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PREFACE

Theoretical models of risk theory used in risk management were developed at
the beginning of the XX century. At that time, the occurrence of natural disas-
ters and other types of events was considered as being completely unpredictable.
Nowadays, we have early warning systems and funds for disasters, and thus risk
reduction is feasible. Moreover, we know more about the stochastic nature of
some geophysical processes. The core of this book is to update risk management
according to these new advances and challenges.

In the present research, two new tools in the risk management were devel-
oped: the theory of an arrival process taking into account an early warning system
and consequently the theory of risk management for risk-averse governments.
New models and procedures presented open up several new lines of research.

Although Poisson-based models and their generalizations are widely used in
the practice and in many occasions produce acceptable results, sometimes are not
rich enough to be applied directly in risk management issues. The global climate
change and the lack of reliable historical data bases release the importance of
exploring new mathematical tools to perform statistical studies of extremes. One
possibility explored in the book and being the major contribution is the use of
multifractal models. In the future, if the process shows multiscaling properties,
we could take advantage of the abundant information at small scales to make
statistical inference at the relevant scales for extremal events.

Wojciech Szatzschneider!
February 2006

! Chairman of the graduate program in Financial Mathematics of the Andhuac University,
Mexico City
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INTRODUCTION

The purpose of this research are the economic aspects of disasters. We focus on
the study of risk management of natural disasters from the perspective of complex
systems, using the example of Mexico. The term risk management is used in
several disciplines, with different meanings. We define risk management as the
discipline that provides quantitative tools for the manager or decision maker to
compare —or better help to compare— different alternatives to make decisions
that deal with the availability of money under uncertainty.

We found a number of unexplored problems in actuarial sciences. In particu-
lar, the lack of models for governmental funds and its management. Whereas the
management of private funds is well studied in the literature, we did not find an
actuarial model conceived from the governmental perspective.

Although we based this research on the example of Mexico, our results can
be useful for other countries in which the government plays a fundamental role
absorbing losses and risk can not easily be absorbed with taxes. We develop
the theory of an arrival process taking into account an early warning system and
we use it to create appropriate actuarial models. Then, we formulate a stochastic
optimization problem to find an investment strategy for the management of a fund
from the perspective of a risk-averse government. The solution is given with the
use of the Follmer-Schweizer strategy.

Our risk-reserve model (considering the existence of an early warning sys-
tem) can be useful for (re)insurance companies.

Nowadays, we are aware that natural disasters research should be done from
a complex systems perspective. Natural disasters are the result of the interaction
of innumerable sociological, economical and geophysical factors. This research
was done under supervision of Prof. Dr. Christian Hipp within the framework
of the Interdisciplinary Postgraduate Program “Natural Disasters” of the German
Research Foundation (DFG) and the University of Karlsruhe (TH). This program
focuses in endowing the participants with the ability to understand and evaluate
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the relevant relationships of natural disasters and with the ability to propose and
implement adequate solutions needed for an optimal disaster management.

In Mexico, hydro-meteorological disasters are of frequent recurrence and
high severity, causing enormous losses. Since recent years, there is overwhelm-
ing evidence that some hydro-meteorological processes of relevance in hydro-
meteorological disasters, like rainfall intensity or river flows, exhibit multiscal-
ing behavior. Therefore, our perception of the phenomena drastically changes
depending on the sampling scale. In addition, available databases for natural dis-
asters research are incomplete and imprecise, thus the need of multidisciplinary
skills to make the best possible use of information. For this reason, the last part
of our research is focused on random multiplicative cascade models for rain-
fall, their relationship with some hydrological models and future relevance in
risk management of natural disasters. We consider that it is very important to
incorporate these advances in risk management. This part of our research was
supervised conjointly by Prof. Dr. rer. nat. Christian Hipp and Dr. Alin An-
drei Carsteanu®. The last chapter is the result of a conjoint work with Dr. Jorge
Castro’® and Dr. Alin Andrei CArsteanu.

This book is organized as follows:

Part I: Risk management of natural disasters in Mexico

Mexico is a developing country that has experienced almost all types of natural
disasters. Furthermore, it 1s one of the few countries that has a natural disasters
fund.

We analyze the case of Mexico from a multidisciplinary perspective; we dis-
tinguish relevant relationships for our goals; and we elaborate the synthesis used
as basis for the conceptual formulation.

Part I1: Quantifying the economic impact of early warning systems

It is of crucial importance to incorporate the notion of early warning systems in
insurance mathematics. Starting from the study presented in Part I, we developed
the concept of an arrival process considering an early warning system, in order
to create actuarial models. We also considered the impact of sociological factors
for the actuarial modelling.

2 Department of Mathematics at the Center for Research and Advanced Studies (CINVESTAV),

Mexico City
3 Department of Physics at CINVESTAV, Mexico City
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Part III: Management strategy from a governmental perspective

We formulated a stochastic optimization problem using the results of Part II to
find an investment strategy for the management of a fund from a governmental
perspective, and we solved it using the Follmer-Schweizer strategy.

Part IV: The scale-problem in rain-rate time series

Some processes of relevance in hydro-meteorological disasters, like rainfall in-
tensity and river run-offs, require special mathematical treatment for their anal-
ysis, since their behavior changes among scales. We discussed the potential and
relevance of multifractal models for rain in hydro-meteorological disaster risk
management and obtained an asymptotic expression that enlarges the interpreta-
tion of an empirical parameter. Furthermore, in cooperation with Dr. Jorge Cas-
tro and Dr. Alin A. Carsteanu, we derived an intensity-duration-area-frequency
(IDAF) function for the small-scale, large-intensity limit of multifractal fields
and parameterized it from tropical rainfall.
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Part I

RISK MANAGEMENT OF NATURAL DISASTERS
IN MEXICO






1. GENERAL INFORMATION ABOUT MEXICO

We begin this part of our research introducing the reader into the context of our
study case.

1.1 Geographical location and territorial division

The official name of Mexico is United Mexican States. lts extremal latitudes
and longitudes are 32° 43°06”°N, 14° 32°27”°N, 118°27°24”W and 86°42°36”W.
The total surface is 1,964, 375km?: 1,959, 248 km? of continental territory and
5,127 km? of islands.

Mexico is a federal republic. The country is divided in 31 federal states and
a Federal District (Distrito Federal). A map of Mexico with its geographical
location is shown in Fig. 1.1. Every federal state is divided in municipalities.
The Federal District is divided in 16 delegations. The national territory is divided
in 2443 municipalities and delegations.

In this thesis, we group the states and the Federal District in the following
regions:

North: Baja California, Baja California Sur, Coahuila, Chihuahua, Durango, Na-
yarit, Nuevo Leon, San Luis Potosi, Sinaloa, Sonora, Tamaulipas and Za-
catecas.

Center: Aguascalientes, Colima, Federal District, Guanajuato, Hidalgo, Jalisco,
Michoacan, Estado de México, Morelos, Querétaro, Puebla, Tlaxcala and
Veracruz.

South: Campeche, Chiapas, Guerrero, Oaxaca, Quintana Roo, Tabasco and Yu-
catan.
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Fig. 1.1: Political map of Mexico, see Tab. 1.1

1 Aguascalientes
2 Baja California

3 Baja California Sur

4 Campeche
5 Coahuila

6 Colima

7 Chiapas

8 Chihuahua
9 Durango

10 Guanajuato
11 Guerrero
12 Hidalgo

13 Jalisco

14 México

15 Michoacan
16 Morelos

17 Nayarit

18 Nuevo Ledn

19 Oaxaca

20 Puebla

21 Querétaro

22 Quintana Roo
23 San Luis Potosi
24 Sinaloa

25 Sonora

26 Tabasco

27 Tamaulipas

28 Tlaxcala

29 Veracruz

30 Yucatan

31 Zacatecas

32 Distrito Federal (D.E.)

Tab. 1.1: States of the Mexican Republic and the Federal District (D.F.), see Fig. 1.1
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1990 1995 2000
Total population 81,249,645 | 91,158,290 | 97,483,412
Population growth rate (average) ¢ 2.6 2.0 1.9
Global fertility rate ° 3.2 2.9 24
Crude mortality rate 5.1 4.6 4.3
Life expectation 70.8 73.6 75.3
Median age 19.0 21.0 22.0

Tab. 1.2: Demographic statistics of Mexico. Source: [Ins03]
“ The growth rates correspond to the period 1970-1990, 1990-1995 and 1990-
2000 for the years 1990, 1995 and 2000, respectively.
> The rate for 1990 corresponds to 1992.

Age group Total Men Women
0-4 10,635,157 | 5,401,306 | 5,233,851
5-9 11,215,323 | 5,677,711 5,537,612
10-14 10,736,493 | 5,435,737 | 5,300,756
15-19 9,992,135 | 4,909,648 | 5,082,487
20-24 9,071,134 | 4,303,600 | 4,767,534
25-29 8,157,743 | 3,861,482 | 4,296,261
30-34 7,136,523 | 3,383,356 | 3,753,167
35-39 6,352,538 | 3,023,328 | 3,329,210
40-44 5,194,833 | 2,494,771 2,700,062
45-49 4,072,091 1,957,177 | 2,114,914
50-54 3,357,953 1,624,033 1,733,920
55-59 2,559,231 1,234,072 1,325,159
60-64 2,198,146 1,045,404 1,152,742
65-69 1,660,785 779,666 881,119
70-74 1,245,674 589,106 656,568
75-79 865,270 411,197 454,073
80-84 483,876 217,330 266,546
>85 494,706 209,654 285,052
Not specified | 2,053,801 1,033,675 1,020,126
Total 97,483,412 | 47,592,253 | 49,891,159

Tab. 1.3: Demographic structure according to the national census of 2000. Source: [InsO3]
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1.2 Demographic structure

The demographic structure of Mexican population is pyramidal (see Tab. 1.3).
The fertility rate has a diminishing trend (see Tab. 1.2). It diminished from 5.7 in
1976 to 2.2 in 2003' ([Ins03]). The estimated crude mortality rate for the period
2000-2003 is 4.5 ([Ins03]).

1.3 Population distribution and Mexico City

Mexico has a problem of population distribution. Population is concentrated in
few urban areas. In 2000, 18.25% of all inhabitants resided in Mexico City, the
country’s capital, and 30.76% in other cities with more than 5000 inhabitants.
Cities like Guadalajara, Jalisco, and Monterrey, Nuevo Leon, have more than 3
million inhabitants each. Whereas, the population density in Baja California Sur
was 5.94 inhabitants per km? in the year 2000, and in the Federal District (D.F.)
5562.53 inh. per km?.

In 2000, 26% of the population resided in the northern region, 58% in the
center region, and 16% in the southern region ([Ins03]).

Mexico City is the second largest city in the world. The metropolitan area
covers almost all of the Federal District (D.F.) and a part of the State of Mexico.

The annual growing rate of the metropolitan area is 0.3% in D.F. and 2.4% in
the State of Mexico ([ACO03]).

According to the last census, the city had 17,786,983 inhabitants in 2000
([ACO3]); 48.38% of them resided in D.F. and 51.62% in the State of Mexico.
The D.F., where the city center is located, represents 0.1% of the national territory
and 8.83% of the population resides there.

1.4 Marginalization and income poverty

In Mexico, some regions have been historically excluded from the benefits of
economical development. That is, not all population has equal access to the basic
services (water, electricity, sewer system, paved roads, education). There are
several degrees of marginalization in this country has led to the development of
indexes to quantify marginalization intensity.

! This rate is the estimation of Conapo for the period of 2000-2003
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According to the National Council of Population (CONAPO) (see [Con03]),
the classification of the states and the Federal District with respect to its marginal-
ization index for the year 2000 is the following:

Very high marginalization index: 15! Chiapas (3,920,892 inhabitants), 274 Gue-
rrero (3,079,649 inhabitants), 37¢ Oaxaca (3,438,765 inhabitants), 4t" Ve-
racruz (6,908,975 inhabitants) and 5" Hidalgo (2,235,591 inhabitants).
20% of the population reside in these states.

High marginalization index: 6! San Luis Potosi (2,299,360 inhabitants), 7t
Puebla (5,076,686 inhabitants), 8! Campeche (690,689 inhabitants), 9*"
Tabasco (1,891,829 inhabitants), 10! Michoacén (3,985,667 inhabitants),
11*" Yucatdn (1,658,210 inhabitants), 12" Zacatecas (1,353,610), 13t
Guanajuato (4,663,032 inhabitants) and 14! Nayarit (920,185 inhabitants).
23% of the population reside in these states.

Medium marginalization index: 15" Sinaloa (2,536,844 inhabitants), 16! Que-
rétaro (1,404,306 inhabitants), 17" Durango (1,448,661 inhabitants), 18t"
Tlaxcala (962,646 inhabitants), 19t" Morelos (1,555,296 inhabitants) and
20" Quintana Roo (874,963 inhabitants). 9% of the population reside in
these states.

Low marginalization index: 215! State of Mexico (13,096,686 inhabitants), 22"
Colima (542,627 inhabitants), 23" Tamaulipas (2,753,222 inhabitants),
24th Sonora (2,216,969 inhabitants), 25! Jalisco (6,322,002 inhabitants),
26!" Chihuahua (3,052,907 inhabitants), 27" Baja California Sur (424,041
inhabitants), 28" Aguascalientes (944,285 inhabitants). 30% of the popu-
lation reside in these states.

Very low marginalization index: 31" Nuevo Leén (3,834,141 inhabitants), 29'"
Coahuila (2,298,070 inhabitants), 30" Baja California (2,487,367 inhabi-
tants) and 32!" Distrito Federal (8,605,239 inhabitants). 18% of the popu-
lation reside in these states and the Federal District.

The number of inhabitants in every state corresponds to the census of 2000, and
the percentages were calculated considering that the total population in 2000 was
97,483,412. More information about the marginalization index of CONAPO and
its calculation is in [Con03].

We wish to stress that marginalization is not distributed equally in each state
(incl. the Federal District) and municipalities (or delegations), so we can not say
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1990 1995 | 2000
Population that speaks a native language | 6.50% | 6.02% | 6.20%
Rural population ¢ 28.7% | 26.5% | 25.4%

Tab. 1.4: Population that speaks a native language and rural population. Source: [InsO3]
“ Population living in communities with less than 2500 inhabitants.

that all the population living in a given state or municipality suffers the same
degree of marginalization or is marginalized.

Chiapas has the highest marginalization index in the country and the Distrito
Federal (D.F.) has the lowest. In Chiapas, 22.94% of the people older than 15
are illiterate (D.F.; 2.91%), 50.31% of the people older than 15 have not finished
elementary school (D.F.: 12.16%), 19.33% reside in houses without sewer system
or bathroom (D.F.: 0.44%), 12.01% have no electricity (D.F.: 0.17%), 24.99%
have no drinking water at home (D.F.: 1.47%) and 40.90% reside in houses with
earth-floor (D.F.: 1.34%).

Marginalization in Mexico is associated with the distribution of the popula-
tion in the national territory ([Con03]). A number of small and isolated com-
munities are dispersed in the country, making it difficult to bring them drinking
water, electricity, telephone, schools and paved roads. For cost-benefit reasons,
most of social politics have been focused on urban communities ([Con03]).

In 2000, 50.99% of the population resided in communities of less than 5000
inhabitants and 25.4% in communities of less than 2500 inhabitants. 61% of
Chiapas population resides in communities with less than 5000 inhabitants. In
Oaxaca 64%, and in Guerrero, 53.44%.

Income poverty (poverty line: 2 US dollar daily per capita) and marginal-
ization are highly correlated. Actually, rural poverty is often characterized by
a combination of low-income, unsatisfied of basic needs and lack of public ser-
vices.

In Tab. 1.5, we present the indicators of the interrelation between severity of
income poverty and marginalization degree in Mexico for the year 2000. The
municipalities of the country where ranked according to the marginalization de-
gree calculated by the National Council of Population (CONAPO) and the FGT
index of poverty severity degree (see [Con03]).

In Mexico, as in other Latin American countries, the geographical distribu-
tion of income poverty and marginalization has been historically correlated with
the distribution of native people. A study of the Economic Commission for Latin
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Marginalization Degree of poverty severity
degree Total
Very | High | Medium Low Very
high low
Total 100.0% | 2.7% | 7.7% 87% | 25.6% | 55.3%
Very high 4.6% | 1.9% | 1.9% 0.6% | 0.1% ---
High 14.0% | 0.7% | 5.0% 50% | 3.2% | 0.1%
Medium 12.0% | 0.0% | 0.8% 25% | 8.3% | 0.4%
Low 15.7% ---10.0% 0.5% | 10.4% | 4.8%
Very low 53.7% == - ---| 3.6% | 50.0%

Tab. 1.5: Population of Mexico grouped by the degree of marginalization and poverty
severity of the municipality of residence. Total population: 97,483,412. Source:

[Con03]

America and the Caribbean (ECLAC) found that, with exception of Querétaro,
the nine federal states with highest poverty levels are those with the most Na-
tive Mexicans ([ECL95]). The National Council of Population (CONAPO) also
observes a high correlation between marginalization, poverty and number of na-
tives. During centuries, this population suffered a process of displacement from
their original territories to regions that have been historically excluded from the
benefits of national development ([Coo83], [Con03]).

The number of Native Mexicans is not easy to estimate. The National In-
stitute of Geography, Informatics and Statistics (INEGI) uses the language as

estimation criteria (see Tab. 1.4).
According to the census of 2000, 6,044,547 inhabitants older than 5 speak a
native language and about 61% resides in the following federal states:

1. Oaxaca (1,120,312), 18.53% of the total,
2. Chiapas (809,592), 13.39% of the total,
3. Veracruz (633,372), 10.48% of the total,
4. Puebla (565,509), 9.35% of the total, and
5. Yucatan (549,532), 9.09% of the total.

(see [InsO3]).
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Fig. 1.2: Average market exchange rates (Mexican pesos per US dollar). Source: [Ins03]

Although this indicator is very useful as an approximation, it should be no-
ticed that natives preserve their culture but not necessarily their language. The
National Council of Population estimates no less than 12 million people ([Con03]).

1.5 Financial statistics

1.5.1 Exchange rates

The average market exchange rates for the period (1995-2003) are plotted in
Fig. 1.2. The monthly average exchange rate of August 2004 is 11.3957. The
daily exchange rates (FIX) used to calculate these averages are determined by
the Central Bank of Mexico (Banco de México).

1.5.2 Interest rates

The data displayed in Fig. 1.3 is provided by the International Monetary Fund
([IMF03]). Annual and quarterly interest rates are arithmetic averages of monthly
interest rates reported by Mexico.

Money market rate: the rate on short-term lending between finacial institutions.
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Fig. 1.3: Annual interest rates (1996-2003): money market rate (o), treasury bill rate
(+), savings rate (x), deposit rate (¢) and government bond yield (&) Source:
[IMFO3],[IMF04]

Treasury bill rate: the rate at which short-term securities are issued or traded in
the market.

Deposit rate: usually refers to rates offered to resident customers for demand,
time, or saving deposits.

Government bond yield: this rate represents yields to maturity of government
bonds or other bonds that would indicate longer term rates.

1.5.3 Gross Domestic Product (GDP)

The GDP at purchaser prices is defined by the World Bank as “the sum of gross
value added by all resident producers in the economy plus any product taxes and
minus any subsidies not included in the value of the products. It is calculated
without making deductions for depreciation of fabricated assets or for depletion
and degradation of natural resources.” ([Wor04]). The Gross Domestic Products
of the years 1999, 2002 and 2003 are displayed in Tab. 1.6.

The rural economy? generated only 4% of the GDP in the years 2000 and

2 It includes forestry, hunting, fishing, cultivation of crops and livestock production.
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1999 | 2000 | 2003
GDP 481.1 | 648.5 | 626.1
Annual GDP growth 37% | 0.7% | 1.3%
GDP implicit price deflator (annual growth) | 15.2% | 6.9% | 6.5%

Tab. 1.6: Gross Domestic Product (GDP) in billions of US dollars. The exchange rate
corresponds to August 2004. The GDP implicit price deflator is the ratio of GDP
in current local currency to GDP in constant local currency. Source: [Wor0O4]

1990 1991 1992 1993 1994

Revenue 117,710 | 177,372 | 210,446 | 194,813 | 220,382
Expenditure 137,146 | 149,448 | 164,364 | 190,657 | 225,229
Unforeseeable exp. 83,383 77,236 73,600 75,747 77,737
Deficit 19,436 | -27,924 | -46,082 -4,156 4,846

Tab. 1.7: Government finance (1990-1994), million of Mexican pesos. Source: [Ins03]

2003 (see [Wor04]). The value added in services represented 69.6% of the GDP
in 2003 and the remaining 26.4% corresponds to the industrial economy (see
[Wor041]).

The economy of the Center region generates 60% of the GDP, whereas 10%
comes from the south of the country (see [AC03]). The remaining 30% is gener-
ated by the north region.

1.5.4 Government finance

A summary of annual balances of the government for the period (1990-2003)
is given in Tabs. 1.7, 1.8 and 1.9. Within this period, only in 1991 and 1992
was a surplus observed. Nevertheless, the total balances of 1991, 1992 and 1994
include the extraordinary revenues from the privatization of banks and telephone
services. The years of the so-called “Tequila” crisis were 1994 and 1995.

1.6 Insurance sector in Mexico

This section is based on information provided by the Swiss Re ([Sig02], [Sig04]).
In 2003, the premium volume of the insurance sector in Mexico was 10,920
USD million; 6,690 USD million correspond to non-life insurance premium vol-
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1995 1996 1997 1998 1999
Revenue 280,144 | 392,566 | 503,554 | 545,176 | 674,348
Expenditure 294,926 | 404,045 | 546,726 | 612,475 | 754,389
Unforeseeable exp. | 124,950 | 171,673 | 219,246 | 219,781 | 285,149
Deficit 14,781 11,479 43,172 67,300 80,041

Tab. 1.8: Government finance (1995-1999), million of Mexican pesos. Source: [Ins03]

2000 2001 2002 2003

Revenue 868,268 | 939,115 989,353 | 1,133,184
Expenditure 052,083 | 996,951 | 1,124,451 | 1,233,141
Unforeseeable exp. | 362,681 | 365,177 379,348 400,926
Deficit 83,815 57,836 135,098 99,957

Tab. 1.9: Government finance (2000-2003), million of Mexican pesos. Source: [Ins03]
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Fig. 1.4: Premium volume in Mexico, year 2000. Source: [Sig02]
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umes. In the same year, the share of world market was 0.37% and the country
was ranked in place 27. The premium volume of Mexico represented 26% of
total premium volume of Latin America.

Three years before, in 2000, the premium volume of the insurance sector in
Mexico was 9,866 USD million. This represented 25.3% of the total premium
volume of Latin America (39,000 USD million). Nevertheless, the insurance
market in Latin America is very small. Its premium volume represents 1.6%
of the total premium volume worldwide. Although the technical results were
improved year by year, the investment results got worse as a consequence of the
“tequila” crisis, the high interest rates and inflation. In 2000, for the first time,
the total result was negative.

Mexico has a high exposure to natural disaster risks. Therefore, indemnity
insurance depends on the international reinsurance capacity. The penetration of
non-life insurance® in Mexico was 0.9% in 2000 and 1.10% in 2003. The non-life
insurance density* was 50 in 2000 and 65.3 in 2003.

3 premiums in % of GDP in the respective year
4 premiums per capita in USD in the respective year



2. NATURAL DISASTERS RISKS IN MEXICO

Mexico is a country which has to deal with several natural disaster risks: floods,
hurricanes, heavy rain, drought, frost, forest fires, landslides, earthquakes, tsuna-
mis and vulcanism. A list of the largest natural disasters in Mexico (1900-1999)
is displayed in Tabs. 2.2, 2.3, 2.4 and 2.5 (at the end of this section).

An overview of the incidence of natural disasters in Mexico that caused more
than 100 deaths or extraordinary economic losses in the period (1900-1999) is
shown in Fig. 2.1. We considered the drought periods as a single disaster, as well
as the two volcanic eruptions of 1982. We estimated that the mean number of
major natural disasters per year is 0.86 in this period. It is important to notice that
this value is only a reference because of the imprecision of the data. However,
nearly one major natural disaster per year reflects already the size of the problem,
and we should also consider that the incidence of natural disasters causing less
damage is higher, as we can see in the information published in [CENO1]. This
underlines the importance of developing strategies for the management of natural
disasters risks in Mexico.

The lack of reliable statistical information about the number of victims and
economic losses from natural disasters in Mexico in the past, made it difficult
to develop risk management strategies. The estimation of the number of fatal-
ities of Mexico City’s earthquake in 1985, for example, disagrees considerably
from source to source. The publication Prontuario de contingencias del siglo XX
mexicano (Mexican Contingencies Compendium of the 20" Century) says that
4,287 people died, and 37,000 lost their homes or were injured ([CENO1]). The
German IDNDR'! Committee ((CENO1]) and Munich Re ([Mun00]) use the esti-
mation of 10,000 victims. The Swiss Re ([S1g99]) estimates that the earthquake
of 1985 in Mexico City caused 15,000 fatalities (dead and missing).

In the case of historical economical losses, the error margin is also consider-
able. In Tab. 2.1, we present the data compendium by D. Bitrdn. Although this

! International Decade for Natural Disaster Reduction
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Fig. 2.1: Incidence of major natural disasters in Mexico (1900-1999).

data comes from disperse information, and estimations were obtained using dif-
ferent methodologies, Bitran’s compendium is one of the most complete works
available ([CENO1]).

After Mexico City’s earthquake of 1985, the need to create an institution de-
voted to the study of technical aspects of disaster prevention was recognized. As a
response, the Mexican government established the National Civil Protection Sys-
tem (SINAPROC). The National Center for Disaster Prevention (CENAPRED)
was created in September 1988, with the economic and technical support of the
Japanese government. The CENAPRED was inaugurated in May 1990. This in-
stitution is subordinated to the Ministry of the Interior (SEGOB). Its main respon-
sabilities are research, education and information about disaster prevention. The
National University (UNAM) collaborates with SINAPROC and CENAPRED
through academic research, and it participates in the technical consultant com-
mittee of CENAPRED.
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Year | Event Fatalities | Losses
1980 | droughts in the north

and others 3 310.4
1981 | n.a* n.a n.a
1982 | hurricane “Paul”, eruption of

“Chichonal” volcano and others 50 | 314.0
1983 | n.a n.a n.a
1984 | explosion (storage tank) “San Juanico”

and others 1000 26.3
1985 | earthquake in Mexico City;

heavy rainfalls in Nayarit and other about 5000 | 4159.8
1986 | fires 0 1.5
1987 | snowfalls 6 0.3
1988 | hurricane “Gilbert”, fire in oleoduct

and others 692 | 2092.9
1989 | fires 0| 648.0
1990 | hurricane “Diana” and others 391 94.5
1991 | explosion (petroleum plant) and others 11 167.5
1992 | sewer-line explosions in Guadalajara

and others 276 192.5
1993 | hurricane “Gert” and others 28 125.6
1994 | droughts and others 0 3.8
1995 | hurricanes “Opal” and “Ismael”

earthquake in Guerrero-Oaxaca,

explosion (gas pipeline) and others 364 | 689.6
1996 | frosts and others 224 5.3
1997 | hurricane “Pauline” and others 228 | 447.8
1998 | heavy rains in Chiapas and others 199 | 2478.8
1999 | earthquakes and floods 313 1100

Tab. 2.1: Economic losses of disasters in Mexico in USD million (1980-1999). The ex-
change rates used to convert the losses in Mexican pesos to USD correspond to

the year of occurrence. Source: [CENO1]
* n.a.=not available
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Year | Event State
1905 | flood Guanajuato
1906 | flood Jalisco
1909 | flood caused by hurricane Nuevo Leén
1912 | flood Querétaro
earthquake México
1920 | earthquake and landslides “ | Veracruz
1926 | hurricane Veracruz, Yucatan and Campeche
1927 | two earthquakes Baja California
flood Michoacan
1931 | earthquake Oaxaca and D.F.
1932 | earthquake Colima and Jalisco
earthquake and tsunami“ Colima
flood Coahuila
1933 | hurricane Tamaulipas
hurricane Tamaulipas, Tabasco
and Veracruz
1934 | flood Coahuila
1935 | heavy rains and landslides “ | D.F.
hurricane Veracruz
1937 | heavy rains and landslides ¢ | Michoacdn
1941 | earthquake Colima, Guerrero, Jalisco
and Michoacan
1943 | birth of “Paricutin” volcano | Michoacéan
and lava flow
1944 | heavy rains Chihuahua and Durango
1949 | flood Sinaloa and Sonora
heavy rains Hidalgo
hurricane Sinaloa

Tab. 2.2: Natural disasters in Mexico that caused more than 100 deaths or extraordinary

economic losses (1900-1950). Source: [CENO1]

% concatenated events.
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Year Event State
1953 hurricane Guerrero
1948-1954 | drought north and center regions
1954 landslide Jalisco
1955 hurricanes “Gladys”, | Veracruz, San Luis Potosi,
“Hilda” and “Janet” “ | Yucatin, Quintana Roo
and Tamaulipas
1957 earthquake D.E., Guerrero and Oaxaca
hurricane Sinaloa
1958 flood Michoacan
1959 landslide Veracruz
flood Tabasco
hurricane Colima and Jalisco
1960 flood Sinaloa and Sonora
1961 hurricane “Tara” Guerrero
1963 flood Tabasco
1960-1964 | drought north and center regions
1966 hurricane “Inés” Tamaulipas
1967 hurricane “Beulah” Tamaulipas and Nuevo Le6n
hurricane “Katrina” Guerrero, Nayarit
and Sonora
1968 hurricane “Naomi” Colima, Jalisco, Sinaloa,
Sonora, Durango, Coahuila
and Chihuahua
1969 flood Veracruz and Oaxaca

Tab. 2.3: Natural disasters in Mexico that caused more than 100 deaths or extraordinary
economic losses (1951-1970). Source: [CENO1]
“ the hurricanes occurred consecutively.



20

2. Natural disasters risks in Mexico

Year Event State
1973 earthquake Puebla, Oaxaca and Veracruz
1976 hurricane “Liza” Baja California Sur and Sonora
1970-1978 | drought north and center regions
1979 earthquake D.F. and Guerrero
1980 flood Baja California
heavy rains Baja California
hurricane “Allen” Tamaulipas
earthquake Oaxaca and Puebla
1981 flood Veracruz and Guerrero
flood Sinaloa
1982 hurricane “Paul” Sinaloa
two volcanic eruptions® | Chiapas
1983 flood México
1985 earthquake D.F. and Michoacén
heavy rains Nayarit
1986 flood Veracruz
1988 hurricane “Gilbert” Yucatdn, Quintana Roo,
Campeche, Nuevo Leodn,
Tamaulipas and Coahuila
1989 forest fire Quintana Roo
dec. 1990- | hurricane “Diana” Veracruz and Hidalgo
jan. 1991 flood Sonora, Baja California Sur,
Sonora, Sinaloa and Chihuahua
1991 flood Zacatecas
1992 flood Nayarit
1993 flood Baja California

hurricane “Gert”

flood

Veracruz, Hidalgo,
Tamaulipas and San Luis Potosi
Baja California Sur

Tab. 2.4: Natural disasters in Mexico that caused more than 100 deaths or extraordinary

economic losses (1971-1994). Source: [CENO1]

“ the eruptions of “Chichonal” volcano occurred on March 28" and April 4",
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Year Event State
1995 hurricane “Ismael” | Sonora and Sinaloa
hurricane “Opal” Veracruz, Tabasco, Yucatan,
Quintana Roo and Campeche
earthquake Guerrero and Oaxaca
earthquake Colima and Jalisco
1993-1996 | drought north and center regions
1997 hurricane “Pauline” | Oaxaca and Guerrero
1998 hurricane“Isis” Sonora and Sinaloa
heavy rains Chiapas
hurricane “Mitch” Tabasco, Yucatan, Campeche
and Quintana Roo
forest fire Oaxaca, Chiapas and Durango
1999 earthquake Puebla and Oaxaca
earthquake Oaxaca

heavy rains

Puebla, Hidalgo, Veracruz,
Tabasco and Oaxaca

Tab. 2.5: Natural disasters in Mexico that caused more than 100 deaths or extraordinary
economic losses (1995-1999). Source: [CENO1]
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3. MEXICO’S FUND FOR NATURAL DISASTERS (FONDEN)

Mexico’s Fund for Natural Disasters (FONDEN!) is the name of the financial
mechanism that Mexico’s federal government uses to assign and transfer budget
resources to the dependencies and entities of the federal public administration
in case of a natural disaster. We define natural disaster as the natural phenom-
ena or phenomenon, whether concatenated or not, which occur within time and
space limits, are the cause of severe damage and whose recurrence is difficult or
impossible to foresee?.

3.1 History

In order to reduce the country’s vulnerability to the economic impact of natural
disasters and to support rapid recovery when they occur, the Mexican government
established in 1996 the Mexico’s Fund for Natural Disasters (FONDEN).

The first version of FONDEN’s Mandate ([MinO0Ob]) was published on Febru-
ary 29t" 2000. Months later, this mandate was modified in order to allow the use
of FONDEN’s resources to avoid the irreparable loss of the cultural patrimony of
the country [MinOOa].

On March 31, 2001, a second version of FONDEN’s mandate ([Min01])
was published in the Official Journal of the Federation. One year later, on March
15" 2002, a new version of the Mandate was issued ([Min02]) and it nullified

the previous one. The current version of FONDEN’s Mandate was published on
May 237, 2003 [Min03].

! Fondo de Desastres Naturales

2 This definition is a translation of “desastre natural: el fenémeno o fenémenos naturales con-
catenados 0 no que cuando acaecen en un tiempo y espacios limitados, causan dafios severos no
previsibles y cuya periodicidad es dificil o imposible de proyectar” ([Min03], Chapter I, §1, par. XII)
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Fig. 3.1: FONDEN budgets (light-colored columns) versus utilization (dark-colored
columns) in USD Million equivalent (1996-2003). Source: [Mex03].

3.2 FONDEN’s goals

Through FONDEN, the Mexican government provides resources to mitigate the
effects of natural disasters whose magnitude surpass the capacity of local gov-
ernments and public federal entities to help the victims, and to repair damage.
It is a last-resort fund that complements the efforts of local governments along
with the National System for Civil Protection (SINAPROC) and other public in-
stitutions with programs or obligations directly related with the reaction after a
natural disaster.

According to FONDEN’s Mandate [Min03], the federal government assigns
economic resources to

1. support the potential victims in case of imminent danger;

2. support, in complementary form and under the restrictions specified in
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[Min03], the reparation of damage in public goods;

3. support, complementary to the existent programs, the fight of forest fires
and the rehabilitation of the affected zones;

4. mitigate damage to the houses of those with low-income victims who are
unable to purchase property insurance;

5. partially compensate the income-losses of victims providing resources for
the implementation of temporary employment programs;

6. consolidate, restructure or, if it is the case, rebuild the archeological, artis-
tic and historical monuments that satisfy the specifications established in
[Min03];

7. provide temporary aid to the dependencies and semigovernmental entities
for the reparation of insured infrastructure before they receive the insured
sum; and

8. provide resources for the acquisition of specialized equipment and other
goods in order to react optimally in case of emergency or natural disaster,
and for its installation.

3.3 FONDEN’s management

Within the federal financial statement, FONDEN is accounted as unforeseeable
expenditure (Ramo 23). The Ministry of Finance and Public Credit (SHCP) is
responsible of managing post-disaster resources, whereas the Ministry of the In-
terior (SEGOB) manages the resources to attend emergencies.

The resources administrated by SHCP are divided into two parts: budget and
trusteeship. FONDEN’s trusteeship acts as a reserve and it is constituted with the
annual surpluses of FONDEN’s budget.

In case of imminent danger or high probability of disaster, SEGOB can de-
clare a situation of emergency and provide resources to attenuate the effects of
the possible disaster. From FONDEN’s budget for the fiscal year 2004, 42.86%
are resources for prevention.

FONDEN’s assistance should be provided within a budget established at the
beginning of every fiscal year. Almost every year since its creation, FONDEN’s
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resources have been insufficient to meet all the government obligations estab-
lished in FONDEN’s Mandate, see Fig. 3.1. For the fiscal year 2004, the autho-
rized budget was 350 million of Mexican pesos (about 34.43 USD million).

The process of budgetary planning of a fund like FONDEN is complex and
often politically difficult [Fre02]. In 1998, for example, six changes to the budget
were required to provide additional funds for natural disasters. The same year,
about 270 USD million® were authorized and nearly 500 USD million* were
required [Sub99]. When FONDEN’s resources are exceeded, the government re-
allocates funds within the overall federal budget ([Guy00]). However, as pointed
out in Levis & Murdock (1999), “Shifting resources in response to disaster needs
disrupts fragile compromises formed to create initial budgets™ (see [Fre02]).

From the period 1996-1999, 70% of FONDEN’s budget funded losses for
heavy rains and hurricanes, 19% for drought and rimes losses, and 10% for earth-
quakes. Fire accounted for 1% of FONDEN’s payments (see [Guy00], [FMO1]).
In Table 3.1, we find more details of the FONDEN’s funded losses (1996-1998)
by type of disaster and state.

We wish to stress that the three states that received more help from FONDEN
in the period 1996-1998 were Chiapas, Guerrero and Oaxaca. As we mentioned
before, these states have very high marginalization rates. Most of the funded
losses were for heavy rains and hurricanes. These states are also high-exposed to
earthquakes ([CENO1]).

3 2558.6 million of Mexican pesos of the year 2000
4 4175 million of Mexican pesos of the year 2000
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Federal state Total | Droughts | Heavy rains | Earth- | Fires
and and | quakes
rimes hurricanes
Total 9210,9 2844,3 6230,1 19,4 | 117,2
1 Aguascalientes 11,1 11,1 --- - -
2 Baja California 159,2 13,6 145,7 --- -
3 Baja Cal. Sur 162,6 4,3 158,3 --- ---
4 Campeche 2,7 2,7 --- - S
5 Coahuila 370,6 3480 22,5 --- ---
6 Colima 11,9 0,4 11,5 --- ---
7 Chiapas 2787,2 77,5 2684,1 ---| 25,6
8 Chihuahua 352,6 3423 --- --- | 10,2
9 Durango 382,3 367,3 14,9 --- ---
10 Guanajuato 137,8 78,5 59,2 --- ---
11 Guerrero 19427 84,4 1858,3 --- ---
12 Hidalgo 53,8 53,8 - - -
13 Jalisco 67,4 64,5 2,9 --- ---
14 México 89,7 31,0 47,7 ---1 11,0
15 Michoacan 92,4 47,5 --- 19,4 | 25,6
16 Morelos 13,7 0,9 --- --- 12,8
17 Nayarit 7,5 7,5 --- - S
18 Nuevo Leén 131,6 99,6 --- --- | 32,0
19 Oaxaca 1210,1 103,3 1106,8 --- ---
20 Puebla 77,5 77,5 --- S S
21 Querétaro 31,9 31,9 --- - S
22 Quintana Roo 7.5 7.5 --- S -
23 San Luis Potosi | 125,4 125.,4 --- --- ---
24 Sinaloa 270,7 159.4 111,3 --- ---
25 Sonora 201,4 201,4 --- S S
26 Tabasco 14,2 14,2 --- - S
27 Tamaulipas 296,1 289,2 6,9 —-- -
28 Tlaxcala 42,7 42,7 --- S -
29 Veracruz 53,9 53.9 --- - S
30 Yucatin 0,6 0,6 --- S S
31 Zacatecas 102,3 102,3 --- --- ---

Tab. 3.1: FONDEN’s funded losses (1996-1998) in millions of Mexican pesos for the year
2000. Source: [Sub99]
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4. RISK MANAGEMENT OF NATURAL DISASTERS IN
MEXICO

In developing countries like Mexico, the government plays a fundamental role
absorbing the losses of natural disasters. The low insurance density, the poverty
and the macroeconomic problems are some causes of the low participation of
private capitals in the risk management of natural disasters.

The Mexican government does not satisfy the risk-neutral assumption usually
applied for governments, because losses can not be easily internally absorbed
with tax revenue (see [Guy00], [FMO1]). The loss of Mexico City’s earthquake of
1985, for example, was equivalent to 14% of tax revenue ([FMO1]). In addition,
the government deficit has been usually positive in the period 1990-2003 (see
Subsection 1.5.4).

After analyzing the information presented in Secs. 1.4 and 1.5, we can only
corroborate the risk-averse hypothesis in the case of the Mexican government.

A number of recommendations have been made to the Mexican government
for the management of FONDEN from an economical point of view (see e.g.
[Guy00], [FMO1] and [PV99]), but besides estimating occurrence probabilities
and mean losses, we did not find an actuarial study about FONDEN.

We can classify strategies for financing reconstruction in ex-ante and ex-post
disaster (see [WP02]). Traditional examples of governmental ex-post strategies
are: taxes, borrowing and aid (see [WP02]). Among ex-ante financing tools we
have:

1. reserve funds,
2. 1nsurance, and
3. contingent credit.

A summarized cost-benefit analysis of these strategies is shown in Tab. 4.1. Cer-
tainly, FONDEN has more obligations than financing reconstruction, but the
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Reserve fund Insurance Contingent credit
Cost before | Contribution during | Premium during | Holding fee
event years before event years before during years
event before event
Benefit Only reserved funds | All needed All needed funds
after event and interest available | funds available | available
Cost after None None Additional debt
event service, reduction
in ability to take
out future debt
Incentive for | Only if risk is known | Yes No
mitigation?

Tab. 4.1: Costs and benefits of ex-ante financing tools. Source: [WP02]

above mentioned ex-ante strategies can also be explored in our case.

As pointed out in [WP02], ex-ante risk management demands the understand-
ing of probability and this is a complication for some policy makers. If the future
event does not occur, they sometimes perceive the money spent for the emergency
as lost. Intuitively, we guess that money for emergencies should have some sense.
How could we quantify the effect of emergencies? Which technical justification
could we present to policy makers for the allocation of emergency resources? We
did not find an actuarial model that could help us solve this question.

It can also happen that policy makers perceive a surplus as a signal that they
can save money for the next year, because the budget was “too high”. As ex-
perts in quantifying risks, actuaries understand that this is not so. Nevertheless,
whereas the justification of building reserves in the insurance industry is well
studied and understood, we did not find a mathematical model useful for justify-
ing the existence of reserves from the governmental perspective.

After a discussion in an internal meeting at the Mexican Ministry of Finance

(SHCP) on January IOth, 2003, the information given to us was that, at present,
the Mexican government would not like to base the management strategy for
FONDEN in acquiring debt. So, we decided to leave out the possibility of bor-
rowing for this research. This option can be explored in further research.

If we assume that the government is risk-averse, spreading risk among tax-
payers is not a possibility. In the case of aid, we hope to use this resource only if
everything else fails!



31

If we do not want to manage the fund by borrowing money, then we can
consider

e investment in the capital markets;
e alternative risk transfer instruments;
e Excess-of-Loss (XL) reinsurance; and

e Stop-Loss reinsurance.

After analyzing all these possibilities, we decided to focus our research in de-
veloping a basis model considering investment in the capital markets and Excess-
of-Loss (XL) reinsurance. We leave the other possibilities for further research.

Although we know that one premise for FONDEN’s management in reality is
not to invest in the stock market, we found that for risk-averse governments this
could be a good alternative in combination with risk-transfer instruments. So, we
decided to explore it.

We did not consider alternative risk transfer instruments in this research, be-
cause we think that before recurring to them we should first identify our basic
risk processes.

In the private industry, it is theoretically allowed to allocate funds to the re-
serve at every moment. In the case of Mexico’s governmental fund this is not
so. The moment and the amount of the contributions are restricted. The fund is
linked to a trusteeship which has the function of reserve. If not all the money
was disbursed at the end of the fiscal year, this residual will be transferred to the
reserve. The transfer of budget’s surpluses is the only valid way to build it.

Given the difficult economic situation in developing countries, it iS not possi-
ble to ask for a large amount of money without a very well founded explanation
about the estimation of the initial budget. We conclude that what is needed is the
development of actuarial techniques for the estimation of the minimum budget in
a governmental framework.

We realized that the above restrictions for the budget and the reserve make
a fundamental difference between governments and companies. This should be
included in the basis for the development of actuarial mathematics applied to
governmental questions in the future. Also, the difference is so relevant, that
applying usual insurance mathematics to give advice to governments can be mis-
leading.

For example, we found that estimating the budget that minimizes ruin is in-
adequate in a governmental context subject to the above mentioned restrictions.
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In the case of Mexico, as it may be for many other governments, improving the
budget planning in order to hedge a predetermined contribution to the natural
disasters fund’s reserve is more important than avoiding ruin along the year.

As we mentioned before, FONDEN’s rules of operation establish that in case
of high probability of a natural disaster or imminent danger, the local govern-
ments can ask for a declaration of state of emergency to obtain resources faster.
Hence taking measures to attenuate the effects of a possible disaster. For this rea-
son, it becomes necessary the development of a mathematical model considering
this type of outcome.

In our model we distinguish two types of natural disasters: those with warn-
ing, and those without warning. We assign costs for the false warnings and we
consider the positive effect of an effective warning.

Finally, we wish to emphasize that, according to our study, the temporary
unavailability of emergency resources, as well as the positive effect of an effective
warning, have a relevant influence to the budgetary planning, the transfer of risks
and the determination of a management strategy [Flo03].



Part I1

QUANTIFYING THE ECONOMIC IMPACT OF
EARLY WARNING SYSTEMS






5. EARLY WARNING SYSTEMS

We define early warning as a warning arriving in time before an imminent natural
hazard (see [PMO1]). The basic structure of an early warning system has three
consecutive phases:

1) forecasting,
11) warning and
111) reaction.

(see [PMO1]). In Fig. 5.1, we show the main components of an early warning
system in a schematic representation.

The forecasting phase 1s based on a scientific and technical analysis of data
from measurement stations. Its goal is to give a trustworthy forecast of natural
phenomena in magnitude, time behavior and location. If a natural phenomenon,
which could have catastrophic consequences is forecasted, a warning is issued.

The top priority of forecasting models is the prediction of the time between
the warning and the occurrence of the natural phenomenon (t.,). The precise
prediction of the event magnitude and its future progression is in many cases not
SO important as estimating t..

From the predictions of ¢, we can have an idea of how much time we have
for the warning and the reaction phases by type of disaster. For example, droughts
and volcanic eruptions can be foreseen with months of anticipation; flood warn-
ings usually happen within 24 hours of anticipation; and earthquake predictions
within seconds of anticipation (see [PMO1]).

There are a variety of forecasting methodologies. Some of them are essen-
tially deterministic (e.g. forecasting volcanic eruptions) and others are based on
the extrapolation of a continuous time-dependent process (e.g. flood forecasting).

During the warning phase, information is circulated. The success of this
phase depends on technical, social and political factors. Political problems can
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arise when deciding if endangered populations should be warned. Miscommuni-
cation between forecasting experts and authorities should not be underestimated,
as there can be serious consequences, like in the case of the volcanic eruption
of the Nevado del Ruiz, Colombia, in 1985. The warning of geologists was not
taken seriously and approximately 25000 people died (see [PMO1]).

Important decision criteria to spread a warning or not is the margin of error
of the forecast, the possible consequences of the natural event and the economic
cost of the reaction phase. Actually, it is difficult for decision makers to evaluate
the benefits of spreading a warning. Too many false alarms can diminish the
reliability of official announcements.

If authorities decide to spread the warning, endangered populations should
be informed as quickly as possible. Information and communication technology
can facilitate this task; but however, in some countries like Mexico (see Sec. 1.4),
there are regions without access to these developments.

The reaction phase is dominated by sociological factors. This is the time to
carry out emergency plans. In many countries, organizational and administra-
tive problems often impede a working emergency management. Other problems,
often underestimated, are distortions in the risk perception of natural disasters,
ignorance about how to react in case of an emergency, difficulties to understand
what experts are trying to communicate, and mistrust in the authorities (civil, mil-
itary or governmental). In addition, poverty, marginalization, war, delinquency,
bands of guerrillas, terrorism and epidemics can also complicate the emergency
management.

As an example, we explain the basic ideas of earthquake early warning sys-
tems.

5.1 Earthquake early warning systems

In spite of the short time period for the warning and the reaction phases, in some
cases it is possible to take actions for loss prevention. For example: the shutdown
of computers, disk drives, high precision facilities, airport operations, electronic
facilities, high energy facilities, gas distribution, refineries, nuclear power plants
and water pipelines; the rerouting of electrical power; stopping or slowing trains
and subways; alerting hospital operating rooms; the opening of fire station doors;
starting emergency detonators; leaving elevators in a safe position; shutting off
oil pipelines; issuing audio alarms, and moving to a safe state in nuclear facilities
(see [WB04]). Some of these measures have been implemented or are under
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Fig. 5.1: Diagram of a warning system. Source: [PMO1]

consideration in Japan, Mexico, Taiwan, California, Romania, Turkey and other
countries ([WB04]).

Mexico has a public earthquake early warning system ([MWO04]). It was im-
plemented because was foreseen that an earthquake of magnitude greater than
M7, with epicenter in the coasts of Guerrero, between Acapulco and Zihuata-
nejo, could occur. This event would have catastrophic consequences for Mexico
City.

The Mexican Seismic Alert System (SAS) transmits a warning to Mexico
City if an earthquake is forecasted at the above mentioned coast segment. An
alert is technically possible, because the warning issued in Guerrero is transmitted
to different points in Mexico City using electromagnetic waves and they travel
faster than seismic waves. The distance between the Guerrero subduction zone
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and Mexico City is about 320 km (see the map of Mexico of Fig. 1.1). Therefore,
the warning time lasts about 60-70 seconds ([Cen04], [MWO04]).

The warning is spread out automatically depending on the magnitude of the
forecasted earthquake:

Public alert: seismic energy, measured at the beginning of an undergoing earth-
quake, produces a forecast for an earthquake of magnitude greater than
Mé6.

Preventive or restricted alert: seismic energy, measured at the beginning of an
undergoing earthquake, produces a forecast for an earthquake of magnitude
below M6.

Public alarms are mainly transmitted by radio and television. The alarm is
also transmitted to schools, the subway and some buildings. Take into considera-
tion that the number of alerted people varies depending on the time of the day in
which the alert is issued.

To conclude this chapter, we wish to stress that the success of every early
warning system not only depends on a good forecasting, but also on the capacity
to reach authorities and endangered population as soon as possible, and on the
decisions following the alert.



6. QUANTIFYING THE ECONOMIC IMPACT OF EARLY
WARNING SYSTEMS

Within the last years, substantial progress in early warning systems for some
types of natural hazards has been reached. These models are subject to constant
improvement and are already fundamental for damage reduction. It is of cru-
cial importance to incorporate these advances into insurance mathematics. This
research presents a first step towards this direction.

In some countries, private and public sectors share natural disaster risks.
However, to model this partnership mathematically, we need models for both
parts. With this motivation, we developed a model for the reserve of an insur-
ance company and for a governmental fund for natural disasters considering an
early warning system. We conceived simplified arrival processes for expenditures
(governmental fund) and claims (reinsurance company) using the information
that we identified as fundamental.

In Part III, we use our model to find an optimal management strategy for the
above mentioned governmental fund using financial mathematics.

6.1 Information problem

The first step was finding out what information regarding warning systems is
essential for our goals. Observing that the natural hazard’s forecasting and antic-
ipating economic needs under uncertainty are two problems of different nature.

As we explained above, the natural hazard’s forecasting intends to predict the
occurrence of it in the near future. For economic planning under uncertainty, we
need mathematical models to describe economic damage due to natural disasters
stochastically. We also wish to stress that not all natural hazards become natural
disasters.

We identify two main arrival processes involved in our problem: the early
warnings (ex-ante) and the claims (ex-post). The main challenge for the de-
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velopment of a parsimonious mathematical model was that both processes are
dependent and not simultaneous.

We explored different possibilities for the modelling, some of them focused
on t, and the dependence between the arrivals of warnings and natural disasters.
We modelled the warning system as a continuous stochastic model that should
generate different cases: false warning, non-warned disaster, not enough time to
react, the error ¢, — t,,, where ¢, is the observed time between the warning
and the disaster. Additionally, we explored the convenience of modelling the
economic benefit of a hitting warning as a separate random variable.

As a main result, we conceived a simplified model that captures the essence
of our problem with a minimum of information. We realized that, if ¢..,.;; 1S small
enough, we can exploit performance statistics of early warning systems for the
actuarial modelling.

The main idea is to take advantage of the only fact we have for sure: every
warning system is fallible. From this axiom, we deduce that we have essentially
three different types of errors:

Type I a warning was issued and nothing happened (P[Error type I| = «),
Type II a disaster occurred and no warning was issued (P[Error type II] = a»),

Type III a warning was issued and a disaster occurred, but the system failed in
the warning or the reaction phase (P[Error type III] = a3).

In order to estimate the probability of an error type III («3) from data, we re-
quire the development of standard criteria for the classification of events in order
to generate suitable data bases. This is a topic for further research in sociology.
Up to now, data bases for natural disasters are very imprecise and there are no
standards to structure them.

We can estimate «; and «- from statistical information. If we don’t have
enough information available or if the information is too imprecise, we recom-
mend generating synthetic data bases.

6.2 Arrival process of natural disasters

Assume that the arrival process of claims corresponding to the type of natural
disaster covered by the fund { N (¢), ¢ > 0} is compound Poisson with rate A > 0.
Then the inter-arrival times are given by the sequence of independent identically
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distributed random variables (i.i.d.r.v.) (7;), ¢ = 1,2,.... The probability of n
claims within the time interval (0, ] is P(N (t) = n) = 20" and B[N ()] =
At.

The sequence of i.i.d.r.v. (T};);>1,T; ~ exp(A) is the sequence of inter-arrival
times of N (t). Let (W;){;>0) be the sequence of arrival times W, = """ | T;.
In other terms, W,, = inf{¢t > 0, N(t) = n}.

The probability density of W, is given by

n—1
fw, (1) = Ae™ M (A1) .t >0. (6.1)
" (n—1)!
Then, W,, ~ T'(n, A) and E[W,,] = %.

The number of claims from warned disasters in (0, t] is N*(t) = ZZN:(f v,
where U; ~ Bern(1 — «a») is defined by

1 if a warning was issued for the disaster
U, = that originated the claim, (6.2)
0 otherwise.

It is easy to verify that the arrival process of claims from warned disasters
(N*(t)) is compound Poisson with rate A* = (1 — a») A, inter-arrival times 7} ~
exp(A*) and arrival times W ~ T'(n, A*). The arrival process of non-warned
disasters (IV(t)) is compound Poisson with rate A = a2, inter-arrival times
T; ~ exp(\) and arrival times W, ~ I'(n, \). Furthermore, N*(¢) and N (¢)
are independent processes and N(t) = N*(t) + N(t). This is the so-called
disaggregation property of Poisson processes.

Finally, we consider the error type IIlI. Using again the disaggregation prop-
erty of Poisson processes, we decompose the arrival process of warned disasters
into two independent Poisson processes. So, we represent the process of warned
disasters N*(t) = N(t) + N(t) as the sum of the counting process of disasters
with non-working warning (I (¢)) and disasters with working warnings (N ()).
N (t) and N (t) are Poisson processes with parameters A = as\* = a3(1 — az)
and A = (1—a3)\* = (1—a3)(1—as)A, respectively. We define the arrival pro-
cess N (t) as the sum of the arrivals of non-warned disasters (N (¢)) and disasters
preceded by a non-working warning (N (¢)). That is, N () = N(t) + N(¢t).
It is easy to verify that the arrival process of natural disasters is the sum of
N(t) = N(t) + N(t).
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6.3 Arrival process of warnings

Let the arrival process of warnings, {x(¢), ¢ > 0}, be a Poisson process with
fixed parameter . From now on, we will denominate emergency to the phases
following the warning. Let 7; be the duration of the :th-emergency. We can
consider the duration of the emergencies 7; as i.i.d.r.v., T; ~ Erlang(k, ), i =
1,2,.... It means,

k k
fri(t) = %tk‘le"“‘” (6.3)

for t > 0, where ¢ > 0 and k € N. We have E[T;] = p~! and /Var[T;] =
(\/E w) L. k specifies the degree of variability and is known as the shape param-
eter.

Note that y is related with the mean duration of the emergency. That is,
h = p~1. Then, for a 72-hours warning i = 72(24)~1(365)~! ~ 0.00822 and
1 = 121.67. For flooding in Germany, e.g., forecasts succeed between 12 and 48
hours before the event and we usually have 12-hours warnings ([dkv03]).

The parameter ¢ in our model is associated with the number of warnings
expected per year. If, e.g., 4 warnings are expected, then o = 4.

We suggest an Erlang distribution for the random variables 7;, because it
allows a variance equal to or smaller than the mean p—!. If desired, it is possible
to model the arrivals of warnings and disasters considering a queueing model of
the type M/E}/s with T; as the “service times”. Note that if we set k = 1,
then we have the usual queueing model with exponential “service times”. An
emphasis on the queueing model is, however, beyond the scope of this thesis.

By the disaggregation property of Poisson processes, we separate the arrival
process of warnings « () into two independent Poisson processes: x*(t) and & (t).
The arrival process of effective warnings, «*(t), has parameter o* := (1 — oy )o
and the arrival process of false warnings, #(t), has parameter 5 := a 0.

Note that the number of warned disasters and the number of technically-
successful warnings should be the same. Hence, x*(¢) and N*(¢) are Poisson
processes with the same intensity. Using the equality ¢* = A*, we obtain an
expression for o in terms of A:

1—0@

A (6.4)

g =
1—Oél
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Parameter Equivalence
A =o* (1 —as)A
g A

az(l —as)A

(1 —a3)(1—az)A

(o + ag — asaz)A
(1—a2)(1—ap)~tA

ap (1l —as)(l—ap) 1A
(1+a1(1—as)(l—a)™ ')A

= QC Q> >y 3l >

Tab. 6.1: Poisson parameters in terms of the mean number of disasters per year (\) and
the probabilities of error (a1, s, ag).

6.4 Arrival process of expenditures (claims)

In the previous sections, we decomposed the arrival processes N (¢) and x(t) into
independent processes. A summary of all parameters in terms of o, o, a3 and
A is given in Tab. 6.1.

For the stochastic modelling, we consider a simplified arrival process of ex-
penditures (claims). We model the arrival process of expenditures using a Poisson
process {.J(t), t > 0} with parameter 1, where

n=A+\+5. (6.5)
That 1is,
N=A+A+\+5. (6.6)

The process of technically-successful warnings, «*(t), is implicit in Eqgs. (6.5)
and (6.6).

6.5 Final comments

The model’s conception is the result of an interdisciplinary analysis. It was devel-
oped to serve as basis for further research in risk management of natural disasters
from an actuarial perspective.
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Although the assumption of independent claims and expenditures is too sim-
ple, this kind of models (e.g. the Lundberg model) have proven its usefulness to
develop techniques for more general risk processes.

We distinguish between ex-post aggregate claims of disasters which occurred
after an optimal ex-ante disaster management, and ex-post aggregate claims which
have a different background by using different stochastic models, respectively.
We do not model any relationship between the size of the losses and the fre-
quency of the extreme natural event.



7. RISK RESERVE MODEL

The classical Lundberg model for the risk reserve (capital) of an insurance com-
pany is given by

Ry=x+ct—5(t), t>0, (7.1)

where

S(t) = Z S; (7.2)

denotes the aggregate claims process up to time ¢, x is the initial capital, ¢ is the
instantaneous premium rate and N (¢) is the arrival process of the claims. The in-
dividual claims S;, ¢ = 1,..., N(t), are i.i.d.r.v.. The Lundberg model is widely
used in practice and is the basis for several fundamental results in actuarial math-
ematics. Nevertheless, this model was conceived before the existence of early
warning systems, so that it does not consider the possibility of loss mitigation.

We denote S(t) to the aggregate claims up to time ¢ from disasters that were
preceded by a working emergency management and S(t) := S(t) — S(t) are the
rest of the claims. If early warning systems have an effect in the claim sizes, this
should be reflected in the probability distribution. For this reason, we classify
claims according to the alert phase.

Define the aggregated claim process

S(t) = S;, S, i=1,....N(t), iidrv. (7.3)

S(t) is defined in analogy to Eq. (7.3).
As a result, we obtain a variant of the classical Lundberg model considering
the effect of a warning system:

o~

Ri=x+ct—S(t)—5(t), t>0. (7.4)
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Fig. 7.1: Simulation of the risk reserve

The expectation of the total aggregate claims up to time ¢ > 0 is
E[S(t) +5(t)] = (AE[S;]+ NE[S/])t. (7.5)
The variance is given by
Var[S(t) + 5(t)] = (\E[S?] + NE[S;))t. (7.6)
The first difference between the Lundberg model and our model, is that we
classify the aggregate claims S(¢) in two types and we consider them as two
different processes for the stochastic modelling. Observe that if S(t) and S(t)
are equally distributed, we have the Lundberg model. As we remember, N ()
and N (t) are compound Poisson processes with rates A = (1 — a3)(1 — as)\
and A = (as 4+ a3 — asas)\. The parameter of N(t) is A = A + A. From
the independency of the arrival processes N (t) and N (t), the aggregated claim

processes S (t) and S(¢) are also independent.

However, the most important difference is that, by construction, this variant
makes it possible to quantify and compare the impact in the risk reserve of early
warning systems with different performance indicators.



8. GOVERNMENTAL FUND’S MODEL

The lack of actuarial models from a governmental perspective forced us to look
for a real governmental fund for natural disasters to develop our model. Based
on an analysis of Mexico’s Fund for Natural Disasters (FONDEN) functioning
and history, we conceived the actuarial model for a governmental fund for nat-
ural disasters here presented. Our model, however, can also be useful for other
counftries.

8.1 Expenditure process

A special feature of Mexico’s Fund for Natural Disasters is that it not only con-
siders damage ex-post but also resources for prevention. For this reason, we
concluded that we should include two types of expenditures in our mathematical
model: ex-ante and ex-post.

Ex-ante expenditures include only resources assigned during alert stages. For
example, money provided for temporary shelters after a hurricane-warning. A
fund’s disbursement after a natural disaster is an ex-post expenditure.

After issuing a warning, whatever the result, we disburse a constant amount
a1. In case of a false alarm, the quantity a, should be returned to the fund at the
end of the emergency phase.

Of course, in the real world @, is not constant and a, also varies. Never-
theless, the size of ex-ante expenditures is much easier to calculate than in the
ex-post case. In practice, we can use mean observed values to calculate the con-
stants a; and a, that we will use. The results should be adjusted according to the
experience regarding the variability of ex-ante expenditures.

In our model, expenditures of size a; have the same arrival process as the
warnings: «(¢). The reimbursement a, has the same arrival process as false
warnings #(t). Both processes are dependent, but not the arrival processes of
false warnings (#(¢)) and working warnings (x*(¢)). Hence, it is mathematically
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Fig. 8.1: Simulation of the governmental fund

more convenient to work with the arrival processes of the disbursements a; and
a1 — a» than with the arrival processes of a; and a».

A summary of results is in Table 8.1.

8.2 Fund’s Model

Assume that we have an unlimited XL-reinsurance contract for year n with fixed
retention level o(") > (. If there is no reinsurance contract this year, then (") =
0.

Consider that the reinsurer uses the expected value principle with safety load-
ing # > 0 for premium calculation. In this case,

W ]
cm = (1+46) E[’ (Si—oz(”))JrJ
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Event Expenditure | Arrival Poisson
process | parameter
Technically-successful warning a K*(s) o*
False warning a; — as R(s) g
Claim ex-post (optimal emergency S, N (s) h)
management)
Claim ex-post (deficient emergency S; N(s) Y
management or non-warned disaster)

Tab. 8.1: Classification of expenditures.

N(1)
+ E|Y (Si—a™)T| b, (8.1)

1=1

a” < co. C(") is the annual premium to be paid at the beginning of the year n.
If x(()”) are the initial resources for the year n, it is clear that only contracts with

c < x(()n) are viable, x(()”) is the sum of the budget for year n and the surplus
(if not zero) of the previous year.

In the above formula, we show that it is possible to quantify the effect of risk
reduction in the risk premium. A risk premium calculated considering the effects
of warnings can represent an economic incentive for risk-averse governments to
invest in early warning systems and purchase more reinsurance.

Let the process (R (s))se[o.1) be the level of the fund at time ¢ = s +n —1,
n € N. The initial value of (R(") (5)) ,¢ro.1 i8 by = 2§ — €,

The model for the governmental fund at time s for the n-year is

RM(s) = b —1I(s), (8.2)
where
N(s) N
(s) := Z (a; + mm{oz(”),si}) + Z (a1 + mm{oz(”),Sl})
1=1 1=1
N(s)

+ Z min{a™, S;} — (ay — az) k(s). (8.3)
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8. Governmental fund’s model

I1(s) is a random variable that represents the aggregated expenditures up to time
s. The process R (s) considers ex-ante and ex-post economic resources to-
gether. As we mentioned before, in Mexico ex-ante and ex-post economic re-
sources are administrated independently. We joined them for the mathematical
formulation because they share the same 1initial budget.

The expectation and the variance of II(s) are given by

aj N s+ (ay —as)os

AsE [min{oz( . S; }} + AsE [mm{oz }} (8.4)

(1 — as)\s (w +(1- ag)E[min{a(”),Si}o
11— a1

(a3 + as(1 — as))As E[min{a™, §;}], (8.5)

af\*s + (a; — ag) &5+ As E[(min{a™, 5;})?]
s E[(min{a™,§;})?] (8.6)

(a% + (a; — a2)2 — 041) (1 —as)As
((1 —ay)E [(min{a(”),gi})QD (1 — as)As
<(a2 + az(l —ay))E {(min{a(”),gi})QD As,  (8.7)

aq

For the case o™ = oo (no reinsurance), we have

E[TI(s)] =
_|_
_|_
and
Var[Il(s)] =
_|_
_|_
_|_
respectively.
E[TI(s)] =
and
Var[Il(s)] =

(AE[S;] + XE[S;] + a1 \*s + (a; — a»)5)s (8.8)

(@2)\* + (a; — a2)26 + NE[S?] + NE[S;])s. (8.9)

In Chapter 12, we use the model for the cumulated expenditures I1(s) consid-
ering an XL-reinsurance contract in order to find an optimal management strat-

€gy.



9. GENERALIZED-PARETO CLAIMS

In this chapter, we make some calculations assuming Generalized-Pareto Claims
(see Def. 9.1). Finally, we present a numerical example.
Let us first introduce the definition of Generalized Pareto Distribution:

Definition 9.1: (Generalized Pareto Distribution ([KMO1]))
Define the density function (df) G¢,, 5, {,v € R, 3 > 0, by

1—<1+5(”““,%”)>% if £#0,

Gewpla) = | .1
1—exp{—%} of £=0.
where
T 2> v if €20,
0<z<v-52 ife<o.

£
Ge,,,p 18 called a standard generalized Pareto distribution (GPD).

If E = 0 or £ = 0, the respective claims have exponential distribution. For
this reason, we restrict ourselves to the sub-exponential case, i.e. £ # 0, { # 0.
Additionally, given that the claims ex-post, S; and Sy, have values in (0, co) and

finite mean and variance, we set §5 ~ Gg; 5 Sy ~ GE'? 3 with E\,E = [(), %)
In order to simplify the output, we consider v = 0 and 7 = 0. We can easily

generalize the results to other cases.

We have
E[S,] = N 9.2)
1-¢
N 22
E[S?] = 36 — and (9.3)
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S, B 9.4
Var[S] = _ _ |
e T S TS O

E[S.], E[??] and Var[S;] are defined in analogy to Egs. (9.2), (9.3) and (9.4),
respectively.
The XL-premium (see Eq. 8.1) that the government should pay is in this case

B s\
ct = (146 Aﬂir#oi (1+§O‘B ) 5

71T T\ TE
+ Xﬂir#o‘_ (1+§O‘B ) 1, 9.5)

where o(") is the retention level.
The mean ex-post expenditure per disaster, considering an XL-reinsurance, is

_ 3 B4 fa RN
E[min{a™,S;}] = 1? 3_6 Jlrfo‘g (1+%a<“>> 06

The second moment of the expenditure considering an XL-reinsurance is

N o™ (5 4+ £a™ 3+ Ealm)
E (min{oz(”),Si})Q} = -2 [ 5 +§ ) + o tg )i]
1-¢ (1 =& =2¢)
.(L+§Mm>g
&
/\262 —. (9.7)
(1 =81 =2¢)

E[min{a(™,S;}] and E[(min{a(™, S;})?] are defined in analogy to Egs. (9.6)
and (9.7).

Substituting the equations for the mean and the second moment of the expen-
ditures considering an XI.-reinsurance contract in Egs. (8.4) and (8.6), we obtain
formulas for the calculation of the mean and the variance of the total aggregated
outcome up to time s.
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9.0.1 Example

Let the number of periods be n = 1. Assume we have a warning system with
performance indicators oy = 0.2 (error type I), oo = 0.3 (error type II) and a3 =
0.4 (error type III). We will make an example based on the assumption that the
planning is made considering a mean of 5 natural disasters per year. Remember
that the incidence of natural disasters is variable on a yearly basis. Actually, we
consider that this variability is already a good reason to build reserves.

We classify claims accordingly in two groups:

1. a warning was issued and it was technically and sociologically effective,
2. the rest of the disasters.

The next step would be to fit in a distribution for every group of data and to set
the corresponding parameters. If the available information is not enough, then
we need to make some assumptions according to our experience.

Assume that we adjust a generalized Pareto distribution for both types of
claims and we obtain E = 0.3, B =50, £ = 0.4 and 3 = 100. The expenditures
and the reimbursement for emergency management are a; = 60 and a, = 40,
respectively. Consider a XL-reinsurance contract with retention level o =
1000 and safety loading 6 = 2.

Our calculations yield n = 5.87, ¢ = 4.37, A = 2.10 and X = 2.90.
The expectation and variance of §Z (optimal emergency management) and S
(deficient emergency management) are E[S;] = 71.43, Var[S;] = 12,755.10,
E[S;] = 166.67 and Var[S;] = 138,888.89. The corresponding premium, as
defined in Eq. (8.1), is C'(") = 134.49.

Moreover, E[II(1)] = 816.00, Var[II(1)] = 225,170.00, E[min{a(™, 5;}] =
70.67 and E[min{a(™,S;}] = 151.76.

The influence of the warning system should be explicitly reflected in the dif-
ference in the results for both types of claims and implicitly in the premium and
statistics for the cumulated expenditures at the end of the fiscal year I1(1). Note,
that if we consider that an early warning system has an effect on the claim sizes,
the benefit of an effective risk mitigation is translated into a premium reduction.
The more effective the early warning system 1is, the lower the premium.

The effects of the XL-reinsurance contract can be identified in the statistics of
I1(1) with and without reinsurance. If there is no reinsurance contract, E[II(1)] =
860.85 and Var[II(1)] = 533, 783.33.
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_Finally, we calculate the mean and the variance of the sum of all claims:

E[S(1) + S(1)] = 633.35 and Var[S(1) + S(1)] = 520, 833.33.

Certainly, we can also make a variety of comparative analysis changing the
XL-contract conditions, the performance indicators, the claim parameters, etc.

In Figs. 8.1 and 7.1, we illustrate a simulation of the governmental fund and
the risk reserve during 5 years, respectively. With the help of these figures, we
can appreciate the main differences between both processes. The governmental
fund has an income once a year (budget), expenditures and reimbursements (or
negative expenditures) for emergency management as well as post-disaster ex-
penditures. The risk-reserve of the insurance company has a continuous income
for premiums and claims post-disaster.

9.1 Final comments

The results of Parts I and II evidence that building reserves is justified in the
framework of a risk-averse government. The reserves are important because they
enable a better budget planning and they reduce economic vulnerability in the
long-term.

The implementation of a natural disasters fund by itself is not enough to re-
duce substantially the economic vulnerability of a risk-averse country like Mex-
ico if we are not able to take advantage of it in the long-term planning.

A better budget planning for a fund for natural disasters like FONDEN is
important to reduce the disruptions to the budget process caused by unforeseeable
expenditures from natural disasters. Another benefit of improving management
for natural disasters funds is that risk-averse governments can implement them in
a sustainable way.

For some countries, a better budget planning and reserve management using
ad hoc actuarial technics can enable the possibility to stabilize also the budget for
diverse social programs, like poverty mitigation. In some countries, the budget
for social programs is shortened in order to cover natural disaster losses.

In the next part of the thesis, we use the actuarial model for a governmental
fund for natural disasters here developed to find an investment strategy for the
management of a natural disasters fund from a governmental perspective.
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10. MARKET MODEL

The market model that we use for the optimization problem is the classical Black-
Scholes. We have a bank account paying interest rate » and a risky asset Z in
which the fund’s manager can invest. The model can be generalized to consider
a finite number of risky assets. We use the classical Samuelson model for the
dynamics of the asset price Z(s):

dZ(s) = Z(s)(uds + bdB(s)), Z(0) >0, u>0,b> 0. (10.1)

Let B(s) be a standard Wiener process. F”!! denotes the P-augmentation
of the filtration generated by B(s) and the process II(s). Consider a probability
space (Q, F,F,P) with a filtration F = (F,)o<s<1 2 F?!' satisfying the usual
conditions and F = F;.

10.1 Market assumptions

We work in the framework of incomplete markets and no-arbitrage.
Denote by

M¢(P) = {P =P :Pisaprobability measure and
Y is a P-local martingale}

the set of all probability measures P on F which are equivalent to IP in [0, 1].
If there is no possibility of arbitrage, we can assume M€ (IP) # ¢ ([HK79]).
Incompleteness implies that we can not replicate the contingent outcome with
the instruments available in the market without risk. The total contingent expen-
ditures of the fund (II(1)) depend on a source of randomness which does not
influence the market’s coefficients y, r and b.
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10. Market model




1. INVESTMENT PORTFOLIO

Our aim i1s to find whether we can combine a risk free instrument (bank account)
with risky investment (asset ) to hedge the contingent total outcome I1(1) of the
fund for natural disasters.

With development purposes, we assume Pareto-distributed claims. The effect
of an XL-reinsurance contract is considered in the model for I1(1). In this chap-
ter, we explain the model for the investment portfolio that we use to explore the
possibility of managing risk using investment.

From the reserve available at the beginning of the year n (R("(0)), we
subtract the XL-premium (C(™)) and other payments to be made at the begin-
ning of the year. We denote the total amount to be subtracted as P, where
P > C(™ > 0. If the reserve suffices (i.e. R(™(0) > P), we assign an amount
z € (0, R (0) — P) for the risk management strategy based on investment.

Define a real-valued process X (")(s) with X(")(0) = z representing the
current wealth at time t = s +n — 1. Let 7(s) be the number of shares Z(s)
held at time ¢. At each point in time ¢, the amount 7(s)Z(s) is invested into the
risky asset. The difference X (") (s) — 7(s)Z(s) is left in a bank account earning
interest ». We deduce that the dynamics of the investment portfolio X (") (s)
during the year n is given by

dXM(s) = rX"(s)ds —ra(s)Z(s)ds+ n(s)dZ(s), (11.1)

XM™M0)=2,2>0,0<s< 1.
Rewriting Eq. (11.1),

dXM(s) = rX(s)ds+ n(s)Z(s)((n — r)ds + bdB(s)), (11.2)

where B(s) is a standard linear Brownian motion.

All processes considered in this part of the thesis are indexed in [0,1]. We
calculate the optimal strategy for a time-horizon of one year. In order to simplify
the notation, from now on we will write X (s) instead of X (") (s).
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For our purposes, it is mathematically convenient to work with the discounted
prices and portfolio values and to make a change of measure that eliminates the
drift term (p — r)ds in Eq. (11.2) (above) using Girsanov’s Theorem.

Let Z(s) = e~ ""Z(s) and X(s) = e~"*X(s) be the process of discounted
asset prices and the discounted wealth process, respectively. If the process

/ m(u)dZ(u) (11.3)
0
is a Q-local martingale, the discounted process (X (s))o<s<1 is also a Q-local
martingale. .

We can easily verify that Z(s) is a Q-local martingale. Applying It6 Calculus
and substituting Eq. (10.1), we obtain

dZ(s) = Z(s)((p—r)ds +bdB(s)). (11.4)
Consider the process

H—=r
b
The process W € S7. is the sum of a local martingale B(s) and a predictable
process A that satisfies A = [~ £-"d(B). Actually, the Doob-Meyer decompo-
sition of W is W = W(0) + B + A.

W (s) satisfies

W{(s):= B(s) + s, W(0) =0 a.s. (11.5)

dW (s) = dB(s) + = - "ds. (11.6)
Put
M, = F—'p L= U e (11.7)
s = exp == (s)—§( ; )s ;s €[0,1]. .

The process £ is constant, and thus, progressively measurable. It obviously

satisfies Novikov’s condition

1 =1\’
exp (5/0 (,u 2 r) du)
where E is the expectation with respect to IP. Define the measure QQ on (2, F;)

by % = M, on F,. By Girsanov’s theorem, we know that (W (s))o<s<1 i8

E

< oo, (11.8)
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a standard Brownian motion with respect to Q. This implies that W is a semi-
martingale under the basic measure P.

It is easy to verify that the discounted process Z (s) is a Q-local martingale.
Substituting Eq. (11.6) in Eq. (11.4), we obtain

dZ(s) = bZ(s)dW (s). (11.9)

It is well-known that the solution of Eq. (11.9) with respect to QQ is a geomet-
ric Brownian motion:

Z(s) = Z(0) exp (bW(s) - bZ—S) : (11.10)

Now we will verify that the discounted process X(s) is also a local Q-
martingale. Considering X (s) = ¢~ "% X (s) and applying It6 Calculus, we have

dX(s) = —re "X(s)ds+e "dX(s). (11.11)
Substituting d X (s) (Eq. (11.1)) in the above equation,

dX(s) = e " n(s)Z(s)((i —r)ds + bdB(s)). (11.12)
It follows that the dynamics of the process under QQ is given by

dX(s) = w(s)dZ(s). (11.13)
Then X (s) is a Q-local martingale and admits the representation

X(s) = X(0)+/Osn(u)bZ(u)dW(u). (11.14)

From now on, we will work with the discounted processes Z(s) and X (s).

The equivalent martingale measure (Q is not unique in the framework of in-
complete markets. There are two widely extended criteria to choose an element
of M¢(IP) for the calculations: the minimal martingale measure (Def. 11.1) and
the variance-optimal measure (Def. 11.3).

11.1 The minimal martingale measure

Definition 11.1: Let M € M,. A martingale measure P™" = P is called mini-
mal if

P™ = Pon F,, (11.15)



62 11. Investment portfolio

and if any square-integrable P-martingale which is orthogonal to M under PP
remains a martingale under P™'":

L e Myand (L, M)=0 = L isamartingale under P""" (11.16)

([FS91]).

From the Doob-Meyer decomposition of W, we know that the minimal mar-
tingale measure should be determined by

s s 2
G, = exp{—/ ’u;rdB(s)—%/ (“;r) d(W)S},(11.17)
0 0

s € [0,1] (see [FS91]). The existence of the minimal martingale measure is
ensured by the square integrability of G, and P™" is defined by the Radon-
Nykodym derivative

dein = 1 = 2
= =@, = — — - 11.1
P Gy exp{ ; B(1) 5 ( ; ) } (11.18)

(see [FS91]). Observe that G, = M,. That is, the minimal martingale measure

is Q (P™" = Q).

11.2  'The variance optimal martingale measure

Let us first introduce the following definition:

Definition 11.2: The Hilbert space with scalar product (A, As) = E[A; A,] and
norm ||A, || = +/E[A7] is the space of all square-integrable real random variables
and we denote it by £2.

We define the variance-optimal martingale measure as follows:

Definition 11.3: The equivalent measure ’, € M¢(IP) whose density with re-
spect to IP has minimal £?-norm is called the variance-optimal martingale mea-
sure ([DS96]).

Let © be the space of all R-valued predictable TV -integrable processes v such
that G5 () = [, ¥dW is in the space S? of semimartingales.



11.2. The variance optimal martingale measure 63

Remark 11.1: In our case, a random variable A € £? admits a strong F-S de-
composition if A can be written as

1
A=A +/ DXAW, + LY, P —as., (11.19)
0

where A, € Ris aconstant, 9 € © and L* = (L2)y<,<; is a square-integrable
martingale, i.e., L* € Mo, with E[L{}] = 0 and strongly orthogonal to [ JdB(s)
for every ) € O ([Sch94)).

Let

s 2
K, = </ a _rdW(s)> = (’”‘ _r) 5. (11.20)
o b b

Ii’s is the so-called mean-variance tradeoff (MVT) process. K is in our case
deterministic and, obviously, continuous and bounded. If the MVT process is
deterministic, it is known that the space G| (0) is closed in £? ([MS95], [RS98]).
From the closeness of G'7-(©) in £2, we know that every r.v. in £? has a F-S
decomposition.
If the MVT process K is bounded, the Radon-Nykodym derivative M; is in
£? and it admits a F-S decomposition of the form

1
My = E[M]-E ML +/ b () dW (u) + Ly (11.21)
0

([RS98]). If ﬁl = 0, we know from the results of [RS98] that the minimal and
the variance-optimal martingale measures should coincide. This is precisely our
case.

We find the F-S decomposition of M, as follows:

We have

M, = 5(-“73(1)). (11.22)

We first rewrite M in terms of W. Substituting Eq. (11.5) in Eq. (11.22),

M, = fig (_’“‘ ; TW(1)) . (11.23)



64 11. Investment portfolio

From the continuity of the MVT process K and applying Yor’s Formula we ob-
tain

N 1 _ _
M, = —/ ef‘lf:(—’”‘b TW(U)) ’”‘b AW (u) (11.24)
0

([RS98]). Therefore, the process that is integrated with respect to W (s) in the
F-S decomposition of the measure M, (see Eq. (11.21)) is

b(s) = —efig (—’“‘ - TW(S)) a - L d(s) € o. (11.25)

The constant parameters p, » and b are clearly independent of the standard
Brownian motion B(s) and we know that B(s) is equal in distribution with a
normal variable with mean 0 and variance s. So, we calculate

EM?] = efr. (11.26)

Summarizing, the F-S decomposition of M, is

N 1 _ _
M, = eRl—/ ef‘lf:(—’”‘b TW(U)) ’”‘b LA (u). (11.27)
0

That 1is, ﬁl = 0. Thus, the minimal martingale measure ( is also variance-
optimal (P"™'" =P, = Q).



12. MANAGEMENT STRATEGY FOR THE RISK RESERVE

In Chapter 8, we developed an actuarial model for a governmental fund for natu-
ral disasters. We defined the process

N(s) N(s)

II(s) = Z (a1 + min{a!™, gl}) + Z (a1 + min{a!™,§;})
1=1 1=1
N(s)

+ Z min{a™, S} — (a1 — az) k(s).

1=1

I1(s) is a non-decreasing process representing the aggregated expenditures up to
time s € [0, 1]. The total accumulated expenditures at the end of the fiscal year
is TI(1).

In order to develop an adequate optimal management strategy to hedge I1(1)
from the perspective of a risk-averse government, we should outline an adequate
optimization problem. We investigated different possibilities and the resulting
strategy comes from the solution of Problem 12.4.

The formulation and solution of the main optimization problem (Problem 12.4)
is closely related with other problem, which we will call basic optimization prob-
lem (Problem 12.1).

12.1 Formulation of the basic optimization problem

Define H(s) := m(s) bZ(s), s € [0,1], where 7(s) is the number of shares to
be held at s and Z(s) is the discounted process of prices. Let G,(H) be the

cumulative gain process associated to the discounted wealth process X (s). We
have

cymzlwmw:[ﬁ@mwm (12.1)
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0<s< 1.
Now we define the basic optimization problem.

Problem 12.1: Let © be the space of all investment strategies H such that G (H)
is in the space S? of semimartingales.
The basic optimization problem is

~ ~ \ 2 ~
minE [(H(1) e (H)> ] ,c€R, overall H € O. (12.2)

12.2  Solution of the basic optimization problem

We denote the strategy that solves Problem 12.1 as H(¢). This strategy has the
property to be mean-variance optimal. This type of problems has been often
discussed in the literature in various forms of generality in both discrete and
continuous settings.

As we mentioned before, from the closeness of G (©) in £2, we know that
every r.v. in £* has a F-S decomposition. II(1) € L£? implies that there is a
solution H(¢) € © for all c.

The first step is to find the intrinsic value process. We define the intrinsic
value process V; as a square-integrable process with right-continuous paths sat-
isfying Vo, = E[II(1)] and V; = II(1) P-a.s. (see [FS91]).

The intrinsic value process for our problem is

V, == E[II(1)|F,] = II(s) + E[II(1 — s)]. (12.3)
where
E[ll(s)] = a\'s+(a) —as)ds
+ AsE min{a<”>,5*i}] + AsE [min{a(”),gi} L (12.4)

We wish to stress that the value of II(s) in Eq. (12.3) depends only on historical
information.

If the minimal martingale measure is also variance-optimal, as it is our case,
the solution of Problem 12.1 is given in feedback form as

o = L - L [VS_ - c—/ Hgff)dW(u)] . (12.5)
0
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Controlling every moment the amount invested in the asset Z(s) using the
solution of Problem 12.1, we influence the path of the portfolio value X (s).
However, it should be noticed that the solution of the basic problem is nonsense
from an economic point of view. If the cumulated expenditures fall short, the
discounted value of the portfolio will be pulled down. We should not apply the
solution of Problem 12.1 in practice. Nevertheless, this problem is useful as a
starting point. Before showing the main optimization problem, let us introduce
two closely-related problems.

12.3 Optimal choice for the initial capital
Problem 12.2: Let © be the space of all investment strategies H such that G (H)

is in the space S? of semimartingales.
We consider the following optimization problem

min E [<H(1) —c— Gy (ﬁ)>2] , over all pairs (¢, H) € ©. (12.6)

~ [Sch93] showed that the solution of Problem 12.2 is given by ¢* = 1I, and
H()_ In our case, the optimal choice for the initial capital in Problem 12.1 is

¢ = E[I(1)). (12.7)

12.4  Variance-minimizing strategy

Problem 12.3: Let © be the space of all investment strategies H such that G (H)
is in the space S? of semimartingales.
We consider the following optimization problem

min Var [(H(1) —e— G (ﬁ)ﬂ , overall 7 € ©. (12.8)

This type of problem was solved by [Ric89], [DR91] and [Sch93] at diffgrent
levels of generality. The solution of Problem 12.3 is given by the strategy H (<"
(see [Sch93]).
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12.5 Main optimization problem

Outgoing from the solution of Problem 12.1, we worked on the formulation of a
related problem that leads to a more realistic investment strategy, feasible from
the governmental perspective.

To explain the main idea for the formulation of the problem, let us consider
the following citation from [WPO02], p. 35, about reserve funds as governmental
ex-ante financing tool:

Reserve funds involve setting aside funds in highly liquid ac-
counts held either domestically or abroad. In theory the annual con-
tribution to that fund should be equal to the annual expected loss of
the risk the fund is designed to cover. The cost of these funds is
primarily the opportunity cost of not investing the funds elsewhere:
highly liquid accounts offer only a 5-6% rate of return compared to
the 16% rate of return frequently attributed to investment in devel-
opment projects.

Our idea for the mathematical formulation is to diminish this opportunity cost
through investment in the market. We renounce to absolute high liquidity allo-
cating some resources for investment, but we reduce risk to its intrinsic value
using an investment strategy. Our goal is to find an investment strategy that allo-
cates the amount of investment resources in the market strictly necessary to hedge
the maximum between the cumulated expenditures I1(1) and the capital resulting
from investing ¢* = E[II(1)] in a bank account earning r during the fiscal year.

Problem 12.4: Let © be the space of all investment strategies () such that G, (Q)
is in the space S? of semimartingales.
The optimization problem is

min E [(H*(l) k-G, (Q)ﬂ .k eR, overall Q* € O, (12.9)

where
IT*(1) = max{c*e", II(1)}. (12.10)

c¢*e” represents the amount of capital that we would have in the fund if we
would invest 100% of an initial capital ¢* = E[II(1)] in the bank account earning
interest rate ». We have chosen the constant ¢* for the formulation of the main
problem because it is the optimal starting point to hedge the cumulated expendi-
tures I1(1).
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12.6  Solution of the main optimization problem

The solution of Problem 12.4 will be denoted as Q(*). We solve this problem
in an analogous way to Problem 12.1. We should find the intrinsic value pro-
cess V* that satisfies V* = E[II*(1)] and V}* = II*(1) P-a.s., where I1*(s) =
max{c*e”, II(s)}, s € [0, 1].

We define the intrinsic value process V" as follows:

V: = II"(s) + E[II*(1) — II*(s)]. (12.11)
Equation (12.11) (above) satisfies the conditions V, = E[II*(1)] and V| =
IT*(1).

Finally, the explicit solution of the main optimization problem (Problem 12.4)
in feedback form is

Q) = ”;r [VS*_ k- /S@ﬁ)dW(u)] . (12.12)
0

The optimal choice for k in Problem 12.4 is £* = E[I1*(1)]. From E[IT*(1)] >
E[II(1)], we know that the optimal starting capital £* is higher than ¢*. Although
Problem 12.4 has a solution for all £ € R, from an economical perspective, ¢*
can be interpreted as the minimal acceptable value of k.

We have conceived Problem 12.4 to be adequate from the public administra-
tion point of view. This mathematical model is useful when analyzing quantita-
tively the feasibility of the established goals at the end of every fiscal year.

12.7 The suboptimal strategy
The solution of Problem 12.4 (Q(*)(s)) has the following disadvantages:
1. It can take negative values.
2. It can demand more resources than we have in our portfolio.
Therefrom, we suggest the use of the following (suboptimal) strategy:

I = min{max{Q™,0}. X*(s7)}. (12.13)

S
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Fig. 12.1: Portfolio value X (s) resulting from applying the optimal strategy of the basic
problem (solid line), optimal amount to be invested H ) (s) (dashed line) and
cumulated expenditures I1(s) (dotted line).
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Fig. 12.2: Portfolio value X *(s) with initial capital & = £~ resulting from apply-
ing the optimal strategy (solid line), optimal amount to be invested Q*)(s)

(dashed line), cumulated expenditures II(s) (dotted line), and II"(s) =
min{max{II(s),0}, X*(s7)} (dash-dot line).
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Fig. 12.3: Portfolio value X *(s) with initial capital ¥ = ¢* resulting from apply-
ing the optimal strategy (solid line), optimal amount to be invested Q*)(s)
(dashed line), cumulated expenditures II(s) (dotted line) and II"(s) =
min{max{II(s),0}, X*(s™)} (dash-dot line).

12.8 Examples

In this section, we show some simulations that will help us visualize the func-
tioning of the strategies solving the basic problem and the main optimization
problem. Finally, we give an example of suboptimal strategy and we compare it
with the corresponding optimal strategy.

We programmed the solution of the basic problem and of the main opti-
mization problem using Matlab. For the simulations, we retake the settings of
Sec. 9.0.1. The market parameters are » = 0.4, ¢ = 0.15 and b = 0.2.

With illustration purposes, all the graphics of this section show the simulated
present value processes.

12.8.1 Example A: the solution of the basic problem

The solution of Problem 12.1 is valid for all ¢ € R. For the simulation, we used
the optimal value for ¢ (¢* = E[II(1)] = 816) as initial capital to calculate the
optimal strategy.
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Fig. 12.4: Portfolio value X**(s) with initial capital & = £k~ resulting from apply-
ing the suboptimal strategy (solid line), suboptimal amount to be invested
I'® () (dashed line), cumulated expenditures II(s) (dotted line) and IT* (s) =
min{max{II(s),0}, X**(s7)} (dash-dot line).

The simulation plotted in Fig. 12.1 evidences the economic nonsense of the
basic problem. The optimal amount to be invested at time s is given by H (s) =
e"bH (") (s). Observe that the amount to be invested at moment s is always
negative in this example. We can appreciate how the portfolio value X (s) =
" X (s) is pulled down.

12.8.2 Example B: the solution of the main optimization problem

We calculated the expectation of IT*(s), 0 < s < 1, numerically. The estimation
of E[IT*(1)] after 50,000 simulations is 1298.2.

The solution of the main optimization problem (Problem 12.4) is valid for
all £ € R. For the simulation, we first used the optimal value for k& (k* =
E[IT*(1)] = 1298.2) as initial capital to calculate the optimal strategy (see Fig.
12.2) and then we tried with &£ = ¢* (see Fig. 12.3).
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Fig. 12.5: Comparison of the suboptimal portfolio X **(s) with initial capital k¥ = k™ of

Example C (dashed line) vs. the optimal portfolio X *(s) with initial capital
k = k™ (solid line) of Example B.
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Fig. 12.6: Portfolio value X**(s) with initial capital k¥ = ¢* resulting from apply-
ing the suboptimal strategy (solid line), suboptimal amount to be invested
I'® () (dashed line), cumulated expenditures II(s) (dotted line) and IT* (s) =
min{max{II(s),0}, X**(s7)} (dash-dot line).
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Fig. 12.7: Portfolio value with initial capital & = k™ resulting from applying the optimal
strategy (solid line), optimal amount to be invested (dashed line), cumulated
expenditures II(s) (dotted line) and IT* (s) = min{max{II(s),0}, X*(s7)}
(dash-dot line). The optimal and the suboptimal strategies coincide.

12.8.3 Example C: the suboptimal strategy

In this section, we retake the same simulation for the market and the expenditures
of Example B and we calculate the suboptimal strategy. Compare Fig. 12.2 vs.
Fig. 12.4, and Fig. 12.3 vs. Fig. 12.6. In these examples, the optimal strategy
demanded an investment superior to the portfolio value. The suboptimal strategy
does not allow an investment higher than the portfolio value.

In Fig. 12.5, we can appreciate the suboptimal and the optimal strategies of
Fig. 12.2 (Example B) and Fig. 12.4 (Example C) together.

Finally, we present an example of the case when both strategies coincide (see
Fig. 12.7) and a case with low cumulated expenditures and initial capital k£ = ¢*.

12.9 Final comments

In this part of the thesis, we developed an optimal management strategy for the
wealth X (s) in order to hedge the total accumulated expenditure at the end of the
fiscal year II(1). We showed that investment combined with XL-reinsurance is a
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Fig. 12.8: Portfolio value with initial capital £ = ¢* resulting from applying
the suboptimal strategy (solid line), suboptimal amount to be invested
(dashed line), cumulated expenditures II(s) (dotted line) and IT*(s) =
min{max{II(s),0}, X" (s7)} (dash-dot line).

plausible alternative for risk-averse governments to improve the risk management
of natural disasters funds and, therefore, improve long-term planning.

A topic for further research is to solve the optimization problem at different
levels of generalization and to incorporate other alternatives for risk management
in the modelling. We can also calculate optimal strategies for the reinsurance
company and investigate the interaction of the governmental strategy with the
strategy of a reinsurance company.

Nevertheless, we should remember that every model needs parameters. In the
case of natural disasters, we do not usually have enough data or data bases are
incomplete and imprecise.

In our opinion, the stochastic analysis of the underlying natural processes
involved in natural disasters should be an important component for an integrated
risk management. We could use this knowledge to generate realistic synthetic
data bases and historical sequences.

However, the difficulty of this kind of research is that natural disasters are the
result of the interaction of many processes. In which case, we need to begin with
the study of the components before we intend to model any form of interaction.
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For the beginning of our research, we should choose and concentrate our efforts
in only one geophysical process. Considering that hydro-meteorological disasters
have caused most of the expenditures of FONDEN and that rain is a fundamental
variable of observation for many hydro-meteorological disasters, we focused our
research in the rain process and its stochastic properties.

We are convinced that for a valuable analysis of the stochastic properties
of rainfall, a purely mathematical analysis of data in the form of time-series
is not enough. We strongly believe that rainfall behavior in space and time is
so complex, that we should take geophysical sciences into consideration for the
stochastic modelling.

In our opinion, the future of actuarial mathematics applied to natural disasters
is the incorporation of geophysics. This perspective can also be extended for
financial mathematics, because nowadays we have financial instruments that are
indexed to some geophysical processes.

Now let’s consider the following citation:

“In Sweden, precipitation is rarely extreme in character, but there are
severe disturbances from time to time and considerable variations
on a yearly basis. The last 15 years have been remarkable because
of an unusually high frequency of weather-related disaster events.
The year 2000 featured the highest ever recorded precipitation levels,
with some major floods.” ([SS03])

Whether disturbances in Sweden and all around the world are a consequence of
global climate changes or natural climate variability, it forces us to use stochastic
models which are able to capture changes in weather over several time scales.
Our approach here is the application of multifractal models.

Actually, several multifractal representations of rainfall have been proposed
in the literature. For example, pulse-based models (e.g. [VI02], [BS99] and
[Dei00]); non pulse-based models using wavelet decompositions (e.g. [PF96])
or non pulse-based models using discrete or continuous multiplicative cascades.
For this research project, we restricted ourselves to non pulse-based multifractal
representations using multiplicative cascades. Nevertheless, this does not mean
that we suggest leaving out other representations.

From [GW93]:

“It 1s clear that the analysis of intermittency and extremes in rainfall
is particularly amenable to the cascade theory. Given the geometric
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and physical identity of quantities that have appeared in previous
spatial hierarchial models of the type discussed in section 1, it is
natural to explore how a cascade theory might explain the hierarchial
or clustering structures.”

With this motivation, we began to study multiplicative cascade models for
rain.

The next part of our research is focused in placing some standard hydrolog-
ical models for rain in the framework of multifractal theory and analyzing the
potential application of multiplicative cascade models for rain in risk manage-
ment. Part IV begins with three introductory chapters. We present our results in
Chapters 16 and 17. We do not keep the notation from previous chapters.
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Part IV

MULTIPLICATIVE CASCADE MODELS FOR RAIN
IN RISK MANAGEMENT






13. FRACTAL GEOMETRY AND MULTIFRACTAL THEORY

Multifractal theory is a very young discipline, which includes fractal geometry.
On account of this, we begin Part IV with two introductory chapters.

In this chapter, we introduce fractal geometry, and then multifractal theory.
In the next chapter, we place stochastic processes with simple scaling behavior
in the framework of multifractal theory and we introduce the topic of multiple
scaling.

Fractal geometry, as defined in [Fal97], is the discipline that provides a gen-
eral framework for the study of irregular sets (Def. 13.4).

We define multifractal theory as the discipline that:

1. aims to study the scaling behavior of measures (Def. 13.8),

2. integrates simple scaling stochastic models in a more general framework
and

3. provides stochastic models for phenomena in which scaling occurs with a
range of different power laws.

"R
AN

Fig. 13.1: Sierpinski triangle, conceived by Wractav Sierpinski (1882-1969)
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Fig. 13.2: Koch curve, conceived by Niels Fabian Helge von Koch (1870-1924) in 1904.
To construct this curve we begin from a line segment. Then we replace the
central third of this line by two lines of its own length, placed continuously as
in an equivalent triangle. This process is continued for any segment, always
on the same side of the curve. The Koch curve is infinite in length and its
intersection with the original line corresponds to the Cantor set (Def. 13.3).

Multifractal theory is rooted in measure theory and stochastic analysis, and
retakes some concepts of fractal geometry. Most of the theory and its applications
are being developed in the frameworks of different natural sciences. For this
reason, the available literature is written using different technical vocabulary,
scientific methodology, notation and mathematical rigor. Hence, at its actual
stage of development, a multidisciplinary level of understanding is required to
decode and interrelate the scientific progresses in this young research field.

Definition 13.1: Let A C R", A # (). We will denote the set of the countable
e-covers of A as A(e, A), where e > 0. For s > 0, let

hi(A) = inf{Z|Ai|5

1=1

A; € A(E,A)}. (13.1)

We define the s-dimensional Hausdorff measure as

h(A) = lim he(A). (13.2)

€
e—0

Definition 13.2: We define the Hausdorff dimension of a set A (dim,(A4)) as
dimy (A) = inf{s : h*(A) =0} = sup{s : h¥(A) = oo} (13.3)

Remark 13.1: It is important to distinguish, that a dimension is a property of a
set and it is not a measure.
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Definition 13.3: Let

Yo = (J[2k.2k+1].
keZ
1 n
Y, = TO(—) , n €N,
3
C, = YoNn...NnY,N[0,1]

(observe that Y, and ﬂ;’io T ,, are closed).
The compact set

C=()Cn
n=0
was conceived by Georg Cantor (1845-1918) and is known as the Cantor set.

Example (Hausdorff dimension): Let C' = ﬂ;’io C,, be the Cantor set (Def. 13.3)
and Cs(C') be the smallest number of J-covers required to cover the set C'.

dim, (C) = lim dimy,(C,,) (13.4)

n—00

We observe, that Vn at least 2" intervals of length 6, = ()" are required to

cover C',,. Therefore the Hausdorff dimension of a Cantor set is

, InCs, (C) In2" In 2
d = n = =
i (C) —1Ind, —In3=" In3

~ 0.63. (13.5)

Definition 13.4; Let A be a s-set (Def. 13.5). We say that A is an irregular set, if
h*-almost all of its points are irregular (Def. 13.6).

Definition 13.5: A is called a s-set if it is a Borel set A ¢ R" of Hausdorff di-
mension s, s = dimj A, (Def. 13.2) and has positive finite s-dimensional Haus-
dorff measure (Def. 13.1), 0 < h*(A) < oc.

Definition 13.6: Let A be a s-set. A point € R" is called a regular point of A,
if the lower and the upper densities of A at « (Def. 13.7) are equal to 1. That is,
if

D*(A,2) =D (A, z) = 1. (13.6)

Otherwise, the point z € R" is called irregular.
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Definition 13.7: Let A be a s-set. The lower and upper densities of A at a point
r € R" are defined as

o BANB ()
and
s _ —*(AN B,(x))
D"(A, ) = Tim B (13.8)

where B,.(x) is the closed disc of radius r and center x.

Definition 13.8: Let p be a set function on a field M in the space O, where
© € Mand ©° = ). If

1. (non-negativity) p(A) € [0, o0] for A € M, and

2. (countable additivity) for a sequence { A, }7° , of disjoint elements of M,

It (U Ai) ZZM(Ai);

then p is a measure.

13.1 Self-similarity and self affinity

Both notions, self-similarity and self-affinity, can be applied to sets (fractal geom-
etry) or measures (multifractal theory). Actually, there is no standard definition
for “self-affinity” and “self-similarity”” among disciplines.

Historically, the development of the notion of self-affinity began as a gener-
alization of the notion of self-similarity. In the beginning, the notion of a self-
similar structure was simply that it should look roughly the same on every scale.
In time, it was observed that there are different types of scale invariance. A step
forward in the development of the theory was reached with the introduction of
the notions of isotropy and anisotropy to classify scale-invariant structures. The
terms self-similarity and self-affinity were coined by Mandelbrot.

Self-similar objects are isotropic, in a deterministic or a statistical sense. Self-
similarity is a particular case of self-affinity in the sense that self-affine objects
may also be anisotropic or statistically anisotropic.
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Fig. 13.3: Barnsley fern, code conceived by Michael Fielding Barnsley and presented at
the congress SIGGRAPH-85. To obtain this figure, we first need a starting point
(20, yo) in the cartesian plane. Then we apply the corresponding creation rule
to (2o, yo) to find a second image point (z1, y1 ). We repeat the process and we
plot every resulting point. When several points have been plotted, we find the
familiar shape.

Fig. 13.4: Oak tree, its code is a slight variation of the Barnsley fern code.
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Fractal sets can be isotropic, statistically isotropic, anisotropic or statistically
anisotropic. The treatment of this topic is out of the scope of this research. We
limit ourselves to mention some examples of self-similar and self-affine fractal
sets. If the reader has special interest in fractal geometry, we recommend [Fal90]
and [Fal97].

Some well-known examples of self-similar sets are the Cantor Set (Def. 13.3),
the Sierpinski triangle (Fig. 13.1) and the Koch curve (Fig. 13.2). The Barnsley
fern (Fig. 13.3) and the oak tree (Fig. 13.4) are self-affine sets that result from
iterating linear equations in the two-dimensional cartesian plane. For further
details about these fractal sets and their algorithms see e.g, [Bar93] and [Her94].

In the real world, we only find “approximate” fractals or multifractals that
we can model with “exact” fractals or multifractals. For example, segments of
coastline, snowflakes, fern leaves and oak trees are approximately self-affine.
In particular, the segments of coastline and snow flakes are approximately self-
similar.



14. STOCHASTIC PROCESSES WITH SIMPLE SCALING
BEHAVIOR

Multiscaling stochastic models arise from simple scaling stochastic models. For
this reason, we devote a chapter to place stochastic processes with simple scaling
behavior in the framework of multifractal theory. We also emphasize the histori-
cal development of the theory.

14.1  Self-similar stochastic processes

In the context of multifractal theory, the proper name for what in stochastic anal-
ysis we usually call “self-similar stochastic processes™ is “self-affine stochastic
processes”. The reason for this is that they are not isotropic processes in all cases.

For clarity purposes, we keep the terminology used in the cited references but
we add * to stress when the generalization to self-affinity is valid.

Definition 14.1: ([ST94], p. 311) The real-valued stochastic process { X (¢),t €
T} with index set T € {R,R",[0,00)} is said to be self-similar* with index
H > 0 (H-ss) if its finite-dimensional distributions satisfy the relation

4

(X(at)),....X(aty)) =a(X(t)..... X (tn)) (14.1)

for any choice of values t;,....t,, € T, a € RT.

Definition 14.1 can be extended to the cases:

1. (X(t)) is complex-valued ({Re X (¢),Im X (¢),t € T'}), [ST94], p. 311,
and

2. (X(t))is arandom field ({X (¢),t € R"}, n > 1), [ST94], p. 392.
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Remark 14.1: Lamperti [Lam62] was the first to establish the connection of sto-
chastic self-similar* processes to limit theorems. He called “semi-stable” to the
class of processes “that can occur as limits upon subjecting a fixed stochastic
process to infinite contractions of its time and space scales™.

Let {X(t), t > 0} be a d-dimensional stochastic processes with non-dege-
nerate distribution. In [Lam62], (X (¢)) is called a semi-stable process if it obeys
the continuity condition

T P(|X (4 1) = X (]| > ) =0, V¢ >0, ¢ >0, (14.2)
in

and, keeping the notation of [LLam62],

{X(at)} ~{X(t)}. (14.3)
This means, if (X (¢)) satisfies Eq. (14.2) and

(X (at)} £ {b(a)X () + c(a)}, a > 0, (14.4)

where b(a) is a positive function and ¢(a) € RY, then (X (t)) is self-similar*.
If X (¢) is self-similar* and X (0) = 0, then ¢(a) = 0 and b(a) = a’!, H > 0
([Lam62]). The term semi-stable was replaced by self-similarity* in later litera-
ture.

Let us introduce the definition of isotropic process.

Definition 14.2: Let {X(¢),t € T} with index set T € {R,R",[0,00)} be a
stochastic process satisfying

(X (st4+h) — X(h)} 2 {s"(X(t+h) — X(h))). (14.5)
(X (t)) is said to be isotropic if
{X(t) — X (s)} = {X (]t — s])}. (14.6)

We wish to stress that if the process (X (¢)) is self-affine and isotropic, (X (¢)) is
self-similar.
It is easy to verify that if the isotropic condition holds (see Eq. (14.6)), then

E[X (t)?] = [t]*" E[X(1)] (14.7)
and

E[X(8)X(s)] = %{ISIQH + P == PR (1) (14.8)
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Definition 14.3: Let {X(¢),t € T} with index set T € {R,R",[0,00)} be a
self-affine stochastic process that does not satisfy the condition of isotropy (see
Eq. (14.6)). In this case, we say that (X (¢)) is anisotropic.

Definition 14.4: Let {X (¢),t € T'} be a H-ss stochastic process with index set
T € {R,R",[0,00)}. If (X (t)) has stationary increments, i.e. if

(X(t+h)— X(h),te TY L {X(t)— X(0),te T}.VheT, (149
we say that it is H-sssi ([ST94]).

Consider the following definition:

Definition 14.5: Let{Y;,j = 1,2,...} be a stationary sequence with zero mean.
We say that Y; belongs to the domain of attraction of a process { X (¢),t > 0}, if
the finite dimensional distributions of

Xn(t)==—) Y. t>0. (14.10)

i=1

Lamperti (1962) showed that self-similar* stochastic processes results from
limits of normalized sums: the limit process (X (¢)) of Def. 14.5 should be self-
similar*. dy in Eq. (14.10) is any positive normalising factor satisfying

lim dy = oo, (14.11)
N—o0
converges as N — oo to the finite-dimensional distribution of (X (¢)). Specifi-

cally, d ;v must have the form N* L(N), where L(-) is a slowly varying function
at infinity. It means, L(-) is positive and satisfies

L L(kN)
Noae L(NV)

=1, Vk>0. (14.12)

Definition 14.6: Let {X (¢),t € T} be a stochastic process with index set T' €
{R,R*,[0,00)}. If

(X(t+h).te T2 {X(t),teT}.VheT, (14.13)

we say that { X (¢),t € T'} is a stationary process.
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Let (X (t)) be a non-degenerate H-ss process. Observe that (XX (¢)) can not
be stationary. If it were, we would have for any ¢ > 0 and ¢ > 0,

X(t) £ X(at) £ o X (1) (14.14)
and we would obtain a contradiction because a? X (t) — oo as a — oo ([ST94],
p.312).

The relation of H-self-similarity* to stationarity is described by Theorem 14.1.

Theorem 14.1: If { X (¢), t > 0} is H-ss then

Vi=e X, teR (14.15)
is stationary. Conversely, if {Y (¢), t € R} is stationary, then

X(t)=t"Y,, t >0, (14.16)

is H-ss. ([KMO1], p. 547)

14.1.1 Examples and its historical development

One of the best-known examples of a stochastic self-similar* process is the Brow-
nian motion. This is also a canonical example of a Markov process and a martin-
gale.

The biologist Robert Brown discovered it in 1827, when studying the micro-
scopical movement of pollen particles in water. The stochastic model for Brown-
1an motion and its stochastic calculus were developed much later. In 1900, Louis
Bachelier published the first mathematical study of Brownian motion in his doc-
toral dissertation Théorie de la spéculation, where he proposed to describe the
evolution of quotes in the stock market. Albert Einstein and Robert Wiener were
also pioneers in the development of the theory of Brownian motion. The stochas-
tic model of Brownian motion is also known as Wiener process.

More than one century after Bachelier’s visionary work, the Brownian motion
has become a standard tool in mathematical finance. In Chapter 12, for example,
we model the risky asset based on Brownian motion (Samuelson model) and,
using stochastic calculus for Brownian motion, we find a projection of the random
variables I1(1),I1*(1) € L£? into a probability space (Q, F,F,P) provided with
a filtration [F that contains the P-augmentation of the filtration generated by a
Brownian motion and the process of cumulated expenditures II(s).
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Despite of its complexity, Brownian motion is too simple for the modelling
of some natural processes that play an important role in natural disasters. In the
case of river flows, an important empirical evidence was provided by the hydrol-
ogist Harold Edwin Hurst. After decades of research in Egypt, he discovered
that cumulative yearly flows of the Nile River do not obey a power law with
H = 0.5, as expected from the classical central limit theorem, but with H = 0.7
([Hur51]). Actually, the index of self-similarity* H is also known as Hurst coef-
Jicient. Based on Hurst’s work, Mandelbrot (1965) proposed fractional Brownian
motion (Def. 14.7), a process discovered by Andrei Nikolaevich Kolmogorov in
1940, to model the yearly flow levels of the Nile River ([Man65]). Neverthe-
less, since recent years we know that even fractional Brownian motion (FBM)
is too simple for the stochastic modelling of processes like river flows and rain-
fall. FBM has the disadvantage that its increments have symmetrical distributions
(isotropy); therefore this model is not appropriate for cases evidencing asymmet-
rical distributions ([Man97]) as it is our case.

Definition 14.7: A Gaussian H-sssi process { By (t),t € T} with index set T €
{R,R*,[0,00)}, E[By(t)] = 0 and autocovariance function

1
COV(BH(tl), BH(tQ)) = §{|t1 |2H + |t2|2H — |t1 — t2|2H}VarX(1), (1417)

where 0 < H < 1, t1,t5 € R, is called fractional Brownian motion (FBM). If
VarX (1) = 1, we say that (By(t)) is a standard fractional Brownian motion.
Brownian motion is a particular case of fractional Brownian motion (H = 0.5).

It should be stressed that fractional Brownian motion is isotropic, and hence
self-similar, if By (0) = 0 a.s.
Finally, define the process {Y'(¢), t € R} as

Y(t) = e "5 (e, (14.18)

where W (t) is a standard linear Brownian motion ({ By 5(t), t > 0}, Bo5(0) =
0 a.s.). This scaled and time-transformed Wiener process is an Orstein-Uhlenbeck
process. (Y (t)) is an example of a stationary process obtained from a H -ss pro-
cess using Theorem 14.1.
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14.2  Symmetric «-stable Lévy processes

Consider the following definition:

Definition 14.8: A r.v. Y is stable if, V£, there are i.r.v’s Y] ... Y, with the same
distribution as Y and constants a; > 0, by, such that

k
Sy, D arY + by (14.19)

1=1

This equality forces a; = k= where 0 < o < 2 ([RY91], p. 110). The number
« 18 called the index of the stable distribution. For o = 2 we get the Gaussian
random variables. Among the infinitely divisible r.v.’s, the so-called stable r.v.’s
form a subclass.

If {Y(¢t),t > 0} is a real-valued Lévy process, then any r.v. Y (¢) is infinitely
divisible. Conversely, Lévy proved that for any infinitely divisible r.v. X there is

a Lévy process (Y'(¢)) such that Y'(1) £ X (see [RY91]).

Theorem 14.2: Consider the Lévy-Khintchine formula

. o?u? jur—1— LU
P(u) =iMu — 5 + <e 1+x2> v(dx), (14.20)
where M € R, ¢ > 0 and » a Radon measure on R — {0} such that
l‘2
/ ) < oo (14.21)

If the r.v. Y is stable with index o € (0, 2], then ¢ = 0 and the Lévy measure v
has the density

(M1l (<o) + mal(psg)) | ", (14.22)
with 1, and m, > 0 ([RY91]).

Remark 14.2: Consider Theorem 14.2. Let {Y'(¢),t > 0} be a real-valued Lévy

process. If M = 0 and m; = mo, (Y (t)) is a symmetric stable process of order

« and Eq. (14.20) is ¢»(u) = —c|u|®, where c is a positive parameter ([RY91]).
{Y'(t),t > 0} satisfies the following conditions:

1. Y(0)=0as.,
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Fig. 14.1: Three simulations of the same multiscaling process in the interval [0, 1] at scale
At = 2719 scale ratio A = 2'°, (left column) and the corresponding moment
scaling functions K '(q) (right column), see Ap. A

2. (Y'(¢)) has independent increments,

3. V(1) —Y(s)2Y(t—s),t> s and

4. Y (t) is symmetric a-stable V ¢
[KMO1].
A symmetric stable process {Y'(¢),t > 0} has the scale invariance property
Y(t) £ 'Y () (14.23)

([RY91]). Actually, symmetric a-stable processes are H-sssi with H = a~! €
(0, 00). The standard linear Brownian motion is a symmetric stable process (a =
2). Another example is the Cauchy process (o = 1, ¥)(u) = —t|ul).

14.3 Final comments

In geophysics, we make inferences based on measurements. We should not con-
fuse the samplings with the true process. Multifractal approaches take into ac-
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count the possible changing behavior of processes across scales. Multiplicative
cascade models are a special type of multifractal models.

All self-affine processes mentioned in the precedent sections of this chapter
are simple scaling processes. This means that they have the same behavior at all
scales. This is reflected in the fact that the scaling exponent H is a constant. If we
want to model a stochastic process with multiscaling behavior, we should allow
the existence of different scaling exponents. In some cases, scaling exponents
take the form of a smooth function. This is the so-called codimension function.
The multiplicative cascades of our interest have a convex codimension function.
Simple scaling processes are defined in the context of multiscaling processes as
having constant codimension.

Let X, be the sample of a process X (t) in the interval ¢ € [0,0,], O, € RY,
at scale A = O,\"'. Thatis, t = 0,A71,2A~! ... are the sampling times.
Define the function

K = LD

Remark 14.3: E[|X|?] is not conceptually the same as E[|.X|?]. The point-
process X and the sample process X ) are not necessarily equal in distribution.

(14.24)

We call K (¢) the moment scaling function. Estimating and plotting I (q) is
useful as a first approach to identify presumable multiscaling processes.

In Fig. 14.1, we present three simulations of a stationary multiscaling process
generated from a multiplicative cascade and we plot the corresponding moment
scaling function K'(¢) in each case. Observe that K'(¢) is convex. Its shape is
the same for every simulation. The algorithm to simulate this process is given in
Appendix A.

The same procedure, but using a standard linear Brownian motion (B(t)), is
illustrated in Fig.14.2. As we know, standard Brownian motion is not a stationary
process but has stationary increments (dB(t)) (see Fig. 14.3).

Multiscaling processes are characterized by their behavior among scales. It
means, their random variables can be defined as being functions of the scale. If
At 1s the scale and X is a random variable with multiscaling behavior, then we
write X (At). Alternatively, we can also represent X as a function of a scale ratio
A (X = X(AL).

The basic idea of multifractal approaches is the inference of the stochastic
behavior of the process at small-scales using sample processes. Let B(.X') be the
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Fig. 14.3: Three simulations of the increments of linear Brownian motion in the interval
[0, 1] at scale At = 0.001 (left column) and the corresponding moment scaling
functions K'(q) (right column) (dB(t) := B(t) — B(t + At) ~ N(0, VAt))



96 14. Stochastic processes with simple scaling behavior

Borel sets of X', where X' C R?. Define the measure space (X', B(X), u(9),
where 1% is a sampling measure changing with the scale 6. The multiscaling
random variables X () of our interest for this research are defined in (X', B(X'),
1(9) V5. We are interested in the limit of 1(®) at small scales.

The limiting measure p 1s not trivial. In Chapter 13, we explained the basics
of multifractal theory and fractal geometry. Making an analogy, the limit measure
w represents for multifractal theory what an irregular set (Def. 13.4) for fractal
geometry.

In subsequent chapters, we discuss the scale problem present in rain-intensity
time series and the stochastic modelling of rainfall intensity' with further detail.

! The scale problem is also present in river-flow time series.



15. FUNDAMENTALS OF HYDROLOGY AND
METEOROLOGY

In this chapter, we explain the fundamental concepts in hydrology and meteo-
rology that we need in order to understand the scale problem in rain processes.
An important setback for multidisciplinary research is the lack of a common lan-
guage among disciplines. The same words can have different meanings among
specialists in each field. For this reason, we adapted the technical language and
usual notation of hydrology and meteorology to make this chapter accessible for
mathematicians, actuaries and economists.

15.1 Rainfall measurement

We understand the term “rain” as falling water drops with a diameter of at least
0.5 mm (to observe is the difference from fog or drizzle). A large part of the
water present in rainfall comes in drops with a diameter around 2 mm ([BCO1]).
Although rain is, strictly speaking, only one form of atmospheric precipitation,
in this research we use the term rainfall interchangeably with precipitation.

We have two fundamental records of rainfall at a site:

1. rainfall depth (h) and
2. amount of precipitation (im).

Both are associated with an observation period of length d and a reference point
(i.e. site location). d is called duration. When we are working within the multi-
fractal framework, we refer to the duration d as scale of observation.

We wish to stress that measured m and h are only physical estimates, because
of the many possible sources of error in the readings. Examples of them are
the gauge height, large- and small-scale turbulence in the air flow, splash-in and
evaporation ([BCO1]). Actually, there are different methodologies for quality
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assurance of the data in meteorology (see e.g. [Fok03]). Further treatment of this
topic is out of the scope of this research. In theory, we assume that the quality of
all measurements has already been controlled and, where applicable, corrected.

The amount of precipitation (m) collected during d is a volume over a hori-
zontal surface and it is given in liter per square meter (I/m?).

The rainfall depth (/) is numerically equivalent to the amount of precipitation
(m) but the former is normalized by area. Rainfall depth (also called rainfall
height) also measures the rainfall collected over an horizontal surface during d
but / is the height that corresponds to the water level in a column with a base
of 1 m?. The unit of measure is usually millimeters or inches. 1 mm of rainfall
depth over a duration d is equivalent to 1 I/m? of rain water collected over the
same duration d.

15.2 Rainfall intensity

The concept of rainfall intensity is of particular importance for the stochastic
modelling of rain using multiplicative cascades.

Rainfall intensity (/) is defined as rainfall depth (h) per unit of time. I is
usually given in mm/hr or in/hr. As far as estimation is concerned, there are
different mathematical relationships to obtain rainfall intensity from rainfall data
in the technical literature. For the purposes of this research, we work with time-
average intensities. We define the rainfall time-average intensity as

I = %, d > 0. (15.1)
Usually, the measurement of the time-average intensity / for the interval [¢, ¢ 4 d|
is related to the instant in time ¢ 4 d/2 for theoretical purposes.

In hydrology and meteorology, the time-average intensity of a rainfall event
(I) occurred during the time interval [t, ¢ + D], t > 0, in a given site location is
defined as

- h
I =— 15.2
Ik (15.2)

where 5 is the total depth (mm or in) and D 1is the total duration of the rainfall
event (usually in hr). The difference between I and I is that I is related to an
event and [ is not.

We wish to stress that the measurement of the duration of a rainfall event is
influenced by the resolution of the record. For example, if we take measurements
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every 6 hours, a rainfall event of 25.17 hr can be perceived as having a duration
of 24 hr or 30 hr.

Once we know the nature of the available data, we are able to understand the
essence of the scale problem present in rain-rate time series: the characteristics
of the intensity process markedly varies depending on the scale of observation.
For example, consider the time series illustrated in Fig. 15.1. The records were
taken every 10 seconds using an optical rain gauge (the technical details about
the obtention of this data are in [SC94]). Usually, measurements are taken with
lower resolution. Suppose that we would have obtained the records every hour.
In this case, we would perceive the intensity process as shown in Fig. 15.2.

Actually, the scale problem in rain-rate time series has motivated a number
of studies about the relationships between intensity, duration and frequency since
the beginning of the XX century. Certainly, it is true that most of these studies are
based rather on empirical evidence than on statistical theory, but the mathematical
theory to deal with this type of statistical problems is of recent development and
not trivial.

We conclude this section introducing some concepts and notation that will be
of relevance in further chapters.

Let O, > 0 be the total length of the period within which the measurements
were made. We define the scale-ratio A as

A= %. (15.3)

In particular, if d is the scale of observation in years, O, =1 and A = d —1 is the
scale-ratio on a yearly basis.
We define

i = 1o\, (15.4)

1y 18 the time-average intensity at time ¢ associated with the scale-ratio A and
19 > 0 1s some constant rainfall intensity. To simplify the output, we can also
work with 7p = 1. We will use Eq. (15.4) for rainfall intensity when talking
about asymptotic expressions for P(7, > ¢, ). In this context, ~ is called order of
singularity.

15.3 Intensity-duration-frequency (IDF) curves

An efficient, purpose-oriented way in hydrology and meteorology of representing
some of the information contained in both marginal and joint probability distri-
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butions of hydro-meteorological variables, such as rainfall intensities or river dis-
charges, are the so-called exceedance probability nomograms (see e.g. [Eag70],
[BH88]). Among them, we find the intensity-duration-frequency (IDF) curves.

IDF curves are models that were conceived to describe how the probability
distribution of the intensity of rainfall changes with respect to different sampling
event durations d. There are several ways to obtain these plots proposed in the lit-
erature and all of them are called IDF curves. We can adjust IDF curves from the
intensities averaged over time periods d, annual maxima of intensities averaged
over d or d-averaged intensities over a threshold (see e.g. [VF02a]).

Let 7 be a random variable representing the time-averaged rainfall intensity.
From Eq. (15.2), we have that the r.v. 7 is a function of the total duration d,
so that we write Z(d). A common practice in hydrology is to use the so-called
relative return period T' > 0 to calculate IDF curves. The mathematical definition
of T comes from the following expression:

% =P(I(d) > i) = 1 - Frap. i > 0. d > 0, (15.5)
In Eq. (15.5), we assume at least ergodicity of marginals at all durations d. The
parameter ; represents an intensity threshold.

The scale-parameter d should be included in the definition of the return period
T (Eq. (15.5)) because the stochastic process Z(d) is scale-dependent. Measure-
ments are spaced along time and the sampled intensity process Z(d) depends on
the scale of observation d (Eq. (15.1)).

Observe that the probability P(Z(d) > i) not only depends on the threshold :
but also on the scale d. Therefrom, finding equivalent thresholds ¢ for the process
Z(d) at different scales d becomes an interesting problem. Therefore, the notation
i = I(d,T) is often used in technical literature. In hydrology, the return period
T will be used for calculations rather than P(Z(d) > 7). In the context of IDF
curves, T'is sometimes expressed as a function of the intensity and the duration
(I' :== T'(i,d)). In order to avoid confusions, in Chapter 17, where the area A
will also be involved, we will use the notation 774, 4)~;) instead of the more
usual notation T'(I(d, A),d).

Remark 15.1: In our case, the notation P(Z(d) > ) is more appropriate than
P(Z(D) > i|D = d), where D is a r.v. representing the total event duration,
because within the multifractal framework our interest is focused in modelling
the stochastic behavior of the rain-rate process as a function of the scale. Hence,
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we consider the duration d as the scale of observation and the intensity as a r.v.
varying with the scale of observation d.

Throughout this research, we use IDF curves calculated as in Eq. (15.5). In
hydrology T is often measured in years. Sometimes the relative return period 1T°
is simply called return period. The value of T' given by the curve may be adjusted
(for the graphic), if the scale (i.e. the duration) d is not expressed in years.

Given that rain is a process with seasonality, practitioners sometimes use the
curves for the annual maxima of intensities. In this case, independence for the
Tax Of different years is assumed, and an extreme-value-type probability distri-
bution function is fitted to the data for each duration. Finally, 7" is estimated in
years for every duration group using

1

T = > 15.6

where 7,,,..(d) is a random variable representing the annual maximum intensity
among rainfall events of duration d. One disadvantage of using 7" is that it only
holds for scales equal or greater than one year [VF02a].

As anticipated, using the annual maximum intensities and Eq. (15.6) or the
intensities and Eq. (15.5) leads to different results. Nevertheless, both curves
are practically the same for 7”7 > 10 years ((MM88]). [VF02a] validates through
simulations, that we can convert IDF curves from T-based into 7”-based for large
values of 77, based on:

lim L = 1. (15.7)
T'—o0 T

By inverting the function 7'(¢, d), we can obtain the intensity threshold (7', d)
for a duration d, to be exceeded at average intervals 7', and an empirical relation-
ship for it has been historically given by:

Tm
i(T,d) = Kd_“’ (15.8)
where I, m, n are positive real-valued parameters to be adjusted from point
rainfall data at the site of interest.
It is common practice to estimate the parameters /', m and n by multiple
regression using

logi = mlogT — nlogd+ log K. (15.9)
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We are dealing with equations of surfaces, on which the IDF curves are
T'=constant level curves for different values of 7. In fact, speaking about IDF
surfaces instead of IDF curves would be more adequate.

Substituting Eq. (15.8) into Eq. (15.5), we calculate

S n—m —#
1 — Frg (i) :=P(Z(d) > i) = (Z = ) , (15.10)
i = I(T.d).
If we consider F'z4 (2) € [0, 1], the next inequality should hold:

i > Kd"™, (15.11)

where d, m,n, K > 0. This is to say that this type of empirical relationships may
hold for large intensities, which will actually show to be the case for multifractal
fields.

Now consider the following (hypothetical) IDF curve:
i(T,d) =80T *d"?, (15.12)

i(T, d) in mm/hr, d in hours.

If we draw the IDF curves as traditionally, in log-log coordinates, they will
appear as parallel straight lines with a negative slope. In Fig. 15.3, we present an
example of IDF curves drawn from Eq. (15.12) as it is usually done in hydrology.
Each level curve is associated with a value of T'. In hydrology, 71" is measured in
years. If necessary, units are adjusted accordingly.

We can rewrite Eq. (15.12) as

FZ(d) (Z) = 1= 802'5d_1'25i_2'5, i 2 80d0'5. (1513)

We plot two level curves of this equation in Fig. 15.4.

15.4 Final comments

The Eq. (15.1) is relevant for the stochastic modelling of rainfall using multifrac-
tals. Observe that whereas the shape of the rainfall intensity process drastically
changes with the scale of observation, the rainfall depth is conserved and redis-
tributed across the observation period. Rainfall depth is defined in hydrology as
being the integral of the rainfall intensity.
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4.5

Fig. 15.5: Moment scaling function I (q) of the rain-rate time series of Fig. 15.1

If we include spatial scales for the stochastic modelling of rainfall using mul-
tifractals, the quantity that we redistribute across space-time scales is the water
volume corresponding to an area A and a duration d. In this case, we should take
the possible space-time scaling anisotropy into account. Heuristically speaking,
this means that the water volume is redistributed across space scales in a dif-
ferent way than among time scales. We discuss this topic with further detail in
Chapter 17.

The distribution along scales of rainfall depth in the case of time series (or
water volume if we include space scales) 1s modelled in this research using ran-
dom multifractal measures. There are different ways to generate such measures,
but we focus our attention on those generated by random multiplicative cascades.

As a motivation for the next chapter, we calculated I (¢) (see Eq. (14.24)) for
the time-series of Fig. 15.1. Compare Fig. 15.5 above with Figs. 14.1, 14.2 and
14.3. The nonlinear K '(¢) function denotes a multifractal behavior, typical of the
multiplicative cascade models proposed in the next chapter.
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16. MULTIPLICATIVE CASCADE MODELS FOR RAIN IN
HYDRO-METEOROLOGICAL DISASTERS RISK
MANAGEMENT

It is our conviction that one should incorporate the information provided by geo-
physical sciences into insurance mathematics. The present research is conceived
as a first step in this direction. In this chapter, we provide a review of key re-
sults for multifractal models of rain and discuss their potential and relevance for
hydro-meteorological disaster risk management. As a main result, we obtained an
asymptotic expression for the tail probability of the return period that we derived
from intensity-duration-frequency curves under the assumption of multifractality.

16.1 Why multifractals in hydro-meteorological disasters risk
management?

Regarding extreme precipitation, we find two widespread views. The first one
relies on the phenomenological notion of the probable maximum precipitation
(PMP). However, approaches from this perspective demand a sophisticated anal-
ysis of rainfall process in an attempt to address all its relevant physical aspects.
Certainly, the existence of such a threshold is plausible, as far as the amount of
rainfall over a surface is finite. Nevertheless, it is likely that this physical maxi-
mum is far larger than any rainfall intensity that has ever been registered, and has
therefore little relevance for the probability distribution tails of rainfall intensi-
ties. Indeed, nowadays the physical foundations of rainfall generation are known
to a certain extent. On the one hand, however, important aspects in the process of
drop growth in convective clouds are still unknown, to the point that real growth
occurs considerably faster, and can lead to more intense extremes than predicted
by current models. On the other hand, the large number of degrees of freedom
is currently by far prohibitive for direct numerical simulation (DNS) at any sig-
nificant atmospheric scale. Various closure equations can be used to resolve the
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dynamical partial differential equations in larger-scale numerical schemes, but
the simplifications that they introduce, combined with the relevance of drop-size
scales in the rainfall production, result in ensemble statistics for these kind of
models that differ considerably from natural statistics, a fact that makes them
hardly useful for risk management of natural disasters.

Secondly, there are statistical models parameterized directly from natural
statistics. In this case, we consider rainfall intensity as a random variable and
the time series as realizations of a stochastic process. This perspective is usually
applied for engineering design and risk assessment. The disadvantage is that we
are fitting empirical data to ad hoc statistical laws with little or no knowledge
about the rain process, which makes this approach unreliable when estimating
extreme event probabilities, where the data is scarce. In the classical statistical
approaches, the scale issue as such is ignored. Moreover, we assume that the
behavior across scales is the same. We need this, because otherwise the fit would
not be statistically significant. However, scale-by-scale parameterizations lead
to an unacceptably high number of parameters to fit. As data for the statistical
analysis, we have records of the rate of rainfall (hyetograms). As we explained in
Chapter 15, our observations of the intensity process markedly vary with respect
to the selected time scale. If we observe the same process with different resolu-
tions, the empirical maximum values strongly vary (an analysis of the time series
of Figs. 15.1 and 15.2 via classical statistical as well as fractal and chaotic dy-
namics methods is presented in [SC94] and [SS95]). This situation is also present
in rainfall time series over longer observation periods (see e.g. [VF02a], [L.S95]).
The rainfall process has also a high spatial variability (see e.g [GWI3]), so the
same problem arises with spatial observations. Consequently, rainfall is a highly
intermittent space-time variable process, and the scale plays a fundamental role
in its stochastic description. This fact is particularly relevant for extreme rainfall
events, especially in case of extremely high rainfall depth over a short space-time
interval.

16.2 Introduction to multiplicative cascades

Multiplicative cascade models are mathematical constructs suitable to capture
intermittent and highly irregular behavior. Actually, these models have a wide
range of applications, such as the modelling of turbulence (e.g. [Kol41], [Man74],
[FP85] and [MS87]), internet packet traffic (e.g. [RL97], [GWI8]), stock prices
(e.g. [Man97]), river flow (e.g [GWI0]) and rainfall. They are capable of gener-
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Tab. 16.2: Levels of a “dressed” multiplicative cascade

ating measures with an asymptotically almost-everywhere singular, multifractal
behavior.

Let us begin with the simplest case of a “bare” cascade. To reconstruct a
multiplicative cascade, we begin with a given “measure” m uniformly distributed
along a support (Fig. 16.1). Physically, the measure represents an extensive
quantity, such as e.g. mass or energy.

As we can observe in Table 16.2, each subsequent step belonging to an in-
terval of the cascade process splits the support, and the contained mass m is
divided according to the respective weights of each level. The generated number
of weights is the “branching number” () of the cascade generator. A binary cas-
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cade, for example, has b = 2. Subsequently, the resulting measure on the support
can be described in terms of an infinite iterative construction.

When the resulting measure is then aggregated over nested intervals, see
Tab. 16.2, we are talking about a “dressed” cascade. Note that the mass m is

redistributed to each branch by multiplication with the respective weight w Z(k),
see Fig. 16.1. The generator of a multiplicative cascade can be random and it
is analogous to the weights in our example. Note that to achieve conservation
in the ensemble average of the mass, the expected value of the sum of weights
should be equal to unity. The process illustrated in Fig. 16.1 and described in the
Tables 17.1 and 16.2, can be generalized to R<.

A multiplicative cascade is an iterative process that fragments a given subset
of R? into smaller and smaller pieces according to some geometric rule. The
support of a multiplicative cascade can represent a surface or the time axis. In-
tertwined fractal sets of different singularity strengths of the measure result in
multifractality. Monofractality is a particular case of multifractality, when only
one singularity strength order appears.

The limiting measures of multiplicative cascades generally exhibit multifrac-
tal scale invariance. Let B(.Y') be the Borel sets of .¥', where X' C R“. Define
the measure space (X, B(X'), ut,, ), where p,, is the sampling measure from a cas-
cade developed until level n. The sampling measures pu,, generated by certain
multiplicative cascades have an a.s. limit at small scales, 1, that is also defined
in the measure space (X', B(')). Observe that the higher the level n the smaller
the scale ¢ (the higher the scale-ratio A = §—!). The measures ,, from cascade
processes will not be probability measures, but we require their expected values
to be one ([Har01]).

It is important to note that, whereas multifractals in general are measures,
monofractals can be associated with the measure given by an indicator function
of a set and hereby associated directly to a set of fractionary dimension (in other
words, the now classical notion of a fractal).

16.3 Multifractal analysis of rain using multiplicative cascades

The fundamental idea of multiplicative cascade modelling is to try to capture the
multiscaling behavior of a process when present. Certainly, there exists vast evi-
dence of the multifractal scaling of rainfall up to planetary scales (see e.g. [SL87],
[GWI3]).

Let us introduce the following definition:
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Fig. 16.1: Binary conservative multiplicative cascade with uniform generator ([Flo0O4]),
see Ap. A

Definition 16.1: A non-negative cascaded variable TV will be said to be strongly
bounded below if P(W > «) = 1 for some positive number «. 1V will be said
to be strongly bounded above if P(WW < b) = 1, where b € N is the cascade
branching number. [HW92]

The Rényi spectrum of scaling exponents 7(¢) of a field is a function defined
from the scaling of moments of order ¢ of the respective field

(Ir(A)] 7y oc AT, (16.1)

where r(A) is the integral of the quantity of interest over the scale A, \ is the
scale-ratio and ( ) is the averaging operator.

We work under the hypothesis that rainfall depth is equal in distribution with a
multifractal measure ., generated by a multiplicative cascade. In our case, r(A)
is always non-negative and corresponds to the amount of precipitation caught
over the scale A. If A is a time-scale, r(A) corresponds to the rainfall depth.

Multifractal scaling of a measure is defined as the measure having a curvilin-
ear (strictly convex) 7(¢), whose definition for the one-realization case under the



112 16. Multiplicative cascade models in risk management

assumption that the limit exists is:

(16.2)

] k=Tt /(5d) ] 5d)?
T(q) — hm . nZk':l |7°k»( )|

6—0 Ind ’

where d is the scale of observation, r (A) (amount of precipitation) is the integral
of the quantity of interest (rainfall intensity) over the scale A := dd, T},; is the
total length of the support and 6 > 0 represents a factor scale. In multiplicative
cascade models, the function 7(¢) is determined by the probability distribution of
the weights in the cascade generator and it is also known as multiscaling exponent
or Rényi exponent. In other words, the statistical moments of order ¢ of r(d/\)
are given by

E[r(d/X)?] = A9 (16.3)

Estimating and plotting 7(¢) is useful to identify multiscaling behavior in
the data. However, it should be noticed that estimating 7(¢) = 1 — K (¢) using
Eq. (14.24) (see Fig. 15.1) generally results in values different from Eq. (16.1),
due to the non-ergodicity of the cascading process. For a more detailed treatment
of the ensemble vs. realization estimation of scaling exponents, see also [OWO00],
[OWO02] and [SL87].

The basic equation of multiplicative cascades is given by
P(r(d/X) > X7) ~ A7), (16.4)

where r(d/\) is the random variable of our interest (e.g. rainfall intensity),
A = 1/6 is the inverse scale factor, ¢() is the codimension function, ~ is an
order of singularity and “~” denotes asymptotic equality as A — oo (see [SL87],
[GWI3)).

We can rewrite Eq. (16.4) as

. log(P(r(d/X) > oY)
/\11_{20 Tog \ = —c(y). (16.5)

If the codimension function ¢(~) is a closed convex function with is not iden-
tically oo, ¢(~) is dual to 7(¢) by the Legendre-Fenchel transform (see Def. 16.2).
The fact that ¢(~) is a function of ~ on an interval of strictly positive length, rather
than a single point, is the origin of the term multifractality.
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Definition 16.2: Let C'(¢) : R — R U {co} be a closed convex function which
is not identically co. The function I : R? — R U {oc} defined by

I(y) = sup {{q.y) — C(q)}. y € RY, (16.6)
qeR?

is the Legendre-Fenchel Transform of C'(q).

The modelling of rain processes using multiplicative cascades with log-Lévy
generator is often found in the literature of multifractal models for rain. Log-
stable distributions with skewness parameter 5 = —1 are used in modelling mul-
tifractals, partly because of the finiteness of their moments ([ST94], p. 52).

16.3.1 Discrete multiplicative cascades

This approach relies on the statistical inference for multiplicatively generated
multifractals, and rainfall modelling is only one of its applications. [OWO02],
[GWI3] and [GWYI7] point out that the precise nature of the cascade generator
is not a central issue in the case of rainfall modelling. From a single realization
of the cascade process, we try to infer statistically the distribution of the cascade
generator that presumably generated the sample. The probability distribution of
the cascade generators represents here a hidden parameter which is reflected in
the fine-scale limiting behavior of certain scaling exponents calculated from a sin-
gle sample realization ([OWO02]). Some relevant works on discrete multiplicative
cascades are [HW92], [OW00] and [OWO02]. Examples of discrete multiplica-
tive cascades applied to rainfall modelling can be found in [GW90], [GW9I3],
[VEO2a], [VFO2b] and [Ven02].

As we explained before, this is only a review of key results that can be of our
interest. A compilation of fundamental results in discrete multiplicative cascades
can be found e.g. in [Har01], Chapter 6. For an introduction to the mathematical
foundations of the random cascade theory, see e.g. [GW93]. Further mathemati-
cal treatment of this topic is in [HW92], [OWO00] and [OW02].

[GWO3], p. 253, emphasized that the first foundational results for the devel-
opment of statistical cascade theory were obtained by [Kah74], [Pey74], [KP76]
and [Man74]:

“They proved the existence and nontriviality of the limiting statisti-
cal cascades of a probability distribution carried by a random vari-
able W, called the generator, and branching number b. In particular,
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W, T W(o) b
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Fig. 16.2: Example of (discrete) random cascade with support in [0, 1] and branching num-
ber b = 2
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these authors found that the nontriviality of the resulting limit mea-
sure (mass distribution) and the Hausdorff dimension of its support
can be determined completely from the modified cumulant gener-
ating function (%) of the probability distribution of the generator
W

X»(q) is the so-called MKP (Mandelbrot-Kahane-Peyriere) function,

xo(q) ==1log, E [W91lwsoy] — (¢ —1). (16.7)

Rain intensity and river flow are non-negative processes. For this reason, we will
focus on multiplicative cascades with nonnegative cascaded random variable V.
The following fundamental theorem was stated in [KP76]:

Theorem 16.1: Let

X:={0,1,...,b— 1} (16.8)
be a product topology. Denote by

o:=(01,09,...) € X, 0, €{0,1,2,....b—1}, (16.9)

the successive vertices of a random tree rooted at the vertex ¢ with branching
number b > 2, b € N (see Fig. 16.2). X has metric p(o, ) = b=2(%") where
a(o,n) is defined as the number of vertices common to ¢, 7. Let W denote a
random variable which has the common distribution of the W (¢ )’s and MKP-
function x4(q).

I. (Nondegeneracy) If —D = y;(1—) = E[W]log, W — 1 < 0, then
Epoo([0,1]) > 0, and conversely.

II. (Divergence of moments) Let ¢ > 1. Then Z := u([0,1]) has a finite
moment of order ¢ if and only if ¢ < ¢. = sup{g > 1 : \u(q) < 0}.
Moreover, E[Z1] < oo for all ¢ > 0, if and only if 1V is essentially
bounded by b and P(W = b) < b~1.

III. (Support dimension) Assume that E[ZZ log Z..] < co. Then p is a.s.
supported by the random set

Supp(:uoo) - {J € X : lim n! logbuoo (Bb—"(a))

n—00

= E[W]log, W — 1}, (16.10)
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where
By-n(o)= > b0 oib™ +b7" (16.11)
[j:l j=1
is a closed ball of radius b=" > 0 located at 0 € X', of Hausdorff dimen-
sion
D = —x,(1) =1 - E[W]log, W. (16.12)
Under the assumption that the measure pu., 1S non-degenerate, i.e.

E[W log, W] = 1, the Rényi exponent 7(¢) for a multiplicative cascade with
branching number b is

log M, : log M,
(q) = lim 28Mnld) _ o los Mala) (16.13)
n—oo N ]og b 5§—0 log 1)
where
bn
M, (q) =) pdo(A}) (16.14)
1=1
and A};, i = 1,2,...,b" are the b-adic intervals at the fth generation (level) of

the cascade (see [HW92]).

The following theorem is important, because it relates the Rényi exponent
7(q) for a multiplicative cascade defined in Eq. (16.14) with the MKP function
and thus with log, E[11].

Theorem 16.2: Assume that the non-negative cascaded variable W is strongly
bounded above and below and that

E[1724]

Ev? <" e

where b > 0 is the branching number. Then, with probability 1, we have

7(q) = xs(q) (16.16)
([(HW92]).
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If the cascaded r.v. W satisfies the boundedness conditions and Eq. (16.15)
holds, the Legendre transform formalism is

c(y) = max{gy = 7(q)} (16.17)

T(q) = max|7:7(q) {gv —c(7)} (16.18)

- 49 16.19

na) = — (16.19)
([(HWI2)).

If we assume that the multifractal measure 1, was generated by a discrete
multiplicative cascade with log-Lévy generator, we have W = e~ , where X is
a Lévy-stable random variable (see Theorem B.1). X depends on the following
parameters: the Lévy index o € (0, 2], the location parameter | € R, the scale
parameter o > 0 and a skewness parameter 5 € [—1,1]. If E[IW] = 1 (mean
conservation condition) and E[W?] < oo, the values of 3 and / are determined.
Therefore, in this case only « and ¢ are free parameters.

For applications, we can statistically estimate 7(¢) from the data ([TV99]).
From the obtained 7(¢), we can estimate the codimension function ¢(~). How-
ever, obtaining criteria for the choice of W is an important statistical problem.

[Ven02] considered various cases involving discrete multiplicative cascades
with dependent or independent generator and he proposes a technique to estimate
the codimension function ¢(~). However, we realized that the observation of a
critical value for ¢ (¢*) and thus a critical value for v (v*) does not contradict
the results for all ~ obtained by applying Chernoff’s theorem of large deviations
([Bil93], p. 147) in [GWI3], p. 260, as pointed out in [Ven02], p. 119. That is,
because when estimating 7(¢) a critical interval for ¢ exists ((OWO02], p. 330).

Remark 16.1: We wish to stress that when W > 0 is not essentially bounded
by b or P(W = b) > b1, the existence of a critical order of moments is well
established in the theory (see Theorem 16.1). This case should be distinguished
from the problems related to the estimation of 7(¢).

[RWO03] used wavelet—based statistical techniques for inference about the cascade
generator —in the case of conservative cascades— to obtain estimators of the
structure function.
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16.3.2 Universal multifractals

In this case, it is considered that multifractals arise when cascade processes con-
centrate energy, water, or other fluxes into smaller and smaller regions.

The notion of universality in physics corresponds to the fact that among the
many parameters of a theoretical model, it may be possible that only a few of
them are relevant in the sense of capturing the essence of the process. The con-
cepts of universal multifractals and continuous multiplicative cascades were in-
troduced in [SL87]. For a debate about universality in multifractals for rain, see
e.g. [GWOI3], [SLI97] and [GWIT].

If the results of [SL.87] hold, the limiting measure of continuous multiplica-
tive cascades produces generators with weights whose distribution is attracted to
Lévy-stable distributions.

Let r(d/X) be the intensity of the rain field at scale ratio A > 0. In the uni-
versality class of Lévy-stable processes, we have from the theory of continuous
multiplicative cascades that, under the assumption of conservation, the asymp-
totic behavior of the tail probability of »(d/)\) is given by

P(r(d/X) > \7) = A(\) A< (16.20)

([SL87], [SL89]), where A = O,,/d is the scale ratio in time series of length O,,
divided in elementary time-periods d (d — 0), ~ is an order of singularity, ¢(~)
is the codimension function of the singularities dual to 7(¢) by the Legendre-
Fenchel transform and A()) is a slowly varying function at infinity. It means,

lim Alad)

—=1¥ 0. 16.21
TS VR (162D

Equation (16.20) shows how the probability distribution of singularities of or-
der higher than a value ~ is related to the fraction of the space they occupy as
determined by the characterizing factor of scale invariance of the probability dis-
tribution.

In the context of [GW93], 7(q) arises through log-log plots of empirical mo-
ments of various orders ¢ and the choice of discrete multiplicative cascades with
log-Lévy generator was only a model assumption. For [SL87], multiplicative
cascades with log-Lévy generator should be strongly universal in the context of
continuous scales. A review to this model is that this class of generators does not
satisfy the strong boundedness conditions (see e.g. [GWI3], p. 260, [Har01], p.
102).



16.3. Multifractal analysis of rain 119

The codimension ¢(+) is a non-decreasing convex function of ~ as in Sec.
16.3.1, but for the universal multifractals, ¢() is considered as belonging to the
universality class of Lévy-stable processes as it is meant in [SL87]. ¢(~) depends
in this context on two fundamental parameters: C'; and o (universality). C' is
the codimension of the mean field and it should satisfy the fixed point relation
Cy = ¢(Cy). a € (0,2] is the Lévy index (in this context, « is meant as in
Def. 14.8 but in a continuous setting) and it measures how fast the codimension
changes with the singularity. If o« = 2, we set 3 = 0, so that the generator W is
log-normal. For o € (0,2), we set § = —1.

To go from the conserved process () to the observed non-conserved process
(R), aparameter H is required. H specifies the exponent of the power law filter or
order of fractional integration needed to obtain R from ¢. Thatis, ¢ : (|AR,|) =~
A Thus, for the measured field R,

P(AR > X7~y = A(\)A—<v—H), (16.22)

For a further explanation, see [LLS95].
For the codimension ¢(~) of a log-Lévy (universal) multifractal, we have the
following expression ([VD93]):

ey =4 (Fz+t) ot , (16.23)
Clexp<cil—1> a=1

where o/~ ! + a7t =1,C, #0.
According to Eq. (16.23), for o € [1,2], the orders of singularity are un-
bounded. If & € (0, 1), a finite maximum order of singularity ~, does exist:

Yo = 1—a

(16.24)

Regarding the maximum order of singularity (v, ) used in [VD93] to estimate
the maximum accumulation A for a duration 7 (A, oc \Tmax—1 o 71=7max) in
extreme rainfalls, [DB03] pointed out that even if the singularity ~ is theoretically
unbounded, the maximum order of singularity in a finite sample will always be
bounded due to spurious scaling artifacts resulting from undersampling. Using
the experimental setting for the small space-time scale presented in Chapter 17
we obtained different estimated values for ~,,., from the samples, so that we can
not conclude about the universality of ~,,., from our results.
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[SLI91b] found that for spatial averages over observing sets with dimension
D, a critical value ¢ of the moment of order ¢ exists, such that the estimated
statistical moments diverge as soon as ¢ > ¢p. That is,

(p}) = o0, ¢ > qp. (16.25)

where

7(¢p) = (¢p — 1)D. (16.26)

For time series, we have D = 1.
If the statements above mentioned hold, the probability of ¢, > A7 can be
approximated by

P(py > A7) & (A7) (16.27)

for large enough values of ~. According to this result, for ¢ > ¢p the tail of the
distribution (Eq. (16.20)) decays algebraically ([SL92]).

According to the theory of universality, ¢ should be a universal constant,
but different studies have obtained values varying between 1.5 and 5. Some au-
thors attribute this variability to differences in rainfall physics, orography, tem-
poral resolution of the observations, and length of the time series (e.g. [Ols95],
[SGO1]). [DBO3] point out that common values range from slightly below 2 to a
little above 3.

Remark 16.2: We wish to emphasize that all multiplicative cascade models men-
tioned in this Chapter work under the assumption of stationarity.

16.4 IDF curves in a multifractal framework

Our hypothesis is that probabilistic frequencies of extreme events may be inferred
by extrapolating these curves under the assumption of multifractality. It has been
observed that these empirical curves are traditionally modelled for rare events
using power laws that are compatible with multifractal scaling. The models men-
tioned in Sec. 16.3 have the disadvantage that their phenomenology can not be
extended to time scales of the orders of magnitude involved in the return periods
of extreme events. However, good scaling is observed in empirical data and no
scaling break has been found to date.
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This working hypothesis is not new in geophysics literature, see [DL97],
[VF02a]. [BR96] analyzed depth-duration-frequency (DDF) curves using mul-
tiplicative cascades. [KRO2] and [CFO4] (reprinted in Chapter 17) worked with
intensity-duration-area-frequency (IDAF) curves.

We wish to emphasize that IDF curves are standard tools in hydrology and
they were developed absolutely independently from the multifractal theory. The
observed organization of the data gives empirical evidence of scale invariance.
Actually, multifractal models of rainfall-depth process have been shown to lead
to such power laws for their extremes ([BR96]).

However, a question of central importance to take advantage of IDF curves
within the multifractal framework is the following: Which kind of mathematical
relationship have IDF curves and multiplicative cascade models?

An answer to this question is a fundamental step for:

1. a precise interpretation of IDF curves under the assumption that rainfall
intensity is multifractal,

2. improving methodologies for the parametrization of IDF curves or justify-
ing the existent ones and

3. evaluating quantitatively in which cases IDF curves suffices as an approx-
imation for the distribution function.

This explains why we concentrated our efforts in looking for relationships
between IDF curves (in the form of Eq. (15.8)) and the multifractal representation
of rain in form of a stationary multiplicative cascade. At the actual stage of
development of the multifractal theory, looking for any kind of relationship is not
a trivial task.

If we accept the evidence showing that rainfall intensity has multiscaling be-
havior, then IDF curves approximates a multiscaling process. Hence, it makes
sense to consider P(Z(d) > i) and T" from IDF curves as estimators under the
multifractal ansatz.

We noticed that in all the reviewed literature IDF curves have never been
treated from this perspective. This is also the case of flow-duration-frequency
(QDF) curves, DDF curves, IDAF functions and flow-duration-area-frequency
(QDAF) functions. Estimators from empirical curves have never been viewed as
random variables. Therefore, the probability distribution of 71" (recall Eq. (15.5))
and Frq) (recall Eq. (15.10)) given by the IDF curves has never been explored.
So, we studied these curves from this perspective and we obtained an asymptotic
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expression for the tail probability of the (relative) return period 7" here presented
and previously published in [Flo04].

If we consider a yearly scale and d as our elementary time-period in years,
then A = d~'. X represents the ratio of the yearly scale with the scale of obser-
vation d. Let 7 be a random variable representing the estimator for the return
period obtained from IDF curves. We are interested in computing the probability
P(T > t), (At)~! € (0,1].

We have
I(d)d"| ™
P(T>t) = P ([ (I)’ ] > t) (16.28)
tm
_ p (I(d) > Kd—n) (16.29)
= P(Z(d) > i), (16.30)
where
4= _logIt,d) + C, C = constant, (16.31)
log d
tm
I(t,d) = Kd_n (16.32)
and A = 1/d.

Remark 16.3: Observe that the structure of IDF curves (Eq. (15.8)) appears again
in the exponent 4 (Eq. (16.32)).

The limiting behavior of 4 at small-scales is

log I(t,d)+ C

im4 = 1 16.33
v i log d (16.33)
log d
= lim —2 (16.34)
d—0 logd
= n (16.35)
Therefore,

P(T > t) ~ A7), (16.36)
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The asymptotical expressions that we found recall multifractal behavior of
rainfall time series and simple scaling in IDF curves as well. They reveal a
link between the probability distribution of 7, the multiscaling behavior of rain
intensity and the empirical parameter n. Our result shows that, viewed as es-
timators, IDF curves are consistent with the multifractality of rainfall time se-
ries. The underlying Hurst coefficient in IDF curves, meant as in Eq. (15.8), is
then the codimension function of the multiplicative cascade model evaluated in
n (H = c¢(n)). Our results (see Eq. (16.30)), recall IDF relationships that are
established as asymptotically self-similar models.

We observe that Eq. (16.36) seems to be in concordance with the results of
[VFQ2a]. They found that under limiting conditions (very short durations d or
very long return periods 77), the IDF values are simple scaling with a power law
dependence on d and T'.

Clearly, scale invariance of physical systems generally holds within a certain
range of scales bounded by the inner cut-off and the outer cut-off and that differ-
ent scaling exponents for the duration are found to characterize different ranges
of scales.

Also, in our case the value of the parameter n only fits well over a certain
range of durations, so that we can obtain a different value of »n for every range of
durations d. Calculating the small-scale limit behavior in the case of IDF curves
that does not hold at small-scales is not misleading because Eq. (16.36) describes
how much the approximation from IDF curves deviates from an underlying mul-
tiscaling process with codimension function ¢(~).

We can obtain different expressions for Eq. (16.30), depending on the multi-
plicative cascade model that we choose for the data.

16.5 Possible applications in risk management

As a result of our interdisciplinary adventure in hydrology and meteorology, we
are convinced of the high potential of IDF curves within the multifractal frame-
work. They can be exploited to calculate return periods of extreme events and
they can also be useful for the generation of synthetic sequences of data. Al-
though IDF curves are not multifractal models themselves, these models are com-
patible with the multifractality of rainfall intensity from a mathematical point of
view. We can use them as estimators of the multiscaling process.

If we want to see an example of applying multiplicative cascades, we can
begin studying the work of [VF02a]. There we can find an extended analysis of
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scaling properties of IDF curves for temporal rainfall. For their research, they
used synthetic sequences of data generated using a -lognormal multiplicative
cascade as well as real data.

Multiplicative cascade models are stochastic models that can be applied to
valuate heavy rain, flood and hail insurance policies and these models can also be
useful for the development of innovative weather-related disaster insurance poli-
cies. Given that in the case of natural disasters in some countries, both the public
and the private sectors share risks, stochastic models for rain are also important
for the development of risk management strategies for governmental funds for
natural disasters. We do not recommend these models in the case of rain insur-
ance application, because they are not suitable for the valuation of short-term
policies.

16.6 Final comments

In Secs. 16.1 and 16.2, we explained why multiplicative cascade models can
be useful for hydro-meteorological disaster risk management. In Sec. 16.3, we
explained the central idea of multiplicative cascade models. In Sec. 16.4, we
provided a review of key results for multifractal models of rain. Subsequently, we
introduced the reader to the topic of intensity-duration-frequency (IDF) curves in
a multifractal framework. We think that they can lead to the applications that
we are looking for. After that, we presented the asymptotic expression for the
tail probability of the return period 7' that we found from IDF curves under the
assumption of multifractality, and we commented its implications. Finally, we
exposed our ideas about how we could apply multiplicative cascade models in
hydro-meteorological disasters risk management.

Although much more empirical and theoretical research is needed, multifrac-
tals models in rain can already be considered as a real alternative for some ap-
plications in risk management. However, when applying multiplicative cascades,
we should always remember that all models of Secs. 16.3 and 16.4 work under
the assumption of stationarity. We also wish to emphasize, that in the multiplica-
tive cascades framework, the study of the rain process at small-scales is of the
highest importance for the future development of the theory and its applications.

In the next chapter, we explore the multifractality at small scales using an ex-
perimental setup and we parametrize an IDAF function for the small-scale con-
sidering anisotropic space-time scaling.



17. IDAF FUNCTIONS FOR PRECIPITATION IN A
MULTIFRACTAL FRAMEWORK!

This chapter was a result from the team-work with Jorge Castro and Alin Andrei
Carsteanu. An intensity-duration-area-frequency (IDAF) function is derived for
the small-scale, large-intensity limit of multifractal fields. A parameterization of
the function from tropical rainfall, filmed with a digital camera in Mexico City,
is being attempted. Implications of the formulae are being discussed.

17.1 Intensity-duration-area-frequency (IDAF) functions

Information from marginal and joint probability distributions of space-time rain-
fall intensities can be represented in a purpose-oriented manner using the excee-
dence probability of intensity 7 as a function of area A and duration d. Such
a function can certainly not capture all the information contained in the joint
probability distributions of point-instantaneous intensity, but it does capture all
marginals corresponding to various space-time scales, which are indeed the func-
tions that play an important role for the purpose of estimating the impact of rain-
fall, including its extreme events, in hydrological terms.

Let us note that the exceedence probability, which is the complement of the
probability distribution function F', is in praxis most often replaced by its inverse,
the relative return period T

d
P(Z(d,A4)>i) = 1-Fraali)==. (17.1)

This identity between exceedance probability and inverse relative return pe-
riod is based on a temporal ergodicity assumption, which in turn implies at

I REPRINTED FROM PHYSICA A, VOL 338, CASTRO, J., CARSTEANU, A., FLORES, C.-
G., IDAF FUNCTIONS FOR PRECIPITATION IN A MULTIFRACTAL FRAMEWORK, PAGES
206-210, COPYRIGHT (2004), WITH PERMISSION FROM ELSEVIER
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least first-order stationarity at all time scales d, a hypothesis that is not ten-
able due to the existence of hydro-meteorological cycles. However, as long as
d < lyear< T (d, A), at least the influence of the yearly cycle can be considered
negligible. Another consequence of the yearly water cycle is that practitioners
often prefer to use, instead of the process Z(d, A), the process maxyear Z(d, A).
Being a process of a non-additive nature (to be more precise, additive in L
instead of L), this latter process exhibits a somewhat different scale-related be-
havior than the one previously defined, and will not make the object of the present
article. The interested reader can find a comparison between the scaling behav-
1ors of the two processes e.g. in [VF02a].

An observation concerning the representation of the exceedance probability
P (Z(d, A) > 1), is that for historical reasons, mainly stemming from the absence
of digital computers in the past, practitioners estimate the return period 7' :=
T(z(d,a)>i) from nomograms called Intensity-Duration-Frequency curves, and
multiply the obtained 7" with a function of the area A, called “areal reduction
factor”. Certainly, nowadays the fact that P (Z (d, A) > i) and the corresponding
T(z(d,A)>1) are functions of the 3 variables d, A and ¢, does not impede in any way
their convenient representation as such, and we shall not be concerned with this
aspect any further. Moreover, the scaling properties of the rainfall process, for
which evidence has accumulated for some two decades (see e.g. [SL87]), result
in a rigorous expression for T 74 4)>4), Which is relatively simple to compute.

17.2  Scaling of IDAF Functions for Multifractal Raintall Fields

The question, of whether the spatial and the temporal support of the Z(d, A) pro-
cess can be related in any way in terms of their scale-related behavior, has been
another point of interest in scaling studies over the past few years. It should
be noted that in another recent study ([DS03]), performed in a different climate
and using a different experimental setting, results showing a remarkably accu-
rate multifractal scaling have been reported for various rainfall events. Given the
mounting empirical evidence in favor of multifractal scaling of rainfall in both
space and time, it is natural to ask the question about space-time scaling, its char-
acteristics and mechanisms, under this multifractal ansatz. As far as the math-
ematical description of space-time scaling is concerned, research was oriented
towards finding either a unique anisotropy exponent for all existing moments of
the probability distributions of 7, or an order-of-moment-dependent anisotropy
exponent, or else another type of relationship. Various recent studies indicate that
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an anisotropy exponent independent of the order of moments is in good agree-
ment with different data sets ([MS96], [FS99], [DCO1], [Dei00]), although the
exponent z does not seem to be universal:

doc A*/2, (17.2)

The terms used for this type of behavior have been “anisotropic space-time
scaling” or “dynamic scaling”.
In the context of the large-deviations property of multifractal fields (see e.g.
[SL87], [VD93], [BRI6])
P (Z (/\_1d, /\_2A) > io/\V)

I =1 17.3
oo g (N A2t (NP (I(d, A) > ig\7) (173

where )\ is a scale factor, o is some constant rainfall intensity, ~ is an order of
singularity, csx; () is the corresponding codimension function of the 2D x 1D
space-time multifractal field, and ¢ () is a slowly-varying function of A, in the
sense that limy_,~ g (aX)/ g (\) = 1, Va € R, the space-time scaling property
becomes:

P(Z /\_1d,A > g A7 —cox1(7)
im L L ) 0 ) i 9 —1. (17.4)
A—oo P <I <d, /\_2/2A> > ZO/\7> A—00 ¢ </\2/Z> /\—202><1(7)/Z
Denoting ¢ := 1o A7, we obtain:
i o T(1—7)/(1—00x1(7))d—lA—z/Q (17.5)

(Z(d,A)>1)

(compare also with [DL97] for the purely temporal case). Let us note that, while
the exponent of the return period 7" seems to be a function of the order of sin-
gularity ~, in fact, due to the divergence of moments of the variable Z(d, A),
distributed according to Fz4 a) (1), there exists a whole interval of orders of
singularity where ¢y« (), the temporal codimension function, is a linear func-
tion of v, and (1 —~)/ (1 — cox1 (7)) is a constant. This interval corresponds
precisely to the highest values of orders of singularity v up t0 .5, and as ex-
pected, the highest value of the exponent of T is reached over the aforementioned
interval. This is to say that the worst-case scenario, in the sense of the highest
rainfall intensity corresponding to a given return period, is reached over this in-
terval, due to the fact that the highest orders of singularity dominate the field
at small scales. This is, on the one hand, a non-trivial implication of multifrac-
tality (see e.g. [SL87]), which does not have a correspondent in non-singular
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1.4

1.2F

Fig. 17.1: Typical singularity spectrum of a Mexico City rainfall event, « = 1—+, f(«) =
1—c(7), used to compute scaling exponents of the IDAF function. The temporal
function is represented by the dotted line, the spatial function by the solid line,
and both tangency points with the main diagonal, as well as the point at (1, 1),
are marked for reference

(smooth) fields. On the other hand, this same property implies that if a given
sample does not capture the linear interval of ¢y« (), then the estimated values
of v and ~,.x, Will not result in the true highest exponent of 7', but rather in a
lower value. However, even in this latter case, (1 — Yax)/ (1 — cox1 (Ymax)) 1S
the highest exponent of T' that can be obtained from the sample.

17.3 Experimental setting

Rainfall has been filmed in a spatial cube of 1.2mx1.2mx1.2m, at a rate of 30
images/second, using a Sony DCR-TRV 130 camera with Digital 8 format tape.
The camera has a 37mm lens with a focal length of 3.672mm, and is capable
of an optical zoom of 20. All filming has been done with natural-light illumi-
nation, using black plates as background and bottom. The 30 bitmaps/second
obtained from the digital film have 640 x 480 pixels each, resulting in a ratio of
2.5mm/pixel.

Drops have been detected as a trace representing their trajectory during one
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CCD scan. Many raindrops that appear in more than one image can be matched
between successive images, and hereby the CCD scanning time can be related to
the interval of 1/30s between images, and the drop velocities determined. Drop
sizes have been inferred from vertical velocities, considering the latter as termi-
nal. Possible sources of errors in this procedure are updrafts and drop interac-
tions, however the proximity of the measurements to the Earth’s surface limits
the updraft scale, whereas changes in terminal velocity due to drop coalescence
or break-off are being asymptotically reached within a few meters. The positions
of the drops have been determined geometrically within the frontal plane, and
approximated from their impact location in depth.

17.4 Results

Figure 17.1 shows a typical singularity spectrum of a Mexico City rainfall event.
The resulting values are vy, = 0.418, cox1 (Ymax) = 0.524 and » = 1.161,
and several Mexico City storms like the one presented, show values of 0.3...0.5
for Yinax. and of 0.4...0.6 for the respective ¢ (Ymax). The estimated IDAF
function in the presented case turns out to be

P o THAT, Ly d P ATOSL (17.6)

It should be observed, however, that no clearly linear interval appears in the
cox1 () curve, so we have to conclude that the true values of ~,,,,, have not been
reached. Also, the obtained values are valid in the small-scale limit, and should
not be simply extrapolated to larger scales. It is nevertheless at these smallest
scales where singularities are phenomenologically best captured.
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18. CONCLUSIONS AND PROSPECTS

In some developing countries, the government plays a fundamental role to absorb
the losses of natural disasters. The low insurance density, the poverty and the
macroeconomic problems are some causes of the low participation of private
capitals in the risk management of natural disasters in these cases.

Mexico is a developing country with vast experience in natural disasters of
almost all types. Furthermore, it is one of the few countries that has a natural dis-
asters fund. For this reason, the case of Mexico is important to be analyzed. Some
of its experience can be applied to improve the implementation and management
of natural disaster funds in other countries.

The main goal of Mexico’s Fund for Natural Disasters (FONDEN) is to mit-
igate the effects of natural disasters whose magnitude surpass the capacity of
answer of local governments and public federal entities. FONDEN can provide
economic resources for

e the reestablishment of the normal functioning of governmental entities,

the reconstruction of non-insurable infrastructure,

help for low-income victims,

the acquisition of specialized equipment and

the restoration of cultural and historical patrimony.

FONDEN’s assistance should be provided within a budget established at the
beginning of every fiscal year. In case of imminent danger or high probability of
disaster, the Mexican Ministry of the Interior (SEGOB) can declare a situation of
emergency and provide resources to attenuate the effects of the possible disaster.

FONDEN’s rules of operation establish that in case of high probability of nat-
ural disaster or imminent danger, local governments can call a state of emergency
to get resources faster from FONDEN. Hence, they can take measures in order to
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attenuate the effects of the possible disaster. For this reason, it becomes necessary
the development of a mathematical model considering this type of outcome.

The problem of how to use information from a warning system was unex-
plored in actuarial sciences and the model here presented is, as far as we know,
the first accomplished attempt to quantify the economic impact of an early warn-
ing system with a parsimonious stochastic model. Our models for a governmen-
tal fund for natural disasters and the risk-reserve of an (re)insurance company
considering the existence of an early warning system serve as starting point to
outline new mathematical problems in risk management of natural disasters. For
example, risk-partnership models for the public and the private sector.

One difficulty for this part of our research was to identify the relevant infor-
mation for the modelling in order to simplify the problem to its essence. Not
necessarily “more” is “better”. Our starting model for the governmental fund
was much more complex as the one here presented. Step by step, as we were
understanding the elements involved and its interaction, we were improving ab-
straction until capturing the very essence of our problem. One of our main results
is that we discovered that we can use to our benefit the statistics of performance
measurements of early warning systems to outline the problem using Markov
processes. This representation is very convenient in order to take advantage of
previous results that have been proven to be useful in the practice. In particular,
our model for the risk-reserve is a generalization of the classical Lundberg model
for the risk reserve. We didn’t find other actuarial models for a governmental
fund in the literature.

We decomposed the group of dependent and not simultaneous processes in-
volved in our problem into independent processes. So, we conclude that for the
quantification of the economic impact of early warning systems, the fundamental
information is

e the claim sizes sorted with respect to the observed performance of the early
warning system,

e the probabilities of error (o, a5, ag) and

e the mean number of claims (or outcomes in the case of the governmental
fund) pro year.

This result is also useful as a justification for structuring data bases in such a way
that we can at least obtain/estimate this information.
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Our results make it possible to formulate different mathematical problems
in risk management considering the existence of early warning systems that can
shed light inside the financial planning of a governmental fund of natural disasters
and of the risk-reserve of a reinsurance company from the perspective of actuarial
sciences and financial mathematics.

In our case, we applied our model to formulate a stochastic optimization prob-
lem in order to make a first step to find an optimal management strategy for a
governmental fund for natural disasters. For the modelling, we assumed that the
government is risk-averse. We used the F-S strategy to solve the problem.

From the results of Part II, we conclude the following:

L.

IL.

III.

IV.

A premise of Mexican government is not investing financial resources for
natural disasters in risky assets. We consider that this postulate should be
reviewed, since any form of risk transfer is by definition expensive and
contingent credits as basis for the management strategy is not desirable
from a political point of view.

It is often argued that natural disasters losses can not be managed using
traditional financial instruments, because they have less variability. Never-
theless, considering the established budget as the estimation of a random
quantity with a deterministic value, as we do, we can improve budget’s ap-
proximation using investment. That is, we can invest a part of the reserves
in order to reduce the fund’s deficit to its intrinsic value using traditional
financial instruments, less expensive than CAT bonds.

Our results show that investment can help to reduce the amount of risk
to be transferred to its intrinsic value. Introducing the possibility of in-
vestment, we can reduce the amount of risk to be transferred. Our model
also considers the possibility of XI.-reinsurance, so that we can explore the
differences resulting from varying the retention level.

The strategy that we propose consists basically in having budget resources
and part of the reserves in high liquidity, low risk investments and the other
part of the reserves in a portfolio investment. The concept is to facilitate
self-financing and building of reserves in “good years”. It should be no-
ticed that this strategy requires a minimum level of reserves that should
not be available until the end of the fiscal year. Nevertheless, this is not a
disadvantage in the long-term planning.
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Investment of a part of the reserve fund

in traditional risky assets

Cost before event e A minimum level or reserves is required, but
we only transfer intrinsic risks

e We have market risk, but it does not necessarily
surpass the cost of risk transfer

Benefit after event It improves absorbing capacity of the
government and it facilitates building reserves
in the long term

Cost after event The revenues as well as the invested capital
are not immediately available after event and
the investment strategy should be carried out
the whole fiscal year

Incentive for mitigation | Yes, if the positive effect of warnings

is also taken into account in this and the other
strategies that interact and compose the whole
management strategy

Tab. 18.1: Costs and benefits of the ex-ante investment strategy, viewed as part of an inte-
grated risk management strategy

Summarizing, in spite of market risk, we found that, for risk-averse govern-
ments, investment as a part of an integrated risk-management strategy can im-
prove considerably the performance of a governmental fund for natural disasters.
In Tab. 18.1, we present a similar analysis of our strategy as that done in Tab. 4.1
for reserve funds!, insurance and contingent credits. We wish to stress that every
type of strategy interacts with the others, so that with integrated risk-management
strategy we mean a system of strategies.

The last part of this research was devoted to the integration of geophysical
models in risk management. As we mentioned at the beginning of this thesis, in
the case of natural disasters we need multidisciplinary skills to make better use
of available information. In this research we have explained the scale-problem
present in some natural processes. We, the actuaries, have been completely ig-
noring it in the past.

The identified problem of missing information on rain (also present in run-off

! In this research, it is understood that reserve funds are highly-liquid.
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data) should be considered (or at least remembered) in any case when using data
bases, also when not applying IDF curves or calculating asymptotic tail probabil-
ities. Multiplicative cascades can be used for generation of synthetic sequences
that resemble the original data in terms of its scaling properties.

If not using multiplicative cascade models, the existent evidence of intermit-
tency, long memory and multiscaling properties in rain processes provided by
geophysical sciences is already helpful for the development of risk management
techniques as well as for other applications.

The asymptotic expression for P(7 > ¢) that we found shows that IDF curves
are consistent with the multifractality of rainfall time series and the limiting be-
havior of % at small-scales widens the interpretation of the empirical scaling pa-
rameter n (4 — n). It is also possible to extend the results to include the area
by means of empirical intensity-duration-area-frequency functions (IDAF), using
the relationship 7" o ¢ mk AP where A is the area of observation, d is the scale
of observation and m, k, p are parameters to be adjusted. The parameter p is the
anisotropy exponent p = —z/2, where 2z = 75,40 (¢)/Ttime(q)-

The small-scale analysis of the multifractal behavior of the rainfall process
has brought one more evidence of multifractal behavior, anisotropic between
space and time. This leads us to validate the asymptotic small-scale, large-
intensity behavior of multifractal fields for the case of rainfall. By means of
a case study, we show how to parameterize IDAF curves corresponding to this
limiting behavior.

In an internal meeting at the Mexican Ministry of Finance (SHCP) on Jan-
uary 2003, we noticed that our results can be useful for improving laws, budget
planning as well as providing a technical justification for risk reserves in gov-
ernmental funds. Nevertheless, our work is not only useful for governments, but
also for the insurance industry and consulting firms.
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APPENDIX






A. SIMULATION OF A MULTIPLICATIVE CASCADE

In this appendix we present the program made in Matlab language that we wrote
to generate Figs. 14.1 and 16.1. Using this algorithm we can “bare” a multiplica-
tive cascade in the sense of Tab. 16.2 until a finite level n, n € N.

This program simulates a binary multiplicative cascade with support in the
interval [0, T'], 0<T< oo, complementary weights and uniform generator w Z(»”) ~
U[0, 1]. A graphic of the cascade at every level is produced. The algorithm can
be adapted to simulate other discrete multiplicative cascades.

% Begin
m=4; % This is the mass to be distributed along the support.
n=8; % This is the number of levels of the cascade that we want to develop.
T=1; % This is the length of the support.
9 The cascade has support in the interval [0, T7].
branchn=2"n; % This is the branch number.
% In the last level (n) we will have 2" branches.
% Now we generate a matrix with complementary weights (w).
w=zeros(n,branchn);
for 1i=1:n; % rows

for j=1:2:2"1 Yocolumns;

w(i,j)=rand(1,1); % The weights are uniformly distributed in [0, 1].
w(i,j+1)=1-w(i,)); % We have complementary weights.

end;
end;
% In the matrix M, we store the weights in a convenient order.
M = ones(n+1,branchn);
% The first row of M will have ones, because the mass (m) is uniformly
% distributed along the support at the first level of the cascade,
% The cells of the other rows will store elements of the matrix of weights (w).
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fori=2:n+1 % : — 1 is the corresponding row in w
repeat = 27 (n-1+1);
for k = O:branchn/repeat-1;
for j = k*repeat+1:(k+1)*repeat;
if j <=2"k*repeat;
temp = k+1;
else temp = k+2;
end;
M(i,j) = w(i-1,temp);
end;
end;
end;
% We calculate the values for every branch:
cascade = cumprod(M)*m;
% Every row of the matrix "cascade’ corresponds to a level of the cascade.
% For the graphics:
N = zeros(n+1,branchn);
for i=1:n+1; % We should consider the different scales for the graphic.
N(1,:)=cascade(1,:)*2°(1-1)/T; % . i-1 is the level of the cascade.
% The calculated mass for every sub-interval of length 7'/2!~! is distributed
% along 1it.
end;
graf=N’";
t=T/branchn:T/branchn:T; % The matrix stores the support divided in the
% finest scale.
% This is to obtain a graphic of the simulated binary multiplicative cascade
figure(1);
for i=1:n+1;
subplot(3,3,1); % n+1=9 graphics are generated and presented in a 3x3 array.
plot(t,graf(:,1));
axis([1/branchn, T,0,max(graf(:))]);
end;
9 End

In Fig. 14.1, we plot three simulations of a binary multiplicative cascade de-
veloping 10 levels. This cascade has support in [0, 1], m = 1, uniform generator
and complementary weights.
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