Z .NoE. Hence, PDreal does not comprise Z .NoE while another parame-

tric dependency, for example a branch condition, can nevertheless depend on

Z .NoE.

Prior to judging the complexity of mathematic expressions, the expression itself

can be simplified. Genetic programming allows having redundant expressions like

+1− 1 · 1, which would make the previous two measures ineffective and sometimes

misleading. Mathematic simplification is thus a precondition before evaluating the

fitness of individuals. The Simplify function creates new simplified chromosomes

from an input chromosome:

Simplify := c→ csimplified : card(csimplified) ≤ card(c)

The implementation of the according functionality can be taken over by commercial

applications like Mathematica [Wol] or Maple [Map].

Fitness Value Range Generally, fitness functions are desirable which have a well-

known range of fitness values. If the range of fitness values is well-known, fitness

values become more intuitive. For example, the best individuals have a fitness values

of 1 and the worst individuals have a fitness value of 0. For the present genetic

programming scenario, nevertheless, no such fitness function can be established as

will be explained in the following. Instead, the created fitness function, which is

presented in the following, returns 0 for the best individuals and larger values for

worse individuals. Although the presented fitness function might appear to be counter

intuitive, it does not limit the genetic programming approach itself.

176

5.11. Machine Learning

The fitness values of the presented fitness function cannot have an upper bound

as its input parameters have no defined limit: i) Precision is measured by the error

which has not defined upper limit, thus the error can be very high, ii) computation

complexity can be very high as none of the involved metrics has an upper limit, and

iii) human readability expressed by metrics which rise for low readability have no

upper limit as well.

The chosen fitness function maps a chromosome c to a positive floating point value

for which only the lower boundary is known:

fitness := c→ x ∈ R | x ≥ 0

The fitness function is designed to indicate relative fitness instead of absolute fitness

values. When comparing two individuals c1 and c2, the fitness function indicates

which one is better, but a difference of the factor of 2 between the fitness value of c1
and c2 does not indicate a twice as good individual. For the later selection operator,

a relative fitness values is perfectly acceptable since only binary decisions (keep or

reject an individual) need to be met.

As the theoretically optimal fitness value of individuals (“0”) is known, it allows

to immediately terminate genetic programming if an individual with a fitness value

of “0” has been found. In such cases, the fitness function thus increases convergence

speed of genetic search.

Nevertheless, individuals with optimal fitness are not always reachable due to mis-

sing abstractness of fully precise individuals. For example, individuals with no pre-

diction error (e.g. IndividualComplex) tend to be large and complex expressions with

limited abstractness. If such an individual depends on multiple variables, no optimal

fitness can be reached due to mV ariables(c). The following section discusses counter

measures to limit the impact of abstractness on the fitness function.

Thresholds Every computation of a parametric dependency involves some

costs and no high precision can be expected from very short expressions (e.g.

IndividualSimple). Therefore, after calculating the above metrics, thresholds are

applied to each metric before feeding the result into the overall fitness function. Only

metric values exceeding the thresholds result in penalties for the fitness function.

Further examples illustrate the need for thresholds:

• Variables: A parametric dependencies is likely to depend on a minimum num-

ber of variables. Otherwise it would represent a constant. IndividualA, for

example, depends on two variable characterisations like the real parametric de-

pendencies PDreal. Thus, a minimum number of variables should be allowed

for all individuals.

177

Chapter 5. Reverse Engineering Behavioural Models

• Length: Even the real parametric dependency PDreal has a certain length,

which should be accepted for every individual.

• Chromosome depth: Every non-trivial parametric dependency requires nes-

ting of chromosomes which increase the chromosome depth. Thus, a non-null

minimum depth is desirable for all individuals.

Corresponding reasons for introducing thresholds of all other metrics become ob-

vious for IndividualA and PDreal.

Since the optimal solution for a parametric dependency cannot be known in ad-

vance (because genetic programming searches for it), the thresholds need to be fixed

independent of a concrete parametric dependency. Neither the number of arguments,

variables, computation complexity nor the length of an optimal real parametric de-

pendency can be known in general. The default thresholds for all metrics will be

presented in Section 5.11.4.3.

Penalties, which count for the fitness function, are derived from metric values and

the threshold of that metric. Compared to the pure metric values, penalties increase

the values of metrics which are considered to be minimally acceptable. The penalties

pi linearly depend on the metric results mi and the associated thresholds ti and are

responsible for increasing the fitness value of a chromosome (indicating less optimal

fitness):

pj(c) :=

{
mj(c)− tj if mj(c) > tj
0 else

where tj is an individual threshold and mj(c) is an individual result of a chromosome

for a fitness metric of FitnessMetrics:

FitnessMetrics := {mExpressionLength(c),mExpressionComputationCosts(c),

mChromosomeDepth(c),mV ariables(c),mArguments(c)}

Normalisation The metric weights are normalised prior to becoming part of the fit-

ness function to account for the fact that all metric values are of a different scale (e.g.

“length in characters” vs. “chromosome depth in hierarchy levels”). For example,

the expression length mExpressionLength for the example IndividualA has a value of

“30” characters while the corresponding chromosome depth mChromosomeDepth is just

“4”.

The aim of normalisation is to have a value of 1 after normalisation. As none of

the metrics has a fixed upper limit, “typical large” metric values must be retrieved

from experiments. The size of “typical large” values is expressed by the variable

normScalej . The default normScalej values for all metrics are discussed in Sec-

tion 5.11.4.3.

178

5.11. Machine Learning

To normalise metric values after applying the penalty, they are simply divided by

a normScalej value which is specific to each metric from FitnessMetrics:

normj(c) :=
pj(c)

normScalej − tj

where pj is an individual result of a metric from FitnessMetrics after applying

the penalty function. tj is subtracted so that the normScalej value can be specified

according to the original metric value.

Fitness Value Calculation The fitness function which determines the fitness of

a chromosome c is the weighted sum of error and penalties derived from abstractness

metrics:

fitness(c) := we ·merror(c) +

card(FitnessMetrics)∑
j=1

wj · normj(c)

with merror(c) the above error metric, we the weight of the error, wj the weight

associated to metric j, normj(c) as defined above, and c ∈ Chromosomes. The

weights balance precision (weight we) and abstractness (cf. Figure 5.22) and within

the abstractness metrics the individual weights wj .

The weights in the fitness function are required for two reasons: i) the value ranges

of error and metrics differ (the mean squared error (which is not normalised) can have

values of 1000 and more while the normalised metrics values have a target value of

1 (after normalisation) and ii) the weights allow to flexibly adapt the approach to the

desired abstraction level: Whether more precision or more abstractness are preferred

can be adapted using the weights, illustrated by the “stress field” of Figure 5.22.

Furthermore, human readability and computation complexity can be balanced.

The error metric merror(c) is intentionally used directly (without threshold), as a

no prediction error is desirable in any case. Thresholding is thus not required.

5.11.4.3. Determining Weights, Thresholds, and Normalisation

Overall, threshold and normalisation complement each other. The threshold tj deter-

mines the lower boundary of values, while the normScalej values determine typical

upper values and intend to make values comparable (cf. Figure 5.23). The weights

balance the impact of precision, abstractness and the individual metrics on the fitness

value.

To infer default weights, thresholds and normalisation values, limits for precision,

human readability, and computation time where defined with respect to the appli-

cation scenarios of the Palladio approach. The thresholds represent minimal accep-

179

Chapter 5. Reverse Engineering Behavioural Models

Length: Valueraw
value

t1
Legend:

Value of metric m1

has
"normScale"

value

Value of metric m2

after
penalty

after
normalisation

t2

thresholds "norm scale"

ns1

ns2

has 2x
"normScale"

value

compa-
rable values

minimal
acceptable

values

after
weights

fitness value

aggre-
gated values

0

w1

w2

0 0

Figure 5.23.: Thresholds reflect lower boundaries; normalisation reflects typical up-

per values; the fitness value aggregates multiple metrics after weighting

them

table complexity for all individuals. The thresholds must not be set too high since

otherwise for simple parametric dependencies, individuals become indistinguishable

from the perspective of their fitness. For example, if the threshold is too large (e.g.

“100” for all metrics), IndividualA, IndividualB, and IndividualComplex would

all have the same values for abstractness metrics. Since none of the metric values

would exceed 100, all metrics values would be considered optimal and thus the fit-

ness functions would result in a fitness value of “0” for all individuals.

The weights, thresholds, and normalisation values are based on experiences gained

during validation (see Section 7). Still, the values remain rough estimates as no sepa-

rate experiments have been performed during the validation in order to gain precise

weights, thresholds, and normalisation values. Nevertheless, the overall prediction

results, presented in the validation, implicitly capture the quality of values selected

for the fitness function.

• The length of expressions should support human readability. Expressions lon-

ger than one line become harder to read. Thus, the threshold was set to 80

(one line of characters). Typical larger expressions have length of two lines,

corresponding to a normScale value of 160. The weight is set to 0.1 since

the length of an expression is a major impact factor for understandability and

also affects the computation complexity.

affected metric threshold (tj) norm scale (normScalej) weight (wj)

mExpressionLength 80 160 0.1

180

5.11. Machine Learning

• The number of variables in an individual should be low to limit the dimensio-

nality of expressions and aid understandability. More than three dimensions

are hard to imagine for humans, thus the threshold is set to 3. Nevertheless,

parametric dependencies usually depend on a number of parameter charac-

terisation in real settings. Thus, normScale is set to 9 which is a typical

memorisation limit for humans (cf. Miller’s Law [Mil56]). The weight is set

to 0.1 as reducing dimensionality is a major driver of abstraction.

For the arguments, the threshold was set to 2 (most mathematic operator have

two arguments; e.g. addition). The most complex genes (if-then-else) have 4

arguments. The normScale is set to 10 – a typical value for an expression of

two lines. The weights are set to 0.05.

affected metric threshold (tj) norm scale (normScalej) weight (wj)

mV ariables 3 9 0.1

mArguments 2 10 0.05

• Large chromosome depth implies large nesting structures of genes which first

need to be understood in order to understand a whole individual. Typical

representatives of low complexity (e.g. IndividualA) has a depth of three,

which is used as threshold. Chromosome depths of more then 9 seldom occur

(normScale). The metric has a higher weight of 0.1 since it impacts compu-

tation complexity and understandability.

affected metric threshold (tj) norm scale (normScalej) weight (wj)

mChromosomeDepth 3 9 0.05

• Computation costs are set such that large models become quickly analysable.

A simulation time of less than 5 minutes is desired to allow interaction with

model, simulation, and prediction results. For the calculation of computations

costs, costs must be associated to every gene. To understand computation com-

plexity, the major drivers for model simulation time in the Palladio approach

must be identified:

– The stochastic expression language for parametric dependencies is inter-

preted at runtime.

– Additions, subtractions, multiplications, divisions, power, and exponen-

tial functions can be quickly calculated. They have a limited number of

arguments and their execution is directly mapped to single Java instruc-

tions of the simulation execution environment. The associated costs are

1.

– Each variable implies the calculation of a random number, each time a

stochastic expression is evaluated during simulation. Since the calcula-

181

Chapter 5. Reverse Engineering Behavioural Models

tion of random numbers is a very expensive computation, the associated

costs are 100.

– Inequation and sine genes cannot be calculated in a single processor

cycle. Hence, the associated costs are 10.

– If-then-else and if-then genes require the evaluation of a branching

condition and a jump to the corresponding branches. Branches are not

directly mapped to processor statements in the simulation (due to the

interpretation). Thus, the calculation requires multiple processor cycles.

The associated costs are 20.

One line of expression has computation costs of at least 8 (threshold).

normScalej is derived from the number of random variables. 9 va-

riables typically occur in expressions (see above), which result in costs of

9 · 100 = 900.

affected metric threshold (tj) norm scale (normScalej) weight (wj)

mExpressionCC.. 8 900 0.1

• As explained above, no penalty is applied to the error. Still, the error needs to

be normalised. Opposed to the other metrics, this is taken over by the weight

we which in the case of the error combines penalty and weight since no nor-

malisation is applied to the error.

Typical large error values are 10,000. Thus, the weight of the error is: we =
0.6 · 1

10,000
.

It is not expected that the above weights, threshold, and normalisation values re-

present optimal configurations of the fitness function (see Section 5.11.13 for a dis-

cussion). Still, no major imprecision can arise from the chosen values: Individuals in

direct comparison remain distinguishable as the same fitness function is applied to all

individuals. The fitness function then equally punishes or prefers individuals. Thus,

absolute values of the fitness function might be off, but the selection operator (Sec-

tion 5.11.5) of genetic programming is based the relative comparison of individuals

of a generation which is not affected by absolute values.

5.11.5. Selection Operator

The selection operator applied in the presented approach is a combination of standard

selection operators for genetic algorithms. It derives a generation Gx+1 from a gene-

ration Gx. To select the individuals surviving a generation, the n percent of the fittest

individuals are always preserved (step 1, Listing 5.12), and the worst m percent are

preserved (step 2). The remainder is selected using the “roulette” strategy (step 3)

– a random selection strategy (see [BNKF98, pp. 132] and [Koz93, pp. 604] for an

overview on selection strategies).

182

5.11. Machine Learning

The size of each generation is fixed to keep computation power and memory

consumption for the calculation of genetic programming limited and constant per

generation. Since only a subset of individuals of a generation is selected for survival,

but a full set is required for the next generation in order to have a constant generation

size generationSize, the remainder is filled up by randomly selected replicates of

the previously selected individuals (step 5). This increases the chance of crossover

for selected individuals in the next generation and thus increases the chance of fur-

ther improving the fitness of resulting individuals. Optionally, the diversity can be

enhanced by adding fully randomly generated individuals (step 6).

183

Chapter 5. Reverse Engineering Behavioural Models

The following pseudo code Listing 5.12 summarises the process steps:

1 Inputs

2 Gx / / Generation x

3 Outputs

4 Gx+1 / / Successor generation of generation x

6 generationSelection(Generation Gx) {

7 Gx = SelectFittest (Gx , n) / / 1.

8 Gx = SelectWorst(Gx , m) / / 2.

9 Gx = RouletteSelection(Gx) / / 3.

10 Gx+1 = ReplicateSelected(Gx) / / 4. new generation foundation

11 Gx+1 = ReplicateIndividuals(Gx+1 , numberOfReplicates) / / 5.

12 i f (card(Gx+1) < generationSize) {

13 Gx+1 = FillUpWithRandom(Gx+1) / / 6.

14 }

15 return Gx + 1

16 }

Listing 5.12: Selection process

ReplicateSelected(Gx) in step 4 replicates all individuals which are in Gx to form

a new generation. Opposed to step 4, step 5 replicates single randomly selected in-

dividuals of a generation with the aim of increasing the chance that these individuals

participate in crossover or mutation, where numberOfReplicates is the number of

individuals to replicate.

Figure 5.24 illustrates the selection process for a generation with a fixed size of six

individuals. In the example both, the creation of random individuals (step 6) and the

filling of the generation with replicated individuals (step 5) are performed.

For Beagle, m was set to 5% (worst) and n to 50% (best). The generationSize
is 100. Crossover and mutation are applied to the individuals as next steps (Sec-

tion 5.11.6 and 5.11.7).

5.11.6. Crossover

The crossover grants variability of individuals and enables evolutionary changes. In

the presented approach, the crossover operator is applied to pairs of individuals. As

the individual’s chromosomes have a tree structure, subtrees are randomly selected,

cut, and then merged for a new individual. The chromosome’s genes are constructed

184

5.11. Machine Learning

0

Fixed size per
generation; here: 6

4 8 2 9 7

0 4 8 2 9 7

1. Select n% fittest

0 4 8 2 9 7

2. Select m% worst

Legend:

Individual with associated
fitness value

4

Selected individual4

0 4 8 2 9 7

3. Roulette selection

A generation of
individuals

0 4 2 9

4. Replicate selected

Gx

Gx

Gx

Gx

Gx+1

0 4 2 9

5. Replicate individuals

Gx+1 R ?

?
Random individual with
unknown fitness
(fitness not evaluated)

0 4Gx
0 4 2 9Gx+1 R ?

6. Fill up generation with
random individual (optional)

R9 Replication of selected
individual

Figure 5.24.: Example: Selection process (lower fitness values are better)

in a way that all subtrees can be exchanged by any other (cf. Section 5.11.3) since

they use float as both, input arguments and result type.

If-then-else genes, for example, can take float values as input for the condition

statement. Values larger than or equal to zero are then interpreted as a logical “true”,

negative values are interpreted as “false”. In the following example, the if statement

evaluates to true if X.VALUE ≥ 0. Note that the utilised if-then-else gene in the

following example deviates from the one in IndividualA which has two arguments.

IF(X.VALUE) THEN .. ELSE ..

Due to the chosen design of genes, each chromosome can be split at any cut point.

The split of two chromosomes results in four split chromosomes (two for the inter-

bred pair and two for the split chromosomes per individual). Two of these chromo-

somes have dangling SubGene relations (cf. Equation 5.1) but otherwise remain

valid chromosome sequences. The dangling SubGene relations can be replaced by

any other chromosome sequence from splitting during crossover. There are only two

dangling relations since the opposite direction of SubGene, “SuperGene”, is nei-

185

Chapter 5. Reverse Engineering Behavioural Models

ther made explicit nor required. The SubGene relation is sufficient for building a

tree structure (parent nodes reference child nodes; not vice versa).

Multiplication
*

Constant
"0.001"

Addition
+

Variable
"X.VALUE"

Variable
"Y.VALUE"

IF-THEN

Constant
"0"

Constant
"1"

Addition
+

Constant
"3"

Variable
"X.VALUE"

Legend:
Cut Gene

...

Selected
chromosome c1

cX

Selected "SubGene"
Relation

sg1

sg2

Multiplication
*

Constant
"0.001"

Addition
+

Variable
"X.VALUE"

Variable
"Y.VALUE"

IF-THEN

Constant
"0"

Constant
"1"

c1 after crossover

sg1

Variable
"X.VALUE"

Addition
+

Constant
"3"

sg2

c2 after crossover

Selected Chromosome
Sequence

Selected
chromosome c2

Figure 5.25.: Example: Crossover

Figure 5.25 continues the example introduced in Figure 5.20. First, the chromo-

somes c1 and c2 are randomly selected for crossover from the current generation. For

each of them, a gene is randomly determined, which serves as “cut point” for the

crossover (dashed box). Next, an element from the SubGene relation of that gene is

randomly selected for c1 and c2, resulting in chromosome sequences associated via

to top-most genes sg1 and sg2. The chromosome sequences associated via sg1 (“IF-

THEN”) and sg2 (“Addition”) are then exchanged and recomposed with the parent

gene in the dashed box. The bottom area of Figure 5.25 visualises the results after

the crossover.

The pseudo-code in Listing 5.13 formalises the crossover, where Gx is the cur-

rent generation, numberOfCuts the number of cuts per individual, random(Set-
, number, probability) selects number random elements from Set with a given

probability probability. If Set is empty or no element is returned due to the proba-

bility, “null” is returned. The crossover steps are only performed if random returned

non-null genes. pChromSel is the probability of selecting a chromosome, pGeneSel is

the probability of selecting a gene.

186

5.11. Machine Learning

1 Inputs

2 Gx / / Original generation created by the selection operator

3 Outputs

4 Gx / / Interbred generation

5 Crossover(Gx) {

6 for(maxNumberOfCrossovers) {

7 / / Determine selected chromosomes:

8 {c1, c2} = random(Gx, 2, pChromSel) : c1 �= c2 {

9 for(maxNumberOfCuts) { / / per Individual

10 sg1 = random(g.SubGene, 1, 1) : g = random(c1, 1, pGeneSel)

11 sg2 = random(g.SubGene, 1, 1) : g = random(c2, 1, pGeneSel)

13 i f (sg1 �= null ∧ sg2 �= null ∧ sg2 �= sg1) {

14 / / crossover of subgenes:

15 sgtmp = sg2

16 sg2 = sg1

17 sg1 = sgtmp

18 } } } } }

Listing 5.13: Crossover

The number of crossovers per individual (“at how many places to cut an

individual”) and the probability for a crossover correspond to typical values

from literature (cf. [SP94]). In Beagle, the probability for an crossover is set

to 0.9 = pChromSel = pGeneSel. To not end up in nearly random individuals

which are made from dozens of other individuals, only a few cuts (1 to 2 =
maxNumberOfCuts = maxNumberOfCrossovers) are useful to promote a

straight evolution. A lot of cut points for crossover would result in largely mixed in-

dividuals and thus contradict short and abstract parametric dependencies. If a single

individual is cut maxNumberOfCuts times and the number of crossovers per

generation is set to maxNumberOfCrossovers, the crossover is performed re-

peatedly for a maximum of maxNumberOfCuts·maxNumberOfCrossovers
times, since the chance of a crossover further depends on the chosen crossover

probabilities pChromSel and pGeneSel.

Srinvas and Patnaik [SP94] discuss the selection of crossover and mutation proba-

bilities in detail. For the presented approach, the crossover probability is not crucial

since it is mostly affecting the convergence speed. Section 5.11.13 further discusses

the selection of probabilities for the genetic programming configuration.

187

Chapter 5. Reverse Engineering Behavioural Models

5.11.7. Mutation

Mutation is another mean to avoid local minima by evolutionary diversity. Mutation

is generally applied to single genes. Simple mutations include changing the value of

a constant to a new random number (for example a 10 can become a 12). For reverse

engineering and aligned with the genes described above, specific enhancements have

been realised for the mutation operator. These enhancements are designed to force

abstraction and ensure diversity. The following sections present the mutation opera-

tors which have been created for Beagle.

5.11.7.1. Mutation: Deleting genes

A primitive mutation is the deletion of genes, which is nevertheless promising to

raise the abstraction level by erasing non-important details expressed in genes. This

mutation has to ensure the integrity of chromosomes.

Legend:
Addition

+

Variable
"A.VALUE"

Variable
"B.VALUE"

Variable
"A.VALUE"

Before
mutation

After
mutation Gene to

Delete

Impacted
Genes

Transitively
Deleted Gene(s)

Figure 5.26.: Mutation: Deletion of a gene at the leaf of the chromosome tree

If for example in an addition one argument is deleted (see the bold dashed gene in

Figure 5.26), the resulting chromosome would be invalid. Thus, for a chromosome

like A.VALUE+B.VALUE (an addition gene with two summands, each a sub-tree),

not only the argument (summand) would need to be deleted but also the parent addi-

tion gene (see the thin dashed line in Figure 5.26). In the example, effectively, a sum

is replaced by a single summand.

A different case is illustrated in Figure 5.27. Here, a gene at an intermediate tree

level is being deleted from a chromosome. While a leaf gene affects parent genes

as in the previous example, an gene at an intermediate tree level affects child genes

as visualised by the bold arrow. Only one of the child sub-trees of the selected gene

(“Addition”) can be preserved in the example, since otherwise the chromomsome

consistence would be validated. The actually chosen sub-tree is selected randomly.

The algorithm DeleteGene(c, g) (Listing 5.14) has to differentiate between leaf

level genes (SubGenes = ∅) and intermediate level genes (SubGenes �= ∅) as it

188

5.11. Machine Learning

Multiplication
*

Constant
"0.001"

Addition
+

Variable
"X.VALUE"

Variable
"Y.VALUE"

IF-THEN

Constant
"0"

Constant
"1"

Before
mutation

Multiplication
*

Constant
"0.001"

Variable
"X.VALUE"

After
mutation

Legend:
Gene to
Delete

Impacted
Genes

Transitively
Deleted Gene(s)

Random
XOR Selection

Figure 5.27.: Mutation: Deletion of a gene at an intermediate level of the chromo-

some tree

must use a different mechanism to ensure chromosome consistency. The basic steps

for both cases are:

i) the selection of the gene to delete geneToDelete,

ii) determination of preserved genes,

iii) the deletion of a chromosome’s sub-tree (GenesToDelete) which cannot

be references by the chromosome any more due to the deletion of the gene

GenesToDelete, and

iv) the connection of the preserved sub-trees with the remainder of the chromo-

some through the SubGenes relation of a parent gene.

Besides, the special case of a chromosome comprising a single gene is handled. The

delete gene mutation is applied to a chromosome c: DeleteGene(c, ∅).

189

Chapter 5. Reverse Engineering Behavioural Models

1 Inputs

2 c / / Chromosome to apply mutation to

3 g / / A gene (see next mutation variant) ,

4 Outputs

5 c / / Mutated chromosome

6 DeleteGene(c , g) {

7 i f (g == ∅) { / / support for other mutations (see below)

8 geneToDelete = random(c, 1, 1) / / i) random gene selection

9 }

11 i f (geneToDelete.SubGenes == ∅) { / / leaf level

12 parentGene = parent(geneToDelete)

13 / / i i) randomly select preserved sibling gene:

14 siblingPreservedGene = random(parentGene.SubGenes, 1, 1)

15 / / i i i) delete tree of genes:

16 GenesToDelete = transClosure(parentGene, {‘SubGenes’}) \
{siblingPreservedGene}

17 c = c \GenesToDelete

19 / / iv) connect to upper chromosome tree i f possible:

20 superParGene = parent(parentGene)

21 i f (superParGene �= ∅) { / / parent pf parent exists

22 superParGene.SubGenes = superParGene.SubGenes \ {parentGene}
23 superParGene.SubGenes = superParGene.SubGenes ∪ {siblingPreservedGene}
24 }

25 } else if (parent(geneToDelete) �= ∅) { / / intermediate level

26 / / i i) randomly select preserved sub gene:

27 childPreservedGene = random(geneToDelete.SubGenes, 1, 1)

28 / / i i i) delete tree of genes:

29 GenesToDelete = transClosure(geneToDelete, {‘SubGenes’}) \
{childPreservedGene}

30 c = c \GenesToDelete

32 / / iv) connect to parent gene:

33 ParentSubGenes = parent(geneToDelete).SubGenes

190

5.11. Machine Learning

34 ParentSubGenes = ParentSubGenes \ {geneToDelete}
35 ParentSubGenes = ParentSubGenes ∪ {childPreservedGene}
36 } else { / / delete the single gene

37 c = ∅
38 }

39 }

Listing 5.14: Mutation: Deleting genes

where c is a chromosome, g a gene (for use in the next mutation), and parent(gene)
is the inverse function of the SubGene relation. The empty set resulting from the last

case for the chromosome built from a single gene will be removed by the selection

operator.

Generally, of n sub-trees of a chromosome n − 1 sub-trees are removed when

removing a single gene to ensure integrity. The remaining sub-tree is used to replace

the original gene. Which sub-tree is therefore preserved is selected randomly to give

a chance that all kinds of arguments can survive. For example in an if-then-else gene,

it makes a difference whether the condition or the body is preserved.

5.11.7.2. Mutation: Reducing dimensionality

To reduce the number of involved dimensions and thus to increase abstraction and re-

duce complexity, another mutation operator is able to reduce the number of variables.

For each parameter characterisation a variable exists. This results in a large amount

of variables and complex expressions represented by chromosomes. The presented

mutation operator removes a single arbitrarily selected variable from a chromosome.

Opposed to traditional mutations, which usually affect only one gene, this mutation

is applied to the whole chromosome to effectively remove a certain dimension.

Consider a modified version of the IndividualA example expression which illus-

trates the problem:

IndividualA′ = 0.00001 ∗X .VALUE ∗X .VALUE

+ IF(Y .VALUE > 0) THEN 1 + Y .VALUE

where X .VALUE and Y .VALUE represent variable characterisations and 0.00001
is a constant gene. X .VALUE and Y .VALUE both occur two times in the genes

which makes it unlikely, that usual mutation operators remove both occurrences of a

variable characterisations in subsequent steps. mV ariables(c) allows improved fitness

values only if all occurrences of a parameter characterisation are removed. The re-

duction of dimensions thus immediately benefits for the mV ariables(c) fitness metric.

191

Chapter 5. Reverse Engineering Behavioural Models

In the expression of IndividualA′, X .VALUE has only a very limited effect on

component behaviour due to the small constant prefix. Still, it is present in the chro-

mosome and increases complexity, resulting in a lower fitness. If only small values

for X .VALUE are monitored at runtime, the gene representing X .VALUE can be re-

moved. The remaining constant 0.00001 could be removed by the “deleting genes”

mutation operation in a successive step. The resulting chromosome would have a

much better fitness. Also examples are imaginable where the measured values of

Y .VALUE are always less than 0. In this case, the if-then-else gene would have

no impact. Thus, removing the variable characterisation Y .VALUE benefits for the

required abstraction.

The algorithm for reducing dimensionality is defined for a chromosome c:

1 Inputs

2 c / / Chromosome to apply mutation to

3 Outputs

4 c / / Mutated chromosome

5 ReduceDim(c) {

6 gene = random(c, 1, 1) : type(gene) = ‘variable’

7 GVar = {gcur ∈ c | (pc(gcur) = pc(gene) ∧ pc(gcur) �= ∅)}
8 for(variableGene ∈ GVar) {

9 i f (type(parent(variableGene)) ∈ {‘Addition’ , ‘Subtraction’}) {

10 variableGene = ConstantGene(‘0′) / / replace by neutral element

11 } else if (type(parent(variableGene)) ∈ {‘Multiplication’ , ‘Division’}) {

12 variableGene = ConstantGene(‘1′) / / replace by neutral element

13 } else if (variableGene ∈ c) {

14 / / check whether gene present after application of DeleteGene(..)

15 DeleteGene(c, variableGene)

16 }

17 }

18 }

Listing 5.15: Mutation: Reducing dimensionality

where pc(gene) returns the parameter characterisation for genes which represent va-

riables and an empty set for other genes and ConstantGene(arg) creates a constant

gene g with g.value = arg.

First, a randomly selected gene representing a variable is determined. Then all

gene instances of the same variable are collected in the set GV ar. Next, all oc-

currences of that variable are removed from the chromosome. The removal pro-

cess depends on the parent of the deleted variable gene since the application of

192

5.11. Machine Learning

DeleteGene(..) can result in the deletion of a sub-tree of a chromosome. The re-

moval of a sub-tree could yield unwanted side effects, e.g. the overall fitness of a

chromosome could decrease. Thus, variables with a parent operation for which a

neutral elements exists, are replaced by the neutral element (i.e. ‘0’ for addition and

subtraction, and ‘1’ for multiplication and division). All other parents are handled by

the DeleteGene(..) function where the variable gene is specified for deletion. Here,

it is first checked, whether a variableGene is still present in the chromosome. Due

to the application of DeleteGene(..) in prior iterations of the loop of the algorithm,

a variable instance could have been removed together with a sub-tree.

The deletion of large sub-trees through DeleteGene(..) is less likely compared to

the application of DeleteGene(..) to genes with multiple arguments. As variables

always represent leafs in the tree of genes of a chromosome (they do not have argu-

ments), sibling sub-trees are preserved for parent genes with two arguments.

The result, if ReduceDim(c) would be applied to X .VALUE of IndividualA′,

is:

ReduceDim(IndividualA′) =

0.00001 ∗ 1 ∗ 1 + IF(Y .VALUE > 0) THEN 1 + Y .VALUE

The desired deletion of a single variable on a whole chromosome would also be

possible by means of pure crossover (without this specialised mutation operator), but

the probability of removing multiple occurrences of the same gene via crossover is

very limited. Each sub-tree enclosing a variable would need to be selected by cros-

sover and replaced by an sub-tree not containing that variable. This is very unlikely

for a whole chromosome (cf. discussion in Section 5.11.8).

5.11.7.3. Mutation: Changing Operators

The idea of this mutation is to exchange one gene by another. Additions can for

example be exchanged by subtractions. As the mathematic operators defined by the

genes have a fixed number of arguments (usually two or more) also the sub-tree of

such a gene has two or more branches. Only mathematic operators with the same

number of arguments can be exchanged by each other; see Listing 5.16:

193

Chapter 5. Reverse Engineering Behavioural Models

1 Inputs

2 c / / Chromosome to apply mutation to

3 Outputs

4 c / / Mutated chromosome

5 ChangeOp(c) {

6 geneold = random(c, 1, 1) : geneold.arguments > 0

7 geneold = genenew : geneold.arguments = genenew.arguments ∧ genenew ∈ Genes

8 }

Listing 5.16: Mutation: Change operator

To increase the exchangeability, for example for additions and subtractions also

genes are defined which have three arguments (three summands / subtrahends; e.g.

“(a + b + c)” where a, b and c are arguments of a single gene), which thus can be

exchanged for three argument operators like if-then-else. The validity of exchanging

genes can be decided depending on the number of arguments only, since the genes

are designed to be exchangeable as has been explained in Section 5.11.3.

5.11.8. Application of Crossover and Mutation

The construction of the fitness function, crossover, and mutation operator intentio-

nally match each other. The mutation and crossover are designed to produce indi-

viduals which have a high fitness. A general genetic programming approach which

is only equipped with the presented fitness function could result in individuals with

a high fitness likewise, but the convergence speed would be much lower due to the

decreased probability of evolving the way the fitness function rewards.

To illustrate the need for specialised mutation operators which are able to create

individuals with improved fitness values, consider the following example: In the

above example of IndividualA′, the probability of removing both occurrences of

X .VALUE in a single crossover would be very low: Assume the probability of a

crossover for a single individual of a generation to be pc = 0.75 (example value),

then the probability of two crossovers of a single individual in two generations is

pc · 2 = 0.5625. IndividualA′ consists of 12 genes. The probability of selecting

X .VALUE during crossover is 2
12

for the first time and 1
11

for the second time; in total

0.0152. Combined with the probability of two crossovers in a single generation, an

overall probability of only

pc_overall = 0.0085 (probability of a crossover eliminating a single dimension

in two consecutive generations in the example)

194

5.11. Machine Learning

exists for the evolution which is realised by the “reducing dimensionality” mutation

when using only crossover.

When comparing the overall probability of such a crossover with a scenario where

the “reducing dimensionality” mutation is available demonstrates the benefit of spe-

cialised mutation operators: The probability of a mutation of an individual in a single

generation pm is assumed to also be 0.75 (like pc for crossover). Then one of the four

mutation operators (including “simple mutation”) is selected with a probability of 1
4
.

Selecting X .VALUE has a probability of 1
2

due to the two variables in the term. The

probability of a “reducing dimensionality” mutation is thus 1
4
· 1

2
· 0.75 = 0.094.

Using the “reducing dimensionality” mutation in the above example raises the total

probability (“reduce dimensionality” and crossover) of the desired elimination of a

single dimension to

pm_overall = 0.1 (probability of the “reduce dimensionality” mutation

eliminating a single dimension in two consecutive generations in the)

example)

and therefore improves the creation of the desired abstraction. For scenarios with

more than two occurrences of the same variable, the difference between optimised

(pm_overall) and non-optimised (pc_overall) evolution would become even more ob-

vious.

5.11.9. Termination

Beagle uses a simple rule as the break condition for stopping further evolution. Ei-

ther when the fitness function (Section 5.11.4) indicates an optimal solution or when

a fixed number of generations has been evaluated, the evolution stops. The break

condition of a generation generation is

break(generation) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

true ∃c ∈ Generation :

FitnessFunction(c)− ε ≤ 0

∨ if(number of generations passed > gmax)

∨ if(time passed > tmax)

∨ if(RelImprovement(generation))

∨ if(user decides for further evolution)

false else

195

Chapter 5. Reverse Engineering Behavioural Models

where gmax is the maximum number of generations to be evolved, tmax is the maxi-

mum computing time to spent on evolution, and Improvement(generation) as

defined below.

Optimal Solution The optimality of the solution is judged by the fitness func-

tion, where an optimal solution has a fitness value of 0 (see Section 5.11.4 for the

discussion on the fitness function). To compensate possible numeric errors, the stop

condition checks for fitness values in an ε environment around 0.

As the fitness function includes thresholds for length and depth of the trees of

expressions, optimal solutions are for example not required to have a tree depth of just

1 to have optimal fitness. Depending on the complexity of the reverse engineering

task, it is realistic to find an optimal solution. The evaluation Section 7 will further

detail on the break condition in practice.

Break after gmax Generations or tmax Time As discussed in the Section 5.11.4

on the fitness function, optimal fitness values cannot be expected for all parametric

dependencies. The creation of a certain parametric dependencies can be a very com-

plex multi-dimensional optimisation problem for which no solution with an optimal

fitness value exists. An optimal solution must be optimal with respect to abstract-

ness and precision at the same time. For example, an expression with no prediction

error which involves only few variables and does not span more than one line, for

a parametric dependency which actually depends on 10 input variables and due to a

piecewise function must have 15 branch conditions, cannot have a fitness value of 0.

For such cases where no solution with an optimal fitness value of 0 can be found, a

fixed number of generations gmax is evaluated or a maximum of tmax is spent to avoid

an infinite run time. In this case a “good-enough” solution (ratio of computation ef-

fort and result improvement) is the result of genetic programming. The fitness of

solutions found after gmax generations can usually be further improved when spen-

ding more computation time, but the increase of fitness per time becomes smaller

from generation to generation.

Statistic Characteristics To automate the break criterion evaluation in a more

sophisticated way, statistic characteristics can be checked automatically, too. If for

example the best individual is not improving its fitness with more than x percent

over igmax generations, individuals with a higher fitness become unlikely and the

evolution can be stopped automatically.

RelImprovements(generation) checks whether a generation has improved its

fitness compared to past generations:

196

5.11. Machine Learning

1 Inputs

2 generation / / latest generation

3 Outputs

4 boolean / / flag showing whether the latest generation had improved fitness values

5 RelImprovement(generation) {

6 return !(

7 ∃FitnessV alue(ccur) < FitnessV alue(cold) ∗ (1 + x) : / / relative improvements

8 FitnessV alue(ccur) = max(FitnessV alue(cx) ∀cx ∈ generation) / / best individuals

9 ∧ FitnessV alue(cold) = max(FitnessV alue(cy) ∀cy ∈ generationold ∈ Generations

10 ∧ generation(cold) < generation(ccur) + igrange) / / range of generations

11)

12 }

Listing 5.17: Termination: Relative improvements

where generation(c) determines the generation of a chromosome c, igrange is the

range of generations to check for improvements, Generations is the set of all gene-

rations until the evolution of the generation argument, and x is the required relative

improvement of the fitness value.

User Feedback The strategy to stop after gmax generations or tmax time can also

be relaxed, when active user feedback can be included. Then, users are asked to

have a look at the solutions found after gmax generations / tmax time and can decide

whether to extend the search time, so that more generations are evaluated. The user

can be provided with feedback on the evolution by statistical characteristics like the

best fitness value, a fitness value of the best and worst quantile of each generation,

and the standard deviation of fitness values. These statistic means allow the user to

judge whether further computation effort should be spent on a continued evolution.

5.11.10. Integration with Static and Statistical Analysis

To contribute to the convergence of dynamic, static, and statistical analysis, a base

must be provided which enables a seamless integration of multiple approaches. The

basic idea of the Beagle approach to integrate multiple analysis approaches, is to

represent static and statistical analysis results as chromosomes and chromosome se-

quences of genetic programming (see Figure 5.28). These individuals are used in the

initial generation and as pre-configured genes in the repository of available genes.

The output of each analysis approach is thus uniquely represented by chromosomes

and chromosome sequences. Due to the unique representation by means of genetic

197

Chapter 5. Reverse Engineering Behavioural Models

Genetic
Programming

Static
Analysis

Dynamic
Analysis

Statistic
Analysis

FitnessFunction(Ci..j) FitnessFunction(Cf)�

Figure 5.28.: Overview: Integration of analysis approaches into genetic

programming

programming, the individual analysis results can be further optimised like other in-

dividuals and automatically integrate with dynamic analysis. Generally, an arbitrary

number of static and statistic analysis approaches is supported as long as the results

can be mapped to chromosomes. Each analysis approach contributes to the initial

generation and adds chromosome sequences to the repository.

Section 9.5 further discusses and generalises the integration capabilities of the

Beagle approach while this section focuses on the integration with genetic program-

ming.

5.11.10.1. Benefits of using Static and Statistical Analyses

Even partial results from static analysis or sub-optimal approximations from statis-

tical analysis can help improving the overall reverse engineering results as will be

pointed out in the following. Genetic programming is robust against incorrect results

(cf. [Koz93]). During selection, it automatically rejects individuals of a generation

with poor fitness. Thus, when ensuring that through mutation and crossover new

individuals can be created from multiple analysis results which represent solutions

with improved fitness, the overall reverse engineering benefits from additional input

through static and statistical analyses.

Consider the following simplified example from Listing 5.18 in which it is hard

to statically analyse the number of executions of the loop in lines 11 to 13. Due to

the manipulation of the preceding loop’s counter which depends on the modulo func-

tion applied to the parameters a and b, it is hard to infer numberOfExternalCalls.

Assume that a static analysis would calculate the size of numberOfExternalCalls

as a ∗ b, neglecting the impact of a%b which results in a decreased value of num-

berOfExternalCalls. As a ∗ b is the result of static analysis, it would be translated

into a chromosome. During evolution of a ∗ b, further improved individuals can be

created which reflect the impact of a%b.

198

5.11. Machine Learning

1 void doSth(int a, int b) {

2 int numberOfExternalCalls = 0;

4 for(int x = 0; x < a ∗ b; x++) {

5 numberOfExternalCalls++;

6 i f (a % b == 0) {

7 x++;

8 }

9 }

11 for(int x = 0; x < numberOfExternalCalls; x++) {

12 C.doService(a) ; / / external call

13 }

14 }

Listing 5.18: Example: Source code which is likely to lead to partial static analysis

results

As the example illustrates, it is beneficial to derive (even incomplete) information

on control and data flow from static code analysis. In this example, the antecedent

static code analysis could have increased the convergence speed and fitness of results

of genetic programming. Using information from antecedent analysis approaches in

genetic programming can help decreasing the time needed for search and aids finding

more optimal solutions.

5.11.10.2. Generating an initial population

The initial population of most genetic algorithms is generated randomly. This is a

valid strategy, if no or little knowledge on the problem to solve is available. In such

a strategy, from the available genes, random initial individuals are created, usually

combining several genes for one individual. Opposed to this, in the presented ap-

proach, the initial generation is created systematically.

For the reverse engineering of behavioural models, information from static analy-

sis can be used to enrich the initial generation. As all later generations base on the

initial generation (new individuals can be created randomly also for later generations

to increase diversity), additional knowledge can be encoded into the initial popu-

lation to increase efficiency and effectiveness (convergence speed). If for example

static analysis is able to determine basic parametric dependencies which only miss

199

Chapter 5. Reverse Engineering Behavioural Models

abstraction, or do only cover 95% of all observered cases during monitoring, genetic

programming can use these discovered parametric dependencies in the initial genera-

tion. Further evolution steps then can improve the initial generation and benefit from

knowledge of static analysis.

Due to the design of genetic programming, the fitness of the best individual in the

integrated approach can never be worse than the fitness of individuals from static or

statistical analysis (see Figure 5.28). The best individual is always kept for the next

generation (cf. selection operator in Section 5.11.5). If static or statistical analysis

provides a solution, the selection operator preserves the solution from generation

to generation unless genetic programming finds individuals with improved fitness.

Static, dynamic, and statistical analysis are complementing each other in each genetic

programming step.

The are two dimensions in which static analyses can be incomplete. Static analysis

results vary over the entire range of these dimensions:

• Of the set of all parametric dependencies in the source code PD only a subset

can be handled PDhandled ⊂ PD. Of the two parametric dependencies in the

example from Listing 5.18, the number of loops might be covered but not the

value of a in line 12.

• The quality of recovered parametric dependencies can be limited in three ways:

– The parametric dependency is fully correct but provides no abstraction.

In this case no deviation between measurement results and predicted va-

lues exists but the expression is complex (predicted = measured but

FitnessFunction(c) > 0 and thus not optimal).

– There is an error or deviation in the dependency (predicted =
measured ± error and FitnessFunction(c) � 0) but the error is

small.

– The dependency is not recovered at all (predicted = measured ±
error, with error →∞ and FitnessFunction(c)� 0).

Examples Even multiple results from static analysis which are conflicting at first

glance can be beneficial. Individuals of later generations are created from previous

generations. The crossover combines different individuals. If for example one of the

parent individuals is the result of a static analysis technique that is good in finding

abstractions of parameters, and another one is good in reverse engineering algorith-

mic expression, a combination of both can result in an improved combined individual.

Then, each individual from the initial generation is contributing for a later combina-

tion of higher fitness. Consequently, it is worth also having individuals in the initial

generation that have a low fitness themselves but which are potentially good for later

generations.

200

5.11. Machine Learning

Consider the following example with results from two static analysis and one sta-

tistical analysis for numberOfExternalCalls. static1, static2, and statistical
can be translated into individuals of the initial generation.

static1 = a ∗ b− a

static2 = IF(a%b == 0) THEN a

statistical = 0.9 + a ∗ b/2
pdreal = a ∗ b− (IF(a%b == 0) THEN (a ∗ b/2))

The real parametric dependency pdreal is a complex expression. Nevertheless, it can

be derived from static1, static2, and statistical by crossover only, since all chro-

mosome sequences of pdreal are present in the analysis results already. The chance

of creating pdreal during evolution is thus increased and the convergence speed can

raise due to the use of an initial generation based on prior analysis results.

Fitness

Generations
0 150

Optimal
Fitness

50

fwith

fx

gwith gw/o

Legend:

Evolution with optimisations
through initial generation

Evolution without optimisations
through initial generationWorsted

Fitness

200100

fw/o

gx

Fitness values for generation gx

Generations with fitness fx

Figure 5.29.: Example: Fitness of the best individuals of an evolution. Evolutions

with and without optimisations through the initial generation.

Improving Convergence Speed and Fitness Results from static and statistic

analysis approaches are integrated into the initial generation of the Beagle approach

for two reasons:

• Increased convergence speed. Individuals with high fitness values have an

increased chance to be created in earlier generations. The fitness of individuals

of the initial generation can be higher than in fully random initial generation

which aids finding individuals with high fitness in earlier generations.

201

Chapter 5. Reverse Engineering Behavioural Models

• Improved fitness of individuals. The maximum fitness value can be impro-

ved when using an initial generation based on prior analyses. For example,

the boundaries of branching conditions can be off when randomly guessed by

genetic programming and thus result in reduced precision (e.g. a boundary

x < 10 instead of x < 5).

As Figure 5.29 illustrates, when using optimisations through the initial generation,

the same fitness value (fX) is generally expected to be reached earlier for evolutions

with an optimised initial generation (gwith) than for evolutions with fully random evo-

lutions (gw/o). Vice versa, after a certain number of generations (gx), the fitness for

evolutions with optimisations is expected to be more optimal (fwith) than for evolu-

tions without optimisations (fw/o). Even for the first generation, an initial generation

based on prior analyses, generally should have more optimal fitness than an initial

generation of fully random individuals.

When evolving a very large number of generations, the fitness of individuals in

evolutions with and without optimised evolutions will converge (dashed lines on the

right hand side of Figure 5.29). For an infinite number of generations, the fitness

values will become the same, as every random change (mutation, crossover) will

have been applied to every individual of both evolutions. Then, the full search space

is explored and the optimal solutions are present in the optimised and non-optimised

evolutions. Hence, the optimisations of the initial generation are not required to gain

optimal results, but reaching satisfactory results within limited time become more

likely when using the optimised initial generation.

Since the evolution of genetic programming and the creation of the initial gene-

ration always depend on chance, evolutions are imaginable where the fitness of an

evolution based an a non-optimised initial generation is always better than the fit-

ness of the optimised case (evolution graphs switched in Figure 5.29). The validation

Section 7 will further investigate the improvements of an optimised initial generation.

Improvements of the Initial Generation To create the initial generation from

static analysis, a combination of the following means is used. Each mean represents

a guess on a partial parametric dependency.

• Input parameters of a provided service can be easily determined by static

analysis. For each parameter characterisation, an individual is created assu-

ming that there is a direct (negative) correlation between that parameter and a

parametric dependency to be learned. The resulting set of chromosomes is:

ChromosomesinputParameters = {c1, c2, ..} :

g ∈ cx ∈ ChromosomesinputParameters∧
g ∈ Genesinputs

202

5.11. Machine Learning

where the chromosomes are made from a subset of genes from Genesinputs.
Note that chromosomes in this cases can comprise just a single gene. The

chromosome in this case representes only a single input parameter.

• If constants are present in code that is reverse engineered, static analysis can

find them. For the initial generation, each constant is translated into an in-

dividual, making it more likely to have that constant used in more complex

expressions. As constants are also utilised in the original code, the reverse

engineered behaviour is likely to benefit from them.

The resulting set of chromosomes is Chromosomesconstants. Note

that Chromosomesconstants has nothing to do with Genesconstants, al-

though the values of the expressed constants can be overlapping by chance.

Chromosomesconstants complements the set of constant genes Genesconstants
by constants specific to a certain parametric dependency.

If there is for example a branch condition in a file processing service, the beha-

viour can depend on the file size. If a constant (e.g. 2048 Byte) is used in the

branch, using the constant as an individual helps finding the correct boundary.

When executing the file processing service with only very few different file

sizes (e.g. 10, 100, 1.000, 10.000 bytes) during monitoring, genetic program-

ming cannot precisely infer the exact branch condition. Any constant between

1001 and 10.000 matches the observations and thus is not rejected due to a de-

viation between measurement and prediction. Using the constant from static

analysis increases the probability of finding the correct branching condition.

While the above proposed constants recognition is very simplistic, advanced

code analysis techniques such as slicing [Wei81] can be used to increase the

precision of constants recognition. As Section 5.10.4 points out, only those

constants which are in the backward slice like the output parameter which is

determined by the parametric dependencies which is being reverse engineered,

can be used as constants of the initial generation. The application of slicing

would thus decrease the size of the initial generation.

• Constants can also be combined with parameters (e.g. const∗param), where

param ∈ Genesinputs. As parameters are likely to be scaled up or down with

constants (e.g. a loop being executed for every second element of an input list),

it is beneficial encoding this into the initial generation. Pre-defined constant

203

Chapter 5. Reverse Engineering Behavioural Models

genes (const ∈ Genesconstants) here serve as constants. The resulting set of

chromosomes is Chromosomescombined:

CrossProduct =⋃
(const,param) ∈ Genesconstants×Genesinputs

multiplication(const, param)

Chromosomescombined = random(CrossProduct, x, 1)

where multiplication(arg1, arg2) creates a chromosome representing

a multiplication of arg1 and arg2. x is a number of randomly selected

chromosomes. To not exceed the size of the initial generation, a limitation is

needed when many constants or parameters are available.

• Often, iterations are “off by one” in the code. Thus, param+1 and param−1
are made available in the initial generation. The resulting set of chromosomes

is Chromosomesofbyone:

CrossProduct =⋃
param∈Genesinputs

(addition(param, ‘1’) ∪ subtraction(param, ‘1’))

Chromosomesofbyone = random(CrossProduct, x, 1)

where x again is a number of randomly selected chromosomes, addi-
tion(arg1, arg2) creates a chromosome representing the addition arg1+arg2,
and subtraction(arg1, arg2) creates a chromosome representing the sub-

traction arg1 − arg2.

• To describe polynomial dependencies, a polynomial can be pre-configured

for the initial generation, such as ax + by + cz + ... with a, b, c, .. being

coefficients and x, y, z, ... being parameters. This ensures, that all parame-

ters are covered by the polynomial. The resulting set of chromosomes is

Chromosomespolynomial:

Chromosomespolynomial = polynomial(Genesinputs)

204

5.11. Machine Learning

where polynomial(Set) creates a chromosome representing a polynomial

with card(Set) variables, each representing elements of Genesinputs and ran-

dom coefficients.

• The polynomial from the previous bullet can also be pre-defined in a more

advanced way. If standard regression approaches are used to determine

coefficients for the polynomial, the starting point for genetic programming

can even be more improved. Besides polynomial regression, linear, loga-

rithmic, or multiple regression approaches can be used to generate initial

individuals based on statistical fitting. The resulting set of chromosomes is

Chromosomesregression.

In this thesis, Multivariate Adaptive Regression Splines (MARS, [Fri91]) are

used for statistical regression. Results from MARS are therefore translated

into a section-wise defined function, which is represented as an individual of

genetic programming. No special genes are required for representing MARS

results in chromosomes. MARS must be seen as an example for integrating

statistical approaches into the Beagle reverse engineering approach.Due to the

section-wise definition of results, MARS serves well for approximating non-

continuous behaviour. Non-continuous behaviour results from branches in

source code and must therefore be handled. Simple regression approaches

(linear or polynomial) are thus not well-suited for the approximation of com-

ponent behaviour. Polynomials for example have limited precision for func-

tion values near approximated jumps and tend to result to complex expressions

when approximation with higher precision. Section 5.14 will provide further

details on the integration of MARS.

• More complex initial individuals can be formed, if advanced static analysis

techniques like symbolic execution [Kin76, Cow88, DLR06, HC88, Lee06,

Hua08] or abstract interpretation [CC77] are used. Such techniques are par-

tially able to determine parametric dependencies from code. As these depen-

dencies are expressed with standard genes, genetic programming can further

improve findings of such techniques. The resulting set of chromosomes is

Chromosomescomplex.

For this thesis, the Wala [IBM] and KeY [BHS07] approaches have been ana-

lysed for their applicability for reverse engineering parametric dependencies.

Ultimately, for testing purposes, Wala has been integrated as advanced sym-

bolic execution technique. Section 5.12 will detail on the integration.

Most of the individuals (especially the first simple ones) proposed above for the

initial generation are likely to have a very poor fitness which makes it probable for

them being removed directly after the first generation. Still, it is desirable to have

them available for recombination in crossover for later generations. To increase the

205

Chapter 5. Reverse Engineering Behavioural Models

probability that individuals from the first generation survive – and consequently im-

prove usage of the results from static analysis – the same individuals are created

multiple times in the first generation.

In the first generations, this increases the probability of recombinations of initial

generation individuals, later generations are affected only by individuals that in fact

are beneficial. So, later generations are not suffering from overhead of the initial

generation, but nevertheless profit from an improved starting point.

Formally, the InitialGeneration is the union of the above sets of chromosomes:

InitialGeneration := Chromosomescombined ∪ Chromosomesofbyone∪
Chromosomespolynomial ∪ Chromosomesregression∪
Chromosomescomplex ∪ ChromosomesinputParameters∪
Chromosomesconstants

5.11.10.3. Deriving Genes and Chromosomes

Deriving ChromosomeRepository Section 5.11.1 introduced the term chromo-
some repository as a set of chromosomes which is instantiated for a specific para-

metric dependency. Chromosomes from the chromosome repository are used when

creating random individuals for filling up a generation after selection. While the

initial generation affects only the first generations of evolution, chromosomes are

available from the chromosome repository throughout the whole evolution. If new

random individuals are generated for later generations, chromosomes available from

the repository are likely to be chosen. They are influencing also later generations.

Hence, they contribute equally to all generations opposed to the initial generation

individuals which predominantly contribute to the first generations of evolution.

The ChromosomeRepository is a set of chromosomes:

ChromosomeRepository := Chromosomescombined ∪ Chromosomesofbyone∪
Chromosomespolynomial∪
Chromosomesregression∪
Chromosomescomplex

The chromosome repository is derived from the initial generation, where Chromo-

someRepository ⊂ InitialGeneration. Constants (Chromosomesconstants)
and input parameters (ChromosomesinputParameters) are intentionally not part

of ChromosomeRepository as the elimination of unimportant parameters and

constants from the evolution is intentionally desired.

206

5.11. Machine Learning

Adapting the Genes Set Besides configuring the initial population in genetic

programming, static analysis can be used to adapt available genes (set Genes). On

the one hand, a selection (subset) of default genes can be used to limit the search

space, if static analysis suggests to have a certain kind of dependency (for example,

linear dependency plus some branching). On the other hand, special genes can be

introduced to reflect a specific problem space using information from static analysis.

As already discussed in Section 5.11.3.6, limiting the available genes is not necessary

when using genetic programming.

When adapting the set of available genes Genes, also mutation is affected since

the “changing operators” mutation operator selects from the available genes. Like

the use of the ChromosomeRepository, the adaption of Genes is capable of in-

fluencing all generations of genetic programming.

5.11.11. Static Code Analysis of Byte Code

The presented approach does not rely on readability of source code or naming of

variables, which makes it broadly applicable. When provided with Java byte code,

the approach first runs a decompiler to extract Java source code from the binary

files. The source code provided by standard decompilers (e.g. JAD or JDEC), is

a sufficient base for any further analysis of the approach. In the PCM’s RDSEFF,

loops and branches are not distinguished like it is the case in decompiled source

code. Thus, the missing uniqueness of the mapping of for / while loops and if /

switch statements back to source code is not impacting the approach.

Obfuscation The Beagle approach is robust against obfuscation. During obfus-

cation only naming and non-functional aspects (e.g. order of instructions) can be

changed. RDSEFFs are abstractions of the control and data flow. An obfuscator can-

not change the order of instructions at the level of an RDSEFF. For a component its

assembly context is generally not known at compile time when an obfuscator runs.

Hence, the control flow can only change within internal actions of a component.

Otherwise, an obfuscator would need to be able to guess the assembly context since

the order of component calls can have impact on a component’s state.

Consider the following example from Listing 5.19. In the example, the lines 3-5

can be re-ordererd but the order of calling C1 and C2 must be preserved as calling C1

could affect the state of C2 (and potentially break the required-side protocol of the

component offering doSth()). When semantically analysing the source code, any

internal actions can be reordered (e.g. the internal action after calling C1 and C2.

Still, this does not impact the performance model, since the order of the executed

code would also be the order of the obfuscated code. Obfuscated code and decompi-

led code would show the same performance behaviour; only the original source code

would be different. Parametric dependencies for internal actions make no assump-

207

Chapter 5. Reverse Engineering Behavioural Models

1 void int doSth() {

2 / / internal action start

3 int i = 0;

4 int y = 0;

5 i++;

6 / / internal action end

8 C1.doSth2() ; / / external component call 1

10 C2.doSth3() ; / / external component call 2

12 return i + y;

13 }

Listing 5.19: Source code example: Obfuscation options

tions on the execution order of covered instructions and consequently are not affected

by obfuscation.

Direct Processing of Byte Code The previous section discussed the availability

of information in byte code. The tooling of the Beagle approach could also work di-

rectly on byte code during control flow abstraction (cf. Section 5.8), instrumentation

(cf. Section 5.10.6), and monitoring (cf. Section 5.10.7), using byte code engineering

tools such as BCEL [Dah01] and Javassist [Chi]. Control and data flow are present

in the byte code as well as in source code (see previous section). To limit the effort of

developing the Beagle approach, it has only been implemented for Java source code.

For Java source code the broadest tooling support and most convenience is available

which reduced the development effort. Still, conceptually, any reverse engineering

activity could be applied to Java byte code.

5.11.12. Numeric Precision

In the previous sections, for if-then-else genes and for the stop condition ε envi-

ronments have been introduced to overcome numeric limitations when dealing with

floating point numbers. This section will briefly discuss the numeric precision of the

genetic programming step. The fitness function (cf. Section 5.11.4) is responsible

for evaluating individuals. To evaluate the fitness of an individual, the expression

represented by the chromosome is calculated for the input values gathered at runtime

208

5.11. Machine Learning

by monitoring. The mean squared error of deviation between measurement and pre-

diction for all input is then one input to the fitness function. For the calculation of the

fitness of each individual, the original values from monitoring are used. Thus, there

cannot be a “drift” of precision when evolving over large numbers of generations.

Each generation accesses the same values.

To calculate the predicted value of each individual, genetic programming inter-

nally performs Java double calculations. For more complex calculations, this might

involve numeric imprecisions which are then intercepted by the mentioned ε envi-

ronments. After translating chromosomes into RDSEFF stochastic expressions (see

Section 5.15), hence, the approach must account for the ε environments. The execu-

tion of stochastic expressions is taken over by Java again during the PCM simulation

which ensures that the expressions are interpreted in the same way as during genetic

programming.

When choosing an overly small ε, this does not result in imprecision in the deve-

loped approach. The fitness function and the stochastic expression would make the

same error when evaluating them. The selection operator of genetic programming

would hinder imprecise individuals to survive. The worst impact of choosing an

overly small ε is an unsteady behaviour of genes. Imagine an if-then-else gene which

evolves for several generations. In a first generation an individual might contain for

example:

IF(a < 3± ε) THEN ... ELSE

If a is de-facto an integer value in this individual, the condition will be unambi-

guously decided. When in a later generation replacing (crossover or mutation) the a
by an expression like a+X , where X is nearly a constant calculated in a way that it

for some input values results in 0.001 instead of 0.0, the result of the IF statement is

affected:

IF((a+X) < 3± ε) THEN ... ELSE

For the same input values, the expression would suddenly return the value of the

ELSE branch instead of the value of the IF branch when selecting a small ε (e.g.

ε = 10−5). Assume that the individual has been close to the optimal solution before

the last mutation or crossover which introduced a+X . Genetic programming could

then reject the individual of the next generation due to the numeric problem and the

search would have to restart from much worse individuals. If the selection operator

has not created of copy of the individual, the unsteady behaviour would artificially

extend the search time.

209

Chapter 5. Reverse Engineering Behavioural Models

5.11.13. Genetic Programming Configuration as
Optimisation Problem

The configuration of genetic algorithms is an optimisation problem on its own. Ge-

netic algorithms (and thus genetic programming) possess a large configuration space

which affects first of all the convergence speed but also the possible fitness of the best

results. In this thesis, the configuration space has been optimised manually through

trial and error, based on configuration values from literature [SP94]. Nevertheless,

a full optimisation could be a subsequent project which has not been performed in

the context of this thesis. In this section, the chosen configuration and the possible

configuration space will be roughly sketched.

The configuration space covers:

• Mutation probability. High mutations rates hinder a convergence of the search

process while low rates avoid required diversity. (Selected probability: pc =
0.85)

• Crossover probability. High crossover probabilities result in individuals which

are likely to be created from multiple individuals (the chance of two crossovers

per individual increases). Such individuals are very diverse. Especially when

being close to optimal solutions, only minor changes e.g. constant mutations

should be dominating. (Selected probability: pm = 0.9)

• Population size. The population size determines the diversity each generation

of genetic programming has. Small populations can lead to local minima but

increase the convergence speed. (Selected size: generationSize = 100
individuals)

• Termination condition: The number of generations to evolve determines the

overall runtime of genetic programming but also impacts the fitness of the best

individuals. Another configuration option is choosing whether to stop on sub-

optimal solutions (and which fitness they should have) or only on perfectly fit

solutions. (Selected generations: gmax = 750; for more complex problems:

gmax = 1250; tmax = 5minutes; stopping when fitness equals 0)

• Selection of genes. From a set of available gene types (e.g. addition, substrac-

tion, constants, etc.) subsets can be selected to lower the solution space (set of

all possible chromosomes) if limitations are known for the problem space (pa-

rametric dependency reverse engineering problem). (Selected to use all genes

plus those contributed by static and statistical analysis)

• Fitness function. For the presented fitness function, weights, considered

complexity metrics and the error function have to be selected. (The selected

weights are discussed in Section 5.11.4.3.)

210

5.11. Machine Learning

For the above configuration space, it is assumed that the superset of available

genes, the problem representation, and the population size are fixed and that the basic

form of the fitness function is decided.

Srinvas and Patnaik [SP94] discuss the selection of crossover and mutation pro-

babilities in detail. They propose adaptive probabilities for crossover and mutation,

which change over subsequent generations. Focusing on the two goals of maintai-

ning diversity and convergence speed, crossover and mutation probabilities depend

on the fitness value in their approach.

In the Beagle approach, there is an “adaptiveness” comparable the adjustment of

crossover and mutation probabilities: The probability of influence of static and sta-

tistic analysis results is higher for the first generations (due to the initial population)

and automatically lowered through the selection of individuals in later generations.

211

Chapter 5. Reverse Engineering Behavioural Models

5.12. Static Analysis of Parametric Dependencies:
Symbolic Execution

SoMoX

Beagle

<<LoopAction>>

data flow

con-
ditions

In the developed approach, the static analysis technique of symbo-

lic execution [Kin76, CC77] complements dynamic and statistical

analysis. Symbolic execution (sometimes referred to as “abstrac-

tion interpretation”) is well-suited for the reverse engineering of

parametric dependencies. Opposed to other static analysis tech-

niques like slicing [Wei81], Symbolic execution “quantifies” the

relation between input and output parameters. Hence, as required

for parametric dependencies, stochastic expressions can be directly

derived from symbolic execution results.

Limitations of Symbolic Execution in General Section 5.1 already discussed

general limitations of static analysis techniques which also apply to symbolic execu-

tion. Furthermore, symbolic execution is not able to deal with parameter characteri-

sations, which are specific to performance models. Only the VALUE characterisation

of primitive data types is supported. Generally, symbolic execution targets primitive

data types. Collection data structures like Lists lack general support (e.g. when ad-

ding elements to lists over which is iterated or which are passed to other components,

the list size is neither supported out of the box by the well-known approaches KeY

[BHS07] nor Wala [IBM]). Yet, the KeY approach can be manually extended with

support for arbitrary data structure. Nevertheless, each data structure would require

specific extensions of the KeY implementation.

Symbolic Execution Implementations Symbolic execution, namely the KeY

[BHS07] and Wala [IBM] implementation have been evaluated in [Kna10, Chi08]

(cf. Table 5.2. Ultimately, an implementation based on Wala was integrated into the

Beagle approach. The reasons for selecting Wala and a discussions of the advantages

and disadvantages of symbolic execution follow next. It must be emphasised that

symbolic execution has various extensions and variations (see [PV09] for an over-

view). Basically, the KeY and Wala implementation are discussed but it is pointed

out which arguments apply to symbolic execution in general.

The main purpose, KeY has been developed for, is the prove of correctness of

source code. Wala is a framework for static analysis and provides various static ana-

lysis capabilities like slicing, class hierarchy analysis, pointer analysis, among others.

To apply KeY, the source code must necessarily be annotated, while Wala can deal

with Java bytecode out of the box. Due to the required annotations, KeY cannot deal

with source code in an automated approach, which is impractical for Beagle. Concer-

ning the built-in symbolic execution features, KeY provides full symbolic execution,

212

5.12. Static Analysis of Parametric Dependencies: Symbolic Execution

Criterion KeY Wala
Main purpose Proving correctness of

source code

Static analysis framework;

abstract bytecode representa-

tion

Effort High: Annotations required Low: Robust

Automation No Yes

Full symbolic

execution

Yes No

Parametric de-

pendency base

Yes Partial

Primitive date

types

Yes No

Collections /

Complex data

types

No No

Table 5.2.: Comparison: Symbolic execution and its implementations

while Wala only provides a base for the implementation of symbolic execution. The

symbolic execution of KeY is mainly able to deal with primitive data types; for col-

lection data types and other complex data types, symbolic execution does not work

in the way the Beagle approach requires.

The symbolic execution which has been developed in the context of [Kna10] uses

Wala as base framework. It is able to create stochastic expressions for given sym-

bolic execution problems. For cases which result in ambiguities for possible para-

metric dependencies, multiple stochastic expressions are returned by the approach.

For example, if two branches manipulate an output parameter (due to phi nodes),

both branches are analysed separately and result in separate stochastic expressions.

Still, the partial results are beneficial for reverse engineering of Beagle approach (cf.

Section 5.11.10).

The results of the developed symbolic execution are translated into individuals

of the initial generation of genetic programming and handled like all other results

from static, dynamic, and statistical analysis approaches: InitialGeneration =
InitialGeneration ∪ WalaSymbExec, where WalaSymbExec is the set of chromo-

somes created by the above symbolic execution approach.

213

Chapter 5. Reverse Engineering Behavioural Models

5.13. Static Analysis of Parametric Dependencies:
Other Approaches

Apart from symbolic execution, further static analysis approaches can be integrated

into the Beagle approach. Among the most suitable is slicing [Wei81].

SoMoX

Beagle

<<LoopAction>>

data flow

con-
ditions

The results of slicing approaches are not sufficient to establish

parametric dependencies. Slicing can at most provide a binary rela-

tion between input and output parameters but no exact specification

how output parameters depend on input parameters (for the classic

form of slicing). Furthermore, slicing approaches are not designed

to create abstractions, but instead focus on soundness.

Still, slicing results can be beneficial since it can be known from

slicing results which parameters influence a certain parametric de-

pendencie and which do not. For example, the GenesInputs set can be reduced based

on slicing results. If the slice criterion is set to a output parameter o ∈ Outputs, the

set of variable genes GenesInputs can be reduced to inputs which are recognised by

slicing:

{gene.parameter | gene ∈ GenesInputs} ∩ BackwardSlice(o)

where BackwardSlice(o) returns the backward slice of statements affecting o. If

the utilised slicing approach can guarantee that a certain input parameter cannot im-

pact an output parameter for which a parametric dependencies has to be determined,

the input parameter can be safely deleted from the set of genes. Due to the reduced

set of variables, the convergence speed can be increased.

1 int doSth(int a, List l is t , boolean b) {

2 for(int i = 0; i < a; i++) {

3 l i s t .add(new Integer ()) ;

4 }

5 i f (b) {

6 a++;

7 }

8 C. processList(l i s t) ; / / external call

10 return a;

11 }

Listing 5.20: Example source code: Slicing of source code

214

5.14. Multivariate Adaptive Regression Splines

Consider the simple example source code in Listing 5.20. In this example,

the list parameter characterisation NUMBER_OF_ELEMENTS (NoE) of

the external call processList(..) is subject of reverse engineering of a

parametric dependency. The backward slice would be starting for the list

parameter in line 8 and include all statements that affect that parameter. The

set of statements that is returned by the backward slice would be (informally)

{“list.add(newInteger)′′, “for(int i = 0; i < a; i + +)′′, List list, int a}
which includes the input parameters list and a but omits parameter b. The set

GenesInputs would in this case be {a.VALUE, list.NoE, b.VALUE}. Thus, the

“important” parameters list and a would be correctly included in the intersection of

backward slice and Geneinputs. As the example points out, whole parameters and not

only single parameter characterisations can be excluded from genetic programming

when using slicing.

No slicing approach is currently integrated into the implementation of the Beagle

approach.

5.14. Multivariate Adaptive Regression Splines

Statistical Analysis of Parametric Dependencies: Multivariate Adaptive Regression

Splines Statistical analysis approaches are known for their abilities in approxima-

tion. Woodside et al. [WVCB01], for example, discuss regression approaches in the

context of so-called “resource functions” [CW00]. Resource functions approximate,

for example, the CPU usage of a software for a single execution environment.

The idea of using statistic regression approaches in the context of this thesis, is

to embed approximation abilities of state-of-the art approximation approaches and

then to further evolve the findings of statistic regression approaches using genetic

programming. The approximations delivered by the statistic regression approach are

therefore translated into individuals of the initial generation of genetic programming

and can be further optimised. This is especially important since the developed fitness

function of genetic programming forces abstraction and therefore implies slightly

different optimisation criteria which are not reflected by any existing regression ap-

proach.

Regression approaches can be simple linear regressions, which approximate a gi-

ven dependency by a linear function, or more advanced regression like polynomial

regressions. A general problem when dealing with such regression approaches is the

selection of an appropriate one which matches the original kind of dependency. The-

refore, more advanced approaches based on regression splines have been developed

which, depending on the approach, can approximate multiple kinds of dependencies

without a priori knowledge. Additionally, regression splines can be defined piece-

wise.

215

Chapter 5. Reverse Engineering Behavioural Models

In previous papers, Woodside et al. [CW00, ZWL08, WVCB01] highlight the

use of the Multivariate Adaptive Regression Splines approach (MARS) which has

been introduced by Friedman [Fri91]: “MARS-based representation appears to be

ideal for nonlinear resource functions fitted to empirical data, as it does not require a

hypothesis about the functional form” [WVCB01, p. 252].

For a number of reasons, MARS is well-suitable to the class of data which must

be approximated:

• MARS is able to deal with multi-dimensional problems which depend on a

number of input variables,

• MARS results in a piecewise defined function which fits the input data and

thus is applicable to non-continuous data which is present due to branches in

the monitored source code,

• MARS limits the complexity of resulting expressions (e.g. number of nodes;

number of selected variables). This helps abstracting expressions during sta-

tistic analysis already. MARS uses Generalized Cross Validation (GCV, cf.

[Sta09]) to balance model complexity and precision of function fitting. GCV

punishes a large number of knots (see below) to overcome the limitation of

simplified error measures like the least squared error which does not incorpo-

rate any complexity measure and would result in large expressions.

An example for a MARS result expression is (visualised in Figure 5.30):

z = 0.92 constant

+ 0.39 · h(x, 4.3) knot 1

+ 0.85 · h(x, 27.9) knot 2

− 2.27 · h(y, 35.2) knot 3

MARS expressions are a product of piecewise defined linear functions. Generally,

a function fitted by MARS is expressed as a sum of terms of the following form:

value := const

± a1 · h(b1, c1)
± a2 · h(b2, c2)
± ..

with const and an constants, bn and cn a pair of constant and variable where each

pair must have a constant and a variable.

216

5.15. Adding Learned Parametric Dependencies to the RDSEFF

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45

z

4.3

x, y

27.9 35.2

Figure 5.30.: Example: Plot of a MARS function

h(..) → v ∈ R : 0 ≤ v < ∞ is the hinge function which must be either of the

form h(const, x) (cf. [Fri91]):

max(0, const− x)

or h(x, const):
max(0, x− const)

where x ∈ R represents a variable and const ∈ R is a constant. Each hinge function

forms a so-called knot contributing to the piecewise function definition.

In the Beagle approach, the result of MARS is translated to an individual of the

initial generation. The PCM stochastic expressions do not support the max operator.

Therefore, each knot of the hinge function is translated into

value := max(a, b) with a = 0

=

{
0 if(0 > b)

b else

which can directly be represented in genes and stochastic expressions using a branch

condition.

Realisation In the thesis, the R (see for example [Cra07]) implementation of

MARS is used. The corresponding package is named EARTH.

217

Chapter 5. Reverse Engineering Behavioural Models

Machine
Learning

RDSEFF
Construc-

tion

Control
Flow

Behaviour Analysis

Artefact Working
Area

Processing

Legend:

Output-
Input-

Relation

Map
Parametric

Dependencies

Translate
Genes to

Parametric
Dependencies

Parametric
Dependency:

Stochastic
Expression

Parametric
Dependency:

Gene
Representation

Control Flow PCM

<<ResourceDemandingSEFF>>
doService()

<<LoopAction>>

<<ExternalCall>>
AnInterface.aService()

<<ResourceDemandingSEFF>>
doService()

<<LoopAction>>

<<ExternalCall>>
AnInterface.aService()

TOKENTOKEN TOKEN

TOKEN

TOKEN

TOKEN

TOKEN TOKEN

GENE

GENE GENE

GENE

GENE

GENE

GENE GENE

Tree of Genes PCM StoEx
#

PCM
StoEx

#
Associated

Logging
PositionID

#

#

#

#
M

ap
Parame-

tric Depen-
dencies

PCM

Control Flow Skeleton
Annotated RDSEFF

Figure 5.31.: Adding learned parametric dependencies to the RDSEFF: Translation
from trees of genes to stochastic expressions of the PCM and mapping
of stochastic expression to the control flow skeleton.

5.15. Adding Learned Parametric Dependencies to
the RDSEFF

After all parametric dependencies (each output LoggingPositionID of the control

flow; cf. Section 5.8.5) are learned using genetic programming, the parametric de-

pendencies are added to the control flow skeleton of the RDSEFF. Therefore, first the

learned dependencies must be mapped back to the control flow skeleton and second,

the parametric dependencies represented as genes of genetic programming must be

translated into PCM RandomVariables which own a StochasticExpression at-

tribute. Figure 5.31 visualises the steps in the context of the overall process and

highlights the translation and mapping step including the input and output artefacts.

For the first step, parametric dependencies are mapped back to the control flow

skeleton using the LoggingPositionID introduced in Section 5.10.5. The Logging-

PositionID is added to the control flow skeleton when building it from code and

maintained during all the dynamic analysis and genetic programming steps. Hence,

for each parametric dependency, the corresponding LoggingPositionID is available.

In the control flow skeleton of the RDSEFF, the LoggingPositionID can be simply

looked up via the trace model decorator (a mapping between source code artefacts

and PCM model elements; see Section 6 and Figure 5.31 “Associated PositionID”)

218

5.16. Integrate Resource Demands

within constant time. A parametric dependency can then be added for each Logging-

PositionID.

The second step comprises a conversion of genes to StochasticExpressions.

For the StochasticExpressions, the PCM provides a parser that converts a text

representation into the syntax tree of that text. Genes are therefore converted into a

text representation which then by the parser is converted into the syntax tree. Since

the gene structure is not visitable (cf. “visitor pattern”, [GHJV95]), the stochastic

expression cannot be created directly from the gene structure. Each gene is capable

of emitting a text representation of itself which can be read by the parser. The text

representation is derived by a recursive walk on the gene structure.

The hinge function of learned parametric dependencies resulting from the MARS

approach is converted as described in the previous Section 5.14.

5.16. Integrate Resource Demands

While internal actions have been omitted in previous sections, they will be handled in

the following to complement the Beagle reverse engineering approach. The RDSEFF

models, which are reverse engineered so far, are complete behaviour models except

for the specification of resource demands.

As a reminder: In Palladio, no direct timing values are being specified the internal

actions of RDSEFFs. Instead, abstract instructions are used to describe resource

demands. Timing values are calculated in a later model performance prediction step

(which is out of scope of this thesis; see [Bec08a, Koz08b, BKR09]) to allow for

exchanging the resource environment at the model level without affecting other parts

of the model. A more detailed discussion on the specification of abstract resource

consumptions was presented in Section 2.6.

For the estimation of resource demands, basically the same machine learning ap-

proach as for estimating parametric dependencies can be used (see Section 5.11).

Figure 5.32 provides an overview on the general integration.

Generally, information on arbitrary resource demands (e.g. CPU, memory, Byte-

code instructions) is supported by Beagle. Beagle does not require other information

than raw resource utilisation counts (e.g. resource demands issued per input para-

meters) per InternalAction. For every InternalAction, a dependency between

input parameters of the surrounding RDSEFF and resource demands is then calcula-

ted through genetic programming. This will be further discussed below.

Bytecode The following section deals with the integration of raw bytecode counts

with the behaviour model. Again, genetic programming will serve as a central ele-

ment for integration.

219

Chapter 5. Reverse Engineering Behavioural Models

ByCounter

Resource Demand estimation

Test Cases

<<iterate>>

Test Cases

Test cases and associated
raw resource demand measurements
per bytecode section

MachineLearning
learned

resource estimation

Figure 5.32.: UML activity diagramm: Integration of resource demand counting

(“ByCounter”) in the reverse engineering process of behavioural

models

A detailed way of capturing resource demands which are not specific for a single

execution environment (cf. Requirement R-Resource Demands), is the handling of

low level instructions. For Java, these instructions are formed from bytecode. Byte-

code instructions are executed within a virtual machine and thus are not specific to a

single execution environment.

A previous successful combination of the RDSEFF behaviour models and Byte-

code resource demands has been shown in [KKR10, KKR08a]. In this approach,

Beagle adds resource demands (e.g. CPU and HDD demand) for all internal ac-

tions based on the raw resource demand counts delivered by the ByCounter tool

[KKR08b]. ByCounter provides counts of executed bytecode instructions for In-

ternalActions. Therefore, ByCounter is executed using test cases and counts the

resulting bytecode instructions executed at runtime for each parameter input.

Bytecode instructions cover load, store, arithmetical, and method execution ins-

tructions, among others. ByCounter captures bytecode counts for each so-called

“building-blocks” in the code. A building-block is a non-branched (if-then-else, for,

or while free) sequence of instructions (see the simplified example in Figure 5.33).

ByCounter results in tupels of the form:

ByCounterResult := {bc1, bc2, ..} ,
bc := (bytecodeInstruction, buildingBlock, Inputs, count)

∈ ByCounterResult

220

5.16. Integrate Resource Demands

where Inputs itself is again a set of tuples:

Inputs := {input1, input2, ..} ,
input := (inputsymbol, inputvalue) ∈ Inputs

which is present for each input from the executed test cases. A bytecodeInstruction
is a unique identifier for a bytecode instruction, count ∈ Z is a number representing

the number of executions of a bytecodeInstruction within a buildingBlock,

and a buildingBlock is an unique identifier corresponding to an Internal-

Action; the bijective mapping between InternalAction and BuildingBlocks is

BuildingBlocksMapping:

BuildingBlocksMapping := InternalAction→ BuildingBlocks

BuildingBlocksMapping−1 := BuildingBlocks→ InternalAction

This mapping and its inverse mapping allow the processing of ByCounter data and

the required annotation of RDSEFFs with resulting resource demands. The set

BuildingBlocks holds a number of building blocks:

BuildingBlocks := {buildingBlock1, buildingBlock2, ..}

Each single tuple bc ∈ ByCounterResult is subject to genetic programming.

Thus, for every bytecode instruction and building block, the input parameters Inputs
and monitored output count (bytecode counts per instructions) are fed into genetic

programming. At an abstract level, the task for genetic programming remains the

same as for other parametric dependencies. While for parametric dependencies loop

execution numbers, branching conditions, and parameter values are calculated, for

resource demands pure counts which can depend on input parameters, need to be

calculated. Solely, the source of input information is different.

The example shown in Figure 5.33 illustrates the ByCounter integration. For each

building block (visually aggregated by curly brackets), ByCounter provides counting

results per bytecode instruction and for each measured combination of input data

(resulting from test cases). In the example, there are two control flow statements

(loop and branch). Each body of such a statement results in a building block (3) and

(4). Additionally, there are building blocks for the constant overhead of control flow

statements (1) and (2). For example, a loop requires the calculation of initial variable

values (1) and a branch has a constant overhead for checking its condition (2). These

overheads result in additional building blocks which are considered explicitly and

returned by ByCounter.

Prior to genetic programming, the building block representing the constant

overhead of a loop is merged with a InternalAction preceding the LoopAction.

221

Chapter 5. Reverse Engineering Behavioural Models

public void uploadFiles (List<File> files, boolean saveEnabled) {

for(int x = 0; x < files.size(); x++) {
if(saveEnabled) {
 // ...
 // resource demand A
 component.externalCall();

 } else {
 // ...
 // resource demand B
 component.externalCall();

 }
}
// ...
// resource demand
// ...

}

Loop initialisation
If evaluation + loop condition check

Loop body / if case statements

Loop body / else case statements

Non-nested statements

Building blocks:

External Call

External Call

3x GOTO
2249x ILOAD
4254x ISTORE, ...

Executed Bytecode:

dynamic counts of
bytecode instructions for

the inputs

45x GOTO
33x ALOAD
34x ISTORE, ...

1x ILOAD, 1x GOTO, ...
2x ILOAD, 1x GOTO, ...

2x GOTO
3x IMULT
9x ALOAD
3x ISTORE, ...

Inputs:
files.NoE = 3
saveEnabled.VALUE = false
...

--

--

1
2

3

4

5

Figure 5.33.: Building blocks example

Hence, each InternalAction can correspond to a number of building blocks.

Constant overheads of control flow statements (e.g. initialisation of loop statements

or condition check of a branch statement) are merged with InternalActions

predecessing the described control flow element. Building blocks representing static

overhead (e.g. condition checks or incrementation) are merged with Internal-

Action contained in those control flow statements. The condition check of loops is

merged into the first InternalAction of a LoopAction and the incrementation part

is merged into the last InternalAction of a LoopAction.

Adding Resource Demands to the RDSEFF After learning dependencies bet-

ween input data and the resulting executed bytecode instructions, these parametric

dependencies can be annotated as ResourceDemands to the reverse engineered RD-

SEFF. Such ResourceDemands can be for example (“resource demand A” from Fi-

gure 5.33):

files.NUMBER_OF_ELEMENTS ∗ (saveEnabled == true ? 1 : 0) ∗ 3
for the GOTO bytecode instruction.

To enable matching internal actions in the RDSEFF with the bytecode estimations

of genetic programming, unique IDs are used to tag internal actions and correspon-

ding building blocks. The resulting IDs are then matched when creating the RDSEFF.

222

5.17. Black-Box Components

5.17. Black-Box Components

In some reverse engineering scenarios, coarse-grained component behaviour models

might be sufficient for rough performance predictions if the reverse engineering effort

can be lowered. Other reverse engineering scenarios might forbid any grey-box view2

(cf. [BW99]) of components in reverse engineered models which exhibit internals of

components. In these scenarios, further limitations of the prediction capabilities of

reverse engineered models might be acceptable. In order to support scenarios where

either no source code is available, rough models are sufficient, or where no model

details are wanted (e.g. protection of intellectual property), a black-box reverse engi-

neering approach [KKR08a, KKR10] has been developed in the scope of this thesis.

In a black-box reverse engineering scenario, the control flow of a component is consi-

dered as a black-box which is not subject to reverse engineering.

Instead, a black-box behaviour model in the developed approach comprises a

single InternalAction covering all internal behaviour of a component and a num-

ber of LoopActions each containing an ExternalCall cumulatively representing

all calls to a required role of the reverse engineered component. The reverse engi-

neered model uses the LoopAction to express multiple calls to another component.

In such a black-box model, first the required roles of a component must be identified,

then for each required role the number of calls, the corresponding call parameters of

the ExternalCall, and finally, the resource demand of the InternalAction must

be approximated.

To facilitate the reverse engineering while maintaining the black-box principle,

component behaviour is monitored at the interface-level. Frequency and parameters

of incoming and outgoing calls are recorded during the execution of a component.

The component can be either executed in a testbed or in an existing installation. Like

in the grey-box approach presented in the previous chapters, the approach does not

rely on timing values during monitoring. Only frequencies and parameter characte-

risations are recorded during monitoring. Therefore, the overhead of measurements

does not impact the results. Timing information is, as before, added during perfor-

mance prediction, which is out of scope of this thesis.

The reverse engineered model is comparable to characteristic curves3 as used in

electrical engineering, but in contrast to them parameterised over potentially multiple

dimensions. As the approach again applies genetic programming for estimating re-

source demands of the InternalAction, for approximating the LoopAction’s exe-

cutions counts, and the parameters of ExternalCalls. The resulting model can be

parameterised over multiple dimensions. The single InternalAction of the reverse

engineered model is comparable to a very large internal action for grey-box models

2The approach presented in the previous chapters is a grey-box approach.
3German: “Kennlinien”

223

Chapter 5. Reverse Engineering Behavioural Models

in the previous chapters which makes the genetic programming approach well appli-

cable in the black-box scenario.

Assumptions The black-box approach results in a simplified behaviour model

which implies a number of limitations and assumptions, primarily concerning order

effects:

• A performance impact of the order among external calls to different required

roles is neglected. For example, the sequence CSexample = ABACCBA of

external calls in Listing 5.21 would become an unordered set A∗B∗C∗ where ∗

represents an arbitrary number of calls. Thus, the call sequencesABACCBA
and ABCABCA become indistinguishable. The reduction may be less ac-

curate due to missing expressiveness of “bursts” of calls as discussed in Sec-

tion 5.7.2 in the context of InternalActions.

ordered set of external calls → unordered set of external calls

• Multiple calls of external services in a single sequence are assumed to have the

same performance impact like calling them during a longer period of time. For

example, CSexample would become the unordered set of (call, frequency)
tuples: A3B2C2.

temporal distribution of external calls

→ single frequency for external calls

• The same approximation of parameter characterisations for all calls of a requi-

red service are assumed. This is due to a single ExternalCall for all calls

of a required role. In the example from Listing 5.21, instead of specifying

separate parameter characterisations for x in the lines 3 and 6, the parameter

characterisations for x are specified only once.

individual parameter characterisations per LoggingPositionID of an

external call

→ parameter characterisations for all calls of a required service

• Any performance impact of order among internal actions is neglected. Thus,

resource demands are issued at a single point in time without any delay. For

example, I1AI2B.. could first utilise the CPU in the InternalAction I1 and

then utilise the HDD in I2 after calling A. In the blackbox model, the set would

be IAB.. where I covers all InternalActions of a component; including

the CPU and HDD resource demands in a single InternalAction. This might

224

5.17. Black-Box Components

1 doSth() {

2 /∗ . . internal action I1 , CPU demand ∗/
3 A(x)

4 /∗ . . internal action I2 , HDD demand ∗/
5 B()

6 A(x)

7 C()

8 C()

9 B()

10 A(x, y)

11 }

Listing 5.21: Example: Sequences of internal actions and external calls

result in bursts of contention in the simulated CPU and HDD which increases

the response time, lowers the throughput, and wrongly indicates peak loads of

resources (again see Section 5.7.2 for further discussions).

ordered set of internal actions → unordered set of external actions

A(x), B(), and C() are external calls of another component in Listing 5.21.

Implications Genetic programming must learn the control flow from black-box

monitoring data. For example, for each InternalAction, resource demands can

depend on branch and loop execution within an InternalAction which must be

reflected in the resource demand specification. Imagine resource demands within a

branch which is inside a loop. To exactly express these resource demands, the outer

control flow of the resource demands must be approximated. Since this is also true

for InternalAction in the grey-box approach, the developed genetic programming

approach can be reused. A parametric dependency for the described example could

be

list.NUMBER_OF_ELEMENTS ∗ (IF(X.VALUE > 1024) THEN 10 ELSE 0)

where list.NUMBER_OF_ELEMENTS reflects a loop iterating over the ele-

ments of a list and IF (X.V ALUE > 1024) is a branch only causing resource

demands (10) for values of X larger than 1024.

225

Chapter 5. Reverse Engineering Behavioural Models

Furthermore, in the black-box approach call frequencies of ExternalCalls are

approximated per required role instead of for whole loops in the grey-box approach.

The complexity remains the same as in the grey-box approach.

Realisation For the estimation of parametric dependencies, genetic programming

from the grey-box approach is reused without modifications. The monitoring fra-

mework presented in Section 5.10 can also be reused without major modifications.

The main difference lies in changed instrumentation points. For the black-box ap-

proach, the instrumentation points lie outside a component under study at the sides

of caller (for provided interfaces) and callee (for required interfaces). This places

are determined by component interfaces and can be derived from the static architec-

ture description. In order to monitor the resource demands, again ByCounter is used.

Instead of counting executed bytecode for building blocks, whole components are

monitored.

5.18. Complexity and Scalability

The creation of the control flow abstraction is carried out in a two pass algorithm im-

plemented in GAST2SEFF. The worst case complexity is x2, where x is the number

of control flow statements in the GAST. In the worst case, each node is visited for

every other node. In the implementation, if a subtree can be cut off (i.e. it is marked

as having no transitively reachable external call actions), the second pass fully omits

the subtree and converts it to a single internal action. Thus, for real-world scenarios,

the complexity is even lower.

Each node of the GAST structure is held in memory. For the marker, only two ad-

ditional bits per node (input / external call) are required. Thus, the memory consump-

tions linearly depends on the number of nodes in the GAST model.

For the genetic programming part, the approach has linear complexity when a fixed

number of generations is evolved. For each parametric dependency, the approach

demands a constant time. Another linear computation complexity arises from the

fitness function. Depending on the amount of monitored data, the fitness function

must check against that monitored data to determine the fitness of an individual. The

fitness function complexity depends linearly on the amount of monitored data.

Section 7.12 discusses the scalability in the context of case studies which have

been performed in the validation.

226

5.19. Realisation

5.19. Realisation

The following section provides a brief overview on the realisation of the Beagle ap-

proach and highlights the core techniques applied. Details can be found on the Beagle

website4.

The Beagle reverse engineering approach is fully implemented in Java. The mo-

nitoring infrastructure is partially based on log4j and utilises a MySQL database for

data persistence. The instrumentation is based on the Eclipse JDT (Java Develop-

ment Tools). For transforming the GAST source code representation into the control

flow structure of the RDSEFF, Java is used. The source code decorator model which

allows traceability between GAST and RDSEFF is generated using Eclipse EMF

(Eclipse Modeling Framework). Beagle integrates and extends the JGAP (Java Ge-

netic Algorithms Package, [Mef]) library as base genetic programming implementa-

tion.

5.20. Limitations and Assumptions of Reverse
Engineering Behaviour Models

In the following section, the limitations and assumptions of the Beagle approach will

be discussed.

5.20.1. Handling of Exceptions

One of the core assumptions of Beagle is that exceptions do not affect the control flow

across components and that any exceptions thrown at runtime do either not critically

affect performance or if they are affecting performance, represent a really exceptional

situation which rarely occurs and does not represent regular behaviour.

There are basically two ways of using exceptions in languages like Java: i)

to handle really exceptional error situations (as recommended [NK05, pp. 104],

[Ora10]) or ii) in an irregular way to ii.a) introduce additional return values to a

method or to ii.b) realise jump statements to break the regular control flow.

Case i) Case i) represents situations, which only rarely occur and are not expected

to happen. Such situations are intentionally ignored during reverse engineering of

behaviour models as for such situations no meaningful performance behaviour can

be expected. Thus, performance prediction is also not meaningful for such cases.

Consequently, these cases are not supported by Beagle.

4http://sdqweb.ipd.kit.edu/wiki/Beagle

227

Chapter 5. Reverse Engineering Behavioural Models

Case ii) Situations of case ii) in which Java exceptions have mistakenly been used

for simulating special return values are only supported by Beagle if the control flow

changed by an exception does not cover more than a single InternalAction. In

this case, the performance impact of the exception is approximated by the Inter-

nalAction. The exception itself is then abstracted by the InternalAction. In all

other cases, the exception affects component-external control flow (by definition of

an InternalAction) and is not supported by Beagle.

It is generally hard to decide which exceptions have been used for case ii) as the ex-

ceptions itself look the same in case i) and ii). Even the distinction between checked

and unchecked exceptions, which is known from Java, does not help as even checked

exceptions are sometimes used to simulate special return values. Nevertheless, dyna-

mic analysis is able to give hints on case ii) exceptions: If such exceptions are thrown

in virtually every request (which can be checked by ByCounter), Beagle can show

a warning to the user. If the component-external control flow is changed by such

misused exceptions, explicit control flow structures in the SEFF can be introduced

manually.

One could introduce distinct support for exceptions by adding separate BranchAc-

tions for exception cases. Then Beagle could learn the conditions for entering an

exception case. This kind of exception support has intentionally not been realised

to the lower complexity of the resulting control flow structure. Since exceptions

break the regular control flow structure and escalate until they are caught, every ex-

ception would introduce branches in parallel to the regular control flow. Ultimately,

the control flow structure could become confusing when including every potential

exception.

5.20.2. Availability of a Test Bed

The dynamic analysis step of Beagle relies on the availability of a test bed. The

test bed must provide an execution environment of the component(s) under study

and test cases which can be executed. Beagle does, opposed to other approaches

(cf. [AW96]), not require a load driver to be available since timing values are not

measured during monitoring. The test cases can be automated unit tests, replay tests

of recorded productive component usage, and can also be manual test for the com-

ponent(s) under study.

Test case data must possess a representative coverage of input parameter space in

order to ensure optimal results. Therefore, test cases should possess a good path co-

verage (C2c, cf. [Bei90]). Opposed to requirements for unit tests, the path coverage

is only needed for control flow statements which are present in the RDSEFF. Control

flow statements which are contained in InternalActions do not need coverage du-

ring dynamic analysis as they are merged into a single node which is not monitored.

228

5.20. Limitations and Assumptions of Reverse Engineering Behaviour Models

Monitoring the execution of InternalActions is not subject of this thesis. Require-

ments for test cases to monitor them can be found in the work of Kuperberg [Kup10].

Each branch represented in the RDSEFF should be executed and all loops repre-

sented in the RDSEFF should be executed with 0, 1 and n iterations. As for good test

cases, minimal, maximal, and boundary values should be included in test case data

(cf. [Bei90, GG75]).

Still, genetic programming is robust against less representative test cases. Less

representative test cases result in poorer input parameter coverage which in turn make

it harder to learn parametric dependencies. Genetic programming, which is part of

Beagle, in any case finds parametric dependencies. If no test cases are provided

to produce certain component behaviour (e.g. a loop is executed more often if a

boolean input flag is set), the corresponding behaviour will not be represented in the

parametric dependencies of the resulting RDSEFF. Only behaviour which is shown

by test cases can be discovered by genetic programming. Generally, a small number

of input parameter variations is sufficient which makes the behaviour of different

executions distinctive (deviations in behaviour can be monitored). The number of

required input parameter variations is discussed in the validation Section 7.9.

Test cases also influence the precision of parametric dependencies. Imagine the

branch condition x < 3141. If only 3,000 and 3,500 are part of the test case input,

while the real branching condition switches at 3,141, any guess between 3,000 and

3,500 would be considered precise by the fitness function. As long as test cases do

not result in a counter example, guesses of genetic programming are considered to

have full precision. Thus, test cases which exactly check a branching condition (in

the sense of condition coverage; C3c, cf. [Bei90]) help improving the precision of

genetic programming.

Edvarsson [Edv99] surveys a number of automatic test data generation approaches

which could be suitable to generate the required test cases. Other test data generation

approaches include [LMS+99, FK96, GCL01, Ori05] and address the generation of

test data itself as well as the generation of test beds for distributed software systems.

Approaches like the one by Cadar et al. [CDE08] fully automatically generate tests.

The survey of McMinn [McM04] details on search-based test data generation which

includes genetic algorithm-based approaches.

5.20.3. Monitored Data Properties

It is assumed that parameters and parameter characterisations which impact the per-

formance are specified in the interfaces of reverse engineered components. Dynamic

analysis relies on parameter characterisations to be available. A domain expert should

be able to identify performance-relevant parameters and parameter characterisations

based on an interface description. To reduce the manual effort for the specifica-

tion, Section 5.10.4 presented heuristics which automatically identify performance-

229

Chapter 5. Reverse Engineering Behavioural Models

relevant parameter characterisations. For scenarios which employ only primitive

and collection data types, the available heuristics are sufficient to fully automati-

cally identify performance-relevant parameter characterisations. In other scenarios,

a domain expert should complement the heuristically identified parameter characte-

risations.

5.20.4. Component State

The Beagle approach assumes that the system under test is a component-based sys-

tem following the component paradigm. The reverse engineering approach is not

intended to work for non-component scenarios. This implies that components should

not have an externally visible state, according to the component definition of Szy-

perski et al.: [SGM02, p. 36]: “The characteristic properties of a component are that

it [..] has no (externally) visible state.”

The cited component definition relates to component types. As the Beagle ap-

proach reverse engineers behaviour models which are intentionally independent from

a specific component instance, the component behaviour relates to the type level as

well. At runtime, component services behave the same way for all calls of that ser-

vice. Yet, the absence of an (externally) visible state does not imply that components

do not possess a state at runtime (e.g. parameters).

Kapova et al. [KZM+10] discuss the potential impact of state on performance

evaluations of component-based systems. Possible support of stateful components in

the presented reverse engineering approach is discussed below.

State in the PCM Stateful elements of a system are considered to be out of the

scope of the reverse engineering approach and out of the system scope of the PCM.

When a system involves stateful elements, they are annotated as QosAnnotations

to a PCM System. For example, a database can be approximated by its average

response time for different kinds of requests (e.g. select, update, insert). Additio-

nally, QosAnnotations can specify return values for called services. Opposed to

RDSEFFs, QosAnnotations cannot be parameterised over input values. Instead,

they can use general probability distribution functions for QoS attributes and return

values.

Generally, the PCM does not support persistent or session state which lasts for

more than one request. The PCM supports request state formed by data flow para-

meters (i.e. request data), state based on semaphors, and state based on per assembly

context configurations, only. The Beagle approach shares the state limitation of the

PCM.

During simulation, the PCM has advanced support for state which is introduced

by the simulation environment. The simulated scheduler can realise arbitrary kinds

of states below the application component layer. State complexity is intentionally

230

5.20. Limitations and Assumptions of Reverse Engineering Behaviour Models

hidden from the application component layer which is subject of reverse engineering.

For example, the scheduler can reflect complex state-dependent performance effects

arising from scheduling of an operating system or a Java virtual machine. A detailed

discussion of scheduling in the context of the PCM can be found in the dissertation

of Happe [Hap08].

Obviously, components like databases have an (externally) visible state. Still, they

are supported by the developed approach, as long as changes of the state at runtime

do not impact the performance. For example, if files are stored in a database, the

files represent a state of the database component. If these files are then transferred

over a network, only their byte size impacts the performance. In that case, the file

sizes of files stored in the database can be approximated by the database component.

When files are requested, file size approximations based on the approximations can

then be passed as parameters. Such approximations do not harm the assumptions of

the PCM. Yet, the size of files stored in the database must not change over time to

fulfill the assumptions of the PCM (steady state).

Hence, persistent state has a limited impact on performance in the target domain of

the PCM. Furthermore, databases and storage systems are usually considered to be

out of scope of the PCM’s components which primarily reflect application-level com-

ponents. Typical business applications, which are in the focus of PCM, use databases

for persisting data and not for business logic.

To nevertheless support different persistent states of components (e.g. full storage

vs. empty storage system), components can be parameterised over persisted data

which is processed during execution of a component. Thus, a component can depend

on state (through parametric dependencies) but itself does not persist state which can

change at simulation time from request to request.

Being able to specify QosAnnotations for system-external elements of an archi-

tecture such as databases, is assumed since the persistent state of a software system

mostly is a steady state: The amount of data does not change largely during exe-

cution periods of a days which are typical scopes of performance analysis. During

performance prediction, usually time frames of less than one day are simulated for

which the steady state assumption holds. If the persistent state changes in shorter

time frames, prediction results will become imprecise.

Impact of State on Reverse Engineering If a reverse engineered component

actually has a persistent or session state, the precision of Beagle is affected. During

monitoring in the dynamic analysis phase, pseudo-random behaviour can be monito-

red in these cases: For the same input values different result values can be monitored.

In those cases, Beagle approximates parametric dependencies which perform best ac-

cording to the fitness function which includes to minimise the mean squared error (cf.

Section 5.11.4).

231

Chapter 5. Reverse Engineering Behavioural Models

One of the following two conditions must hold to affect reverse engineering by

component state: i) the monitored data flow values changes or ii) call frequencies of

monitored statements (loops, branchs) change. If not data flow or call frequencies

at the component-level (as captured in the RDSEFF and monitored during dynamic

analysis) are changed, the reverse engineering precision is not affected through com-

ponent state. In these cases, for example, functional behaviour might change which is

not captured in RDSEFFs. The performance behaviour is not affected in these cases.

If a reverse engineered component has a persistent state which changes over a

long-term period (longer than the simulated time), so-called ComponentParameters

can be used to explicitly parameterise a component. ComponentParameters are

specific to an assembly context of a component and can be changed manually to

reflect changes of state. Beagle does support ComponentParameters.

5.20.5. Passive Resources

The PCM supports so-called PassiveResources which realise semaphores. Ac-

quire and Release actions of the RDSEFF allow for modelling of blocking beha-

viour, synchronisation, mutex etc. behaviour. Beagle does not support the automated

recognition of Acquire and Release in source code. Technically, many different se-

maphore realisations are imaginable which would require a strong semantic analysis

in order to be automatically “reverse engineerable”.

Often, semaphores are realised and encapsulated in frameworks and middleware

which are not considered to be application components. Those kinds of semaphores

do not directly affect the behaviour model of components and thus must not be re-

presented in RDSEFFs. For other cases, Beagle requires a user to manually add

Acquire and Release actions if needed.

5.20.6. Fork Behaviour

Beagle has only limited support for component control flow forks which thread the

behaviour of components. If components actively fork threads which call other com-

ponents, this must be reflected in the RDSEFF in so-called Fork actions. Beagle is

able to recognise the basic thread starting construct for Java Thread.start(). If

such a statement is found in the source code, a Fork action is introduced into in the

RDSEFF. Still, the behaviour which is executed upon invoking the start() method

is currently not reverse engineered, which is not a limitation of the approach but of

the realisation. Users need to manually specify the thread behaviour of such expli-

cit threads, e.g. by using InternalCalls to point to the actually executed thread

behaviour.

Nevertheless, request- or session-based parallelism is supported by the PCM. In ty-

pical application server scenarios, multi-threading is taken over by the infrastructure.

232

5.20. Limitations and Assumptions of Reverse Engineering Behaviour Models

Application components must not explicitly initiate concurrency (i.e. fork threads

and instantiate processes). This kind of parallelism is supported by the performance

prediction approaches of the PCM and must not be reflected in RDSEFFs. The major

concurrency tasks of application components are for example concerned with tran-

sactions and data structures (e.g. synchronised methods).

Multi-threading which is completely included in a single InternalAction does

not affect the RDSEFF since internal parallelism is not made explicit in the control

flow structure of the RDSEFF. InternalActions with internal parallelism are hand-

led like usual InternalActions.

Nowadays, multi-threading, if present within application components, is

complemented by complex frameworks such as the one available in Java

(java.util.concurrent). Each threading framework would require separate

support by Beagle in order to capture the specifics of each framework. An automated

semantic analysis of existing multi-threading frameworks is not covered by static

program analysis (cf. [Rin01]). For example, such semantic analysis approaches

would need to identify the degree of parallelism (pooling etc. affect this value),

thread starting time, and thread join conditions, which each require a complex

semantic analysis.

5.20.7. Dynamic Binding

Beagle relies on the GAST representation created by SISSy from C/C++, Delphi or

Java code. SISSy has no capabilities to deal with dynamic binding. Beagle inherits

these limitations. Especially components which comprise multiple classes could have

dynamic binding among these classes which Beagle consequently is not able to deal

with. In those cases, for example a behaviour model for the wrong class (the static

type) could be created.

Again, consider the example from Section 5.9.2 on page 134, which was used to

discuss the implications of selected component boundaries. If the classes A, B and

C would all belong to the same component Comp, the lines 2 and 3 in Listing 5.8

would decide which behaviour is included into the RDSEFF of providedService

of Comp. If instead of the used classes B and C other classes implementing the in-

terfaces FirstAndSecondInterface and AnInterface would be instantiated, the

behaviour implemented in those classes would be the correct behaviour to reflect in

the RDSEFF.

There are three possible implications from the missing support of dynamic binding

for the Beagle approach:

1. The behaviour model becomes wrong. The behaviour of the wrong class is

included into the RDSEFF. Due to the use of static analysis only, the binding

can be instantiated differently at runtime than analysed statically.

233

Chapter 5. Reverse Engineering Behavioural Models

2. The behaviour model becomes incomplete. The concrete bound class cannot

be determined at all. The corresponding RDSEFF is thus incomplete. In these

cases, the GAST model of SISSy must first be fixed manually such that the

concrete bound class is specified in the GAST model.

3. The behaviour model is temporarily wrong and incomplete. If the binding

changes at runtime, the actual behaviour differs over time. SISSy cannot deal

with behaviour which changes at runtime. The statically analysed behaviour

in these cases becomes part of the RDSEFF.

Nevertheless, if the change of behaviour is indicated by any component pa-

rameter, the RDSEFF model can be manually adapted to switch its behaviour

upon specific input parameters. In such a case, the behaviour introduced by the

different classes would reside in a Branch of the RDSEFF which is selected if

the input parameters indicate so.

234

6. Traceability

Traceability aims at linking activities in different phases of software development

together. In the approach presented in this thesis, to allow users to follow and evaluate

reverse engineering results, traces are stored along the whole reverse engineering

process. These trace links bring together sources of reverse engineering and its results

in the final PCM instance. Thereby, artefacts from reverse engineering can be mapped

though having completely different abstraction levels in the source and target models

of the reverse engineering. For an overview on traceability models see for example

[GG07, RJ01].

Traceability is for example important in the presented approach, to map perfor-

mance prediction results to the original source code. When aiming at optimising an

existing software architecture, without trace links being available, it would be hard

to interpret the performance prediction results and draw conclusions for the existing

architecture. For example, if the response time of a certain service is too high, or a

single internal action seems to contribute to a performance bottleneck, the correspon-

ding source code artefacts can be easily identified following trace links. If no trace

links are available, the “back-mapping” of performance prediction results becomes

ambiguous. In a similar manner, all intermediate artefacts which participate in the

reverse engineering process, can be mapping along the trace links.

Since traceability is a cross-cutting concern which should be respected throughout

the whole reverse engineered process, it is discussed in a separate chapter.

In the presented approach, a decorator model (PCM source code decorator, cf. Fi-

gure 6.1) realises trace links at the model level. The decorator links model elements

from the GAST to model elements in the PCM. Due to the usage of a decorator mo-

del, the GAST and PCM can remain untouched and trace link concerns are not mixed

with the domain specific languages of GAST and PCM. The source code decorator

models are typed trace link models which reference single model element types (op-

posed to generic trace link models which reference EObjects and thus are not type

safe).

Each element in the GAST model has a source code position attached in the GAST

already. Hence, each model element of the GAST model can be traced back to its

exact source code position. The source code position comprises, among other in-

formation, file paths, files, lines of code, and tokens covered by a model element.

Thus, linking model elements from the GAST is sufficient to uniquely trace back

model elements from reverse engineering results. The presented reverse engineering

235

Chapter 6. Traceability

Artefact

Legend:

Source Code

Artefact
Derivation Trace Link

SAMM PCM

GAST Source
Code Position

GAST

Q-ImPrESS
Source Code

Decorator

PCM Source
Code Decorator

 Models

Figure 6.1.: Overview on artefacts referenced from trace links

approach builds up the source code decorator in parallel with the other target models

of reverse engineering.

The presence of trace links allows, for example, the tracking of a single source

code class on its way to a component. The steps for a source code class are: Source

code class > GASTClass > SAMM Component > PCM Component. The links bet-

ween model elements do not need to be binary as Figure 6.1 suggests. For example,

a SAMM Component can result from multiple GASTClasses.

Like the GAST, the source code decorator established language-independent trace

links. GAST and PCM are language-independent. Thus, the source code decora-

tor model does not need to be adapted in order to support further object-oriented

languages.

Trace Links A trace link generally is a relation between source and target:

TraceLink := (source, target, type)

where source and target are sets of elements of the models involved in the re-

verse engineering approach (for the developed approach holds: source, target ⊆
instances(GAST∪SAMM∪PCM); instances() collects all instance elements

of a meta-model). Trace links can have different types to distinguish for example the

traces from classes to component from the traces from control flow statements to

RDSEFF actions. If the type of a trace link is set, further constraints on source and

target must hold, i.e. elements in source and target must be instances of specific

236

6.1. Architectural Reverse Engineering

meta-model elements and the cardinality of source and target can be constrained.

A trace type is defined as:

type := (sourceType, sourceCardinality, targetType, targetCardinality)

where for a TraceLink of type type must hold:

∀s ∈ TraceLink.source : type(s) = sourceType ∧
sourceCardinality = card(TraceLink.source) ∧
∀t ∈ TraceLink.target : type(t) = targetType ∧

targetCardinality = card(TraceLink.target)

In the SoMoX and Beagle approach, trace links are realised using trace models

which are decorators of GAST, SAMM, and PCM. Each trace links covers only one

processing step (e.g. from GAST to component) instead of tracing for example a

single GAST class from its creation to the final PCM model. To trace an artefact

over multiple steps, multiple trace links can be transitively followed.

Alternative realisations of trace links (which are not realised in this thesis) are:

• N-ary trace links link all elements participating in a trace starting from a start

element to a final element. This solution has the drawback that all steps must

be known in advance (otherwise the trace links would be needed to adapted to

any new reverse engineering step)

• Trace links are realised via embedded trace IDs which remain unique across

multiple reverse engineering steps and serve as an identifying “marker” (e.g. a

class has a trace ID x which also appears for components derived from that

class). This kinds of trace link realisation was chosen for portions of the

Beagle approach.

6.1. Architectural Reverse Engineering

The lowest level of entities, architectural reverse engineering uses, are classes. For

gaining components, no lower abstraction than “class = component” is supported

(especially a component is not a number of class methods). Potentially, multiple

classes are forming one component. Thus, it must be traced, which classes result in

which component. Classes can belong to one BasicComponent and multiple Com-

positeComponents (all CompositeComponents which are part of the closure of the

BasicComponent defined by the contains relation in the result model). In Java and

C# (currently not supported by SISSy but neither a limitation of GAST nor SoMoX)

one file can contain multiple classes. Additionally, in C# one class can be split across

multiple files. Thus, tracing on file-level only is not meaningful.

237

Chapter 6. Traceability

SoMoX creates Q-ImPrESS SAMM models as primary result artefacts. The

SAMM2PCM transformation then creates instances of the PCM from SAMM

models. For the Q-ImPrESS SAMM model, a separate Q-ImPrESS source code

decorator model (cf. Figure 6.1) exists which is comparable to the source code

decorator used for the PCM. The content which is hold in the Q-ImPrESS source

code decorator is comparable to the content of the PCM source code decorator, only

the associated component types belong to a different meta model (the SAMM).

The SAMM2PCM transformation is responsible for creating a PCM source code

decorator from the Q-ImPrESS source code decorator.

Ultimately, the (PCM) source code decorator establishes n : m links between

GAST classes and PCM components (BasicComponent and CompositeCom-

ponent). Since any source code files are mapped to GAST files, the trace links are

also valid for C/C++/C# code. PCM Interfaces are linked 1 : 1 to the realising

GAST classes.

For the sake of brevity, the trace link types will be presented in a tabular form

below. A cardinality (sC: sourceCardinality; tC: targetCardinality) of “*”

indicates no constraint on the cardinality.

type sourceType sC targetType tC

ComponentLink GASTClass * ImplementationComponentType 1

InterfaceLink GASTClass 1 Interface 1

6.2. Reverse Engineering Behavioural Models

Tracing the reverse engineering of behavioural models requires much more fine-

grained trace links at the source code side. Each action of the RDSEFF must be

mappable to source code. The GAST model supports this level of granularity. The

PCM source code decorator links a number of GAST statements to a single action

of the RDSEFF. The trace links from the PCM source code decorator represent the

overall reverse engineering results of Beagle.

Additionally, these trace links are supported by IDs which are internally used to

coordinate instrumentation, monitoring, data aggregation, assignment of learned de-

pendencies, static analysis, symbolic execution, determination of resource demands,

and integration of benchmarking results. Artefacts must be traced across all steps

of the reverse engineering process (see Figure 3.4), which is ensured by maintaining

IDs throughout all steps.

The control flow abstraction (see Section 5.8) is responsible for assigning unique

IDs to all actions of the RDSEFF and to each corresponding source code section in

the very first reverse engineering step. A code section is a section in the control flow

(for example an internal action, the body of a loop, or the loop-skeleton itself). To

238

6.2. Reverse Engineering Behavioural Models

match code sections during the different steps of behavioural reverse engineering,

only IDs must be matched.

Trace links established for RDSEFFs:

type sourceType sC targetType tC

InternalAction- Statement 1 InternalAction *

GastLink

LoopActionGastLink LoopStatement 1 LoopAction *

BranchAction- BranchStatement 1 BranchAction *

GastLink

AbstractBranch- BranchStatement 1 AbstractBranch- 1

TransitionGastLink Transition

ExternalCallAction- FunctionAccess 1 ExternalCallAction 1

GastLink

SetVariableAction- Statement 1 SetVariableAction 1

GastLink

VariableUsage- Statement 1 VariableUsage 1

GastLink

ResourceDemanding- Method 1 ResourceDemanding 1

SEFFGastLink SEFF

ParameterGastLink FormalParameter 1 Parameter 1

239

7. Validation

The developed approaches SoMoX and Beagle are capable of reverse engineering

the static architecture and behaviour of individual provided component services

of component-based software systems. The resulting models enable the predic-

tion of performance properties based on the simulation of the Palladio approach

(cf. [Bec08a]). Each part of the reverse engineered models and the overall

performance predictions enabled by the approach are subject to validation.

Figure 7.1 provides an overview on the validations performed for this thesis. On

the left hand side, the reverse engineering covered by this thesis is shown, on the

right hand side, the existing and already validated Palladio performance prediction

approach is shown. Validations of both approaches complement each other. While for

the reverse engineering (left) it must be checked that the output models (A) conform

to a reference model (B), the performance prediction validation (right) must check

whether for a system under test, the prediction results (D) fit to measurements of the

real system (G).

7.1. Validation Scenarios

The SoMoX and Beagle approach can be validated in various ways. Case studies are

used to show the applicability of the approach to real-world application.

To answer the validity of the developed approaches, a so-called Type 1 validation
(cf. [BR08]) has been performed. Here, for a single or multiple case studies, refe-

rence decomposition models are compared to models reverse engineered automati-

cally by the approach (C). Then, the resulting reverse engineered model is compared

to the reference decomposition.

It is also possible to compare the reverse engineered model with the reference mo-

del based on performance predictions (I). Then, it is validated, whether both models

result in the same performance abstraction. This is especially useful, if both models

differ structurally, but are equivalent with respect to the abstraction target “perfor-

mance”. A pure structural test would not be sufficient in that case to judge on the

quality of the performance abstraction.

Generally, architectural and behavioural reverse engineering can be validated inde-

pendently. An overall case study is still preferable to show the integration capabilities

of the combined approach.

241

Chapter 7. Validation

Existing Palladio Approach

Manual Reverse
Engineering

Artefact Working
Area

Manually
Reverse

Engineered
Model

Automatically
Reverse

Engineered
Model

Automated
Reverse

Engineering

Comparison

New Approach from the Thesis

Performance
Prediction

Existing Palladio Approach

Performance
Prediction
Results

Processing

Measurements

Comparison

Execute System
Under Study

Legend:

A

B

C

H

E

G

Reverse Engineering Performance Prediction

Performance
Prediction

Performance
Prediction
Results

D

Source Code

Output-
Input-

Relation

Comparison

Validated by
Becker [Bec08],

Koziolek [Koz08a]

I

Figure 7.1.: Overview on the validation purposes in the Palladio context: Reverse

engineering (left), performance prediction (right)

7.2. Goals and Questions

The validation performed in this thesis follows the Goal Question Metric (GQM) ap-

proach [BCR94] by Basili. First, the validation goals are identified, then appropriate

questions which are suitable to answer whether the goal has been reached are posed,

and finally metrics which provide (preferable quantifiable) answers to the questions

are derived.

General questions which are going to be answered in the validation are:

• Q-g-1 Of what quality are the reverse engineered models (architecture and

behaviour)?

• Q-g-2 How accurately does a PCM performance prediction based on reverse

engineered models perform?

• Q-g-3 How does the approach deal with real-world large-scale applications?

• Q-g-4 How well does the approach scale?

• Optionally, it could be investigated, how well the approach can be applied by

ordinary software architects.

242

7.2. Goals and Questions

For the reverse engineering approach on the left hand side it is checked whether

the automatically reverse engineered model (A) matches a manually reverse enginee-

red model (B), comprising of a reference decomposition and a reference behaviour

model. The reference decomposition is ideally based on existing up-to-date archi-

tecture documentation. If no reliable reference architecture is available (i.e. the

existing architecture is outdated or not available at all), a reference architecture must

be created. To not bias the results, in the validation of SoMoX and Beagle, such

kind of reference architecture was created in interaction with the developers of the

corresponding software systems. It will be pointed out in the discussions of the case

studies (Sections 7.7 to 7.9) where a reference architecture stems from.

Specific questions per “Comparison” (C, I, H in Figure 7.1) are listed in the follo-

wing.

(C) Criteria which are being evaluated in (C) are guided by the following ques-

tions:

• Q-C-1 What is the quality (consistency, precision, completeness) of the reverse

engineered models?

• Q-C-2 How good are the approximations of parametric dependencies compa-

red to parametric dependencies in the models?

• Q-C-3 How much time and effort can be saved compared to the manual crea-

tion of models?

Validation step (C) provides insights to specific and systematic errors in the re-

verse engineered models. It furthermore identifies what the limitations of the reverse

engineering approach are with respect to completeness of the result models.

(I) In (I) performance prediction results based on automatically reverse engineered

models are compared with measurements of the executed system under test. This va-

lidation step checks the suitability of the reverse engineered models for performance

prediction with the Palladio approach. Opposed to step (A), the whole reverse engi-

neering approach including the Palladio performance prediction are validated in this

step.

Checking the whole reverse engineering and prediction chain implies uncertain-

ties: Errors in (A) and (D) could either boost or annul each other. The results do

not make obvious where in the prediction chain possible errors occurred or whether

some canceled each other. Hence, this validation step must be complemented by the

validation step (C) to identify potential cancellation effects.

The main validation questions for (I) are:

243

Chapter 7. Validation

• Q-I-1 Can the reverse engineered models be executed in a Palladio simulation

run?

• Q-I-2 Do the reverse engineered models possess the required execution seman-

tics?

• Q-I-3 How much do the predicted performance results deviate from measure-

ments of the actually executed system?

(H) The comparison between manually reverse engineered models (B) and per-

formance prediction results resulting from those models (E) has been successfully

performed in previous work. The validation of (H) for different kinds of systems is

covered by a number of publications [Bec08a, Hap08, Koz08b, BKR09]. The Palla-

dio performance prediction approach – as a single separate research subject – is not

subject to validation in this thesis. Instead, the end-to-end validation of the overall

reverse engineering approach includes the validation of the Palladio approach in (I).

The Palladio performance prediction has been successfully checked for its predic-

tion accuracy and its ability to recommend the right design decisions before. For

the Type I validation (cf. [BR08]), an ideal performance model was assumed to be

given (B). The predictions based on this model (E) where then compared (H) against

measurements of the executed system under study (G) [Bec08a, Hap08, Koz08b,

BKR09].

In a separate Type II (cf. [BR08]) validation step, the applicability of the Palla-

dio performance prediction approach has been investigated in empirical experiments

[MBKR08b, MBKR08a, Mar07, Mar05]. Due to the setting of the empirical expe-

riment, which covered the whole application of the Palladio approach from manual

model creation to performing performance predictions and evaluating them, the expe-

riment also investigated the manual creation of performance models (with respect to

effort and error-proneness). Thus, the effort for the manual creation of performance

models can be derived from these experiments to compare them with the effort when

applying the automated reverse engineering approach.

Provided Insights Depending on the validation step (C, I, H), different insights on

the validity of SoMoX and Beagle can be gained. Step (C) is suitable to judge on the

structural deviation between the reference decomposition and the reverse engineered

model for both, static architecture and behaviour. Step (I) allows to validate the

quality of the performance model which the reverse engineering results represent.

Step (H) validates the quality of the performance prediction approach itself.

Step (C) is meaningful on its own since it validates only a distinct reverse engi-

neering step. If the reverse engineering results in step (C) deviate, the reverse engi-

neering approach obviously has limitations if the reference decomposition (B) can be

244

7.3. Validation Criteria – Metrics

assumed to be valid. Step (I) provides precise insights only together with step (C):

If the performance prediction results in (I) deviate, this can be either caused by the

reverse engineering or the performance prediction. Thus, validating step (I) always

implies step (C) to be present. When validating only (I), the overall reverse engi-

neering and performance prediction approach can only be falsified; it per-se provides

no insights into the root cause (either reverse engineering or performance prediction)

without step (C).

Due to the presence of the existing validations in step (H), validating step (I) and

step (C) can be seen as a double-check of the performance prediction results, since in

both cases the same performance prediction approach (results (D) and (E)) is being

validated against the same measurements (G) which are used for validation step (H).

Thus, the combination of step (C) and (I) can reveal possible errors in former valida-

tions of step (H).

Lessons Learned Lessons learned are highlighted as (LL-) throughout this section

and the conclusion Section 9.

7.3. Validation Criteria – Metrics

In order to judge the reverse engineering results of step (C) and (I), the metrics intro-

duced in the following are used. Each metric is associated to one or several questions

– according to the GQM paradigm. The metrics cover the static architecture, the

behaviour model, and the performance prediction. Metrics themselves can be grou-

ped in the following since they answer multiple questions. The following paragraphs

highlight the relation between questions and groups of metrics.

Static Architecture and Behaviour Model (Structure) Model elements

which are checked in the validation cover the whole reverse engineered models.

Metrics defined on the following model elements are suited to answer the questions

Q-g-1 and Q-C-1:

• Basic components, composite components, connectors, interfaces, service si-

gnatures

• Control flow structure of the behaviour models

• Data flow and parametric dependencies in the behaviour models

• Resource demands

245

Chapter 7. Validation

Performance Predicting the performance based on the models and comparing the

prediction capabilities of reverse engineered models with measured performance va-

lues helps answering the question Q-g-2, Q-C-2, Q-I-1, Q-I-2, Q-I-3.

Other For the remaining questions, metrics gained in the following scenarios are

used for validation:

• Time saving based on experiences from manual reverse engineerings (Q-C-3)

• Apply the reverse engineering approach to real world application (Q-g-3, Q-

g-4)

7.3.1. Static Architecture

To judge on the quality of the static structure of the reverse engineered models, pre-

cision and recall [OD08] metrics are being used. Precision and recall are used for

components, interfaces, ports, and connectors to identify how complete and precise

models have been reverse engineered. Precision and recall are used to compare the

reverse engineered model with the reference decomposition.

Precision and recall are common metrics (see for example [Kos02, Kos00, AL99a,

AL99b]) to compare a reference or manual decomposition with an automatic decom-

position. In their validation, Anquetil and Lethbridge [AL99a] accept meaningful

alternative decompositions besides the reference decomposition. In this thesis, only

a single third-party reference decomposition is preferred to avoid personal effects

which could impact the case study results.

Koschke [KE00] provides a “framework” for the evaluation of clustering tech-

niques which also incorporates reference decompositions. Mitchell and Macori-

dis [MM01b] discuss the evaluation of software clustering results if reference de-

compositions are not available. In the present validation, only for a subset of case

studies no reference decomposition is available (this will be highlighted in the cor-

responding sections).

In another paper, Mitchell and Macoridis [MM01a] compare different similarity

measures for clusters and propose their own measure. As they emphasize, it is im-

portant to not only check the correct assignment of classes to clusters but to also

include for example connectors. Hence, the following validation does not limit it-

self to components but also checks provided and required interfaces and connectors.

In [AL99b], different software cluster similarity metrics are discussed. Tzerpos and

Holt [TH99] propose the “MoJo” distance metrics for clusters which judged the si-

milarity of clusters based on move and join operation which are required to get from

one clustering to another one. The “MoJo” metric has the drawback that it focuses

on pure clusters and neglects the importance of other structural properties (e.g. inter-

faces, compositions, and connectors) of software architectures.

246

7.3. Validation Criteria – Metrics

The completeness of the architecture is judged using the following definitions of

precision and recall (here for components):

ComponentPrecision :=

card({designcomponents} ∩ {reverseengineeredcomponents})
card({reverseengineeredcomponents})

ComponentRecall :=

card({designcomponents} ∩ {reverseengineeredcomponents})
card({designcomponents})

where card() is the set cardinality introduced earlier in this thesis.

Since design components and reverse engineered components cannot have the

same identity (they stem from different identification processes and models), the in-

tersection cannot be based on element identity. Instead, components A and B are

considered to intersect, if the classes associated to the components match to more

than 80%, i.e. ComponentIdentity(A,B) > 0.8 (cf. “Good Match” and “partial

subset relationship” in [KE00]):

ComponentIdentity(A,B) :=
card(classes(A) ∩ classes(B))

card(classes(A) ∪ classes(B))

where classes(A) yields the classes associated to component A. In the case studies,

for each component that was considered to be successfully reverse engineered, the

ComponentIdentity was checked to be larger than 0.8.

Analogously, precision and recall are defined for provided and required interfaces

and connectors.

7.3.2. Behavioural Models

The behaviour models have to deal with subsequent errors from static analysis. If

component interfaces or component boundaries are wrongly identified during static

analysis, the behaviour model must still be consistent with the static analysis results.

Whether the behaviour model exactly fits to the interfaces stated by the static archi-

tecture will be checked.

Completeness Since a high accuracy of the reverse engineered models is expec-

ted, except for the performance metrics, binary metrics (success/fail) are used to

judge the behavioural model. Only if all criteria are met, the model is considered

complete. The validation criteria for behaviour models comprise:

247

Chapter 7. Validation

• Are all control flow statements correctly identified (loop, branch, external call)

when comparing with a manually created reference model.

• Are all conditions (branch, loop) present (precision judged via performance

prediction results)

• Are all passed parameters (call actions and return value) present (precision

judged via performance prediction results)

Completeness(M) := M �→ b ∈ {true, false} (7.1)

where M is a model which is being judged for completeness (true if the above ques-

tion are answered with yes in all cases).

Model Semantics A precondition to the conduction of performance simulations

is the reverse engineering of a model which is complete such that, according to the

model semantics, all information for a performance simulation are available. Hence,

the description of execution semantics must be complete. This includes the absence

of unreachable branches (e.g. contradicting branch conditions) and loops which can-

not be executed (e.g. loop condition invalid). The build-in validations of the PCM

models, precondition checks of the PCM simulation, and runtime consistency and

validity checks of the PCM simulation take over these checks. The results metric is

binary: Either the simulation can be conducted successfully or not.

SimulationSemantics(M) := M �→ b ∈ {true, false} (7.2)

where M is a model which is being judged for its capability and validity to be simu-

lated.

7.3.3. Performance

To check the quality of the reverse engineered model for performance predictions,

the relative deviation between the predicted and measured response time is used.

The deviation is the quotient of measured and predicted response time based on the

mean value to be more robust against outliers. The performance prediction is done

by the Palladio SimuCom Framework which uses PCM models as input.

Performance(M) :=
Prediction(M)

Measurement(M)
(7.3)

248

7.4. Type 2 Validation

where M is a model, Prediction(M) is the predicted median response time for

a provided service of M , and Measurement(M) the corresponding measure res-

ponse time value.

7.3.4. Other Metrics

To judge on the time savings when using the reverse engineering approach, the time

for manually reverse engineering a model is compared to the application of the auto-

mated approach.

Effort(M) :=
AutomatedReverseEngineering(M)

ManualReverseEngineering(M)
(7.4)

where AutomatedReverseEngineering(M) and

ManualReverseEngineering(M) are the effort in person hours for creating Mo-

del M .

The applicability of SoMoX and Beagle to real world applications is measured by

two metrics: The binary metric whether the reverse engineering could be performed

to a large-scale system Running at all and the duration of a reverse engineering

run ReverseEngineeringDuration in wall clock time. Values for Effort(M)
which are < 1 are considered to be good; values ≥ 1 are considered to be poor.

7.4. Type 2 Validation

To complement the Type 1 validation, an optional Type 2 validation (cf. [BR08])

could be performed to check the applicability of the approach for subjects not invol-

ved in the development (no Type 2 validation has been performed in the context of

this thesis). Therefore, a controlled experiment with two groups of subjects could be

set up. One group would apply the SoMoX and Beagle approach and a second group

would manually reverse engineer a software system. Then the results of both groups

could be compared to judge on the applicability of the approach. Koschke [KE00]

proposes a detailled framework for the experimental evaluation of clustering tech-

niques which could – with some adjustments – be applied to the presented reverse

engineering approach.

Another scaled-down version of the Type 2 validation could be a small number of

case studies were single subjects apply the approach. The qualitative feedback of the

case studies could then be used to improve the approach and to get a feeling for its

strengths and weaknesses in third party application scenarios.

249

Chapter 7. Validation

7.5. Case Study Selection

For the case studies it is important to have applications from different application

domains which should at least include business information systems and algorithm-

intensive applications. The use of different domains increases the external validity of

the overall validation, as applicability to different kinds of problems is shown. Bu-

siness information systems often utilise dozens of frameworks, application servers,

and distributed environments but have comparably little algorithm complexity, while

algorithm-intensive applications lead to complex parametric dependencies. As mo-

nitoring data usually is not capturing the whole state space of an application, even

contradicting monitoring data might be observed in such cases. For example, imagine

an algorithm whose behaviour depends on its internal state. If then the internal state

is not monitored, observations can be contradicting as first glance (the same input

results in different output). Generally, algorithm-intensive applications are compu-

tationally expensive, hardly statically analysable and sometimes hard to predict with

respect to the observable execution time distributions.

Typical business information systems are distinguished from algorithm-intensive

applications as follows: While it is predominantly important to capture which data

is passed to which components (control and data flow) at an “inter component le-

vel” for business information systems, for algorithm-intensive applications the ne-

cessity for more fine-grained observations at the level of internal control flow are

expected. Business information systems tend to have more interactions across com-

ponent boundaries, while algorithm-intensive applications are mostly dealing with

component-internal control and data flow. It is worth noting that calls to API are not

considered to be calls to other components, which means algorithm-intensive appli-

cations have in fact mostly internal complexity. There is no strict borderline between

business information systems and algorithm-intensive applications.

For the case studies it is envisioned to have at least one representative for each

domain in order to capture the problem space.

7.6. Case Study Candidates

The following section first lists the performed case study software systems. Of the

overall eleven case studies, three are “end-to-end” case studies for which all steps

of the reverse engineering approach have been applied. The remainder of the case

studies were performed to separately validate either SoMoX or Beagle.

250

7.6. Case Study Candidates

7.6.1. Case Study Overview

Software System SoMoX Beagle Remark
CoCoME Component benchmark sys-

tem

SPECjbb2005 Industry standard

Palladio FileShare IEEE TSE [KKR10]

Ohioedge CRM EJB-based

Rubis EJB-based

openArchitectureWare non-component-based

system

LZW Compression Bytecode estimation

SPECjvm2008 Compress Industry standard, bytecode

estimation

HSQLDB Scalability analysis, >150

KLOC

ABB OPC C/C++ system; core “com-

ponents” found; real archi-

tecture unknown

ABB Demonstrator Sub-

system

C/C++ system, Scalability

analysis, 250 KLOC

Table 7.1.: Overview on case studies

Legend for Table 7.1:

• : Successful validation

• : Non-successful validation

• No symbol: System not validated for the approach

Various case studies have been performed in order to validate SoMoX and Beagle

(see Table 7.1). Each system has specific characteristics which will be briefly high-

lighted in the following:

• CoCoME, the COmmon COmponent Modelling Example [RRMF08], is a re-

ference system for component-based software engineering research. CoCoME

251

Chapter 7. Validation

realises a distributed point-of-sale system and includes a business information

system of stores and enterprise infrastructure as well as the embedded systems

part of cashdesks.

• SPECjbb2005 [Sta05] is an industry standard performance benchmark appli-

cation which realises a typical client server application. It is designed to bench-

mark the performance of Java virtual machines. Users of SPECjbb2005 in-

clude Apple, Cisco Systems, Dell, Sun Microsystems, Hewlett-Packard, IBM

and many others.

• Palladio FileShare is a Java-based software system which realises a server-

based file sharing platform. Users can upload files to the application to share

them with other users.

• Ohioedge CRM is an open source customer relationship management system

which is based on Enterprise Java Beans (EJB).

• Rubis is a Java-based online auction platform, offering a number of online

bidding functionality. The implementation is based on EJBs.

• LZW Compression is a Lempel-Zip-Welch compression algorithm written in

Java. It has been implemented at the Institute for Program Structures and Data

Organization at the Karlsruhe Institute of Technology (KIT). LZW Compres-

sion realises a single component of a component-based software architecture.

• SPECjvm2008 Compress [Sta08] is the compression component of the SPEC-

jvm2008 industry benchmark. It is implemented in Java.

• openArchitectureWare is an open source model to text framework, nowadays

available in the Eclipse modeling project. openArchitectureWare is implemen-

ted in Java but possesses no component-based software architecture. It is used

as a software system to check the ability of the reverse engineering approach

to deal with non component-based systems. As the presence of a component-

based software architecture is claimed to be present for reverse engineering

subject systems, this assumption for input software systems is checked with

openArchitectureWare.

• HSQLDB is a large open source relational SQL database implemented in Java.

It comprises a total of more than 158,000 lines of code and is thus used to

check the scalability of the developed reverse engineering approach.

• ABB OPC is a software system realised in C and contributed by ABB. ABB

OPC allows to discuss the reverse engineering capabilities for C/C++-based

software system when applying the SoMoX approach.

252

7.6. Case Study Candidates

• ABB Demonstrator Subsystem is a software subsystem realised in C/C++ and

contributed by ABB. The ABB Demonstrator Subsystem allows to discuss the

scalability of the SoMoX approach for large-scale software systems (250,000

lines of code).

Either SoMoX or Beagle have been applied to the above software systems. For

three of the software systems, a full “end-to-end” validation was performed to show

the applicability of the overall approach. Reasons for selecting these systems are

discussed in Section 7.6.2.

Table 7.1 points out which software system was used for which kind of valida-

tion and notes remarkable properties of those software system. Of the eleven soft-

ware systems, only one (openArchitectureWare; not component-based) lead to weak

reverse engineering results. The quality of the reverse engineering results will be

discussed in the following Section 7.7 and further.

7.6.2. End-to-End Case Studies

The software systems selected for the “end-to-end” case studies are intended to cover

a broad scope of component-based software systems. Among the major requirements

for selecting the below software systems, were the availability of test cases or load

drivers, open source software systems, access to architecture documentation or archi-

tecture descriptions. Furthermore, the systems should be component-based software

systems implemented in a supported programming language (Java, C/C++, Delphi).

Since the underlying performance prediction approach Palladio [BKR09] focuses on

business information systems, representatives from this domain are preferred. The

overall size of the systems should be large enough to show the application of the

developed approach to real software systems but could not be overly large since a

manual inspection of the reverse engineering results would then become infeasible.

The selected “end-to-end” case studies cover business information systems and

embedded systems, synchronous and asynchronous communication, complex and

business logic algorithms, client-server scenarios and hierarchically distributed sys-

tems, resource demand and business-focused application. Therefore, it can be clai-

med that the “end-to-end” case studies cover a representative set of software systems.

The “end-to-end” case studies are CoCoME, SPECjbb2005, and Palladio File-

Share. These case studies will be presented in detail in Section 7.7 to 7.9.

CoCoME combines a business information system and an embedded systems part

within a single system. The implementations supports a distributed deployment on

three hierarchy levels (stores, enterprise, cashdeks). To enable the configuration of

the system, CoCoME partially employs dependency injection mechanisms. CoCoME

involves typical business logic like reporting and accounting but also has complex

253

Chapter 7. Validation

algorithms which solve optimisation problems. Hence, control and data flow are

of varying complexity. The persistence in CoCoME is taken over by a persistence

layer based on the Java persistence API. Internally, synchronous and asynchronous

(event-based over an event channel) communication are employed.

SPECjbb2005 is an industry performance benchmark for Java virtual machines.

SPEC aimed at creating a representative Java server application when designing the

benchmark. Partners from industry were involved in the development of SPEC-

jbb2005 to ensure creating a balanced and representative benchmark application.

SPECjbb2005 is a representative for the business information system domain and

realises a typical client-server workload scenario. Due to its benchmark nature, it

focuses on representative resource demands (Java virtual machine utilisation).

Palladio FileShare is a typical representative for business information systems. It

has a parts with typical business logic and an algorithm-intensive part. Overall Palla-

dio FileShare possesses many parametric dependencies and architecture alternatives

which make it suitable to investigate the predictability of the parameterisation of the

reverse engineered models. Its architecture and control flow are well-documented

and ease the check of consistency between automated and manual reverse enginee-

ring.

7.7. CoCoME

CoCoME – the COmmon COmponent Modelling Example [RRMF08] is a refe-

rence system for component-based software architectures which aims at providing

a base for comparing different research approaches on component-based software.

CoCoME provides a detailed architecture description, a fully running implementa-

tion, and a specification of reference values for extra-functional properties (i.e. per-

formance and reliability).

The software system realised by CoCoME is a distributed point of sale system with

support for house keeping of single stores, central facilities of the whole enterprise,

and the embedded system cash desk software of the single points of sale. Further-

more, CoCoME realises complex business logic which includes the optimisation of

the exchange of goods among stores to equally distribute low running goods among

stores in the same region.

The reverse engineering concentrates on the business information system part of

CoCoME. The static architecture of the embedded part of the system was reverse

engineered to check the component detection capabilities for embedded systems with

event-based communication.

254

7.7. CoCoME

LOC 9,521

Classes 126

Interfaces 21

Prefixes none

Suffix .*TO .*Event

Reference decomposition (non cashdesk; no database)

System level 1

Sub-system level 2

Components 11

Reverse engineered

Detected primitive components 8

Detected composite components 4

Performed iterations: 11

Execution time <3 sec

Table 7.2.: SoMoX results for CoCoME

7.7.1. Static Architecture

7.7.1.1. Components

Both, the reverse engineered and the reference decomposition had a total of 16 com-

ponents (including system and subsystem level components) when applying SoMoX

to the business information part of CoCoME. Overall, the reverse engineered archi-

tecture and the reference decomposition were mostly the same. Nevertheless, the

reverse engineered architecture partially deviated. The reverse engineering focuses

on the business information system part of CoCoME for which the Palladio approach

is designed. To highlight how SoMoX could handle the embedded systems part, these

results are discussed separately.

The reverse engineering results are discussed in detail in the following starting

from the top level. Section A.1.1, page 324, visualises the reference architecture.

Figure 7.2 and A.7 visualise excerpts from the reverse engineered model.

• At the system level, the reverse engineered architecture was deviating from

the design architecture. The reference architecture lists only two components,

while in the the reverse engineered system had three components of which one

was a primitive component from the embedded systems part which was not

correctly merged into the remaining cashdesk line component.

• At the subsystem level, the reverse engineered architecture contains two com-

ponents as the design architecture does. Still, one of the components, the

cashdeskline, contains an inventory component in the reverse engineered

architecture while it does not in the reference decomposition.

255

Chapter 7. Validation

Figure 7.2.: CoCoME: Reverse engineered trading system composite component

(screenshot)

• From the inventory component, which was fully recognised, most of the sub-

components have been identified: The GUI of CoCoME is split into Repor-

tingGUI and StoreGUI components in the reference decomposition but was

recognised as a single component in the reverse engineered model. From the

application component two out of three components have been identified

(the application store component was missing). The data subcomponent of

inventory was split into two composite components (enterprisequery and

storequery) while the reference architecture treats both queries as a single

component. The remaining three subcomponents of data had been success-

fully identified.

Overall, nine out of fourteen design components below the system-level have been

correctly reverse engineered for CoCoME.

ComponentPrecision =
9

12

ComponentRecall =
9

14

256

7.7. CoCoME

When including the system-level architecture, which is the strongest abstraction

level and thus hard to reverse engineer, precision slightly increases and the recall

slightly drops:

ComponentPrecision =
10

13

ComponentRecall =
10

16

The embedded part cashdeskline has a total of seven low level controllers in the

reference architecture, one cashdesk and one eventbus. For the cashdeskline,

eleven primitive components could be detected and five composite components. The

cashdeskline itself was discovered. Of its subcomponents only two out of seven

components were discovered (the scannercontroller as a single component and

the remaining controllers as a single large component). The cashdeskline is not

considered in the overall reverse engineering results (Palladio is not aiming at em-

bedded systems) and only presented for reasons of completeness.

7.7.1.2. Interfaces

In total, the reverse engineered interfaces and also the interface ports are quite com-

plete. The design documents of CoCoME are partially inconsistent with the imple-

mentation of CoCoME. SoMoX thus yielded interfaces which are not present in the

architecture design documents but should be (interfaces missing in the design do-

cuments: GUIRefreshable, FillDB, RMIRegistry). Overall, the reverse enginee-

ring identified 21 component interfaces while the reference decomposition lists 15.

Furthermore, dependencies which are resolved via a RMI registry led to incorrect

connectors (see below) and since the creation of interfaces depends on their usage by

other components (cf. Section 4.8.6), interfaces were wrongly identified.

Overall, the CoCoME reference architecture lists 15 provided component inter-

faces, and 20 required component interfaces (due to multiple usage, the number of

provided and required interfaces does not need to be equal). The reverse engineered

model identifies those interfaces correctly, except for the StoreIf, ReportingIf,

CashDeskConnectorIf, and ProductDispatcher. These are assigned to the RMI

registry and never provided since the connectors for these interfaces are wrong (see

below). Of the provided roles, eleven out of 15 could be correctly reverse engineered

and assigned.

257

Chapter 7. Validation

InterfacePrecision =
11

21

When adapting the blacklist (excluding RMI interfaces), the

InterfacePrecision could be further increased to 11
11

.

InterfaceRecall =
11

15

ProvidedInterfacePortPrecision =
11

22

ProvidedInterfacePortRecall =
11

15

7.7.1.3. Connectors

The CoCoME design comprises a total of 28 connectors of which 25 could be reverse

engineered. Due to the additional interfaces (discussed in the previous section) 41

connectors where created during reverse engineering.

In the reverse engineered model, some connectors were wrongly wired with the

RMI registry. For example, the connection from the cashdeskconnector to ap-

plicationstore was not identified correctly. In the same way, the connectors were

bound to the RMI registry for reporting, cashdeskconnector and productdis-

patcher. Technically, this is correctly reverse engineered but ideally the RMI com-

munication should be transparent.

ConnectorPrecision =
25

41

ConnectorRecall =
25

28

The connectors successfully ensure that all required interfaces are connected.

Thus, no call (inside the CoCoME system) results in an invalid callee.

258

7.8. SPECjbb2005

7.7.2. Behaviour Analysis

The behaviour analysis focused on the classes and methods involved in the most

complex Use Case 8 of the CoCoME system which deals with product exchange of

trading goods among stores. This use case involves complex optimisation logic and

triggers the exchange of goods which is then delivered from one store to another store

of a trading enterprise.

The resulting central component service for Use Case 8 is bookSale, which covers

multiple methods and classes. For it, the behaviour analysis resulted in a total 14

external calls, six internal actions, two loop actions, and one branch action. All data

flow parameterisations are present in the reverse engineered models.

The control flow was entirely and correctly reverse engineered except for some

missing internal actions. These internal actions where abstracted as they contained

only initialisations of local variables (e.g. Integer i = null) which have only a

very limited performance costs. Nevertheless, any internal calculation can, in special

scenarios, potentially impact the performance of a component service (e.g. a service

comprising only few calculations which is called very frequently). The abstraction is

acceptable for the CoCoME example but could result in prediction errors in special

cases.

The following performance prediction (next Section) judges on the deviation bet-

ween measurements and prediction of the reverse engineered software system.

7.7.3. Performance Prediction

The performance prediction of CoCoME resulted in a response time of 323.0 ms,

while the measurement showed a response time of 321.5 ms. Hence, the performance

prediction was only 0.46% off. The performance was predicted and measured for the

original Use Case 8 of CoCoME which is triggered by the test driver. The original

use case is a single user use case and hence increases the chance of getting precise

performance prediction results.

Until stated differently, this and all following performance predictions were per-

formed for an Intel Core 2 Duo Processor, 4 GB of system memory and 768 MB heap

space for the Sun/Oracle JVM 1.6.

7.8. SPECjbb2005

SPECjbb2005 [Sta05] is an official benchmark of the SPEC group which realises

a classic three tier business application. It is intended to measure the server-side

performance of Java runtime environments and is delivered with a readily available

load driver. The application runs typical business logic like the creation of orders,

the handling of customer data, and the delivery of goods.

259

Chapter 7. Validation

The performance predictions for SPECjbb2005 were performed for the load ge-

nerated by the load driver. The static architecture was compared to the design docu-

ments. Since the design documents of SPECjbb2005 sketch a very coarse-grained ar-

chitecture, a refined architecture was made available by a developer of SPECjbb2005.

This architecture served as a reference decomposition.

LOC 12,788

Classes 75

Interfaces 5

Prefixes none

Suffix none

Reference decomposition

System level 1

Components 4

Reverse engineered

Detected primitive components 4

Detected composite components 1

Performed iterations: 10

Execution time <5 sec

Table 7.3.: SoMoX results for SPECjbb2005

7.8.1. Static Architecture

The reverse engineering of SPECjbb2005 overall resulted in high values for preci-

sion and recall of components, interfaces, roles, and connectors (cf. Figure 7.3). As

SPECjbb2005 does not make use of dependency injection or other forms of late bin-

ding, reliable information on the SPECjbb2005 was available from the GAST which

was extracted by SISSy. All dependencies among classes of SPECjbb2005 were fully

made available via static analysis of SISSy.

7.8.1.1. Components

SPECjbb2005 comprises just a small set of five components in total, although it com-

prises many more classes. Thus, SoMoX is able to reverse engineer a high abstraction

level for components, where each basic component covers a large set of classes. Of

the reverse engineered components, two are at the system level and the remainder at

the subsystem level.

260

7.8. SPECjbb2005

Figure 7.3.: SPECjbb2005: The reverse engineered core composite component (edi-

tor screenshot)

ComponentPrecision =
5

5

ComponentRecall =
5

5

With respect to the precision and recall of components, SPECjbb2005 was enti-

rely reverse engineered. SoMoX showed to be able to deal with high component

abstraction levels (LL-high abstraction).

7.8.1.2. Interfaces

SPECjbb2005 comprises only five Java interfaces. Thus, SoMoX reverse engineered

public methods of classes as interfaces of components as a fallback strategy (see

Section 4.8.6). To judge whether the reverse engineered interfaces are meaningful

when using the fallback strategy, it must be investigated what precision and recall are

261

Chapter 7. Validation

with respect to all calls passing component boundaries. For example, if component

A accesses provided methods of component B, all of these calls must be captured in

the interfaces (the design interfaces in this case).

The five Java interfaces and their inheritance were correctly classified as com-

ponent interfaces. SoMoX detected 18 interfaces in total which were used in either

provided or required roles. Of these, all correspond to design interfaces identified as

explained above.

InterfacePrecision =
18

18

InterfaceRecall =
18

18

SoMoX reverse engineered a total of 14 provided roles and 24 required roles. Due

to 14 required interfaces at the system level (i.e. dependencies to the runtime environ-

ment and library calls), only half of the required roles has a corresponding provided

role. A role is expected for every interface of a component. Thus, if there is any

communication via a previously identified interface, a correspondig role must be es-

tablished. SoMoX successfully reverse engineered all roles.

ProvidedInterfacePortPrecision =
14

14

ProvidedInterfacePortRecall =
14

14

Although the component interfaces could be completely reverse engineered

concerning the interfaces themselves and contained services, not all of the service

signatures were complete. This was due to a special communication style in which

instance variables of a class are set prior to calling the services themselves. For

two component interfaces, thus further parameters had to be added, which are not

present as source code parameters (see Section 7.8.2). Consider the example method

doSth() which does not possess parameters and where all parameters must be

passed via a setter prior to calling doSth(). In the communication style which

is partially followed in SPECjbb2005, passing service parameters is realised in a

comparable way.

262

7.8. SPECjbb2005

7.8.1.3. Connectors

All connectors among the provided and required interfaces of the SPECjbb2005 com-

ponent could be successfully reverse engineered. Especially, no connector was mis-

sing, delegating or assembling the wrong component. Incomplete connectors would

also have impacted the performance prediction. If connectors are not present in a mo-

del, service calls end up in undefined locations. Thus, the presence of all connectors

is a prerequisite to successful performance prediction.

SoMoX reverse engineered a total of 38 connectors of which 26 were delegation

connectors and 12 were assembly connectors. As delegation connectors require an

inner and an outer connector for a single role and since a single provided role can

be connected to multiple required roles, the number of connectors does not directly

relate to the number of provided and required roles but also depends on the nesting

of composite components.

The 38 connectors exactly corresponded to the expected connectors from the de-

sign. Neither additional connectors nor missing connectors could be found in the

reverse engineering results.

ConnectorPrecision =
38

38

ConnectorRecall =
38

38

7.8.2. Behaviour Analysis

The high abstraction level of components implied a high abstraction level also for

the behavioural model since the abstraction level of components is aligned with the

abstraction level of the behavioural model in the developed approach (cf. Section 3).

The behaviour analysis and subsequent performance prediction were focused on the

central processTransactionLog service of SPECjbb2005. It comprises a total of

44 external calls which call 14 different services of other components and represents

the most complex behaviour of a service of SPECjbb2005 (cf. Figure A.8).

Specific to processTransactionLog is the communication via instance va-

riables. Instead of call parameters, instance variables are passed to the service before

executing it. Thus, the primary inputs for parametric dependencies are the parameter

characterisations of instance variables of the surrounding class. Formally, these

parameters must hence become part of the component interface. After identifying

certain parameter characterisations as performance-relevant, they had been manually

263

Chapter 7. Validation

added to the component interface to complement it. These are parameters which are

not present in the source code as call parameters.

7.8.3. Performance Prediction

In order to predict the performance (response time) of the reverse engineered sys-

tem and to compare it with the response time of the actual implementation, the re-

source demands of all internal actions were estimated based on measurements of

timing values in the corresponding code. Here, Beagle was responsible for estima-

ting the resource demands of the internal actions. Furthermore, all other parametric

dependencies (branch conditions, loop iterations, and parameter values) were reverse

engineered by Beagle.

The overall predicted response time for the processTransactionLog service was

450μs (median) while the measured response time was 416μs (median). Hence, the

performance prediction of the reverse engineered model is less than 8.2% larger than

the measured value.

7.9. Palladio FileShare

Palladio FileShare is a client-server file sharing application. Users can upload files

to the file sharing platform and share them with other users. The system is a Java-

based implementation. Palladio FileShare supports different types of files. Non-

compressed files are compressed prior to storing them. The storage is taken over by

two separate components of which one is optimised for storing small files and one for

large files. Only non-copyrighted files are being stored by the application. Therefore,

file hashes are looked up in a database of copyrighted files before files are actually

stored.

Palladio FileShare varies in all contexts which the reverse engineered models are

parameterised over: The execution platform is being exchanged, the implementation

of the compression algorithm can be exchanged by another (a LZW implementa-

tion and the compression implementation from the SPECjvm benchmark are avai-

lable), and different file types and file sizes are uploaded in the investigated scenario.

Thus, the case study comprises varying usage, assembly, and allocation contexts.

Furthermore, the reverse engineered resource demands of Palladio FileShare are ba-

sed on bytecode instructions instead of abstract CPU demands. A full architecture

and control flow documentation is available for Palladio FileShare.

264

7.9. Palladio FileShare

LOC 8,118

Classes 87

Interfaces 6

Prefixes none

Suffix none

Reference decomposition

System level 1

Components 8

Reverse engineered

Detected primitive components 6

Detected composite components 2

Performed iterations: 22

Execution time <5 sec

Table 7.4.: SoMoX results for Palladio FileShare

7.9.1. Static Architecture

Figure A.6, page 327, visualises the reference architecture of Palladio FileShare,

while Figure 7.4 depicts the reverse engineered main composite component of the

system.

7.9.1.1. Components

The reverse engineered model of Palladio FileShare comprised a total of six primitive

components and two composite components. Of the nine components in the reference

decomposition (eight primitive components and one composite component), most

components could be reverse engineered. The storage component in the reference

decomposition Palladio FileShare exists in two flavours: one optimised for large and

one for small files. Yet, the implementation uses the same component implementation

for large and small components. The reverse engineered model cannot deal with

multiple instances of a single component.

Furthermore, for the compression component, there exist two different implemen-

tations of which only one is used at a single point in time. The reverse engineered mo-

del merges the Hashing component together with the LZW compression component.

Thus, in the reverse engineered model, one component represents two components

of the reference decomposition.

Instead of one composite component in the reference decomposition, the reverse

engineered model contains two composite components. These two composite com-

ponents represent different abstraction levels of the system. The hashing component,

whose implementation strongly relies on the capabilities of the Java libraries, is not

265

Chapter 7. Validation

Figure 7.4.: Palladio FileShare: The reverse engineered system-level composite com-

ponent (editor screenshot)

contained in the lower level composite component. The higher level composite com-

ponent comprises components of the whole system.

The resulting precision and recall are:

ComponentPrecision =
6

8

ComponentRecall =
6

9

7.9.1.2. Interfaces

Except for one primitive component, all component roles were perfectly recognised.

The combined hashing and compression component (already discussed above) has

two provided roles which are not in the reference decomposition. Both roles asso-

ciate interfaces created by the fallback strategy which creates interfaces from public

methods. Due to the mix of compression and hashing functionality in the primi-

tive component, these interfaces are exposed by the surrounding component. Since

266

7.9. Palladio FileShare

composite components inherit the provided roles of inner components in the applied

interface strategy, the provided role of the composite components also contain these

two unwanted interfaces.

Another required interface of the storage component (a util interface), is present

in the reverse engineered model but not in the reference decomposition. This is

actually an error in the reference decomposition which misses the dependency to the

util interface which is present in the implementation.

InterfacePrecision =
6

9

InterfaceRecall =
6

6

The reverse engineered system contained 15 provided roles in total, compared to

8 provided roles in the reference decomposition. Additional roles arise from the

additional composite component (which provides 5 roles) and the additionally reco-

gnised component interfaces. When removing the additional composite component,

the precision could have been increased to 8
11

.

ProvidedInterfacePortPrecision =
8

15

ProvidedInterfacePortRecall =
8

8

7.9.1.3. Connectors

As introduced earlier, two alternative implementations of the compression com-

ponent exist. Yet, only one component is bound at a single point in time. The

number of connectors in the reference decomposition is nine when using only a

single compression implementation.

Since there were deviations in the component structure, interface recognition, and

role assignment, comparing the connectors in the reference decomposition with the

connectors in the reverse engineered models would be meaningless due to subsequent

errors. Instead, the connectors in the reverse engineered model should be complete

and ensure model integrity to allow for simulation of the reverse engineered model.

All roles should be bound to the right interfaces. Precision and recall are hence

derived taking subsequent errors into account.

267

Chapter 7. Validation

The reverse engineered model contains a total of 26 connectors (22 delegation

and 4 assembly connectors). Given the recognised interfaces and roles, each of the

connectors is required in order to form a valid model instance. No connector is

missing in the model.

ConnectorPrecision =
26

26

ConnectorRecall =
26

26

7.9.2. Behaviour Analysis

The behaviour of components of the Palladio FileShare was analysed as blackboxes

(see Section 5.17). All internals of the component behaviour were reverse engineered

via genetic programming. The resource demands for Palladio FileShare have been es-

timated based on individual bytecode instructions (see [KKR10]). Thus, the resource

demands are much more fine-grained, compared to resource demands based on a

single CPU demand per internal action. Resource demands were reverse engineered

from dynamic bytecode instruction counts provided by the ByCounter [KKR08b]

tool. To allow for precise performance predictions, the resource demands were pa-

rameterised over the input parameters of services provided by the components of

Palladio FileShare.

As described in Section 5.17, the control flow in black-box scenarios is simplified

to a single action and to external calls which are executed in separate loops. Due to

the strong abstraction of the component behaviour, its validity is judged with respect

to the predicted performance in the next section.

The parametric dependencies were learned by Beagle after processing a set of test

input data. The set of test data contained files of different sizes and types (i.e. Text,

JPG, ZIP) to allow for learning parameterisations of the model.

For Palladio FileShare, also the applicability of the heuristics for identifying para-

meter characterisations, introduced in Section 5.10.4, was validated. The parameter

characterisations identified by the proposed heuristics are identical to the ones which

were manually identified to be performance-relevant. The monitoring was performed

based on the automatically identified parameter characterisations.

7.9.3. Performance Prediction

The performance of Palladio FileShare was predicted (cf. [KKR10]) for multiple

usage scenarios where the exchanged files varied with respect to file size and type.

268

7.10. Effort Estimation

The files for which the performance was predicted were not identical to the set of

learning data to check for the prediction capabilities of the reverse engineered mo-

del. To further demonstrate the parameterisation of the reverse engineered models,

the compression component was exchanged. Thus, two further scenarios needed to

be predicted: One with a LZW compression and one with a SPEC compression com-

ponent. Furthermore, the execution platform was varied for prediction (Intel Pentium

M 1.5 GHz single core CPU vs. Intel T2400 1.8 GHz dual core CPU). The model was

reverse engineered for the first platform and then predicted for the second platform

without executing Palladio FileShare or portions of it on the second platform.

For all prediction scenarios, the average prediction deviation was less than 30%.

For example, the total upload process was predicted with 115 ms while the measured

value was 123 ms. Figure 7.5 illustrates some of the results.

�������	

��
������

�������������	
���
������

�������������	

��
�� ��!

���"�#��"	�$%�$���
&���'��"	�$%�(���

���"�#��"	�$%)����
&���'��"	�$%*+���

���"�#��"	��%*+���
&���'��"	��%*����

������,����"����#���	
���
�������-./01

���"�#��"	�$$����

&���'��"	�$�
���

Figure 7.5.: Selected predictions and measurements for Palladio FileShare (taken

from [KKR10])

The prediction for the second execution platform was off less than 10% except

for one outlier where the prediction was off 30%. When using only the LZW com-

pression, the prediction was off less than 15% even when exchanging the execution

platform. For the SPEC compression component, the prediction error was less than

30% for all files and accross both platforms.

7.10. Effort Estimation

Previous work [KKKR08] showed that manual reverse engineering of parameterised

performance models can consume a significant amount of time. Manually reverse

engineering the CoCoME system took for example about 40 person-hours, while

automated reverse engineering significantly reduces the overall time (Effort(M),
covering the tool execution time of SoMoX and Beagle and execution of the test

cases) to about 4 hours (LL-Effort reduction). Externally conducted studies show

269

Chapter 7. Validation

that even the creation of small-sized parameterised performance models from given

design documents comprising only three to five components can take about three

hours of time [MBKR08b].

From the end-to-end case studies, models were reverse engineered manually and

automated only for CoCoME. Hence, the comparison of manual and automated re-

verse engineering provides only little evidence that reverse engineering will generally

save time for the creation of models. Still, the strong automation of the reverse engi-

neering provides a base for significantly reducing the required amount of time. The

tool execution duration allows the handling a large software systems (see scalability

discussion in Section 7.12).

7.11. Other Case Studies

The following section briefly summarises the results of further case studies perfor-

med in the context of this thesis. These case studies have not been as extensive as

the previously presented but help gaining insight whether SoMOX and Beagle are

broadly applicable to different kinds of software systems.

Ohioedge CRM has a total of 78,516 lines of code and 249 classes. For the

system, 13 components at the highest abstraction level could be identified in the

5th iteration (cf. [CKK08]). No reference architecture documentation was available

for Ohioedge CRM. Due to the large size of the software system, the manual code

analysis was based on the code artefact names and little insights into the intended

architecture of the software system. The reverse engineered composite components

could be evaluated as reasonable components in a manual analysis.

Rubis comprises 8,202 lines of code in total and 41 classes. Overall, 17 compo-

nents in 2 iterations could be identified (cf. [CKK08]).

As for other systems, no reference architecture documentation was available for

Rubis. This was compensated by a manual analysis of the code which revealed a

repeated pattern which comprises a session bean that uses a home and a remote inter-

face and which has a servlet associated with it. The presence of an intended pattern

is supported by the naming of the classes and interfaces. Each instance of that pat-

tern was identified as a single component. In total, 16 of those components could

be found. Any other classes which are not included in those components are utility

classes used from a larger number of components. Despite explicitly searching for

higher-level components in the code, none could be found during manual reverse

engineering of the system.

Of the 17 reverse engineered components, 16 were identical to the manually de-

tected ones. A single component misses a class with a similar name as the included

270

7.11. Other Case Studies

classes. Yet, that class is not referenced by any class of the identified component and

itself only references one utility class and thus is likely to be a misplaced or outdated

class. The reverse engineered software system has only little hierarchy which is also

reflected in the reverse engineered model: The components are identified in the first

iteration; except for a single system-level component which contains the remaining

components.

openArchitectureWare was reverse engineered to check the assumption of So-

MoX that the input software system must be component-based. As openArchitec-

tureWare is actually not component-based (manual code analysis showed that), it is

suitable to check the abilities of the reverse engineering approach to deal with non-

component-based software systems.

openArchitectureWare yielded no component-based software architecture – nei-

ther during manual code analysis nor during the reverse engineering run. Some

components were nevertheless detected, yet they do not help understanding the ar-

chitecture of openArchitectureWare. Hence, SoMoX is not suitable for the reverse

engineering of non-component-based software systems. Although the approach it-

self is able to reverse engineer components for all kinds of software systems, the

results are not meaningful for systems for which the core assumptions do not hold

(LL-non-component-based systems). The absence of a reasonable component-based

architecture in the results model matches the expectations for such kinds of systems.

Behavioural Model LZW Compression and SPECjvm2008 Compress are standa-

lone components which can be independently reused. The validation of their reverse

engineered models is part of the presented case study on Palladio FileShare. For Pal-

ladio FileShare, these components serve as exchangeable compression components.

Still, the application of Beagle to parameterise the behaviour of these components

provides further insights to the quality of results of Beagle (cf. [KKR10]). The main

parametric dependencies for the compression components are the compression ratio

and the resource demand in terms of bytecode instructions required to compress a

certain file. For the compression ratio, Beagle discovered a linear dependency to the

size of the input file in both cases. Such approximations are found by Beagle after

about 30 seconds.

The parametric dependencies for the estimation of bytecode (cf. Section 5.16)

were more complex for most bytecode instructions (some few bytecode instructions

are executed with a constant number and can thus be captured by simple parametric

dependencies realised by constants). The behaviour of most compression algorithms

strongly depends on the inner characteristics of the data and the size of data to be

compressed, but for example the type of files has less impact on the resource demand

of the compression algorithm. As the inner characteristics of data are not captured

in the developed approach (i.e. the values of single bytes in an array), the learned

271

Chapter 7. Validation

parametric dependency cannot be expected to be optimal in all cases. Even if the full

data to be compressed would be captured by the developed approach, it cannot be

expected that parametric dependencies can be found for all bytecode instructions due

to the complexity of compression algorithms.

Beagle created optimal parametric dependencies for only a few bytecode instruc-

tions. Still, the resource demand approximations are good estimators which in 98%

of the cases outperform approximations by MARS [Fri91] (LL-outperforms statisti-
cal analysis). As mentioned in Section 7.9, the prediction error for response times

based on the parametric dependencies had an error of less than 30%.

ABB Legacy Application OPC In the context of the EU Q-ImPrESS project,

a case study for the architectural reverse engineering approach was performed. The

validation phase in the Q-ImPrESS project is not fully completed yet. The system

is written in C and C++, having approximately 50,000 LOC and 127 files. The re-

verse engineering resulted in 30 primitive components and 13 composite compo-

nents. Since no reference decomposition is available, the quality of the identified

components cannot be judged. The processing time for SISSy were about 200 se-

conds and 14 seconds for SoMoX.

The OPC system is based on Microsoft COM. During the case study it was dis-

covered that the COM interfaces were not completely present in the GAST created

by SISSy. Thus, interfaces based on the recognition of COM interfaces were also

incomplete when running SoMoX. When switching to public methods as a fall-back

strategy, the recognised component interfaces were rather complete.

LL-C and COM support: SoMoX is applicable to reverse engineer software system

written in C and C/C++ but due to the use of SISSy lacks direct support of COM

interfaces.

ABB Demonstrator Subsystem Another case study performed in the context of

the EU Q-ImPrESS project is operating on an ABB application subsystem, written

in C/C++, with a size of 250,000 LOC, comprising about 600 files. This case study

is used to judge the scalability of the approach. The results of the scalability analysis

are discussed in Section 7.12.

HSQLDB could successfully show that SoMoX scales for real-world systems of

considerable size. The following Section 7.12 discusses the scalability.

7.12. Scalability

HSQLDB To investigate the practical scalability of SoMoX and Beagle, a large

real-life software system was analysed. For the analysis, HSQLDB 2.0, a Java-based

272

7.12. Scalability

database system, was chosen. HSQLDB comprises a total of more than 158,000 lines

of code, 39 Packages, 640 classes, 52 interface, and nearly 120,000 methods. Thus,

it represents a typical software system of a considerable size. The scalability analy-

sis was not used to judge the quality of the reverse engineering since no reference

decomposition of HSQLDB was available and since it is not realistic to manually

analyse a system of such a size to determine the quality of SoMoX and Beagle. Fur-

thermore, only the transformation for the creation of control flow abstraction could

be applied since no testbed setup was available.

The analysis on a Intel Core 2 Duo Processor, 4 GB of system memory and 768

MB heap space for a JVM 1.6 took less than 2 minutes for the SoMoX analysis and

revealed 25 components (5 composite components and 20 primitive components).

The precedent analysis using SISSy which creates the GAST model took 7 minutes

for the system when using a DERBY database for the persistence of SISSy data.

The creation of the control flow abstraction of the behaviour model took less than 10

seconds in total.

The calculation of metrics is fully multi-threaded. In a test, SoMoX was able to

utilise all cores of a 24 core server machine.

The binary metric Running was evaluated to true since the reverse engineering

could be successfully performed. The overall ReverseEngineeringDuration
metric resulted in an overall effort of less than 2.5 minutes.

Learning a single parametric dependency in the implementation of the Beagle ap-

proach takes typically 10 seconds to 4 minutes for the selected default configuration.

If optimal solutions are found, genetic programming terminates immediately; other-

wise the maximum number of generation is being evolved which for the selected

configuration takes about 4 minutes. When accepting a lower fitness in average, the

time can also be reduced. The CoCoME model, for example, has a total of 11 pa-

rametric dependencies which could be learned in less than 10 minutes. Due to the

size of HSQSLDB, the maximum number of generations needs to be reduced to limit

the time per parametric dependency to a maximum of one minute. From the control

flow abstraction transformation for HSQLDB, an estimation of the time demand for

parametric dependencies can be derived, which, for 780 parametric dependencies re-

sults in a time demand between 2.1 (best case) and 13 (worst case) hours overall. It

must be emphasised that learning parametric dependencies can run offline and does

not require user interaction or multiple iterations.

A simulation of the performance of such a reverse engineered model (e.g. for the

service getSystemTable of DatabaseInformation of HSQLDB) with the PCM

takes less than 3 minutes (default setting of the simulation; default usage model

with a single user; default allocation; default resource demand and parameterisa-

tion). Hence, even for large software systems, models are reverse reverse engineered

which are suitable for performance simulations.

273

Chapter 7. Validation

ABB Demonstrator Subsystem Another scalability case study was performed

for a 250,000 LOC subsystem of an ABB software subsystem. The subsystem could

be analysed at ABB within about 3 hours processing time for SISSy and about 5

minutes for SoMoX. The most critical resource was the memory consumption of the

SISSy step. Due to the internal usage of the Eclipse CDT parser (only for C/C++

systems), the created in-memory software model consumed about 8 GB of main me-

mory.

LL-scalability: SoMoX and Beagle scale sufficiently well even for large-scale real

world software systems. The scalability can be stated for Java and C/C++-based soft-

ware systems. Software systems with more than 250,000 LOC can be successfully

analysed. For the application and SoMoX, the reverse engineering is nearly interac-

tive (the creation of the static architecture takes typically less than 5 minutes).

7.13. Discussion and Findings

The validation of SoMoX and Beagle overall showed satisfactory reverse engineering

results and high accuracy for performance predictions based on the reverse enginee-

red models. The average precision for the static architecture across all model ele-

ments is 78%, the average recall 89% (LL-precision recall). Hence, nearly all model

elements of the reference decompositions were also also in the reverse engineered

models and little structures were identified which are not in the reference decompo-

sition. The average precisions per architecture element were 84% for components,

73% for interfaces, 68% for provided roles, and 87% for connectors. The average

recall was 76% for components, 91% for interface, 91% for provided roles, and 96%

for connectors.

Overall, the recall for components themselves was slightly lower than for “sur-

rounding” structures (interfaces, provided roles, and connectors). The reconstruction

of components has to rely on more heuristics than the reconstruction for the “sur-

rounding” structures which become visible from the results for recall. LL-heuristic
recall: The component identified by the employed heuristics has a smaller recall than

the reconstruction of the remainder of static architecture structures.

Compared to the findings of the related approach of Koschke [Kos00] (see dis-

cussion in the related work Section 8), precision and recall are comparably high. In

his analysis of precision and recall for the detection of “atomic components”, the

recall was roughly between 75% and 34% depending on the elements which should

be detected and the applied technique. About 40% of the detected atomic component

candidates of Koschke were false positive and thus lowering the precision.

For SoMoX and Beagle, the performance predictions were off in average 12% and

at most 30%. The accuary of the performance predictions was even high for scenarios

where various elements of the reverse engineered architecture changed (e.g. in the

274

7.13. Discussion and Findings

Palladio FileShare case study) and which by design are thus hard to predict (LL-
parameterisation).

When viewing the reverse engineering results in detail, case study by case study,

further strength and limitations of SoMoX and Beagle become visible.

CoCoME For CoCoME, the reverse engineering revealed a mismatch between the

design documentation and the implementation where the components actually com-

municate different than indicated by the documentation (LL-mismatch detection).

Furthermore, CoCoME pointed to the expected shortcomings of the employed sta-

tic analysis: Dependencies which were injected or introduced via service lookup

cannot be handled since SISSy does not include this information in the GAST mo-

del (LL-binding). Dealing with dependency injection and service lookup requires an

extended static analysis or dynamic analysis to find out which instances are bound

at runtime (see Section 9.11). Still, for the reverse engineering results of CoCoME

precision (0.74 in average) and recall (0.92 in average) remain high.

SPECjbb2005 The SPECjbb2005 reverse engineering and performance predic-

tion results are notably good. Primarily this is due to the alignment of architecture

and package structure in SPECjbb2005. Furthermore, SPECjbb2005 employs no

late binding or dependency injection mechanisms and thus eases the static analy-

sis using SISSy (LL-binding). The GAST model is complete and thus an optimal

base for SoMoX. SPECjbb2005 makes it obvious that architecture information that

is encoded into code artefacts advances the quality of reverse engineering results

(LL-architecture encoding.

Palladio FileShare In the Palladio FileShare case study, the strong parameterisa-

tion capabilities for models reverse engineered by SoMoX and Beagle are shown. All

influence factors for component performance (cf. Section 2.6) where successfully

varied in this case study. Notably, the behaviour of Palladio FileShare depends on

component state which could nevertheless successfully be dealt with: Whether a file

is copyrighted or not is not visible from the input data and thus disturbing the result

precision (for the same input data, different results (copyrighted / non-copyrighted)

could be monitored). Still, the performance prediction results in less than 30% devia-

tion between the predicted and measured values even accross different usage profiles,

assembly contexts, and allocation contexts.

Overall, typical deviations in the static architecture between the reference decom-

position and the reverse engineered architecture were in the nesting of components.

Instead of having a single composite component, two separate levels of components

were created: The reference architecture had a composite component A holding the

instances of Component B and C. The reverse engineered model had a composite

275

Chapter 7. Validation

component which held a sub-component B which in turn held the instance of com-

ponent C (LL-nesting).

7.13.1. Component State

As Palladio FileShare shows, reverse engineering results and performance predic-

tions based on them can be accurate even if component state is present. Yet, the state

impact in Palladio FileShare was limited since only a small portion of files in the

scenario was impacted by being copyrighted to model a realistic scenario. In other

scenarios where component state has a strong impact on the behaviour (e.g. every

execution is being affected), Beagle can only reverse the average or most likely be-

haviour induced by component state. LL-component state: Component state which

has only small impact on the performance of components can be successfully dealt

with.

Scenarios in which component state impacts component behaviour are comparable

(from the perspective of Beagle) to scenarios where not all parameters are being mo-

nitored during execution: In both cases, possibly contradicting behaviour can be mo-

nitored for the same inputs. If the performance is impacted by such non-monitored

parameters (state represented by internal variables or input parameters characterisa-

tion which are not identified as performance relevant and thus not monitored), Beagle

creates approximations of the monitored behaviour.

7.13.2. Manual and Automated Reverse Engineering

Comparing manually reverse engineered models with automatically reverse enginee-

red models provides useful insights. Models have been manually reverse engineered

for previous publications like [KKKR08] which dealt with the CoCoME system. LL-
typical model errors automation: Automatically reverse engineered models possess

systematic errors like for example the wrong abstraction level of components, mis-

sing connectors due to the absence of information to derive them, interfaces which

are considered to be component interfaces, or external calls which are present due to

the wrongly identified component interfaces.

LL-typical model errors manual: Manually reverse engineered models, opposed

to them, primarily suffer from inconsistent abstractions. For example small internal

actions are often omitted and external actions which trigger for example logging fa-

cilities are usually neglected since they are crosscutting the architecture and increase

manual modeling effort. At the same time, logging is considered to be a component

service and thus explicit in the component interface. For large models, manual re-

verse engineering furthermore increases the risk of inconsistent abstraction levels in

a single model. For example, some calls of a logging service are captured in the

model but not all. The model inconsistencies imply risks for the prediction capabili-

276

7.13. Discussion and Findings

ties of reverse engineered models if the component context changes. If for example

the connected logging component is exchanged, the performance impact of the ex-

changed components is only partially reflected in the reverse engineered component

model.

LL-abstraction level: Getting the desired abstraction level is by definition easy for

manually reverse engineered models. Human which reverse engineer a model ma-

nually, create only those components which are at the desired abstraction level. Since

reference decompositions also have a fixed abstraction level, it is the challenge for

automated reverse engineering to create that specific abstraction level. Nevertheless,

the merge and compose thresholds are suitable to steer the abstraction levels for the

automated reverse engineering (see Section 4.8.5). Since there is no direct correlation

between the thresholds and the abstraction level (i.e. the resulting abstraction level of

the thresholds depends on the system size and metrics; e.g. a loosely coupled system

results in different abstraction levels for the same thresholds than a tightly coupled

system), multiple reverse engineering iterations can be required to reach a certain de-

sired abstraction level in automated reverse engineering. In the case studies, typically

about 10 iterations where required to gain a desired abstraction level.

While automated reverse engineering is able to provide a consistent abstraction le-

vel, manually created models (which include the reference decomposition) can have

inconsistent abstraction levels. In the reference decomposition of the CoCoME sys-

tem, the business information system part had a much stronger abstraction than the

embedded system’s part where various components of the reference decomposition

correspond to just a single class.

To sum up, the results of automated reverse engineering can be characterised as

follows (LL-automated characteristics):

• The reverse engineered models posses a consistent abstraction level.

• The adjustment to the expected abstraction level requires effort.

• If model errors are present, the errors are systematic.

• SoMoX results in partially incomplete models if information is missing in the

GAST.

• Beagle results in complete models due to strict derivation rules from given

component boundaries.

Analogously, the central characteristics of manual reverse engineering can be sum-

marised to (LL-manual characteristics):

• Reverse engineered models results in intended abstraction level.

• The reverse engineered models tend to have an inconsistent abstraction level.

277

Chapter 7. Validation

• Models tend to be incomplete due to inconsistent abstractions and modeling

errors (missing to model certain elements).

• If modeling errors are present, they are sporadic – opposed to systematic errors

for automated reverse engineering.

7.13.3. Configuration

Overall, default values for the configuration of the component detection strategies of

SoMoX (weights from Section 4.8.5) perform well for reverse engineering. The de-

fault values had been derived to be representative for all reverse engineered software

systems in this thesis and enable all strategies. Adapting the weights per software sys-

tems is – as intended – able to prefer certain component implementation styles (e.g.

ignoring the balance of abstract and concrete entities, “abstract concrete balance”). In

a comparable way, for Beagle, the provided configuration defaults remained constant

across the reverse engineered systems.

7.13.4. Suitable Software Architectures

LL-component based: Component-based software architectures can only be reverse

engineered if a software system is created from components or at least with

components in mind. The counterexample system “openArchitectureWare” (cf.

Section 7.11)) showed that the base architecture of a software system must be

component-based. Otherwise, no meaningful architecture which matches an expec-

ted architecture can be reconstructed. SoMoX can only identify component-based

software architectures which are in some way encoded into source code artefacts.

The component detection strategies fully rely on structures which are visible from

the GAST model and thus must also be present in the source code of a software

system.

LL-naming based strategies: The naming and hierarchy based software detection

strategies performed best with respect to the component identification abilities. Al-

though component naming can be misleading, the combination of coupling with na-

ming proved successful for identifying components and did not lead to unexpected

components, which could be the case for pure naming based component detection.

LL-SLAQ applicability: Of the remaining detection strategies, SLAQ rarely mat-

ched since it is specific to architectures which are organised in slices and layers. Due

to the support of only a single architecture style which must be encoded in the im-

plementation, SLAQ contributes only for a subset of architectures. Mostly, SLAQ

matched only for some of the components of a software system (those which are or-

ganised in slices and layers). In the CoCoME example, which is partially organised

in slices and layers, the strategy successfully matched.

278

7.13. Discussion and Findings

7.13.5. Machine Learning

LL-test bed: Beagle requires a previous execution of a software system under study in

a test bed to gather monitoring data. The case studies show that little variance in the

input parameter space is sufficient to reconstruct models. Generally, condition cove-

rage (C3c, cf. [Bei90]), is sufficient to create a base for machine learning. Opposed

to pure path coverage, boundaries (for branches) should be hit to improve the results.

For example, a branch if(x < 1024).. depends on the value of the parameter x. If

one value < 1023 and one value > 1024 are provided for x, parametric dependencies

can be successfully learned. Yet, additional values do not disturb results.

LL-default heuristics: Monitoring the right parameter characterisations is suppor-

ted by heuristics in the developed approach (cf. Section 5.10.4). The proposed heu-

ristics allowed to monitor all required parameter characterisations such that the ma-

chine learning step could successfully operate on the data base. In none of the case

studies, except for SPECjbb2005 (see discussion in Section 7.8), separate parameter

characterisation needed to be selected. Additional studies [EKKB10, Klu10] which

applied the same heuristics further show the applicability of the proposed heuristics.

7.13.6. Threats to Validity

There are two main areas for threats to validity of SoMoX and Beagle: Deviations in

the reference decomposition and disturbances in the performance measurements.

If reverse engineered manually, the reference decomposition could be biased to

meet the requirements on the reverse engineering approach. A biased reference de-

composition has been faced by employing reference decompositions provided by

third-parties which cannot be influenced. Errors in the reference decomposition

where the architecture deviates from the implementation were observed for CoCoME

as described above. Such errors in the reference decomposition can artificially reduce

precision and recall. To at least identify deviations between the reference decompo-

sition and the implementation, the de-facto architecture visible from the source code

has been manually checked for violations. Those small deviations which were disco-

vered are documented in beginning of Section 7.13.

To measure the performance (for the validation), the original source code has been

instrumented and executed in the same test bed which was used to reconstruct the mo-

dels. Still, monitoring causes runtime overhead which has to be taken into account

when analysing the performance measurements. To avoid a large impact on the per-

formance results, the developed monitoring is designed to have little overhead. For

example, as much measuring data as possible is held in memory to circumvent that li-

mited I/O performance for hard disks or networks results in wait times. Furthermore,

it must be accounted for the execution environment which comprises the Windows

operating system and a Java virtual machine, both of which are non real-time execu-

279

Chapter 7. Validation

tion environments. For example, Windows has to handle interrupts or concurrently

running processes. Therefore, the number of processes which were executed in pa-

rallel to the system under test were reduced to a minimum. The Java virtual machine

employs a garbage collector which cleans up unused memory. If the garbage collec-

tor runs, outliers are being produced. All measurements were cleaned from outliers

and the median instead of average values were used.

In addition to filtering the measurements, all software systems had a warm-up

phase prior to starting the measurements and the software systems were executed in

a Java virtual machine for which the server option was enabled. Both actions help

reducing the impact of potential outliers and disturbances during measurements.

The impact of state dependencies, another factor which disturbs the monitored

timing behaviour, has already been discussed above in Section 7.13.1.

7.13.7. Performance Impact Factors

A few characteristics of a software system which influence the reverse engineering

performance can be derived from the case studies. The main impact factors on the

performance of a reverse engineering run are (LL-performance impact):

• C/C++ vs. Java Due to the use of the Eclipse CDT for C/C++ and Recoder

for Java, SISSy performs largely different for C/C++ and Java. Java systems

can be analysed faster and the source code analysis consumes less memory.

• Density of Accesses For SoMoX, a main impact factor on performance are

the number of accesses among classes. If many classes access many other

classes and interfaces (a largely interconnected graph), more metrics must be

calculated than for systems which are well-encapsulated on a class-level (i.e.

access only a small number of classes and interfaces). Hence, the structure of

a software systems impacts the overall performance of a reverse engineering

run which can be expected for a software system.

• Number of Parameter Characterisations The key performance driver

for Beagle is the number of parametric dependencies to be learned (see

Section 5.18). The runtime of the Beagle approach linearly depends on

the overall number. Furthermore, the larger the search space for Beagle

is (number of parameter characterisations), the longer is takes to create

parametric dependencies with a desired fitness. This is not an impact factor, if

the number of generations to be evolved is fixed. Another performance driver

for Beagle is the size of components: Large primitive components result

in relatively less complex behaviour models (see discussion in Section 5.9)

which in turn possess less parametric dependencies which must be calculated.

Systems with only few identified primitive components typically have less

280

7.13. Discussion and Findings

parametric dependencies to be calculated. For a fixed number of generations,

the calculation time for a parametric dependency is constant.

7.13.8. Further Discussion

Section 9 continues the discussion of the developed reverse engineering approach.

While the discussion in this section was strongly related to the validation, Section 9

broadens the scope and discusses results and achievements of the overall context of

reverse engineering.

281

8. Related Work

8.1. Overview

The SoMoX and Beagle approach tackle research fields for which a lot of related

work exists: A vast amount of reverse engineering approaches for software is des-

cribed in literature and various reconstruction approaches for performance specifi-

cations of software system exist. Machine learning is a broad research field which

has been applied to numerous domains, including sub-disciplines of software engi-

neering. Due to the broad research, many different kinds of machine learning have

been developed, of which genetic algorithms and genetic programming are the most

important to this thesis.

Although a lot of related research exists, no related work targets parameterised

software performance models for component-based software systems, which are cen-

tral in this thesis.

To structure the related work of this thesis, which is presented in the following, the

related work is distinguished into four major research field. This thesis covers work

from all of these research fields:

1. Reverse engineering

• Static Architecture

• Behaviour Models

2. Reconstruction of performance models

3. Machine learning, genetic algorithms, and statistical approximations

Of these research fields, techniques for static architecture and behaviour reverse en-

gineering will be distinguished into static and dynamic analysis approaches, as both

kinds of analysis are used in the approaches of this thesis.

The remainder of the related work section first provides an overview and sum-

maries on related work. In the overview sections, the SoMoX and Beagle approach

are classified according to standard taxonomies. Then, the related work is structured

according to the above schema.

283

Chapter 8. Related Work

8.1.1. Summary on Related Work

The following two tables summarise the core properties of the most related reverse

engineering approaches. Table 8.1 introduces reverse engineering approaches for

static architectures. Table 8.2 sums up reverse engineering approaches for behaviour

models. In the tables, closely related approaches are captured in a single line. The

following sections detail on these and further related approaches.

Approaches Comp.1 Mod.2 Man.3 Und.4 Sem.5 Comments

Koschke

[Kos02,

Kos00]

Component = Module

Keller/Sartipi

[KSRP99,

Sar03]

() “design components”:

patterns, idioms, pa-

ckages of structural

model

Mitchell

[MM06]

() hill climbing and si-

mulated annealing to

modularize; cohesion

and coupling

Favre

[Fav04,

FDE+01]

() do not allow composi-

tion of components

Praditwong

[PHY10]

modules; genetic al-

gorithm clustering

Schmerl/Yan

[SAG+06,

YGS+04]

deviation of intended

and de-facto architec-

ture

Anquetil

[AL99a]

Naming-based, SLAQ

Lundberg

[LL03]

Graph dominance

analysis

Ivkovic

[IG02]

Interactive

Tools [bau,

helc, helb,

hela, lat]

() Architecture confor-

mance, Metrics

Roeller

[RLvV06]

() Design decisions

Continued on next page

284

8.1. Overview

Approaches Comp.1 Mod.2 Man.3 Und.4 Sem.5 Comments

Müller

[MOTU93]

() High-level abstrac-

tions

Strein

[SLLL07]

Source code abstrac-

tions

Table 8.1.: Related Work for Reverse Engineering of Static Architectures

Legend for Table 8.1 headings:

1. Components according to Szyperski (cf. Section 2.9)

2. Low-level component, module, class: ; pure clusters which are for example

sets of operations without further structural details: ()

3. Reverse engineering is mostly a manual task

4. Main aim: Programme understanding

5. Target model possesses execution semantics

Approach Dyn.1 Sta.2 Comp.3 Regr.4 Par.5 Perf.6 Comments

Corbett

[CDH+00]

Finite State Ma-

chines

Hrischuk

[HMWR99]

() Load estima-

tions

Brand

[BLL06]

UML sequence

diagrams

Israr

[IWF07]

() “effective”

architectures

Zheng

[ZWL08]

() Kalman filter

Parsons

[PMT+08,

PM08]

() Antipatterns

Ross

[Ros06,

Ros90]

() () () Partial parame-

terisation

Continued on next page

285

Chapter 8. Related Work

Approach Dyn.1 Sta.2 Comp.3 Regr.4 Par.5 Perf.6 Comments

Ernst

[EPG+07,

ECGN01]

() Invariant detec-

tion, Daikon

Nimmer

[NE02]

() Test cases eva-

luation

Woodside

[WHSB01,

WVCB01]

() Resource func-

tions

Courtois

[CW00]

Regression

splines

Dufour

[DDHV03]

() Compiler opti-

misation

Canfora

[CDPEV05]

() Web service

composition

Winkler

[WAW04a,

WAW04b]

Multi-

dimensional

dependen-

cies, genetic

programming

Support

Vector

Machines

[CST00]

Polynomials

Statistical

analysis

[WF05]

domain-

independent

Table 8.2.: Related Work for Reverse Engineering of Behaviour Models

Legend for Table 8.2 headings:

1. Dynamic analysis; full analysis: ; simplified dynamic analysis: ()

2. Static analysis; full analysis: ; simplified static analysis: ()

3. Any component support: ; architecture support: ()

4. Regression capabilities

286

8.1. Overview

5. Parameterisation; if fully parameterised over all contexts: ; if partially para-

meterised: ()

6. Performance properties addressed

8.1.2. Classification of this Thesis

This thesis is classified according to the work of Pollet et al. [PDP+07, DP09] and

Tonella et al. [TTBS07] to ease the identification of research fields, this thesis contri-

butes to. Furthermore, this classification shall help to understand how this thesis

relates to related work, how much approaches exist in the research field, and what

typical research topics are.

Pollet et al. [PDP+07, DP09] survey reconstruction approaches for software archi-

tectures and organise them in a taxonomy. Criteria of their classification include the

degree of automation, input data of the analyses (e.g. source code, dynamic analysis,

or human feedback), output data (i.e. visualisation support, architecture model, ana-

lysis capabilties, and architecture conformance), and the reconstruction process (e.g.

top-down or bottom-up). In their survey, Pollet et al. criticise the misuse of the com-

ponent term (often set equal to a paket or file) and the small number of approaches

for high-level architecture abstractions.

In the taxonomy of Pollet et al., SoMox would be classified as a “bottom-up” ap-

proach while Beagle is a “hybrid” approach which employs the input of SoMoX to

top-down identify relevant control flow statements at the component-level, create the

instrumentation and then refined the model bottom-up. Concerning the inputs, So-

MoX uses (according to the classification) “source code” and “physical organisation”

input. Beagle processes “source code” and “dynamic information”. Both, SoMoX

and Beagle are part of the category “quasi-automatic” which subsumes quasi and

fully automatic approaches. The output of SoMoX and Beagle would be classified

as “architecture visualization”, “architecture description”, and “analysis” due to the

built-in model visualisation, the architecture model (PCM), and the analyses (perfor-

mance prediction) which can be executed on the result model.

Tonella et al. [TTBS07] surveys existing reverse engineering approaches from the

perspective of empirical studies on them. The criteria in the survey include the type

of study performed (e.g. experience reports, case studies, or experiments) and the

objects of study (e.g. architecture recovery, behaviour recovery, design recovery,

clone detection). The survey includes paper of four selected leading conferences

from the field of reverse engineering and four selected journals. Of the 260 papers,

only 26.5% have case studies (as this thesis has). A total of 31,2% of the papers

tackled at least one of the research fields from this thesis.

In Table 8.1, all columns except the one for manual effort would need to be ticked

for SoMoX. Beagle would receive ticks in all columns of Table 8.2. None of the

287

Chapter 8. Related Work

presented related approaches can be classified in the same way like SoMoX and

Beagle.

8.2. Related Work for Static Architecture Reverse
Engineering

The overview paper by O’Brien et al. [OSV02] surveys a large number of software

reconstruction approaches and evaluates them with respect to a number of criteria

which are aligned with views and practice need scenarios. The survey presents se-

lected tools from different reconstruction disciplines (e.g. manual reconstruction,

query-based approaches, and data mining). O’Brien et al. extend the definition of

views by Clements et al. [CBB+03] which helps in applying the definition in practi-

cal scenarios.

Canfora and Di Penta [CHDP07] provide another survey on reverse engineering

approaches and identify open research directions. In their survey, they emphasize the

need for combining static and dynamic analysis approaches – a research field which

is addressed by this thesis.

Cornelissen et al. [CZvD+09] provide a recent overview on research in the field of

program understanding by means of dynamic analysis. Besides a review on existing

research fields for program understanding, the authors performed a representative

literature study on 176 selected research papers presented in the top journals and

conferences for software engineering and reverse engineering. The findings from

the literature study identify only 13 articles which deal with design and architecture

through dynamic analysis – which gives hints on the portion of approaches which

address design and architecture. In should be mentioned that the survey does not

explicitly list approaches for component-based software architectures.

Kosche [Kos05] (publication in German) contributes an excessive and excellent

literature overview on research approaches for the reconstruction of software archi-

tectures.

8.2.1. Static Analysis

Component recovery with the aim of identifying components for programme unders-

tanding and evolution is introduced by Koschke [Kos02, Kos00]. In his approach, he

distinguishes logical (expressed in explicit artefacts like files and packages) and phy-

sical components (related elements with a common purpose), and proposes means

for automatically and semi-automatically recovering them. The definition of these

components implies less semantics than the one used in this thesis. Futhermore, no

other architecture elements like interfaces and connectors are being reverse enginee-

ring. The iterative reverse engineering approach is metric-based, uses, among others,

288

8.2. Related Work for Static Architecture Reverse Engineering

resemblances to identify components, and integrates third-party approaches. Of the

presented techniques for combining various reverse engineering inputs, the “voting

approach” is most comparable to the one presented in this thesis. It also employs

multiple indicators for the presence of components. The evaluation was comparable

to the evaluation of the static architecture in this thesis. In both approaches, the

quality of the reverse engineered components is judged by precision and recall when

comparing with a reference decomposition. The approach could reach a recall for the

reconstruction of about 40%. In controlled experiment, the quality of semi-automatic

and manual reverse engineering approaches were compared and the approach imple-

ments an automatic metric calibration which are not present in this thesis.

Anquetil and Lethbridge [AL99a] aim at recovering software architectures from

the names of source files. Based on the word analyses on common substrings in

file names, deriving words from method names, and the generation of abbreviations

from candidate words, a cluster analysis recovers groups of similarly named files.

The approach purely relies on file names without respecting any further structure and

is not capable of identifying hierarchical structures. The file name analysis of the

approach is partially reflected in name resemblance, package and directory mapping

of the SoMoX approach. For example, the method name identification is not part of

SoMoX. Instead, SoMoX is able to respect the hierarchies expressed in names. The

substring identification is partially present in the SLAQ metric.

A semi-automated iterative and interactive architecture reconstruction approach is

contributed by Lundberg and Löwe [LL03]. The approach performs a dominance

analysis on the base of class reachability graphs. The graph itself is created from

statically analysed “create” and “uses” relations among classes. Components posses

no interfaces in the approach but can be hierarchical components. The approach

does not claim to exactly identify components, but help identifying “architectural

entities”. The authors propose the combination with further component identification

methods since the dominance analysis requires “create”/“uses” relations to result in

classes which dominate each other in the graph structure. SoMoX creates a richer

architecture model comprising more architecture elements. Architectures which are

created by SoMoX do not only rely on create and uses relation among classes but

incorporates much more information sources.

Ivkovic and Godfrey [IG02] investigate the reverse engineering of software archi-

tectures from dynamically linked CORBA software. They propose a hybrid recovery

approach to cope with a stated lack of support of static analysis tools to deal with

dynamically linked software. The approach re-uses interactive code navigation and

static analysis approaches. Ultimately, the user is guided in a proposed process to

reverse engineer software architectures. SoMoX, opposed to this approach, can run

fully automated but also lacks implemented support for dynamic linking.

Various industrial software (Bauhaus, Sotograph, SotoArc, SonarJ, Lattix, [bau,

helc, helb, hela, lat]) is available which proposes the reverse engineering of software

289

Chapter 8. Related Work

architectures. This software focusses on the calculation of software metric, architec-

ture conformance checks, interactive exploration of software systems and queries on

the software architecture. Furthermore, these approaches support reverse enginee-

ring capabilities for various views, the class-level, and modules. Although these ap-

proaches partially claim to reverse engineer also components and software architec-

ture, the components are not identical with the components identified in Section 2.9.

Specifically, these components do not possess all architecture elements which are

required for the reverse engineering approach presented in this thesis, i.e. explicit

interfaces and explicit context dependencies. The software architecture of these ap-

proaches is not component-based and does not featuring connectors and composite

structures which allow for execution semantics of embedded components.

Stormer [Sto07] addresses the support of general quality attributes at the archi-

tecture level. In the approach, stakeholders identify what-if scenarios for possible

architecture changes. A general software model for software quality (which can be

reconstructed from existing software system) is then proposed to take over the ana-

lysis of quality attributes. The approach is not automated or tool supported. The

reconstruction of architecture is only briefly addressed.

Anquetil et al. [ARA+09] reverse engineer architectural elements from Java source

code. In their work, the authors concentrate on the recovery of components, the

communication structure among components, and provided and required services.

A compact set of five rules recovers architecture elements. They distinguish Java

classes and interfaces into components and data types. All types which are not used

in interfaces or inherit from types used in Java interfaces are considered as compo-

nents. Composite components accumulate all classes defined in fields of the initial

components. The communication structure among classes is derived from method

calls among the components. Architecture elements which are identified by the ap-

proach are comparable to those of the SoMoX approach. The developed approaches

targets programme understanding opposed to SoMoX which also includes perfor-

mance predictions.

Roeller et al. [RLvV06] propose the recovery of architectural assumptions and de-

sign decisions from existing software systems. The approach is a manual approach

which relies for example on various interviews, source code analysis, analysis of

version control systems, and documentation. The approach then roughly guides the

recovery of architectural assumptions. SoMoX does not deal with architectural as-

sumptions and could be complemented by such an approach.

8.2.2. Pattern-based Architecture Recognition

Keller et al. [KSRP99] and Sartipi [Sar03] aim at identifying architecture structures

using match patterns. While Keller et al. aim at “Design Components”, Sartipi iden-

tifies graph patterns. Neither Keller et al. nor Sartipi identify components in the

290

8.2. Related Work for Static Architecture Reverse Engineering

sense of Szyperski. “Design Components” are the application of, for example, a

design pattern, while Sartipi supports multiple views where a query on a graph struc-

ture (which represents an attributed software model) leads to entities of a view on

the software architecture. The detection strategies for components, interfaces etc. of

SoMoX can also be considered as patterns. In the case of SoMoX, the patterns are

fuzzy patterns which, opposed to [KSRP99, Sar03], do not immediately result in the

creation of architecture elements.

8.2.3. Code analysis

Favre [Fav04] proposes an architecture reconstruction approach for software archi-

tectures described in meta-models. The paper focusses on a broad discussion of the

term “software architecture” and its representation as a meta-model. In this context,

foundations of model driven techniques and multiple views of a single software archi-

tecture are discussed. In earlier work, Favre et al. [FDE+01] presented an own meta-

model (realised in UML and OCL) to formalise their notion of a component. This

notion is influenced by the ideas of COM, Corba, and Java but does, for example, not

support composite structures. Their architecture model provides constraint checking

of the validity of a software architecture. Overall, the reverse engineering aspects

remain vague.

Müller et al. [MOTU93] present a reverse engineering approach for the identifi-

cation of subsystem structures – thus emphasizing high-level abstractions. The ap-

proach supports composite structures but no components in the sense of those utili-

sed and required for this thesis. For Müller et al., components are aggreations of va-

riables, procedures, modules, and subsystem. The so-called Rigi tool supports the re-

verse engineering process. Among others, also name-based component-identification

techniques of components which well-encapsulation data and which are utilised by

common clients are used.

Strein et al. [SLLL07] propose an own meta-model to language independently re-

present and analyse software system source code. The meta-model is comparable to

the GAST model, and, in the case of Java, is based on Recoder [Rec] which is also

used by SISSy [SSM06]. Due to a formalisation of their meta-model, they propose it

as an exchange format and describe mappings to and from their meta-model. Finally,

the paper discusses the suitability of their meta-model for program analysis. In their

work, they address the handling of large meta-models – a topic which implicitly had

also to be tackled for SoMoX and Beagle in order to support large-scale software sys-

tems (nevertheless the optimisations of SoMoX and Beagle have not been discussed

in detail in this thesis). The approach by Strein et al. does not address the software

architecture level but remains on the level of object-oriented analysis.

291

Chapter 8. Related Work

8.2.4. Dynamic Analysis

Schmerl et al [SAG+06, YGS+04] focus on the reconstruction of architectures from

running system. They propose a process that requires a lot of manual specification

to reconstruct architectures. One of their primary aims is to find deviations between

reconstructed and specified / documented architectures of software systems. They do

not focus on the reconstruction of components. A formal definition of their analysis

model, created by defining a mapping to Petri Nets, allows exact semantics of their

model.

Huang et al. [HMY06] recover low-level architectures from running software sys-

tems. Their abstraction level are EJBs. The approach is able to reverse engineer

software systems at runtime to reflect forward engineering changes to the design mo-

del. The output of the approach are instances of an own architecture description

language (ADL).

Systä [Sys99] reverse engineers state diagramms for Java systems based on run-

time trace information. The paper contributes a case study which analyses the Fu-

jaba [Pad, NNZ00] software system. The architecture-level is not tackled in the pa-

per.

Aishold et al. [ABF04] discuss dynamic coupling measures for object-oriented

software systems and raise awareness for the increasing popularity of dynamic bin-

ding. They validated their formally proposed metrics in an empirical case study

and by showing statistical significance and contribute a meta-model for measurement

data. Their results show that coupling based on dynamic analysis can significantly

improve the prediction of change proneness. SoMoX uses static coupling measures

to limit for example the impact of name resemblance of classes. Extending SoMoX

by dynamic coupling measures could further improve the reverse engineering quality.

8.2.5. Static and Dynamic Analysis

Ernst [Ern03] discusses the advantages and disadvantages of combining static and

dynamic analysis. The cited synergies which arise from combining static and dy-

namic analysis lay the foundation for keeping SoMoX open for static and dynamic

metrics and for introducing Beagle as an approach which combines static, dynamic,

and statistical analysis.

Riva and Rodriguez [RR02] combine static and dynamic analysis for the purpose

of architecture reconstruction. They propose a top-down iterative approach which

reverse engineers architectures described as directed graphs and message sequence

charts. Dynamic and static analysis limit views in the approach. Architecture com-

ponents can possess explicit interfaces and support asynchronous communication.

Opposed to SoMoX and Beagle, the approach is only partially automated and inte-

grated. Data from static and dynamic analysis has to be (manually) translated into

292

8.2. Related Work for Static Architecture Reverse Engineering

Prolog. The architecture reconstruction is only partially automated and requires user

interaction with Prolog. The communication is limited to asynchronous communica-

tion.

Vasconcelos and Werner [AC04] combine static analysis for UML class diagrams

with dynamic analysis on a per-use-case base to recognise interaction patterns from

execution traces. To recover architectural elements, they are associated to the inter-

action patterns. Source code entities are in the approach clustered according to their

use on the per-use-case base. If a single elements is predominantly used in a certain

use case, a corresponding architecture elements is associated with it. The approach

requires use cases to be available for the reverse engineered software. Compared

to SoMoX, components in the recovered architecture are “common entities of use

cases”, opposed to “structurally indicated components” of SoMoX.

8.2.6. Code analysis

Plskalns et al. [PWA05] investigate the relation between code quality and cohesion

and coupling and in this context critically reflect the use of pure static analysis for

modern object-oriented code. They state lack of relations between cohesion, coupling

and code quality and derive dynamic code metrics from that. Overall, they focus on

maintainability.

8.2.7. Clustering

Anquetil and Lethbridge [AL99b] discuss the applicability of clustering as a software

remodularisation approach. They present a comparative study on different clustering

approaches (e.g. hill climbing and hierarchical clustering) and discuss similarity

measures for software clusters. Among others, they argue for a differentiation of

input data and support of informal inputs like source code comments to increase

the remodularisation precision. Koschke [KE00] proposes a whole “framework” for

conducting experiments on clustering and discusses a number of evaluation tech-

niques for software clusters. Mitchell and Macoridis [MM01b] discuss the evaluation

of software clustering results if reference decompositions are not available.

Maqbool and Babri [MB07] compare a total of six hierarchical software clustering

approaches for the recovery of software architectures. No approach is covered which

uses a precise component term. Instead, the approaches concentrate on the module

viewtype [CBB+03].

Mitchell and Mancoridis [MM06] present another approach for automated itera-

tive software modularisation via clustering. The base for modularisation is a directed

graph which carries information on inheritance among classes, and the number of

calls between. The kind of calls are not distinguished. Clustering is mapped to

a graph partitioning problem. Detection heuristics improve the modularisation re-

293

Chapter 8. Related Work

sults. Components are not supported. The so-called “Bunch” tool implements the

approach. A hill climbing and a genetic algorithm implementation of the clustering

algorithm are implemented in it.

Another software module clustering approach related to SoMoX is presented by

Praditwong et al. [PHY10]. In it, potential modules are suggested based on cohesion

and coupling. The clustering appraoch is able to optimise for multiple objectives (e.g.

maximise intra and inter cluster edges or additionally aiming at a certain number of

clusters). The approach was validated for 17 software systems.

All of the above approaches do not deal with component-based software architec-

tures.

The component creation of SoMoX uses component merge and composition based

on the graph structure introduced in Section 4.5. It is partially comparable to a hie-

rarchical agglomerative graph-based clustering approach (cf. [WF05, JD88, Har75]).

The weights associated with every vertex here serve as distance measure.

8.2.8. Programme Comprehension

Andrews et al. [AGC02] discuss the comprehension of software systems from a cog-

nition point of view and highlight the order in which software systems can be unders-

tood. Among others, Andrews et al. illustrate those things which need to be unders-

tood in order to re-use existing software components. According to them, component

re-use starts bottom-up and relies on specifications of what a component does. Star-

ting from that component, the impact of reusing a component to the overall system

can be analysed – for performance, the impact prediction can be automated when

using reverse engineered models from SoMoX and Beagle. Furthermore, according

to Andrews et al., programmers start building an abstract model of a component’s

control flow. SoMoX and Beagle thus potentially help in understanding a component

via the RDSEFF which represents a control flow abstraction.

8.3. Related Work for Reverse Engineering
Behavioural Models

8.3.1. Static Analysis

Corbett et al. [CDH+00] extract finite state machines from Java source code using

static analysis techniques like slicing, data flow, control flow, and dependency analy-

sis in a multi-step transformation approach. Their approach named Bandera focuses

on language verification and model checking and not on component behaviour mo-

dels. Nevertheless, research questions addressed in the approach are relevant for this

thesis. For example, Corbett et al. automatically extract the models from source code

294

8.3. Related Work for Reverse Engineering Behavioural Models

and are able to re-translate analysis results into the original source code – the same

requirements are fulfiled by Beagle in combination with the trace models. The au-

thors emphasize the relevance of abstraction for the creation of models. Abstraction

has also extensively been addressed in this thesis.

Poch and Plasil [PP09] aim at formal verification of behavioural specifications

(“behaviour protocols”). These behaviour protocols are reverse engineered in the

approach from object-oriented code. Comparable to Beagle, the approach requires

component boundaries as input. Opposed to Beagle, the approach targets the reverse

engineering of component protocols which state the functional behaviour of compo-

nents. Behaviour protocols are at the level of component interfaces. Beagle targets

performance models which capture the internals of single component services.

8.3.2. Dynamic Analysis

In the often-cited paper of Briand et al. [BLL06], UML sequence diagrams are re-

verse engineered for Java software systems. The approach traces the execution of

a software system with a self-developed instrumentation and logging infrastructure

based on aspect orientation. The resulting meta-modelled trace-model is specific to

the approach and the base for the creation of the sequence diagrams. Comparable to

Beagle, the method-call logging level provided by pure aspect orientation (AspectJ)

is not sufficient for the approach. The approach does not aim at model parameterisa-

tion but also provides support for distributed software systems.

Reverse engineering of performance models using traces is performed by Hri-

schuk et al. [HMWR99] in the scope of “Trace-Based Load Characterisation (TLC)”.

TLC extracts load estimations from trace information gained by executing a proto-

type implementation or executable design models and it supports distributed systems

with synchronous and asynchronous interaction. The approach requires to add trace

IDs for tracking calls through an architecture, but Israr states [IWF07, p. 475] that

“[these] traces are difficult to obtain in practice”. Traces also require costly graph

transformation before use, but allow TLC to deal with multi-threading and multiple

instances of an object. However, the target model of TLC is not component-based,

and this restriction prevents TLC from supporting changing assembly or deployment
contexts or changing execution platforms and they target Layered Queuing Network

(LQN) models for performance analysis, where each usage scenarios (previously

identified by a performance expert) leads to a LQN submodel. TLC has a logging

mechanism comparable to the one of Beagle.

Israr et al. [IWF07] use general trace data as input to determine “effective” ar-

chitectures (which might also constitute of components) of a software system. No

component-internal parallelism is supported by their tracing data evaluation. Sup-

ported interaction “types” include asynchronous, blocking synchronous, forwarding

communication which is identified via pattern matching. In their paper, they discuss

295

Chapter 8. Related Work

the recognition of correct traces for events/communication from logging stamps in

general. Finally, they target LQNs as performance model. Intermediate models (build

up by an algorithm presented in the paper) are interaction trees. Here, nodes are la-

beled by “component-name.ExecutionOccurrence-numer”, arcs by time and message

that was received. The approach supports no data flow and has no explicit notion for

control flow (it assumes a 1:1 code relation), but relates calls through time stamps.

The model can be build on-the-fly from an input stream of traces.

Zheng [ZWL08] focusses on runtime monitoring and online prediction of perfor-

mance. The reverse engineered models are estimations produced by a Kalman filter.

Thereby, they are not required to directly monitor performance values of interest but

can estimate them based on known (and easily available) metrics such as response

time and resource utilisation.

The models which Beagle reverse engineers also influence the component inter-

action. Dynamic component interaction approaches have before been surveyed by

Parsons et al. [PMT+08, PM08] for Java-based systems. Parsons et al. yet focus

on a component-external view of interactions and do not investigate the impact on

component-internal behaviour. In [PM08], they identify performance antipatterns

for Java EE software systems based on “user request paths” through the architecture.

These paths are not necessarily related to control flow structures in the code. These

antipatterns can include multi user interaction patterns. Neither SoMoX, Beagle nor

the PCM are capable of identifying such antipatterns; performance predictions based

on reverse engineered models can only help software architects to manually identify

antipatterns.

8.3.3. Instrumentation and Dynamic Analysis Foundations

Mueller and Whalley [MW94] discuss the minimisation of instrumentation points for

dynamic analysis. The minimised set of instrumentation points in their approach is

optimised to still ensure unique traces. In their approach, they use traces to perform

static cache predictions at design time. The Beagle approach also minimises the

number of instrumentation points in such a way that component behaviour can still

be uniquely captured. According to the component boundaries, a minimal set of

instrumentation points is derived for the component behaviour.

Reiss and Renieris [RR00] and De Pauw et al. [DPJM+02] discuss the generation

of Java trace data with a focus on programme visualisation and programme unders-

tanding. Reiss and Renieris combine static analysis with trace analysis and offline

processing of data like Beagle. De Pauw et al. analyse thread interactions, deadlocks,

garbage collection, and memory leaks – properties which affect the performance of

software systems but which are too fine-grained to be dealt with by Beagle. The

approaches emphasise the class-level and do not relate to the architecture-level.

296

8.3. Related Work for Reverse Engineering Behavioural Models

Denker et al. [DGL06] contribute to dynamic analysis itself and address the com-

mon re-implementation of dynamic measurements frameworks with only slight va-

riations. They introduce an intermediate level framework which allows for capturing

measurement data at runtime to push the abstraction level of dynamic analysis ap-

proaches to a machine-independent level to overcome fine-grained technical details

of instrumentation and data recording. The framework can be configured and adapted

to a selection of measurements point and measurement criteria at runtime. Among

others, the paper discusses method for dynamic instrumentation. The Beagle ap-

proach could profit from a machine-independent data gathering approach to easily

support other programming languages during dynamic analysis. The instrumentation

approach of Beagle does not use the proposes framework as the framework is not

validated and had not been extendable at the time of development of Beagle.

Schmid et al. [STTK07] present “ARM”, a standard instrumentation API for the

instrumentation of application servers. Their logging approach is coarse-grained at

the level of “application server to component” and “component to component” com-

munication and aiming at capturing time stamps. Schmid et al. wrap application

server calls to intercept them. Opposed to this approach, the instrumentation and

monitoring of Beagle is much more fine grained at an intra component level and not

specific to application servers.

8.3.4. Automated Complexity Analysis

A large number of approaches from the field of (semi-) automatic complexity analysis

exists (e.g. [Weg75, HC88, NNS02, Ros90, SF96, Ros06]). Early approaches (e.g.

Wegbreit [Weg75]) go back to the 1970th. Since that time, complexity analyses has

been refined over and over again. While first starting with estimations in the O-

notations and for example of minimal, maximal, and average execution times, later

approaches (e.g. Ross [Ros06]) include control flow structures and parameters to

increase the precision. Additionally, the analysis scope was broadened from single

algorithms to generic programs.

Nevertheless, the focus of these approaches is different and thus the ways the com-

plexity analysis is tackled. The approaches mostly focus on average, minimal or

maximum execution times (e.g. [Weg75, HC88, NNS02] to support for example

the selection of appropriate algorithms. They have no architecture relation, are not

component-based approaches, and have no parameterisation over all influence factors

(cf. Section 2.6).

Ross [Ros06] and Rosendahl [Ros90], for example, introduce parameterisations.

In the case of Rosendahl, the parameterisation is limited to a single input dimension.

Ross [Ros06] can deal with multiple dimensions but focuses on worst-case execution

time. Its control flow structure is partially comparable to the RDSEFF, but has a

297

Chapter 8. Related Work

limited data flow parameterisation and no parameterisation over the assembly and

allocation context. Loop iterations need to be specified manually.

8.3.5. Invariant detection

Daikon by Ernst et al. [EPG+07, ECGN01] focusses on detection of invariants from

running programs, while our approach aims at detecting parameter propagation and

parametric dependencies of runtime behaviour. Analysis is in both approaches sup-

ported by machine learning. The machine learning in Daikon is an simple exhaustive

random generation of all possible invariants, no combination of simple invariants to

form complex ones is supported. Invariants must therefore follow a set of 75 pre-

defined templates. Daikon can only instrument at method start and end. No automa-

tion or heuristics for identifying data properties are provided. Instead, a grammar for

specifying instrumentation and monitoring exists. In Daikon load-time instrumenta-

tion is favored, but also compile-time instrumentation is featured. Invariants across

multiple method executions (e.g. state effects or multi threading behaviour) are not

supported.

Another approach (Nimmer and Ernst [NE02]), Ernst is involved in, discusses the

suitability of available test cases to perform dynamic analyses for the identification

of invariants. The author state a well applicability of test cases. Overall, Beagle,

compared to Daikon, creates much more fine-grained models which are parameteri-

sed and capable of predicting performance properties. To extend Beagle, invariants

could still serve as input to genetic programming to increase the convergence speed.

8.3.6. Differentiation from Static Analysis

Static source code analysis approaches are a well-researched area [Bin07], featuring

sophisticated techniques. The purposes of static code analysis are varying widely

and range from control flow to data flow analysis covering security aspects analysis,

execution optimisations, dead code detection, problem pattern detections, etc. Still,

for the field of data flow analysis, which is required in the context of this work,

some limitations are preserved [Ern03]. As static code analysis approaches are used

among others, the limitations must be known to explicitly deal with them: Data flow

analysis through static code analysis approaches work predominantly well, if data

flow is at a intra-procedural level and little knowledge about the heap is required for

code understanding.

8.3.7. Static Analysis Approaches

Symbolic execution / abstract interpretation (e.g. [Kin76, CC77, Cow88]) is a static

analysis technique which is perfectly applicable to reverse engineer parametric de-

298

8.4. Reconstruction of performance models

pendencies (cf. Section 5.12). It is generally capable of precisely reverse engineering

parametric dependencies from code. Yet, it suffers from general limitations of static

analysis such that is cannot handle arbitrarily complex code. Later symbolic execu-

tion approaches (e.g. [DLR06, Lee06]) try to push the boundaries of static analysis

and overcome for example problems with the analysis of loops. Symbolic execu-

tion approaches often focus on programme verification and are thus sound – which

is not the case for Beagle. Instead, Beagle is able to reverse engineer parametric

dependencies for arbitrary source code.

WALA [IBM] is a generic framework for static bytecode analysis featuring for

example a basic slicer. It has been used to implement symbolic execution for Beagle.

Lundquist and Stenström [LS99] present a timing analysis method based on sym-

bolic execution. The approach aims at real-time system and worst-case execution

time, while Beagle aims at parameterised models of business information systems.

Complementary static analysis approaches like points-to-analysis (e.g. [SH97,

LH99]) could help to partially overcome the limitations of symbolic executions and

increase the precision loss implied by dynamic bindings. Sound approaches which

account for control flow can usually handle only up to less than 100.000 LOC within

acceptable time (a few minutes). Thus, relaxed approaches which accept impreci-

sions would be more suitable to complement Beagle which itself also is not sound.

8.4. Reconstruction of performance models

Woodside et al. [WHSB01, WVCB01] use so-called “resource functions” to charac-

terise components for their performance. Repositories for this reason hold descrip-

tions of components and their resource demands together with test cases. To describe

resource demands, function fitting for parametric dependencies is applied. The ap-

proach is supported by tools for performing performance analysis. Bayarov [Bay99]

also contributes in the context of resource functions. CPU and harddisk are consi-

dered as resources. The result of the approach is a mathematical model / equation

system which is capable to predict intermediate values which have not been measu-

red. The quality of the results is manually evaluated. Overall, resource functions

primarily parameterise over the allocation context but do not create component be-

haviour models which allow for fully exchanging the usage and assembly context –

opposed to the models created by SoMox and Beagle.

Courtois et al. [CW00] use regression splines to recognize functional dependen-

cies. Their iterative and fully automated approach is able to refine measurements

(repeat measurements) to gain certain confidence levels. The approach requires no

source code analysis and can handle multiple dimensions. The output are polyno-

mial functions which approximate the behaviour of code. In the approach, it is hard

to find jump points in functions. Components are not supported and a fixed hard-

299

Chapter 8. Related Work

ware is assumed (execution time is given in ms). The monolithic approach does not

parameterise over external dependencies.

Dufour et al. [DDHV03] propose using a set of metrics to characterise the runtime

behaviour of Java programmes. In their work, they focus on applications for compi-

lier optimisation which could be optimised based on detailed performance characte-

risations or analysed for concurrency locks. Since they propose a dynamic analysis

of Java programmes, they discuss representativity requirements for input data and

abstract requirements to utilise metrics. Their approach operates on Java Bytecode

and uses the Java Virtual Machine Profiler Interface (JVMPI) to monitor applications.

Opposed to Beagle, typical performance characterisations are comparably rough, e.g.

“array-intensive programme”. Performance charactersisations are not parameterised

as the ones of Beagle are. The PCM models created by Beagle are not suitable for

detecting concurrency locks.

8.5. Machine Learning

Machine learning covers a broad field of research directions (cf. [WF05]) like support

vector machines, genetic algorithms, artificial neural networks, Bayesion networks

and many more. The following section present a narrow selection of approaches

which are related to the domains touched by this thesis. Other approaches are cover

in an overview.

Support Vector Machines (SVM) (cf. [CST00]) are typical representatives of ma-

chine learning. They are for example able to extrapolate the performance impact of

a certain parameter beyond the already measured range. Typically, SVMs result in

polynomial expressions. Those are hardly readable for humans. Furthermore, po-

lynomial expressions cannot directly express non-continuous behaviour. Parametric

dependencies can be polynomial but in general are not. Thus, SVMs (due to the result

representation) are not optimal for the approximation of parametric dependencies.

8.5.1. Genetic Algorithms and Genetic Programming

Harman contributes a number of extensive surveys and introductions [Har07,

HMZ09b, HMZ09a] for search-based software engineering – a software engineering

discipline which employs meta-heuristic techniques. These surveys also address

fields which are relevant for this thesis: reverse engineering, approximation, test data

generation, and optimisation of software designs. The articles of Harman [Har07]

and Whitley [Whi04] provide a good introduction to the field of genetic algo-

rithms and search-based software engineering. Langley and Simon [LS95] and

Goldberg [GH88] classify genetic algorithms in the field of machine learning.

300

8.5. Machine Learning

Winkler et al. [WAW04a, WAW04b] propose an approach which learns non-linear

and multi-dimensional dependencies from measurement data. The approach is ca-

pable to identify subsets of meaningful input variables from a number input variables.

The result expressions of the genetic programming approach are mathematic expres-

sions. The authors support the findings from this thesis: “any prior knowledge of

the physical system should be included in an initial model and the function library

[selection of genes]”. The approach is closely related to Beagle. Opposed to Beagle,

the initial generation is fully randomly generated and no capabilities to create abs-

tractions are implemented for mutation, crossover, or fitness function. The approach

of Winkler et al. is domain agnostic, aims at identifying general model structures

from databases, and is thus not designed for performance properties.

Canfora et al. [CDPEV05] treat the composition of web services with attached

QoS properties as an optimisation problem which is addressed with genetic algo-

rithms. The approach solves the optimisation of the NP hard problem at runtime to

be able to react to changed QoS properties and the availability of new web services.

In the paper, the authors point out the applicability of genetic algorithms to non-

linear optimisation problems. The approach could complement SoMoX and Beagle

by optimising an architecture once it is reverse engineered.

Garousi [Gar06] addresses stress testing of distributed real-time systems. The ap-

proach relates to Beagle with respect to addressing performance attributes and adap-

ting genetic algorithms (in this case to match the needs of optimised stress tests for

a distributed system). Dolado et al. [Dol01] applied standard regression and genetic

programming to predict the costs of software projects. They could not find satisfac-

tory results, from the predictive point of view. They found no significant deviations

between genetic programming and the linear model in the software cost functions.

Wegener and Grochtmann [WG98] aim at verifying timing constraints of embed-

ded real-time systems. For the creation of tests, they use genetic algorithms which, in

a comparison in multiple case studies, always performed better than random testing.

As the authors point out, the inclusion of expert knowledge in the initial genera-

tion improves the genetic algorithm results. This again supports the insights gained

for Beagle, which show that domain knowledge can largely improve meta-heuristic

search approaches.

Section 8.2.7 discusses the application of genetic algorithms for software cluste-

ring.

8.5.2. Statistical Approaches

Large amounts of statistical approaches and theory of statistical analysis exist (e.g.

[WF05, Cra07, Lin93, LC98, BL97]). Regression approaches are generally compa-

rable to the genetic programming part of Beagle: They derive and retrieve functions

on data from databases. Nevertheless, they have fully different aims compared to

301

Chapter 8. Related Work

Beagle. They are intended to be domain-independent. Thus they are not intended to

create performance abstractions and are not supporting the inclusion and combination

of static, dynamic, and statistical knowledge of other approaches.

8.6. Performance Predictions

The prediction of performance properties of software system is not a contribution of

this thesis. Thus, the following paragraph just very briefly summarises the most im-

portant performance prediction approaches which relate to the Palladio Component

Model [BKR09]. Woodside et at. [WFP07a] and Koziolek [Koz10] provide a recent

and more detailed survey on related work from this research field.

Bondarev et al. [BCdK07] and Fredriksson et al. [FNNS06] present a perfor-

mance model for component-based embedded systems, SOFA and FRACTAL

[BHP06, Obj06d] are software component models with a focus on component

interaction verification, Menasce et al. and Kounev [MG00, Kou06] are re-

presentatives for approaches with a strong formal foundation, Wu et al. and

Eskenazi [WMW03, EFH04] emphasise component composition in the context of

performance prediction, and Cortellessa et al. [CF07] highlight the feedback of

performance prediction results to the software architecture.

The advantages of the selected Palladio Component Model (PCM) [BKR09] are its

parameterisation capabilities, the use of general distribution function, the provision

for detailed component properties, and context independent component definitions.

Stable tool support, editors, and performance prediction methods make the PCM first

choice for this thesis.

8.7. Conclusion

A large number of reverse engineering approaches has been proposed in literature

which address static architectures as well as behaviour models. Common for all re-

verse engineering approaches is the use of a weak component model with a loose

component definition and no execution semantics of the targeted result model. Typi-

cally, the reverse engineered components are not suitable for recomposition, possess

no explicit required interfaces and often do no support composite structures.

No reverse engineering approach for components according to the definition of

Szyperski (see Section 2.9) exists. No approach reverse engineers fully parameteri-

sed component models (cf. Section 2.6). Furthermore, no approach for parameterised

performance models of components exists. SoMoX and Beagle represent the first ap-

proach which is fully parameterised over all influence factor at all and represents the

first integrated reverse engineering approach for static architectures and behaviour.

302

9. Conclusion

This section briefly summarises the results and insights gained in this thesis. Lessons

learned (LL-) are highlighted throughout this section. The discussion and lessons

learned gained in the context of the validation in Section 7.13 complement this sec-

tion. Section 9.12 presents a final short summary of this thesis.

9.1. Requirements Fulfilment

In the Sections 4.4 and 5.4 requirements for the reverse engineering of static software

architectures and behaviour models have been stated which should be fulfiled by the

developed reverse engineering approach.

• R-Detection Mechanisms “Detection mechanisms for components, composite

components, provided and required interfaces, and connectors must be provi-

ded.”

Result: All elements of a static component-based architecture can be identi-

fied by the SoMoX approach.

LL-Detection: Suitable heuristics and mechanisms for the detection of

component-based architectures have been identified. The lessons learned

include knowledge on the selection of metrics and their systematic aggre-

gation in strategies, insights for alternative detection strategies, and means

for ensuring integrity of result models. Using only metrics and a weighted

sum neglects structural properties of component-based software systems.

Using detection strategies which respect structural properties can significantly

improve the quality of detected archtitectures.

• R-Component Abstractions “Component abstractions higher than classes must

be reverse engineered. Besides, multiple levels of composite component struc-

tures must be supported.”

Result: The reverse engineered components comprise at least one class. The

validation shows that multiple abstraction levels of components realised by

multiple classes are reverse engineered.

LL-Component Abstraction: An iterative reverse engineering approach iden-

tifies multiple abstraction levels of components. The lessons learned include

303

Chapter 9. Conclusion

knowledge on how to construct an iterative and interactive reverse engineering

approach which is suitable for a fully automated execution and the systema-

tic creation of composition and merge operators, which create composite and

basic components from classes. The developed approach uses adaptive thre-

sholds to steer the reverse engineering abstraction which showed to be well-

suited to a) gain higher abstraction levels than with a single threshold, and b)

guide the abstraction steepness. These means allow the creation of abstractions

which match the expectations induced by a reference decomposition.

• R-Completeness “The completeness requirements subsume i) model integrity

to have a base for model analyses, ii) the requirement of a complete static

architecture which does not miss elements like connectors etc., and iii) the

requirements to reverse engineer components which state explicit context de-

pendencies through required interfaces.”

Result: The reverse engineered models are complete with respect to execution

semantics. The models can be simulated using the Palladio SimuCom simu-

lation without adaptations. Thus, they possess full model integrity (no model

constraints are harmed), no calls of a required service end in undefined places

(i.e. no connector for required services is missing), and all context dependen-

cies are explicit (external calls delegate to required roles, resource demands

utilise abstract resources defined in the resource environment, and the usage

profile is an explicit parameter covered by the parametric dependencies).

LL-Completeness: The lessons learned comprise means for reverse enginee-

ring all elements of a component-based software architecture. One important

aspect is to provide fallback mechanisms (e.g. interface recognition, connector

creation) which ensure the creation of all architecture elements even if infor-

mation sources are incomplete (i.e. due to limitations of static analysis). Se-

parate processing steps must ensure the creation of all architecture elements to

ensure execution semantics. Genetic programming is able to identify valid pa-

rametric dependencies for few observed parameters and even if no parameters

are monitored, by construction, ensures the creation of parametric dependen-

cies. Suitable mechanisms (e.g. genetic programming adaptation, control flow

construction, explicit assembly, and resource demands) are identified for every

context the models are parameterised over.

• R-Extensibility “The developed approach must not be limited to a single

object-oriented language or an implementation technology (e.g. EJB,

Spring).”

Result: Due to the use of the language independent GAST source code pre-

sentation, the approach is generally applicable to arbitrary object-oriented lan-

guages. The approach is held extensible as discussed in Section 4.10 and 9.5.

304

9.1. Requirements Fulfilment

LL-Extensibility: The application of SoMoX for Java and C/C++ software sys-

tems shows the extension capabilities. The lessons learned include that having

a language-independent software source code representation (GAST) and a

technology-independent core model (SAMM) largely increases the flexibility

of a reverse engineering approach.

• R-Scalability “The approach must be scalable for up to 250,000 lines of code.”

Result: The scalability analysis in Section 7.12 showed the applicability of

the approach to large-scale software systems within reasonable time (overall

including SISSy < 4.5 hours). No critical bottlenecks for systems of the men-

tioned size became visible. For smaller systems (50,000 lines of code), the

reverse engineering can even be nearly interactive. For example, the software

architecture (e.g. CoCoME) is typically reverse engineered within a few se-

conds (< 3 seconds).

LL-Scalability: The lessons learned show that designing a reverse engineering

approach with scalability and performance in mind from the very beginning

is crucial. While the first reverse engineering approach “ArchiRec” relied on

large amounts of database requests, its successor implementation of SoMoX is

running on in-memory data structures only, which is suitable to dramatically

increase the performance. Parallelisation, few synchronisation points, and dis-

tinct units of processing are important to ensure a scalable reverse engineering

approach. Using state-of-the-art model-driven frameworks (e.g. Eclipse EMF)

nevertheless requires thoughtful performance optimisation and additional ove-

rhead to figure out how to deal with large-scale models and performance.

• R-Automation “The approach should be largely automated to make large sys-

tem analyseable with little effort. Manual interaction should not be needed

during a reverse engineering run.”

Result: The reverse engineering approach is able to fully automatically re-

verse engineer the static software architecture and the behaviour of individual

software services without user interaction, when assuming to have a test bed

available and if heuristics for the identification of parameter characterisations

are sufficient. The user has to provide a configuration for the SoMoX weights

and strategies (or rely on defaults) and needs to manually initiate the source

code instrumentation facilities and start the execution of the system under test

in the test bed. The remainder is fully automatable. In the current implementa-

tion, the results of the Beagle approach (parametric dependencies) need to be

manually annotated to the reverse engineered RDSEFF control flow structure.

This is not a conceptual limitation but only limited in the current implementa-

tion.

305

Chapter 9. Conclusion

Nevertheless, if needed, the user can interact in the reverse engineering ap-

proach and change settings or models. Each processing step results in valid

models, which can be edited on demand.

LL-Automation: The presence of defaults and default detection heuristics for

all architecture elements of a component-based software architecture proved

to be beneficial for the automation. New users of the approach have little ef-

fort for creating reverse engineering results, can fully rely on the automation,

and then, if needed, partially change for example the identified parameter cha-

racterisations of component interfaces to enable Beagle to capture special data

properties which cannot be foreseen by the heuristics.

The presence of a valid reverse engineered model after each iteration granted

the option to include fine-grained interactive feedback for the reverse enginee-

ring process. Thus, the approach by design is able to smoothly shift between

full automation and interactive reverse engineering, which makes the approach

flexible with respect to the desired degree of automation.

• R-Integration The approach should be able to combine the specific advantages

of static, dynamic and statistical analysis and hence overcome the limitations

of each single approach.

Result: As presented in Section 9.5, Beagle successfully integrates static, dy-

namic, and statistical analysis. Beagle is able to outperform the results of each

single approach. SoMoX, in the current implementation, supports only static

analysis but is conceptually prepared for dynamic analysis (see Section 4.10).

LL-Integration: Improving the quality of the initial generation and including

as much domain knowledge as possible into the reverse engineering approach

proved to be beneficial. The developed Beagle approach allows a seamless

integration of multiple inputs which each capture domain knowledge in their

results. The developed overall reverse engineering approach can then use the

specific advantage of multiple approaches. The convergence speed and rea-

chable quality of the reverse engineering results are positively impacted by the

integration.

• R-Context The output model must be parameterised over all three contexts

introduced in Section 2.8.

Result: The reverse engineered instance of the PCM is successfully parame-

terised over all three contexts.

LL-Context: Designing the reverse engineering approach to support all context

parameterisations gave large flexibility to the reverse engineering approach

since limiting the parameterisation (i.e. using constants) is no problem for

306

9.1. Requirements Fulfilment

the approach while the opposite would have been a lasting limitation for the

reverse engineering approach.

• R-Resource Demands The approach must be able to integrate platform-

independent resource demands.

Result: Bytecode-based resource demands and resource demands based on

abstract resource types like “CPU” and “HDD” are supported as Section 5.16

illustrates.

LL-Resource Demands: Keeping the Beagle approach applicable to all kinds

of parametric dependencies turned out to be beneficial for the reverse enginee-

ring. Having an unique representation of all parametric dependencies inclu-

ding those for resource demands enabled the application of the same solution

to multiple search problems.

• R-Abstraction The reverse engineering approach must work on a component

abstraction level.

Result: The developed approach successfully reverse engineers component

abstractions. Both, the static architecture and the behaviour in terms of control

and data flow are – by design of the developed reverse engineering approach

– abstractions, when compared to the original source code. Various means

contribute in the abstraction: Merge and composition for components, the

control flow abstraction which matches to the component boundaries, and all

parametric dependencies which are abstractions due to the adapted genetic

programming (fitness function, mutation, and crossover).

LL-Abstraction: Reverse engineering a consistent abstraction level for the sta-

tic architecture and the behaviour was crucial for the desired execution seman-

tics of the reverse engineered models. Having an integrated reverse enginee-

ring approach for abstraction of the static architecture and behavioural models

is a “must-have” requirement for all reverse engineering approaches targeting

the analysis of quality of service properties of component-based software sys-

tems.

Furthermore, the presence of strong abstractions is an important mean to make

large software systems manageable. Overly detailed models are neither bene-

ficial for understanding nor analysing real-life software systems. Due to the

reverse engineering of multiple abstraction levels and the adjustability of the

abstraction level (e.g. thresholds and weights), a reverse engineering approach

can be much more flexibly adjusted to project needs.

307

Chapter 9. Conclusion

9.2. Benefits of integrated Architecture and
Behaviour Reverse Engineering

The developed reverse engineering approach comprising the SoMoX and Beagle ap-

proach is tightly integrated. Due to the integrated reverse engineering for static com-

ponent architecture and behaviour, the abstraction level of the static architecture and

the behaviour fit exactly. The component boundaries identified in the static architec-

ture step steer the abstraction of the behaviour control flow.

The resulting parameterised models combine the power of component-based soft-

ware engineering: The reconstructed component models can be re-composed like

components, deployed to different execution environments, and be utilised by arbi-

trary other components which communicate via the same component interface. Thus,

the reverse engineered models can provide answers to sizing, design optimisation,

extension of legacy software systems, and reuse scenarios (cf. Section 1.2).

9.3. Reverse Engineering of Component-Based
Architectures

SoMoX can only detect components which are identifyable by at least one strategy

(see Section 4.8). Generally, even systems which mainly follow other architecture

paradigms (e.g. service-based architectures or bus-driven architectures) could be de-

tected by SoMoX. The openArchitectureWare example shows that ultimately, if the

assumption of having a component-based architecture does not hold, no meaningful

architecture can be identified any more. The quality of reverse engineering results

gradually drops if less architecture assumptions hold.

The architecture reconstruction mechanism of SoMoX is intentionally designed as

a kind of “fuzzy pattern detection”: The input side of strategies represents detection

patterns which are then translated into confidence values which indicates whether to

create a component, interface, etc. from the detected structure. Due to the fuzzy

translation logic and combination of various detection strategies, SoMoX becomes

robust against violations of detection patterns. Typical violations, which can also

contradict a component-based architecture, are architecture breakthroughs like inter-

face bypassing.

Factors which negatively impact the reverse engineering quality of SoMoX are

(LL-negative impact):

• inconsistent implementation style in the system (e.g. each subsystem is orga-

nised differently in packages; GUI and data persistence are partially distinct

packages and partially mixed in the same package),

308

9.4. Reverse Engineering of Behavioural Models

• inconsistent naming (i.e. no or per-subsystem naming schema which contra-

dict each other are present), and

• the absence of interface communication.

The characteristics which negatively impact the reverse engineering results are the

opposite of the expected architecture and component properties of the ones descri-

bed in Section 4.8.8. Analogously, software systems which follow the assumed im-

plementation style can be expected to lead to better results.

9.4. Reverse Engineering of Behavioural Models

The following bullet list briefly summarises aspects which positively impact the re-

verse engineering results of Beagle. The impact factors have already been discussed

in more detail in the validation and limitations and assumptions sections (see Sec-

tions 5.20 and 7.13). LL-positive impact:

• Performance-relevant parameters characterisations should be identified in

component interfaces.

• The algorithms of components should be oblivious. State-dependencies or de-

pendencies to non-monitored parameter characterisations can negatively im-

pact the fitness of reverse engineered parametric dependencies.

• The test cases which provide the base for machine learning data should cover

the input parameter space. Behaviour which is not triggered during monito-

ring, cannot be covered in parametric dependencies.

9.5. Integration through Genetic Programming

Genetic programming, which was introduced in Sections 5.11-5.11.10 as a mean for

reverse engineering parametric dependencies, will now be discussed as a more gene-

ral integration approach of static, dynamic, and statistical analysis. It will be investi-

gated, to which extend it can serve for integration of static, dynamic, and statistical

analysis in the context of reverse engineering.

Results of any analysis (static, dynamic, and statistical) are mapped to valid genes.

A result is not represented by a single gene (except constants) to enable optimisa-

tion not only through mutation but using crossover. Any result which is mapped to

genes can then be further optimised and combined with results from other analysis

approaches. The unified problem representation as measurement results from dyna-

mic analysis and solution representation as tree structure genes enables the seamless

integration of multiple reverse engineering approaches.

309

Chapter 9. Conclusion

Create Gene Representation

Integration Through Genetic Programming

Measuring Results

Static Analysis Results

Dynamic Analysis Results

Genetic Search Learned Results

Gene Representation of Results
Initial Generation

Statistical Anaylsis Results

any number of
analysis
approaches

Unified Result
Representations

Figure 9.1.: Integration through genetic programming

Figure 9.1 provides an overview on the integration. First, results of the individual

analysis approaches (dynamic, static, and statistical) must be converted to a gene

representation. Then this unified representation is fed into genetic search. Genetic

search interprets this input as initial generation as described in Section 5.11.10. The

presented approach has neither a limitation on the upper bound of concurrently used

analysis approaches nor requires complementing analysis approaches since genetic

programming can always start from random initial generation and then optimise the

random generation.

It could be shown for the statistical approach MARS and the application of genetic

programming itself (based on dynamic analysis) that the results are better than results

of a single approach. Results are by construction never worse than the results of the

best input reverse engineering approach and in most cases can be improved by 5%

to 25% (according to the fitness function). The improvements depend on the number

of evolved generations of genetic programming and on the complexity of expression.

Since other reverse engineering approaches are not designed to fulfil the requiremetns

of the fitness function (for example specific abstraction needs are not supported by

them) the fitness function results in worse values for their results.

LL-mars: The MARS statistical approach is well-suited to complement the search

of parametric dependencies.

LL-integration improvement: The combination of multiple analysis techniques is

beneficial for the reverse engineering of parametric dependencies.

310

9.5. Integration through Genetic Programming

9.5.1. Improving Initial Generation and Inclusion of Domain
Knowledge

Improving the quality of the initial generation (derived from static and stochastic

analysis instead of being randomly generated) lead to individuals with higher fitness

in earlier generations. Overall, including domain knowledge on abstraction require-

ments, the selection of genes according to the needs of the programme code structure,

the selected chromosome structure, the adapted fitness function, and the improved

initial generation helped improving genetic programming when compared to unmo-

dified genetic programming (LL-integration). The speed of machine learning and

typical fitness values could be increased: The same fitness, when using MARS for

the initial generation, could be reached after less than 1 minute compared to about 4

minutes without an optimised initial generation (LL-convergence speed).

Due to the random nature of evolution, the improvement can only be stated for

the average case. Even “plain” genetic programming is theoretically able to result

in optimal results in very few generations. It is just less likely to reach high fitness

values in early generations.

9.5.2. Application to other reverse engineering problems

The presented integration method for multiple reverse engineering approaches is ap-

plicable to all reverse engineering problems which result in structured data. This data

must be suitable for being split up into multiple genes forming a tree structure. The

results of all reverse engineering approaches which are to be merged using genetic

programming must provide results which can be transformed into genes. Further-

more, there must be an analysis method (fitness function) for the resulting genes

which calculates a continuous numeric fitness value. Only continuous fitness values

ensure a guided search – otherwise individuals become indistinguishable for genetic

search.

To further improve genetic search, additional domain knowledge should be enco-

ded into mutation operators, crossover operations, and fitness function. The expe-

riences gained in this thesis show that adding domain knowledge (e.g. heuristics for

more optimal solutions), increase the convergence speed of genetic search and thus

result in improved results within less time LL-domain knowledge.

Examples for other reverse engineering domains which seem to be promising for

the presented integration through genetic programming are test data generation and

the creation of reliability models. Test data generation has successfully been per-

formed using genetic search techniques (survey in [McM04]) and could profit from

combining static and dynamic analysis. Reliability models are already supported by

Palladio and share the same basic formalisms for control and data flow description

311

Chapter 9. Conclusion

(RDSEFF) like the presented approach which makes them promising candidates to

transfer knowledge from the performance domain to.

9.6. Genetic Programming as Approximation
Approach

The Beagle approach is optimised for the reverse engineering of behaviour models

with parametric dependencies. Its integrated genetic programming is nevertheless

imaginable as a general multi-dimensional approximation and regression approach

for the recovery of parametric dependencies in data rows. It is able to determine

parametric dependencies in data while at the same time abstracting the dependencies.

Characteristic curves (cf. Section 5.17) are only one application area.

The Beagle approach can handle arbitrary numbers of dimensions. It limits di-

mensionality by selecting the most impacting ones. Thus, it complements existing

regression and approximation approaches by abstraction capabilities and with spe-

cial support for the field of parametric dependencies in source code (i.e. loops and

branches impacting the parametric dependencies). Hence, it covers additional kinds

of dependencies which are different from, for example, citizen statistics.

9.7. Reliability and Maintainability Analysis

The target model of SoMoX and Beagle is the Palladio Component Model. Ori-

ginally, the PCM has been designed to predict and analyse the performance of

component-based software systems. Yet, the PCM is also the base for reliability

predictions [BGKK10, BKBR10, KB09] and maintainability analyses (KAMP,

[SR09]). The model instances which SoMoX and Beagle create, are complete static

architectures and behaviour models with respect to performance properties. Still,

the reverse engineered models are a good base for reliability and maintainability

analyses as they share common model elements which are suitable for analysis

of reliability and maintainability. A single PCM model instance can contain

information for performance, reliability, and maintainability analysis at the same

time. In order to perform reliability and performance analyses, only further model

information must be added to the models reverse engineered by SoMoX and Beagle

(LL-QoS analysis base).

Reliability Reliability and performance prediction models share largely identical

base model elements. The static architecture is the same for both, the control flow

structure of the behaviour model is identical. Furthermore, the parameterisation of

the behaviour model is the same (i.e. control and data flow parameterisation). The

312

9.8. Roundtrip Engineering

estimation of resource demands which is being reverse engineered by Beagle, is not

required for reliability prediction. Instead, the model requires reliability estimations

for example for internal actions. For typical scenarios, the models are identical to

more than 90%.

Thus, using the models created by SoMoX and Beagle results in very little ove-

rhead (mainly reliability annotations per internal action) in order to use them for

reliability predictions.

Maintainability For the maintainability analysis, the static architecture provided

by SoMoX can be fully re-employed. The maintainability analysis needs a link to the

original source code in order to estimate the impact of architectural changes on the

source code. That link is available from the trace link model. Thus, from the perspec-

tive of the input architecture model, SoMoX provides complete results for maintaina-

bility analysis. The KAMP approach for maintainability analysis still requires further

input from the user (e.g. change scenarios and effort estimations) which cannot be

provided by SoMoX.

9.8. Roundtrip Engineering

Support for roundtrip engineering – the integrated cycle of forward and reverse en-

gineering – would be desirable for the developed reverse engineering approach as

a future subject. For roundtrip engineering, the stability of reverse engineering re-

sults is crucial. If the same software system is reverse engineered multiple times,

the reverse engineering process should result in the same model. Without changing

the software system itself, this is ensured for the static software architecture and

the control flow structure by the deterministic nature of the developed reverse engi-

neering approaches. Parametric dependencies are reverse engineered using genetic

programming which by construction does not produce deterministic results. Still, if

genetic programming results in the same fitness values, the parametric dependencies

do not behave worse.

More challenging are scenarios where the implementation of the software system

changes over time. If, for example, the reverse engineered model is used to de-

tect architecture violations, reverse engineering results must be stable and reliable

each time the software system is being reverse engineered. Desirably, small changes

should not impact the reverse engineering results. Especially, the architecture should

not change for small code changes (e.g. one more access to an already required

component interface).

The architecture is the most-critical for stability as the lower level model elements

for control and data flow should immediately reflect changes to the source code to

ensure up-to-date models. For the stability of the reverse engineered software archi-

313

Chapter 9. Conclusion

tectures, the design of SoMoX helps creating stable models. SoMoX creates com-

ponents in discrete steps, according to the thresholds (for the merge and compose

operation) which are set for an iteration. The thresholds are adapted according to the

selected threshold stepwidth. As long as components are created within the frame

between two threshold values of merge and compose, a component is stable. If the

component is a “borderline” candidate, a component creation can potentially flip.

Iteration n - 1
stepwidth

Iteration n

Iteration n + 1

3rd run1st run 2nd run

Legend:
Component Candidate A

Stable
Composition

Threshold Value
(Compose)

0

Component Candidate B

Flipping
Composition

Figure 9.2.: Stability of component creation (composition case)

Figure 9.2 illustrates the composition stability of two component candidates A and

B. Component candidate A has a composition value in the middle of the frame bet-

ween iteration n-1 and n and thus is created in every run (x-axis). The frame is defined

by the stepwidth value for composition. Component candidate B is a borderline can-

didate. Its composition value in the first run is sufficient to become a component in

iteration n, while in the second run, the threshold is too high for component candidate

B. In the third run, B again becomes a component.

The behaviour for the creation of B can depend on small changes in the source

code (e.g. coupling changes). Thus, small changes in the source code can impact the

creation of a component from a component candidate if the component candidate is

a borderline candidate. Larger stepwidths (see y-axis) decrease the chance of border-

line component candidates and hence result in more stable architecture models. In a

314

9.9. Extending Object-Oriented Programming Languages

scenario were the static component architecture result should be stable, one should

chose larger values for the stepwidth.

Larger components are more stable to changes than smaller ones. If for example

one class is removed from a small component, the impact to its metric is relatively

larger than for small components.

If there are multiple borderline component candidates, small changes of one com-

ponent can lead to “ripple effects” for other components. The missing creation of B

in the example could change the metrics of another borderline component candidate

which is then created or not created. Still, these “ripple effects” are rather seldom

as they can only impact other borderline component candidates. Furthermore, most

source metrics are calculated locally (except for package, naming metrics and the

SLAQ metric) such that source code changes affect only components which imme-

diately depend on this source code.

Generally, the stepwidth is suitable for steering the stability of a component model.

Even typical values of 10 to 15 for the stepwidth provide stable architecture results.

In real software systems, removing or adding an entire class of a component which

comprises 20 classes for typical weights has no impact on the architecture except for

candidates within a frame of 3 around the threshold borderline.

The effects of choosing the merge threshold are analog to the effects for composi-

tion. For merge, only the threshold values become larger from iteration to iteration.

One potential solution to overcome flips in the composition is to have an additio-

nal metric which indicates that a certain sets of classes of a component candidate

did belong to the same component in a previous reverse engineering run. Hence, if a

component candidate which existed in a previous reverse engineering run is evaluated

again, the metrics can be used as an indicator to re-compose or re-merge the corres-

ponding classes. If the architecture actually changes, the metric would be overruled

by other strategies, otherwise, the old architecture can be preferred. In combination

with large components which are less impacted by metric changes, such an extension

could be promising for roundtrip engineering.

9.9. Extending Object-Oriented Programming
Languages

The following section argues for potential extensions of object-oriented program-

ming languages and proposes possible ways of realisation. Extending object-oriented

programming languages for explicit architecture encoding would be reasonable for

two reasons: i) an explicit architecture could be reverse engineered without requiring

heuristics and ii) roundtrip engineering scenarios, as described in the previous sec-

tion, could rely on a stable architecture definition. If an explicit architecture is chan-

ged, this could be immediately reflected in the roundtrip cycle. The core problem

315

Chapter 9. Conclusion

is the absence of full architecture information in typical object-oriented languages.

When introducing explicit architecture information to object-oriented languages, ad-

ditional architecture information like design decisions, intended architecture styles,

and architecture constraints could also become available. Such information cannot

be reverse engineered from object-oriented source code.

Explicit components including composite components would introduce high-level

architecture elements that seamlessly integrate with a component’s implementation.

Explicit composite components are for example not present in typical component

technologies like EJB [EJB07] or COM [Cor] until today. It would be desirable to

have an explicit notion for component interfaces to distinguish them from class in-

terfaces. Furthermore, distinguishing technical interfaces (e.g. Java API calls, JPA

persistence interfaces) from business interfaces (e.g. customer management or ac-

counting) could ease focusing on, for example, the business part of an architecture.

The provided and required role, if made explicit, would support the principle of in-

formation hiding and explicit component interfaces also for composite components.

In object-oriented code, the information which interfaces are being exposed, is not

present. OSGi bundles [OSG09], for example, possess explicit provided and required

interfaces and the package export allows further refinement of code visibility at the

package level which gets into the direction of component requirements. Approaches

like ArchJava [Ald03] aim at encoding the software architecture into programming

languages.

From a reverse engineering perspective, these explicit elements of a programming

language could be easily and uniquely identified. The ability to map architecture

elements uniquely (i.e. ID-based) arises from chances of name clashes in large soft-

ware architectures. Independent developers could by chance name their components

identically. The proposed IDs could be for example hierarchical and comparable to

package names.

Newer developments in the Java programming language picked up the need

for more high-level architecture constructs like superpackages and modules

[Buca, Bucb] and were in discussion for being included in the Java JDK 7. Never-

theless, these efforts focus on very lightweight programming concepts which miss

for example explicit required interfaces and do not care about a high-level view on a

software system.

Annotations could help distinguishing class interfaces from component interfaces

and further distinguish business from technical interfaces. Components could be re-

presented by new constructs which obligatory need to specify provided and required

interfaces as well as its containment of other components. Having obligatory in-

formation on interfaces would for example overcome the tendency to omit optional

information, which is common for Eclipse plugins (cf. studies in [DMTS10, DS10]).

Eclipse plugins rarely specify extensions and extension points (their interface notion)

316

9.10. Limitations and Assumptions

since they are optional. Most plugins rely only on access restrictions on a package

base which is inherited from the underlying OSGi bundles.

A full explicit specification of architectures would imply overhead but have ad-

vantages, for example, in reverse engineering, automated component interoperability

checks, and automatic architecture conformance checking.

9.10. Limitations and Assumptions

The following section discusses limitations and assumptions which are predomi-

nantly impacting the overall reverse engineering approach. It complements the Sec-

tions 4.13 and 5.20 which presented the specific core assumptions and limitations of

SoMoX and Beagle.

Component Instances The developed reverse engineering approach is not able

to deal with distinct instances of the same component type. Every component type

has – by assumption – exactly one assembly context. Since the reverse engineered

components possess no persistent component state, the limitation does not impact

the performance prediction capabilities. The component assembly can become more

complex than desired since the single component instances cumulate the connectors

of all component instances from the implementation of the software system. The res-

triction to only a single instance per component type implies that PCM component

parameters (which are defined on a per assembly context; i.e. the component ins-

tance) cannot be set per instance. Instead, if there are multiple instances of the same

component type which are actually configured differently, the impact is included as

an average in the reverse engineered component model.

Power of the Result Model The target model of reverse engineering PCM cur-

rently has no support for event-based communication. This limitation is inherited by

SoMoX and Beagle, since, even if event-based communication would be recognised,

it could hardly be expressed in the PCM. Asynchronous event-based communication

is currently mapped to synchronous calls.

If a framework for event-based communication is used (i.e. asynchronous calls are

sent to a proxy of the communication framework), no call of the real target can be

determined due to missing support of dependencies which are established at execu-

tion time (i.e. registration of listeners at runtime). This limitation is inherited from

SISSy which has no support for dependency injection or other kinds of dependencies

which are created at execution time.

Handling of Code Formats The primary input of the tool chain of the develo-

ped reverse engineering approach is Java source code. Java Bytecode can be easily

317

Chapter 9. Conclusion

supported as decompilers for Java are available (e.g. JAD, JDEV, or JrevPro). The

decompiled source code cannot uniquely distinguish for example for and do while

loops, but is complete with respect to the remaining control flow structure. The PCM

does neither distinguish for and do while loops, thus no relevant information for the

creation of RDSEFFs gets lost during compilation and decompilation.

Code obfuscation cannot change the control flow structure significantly since chan-

ging the order of method calls would (in general) change programme semantics. The

same holds for the order of loops, branches, and external calls which, when changing

the order, would result in different programme semantics. Furthermore, code obfus-

cation is not a problem since no human needs to understand the reverse engineered

code. Only the quality of the ConsistentNaming strategy of SoMoX could drop if the

names of classes would change (which cannot be the case for public APIs). Gene-

rally, compiled or obfuscated code are not a limitation to the approach.

The tooling relies on Java only for the first instrumentation step. Later steps ge-

nerally could also deal with non-Java code. The GAST model is independent of a

concrete object-oriented programming language.

9.11. Future Work

The future work for SoMoX includes a seamless integration with dynamic pro-

gramme analysis. Dynamic metrics like the ones surveyed by Cornelissen et

al. [CZvD+09] could, if integrated into SoMOX, help in program understanding. As

Cornelissen et al. point out, dynamic analysis can help in program understanding.

Still, only few articles deal with design and architecture by means of dynamic

analysis.

Since dynamic metrics are supported by SoMoX and can be integrated with static

analysis metrics, research on good combinations of static and dynamic metrics in the

context of SoMoX is promising. Dynamic analysis is well-suited to complement the

static analysis capabilities.

Short term extensions of SoMoX comprise the integration of a selection of module

metrics and to check their applicability to component-based software architectures.

Sarkar et al. [SKR08] offer a number of validated metrics for modules, which could

be easily integrated into SoMoX.

The applicability of SoMoX to roundtrip engineering cycles was discussed in Sec-

tion 9.8. Extending SoMoX by forward engineering capabilities to enable support

for integrated roundtrip cycles is planned for future versions of SoMoX.

Furthermore, SoMoX and Beagle could be extended to create a detection mecha-

nism for architecture violations with respect to software performance constraints. A

reference architecture could be checked against a reverse engineered static architec-

ture and behaviour model in order to identify violations of the reference architecture.

318

9.11. Future Work

SoMoX and Beagle would need to be extended by model comparison algorithms

which are able to identify mismatches between two instances of PCM models.

Beagle could be extended by the integration of further analysis information. For

example, the integration of slicing information could be promising to lower the di-

mensionality of the search space. Slicing could identify which parameters can, at

most, be involved in a certain parametric dependency. The reduced search space

could then improve the convergence speed.

The application of Beagle to determine characteristic curves has been presented

in this thesis (cf. Section 5.17). The field of characteristic curves for large-scale

systems nevertheless sound promising as it tackles the specific requirements of in-

dustry which, for some software systems, are satisfied with rough model approxi-

mations of the real software system behaviour. An initial prototype [Rom09] al-

ready reuses Beagle. Specific abstraction requirements and corresponding support in

Beagle should be researched.

319

Chapter 9. Conclusion

9.12. Conclusion

This thesis introduced a reverse engineering approach for static architecture and

behaviour models of component-based software systems. The reverse engineered

models are fully parameterised performance models for component-based software

systems which represent a consistent performance abstraction for static architec-

ture and component behaviour. The execution semantics of the reverse engineered

models allow performance predictions for sizing, extension of legacy software sys-

tems, component reuse, and design optimisation scenarios and helps in understanding

component-based software architectures.

Through the strong integration of architectural and behavioural reverse enginee-

ring, changes in abstraction-level of the architecture are directly reflected in the be-

havioural model. Both models are ensured to be consistent to each other. The consis-

tency between code and model helps avoiding misleading model prediction results,

which actually do not relate to the implemented applications. By automating reverse

engineering, models can stay consistent with code also for evolving applications.

The presented reverse engineering approach is based on static, dynamic, and sta-

tistical analysis. It employs genetic programming to combine static, dynamic, and

statistical analysis, to create recombined results from each single approach that out-

perform each single reverse engineering approach. The approach is the first ap-

proach which systematically reconstructs behaviour models of components which

can serve for performance predictions, and pioneers in the combination static, dyna-

mic, and statistical analysis approaches. It is the first approach which uses genetic

programming for the integration of reverse engineering approaches and contributes

various unique extensions of genetic programming for the creation of performance-

equivalent abstractions of component behaviour.

The approach reverse engineers component models which make no assumptions

on the environment (like connected components or underlying hardware) and thus

allows for composing models without changing model internals. The composition

is fast and reliable as no manual effort for changing models is required. This is the

first approach that provides reverse engineering for models parameterised over all

influencing factors of components (assembly, deployment, and usage profile).

The contributed SoMoX and Beagle approach were successfully validated in three

extensive end-to-end case studies which showed the applicability of the approach

to different domain of software systems. Overall, the validation comprised 11 case

studies in which the capabilities of the developed approach were analysed in detail.

SoMoX and Beagle performed well in the validation: 78% precision and 89% re-

call were achieved in average. Performance predictions based on reverse engineered

models were 12% off in average and 30% in the worst case.

The performed validation results suggest that the developed reverse engineering

approach is suitable to contribute in saving a considerable amount of time for the

320

9.12. Conclusion

creation of parameterised performance models when compared to the manual crea-

tion of models (4 vs. 40 hours). The automation options of the approach ease the use

of the reverse engineering approach and considerably lower the time for reverse engi-

neering. The reduced effort for the model creation and the scalability of the approach

make it applicable even for large-scale real-life systems with more than 250,000 lines

of code.

This thesis was complemented by foundations, and an in-depth discussion of re-

sults, assumptions, limitations, possible extensions, and future work of the developed

approach.

321

A. Appendix

323

A.1. Case Study Reference Architectures

A.1.1. CoCoME

2#��������3

�������	4
��

2#��������3

���
�5�
6����

2#��������3

�7�8�����4

�����9
$

$

����
$$

�������������#����9
$

$
����:��������"�����

$

$

Figure A.1.: CoCoME System Level Architecture, source [HKW+08]

324

«component»

TradingSystem::Inventory

«component»

:Application

«component»

:GUI

ReportingIf

«component»

:Data

CashDesk
ConnectorIf

«component»

:Database

JDBC

EnterpriseQueryIf
StoreQueryIf

1

1

1

1

1

*

1

*

*

*

1

1

1

1

CashDesk
ConnectorIf

SaleRegistered
Event SaleRegistered

Event

ComplexOrderEntryTO
ComplexOrderTO
OrderEntryTO
OrderTO
ProductTO
ProductWithStockItemTO
ProductWithSupplierAndStockItemTO
ProductWithSupplierTO
SaleTO
StockItemTO
StoreWithEnterpriseTO
SupplierTO StoreIf

1

StoreTO
EnterpriseTO
ReportTO

TradingEnterprise
ProductSupplier

OrderEntry
ProductOrder
StockItem
Store
Product

1

1

PersistenceIf

Figure A.2.: CoCoME Inventory: Subsystem Level Architecture, source [HKW+08]

«component»

TradingSystem::Inventory::Application

«component»

:Reporting

«component»

:Store

StoreIf

ReportingIf 1

0..1

PersistenceIf

StoreQueryIf

StoreIf

ReportingIf
1

1

1

1

StoreTO
EnterpriseTO
ReportTO

EnterpriseQueryIf

OrderEntry
ProductOrder
StockItem
Store
Product

TradingEnterprise
ProductSupplier

ComplexOrderEntryTO
ComplexOrderTO
OrderEntryTO
OrderTO
ProductTO
ProductWithStockItemTO
ProductWithSupplierAndStockItemTO
ProductWithSupplierTO
SaleTO
StockItemTO
StoreWithEnterpriseTO
SupplierTO

1

1

1

1

1

1

1

CashDeskConnectorIf CashDesk
ConnectorIf

SaleRegisteredEvent

1

1

*

«component»

:ProductDispatcher

ProductDispatcherIf

1
1

1

1

Figure A.3.: CoCoME Inventory GUI, source [HKW+08]

325

«component»

TradingSystem::Inventory::Application

«component»

:Reporting

«component»

:Store

StoreIf

ReportingIf 1

0..1

PersistenceIf

StoreQueryIf

StoreIf

ReportingIf
1

1

1

1

StoreTO
EnterpriseTO
ReportTO

EnterpriseQueryIf

OrderEntry
ProductOrder
StockItem
Store
Product

TradingEnterprise
ProductSupplier

ComplexOrderEntryTO
ComplexOrderTO
OrderEntryTO
OrderTO
ProductTO
ProductWithStockItemTO
ProductWithSupplierAndStockItemTO
ProductWithSupplierTO
SaleTO
StockItemTO
StoreWithEnterpriseTO
SupplierTO

1

1

1

1

1

1

1

CashDeskConnectorIf CashDesk
ConnectorIf

SaleRegisteredEvent

1

1

*

«component»

:ProductDispatcher

ProductDispatcherIf

1
1

1

1

Figure A.4.: CoCoME Inventory Application, source [HKW+08]

«component»

TradingSystem::Inventory::Data

«component»

:Enterprise

«component»

:Store
StoreQueryIf

1

1
StoreQueryIf

1
1

EnterpriseQueryIf
EnterpriseQueryIf 1

1

TradingEnterprise
ProductSupplier

OrderEntry
ProductOrder
StockItem
Store
Product

«component»

:Persistence

1

PersistenceIf
PersistenceIf 1

1

Figure A.5.: CoCoME Inventory Data, source [HKW+08]

326

A.1.2. Palladio FileShare

PalladioFileShare

LargeFileStorage

SmallFileStorage

BusinessLogic

Compression

Hashing

ExistingFilesDB

CopyrightedFilesDB

SPECjvm2008 or
Lempel-Zip-Welch
implementation

Figure A.6.: Palladio FileShare Static Architecture, source [KKR08a]

327

A.2. Additional Reverse Engineered Models

328

Figure A.7.: CoCoME: Reverse engineered composite component (screenshot)

329

Figure A.8.: SPECjbb2005: Reverse engineered behaviour models of the process-

TransactionLog service (screenshot)

330

List of Figures

1.1. Sizing scenarios involve, among others, resource sizing and the sca-

lability for different usage profiles. Images sources: left server by

Craig Spurrier licensed under Creative Commons Attribution 2.5 Ge-

neric; right server c©LiquidImage Fotolia.com 7

1.2. Extension of legacy applications 8

1.3. Component reuse . 8

1.4. Design optimisation . 9

1.5. Example: Model pragmatism, abstraction, and isomorphism 11

2.1. Relations between gene, chromosome, generation, gene repository,

and chromosome repository . 20

2.2. Overview: Steps of genetic programming 20

2.3. Overview on PCM models and component contexts 22

2.4. Example: PCM composite component (from [Koz08b]) 24

2.5. Component performance influence factors. Images sources: left ser-

ver by Craig Spurrier licensed under Creative Commons Attribution

2.5 Generic; right server c©LiquidImage Fotolia.com 28

2.6. Parametric dependencies in code at a component abstraction level . . 32

2.7. Relation between genes, chromosomes, generations, stochastic ex-

pressions, and parametric dependencies 37

2.8. UML representation of the static view of a component with annotated

core properties. 38

3.1. Reverse engineering overview . 44

3.2. Example for a reverse engineered architecture model 45

3.3. Calculation of timing information from resource demands in the Pal-

ladio approach . 47

3.4. Detailed view on the integrated reverse engineering process 48

3.5. Overview visualisation . 51

4.1. The SoMoX approach reverse engineers a static component-based ar-

chitecture from source code. 53

4.2. Overview on SoMoX reverse engineering 58

331

4.3. Feature diagram of strategies for the creation of component candi-

dates, interfaces and connectors (capturing only cases for which mul-

tiple strategies exist) . 66

4.4. Feature diagram of strategies for merging and composing Components 67

4.5. Distance from the Main Sequence visualised 72

4.6. Natural subsystems of a software system 75

4.7. Blacklisting and filtering . 76

4.8. Relations between strategies and metrics visualised an UML class

diagramme . 78

4.9. Example: Interface adherence and bypassing 80

4.10. SubsystemComponent scales small values of NaturalSubsystem . . . 84

4.11. The component merge strategy indicates when to merge the classes

of a component candidate into a single component 84

4.12. The component composition strategy indicates when to create a new

composite component from a component candidate 86

4.13. Interface identification fallback strategies 88

4.14. Connector strategies overview . 92

4.15. Typical characteristics of a basic component in the source code . . . 94

4.16. Overview on third party integration of SoMoX 99

5.1. The Beagle approach reverse engineers behavioural models of com-

ponent services . 103

5.2. Example: Business logic component 105

5.3. Example: Simple lookup table model (left) vs. parameterised model

with explicit control and data flow (right) 105

5.4. Setting for the reverse engineering of behavioural models 111

5.5. Beagle: Behavioural reverse engineering (extract of Figure 3.4 with

further details on dynamic analysis) 112

5.6. Example RDSEFF for the service uploadFile(..) 115

5.7. Queue lengths for burst arrivals compared to uniform arrivals 117

5.8. Phases of the control abstraction applied at an abstract example. The

depicted phases must be repeated for all calls of required services.

The control abstraction then comprises the union of all marked

control flow statements of all repetitions. 122

5.9. RDSEFF BusinessLogic example showing input and output positions

for the service uploadFile() . 130

5.10. Classes and interfaces from Listing 5.8 134

5.11. Resulting components of classes A, B, and C before (a) and after (b)

merging classes A and B into a single component 134

5.12. RDSEFFs for the fine-grained components C1-1, C1-2, and C1-3 . . 136

5.13. RDSEFFs for the coarse-grained components C2-1 and C2-2 137

332

5.14. Dynamic analysis: Excerpt of behaviour analysis 140

5.15. Dynamic code analysis . 142

5.16. Heuristics for selection of parameter characterisations 145

5.17. LoggingTraceID and LoggingPositionID 149

5.18. Monitoring infrastructure in distributed scenarios 153

5.19. Genetic programming overview 160

5.20. Tree structure of the genes . 162

5.21. Example: Non-continuous function values introduced by branched

calculations depending on the value of X. 166

5.22. Stress field of the fitness function: Precision vs. abstractness 171

5.23. Thresholds reflect lower boundaries; normalisation reflects typical

upper values; the fitness value aggregates multiple metrics after

weighting them . 180

5.24. Example: Selection process (lower fitness values are better) 185

5.25. Example: Crossover . 186

5.26. Mutation: Deletion of a gene at the leaf of the chromosome tree . . . 188

5.27. Mutation: Deletion of a gene at an intermediate level of the chromo-

some tree . 189

5.28. Overview: Integration of analysis approaches into genetic program-

ming . 198

5.29. Example: Fitness of the best individuals of an evolution. Evolutions

with and without optimisations through the initial generation. 201

5.30. Example: Plot of a MARS function 217

5.31. Adding learned parametric dependencies to the RDSEFF: Transla-
tion from trees of genes to stochastic expressions of the PCM and

mapping of stochastic expression to the control flow skeleton. 218

5.32. UML activity diagramm: Integration of resource demand counting

(“ByCounter”) in the reverse engineering process of behavioural mo-

dels . 220

5.33. Building blocks example . 222

6.1. Overview on artefacts referenced from trace links 236

7.1. Overview on the validation purposes in the Palladio context: Reverse

engineering (left), performance prediction (right) 242

7.2. CoCoME: Reverse engineered trading system composite component

(screenshot) . 256

7.3. SPECjbb2005: The reverse engineered core composite component

(editor screenshot) . 261

7.4. Palladio FileShare: The reverse engineered system-level composite

component (editor screenshot) . 266

333

7.5. Selected predictions and measurements for Palladio FileShare (taken

from [KKR10]) . 269

9.1. Integration through genetic programming 310

9.2. Stability of component creation (composition case) 314

A.1. CoCoME System Level Architecture, source [HKW+08] 324

A.2. CoCoME Inventory: Subsystem Level Architecture, source [HKW+08]325

A.3. CoCoME Inventory GUI, source [HKW+08] 325

A.4. CoCoME Inventory Application, source [HKW+08] 326

A.5. CoCoME Inventory Data, source [HKW+08] 326

A.6. Palladio FileShare Static Architecture, source [KKR08a] 327

A.7. CoCoME: Reverse engineered composite component (screenshot) . . 329

A.8. SPECjbb2005: Reverse engineered behaviour models of the process-

TransactionLog service (screenshot) 330

334

Listings

2.1. Source code example for parametric dependencies 30

2.2. Source code example: Input and output parameters 36

4.1. The basic steps which are performed in the SoMoX approach. 58

4.2. Package names example of a project organised in slices and layers . . 73

4.3. SLAQ calculation . 73

5.1. Source code example of the component BusinessLogic. IFileShare is

the provided interface; ICompress and ICopyrightCheck are required

interfaces . 115

5.2. Pseudo code of the three main phases of the control flow abstraction . 122

5.3. Pseudo code of the marker creation 123

5.4. Pseudo code of marking parent statements: Initialisation 124

5.5. Pseudo code of marking parent statements: Recursion 124

5.6. Pseudo code of marking parent statements: Recursion 125

5.7. Example: Method inlining vs. InternalCallAction 126

5.8. Source code example demonstrating the increasing behaviour ab-

straction for large components . 135

5.9. Data aggregation steps . 154

5.10. Source code example: The parametric dependency expressed by

IndividualA calculates the value of tax in persistTax(..) 163

5.11. Example: Non-continuous behaviour 165

5.12. Selection process . 184

5.13. Crossover . 187

5.14. Mutation: Deleting genes . 190

5.15. Mutation: Reducing dimensionality 192

5.16. Mutation: Change operator . 194

5.17. Termination: Relative improvements 197

5.18. Example: Source code which is likely to lead to partial static analysis

results . 199

5.19. Source code example: Obfuscation options 208

5.20. Example source code: Slicing of source code 214

5.21. Example: Sequences of internal actions and external calls 225

335

Bibliography

[ABF04] E. Arisholm, L. C. Briand, and A. Føyen, “Dynamic coupling measu-

rement for object-oriented software,” IEEE Transactions on Software
Engineering, vol. 30, no. 8, pp. 491–506, August 2004.

[ABM+06] J. Anderer, R. Bloch, T. Mohaupt, R. Neumann, A. Schumacher,

O. Seng, F. Simon, A. Trifu, and M. Trifu, “QBENCH –

Methoden und Werkzeuge zur Sicherung der inneren Qualität bei der

Evolution objektorientierter Systeme,” Forschungszentrum Informatik

FZI, Karlsruhe, Germany, technical report FZI-Publication 1-6-6/06,

July 2006. [Online]. Available: http://www.qbench.de/QBench/CMS/

Members/seng/QBench-ZusammenfassenderSachbericht.pdf

[AC04] V. Aline and W. Cláudia, “Software architecture recovery based on dy-

namic analysis,” in XVIII Simpósio Brasileiro de Engenharia de Soft-
ware, I Workshop de Manutenção de Software Moderna, 2004, Brasí-
lia, 2004.

[AG01] F. Abreu and M. Goulão, “Coupling and Cohesion as Modularization

Drivers: Are we being over-persuaded,” in Proceedings of the Fifth
European Conference on Software Maintenance and Reengineering.

IEEE Computer Society Washington, DC, USA, 2001, p. 47.

[AGC02] A. Andrews, S. Ghosh, and E. Choi, “A model for understanding

software components,” in Proceedings of the 18th IEEE International
Conference on Software Maintenance (ICSM’02). Los Alamitos, CA,

USA: IEEE Computer Society, 2002, pp. 359–368.

[AGP03] R. Abbott, J. Guo, and B. Parviz, “Guided genetic program-

ming,” in Sixth International Conference on Computational In-
telligence and Natural Computing, September 2003, Department

of Computer Science, California State University, Los Angeles,

Los Angeles, Ca. 90032, June 2003, last retrieved 2006-09-

01. [Online]. Available: http://abbott.calstatela.edu/PapersAndTalks/

GuidedGeneticProgramming.pdf

337

[AH90] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in PLDI
’90: Proceedings of the ACM SIGPLAN 1990 conference on Program-
ming language design and implementation. New York, NY, USA:

ACM Press, 1990, pp. 246–256.

[AL99a] N. Anquetil and T. Lethbridge, “Recovering software architecture from

the names of source files,” Journal of Software Maintenance Research
and Practice, vol. 11, no. 3, pp. 201–221, 1999.

[AL99b] ——, “Experiments with Clustering as a Software Remodulariza-

tion Method,” in Sixth Working Conference on Reverse Engineering,
WCRE. Los Alamitos, CA, USA: IEEE Computer Society, 1999, pp.

235–255.

[Ald03] J. Aldrich, “Using Types to Enforce Architectural Structure,” PhD Dis-

seration, University of Washington, August 2003.

[Apa09] Apache Foundation, “Apache Logging Service log4j,”

http://logging.apache.org/log4j, 2009, last retrieved 2009-12-30.

[ARA+09] N. Anquetil, J.-C. Royer, P. Andre, G. Ardourel, P. Hnetynka, T. Poch,

D. Petrascu, and V. Petrascu, “JavaCompExt: Extracting Architectural

Elements from Java Source Code,” in Proceedings of the 16th Working
Conference on Reverse Engineering (WCRE ’09). IEEE, October

2009, pp. 317–318.

[AW96] A. Avritzer and E. J. Weyuker, “Deriving Workloads for Performance

Testing,” Software–Practice and Experience, vol. 26, no. 6, pp. 613–

633, 1996.

[BALS08] A. Bertolino, G. D. Angelis, F. Lonetti, and A. Sabetta, “Let The Pup-

pets Move! Automated Testbed Generation for Service-oriented Mo-

bile Applications,” in Software Engineering and Advanced Applica-
tions, 2008. SEAA ’08. 34th Euromicro Conference, September 2008,

pp. 321–328.

[Bar10] Barak Naveh et al., “JGraphT,” http://jgrapht.sourceforge.net/, 2010,

last retrieved 2010-03-15.

[bau] “Bauhaus homepage.” [Online]. Available: http://www.iste.

uni-stuttgart.de/ps/bauhaus/

[Bau93] F. Bause, “Queueing petri nets-a formalism for the combined qualita-

tive and quantitative analysis of systems,” Petri Nets and Performance

338

Models, 1993. Proceedings., 5th International Workshop on, pp. 14–

23, Oct 1993.

[Bay99] S. Bayarov, “Resource Functions for Model Based Performance Ana-

lysis of Distributed Software Systems,” master thesis, Ottawa-Carleton

lnstitute for Electrical Engineering, Department of Systems and Corn-

puter Engineering, Faculty of Engineering, Carleton University, Ot-

tawa, Ontario, Canada, June 1999.

[BBJ+08] A. Baier, S. Becker, M. Jung, K. Krogmann, C. Röttgers, N. Streek-

mann, K. Thoms, and S. Zschaler, Handbuch der Software-Architektur,

2nd ed. dPunkt.verlag Heidelberg, December 2008, ch. Modellgetrie-

bene Software-Entwicklung, pp. 93–122.

[BBT06] H. Byelas, E. Bondarev, and A. Telea, “Visualization of areas of inter-

est in component-based system architectures,” pp. 160–169, 29 2006-

Sept. 1 2006.

[BC88] V. R. Basili and G. Caldiera, “Reusing existing software,” Institute for

Advanced Computer Studies, Department of Computer Science, Uni-

versity of Maryland, College Park, MD, USA, Tech. Rep. IMIACS-

TR-88-72, CS-TR-2116, Oct. 1988.

[BCdK07] E. Bondarev, M. R. V. Chaudron, and E. A. de Kock, “Exploring per-

formance trade-offs of a JPEG decoder using the DeepCompass frame-

work,” in WOSP ’07: Proceedings of the 6th international workshop
on Software and performance. New York, NY, USA: ACM Press,

2007, pp. 153–163.

[BCR94] V. R. Basili, G. Caldiera, and H. D. Rombach, “The Goal Question Me-

tric Approach,” in Encyclopedia of Software Engineering - 2 Volume
Set, J. J. Marciniak, Ed. John Wiley & Sons, 1994, pp. 528–532.

[BDD+06] S. Becker, A. Dikanski, N. Drechsel, A. A. E. Ghazi, J. Happe, I. El-

Oudghiri, H. Koziolek, M. Kuperberg, A. Rentschler, R. H. Reussner,

R. Sinawski, M. Thoma, and M. Willsch, “Modellgetriebene Software-

Entwicklung - Architekturen, Muster und Eclipse-basierte MDA,”

Universität Karlsruhe (TH), Tech. Rep., 2006. [Online]. Available:

http://digbib.ubka.uni-karlsruhe.de/volltexte/documents/2918

[BDH08a] S. Becker, T. Dencker, and J. Happe, “Model-Driven Generation

of Performance Prototypes,” in Performance Evaluation: Metrics,
Models and Benchmarks (SIPEW 2008), ser. Lecture Notes in

Computer Science, vol. 5119. Springer-Verlag Berlin Heidelberg,

339

2008, pp. 79–98. [Online]. Available: http://www.springerlink.com/

content/62t1277642tt8676/fulltext.pdf

[BDH+08b] T. Bures, M. Decky, P. Hnetynka, J. Kofron, P. Parizek, F. Plasil,

T. Poch, O. Sery, and P. Tuma, “CoCoME in SOFA,” in The Common
Component Modelling Example: Comparing Software Component
Models, ser. Lecture Notes in Computer Science, vol. 5153. Springer-

Verlag, Berlin, Germany, 2008.

[BDIS04a] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-Based

Performance Prediction in Software Development: A Survey,” IEEE
Transactions on Software Engineering, vol. 30, no. 5, pp. 295–310,

May 2004.

[BDIS04b] ——, “Model-Based Performance Prediction in Software Develop-

ment: A Survey,” IEEE Transactions on Software Engineering, vol. 30,

no. 5, pp. 295–310, May 2004.

[Bec08a] S. Becker, “Coupled Model Transformations for QoS Enabled

Component-Based Software Design,” Ph.D. dissertation, University of

Oldenburg, Germany, Mar. 2008.

[Bec08b] ——, Coupled Model Transformations for QoS Enabled Component-
Based Software Design, ser. Karlsruhe Series on Software Quality.

Universitätsverlag Karlsruhe, 2008, vol. 1.

[Bei90] B. Beizer, Software Testing Techniques, 2nd ed. International Thom-

son Computer Press, 1990.

[Ber06] P. Berkhin, Grouping Multidimensional Data. Springer, 2006, ch. A

Survey of Clustering Data Mining Techniques, pp. 25–71.

[BGdMT98] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi, Queueing Net-
works and Markov Chains. John Wiley & Sons Inc., 1998.

[BGKK10] F. Brosch, R. Gitzel, H. Koziolek, and S. Krug, “Combining

architecture-based software reliability predictions with financial im-

pact calculations,” in International Workshop on Formal Engineering
approaches to Software Components and Architectures (FESCA), ser.

ENTCS, vol. 264, no. 1. Elsevier, 2010, pp. 3 – 17.

[BHK06] S. Becker, J. Happe, and H. Koziolek, “Putting Components

into Context: Supporting QoS-Predictions with an explicit Context

Model,” in Proc. 11th International Workshop on Component Oriented

340

Programming (WCOP’06), R. Reussner, C. Szyperski, and W. Weck,

Eds., July 2006, pp. 1–6. [Online]. Available: http://research.

microsoft.com/~cszypers/events/WCOP2006/WCOP06-Becer.pdf

[BHP06] T. Bures, P. Hnetynka, and F. Plasil, “Sofa 2.0: Balancing advanced

features in a hierarchical component model,” in SERA ’06: Procee-
dings of the Fourth International Conference on Software Engineering
Research, Management and Applications. Washington, DC, USA:

IEEE Computer Society, 2006, pp. 40–48.

[BHS07] B. Beckert, R. Hähnle, and P. H. Schmitt, Eds., Verification of Object-
Oriented Software: The KeY Approach, ser. LNCS 4334. Springer-

Verlag, 2007.

[BHT+10] S. Becker, M. Hauck, M. Trifu, K. Krogmann, and J. Kofron,

“Reverse Engineering Component Models for Quality Predictions,”

in Proceedings of the 14th European Conference on Software
Maintenance and Reengineering, European Projects Track. IEEE,

2010, pp. 199–202. [Online]. Available: http://sdqweb.ipd.kit.edu/

publications/pdfs/becker2010a.pdf

[Bin07] D. Binkley, “Source Code Analysis: A Road Map,” in FOSE ’07: 2007
Future of Software Engineering. Washington, DC, USA: IEEE Com-

puter Society, 2007, pp. 104–119.

[BJH+05] D. A. Bacigalupo, S. A. Jarvis, L. He, D. P. Spooner, D. N. Dillenber-

ger, and G. R. Nudd, “An investigation into the application of different

performance prediction methods to distributed enterprise applications,”

J. Supercomput., vol. 34, no. 2, pp. 93–111, 2005.

[BK96] F. Bause and P. S. Kritzinger, Stochastic Petri Nets: An Introduction to
the Theory. Vieweg-Verlag, 1996.

[BK02] ——, Stochastic Petri Nets, 2nd ed. Vieweg, 2002.

[BKBR10] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner, “Parameterized

Reliability Prediction for Component-based Software Architectures,”

in International Conference on the Quality of Software Architectures
(QoSA), ser. LNCS, vol. 6093. Springer, 2010, pp. 36–51.

[BKK09] F. Brosig, S. Kounev, and K. Krogmann, “Automated Extraction of

Palladio Component Models from Running Enterprise Java Applica-

tions,” in Proceedings of the 1st International Workshop on Run-time
mOdels for Self-managing Systems and Applications (ROSSA 2009).

341

In conjunction with Fourth International Conference on Performance
Evaluation Methodologies and Tools (VALUETOOLS 2009), Pisa,
Italy, October 19, 2009. ACM, New York, NY, USA, Oct. 2009.

[BKR07] S. Becker, H. Koziolek, and R. H. Reussner, “Model-based

Performance Prediction with the Palladio Component Model,” in

WOSP ’07: Proceedings of the 6th International Workshop on
Software and performance. New York, NY, USA: ACM, February

5–8 2007, pp. 54–65. [Online]. Available: http://sdqweb.ipd.uka.de/

publications/pdfs/becker2007b.pdf

[BKR09] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component

model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, pp. 3–22, 2009. [Online]. Available:

http://dx.doi.org/10.1016/j.jss.2008.03.066

[BL97] A. L. Blum and P. Langley, “Selection of relevant fea-

tures and examples in machine learning,” Artificial Intelli-
gence, vol. 97, no. Issues 1-2, pp. 245–271, December 1997.

[Online]. Available: http://www.sciencedirect.com/science/article/

B6TYF-3SNYS10-8/2/a3721939d19c9fa9909fcf950003499d

[BLL05] L. Briand, Y. Labiche, and J. Leduc, “Tracing distributed systems exe-

cutions using aspectj,” in Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM’05), Sept. 2005, pp. 81–

90.

[BLL06] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the Reverse Engi-

neering of UML Sequence Diagrams for Distributed Java Software,”

IEEE Transactions on Software Engineering, vol. 32, no. 9, pp. 642–

663, September 2006.

[BM03] A. Bertolino and R. Mirandola, “Towards component based software

performance engineering,” in Proc. 6th Workshop on Component-
Based Software Engineering: Automated Reasoning and Prediction,
ACM/IEEE 25th International Conference on Software Engineering
ICSE 2003, I. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau, Eds.,

2003, pp. 1–6.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

Pattern-Oriented Software Architecture – A System of Patterns. Wiley

& Sons, New York, NY, USA, 1996.

342

[BNKF98] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Pro-
gramming – An Introduction. Heidelberg: dpunkt Verlag, Heidelberg,

1998, ralfs Book.

[BOR04] S. Becker, S. Overhage, and R. H. Reussner, “Classifying Software

Component Interoperability Errors to Support Component Adaption,”

in Proceedings of the 7th International Symposium on Component-
Based Software Engineering (CBSE 2004), Edinburgh, UK, ser.

Lecture Notes in Computer Science, I. Crnkovic, J. A. Stafford,

H. W. Schmidt, and K. C. Wallnau, Eds., vol. 3054. Springer-Verlag

Berlin Heidelberg, May 2004, pp. 68–83. [Online]. Available:

http://springerlink.metapress.com/content/yk87fnn309wf2fgh/

[BP89] T. J. Biggerstaff and A. J. Perlis, Software Reusability. ACM Press,

Addison-Wesley, Reading, MA, USA, 1989, vol. I & II.

[BR88] V. R. Basili and H. D. Rombach, “Towards a comprehensive frame-

work for reuse: A reuse-enabling software evolution environment,”

Institute for Advanced Computer Studies, Department of Computer

Science, University of Maryland, College Park, MD, USA, Tech. Rep.

UMIACS-TR-88-92, CS-TR-2158, Dec. 1988.

[BR08] R. Böhme and R. Reussner, “Validation of Predictions with

Measurements,” in Dependability Metrics, ser. Lecture Notes in

Computer Science. Springer-Verlag Berlin Heidelberg, 2008, vol.

4909, ch. 3, pp. 14–18. [Online]. Available: http://www.springerlink.

com/content/662rn13014r46269/fulltext.pdf

[Buca] A. Buckley, Improved Modularity Support in the Java Programming
Language, Java Community Process Java Specification Requests JSR

294.

[Bucb] ——, Java Module System, Java Community Process Java Specifica-

tion Requests JSR 277.

[BW99] M. Büchi and W. Weck, “The greybox approach: When blackbox

specifications hide too much,” Turku Center for Computer Science,

Tech. Rep. 297, Aug. 1999. [Online]. Available: http://www.abo.fi/

~mbuechi/publications/TR297.html

[CBB+03] P. C. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little,

R. Nord, and J. Stafford, Documenting Software Architectures, ser. SEI

Series in Software Engineering. Addison-Wesley, 2003.

343

[CC77] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice mo-

del for static analysis of programs by construction or approximation

of fixpoints,” in POPL ’77: Proceedings of the 4th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages. New

York, NY, USA: ACM, 1977, pp. 238–252.

[CC90] E. J. Chikofsky and J. H. Cross, “Reverse engineering and design

recovery: a taxonomy,” IEEE Software, vol. 7, pp. 13–17, January

1990. [Online]. Available: http://ieeexplore.ieee.org/iel1/52/1647/

00043044.pdf?tp=&arnumber=43044&isnumber=1647

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web
Services Description Language (WSDL), http://www.w3.org/TR/wsdl,

World Wide Web Consortium (W3C) W3C Note, Rev. 1.1, March

2001.

[CDE08] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems

Programs,” in 8th USENIX Symposium on Operating Systems
Design and Implementation, San Diego, CA, December 2008, last

retrieved 2009-03-31. [Online]. Available: http://www.usenix.org/

events/osdi08/tech/full_papers/cadar/cadar.pdf

[CDH+00] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby,

and H. Zheng, “Bandera: extracting finite-state models from java

source code,” in Proceedings of the 2000 International Conference
on Software Engineering. Limerick, Ireland: IEEE, 2000, pp.

439–448. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=870434

[CDPEV05] G. Canfora, M. Di Penta, R. Esposito, and M. Villani, “An approach

for QoS-aware service composition based on genetic algorithms,” in

Proceedings of the 2005 conference on Genetic and evolutionary com-
putation. ACM Press New York, NY, USA, 2005, pp. 1069–1075.

[CE00] K. Czarnecki and U. W. Eisenecker, Generative Programming. Ad-

dison-Wesley, Reading, MA, USA, 2000.

[CF07] V. Cortellessa and L. Frittella, “A Framework for Automated Genera-

tion of Architectural Feedback from Software Performance Analysis?”

EPEW 2007, no. LNCS 4748, pp. 171–185, 2007.

[CH89] P. P. Chang and W.-W. Hwu, “Inline function expansion for compi-

ling C programs,” in PLDI ’89: Proceedings of the ACM SIGPLAN

344

1989 Conference on Programming language design and implementa-
tion. New York, NY, USA: ACM, 1989, pp. 246–257.

[CHDP07] G. Canfora Harman and M. Di Penta, “New Frontiers of Reverse En-

gineering ,” in Future of Software Engineering (FOSE ’07). Los Ala-

mitos, CA, USA: IEEE Computer Society, 2007, pp. 326–341.

[Chi] S. Chiba, “Javassist (Java Programming Assistant),”

http://www.csg.is.titech.ac.jp/projects/index.html, last visit: Octo-

ber 9th, 2009. [Online]. Available: http://www.csg.is.titech.ac.jp/

projects/index.html

[Chi08] I. I. Chirila, “Parameter Analysis in Software Components using Sym-

bolic Execution,” Bachelor Thesis, Faculty of Informatics, University

of Karlsruhe (TH), Karlsruhe, Germany, 2008.

[Cho07] L. Chouambe, “Rekonstruktion von Software-Architekturen,” master

thesis, Institute for Program Structures and Data Organisation, Chair

Software Design and Qualitiy (SDQ), Faculty of Informatics, Univer-

sität Karlsruhe (TH), Karlsruhe, Germany, May 2007.

[Cia10] A. Ciancone, “Mapping the Service Architecture Meta-Model to the

Palladio Component Model,” Master’s thesis, Politecnico di Milano,

Dipartimento di Elettronica e Informazione, Piazza L. Da Vinci 32,

20133 Milan, Italy, 2010.

[CKK01] E. S. Cho, M. S. Kim, and S. D. Kim, “Component metrics to mea-

sure component quality,” in APSEC ’01: Proceedings of the Eighth
Asia-Pacific on Software Engineering Conference. Los Alamitos, CA,

USA: IEEE Computer Society, December 2001, pp. 419–426.

[CKK08] L. Chouambe, B. Klatt, and K. Krogmann, “Reverse Engineering

Software-Models of Component-Based Systems,” in 12th European
Conference on Software Maintenance and Reengineering, K. Konto-

giannis, C. Tjortjis, and A. Winter, Eds. Athens, Greece: IEEE

Computer Society, April 1–4 2008, pp. 93–102. [Online]. Available:

http://sdqweb.ipd.uka.de/publications/pdfs/chouambe2008a.pdf

[CL02] Y. Cheon and G. T. Leavens, “A simple and practical approach to

unit testing: The JML and JUnit way,” in ECOOP 2002 – Object-
Oriented Programming, ser. Lecture Notes in Computer Science, vol.

2374. Springer, 2002, pp. 1789–1901.

345

[CLGL05] S. Chen, Y. Liu, I. Gorton, and A. Liu, “Performance Prediction of

Component-based Applications,” Journal of Systems and Software,

vol. 74, no. 1, pp. 35–43, 2005.

[CM98] V. Cherkassky and F. Mulier, Learning from Data: Concepts, Theory,
and Methods. John Wiley & Sons, Inc. New York, NY, USA, 1998.

[CMRT10] V. Cortellessa, A. Martens, R. Reussner, and C. Trubiani, “A

process to effectively identify guilty performance antipatterns,” in

Fundamental Approaches to Software Engineering, 13th International
Conference, FASE 2010, D. Rosenblum and G. Taentzer, Eds.

Springer-Verlag Berlin Heidelberg, 2010, pp. 368–382. [Online].

Available: http://www.springerlink.com/content/wl11718486334174

[CMST90] G. Ciardo, R. Marie, B. Sericola, and K. S. Trivedi, “Performability

analysis using semi-markov reward processes,” IEEE Transactions on
Computers, vol. 39, no. 10, Oct. 1990.

[Cor] M. Corp., “The COM homepage,” http://www.microsoft.com/com/,

last retrieved 2006-10-30. [Online]. Available: http://www.microsoft.

com/com/

[Cow88] P. Coward, “Symbolic execution systems-a review,” Software
Engineering Journal, vol. 3, no. 6, pp. 229–239, November

1988. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=28077

[Cra07] M. J. Crawley, The R Book. Chichester: Wiley & Sons, 2007.

[CST00] N. Cristianini and J. Shawe-Taylor, An introduction to support Vector
Machines and other kernel-based learning methods. Cambridge Uni-

versity Press, New York, NY, USA, 2000.

[CW00] M. Courtois and C. M. Woodside, “Using regression splines for soft-

ware performance analysis,” in Proc 2nd Int. Workshop on Software
and Performance (WOSP2000). Ottawa, Canada: ACM, September

2000, pp. 105–114.

[CZvD+09] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Ko-

schke, “A Systematic Survey of Program Comprehension through Dy-

namic Analysis,” IEEE Transactions on Software Engineering, vol. 99,

no. 2, pp. 684–702, 2009.

346

[Dah01] M. Dahm, “Byte Code Engineering with the BCEL API,” Freie

Universität Berlin, Tech. Rep. B-17-98, 2001. [Online]. Available:

http://bcel.sourceforge.net/downloads/report.pdf

[DDHV03] B. Dufour, K. Driesen, L. Hendren, and C. Verbrugge, “Dynamic me-

trics for java,” in Proceedings of the ACM SIGPLAN 2003 Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA ’03). ACM Press, 2003, pp. 149–168.

[DGL06] M. Denker, O. Greevy, and M. Lanza, “Higher abstractions

for dynamic analysis,” 2nd International Workshop on Program
Comprehension through Dynamic Analysis (PCODA 2006), pp.

32–38, 2006. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=792487

[Die05] R. Diestel, Graph Theory, 3rd ed. Berlin: Springer, 2005.

[DLR06] X. Deng, J. Lee, and Robby, “Bogor/Kiasan: A k-bounded Symbolic

Execution for Checking Strong Heap Properties of Open Systems,”

in 21st IEEE/ACM International Conference on Automated Software
Engineering, 2006 (ASE ’06). IEEE, September 2006, pp. 157–

166. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?

isnumber=4019544&arnumber=4019571&count=72&index=24

[DMM99] D. Doval, S. Mancoridis, and B. Mitchell, “Automatic clustering of

software systems using a genetic algorithm,” in Software Technology
and Engineering Practice, 1999. STEP ’99. Proceedings, 1999, pp.

73–81.

[DMM03] N. Dumitrascu, S. Murphy, and L. Murphy, “A Methodology for

Predicting the Performance of Component-Based Applications,” in

Proceedings of the Eighth International Workshop on Component-
Oriented Programming (WCOP’03), W. Weck, J. Bosch, and C. Szy-

perski, Eds., Jun. 2003.

[DMTS10] J. Dietrich, C. McCartin, E. Tempero, and S. M. A. Shah, “Barriers to

Modularity – An Empirical Study to Assess the Potential for Modula-

risation of Java Programs,” in QoSA 2010, ser. LNCS, G. Heinemann,

J. Kofron, and F. Plasil, Eds., vol. 6093. Springer, 2010, pp. 135–150.

[Dol01] J. J. Dolado, “On the problem of the software cost function,” Infor-
mation and Software Technology, vol. 43, no. 1, pp. 61–72, January

2001.

347

[DP09] S. Ducasse and D. Pollet, “Software Architecture Reconstruction: a

Process-Oriented Taxonomy,” IEEE Transactions on Software Engi-
neering, vol. 35, no. 4, pp. 573–591, 2009.

[DPJM+02] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and

J. Yang, “Visualizing the Execution of Java Programs,” in Software
Visualization: International Seminar, Dagstuhl Castle, Germany, May
20-25, 2001: Revised Papers. Springer, 2002.

[DS10] J. Dietrich and L. Stewart, “Component Contracts in Eclipse – A Case

Study,” in CBSE 2010, ser. LNCS, L. Grunske, R. Reussner, and F. Pla-

sil, Eds., vol. 6092. Springer, 2010.

[ECGN01] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically

discovering likely program invariants to support program evolution,”

IEEE Transactions on Software Engineering, vol. 27, no. 2, pp. 99–

123, February 2001.

[Ecl09] Eclipse Foundation, “AspectJ Homepage,”

http://www.eclipse.org/aspectj/, 2009, last accessed 2009-12-

29. [Online]. Available: http://www.eclipse.org/aspectj/

[Edm08] J. Edmonds, How to think about Algorithms, 1st ed. Cambridge Uni-

versity Press, New York, NY, USA, 2008.

[Edv99] J. Edvardsson, “A survey on automatic test data generation,” in Procee-
dings of the Second Conference on Computer Science and Engineering
in Linköping. ECSEL, October 1999, pp. 21–28.

[EFH04] E. Eskenazi, A. Fioukov, and D. Hammer, “Performance Prediction for

Component Compositions,” in Component-Based Software Enginee-
ring (CBSE 2004), ser. Lecture Notes in Computer Science, I. C. et al.,

Ed., vol. 3054/2004. Springer Berlin / Heidelberg, 2004, pp. 280–

293. [Online]. Available: http://springerlink.metapress.com/content/

n8951bh1l162y4hc/?p=f75f502238d84e0ea6db958a449d05ac&pi=17

[EJB07] “Sun Microsystems Corp., The Enterprise Java Beans homepage,”

2007, last retrieved 2008-01-06. [Online]. Available: http://java.sun.

com/products/ejb/

[EKKB10] F. Eichinger, K. Krogmann, R. Klug, and K. Böhm, “Software-

Defect Localisation by Mining Dataflow-Enabled Call Graphs,” in

Proceedings of the 10th European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases

348

(ECML PKDD), Barcelona, Spain, 2010. [Online]. Available:

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019636

[EPG+07] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.

Tschantz, and C. Xiao, “The Daikon system for dynamic detection of

likely invariants,” Science of Computer Programming, vol. 69, no. 1–3,

pp. 35–45, Dec. 2007.

[Ern03] M. D. Ernst, “Static and dynamic analysis: Synergy and duality,” in

WODA 2003: ICSE Workshop on Dynamic Analysis, Portland, OR,

May 9, 2003, pp. 24–27. [Online]. Available: http://pag.csail.mit.edu/

~mernst/pubs/staticdynamic-woda2003.pdf

[Est95] J. C. Esteva, “Automatic identification of reusable components,” in

Proceedings: Seventh International Workshop on Computer-Aided
Software Engineering, H. A. Müller and R. J. Norman, Eds. IEEE

Computer Society Press, 1995, pp. 80–89.

[Fav04] J. M. Favre, “CacOphoNy: Metamodel-Driven Software Architecture

Reconstruction,” in Working Conference on Reverse Engineering,
WCRE2004, Delft, The Netherlands, November 2004. [Online].

Available: http://citeseer.ist.psu.edu/favre04cacophony.html

[FDE+01] J.-M. Favre, F. Duclos, J. Estublier, R. Sanlaville, and J.-J.

Auffret, “Reverse engineering a large component-based software

product,” in Fifth European Conference on Software Maintenance
and Reengineering. Lisbon, Portugal: IEEE, March 2001, pp. 95–

104. [Online]. Available: http://ieeexplore.ieee.org/iel5/7309/19763/

00914973.pdf?tp=&isnumber=&arnumber=914973

[FK96] R. Ferguson and B. Korel, “The Chaining Approach for Software Test

Data Generation,” ACM Trans. Softw. Eng. Methodol., vol. 5, no. 1, pp.

63–86, 1996.

[FNNS06] J. Fredriksson, T. Nolte, M. Nolin, and H. Schmidt, “Predicting exe-

cution time for variable behaviour embedded real-time components,”

to appear / RTSS Workshop The 27th IEEE Real-Time Systems Sympo-
sium December 5-8, 2006 Rio de Janeiro, Brazil, 2006.

[Fri91] J. H. Friedman, “Multivariate Adaptive Regression Splines,” The An-
nals of Statistics, vol. 19, no. 1, pp. 1–141, 1991.

[Gar06] V. Garousi, “Traffic-aware Stress Testing of Distributed Real-

Time Systems based on UML Models using Genetic Algorithms,”

349

phd, Ottawa-Carleton Institute of Electrical and Computer En-

gineering, Department of Systems and Computer Engineering,

Carleton University, Ottawa, Ontario, Canada, August 2006. [On-

line]. Available: http://shannon2.uwaterloo.ca/~garousi/downloads/

vahid-garousi-phd-thesis.pdf

[GCL01] J. Grundy, Y. Cai, and A. Liu, “Generation of Distributed System

Test-beds from High-level Software Architecture Descriptions,” Pro-
ceedings of the 2001 IEEE International Conference on Automated
Software Engineering, San Diego, CA., Nov. 2001.

[GG75] J. B. Goodenough and S. L. Gerhart, “Toward a theory of test data

selection,” ACM SIGPLAN Notices, vol. 10, no. 6, pp. 493–510, 1975.

[GG07] I. Galvao and A. Goknil, “Survey of traceability approaches in Model-

Driven Engineering,” in Proceedings of the 11th IEEE International
Enterprise Distributed Object Computing Conference (EDOC 2007).
IEEE, October 2007, pp. 313–326.

[GH88] D. E. Goldberg and J. H. Holland, “Genetic Algorithms and Machine

Learning,” Machine Learning, vol. 3, no. 2-3, pp. 95–99, October

1988.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,

Reading, MA, USA, 1995.

[GL03] J. Gelissen and R. M. Laverty, “Robocop: Revised specification of

framework and models (deliverable 1.5),” Information Technology for

European Advancement, Tech. Rep., 2003.

[GMS05] V. Grassi, R. Mirandola, and A. Sabetta, “From Design to Analysis

Models: a Kernel Language for Performance and Reliability Analysis

of Component-based Systems,” in WOSP ’05: Proceedings of the 5th
international workshop on Software and performance. New York,

NY, USA: ACM Press, 2005, pp. 25–36.

[GSTH08] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Funda-
mentals of Queueing Theory, 4th ed., ser. Series in Probability and

Statistics. Wiley, 2008.

[GWTH98] S. Gokhale, W. Wong, K. Trivedi, and J. Horgan, “An analytical

approach to architecture based software reliability prediction,” 1998.

[Online]. Available: citeseer.nj.nec.com/article/gokhale98analytical.

html

350

[Ham50] R. W. Hamming, “Error detecting and error correcting codes,”

Bell System Technical Journal, vol. 26, no. 2, pp. 147–160,

1950, mR0035935. [Online]. Available: http://www.caip.rutgers.edu/

~bushnell/dsdwebsite/hamming.pdf

[Hap08] J. Happe, “Predicting Software Performance in Symmetric Multi-

core and Multiprocessor Environments,” Dissertation, University

of Oldenburg, Germany, August 2008. [Online]. Available: http:

//oops.uni-oldenburg.de/volltexte/2009/882/pdf/happre08.pdf

[Har75] J. Hartigan, Clustering Algorithms. New York: Wiley, 1975.

[Har07] M. Harman, “The current state and future of search based software

engineering,” Future of Software Engineering, 2007. FOSE ’07, pp.

342–357, May 23-25 2007.

[HBR+10] N. Huber, S. Becker, C. Rathfelder, J. Schweflinghaus, and

R. Reussner, “Performance Modeling in Industry: A Case Study on

Storage Virtualization,” in ACM/IEEE 32nd International Conference
on Software Engineering, Software Engineering in Practice Track,
Capetown, South Africa. New York, NY, USA: ACM, 2010,

pp. 1–10, acceptance Rate: 23% (16/71). [Online]. Available:

http://sdqweb.ipd.uka.de/publications/pdfs/hubern2010.pdf

[HC88] T. Hickey and J. Cohen, “Automating program analysis,” Journal of
the ACM (JACM), vol. 35, no. 1, pp. 185–220, 1988.

[HC91] J. W. Hooper and R. O. Chester, Software Reuse – Guidelines and Me-
thods. New York, NY, USA: Plenum Press, 1991.

[HC01] G. T. Heineman and W. T. Councill, Eds., Component-Based Software
Engineering. Addison Wesley, 2001.

[hela] hello2morrow, “SonarJ homepage.” [Online]. Available: http:

//www.hello2morrow.com/products/sonarj

[helb] ——, “Sotoarc homepage.” [Online]. Available: http://www.

hello2morrow.com/products/sotoarc

[helc] ——, “Sotograph homepage.” [Online]. Available: http://www.

hello2morrow.com/products/sotograph

[HH01] M. Harman and R. Hierons, “An Overview of Program Slicing,” Soft-
ware Focus, vol. 2, no. 3, pp. 85–92, 2001.

351

[HHK02] H. Hermanns, U. Herzog, and J.-P. Katoen, “Pro-

cess algebra for performance evaluation,” Theoretical Com-
puter Science, vol. 274, no. 1-2, pp. 43–87, 2002.

[Online]. Available: http://www.sciencedirect.com/science/article/

B6V1G-4561J4H-3/2/21516ce76bb2e6adab1ffed4dbe0d24c

[HKW+08] S. Herold, H. Klus, Y. Welsch, C. Deiters, A. Rausch, R. Reuss-

ner, K. Krogmann, H. Koziolek, R. Mirandola, B. Hummel,

M. Meisinger, and C. Pfaller, The Common Component Modeling
Example, ser. Lecture Notes in Computer Science. Springer-

Verlag Berlin Heidelberg, 2008, vol. 5153, ch. CoCoME –

The Common Component Modeling Example, pp. 16–53. [On-

line]. Available: http://springerlink.com/content/a04pr72354648281/

?p=34d1b831d92a42359a30ecad99939785&pi=2

[HL00] D. Hosmer and S. Lemeshow, Applied Logistic Regression. Wiley-

Interscience, 2000.

[HMRT01] B. R. Haverkort, R. Marie, G. Rubino, and K. S. Trivedi, Performabi-
lity Modelling : Techniques and Tools. Wiley & Sons, New York, NY,

USA, 2001.

[HMWR99] C. Hrischuk, C. Murray Woodside, and J. Rolia, “Trace-based load

characterization for generating performance software models,” Soft-
ware Engineering, IEEE Transactions on, vol. 25, no. 1, pp. 122–135,

Jan/Feb 1999.

[HMY06] G. Huang, H. Mei, and F. Yang, “Runtime recovery and manipula-

tion of software architecture of component-based systems,” Automated
Software Engineering, vol. 13, no. 2, pp. 257–281, 2006.

[HMZ09a] M. Harman, S. A. Mansouri, and Y. Zhang, “Search Based

Software Engineering: A Comprehensive Analysis and Review

of Trends Techniques and Applications,” Department of Computer

Science, King’s College London, Technical Report TR-09-03, April

2009. [Online]. Available: http://www.dcs.kcl.ac.uk/technical-reports/

papers/TR-09-03.pdf

[HMZ09b] ——, “Search based software engineering: A comprehensive review,”

2009, unpublished.

[Hua08] J. C. Huang, Path-Oriented Program Analysis. Cambridge University

Press, New York, NY, USA, 2008.

352

[IBM] IBM T.J. Watson Research Center, “T.J. Watson Libraries for Analysis

(WALA),” http://wala.sourceforge.net/, last retrieved 2010-01-07.

[Online]. Available: http://wala.sourceforge.net/

[IG02] I. Ivkovic and M. W. Godfrey, “Architecture recovery of dynamically

linked applications: A case study.” in IWPC, 2002, pp. 178–

186. [Online]. Available: http://plg.uwaterloo.ca/~migod/papers/

iwpc02-nautilus.pdf

[IWF07] T. Israr, M. Woodside, and G. Franks, “Interaction tree algorithms to

extract effective architecture and layered performance models from

traces,” Journal of Systems and Software, 5th International Workshop
on Software and Performance, vol. 80, no. 4, pp. 474–492, April 2007.

[Online]. Available: http://www.sciencedirect.com/science/article/

B6V0N-4KSSW5C-1/2/be38c84d6892a796dc2833b6622f66d3

[Jai91] R. Jain, The Art of Computer Systems Performance Analysis. John

Wiley & Sons, New York, 1991.

[JD88] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Upper

Saddle River, NJ, USA: Prentice-Hall, Inc., 1988.

[KB09] H. Koziolek and F. Brosch, “Parameter dependencies for component

reliability specifications,” in Proceedings of the 6th International
Workshop on Formal Engineering approaches to Software Components
and Architectures (FESCA), ser. ENTCS, vol. 253, no. 1. Elsevier,

2009, pp. 23 – 38. [Online]. Available: http://www.koziolek.de/docs/

Koziolek2009.pdf

[KBH07] H. Koziolek, S. Becker, and J. Happe, “Predicting the Performance

of Component-based Software Architectures with different Usage

Profiles,” in Proc. 3rd International Conference on the Quality of
Software Architectures (QoSA’07), ser. Lecture Notes in Computer

Science, vol. 4880. Springer-Verlag Berlin Heidelberg, July 2007, pp.

145–163. [Online]. Available: http://sdqweb.ipd.uka.de/publications/

pdfs/koziolek2007b.pdf

[KBHR08] H. Koziolek, S. Becker, J. Happe, and R. Reussner, “Life-Cycle Aware

Modelling of Software Components,” in Proceedings of the 11th In-
ternational Symposium on Component-Based Software Engineering
(CBSE), ser. Lecture Notes in Computer Science. Universität Karls-

ruhe (TH), Karlsruhe, Germany: Springer-Verlag Berlin Heidelberg,

October 2008, pp. 278–285.

353

[KE00] R. Koschke and T. Eisenbarth, “A framework for experimental evalua-

tion of clustering techniques,” in IWPC 2000. 8th International Work-
shop on Program Comprehension. Limerick, Ireland: IEEE, June

2000, pp. 201–210.

[Kin76] J. C. King, “Symbolic execution and program testing,” Communica-
tions of the ACM, vol. 19, no. Issue 7, pp. 385–394, July 1976.

[KKKR08] T. Kappler, H. Koziolek, K. Krogmann, and R. H. Reuss-

ner, “Towards Automatic Construction of Reusable Predic-

tion Models for Component-Based Performance Engineering,”

in Software Engineering 2008, ser. Lecture Notes in Infor-

matics, vol. 121. Munich, Germany: Bonner Köllen Ver-

lag, February 18–22 2008, pp. 140–154. [Online]. Available:

http://sdqweb.ipd.uka.de/publications/pdfs/kappler2008a.pdf

[KKR08a] M. Kuperberg, K. Krogmann, and R. Reussner, “Performance

Prediction for Black-Box Components using Reengineered Parametric

Behaviour Models,” in Proceedings of the 11th International
Symposium on Component Based Software Engineering (CBSE
2008), Karlsruhe, Germany, 14th-17th October 2008, ser. Lecture

Notes in Computer Science, vol. 5282. Springer-Verlag Berlin

Heidelberg, October 2008, pp. 48–63. [Online]. Available: http:

//sdqweb.ipd.uka.de/publications/pdfs/kuperberg2008c.pdf

[KKR08b] M. Kuperberg, M. Krogmann, and R. Reussner, “ByCounter: Portable

Runtime Counting of Bytecode Instructions and Method Invocations,”

in Proceedings of the 3rd International Workshop on Bytecode Seman-
tics, Verification, Analysis and Transformation, Budapest, Hungary,
5th April 2008 (ETAPS 2008, 11th European Joint Conferences
on Theory and Practice of Software), 2008. [Online]. Available:

http://sdqweb.ipd.uka.de/publications/pdfs/kuperberg2008a.pdf

[KKR10] K. Krogmann, M. Kuperberg, and R. Reussner, “Using Genetic

Search for Reverse Engineering of Parametric Behaviour Models

for Performance Prediction,” IEEE Transactions on Software
Engineering, vol. 36, no. 6, pp. 865–877, 2010. [Online]. Available:

http://sdqweb.ipd.kit.edu/publications/pdfs/krogmann2009c.pdf

[Kla08] B. Klatt, “SoMoX: SOftware MOdel eXtractor,” study thesis, Univer-

sität Karlsruhe (TH), 2008, to appear.

354

[KLM+06] T. Kalibera, J. Lehotsky, D. Majda, B. Repcek, M. Tomcanyi, A. To-

mecek, P. Tuma, and J. Urban, “Automated Benchmarking and Ana-

lysis Tool,” in Proceedings of First International Conference on Per-
formance Evaluation Methodologies and Tools (VALUETOOLS 2006).
Pisa, Italy: ACM, October 2006.

[Klu10] R. Klug, “Fehlerlokalisierung in Software durch Analyse des Daten-

flusses in Call-Graphen,” Diploma Thesis, Fakultät für Informatik,

Karlsruhe Institute of Technology (KIT), 2010, thesis in german.

[Kna10] T. Knapp, “Reverse Engineering of Software Components using Sym-

bolic Execution,” Bachelor Thesis, Faculty of Informatics, Karlsruhe

Institute of Technology (KIT), Karlsruhe, Germany, March 2010.

[Kos00] R. Koschke, “Atomic Architectural Component Recovery for Program

Understanding and Evolution,” phd thesis, Institut für Software-

technologie, Abteilung Programmiersprachen, Fakultät Informatik,

Elektrotechnik und Informationstechnik, Universität Stuttgart, Ger-

many, Stuttgart, Germany, August 2000. [Online]. Available: http://

elib.uni-stuttgart.de/opus/volltexte/2000/669/pdf/Koschke.Thesis.PDF

[Kos02] ——, “Atomic architectural component recovery for program unders-

tanding and evolution,” in Proceedings of the 18th IEEE International
Conference on Software Maintenance (ICSM’02). Los Alamitos, CA,

USA: IEEE Computer Society, 2002, pp. 478–481.

[Kos05] ——, “Rekonstruktion von Software-Architekturen – Ein Literatur-

und Methoden-Überblick zum Stand der Wissenschaft,” Informatik
– Forschung und Entwicklung, vol. 19, no. 3, pp. 127–140,

April 2005, springer Berlin / Heidelberg. [Online]. Available:

http://www.springerlink.com/content/n2634176w28m2034

[Kou06] S. Kounev, “Performance modeling and evaluation of distributed

component-based systems using queueing petri nets,” IEEE Transac-
tions of Software Engineering, vol. 32, no. 7, pp. 486–502, July 2006.

[Koz93] J. R. Koza, Genetic Programming – On the Programming of Computers
by Means of Natural Selection, 3rd ed. The MIT Press, Cambridge,

Massachusetts, 1993.

[Koz08a] H. Koziolek, Parameter Dependencies for Reusable Performance Spe-
cifications of Software Components, ser. The Karlsruhe Series on Soft-

ware Design and Quality. Universitätsverlag Karlsruhe, 2008, vol. 2.

355

[Koz08b] ——, “Parameter Dependencies for Reusable Performance Spe-

cifications of Software Components,” Ph.D. dissertation, Uni-

versity of Oldenburg, 2008. [Online]. Available: http:

//sdqweb.ipd.uka.de/publications/pdfs/koziolek2008g.pdf

[Koz10] ——, “Performance evaluation of component-based software sys-

tems: A survey,” Performance Evaluation, vol. 67, no. 8, pp.

634–658, 2010, special Issue on Software and Performance.

[Online]. Available: http://www.sciencedirect.com/science/article/

B6V13-4WXC21F-1/2/602bed8a6bd384b5516b8f84ac82c672

[KP05] B. Ko and J. Park, Component Architecture Redesigning Approach
Using Component Metrics, ser. Lecture Notes in Computer Science.

Berlin / Heidelberg: Springer Berlin / Heidelberg, 2005, vol.

3397/2005, ch. Artificial Intelligence and Simulation, pp. 449–459.

[KR08a] H. Koziolek and R. Reussner, “A Model Transformation from the

Palladio Component Model to Layered Queueing Networks,” in

Performance Evaluation: Metrics, Models and Benchmarks, SIPEW
2008, ser. Lecture Notes in Computer Science, vol. 5119. Springer-

Verlag Berlin Heidelberg, 2008, pp. 58–78. [Online]. Available: http:

//www.springerlink.com/content/w14m0g520u675x10/fulltext.pdf

[KR08b] K. Krogmann and R. H. Reussner, The Common Component
Modeling Example, ser. Lecture Notes in Computer Science.

Springer-Verlag Berlin Heidelberg, 2008, vol. 5153, ch. Palla-

dio: Prediction of Performance Properties, pp. 297–326. [On-

line]. Available: http://springerlink.com/content/63617n4j5688879h/

?p=9666cb29a31b453aba8a1ae6ee7831b6&pi=11

[Kru92] C. W. Krueger, “Software Reuse,” ACM Computing Surveys, vol. 24,

no. 2, pp. 131–183, 1992.

[KSRP99] R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé, “Pattern-based

reverse-engineering of design components,” in ICSE ’99: Proceedings
of the 21st international conference on Software engineering. Los

Alamitos, CA, USA: IEEE Computer Society Press, 1999, pp. 226–

235.

[Kup10] M. Kuperberg, “Platform-Independent Performance Predictions,”

Ph.D. dissertation, Karlsruhe Institute of Technology (KIT), Faculty

of Informatics, Karlsruhe, Germany, 2010, to appear. working title.

356

[KZM+10] L. Kapova, B. Zimmerova, A. Martens, J. Happe, and R. H. Reussner,

“State dependence in performance evaluation of component-based

software systems,” in Proceedings of the 1st Joint WOSP/SIPEW
International Conference on Performance Engineering (WOSP/SIPEW
’10). New York, NY, USA: ACM, 2010, pp. 37–48. [Online].

Available: http://sdqweb.ipd.uka.de/publications/pdfs/kapova2009b.

pdf

[lat] “Lattix homepage.” [Online]. Available: http://www.lattix.com/

[Lau06] K.-K. Lau, “Software Component Models,” in Proceedings of the 6th
International Conference on Software Engineering (ICSE06). ACM

Press, 2006, pp. 1081–1082.

[LC98] E. L. Lehmann and G. Casella, Theory of Point Estimation, 2nd ed.,

ser. Springer Texts in Statistics. Springer Verlag, New York, 1998.

[Lee06] J. Lee, “Program Validation by Symbolic and Reverse Execution,”

PhD thesis, BRICS Ph.D. School, Department of Computer Science,

University of Aarhus, Aarhus, Denmark, November 2006. [Online].

Available: http://www.brics.dk/~jlee/papers/thesis-jooyong.pdf

[LFG05] Y. Liu, A. Fekete, and I. Gorton, “Design-Level Performance Predic-

tion of Component-Based Applications,” IEEE Transactions on Soft-
ware Engineering, vol. 31, no. 11, pp. 928–941, 2005.

[LH99] D. Liang and M. Harrold, “Efficient points-to analysis for whole-

program analysis,” in Software Engineering – ESEC/FSE’99, ser.

LNCS, vol. 1687. Springer, 1999, pp. 199–215.

[Lin93] B. W. Lindgren, Statistical Theory. New York: Macmillan, 1993.

[LL03] J. Lundberg and W. Löwe, “Architecture Recovery by Semi-Automatic

Component Identification,” Electronic Notes in Theoretical Computer
Science, vol. 82, no. 5, pp. 98–114, 2003.

[LMS+99] S. Lapierre, E. Merlo, G. Savard, G. Antoniol, R. Fiutem, and P. To-

nella, “Automatic Unit Test Data Generation Using Mixed-Integer Li-

near Programming and Execution Trees,” in 15th IEEE International
Conference on Software Maintenance (ICSM’99), vol. 00. Los Ala-

mitos, CA, USA: IEEE Computer Society, 1999, p. 189.

[LS95] P. Langley and H. A. Simon, “Applications of machine learning and

rule induction,” Communications of the ACM, vol. 38, no. 11, pp. 54–

64, 1995.

357

[LS99] T. Lundqvist and P. Stenström, “An Integrated Path and Timing

Analysis Method based on Cycle-Level Symbolic Execution,” Real-
Time Systems, Springer Netherlands, vol. 17, no. 2-3, pp. 183–207,

November 1999. [Online]. Available: http://www.springerlink.com/

content/n85l7k240p716837/

[Luc01] A. D. Lucia, “Program Slicing: Methods and Applications,” in Pro-
ceedings of the First IEEE International Workshop on Source Code
Analysis and Manipulation, Florence, Italy, 2001, pp. 142–149.

[LW05] K.-K. Lau and Z. Wang, “A Taxonomy of Software Component Mo-

dels,” in Proceedings of the 31st EUROMICRO Conference. IEEE

Computer Society Press, 2005, pp. 88–95.

[LW07] ——, “Software component models,” IEEE Transactions on Software
Engineering, vol. 33, no. 10, pp. 709–724, October 2007.

[Map] Maplesoft, “Maple,” http://www.maplesoft.com/products/Maple/, last

accessed 2010-04-23.

[Mar94] R. Martin, “OO Design Quality Metrics – An Analysis of Dependen-

cies.” Object-Oriented Programming Systems, Languages, and Ap-

plications (OOPSLA), October 1994.

[Mar05] A. Martens, “Empirical Validation and Comparison of the Model-

Driven Performance Prediction Techniques of CB-SPE and Palladio,”

Carl-von-Ossietzky Universität Oldenburg, Aug. 2005, study thesis.

[Mar07] ——, “Empirical Validation of the Model-driven Performance Predic-

tion Approach Palladio,” Master’s thesis, Carl-von-Ossietzky Univer-

sität Oldenburg, Nov. 2007.

[MB07] O. Maqbool and H. Babri, “Hierarchical Clustering for Software Ar-

chitecture Recovery,” IEEE Transactions on Software Engineering,

vol. 33, no. 11, pp. 759–780, 2007.

[MBKR08a] A. Martens, S. Becker, H. Koziolek, and R. Reussner, “An Empirical

Investigation of the Applicability of a Component-Based Performance

Prediction Method,” in Proceedings of the 5th European Performance
Engineering Workshop (EPEW’08), Palma de Mallorca, Spain, ser.

Lecture Notes in Computer Science, vol. 5261. Springer-Verlag Ber-

lin Heidelberg, 2008, pp. 17–31.

358

[MBKR08b] ——, “An Empirical Investigation of the Effort of Creating Reusable

Models for Performance Prediction,” in Proceedings of the 11th In-
ternational Symposium on Component-Based Software Engineering
(CBSE’08), Karlsruhe, Germany, ser. Lecture Notes in Computer

Science, vol. 5282. Springer-Verlag Berlin Heidelberg, 2008, pp.

16–31.

[MBTS04] G. Myers, T. Badgett, T. Thomas, and C. Sandler, The Art of Software
Testing, 2nd ed. Wiley, 2004.

[McI69] M. D. McIlroy, ““Mass Produced” Software Components,” in Software
Engineering, P. Naur and B. Randell, Eds. Brussels: Scientific Affairs

Division, NATO, 1969, pp. 138–155, report of a conference sponsored

by the NATO Science Committee, Garmisch, Germany, 7th to 11th

October 1968.

[McM04] P. McMinn, “Search-based software test data generation: a survey,”

Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–

156, June 2004.

[Mef] K. Meffert, “JGAP – Java Genetic Algorithms Package,” http:

//jgap.sourceforge.net/, last retrieved: 2010-01-04. [Online]. Available:

http://jgap.sourceforge.net/

[MG00] D. A. Menasce and H. Gomaa, “A method for design and

performance modeling of client/server systems,” IEEE Transactions
on Software Engineering, vol. 26, no. 11, pp. 1066–1085, November

2000. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=881718

[Mil56] G. A. Miller, “The magical number seven, plus or minus two: Some

limits on our capacity for processing information,” Psychological Re-
view, vol. 63, no. 2, pp. 81–97, 1956.

[MIO87] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliability – Mea-
surement, prediction, application. New York: McGraw-Hill, 1987.

[MJS+00] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley, and

K. Wong, “Reverse engineering: a roadmap,” in ICSE ’00: Procee-
dings of the Conference on The Future of Software Engineering. New

York, NY, USA: ACM, 2000, pp. 47–60.

359

[MM01a] B. S. Mitchell and S. Mancoridis, “Comparing the decompositions

produced by software clusteringalgorithms using similarity measure-

ments,” in Proceedings of the IEEE International Conference on Soft-
ware Maintenance, CSMR 2001, 2001, pp. 744–753.

[MM01b] ——, “CRAFT: A Framework for Evaluating Software Clus-

tering Results in the Absence of Benchmark Decompositions,”

in Proceedings of the 2001 Working Conference in Reverse
Engineering (WCRE’01). Stuttgart, Germany: IEEE, Octo-

ber 2001, pp. 93–102, best Paper Award. [Online]. Available:

http://www.cs.drexel.edu/~spiros/papers/WCRE01a.pdf

[MM06] B. Mitchell and S. Mancoridis, “On the automatic modularization

of software systems using the Bunch tool,” IEEE Transactions
on Software Engineering, vol. 32, no. 3, pp. 193–208, March

2006. [Online]. Available: http://ieeexplore.ieee.org/iel5/32/33822/

01610610.pdf

[MOTU93] H. Muller, M. Orgun, S. Tilley, and J. Uhl, “A reverse engineering

approach to subsystem structure identification,” Journal of Software
Maintenance: Research and Practice, vol. 5, no. 4, pp. 181–204, De-

cember 1993.

[MPP07] L. Mariani, S. Papagiannakis, and M. Pezzè, “Compatibility and re-

gression testing of cots-component-based software,” in ICSE’07, Pro-
ceedings of the 29th International Conference on Software Enginee-
ring, Minneapolis, MN, USA, May 23–25, 2007, pp. 85–95.

[MW94] F. Mueller and D. B. Whalley, “Efficient on-the-fly analysis of pro-

gram behavior and static cache simulation,” Lecture Notes in Computer
Science, vol. 864/1994, pp. 101–115, 1994.

[Mye75] G. J. Myers, Reliable software through composite design. New York:

Petrocelli/Charter, 1975.

[NE02] J. W. Nimmer and M. D. Ernst, “Automatic generation of program spe-

cifications,” ACM SIGSOFT Softw. Eng. Notes, vol. 27, no. 4, pp. 229–

239, 2002.

[NK05] P. Niemeyer and J. Knudsen, Learning Java, 3rd ed., M. Loukides and

D. Cameron, Eds. O’Reilly, Sebastopol, 2005.

[NNH99] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Ana-
lysis. Berlin: Springer, 1999.

360

[NNS02] F. Nielson, H. R. Nielson, and H. Seidl, Proceedings of the 11th Euro-
pean Symposium on Programming, Programming Languages and Sys-
tems: , ESOP 2002, ser. Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, April 2002, vol. 2305/2002, ch. Automatic Com-

plexity Analysis, pp. 237–261.

[NNZ00] U. A. Nickel, J. Niere, and A. Zündorf, “Tool demonstration: The FU-

JABA environment,” in Proc. of the 22nd International Conference on
Software Engineering (ICSE), Limerick, Ireland, 2000.

[Obj05a] Object Management Group (OMG), “UML Profile for Schedulability,

Performance and Time,” January 2005. [Online]. Available: http:

//www.omg.org/cgi-bin/doc?formal/2005-01-02

[Obj05b] ——, “Unified Modeling Language Specification: Version 2,

Revised Final Adopted Specification (ptc/05-07-04),” 2005. [Online].

Available: http://www.omg.org/spec/UML/2.0/

[Obj06a] ——, “CORBA Component Model, v4.0 (formal/2006-04-01),” 2006.

[Online]. Available: http://www.omg.org/technology/documents/

formal/components.htm

[Obj06b] ——, “MOF 2.0 Core Specification (formal/2006-01-01),” 2006. [On-

line]. Available: http://www.omg.org/cgi-bin/doc?formal/2006-01-01

[Obj06c] ——, “UML Profile for Modeling and Analysis of Real-Time and Em-

bedded systems (MARTE) RFP (realtime/05-02-06),” 2006. [Online].

Available: http://www.omg.org/cgi-bin/doc?realtime/2005-2-6

[Obj06d] Object Web, “The Fractal Project Homepage,” 2006, last retrieved

2008-01-06. [Online]. Available: http://fractal.objectweb.org/

[Obj07] Object Management Group (OMG), “CORBA 3.0 - OMG IDL

Syntax and Semantics chapter,” 2007. [Online]. Available: http:

//www.omg.org/docs/formal/02-06-39.pdf

[OD08] D. L. Olson and D. Delen, Advanced Data Mining Techniques. Sprin-

ger Verlag, February 2008.

[Ora10] Oracle, Sun Developer Network, “The Java Tutorials, Les-

son: Exceptions,” http://java.sun.com/docs/books/tutorial/essential/-

exceptions/index.html, January 2010.

361

[Ori05] C. Oriat, Jartege: A Tool for Random Generation of Unit Tests for
Java Classes, ser. Lecture Notes in Computer Science. Heidelberg:

Springer Berlin, September 2005, vol. 3712/2005, pp. 242–256.

[Online]. Available: http://dx.doi.org/10.1007/11558569_18

[OSG09] OSGi Service Platform, OSGi Alliance Std., Rev. 4.2, June 2009.

[Online]. Available: http://www.osgi.org/

[OSV02] L. O’Brien, C. Stoermer, and C. Verhoef, “Software architecture

reconstruction: Practice needs and current approaches,” Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, Tech.

Rep. CMU/SEI-2002-TR-024, August 2002. [Online]. Available:

http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr024.pdf

[OSV08] M. Odersky, L. Spoon, and B. Venners, Programming in Scala, 1st ed.

artima, November 2008.

[Pad] U. Paderborn, “Fujaba Tool Suite RE,” last retrieved: 2010-07-24.

[Online]. Available: http://www.fujaba.de/

[Par93] C. Y. Park, “Predicting program execution times by analyzing static

and dynamic program paths,” Real-Time Systems, Springer Nether-
lands, vol. 5, no. 1, pp. 31–62, March 1993.

[PDP+07] D. Pollet, S. Ducasse, L. Poyet, I. Alloui, S. Cimpan, and H. Verjus,

“Towards A Process-Oriented Software Architecture Reconstruction

Taxonomy,” in 11th European Conference on Software Maintenance
and Reengineering, 2007 (CSMR ’07). Los Alamitos, CA, USA:

IEEE Computer Society, March 2007, pp. 137–148.

[PE88] F. Pfenning and C. Elliot, “Higher-order abstract syntax,” ACM SIG-
PLAN Notices, vol. 23, no. 7, pp. 199–208, 1988.

[Pet80] C. A. Petri, “Introduction to general net theory,” in Net theory and
applications : Proceedings of the advanced course on general net
theory,processes and systems (Hamburg, 1979), ser. Lecture Notes in

Computer Science, W. Brauer, Ed., vol. 84. Springer-Verlag, Berlin,

1980, pp. 1–20.

[PHY10] K. Praditwong, M. Harman, and X. Yao, “Software Module Clustering

as a Multi-Objective Search Problem,” IEEE Transactions on Software
Engineering, vol. 99, no. PrePrints, 2010.

362

[PM08] T. Parsons and J. Murphy, “Detecting Performance Antipatterns in

Component Based Enterprise Systems,” Journal of Object Technology,

vol. 7, no. 3, pp. 55–90, March-April 2008. [Online]. Available:

http://www.jot.fm/issues/issue_2008_03/article1/

[PMT+08] T. Parsons, A. Mos, M. Trofin, T. Gschwind, and J. Murphy, “Extrac-

ting Interactions in Component-Based Systems,” IEEE Transactions
on Software Engineering, vol. 34, no. 6, pp. 783–799, 2008.

[PP09] T. Poch and F. Plasil, “Extracting Behavior Specification of Compo-

nents in Legacy Applications,” in Proceedings of the 12th International
Symposium on Component Based Software Engineering (CBSE 2009),
ser. LNCS, no. 5582. Springer, June 2009, pp. 87–103.

[PV09] C. Păsăreanu and W. Visser, “A survey of new trends in symbolic exe-

cution for software testing and analysis,” International Journal on Soft-
ware Tools for Technology Transfer (STTT), vol. 11, no. 4, pp. 339–

353, October 2009.

[PWA05] O. Pilskalns, D. Williams, and A. Andrews, “Defining Maintainable

Components in the Design Phase,” in Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM’05). Los

Alamitos, CA, USA: IEEE Computer Society, 2005, pp. 49–58.

[qim09] “EU project Q-ImPrESS, Quality Impact Prediction for Evolving

Service-oriented Software,” 2009, http://www.q-impress.eu/, last

retrieved 2009-10-20. [Online]. Available: http://www.q-impress.eu/

[Rec] Recoder Team, “Recoder homepage,” http://recoder.sourceforge.

net/, last retrieved 2007-10-25. [Online]. Available: http://recoder.

sourceforge.net/

[Rei85] W. Reisig, Petri Nets: An Introduction, ser. EATCS Monographs on

Theoretical Computer Science. Springer-Verlag, Berlin, Germany,

1985.

[Rei08] S. P. Reiss, “Controlled dynamic performance analysis,” in WOSP ’08:
Proceedings of the 7th international workshop on Software and per-
formance. New York, NY, USA: ACM, 2008, pp. 43–54.

[Rin01] M. Rinard, Static Analysis. Springer, 2001, vol. 2126/2001, ch. Ana-

lysis of Multithreaded Programs, pp. 1–19.

[RJ01] B. Ramesh and M. Jarke, “Toward reference models for requirements

traceability,” IEEE Trans. Softw. Eng., vol. 27, no. 1, pp. 58–93, 2001.

363

[RK09] C. Rathfelder and S. Kounev, “Model-based performance prediction

for event-driven systems,” in Proceedings of the Third ACM
International Conference on Distributed Event-Based Systems, ser.

DEBS ’09. New York, NY, USA: ACM, 2009, pp. 33:1–33:2.

[Online]. Available: http://doi.acm.org/10.1145/1619258.1619300

[RLvV06] R. Roeller, P. Lago, and H. van Vliet, “Recovering architectural as-

sumptions,” The Journal of Systems and Software, vol. 79, pp. 552–

573, April 2006.

[Rom09] A. Romito, “Performance-Kennlinien nachrichtenbasierter Systeme,”

Diploma Thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe,

Germany, October 2009, thesis in German.

[Ros90] M. Rosendahl, “Automatic complexity analysis,” in FPCA ’89: Pro-
ceedings of the fourth international conference on Functional pro-
gramming languages and computer architecture. New York, NY,

USA: ACM Press, 1990, pp. 144–156.

[Ros06] K. D. Ross, “Towards an automatic complexity analysis for generic

programs,” in WGP ’06: Proceedings of the 2006 ACM SIGPLAN
workshop on Generic programming. New York, NY, USA: ACM,

2006, pp. 87–95.

[RR00] S. P. Reiss and M. Renieris, “Generating Java trace data,” in JAVA ’00:
Proceedings of the ACM 2000 conference on Java Grande. New York,

NY, USA: ACM, 2000, pp. 71–77.

[RR02] C. Riva and J. V. Rodriguez, “Combining Static and Dynamic Views

for Architecture Reconstruction,” in Proceedings of the Sixth Euro-
pean Conference on Software Maintenance and Reengineering (CSMR
2002). Los Alamitos, CA, USA: IEEE Computer Society Press, 2002,

pp. 11–13.

[RRMF08] A. Rausch, R. Reussner, R. Mirandola, and FrantisekPlasil, Eds.,

The Common Component Modeling Example: Comparing Software
Component Models, ser. Lecture Notes in Computer Science.

Springer-Verlag Berlin Heidelberg, 2008, vol. 5153. [Online].

Available: http://springerlink.com/content/l8t37r41612l/

[RSP03] R. H. Reussner, H. W. Schmidt, and I. Poernomo, “Reliability Pre-

diction for Component-Based Software Architectures,” Journal of Sys-
tems and Software – Special Issue of Software Architecture – Enginee-
ring Quality Attributes, vol. 66, no. 3, pp. 241–252, 2003.

364

[RvHG+08] M. Rohr, A. van Hoorn, S. Giesecke, J. Matevska, W. Hasselbring, and

S. Alekseev, “Trace-context sensitive performance profiling for enter-

prise software applications,” in Performance Evaluation: Metrics, Mo-
dels and Benchmarks, ser. LNCS, S. Kounev, I. Gorton, and K. Sachs,

Eds., vol. 5119. Springer, 2008, pp. 283–302.

[SAG+06] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan, “Discove-

ring architectures from running systems,” IEEE Transactions on Soft-
ware Engineering, vol. 32, no. 7, pp. 454–466, July 2006.

[Sam97] J. Sametinger, Software engineering with reusable components.

Springer Verlag, Heidelberg, 1997.

[Sar03] K. Sartipi, “Software architecture recovery based on pattern matching,”

in International Conference on Software Maintenance, 2003. ICSM
2003. Proceedings. Los Alamitos, CA, USA: IEEE Computer So-

ciety, September 2003, pp. 293–296.

[Sch07] S. E. Schaeffer, “Graph clustering,” Computer Science
Review, vol. 1, no. 1, pp. 27–64, 2007. [On-

line]. Available: http://www.sciencedirect.com/science/article/

B8JDG-4PBG1S7-1/2/6537f3d1ffbf391086c60dbeba874b13

[SF96] R. Sedgewick and P. Flajolet, An introduction to the analysis of algo-
rithms. Addison-Wesley Longman Publishing Co., Inc. Boston, MA,

USA, 1996.

[SGM02] C. Szyperski, D. Gruntz, and S. Murer, Component Software: Beyond
Object-Oriented Programming, 2nd ed. New York, NY: ACM Press

and Addison-Wesley, 2002.

[SH97] M. Shapiro and S. Horwitz, “Fast and accurate flow-insensitive points-

to analysis,” in POPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. New

York, NY, USA: ACM, 1997, pp. 1–14.

[SKK+01] M. Sitaraman, G. Kuczycki, J. Krone, W. F. Ogden, and A. Reddy,

“Performance Specification of Software Components,” in Proceedings
of the 2001 symposium on Software reusability: putting software reuse
in context. ACM Press, 2001, pp. 3–10.

[SKR08] S. Sarkar, A. C. Kak, and G. M. Rama, “Metrics for Measuring the

Quality of Modularization of Large-Scale Object-Oriented Software,”

IEEE Transactions on Software Engineering, vol. 34, no. 5, pp. 700–

720, 2008.

365

[SLLL07] D. Strein, R. Lincke, J. Lundberg, and W. Löwe, “An Extensible Meta-

Model for Program Analysis,” IEEE Transactions on Software Engi-
neering, vol. 33, no. 9, pp. 592–607, 2007.

[SLS77] G. Seber, A. Lee, and G. Seber, Linear Regression Analysis. Wiley

New York, 1977.

[Smi90] C. U. Smith, Performance Engineering of Software Systems. Addi-

son-Wesley, Reading, MA, USA, 1990.

[Som10] “SoMoX – The SOftware MOdel eXtractor,” http://www.somox.org,

2010, last retrieved 2010-03-15.

[SP94] M. Srinivas and L. Patnaik, “Adaptive probabilities of crossover and

mutation in genetic algorithms,” IEEE Transactions on Systems, Man
and Cybernetics, vol. 24, no. 4, pp. 656–667, Apr 1994.

[Spr06] “The Spring Framework Homepage,” 2006. [Online]. Available:

http://www.springframework.org/

[SR09] J. Stammel and R. Reussner, “Kamp: Karlsruhe architectural

maintainability prediction,” in Proceedings of the 1. Workshop des
GI-Arbeitskreises Langlebige Softwaresysteme (L2S2): "Design for
Future - Langlebige Softwaresysteme", G. Engels, R. Reussner,

C. Momm, and S. Sauer, Eds., 2009, pp. 87–98. [Online]. Avai-

lable: http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/

Vol-537/

[SRK06] G. Snelting, T. Robschink, and J. Krinke, “Efficient path conditions in

dependence graphs for software safetyanalysis,” ACM Transactions on
Software Engineering and Methodology, vol. 15, no. 4, pp. 410–457,

October 2006. [Online]. Available: http://pp.info.uni-karlsruhe.de/

uploads/publikationen/snelting06tosem.pdf

[SSM06] O. Seng, F. Simon, and T. Mohaupt, Code Quality Management.
dpunkt Verlag, Heidelberg, 2006.

[Sta73] H. Stachowiak, Allgemeine Modelltheorie. Springer Verlag, Wien,

1973.

[Sta05] Standard Performance Evaluation Corporation (SPEC), “SPEC-

jbb2005 Java Server Benchmark,” http://www.spec.org/jbb2005/,

2005, last accessed 2010-07-25.

366

[Sta08] Standard Performance Evaluation Corp., “SPECjvm2008 Bench-

marks,” 2008, URL: http://www.spec.org/jvm2008/, last visit: October

9th, 2009. [Online]. Available: http://www.spec.org/jvm2008/

[Sta09] StatSoft, “Multivariate Adaptive Regression Splines (MARSplines),”

Website, 2009, last retrieved 2009-04-09. [Online]. Available:

http://www.statsoft.nl/ik/textbook&stmars.html

[Sto07] C. Stormer, “Software quality attribute analysis by architecture recons-

truction (squa3re),” in 11th European Conference on Software Main-
tenance and Reengineering, 2007 (CSMR ’07). Los Alamitos, CA,

USA: IEEE Computer Society, March 2007, pp. 361–364.

[STTK07] M. Schmid, M. Thoss, T. Termin, and R. Kroeger, “A Generic

Application-Oriented Performance Instrumentation for Multi-Tier En-

vironments,” in 10th IFIP/IEEE International Symposium on Integra-
ted Network Management (IM2007). IEEE, May 2007, pp. 304–313.

[Su09] T. Sag and M. Çunkas, “A tool for multiobjective evolutionary algo-

rithms,” Advances in Engineering Software, vol. 40, no. 9, pp. 902–

912, 2009. [Online]. Available: http://www.sciencedirect.com/science/

article/B6V1P-4VP12DC-4/2/d3574c82b60ff338ba2e154c3f2b0e37

[SW02] C. U. Smith and L. G. Williams, Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software. Addison-Wesley,

2002.

[Sys99] T. Systä, “Dynamic Reverse Engineering of Java Software,” in

ECOOP ’99 Workshop Reader, ser. Lectural Notes in Computer

Science, S. Ducasse and O. Ciupke, Eds., no. 1743. Springer-Verlag

London, UK, 1999, pp. 174–175, last retrieved: 2006-10-23. [Online].

Available: http://www.cs.tut.fi/%7Etsysta/papers/ecoopnew.pdf

[Sys00] ——, “Static and Dynamic Reverse Engineering Tech-

niques for Java Software Systems,” Ph.D. dissertation, Uni-

versity of Tampere, Finland, 2000. [Online]. Available:

http://acta.uta.fi/pdf/951-44-4811-1.pdf

[TH99] V. Tzerpos and R. Holt, “MoJo: A Distance Metric for Software Clus-

terings,” in IEEE, Sixth Working Conference on Reverse Engineering
(WCRE). Los Alamitos, CA, USA: IEEE Computer Society, 1999, p.

187.

367

[The09] The Q-ImPrESS consortium, “Service Architecture Meta-

Model (SAMM),” http://www.q-impress.eu/wordpress/wp-

content/uploads/2009/05/d21-service_architecture_meta-model.pdf,

May 2009, project Deliverable D2.1, last accessed 2010-04-03.

[Tho68] K. Thompson, “Programming Techniques: Regular expression search

algorithm,” Communications of the ACM, vol. 11, no. 6, pp. 419–422,

1968.

[Tri01] K. S. Trivedi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications, 2nd ed. Wiley & Sons, New York,

NY, USA, 2001.

[TS05] M. Trifu and P. Szulman, “Language independent abstract metamodel

for quality analysis and improvement of oo systems,” in Proceedings
of the 7th German Workshop on Software-Reengineering (WSR 2005),
Bad Honnef, Germany, ser. Softwaretechnik-Trends, vol. 25, no. 2,

2005.

[TS06] N. Tillmann and W. Schulte, “Unit tests reloaded: parameterized unit

testing with symbolic execution,” IEEE Software, vol. 23, no. 4, pp.

38–47, July-Aug. 2006.

[TTBS07] P. Tonella, M. Torchiano, B. D. Bois, and T. Systä, “Empirical studies

in reverse engineering: state of the art and future trends,” Empirical
Software Engineering, Springer, March 2007, published online

first. [Online]. Available: http://www.hitech-projects.com/euprojects/

serious/public_papers/EmpiricalStudies.pdf

[VGM+09] L. Vanneschi, S. Gustafson, A. Moraglio, I. D. Falco, and M. Eb-

ner, Genetic Programming – Proceedings of the 12th European Confe-
rence, EuroGP 2009 Tübingen, Germany, April 15-17, 2009, ser.

LNCS. Springer Berlin/Heidelberg, April 2009, vol. 5481.

[WAW04a] S. Winkler, M. Affenzeller, and S. Wagner, “Identifying Nonlinear

Model Structures Using Genetic Programming Techniques,” in Cy-
bernetics and Systems 2004, 2004, pp. 689–694. [Online]. Available:

http://www.heuristiclab.com/publications/papers/winkler04a.pdf

[WAW04b] ——, “New methods for the identification of nonlinear model

structures based upon genetic programming techniques,” Proceedings
of the 15th International Conference on Systems Science, vol. 1,

pp. 386–393, 2004, last retrieved 2006-09-01. [Online]. Available:

http://www.heuristiclab.com/publications/papers/winkler04b.pdf

368

[Weg75] B. Wegbreit, “Mechanical program analysis,” Communications of the
ACM, vol. 18, no. 9, pp. 528–539, 1975.

[Wei81] M. Weiser, “Program slicing,” in ICSE ’81: Proceedings of the 5th
international conference on Software engineering. Piscataway, NJ,

USA: IEEE Press, 1981, pp. 439–449.

[WF05] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, second edition ed., ser. Morgan Kaufmann Se-

ries in Data Management Systems. San Francisco, CA: Morgan Kauf-

man, 2005.

[WFP07a] M. Woodside, G. Franks, and D. Petriu, “The future of software per-

formance engineering,” in Future of Software Engineering (FOSE ’07).
Los Alamitos, CA, USA: IEEE Computer Society, May 2007, pp. 171–

187.

[WFP07b] M. Woodside, G. Franks, and D. C. Petriu, “The Future of Software

Performance Engineering,” in Proceedings of ICSE 2007, Future of
SE. IEEE Computer Society, Washington, DC, USA, 2007, pp. 171–

187.

[WG98] J. Wegener and M. Grochtmann, “Verifying Timing Constraints of

Real-Time Systems by Means of Evolutionary Testing,” Real-Time
Systems, vol. 15, no. 3, pp. 275–298, 1998.

[Whi04] D. Whitley, “A genetic algorithm tutorial,” Statistics and Computing,

vol. 4, no. 2, pp. 65–85, June 2004. [Online]. Available:

http://www.springerlink.com/content/wh268l221ml68873/

[WHSB01] M. Woodside, C. Hrischuka, B. Selic, and S. Bayarov, “Automated per-

formance modeling of software generated by a design environment,”

Performance Evaluation, vol. 45, no. 2-3, pp. 107–123, July 2001.

[Win06] W. E. Winkler, “Overview of Record Linkage and Current Research

Directions,” Statistical Research Division, U.S. Census Bureau,

Washington, Research Report Series, RRS 2006-2, 2006. [Online].

Available: http://www.census.gov/srd/papers/pdf/rrs2006-02.pdf

[WMW03] X. Wu, D. McMullan, and M. Woodside, “Component Based Perfor-

mance Prediction,” in Component-Based Software Engineering (CBSE
2003), I. Crnkovic, H. Schmidt, J. Stafford, and K. Wallnau, Eds. Car-

negie Mellon University, USA, and Monash University, Australia, May

2003.

369

[Wol] Wolfram Research, “Mathematica,”

http://www.wolfram.com/products/mathematica/, last accessed 2010-

04-23.

[WSH08] Z. Wang, A. Sanchez, and A. Herkersdorf, “Scisim: a software per-

formance estimation framework using source code instrumentation,”

in WOSP ’08: Proceedings of the 7th international workshop on Soft-
ware and performance. New York, NY, USA: ACM, 2008, pp. 33–42.

[WVCB01] M. Woodside, V. Vetland, M. Courtois, and S. Bayarov, Performance
Engineering: State of the Art and Current Trends, ser. Lecture

Notes in Computer Science. Heidelberg: Springer, Heidelberg,

2001, vol. LNCS 2047/2001, ch. Resource Function Capture for

Performance Aspects of Software Components and Sub-Systems, pp.

239–256. [Online]. Available: http://www.springerlink.com/content/

71k0ka2c1l7fn99q/

[WW04a] X. Wu and M. Woodside, “Performance modeling from software com-

ponents,” SIGSOFT Softw. Eng. Notes, vol. 29, no. 1, pp. 290–301,

2004.

[WW04b] ——, “Performance Modeling from Software Components,” SIGSOFT
Softw. Eng. Notes, vol. 29, no. 1, pp. 290–301, 2004.

[WYF03] H. Washizaki, H. Yamamoto, and Y. Fukazawa, “A metrics suite for

measuring reusability of software components,” in Proceedings of the
Ninth International Software Metrics Symposium (METRICS’03), ser.

IEEE. IEEE Computer Society, 2003, pp. 211–223. [Online]. Avai-

lable: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1232469

[Yac02] S. M. Yacoub, “Performance Analysis of Component-Based Applica-

tions,” in SPLC 2: Proceedings of the Second International Conference
on Software Product Lines. London, UK: Springer-Verlag, 2002, pp.

299–315.

[YGS+04] H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman, “Discotect:

A system for discovering architectures from running systems,” in ICSE
’04: Proceedings of the 26th International Conference on Software
Engineering. Washington, DC, USA: IEEE Computer Society, 2004,

pp. 470–479.

[ZHM97] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage

and adequacy,” ACM Comput. Surv., vol. 29, no. 4, pp. 366–427, 1997.

370

[ZWL08] T. Zheng, C. Woodside, and M. Litoiu, “Performance model estimation

and tracking using optimal filters,” IEEE Transactions on Software En-
gineering, vol. 34, no. 3, pp. 391–406, May-June 2008.

371

K
la

u
s

K
ro

g
m

an
n

4

The Karlsruhe Series on
Software Design and Quality

Edited by Prof. Dr. Ralf Reussner

Model-based performance prediction systematically deals with the evaluation of
software performance to avoid for example bottlenecks, estimate execution en-
vironment sizing, or identify scalability limitations for new usage scenarios. Such
performance predictions require up-to-date software performance models. Still,
no automated reverse engineering approach for software performance models
at an architectural level exists. This book describes a new integrated reverse en-
gineering approach for the reconstruction of software component architectures
and software component behaviour models which are parameterised over hard-
ware, component assembly, and control and data flow and as such can serve
as software performance models due to the execution semantics of the target
meta-model.

R
ec

o
n

st
ru

ct
io

n
 o

f
So

ft
w

ar
e

C
o

m
p

o
n

en
t

A
rc

h
it

ec
tu

re
s

an
d

 B
eh

av
io

u
r

M
o

d
el

s
u

si
n

g
 S

ta
ti

c
an

d
 D

yn
am

ic
 A

n
al

ys
is

Reconstruction of Software Component
Architectures and Behaviour Models
using Static and Dynamic Analysis

Klaus Krogmann

ISBN 978-3-86644-804-9
ISSN 1867-0067

9 783866 448049

ISBN 978-3-86644-804-9

The Karlsruhe Series on
Software Design

and Quality

4

	Leere Seite
	Leere Seite

