Tool-Supported Identification
of Functional Concerns
in Object-Oriented Code

T Foiching







Mircea Trifu

Tool-Supported Identification of Functional Concerns
in Object-Oriented Code






Tool-Supported Identification
of Functional Concerns
in Object-Oriented Code

by
Mircea Trifu

T Foiching



Dissertation, Karlsruher Institut fir Technologie
Fakultat fur Informatik,
Tag der mundlichen Priafung: 20.01.2010

Impressum

Karlsruher Institut fir Technologie (KIT)
KIT Scientific Publishing

StraBe am Forum 2

D-76131 Karlsruhe

www.uvka.de

KIT — Universitat des Landes Baden-Wirttemberg und nationales
Forschungszentrum in der Helmholtz-Gemeinschaft

(®S0)

Diese Veroffentlichung ist im Internet unter folgender Creative Commons-Lizenz
publiziert: http://creativecommons.org/licenses/by-nc-nd/3.0/de/

KIT Scientific Publishing 2010
Print on Demand

ISBN 978-3-86644-494-2


http://creativecommons.org/licenses/by-nc-nd/3.0/de/







Tool-Supported Identification
of Functional Concerns
in Object-Oriented Code

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

von der Fakultat fir Informatik
des Karlsruher Instituts fir Technologie (KIT)

genehmigte
Dissertation

von

Mircea Dan Lucian Trifu

aus Satu Mare, Rumanien

Tag der mindlichen Prifung: 20. Januar 2010
Erster Gutachter: Prof. em. Dr. Dr. h.c. Gerhard Goos
Zweiter Gutachter: Prof. Dr. Ralf Reussner






Acknowledgements

First of all I would like to express my deepest appreciation and gratitude to my su-
pervisor Prof. Gerhard Goos for his guidance, continued support, and for giving me
the opportunity to work in a very stimulating research environment. With his en-
cyclopedic knowledge and comprehensive perspective on software engineering, he
shaped my development as a scientist, and with his insightful questions and invalu-
able comments, he helped me improve this work. Prof. Goos has been a true mentor
and I am privileged to call myself his student.

I'would also like to express my gratitude to my second supervisor Prof. Ralf Reussner
for his constructive suggestions and invaluable advice, while preparing my disserta-
tion, for his unwavering support, and for giving me the opportunity to continue my
scientific career as a postdoctoral researcher. His tireless quest for knowledge and
scientific excellence inspired me to challenge myself.

I owe a lot of gratitude to my brother Dr. Adrian Trifu for his continued support
throughout the years. He has always been a forerunner, whose footsteps I also fol-
lowed to Karlsruhe. I am especially grateful for the many opportunities he created
for me and for the excellent collaboration and discussions we had, while working
side by side as colleagues at FZI.

A special thank you goes to my dear friend Dr. Radu Marinescu, who awoke my
interest for genuine scientific research with his unwavering convictions and his un-
curbed enthusiasm, and set me on the course, which brought me where I am today.
I am also grateful for the energizing discussions we had, especially during my visits
to Timisoara.

I am also indebted to my brother Dr. Adrian Trifu and to my dear friend Dr. Daniel
Ratiu for patiently and thoroughly reviewing my dissertation.

Many thanks to my students: Marius Muja and Johannes Stammel, who helped me
try our some of my ideas in practice, and to my close colleagues at FZI: Dr. Christoph
Andriessens, Christian Bartsch, Dr. Holger Bér, Dr. Markus Bauer, Dr. Steffen Becker,
Franz Brosch, Zoya Durdik, Dr. Thomas Genssler, Thomas Goldschmidt, Henning
Groenda, Dr. Jens Happe, Michael Hauck, Stefan Hellfeld, Lucia Kapova, David Kar-
lin, Dr. Jan Kofron, Dr. Samuel Kounev, Klaus Krogmann, Dr. Volker Kuttruff, Martin

ix



Kiister, Prof. Dr. Marco Mevius, Dr. Christof Momm, Dr. Pierre Parrend, Christoph
Rathfelder, Thomas Schuster, Dr. Olaf Seng, Johannes Stammel, Gabor Szeder, Peter
Szulman, Dr. Adrian Trifu, and Jan Wiesenberger, for the fruitful discussions and the
very pleasant and constructive work environment they help to create.

Special thanks also go to Andreea Cosma, for her understanding and support, while
writing my dissertation.

And last but not least, my wholehearted thanks go to my parents, Lucia and Ioan,
who have encouraged and supported me unconditionally in every possible way
throughout the years. I am especially grateful for the excellent education they gave
me as a child and the sacrifices they made so that I can pursue my dreams. None of
this would have been possible without their support. For always being there for me,
all through my ups and downs, and for believing in me even when I didn't, I dedicate
this work to them.

Karlsruhe, March 2010

Mircea Trifu



Contents

1. Introduction
1.1. Problem Definition . . . . .

1.2.
1.3.
1.4.
1.5.

2.1.
2.2.

2.3.
2.4.
2.5.

1.1.1.
1.1.2.

Context of the Work
Problem Statement .

Goal and Criteria . . .. ..

Application Scenario . . . .

--------------------------

Approach Summary and Contributions . . . . .. ... ..........
Outline of the Thesis . . . .

Background and Related Work

Terminology . ... ... ..

Static Program Analysis . .

2.2.1.
2.2.2.

2.2.3. Static Program Slicing

Data Flow Analysis .
Pointer Analysis . . .

Traceability Analysis . . . .

Concern Encapsulation . .

Concern Identification . . .

2.5.1.
2.5.2.
2.5.3.
2.5.4.
2.5.5.
2.5.6.
2.5.7.

Manual identification
Pattern search . . . .

Pattern recognition .

.........................

Clustering and formal conceptanalysis . . . . ... ........

Clone analysis . . . .

--------------------------

Static program analysis . . .. .. ... ... .. ... .. ... ..

Comparative studies

Xi



Contents

xii

2.6. Conclusions . . . . . . . . . e

Hierarchic Concern Model

3.1. AnatomyofaConcern . . . ... . ... ...
3.1.1. ARunningExample ... ....... ... ... ... .. ...
3.1.2. Concernrefinement . . ... ... ... .. ...t
3.1.3. Concernoverlap . ... .. ... ... ... ... ... ..
3.1.4. Data dependencies between concerns . . ... ..........

3.2. Data-Oriented Abstraction . ... ... ... . ... ............
3.2.1. FlowRelations . . . . . .. ... ... . . ...
3.2.2. ConcernDefinition . . . . ... ... ... ... L L.
3.2.3. TraceabilityFunction. . . ... ... ... .. .. ..........
3.2.4. Abstract RepresentationinCode . . . .. ... ...........

Concern Graph

4.1. Concern Graph Definition . . . . . .. ... ... ... .. ... ......
4.1.1. Tracking Call and Object Contexts . . . . ... ... ........
4.1.2. Dealing with Reference Types . . . . . ... ... ... ... ....

4.2. DirectFlowRelations . . . . . ... .. ... ... .. ... .. . ... ..
4.2.1. DataflowRelations . . . ... ... ... ... ... ... ...
4.2.2. Inheritance Relations . ... .. ... ... .... ... ......
4.2.3. Direct DependencyRelations . . . . ... ... ...........

4.3. Separation of SuperimposedRoles . . . . .. ... ... ... ... ..

4.4. Dealingwith Libraries . . ... ... ... ... .. ... ... ... ...
4.4.1. Flow-Equivalent Concern Subgraphs . . ... ...........

4.4.2. Manual Specification of Concern Graphs . . . . . ... ... ...

Concern Identification Method

5.1. OVEIVIEW . . . . . o o e e e e e e e e e e e

5.2. Specification of ConcernIntents . . . .. ... ... ............
5.2.1. The CODEXLanguage . .. ... ... ................
5.2.2. SpecificationExample . . . ... ... ... ... ... .. .....

5.3. Identification of Concern Skeletons . . . ... ... ... .........

43
43
45
47
48
49
50
51
53
54
60

63
63
66
68
70
71
78
83
87
91
92
95



Contents

5.3.1. CFL Reachability Formulation . .. ... .............. 102

5.3.2. Concern Extent Delimitation . ... ... ... ........... 106

5.3.3. Concern Extent Extraction Algorithm . . . ... ... ....... 108

5.3.4. Hierarchic Concern Decomposition . . . . ... ... ....... 116

5.4. SelectionofConcernSeeds . ... ... ... ... .. ... ........ 119
5.4.1. Reduced ConcernGraph. . ... ... .. .............. 120

5.4.2. GrowingFlowSets . ... .. ... ... ... . .. ... .. . ... 125

5.5. Concern Maps . . . . . . . . e e e 126

. Evaluation 131
6.1. ToolSupport . . . . . . . . e 131
6.1.1. Architectural Overview. . . . . . ... ... ... ... ....... 131

6.1.2. ImplementationDetails . . .. ... ... ... ........... 135

6.2. EvaluationApproach . . ... ... .. ... ... ... . ... ... 136
6.2.1. Evaluation Goals and Experimental Objectives . ... ... ... 136

6.2.2. Suitability of the Hierarchic Concern Model . ... .. ... ... 137

6.2.3. Effectiveness of the Identification Approach . . .. .. ... ... 138

6.3. TheJHotDraw CaseStudy . . ... .. ... ... ... ... ........ 140
6.3.1. OVerview . . . . . . . . .. e e e e 140

6.3.2. ExperimentalSetup . ........ ... . ... ... . . .. ... 141

6.3.3. Functional Concern Examples . ... ... ............. 143

6.3.4. Accuracy Measurements . . . . . . ... ... ... 148

6.3.5. Execution Time Measurements . . . . . . ... ........... 151

6.4. Assessmentofthe Approach . ........................ 154

. Conclusions 157
7.0, Summary ... .. L e 157
7.2. Assumptions and Limitations . . . . . ... ... ... ... ... ..., 158
7.3. Perspectiveson futurework . . . .. ... ... L Lo oL 160

. JHotDraw Experiment Details 163
A.1. Specification of the Java Standard Library . . . . .. ... ... ... ... 163
A.2. Concern Intent Specification . . ... ... ... ... ........... 166

xiii



Contents

A.3. CoDEXProjectFile . . . . ..

A.4. Detailed Experiment Results

Bibliography

Xiv



Chapter 1.

Introduction

This work is intended to support program understanding of object-oriented code,
by creating direct traceability links between functional concerns and their imple-
mentations in code. The traceability links are discovered by an automated tool,
based on a high-level specification of these concerns, provided by the software en-
gineer.

The term concern is highly overloaded and has a very broad meaning, with typi-
cal examples including requirements, features, data structures, and extra-functional
properties. Within the context of this work, we restrict this broad meaning and ba-
sically regard concerns as requirements. The term concern will be defined more
precisely in section 2.1, but for the time being this intuitive definition should be suf-
ficient to define the goal of this thesis, and to present an overview of our approach.

1.1. Problem Definition

In general, the lack of direct traceability between concerns and their implemen-
tations makes program understanding significantly harder, and contributes to
increased software evolution costs. In particular, the understanding of object-
oriented code is especially hindered by crosscutting concerns, whose implemen-
tations are typically scattered over many locations and tangled with the implemen-
tations of other concerns.

1.1.1. Context of the Work

Program understanding is a prerequisite for any software evolution activity, and
because it has a strong reasoning component, it is difficult and time-consuming.
According to Brooks, program understanding involves “the reconstruction of the



Chapter 1. Introduction

domain knowledge used by the initial developer. Understanding involves recre-
ating the mappings from the problem domain into the programming domain”
(Brooks 83). A similar view is shared by Biggerstaff, who sees program understand-
ing as a concept assignment problem and defines it as “the problem of discover-
ing human oriented concepts and assigning them to their implementation oriented
counterparts” (Biggerstaff 93).

According to Mens and Demeyer (Mens 08b), on average 50% of the costs associ-
ated with software evolution are spent on program understanding. The percentage
is estimated based on data collected in the industry (Corbi 89), and agrees with es-
timates from Ben-Menachem and Marliss (Ben-Menachem 97). As for the software
evolution costs, “for long-lifetime systems, these costs are likely to exceed the de-
velopment costs by a factor of 3 or 4” (Sommerville 06). The same view is shared
by Pressman (Pressman 01), and supported by empirical data from the industry
(Koskinen 04; Erlikh 00; Putnam 97; Jones 91; Moad 90; Lientz 80), suggesting that
software evolution costs represent between 60% and 80% of the total costs associ-
ated with a software system over its entire life cycle. This means that program un-
derstanding alone accounts for roughly a third of the total costs, thus making it the
most expensive activity of the entire software life cycle.

One of the causes of these high costs is that software systems do not exhibit a clear
separation of concerns at the implementation level. The term separation of con-
cerns, attributed to Dijkstra (Dijkstra 82), denotes a fundamental principle in pro-
gramming, which enables software developers to master the complexity of a soft-
ware system, by decomposing it into a set of distinct concerns, which are addressed
in turn, one at a time. Concern separation is very effective, because it allows de-
velopers to focus their attention on a single concern and ignore the details of other
concerns. Nowadays, it is widely accepted as justified to invest more effort in the
initial development of a system, if this investment improves the separation of con-
cerns. Even though this doesn’t always happen in practice, the previous data on
program understanding costs suggests that such an investment eventually pays off
manifold.

Over the years, the evolution of programming paradigms and programming best
practices brought new ways to achieve better separation of concerns. Programming
language constructs such as procedures, abstract data types and classes facilitate
this separation by means of encapsulation and information hiding, whereas archi-
tectural styles and design patterns provide rudimentary solutions for typical con-
cern decomposition problems. The IEEE Standard Glossary of Software Enginee-
ring Terminology defines encapsulation as “a software development technique that



1.1. Problem Definition

consists of isolating a system function or a set of data and operations on those data
within a module and providing precise specifications for the module” (IEEE 90), and
information hiding as “a software development technique in which each module’s
interface reveals as little as possible about the module’s inner workings and other
modules are prevented from using information about the module that is not in the
module’s interface specification” (IEEE 90). In his seminal paper, Parnas pointed
out that both encapsulation and information hiding are essential to achieve a good
separation of concerns (Parnas 72).

Because different language constructs favour the encapsulation of different types
of concerns, and because different architectural styles and design patterns impose
different concern decompositions, the implementation of a concern in an existing
system is constrained by the capabilities of the programing language and by the pre-
viously made architectural, design and implementation decisions.

Research on morphogenic software at the IBM T. ]J. Watson Research Center showed
that concerns take many forms and shapes, and while their separation is highly de-
sirable, it is also very hard to achieve at the implementation level. At the require-
ments level, concerns may overlap, vary from very general to very specific and even
contradict one another. They define a decomposition of the system across multiple
dimensions. Because traditional (object-oriented) programming languages suffer
from a problem known in the literature as the tyranny of the dominant decomposi-
tion (Tar 99), meaning that they support only a single dominant dimension of de-
composition at a time, it is impossible to simultaneously encapsulate all concerns
using the available language constructs, regardless of architectural, design and im-
plementation decisions. Concerns, which cannot be encapsulated, are called cross-
cutting concerns, because their implementations crosscut the implementations of
other concerns.

1.1.2. Problem Statement

Although working with concern decompositions at the requirements level is very
useful and accessible to developers, the implementations of these concerns in
object-oriented code is typically interleaved to form an integrated software system.
The implementation of a new concern may also produce new classes, but it will also
require inserting some program fragments in the existing classes. And because the
existing class structure supports a single dimension of decomposition at a time, the
implementations of crosscutting concerns end up “scattered over many locations



Chapter 1. Introduction

and tangled with the implementations of other concerns, resulting in a system that
is hard to explore and understand” (Ceccato 05).

In the general case the relationships between concerns and classes are complex
many-to-many relationships, typically known only by the developers. In the rare
cases, when these relationships are partially documented, it is usually done in the
form of a traceability matrix. Commonly used in traceability analysis, a traceability
matrix is “a matrix that records the relationship between two or more products of the
development process; for example, a matrix that records the relationship between
the requirements and the design of a given software component” (IEEE 90). In case
of an encapsulated concern, the traceability matrix may also contain the names of
the major classes involved in its implementation, but not the level of detail required
to support program understanding.

Existing approaches to traceability analysis typically require a rigourous require-
ments engineering process and the existence of detailed up-to-date traceability in-
formation. And because maintaining these traceability links is a difficult and time-
consuming activity requiring a lot of manual effort, it is not considered cost-effective
by developers and managers (Gotel 94). What is needed are methods and tools to
automatically identify such traceability links.

1.2. Goal and Criteria

The goal of the present work is to support program understanding of object-
oriented code during software evolution, by creating and maintaining direct trace-
ability links between functional concerns defined at the requirements level and
their respective implementations in code. The focus of this work is on functional
concerns, because functional concerns are typically addressed by the code alone,
whereas non-functional concerns are typically addressed by both the code and
its execution environment. We achieve this goal by developing a tool-supported
method to identify the implementations of functional concerns in object-oriented
code, which uses:

* a high-level manual specification of functional concerns, and

¢ an automated discovery of functional concern implementations.

In order to be useful in practice, our approach must fulfill the following criteria,
which we regard as being essential for any approach of this nature.



1.3. Application Scenario

¢ Expressiveness: The method should be able to capture functional concerns
and the typical relationships between them, including concern overlaps and
hierarchic refinements.

* Accuracy: The concern identification method should be accurate, meaning
that the results it produces should be similar to those produced by a human
expert, after a careful examination of the code and a manual identification of
the concern implementations.

* Practicability: The method should be able to handle the typical language fea-
tures found in most object-oriented languages: structured data types, object
aliasing, exception handling, dynamic dispatch, and polymorphism.

 Scalability: The method should be applicable to realistic software systems,
having at least the size of a typical subsystem (around 200 classes).

e Automation: The method should allow a high degree of automation, meaning
that it should allow the creation of tools to automate as much as possible of
the concern identification process.

Note that a full automation is not possible, because the creation of an ini-
tial subset of the traceability links requires semantic knowledge about and a
deeper understanding of the software system.

1.3. Application Scenario

The application scenario targeted in this work is the evolution of an existing object-
oriented software system. As pointed out by Lehman’s Law of Continuing Change
(Lehman 74), a software systems must undergo a continuous process of change in
order to avoid becoming progressively less satisfactory. Software changes may occur
due to many causes, extensively documented in the literature (Sommerville 06), but
they are always expressed at the requirements level.

While expressing a change at the requirements level is natural and straight-forward,
typically affecting a single concern, due to the fact that concern implementations
may be scattered over many locations and tangled with the implementations of
other concerns, reflecting the change at the code level may turn out to be very dif-
ficult. A software engineer must first find all the code fragments affected by the
change, which in the case of cross-cutting concerns can be very time consuming
when done manually. Then he must study the code in order to understand not
only every fragment in isolation, but also the interdependencies between those frag-
ments.



Chapter 1. Introduction

The approach presented in this work allows a software engineer to specify a set of
hierarchically refined functional concerns in a persistent form, using a simple data-
oriented abstraction, and for each such concern a minimal set of direct code trace-
ability links, which are then processed by an automated tool to identify the code
fragments, belonging to the implementation of this particular concern. Further-
more, identified concern implementations are presented at a level of abstraction
suitable for program understanding.

The main advantage of this approach is that it makes no assumptions about the ini-
tial development of the analyzed software system and it does not require the use
of a formal requirements engineering process. The above-mentioned concern in-
tent specification consists of a small subset of the traceability links, which must be
defined only once, either during the initial implementation of the concern or dur-
ing the implementation of an evolutionary change affecting the concern. Once cre-
ated this specification can be reused for subsequent evolution activities targeting
the same concern, if the concern definition itself, but not its implementation, re-
mains unchanged.

1.4. Approach Summary and Contributions

Concern identification aims at identifying the implementation of a concern in ex-
isting code. While being part of program understanding, concern identification re-
ceived special attention because it is the part that can be automated, whereas the
actual understanding is inherently a human activity. Concern identification typi-
cally consists of two steps: the specification of concern seeds and the identification of
concern implementations. A concern seed is a well-chosen program element from
the implementation of a concern, used as as a starting point for the identification
of concern implementations. Each concern is delimited by a small set of concern
seeds, which are then expanded using some predefined expansion rule to obtain a
larger set of program elements, used in the concern’s implementation, called the
concern extent. The concern extent is a more or less abstract representation of the
identified concern implementation.

The concern identification approach, described in the present work, uses a tool-
supported but manual concern seed specification, and a fully automated identifica-
tion of concern extents.

Concerns are described using the Hierarchic Concern Model, where each concern
is treated as a gray-box and defined in terms of its subconcerns, the inputs it uses



1.4. Approach Summary and Contributions

and the outputs it produces. The model allows a very accurate representation of the
concern space, because it supports a hierarchic decomposition of concerns and a
natural way to express overlapping concerns.

At the implementation level, the inputs of a concern are represented by abstract
locations called information sources, and its outputs by abstract locations called in-
formation sinks. Abstract locations are statically distinguishable variables and rep-
resent all kinds of named or unnamed entities, capable of storing values, such as
class fields, local variables, formal parameters, exception parameters, return value
variables, object context variables, and object creation variables. Note that an ab-
stract location represents all the variables defined at a given location in code. For
example, a class field will be represented by a single abstract location regardless of
the number of created class instances.

Although finding abstract locations in code actually amounts to creating a mapping
between the requirements level and the implementation level, this mappingis much
easier to create than the mapping between concerns and classes, because the rela-
tionships between inputs and outputs on the one hand and their corresponding in-
formation sources and sinks on the other, are simple one-to-one relationships. The
mapping is typically specified manually by the developer, but its discovery is often
supported by tools. And although finding the information sources and sinks usually
requires detailed knowledge about what the system does at the requirements level,
it requires very little knowledge about how it does it at the implementation level.

The concern identification approach, described in the present work, operates on
a concern graph, consisting of abstract locations as nodes and labelled direct flow
relations as edges. A direct flow relation between two abstract locations means that
the value of the source abstract location is used to produce the value of the target
abstract location. In order to differentiate between different call or object contexts
of the involved abstract locations, we encode these contexts into the labels of the
corresponding edge in the concern graph.

Depending on the type of value influence between abstract locations, we define
three categories of direct flow relations: dataflow relations to capture direct value
transfer between abstract locations, inheritance relations to capture potential value
transfer to and from overriding methods as a result of dynamic binding, and direct
dependency relations to capture data dependencies other than value transfer be-
tween abstract locations.

Our approach treats the identification of concern implementations as a context-free
language reachability problem (Reps 97) in the concern graph. For each concern, it
uses the manually specified information sources and sinks as concern seeds, and



Chapter 1. Introduction

determines a data-oriented abstraction of the concern at the implementation level,
called the concern skeleton, which contains all the flow paths from the information
sources to the information sinks.

A flow path is defined as a valid path inside the concern graph, such that the word
obtained by concatenating the sequence of edge labels in the path is a word in the
associated context-free language. The intuitive meaning of such a path between two
abstract locations is that the value of the start abstract location is potentially used to
produce the value of the end abstract location. The algorithm to extract flow paths
is based on a demand-driven context-sensitive and object-sensitive analysis of the
concern graph.

Given how they are obtained, it may happen that two concern skeletons are not
completely disjoint. Their intersection is considered to represent a shared subcon-
cern of the initial concerns, and as such is extracted as a separate concern skele-
ton and aggregated by both parent concern skeletons. After performing this extrac-
tion on all overlapping pairs of concern skeletons, a hierarchic decomposition of
the concern skeletons is obtained, which facilitates a modular understanding of the
code.

Because program understanding also involves understanding the interaction be-
tween concerns, we define a number of simplified representations of the system,
called concern maps. Concern maps are meant to provide overviews of the entire
system on a particular aspect. Particularly useful for program understanding are:
the concern aggregation map, highlighting the hierarchic decomposition of concern
skeletons, the concern interaction map, highlighting the data dependencies between
concern skeletons, and the concern dispersion map, highlighting the scattering and
tangling of concerns with respect to classes.

The above described approach is implemented by a prototype tool called CODEX.
The validation, carried out with CODEX, shows that the concern skeleton, defined
in the Hierarchic Concern Model, is a suitable abstraction, capable to express func-
tional concerns in object-oriented code (Expressiveness). Furthermore, the evalu-
ation shows that our approach is able to accurately identify concern skeletons (Ac-
curacy) in a real object-oriented software system (Practicability), having at least the
size of a typical subsystem (Scalability). Moreover, our approach handles the iden-
tification of concern skeletons in a fully automated fashion, and although creating
the initial concern intent specification is largely manual, the specification contains
only a small set of concern seeds, which can also be reused in subsequent revisions
of the code, provided that the specified concerns, but not their implementations,
remain unchanged (Automation).



1.5. Outline of the Thesis

The main contributions of this work can be summarized as follows:

1.5.

The Hierarchic Concern Model, supporting multiple simultaneous hierarchic
concern refinements across overlapping dimensions. The model defines a
concern skeleton as a gray-box abstract representation of a concern at the im-
plementation level, consisting of a manually specified concern intent, which
defines its inputs, outputs, and contained subconcerns, and an automatically
identified concern extent.

The CoDEX language for specifying concern intents. Featuring a simple
straight-forward syntax, the language allows a very precise and at the same
time very concise delimitation of functional concerns, which can be reused
for multiple versions of the code base.

A method for automated identification of concern skeletons, based on
context-free language reachability in a directed multigraph structure, called
the concern graph. In order to address the accuracy-scalability tradeoff,
the method supports multiple flow analysis techniques (insensitive, context-
sensitive, and object-sensitive), and a configurable precision factor for the
object-sensitive flow analysis.

A technique for the detection and separation of superimposed class roles,
resulted from multiple interface inheritance. The detection is based on a
heuristic rule inspired by the Interface Segregation Principle (Martin 96a),
and the separation is achieved by creating dedicated copies of each abstract
location for each superimposed class role.

The Reduced Concern Graph and the Growing Flow Sets techniques, which
support the selection of concern seeds, by filtering and significantly reducing
the search space investigated manually by the software engineer.

An extensible tool (CODEX), implementing the above mentioned method for
the Java programming language.

Outline of the Thesis

The rest of this thesis is structured as follows. Chapter 2 introduces the basic termi-
nology used in the field of concern identification and provides a concise overview
of related work, both background work used by our approach and competing ap-
proaches. The competitive state of the art is classified and assessed based on the
criteria defined in section 1.2.



Chapter 1. Introduction

Chapters 3 through 5 constitute the core of the thesis, with chapter 3 providing the
theoretical foundation of our approach. The chapter defines the basic theoretical
concepts such as the flow relations, and the traceability function, and introduces
the Hierarchic Concern Model, used for expressing functional concerns in object-
oriented code.

Chapter 4 defines the concern graph used by our concern identification approach,
and provides a concrete mapping from the Java programming language to this struc-
ture. It also discusses a technique to deal with software libraries, which can be ap-
plied even if the source code of the library is not available.

Chapter 5 presents our concern identification approach, which uses a manual con-
cern intet specification, consisting of concern seeds and subconcern definitions,
to automatically identify abstract representations of the concern implementations,
called concern skeletons. The chapter also discusses the selection of suitable con-
cern seeds, and introduces three concern maps to support the understanding of the
interdependencies between concern skeletons.

The implemented tool-support and the case-study based validation of our approach
are covered in chapter 6, which also contains an overall assessment of the approach
using the criteria discussed above. The details of the experimental setup used and
the complete set of measurements collected during the validation are presented in
appendix A.

Finally, chapter 7 provides a short summary of the contributions and results of this
thesis, discusses the assumptions and limitations of our approach, and presents op-
portunities for future work.

10



Chapter 2.

Background and Related Work

Establishing traceability between functional concerns and their implementations in
code is a classical problem, as old as software development itself. It has been tack-
led in many different ways by a multitude of approaches, spanning several research
fields. The purpose of this chapter is to provide an overview of these research fields
and the related work addressing this problem.

Because each research field has its own special focus, several approaches discussed
in this chapter are only marginally related to our goal. But we chose to briefly discuss
them anyway, because the techniques they employ are similar to the ones used in
our approach. However, the main focus of this chapter is on competing concern
identification approaches, which are examined critically with respect to the criteria
presented in section 1.2.

2.1. Terminology

Before discussing related work, we have to introduce the most important terms used
in this thesis, as follows:

Requirement is “a condition or capability that must be met or possessed by a sys-
tem or system component to satisfy a contract, standard, specification, or
other formally imposed documents” (IEEE 90).

Note that this definition does not make any assumptions about granularity
and does not refer exclusively to high-level requirements, typically written us-
ing informal language in a requirements document.

Functional Requirement is “a requirement that specifies a function that a system
or system component must be able to perform” (IEEE 90).

Note that this definition also does not make any assumptions about granular-
ity, meaning that it also includes technical requirements, defined as a result of

11



Chapter 2. Background and Related Work

the already made architectural, design and implementation decisions. Note
that a technical requirement is always a functional requirement, even if it ad-
dresses a higher-level non-functional requirement. For instance, the require-
ment to use a challenge-based authentication system is a technical require-
ment addressing the higher-level non-functional requirement of security. In
order to distinguish between functional and non-functional requirements, we
use the following mental model. If a requirement can be implemented using
a Turing machine, without further refining it through additional design deci-
sions, then it is a functional requirement, and if it cannot, then it is a non-
functional requirement.

Concern is a very general term used to refer to “any matter of interest in a soft-

ware system” (Sutton-Jr. 05), but for the purpose of this thesis we restrict its
definition to denote a self-contained collection of one or more functional re-
quirements, with explicitly specified required inputs and provided outputs.
Being self-contained is the property enabling separation of concerns, and it
just means that the functionality represented by a concern can be expressed,
understood and addressed separately from other concerns.

Crosscutting Concern is a concern, whose implementation cannot be encapsu-

lated in object-oriented code using the available language constructs in such
a way, that this implementation is in line with the intended architecture, de-
sign and adopted implementation conventions of the software system. The
implementation of a crosscutting concern in object-oriented code is said to
“crosscut the implementations of other concerns” (Kiczales 97) and as a re-
sult, it is “scattered over many locations and tangled with the implementa-
tions of other concerns” (Ceccato 05).

Although intuitively suggestive, the name is somewhat misleading, because it
suggests that being crosscutting is an attribute of the concern itself, and not
an attribute of its implementation. In reality, the same concern may have a
perfectly encapsulated implementation in one software system, and an alter-
nate crosscutting implementation in a different system.

Homogeneous Concern is a crosscutting concern, whose implementation exhibits

12

a broad scattering of very similar code in each location (Colyer 04). The clas-
sic examples of a homogeneous concern is the Logging concern (also called
Tracing), which involves inserting a few statements at the beginning or the
end of each selected method, in order to trace the runtime execution order of
these methods.



2.2. Static Program Analysis

Heterogeneous Concern is a crosscutting concern, whose implementation ex-
hibits a broad scattering of different logic in each location (Colyer 04). As op-
posed to homogeneous concerns, heterogeneous concerns are usually larger
and more difficult to understand, with typical examples including a custom
serialization / persistency mechanism of an object hierarchy.

Concern Intent is “the objective of a concern” (Marin 07). It defines what the con-
cern is supposed to do at the code level. In the context of this work, a formal
definition of this term will be provided in section 3.2.4.

Concern Extent is “the concrete representation of a concern in source code”
(Marin 07), the actual set of program elements contributing to its implemen-
tation. The extent describes how the concern intent is implemented. A formal
definition of this term, used in the context of this work, will be provided in
section 3.2.4.

Concern Identification, also referred to as concept location or feature location, is
a research field aimed at finding the implementation of a concern in existing
software systems. It is used to support program understanding and represents
a necessary step for any software evolution activity.

Concern Seed is tyically a well-chosen program element, used as a starting point in
concern identification. Concern seeds are usually specified manually by the
user, but they can also be identified automatically using some heuristic rule.
Automatically identified seeds are sometimes called candidate seeds, because
they must be reviewed and confirmed by the user.

2.2, Static Program Analysis

Static program analysis reunites “compile-time techniques for predicting safe and
computable approximations to the set of values or behaviours arising dynamically
at run-time when executing a program on a computer” (Nielson 99). It represents
one of the two large categories of program analysis techniques, the other one being
dynamic program analysis.

Both categories of program analysis focus on the dynamic properties of the pro-
gram, but as already suggested in the previous definition, static program analysis
techniques obtain their results by analyzing the source code or sometimes the ob-
ject code of the program in question, without executing it, whereas dynamic pro-
gram analysis techniques obtain their result by executing the program in question
on a set of input test cases.

13



Chapter 2. Background and Related Work

Both categories have advantages and disadvantages, and choosing the right cate-
gory is often a trade-off between precision and generality. As a general rule, static
program analyses provide less precise but general results, whereas dynamic pro-
gram analyses provide results, which are more precise but restricted to the set of
input test cases.

Depending on the dynamic properties they address, static program analyses come
in many shapes and forms, with typical examples including data flow analysis, con-
trol flow analysis, type analysis, and pointer analysis. Note that there are many kinds
of static program analyses, but we concentrate on data flow and pointer analyses,
because they are more relevant in the context of this thesis.

As pointed out by Nielson et al. (Nielson 99), static program analyses can be classi-
fied according to the following criteria:

* Scope of analysis. Based on this criterion, there are two kinds of static pro-
gram analysis: intraprocedural analysis, localized to the body of a single pro-
cedure, and interprocedural analysis, supporting the analysis of entire pro-
grams across procedure boundaries. Interprocedural analysis is significantly
harder, because it has to deal with the calling of procedures and the returning
from calls.

¢ Flow-sensitivity. A static program analysis can be flow-sensitive, meaning that
it takes into account the execution order of the statements of a program, or
flow-insensitive, meaning that it ignores this execution order.

Depending on the way they handle different call and object contexts, interprocedu-
ral analyses can be further classified based on the following criteria:

* Context-Sensitivity. A context-sensitive analysis takes into account the call
context of a procedure and differentiates between different call sites, whereas
a context-insensitive ignores the call context and merges together all the dif-
ferent call sites for a given procedure.

* Object-Sensitivity. Based on this criterion, an analysis may be object-sensitive,
in which case it takes into account the object context of a field and differenti-
ates between different instances of a field contained in different objects, and
object-insensitive, in which case it ignores the object context and merges to-
gether all instances of a field from all containing objects of a given class.

Note that context-sensitivity and object-sensitivity are independent of each other,
and can theoretically appear in all combinations. However, because object-
sensitivity appeared much later, out of necessity to improve the precision of the

14



2.2. Static Program Analysis

static program analyses of object-oriented languages, the combination context-
insensitive and object-sensitive is not very common. In order to simplify the for-
mulation within this thesis, we use the term insensitive to refer to an analysis, which
is both context-insensitive and object-insensitive.

Static program analyses are typically implemented using a wide range of techniques,
one of which being particularly relevant to our tool-supported concern identifica-
tion approach. The technique was introduced by Reps (Reps 97; Reps 98) and is
based on context free language reachability (CFL-reachability), a generalization of
ordinary graph reachability. Reps showed that several static program analysis prob-
lems, such as interprocedural dataflow analysis, flow-insensitive pointer analysis,
and program slicing, can be formulated as CFL-reachability problems and solved
using a simple dynamic programming algorithm.

The CFL-reachability problem is the problem of identifying a path in a labelled
graph, such that the word obtained by concatenating the arc labels is a valid word in
a given context-free language. Reps introduced a context free language of balanced
parentheses to label the arcs of a graph, and showed that this language can be used
to compute precise context-sensitive solutions to the above mentioned static pro-
gram analysis problems.

2.2.1. Data Flow Analysis

Data flow analysis is an important part of static program analysis, concerned with
deriving information about the flow of data along program execution paths. Data
flow analysis can answer whether a value computed at a given point in a program
can reach another point without being altered.

Because not all points in the execution of a program are equally interesting, data
flow analysis is typically performed on an abstract representation of the program,
called the control flow graph, whose nodes are basic blocks and the edges repre-
sent the flow of control between them during execution. A basic block is a maximal
group of consecutive statements in a program, having a single control flow entry
point at the beginning of the block, and a single control flow exit point at the end
of the block. This means that a basic block may not contain a control flow altering
statement except as its last statement, and cannot contain targets of jump or branch
statements except as its first statement.

Because data flow analysis is mostly used for compiler optimizations, it is covered
extensively in the classic compiler construction textbooks (Aho 86).

15



Chapter 2. Background and Related Work

Data flow analyses can be classified as forward analyses or backward analyses. The
typical example of a forward data flow analysis is the reaching definitions analysis,
which determines for each basic block the variable definitions reaching its first
statement. The analysis is used for the determination of a definition-use (DU) chain,
which links a block defining a variable to all the blocks using it. The typical example
of a backward data flow analysis is the live variables analysis, which determines for
each basic block which variables are live after the last statement of the block. This
analysis has applications in the elimination of dead code.

The first efficient solution to a data flow analysis problem was proposed by Kildall
(Kildall 73) and is based on a fixed point iteration, solving a set of data flow equa-
tions for each basic block. The actual equations depend on the concrete data flow
analysis and the structure of the control flow graph, but as a general rule there are
two types of equations: equations which derive the exit information of a node from
its entry information, and equations which derive the entry information of a node
from the exit information of its predecessors.

In the classic literature, Kildall’s solution is called the Maximal Fixed Point (MFP) so-
lution, and although it is always easily computable, it is not always precise. A more
precise solution is the Meet Over all Paths (MOP) solution, which directly propa-
gates data flow information along the paths of the control flow graph, but as proven
by Kam and Ullman (Kam 77), this solution is not always computable. A detailed
theoretical presentation of both MFP and MOP solutions is covered by Nielson et al.
(Nielson 99).

2.2.2. Pointer Analysis

Pointer or points-to analysis is a type of static program analysis, concerned with
determining the set of possible variables (storage locations) a pointer or a reference
can point to, during the execution of a program. This set is called the points-to set
of the pointer.

Another analysis, which is strongly related to pointer analysis and is solvable using
the same techniques, is the so called alias analysis, which determines whether two
pointers may point to the same variable. Alias analysis can answer if two pointers
are unaliased, meaning that the two pointers can never point to the same variable,
may-aliased, meaning that there is at least one execution path on which the two
pointers point to the same variable, or must-aliased, meaning that the two pointers
must point to the same variable on every execution path.

16



2.2. Static Program Analysis

With the advent of object-oriented languages, encouraging the heavy use of dy-
namic memory allocation on the heap, the importance of pointer analysis increased
significantly, which is also reflected by the great attention it received in the last
decades, since its introduction by Weihl (Weihl 80).

The first scalable pointer analysis was introduced by Steensgaard (Steensgaard 96),
who proposes a context-insensitive equality-based solution, in which the points-to
sets of two pointers are either equal or disjoint. The approach creates equivalence
classes for pointers by repeatedly merging the points-to sets of aliased pointers and
making them point to the merged set. Steensgaard’s analysis can be implemented
in near-linear time, but it is rather imprecise.

A more precise but still context-insensitive pointer analysis was introduced by
Andersen (Andersen 94). Andersen’s analysis is called inclusion-based or subset-
based, because an assignment between two pointers results in the points-to set of
the R-value pointer to be included in the points-to set of the L-value pointer. De-
spite being more expensive than equality-based approaches, inclusion-based ap-
proaches are more popular because of their increased precision, which is why An-
dersen’s analysis was used as basis for hundreds of increasingly better pointer anal-
yses.

Flow-sensitive pointer analysis was first presented by Choi et al. (Choi 93), but their
analysis was context-insensitive. One of the earliest influential papers, describing
a flow-sensitive context-sensitive pointer analysis, was published by Emani et al.
(Emami 94). Milanova et al. (Milanova 02; Milanova 05) were the first to introduce
object-sensitivity, while Shridharan et al. (Sridharan 05) were the first to present a
demand-driven pointer analysis, which only calculates the points-to set for a single
user-specified pointer.

2.2.3. Static Program Slicing

Static program slicing is an important technique used in static program analysis
to determine an executable subset of the statements, which may affect or may be
affected by the computation at a given point, during the execution of a program.
This subset of statements is called a program slice, and it was first defined by Weiser
(Weiser 79; Weiser 84).

As suggested by the previous definition, it is possible to compute two types of pro-
gram slices: a backward slice, consisting of an executable set of statements, which
may affect the values of a set of variables at a given statement, and a forward slice,

17



Chapter 2. Background and Related Work

consisting of the set of statements, which may be affected by the variable defini-
tions at a given statement. The pair consisting of a statement and a set of variables
of interest is called a slicing criterion, and is used to define a program slice.

Initially, static program slicing was designed to support debugging of programs
(Weiser 82), but it was since used for various purposes, including testing, informa-
tion flow control, and software maintenance. There are literally hundreds of papers
dealing with static program slicing, which is why giving a complete overview of the
entire field is nearly impossible. Comprehensive surveys of program slicing tech-
niques were presented by Tip (Tip 95), Xu et al. (Xu 05) and Krinke (Krinke 03).

Program slicing is typically performed on system dependence graphs (Horwitz 88;
Horwitz 90), which are an extension of program dependence graphs supporting
multiple procedures. The program dependence graph is an intermediate program
representation, which “makes explicit both the data and control dependences for
each operation in a program” (Ferrante 87). Although program dependence graphs
were originally designed to support the implementation of various compiler opti-
mizations, they turned out to be a suitable data structure for static program slicing
(Ottenstein 84).

Gallagher et al. (Gallagher 06) present an improved version of program slicing,
called stop-list slicing, which extends the classic slicing criterion with a list of vari-
ables acting as termination points for the analysis, called the stop-list. The purpose
of this list is to enable a better control over the scope of the analysis, and thus allow
software engineers to focus on the computation of interest. The idea to use a stop-
list was also used in our bounded flow set extraction algorithm, discussed in chapter
5.3.3.

From the above-mentioned application fields of program slicing, we briefly discuss
information flow control, because of its relevance in the context of this thesis. Infor-
mation flow control is a technique for identifying security leaks in programs, which
may affect either the confidentiality of data or the integrity of certain computations
(Hammer 09a; Hammer 09b). Of particular interest is language-based information
flow control, which can answer whether there is a flow of information from a source
abstract location to a target abstract location. Information flow can either be ex-
plicit, resulting from direct value transfer, or implicit, resulting from conditional ex-
ecution.

As in the case of static program slicing, information flow control typically uses sys-
tem dependence graphs as internal representation (Hammer 09a; Hammer 09b),
but if the focus lies on data confidentiality alone, the analysis can also be performed

18



2.3. Traceability Analysis

on a flow graph, consisting of abstract locations and flow edges (Liu 08; Liu 09),
which is similar to our concern graph, discussed in chapter 4.

Despite this similarity, we do not regard information flow control approaches as
competition for our approach, because their goals are very different from ours.

2.3. Traceability Analysis

In software engineering, traceability refers to “the ability to trace between software
artefacts, generated and modified during the software life-cycle” (Bohner 96). These
artefacts are sometimes called software life-cycle objects (SLOs), and can represent
almost anything from a piece of requirement to a software component or a test case.

Although traceability analysis can also be used for other software engineering ac-
tivities, Bohner and Arnold (Bohner 96) regard traceability analysis as an important
part of change impact analysis, concerned with “examining the dependency rela-
tionships between all types of SLOs”, for the purpose of “identifying the potential
consequences of a change or estimating what needs to be modified to accomplish a
change”.

Traceability links can involve any type of SLOs, but because of its obvious impor-
tance to software verification and validation, traceability analysis involving require-
ments received a great deal of attention in the past decades. Gotel and Finkelstein
define requirements traceability as “the ability to describe and follow the life of a
requirement, in both a forward and a backward direction” (Gotel 94).

Being a part of requirements engineering, requirements traceability analysis
was extensively covered in many textbooks dealing with this topic (Wiegers 03;
Kotonya 98), and based on the direction in which the traceability links are traversed,
we distinguish between: forward traceability analysis, concerned with tracing a re-
quirement to the artefacts derived from it (design documents, code, test plans, etc.),
and backward traceability analysis, concerned with tracing a requirement to the
source (person, institution, law, argument, etc.) which produced the requirement
(Wieringa 95).

Traceability links can be represented in a number of ways, ranging from simple
textual cross-references inserted in a requirements document, to full-blown entity-
relationship models stored in relational databases. A very popular approach is to
use a traceability matrix, which is basically a large table capturing the traceability
links between two types of SLOs such as requirements and software components, or
requirements and test cases.

19



Chapter 2. Background and Related Work

Note that the two dimensions of this matrix need not necessarily be different. It is
entirely possible and quite common practice to create a traceability matrix, captur-
ing the traceability links between SLOs of the same type, such as the relationships
between requirements, or the relationships between software components. In such
cases, the traceability matrix can either be a connectivity matrix, capturing only di-
rect relationships, or a reachability matrix, capturing the transitive closure of the
direct traceability relationships.

The main difficulty faced by requirements traceability is the need to keep traceabil-
ity links always in sync with the changes in requirements and implementation. This
is rarely the case, because although there are many tools to support traceability
analysis, maintaining these links is still a largely manual effort, and it is not per-
ceived by developers and managers as being cost-effective (Gotel 94).

The above mentioned problem, combined with the fact that the granularity of SLOs
typically used in traceability analysis is too high to support program understanding,
constitutes the key motivator behind this thesis.

2.4. Concern Encapsulation

Concern encapsulation approaches try to circumvent the traceability problem be-
tween functional concerns and their implementations in code altogether, by provid-
ing the means to capture and encapsulate each concern separately. As pointed out
in section 1.1.1, because it is impossible to simultaneously encapsulate all concerns
using the typical object-oriented language constructs, some concerns end up hav-
ing a crosscutting implementation in object-oriented code. Given the fact that it is
particularly difficult to create and maintain traceability links between crosscutting
concerns and their respective implementations in code, most concern encapsula-
tion approaches explicitly target these concerns.

One of the most prominent such approaches is called Aspect Oriented Programming
(AOP), and was introduced by Kiczales et al. (Kiczales 97). AOP is “a programming
paradigm of the post-OOP era” (Hayes 03), which extends the Object Oriented Pro-
gramming (OOP) paradigm with new language constructs, called aspects, especially
designed to encapsulate crosscutting concerns.

Although AOP achieves a good encapsulation of homogeneous concerns, it often
does so at the expense of information hiding. A software system developed us-
ing AOP typically consists of an object-oriented core, implementing the main con-
cerns, and a number of aspects, implementing the crosscutting concerns. An as-
pect is basically a set of object-oriented code fragments together with the associated

20



2.4. Concern Encapsulation

rules to inject these fragments into the object-oriented core. With the exception of
the most trivial programming tasks, the specification of the injection rules requires
intimate knowledge about the object-oriented code, including its inner workings,
which makes aspect code fragile with respect to changes in the object-oriented core.
This non-uniform treatment of functional concerns severely limits the capability of
AOQOP to explicitly capture interactions between crosscutting concerns, thus seriously
hindering the maintainability and understandability of AOP code.

Recognizing this drawback, Rajan and Sullivan (Rajan 05) introduce a new language
construct, which they call classpect, intended to merge into a single unifying con-
cept both the characteristics of a class and those of an aspect. Unfortunately, this
unification was done only at the syntactic level and it resulted in a language con-
struct with poor information hiding capabilities, which essentially uses the same
fragment injection mechanism as AOP. As a result, the approach failed to achieve a
significant impact.

A very ambitious approach, concerned not only with the syntactic aspects of con-
cern encapsulation, but also with defining a true concern-oriented software engi-
neering was developed at IBM T. J. Watson Research Center (Ossher 99; Tar 99). The
approach is called Multi-Dimensional Separation of Concerns (MDSOC) and it al-
lows a separation and encapsulation of concerns over multiple simultaneous and
possibly overlapping dimensions. The implementation of a concern is captured by
a hypermodule, consisting of a set of object-oriented program fragments called hy-
perslices and a set of composition relationships between hyperslices. Given the fact
that the result of composing hyperslices is also a hyperslice, MDSOC allows a hier-
archic definition of concerns.

This approach is a generalization of Subject Oriented Programming (Harrison 93),
and was implemented in the Concern Manipulation Environment (CME)
(Harrison 04), an integrated environment for aspect-oriented software development
(AOSD). The CME supports the definition, encapsulation, extraction, and composi-
tion of concerns. It also offers concern identification support through an integrated
query-based search framework, called PUMA (Tarr 04).

Although the approach is quite ingenious and has a very powerful concern model, it
is limited by the capabilities of the composition language, which supports concern
composition only at the level of class members. As a result, its applicability to exist-
ing object-oriented systems, exhibiting tangling of concern implementations inside
method bodies, is rather limited.

Strongly related to AOP and MDSOC is the Feature Oriented Programming (FOP)
paradigm, which is a forward engineering methodology, supporting the develop-

21



Chapter 2. Background and Related Work

ment of software product lines. As defined by Clemens and Northrop (Clements 01),
a software product line (SPL) is “a set of software-intensive systems sharing a com-
mon, managed set of features that satisfy the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a
prescribed way”.

A feature is basically a functional concern, representing a clearly defined piece of
functionality of the application domain. The set of features shared by the members
of a software product line are obtained through a process called domain analysis,
whose outcome is a domain model that explicitly capture “the common and variable
properties of the systems in a domain, the semantics of the properties and domain
concepts, and the dependencies between the variable properties” (Czarnecki 00).
Within this domain model, features are represented using feature diagrams, captur-
ing not only the refinement of features, but also information about which combina-
tions of features are valid.

Features are implemented by reusable software assets, called feature modules,
which can be composed using declarative configuration languages, to produce a
concrete member of the software product line. The actual technique used for
the implementation and composition of feature modules depends on the cho-
sen FOP approach. For example, the first implementation of GenVoca (Batory 92)
used rudimentary C preprocessor directives, but was later replaced by mixin-layers
(Smaragdakis 99; Smaragdakis 02). Mixin-layers were also used in the Algebraic Hi-
erarchical Equations for Application Design (AHEAD) approach (Batory 03), which
is basically a generalization of the GenVoca approach.

Strongly related to FOP is Kuttruff’s approach (Kuttruff 09) for constructing software
product lines, through invasive composition of concern implementations. The ap-
proach defines an implementation-oriented concern and composition model, more
general than the mixin-based feature models of GenVoca and AHEAD, consisting of
a set of typed program fragments and an associated construction plan, specifying in
an algorithmic form the composition of these fragments.

The approach makes a very strict distinction between domain engineering (the en-
gineering of the product line) and application engineering (the engineering of a con-
crete member of the product line), and was designed with the expressed intent to
facilitate the latter. Towards that end, it defines a simple declarative configuration
language, which also supports the automatic detection of invalid configurations.

22



2.5. Concern Identification

2.5. Concern Identification

Concern identification is a relatively new but fervent research area. As defined in
section 2.1, it is aimed at finding the implementations of functional concerns in ex-
isting software systems. Concern identification has its origins in the concept assign-
ment problem (Biggerstaff 93), which is why the earliest approaches refer to it as
concept or feature location. After the appearance of AOP, a new subfield of concern
identification, called aspect mining, focusing on the identification of crosscutting
concerns, emerged from within this community.

Nowadays, concern identification reunites a large number of related approaches,
which can be classified based on: the information used for the identification, the
identification strategy, and the concern extraction technique.

Existing approaches use a wide range of information such as:

e Structural and cross-referencing information, including member contain-
ment, inheritance, method calls, and variable accesses.

e Semantic information, encoded in the identifiers of named program ele-
ments, or contained in code comments.

* Various metrics and heuristics, including coupling and cohesion metrics,
method call fan-in, and interface segregation.

* Dynamic information, typically in the form of execution traces.
We distinguish between two identification strategies:

* Decompositional strategy, designed to produce a decomposition of the soft-
ware system into concerns, meaning that it identifies all concerns at once. Ap-
proaches using this identification strategy typically require no user-specified
concern seeds and are fully automated, but they usually require more effort
for understanding the identified concerns.

¢ Goal-oriented search strategy, designed to identify specific concerns, one at
a time, starting from a set of concern seeds. The concern seeds can be either
manually specified by the software engineer or they can be suggested auto-
matically by a tool, based on some heuristics, and confirmed by the software
engineer.

Note that an approach using the goal-oriented search strategy can also simulate the
decompositional strategy, by skipping the confirmation step of the candidate con-
cern seeds.

23



Chapter 2. Background and Related Work

And finally, based on the concern extraction technique, concern identification ap-
proaches can be assigned to one of the following categories: manual identification,
pattern search, pattern recognition, clustering and formal concept analysis, clone
analysis, and static program analysis. The remainder of this section is structured
according to these categories, and contains in addition a subsection about compar-
ative studies of concern identification approaches.

2.5.1. Manual identification

Early work on concern identification had a strictly manual character, despite occa-
sional support from general purpose text processing tools such as the popular Unix
tool grep. Within this category we include all concern identification approaches,
where the user has to map each program element or set of program elements to a
concern manually. Manual approaches typically use a combination of structural,
cross-referencing and semantic information, and employ a goal-oriented search
strategy.

Chen and Rajlich (Chen 00) present a case study on feature location in a software de-
pendence graph, extracted from the source code of the NCSA Mosaic web browser.
The approach is based on the systematic manual exploration of the source code, de-
pendence graph, and documentation of the system, in order to decide if the inves-
tigated program elements should be included in the feature or not. The paper envi-
sions a scenario, where this activity is supported by an integrated tool, and identifies
concrete requirements for this tool.

One of the earliest mention of crosscutting concern identification is by Robillard and
Murphy (Robillard 99), who report on the successful migration of a static analysis
tool, called Jex, to Aspect], the flagship language of the AOP community. The paper
presents a number of identified aspects, but it does not describe the method used
for their identification. However, given the fact that AOP itself was only two years
old at the time, we assume it was an ad-hoc manual method.

A more systematic, but still manual concern identification method was presented
by Murphy et al. (Murphy 01), as part of an exploratory study on separating user-
relevant features in the source code of gnu.regexp and jFTPd, using three ap-
proaches for concern encapsulation: Aspect], Hyper/J, and a lightweight concern
separation method proposed by the authors. Although the main focus of the paper
is on comparing these three concern encapsulation approaches, the authors also
describe the method used for identifying the concerns, which is based on a manual
tagging of source code segments, using the Feature Selection Tool (Lai 99).

24



2.5. Concern Identification

A significant improvement in tool support was presented by Lai and Murphy
(Lai 02). The paper defines a methodology and a supporting tool for creating a be-
havioural model of a concern, with direct traceability links to the code. The ap-
proach is centered around the notion of conceptual module, representing a logical
unit, consisting of a collection of non-contiguous source code lines. The approach
was applied to manually construct a state transition model for jFTPd, an FTP server
implemented in Java.

One of the first large-scale experiments on refactoring members of an industrial
middleware product-line from IBM was conducted and documented by Colyer and
Clement (Colyer 04). The paper introduces the classification of crosscutting con-
cerns into homogeneous and heterogeneous, an presents an iterative refactoring pro-
cess, involving a gradual manual discovery of concern implementations. The exper-
iment gives valuable insights into the process of separating both homogeneous and
heterogeneous concerns, and provides first evidence that heterogeneous concerns
are much more difficult to identify and separate than homogeneous concerns.

Despite the fact that nowadays many different concern identification tools are avail-
able, manual identification is still used, because it can provide valuable reference
concern implementations, which can be used as an evaluation base line for differ-
ent concern identification approaches. Such is the case of a more recent paper by
Eaddy et al. (Eaddy 07), presenting a systematic methodology for identifying con-
cern implementations, and a suite of metrics for quantifying the crosscutting na-
ture of the source code. Concern identification is done manually, based on a set of
concern assignment guidelines, defined by the authors.

A general critique, which is a direct consequence of their lack of automation, and
applies to all approaches in this category, is that they are difficult to use on a large
scale. With one notable exception, all of the approaches discussed above have only
been applied to small software systems, having around 10 KLOC. Furthermore, be-
cause most of these approaches rely on a manual exploration and marking of code
fragments, they include only a rudimentary concern model, representing concerns
as sets of program elements arranged in a flat concern space. And although, this is
not a conceptual limitation of the entire category, all of the approaches discussed in
this section were based on such concern models, which are incapable of capturing
the relationships between functional concerns, described in section 3.1.

25



Chapter 2. Background and Related Work

2.5.2. Pattern search

Pattern search approaches employ a goal-oriented search identification strategy
and use primarily the semantic information encoded in the identifiers of named
program elements, which some of them complement with structural and cross-
referencing information.

One of the first automated concern identification approaches was presented by
Hannemann and Kiczales (Hannemann 01). The approach is supported by the As-
pect Mining Tool (AMT), which combines a textual search for a user-defined pattern
with the extraction of type usage information, to identify homogeneous crosscutting
concerns in existing object oriented code. The approach accepts queries based on
type usage and regular expressions, and identifies the matching source code lines.

Although this combination of techniques arguably produces better results than each
of them separately, it is still rather crude and its accuracy is not very good. The ap-
proach has a severely limited capability of expressing complex concerns, and basi-
cally regards them as flat sets of source code lines, which is why the applicability of
this approach on a large scale is very difficult.

Recognizing this difficulty, Zhang and Jacobsen (Zhang 03a; Zhang 03b) built an
extension of this tool, which they call the Extended Aspect Mining Tool (AMTEX),
and used it for a large-scale crosscutting concern identification experiment, involv-
ing several open implementation of the CORBA 2.0 standard: JacOrb, Orbacus and
OpenORB. The proposed extensions addressed the possibility to combine several
queries, and the addition of a simple type ranking feature based on usage frequency,
intended to support the software engineer in writing better type usage queries.

AMTEX was quickly replaced with an own development from Zhang and Jacobsen,
called PRISM (Zhang 03c; Zhang 04). Despite being newer and integrated in the
Eclipse framework, PRISM presents no significant improvements over AMTEX with
respect to concern identification. It supports a very similar search for user-defined
textual and type usage patterns, which the authors call fingerprints and produces a
result called a footprint consisting of a set of source code lines. As pointed out by the
authors themselves, the prerequisite for this approach is to have semantically rich
identifiers, reflecting domain concepts.

Based on the heuristic that the implementations of an interface in subclasses can,
under certain conditions, represent an aspect, Tonella and Ceccato (Tonella 04b)
propose an aspect mining and refactoring approach, which combines a textual pat-
tern search for interface names with a simple coupling metric. The approach specif-
ically looks for an interface, having a name that ends with the suffix “able” such as

26



2.5. Concern Identification

Serializable or Cloneable, and if the implementations of this interface have
both a low afferent and a low efferent coupling to the rest of their respective con-
taining classes, the interface together with its implementations is considered a can-
didate aspect.

The main weakness of this approach is that it can only be used for a small subset of
concerns, which match the above described pattern. Also, because it uses concrete
name patterns, its accuracy is in general not very good, and highly dependent on
interface naming conventions.

As pointed out in section 2.1, a homogeneous concern is characterized by the scat-
tering of very similar logic in many locations across the entire code base. As in the
case of the widely known Logging example, the scattered code of such a concern of-
ten takes the form of a single call to the same method. Exploiting this observation,
Marin et al. (Marin 04; Marin 07) present an interesting approach, which identifies
this invocation pattern based on the value of the fan-in metric of the target method.
The approach actually calculates the fan-in metric for all methods in a system, and
if the value of the fan-in metric for a given method exceeds a threshold, the method
in question is considered a candidate concern seed. Because the candidate seeds
can be reviewed and filtered manually, this approach can use both concern identifi-
cation strategies.

Although the idea is quite original, the approach is only able to identify simple ho-
mogeneous concerns or in some cases only fragments of such concerns. Another
weakness of the approach is that it provides no support for combining search pat-
terns, meaning that the identification of complex concerns requires manual effort.

In order to facilitate the identification, understanding, and refactoring of crosscut-
ting concern implementations Marin et al. (Marin 05; Marin 06) propose a classi-
fication of crosscutting concerns into sorts, which they describe using a fixed tem-
plate, similar to the one used by Gamma et al. (Gamma 95) to describe design pat-
terns. The template includes an informal textual description of a structural pattern,
representing the typical implementation of a concern of this sort in the Java lan-
guage, which is used as search pattern for the identification of crosscutting concerns
of this sort.

Although the approach based on concern sorts can be used to search for several dif-
ferent patterns, these patterns have the same complexity level as the typical invoca-
tion pattern of a homogeneous concern, meaning that the approach suffers from the
same weaknesses as the one using the fan-in metric. Furthermore, both approaches
use very simple concern models, incapable of expressing concern refinement and
overlap.

27



Chapter 2. Background and Related Work

An important step forward in pattern specification was achieved by Robillard and
Murphy (Robillard 02; Robillard 07), who propose a way to express complex search
patterns based on structural dependencies between program elements. When
matched against the source code of a software system, these patterns result in a
program fragment consisting of named program elements such as classes, meth-
ods, and fields, as well as different kinds of cross-references such as method calls,
variable reads and writes, and various type references. These patterns are speci-
fied in a tool called FEAT, and are captured in a structure, the authors call a concern
graph. Note that this structure has nothing to do with our concern graph, described
in chapter 4.

The above mentioned approach is very similar to the one presented by Kozaczynski
and Ning (Kozaczynski 94), who also used complex pattern search to identify con-
cepts in COBOL code. Kozaczynski and Ning define a hierarchic concept model,
which allows them to specify a recognition rule, called a plan, for a given concept
based on the set of contained subconcepts and a set of constraints, expressing struc-
tural and cross-referencing dependencies between these subconcepts.

Both approaches allow a very fine-grained specification of concern implementa-
tions, but they both use rather rudimentary concern models, incapable of express-
ing concern overlap. Furthermore, because the user-specified patterns are rather
large and refer directly to program elements in the source code, they are not reusable
for subsequent versions of the code base, making both approaches very difficult to
apply on a large scale.

A somewhat similar approach, suffering from the same weaknesses, was presented
by Janzen and De Volder (Janzen 03). They propose an interactive code exploration
approach, supported by a tool called JQuery. The tool is implemented as an Eclipse
plugin and incorporates an advanced query language, similar to Prolog, which can
be used to express search patterns related to structural, cross-referencing, and se-
mantic information. The results of the search are displayed in a tree structure, which
can be navigated and extended by additional queries.

As briefly mentioned in section 2.4, the Concern Manipulation Environment (CME)
also supports concern identification through its integrated query-based search
framework called PUMA (Tarr 04). Queries are expressed in a powerful query lan-
guage, called Panther, and can refer to both semantic information as well as struc-
tural and cross-referencing information.

Although the approach has a flexible hierarchic model behind it, this model and
implicitly the concern identification approach are limited by the capabilities of the
composition language, which supports concern composition only at the level of

28



2.5. Concern Identification

class members. As a result, the applicability of this approach to existing object-
oriented systems, exhibiting tangling of concern implementations inside method
bodies, is rather limited. Furthermore, as in the case of the two previous approaches,
the specified patterns tend to be very large and strongly coupled with the existing
source code, making them difficult to evolve, when the code changes.

Marcus and Maletic (Marcus 03) use an information retrieval technique called la-
tent semantic indexing (LSI) to calculate the similarity between documentation and
source code. Towards that end, the documentation is divided into so called external
documents, where each external document represents a section in the original doc-
umentation, and the source code into source code documents, where each source
code document represents a separate source file. LSI uses a term-document matrix,
where each unique term is represented by a row and each document by a column,
and determines the conceptual correlations between terms, given by their common
occurrence in similar contexts. Based on these correlations and the terms encoun-
tered in each document, the approach calculates a similarity metric between exter-
nal documents and source code documents, and if the value of this metric exceeds
a predefined threshold, a traceability link is created between the external document
and the source code document.

Technically speaking, this approach is not a concern identification approach, but
it can be used for concern identification, if the external documents contain tex-
tual concern descriptions, taken from the documentation of the analyzed system.
The main weakness of this approach is that the recovered traceability links are too
coarse-grained, and even if the granularity could be increased as the authors sug-
gest, the approach can only provide an approximate localization of concern imple-
mentations in code.

An interactive version of the above mentioned approach, suffering from the same
weaknesses, was proposed by Marcus et al. (Marcus 04) to calculate the similarity
between a user-specified query, expressed in natural language, and the source code
of a software system. The approach works much like a search engine and returns a
set of source code documents, with the property that the value of the similarity met-
ric between each such document and the user query exceeds a certain threshold. As
for the granularity of source code documents, the approach considers each function
to be a separate document, and all the remaining declaration blocks in each file as
an extra document.

Most of the approaches presented above rely on textual pattern search, which is why
their accuracy is in general not very good, and highly dependent on a consistent and
semantically rich naming scheme of the identifiers in the source code. Furthermore,

29



Chapter 2. Background and Related Work

because they rely on rather rudimentary concern models, none of them is able to ex-
press complex relationships between concerns, such as the ones discussed in sec-
tion 3.1.

2.5.3. Pattern recognition

Pattern recognition approaches often represent fully automated versions of similar
pattern search approaches, using decompositional identification strategies. These
approaches do not look for specific patterns, but rather try to find frequently re-
curring patterns in large data sets consisting of structural, semantic, or dynamic
information.

Shepherd et al. (Shepherd 05b) present an approach, based on a natural language
processing technique called lexical chaining, to identify crosscutting concerns in ex-
isting source code. Since lexical chaining computes the semantic distance between
words, based on a database of known relationships between words, the authors ap-
ply this technique to a filtered textual representation of the source code, containing
only class names, method names, filed names, and comments, in order to identify
semantically related sections of the source code.

The approach has a highly explorative nature and it can only be used to identify ini-
tial concern seeds. Its main weakness results from the inability of lexical chaining
to handle equivocal words, for which a prior word disambiguation is needed. But
because this often depends on the context, it may require human intervention. The
authors themselves recognize that although the approach seems promising, it re-
quires a significant manual effort to find the interesting lexical chains, which makes
it difficult to use on a large scale.

Breu and Krinke (Breu 03; Breu 04) presents a method for recognizing recurring
invocation patterns in program execution traces, based on textual matching of
method signatures at entries into and exits from method executions. And because
the recognized patterns represent basic building blocks for AOP aspects, the authors
call them accordingly. They distinguish between two kinds of patterns: outside-
aspects, representing sequences of consecutive method calls, and inside-aspects,
representing sequences of nested calls. The approach was implemented in the Dy-
namic Aspect Mining Tool (DynAMiT) and applied on various middle-sized case
studies.

A very similar but slightly improved approach for recognizing arbitrary invoca-
tion patterns in program execution traces was presented by Safyallah and Sartipi

30



2.5. Concern Identification

(Safyallah 06), who apply a data mining technique, called sequential pattern min-
ing, to recover features in the source code of the Unix drawing tool Xfig.

Antoniol and Guéhéneuc (Antoniol 05) propose a feature identification technique,
which relies on a scenario based probabilistic ranking of events, observed in an exe-
cution trace. The approach requires two sets of test cases: one exercising the feature
of interest and another not exercising it. By analyzing the execution traces obtained
for each test case, the approach calculates a relevance index for each event inter-
val, quantifying the probability that the considered event interval is relevant for the
feature.

As is the case with all approaches using execution traces, the above mentioned ap-
proaches are highly dependent on the quality of the test scenarios, used for the ex-
traction of the execution traces. Furthermore, the recognized patterns are often very
small and may represent only fragments of concern implementations at best. And
since the above mentioned approaches provide no suggestions on how to aggregate
such patterns, their usefulness is limited to simple homogeneous crosscutting con-
cerns.

An interesting approach, combining semantic and dynamic information to identify
features, was proposed by Poshyvanyk et al. (Poshyvanyk 06; Poshyvanyk 07a). The
approach not only combines two types of information, but it also combines two dif-
ferent techniques: a technique based on latent semantic indexing, similar to the one
presented by Marcus et al. (Marcus 04), and the previously mentioned technique for
scenario based probabilistic ranking of events in execution traces.

Since both techniques provide ranked facts about features, these rankings are
treated as the distinct opinions of two experts, and are combined using a weighted
sum, where each weight is the product of two factors: a normalization factor for the
ranking, and a coefficient representing the confidence level of the corresponding
expert.

Pattern recognition was also used by Breu and Zimmermann (Breu 06) to identify
crosscutting concerns based on version histories. The proposed approach works
by identifying insertions of method calls in each revision. It first identifies simple
aspect candidates, consisting of a single target method and the corresponding calls
to it, which are then combined into complex aspect candidates based on the locality
of the contained calls.

Because the approach combines two simple aspect candidates only if their sets of
call locations are identical, it is not very likely to identify complex aspect candidates,
consisting of more than a single pair of methods, such as the typical synchronization

31



Chapter 2. Background and Related Work

example, consisting of a method 1ock called upon entering a critical region of code,
and a method unlock called upon exiting the region.

The main weakness of the approach is that it is highly dependent on a very system-
atic programming style, with a rigorous versioning of the code. It assumes that the
implementation of a crosscutting concern changes over time, and that program-
mers work on a single concern at a time. Although plausible, these hypothesis can-
not be verified in any way, nor can such a practice be enforced. The approach re-
quires a complete version history, covering the entire implementation of a concern
from its first statement, and it only works if the primary object-oriented decom-
position remains unchanged. Furthermore, the approach is able to identify only
homogeneous concerns.

Another interesting approach was described by Robillard and Murphy
(Robillard 03), who propose to automatically infer the implementation of a
concern, based on a recorded log of program investigation activities. Although the
idea is very original, technically speaking the approach does not identify concerns.
It only records the source code locations visited by a human expert, when trying
to manually identify a concern implementation. Its main weakness is that the
recorded concern implementations unavoidably contain noise, thus reducing the
accuracy of this approach.

A general critique, which applies to all approaches in this category is that their ac-
curacy is not very good. The approaches based on textual pattern recognition are
highly dependent on the naming scheme of the identifiers, while the approaches
based on dynamic information are dependent on the quality of the test cases. And
because the recognized patterns are rather simple, the use of these approaches is
mostly limited to simple homogeneous concerns. Furthermore, the approaches in
this category typically lack an expressive concern model, capable of capturing con-
cern refinement and concern overlap.

2.5.4. Clustering and formal concept analysis

This subsection describes several decompositional concern identification ap-
proaches, which produce as result a set of clusters of related program elements.
The category includes approaches based on clustering (Hartigan 75), but also ap-
proaches based on formal concept analysis (FCA) (Ganter 99), which can be re-
garded as a form of clustering in a bipartite graph, called the formal context, con-
sisting of a set of objects, a set of attributes of these objects, and a set of edges, each
connecting an object with an attribute. FCA identifies a family of concepts, each

32



2.5. Concern Identification

consisting of a maximal subset of the objects and a subset of the attributes, repre-
senting the set of all shared attributes of the objects in the first subset. The identified
family of concepts represents a lattice, called the concept lattice.

Maletic and Marcus (Maletic 00; Maletic 01) present an approach, based on cluster-
ing, for identifying concepts in a program. They use latent semantic indexing to cal-
culate a semantic similarity between source code documents, representing in this
case function bodies. The set of source code documents and the computed seman-
tic similarities between them are then represented as a weighted graph, where the
weight of each edge represents the semantic similarity between the source code doc-
uments represented by the connected nodes, and a minimal spanning tree (MST)
algorithm is used to cluster these source code documents. The MST algorithm is
one of the simplest iterative clustering algorithms, which starts with an initial set
of clusters, each containing a single source document, and in each iteration it joins
two clusters if these clusters have an inter-cluster edge between them, whose weight
exceeds a given threshold.

A very similar approach for recovering architectural concepts was presented by van
der Spek et al. (van der Spek 08). The approach uses a complete-link hierarchical
clustering algorithm to cluster methods, based on the semantic similarity between
identifiers, calculated using latent semantic indexing.

Latent semantic indexing was also used by Poshyvanyk and Marcus
(Poshyvanyk 07b) for locating concepts in source code. The approach is remarkably
similar to the one presented by Maletic and Marcus (Maletic 00; Maletic 01), but
instead of using normal clustering, it uses formal concept analysis, capable of also
recovering an intentional description for each identified cluster. The approach
uses a formal context, where objects are represented by the program elements, and
attributes are represented by the terms obtained from the latent semantic indexing.

The main weakness of these approaches is that they can only provide an approxi-
mate localization of concern implementations in code, depending on the granular-
ity of the considered source code documents. And since this granularity is chosen
in such a way that a source code document is a function / method body, these ap-
proaches are unable to distinguish crosscutting concerns tangled within the same
function / method. Furthermore, being based on the semantic information encoded
in identifiers and comments, their accuracy depends on the quality of this informa-
tion.

Semantic information encoded in identifiers was also used by Tourwé and Mens
(Tourwé 04) to mine aspectual views in existing source code. As defined by the au-
thors of this paper, an aspectual view is a set of structurally related named source

33



Chapter 2. Background and Related Work

code entities such as classes, methods, formal parameters, and fields. The approach
splits identifiers into distinct words, based on the Java naming conventions (Inc. 97),
and applies formal concept analysis to the set of named source code entities, us-
ing the individual words making up the identifiers as attributes. The result of the
analysis is a set of natural clusters of source code entities, each cluster representing
an aspectual view, semantically characterized by a common set of words.

Note that the source code entities in an aspectual view do not represent the com-
plete implementation of an aspect, but rather a set of concern seeds, which can be
used to identify an aspect candidate. The accuracy of the approach is not very good
and highly dependent on the quality of identifier names. Furthermore, because the
approach splits identifier names based on the Java naming conventions, its accuracy
also depends on the rigorous application of these conventions.

Tonella and Ceccato (Tonella 04a) apply formal concept analysis (FCA) to program
execution traces in order to mine candidate aspects in the source code. The execu-
tion traces are generated for a set of test scenarios, which exercise the main func-
tionalities of the analyzed software system, using an instrumented version of the
code base. The approach uses a formal context consisting of scenarios as objects
and called class methods as attributes, and identifies potential aspect candidates in
the resulting concept lattice, based on the scattering and tangling of methods with
respect to the use cases. Concretely, the approach considers as a potential aspect
candidate each concept labelled by methods from different classes, which in turn
contain other methods that label other concepts.

Avery similar approach was introduced by Eisenbarth et al. (Eisenbarth 01), and en-
hanced in subsequent papers (Eisenbarth 03; Koschke 05), presenting an approach,
capable of refining the results obtained through the formal concept analysis of ex-
ecution traces, by using a subsequent analysis of the static cross-referencing de-
pendencies between computational units. A computational unit can be specified
at various levels of granularity, including: basic blocks, methods, classes, compila-
tion units, components, or subsystems. As opposed to the approach of Tonella and
Ceccato, this approach does not assume a one-to-one correspondence between fea-
tures and test scenarios, thus being able to use test scenarios, which exercise more
than one feature at a time.

As is the case with all approaches using dynamic information, the approaches de-
scribed above are highly dependent on the quality of the test cases used to extract
the execution traces. And although the last approach we discussed tries to compen-
sate for this weakness, by introducing a subsequent static dependency analysis step,
this step can only provide a limited refinement of the initial results obtained from

34



2.5. Concern Identification

the execution traces.

A general critique, which applies to all approaches from this category is that they
typically operate at a higher granularity level, and are not able to precisely pinpoint
the implementation of a concern in source code. Most of them are only able to point
at code blocks such as a method body, containing parts of this implementation, thus
preventing them to distinguish between crosscutting concerns tangled within the
same method body.

Another important critique is that these approaches lack expressive concern mod-
els, capable to capture complex relationships between concerns. And even though
FCA is capable of identifying a family of concepts organized in a lattice, which po-
tentially could be used to recover a hierarchic decomposition of overlapping con-
cerns, the above mentioned approaches do not exploit this information, and only
extract a flat decomposition of disjoint concerns. As for the approaches based on
clustering, they are by definition unable to recover overlapping concerns.

2.5.5. Clone analysis

Clone analysis is a type of static code analysis, aimed at finding identical or nearly
identical sections of source code, occurring within the code base of a single software
system or a set of software systems, maintained by the same entity. Clone analysis
is performed using a myriad of techniques, based on comparing textual represen-
tations, tokens, abstract syntax trees (AST), and even program dependence graphs
(PDG). Although the primary application domain of clone analysis is not concern
identification, several clone analysis approaches were used for the identification
of homogeneous concerns. The approaches discussed below use semantic, struc-
tural and cross-referencing information, and employ decompositional identifica-
tion strategies.

Bruntink et al. (Bruntink 04; Bruntink 05) apply three clone analysis techniques:
one token-based, one AST-based and one PDG-based, to identify crosscutting con-
cerns in an industrial application written in C. In order to evaluate the suitability
of these techniques, the authors calculate the recall and precision values for each
of the five crosscutting concerns considered, based on a set of reference concerns,
annotated manually in the code. The evaluation shows that each of the techniques
has its strengths and weaknesses, even though the PDG-based technique performs
slightly better on average.

Clone analysis was used by Shepherd et al. (Shepherd 04) for aspect mining. The
approach is very similar to the one presented above, although it concentrates more

35



Chapter 2. Background and Related Work

on the identification of AOP-style before aspects. It is supported by a tool called
Ophir, which uses an initial PDG-based clone analysis technique, to identify poten-
tially similar methods, followed by an AST-based clone analysis for the comparison
at statement level. The combination of these two techniques makes the approach
capable of identifying clones, using different variable names, exhibiting a different
ordering of the statements, or containing intermingled statements. In order to im-
prove its accuracy, this approach was later combined with the previously discussed
approach from Marin et al. based on the fan-in metric, using the Timna framework
(Shepherd 05a).

A general critique, which applies to all approaches based on clone analysis is that
they can only be used for homogeneous concerns. Furthermore, these approaches
do not identify complete concern implementations, but rather only fragments of
these implementations. And because they lack an expressive concern model, they
are unable to recover the complex relationships between concerns, described in sec-
tion 3.1.

2.5.6. Static program analysis

Concern identification approaches based on static program analysis rely on struc-
tural and cross-referencing information, and typically employ a goal-oriented
search strategy, which means that they require a set of concern seeds as input.

One of the earliest approaches in this category is an interesting extension of program
slicing with application to software maintenance, presented by Gallagher and Lyle
(Gallagher 91). They introduce the decomposition slice, which captures “all compu-
tation on a given variable” and not just the statements affecting or affected by the
computation at a given statement. A decomposition slice is basically a union of all
the program slices computable for a given variable. According to the authors, a de-
composition slice represents a manageable piece of code, which can be studied and
modified in isolation, without being influenced by, and without influencing other
decomposition slices.

The approach is somewhat similar to our flow sets extraction, discussed in section
5.3.3, but it mostly concentrates on the technical aspects of extracting such slices.
The approach can only identify flat decomposition slices, with no data dependen-
cies between them. As we discuss in section 3.1, this is not the typical case of func-
tional concern implementations. Furthermore, because the approach is based on
slicing and thus it aims to recover executable code fragments, the identified decom-

36



2.5. Concern Identification

position slices tend to be much larger than the actual implementations of the func-
tional concerns, making the approach difficult to apply to real software systems.

Another interesting approach, trying to unify concept location with program slicing,
was presented by Harman et al. (Harman 02; Gold 05). The authors use a concept
location approach called Hypothesis-Based Concept Assignment, to determine an
initial set of statements related to a concept, based on the semantic information
contained in identifiers and comments. This initial set is then augmented using
backward program slicing to an executable concept slice, which represents the im-
plementation of the concept in code. The approach is similar to ours, because it
performs this slicing on the variables representing the results of the initial statement
set, but it only supports procedural programming languages such as COBOL.

This approach basically suffers from the same weaknesses as the previous one. Exe-
cutable concept slices are flat sets of statements and tend to be much larger than the
actual implementation of the concept, which is why they are difficult to extract and
to understand. Furthermore, because the approach relies on semantic information
encoded in variable names and comments, its accuracy is highly dependent on the
quality of this information.

Program slicing was also used by Ishio et al. (Ishio 07) for locating functional con-
cerns in object oriented code. The approach uses as slicing criteria all the nodes in
the program dependence graphs, constructed for a manually specified set of seed
methods, and determines the union of all backward and forward slices, calculated
for this criteria. What is interesting about this approach is that it uses a heuris-
tic to limit the size of the identified slice, which works by skipping the slicing of a
method, if the length of the shortest realizable path between this method and any
seed method in the PDG is greater than a predefined distance threshold, or if the
value of a similarity metric between this method and all seed methods is smaller
than a predefined similarity threshold. The similarity metric between methods is
defined based on the heuristic that similar methods refer to similar classes, meth-
ods and fields.

In order to evaluate the accuracy of the approach, the authors calculate the recall
and precision values for each of the six functional concerns they consider, based on
two sets of manually identified concern implementations. As shown in the paper,
the accuracy of the approach is not very good, and the approach does not work for
concern implementations tangled within the same method.

Krinke (Krinke 06) mines control flow graphs for recurring invocation patterns, rep-
resenting basic building blocks of AOP aspects. This approach is strongly related to
the previously discussed approach by Breu and Krinke (Breu 04), which identifies

37



Chapter 2. Background and Related Work

the same kind of invocation pattern in execution traces. The approach is supported
by a tool implemented using the Soof framework, which was used to identify aspect
candidates in the JHotDraw case study.

As pointed out by the author himself, the method is not very useful in practice, be-
cause most of the patterns it detects represent simple method delegations, which
do not constitute suitable aspect candidates. Furthermore, because the approach
gives no suggestions on how to aggregate such patterns, its usefulness is limited to
trivial homogeneous crosscutting concerns.

Another interesting approach for mining crosscutting concerns, based on random
walks in coupling graphs, is presented by Zhang and Jacobsen (Zhang07). As
suggested by its name, a coupling graph captures the usual structural and cross-
referencing dependencies between program elements. The approach was designed
to simulate the manual investigation of the coupling graph by a software engi-
neer, having absolutely no semantic knowledge about the system, and it was im-
plemented in a tool called the Prism Aspect Miner (PAM), which is the successor of
the previously mentioned PRISM tool.

The main weakness of this approach is that the obtained results are very difficult to
interpret, because they are void of any semantic information. And because the ap-
proach uses a wide range of structural and cross-referencing dependencies, includ-
ing containment, its accuracy is poor, especially in the case of crosscutting concerns
tangled within the same method.

A general critique, which applies to the approaches in this category, is that they are
difficult to apply on a large scale, primarily because the presentation of the iden-
tified concerns is too large and too fine-grained to support their understanding.
Furthermore, these approaches lack expressive concern models, capable to capture
complex relationships between concerns, such as concern refinement and concern
overlap.

2.5.7. Comparative studies

This subsection presents a summary of the conclusions reached by several indepen-
dent studies, intended to compare different concern identification approaches.

One of the earliest comparative studies between concern identification approaches
was done by Wilde et al. (Wilde 03). The study compares three approaches, when
locating two features in legacy Fortran code. The first approach, called software

38



2.5. Concern Identification

reconnaissance, uses dynamic information recorded in execution traces, and iden-
tifies feature implementations based on comparing the traces obtained with and
without the feature. The approach was found to be relatively quick, because it ef-
fectively focuses the analysis on a small portion of the code, but it is only usable,
if the execution of the considered feature can be controlled by the input data. The
second approach is the manual exploration of program dependence graphs, pre-
sented by Chen and Rajlich (Chen 00), which the authors of the study found to be
very useful in understanding the investigated features, but also more difficult and
time-consuming to use, due to its manual nature.

Both of these approaches were successful in identifying both of the considered con-
cerns. However, this was not the case, of the third approach, which is based on a
textual search for keywords using the grep tool. Despite being very quick, this last
approach was found to be unreliable, and highly dependent on textual clues in the
source code.

The results of the previous study were extended by a more comprehensive com-
parative study, conducted by Marcus et al. (Marcus 05). This study covers two of
the above mentioned approaches, and instead of the software reconnaissance ap-
proach, it considers a previously discussed approach based on latent semantic in-
dexing (Marcus 04). The main conclusion of the study is that, although the manual
exploration of dependence graphs is most effective in focusing the identification ef-
fort, itis not always enough, and that especially in the case of crosscutting concerns,
concern identification approaches based on textual pattern search can provide use-
ful information.

Another conclusion of the study was that none of the investigated approaches is able
to recover complete concern implementations, but rather they point to the relevant
sections in the code. Summarizing the strengths and weaknesses of each approach,
the authors noted that both the grep-based and the LSI-based approaches depend
heavily on the developer’s knowledge about the system and the problem domain,
even though the LSI-based approach supports more flexible queries. The authors
also noted that a mistake in the manual exploration of the program dependence
graph can lead to “costly backtracks in the search”.

A similar study, using a similar setup, was conducted by Ceccato et al. (Ceccato 05).
The paper reports on a comparison between three different aspect mining tech-
niques, applied to the JHotDraw open-source case study. The first one is the pre-
viously discussed approach, using the call fan-in metric to identify candidate aspect
seeds (Marin 04). The other two approaches, covered in the study, have also been
discussed above and are based on formal concept analysis of identifiers (Tourwé 04)

39



Chapter 2. Background and Related Work

and of execution traces (Tonella 04a). The study shows that the first approach and
the one using execution traces produce largely complementary results, whereas the
one using identifiers is especially useful in the initial identification of concern seeds.
These observations lead the authors to the conclusion, that a combined approach
could produce a better coverage than each of them alone.

The conclusion was validated in a subsequent study (Ceccato 06), which extended
the scope of the previous one to include several combinations of the above men-
tioned three aspect mining approaches. The combined approaches always lead to
better coverage, although in many cases this also meant a drop in the accuracy of the
identification. In case of one of the four concerns considered in the study, this accu-
racy drop was drastic, suggesting that the combination of approaches is not always
beneficial.

The same aspect mining approaches were also compared independently by Roy et
al. in a more comprehensive study (Roy 07) on four case studies. The paper confirms
the findings of the previous studies by Ceccato et al. (Ceccato 05; Ceccato 06), in-
cluding the uncertainty regarding the usefulness of combining the approaches, but
it also points out that all three aspect mining approaches require significant manual
effort to use.

Mens et al. (Mens 08a) present a different kind of comparison between approaches.
The paper makes a comprehensive and critical survey of aspect mining approaches,
compiles a list of the shortcomings affecting these approaches, and identifies some
of the root causes for these shortcomings. Among the identified shortcomings, the
paper mentions: poor precision and recall of the obtained results, subjectivity in
result interpretation, poor scalability due to manual effort, lack of solid empirical
validations, and difficulty in comparing results. As root causes of these shortcom-
ings, the study identifies: the use of inappropriate mining techniques, the lack of a
precise definition of what constitutes an aspect, and the inadequate representation
of the results.

An interesting observation of the study is that all aspect mining approaches lack a
solid semantic foundation and are biased towards AOP-style syntactic definitions of
crosscutting concerns, which basically confirms one of our frequently mentioned
critiques, namely the lack of an expressive concern model, capable of expressing
concerns from the problem domain and the typical relations between them.

40



2.6. Conclusions

2.6. Conclusions

The previous sections presented a critical overview of the existing concern identi-
fication approaches, pointing out their strengths but mostly their weaknesses. The
discussed approaches have been grouped into six categories, based on the concern
extraction technique they use, because we discovered that the approaches in a given
category tend to share the same set of weaknesses, each of which traceable back to
one of the criteria defined in section 1.2.

Table 2.1 presents a condensed assessment of these categories, based on their com-
pliance with the above mentioned criteria. Note that in case of the accuracy crite-
rion, most categories have a neutral value. However, this does not mean that all the
discussed approaches have the same accuracy for all types of concerns. Many of
them in fact exhibit decent accuracies, when it comes to the specific types of con-
cerns they target, but since they assume different concern definitions, the only pos-
sibility to compare them was to consider the more general definition, introduced in
section 2.1. Also note that none of the categories comply with the expressiveness
criterion, which is a fact also reported by Mens et al. (Mens 08a).

Our own concern identification approach fits in the static program analysis cate-
gory, but given the fact that it is based on the Hierarchic Concern Model, discussed
in chapter 3, it complies with the expressiveness criterion. Furthermore, in order
to mitigate the lack of scalability, typically characterizing static program analysis
techniques, our approach uses a data-oriented abstract representation of the code,
which leads to a more compact representation of concern implementations, suit-
able to support program understanding.

Approach category Assessment criteria
Expr. | Acc. | Prac. | Scal. | Auto.

Manual identification 0 + + - -
Pattern search 0 0 + 0 +
Pattern recognition - 0 + + 0
Clustering and FCA - 0 + + +
Clone analysis - 0 + 0 +
Static program analysis 0 0 + - +

Table 2.1: Condensed assessment of concern identification approaches

41






Chapter 3.

Hierarchic Concern Model

In this chapter we introduce the Hierarchic Concern Model, which is used in our
approach to capture functional concerns and establish direct traceability links be-
tween them and their corresponding implementations in object-oriented code. The
model was designed to allow an accurate representation of the concern space, as
defined at the requirements level, supporting concern refinement, concern overlap,
and data dependencies between concerns.

Section 3.1 discusses these characteristics, using a typical Persistency concern as an
example, while section 3.2 introduces the Hierarchic Concern Model, and provides
formal definitions for the main concepts used in the model.

3.1. Anatomy of a Concern

Because concerns are in essence functional requirements, they create a functional
decomposition of a system across multiple dimensions. And because this multi-
dimensional decomposition space must be mapped to the single-dimensional
space supported by object-oriented languages, the implementations of several con-
cerns end up being crosscutting, and thus hindering program understanding.

As pointed out in section 2.4, the implementations of certain crosscutting concerns,
specifically homogeneous concerns, are relatively easy to capture using AOP lan-
guage constructs. But, these constructs introduce an artificial distinction between
encapsulated and crosscutting concerns, which only makes program understanding
harder.

Our model treats all concerns equally, but because the advantage of having direct
traceability links between a concern and its implementation in code is greater in the
case of a crosscutting concern, we focused our argument on crosscutting concerns.

43



Chapter 3. Hierarchic Concern Model

PIOA : (INAINOO|qBI0]S : MP)BIIM+

PIOA : (INAINOS|QRIN]S : MP)BILIM+
PIOA : (Induja|qeln)s : Jp)pedl+

PIOA : (INdINO9|qRIN]S : MP)BILIM+
PIOA : (Induja|qeln)s : Jp)peal+

PIOA : (Induja|qelols : Jp)peal+ i : ybiay-
Bums : xa)- L yipim-
uolj}dauuoHaul] ainbi4xa )| ainbi4ajbueloay

Q1L Q1

AV

ainbi4pus+

L

PIOA : (INAINOS|qRIN]S : MP)BILIM+
PIOA : (Induja|qeln)s : Jp)pesl+
PIOA : (Jui : Ap“ul : Xp)Aganow+

ainbijuels+

9|qelns : ()s|geloiSpesl+
Bus : ()buyspeas+

Wi (upess+

(1 : Jos)onaLyol+

10)08 A : dey-

jndujajqelo}s

i A-
i x-

ainbiqf)oensqy

AV

PIOA : (INAINOS|QRIN]S : MP)BILIM+
PIOA : (Indujo|qeln)s : Jp)pesi+

PIOA : (8]BIO)S : 1S)9|qeI0)}SOMIM+
pioA : (Buys : s)bulySaluM+

PIOA : (JUI : IIU[S}IM+

i : (91qelos :1s)dew+

9|qelols
«@0BUBUI»

10108\ : dejny-

Indinoa|qelols

Figure 3.1: Design of typical Persistency concern

44



3.1. Anatomy of a Concern

3.1.1. ARunning Example

Let us consider as an example a Persistency concern for a class hierarchy of geo-
metric figures.! As suggested by its name, the Persistency concern is responsible for
storing and loading F'i gure objects in different persistent formats. The concern is
delimited by the persisted data and the persistence media, each of which represent-
ing both inputs and outputs of the concern, depending on the considered operation
(loading or storing).

Figure 3.1 shows a typical design. The interface Storable, residing at the root of
the class hierarchy, defines the read and write operations. The read operation is
responsible for reading object-specific data from a St orableInput object, while
the write operation is responsible for writing the same object-specific data to a
StorableOutput object. These operations are implemented by all the classes of
the Figure class hierarchy as shown in listing 3.1.

Listing 3.1: Implementation of a typical Persistency concern

public class StorableInput {
private Vector fMap;
public Storable retrieve (int ref) {
return (Storable)fMap.get (ref);
}
public Storable readStorable() {
Storable st;

© o N U W N -

st.read(this);
if (!fMap.contains(st)) {
fMap.add(st) ;
}
return st;
}

T
= W NN = o

}
public class StorableOutput {
private Vector fMap;
public int map(Storable st) {
return fMap.indexOf (st);
}
public void writeStorable (Storable st) {
st.write (this);
if (!fMap.contains(st)) {
fMap.add(st) ;

DN DN N DN e e e e e
= W D= O © e NN o ua

1The example was adapted from the JHotDraw case study presented in chapter 6.

45



Chapter 3. Hierarchic Concern Model

25 }

26 }

27 }

28 public abstract class AbstractFigure implements Storable {
29 private int x,y;

30 public void moveBy (int dx, int dy) {
31 X += dx;

32 y += dy;

33 }

34 public void read(StorableInput dr) {
35 x = dr.readInt();

36 y = dr.readInt ();

37 }

38 public void write (StorableOutput dw) {
39 dw.writelInt (x);

40 dw.writeInt (y);

41 }

42 }

43 public class RectangleFigure extends AbstractFigure {
44 private int width, height;

45 public void read(StorablelInput dr) {
46 super.read(dr) ;

47 width = dr.readInt();

48 height = dr.readInt();

49 }

50 public void write (StorableOutput dw) {
51 super.write (dw) ;

52 dw.writelInt (width) ;

53 dw.writeInt (height);

54 }
55 }
56 public class TextFigure extends AbstractFigure {

57 private String text;

58 public void read(StorableInput dr) {

59 super.read(dr) ;

60 text = dr.readString();

61 }

62 public void write (StorableOutput dw) {

63 super.write (dw) ;

64 dw.writeString (text);

65 }

66 }

67 public class LineConnection extends AbstractFigure {
68 private AbstractFigure startFigure, endFigure;
69 public void read(StorablelInput dr) {

70 super.read(dr) ;

71 startFigure = dr.retrieve (dr.readInt ());

72 endFigure = dr.retrieve (dr.readInt());

73 }

74 public void write (StorableOutput dw) {

75 super.write (dw) ;

76 dw.writeInt (dw.map (startFigure));

46



3.1. Anatomy of a Concern

77 dw.writeInt (dw.map (endFigure));
78 }
79 }

The actual persistency medium is defined in the StorableInput and
StorableOutput classes, and isolated from the Figure class hierarchy by
means of type-specific read and write operations. The readInt and
writeInt operationsimplement the de-serialization and serialization of primitive
values of type int, while readString and writeString implement the same
functionality for values of type java.lang.String.

The implementations of the read and write operations in AbstractFigure,
RectangleFigure, and TextFigure are straightforward, because they just use
of the above mentioned type-specific operations to read and write their respective
attributes.

Somewhat more interesting are the implementations of the read and write oper-
ations in LineConnection, because they only read and write the position index
values of the objects referenced by startFigure and endFigure in the fMap
vectors. The reason for doing so is to avoid the multiple serialization of the same
Figure object, when serializing an entire drawing consisting of several figures and
connections between these figures. The fMap vectors are used to store the already
serialized or de-serialized Figure objects, and the map and ret rieve methods
are used to translate between Figure objects and their corresponding position in-
dex values.

Although rather simple, the example is large enough to exhibit all the characteristics
of a complex crosscutting concern.

3.1.2. Concern refinement

The Persistency concern can be refined into two disjoint subconcerns: the Reader
subconcern handling the de-serialization of Storable objects, and the Writer
subconcern handling the serialization of St orable objects.

These two subconcerns can in turn be refined into even smaller subconcerns,
handling the de-serialization and serialization of specific types such as int or
java.lang.String. In our example, we have the following subconcerns:
IntReader, StringReader, IntWriter, and StringWriter, whose implementations are

47



Chapter 3. Hierarchic Concern Model

Persistency

Writer

Reader

[StringReader] [ IntReader ][ IntWriter ] [StringWriter]

Figure 3.2: Refinement of the Persistency concern

encapsulated in the readInt, readString, writeInt, and writeString
methods. This refinement of the Persistency concern is depicted in figure 3.2, using
solid-line arrows pointing at the subconcerns.

For our simple example, this level of refinement may seem excessive, but when we
consider alternative persistency media and formats, it no longer seems unreason-
able. The refinement process can of course continue even further, until the result-
ing subconcerns are manageable in terms of size and complexity. The number of
levels of this refinement hierarchy is flexible and depends purely on the developer’s
judgement.

3.1.3. Concern overlap

At first glance the refinement presented above seems reasonable and straightfor-
ward, but it is not the only refinement possible. Depending on the specific devel-
opment or maintenance task, the developer may want to focus on the serialization
and de-serialization of references to Figure objects, so to capture this function-
ality, he might define a new subconcern of the Persistency concern, which he calls
Reference.

The implementation of the Reference concern contains two fMap vectors and uses
the position index values of the actual F i gure objects, designated by startFig-
ure and endFigure, in these vectors as references for the serialization and de-
serialization of LineConnection objects.

48



3.1. Anatomy of a Concern

Persistency

Reference

[StringReader] [ IntReader ][ IntWriter ] [StringWriter]

Figure 3.3: Overlapping refinements of the Persistency concern

The Reference concern overlaps with both the Reader and Writer concerns, be-
cause it handles the de-serialization and serialization of Figure references. Since
these references are in fact primitive values of type int, their de-serialization, rep-
resented by the previously mentioned IntReader concern, constitutes a shared sub-
concern of both Reference and Reader.

Similarly the serialization of primitive values of type int, represented by the previ-
ously mentioned IntWriter concern, constitutes a shared subconcern of both Ref-
erence and Writer.

Figure 3.3 depicts the two overlapping concern refinements, using solid-line arrows
pointing at the subconcerns. Given the fact that a concern can have several overlap-
ping refinements, the concern refinement hierarchy is not a tree, but rather a direct
acyclic graph.

3.1.4. Data dependencies between concerns

The actual data persisted by the Persistency concern has often nothing to do with
the Persistency concern itself. Instead, it is defined as part of some other functional
concern and is only used in the Persistency concern, thus creating a dependency
between the defining concern and the Persistency concern.

In order to show data dependencies between concerns, we included in our exam-
ple a part of the implementation of the FigurePosition concern, which handles the

49



Chapter 3. Hierarchic Concern Model

IntReader [ >[ FigurePosition ] """"""" IntWriter

Figure 3.4: Data dependencies between concerns

spatial positioning of Figure objects in a two-dimensional Cartesian space. The
implementation of this concern consists of the x and y attributes of Abstract-
Figure, and the moveBy method.

The attributes x and y are passed as arguments to method writeInt, thus creating
a data dependency between the FigurePosition concern and the IntWriter concern.
Similarly, the return value of method readInt is assigned to both attributes, thus
creating a data dependency between IntReader and FigurePosition. These data de-
pendencies are depicted in figure 3.4, using dotted-line arrows.

Note that it is possible to have data dependencies between a concern and its sub-
concerns. Also, if there is a data dependency between a concern and a subconcern
of another concern, then there is a data dependency between the two top-level con-
cerns too.

3.2. Data-Oriented Abstraction

Software systems in general can be described in terms of the inputs they use and
the outputs they produce. While the inputs can be optional, the outputs of a system
are never optional. A software system with no outputs is completely useless because
executing it has no effect on its environment. The same is also true for any part of the
system. If we consider the functionality represented by a functional requirement, if
it has no outputs it has no influence on the outputs of the system. This means that
the functionality is completely useless and so is the functional requirement itself.

Based on the above observation, we can define the functionality represented by any
concern based on the outputs it produces. In other words, a concern basically rep-
resents the functionality needed to produce its outputs.

The Hierarchic Concern Model follows the typical hierarchic system decomposition
(Goos 97), and describes concerns recursively as gray-boxes, in terms of the sub-
concerns they contain, the inputs they use, and the outputs they produce. A sub-
concern is also a concern in its own right, exhibiting the same characteristics as any

50



3.2. Data-Oriented Abstraction

other top-level concern. A top-level concern is a concern, which resides at the top
of its refinement hierarchy, meaning that it is not itself a subconcern of some other
concern.

In order to define the inputs and outputs of a concern more precisely, first we have
to introduce the notion of observable.

Definition 1 (Observable). An observable is defined as a measurable property of the
system state, which can be observed directly, independent of other observables.

Every observable has a value, which, in case of a software system, is either an in-
put of the system itself or the result of an internal computation. Note that copying
the value of an observable or transforming its value into a different representation
form, creates a new observable, because its value may change independently of the
original observable.

Definition 2 (Concern outputs). The outputs of a concern constitute the subset of the
observables produced by the concern, which are either outputs of the software system
itself or are used internally by another concern.

As a result of this definition, the observables produced by a concern and used by
one of its subconcerns are also outputs of the concern in question.

Definition 3 (Concern inputs). The inputs of a concern are observables, which are
not produced within the concern but are used to produce its outputs.

3.2.1. Flow Relations

In order to formally define the notion of concern, first we have to introduce a few
basic concepts. Let X be a software system and Q be the set of all observables of X.

Definition 4 (Flow relation). Let a, € Q be two observables. The flow relation ~~c
Q xQ is a binary endorelation over Q), written « ~»  and read “a flows to ’, denoting
that the value of observable B is derived from the value of observable .

The flow relation is transitive, meaning that:

Va,f,yeQ : a~L AP~y

> awy

51



Chapter 3. Hierarchic Concern Model

The above definition does not exclude the possibility to derive the value of an ob-
servable f from several unrelated observables, meaning that for «, 8,y € Q the fol-
lowing condition may be satisfied:

(@~PAy~p AN (a~yVy~a)

Note that a flow relation between a and 3, does not say anything about how the
value of f3 is derived from a. It just means that if the value of @ changed, this would
possibly lead to a change in the value of §, or, in other words, the value of @ may
influences the value of . Because this influence can be either direct or indirect, we
introduce two additional relations to capture direct and indirect flow.

Definition 5 (Direct flow relation). Let «, f € Q be two observables. The direct flow
relation —c Q x Q is a binary endorelation over Q, written « — 3 and read “a flows
directly to B, meaning that the value of B is derived from the value of a, without the
involvement of an intermediate observable.

Depending on the nature of the influence we distinguish several types of direct flow
relations grouped in three categories: dataflow relations, inheritance relations, and
direct dependency relations. Each of these types is a subset of the direct flow relation
defined above, and will be presented in detail in section 4.2.

The indirect flow relation can be defined in a similar way.

Definition 6 (Indirect flow relation). Let a, 8 € Q be two observables. The indirect
flow relation --+< Q x Q is a binary endorelation over Q), written a --+ 3 and read
“a flows indirectly to ', meaning that the value of § is derived from the value of «,
through at least one intermediate observable.

This can be written formally as follows:
a--+pf <<= “(a—p)
A yeQ:a—=yAy~p

Note that the above formal definition is equivalent to

a--+pf <= a~pA-(a—p)

52



3.2. Data-Oriented Abstraction

which means that the indirect flow relation is in fact the set difference of the flow
and the direct flow relations. Formally, this can be written as follows:

So far, we have shown that the indirect flow relation can be determined based on the
flow and direct flow relations. However, as the following lemma shows, the flow and
direct flow relations are also not independent of each other.

Lemma 1. The flow relation ~~c Q x Q is the transitive closure of the direct flow re-
lation - Q x Q.

Proof. In order to prove this lemma, we need to show that ~~= 0, where O is the
transitive closure of —.

Let a, B € Q be two observables, such that « — . Based on the definitions of the
flow and direct flow relations, we also have a ~~ 3, meaning that —c~~. Because O
is the transitive closure of —, © is also the intersection of all transitive endorelations
over (), containing —. This means that any transitive endorelation containing —,
also contains ©. Given the fact that —c~~ and ~~ is by definition transitive, we have
O c~.

Let a,f € Q be two observables, such that a ~» . This means that
Ay, 72, Yn € Qn=2,sothata =y A yn=0 AN Yy;—7vis1, forl <i<n.
Given the fact that —c ©, we also have (y;,y;+1) € 9, for 1 <i < n. And because 0 is
transitive, we also have («, ) € ©. So if @ ~~ 8, we have (a, f) € ©, which means that
~C 0.

If we combine this last result with the fact that ® c~-», we can conclude that ~»=
0. O

3.2.2. Concern Definition

As we have already mentioned before, a concern is defined at the requirements level
and represents the functionality needed to produce its outputs. Based on the defi-
nition of the flow relation, we can now also give a formal definition of a concern.

53



Chapter 3. Hierarchic Concern Model

Let C be the set of all concernsin Z, ¢ € C a concern, and Q. the set of all observables
of c.

Definition 7 (Concern). A concernc isatuple (¢¢,S¢, ®c, ¥ ¢), where
e /. is alabel denoting the name of the concern,
* S¢ c C is the set of contained subconcerns,
o ®. c Q. is the set of inputs used by c, and
e V. c Q. is the set of outputs produced by c.
The sets S¢, ¢, and ¥ . must fulfill the following properties:

* no unnecessary inputs

Vaed, , 3Ipe¥Y.:a~p

¢ subconcerns have no additional inputs

V(lc,Sc,Pc, o) €C,
V(fC/,SC/,CDC/,\I’C/) €S,
Ve®y , Jaed ,u¥::a~p

¢ subconcern outputs flow to the containing concern outputs

V(lc,Sc,Pc,¥Ye) €C,
V(fCI,SCI,(DC/,“PC/)ESC,
VaeVYy , 3Ape¥Ye:a~p

3.2.3. Traceability Function

Because concerns are ultimately defined in terms of their subconcerns, inputs and
outputs, defining traceability between a concern ¢ and its implementation in code
amounts to defining a mapping between the observables of ¢ and the program ele-
ments of its implementation.

Because observables represent quantifiable properties of the system state, whose
values can be directly measured, they are represented at the implementation level
by variables. The term variable is used here with a broader meaning to denote the
following.

54



3.2. Data-Oriented Abstraction

Definition 8 (Variable). A variable is a distinct storage location, used in the imple-
mentation of a concern.

Variables can be either implicitly or explicitly defined in the code, and can be either
named or unnamed. They include: fields, local variables, formal parameters, excep-
tion parameters, return value variables, object context variables, and object creation
variables. An exception parameter is the parameter defined in a catch clause, receiv-
ing the caught exception object. A return value variable represents the temporary
storage location, holding the return value of a method. An object context variable is
a variable defined implicitly within the scope of every instance member, receiving
the object on which the member was accessed. This variable is usually accessible
using a keyword of the language, such as the reserved name this in case of the
Java programming language. And finally, an object creation variable is represents a
temporary location receiving the result of applying the object creation operator.

Note that the above definition refers to the runtime representation of the imple-
mentation. It implies that a non-static field of a class represents several different
variables, one for each created instance of that class. The same is also true for all
variables defined inside a method. Because these variables are allocated on the
stack frame constructed for each method call, they are distinct for every method
call.

However, in order to define traceability between concerns and their implementation
in source code, we need to map the runtime notion of variable to the static notion
of abstract location (Andersen 94).

Definition 9 (Abstract location). An abstract location is a statically distinguishable
storage location, used in the implementation of a concern.

In the context of the previous definition “statically distinguishable” means that each
such storage location has a distinct definition in code. In case of an implicitly de-
fined abstract location, this definition is represented by the definition of its enclos-
ing program element (method or class).

If we compare this definition with that of a variable, we can immediately see that an
abstract location represents all the variables defined at a given location in code. For
example, this means that a non-static field of a class will be represented by a single
abstract location, regardless of the number of created instances of that particular
class. The same is true for all variables defined inside a method, whether they are
implicitly or explicitly defined. Concretely, we will have a single abstract location
representing the same formal parameter in all method calls, a single abstract loca-
tion representing the return value variables, a single abstract location representing

55



Chapter 3. Hierarchic Concern Model

the object context pseudo-variables, and so on. Also, we represent all object in-
stances created at the same location in code with a single abstract location, meaning
that we have an abstract location for each distinct appearance of the new operator.

Let V be the set of all abstract locations used in the implementation of the soft-
ware system X. Note that V includes all abstract locations directly referenced in
the source code, including directly referenced abstract locations defined in library
code, but not abstract locations used only internally within the implementation of
the library. For example, if a library method is called in the implementation of Z, the
abstract locations corresponding to the object context variable, formal parameter
and return value variable of this library method are included in V, but the abstract
locations corresponding to the local variables used inside the library method are
not.

We can extend the definitions of the flow relations to the set V as given below. The
direct flow relation between abstract locations —c V x V is a binary endorelation
over V, defined based on the direct flow relation between observables, as follows.
If there is a direct flow relation between two observables, then there is a direct flow
relation between their corresponding abstract locations. The flow relation between
abstract locations ~~c V x V and the indirect flow relation between abstract loca-
tions --+»c V x V are defined in the same way as their counterpart relations between
observables. Thus, the flow relation is the transitive closure of the direct flow rela-
tion, and the indirect flow relation is the set difference of the flow and the direct flow
relations.

Based on these definitions it is trivial to show thatif a, § € Q2 are two observables and
u, v € V are their corresponding abstract locations, then we have:

a—pf = u—v
a--+f = u--»v

a~pf = u~v

Note that we did not use the equivalency sign between the above predicates, be-
cause a direct flow relation from a source abstract locations to a target abstract loca-
tion does not mean that there is a direct flow relation from all variables represented
by the source abstract location to all variables represented by the target abstract lo-
cation. As a result, working with abstract locations instead of variables when iden-
tifying concern extents may lead to a loss of precision due to mixing different call

56



3.2. Data-Oriented Abstraction

or object contexts, if appropriate measures are not taken to avoid this. In order to
illustrate this situation, let us consider the example in listing 3.2.

Listing 3.2: Abstract locations mixing call contexts

class Combinatorics {
int fact (int n) {
if (n <= 1)
return 1;
else
return n * /% (1+/fact (n-1);
}
int perm(int n, int k) {
return /x*(2x/fact (n) / /*(3*%/fact(n - k);
}
int comb (int n, int k) {
return /+(4x/fact(n) / /*(5+/(fact (k) * /x(6+/fact (n-k));
}
void main () {
int nl =5, n2 = 7;
int k1 = 3, k2 = 4;
int ril /*(7+/perm(nl, k1);
int r2 = /#(8+/comb (n2, k2);

© ® N O gk W N =

N e e O e e
S © ® NG W N = O
—
—
Il

Note that because the code in listing 3.2 contains several calls to method
fact (int), both the formal parameter and the return value of this method have
several corresponding variables, one for each call site. And since the abstract loca-
tions representing these variables are unique, we have several direct flow relations
to the abstract location representing the formal parameter of method fact () and
several direct flow relations from the abstract location representing the return value
variable of the same method.

A graphical representation of the direct flow relations between abstract locations in
the code is shown in figure 3.5. The convention used to label the abstract locations
in the figure will be explained in detail in section 4.1.

Although the code in listing 3.2 clearly contains two separate computations of
perm(n, k) and comb (n, k), using two disjoint sets of variables, using abstract
locations hides this fact. Based on the direct flow relations depicted in figure 3.5,

57



Chapter 3. Hierarchic Concern Model

{L}main().r1:int

T

{R}perm(int,int).return:int
A

{L}main().n1:int {L}main().k1:int

A A

{P}perm(int,int).n:int {P}perm(int,int).k:int

by

{P}fact(int).n:int
A A

{R}fact(int).return:int

\ 4

{P}comb(int,int).n:int {P}comb(int,int).k:int

{ f

{L}main().n2:int {L}main().k2:int

\ 4
{R}comb(int,int).return:int

\ 4
{L}main().r2:int

Figure 3.5: Examples of direct flow relations between abstract locations

we can conclude that there is an indirect flow relation between the abstract location
representing the local variable n1 and the local variable r2 of method main, when
in fact there is no such indirect flow relation between the corresponding variables.

This loss of precision is due to the fact that the abstract locations representing the
formal parameter and the return value variable of method fact (int) group to-
gether variables corresponding to different call contexts. In order to avoid this loss
of precision, the abstract locations involved in a direct flow relation must be quali-
fied with the call and object contexts used for that particular flow relation.

Note that an abstract location qualified by a call or an object context usually repre-
sents a smaller number of variables than the original abstract location.

In our example, if we qualify the abstract location representing the formal param-

58



3.2. Data-Oriented Abstraction

eter of method fact (int), with the call context (» corresponding to the call site
prefixed with the comment / x (2* / inlisting 3.2, we restrict the set of variables rep-
resented by the abstract location to the set of formal parameters created as a result
of the first call to fact (int) from method perm (int, int). In our example,
this set contains a single variable, because the method perm (int, int) iscalled
only once, but in the general case, the set will contain several different variables.

Note that a qualified abstract location can be further qualified with an additional
call or object context, restricting the set of variables represented by it even further.

For example, the abstract location representing the formal parameter of method
fact (int), qualified with the call context (2, can be further qualified with the call
context (7, to restrict the set of represented variables to a single variable created for
a call stack containing the call contexts (7 and (2.

Definition 10 (Access path). An access path is a sequence of one or more call and
object contexts, qualifying an abstract location.

An abstract location is said to be fully qualified by an access path, when it represents
a single variable. In this case, the access path is called an absolute access path. If
an abstract location qualified by an access path represents more than one variable,
the abstract location is said to be partially qualified, and the access path is called a
relative access path.

In our example the formal parameter of method fact (int) is fully qualified by
the access path (7(2, meaning that this access path is an absolute access path.

We are now ready to define the traceability function.
Definition 11 (Traceability function). The traceability function is a function T : QO —

V, which associates to every observable of the system its corresponding abstract loca-
tion in the source code.

Given the fact that for each abstract location v € V there is a corresponding observ-
able a € Q, we can deduce that the traceability function T is surjective, and thus a
graph homomorphism from Q to V, meaning that:

Va,eQ , a~pf=>T(a)~ TP
Because the inputs and outputs of a concern c € C are observables, they each have

a corresponding abstract location in V., where V; c V is the set of all abstract loca-
tions used in the implementation of c.

59



Chapter 3. Hierarchic Concern Model

Definition 12 (Information source). An information source for the implementation
of concernc = (¢,S¢,®¢, VY ¢) is an abstract location u € V., for which

daed, : u=T(a)

An information source is basically an abstract location storing an input value used
in the implementation of a concern. Let I be the set of all information sources of
the implementation of concern c. Then, we have

IC = T(q)c)

Definition 13 (Information sink). An information sink for the implementation of
concernc = (¢,S¢,®¢, ¥ ¢) is an abstract location v € V;, for which

ABeV¥Y, : v=T(P)

In other words, an information sink is an abstract location storing an output value
produced by the implementation of a concern. Let O, be the set of all information
sinks of the implementation of concern c. Then, we have

O, = T(¥,).

Given the fact that a concern represents the functionality needed to produce its out-
puts, we can intuitively define the set V; as the set of all abstract locations flowing
to at least one of the information sinks of the concern, without first flowing to an
information source of the same concern. A formal definition of V; will be given in
section 5.3.2, after introducing the notion of flow path.

3.2.4. Abstract Representation in Code

Each concern definition from the requirements level can be represented at the im-
plementation level through a concern intent, defining what the concern is supposed
to do at the implementation level, and for each such concern intent, there is a cor-
responding implementation in code, called a concern extent, describing how the
intent is implemented.

60



3.2. Data-Oriented Abstraction

Originally introduced by Marin et al. (Marin 07), the terms concern intent and con-
cern extent have already been defined informally in section 2.1, but this section
provides formal definitions for them, within the context of our Hierarchic Concern
Model.

Definition 14 (Concern intent). The intent of concern c € C is the tuple cint —

4,S¢,1¢,0¢), where
* /¢ isa label denoting the name of c,
* S is the set of subconcerns of c,
* [ is the set of information sources of the implementation of ¢, and

* O¢ is the set of information sinks of the implementation of c.

Note that a concern intent is basically the image of a concern definition in code
through the traceability function T, and as a result, the sets I, and O satisfy the
same properties as the sets ., and ¥ in definition 7.

Because current mainstream programming languages do not provide mechanisms
to explicitly record concern intents, this information, although available at devel-
opment time, is lost and has to be recovered over and over again for every software
evolution task.

The concern intent specification language presented in section 5.2.1 eliminates this
problem, because it allows concern intents to be recorded in a persistent form.

Ideally, concern intents should be specified by their respective developers at devel-
opment time, but for legacy systems they can also be specified during the software
evolution phase by someone trying to discover and understand concern implemen-
tations.

The extent of a concern can be defined in several ways, depending on the abstrac-
tion level used to describe the implementation of a concern. One alternative is to
define it as the list of all program elements used in the implementation of a con-
cern, but this definition sometimes results in very large concern extents, which are
hard to follow and understand. Given the fact that our Hierarchic Concern Model is
intended to facilitate software understanding, we adopt the following, more abstract

definition of a concern extent.
Definition 15 (Concern extent). The extent of concern c € C is the tuple c®*! =
(Ve,~¢), where

* V. c V is the set of all abstract locations used in the implementation of ¢, and

61



Chapter 3. Hierarchic Concern Model

* ~~ IS the restriction of the flow relation ~~ to V.

Note that the identification of a concern extent c®*! corresponding to a given con-

cernintent ¢!’ amounts to determining the set V; and the restricted binary relation
~> ¢, starting from the sets I and O, of the concern intent.

Definition 16 (Concern skeleton). The concern skeleton of a concern c € C is the
tuple (c'?, c®*1),

Based on this definition, the concern skeleton is a data-oriented abstract represen-
tation of a concern in the code.

62



Chapter 4.

Concern Graph

This chapter introduces the concern graph, a directed multigraph structure used
to represent direct flow relations between abstract locations. The concern graph is
primarily used for the automated identification of concern extents, but its graphical
representation can also be used as a visual aid in understanding concern implemen-
tations as well as the data dependencies between them.

Section 4.1 gives a formal definition of the central notion of concern graph. Section
4.2 discusses the different types of direct flow relations and exemplifies their extrac-
tion from Java source code. Section 4.3 deals with concern tangling at the class level
and presents a heuristic method to detect and separate superimposed class roles.
And, finally, section 4.4 deals with capturing flow relations passing through library
code.

4.1. Concern Graph Definition

Before introducing the concern graph, we first need to define some basic concepts.

Let Ay be an alphabet consisting of letters (both uppercase and lowercase), digits,
and the symbols ‘_, ‘(; ), ‘{;, 1, 9, <, and . And let Ly be a language over the
alphabet Ay defined as shown below:

Ly = {{-kind(v)-Y -name)-‘:’-type(v)|veV}

where

e Visthe set of all abstract locations defined in the implementation of software
system 2,

63



Chapter 4. Concern Graph

e kind(v) is a letter encoding the kind of the abstract location v, as shown in
table 4.1,

e name(v) is the qualified unique name of the abstract location, and

e type(v) is the fully qualified name of the data type of v.

| Abstract location kind | Encoding |

class field ‘F
formal parameter ‘P’
object context ‘o
return value ‘R’
local value ‘T
exception parameter ‘E’
object creation T’

Table 4.1: Encoding of abstract location kinds

The qualified unique name of the abstract location is defined as the simple name
of the abstract location prefixed with the qualified unique name of the entity con-
taining it. Class fields are prefixed with the fully qualified name of the containing
class, and abstract locations defined inside a method are prefixed with the fully qual-
ified name of the class containing the method, and the signature of the contain-
ing method. For unnamed abstract locations representing return values of meth-
ods, we use the short name return, and for object context abstract locations, we
use the short name this. For object creation abstract locations we use the short
name new__x, where x is the order number of the new operator within its containing
method or class. Note that in case of the Java programming language, the symbols
return, this, and new are reserved keywords, so they cannot serve as names for
any named abstract location. As a result, the short names used for the unnamed
abstract locations cannot clash with the names of other abstract locations.

The - operator in the definition of Ly is the simple word concatenation operator.

Let V° c V be the set of all abstract locations having a non-primitive data type, and
let A 4 be an alphabet defined as follows:

Ay = {etul(Il<sisnu{)|l<isn

U {‘<o’10eVAUu{>,"l0eV?%

64



4.1. Concern Graph Definition

where n is the number of call sites found in the implementation of software system
2.

Definition 17 (Concern graph). The concern graph is a directed multigraph G =
(V,A,s,t,Ly,La, by, o) with uniquely labelled arcs between each pair of vertices,
where

* the set of vertices V is the set of all abstract locations defined in a software sys-
tem?Zz,

* A is a multiset of ordered pairs of vertices (u, v) called arcs, satisfying the con-
dition (u,v1)e A < u—v,

e s5,t: A— V are two functions indicating the source and target vertex of an arc,

* Ly is the above defined language, whose words are used as labels for the vertices
of the concern graph,

* L4 is a language over alphabet A 4, defined in section 4.1.1, and whose words
are used as labels for the arcs of the concern graph,

e /v :V — Ly is afunction associating a unique label from Ly to every vertex in
G, and

* {5:A— Ly isafunction associating a label from L 4 to every arc in G.

In the context of the previous definition “uniquely labelled arcs between each pair
of vertices” means that the concern graph may contain several arcs between the
same source and target vertices, provided that these arcs are labelled differently, or
in formal terms:

Vaj,ape A:ar #Zax = Calar) #¥€alar)

Because we have an exclusively static view on the implementation of the system,
we rely on the labels of the arcs in the concern graph to record the call and object
contexts of the abstract locations involved in a direct flow relation.

Concern graphs are extracted from source code, and throughout this chapter we
present several examples, the first one being shown in figure 4.1. The depicted con-
cern graph corresponds to the code in listing 4.1.

When analyzing source code, it is desirable to do this in a modular fashion (one
subsystem at a time) and compose the intermediate results. In our case this means
that we need a way to compose concern graphs. Towards this end, we define the
union of concern graphs as follows:

65



Chapter 4. Concern Graph

Definition 18. The union of two concern graphs Gy =
(V1, A1, s1, 81, Ly, Lay, €y, € ay) and Gy = (Vo, Az, s2,t2, Ly, La,, by, € ay), With
disjoint multisets of arcs, is the concern graph G1 UGy = (V, A,s,t,Ly,La, ¢y, ¢ 4),
where:

V = WViuW

A = Ai1UA»
, _ si(a) ,ael
S:A—-V ,s(a) = {sz(a) ac Ay
) f1(a) ,a€A;
t:A—-V, t(a) {tz(a) ac Ay

LV = LV1ULV2

Ly = LA1ULA2

OV =Ly, y) { by() ven

€V2(U) ’VEVZ_VI

l 4, (a) ac A
Ca:A—Ly, lala 1 ’
A 4> Lala) { Ca,(@ ,ae€Ay
Note that this union is different from the disjoint union of graphs, because the sets
V1 and V> are not treated as disjoint sets, and as a result the occurrence of an abstract
location v in both sets will not result in having two copies of this abstract location
in G; UGo.

In the above definition we consider only concern graphs with disjoint arc multisets,
because two concern graphs constructed for two disjoint parts of the source code
will always have disjoint arc multisets.

4.1.1. Tracking Call and Object Contexts

As already mentioned briefly in section 4.1, the labels of the arcs in the concern
graph are used to record the call and object contexts of the abstract locations in-
volved in a direct flow relation. These labels represent words in a language L 4 over
the alphabet A 4, defined in the same section. The alphabet A 4 contains five types
of symbols, having the following semantic:

e The symbol (;, read “enter call context”, shows that the target of a direct flow
relation is either a formal parameter or an object context abstract location,

66



4.1. Concern Graph Definition

and that the direct flow from the source abstract location occurred at call site
number i. Should this method call be removed from the code, the direct flow
relation would also have to be removed. Note that every call site in the an-
alyzed source code has a unique number, enabling us to perform a context
sensitive extraction of concern extents as described in section 5.3.1.

e The symbol );, read “exit call context”, shows that the source of a direct flow
relation is a return value abstract location, and that the direct flow to the tar-
get abstract location occurred at call site number i. Should this method call
be removed from the code, the direct flow relation would also have to be re-
moved.

e The symbol <, read “enter object context”, shows that the target of a direct
flow relation is a non-static field, accessed using the object context 0. Note
that the o used as index in the above symbol is a unique identifier of the ab-
stract location representing the object context. This ensures there is no am-
biguity when recording the actual object context. Although in many object-
oriented languages, including Java, the non-static fields of an object may be
accessed directly from inside a non-static method without an explicit object
context, this is just a shorthand for accessing these fields using the object con-
text abstract location this of the non-static method. In the concern graph,
we record this information explicitly and use the <;j;; symbol in the labels
of the corresponding arcs, where this is a unique identifier of the abstract
location representing the object context.

e The symbol >,, read “exit object context”, shows that the source of a direct
flow relation is a non-static field, accessed using the object context o, where,
as in the case of the “enter object context” symbol, o is a unique identifier
of the abstract location representing the object context. In case an implicit
object context is used, we record this information using the >;;;, symbol,
where this is, as explained above, a unique identifier of the abstract location
representing the object context.

e The symbol e, read “empty context”, can be used for both source and target
abstractlocations and it shows that the access to the abstract location in ques-
tion has no call or object context.

The language L 4, used to label the arcs of the concern graph, is the concatenation
of the languages L'}" and Lf’q”t defined as follows:

Ll = {eJul('I1sisnul<e’loeV?*

67



Chapter 4. Concern Graph

LY = {etu{)Ilsisnul>, loeVy*
_ out yin
La = Ly Ly

where - is the word concatenation operator and + is the Kleene plus operator.

If we take a closer look at the definition of L 4, we notice that each arc label is com-
posed by concatenating two words. The first word captures the call or object con-
text of the source abstract location, while the second word captures the call or ob-
ject context of the target abstract location. Note that, because the type of captured
context information depends on the type of the abstract location involved, the cor-
responding label either records a call context or an object context. Because the call
context information uniquely identifies a call site in the code, and because a single
call site always uses the same object context, there is never a need to record both.
Note that the object context of an abstract location can actually be a sequence of
object context symbols, one for each element of the access path.

The context of the source abstract location can be either the “exit call context” sym-
bol ); or a sequence of one or more “exit object context” symbols >, if the direct
flow relation “exits” a call or an object context, or the “empty context” e otherwise.
Similarly, the context of the target abstract location can be either the “enter call con-
text” symbol ); or a sequence of one or more “enter object context” symbols >, if
the direct flow relation “enters” a call or an object context, or the “empty context” e
otherwise.

Note that in case of a direct flow relation between two fields of the same class or
classes of the same hierarchy, it may happen that both the source and the target
are accessed using the same object context. In this case instead of recording an
“exit object context” and an “enter object context” for the same abstract location
representing the accessed object, the arc of the concern graph will be labelled with
a double “empty context” ee, meaning that the object context of the source abstract
location is the same as the object context of the target abstract location.

4.1.2. Dealing with Reference Types

As we have seen above, a direct flow relation between two abstract locations means
that the value of the source abstract location is used directly to derive the value of the

68



4.1. Concern Graph Definition

target abstract location. If both the source and target abstract locations have sim-
ple data types, capturing the direct flow relation between them is straight-forward.
If however, the abstract locations involved in a direct flow relation have reference
types, capturing this relation requires a special handling, to distinguish between a
relation at the reference level and a relation at the referenced object level.

Because in many object-oriented languages such as Java, array types are also refer-
ence types, this distinction also applies to direct flow relations between array refer-
ences and direct flow relations between array elements. And given the fact that when
accessing an array element, it is not generally possible, using purely static analysis
methods, to precisely identify the referenced element, changing the value of such
an element is considered to change the values of all the elements of that particular
array, which is why we represent all the elements of an array using a single abstract
location, having as its type the base type of the array. This abstract location is then
treated as a non-static internal field of the array type, meaning that we rely on the
object context tracking, described in section 4.1.1, to avoid mixing multiple array
object contexts. The reason for modelling arrays as mentioned above is to enable
our approach to cope with situations similar to the one from the example presented
in listing 4.1.

Listing 4.1: Examples of direct flow relations between arrays

1 int 1 = 10, val = 20;
2 int[] a = new int[20];
3 int[] b = a;

4 b(i] = val;

5 int res = a[l0];

The example involves the definition of two array references a and b. The assignment
in line 3 has the effect that both a and b refer to the same array object. If we take
a closer look at the assignments in lines 4 and 5, we notice that a value is written
to the array object using b as array reference, and the same value is read using a as
array reference. Note that there is no direct flow from b to a at the array reference
level, but because the direct flow relations involving array elements are handled like
non-static fields, the indirect flow relation between val and res can be correctly
captured as shown by figure 4.1. The figure shows the direct flow relations both at

69



Chapter 4. Concern Graph

{L}val:int
A e<b
{F}int[].data:int
>new_1e >ae
A 4 \ 4
{T}.new_1:int[] {L}res:int
{L}a:int[] > {L}b:int[]

Figure 4.1: Concern graph capturing direct flow relations between arrays

the array reference level and at the level of array elements.

4.2, Direct Flow Relations

As already mentioned above, we consider several types of direct flow relations, de-
pending on the nature of the influence between the source abstract location and the
target abstract location. Given the fact that direct flow relations between abstract lo-
cations are extracted based on a conservative static analysis of the code, they may
in fact represent only potential direct flow relations.

In order to have a uniform structure of the presentation, enabling an easy access to
the information, we present each relation type using the following fixed template:

Definition: This paragraph defines the relation type in abstract terms at the intent
level, and if necessary provides an intuitive justification for its introduction.

Extraction from code: This paragraph deals with the particularities of extracting
this relation type from object-oriented code. In order to keep the presentation suc-
cinct, we focus our discussion on the Java language, as a typical object-oriented lan-
guage, but this does not mean that our approach is only applicable to Java.

Examples: This paragraph shows a typical code example and discusses the corre-
sponding concern subgraph, containing only the relation type in question.

70



4.2. Direct Flow Relations

4.2.1. Dataflow Relations

Dataflow relations represent a category of direct flow relation types, used to capture
direct value transfer between a source abstract location and a target abstract loca-
tion. A typical object-oriented language supports the following types of direct value
transfer: assigning a value to an abstract location, passing an argument to a method,
passing an object context to a method, returning a value from a method, and throw-
ing / catching an exception. For each of these types, a separate dataflow relation has
been defined, which we present below using the previously defined fixed template.

In order to illustrate the different types of dataflow relations, let us consider the ex-
ample in listing 4.2. The example was chosen carefully to contain all dataflow rela-

tions, and it will be used during the presentation of each such relation to illustrate
its manifestation at the code level.

Listing 4.2: Examples of dataflow relations

public class Complex {

1
2 private double r;

3 private double i;

4 public Complex (double rVal, double ival) {
5 r = rVal;

6 i = ival;

7 }

8 public Complex div (Complex c) throws DivisionByZeroException {
9 double mod = c.r*c.r + c.i*c.i;

10 if (mod == 0) {

11 throw new DivisionByZeroException () ;
12 }

13 double rRes = (r*c.r + ixc.1i) / mod;

14 double iRes = (i*c.r — rxc.i) / mod;

15 return new Complex (rRes, iRes);

16 }

17 public static wvoid main() {

18 try {

19 Complex a = new Complex(1l,2);

20 Complex b = new Complex(3,4);

21 Complex d = a.div (b);

22 } catch (DivisionByZeroException ex) {

23 }
24 }
25 }

71



Chapter 4. Concern Graph

Simple assignment

Definition: The simple assignment relation represents an assignment between a
source abstract location and a target abstract location. The direction of the relation
is given by the direction of the value transfer.

Extraction from code: At the code level, the simple assignment relation is a relation
between an abstract location referenced in the R-value of an assignment statement
and its L-value. If the R-value of an assignment references more than one abstract
location, we have several simple assignment relations, one for each of the referenced
abstract locations. Because we are only interested to track value transfer between
abstract locations, constant literals used in R-values are ignored.

Examples: The assignment statements in lines 5, 6, 9, 13, 14, 19, 20, and 21 of listing
4.2 resulted in the simple assignment relations shown in figure 4.2, which depicts a
subgraph of the concern graph. Note that the assignment statements in lines 13 and
14 have complex expressions as R-values, referencing more than one abstract loca-
tion. As already pointed out, these statements resulted in several simple assignment
relations.

Because listing 4.2 contains only a single class definition, in order to improve the
readability of the node labels, for abstract locations defined inside methods, we
omitted the fully qualified name of the containing class, prefixing their qualified
unique names.

The labels of the arcs shown in figure 4.2 contain the object and call contexts of the
source and target abstract locations, as defined in section 4.1.1. Because the non-
static field Complex . risreferenced twice in line 13 of listing 4.2 using two different
object contexts, the concern graph contains two differently labelled simple assign-
ment relations between the non-static class field Complex. r and the local value
abstract location rRes defined in method div (Complex). The same is also true
for the assignment in line 14, as well as for the non-static class field Complex. i,
referenced both in lines 13 and 14 of listing 4.2.

Note that the assignment in line 9 of listing 4.2 also references the non-static class
field Complex. r twice, but using the same object context. As a result, the con-
cern graph contains in this case a single simple assignment relation between the
abstract location Complex.r and the abstract location mod defined in method
div (Complex). The same is true for the class field Complex. i, which is also
referenced in the same assignemnt.

72



4.2. Direct Flow Relations

{P}Complex(double,double).iVal:double

{P}Complex(double,double).rvVal:double

€<this
le<this \
{F}Complex.r:double {F}Complex.i:double
> e > e
>c€ [*tis® . : Y "8 [tnis®
{L}div(Complex).mod:double
>ce >thise‘ ‘ee ee >ce >thise

{L}div(Complex).rRes:double

Y A A
{L}div(Complex).iRes:double

{Ttmain().new_1:Complex {T¥main().new_2:Complex
*ee *ee
{L}main().a:Complex {L}main().b:Complex

{R}div(Complex).return:Complex
¥°

{L}main().d:Complex

Figure 4.2: Concern subgraph capturing simple assignment relations

Parameter assignment

Definition: The parameter assignment relation represents the passing of an argu-
ment to a method, when calling it. It is a relation between an abstract location refer-
enced in the passed argument and the formal parameter of the called method. The
direction of the relation is from the argument to the formal parameter.

Extraction from code: At the code level, we extract parameter assignment relations
for every argument passed in every method call, if the argument expression refer-
ences at least one abstract location. As in the case of simple assignment, passing an
argument to a method may result in several parameter assignment relations, one for
each referenced abstract location. Similarly, constant literals used in the argument
expression are ignored.

73



Chapter 4. Concern Graph

{L}div(Complex).rRes:double

e
el

{P}Complex(double,double).rVal:double

{L}div(Complex).iRes:double
e(,
Y

{P}Complex(double,double).iVal:double

{L}main().b:Complex

le(s

{P}div(Complex).c:Complex

Figure 4.3: Concern subgraph capturing parameter assignment relations

Examples: Listing 4.2 contains three examples of parameter assignment relations,
corresponding to the constructor call in line 15 and the method call in line 21. Note
that the two constructor calls in lines 19 and 20 produced no parameter assignment
relations, because the passed argument expressions contain only literals. Following
the same notational conventions as above, the parameter assignment relations are
depicted in figure 4.3.

The labels of the arcs shown in figure 4.3 contain the call contexts of the target formal
parameters, as defined in section 4.1.1.

Object context assignment

Definition: The object context assignment relation represents the passing of an ob-
ject context to a method, when calling it. It is a relation between the abstract loca-
tion representing the object on which the method is invoked, and the implicit object
context abstract location of the invoked method. The direction of the relation if from
the invocation object to the object context abstract location.

Extraction from code: A call to a non-static method in an OO language can be
viewed as a function call in a procedural language, which has as its first argument

74



4.2. Direct Flow Relations

the invocation object itself. From this perspective, the object context assignment
relation is basically a particular case of the parameter assignment relation. In case
of Java code, the target of this relation is always the implicitly defined object context
abstract location this of the called method.

Note that because static methods have no implicitly defined object context abstract
locations, the concern graph contains no object context assignment relations for
static method calls. Also note that, while constructors are not explicitly invoked on
an object, they do have the object context abstract location this, which receives
the newly created object instance.

Normally, the Java language requires an explicit call to a super constructor or an-
other constructor of the same class as a first statement of each defined constructor.
The only exception to this rule is when the called super constructor is actually the
default no-args constructor of the super class. In this case, the call may be omitted
from the code, because the compiler inserts such a call automatically. When extract-
ing this relation, we follow the same convention as the Java compiler, and extract an
implicit object context assignment relation for every constructor, which has no ex-
plicit call to another constructor, between its object context abstract location and
the object context abstract location of the default no-args constructor.

Furthermore, because the Java language allows direct initialization of non-static
class fields at definition, and because these field initializers can also reference an
implicitly defined class-level object context abstract location this, receiving the
value of one of the object context abstract locations of the class constructors, the
concern graph contains several additional implicit object context assignment rela-
tions, one from each object context abstract location of a constructor to the class-
level object context abstract location. We call these relations implicit, because they
are not the result of passing an invocation object to a method, but rather the result
of the internal class initialization mechanism of the Java language.

Examples: Listing 4.2 contains several examples of this relation, corresponding to
the constructor calls in lines 11, 15, 19 and 20, as well as the method call in line
21. These relations are depicted in figure 4.4. Note that the figure also shows two
implicit object context assignment relations, one for the class constructor Com-
plex (double, double), and one for the class constructor DivisionByZe-—
rokException ().

The labels of the arcs shown in figure 4.4 contain the call contexts of the target object
context abstract locations of the invoked methods, as defined in section 4.1.1.

75



Chapter 4. Concern Graph

{T}div(Complex).new_2:Complex
e(,

{Ttmain().new_1:Complex {T}tmain().new_2:Complex
we(?’ \ 4 ve(4

{O}Complex(double,double).this:Complex

lee

{O}Complex.this:Complex

{L}a:Complex

le(s

{O}div(Complex).this:Complex

{T}div(Complex).new_1:DivisionByZeroException

le(1

{O}DivisionByZeroException().this:DivisionByZeroException

lee

{O}DivisionByZeroException.this:DivisionByZeroException

Figure 4.4: Concern subgraph capturing object context assignment relations

Return value assignment

Definition: The return value assignment relation represents the returning of a value
from a method. It is a relation between a source abstract location and the return
value abstract location of a method. The direction of the relation is from the source
abstract location to the return value abstract location.

Extraction from code: At the code level, the return value assignment is a relation
between an abstract location referenced in the expression of a return statement and
the implicitly defined return value abstract location of a method. As in the case
of simple assignment and parameter assignment, constant literals used in the re-
turned expression are ignored. As already pointed out in section 4.1 the return value
abstract location in the Java languge is unnamed, but in order to improve the read-

76



4.2. Direct Flow Relations

{T}div(Complex).new_2:Complex
ee

A

{R}div(Complex).return:Complex

Figure 4.5: Concern subgraph capturing return value assignment relations

ability of the concern graph, we use the short name return to refer to it.

Examples: Our example in listing 4.2 contains an example of this relation, corre-
sponding to the return statement in line 15. The corresponding graphical represen-
tation of this relation is shown in figure 4.5. Because the return value abstract loca-
tion of a method is local to the method definition, its context is always the empty
context.

Exception assignment

Definition: The exception assignment relation is a relation between an abstract lo-
cation representing a thrown object and the exception parameter of a catch clause,
which can potentially catch this object. The direction of this relation is from the
thrown object to the catch parameter.

Extraction from code: At the code level, this relation is not explicit and it is some-
what harder to track, because the actual catch clause, catching an exception object
is not identified at the location where the throw occurs. Furthermore, because the
catch clause and the throw site may be in different methods, or different classes
even, extracting this relation requires a global analysis of the source code.

We extract this relation in two passes. In the first pass, we record for each method
the abstract locations representing the locally thrown exception objects, which are
not caught within the method itself. In the second pass over the source code, we
extract the actual exception assignment relations as follows. For each try statement,
we determine all abstract locations representing exception objects thrown inside
the try block, including exception objects thrown and not caught in called methods,
and match them to the corresponding catch clauses based on type compatibility.

Because an exception may be thrown in an indirectly called method, we traverse the
call graph in a depth-first fashion and carry out the above mentioned operations

77



Chapter 4. Concern Graph

{T}div(Complex).new_1:DivisionByZeroException

lee

{E}ex:DivisionByZeroException

Figure 4.6: Concern subgraph capturing exception assignment relations

recursively for each called method. In order to accelerate the extraction of the ex-
ception assignment relations, and to break potential cycles in the call graph due to
recursive method calls, we maintain a list of visited methods to avoid visiting the
same method multiple times for different calls.

Examples: Listing 4.2 contains an example of this relation, corresponding to the
exception throw statement in line 11 and the catch clause in line 22. The relation
is graphically depicted in figure 4.6. Because an exception parameter is local to the
method definition, its context is always the empty context.

4.2.2. Inheritance Relations

Since the dataflow relations presented in the previous section only take into consid-
eration the declared type of an invocation object and not its actual type, in case of
a call to a polymorphic method, they only capture direct value transfer to and from
the abstract locations defined in this method. However, because object-oriented
languages support dynamic binding, meaning that a call to a polymorphic method
may actually result in a call to any of its overriding methods.

If we assume a code base, conforming to the Liskov Substitution Principle
(Martin 96b), we can adopt a conservative solution to this problem and consider
additional relations to capture the potential value transfers to and from overriding
methods.

From a theoretical point of view, the correct solution to this problem is to duplicate
each dataflow relation involving value transfer to and from a polymorphic method
for every method overriding this polymorphic method. This however, has the dis-
advantage, that it makes the extraction more complicated and the resulting concern
graph rather large.

From a practical point of view, a better solution is to use the following approxi-
mation, which keeps the size of the concern graph smaller, while maintaining the

78



4.2. Direct Flow Relations

integrity of the flow relations between abstract locations. Instead of duplicating
dataflow relations, we introduce a number of inheritance relations, which are used
to represent potential value transfer relations between the formal parameters, ob-
ject context abstract location, and return value abstract location of a polymorphic
method and the corresponding formal parameters, object context abstract location,
and return value abstract location of an overriding method.

Although in the code, there is no actual value transfer between an abstract location
of a polymorphic method and the corresponding abstract location of an overriding
method, this has no impact on the concern extent identification. This is because we
already assume, by using a conservative analysis of polymorphic method calls, that
for any value transfer involving an abstract location in a polymorphic method, we
also consider all value transfers involving the corresponding abstract locations in all
overriding methods.

Inheritance relations are also direct flow relations, and their corresponding arcs in
the concern graph are always labelled with a double “empty context” ee.

In order to illustrate the different types of inheritance relations, let us consider the
example in listing 4.3. The example was chosen carefully to contain all inheritance
relations, and it will be used during the presentation of each such relation to illus-
trate its manifestation at the code level.

Listing 4.3: Examples of inheritance relations

public abstract class Shape {
public abstract void scale(double factor);
public abstract double getArea();
}
public class Circle extends Shape ({
private double radius;
public void scale (double f) {
radius = radius * f;
}
public double getArea () {
return Math.PI * radius * radius;
}
}

14 public class Square extends Shape ({

© o N O U W -

e
w o= o

15 private double side;
16 public void scale (double f) {
17 side = side * f;

18 }

79



Chapter 4. Concern Graph

19 public double getArea() {
20 return side * side;

21 }

22 }

Parameter inheritance

Definition: The parameter inheritance relation represents a potential value transfer
between a formal parameter of a polymorphic method and the corresponding for-
mal parameter of an overriding method. The direction of this relation is from the
formal parameter of the polymorphic method to the formal parameter of the over-
riding method, and the intuitive justification for it is that any argument passed to
the polymorphic method may actually end up being passed to one of its overriding
methods.

Extraction from code: At the code level, this relation is also not explicit and requires
an analysis of the inheritance hierarchies, in order to detect overriding methods. We
extract a parameter inheritance relation for every formal parameter of every over-
riding method of a given polymorphic method. Since constructors are not polymor-
phic methods, no parameter inheritance relations are extracted for them.

Note that we only extract parameter inheritance relations for direct overriding meth-
ods, but because we do this for all methods, including methods defined in libraries,
the concern graph will contain in the end all potential flow relations, even though
some direct flow relations may only appear as indirect flow relations.

Examples:

The code in listing 4.3 includes two examples of this relation, corresponding to the
definitions of the overriding scale (double) methods in lines 7 and 16. These
relations are shown in figure 4.7, which presents a subgraph of the concern graph.

Note that the arcs in figure 4.7 are all labelled with double empty contexts. This is be-
cause the call context of a target abstract location representing a formal parameter
is always the same as the call context of the corresponding source formal parameter.

Object context inheritance

Definition: The object context relation is very similar to the parameter inheritance
relation, and represents a potential value transfer between an object context ab-

80



4.2. Direct Flow Relations

{P}Shape.scale(double).f:double
ee

A

{P}Circle.scale(double).f:double ee

A
{P}Square.scale(double).f:double

Figure 4.7: Concern subgraph capturing parameter inheritance relations

stract location implicitly defined in a superclass and the corresponding object con-
text abstract location implicitly defined in a subclass. The direction of this relation is
from the object context abstract location in the superclass to the object context ab-
stract location in the subclass. Based on the previously discussed observation that
the object context abstract location can be regarded as an implicit formal parame-
ter of a method, the intuitive justification for this relation is identical to the one for
parameter inheritance.

Extraction from code: As already pointed out in case of the object context assign-
ment relation, object context abstract locations are implicitly defined for all non-
static methods of a class. And, for every overriding method of a given polymorphic
method, we extract an object context inheritance relation. Since constructors are
not polymorphic methods, no object context inheritance relations are extracted for
them. We also do not extract any such relations between the class-level object con-
text abstract locations, because the value transfer to these abstract locations is al-
ready captured by the object context assignment relations.

Note that we only extract these relations for direct overriding methods, but because
we do this for all methods, including methods defined in library code, the concern
graph will contain in the end all potential flow relations, even though some direct
flow relations may only appear as indirect flow relations.

Examples:

Listing 4.3 contains four examples of this relation, corresponding to the definitions
of the overriding methods scale (double) and getArea () oftheCircle and
Square classes found in lines 7, 10, 16, and 19. The relations are depicted in figure
4.8.

Note that the arcs in figure 4.8 are all labelled with double empty contexts. This is be-
cause the call context of a target object context abstract location is always the same

81



Chapter 4. Concern Graph

{O}Shape.scale(double).this:Shape
ee

\
{O}Circle.scale(double).this:Circle ee

A

{O}Square.scale(double).this:Square

{O}Shape.getArea(double).this:Shape

ee
A 4

{O}Circle.getArea(double).this:Circle ee

{O}Square.getArea(double).this:Square

Figure 4.8: Concern subgraph capturing object context inheritance relations

as the call context of the corresponding source object context abstract location.

Return value inheritance

Definition: The return value inheritance relation is intended to capture potential
value transfers from the return value abstract locations of an overriding method of a
given polymorphic method to the return value abstract location of the polymorphic
method. The intuitive justification for this relation is very similar as the one for the
previous inheritance relation, with the difference that the direction of the relation is
reversed, because returning a value from a polymorphic method may actually result
in returning a value from any of its overriding methods.

Extraction from code: At the code level, this relation is also identified through an
analysis of the inheritance hierarchies, in order to detect overriding methods. For
every overriding method of a given polymorphic method, having a non-void return
type, we extract an return value inheritance relation. As in the case of parameter
inheritance and object context inheritance, we only extract these relations for direct
overriding methods, but also including methods defined in library code.

Examples: The code in listing 4.3 contains two examples of return value inheritance
relations, corresponding to the definitions of the overriding get Area () methods

82



4.2. Direct Flow Relations

{R}Circle.getArea(double).return:double

ee | {R}Square.getArea(double).return:double
ee

A A
{R}Shape.getArea(double).return:double

Figure 4.9: Concern subgraph capturing return value inheritance relations

of the Circle and Square classes from lines 10 and 19. The relations are shown
in the subgraph of the concern graph from figure 4.9.

Note that the arcs in figure 4.9 are all labelled with double empty contexts. This is
because the call context of a target return value abstract location is always the same
as the call context of the corresponding source return value abstract location.

4.2.3. Direct Dependency Relations

The direct dependency relations are also direct flow relations, but they do not repre-
sent direct or potential value transfer between abstractlocations. These relations are
used for any other type of direct influence of a source abstract location on a target
abstract location, which is not a direct value transfer. These relations model implicit
flow relations such as control-flow induced dependencies, dependencies between
an array and its index abstract locations, and dependencies between a non-static
field and the abstract location representing its enclosing object.

In order to illustrate the different types of direct dependency relations, let us con-
sider the example in listing 4.4. The example was chosen carefully to contain all di-
rect dependency relations, and it will be used during the presentation of each such
relation to illustrate its manifestation at the code level.

Listing 4.4: Examples of direct dependency relations

1 public class Vector {
2 private int size;
3 private double[] elems;

83



Chapter 4. Concern Graph

4 public Vector (int size) {

5 this.size = size;

6 elems = new double[size];

7 }

8 public Vector div (double f) {

9 if (£ !'= 0) {

10 Vector res = new Vector(size);
11 double[] tmp = res.elems;

12 for (int i=0; i<size; i++) {
13 tmp[i] = elems[i] / f;

14 }

15 return res;

16 }

17 return null;

18 }
19 }

Control-flow dependency

Definition: The control-flow dependency relation is a direct dependency relation
between an abstract location used in a condition, whose logical value determines
whether a value transfer takes place or not, and the target abstract location of this
value transfer. The direction of this relation is from the abstract location used in the
condition to the target abstract location of the value transfer. Although there is no
actual value transfer between the source abstract location and the target abstract lo-
cation of this relation, the value of the source abstract location influences the value
of the target abstract location, by allowing or disallowing an actual value transfer.

Extraction from code: At the code level, this relation appears between all abstract
locations referenced inside the condition part of a conditional branch or a loop
statement and all abstract locations, which are assigned to within the body of the
conditional branch or the loop statement. Note that in this context “assigned to”
actually means that the abstract location in question is the target of any kind of
dataflow relation, appearing within the body of the statement containing the condi-
tion.

Examples: The code in listing 4.4 contains several examples of this relation type,
corresponding to the conditions in lines 9 and 12. These relations are shown in the
subgraph of the concern graph from figure 4.10.

Note that the condition part of the loop statement in line 12 references two abstract
locations: size and i, and this results in two control-flow dependencies from these

84



4.2. Direct Flow Relations

{R}div(double).return:Vector {L}div(double).res:Vector
ee| |ee
{L}div(double).i:int {L}div(double).tmp:double[]
A
Tee ee
{P}div(double).f:double
>thise . e<tmp le<tmp "e(1
{F}double[].data:double {O}Vector(int).this:Vector
y
>this<tmp e(1
{F}Vector.size:int {P}Vector(int).size:int

Figure 4.10: Concern subgraph capturing control-flow dependency relations

abstract locations to the internal data field of double [ ], for the simple assignment
in line 13. Furthermore, because the abstract location i is a loop counter, its value is
incremented within the body of the loop statement, meaning that it is also the target
of a control-flow dependency from size.

Somewhat less obvious are the control-flow dependencies involving the object con-
text abstract location and the formal parameter of the constructor Vector (int).
These abstract locations are also assigned within the body of the conditional state-
ment in line 9.

The labels of the arcs shown in figure 4.10 contain the object and call contexts of the
source and target abstract locations, as defined in section 4.1.1. A more interesting
case is the label of the arc between the field size of class Vect or and the internal
data field of double [], because it captures both the “exit context” of the source
abstract location and the “enter context” of the target abstract location.

Collection index dependency

Definition: The collection index dependency relation is a direct dependency rela-
tion between an abstract location used to index a collection variable represented by
the target abstract location. The direction of the relation is from the index abstract
location to the indexed collection, and the intuitive justification behind it is that
the value of the index abstract location is used to access the desired element in the
collection.

85



Chapter 4. Concern Graph

{L}div(double).i:int

lee le<this

{L}div(double).tmp:double([] {F}Vector.elems:double[]

Figure 4.11: Concern subgraph capturing collection index dependency relations

Extraction from code: At the code level, this relation appears between an abstract
location and a collection indexed by this abstract location. For each use of the in-
dex operator “[]”, we extract collection index dependency relations for all abstract
locations used in the index expression. Although the Java language allows the use
of the index operator only for arrays, other object-oriented languages, such as C+
or C#, support the definition of this operator for other collection types too. Note
that this artificial distinction between arrays and other indexable collection types in
Java, such as the standard collection classes, can be eliminated by supporting the
addition of user-specified relations to the concern graph. A mechanism to do this
will be described in section 4.4.

Examples: Listing 4.4 contains two examples of this relation, corresponding to the
two uses of the index operator on the two arrays tmp and elems in line 13, which
are shown in figure 4.11. The labels of the arcs in the figure represent the call and
object contexts of the source and target abstract locations involved in the relation.

Collection element dependency

Definition: The collection element dependency relation is a direct dependency re-
lation between the internal data field of a collection and the abstract location rep-
resenting the enclosing collection. The direction of this relation is from the field to
the enclosing collection, and the intuitive justification behind it is that changing the
value of a collection element represents a change of the entire collection.

Extraction from code: We extract such relations, for each collection type, from its
internal data field to every object creation abstract location having the enclosing
collection type as data type. Given the fact that our approach treats array types in a
similar fashion, and models flow relations involving array elements as flow relations
involving an internal data field of the array type, we also extract a collection element

86



4.3. Separation of Superimposed Roles

{F}double[].data:double

Y >Vector(int).new_1e

{T}Vector(int).new_1:doublef]

Figure 4.12: Concern subgraph capturing collection element dependency relations

dependency relation, for every array type, from its internal data field to every object
creation abstract location having this array type.

Examples: Our example from listing 4.4 contains a collection element relation from
the internal data field of double [] to the object creation abstract location new_ -
1 defined in method Vector (int). This relation is depicted graphically in the
subgraph of the concern graph shown in figure 4.12.

4.3. Separation of Superimposed Roles

As defined in section 2.1, a crosscutting concern is a concern whose implementation
cannot be encapsulated using object-oriented language constructs, in the context of
an existing architecture, design, and set of implementation conventions. The imple-
mentation of such a concern is scattered over many locations and tangled with the
implementations of other concerns.

Because direct flow relations often cross method or class boundaries, the fact that
crosscutting concerns are scattered over many locations does not affect the identi-
fication of such concerns. However, in order to cope with the tangling of multiple
concerns within the same class, we need a special handling of the abstract locations
having such class types. The problem with these abstract locations is that, while
holding instances of such classes, they exhibit a superimposition of the different
roles fulfilled by the class. The same abstract location may appear in several seman-
tically different contexts, belonging to separate functional concerns, but because
the abstract location has a single identity, these roles cannot be properly separated
as required by an accurate concern identification approach.

The detection of superimposed class roles is based on the following heuristic rule.

Heuristic rule 1. Each non-empty interface, implemented or inherited by a class
type, represents an additional superimposed role of the class type.

87



Chapter 4. Concern Graph

This heuristic rule is supported by a common object-oriented design principle,
known as the Interface Segregation Principle (Martin 96a), stating that “clients
should not be forced to depend upon methods that they do not use.” A direct conse-
quence of this principle is that interface definitions usually contain a small number
of semantically related methods, relevant for a single context, representing a single
role.

In many object-oriented languages such as the Java language, the composition of
roles at the class interface level is achieved by simultaneously implementing multi-
ple interfaces, either directly or indirectly. This means that if we calculate the tran-
sitive closure of the inheritance relation for a given class type and consider only the
non-empty interfaces from the set of super types, we end up with the set of super-
imposed class roles.

In order to achieve the separation of superimposed class roles, we duplicate each
abstract location having as type a class fulfilling multiple roles, so that for each dis-
tinct role there is a dedicated copy of the abstract location in question. Each class
has a main role, given by its type identity and a number of additional superimposed
roles, corresponding to the implemented interfaces. For each such role, we create
copies of all abstract locations having the given class type and assign them the inter-
face type corresponding to the role in question. Besides allowing us to distinguish
the copies of an abstract location in the concern graph, having a different type for
each copy is also required in order to select the appropriate copy of an abstract lo-
cation involved in a direct flow relation, as discussed below.

When extracting a direct flow relation between a source abstract location « € V and
a target abstract location v € V, where the class type of u has several superimposed
roles, we select the copy of u corresponding to the superimposed role matching the
type of v. If an exact match is not found, the original abstract location u, corre-
sponding to the main role of the class, is selected.

Note that duplicating abstract locations also means that we might need to dupli-
cate direct flow relations. If a direct flow relation involves two abstract locations,
which have the same class type and have been duplicated as discussed above, the
direct flow relation between these abstract locations also has to be duplicated for
each additional superimposed role, resulting in a direct flow relation between the
corresponding copies of the two abstract locations.

The situation, where a direct flow relation involves two abstract locations, which
have different class type, but both having superimposed roles, was not discussed,
because it cannot appear in a typical object-oriented language. The situation is only

88



4.3. Separation of Superimposed Roles

possible in alanguage, supporting unrestricted cast operations involving types from
outside the type hierarchy of the casted value.

To make things clearer, let us consider the code example in listing 4.5.1

Listing 4.5: Example of superimposed class roles

class Image {

1

2 public void register (ImageObserver o) {

3 }

4 }

5 class Drawing {

6 public void addListener (DrawingChangelListener 1) {
7 }

8 }

9 class DrawingView implements ImageObserver, DrawingChangelListener {
10 private Image image;

11 private Drawing drawing;

12 public void init () {

13 image.register (this);

14 drawing.addListener (this);

15 }

16 public static void main() {

17 DrawingView view = new DrawingView () ;

18 view.init ();

19 }

The class DrawingView implements the interface ImageObserver and fulfils
the role of an observer as defined by the Observer design pattern in relation with
the class Tmage. At the same time, it also fulfils the role of a drawing change event
listener and implements the interface DrawingChangeListener, with respect
to the class Drawing.

The critical piece of code is found in the method init (). This method registers
an instance of the class DrawingView both as an observer of the class Image and
as an drawing change event listener to the class Drawing. Note that the same ob-
ject context abstract location this is used for both registrations, which makes it
impossible to separate the two superimposed roles, when identifying concern im-

1The example was adapted from the JHotDraw case study presented in chapter 6.

89



Chapter 4. Concern Graph

A 4

{L}main().view:DrawingView {O}init().this:DrawingView

ey
"9(1 e(;

{P}register(ImageObserver).o:ImageObserver

A 4

{P}addListener(DrawingChangeListener).l:DrawingChangeListener

{L}main().view:DrawingView

ey
A 4

{L}main().view: ImageObserver {O}init().this:DrawingView

{L}main().view: DrawingChangeListener

ey e(4

A 4 A 4

{O}init().this:ImageObserver | | {O}init().this:DrawingChangeListener

"3(1 e(y

{P}register(ImageObserver).o:ImageObserver

A 4

{P}addListener(DrawingChangeListener).l:DrawingChangeListener

Figure 4.13: Concern graphs showing the separation of superimposed class roles

plementations. And since the two roles in question (ImageObserver and Draw—
ingChangeListener) are completely distinct from a semantic point of view,
they represent two different functional concerns.

Figure 4.13 shows the effect of this separation on the concern graph corresponding
to our example from listing 4.5. The figure shows only a subgraph of the concern
graph, with the affected nodes grayed.

In our concrete example, the object context abstract location this of method
init () in class DrawingView is represented in the concern graph by three ab-
stract locations: one for the main role of the class having the type DrawingView,
one for the observer role having the type ImageObserver, and one for the draw-

90



4.4. Dealing with Libraries

ing change event listener role having the type DrawingChangeListener.

The selection of the actual abstract location is done based on the type of the
other abstract location involved in the direct flow relation, which is the for-
mal parameter of the method register (ImageObserver) from class Im-
age in case of the first call, and the formal parameter of the method addLis-
tener (DrawingChangeListener) from class Drawing in case of the second
call. When constructing the concern graph, the parameter assignment relation ex-
tracted for the first call uses the copy created for the observer role, whereas the pa-
rameter assignment relation extracted for the second call uses the copy created for
the drawing change event listener role.

4.4. Dealing with Libraries

In section 4.2 we discussed the particularities of the extraction from source code
for all types of direct flow relations. If the entire source code of the analyzed soft-
ware system is available, we can use this information to construct the entire concern
graph.

In real software systems the situation is quite different. Real software systems use
libraries, whose source code is sometimes unavailable. In case of Java systems, the
situation is even more complicated because many frequently used parts of the Java
standard library use native implementations, meaning that for these parts there is
no Java source code at all.

Unfortunately, completely ignoring the direct flow relations between abstract loca-
tions defined in libraries leads to a loss of precision in the identification of concern
implementations, which, depending on the case, might not be tolerable. Note that
the direct flow relations to and from library abstract locations directly referenced in
the source code of X are recorded in the concern graph. But, if we have an indirect
flow relation between two abstract locations u € V and v € V, and this indirect flow
passes through at least one intermediate library abstract location w ¢ V, which is
not directly referenced in the source code of Z, this indirect flow relation will be lost,
because the chain of direct flow relations linking # and v, recorded in the concern
graph, will be missing the two direct flow relations to and from w.

Even if we assume that we can obtain the complete source code of all the libraries
used by a software system, and that we can also extract direct flow relations from
the native implementations, because the implementations of libraries tend to be
more general in order to fit many usage scenarios, the resulting concern graph will

91



Chapter 4. Concern Graph

be cluttered with many implementation details of these libraries, making it much
larger and much more complex than required for the identification of concern im-
plementations. Furthermore, in some cases it is desirable to treat a separate sub-
system of the analyzed system as a library. This would exclude its implementation
details from the resulting concern graph, and would allow an effective user control
over the scope of the analysis.

Fortunately, there is a middle ground between completely ignoring libraries and an-
alyzing their entire source code. We can compose the concern graph from several
smaller concern graphs, using the concern graph union operation defined in sec-
tion 4.1. The first concern graph is extracted from the source code of X, ignoring
direct flow relations between library abstract locations, while the remaining con-
cern graphs are actually flow-equivalent concern subgraphs of the libraries used by
2, containing all library abstract locations referenced in the source code of Z. The
following subsection develops this idea further.

4.4.1. Flow-Equivalent Concern Subgraphs

Definition 19. A flow-equivalent concern subgraph of a concern graph G =
(V,A,s,t,Ly,La, 0y, ¢ 4) is also a concern graph G~ = (V' A', ¢/, t’,LV/,L:q,,ZV/,EA/)
obtained from G by eliminating and short-circuiting some vertices, where V' < V and
Yu,ve V' we have:

wed <= (u-"

v (U--2VANAWEV WA UN WAV AN U~W A W~ D)

In the previous definition, the functions s',¢ : A" — V’, the language Ly, and the
functions £y : V! — Ly and € 4 : A" — ', are defined as in definition 17. However,
because a flow-equivalent concern subgraph may contain arcs for indirect flow re-
lations, the language L’A,, used to label these arcs, must also contain all concatena-

tions of arbitrary length of words from L 4. In formal terms, L;\' is defined as follows:

L%/:LAU{£1-€2|[1€LA A [2€L£4,}

Note that for a given concern graph, we can construct several flow-equivalent con-
cern subgraphs, depending on the set of eliminated vertices. However, as proven in
the following lemma, the results of identifying concern implementations in a soft-
ware system X is independent of the flow-equivalent concern subgraph, provided

92



4.4. Dealing with Libraries

that this graph contains all abstract locations defined in the library and referenced
in the source code of Z.

Lemma 2. Aflow-equivalent concern subgraph G, foralibraryZy used by a software
system X, containing all abstract locations from X referenced in the source code of Z,
does not affect the precision of concern extent identification for system X.

Proof. Let G1 = (V1,A]) be the concern graph extracted from the source code of
2, G2 = (Vp, A) the concern graph extracted from the source code of the library
2, and G; = (Vz’ , A’Z) a flow-equivalent concern subgraph for the library X;. Let
—1< (V1uWr) x (V1 UVs) be the direct flow relation defined by the Gy UGy, —2< (V1 U
V,)x(V1UV,) the direct flow relation defined by the G1 UG5 , ~»1< (V1uV2) x (VU V3)
the transitive closure of —1, and ~»c (V1 U V;) x (V} U V) the transitive closure of
—9.

In order to prove this lemma, we need to show that the restriction to V; of the flow
relation ~~1 is equal to the restriction to V7 of the flow relation ~~». In other words,
we need to show that Vu,v € V3, wehave u~~1 v < u~vo v.

Let u,v € V] be two abstract locations, such that u ~~ v. Given the fact that
u, v € V1, this means that the two abstract locations are referenced in the implemen-
tation of Z. If u —7 v, then we have (u, v) € A U A2. On the one hand, if (u, v) € A;
then we also have (u,v) € A U A’Z. On the other hand, if we have (u, v) € Ay, then
we must also have u, v € V». And given the fact that u and v are both referenced in
the implementation of Z, we also have by definition of G2: that u, v € VZ’. Based on
the definition of the flow-equivalent concern subgraph, if (¢, v) € A2 and u, v € 748
then we also have (u, v) € A}, and therefore (u, v) € Ay U A’Z. We have proven so far
that u —1 v > u —2 v, which also means u ~~» v. If, however, u --+; v, then this
means that Jwy, wo,..,wpe ViuVo,n>2,sothatu=w; A wy=v A w; —1 Wj41,
for1<i<n. Ifall w; € Vq, for 1 <i < n, then using the same procedure as above, we
can prove that (w;, w;;1) € A1 U A’2, meaning that w; —» w;,, for 1 <i < n. Based
on this result, we can conclude that u --+2 v, and also that u ~~» v. We still need to
consider the case when3j,k:1<j,k<n A j<k A Wiy Wjt1r-n Wi & V1. Without
loosing generality, we can consider that w;_y, Wi, € V1. Using the same procedure
as above we can prove that u ~»» w;_; and that wy,, ~>2 v. Because wj, wy ¢ V1,
based on the definitions of G, the direct flow relations (wj_l, w j), (Wi Wiey1) &
A1, meaning that (wj_l,wj),(wk, Wiy1) € Az. Of course this also means that
wj-1, W41 € V2, and because they are referenced in the implementation of X, we
also have w;_y, wy,q € V. If w; € V; for j—1<1i < k+1, then we can conclude
that w; —2 w;4, for j—1<i < k+1, meaning also w;_; ~»2 w,1. If, however,

93



Chapter 4. Concern Graph

Am:j-1<lm<k+1 Al<mA w,wi,..,wnt¢ VZ’, based on the defini-
tion of the flow-equivalent concern subgraph, we deduce that (w -1 Wii1) € A’Z,
meaning that wj_; —» w41, and also that w;_; ~»» wy,1. Based on this, the fact
that u ~~o w -1 W1 ™2 0, and that the flow relation is transitive, we deduce that
u ~-2 v. If we combine all of the above statements, we obtain u~~+1 v = u~-2 v.

In order to prove the reverse implication, we will start from the observation that ~-»
is the transitive closure of —». Because —3 is defined by the concern graph Gy UG, ,
this means that Vu,v € Vj U V2’ wehave u —» v < (u,v)€ AU A’2. If (u,v) € Ay,
this also means that (u, v) € A U A, meaning that u —; v, and therefore u ~~7 v.
If, however (u,v) € A’Z, based on the construction of the flow-equivalent concern
subgraph, we deduce that either (1, v) € A2, meaning that u —; v and also u ~~+7 v,
or that Jwy, wo,...,wp e Vo,n>2,sothatu=w; A wy=v A (w;,w;;1) € Az, for
1 < i < n. This also means that w; —1 w;41, for 1 <i < n, and therefore u ~~1 v. If
we combine the above results, we obtain u ~»2 v = u~>1 v. O

A flow-equivalent concern subgraph can be either defined manually using the nota-
tion described in section 4.4.2, or extracted automatically from the source code of a
library, if the entire source code is available.

A manually defined flow-equivalent concern subgraph for an entire library is usually
smaller, enabling a more efficient concern extent identification, but it also requires a
large initial effort for creating it. However, given the fact that such a flow-equivalent
concern subgraph is reusable for other software systems too, in case of frequently
used libraries, this large initial effort may be justified.

For a less frequently used library, we could rely on automatically extracted flow-
equivalent concern subgraphs, if such graphs can be extracted from the source code
of the library. The reduced concern graph, defined in section 5.4.1, is an example
of an automatically extracted flow-equivalent concern subgraph, which eliminates
a large number of abstract locations. Although the reduced concern graph is on
average significantly smaller the the original concern graph, as discussed in chapter
6, in some cases it might still be too large or too complex to use directly.

It is also possible to create a flow-equivalent concern subgraph using a combination
of manual definition and automatic extraction, if only parts of the source code of the
library are used for the analysis, but in this case the effort required to identify and
define the missing parts might also be very high.

If the reusability of a flow-equivalent concern subgraph is not an issue, then con-
structing such a graph for all the libraries used by a given software system X is much

94



4.4. Dealing with Libraries

easier, because it must only contain the flow relations between the library abstract
locations directly referenced in the source code of Z. The list of directly referenced
abstract locations can be extracted automatically from the concern graph of X, but
the flow relations between them must be specified manually.

In some cases, it might even be acceptable to use a flow-equivalent concern sub-
graph, which covers only parts of a library and captures only a subset of the direct
flow relations between the library abstract locations referenced in the source code of
2, even though this usually affects the precision of the concern extent identification.

It is important to understand that there is a trade-off between the completeness of
the flow-equivalent concern subgraphs of the libraries used by X, and the size of the
concern intent specification, defined in section 5.2.1. A larger and more redundant
concern intent specification can compensate to some extent for the loss of preci-
sion due to incomplete or even missing flow-equivalent concern subgraphs of the
libraries used by X.

If we revisit our previous example of an indirect flow relation between two abstract
locations u and v used in the implementation of system X, passing through an ab-
stract location w defined in a library 2, for which no accurate flow-equivalent con-
cern subgraph is available, the indirect flow relation will be lost and it will affect the
precision of the concern extent identification. While it is true that the chain of direct
flow relations between u and v will be missing the relations occurring inside the li-
brary code, and because of that the flow relation between u and v might be affected,
a more redundant concern intent specification can at least accomplish that the two
sub-chains of the chain of direct flow relations between u and v to and from the
library X are contained in the same concern extent.

4.4.2. Manual Specification of Concern Graphs

Let G = (V,A,s,t,Ly,La, ¢y, ¢ 4) be a concern graph. The manual specification of
this graph consists of a list of simple textual representations of all its arcs, each writ-
ten on a separate line, using the following textual pattern:

type(a)-‘="-ly(s(a)-‘="-lpala)- =" -ly(t(a)

where a € Ais an arc in G, and type(a) is a string encoding the type of direct flow
relation represented by this arc, as shown in table 4.2.

The textual format was created to be human readable and writable, but because of
its simplicity, it can also serve as a persistence format for concern graphs. Its main

95



Chapter 4. Concern Graph

| Direct flow relation type | Encoding |
simple assignment ‘SA
parameter assignment ‘PA
object context assignment ‘OCA
return value assignment ‘RVA
exception assignment ‘EA
parameter inheritance ‘P’
object context inheritance ‘oCr
return value inheritance ‘RVI’
control-flow dependency ‘CFD’
collection index dependency ‘CID’
collection element dependency ‘CED’

Table 4.2: Encoding of direct flow relation types

advantage is that it allows a user to determine the union of two or more concern
graphs, by simply concatenating their respective specifications.

Section A.1 contains a small part of the flow-equivalent concern subgraph specifica-
tion, created for the library abstract locations directly referenced in our case-studies.
Because the specification does not cover the entire standard library, it may lead to
a less precise concern extent identification, when used in conjunction with other
software systems.

96



Chapter 5.

Concern Identification Method

This chapter presents our tool-supported concern identification approach, based
on context free language reachability in the concern graph. As already mentioned,
the approach involves a tool-supported but manual concern intent specification
and a fully automated concern extent extraction.

The chapter is structured as follows. Section 5.1 presents a brief overview of the
identification process. Section 5.2 is concerned with the manual specification of
concern intents, which are used in the automatic extraction of concern skeletons de-
scribed in section 5.3. Section 5.4 discusses the selection of suitable concern seeds
for the specification of concern intents, and finally, section 5.5 introduces three con-
cern maps, particularly useful in supporting program understanding.

5.1. Overview

As already mentioned in section 3.2.4, a concern is represented at the implementa-
tion level by a concern skeleton, consisting of a concern intent and a concern extent,
and identifying the implementation of a concern amounts to determining the con-
cern extent, which corresponds to a given concern intent.

Beside the label and the set of directly contained subconcerns, a concern intent con-
sists of the sets of information sources and information sinks, collectively known as
concern seeds. The concern intent is typically specified manually by the software
engineer, but as we will see in section 5.4 the selection of concern seeds can be sup-
ported by tools.

These concern seeds act as starting points for the extraction of concern extents,
which is based on context free language reachability (Reps 97) in the concern graph.
As we will see later in this chapter, this extraction can be reduced to a number of
single-source and a number of single-target bounded flow path problems.

97



Chapter 5. Concern Identification Method

However, extracting the concern extents is only part of identifying concern skele-
tons. It may happen that the extracted concern extents for two concern skeletons
overlap, in which case their intersection will form a new concern skeleton, regarded
as a shared subconcern skeleton of the two initial concern skeletons. This also
means that the concern intents of the two initial concern skeletons must be further
refined to reflect this hierarchic decomposition.

Once identified, concern skeletons can be studied in isolation to understand the
concern implementations. In order to also support the understanding of the in-
teractions between concern skeletons, we define several abstract representations of
the system called concern maps, highlighting specific aspects of these interactions
such as: the hierarchic decomposition of concern skeletons, the data dependencies
between concern skeletons, or the dispersion of concern skeletons within the class
structure.

5.2. Specification of Concern Intents

Given the fact that the Hierarchic Concern Model was created to establish direct
traceability links between concerns and their corresponding implementations in
code, the model requires a persistent notation for the specification of concern in-
tents. And in order to achieve this, we have defined a simple language, which we
describe in the following subsection.

Because our model explicitly separates the concern intent from its extent, and be-
cause the extent of a concern is determined using an automated tool, changes to
the implementation, which do not affect the intent of the concern, such as most
code refactorings, require no manual update of the traceability links. This allows
the reuse of an existing intent specification for subsequent versions of the source
code, provided that the specified concerns did not change.

The situation is analogous to the separation between interface and implementation
in object-oriented programming, allowing clients of the interface to be oblivious to
changes in the implementation. In our case, the concern intent is equivalent to the
interface, and its extent is equivalent to the implementation.

5.2.1. The CODEX Language

The concern intent specification language was primarily designed to be readable by
humans, but also to be easily parsed by our automated concern skeleton identifica-
tion tool CODEX, described in section 6.1.

98



5.2. Specification of Concern Intents

(specification) — (header) (concerns)

(header) — namespace (name) ;

{(concerns) — {concern) | (concern) {concerns)

{(concern) — concern {identifier) { {declarations) }
(declarations) — {(declaration) | (declaration) (declarations)
(declaration) — (subconcern) | {(source) | {sink)
(subconcern) — subconcern (name) ;

(source) — source [exclude] (name) (bounds_declaration)
(sink) — sink [exclude] (name) (bounds_declaration)
(bounds_declaration) — ;| { (bounds) }

(bounds) — (bound) | (bound) (bounds)

(bound) — cut (name) ;

(name) — IDENTIFIER

Figure 5.1: Grammar of the concern intent specification language

Figure 5.1 shows the grammar of the CODEX language in EBNF (Extended Backus-
Naur Form) notation. The token IDENTIFIER should be replaced with a sequence
of alphanumeric characters, consisting of letters (both uppercase and lowercase),

digits, and the symbols ‘_’, ‘(;, ), ‘), and ‘., where the first character is either a letter
or the ‘_" symbol.

A closer look at the grammar suggests that a concern intent specification consists
of a set of concern declarations, each corresponding to a separate concern intent.
Concern declarations must have globally unique names, which is why they are de-
fined within the namespace declared in the header section of the specification, us-
ing the namespace keyword. If defined in the same namespace, subconcerns may
be referenced directly by their short name, or otherwise by their fully qualified name,
consisting of the namespace name concatenated with the symbol ‘., and the simple
name of the concern.

For each concern intent, the language allows the software engineer to declare sub-
concerns, using the subconcern keyword, information sources, using the source
keyword, and information sinks, using the sink keyword. The source and sink key-
words use the qualified unique names of the abstract locations, defined in section
4.1.

For each information source or sink, using the cut keyword, the language supports
the declaration of an optional set of bounds to be used in the determination of the

99



Chapter 5. Concern Identification Method

corresponding flow sets, as discussed in section 5.3.2.

Given the fact that a complete concern intent specification can be rather large, the
CoDEXx language supports the following shorthand rules.

* If several information sinks of a concern c flow directly to the same abstract
location v ¢ V; and v has no other incoming direct flows, instead of the in-
formation sinks, the abstract location v can be declared as an excluded infor-
mation sink of ¢. An excluded information sink is specified using the exclude
keyword, and is just a shorthand for the following set

{fueOclu—v ANAweV-0;:w— v}

e Similarly, if the same abstract location u flows directly to several information
sources of a concern ¢ and u has no other outgoing direct flows, instead of
these information sources, the abstract location u can be declared as an ex-
cluded information source of c¢. An excluded information source is specified
using the same exclude keyword, and is just a shorthand for the following set

fvelclu~v ANJdweV-—-I.:u— w}

* Aninformation sink v € O, with no outgoing direct flows, for which there is an
information source u € I, such that u ~~ v, is redundant and can be left out
from the specification, provided that this information source u or an excluded
information source flowing to u is included in the specification.

* An information source u € I with no incoming direct flows is redundant and
can be left out from the specification, provided that the concern intent specifi-
cation includes an information sink v, either excluded or not, such that u ~ v.

Note that in the last shorthand rule, the existence of an information sink v € O for
every u € I, such that u ~~ v is guaranteed by the definition of the concern notion.

5.2.2. Specification Example

Listing 5.1 shows the concern intent specification of the concerns from our running
example. As discussed in the previous section, the excluded information sources
and information sinks are used as shorthands to reduce the size of the specification.

100



© ®©® N O gk W N =

BB R B R R R R R R W W W W W W W W W W Y N NN NN NN NN e e e e e e e e e e
© 0 N GaRe W N = O © 0Nk WD = O © 0Nk WD = O © 0NN W N = O

5.2. Specification of Concern Intents

Listing 5.1: Specification of concern intents in the Persistency example

namespace codex.examples.persistency;

concern Persistency {
subconcern Reader;
subconcern Writer;
subconcern Reference;
}
concern Reader
subconcern IntReader;
subconcern StringReader;
source StorableInput.readStorable () .this;
source Storable.read(StorableInput) .this;
sink StorablelInput.readStorable () .return;
}
concern IntReader {
source StorableInput.readInt () .this;
sink StorablelInput.readInt () .return;
}
concern StringReader {
source StorableInput.readString() .this;
sink StorablelInput.readString() .return;
}
concern Writer
subconcern IntWriter;
subconcern StringWriter;
source StorableOutput.writeStorable (Storable) .this;
source StorableOutput.writeStorable (Storable) .st;
}
concern IntWriter {
source StorableOutput.writelnt (int) .this;
source StorableOutput.writelnt (int) .i;
}
concern StringWriter ({
source StorableOutput.writeString(String) .this;
source StorableOutput.writeString(String).s;
}
concern Reference {
subconcern IntReader;
subconcern IntWriter;
source StorablelInput.retrieve (int) .this;
sink StorablelInput.retrieve (int) .return;
sink StorablelInput.retrieve (int) .ref;
sink StorableInput.fMap {
cut StorableInput.readStorable() .st;
}
source StorableOutput.map (Storable) .this;
source StorableOutput.map (Storable) .return;
source StorableOutput.map (Storable) .st;
sink StorableOutput.fMap {

101



Chapter 5. Concern Identification Method

50 cut StorableOutput.writeStorable (Storable) .st;
51 }
52 }

5.3. Identification of Concern Skeletons

As already mentioned before, a concern is represented at the implementation level
by a concern skeleton, consisting of a manually specified concern intent and a con-
cern extent. The identification of concern skeletons is a fully automated process,
which uses the a concern intent specification as input, extracts the correspond-
ing concern extents, and refines the hierarchic decomposition of concern skeletons
based on the discovered overlaps between the identified concern extents.

The algorithm used to extract concern extents is based on CFL reachability in the
concern graph and is presented in detail in the following subsections.

5.3.1. CFL Reachability Formulation

As already pointed out in section 2.2, CFL-reachability is a generalization of graph
reachability, and it can be applied to a graph G, whose edges are labelled with the
symbols of a given alphabet Z. According to CFL-reachability in alabelled graph G, a
target node is considered reachable from a source node, when there is a path inside
G from source to target, such that the word obtained by concatenating in sequence
the labels of the edges along this path belongs to a context-free language L, defined
over 2.

The context free language of balanced parentheses, introduced by Reps (Reps 97;
Reps 98), can be used to compute precise context-sensitive solutions to a number
of static program analyses. In the above mentioned work, Reps also showed that
an insensitive solution to any of the above mentioned program analysis problems
can also be obtained using ordinary graph reachability. Note that ordinary graph
reachability can be defined as a special case of CFL reachability, if the context free
language is defined to be £*, where X is the alphabet used to label the arcs of the
graph.

Although context-sensitivity improves the precision of static program analyses, it is
not enough for precisely analyzing object-oriented languages. This requires both

102



5.3. Identification of Concern Skeletons

(path) — (prefix) (field) (path) | (suffix)

(prefix) — (prefix) (prefix) |); | >o | el€

(suffix) — (suffix) (suffix) | (j | <ol ele€

(field) — (realizable) (field) | (aliased) | €

(aliased) — <, (aliased) >,/ | e €

(realizable) — (matched) (realizable) | (; (realizable) | €
(matched) — (matched) (matched) | (; (matched) ); | e| e

Figure 5.2: The grammar of the context free language L

context-sensitivity and object-sensitivity. Our extraction of concern extents is both
context-sensitive and object-sensitive, and it can be formulated as a CFL reachabil-
ity problem as follows.

LetG=(V,A,s,t,Ly,La, ¢y, ¢ 4) beaconcern graph. As already discussed in chapter
4, the arcs in the concern graph encode in their labels the call and object contexts
of the two abstract locations involved in a direct flow relation. The labels represent
words in the language L 4 over the alphabet A 4, both defined in section 4.1.1.

A path p inside G is a sequence of vertices p = (vg, V1,...,Vn),n = 0 such that
(vj,viy1) € Afor 0 < i < n. Given the fact that the arcs of the concern graph are
labelled using words from L 4, by concatenating in order the labels of the arcs in p,
we obtain a word in L.

Let L c AZ be a context free language over the same alphabet A 4, defined by the
context free grammar shown in figure 5.2. The language L is an extension of the
balanced parentheses language defined in (Reps 97; Reps 98), similar to the one
presented in (Liu 08; Liu 09), which adds object-sensitivity to the already existing
context-sensitivity.

Note that the abstract locations o and o, representing the object contexts of the “en-
ter object context” and “exist object context” symbols in the production of the non-
terminal (aliased) are qualified abstract locations in a must-alias relation, meaning
that they must point to the same set of objects. For a given path p inside G, the
above mentioned abstract location o is qualified by the access path consisting of
the already encountered “enter context” symbols. The access path qualifying o’ is
unknown, but given the fact that the two qualified abstract locations must be in a
must-alias relation, this access path can be determined as shown in section 5.3.3.

Using the definition of the above language L, we can now define the notion of flow
path.

103



Chapter 5. Concern Identification Method

Definition 20 (Flow path). A flow path inside a concern graph G is a path, whose
corresponding word belongs to the context free language L.

It is clear from the above definition that the notion of flow path depends on the
concrete definition of the language L, which is why a flow path is sometimes referred
to as an L-path (Reps 97).

Because the language L ensures a context-sensitive and object-sensitive analysis of
the concern graph, the existence of a flow path from a source abstract location u € V
to a target abstract location v € V also means that there is a flow relation between
the source observable corresponding to u and the target observable corresponding
to v.

Note that using the above context free language definition, we can also simulate a
context-sensitive analysis, if we relax the condition that o and o' must be in a must-
alias relation.

Let .71 be the set of all flow paths in a concern graph G for the given context-free
language L.

Given the above definition of a flow path, a set V¢;; < V, and an abstract location
u €V —Veyr, we formulate the single-source bounded flow path problem as the
problem of identifying the set of all vertices v € V, such that exists a flow path from
u to v, containing none of the vertices in V;;;. The solution to this problem is the
closed forward flow set, written f].: (u, Veur), and defined as follows:

fi(u,cht) = {veV |3y, vi,...,Vn)€EF,n=0:u=vy A V="1p

N Vi€ Veur,0<i<n}

Intuitively, the closed forward flow set represents the set of all abstract locations
reachable through a flow relation from a given source abstract location u, for which
there is at least one flow path from u, which contains no other abstract locations
from Viy;.

Note that in the general case fL'* (u, Veyr) is not equivalent to the set
A
Ve, Veur) =fveViu~v AN Bwe Veyr:u~ w Aw~ v}

as one might expect, because the above set requires all paths from u to v to contain
no other abstract locations from V;;; and not just one of them.

104



5.3. Identification of Concern Skeletons

The simplest example, for which fL'* (u, Veyr) and Vf( u, Veyup) are different, is a con-
A
cern graph containing a cycle between an abstract location vy € f].:* (u, Veyt) and an
A

abstract location v2 € V¢y¢. If such a cycle exists, we have

vi~>U2 N U2~

Since v] € fi* (u, Veur), we have u ~ v1, and because vo € Vi and v ~~ vy, we
A
conclude that v; ¢ Ve, Veur).

In a similar fashion, we formulate the single-target bounded flow path problem as
the problem of identifying the set of all vertices v € V, such that exists a flow path
from v to u, containing none of the vertices in V. The solution to this problem is
the closed backward flow set, written bi(u, Veur), and defined as follows:

by (u,Veyy) = {weV|3(vo,vi,.,vp) €F,nz0u=v, A V=1g

AN v Veyur,0<i<n}

Intuitively, the closed backward flow set represents the set of all abstract locations
flowing to a given target abstract location u, for which there is at least one flow path
to u, which contains no other abstract locations in V.

Note that in the general case bi* (u, Veyr) is not equivalent to the set
A

Vp(u, Veur) ={veV]iv~unNBweVeyr: v~ w Aw~ u}

as one might expect, because the above set requires all paths from v to u to contain
no other abstract locations from V;y;; and not just one of them. The proof of this
statement is based on the same reasoning as the one used in the previous statement.

Note that because u ¢ V., and because a flow path may also consist of a single
node, both the closed forward flow and closed backward flow sets contain the ab-
stract location u. As we will see in the following section, it is sometimes useful to
have the forward flow and backward flow sets without the abstract location u, for
which case we introduce the additional open forward flow set, written fl‘j (u, Veur),
and the additional open backward flow set, written bi(u, Veur). These sets are de-
fined as follows:

105



Chapter 5. Concern Identification Method

ff(u, Veut) f]:(u, Veur) —{u}

bZ(u» Veur) = bz(u, Veur) — {u}

A particular case of the closed backward flow set is the so called closed object context
flow set, written xi(u, Veur). This set is defined in the same way as the closed back-
ward flow set, but using a subgraph G’ of the original concern graph G, obtained
from G by eliminating all data dependency relations. Given the fact that G’ is a sub-
graph of G, the closed object context flow set xi(u, Veur) is a subset of the closed
backward flow set bi(u, Veut).

Intuitively, the closed object context flow set represents the set of all abstract loca-
tions whose values are assigned directly or indirectly to a given target abstract loca-
tion u, for which there is at least one flow path to u in G’, which contains no other
abstract locations in V.

The open object context flow set xi(u, Veur) is defined in a similar fashion as the
open backward flow set:

xp(, Veur) = x7 (U, Veur) — {u}

Armed with these definitions, we are now ready to give a formal delimitation for
concern extents.

5.3.2. Concern Extent Delimitation

In section 3.2.4, we defined a concern extent as a data-oriented abstraction of the
concern implementation, consisting of a set of abstract locations V; and the restric-
tion of the flow relation ~~ to this set. However, we did not provide a formal criterion
to delimit the set V;, but we do so in the following.

Let ¢! = (¢, Sf;"”, I¢, O¢) be a concern intent, and ¢®*? = (V;, ~) its corresponding
concern extent. By definition, the set V; consists of all the abstract locations used in
the implementation of concern c¢. And since a concern represents the functionality
needed to produce its outputs, as pointed out in section 3.2, the set V; was defined
intuitively in section 3.2.4 as the set of all abstract locations flowing to at least one of

106



5.3. Identification of Concern Skeletons

the information sinks of ¢, without first flowing to an information source. In formal
terms, this translates to the following:

Ve= U b} (w L)

ueO,

Intuitively, this means that a concern extent consists of all the abstract locations of
all the bounded flow paths to all information sinks of a concern intent ¢’ and that
these paths are bounded by the set of information sources of ¢!,

Lemma3. Given aconcern intentci™t = o, Sém, I¢, O¢) and its corresponding extent

ext _

¢t = (Vi,~¢), the following property holds

U fi(u) OC) c VC'

uel;

Proof. In order to prove this lemma, we need to show that V(vg, vy, ..., vy) € %1, n =
O:vgels A vj¢Oc0<i<n,wehave v, e V.

Because the concern intent c!™ is the image of a concern c¢ through the traceability
function T, the sets I, and O, satisfy the same properties as the sets ., and ¥,
from the definition of the concern notion, including the property that Vu e I;,3v €
O¢ : u~> v. This means that A(vg, v1,...,vp) € F,n=0:v9 =uU A vy = v, Or in
other words u € bz(v, I.). If we combine this result with the formal definition of V,
we conclude that ue I, > ue V.

Let (vg, v1,..., Un) € Z1,n =0 be a flow path such that vg € I A v; ¢ Oc,0< i< n. If
we use our previous result, we also have vg € V. If n = 0, this means that v, € V.
The case where n > 0 will be proven by reducing it to the absurd.

For n > 0, we consider vy, ¢ V.. But since vy € V,, without loosing generality, we
can assume that 3k : 0 < k < n such that vy, vy, ..., Vg € Ve and vjqq, Vgyoy oo Un & Ve.
Because vy, ¢ V¢, this means that vy, ; belongs to a different concern implemen-
tation. Given the fact that v; € Vo A v — vp41, based on the definitions of con-
cern output and information sink, we conclude that v;. is an information sink. This
means that vy € O, which contradicts our hypothesis that vy ¢ V.

If we combine all the statements from above, we get V(vg,v1,...,Un) € 1, n=0:
Vo€l Nv;¢0;0<i<n=>vnpeV. O

The formal definition of V, assumes the sets I and O, to be specified by the user,
as part of the concern intent specification. However, as pointed out in section 5.2.1,

107



Chapter 5. Concern Identification Method

such a specification can be rather large, which is why the concern intent specifica-
tion language defined in the same section supports a number of shorthands. As a
consequence of these shorthands, the specification does not define for each con-
cern intent the complete sets I and O,. Instead, it defines only subsets of I, and
O¢, for which we use the notations I é and Oé respectively. In addition to these sets,
a concern intent specification may also define for each concern intent, a set of ex-
cluded information sources I} and a set of excluded information sinks O}.

Furthermore, for each abstract location u representing an information source or a
sink, the CODEX language supports the definition of an optional set of bounds to be
used in the determination of the corresponding flow sets. To represent these sets,
we use the notations O% _ for the set of bounds specified for the information source

cut
u,and I é‘u ¢ for the set of bounds specified for the information sink u.

Because the previous lemma guarantees, that a forward flow set, originating in an
information source u € I, is always a subset of V¢, if its specified set of bounds
contains all abstract locations v € O, reachable from u, using the the above sets I},

Oé, 17, 0%, 1Y, ., and OY , we can now redefine the set V; as follows:
Ve = (Ubwiiurruid,) v U bywIlluIfull,)
ueOl ueOf
u U fwoiuofuog,) v U ffw0Lu0fuog,))
uell uery

This last definition of V is used for the automatic extraction of concern extents.

5.3.3. Concern Extent Extraction Algorithm

As shown in the previous section, the set of abstract locations of a concern extent
Ve is essentially a union of forward and backward flow sets, which can be calculated
using the algorithm described below. The presentation of the algorithm focuses only
on the extraction of forward flow sets, because the extraction of backward flow sets
exhibits only minor differences, which we discuss at the end of this section.

The algorithm to extract a forward flow set fL'(u, Veur) is based on a context-
sensitive and object-sensitive depth-first traversal of the concern graph, starting
from the abstract location u. The abstract locations from V,y; act as cutting points
for this traversal, meaning that the depth-first traversal of the currently visited flow
path stops, when one of these abstract locations is encountered.

108



5.3. Identification of Concern Skeletons

The algorithm maintains a call context stack, in order to match the encountered
“enter call context” to corresponding “exit call context” symbols, and thus achieve
context-sensitivity. This is shown by the production of the non-terminal (matched)
in the grammar of the context free language L depicted in figure 5.2. Note that the
definition of the language L requires that an “exist call context” always matches and
empty call context stack, as shown by the production of the non-terminal (prefix) in
the same grammar.

The handling of object contexts is somewhat more complicated. As already sug-
gested, an “enter object context” symbol is matched by a corresponding “exit object
context” symbol, if their corresponding abstract locations o and o/, from the pro-
duction of the non-terminal (aliased) in the above mentioned grammar, point to
the same set of objects. A closer look at the grammar in figure 5.2 also suggests, that
the call context stack must be emptied, when an “enter object context” symbol is
encountered, in order to allow the propagation of the side-effects of a setter method
to a corresponding getter method.

The set of objects an abstract location points to is called the points-to set of the
abstract location, and calculating it is not a trivial problem. In the general case it
cannot be solved using purely static program analysis methods, but it can be ap-
proximated reasonably well.

Given the fact that pointer analysis can also be reduced to a CFL reachability prob-
lem, we can use the same flow set extraction algorithm, to determine the set of as-
signment roots for the abstract location o, defined as below:

Ro) = {uex;(0,@)|Vvex;(o,@):u~ v}

Note that in the definition of R(0), we use the object context flow set xi(o, @), which
means that our flow set extraction algorithm must be parameterized to support the
exclusion of direct dependency relations from the depth-first traversal of the con-
cern graph. This slightly modified algorithm for extracting object context flow sets
is briefly discussed at the end of this section.

Also note that because the abstract location o is qualified by the access path con-
sisting of the already encountered call and object context symbols of the visited flow
path, we start the object context flow extraction algorithm with an initial call context
stack containing the matching “exit call context” symbols for the “enter call context”
symbols found on the stack when the abstract location o was reached. This way,

109



Chapter 5. Concern Identification Method

we can make sure that the algorithm will determine only the set of valid assignment
roots Ry (o) for the qualified abstract location o.

Intuitively, the set Ry (0) contains the abstract locations, representing the objects
whose values are potentially assigned directly or indirectly to the qualified abstract
location o, and thus approximates the points-to set of the qualified abstract location
0.

Let .#1 (0) be the set of visited flow paths corresponding to the above defined set
Ry (0). Each of these flow paths corresponds to a valid access path for o, and be-
cause our algorithm considers all valid access paths for o, the above mentioned flow
paths are also the only valid ones. This means that all other flow paths from the
assignment roots Ry (o) to o are invalid. Such invalid flow paths may indeed exist,
because between any given two abstract locations in the concern graph, there might
be several alternative flow paths, corresponding to different access paths.

Once determined, the set of valid assignment roots Ry (0) for the qualified abstract
location o is also used to determine all flow paths from these assignment roots to the
abstract location o’. For each visited flow path from an assignment root, when the
depth-first traversal reaches the vertex o/, the sequence of already encountered call
and object context symbols represent a valid access path, qualifying o’. Given the
fact that our algorithm considers all valid access paths for ¢, their corresponding
flow paths are also the only valid ones, and all other flow paths from the assignment
roots Ry (0) to o’ are invalid. We use the notation .% (0') to refer to the set of valid
flow paths to o'.

The above defined sets of valid flow paths .% (0) and .%[ (0") can be used to deter-
mine a set of invalid “call context” and “object context” symbols for the pair of object
context abstract locations o and o/, called filtered contexts, and defined as the union
of the set of all “context” symbols from all incoming flow paths from the assignment
roots to o not contained in .%7 (0), and the set of all “context” symbols from all in-
coming flow paths to o’ not contained in .% (0'). Let Q (o, 0') be the set of filtered
contexts. In formal terms this set can be defined as follows:

{0eAy|Avg,v1,...,vp) € F—F1(0),n=0:0=vy
=<i< n,3€1,€26L22€A((W, Vig1) =010 05}
{0eAy|Avg,v1,..., Un) eﬁLZ —Z1(0),n=0:0 =vy

Qy(0,0")

> C >

=<i< n,3€1,€26L22[A((Ui, Vig1)=401-0-02}

110



5.3. Identification of Concern Skeletons

The set Q f(o, 0') is then used in the extraction of the forward flow set fL' (u, Veur)
to filter all arcs, whose labels contain a “context” symbol matching any of the con-
tained “context” symbols. This filtering ensures that the depth-first traversal will
visit only the flow paths, for which the qualified abstract locations o and o’ are in a
must-alias relation.

In order to better explain the handling of object contexts, let us consider the example
in listing 5.2. Furthermore, let us assume we are interested in the forward flow set

I (q1,9).

Listing 5.2: Object context handling example

class Product {
private String name;
private double price;
public Product (String n, double p) {
name = n;
price = p;
}
public double getPrice () {
return price;
}
}
class ProductInventory {
private Product product;
private int quantity;
public ProductInventory (Product prod, int g) {
product = prod;
quantity = qgj;
}
public double getStockValue () {
return quantity x product.getPrice();
}
public static void main() {
double pl = 0.15, p2 = 0.20;
int g1 = 5, g2 = 7;
Product prodl = new Product ("apple", pl);
Product prod2 = new Product ("orange", p2);
double vl = new ProductInventory (prodl, gl) .getStockValue();
double v2 = new ProductInventory (prod2, g2) .getStockValue();

© o N O g W N -

WO NN NN NN NN e e e e e e e e e e
S © ® N G RWN = O © ® N as WD~ O
—
—

111



Chapter 5. Concern Identification Method

{L}main().q1:int : {L}main().g2:int
e(s T ol 1

A A
{P}Productinventory(Product,int).q:int

l e<Productlnventory(Product,int).this

{F}Productinventory.quantity:int

>getStockVaIue().thise
{R}getStockValue().return:double
| AL e i

I
{Lymain().v1:double | 1 | {Lymain().v2:double
|

{T¥main().new_1:Productinventory| |{T}main().new_2:Productinventory

e e
v (5 v (7

{P}Productinventory(Product,int).this:Productinventory

I NG

{P}getStockValue().this:Productinventory

Figure 5.3: Object context handling example

Figure 5.3 shows the section of the extracted concern graph relevant for our ex-
ample. The dotted-line encloses the vertices of the desired forward flow set
fimain () .ql,9).

A careful analysis of the example reveals that the local value abstract loca-
tion main () .gl flows to the non-static field quantity of class Product-
Inventory. This field is accessed using the object context abstract location
ProductInventory (Product, int) .this for writing and using the object
context abstract location getStockValue () .this for reading. Furthermore,
the above mentioned field flows to both local abstract locations main () .v1
and main () .v2, but given the fact that the object context abstract location
ProductInventory (Product, int) .this is qualified by the access path
(5, our algorithm will correctly determine the set of valid assignment roots

112



5.3. Identification of Concern Skeletons

Ry(ProductInventory (Product, int) .this) for this qualified abstract lo-
cation to contain only the object creation abstract location main () .new_1. This
will result in the following Q set:

Qf(ProductInventory (Product, int) .this,
getStockValue () .this) = {(7,)7,(6}

This ensures that the arc from get StockValue () .returntomain () .v2 will
be filtered, because its label contains the “exit call context” )¢ matching the “enter
call context” (g contained in Q I3 and thus only the correct local value abstract loca-
tionmain () .v1 will be included in the forward flow set.

Note that, in the general case, the concern graph may contain cycles between ab-
stract locations, either as a result of loops or as a result of recursive method calls, in
which case a simple depth-first traversal would never terminate. In order to cope
with such situations, our algorithm allows an arc to be visited multiple times only
if the last encountered “enter call context” symbol of the currently investigated flow
path is distinct. This basically means that a cycle in the concern graph will be visited
at most once and thus avoid an endless loop in the depth-first traversal.

Algorithm 1 shows a pseudocode listing of the forward flow set extraction algorithm,
described above.

Algorithm 1: Extraction of the forward flow set

function FORWARDFLOWSET (1, Voy1)
return FORWARDFLOWPATHS (u,“e”, Veyt,®,False)
end function

function FORWARDPATHS(v,ctxt,Veyy,Q f,contextPath)
path — {v}
forall (v, w) € Ado
if contextPath A (v, w) has data dependency type then
skip (v, w)
else if (v, w) was not visited for ctxt then
mark (v, w) as visited for ctxt
if w¢ Veyr then
label — ¢ 4 (v, w)
i—0
while /abel has more symbols do
symbol — labelli]

113



Chapter 5. Concern Identification Method

i—i+l
if symbol does not match any of the symbols in Q¢ then
if symbol is enter call context then
push label on callContextStack
path— pathu FORWARDPATHS(w,label,ch,Qf,contextPath)
else if symbol is exit call context then
if symbol matches top of callContextStack then
remove top of callContextStack
ctxt—"“e”
if callContextStack is not empty then
ctxt —topof callContextStack
end if
path — pathu FORWARDPATHS (w,ctxt,Veur,Q r,contextPath)
end if
else if symbol is enter object context then
0 — object context encoded in symbol
visitedPath — VISITEDFLOWPATHS(0,callContextStack)
Ry — ASSIGNMENTROOTS(0,visitedPath)
push oon objectContextStack
push contextPath on contextPathsStack
push Ry, on rootsStack
clear callContextStack
path — pathu FORWARDPATHS (w,ctxt,Veur,Q r,contextPath)
else if symbol is exit object context then
o' — object context encoded in symbol
pop o from objectContextStack
pop contextPath from contextPathsStack
pop Ry from rootsStack
Q¢ — FILTERCONTEXTS(0,0',contextPath,Ry)
path— pathu FORWARDPATHS(w,ctxt,ch;,Qf,contextPath)
else
path — pathu FORWARDPATHS (w,ctxt,Veur,Q r,contextPath)
end if
end if
end while
end if
mark (v, w) as not visited for ctxt
end if
end for
return path
end function

function VISITEDFLOWPATHS(0,cStack)
initialize callContextStack with matching call contexts of the ones in cStack

“«_»

ctxt—"“e
if callContextStack is not empty then
ctxt — top of callContextStack
end if
path — BACKWARDPATHS(o,ctxt,®,8,Tr ue)
return path
end function

114



5.3. Identification of Concern Skeletons

function ASSIGNMENTROOTS(o,visitedPath)
roots — visitedPath
forall ue visitedPath do
forall ve visitedPath—{u} do
if 7 (u ~~ v) then
roots —roots—{u}
end if
end for
end for
return roots
end function

function FILTERCONTEXTS (0,0’ ,visitedPath,Ry)
rootPaths — ¢
forall ue R, do
rootPaths «— rootPathsu FORWARDPATHS (u,“e”,@,8,True)
end for
path — rootPathsn BACKWARDPATHS(0,“e”,@,9,True)
path— path—visitedPath
tmpPath — BACKWARDPATHS(0',“e”,@,8,Tr ue)
tmpPath — tmpPath—rootPaths
path — pathutmpPath
filteredContexts — @
forall (u,v)e A:u,ve pathdo
label — ¢ 4(u,v)
i—0
while /abel has more symbols do
symbol — labelli]
i—i+1
if symbol is not “e” then
filteredContexts — filteredContextsuU{symbol}
end if
end while
end for
return filteredContexts
end function

Note that because our algorithm calculates points-to information on demand, it is
able to calculate context-sensitive and object-sensitive points-to information. This
makes our algorithm very expensive. Its complexity is basically exponential, be-
cause processing any “object context” symbol triggers the recursive extraction of
its corresponding object context flow set. Because of this, the algorithm as pre-
sented is unlikely to scale well for large software systems, which is why we mod-
ified it to calculate an approximation of the desired flow set. The modification,
inspired by the object-sensitivity parameterization introduced by Milanova et al.



Chapter 5. Concern Identification Method

(Milanova 02; Milanova 05), is based on the observation that if we ignore all “object
context” symbols, we end up with a context-sensitive algorithm.

The precision of this approximation can be tuned by the user by specifying a preci-
sion factor, representing the maximum allowed depth of recursion when extracting
object context flow sets. A precision factor of 0 results in a pure context-sensitive
algorithm, while a depth of %, where n is the number of arcs containing “object
context” symbols, results in a full context and object-sensitive algorithm. All other
values in between result in increasingly accurate approximations of the desired flow
set. Of particular interest is the precision factor 1, because it results in a context
and object-sensitive flow set extraction, that uses context-sensitive points-to infor-
mation, whose complexity is polynomial. Note that the precision factor essentially
controls the complexity of the flow set extraction algorithm.

As already mentioned, the algorithm used to extract a backward flow set is very sim-
ilar to the one used to extract a forward flow set. The only differences are that it
traverses the arcs of the concern graph in opposite direction (from target to source)
and reverses the handling of “enter context” and “exit context” symbols. Note that
this reverse handling of “enter context” and “exit context” symbols also means that
the context free language L, defined in section 5.3.1, must have its “enter context”
and “exit context” symbols reversed.

And finally, the algorithm for extracting object context flow sets is virtually identical
to the one for extracting backward flow sets, but it only traverses arcs corresponding
to dataflow and inheritance relations between abstract locations.

5.3.4. Hierarchic Concern Decomposition

The extraction of concern extents, described in the previous section, does not guar-
antee that two concern extents, corresponding to different concern intents, are al-
ways disjoint. It may in fact happen that two such concern extents overlap, meaning
that they share a subset of their respective abstract locations.

The Hierarchic Concern Model, introduced in chapter 3, was explicitly designed to
deal with such overlaps by regarding the intersection of two concern extents as a
separate concern extent representing a common shared subconcern of the overlap-
ping concerns. And given the fact that a concern skeleton is an abstract represen-
tation of a concern at the implementation level, consisting of a concern intent and
the corresponding concern extent, the extraction of a common shared subconcern
requires a refinement of the concern intents of the overlapping concern skeletons.

116



5.3. Identification of Concern Skeletons

Fortunately, this refinement can be largely automated, using the iterative algorithm
described below, and results in a hierarchic decomposition of the concern skeletons.
Human intervention is only required for understanding the extracted subconcerns
within the given domain context and for assigning meaningful names to them.

The algorithm takes as input a list of possibly non-disjoint concern skeletons and
produces a list of disjoint concern skeletons. The algorithm starts with an empty
output list and populates it in 7 iterations, where 7 is the number of concern skele-
tons in the input list. In each iteration, a concern skeleton from the input list is taken
and its concern extent intersected in turn with the concern extents of every concern
skeleton already in the output list. For every non-empty intersection set V, a new
concern skeleton (¢!”*?, c®*?) is created having this intersection set as the set of ab-
stract locations used in its implementation. The sets I and O in the concern intent
of the newly created concern skeleton are determined based on the sets of abstract
locations V, and V¢, of the overlapping concern extents as follows:

Ic

{VEVC|3u€(VCIUVCZ)—VC:u—’U}

Oc {U€VC|HWE(VC1UVCZ)_VC:U_)w}

The intersection set V is then subtracted from both V¢, and V,,, while the newly
created concern skeleton is added to the list of subconcerns of the overlapping con-
cern skeletons. After all the intersections for a given input concern skeleton have
been processed as described above, the updated input concern skeleton is also
added to the output list.

Listing 5.3: Overlapping concern extents example: initial concern intent specifica-
tion

concern AppleStockValue ({

sink ProductInventory.main() .v1l;
}
concern OrangeStockValue {

sink ProductInventory.main() .v2;

}

D O W N =

117



Chapter 5. Concern Identification Method

{L}main().q1:int | |{L}main().p1:double {L}main().v1:double

Fr—————————=== v EL—————-=-- - —————————= - — 1+ =

{P}Product(String,double).p:double

ve(S "e<Product(String,double).this
{P}Productinventory(Product,int).q:int| | {F}Product.price:double
A
1 le<Productlnventory(Product,int).this l>getPrice().thise

> . e e
8(7 v getStockValue().this \ )1

{R}getStockValue().return:double

|
I
1
I
1
1
1
: 1
HE |
{F}Productinventory.quantity:int| |{R}getPrice().return:double .
|
|
I
1
I
1
|
1
1
1

T T T T T T T e S ——]

Figure 5.4: Overlapping concern extents

Note that because the concern skeletons in the output list are disjoint the intersec-
tion sets determined for a given input concern skeleton are also guaranteed to be
disjoint, meaning that after each iteration the output list is guaranteed to contain
only disjoint concern skeletons.

Let us consider our previous example from listing 5.2, and use the initial concern
intent specification shown in listing 5.3.

After running the concern extent extraction algorithm, described in the previous
section, we end up with two overlapping concern extents, as shown in figure 5.4.
The grayed vertices in the figure represent the abstract locations shared by the two
overlapping concern extents.

By applying the above described iterative algorithm, we obtain a hierarchic decom-
position of the concern skeletons, reflected by the concern intents shown in listing
5.4.

118



5.4. Selection of Concern Seeds

Listing 5.4: Overlapping concern extents example: hierarchic decomposition of the
identified concern skeletons

concern AppleStockValue ({
subconcern StockValueCalculation;
sink ProductInventory.main() .v1l;
}
concern OrangeStockValue {
subconcern StockValueCalculation;
sink ProductInventory.main() .v2;
}
concern StockValueCalculation {
source Product.Product (String, double) .p;
11 source ProductInventory.ProductInventory (Product,int) .qg;
12 sink ProductInventory.getStockValue () .return;
13 }

© ® N s WY

—
(=}

Note that the name of the StockValueCalculation subconcern was assigned
by hand rather than being derived automatically. However, given the fact that names
in general incorporate semantic knowledge, it is neither possible nor desirable to
generate them automatically. Our approach is to generate temporary names (place-
holders), which the user can change afterwards.

5.4. Selection of Concern Seeds

As shown in section 2.1, a concern seed is defined in the literature as a well-chosen
program element, used as a starting point for concern identification, In the case of
the Hierarchic Concern Model, defined in chapter 3, this definition translates to an
abstract location, representing either an information source or an information sink
of the corresponding concern intent.

In section 5.2 we discussed the manual specification of concern intents using the
CoDEX language, but we did not discuss any selection criteria for concern seeds.
Although in theory any arbitrary set of abstract locations can serve as concern seeds
for the identification of a concern skeleton, this is not the case in practice, because
a concern represents a self-contained collection of functional requirements. The
concern seeds of a concern are semantically related and as a result not entirely in-
dependent, which means that it is possible to define heuristic rules to filter unlikely
candidate seeds.

119



Chapter 5. Concern Identification Method

The selection of suitable concern seeds is not a trivial task and it involves seman-
tic knowledge about what the system does, but not about how it does it. Given the
fact that semantics is involved, we do not believe that this activity can be fully auto-
mated, but it can be greatly supported by appropriate filtering techniques.

As we have seen in chapter 2, there are many techniques for identifying candidate
concern seeds, based on a very broad spectrum of heuristic rules, ranging from lex-
ical and type-based similarity to various software metrics. The following subsec-
tions discuss two additional techniques, especially designed to exploit the particu-
larities of the Hierarchic Concern Model, which can be used to significantly reduce
the search space for suitable concern seeds.

The first technique focuses on the concern graph as a whole and tries to filter out un-
likely concern seed candidates, whereas the second technique is used to iteratively
refine and augment an initial set of concern seeds.

5.4.1. Reduced Concern Graph

The reduced concern graph is a flow-equivalent subgraph of the original concern
graph, which filters out a large number of abstract locations, considered unlikely
concern seed candidates based on a set of heuristics we present below. As seen in
section 4.4.1, when constructing a flow-equivalent concern graph, eliminating a ver-
tex from the original concern graph is equivalent to short-circuiting the vertex. This
means that the integrity of the flow relation between abstract locations is preserved,
thus allowing software engineers to explore the flow paths and understand the de-
pendencies between abstract locations. The filtering of abstract locations is done
using the four filters presented below.

In order to achieve an even greater filtering effect, several filters can be chained
together, but it is important to understand that the order, in which the filters are
chained, may impact the outcome of the filtering. As a result, in order to avoid
any unintended interference between them, the chaining order must be the order
in which they are presented below.

The first filter, called the isolation filter, eliminates isolated abstract locations, that
is abstract locations with no incident arcs in the concern graph. Although rare, iso-
lated abstract locations can occur in the concern graph, if they are only assigned
constant values (literal values) and their value is never used in the analyzed source
code. Such cases can be safely ignored, because they provide no interesting candi-
date concern seeds.

120



5.4. Selection of Concern Seeds

The isolation filter must be applied first, because applying the other filters may re-
sult in additional isolated abstract locations, which would then be erroneously fil-
tered by this filter.

The second filter, called the polymorphism filter, is intended to filter the formal pa-
rameters, return value and object context abstract locations of all overriding meth-
ods, which are not called directly in the code. The polymorphism filter is based on
the following heuristic rule:

Heuristic rule 2. An abstract location representing a formal parameter, return value
or object context of an overriding method belongs to the same functional concern as
the corresponding abstract location of the overridden method.

The heuristic rule can be justified using the Liskov Substitution Principle
(Martin 96b), stating that: “subtypes must be substitutable for their base type”, or,
in other words, subtypes should fulfil the same roles as the substituted base type. If
we consider a single method hierarchy, this principle states that all overriding meth-
ods should be substitutable for their corresponding overridden method, or, in other
words, they should fulfil the same roles as the substituted overridden method.

In the above definition of the polymorphism filter, we explicitly stated that an ab-
stract location can be eliminated by this filter, only if the defining method is not
called directly. The condition is necessary in order to guarantee that for all flow
paths from the original concern graph, containing a formal parameter, return value
or object context defined in a given method hierarchy, there is a corresponding flow
path in the reduced concern graph, containing at least one of the above mentioned
abstract locations of the method hierarchy in question.

If the source code of a given software system was developed following the principle
“program to an interface” (Gamma 95), there should be no direct calls to overriding
methods, meaning that the reduced concern graph will contain only the formal pa-
rameters, return value and object context abstract locations of the root methods of
a method hierarchy.!

The third filter is the local scope filter. Its purpose is to short-circuit and eliminate
abstract locations with local scope, having both incoming and outgoing arcs. This
filter only affects local value abstract location and is based on the following heuristic
rule:

Heuristic rule 3. Local value abstract locations with both incoming and outgoing
arcs represent unlikely concern seed candidates.

IDue to multiple interface inheritance, in the general case the shape of the method hierarchy is not a tree,
but a direct acyclic graph, having several different root nodes.

121



Chapter 5. Concern Identification Method

The above rule can be justified by the fact that information sources and sinks store
the important input values and results of a concern, and as a result must be easily
accessible. Given the fact that local value abstract locations are allocated on the
stack frame of the called method, they are created when the control-flow enters
the method at the earliest, and are destroyed when the control-flow returns from
the method at the latest. They are meant to store short-lived intermediate values.
Because local value abstract locations have local scope, they cannot be assigned a
value from outside the method and their values are inevitably lost when the execu-
tion of the method ends, unless transfered in time to other abstract locations with a
wider scope and longer life span.

Note that object creation abstract locations also have local scope, but they have no
incoming arcs, which is why they are not eliminated by this filter. Formal param-
eters and object context abstract locations have local scope when it comes to read
operations, but a broader scope depending on the visibility of the method when it
comes to write operations, meaning that their value can be written from call sites
outside the method. In a similar fashion, return value abstract locations have local
scope when it comes to write operations, but a broader scope depending on the vis-
ibility of the method when it comes to read operations, meaning that their value can
be read from call sites outside the method. Exception parameters are similar to for-
mal parameters, but their scope with respect to write operations is not determined
by the visibility of the method containing them, but rather is limited to the a set of
methods called directly or indirectly by the containing method. And finally, class
fields always have at least class scope for both read and write operations, meaning
that their value can be read and written at least from anywhere inside that particular
class.

Because the polymorphism and the local scope filters target different types of ab-
stract locations, the two filters are confluent, meaning that they can be applied in
any order without changing their combined outcome.

The last filter, called the post-dominance filter, has a rather aggressive filtering strat-
egy and can only be used when looking for information sinks. The filter essen-
tially eliminates all post-dominated vertices of the concern graph. Post-dominance
analysis is a well-known technique from compiler construction, primarily used in
the implementation of various compiler optimizations. The analysis computes the
post-dominance relation between the vertices of a flow-graph, which in the case of
our concern graph is defined as follows:

Definition 21. Let G = (V, A,s,t,Ly,La,¢v,¢ o) be a concern graph, and u,v € V
two abstract locations. The abstract location u is said to be post-dominated by the

122



abstract location v, iff

5.4. Selection of Concern Seeds

u~v AN AweV:u~w A (W~ 1)

The post-dominance filter is based on the following heuristic rule:

Heuristic rule 4. Post-dominated abstract locations represent unlikely information
sink candidates.

The justification for the above rule resides in the fact that an information sink usu-
ally stores an important result of the concern, which usually represents an output of
the system or a widely used intermediate value.

In order to show the combined effect of the above defined filters, let us consider the
example in listing 5.5.

© o N O s W -

e e e e i <
X N o g W Ny = O

Listing 5.5: Reduced concern graph example

public class Employee {
protected double baseSalary;
public double getSalary () {
return baseSalary;
}
}
public class Broker extends Employee {
public static double MaxPercent = 0.02;
private double percentage;
private double[] sales;
public double getSalary () {
double amount = baseSalary;
for (int i=0; i<sales.length; i++) {
amount += sales[i] * percentage;
}
return amount;

}

Figure 5.5 shows both the initial concern graph for the example in listing 5.5, as well
as its corresponding reduced concern graph. The grayed boxes in the figure rep-
resent the filtered abstract location. The isolation filter eliminated the static field

123



Chapter 5. Concern Identification Method

| {F}Broker.MaxPercent:double | —>| {F}Broker.sales:double[] |
A

e<sa|es >salese

| {L}Broker.getSalary().i:int I I {F}double[].data:double |
>

salese

| {F}Broker.percentage:double | |{F}Employee baseSaIary:doubIel

thlse thlse

4>| {L}Broker getSaIary() amount: double |
| {O}Employee.getSalary().this:Employee |

this€®

A
ee | {R}Broker.getSalary().return:double |
ee

A A Y
|{O}Broker.getSaIary().this:Brokerl |{R}Employee.getSaIary().return:double

| {L)Broker.getSalary().isint |—>| {F}Brokersales double]] |

eeeeee

saleseeeee >salese
| {R}Employee. getSaIary() return:double |<—| {F}double[].data:double |

| {O}Employee.getSalary().this:Employee |

Figure 5.5: Reduced concern graph example

Broker.MaxPercent, while the polymorphism filter eliminated the object con-
text and the return value abstract locations from method Broker.getSalary ().
The local scope filter eliminated the local value abstract location amount from the
same method, and finally, the post-dominance filter eliminated the fields Bro—
ker.percentage and Employee.baseSalary.

Given the fact that the reduced concern graph is a flow-equivalent concern sub-
graph, the label of an arc, representing an indirect flow relation in the original con-
cern graph, is obtained by concatenating in order the labels of the arcs in the cor-
responding path of the original concern graph. The reduced concern graph from
our example contains two such arcs, both having as target the return value abstract

124



5.4. Selection of Concern Seeds

location of method Employee.getSalary ().

Itis important to note that all the filters described above are based on heuristic rules,
which means that they may accidentally filter some of the potential concern seeds.
However, if the filters are chained in the order mentioned above, the resulting re-
duced concern graph will contain at least one abstract location, for each filtered
concern seed, such that the filtered concern seed belongs to either the forward flow
set or the backward flow set of that abstract location.

This observation is significant because it means that we can use the reduced con-
cern graph to identify initial sets of concern seeds for each concern, and then refine
and augment these sets using the technique, described in the following section.

5.4.2. Growing Flow Sets

The growing flow sets technique is used to iteratively refine and augment an initial
set of concern seeds, typically identified directly in the reduced concern graph. It is
not meant to replace the reduced concern graph, but rather to complement it.

Being based on the flow set extraction algorithm, presented in section 5.3.3, the
growing flow sets algorithm uses a set of concern seeds V; of the same type (either
information sources or information sinks), called the current seed set. In each iter-
ation, it extracts flow sets for each concern seed in this set, and replaces the current
seed set with the set of abstract locations terminating the extracted flow paths. Con-
cretely, if the current seed set contains information sinks, it extracts backward flow
sets for each of these seeds and replaces the current seed set with the following set:

Vi = {ue [ by Vsrd) IYwe (U by(v, Vsre): u~ w)
veVs veVs
where Vi, is the set of already discovered candidate information sources.

If, however, the current seed set contains information sources, it extracts forward
flow sets for each of these seeds and replaces the current seed set with the following
set:

Vi = we U Vg I Ywe | f10 Vi)t w~ u}
veVs veVs

125



Chapter 5. Concern Identification Method

where V1 is the set of already discovered candidate information sinks.

The newly discovered concern seeds are added to their corresponding set V¢ or
Vsnk» and the process continues with the next iteration, until no new candidate con-
cern seeds are discovered.

Initially, the sets Vs, and Vg, contain respectively the information sources and
information sinks from the initial set of concern seeds. Because the initial set of
concern seeds must contain at least a concern seed, Vg and Vg, cannot be both
empty at the same time, so the non-empty one can be used to initialize the current
seed set. If both Vg, and Vg, are not empty, we need to apply the above described
algorithm twice, using each of these sets as initial current seed set.

The algorithm maintains a list of all abstract locations from all visited flow paths,
which allows the software engineer to focus on a subset of the concern graph, repre-
sented by all the flow paths from the candidate information sources to the candidate
information sinks, and enhance the initial set of concern seeds.

5.5. Concern Maps

As we have seen so far, using the approach described in this work and starting from
an initial manual specification of concern intents, we can automatically identify the
corresponding concern skeletons. And given the fact that the concern intent part of
a concern skeleton explicitly defines the information sources and sinks, represent-
ing the inputs and the outputs of the corresponding concern, each concern skeleton
can be studied in isolation to understand its implementation.

The separate investigation of concern skeletons is very important because it allows
a systematic and modular understanding of the system, but it is not enough for the
understanding of the system as a whole. Concerns often exhibit interdependencies
between them, which is why a global overview of the entire system, highlighting
a particular aspect of these interdependencies, can significantly improve program
understanding at the system level.

Given our abstract data-oriented definition of the concern skeleton, we define the
following three kinds of system overviews, called concern maps, each highlighting a
different aspect of the interdependencies between concerns.

The concern aggregation map provides a graphical representation of the hierarchic
decompositions of concern skeletons. This map is always defined relative to a set of

126



5.5. Concern Maps

5
0 D .
N S N . D 0
0 . D .
. D o .
D ., 5 % 5 .
Q e, D s Q s

:StringReader] [ IntReader ] [ IntWriter ] [StringWriter]
- 4
| Persistency ] [ FigurePosition ]

Figure 5.6: Concern interaction map

concern skeletons, which can also be only a subset of the identified concern skele-
tons. It can be generated automatically from the hierarchic decompositions, ob-
tained using the algorithm described in section 5.3.4.

If we consider our running example from section 3.1.1, and the set of concern skele-
tons identified based on the concern intent specification shown in listing 5.1, the
concern aggregation map will contain only the refinement of the Persistency con-
cern, and is actually shown in figure 3.3. Note that figure 3.2 also depicts a concern
aggregation map, but this map corresponds to a subset of the concern skeleton, not
containing the Reference concern skeleton.

The concern interaction map provides a graphical representation of the data depen-
dencies between a specified set of concern skeletons. This map is also defined rela-
tive to a set of concern skeletons and can be generated automatically based on the
concern extents of these concern skeletons and the direct flow relations contained
in the concern graph. The map contains single nodes for each of the represented
concern skeletons (including subconcern skeletons) and edges corresponding to
each direct flow relation between two abstract locations contained in different con-
cern skeletons.

Figure 3.4 shows a simple concern interaction map, depicting three of the concern
skeletons discussed in our running example from section 3.1.1. A more complete
concern interaction map, containing all the concern skeletons discussed in our ex-
ample, is shown in figure 5.6.

Because both concern aggregation and concern interaction maps use concern
skeletons as nodes, in order to differentiate between them, we used different line

127



Chapter 5. Concern Identification Method

styles. Refinement relationships between concern skeletons are depicted, by con-
vention, using solid lines, whereas data dependencies are depicted using dotted
lines. Given these conventions, it is possible to depict both concern refinement and
data dependencies in a single combined concern map, called the concern aggre-
gation and interaction map, but such a representation is usually more difficult to
follow.

The last concern map, considered in this work, is the so called concern dispersion
map. It is defined relative to a set of classes and a set of concern skeletons, and its
purpose is to highlight the scattering and tangling of concern skeletons with respect
to classes.

The concern dispersion map depicts a set of classes with the inheritance relations
between them, and inside each class the set of defined abstract locations. Classes
are depicted using the UML class diagram notation, but instead of the lists of fields
and methods, the class nodes in a concern dispersion map contain several se-
quences of coloured squares, one for each method of the class, and an additional
one to represent the abstract locations defined directly inside the class, such as
fields. Each sequence, representing a method, is organized using a horizontal lay-
out, and contains one square for each of the abstract locations defined inside the
method.

All sequences of abstract locations are ordered by the location of their definition in
the source code. The first element of a the sequence representing a method corre-
sponds to the return value abstract location, followed by the object context abstract
location, formal parameters and the remaining abstract locations defined inside the
method.

Abstract locations belonging to a single concern (subconcern) have the same colour,
and the colours used are listed in a legend.

Figure 5.7 shows the dispersion map corresponding to the classes and concern
skeletons defined in our running example from section 3.1.1. To improve the read-
ability of the figure, a method having no return value is represented in the figure by
a sequence, having a missing square on its first position. A static method is rep-
resented by a sequence, having a missing square on its second position, while a
method with no formal parameters is represented by a sequence, having a missing
square on its third position.

128



5.5. Concern Maps

uonisodainbiy [ Jojpu| B Jeyumbuis M o N
aoualajoy B Jopeayu] H Jopeaybus E lopeay ¥
NN NN NN
oo O oo
uol}oauuoHauI] ainbi4)xa] ainbi4o|buelooy
\VA
NI\
/N7
EEE
EE
ainbiqjoensqy
i
v “a “ N
== v Il M
HH NN =
HEEE /1) e
_ a|qeI0)S e

jnduja|qe.tols

«aoBUBIUIN

indinQajqelols

Figure 5.7: Concern dispersion map

129






Chapter 6.

Evaluation

The purpose of this chapter is to validate the concern identification approach de-
scribed in the previous chapters, by evaluating its ability to accurately identify func-
tional concern implementations in real software systems. The validation takes the
shape of an experiment, carried out using our prototype tool CODEX on two con-
secutive versions of the JHotDraw framework as case study.

Section 6.1 gives an overview of the implemented tool support, briefly discussing
its architecture and the major implementation decisions. Section 6.2 presents the
evaluation goals, the experimental objectives, and the corresponding evaluation ap-
proach, while section 6.3 presents and discusses the results of the experiment.

6.1. Tool Support

The Concern Detection and Exploration (CODEX) tool is an experimental platform,
which implements our approach for automatic identification of concern skeletons,
described in the previous chapters. The tool uses as input an initial concern intent
specification, such as the one shown in section 5.2.2, and produces a set of concern
skeletons, corresponding to the implementations of the specified functional con-
cerns.

6.1.1. Architectural Overview

As shown in figure 6.1, the architecture of the CODEX tool is a hybrid architecture,
derived from the Repository architectural styles. It uses a layered central repository,
consisting of three repository components, depicted in the figure using ellipses. This
repository is constructed, updated, and accessed by a number of specialised action

131



Chapter 6. Evaluation

codex.extraction codex.export !

Exporters

1

1

1

1

1

Java Fact Concern Graph Concern Graph| !
Extractor Builder Loader !
1

1

Project Loader

Project
Repository

A

Workflow Engine

codex.project

I 1
E (Concern Extent c |
Extractor oncern

i S_:fph Skeleton | 1 |Evaluators
: ers Concern Intent Builder | |
! . Loader |
1
1 1
1 1

Figure 6.1: Architectural overview of the CODEX tool

components, depicted using round rectangles. Other components, which are nei-
ther action nor repository components are depicted using normal rectangles. In-
formation flow between action components or between an action component and
the central repository is depicted in the figure using solid arrows, whereas simple
dependency between components using dotted arrows.

The CoDEX tool was designed to operate in batch mode and as a result it has no in-
teractive user interface. Instead, it is controlled by a single project file, which defines
and configures its entire workflow: from parsing the source code to exporting the re-
sults of the identification. The tool is divided into several subsystems, depicted in
the figure using the dotted rectangles, and each subsystem contains several compo-
nents. The remainder of this section briefly presents each subsystem and its corre-
sponding components.

132



6.1. Tool Support

The codex . core subsystem houses the lower layers of the central repository, con-
sisting of the Core Model and the Concern Graph components. The first com-
ponent stores an abstract Document Object Model (DOM) of the analyzed object-
oriented code. Its meta-model was designed to support typical object-oriented lan-
guages such as Java, and it contains first-class entities for all the major language
constructs such as classes, methods and different kinds of abstract locations. Beside
the basic primitives for DOM manipulation, the component also implements a set
of advanced queries, such as finding all the overriding methods of a given method,
or finding all the methods called either directly or indirectly by a given method, both
needed during the extraction of the different direct flow relations.

As suggested by its name, the Concern Graph component stores the homony-
mous directed multigraph structure described in chapter 4. The component refer-
ences the abstract locations in the Core Model, hence the dependency in figure
6.1, and provides primitive graph manipulation operations such as adding and re-
moving direct flow relations between abstract locations, or collapsing a subgraph to
a single composite node.

The codex.project subsystem contains the top layer of the central repository,
represented by the Project Repository component, as well as the compo-
nents needed to load and execute CODEX project files. The Project Reposi-
tory component represents a single access point for the central repository, and is
responsible for bootstrapping and facilitating direct access to the lower layers of the
repository, as well as for storing the identified concern skeletons.

The CODEX project file is an XML file containing the entire workflow for a concern
identification run. The project file is read by the Project Loader component,
which is also responsible for instantiating and configuring the corresponding ac-
tion components, as well as the Project Repository. Each action component
is implemented by a corresponding action class, or a group of classes hidden behind
a common fagade acting as an action class. As shown in the sample project file from
section A.3, the workflow is defined as a sequence of Act ion elements, each speci-
fying the fully qualified name of the corresponding action class. Action components
may be instantiated multiple times.

Once a workflow has been instantiated and configured, it is passed to the Work—
flow Engine component, which is responsible to execute the specified workflow.
The component also provides logging and time measurement services.

The codex.extraction subsystem is concerned with and constructing the
lower layers of the repository, and it consists of the Java Fact Extractor,
Concern Graph Builder,and Concern Graph Loader components. The

133



Chapter 6. Evaluation

first component is the only programming language-specific component of the en-
tire tool, and is responsible for parsing Java code and for triggering the construction
of the lower levels of the repository. The parsing is done in two passes: the first one
to extract the static structure of the code and to construct the Core Model, and
the second one to extract the direct flow relations.

The Java Fact Extractor component communicates through an abstract
factory interface with the Concern Graph Builder component, which is re-
sponsible for constructing the Concern Graph. As pointed out in section 4.4, the
concern graph may be composed from several concern subgraphs, some of which
being specified manually using the notation defined in section 4.4.2. The Con-
cern Graph Builder component is also responsible for correctly assembling
these subgraphs.

As suggested by its name, the Concern Graph Loader component is respon-
sible for loading the above-mentioned manual concern subgraph specifications,
and for triggering the construction of the corresponding parts of the repository.
In order to do so, it communicates with the Concern Graph Builder compo-
nent through the above-mentioned abstract factory interface. Note that a manual
concern graph specification may contain abstract locations not referenced in the
analyzed source code, for which there are no corresponding objects in the DOM.
For these abstract locations, the Concern Graph Loader component is also re-
sponsible for constructing dummy objects in the Core Model, which may then be
referenced in the Concern Graph.

The codex.analysis subsystem in concerned with the actual identification of
concern skeletons. The main component is the Concern Extent Extrac-—
tor component, which implements the concern extent extraction algorithm, de-
scribed in section 5.3.3. The component can be configured to perform an insensi-
tive, context-sensitive, or context and object-sensitive flow analysis of the concern
graph, and it determines for each specified concern intent its corresponding con-
cern extent.

The initial set of concern intents is specified manually, using the language defined in
section 5.2.1. This specification is read by the Concern Intent Loader com-
ponent, which is responsible for parsing the CODEX language and creating an inter-
nal representation of the read concern intents.

Both the initial set of concern intents as well as their corresponding concern extents
are passed to the Concern Skeleton Builder, whichisresponsible for deter-
mining the hierarchic decomposition of concern skeletons, as discussed in section
5.3.4. The final set of concern skeletons is stored in the Project Repository.

134



6.1. Tool Support

The codex.analysis subsystem also contains four Graph Filter action
components, used to compute the reduced concern graph, as discussed in section
5.4.1.

The codex.export subsystem contains several action components, designed
to export parts of the central repository in various human or machine readable
formats. Of particular interest are the GML Graph Exporter and the GML
Concern Exporter components, used to export the concern graph and the
identified concern skeletons, respectively, in the GML portable graph file format
(Himsolt 97). The format is supported by many third-party graph visualization and
manipulation tools, such as the freely available YED graph editor (yWorks 00).

And finally, the codex . eval subsystem contains components for automated eval-
uation of the identified concern skeletons, such as the Accuracy Evaluator
component, used to determine the identification accuracy by comparing the identi-
fied concern skeletons with a set of manually extracted reference concern skeletons.
More details about evaluating the identification accuracy are given in section 6.2.3.

6.1.2. Implementation Details

The CoDEX tool is implemented in Java as a standalone tool, using several third-
party libraries and frameworks. It uses RECODER (Ludwig 02; Ludwig 01) for parsing
and cross-referencing the java source code, and JGRAPHT (Naveh 03) for construct-
ing and manipulating the concern graph.

RECODER is an open-source framework for Java source code meta-programming,
used by many source code analysis and transformation tools. It features a very fast
Java frontend with integrated type analysis and cross-reference resolution, support-
ing the full Java language specification (Gosling 05), including all Java 5 language
features.

JGRAPHT is an open-source graph library, providing mathematical graph-theory ob-
jects and algorithms for a wide range of both directed and undirected graphs, multi-
graphs, and pseudographs, supporting weighted, unweighted, and labelled edges.

The CoDEX tool was designed to be able to analyze syntactically correct, although
potentially incomplete code bases, so in case of large systems, it can be used in a
modular fashion to analyze different subsystems separately.

135



Chapter 6. Evaluation

6.2. Evaluation Approach

In order to evaluate the practical applicability of our concern identification ap-
proach, we designed an experiment based on two consecutive versions of a real-
world software system and using the previously described CODEX tool. The reason
for choosing two consecutive versions of the same system was to assess the reusabil-
ity of the user-defined concern intent specifications.

6.2.1. Evaluation Goals and Experimental Objectives

Since the ultimate purpose of this evaluation is to validate the fulfilment of the crite-
ria defined in section 1.2, we formulate the following evaluation goals and concrete
experimental objectives:

136

* G1: The first evaluation goal, meant to validate the fulfilment of the Expresive-

ness criterion from section 1.2, is to validate the suitability of the Hierarchic
Concern Model, which separates the concern intent from its corresponding
concern extent, to express functional concerns in object-oriented code. For
this evaluation goal, we define the following experimental objectives:

— 01: Validate the hypothesis that a concern can be outlined by a small set
of concern seeds (information sources and sinks).

- 02: Validate the hypothesis that the manual selection of concern seeds
is feasible.

- 03: Validate the hypothesis that concern intent specifications can be
reused for subsequent versions of the analyzed code base, provided that
the corresponding concerns remain unchanged.

G2: The second evaluation goal, meant to validate the fulfilment of the Accu-
racy and Scalability criteria, is to assess the effectiveness of the automated
identification of concern skeletons, based on the analysis of flow relations in
the concern graph. For this evaluation goal, we define the following experi-
mental objectives:

— 04: Measure the accuracy of the identified concern skeletons for differ-
ent types of flow analysis (insensitive, context-sensitive, and context and
object-sensitive).

- 05: Measure the execution time of the automated concern skeleton
identification for different types of flow analysis (insensitive, context-
sensitive, and context and object-sensitive).



6.2. Evaluation Approach

- 06: Measure the impact of the superimposed roles separation on both
the accuracy and the execution time of the automated concern skeleton
identification.

Note that the formulated evaluation goals and experimental objectives only cover
three out of the five criteria defined in section 1.2, but as we will discuss in section
6.4, the remaining two criteria are fulfilled in case of our approach by construction.

The following two subsections discuss the details of the evaluation approach.

6.2.2. Suitability of the Hierarchic Concern Model

In order to validate the suitability of the Hierarchic Concern Model to express func-
tional concerns in object-oriented code, we use as case-study two consecutive re-
leases of a real middle-sized object-oriented system, where the second release con-
tains a significant number of new features and not just a few minor bugfixes.

For the first release of the two, we define a number of concerns, whose implementa-
tions we want to identify in the source code. Each concern is defined based on a typ-
ical software maintenance scenario and specified in the Hierarchic Concern Model
through its concern intent. For the selection of information sources and sinks, we
use the reduced concern graph and the growing flow sets techniques, presented in
section 5.4.

Once created, the manual concern intent specification is used as input for the auto-
mated concern skeleton identification, which we apply to both releases of the case-
study. We compare the identified concern skeletons with the corresponding set of
reference concern skeletons, created manually for each release of the case study by
a human expert.

Note that because this comparison is also influenced by the accuracy of the con-
cern skeleton identification, a mismatch between reference and identified concern
skeletons is not necessarily an indication that the Hierarchic Concern Model is not
suitable to express functional concerns in object-oriented code. A match, however,
is a good indication of both the suitability of the Hierarchic Concern Model and the
accuracy of the concern skeleton identification.

The experimental objective O1 is achieved if we are able to concisely specify suit-
able concern intents for the chosen functional concerns, and these concern intents
lead to accurate concern skeletons after the automated identification process. The
accuracy of identified concern skeletons is measured using standard information
retrieval metrics, as discussed in section 6.2.3.

137



Chapter 6. Evaluation

The second experimental objective is achieved if the reduced concern graph and the
growing flow sets techniques are successful in reducing the search space for con-
cern seeds. The reduction of the search space is measured as the number of filtered
abstract locations relative to the total number of abstract locations in the concern
graph.

If G=(V,A,s,t,Ly,La,ly,? ) is the concern graph of the analyzed software sys-
tem and Gy = (V/, A", s, ¢/ ,LV/,L;V,E v, € 47) is its corresponding reduced concern
graph, the reduction of the search space is defined as follows:

VI-1V|
VI

Reduction

where | - | is the cardinality operator.

And finally, the experimental objective O3 is achieved if the concern intent speci-
fication created for the first release of the analyzed system can be reused without
modifications for the second release to produce comparable concern skeletons for
all unchanged concerns. This comparison is done both using the accuracy metrics
defined in the following section and through manual investigation.

6.2.3. Effectiveness of the Identification Approach

As mentioned before, the second evaluation goal is to assess the effectiveness of the
concern skeleton identification approach, by measuring its accuracy and execution
time for each of the different types of flow analysis (insensitive, context-sensitive,
and context and object-sensitive). The measurements are collected for both releases
of the considered case-study.

In order to measure the accuracy of the identified concern skeletons, we use the
standard information retrieval metrics: Recall, Precision, and the commonly used
aggregate metric Fg (van Rijsbergen 79). Note that to compute these metrics, we
need two sets of reference concern skeletons, one for each release of the case-study,
created by a human expert, based on a detailed analysis of the design documents
and source code of both releases of the analyzed system.

Let c € C be a concern, V; c V the set of all abstract locations contained in the iden-
tified concern skeleton, and V, < V the set of all abstract locations contained in
the corresponding reference concern skeleton. Using these notations, we define the
previously mentioned metrics as follows:

138



6.2. Evaluation Approach

VenV,
Recall(c) —l ¢ rl
[Vl
V.NnV,
Precision(c) = M
Vel
1+ 2) * Recall(c) * Precision(c)
Fﬁ(C) b

B2 x Precision(c) + Recall(c)

where £ is a non-negative real factor, used to vary the relative importance of Preci-
sion over Recall.

Because we consider Recall and Precision equally important in measuring the
accuracy of the identified concern skeletons, we calculate the value of F B for =1,
which is in fact the harmonic mean of Recall and Precision.

2% Recall(c) * Precision(c)

F =
1) Precision(c) + Recall(c)

Note that the above metrics are defined solely based on the sets V; and V;, which
are contained exclusively in the concern extent parts of the corresponding con-
cern skeletons, thus apparently ignoring the concern intent parts altogether. This
is, however, not entirely true, because when we calculate these metrics for a given
concern, we consider all abstract locations contained in the concern skeleton, in-
cluding those contained in the concern skeletons of its subconcerns. And because
we also compute the metrics for each subconcern separately, we actually test the ac-
curacy of the identified concern skeleton hierarchy. The sets of information sources
I and information sinks O, are manually specified by the user, so there is no point
in testing their accuracy.

In order to measure the execution time of the automated concern skeleton identifi-
cation, we use the basic time functionality built into the Java standard library. Note
that the Java implementation measures the actual wall clock time and not the time
spent executing the identification thread, but we chose to use it anyway, because the
wall clock time is also the time perceived by a software engineer using our CODEX
tool.

And finally, in order to measure the impact of the separation of superimposed class
roles, we run all the above-mentioned measurements twice: once with superim-

139



Chapter 6. Evaluation

posed class roles separation turned on, and once with superimposed class roles sep-
aration turned off.

6.3. The JHotDraw Case Study

JHotDraw is a framework for the creation of drawing editors, ranging from simple
graphical editors to more complex domain-specific diagram editors, supporting be-
havioural constraints on how their elements can be used and altered.

We chose JHotDraw as case-study mainly because of its size and complexity, which
are large enough to make it a relevant and at the same time small enough to allow a
manual investigation of the results. Furthermore, JHotDraw has been used several
times to assess different concern identification approaches and even as benchmark
for comparing different approaches (Ceccato 05), which is why many of its func-
tional concerns are widely-known and well-documented in the literature.

Note that for this case-study, we did not actually use the full context and object-
sensitive flow analysis, but rather its approximation with a precision factor of 1, as
discussed in section 5.3.3. Nevertheless, we refer to it as context and object-sensitive
flow analysis, because the extraction of the flow sets is both context and object-
sensitive, even though the points-to information used in the analysis is only context-
sensitive. As pointed out in section 5.3.3, this approximation basically trades accu-
racy for speed, meaning that the accuracy of the full context and object-sensitive
flow analysis is by construction at least as high as the accuracy of the approxima-
tion.

6.3.1. Overview

As mentioned before, for our evaluation we used two consecutive releases of JHot-
Draw, namely release versions 5.3 and 5.4bl. Note that JHotDraw 5.4b1 is more
or less identical to JHotDraw 6.0b1l, with the notable difference that it uses the
old “CH.ifa.draw” package prefix, also used in release 5.3, instead of the new
“org.jhotdraw” package prefix used in release 6.0b1. For both releases, the ana-
lyzed code base also included the standard example applications accompanying the
framework.

As shown by the data in table 6.1, which summarizes the most important size mea-
surements for both releases of JHotDraw, the second release contains a significant
number of new features, representing an addition of over 40% to the code base of
the first release.

140



6.3. The JHotDraw Case Study

| JHD5.3 | JHD5.4 |

Lines of code 27628 39565
Number of files 195 281
Number of classes 273 389
Number of methods 2283 3205

Table 6.1: Code base size measurements for JHotDraw

6.3.2. Experimental Setup

In order to collect the experimental data required for objectives O4, O5 and 06, we
ran the CODEX tool on both releases of the case study six times, each time with a dif-
ferent combination of configurations parameters: analysis sensitivity (insensitive,
context-sensitive, and context and object-sensitive) and handling of superimposed
class roles (with and without the separation of superimposed class roles). A sample
CODEX project file is shown in section A.3.

For all runs of the tool, we used a manually specified flow-equivalent concern graph
of the standard library, covering only the parts of the standard library used in both
releases of the case-study. Because this manual specification is rather large, we only
show a portion of it in section A.1.

Furthermore, all runs of the CODEX tool used the concern intent specification
shown in section A.2. A closer look at the intent specification reveals that it contains
17 concern and subconcern intents, outlined by 106 concern seeds, yielding an av-
erage of around 6 concern seeds per concern intent. And although some concern
intents are more complex, requiring more concern seeds, none of them requires
more than 12 concern seeds.

Of course, we cannot exclude the possibility that some concerns may be more diffi-
cult to outline using information sources and sinks, but given the fact that the func-
tional concerns, defined in the above mentioned concern intent specification and
discussed in detail in the following section, cover a wide range of different types of
functionality, we conclude that an average concern can be outlined by a small set of
concern seeds (01).

All concern seeds were selected by a human expert, based on a detailed analysis of
the available design documents and source code of the two releases, from the set of
abstract locations obtained using the reduced concern graph and the growing flow
sets techniques. Table 6.2 summarizes the reduction of the search space for abstract

141



Chapter 6. Evaluation

| JHD53 | JHD5.4 |
Number of CG RCG CG RCG
class fields 496 225 665 289
formal parameters 2449 782 3501 | 1132
exception parameters 20 0 40 0
local value locations 1219 0 1610 0
return value locations 1127 398 1653 629
object context locations 2784 | 1277 | 3956 | 1794
object creation locations | 1014 0 1268 0
class role instances 1251 52 1524 84
abstract locations 10360 | 2734 | 14217 | 3928
| Reduction | 7361% | 7237% |

Table 6.2: Search space reduction achieved using the reduced concern graph for
JHotDraw

locations, achieved using the reduced concern graph. Note that this reduction was
achieved by applying in sequence all four filters described in section 5.4.1.

The table clearly shows that the reduced concern graph technique is very effective
in reducing the search space, achieving a reduction of over 70% for each of the two
releases of our case-study. Furthermore, if we calculate the relative number of ab-
stract locations found in the reduced concern graph per 1000 lines of code (1 kLOC),
we end up with just under 100 abstract locations / kLOC. And if we consider that
the reduced concern graph also contains the flow relations between abstract loca-
tions, making it easier to track their interdependencies, the manual investigation of
the reduced concern graph becomes feasible for systems having the size of a typical
subsystem (02).

Although we did not measure the time used for this manual investigation precisely,
we estimate that using the Reduced Concern Graph and the Growing Flow Sets tech-
niques, the selection of all 106 concern seeds, from the concern intent specification
shown in section A.2, took a single experienced software engineer about 12 hours.
However, given the fact that the selection of concerns seeds for the specified con-
cerns can be parallelized, this time can be reduced significantly.

142



6.3. The JHotDraw Case Study

Concern Name JHD 5.4 JHD 5.4
Ref. Size | Coverage | Ref. Size | Coverage
Clipboard 10 0.10% 10 0.07%
DrawRendering 85 0.82% 164 1.15%
DrawingTitle 46 0.44% 47 0.33%
FigureChange 140 1.35% 160 1.13%
FigureChange.Events 64 0.62% 75 0.53%
FigureZOrder 11 0.11% 11 0.08%
Mouse.Click 44 0.42% 63 0.44%
Mouse.Move 31 0.30% 44 0.31%
Persistency.Reader 83 0.80% 115 0.81%
Persistency.Reference 22 0.21% 18 0.13%
Persistency.Writer 75 0.72% 98 0.69%
StorageFormatManager 35 0.34% 34 0.24%
ToolActivation 81 0.78% 76 0.53%
ToolActivation.Actions 18 0.17% 18 0.13%
Undo 359 3.47% 375 2.64%
Undo.Actions 154 1.49% 156 1.10%
Undo.Activities 81 0.78% 87 0.61%
| Total 1,022 9.86% 1,215 | 8.55%

Table 6.3: Coverage of the reference concern extents for JHotDraw

6.3.3. Functional Concern Examples

This section discusses in more detail the functional concerns, outlined by the con-
cern intent specification from section A.2, and identified in both releases of JHot-
Draw. Among these concerns we included both examples already documented
in the literature, such as the Persistency and the Undo concerns (Ceccato 05;
Marin 07), and also several new concerns.

Table 6.3 shows and overview of the specified functional concerns, together with the
percentages covered by their respective reference concern extents, for both releases
of the JHotDraw case-study. The table also lists the total coverage achieved by all
concern extents, which in our case clearly shows that the two code bases must also
contain additional concern implementations, not captured in our concern intent
specification.

The Clipboard concern implements a basic clipboard functionality, allowing the

143



Chapter 6. Evaluation

storage and retrieval of a single Object, using the well-known copy and paste
mechanism present in most graphical applications. The implementation of this
concern is completely encapsulated in the CH.ifa.draw.util.Clipboard
class and consists of the actual store and retrieve functionality, as well as the man-
agement of a singleton C1ipboard instance.

The DrawRendering concern handles the rendering of graphical objects such as
Figure objects on a given graphics context. Its implementation is scattered across
the Figure and DrawingView hierarchies, and consists of various methods, hav-
ing names starting with draw and paint.

As its name suggests, the Drawing title concern is responsible for managing the ti-
tles of Drawing instances. Its implementation is scattered across several locations
from the DrawApplication class, as well as the Drawing and StorageFor—
mat hierarchies. The reason for this scattering is that drawing titles are used for sev-
eral purposes. The title of the active drawing is displayed in the application frame of
the graphical editor application, accompanying the JHotDraw framework, and it is
also used as filename when saving the drawing to the disk. Furthermore, when sav-
ing a drawing under a different name, or when loading a saved drawing, the title is
updated automatically in the corresponding Drawing instance, and also reflected
in the application frame. Figure 6.2 depicts the concern extent identified for the

DrawingTitle concern’.

The FigureChange concern implements an Observer-type notification mechanism
for figure change events. It handles the registration and unregistration of Fig-
ureChangeListener objects as well as the firing, dispatch and handling of the
various figure change events. In order to divide this concern into smaller, more man-
ageable pieces, the dispatch and handling of FigureChangeEvent objects was speci-
fied separately in the FigureChnage.Events subconcern. The implementation of the
FigureChange concern is scattered across the F i gure hierarchy and in overrides of
the methods defined in FigureChangeListener.

The FigureZOrder is a rather small concern, which handles the ordering of figures
on the Z axis. Its implementation is centered around the _nZ field from the Ab-
stractFigure class and its accessor methods defined in the Figure interface
and implemented in the AbstractFigure class.

The Mouse.Click and Mouse.Move concerns are two subconcerns of a Mouse con-
cern, responsible for dispatching and handling mouse events. As suggested by
their names, the first subconcerns handles button events (press and release), while

I The figure was generated using the yEd graph editor (yWorks 00)

144



6.3. The JHotDraw Case Study

[ m:_:w.m:m_.m>mﬁw_u_._.mc_\sED\sm:.Am:_bm.mcm_.m>mow_u_._.m:_Bmhouww.:o_umu__aa<>>m5|_n_s_E__!

i

[Buris buej eael:aja11 Adod ()MaIAMBU U

il

[Buias bue|eAel-uinial ()3)31 1396 buimelafy}l|
! |
[Buinis buejeael-uinial (331 L buimesqisb uonedddymela Ianid} [Burias-bue|eel:uiniai (3311396 buimegplepurisiy}|

| f

[Bums buelerel:uInIa ()Rl LbUIMBIQIab UONES | ddymelara}]« [ Buls Bue|enel:apiiAw-Buimesgplepuelsii}]

f

[ m:_bw.m:m_.m>mﬁw_u_._.>>m:.Am:_bm.m:m_.m>mow_u_._.uwm.m:EEDE%:EE_
£

|
[Buias bue] .m%ww_.:mc.Am:_‘:m.m:m_.m>mvw_u_._.uwm.m:_>>m\_aE

ﬁ ﬁ

L [huns bue|eael:uinial ()31 buimesgiinejoqieb uonedddymela{y}| [buiias bue| erelaweu:(bulis bue|eAelew.io abelols)buimelganes uoiedijddymela{Ty

f f

_ mc_:m.m_._m_.m>m_.“vu::::mu.co_umu__Qn_<>>m\_DE: [Buiias bue|eael-uinial (buimelg burias bue|eael)a103s 1ew.o4abei015{y}

f

[Buinas bue|eael:uinial(buimelg buliis bue| eael)alols jewlojabeloispiepueisiy}| [Buins bue|eael:gwesed (burias bue| eAeNaii1195 awel{d}|

f

[Burias-buej eael:uiniau(buimesg bulias bue| eAel)al01s 1ewlojabeloisuonezierasy}|

f

[Butins-buey enel-uinia.r (Buins bue| eaelswena|i1snipe-1euiiojabeloisprepueisiil|  [Gurias bue| eAel:uinyai-()sWeNUonEsl|ddyiab uoneoiddymela}]

f f

[Buins bue| erel:aweNa|If153) (Buliis bue| eAelauieNs|I1snlpe-jeuliojabeloispiepuelsid}]  [Bunis bue| eAel:aleNUoned!ddy} Uones | ddymeIaid)]

f f

[Burns-bue| erelawena|y (Bumelq bulis bue| eAel)a.01s 1eWI0JaBRIOISUONEZIeLIASIdY] | | buLis bue| eAel-sweNuoneddde (buliis bue| eAehsweNuonedlddviss uonesiddvmelaid}]

f f

[Buins-bue-eaelawena|ly (Buimelq‘buiiis bue|-eael)a.01s 1ew.ojabeioispepueis{d}| [Buins bueleael:apn’(buins bueeaeuonediddymelg uonedijddymelaid}]

f L

115" bue| eAel)31015 1BWI0JahRI0IS{d}] [Buins bue| erelapn’ (bulis bue| eAeuonediddymelq _o_\,_.:o_umu__an_(;mhn_u_n_zr_k_

»[ buls bue| eAel:gwesed  (bulias bue| eAel)a)1l 1195 dweljjeulaiu{d}

ediiddymesa 1ani} buLis bue|eel:a)11| b “eAel)9)11 | buimesqias u

1} (buimeaq‘b

[Buris bue|erel:aweN?

f

[Buiis bue| eaela)1y (bulis bue| eAe[‘Tew10436101G)bUIMBIRARS  UOLE: aa<§m5€|:

ngTitle concern

Concern extent of the Drawi

Figure 6.2

145



Chapter 6. Evaluation

the second subconcerns handles movement events (move and drag). The im-
plementations of these concerns is scattered across the MouseListener and
MouseMotionListener hierarchies. Although both subconcerns use the same
MouseEvent library class, their implementations are completely separated, with
no single dispatch point for movement and button events.

As suggested by its name, the Persistency concern is responsible for the serializa-
tion and deserailization of the St orable hierarchy, which also includes the Fig-
ure and Drawing subhierarchies. This concern has already been discussed in sev-
eral different forms in the literature (Ceccato 05; Marin 07), which is why we also
chose to base the running example from section 3.1.1 on it. Because this run-
ning example represents in essence a simplified version of the Persistency con-
cern presented here, we used the same concern refinement for both, containing
two disjoint subconcerns: Persistency.Writer responsible for the serialization of
Storable objects and Persistency.Reader responsible for the deserialization of
the same objects, as well as a third Persistency.Reference subconcern, overlapping
with the previous subconcerns, and responsible for storing and restoring references
to Storable objects. The implementation of this concern is mainly concentrated
in the read and write methods of the St orable hierarchy, and the methods of
the StorableInput and StorableOutput classes.

The StorageFormatManager concern is responsible for managing a registry of avail-
able storage formats for Drawing objects, including the registration of a new stor-
age format or the lookup of the proper StorageFormat class based on the user-
selected extension. Its implementation is located in the StorageFormatMan—
ager,DrawApplication and the StorageFormat hierarchy.

The ToolActivation concern deals with the activation of different tools and the cor-
responding notification mechanism for ToolListener objects. In order to di-
vide this concern into smaller, more manageable pieces, the dispatch and handling
of these notifications was separated in the ToolActivation.Activities subconcern.
The implementation of this concern is scattered across the Tool and ToolLis-
tener hierarchies. What is truly remarkable about this concern is that it captures
the semantic relationships between the states of being enabled, usable and active
for Tool objects. These states are neither exclusive, nor synonymous. They simply
represent overlapping concepts. As suggested by the partial concern extent shown
in figure 6.3, a tool is considered active if it is enabled and it is usable in a given
context.

And finally, the Undo concern, which was also presented in the literature
(Ceccato 05; Marin 07), deals with the undo and redo mechanism built into the

146



6.3. The JHotDraw Case Study

[uesjooqg:uiniai-()anndysi-joo1{y} [uesjooq:uiniai-()s|gesnsi-jools|qeopuniy}|

| ! f D {
[uesjoog:uiniai-()aAndysi jool3jgeopunfy}] [ ues|ooq:uiniai-()3AndysI |00 1312ensqvid}| [uesjooq:uiniai-()3igesnsi-jool{y}|
[uesjooq:a|qesnsimau(ues|00q)3|qesnias’ |00 13]qeopuni{d}] [uesjooq:uinias-()3|gesnsi’[0o110ensqvid}
[uesjooqg:s|gesnsimau(uesjooq)sjgesnias’ool{d}| [uesjooq:ajgesnsiAw-joo11oensqvid}] [uesjooq:uiniai-()pajqeussicjoolsiqeopuniy}|
[uesjooq:3|qesnsimaur(ues|ooq)3|qesnias’ |00 130ensqvid}| [ueajooq:uiniat (pa)qeussi'jool{u}]|
UBS|00(:UIN1al"()aAIdRIIU|SI"MIIABUIMBIQ(Y ues|00d:ulnial-()pajgqeudsi |00 31oensqv{d}
[00g

f f

[uesjooq:uinias-()anndelR1u|sI'MaIABUIMRIA|INN{Y}] [uesjoog:pajqeudsiAwrjoo10ensqvid}]

f

[uesjooq:uinias-(jaAndeIaIU|SI'MBIABUIMBIGPEpURIS Y} [ues|o0q:pajqeuzs|MaUT (UBS|00qG)P3|qrUFIaS |00 119esqV{d}]

f

[uesjoog:)28yD3|gesna|geus’(Uesjooq)pa|qeu3ias|00ol{d}]

5 f

[ues|ooq:pajgeuzsimaur(uesjooq)pajqeudias’|ools|geopunid}|

10N concern

1vat

Partial concern extent of the ToolAct

Figure 6.3

147



Chapter 6. Evaluation

Tool, Handle, and Command hierarchies. The concern has two subconcerns:
Undo.Actions responsible for the actual execution of the undo and redo opera-
tions, and Undo.Activities responsible for the creation of Undoable objects and
their registration with the appropriate UndoableTool, UndoableHandle or
UndoableCommand. The implementation of this concern is mainly concentrated
in the UndoActivity inner classes and the createUndoActivity methods,
both defined in the above mentioned hierarchies, as well as in the UndoManager
class, responsible for managing the undo and redo stacks.

6.3.4. Accuracy Measurements

This section discusses the accuracy of the identified concern skeletons, which, as
already mentioned in section 6.2.3, is measured by the Fy aggregate metric.

Figure 6.4 shows a comparison of the F; metric values obtained for all consid-
ered functional concerns, when using different types of flow analysis (insensitive,
context-sensitive, context and object-sensitive) in combination with the separation
of superimposed class roles on version 5.3 of the JHotDraw case-study. For each
of the considered concerns, the exact values of the F; metric for each type of flow
analysis, as well as the values of Recall and Precision used to calculate them are
listed in table A.2, together with the respective sizes of the identified concern ex-
tents, and the size of the reference concern extent.

A closer look at the figure reveals that for the context and object-sensitive analysis,
all F; values are within the upper quarter of the value range of the metric or very
close to it. As a result, we conclude that the context and object-sensitive flow
analysis with role separation produces highly accurate results (04).

Furthermore, the figure also reveals that the results produced by the insensitive and
the context-sensitive analyses are virtually identical. This should come as no sur-
prise, given the nature of object-oriented code, which typically uses object fields as
primary storage for its data and encourages a tight bundling of data and behaviour
in a single class. Because of that, methods in object-oriented code usually oper-
ate on data originating in object fields, which also represent typical destinations for
their results. And since a context-sensitive flow analysis is not able to differentiate
between different object contexts, it usually ends up mixing them.

The above observation is also confirmed by the F; metric values obtained in case
of the second release of the JHotDraw case-study we considered in our experiment.
Figure 6.5 shows these results.

148



6.3. The JHotDraw Case Study

Clipboard
DrawRendering Undo.Activities

DrawingTitle Undo.Actions

FigureChange
FigureChange.Events

FigureZOrder

FJHD 5.3 1 RS BJHD 5.3 CRS [JJHD 5.3 O RS

Figure 6.4: Accuracy of the identified concern skeletons, when using insensitive (I),
context-sensitive (C), and context and object-sensitive (O) flow analysis
with superimposed roles separation (RS) for JHotDraw 5.3

An interesting fact about this figure is that, in case of the Persistency.Reader, Persis-
tency.Writer, Persistency.Reference, StorageFormatManager, and ToolActivation
concerns, it shows very low values of the F; metric. If we take a closer look at the cor-
responding Recall and Precision valuesin table A.4, we notice that in all five cases,
this is due to a low Precision value, which also correlates with the significantly
larger sizes of the identified concern extents relative to the corresponding reference
concern extents. This can only mean that in all of these cases the automatic concern
extraction was missing some cutting points for the concern graph traversal, either
in the form of additional concern seeds or additional flow set bounds specified in
their respective concern intents. The above interpretation of the metric values was
also confirmed by a manual investigation of the identified concern extents.

If we dig a little deeper in order to find the cause of this unexpected results, we ac-
tually reach the conclusion that the results are not at all unexpected. They can be
explained by the fact that the second version of the JHotDraw case-study contains
significant additions to the Figure, StorageFormat, and Tool hierarchies, for
which no appropriate cutting points were defined in the concern intent specifica-

149



Chapter 6. Evaluation

Clipboard

Mouse.Move
Persistency.Reader

Persistency.Writer
ersistency.Reference

£4JHD 5.4 I RS BJHD 54 CRS [NJHD 54 ORS

Figure 6.5: Accuracy of the identified concern skeletons, when using insensitive (I),
context-sensitive (C), and context and object-sensitive (O) flow analysis
with superimposed roles separation (RS) for JHotDraw 5.4

tion, created exclusively for the first version of the case-study. As a result of these
changes, in all of the above mentioned cases the concern definitions changed, thus
invalidating their respective concern intents. Furthermore, judging by the high F;
values obtained for the remaining 12 out of 17 concerns, defined in our concern in-
tent specification, and despite the changes in their implementations suggested by
the different concern extent sizes, we conclude that concern intents can be reused
for subsequent versions of the analyzed code base, if and only if their corresponding
concerns remain unchanged (03).

All the accuracy measurements presented so far have been obtained using the sep-
aration of superimposed class roles. In order to investigate the effect of this separa-
tion on the accuracy of the identified concern skeletons, we turned the role separa-
tion off and repeated all the measurements again. The exact values of the obtained
results are shown in tables A.1 and A.3.

Figure 6.6 shows a comparison of the F; metric values obtained for all considered
functional concerns using context and object-sensitive flow analysis with and with-
out role separation on version 5.3 of the JHotDraw case-study. The figure shows

150



6.3. The JHotDraw Case Study

Clipboard
DrawRendering Undo.Activities

DrawingTitle Undo.Actions

FigureChange

FigureChange.Events

FigureZOrder

Mouse.Click StorageFormatManager
<[
Mouse.Move ‘.’ Persistency.Writer
Persistency.Reader Persistency.Reference

BJHD 530 [1JHD530RS

Figure 6.6: Impact of superimposed class roles separation on the accuracy of the
identified concern skeletons for JHotDraw 5.3

that in case of the FigureChange concern, using the separation of superimposed
class roles significantly improved the accuracy of the concern skeleton identifica-
tion, while in case of the other 16 concerns the results were identical.

The same comparison carried out on the F; metric values obtained for JHotDraw
5.4 shows similar results, which we summarize in figure 6.7. The figure shows an
improvement in the identification accuracy for the Undo concern, when using the
role reparation, while the other 16 concerns exhibit identical results for both cases.

Given the fact that the separation of superimposed roles is based on a heuristic rule,
it cannot be guaranteed that it will never have a negative effect on the identification
accuracy, even if our measurements suggest this. All we can say at this point is that
this heuristic rule seems to be very effective (06).

6.3.5. Execution Time Measurements

The execution times of the automated identification of concern skeletons for the
JHotDraw case-study are shown in table 6.4. The table lists all runs of the CODEX

151



Chapter 6. Evaluation

Clipboard
DrawRendering Undo.Activities

DrawingTitle Undo.Actions

Mouse.Move Persistency.Writer
Persistency.Reader ersistency.Reference

BJHD540 [JHD540RS

Figure 6.7: Impact of superimposed class roles separation on the accuracy of the
identified concern skeletons for JHotDraw 5.4

tool using: insensitive (I), context-sensitive (C), and context and object-sensitive (O)
flow analysis, with and without superimposed roles separation (RS) for both ver-
sions of the case-study. The execution times are expressed in seconds, and except
for the two runs using context and object-sensitive flow analysis for JHotDraw 5.4,
they are well within acceptable limits.

The table also shows that the execution times of the above-mentioned two runs are
at least one order of magnitude higher the the rest, which made us suspect that
something went wrong during these runs. As a result we analyzed the execution
times for the identification of the individual concern skeletons and noticed that, in
both cases, over 90% of the total execution time was spend in the identification of
the same five concerns, for which we obtained low accuracy measurements. The ex-
act identification times for the individual concern skeletons together with the per-
centages these times represent from the total execution time are shown in table 6.5.

Note that in the case of these five concerns the sizes of the identified concern ex-
tents, as shown in tables A.3 and A.4, are also one order of magnitude higher than
the corresponding reference concern extents, and thus explain the very high execu-

152



6.3. The JHotDraw Case Study

JHD 5.31
JHD 5.3 C
JHD 5.3 0
JHD 5.4 1
JHD 5.4 C
JHD 5.4 0

| no RS (sec) | RS (sec) |
496 169
3,369 1,168
5,511 2,136
1,819 1,300
6,081 3,832
191,665 103,135

Table 6.4: Identification times of the concern skeletons for JHotDraw

Concern Name no RS (sec) RS (sec)

Time (sec) | Percent. | Time (sec) | Percent.
Clipboard 0.16 0.00% 0.25 0.00%
DrawRendering 0.63 0.00% 0.65 0.00%
DrawingTitle 565.73 0.30% 485.93 0.47%
FigureChange 2,646.89 1.38% 2,050.80 1.99%
FigureChange.Events 0.04 0.00% 0.04 0.00%
FigureZOrder 324.38 0.17% 377.14 0.37%
Mouse.Click 0.13 0.00% 0.15 0.00%
Mouse.Move 0.04 0.00% 0.05 0.00%
Persistency.Reader 46,318.02 24.17% 15,832.13 15.35%
Persistency.Reference 29,480.80 15.38% 7,610.64 7.38%
Persistency.Writer 87,241.19 45.52% 68,224.95 66.15%
StorageFormatManager 769.94 0.40% 402.55 0.39%
ToolActivation 7,798.95 4.07% 5,954.14 5.77%
ToolActivation.Actions 0.30 0.00% 0.31 0.00%
Undo 16,515.51 8.62% 2,192.69 2.13%
Undo.Actions 0.52 0.00% 0.52 0.00%
Undo.Activities 0.37 0.00% 0.43 0.00%

text and object-sensitive flow analysis for JHotDraw 5.4

Table 6.5: Identification times of the individual concern skeletons, when using con-

153



Chapter 6. Evaluation

tion times. Based on this observation, we can conclude that the execution time of
the automated concern skeleton identification is within acceptable limits, provided
that the concern intent specification is accurate (05).

Another interesting fact revealed by the data shown in tables 6.4 and 6.5 is that using
the separation of superimposed class roles significantly reduces the execution time
of the automated concern skeleton identification in all runs of the CODEX tool, and
in some cases it even cuts this time in half, thus indicating again the effectiveness of
this heuristic rule (06).

6.4. Assessment of the Approach

As already pointed out in section 6.2.1, the purpose this evaluation was to validate
the fulfilment of the criteria defined in section 1.2. In the following we revisit these
criteria and show that our tool-supported concern identification approach indeed
fulfils them.

* Expressiveness: According to this criterion, a concern identification ap-
proach should be able to express functional concerns and the typical rela-
tionships between them, such as concern overlaps and refinements. In order
to express functional concerns in object-orineted code, the Hierarchic Con-
cern Model uses a data-oriented abstraction, called a concern skeleton, which
separates the definition of a concern at the implementation level into a user-
specified concern intent and an automatically identified concern extent. As
pointed out in section 6.3.2, the CODEX language, especially designed for the
specification of concern intents, was successfully used to manually define in
a very concise form 17 concerns and subconcerns, spanning a wide function-
ality spectrum, and exhibiting both concern overlap and refinement.

* Accuracy: According to this criterion, an automated concern identification
approach and a human expert should produce similar results. In section 6.2.3
we defined the F] aggregate metric based on a set of reference concern skele-
tons created by a human expert, and used it in section 6.3.4 to measure the
accuracy of the identified concern skeletons. The measurements clearly show
that for accurate concern intent specifications, even using an approximation
of the context and object-sensitive flow analysis produces highly accurate
concern skeletons for both versions of the case-study. Moreover, the measure-
ments also suggest that the separation of superimposed class roles improves
this accuracy even further.

154



6.4. Assessment of the Approach

¢ Practicability: This criterion requires that a concern identification approach
support the typical languages features found in most object-oriented lan-
guages, such as structured data types, object aliasing, exception handling,
dynamic dispatch, and polymorphism. As shown in chapter 4, in the case
of our approach, this criterion is fulfilled by construction, but also addition-
ally proven by the successful analysis of two consecutive releases of a middle-
sized open source software systems.

¢ Scalability: According to this criterion, a concern identification approach
should be applicable for realistic software systems, having at least the size of
a typical subsystem (around 200 classes). As discussed in section 5.3.3 the full
context and object-sensitive analysis has an exponential complexity, which
clearly does not scale for middle-sized software systems. However, the com-
plexity of its approximation for a precision factor of 1, which we used in our
evaluation, is polynomial. And although the implementation of the CODEX
tool is not optimized for speed, the execution time measurements from sec-
tion 6.3.5 show that the approach is applicable even for object-oriented sys-
tems having double the size of a typical subsystem. Furthermore, the mea-
surements also suggest that the separation of superimposed class roles signif-
icantly reduces these execution times.

e Automation: And finally, this criterion requires a high degree of automation
of the concern identification process. In the case of our approach, this is
guaranteed by construction, because it handles the identification of concern
skeletons in a fully automated fashion. And although the initial concern in-
tent specification is largely manual, as discussed in section 6.3.4, this specifi-
cation can be reused in subsequent versions of the code base, provided that
the specified concerns remain unchanged.

155






Chapter 7.

Conclusions

Section 7.1 of this chapter gives a brief summary of our tool-supported concern
identification approach and of the main contributions of this thesis. Then, the as-
sumption and limitations of the proposed approach are discussed in section 7.2.
Finally we conclude by giving some perspectives on future work in section 7.3.

7.1. Summary

The goal of this work was to support program understanding of object-oriented
code during software evolution, by creating and maintaining direct traceability links
between functional concerns defined at the requirements level, and their respec-
tive implementations in code. Towards that end, we defined the Hierarchic Con-
cern Model, which represents functional concerns using data-oriented abstractions
called concern skeletons, and is capable of expressing both concern refinement and
overlap relationships.

A concern skeleton consists of a concern intent, specifying the inputs (information
sources) and outputs (information sinks) of the concern, as well as its contained
subconcerns, and a corresponding concern extent, containing all abstract locations
used in the implementation of the concern. The concern intent is initially defined
by the software engineer, using the CODEX language, and later refined automati-
cally, based on the intersections of its corresponding concern extent with the other
concern extents, identified in the same software system.

A concern intent captures a small subset of the traceability links between a func-
tional concern and its implementation in code, namely the traceability links be-
tween the inputs and outputs of a concern on the one hand, and the information
sources and sinks used in its implementation on the other.

The information sources and sinks are then used as concern seeds in the automated
identification of concern skeletons, consisting of the extraction of concern extents

157



Chapter 7. Conclusions

and the previously mentioned automatic refinement of concern intents. This ex-
traction of concern extents is based on context-free language reachability and a
demand-driven flow analysis of a directed multigraph structure, called the con-
cern graph, which captures the direct flow relations between abstract locations. The
method supports different flow analysis techniques (insensitive, context-sensitive,
and context and object-sensitive), and, in case of the context and object-sensitive
flow analysis, a tunable precision factor, which essentially controls the complexity
of the extraction algorithm.

In order to improve the accuracy of the extracted concern extents, we introduced
a technique for detecting and separating superimposed class roles, which cre-
ates dedicated copies of each abstract location for every superimposed role imple-
mented by its class type.

The manual selection of the concern seeds in the concern intent specification is
supported by the Reduced Concern Graph and the Growing Flow Sets techniques,
which, when used together, are very effective in focusing the search by significantly
reducing the manually investigated search space.

The entire method is supported by an extensible tool (CODEX), created for the
analysis of software systems implemented in the Java programming language. Its
main advantage is that it makes no assumptions about the forward engineering pro-
cess used for these systems and allows software engineers to specify and maintain
direct traceability links between functional concerns and their implementation in
code. And because the manually specified traceability links represent only a small
subset of the much larger set of automatically identified links, the approach signifi-
cantly reduces the effort needed to maintain these links.

7.2. Assumptions and Limitations

In section 6.4, we showed that our tool-supported concern identification approach
indeed fulfills all criteria defined in section 1.2, but we have not discussed the as-
sumptions we made regarding the analyzed software systems, and the limitations
resulted therefrom. And because understanding these assumptions and limitations
is essential for the successful application of our method, a list of the most important
ones is given below.

¢ Static interaction. The interaction between objects is assumed to be static
and realized using synchronous blocking calls.

158



7.2. Assumptions and Limitations

Note that this assumption does not limit the use of virtual calls, which we han-
dle conservatively as discussed in section 4.2.2, but rather it limits the use of
our approach when either the target of an interaction is dynamically selected
based on a lookup mechanism such as the Java Reflection API, or the target
of an interaction is not identified at all, as it is for example the case of event-
based systems with a bus architecture.

Explicit flow relations. The flow relations between abstract locations are as-
sumed to be explicitly specified in the source code. This assumption may lead
to a lower accuracy of our approach for systems using a dependency injection
framework such as the Spring Framework (Johnson 02).

Note that this is not an inherent theoretical limitation of the method, but
rather a limitation of the current implementation, which only extracts flow
relations from source code. In principle however, it is possible to extract the
missing direct flow relations from other sources such as the XML-based meta-
data descriptors, commonly used by such frameworks.

Good object-oriented design. The analyzed code is assumed to conform to
good object-oriented design principles and best practices, and in particular
to the Interface Segregation Principle (Martin 96a) and the Liskov Substitution
Principle (Martin 96b). This assumption is needed to ensure the applicability
of the heuristic rules used for detecting superimposed class roles, for handling
virtual calls conservatively, and for filtering abstract locations in the reduced
concern graph.

Note that this assumption does not limit the use of our approach on a system
exhibiting a bad object-oriented design, but in such cases the obtained results
are likely to be less accurate.

No renaming of concern seeds. As we have seen in section 6.3, the manually
created concern intent specification can be reused for subsequent versions
of the code base, provided that the concerns defined in it, and not their im-
plementations, remain unchanged. Of course, this is only true under the as-
sumption that the qualified unique names of the specified concern seeds also
remain unchanged, which in turn means that the concern seeds themselves
and the language constructs containing them must not be renamed or moved.

As aresult the concern intent specification created for a software system can-
not be reused without adaptation after a major refactoring of that system.

159



Chapter 7. Conclusions

7.3. Perspectives on future work

This section provides a perspective on possible future extensions and improvements
of the work presented in this thesis.

A first possible improvement of the proposed approach is the selection of concern
seeds, which, although supported by tools, is still largely a manual effort. As already
pointed out in chapter 2, there are already a number of approaches proposed in
the literature, relying on various heuristic rules to automatically identify candidate
concern seeds, which could be coupled with our approach to reduce the manual
effort even further.

Furthermore, although some of these heuristics are quite promising, we believe
there is much room for improving them by incorporating knowledge about the sys-
tem architecture.

Directly related to this improvement is the automatic detection of flow set bounds,
which could potentially make our concern identification more resistant to additions
to the implementation of a concern, as the ones reported in section 6.3.4 for the
second version of the JHotDraw case-study.

Another area, that we believe to be well-worth exploring, is the coupling of our con-
cern identification approach with a formal requirements modelling language, in or-
der to automatically derive the concern hierarchies, currently defined manually in
the concern intent specification.

Particularly promising is the coupling of our concern identification approach with
the Feature-Architecture Mapping (FArM) approach (Sochos 06; Sochos 07), used
for the domain engineering of software product lines.

FArM defines a methodology for architectural design, based on the iterative refine-
ment of an initial set of features (functional concerns), which strives to ensure a one-
to-one mapping between features and architectural components. The approach al-
ready creates traceability links between the functional concerns and the architec-
tural design, and combining it with our approach could extend these links all the
way to the concern implementations in code.

Further improvements could target the CODEX tool, which could be extended to
support the extraction of direct flow relations from other sources than the existing
code base. And given the last limitation discussed in section 7.2, the direct specifica-
tion of a concern seed by its qualified unique name could be replaced with a unique
annotation, attached to the definition of the concern seed in code. This alternative
specification of concern seeds has the advantage that concern intent specifications

160



7.3. Perspectives on future work

remain unaffected by a refactoring of the system, even if this refactoring renames or
moves concern seeds.

And finally, an empirical study could be performed, to obtain a quantitative mea-
sure of the amount of program understanding effort saved, as a result of applying
our functional concern identification method. Since our method allows the specifi-
cation of traceability links between functional concerns and their respective imple-
mentations in code in a persistent form, the study should measure the saved efforts
for functional concerns both with and without available specifications of such trace-
ability links.

There are many ways to perform such a study, but one potential approach is to set up
an experiment, in which a number of subjects are asked to independently perform
a series of program understanding tasks in an unfamiliar software system. Each
program understanding task involves locating the code fragments, that need to be
changed in order to implement a given change request. The change requests will
be chosen to address both new and recurring functional concerns, in order to cover
both of the above mentioned situations.

Before receiving the tasks, the subjects are divided into two groups, one using our
concern identification method and the other not using it. Each group will consist
of an equivalent mix of experienced and unexperienced subjects. The division into
groups is done based on the results of an initial calibration test, in which each sub-
ject is asked to perform a single program understanding task manually, without any
support from our method.

The effort required to complete a program understanding task can be assessed in
several ways. One way would be to measure the time the subjects require to com-
plete each task. In general, this metric is not very objective, because more experi-
enced subjects tend to complete the tasks faster, but if we use the previously men-
tioned calibration test, it can be objectified to some extent.

A much better way would be to measure the amount of code investigated by a sub-
ject in order to complete a program understanding task. This metric can be easily
calculated from recorded investigation transcripts, such as the ones described by
Robillard and Murphy (Robillard 03).

Another interesting result of the study could be to assess the percentage of program
understanding effort saved for recurring functional concerns, as a result of reusing
the persistent specifications of traceability links between these concerns and their
respective implementations in code.

161






Appendix A.

JHotDraw Experiment Details

This appendix presents additional detailed information about the experiment car-
ried out on the JHotDraw case-study, which was discussed in section 6.3. The infor-
mation covers parts of the flow-equivalent concern subgraph specification for the
standard library, the concern intent specification used as input for the identifica-
tion of concern skeletons, a sample CODEX project file, and the collected accuracy
measurements.

A.1. Specification of the Java Standard Library

As already suggested in section 4.4.2, the flow-equivalent concern subgraph specifi-
cation used in our experiment was created to contain the library abstract locations
referenced in the source code of the case study. But because we used two differ-
ent versions of JHotDraw, the specification contains all library abstract locations,
referenced in at least one of the two versions. The complete specification contain
356 relations, which is why listing A.1 only shows a small part of it, covering widely
used classes from the java.lang package and some of the standard Java collec-
tion classes.

Listing A.1: Flow-equivaent concern subgraph specification of the Java standard li-

brary
1 RVA —-{F}java.lang.Boolean.data
->{0}java.lang.Boolean.booleanValue () .this
—-{R}java.lang.Boolean.booleanValue () .return
2 SA —-{P}java.lang.Boolean.Boolean (boolean) .param0

-<{0}java.lang.Boolean.Boolean (boolean) .this
-{F}java.lang.Boolean.data

163



Appendix A. JHotDraw Experiment Details

3 RVA —-{F}java.lang.Double.data
->{0}java.lang.Double.doubleValue () .this
-{R}java.lang.Double.doubleValue () .return

4 SA —-{P}java.lang.Double.Double (double) .param0
-<{0O}java.lang.Double.Double (double) .this
—-{F}java.lang.Double.data

5 RVA —-{F}java.lang.Float.data —->{0O}java.lang.Float.floatValue () .this
—-{R}java.lang.Float.floatValue () .return

6 SA —{P}java.lang.Float.Float (float) .param0
-<{0O}java.lang.Float.Float (float).this —-{F}java.lang.Float.data

7 RVA —-{F}java.lang.Integer.data
->{0}java.lang.Integer.intValue () .this
—-{R}java.lang.Integer.intValue () .return

8 SA —-{P}java.lang.Integer.Integer (int) .param0
-<{0O}java.lang.Integer.Integer (int) .this
-{F}java.lang.Integer.data

9 RVA —-{P}java.lang.Math.abs (double) .param0
-—{R}java.lang.Math.abs (double) .return

10 RVA —{P}java.lang.Math.ceil (double) .param0
-—{R}java.lang.Math.ceil (double) .return

11 RVA —-{P}java.lang.Math.cos (double) .param0
-—{R}java.lang.Math.cos (double) .return

12 RVA —-{P}java.lang.Math.floor (double) .param0
-—{R}Jjava.lang.Math.floor (double) .return

13 RVA —-{P}java.lang.Math.max (double, double) .param0
-—{R}java.lang.Math.max (double, double) .return

14 RVA —-{P}java.lang.Math.max (double, double) .paraml
-—{R}java.lang.Math.max (double, double) .return

15 RVA —-{P}java.lang.Math.min (double, double) .param0
-—{R}java.lang.Math.min (double, double) .return

16 RVA —-{P}java.lang.Math.min (double, double) .paraml
-—{R}java.lang.Math.min (double, double) .return

17 RVA —-{P}java.lang.Math.sin (double) .param0
—-—{R}Jjava.lang.Math.sin (double) .return

18 RVA —-{P}java.lang.Math.sqgrt (double) .param0
-—{R}java.lang.Math.sqgrt (double) .return

19 SA —-{F}java.lang.String.data
->{P}java.lang.String.String(java.lang.String) .param0
<{0O}java.lang.String.String(java.lang.String) .this
-{F}java.lang.String.data

20 SA —-{F}java.lang.String.data
->{0}java.lang.String.replace (char, char) .this
<{R}java.lang.String.replace (char, char) .return
-{F}java.lang.String.data

21 SA —-{F}java.lang.String.data
->{0}java.lang.String.substring(int, int) .this
<{R}java.lang.String.substring (int, int) .return
—-{F}java.lang.String.data

22 SA —{F}java.lang.String.data
->{0}java.lang.String.toLowerCase () .this
<{R}java.lang.String.toLowerCase () .return
—-{F}java.lang.String.data

164



23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

A.1. Specification of the Java Standard Library

SA —-{P}java.lang.String.replace (char,char) .paraml
-<{0O}java.lang.String.replace (char,char) .this
—-{F}java.lang.String.data

RVA —-{F}java.lang.String.data —->{0O}java.lang.String.charAt (int) .this

-{R}java.lang.String.charAt (int) .return

CID —-{P}java.lang.String.charAt (int) .param0
-—{0O}java.lang.String.charAt (int) .this

CID —-{P}java.lang.String.substring(int, int) .param0
-—{0}java.lang.String.substring (int, int) .this

CID —-{P}java.lang.String.substring(int, int) .paraml
-—{0O}java.lang.String.substring(int, int) .this

SA —-{P}java.util.Collection.add(java.lang.Object) .param0
-<{O}java.util.Collection.add(java.lang.0Object) .this
—{F}Jjava.util.Collection.data

RVA —-{F}java.util.Collection.data
->{0}java.util.ArrayList.get (int) .this
-{R}java.util.ArrayList.get (int) .return

SA —{P}java.util.ArraylList.add(java.lang.Object) .param0
—-<{0O}java.util.ArrayList.add(java.lang.Object) .this
—-{F}java.util.Collection.data

SA —-{F}java.util.Collection.data
->{P}java.util.ArrayList
.ArraylList (java.util.Collection) .param0

<{O}java.util.ArrayList .ArrayList (java.util.Collection) .this

—-{F}java.util.Collection.data

SA —-{F}java.util.Collection.data ->{P}java.util.HashSet

.HashSet (java.util.Collection) .param0 <{O}java.util.HashSet

.HashSet (java.util.Collection) .this
—{F}Jjava.util.Collection.data

CID —-{P}java.util.List.add(int, java.lang.Object) .param0
—-—{0O}java.util.List.add (int, java.lang.Object) .this

CID —-{P}java.util.List.get (int) .param0
-—{0O}java.util.List.get (int) .this

CID —{P}java.util.List.remove (int) .param0
—-—{0O}java.util.List.remove (int) .this

CID —-{P}java.util.List.set (int, java.lang.Object) .param0
-—{0O}java.util.List.set (int, java.lang.Object) .this

RVA —{F}java.util.Collection.data ->{O}java.util.List.get (int) .this

-{R}java.util.List.get (int) .return

RVA —{F}java.util.Collection.data
->{0O}java.util.List.remove (int) .this
—-{R}java.util.List.remove (int) .return

SA —{P}java.util.List.add(int, java.lang.Object) .paraml
—-<{0O}java.util.List.add(int, java.lang.Object) .this
—-{F}java.util.Collection.data

SA —-{P}java.util.List.add(java.lang.Object) .param0
-<{O}java.util.List.add(java.lang.Object) .this
—{F}java.util.Collection.data

SA —{P}java.util.List.set (int, java.lang.Object) .paraml
-<{O}java.util.List.set (int, java.lang.Object) .this
—{F}java.util.Collection.data

165



Appendix A. JHotDraw Experiment Details

42 SA —-{F}java.util.Collection.data ->{P}java.util.List
.addAll (java.util.Collection) .param0
<{O}java.util.List.addAll (java.util.Collection) .this
—{F}Jjava.util.Collection.data

43 SA —-{P}java.util.Set.add(java.lang.Object) .param0
-<{0O}java.util.Set.add(java.lang.Object) .this
—{F}java.util.Collection.data

44 CID —{P}java.util.AbstractlList.listIterator (int) .param0
-—{0O}java.util.AbstractlList.listIterator (int) .this

45 RVA —-{F}java.util.Iterator.data ->{0O}java.util.Iterator.next ().this
-{R}java.util.Iterator.next () .return

46 SA —{F}java.util.Collection.data
->{0}java.util.AbstractList.iterator () .this
<{R}java.util.AbstractList.iterator () .return
-{F}java.util.Iterator.data

47 SA —-{F}java.util.Collection.data
->{0}java.util.AbstractList.listIterator (int) .this
<{R}java.util.AbstractList.listIterator (int) .return
—{F}java.util.Iterator.data

48 SA —-{F}java.util.Collection.data
->{0}java.util.Collection.iterator () .this
<{R}java.util.Collection.iterator () .return
—-{F}java.util.Iterator.data

49 SA —{F}java.util.Collection.data
->{0}java.util.List.iterator () .this
<{R}java.util.List.iterator () .return
—-{F}java.util.Iterator.data

50 SA —{F}java.util.Collection.data ->{0O}java.util.Set.iterator () .this
<{R}java.util.Set.iterator () .return —-{F}java.util.Iterator.data

A.2. Concern Intent Specification

As part of our experiment on the JHotDraw case study, the CODEX tool was run sev-
eral times on two different versions of the case study, but always using the concern
intent specification shown in listing A.2.

Listing A.2: Specification of concern intents in the JHotDraw case study

1 concern Clipboard {
2 sink CH.ifa.draw.util.Clipboard.getClipboard() .return;
3 source CH.ifa.draw.util.Clipboard.getClipboard() .return;

166



N o g s

10

11

12

13

14

15

26

27

28

29

30

sink C
}

concern
source

source

source

A.2. Concern Intent Specification

H.ifa.draw.util.Clipboard.getContents () .return;

DrawRendering {

CH.ifa.draw.framework.DrawingView

.paint (java.awt.Graphics) .g;
CH.ifa.draw.framework.DrawingView

.drawAll (java.awt.Graphics) .g;
CH.ifa.draw.framework.DrawingView .draw(java.awt.Graphics,

CH.ifa.draw.framework.FigureEnumeration) .g;

source

source

CH.ifa.draw.standard.CompositeFigure
.draw (java.awt.Graphics) .g;
CH.ifa.draw.standard.CompositeFigure
.draw (java.awt.Graphics,

CH.ifa.draw.framework.FigureEnumeration) .g;

source
source
source
source
}
concern
sink C
sink C
sink j
sink J
}
concern

subcon
source

source

source

source

source

source

CH.ifa.draw.standard.StandardDrawingView
.paintComponent (java.awt .Graphics) .g;
CH.ifa.draw.framework.DrawingView
.drawDrawing (java.awt.Graphics) .g;
CH.ifa.draw.framework.DrawingView
.drawHandles (java.awt .Graphics) .g;
CH.ifa.draw.framework.DrawingView
.drawBackground (java.awt.Graphics) .g;

DrawingTitle {

H.ifa.draw.application.DrawApplication
.getDrawingTitle () .return;
H.ifa.draw.contrib.MDI_DrawApplication
.getDrawingTitle () .return;

ava.awt.Frame.setTitle (java.lang.String) .param0;
avax.swing.JInternalFrame .setTitle(java.lang.String) .param0;

FigureChange {

cern FigureChange.Events;
CH.ifa.draw.framework.Figure
.addFigureChangelListener (CH.ifa.draw.framework
.FigureChangelListener) .1l;
CH.ifa.draw.framework.Figure
.addToContainer (CH.ifa.draw.framework
.FigureChangelistener) .c;
CH.ifa.draw.framework.FigureChangeListener
.figureInvalidated(CH.ifa.draw.framework
.FigureChangeEvent) .this;
CH.ifa.draw.framework.FigureChangeListener
.figureChanged (CH.ifa.draw.framework
.FigureChangeEvent) .this;
CH.ifa.draw.framework.FigureChangeListener
.figureRemoved (CH.ifa.draw.framework
.FigureChangeEvent) .this;
CH.ifa.draw.framework.FigureChangeListener
.figureRequestRemove (CH.ifa.draw.framework
.FigureChangeEvent) .this;

167



Appendix A. JHotDraw Experiment Details

31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

47

48

49

51
52
53

168

source CH.ifa.draw.framework.FigureChangelListener
.figureRequestUpdate (CH.ifa.draw. framework
.FigureChangeEvent) .this;

sink CH.ifa.draw.framework.FigureChangelListener
.figureInvalidated(CH.ifa.draw.framework
.FigureChangeEvent) .this;

sink CH.ifa.draw.framework.FigureChangeListener
.figureChanged(CH.ifa.draw. framework
.FigureChangeEvent) .this;

sink CH.ifa.draw.framework.FigureChangeListener
.figureRemoved (CH.ifa.draw.framework
.FigureChangeEvent) .this;

sink CH.ifa.draw.framework.FigureChangelListener
.figureRequestRemove (CH.ifa.draw.framework
.FigureChangeEvent) .this;

sink CH.ifa.draw.framework.FigureChangeListener
.figureRequestUpdate (CH.ifa.draw. framework
.FigureChangeEvent) .this;

}
concern FigureChange.Events {

source CH.ifa.draw.framework.FigureChangeListener
.figureInvalidated(CH.ifa.draw.framework
.FigureChangeEvent) .e;

source CH.ifa.draw.framework.FigureChangelListener

.figureChanged (CH.ifa.draw.framework .FigureChangeEvent) .e;

source CH.ifa.draw.framework.FigureChangeListener

.figureRemoved (CH.ifa.draw.framework .FigureChangeEvent) .e;

source CH.ifa.draw.framework.FigureChangeListener
.figureRequestRemove (CH.ifa.draw.framework
.FigureChangeEvent) .e;

source CH.ifa.draw.framework.FigureChangeListener
.figureRequestUpdate (CH.ifa.draw. framework
.FigureChangeEvent) .e;

sink CH.ifa.draw.framework.FigureChangelListener
.figureInvalidated(CH.ifa.draw.framework
.FigureChangeEvent) .e;

sink CH.ifa.draw.framework.FigureChangeListener

.figureChanged (CH.ifa.draw.framework .FigureChangeEvent) .e;

sink CH.ifa.draw.framework.FigureChangelListener

.figureRemoved (CH.ifa.draw.framework .FigureChangeEvent) .e;

sink CH.ifa.draw.framework.FigureChangeListener
.figureRequestRemove (CH.ifa.draw. framework
.FigureChangeEvent) .e;
sink CH.ifa.draw.framework.FigureChangelListener
.figureRequestUpdate (CH.ifa.draw. framework
.FigureChangeEvent) .e;
}
concern FigureZOrder ({
sink CH.ifa.draw.framework.Figure.getZValue () .return;
sink CH.ifa.draw.standard.OrderedFigureElement .getZValue ()
}

concern Mouse.Click {

.return;



55

57

58

60

61

62

63

64

66

67

68

69

70

71

72

73

75

76

7

78

79

80

81

82

83

84

85

86

87

89

90

}

A.2. Concern Intent Specification

source java.awt.event.MouseListener

.mouseClicked(java.awt.event.MouseEvent) .param0;
source java.awt.event.MouseListener

.mousePressed (java.awt.event .MouseEvent) .param0;
source java.awt.event.MouseListener

.mouseReleased (java.awt.event.MouseEvent) .param0;

concern Mouse.Move {

}

source Jjava.awt.event.MouselListener
.mouseEntered(java.awt.event .MouseEvent) .param0;
source java.awt.event.MouseListener
.mouseExited (java.awt.event.MouseEvent) .param0;
source java.awt.event.MouseMotionListener
.mouseDragged (java.awt .event .MouseEvent) .param0;
source java.awt.event.MouseMotionListener
.mouseMoved (java.awt.event .MouseEvent) .param0;

concern Persistency.Reader ({

source CH.ifa.draw.util.StorableInput .readStorable().this;

sink
sink
sink
sink
sink
sink

}

CH.
CH.
CH.
CH.
CH.
CH.

ifa.
ifa.
ifa.
ifa.
ifa.
ifa.

draw.
draw.
draw.
draw.
draw.
draw.

util

util
util

.StorablelInput
util.
util.
util.
.StorableInput
.StorablelInput

StorableInput
StorablelInput
StorableInput

concern Persistency.Reference {
sink CH.ifa.draw.util.StorableOutput.fMap;
sink CH.ifa.draw.util.StorableInput.fMap;
source

source

source

CH.ifa
.map (CH.
CH.ifa.
.map (CH.
CH.ifa.

.readBoolean () .return;
.readColor () .return;
.readDouble () .return;
.readInt () .return;

.readStorable () .return;

.readString () .return;

.draw.util.StorableOutput
ifa.draw.util.Storable) .this;
draw.util.StorableOutput
ifa.draw.util.Storable) .storable;
draw.util.StorableOutput

.mapped (CH.ifa.draw.util.Storable) .return;

source

CH.ifa.draw.util.StorableOutput

.mapped (CH.ifa.draw.util.Storable) .storable;

source

CH.ifa.draw.util.StorableOutput

.writeRef (CH.ifa.draw.util.Storable) .storable;

source

CH.ifa.draw.util.StorableInput

.map (CH.ifa.draw.util.Storable) .storable;

source

}

CH.ifa.draw.util.StorableInput

.map(CH.ifa.draw.util.Storable) .this;
sink CH.ifa.draw.util.StorableInput
sink CH.ifa.draw.util.StorableInput.retrieve (int) .ref;

source CH.ifa.draw.util.StorablelInput .retrieve(int) .this;

concern Persistency.Writer {
source CH.ifa.draw.util.StorableOutput

.writeStorable(CH.ifa.draw.util.Storable) .this;

source CH.ifa.draw.util.StorableOutput .writeBoolean (boolean) .b;

.retrieve (int) .return;

169



Appendix A. JHotDraw Experiment Details

91

92

93

94

95

96

98

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

170

source CH.ifa.draw.util.StorableOutput

.writeColor (java.awt.Color) .c;

source CH.ifa.draw.util.StorableOutput .writeDouble (double)
source CH.ifa.draw.util.StorableOutput.writeInt (int) .i;
source CH.ifa.draw.util.StorableOutput

.writeStorable(CH.ifa.draw.util.Storable) .storable;

source CH.ifa.draw.util.StorableOutput

}

.writeString(java.lang.String).s;

concern StorageFormatManager {

sink

sink
sink

sink

CH.ifa.draw.application.DrawApplication
.getStorageFormatManager () .return;

.d;

CH.ifa.draw.util.StorageFormatManager .myStorageFormats;

CH.ifa.draw.util.StorageFormatManager
.findStorageFormat (javax.swing.filechooser
.FileFilter) .return;

CH.ifa.draw.util.StorageFormatManager
.findStorageFormat (javax.swing.filechooser
.FileFilter).findFileFilter;

source CH.ifa.draw.util.StorageFormatManager

}

.registerFileFilters(javax.swing.JFileChooser) .this;

concern ToolActivation {
subconcern ToolActivation.Actions;

sink
sink
sink
sink
sink
sink
sink
sink
sink

sink

}

CH.ifa.draw.framework.Tool.isActive () .return;
CH.ifa.draw.framework.Tool.isEnabled () .return;
CH.ifa.draw.framework.Tool.isUsable () .return;
CH.ifa.draw.standard.AbstractTool

.EventDispatcher.myRegisteredListeners;
CH.ifa.draw.framework.ToolListener
.toolEnabled(java.util.EventObject) .this;
CH.ifa.draw.framework.ToolListener
.toolDisabled(java.util.EventObject) .this;
CH.ifa.draw.framework.ToolListener
.toolUsable (java.util.EventObject) .this;
CH.ifa.draw.framework.ToolListener
.toolUnusable (java.util.EventObject) .this;
CH.ifa.draw.framework.ToolListener
.toolActivated(java.util.EventObject) .this;
CH.ifa.draw.framework.ToolListener
.toolDeactivated(java.util.EventObject) .this;

concern ToolActivation.Actions {
source CH.ifa.draw.framework.ToolListener

.toolEnabled(java.util.EventObject) .this;

source CH.ifa.draw.framework.ToolListener

.toolDisabled(java.util.EventObject) .this;

source CH.ifa.draw.framework.ToolListener

.toolUsable (java.util.EventObject) .this;

source CH.ifa.draw.framework.ToolListener

.toolUnusable (java.util.EventObject) .this;



A.3. CODEX Project File

122 source CH.ifa.draw.framework.ToolListener
.toolActivated(java.util.EventObject) .this;

123 source CH.ifa.draw.framework.ToolListener
.toolDeactivated(java.util.EventObject) .this;

124 }

125 concern Undo {

126 subconcern Undo.Actions;

127 subconcern Undo.Activities;

128 sink CH.ifa.draw.util.Undoable.undo () .this;

129 sink CH.ifa.draw.util.Undoable.redo () .this;

130 sink CH.ifa.draw.util.UndoManager.undoStack;

131 sink CH.ifa.draw.util.UndoManager.redoStack;

132 sink CH.ifa.draw.util.UndoManager.isUndoable () .return;

133 sink CH.ifa.draw.util.UndoManager.isRedoable () .return;

134 sink CH.ifa.draw.framework.DrawingEditor .getUndoManager ().return;

135 }

136 concern Undo.Actions {

137 source CH.ifa.draw.util.Undoable.undo () .this;

138 source CH.ifa.draw.util.Undoable.redo () .this;

139 }

140 concern Undo.Activities {

141 sink CH.ifa.draw.standard.AbstractHandle

.setUndoActivity (CH.ifa.draw.util.Undoable)
.newUndoableActivity;

142 sink CH.ifa.draw.standard.AbstractTool
.setUndoActivity (CH.ifa.draw.util.Undoable)
.newUndoableActivity;

143 sink CH.ifa.draw.standard.AbstractCommand
.setUndoActivity (CH.ifa.draw.util.Undoable)
.newUndoableActivity;

144 }

A.3. CoDEX Project File

This sections shows the CODEX project file used for the object-sensitive run with
separation of superimposed roles.

Listing A.3: Sample CODEX project file

1 <ProjectWorkflow name="run_jhd53_0O_RS">
2 <Action name="parse source code"
class="codex.extraction.recoder.FactExtractorImpl">

171



Appendix A. JHotDraw Experiment Details

3 <Parameter name="input" value="JhotDraw/5.3/src/"/>

4 <Parameter name="library_input" value="1lib_used.txt"/>
5 <Parameter name="split_roles" value="true"/>

6 <Parameter name="relation_edge"

value="codex.core.graph.SumWeightRelationEdge" />
7 <Parameter name="composite_edge"
value="codex.core.graph.SumWeightCompositeEdge" />
8 </Action>
9 <Action name="export concern graph"
class="codex.export.GMLGraphExporter">

10 <Parameter name="path_name" value="out/jhd53/0_RS_graph.gml"/>
11 <Parameter name="relations">
12 <Element name="SA" type="double" value="100"/>
13 <Element name="PA" type="double" value="100"/>
14 <Element name="OCA" type="double" value="100"/>
15 <Element name="RVA" type="double" value="100"/>
16 <Element name="EA" type="double" value="100"/>
17 <Element name="PI" type="double" value="100"/>
18 <Element name="OCI" type="double" value="100"/>
19 <Element name="RVI" type="double" value="100"/>
20 <Element name="CFD" type="double" value="100"/>
21 <Element name="CID" type="double" value="100"/>
22 <Element name="CED" type="double" value="100"/>
23 </Parameter>
24 </Action>
25 <Action name="extract concern extents"
class="codex.analysis.ConcernExtentExtractor">
26 <Parameter name="concern_definitions"

value="jhotdraw_concerns.xml"/>

27

<Parameter name="sensitivity" value="object"/>

28 <Parameter name="relations">

29 <Element name="SA" type="double" value="100"/>
30 <Element name="PA" type="double" value="100"/>
31 <Element name="OCA" type="double" value="100"/>
32 <Element name="RVA" type="double" value="100"/>
33 <Element name="EA" type="double" value="100"/>
34 <Element name="PI" type="double" value="100"/>
35 <Element name="OCI" type="double" value="100"/>
36 <Element name="RVI" type="double" value="100"/>
37 <Element name="CFD" type="double" value="100"/>
38 <Element name="CID" type="double" value="100"/>
39 <Element name="CED" type="double" value="100"/>
40 </Parameter>

41

42
43

44

45
46

172

<Parameter name="graph_compactor"

value="codex.core.graph.HierarchicGraphCompactor"/>

</Action>

<Action name="export graph statistics"

class="codex.export.StatisticsExporter">

<Parameter name="path_name" value="out/jhd53/0_RS_stats.txt"/>

</Action>

<Action name="export concern skeletons"
class="codex.export.GMLConcernExporter">



47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63

64

65

66
67

68

70

A.4. Detailed Experiment Results

<Parameter name="path_name" value="out/jhd53/0_RS_concerns/"/>

<Parameter name="relations">
<Element name="SA" type="double" value="100"/>
<Element name="PA" type="double" value="100"/>
<Element name="OCA" type="double" value="100"/>
<Element name="RVA" type="double" value="100"/>
<Element name="EA" type="double" value="100"/>
<Element name="PI" type="double" value="100"/>
<Element name="OCI" type="double" value="100"/>
<Element name="RVI" type="double" value="100"/>
<Element name="CFD" type="double" value="100"/>
<Element name="CID" type="double" value="100"/>
<Element name="CED" type="double" value="100"/>

</Parameter>

</Action>

<Action name="export concern elements"
class="codex.export.ConcernElementsExporter">

<Parameter
</Action>

name="path_name" value="out/jhd53/0_RS_concerns.txt"/>

<Action name="evaluate identification accuracy"
class="codex.eval.AccuracyEvaluator">

<Parameter
<Parameter

name="reference_file" value="prj/ref_jhd53.txt"/>
name="concern_file"

value="out/jhd53/0_RS_concerns.txt"/>

<Parameter name="output_file"
value="out/jhd53/0_RS_accuracy.txt"/>
</Action>
</ProjectWorkflow>

A.4. Detailed Experiment Results

The following tables present detailed size and accuracy measurements for each of
the identified concern skeletons, collected for insensitive, context-sensitive and
object-sensitive runs of the CODEX tool on both versions of the JHotDraw case
study.

173



Appendix A. JHotDraw Experiment Details

Concern Name Ref. JHD5.31 JHD5.3C JHD5.30

Size | Size Prec. Rec. F; | Size Prec. Rec. F; |Size Prec. Rec. F;
Clipboard 10 9 0.89 08 084 9 0.89 08 084 7 1 0.7 0.82
DrawRendering 85 75 1 0.88 094 | 75 1 0.88 0.94| 75 1 0.88 0.94
DrawingTitle 46 | 36 0.81 063 071 36 081 0.63 0.71| 27 1 0.59 0.74
FigureChange 140 | 1289 0.11 0.97 0.19 1274 0.11 0.97 0.19| 700 0.18 0.89 0.3
FigureChange.Events 64 61 1 0.95 0.98| 61 1 0.95 0.98| 61 1 0.95 0.98
FigureZOrder 11 15 0.73 1 085 15 0.73 1 085] 8 1 0.73 0.84
Mouse.Click 44 44 1 1 1 44 1 1 1 44 1 1 1
Mouse.Move 31 31 1 1 1 31 1 1 1 31 1 1 1
Persistency.Reader 83 (1093 0.06 0.81 0.11|1092 0.06 0.81 0.11| 48 0.9 0.52 0.66
Persistency.Reference 22 (1626 0.01 0.82 0.02|1626 0.01 0.82 0.02| 19 0.95 0.82 0.88
Persistency.Writer 75 | 1456 0.05 093 0.09]|1439 0.05 093 0.09| 87 0.8 0.93 0.86
StorageFormatManager | 35 | 669 0.04 0.71 0.07| 668 0.04 0.71 0.07| 24 0.88 0.6 0.71
ToolActivation 81 | 748 0.08 0.78 0.15| 747 0.08 0.78 0.15| 71 0.83 0.73 0.78
ToolActivation.Actions 18 19 095 1 097 19 0.95 1 097 19 0.95 1 0.97
Undo 359 | 873 0.33 081 047|872 033 0.81 0.47| 278 0.99 0.77 0.86
Undo.Actions 154 | 92 097 058 072| 92 097 058 0.72| 92 0.97 0.58 0.72
Undo.Activities 81 49 096 058 0.72] 49 096 058 0.72| 49 096 0.58 0.72

Table A.1: Size and accuracy measurements for JHotDraw 5.3, no separation of superimposed roles

174



A.4. Detailed Experiment Results

sa[o1 pasodurrradns jo uoneredas YIm ‘g'G MBI(TIOH [ 10J SYUIUISINSBIW AJBINIOR PUR JZIS 2"V 9.l

¢L’0 850 960 6%V |¢L0 850 960 67 |[CL0 850 960 6F 18 S9aNIANOY OpuUN)
€L0 850 .60 €6 |€L0 850 L60 €6 |€L0 850 L60 €6 | PSI Suonay-opuf)
.80 LLO 660 6.¢|¢S0 180 8E€0 <¢9L |¢90 180 8E0 <¢9L | 6S€ opuf)
60 1 é6'0 61 |60 I G660 oI |60 1 G660 61 81 SUONIOYy 'uoneAndy[oo],
8.0 €L0 €80 1. |8T0 8.0 T0 19 |8T0 8.0 T0 LT19 | 18 uoneAndy[oao],
120 90 880 ¥Z [800 120 %00 885 |800 1.0 %00 885 | GE |IadeurAieUiIofo3eIOIg
.80 G6'0 80 68 | T'0O S60 S00 6¢€T| T'0 S6'0 SO0 0Gel| GL I9ILIM AOUDISISIO]
88°0 ¢80 G60 61 |00 ¢80 100 %0ST|<CO00 ¢80 100 W¥OST| ¢¢ 90UaIRJoY AOURISISIo]
99'0 ¢5°0 60 8y | IT'0 190 900 898 |IT0 190 900 898 | €8 Iopeay AoualsIsiag

1 1 1 1€ 1 1 1 1€ 1 1 1 1€ 1€ 9AOJA'9STION

1 1 1 1744 1 1 1 1744 1 1 I 144 1744 JII[D9SNON
780 €L°0 ! 8 |S980 I €0 ST |S80 1 €L0 Gl 11 19p10ZoMm3I]
860 960 1 19 |86'0 S6°0 1 19 [86'0 S6°0 1 19 79 syuaAg d3urYDIINSL]
¢80 €60 ¥.0 9.1 |¢80 €0 ¥%L0 9.1 |280 €60 ¥.0 9.1 | OVI o8ueyDoIn3r]
7.0 650 ! L¢ | TL0 €90 180 9¢ |T120 €90 180 9¢ 97 opILuImeI(q
¥6'0 880 1 GL | 760 880 1 G. |¥6'0 880 1 GL a8 SurepuaymeIq
¢80 L0 ! L |¥8°0 80 680 6 |¥80 80 680 6 01 preoqdi|D

Iy 09y 021g 9zIS| I 09y -0a1g 9zIiS | IJ 09y 091q oZIS | 9ZIg S —

SY 0 €S aH( S4 D €S AH( SYI1€SaHl o

175



Appendix A. JHotDraw Experiment Details

Concern Name Ref. JHD5.41 JHD5.4C JHD 5.40
Size | Size Prec. Rec. F; | Size Prec. Rec. F; | Size Prec. Rec. F;

Clipboard 10 9 089 08 084 9 089 08 084 7 1 0.7 0.82
DrawRendering 164 | 127 1 0.77 0.87 | 121 1 0.74 0.85] 121 1 0.74 0.85
DrawingTitle 47 | 956 0.05 096 0.09| 946 0.05 096 0.09| 30 0.87 0.55 0.68
FigureChange 160 | 216 0.69 093 0.79| 216 0.69 0.93 0.79| 203 0.67 0.84 0.74
FigureChange.Events 75 | 72 099 095 097 72 099 095 097 71 0.99 093 0.96
FigureZOrder 11 20 0.55 1 071 20 0.55 1 0.71] 10 0.8 0.73 0.76
Mouse.Click 63 61 1 0.97 0.98| 61 1 0.97 0.98| 61 1 0.97 0.98
Mouse.Move 44 | 41 1 0.93 0.96| 41 1 0.93 0.96| 41 1 0.93 0.96
Persistency.Reader 115 | 2061 0.04 0.71 0.08 1702 0.05 0.71 0.09| 799 0.09 0.63 0.16
Persistency.Reference 18 | 2271 0.01 0.83 0.01 2261 0.01 0.83 0.01|1562 0.01 0.83 0.02
Persistency.Writer 98 (2198 0.04 09 0.08|2178 0.04 0.9 0.08|1463 0.06 0.9 0.11
StorageFormatManager | 34 | 612 0.04 0.71 0.07| 604 0.04 0.71 0.08| 337 0.06 0.62 0.11
ToolActivation 76 | 776 0.05 055 0.1 | 766 0.05 0.55 0.1 | 454 0.09 0.55 0.16
ToolActivation.Actions 18 19 095 1 097| 19 0.95 1 097 19 0.95 1 0.97
Undo 375 (1100 0.28 0.81 0.41|1089 0.28 0.81 0.42| 739 0.39 0.77 0.52
Undo.Actions 156 | 105 0.96 0.65 0.77| 105 096 0.65 0.77| 105 0.96 0.65 0.77
Undo.Activities 87 | 49 096 054 069| 49 096 054 0.69| 49 096 0.54 0.69

Table A.3: Size and accuracy measurements for JHotDraw 5.4, no separation of superimposed roles

176



A.4. Detailed Experiment Results

sa[o1 pasodurrradns jo uoneredas YIm §°'G MBI(TIOH [ 10J SYUSUISINSBIW AJBINIOR PUE JZIS 'V S[qeL

690 ¥5°0 960 6V |690 ¥50 960 6% [690 ¥50 960 6V L8 SONIALOY OpU[)
6.0 190 960 66 |SL0 190 960 66 |SGL°0 190 960 66 | 9GI suonoy-opuf)
¢L0 GL0 690 TII¥ |LVO0 6.0 €€0 ¢68 |LV0 60 €€0 668 | GLE opuf
.60 1 G660 oI |60 I é6'0 o6 |60 I G660 6l 81 SUONIY uoNeAndy[oo],
8T°'0 S50 TI10 /8€ |IT0 S50 900 1¢L | 10 SS0O0 900 8c¢L | 9L uoneAndyioao],
¥1°0 290 80°0 092 [80°0 120 %00 18S |800 1.0 %00 885 | ¥E |IodeueAIeULIO[o3RIONS
¢l'0 60 900 G.€1|800 60 %00 L€0C|800 60 VOO S90C| 86 I9ILIM AOUDISISIO]
¢0'0 €80 T00 60€l|T100 €80 100 €0Ic|TI00 €80 100 90IC| 8I 90UaI19JY AOU)SISId]
SI'0 S0 600 ¢¢9 |[600 LS50 SO0 ¥8ET|L00 LSO ¥O0O €9LT1| SII Iopeay Aoualsisiag
960 €60 1 Iy {960 €60 1 Iv [960 €60 1 v 1474 9AOJN'9STION
860 .60 1 19 860 160 1 19 |86°0 L1670 1 19 €9 AII[DISNON
9.0 €0 80 Of |10 I ¢¢’'0 0¢ |10 1 ee¢’'0 0c¢ 11 19p10ZeIn3r]
960 €60 660 I. |60 60 660 ¢L |60 S60 660 <¢CL Gl syuoAg d8uRYDIINSL]
LL°0 €80 ¢L0 981 |[I80 60 €20 Lo6I |180 60 €0 L61 | 091 odueyDoIn3r]
89°0 G6S°0 /.80 O¢ I'0 960 G000 998 | T'0O 960 SO0 €18 | LV apILdumeIq
80 ¥.°0 1 IZ21 | S8°0 ¥.°0 ! IZT | 80 LL°O 1 LT | P91 JurepuaymeIq
¢80 L0 ! L ¥80 80 680 6 |[¥8°0 80 680 6 0] preoqdiD

Iy 09y 021d 93ziI§ | T, 09y 001 azIiS | IJ 09y "091q 9ZIS | 9ZI S —

SY 0 ¥'S AH( S4 D ¥'S AHl SHY1¥'S aHl Jod

177






Bibliography

[Aho 86] Alfred V. Aho, Ravi Sethi & Jeffrey D. Ullman. Compilers: prin-

[Andersen 94]

[Antoniol 05]

[Batory 92]

[Batory 03]

[Ben-Menachem 97]

[Biggerstaff 93]

ciples, techniques, and tools. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1986.

L. O. Andersen. Program Analysis and Specialization for the
C Programming Language. PhD thesis, University of Copen-
hagen, 1994.

G. Antoniol & Y.-G. Gueheneuc. Feature identification: a novel
approach and a case study. In Software Maintenance, 2005.
ICSM’05. Proceedings of the 21st IEEE International Confer-
ence on, pages 357-366, Sept. 2005.

Don Batory & Sean O’Malley. The design and implemen-
tation of hierarchical software systems with reusable compo-
nents. ACM Trans. Softw. Eng. Methodol., vol. 1, no. 4, pages
355-398, 1992.

Don Batory, Jacob Neal Sarvela & Axel Rauschmayer. Scaling
step-wise refinement. In ICSE ’03: Proceedings of the 25th In-
ternational Conference on Software Engineering, pages 187-
197, Washington, DC, USA, 2003. IEEE Computer Society.

M. Ben-Menachem & G. S. Marliss. Software quality: Pro-
ducing practical, consistent software. International Thomson
Computer Press, first edition, 1997.

T. J. Biggerstaff, B. G. Mitbander & D. Webster. The concept
assignment problem in program understanding. In Proceed-
ings of the International Conference on Software Enginee-
ring (ICSE), pages 482-498, Los Alamitos, CA, USA, 1993. IEEE
Computer Society Press.

179



Bibliography

180

[Bohner 96]

[Breu 03]

[Breu 04]

[Breu 06]

[Brooks 83]

[Bruntink 04]

[Bruntink 05]

[Ceccato 05]

[Ceccato 06]

S. A. Bohner & R. S. Arnold. Software change impact analysis.
IEEE Computer Society Press, Los Alamitos, CA, USA, 1996.

Silvia Breu & Jens Krinke. Aspect Mining Using Dynamic
Analysis. GI-Softwaretechnik-Trends, vol. 23, no. 2, pages 21—
22, May 2003.

S. Breu & J. Krinke. Aspect mining using event traces. In Au-
tomated Software Engineering, 2004. Proceedings. 19th Inter-
national Conference on, pages 310-315, Sept. 2004.

Silvia Breu & Thomas Zimmermann. Mining Aspects from Ver-
sion History. In ASE '06: Proceedings of the 21st IEEE/ACM In-
ternational Conference on Automated Software Engineering,
pages 221-230, Washington, DC, USA, 2006. IEEE Computer
Society.

R. Brooks. Towards a Theory of the Comprehension of Com-
puter Programs. International journal of man-machine stud-
ies, vol. 18, no. 66, pages 543-554, 1983.

Magiel Bruntink, Arie van Deursen, Tom Tourwe & Remco
van Engelen. An Evaluation of Clone Detection Techniques for
Identifying Crosscutting Concerns. In ICSM ’'04: Proceedings
of the 20th IEEE International Conference on Software Main-
tenance, pages 200-209, Washington, DC, USA, 2004. IEEE
Computer Society.

Magiel Bruntink, Arie van Deursen, Remco van Engelen & Tom
Tourwe. On the Use of Clone Detection for Identifying Cross-
cutting Concern Code. 1EEE Trans. Softw. Eng., vol. 31, no. 10,
pages 804-818, 2005.

M. Ceccato, M. Marin, K. Mens, L. Moonen, P Tonella &
T. Tourwe. A Qualitative Comparison of Three Aspect Mining
Techniques. In Proceedings of the International Workshop on
Program Comprehension (IWPC), pages 13-22, 2005.

M. Ceccato, M. Marin, K. Mens, L. Moonen, P Tonella &
T. Tourwé. Applying and combining three different aspect Min-



[Chen 00]

[Choi 93]

[Clements 01]

[Colyer 04]

[Corbi 89]

[Czarnecki 00]

[Dijkstra 82]

[Eaddy 07]

Bibliography

ing Techniques. Software Quality Control, vol. 14, no. 3, pages
209-231, 2006.

Kunrong Chen & Véclav Rajlich. Case Study of Feature Loca-
tion Using Dependence Graph. In IWPC '00: Proceedings of
the 8th International Workshop on Program Comprehension,
pages 241-247, Washington, DC, USA, 2000. IEEE Computer
Society.

Jong-Deok Choi, Michael Burke & Paul Carini. Efficient
flow-sensitive interprocedural computation of pointer-induced
aliases and side effects. In POPL ’93: Proceedings of the 20th
ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 232-245, New York, NY, USA, 1993.
ACM.

Paul Clements & Linda Northrop. Software product lines:
practices and patterns. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

A. Colyer & A. Clement. Large-scale AOSD for Middleware.
In Proceedings of the International Conference on Aspect-
Oriented Software Development (AOSD), pages 56-65. ACM,
Mar 2004.

T. A. Corbi. Program understanding: challenge for the 1990’s.
IBM Syst. J., vol. 28, no. 2, pages 294-306, 1989.

Krzysztof Czarnecki & Ulrich W. Eisenecker. = Generative
programming: methods, tools, and applications. ~ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
2000.

Edsger W. Dijkstra. On the Role of Scientific Thought. In Se-
lected Writings on Computing: A Personal Perspective, pages
60—66. Springer-Verlag, 1982. ISBN 0-387-90652-5.

Marc Eaddy, Alfred Aho & Gail C. Murphy. Identifying, Assign-
ing, and Quantifying Crosscutting Concerns. In ACoM ’07: Pro-
ceedings of the First International Workshop on Assessment

181



Bibliography

182

[Eisenbarth 01]

[Eisenbarth 03]

[Emami 94]

[Erlikh 00]

[Ferrante 87]

[Gallagher 91]

[Gallagher 06]

[Gamma 95]

[Ganter 99]

of Contemporary Modularization Techniques, page 2, Wash-
ington, DC, USA, 2007. IEEE Computer Society.

Thomas Eisenbarth, Rainer Koschke & Daniel Simon. Feature-
Driven Program Understanding Using Concept Analysis of Ex-
ecution Traces. In Proceedings of the 9th International Work-
shop on Program Comprehension, pages 300-309. IEEE Com-
puter Society Press, 2001.

Thomas Eisenbarth, Rainer Koschke & Daniel Simon. Locating
Features in Source Code. IEEE Trans. Softw. Eng., vol. 29, no. 3,
pages 210-224, 2003.

Maryam Emami, Rakesh Ghiya & Laurie J. Hendren. Context-
sensitive interprocedural points-to analysis in the presence of
function pointers. In PLDI '94: Proceedings of the ACM SIG-
PLAN 1994 conference on Programming language design and
implementation, pages 242-256, New York, NY, USA, 1994.
ACM.

L. Erlikh. Leveraging Legacy System Dollars for E-Business. 1T
Professional, vol. 2, no. 3, pages 17-23, 2000.

Jeanne Ferrante, Karl J. Ottenstein & Joe D. Warren. The pro-
gram dependence graph and its use in optimization. ACM
Trans. Program. Lang. Syst., vol. 9, no. 3, pages 319-349, 1987.

Keith Brian Gallagher & James R. Lyle. Using Program Slic-
ing in Software Maintenance. 1EEE Trans. Softw. Eng., vol. 17,
no. 8, pages 751-761, 1991.

K. Gallagher, D. Binkley & M. Harman. Stop-List Slicing.
In Source Code Analysis and Manipulation, 2006. SCAM ’'06.
Sixth IEEE International Workshop on, pages 11-20, Sept.
2006.

E. Gamma, R. Helm, R. Johnson &]J. Vlissides. Design patterns.
Addison-Wesley Professional, 1995.

B. Ganter & R. Wille. Formal concept analysis - mathematical
foundations. Springer, 1999.



[Gold 05]

[Goos 97]

[Gosling 05]

[Gotel 94]

[Hammer 09a]

[Hammer 09b]

[Hannemann 01]

[Harman 02]

[Harrison 93]

Bibliography

N. E. Gold, M. Harman, D. Binkley & R. M. Hierons. Unifying
program slicing and concept assignment for higher-level exe-
cutable source code extraction. Software Practice and Experi-
ence, vol. 35, no. 10, pages 977-1006, 2005.

Gerhard Goos. Vorlesungen tiiber informatik, volume 1:
Grundlagen und funktionales Programmieren. Springer-
Verlag, second edition, 1997.

J. Gosling, B. Joy, G. Steele & G. Bracha. The java language
specification. Addison-Wesley, third edition, 2005.

O. C. Z. Gotel & C. W. Finkelstein. An analysis of the require-
ments traceability problem. In Requirements Engineering,
1994., Proceedings of the First International Conference on,
pages 94-101, Apr 1994.

Christian Hammer. Information Flow Control for Java - A
Comprehensive Approach basedon Path Conditions in Depen-
dence Graphs. PhD thesis, Universitdt Karlsruhe, 2009.

Christian Hammer & Gregor Snelting. Flow-Sensitive, Context-
Sensitive, and Object-sensitive Information Flow Control
Based on Program Dependence Graphs. International Journal
of Information Security, vol. 8, no. 6, pages 399-422, Decem-
ber 2009. Supersedes ISSSE and ISoLA 2006.

Jan Hannemann & Gregor Kiczales. Overcoming the Preva-
lent Decomposition of Legacy Code. In Proceedings of the ICSE
Workshop on Advanced Separation of Concerns, 2001.

M. Harman, N. Gold, R. Hierons & D. Binkley. Code Extrac-
tion Algorithms which Unify Slicing and Concept Assignment.
In WCRE ’02: Proceedings of the Ninth Working Conference
on Reverse Engineering (WCRE’02), page 11, Washington, DC,
USA, 2002. IEEE Computer Society.

William Harrison & Harold Ossher. Subject-oriented program-
ming: a critique of pure objects. SIGPLAN Not., vol. 28, no. 10,
pages 411-428, 1993.

183



Bibliography

184

[Harrison 04]

[Hartigan 75]

[Hayes 03]

[Himsolt 97]

[Horwitz 88]

[Horwitz 90]

(IEEE 90]

[Inc. 97]

[Ishio 07]

[Janzen 03]

[Johnson 02]

William Harrison, Harold Ossher, Stanley Sutton Jr. & Peri Tarr.
Concern Modeling in the Concern Manipulation Environment.
IBM Research Report RC23344, 2004.

John A. Hartigan. Clustering algorithms. John Wiley & Sons,
New York, NY, USA, 1975.

Brian Hayes. The Post-OOP Paradigm. American Scientist,
vol. 91, no. 2, page 106, Mar/Apr 2003.

Michael Himsolt. The graphlet system (system demonstra-
tion), volume 1190 of Lecture Notes in Computer Science,
pages 233-240. Springer-Verlag, 1997.

S. Horwitz, T. Reps & D. Binkley. Interprocedural slicing using
dependence graphs. SIGPLAN Not., vol. 23, no. 7, pages 35-46,
1988.

S. Horwitz, T. Reps & D. Binkley. Interprocedural slicing using
dependence graphs. ACM Trans. Program. Lang. Syst., vol. 12,
no. 1, pages 26-60, 1990.

IEEE. IEEE Standard Glossary of Software Engineering Termi-
nology. IEEE Std 610.12-1990, 1990.

Sun Microsystems Inc. Code Conventions for the Java Pro-
gramming Language. http://java.sun.com/docs/ codeconv/-
CodeConventions.pdf, 1997.

Takashi Ishio, Ryusuke Niitani, Gail Murphy & Katsuro Inoue.
A Program Slicing Approach for Locating Functional Concerns.
Rapport technique, SE Lab, Dept. of Computer Science, Osaka
University, 2007.

Doug Janzen & Kris De Volder. Navigating and querying code
without getting lost. In AOSD ’03: Proceedings of the 2nd in-
ternational conference on Aspect-oriented software develop-
ment, pages 178-187, New York, NY, USA, 2003. ACM.

Rod Johnson. Expert one-on-one j2ee design and develop-
ment. Wrox Press Ltd., Birmingham, UK, 2002.



[Jones 91]

[Kam 77]

[Kiczales 97]

[Kildall 73]

[Koschke 05]

[Koskinen 04]

[Kotonya 98]

[Kozaczynski 94]

[Krinke 03]

[Krinke 06]

Bibliography

C. Jones. Applied software measurement: assuring productiv-
ity and quality. McGraw-Hill, Inc., New York, NY, USA, 1991.

John B. Kam & Jeffrey D. Ullman. Monotone data flow analysis
frameworks. Acta Informatica, vol. 7, no. 3, pages 305-317,
1977.

G. Kiczales, ]J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes,
J. M. Loingtier & J. Irwin. Aspect-Oriented Programming.
In M. Aksit & S. Matsuoka, editeurs, Proceedings European
Conference on Object-Oriented Programming, volume 1241,
pages 220-242. Springer-Verlag, Berlin, Heidelberg, and New
York, 1997.

Gary A. Kildall. A unified approach to global program opti-
mization. In POPL ’73: Proceedings of the 1st annual ACM
SIGACT-SIGPLAN symposium on Principles of programming
languages, pages 194-206, New York, NY, USA, 1973. ACM.

Rainer Koschke & Jochen Quante. On dynamic feature loca-
tion. In ASE '05: Proceedings of the 20th IEEE/ACM interna-
tional Conference on Automated software engineering, pages
86-95, New York, NY, USA, 2005. ACM.

J. Koskinen. Software Maintenance Costs. http://
users.jyu.fi/~koskinen/smcosts.htm, Sept 2004.

Gerald Kotonya & Ian Sommerville. Requirements enginee-
ring - processes and techniques. John Wiley & Sons, 1998.

Wojtek Kozaczynski & Jim Q. Ning. Automated program un-
derstanding by concept recognition. Automated Software En-
gineering, vol. 1, no. 1, pages 61-78, Mar 1994.

Jen Krinke. Advanced Slicing of Sequential and Concurrent
Programs. PhD thesis, Universitdt Passau, 2003.

Jens Krinke. Mining Control Flow Graphs for Crosscutting Con-
cerns. In WCRE ’06: Proceedings of the 13th Working Con-
ference on Reverse Engineering, pages 334-342, Washington,
DC, USA, 2006. IEEE Computer Society.

185



Bibliography

[Kuttruff 09]

[Lai 99]

[Lai 02]

[Lehman 74]

[Lientz 80]

[Liu 08]

[Liu 09]

[Ludwig 01]

[Ludwig 02]

[Maletic 00]

186

Volker Kuttruff. Realisierung von Softwareproduktlinien durch
Komposition von Belangimplementierungen. PhD thesis, Uni-
versitiat Karlsruhe, Fakultit fir Informatik, 2009.

Albert Lai & Gail C. Murphy. The Structure of Features in Java
Code: An Exploratory Investigation. In MDSOC’99: OOPSLA’99
Workshop on Multi-dimensional Separation of Concerns in
Object-Oriented Systems, 1999.

A. Lai & G. Murphy. Behavioural Concern Modelling for Soft-
ware Change Tasks. In Proceedings of the IEEE International
Conference on Software Maintenance, pages 112-121, Los
Alamitos, CA, USA, 2002. IEEE Computer Society.

M. M. Lehman. Programs, Cities, Students - Limits to Growth?
In Imperial College of Science and Technology Inaugural Lec-
ture Series, volume 9, pages 211-229. University of London,
1974.

B. P Lientz & E. B. Swanson. Software maintenance manage-
ment. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1980.

Y. Liu & A. Milanova. Static Analysis for Inference of Explicit
Information Flow. In Proceedings of the ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering (PASTE), 2008.

Y. Liu & A. Milanova. Practical Static Analysis for Inference of
Security-related Program Properties. In Proceedings of the In-
ternational Conference on Program Comprehension (ICPC).
IEEE, 2009.

A. Ludwig. Recoder. http://recoder.sourceforge.net/, 2001.

Andreas Ludwig. Automatische Transformation grosSer Soft-
waresysteme. PhD thesis, University of Karlsruhe, Dec 2002.

J. I. Maletic & A. Marcus. Using latent semantic analysis to
identify similarities in source code to support program under-
standing. In Tools with Artificial Intelligence, 2000. ICTAI



[Maletic 01]

[Marcus 03]

[Marcus 04]

[Marcus 05]

[Marin 04]

[Marin 05]

[Marin 06]

Bibliography

2000. Proceedings. 12th IEEE International Conference on,
pages 46-53, 2000.

J. I. Maletic & A. Marcus. Supporting program comprehen-
sion using semantic and structural information. In ICSE '01:
Proceedings of the 23rd International Conference on Software
Engineering, pages 103-112, Washington, DC, USA, 2001.
IEEE Computer Society.

A. Marcus &]J. 1. Maletic. Recovering documentation-to-source-
code traceability links using latent semantic indexing. In Soft-
ware Engineering, 2003. Proceedings. 25th International Con-
ference on, pages 125-135, May 2003.

Andrian Marcus, Andrey Sergeyeyv, Vaclav Rajlich & Jonathan I.
Maletic. An Information Retrieval Approach to Concept Loca-
tion in Source Code. In WCRE ’04: Proceedings of the 11th
Working Conference on Reverse Engineering, pages 214-223,
Washington, DC, USA, 2004. IEEE Computer Society.

Andrian Marcus, Vaclav Rajlich, Joseph Buchta, Maksym Pe-
trenko & Andrey Sergeyev. Static Techniques for Concept Lo-
cation in Object-Oriented Code. In IWPC ’05: Proceedings
of the 13th International Workshop on Program Comprehen-
sion, pages 33-42, Washington, DC, USA, 2005. IEEE Com-
puter Society.

Marius Marin, Arie van Deursen & Leon Moonen. Identifying
Aspects Using Fan-In Analysis. In WCRE ’'04: Proceedings of
the 11th Working Conference on Reverse Engineering, pages
132-141, Washington, DC, USA, 2004. IEEE Computer Society.

Marius Marin, Leon Moonen & Arie van Deursen. A Classifica-
tion of Crosscutting Concerns. In ICSM ’05: Proceedings of the
21st IEEE International Conference on Software Maintenance,
pages 673-676, Washington, DC, USA, 2005. IEEE Computer
Society.

Marius Marin, Leon Moonen & Arie van Deursen. A common
framework for aspect mining based on crosscutting concern

187



Bibliography

188

[Marin 07]

[Martin 96a]

[Martin 96b]

[Mens 08a]

[Mens 08b]

sorts. In WCRE '06: Proceedings of the 13th Working Confer-
ence on Reverse Engineering, pages 29-38, Washington, DC,
USA, 2006. IEEE Computer Society.

M. Marin, A. van Deursen & L. Moonen. Identifying Crosscut-
ting Concerns Using Fan-in Analysis. ACM Transactions on
Software Engineering and Methodology, vol. 17, no. 1, pages
1-37, 2007.

Robert C. Martin. Interface Segregation Principle. The C++
Report, vol. 8, Aug. 1996.

Robert C. Martin. The Liskov substitution principle. The C++
Report, vol. 8, pages 14, 16-17, 20-23, Mar. 1996.

Kim Mens, Andy Kellens & Jens Krinke. Pitfalls in Aspect Min-
ing. In WCRE '08: Proceedings of the 2008 15th Working Con-
ference on Reverse Engineering, pages 113-122, Washington,
DC, USA, 2008. IEEE Computer Society.

T. Mens & S. Demeyer. Software evolution. Springer Publish-
ing Company, Inc., 2008.

[Milanova 02] A. Milanova, A. Rountev & B. G. Ryder. Parameterized Object

Sensitivity for Points-to and Side-Effect Analyses for Java. In
Proceedings of the ACM SIGSOFT International Symposium
on Software Testing and Analysis (ISSTA)), pages 1-11. ACM,
2002.

[Milanova 05] A. Milanova, A. Rountev & B. G. Ryder. Parameterized Object

[Moad 90]

[Murphy 01]

Sensitivity for Points-to Analysis for Java. ACM Transactions
on Software Engineering and Methodology (TOSEM), vol. 14,
no. 1, pages 1-41, Jan 2005.

J. Moad. Maintaining the competitive edge. DATAMATION,
vol. 36, no. 4, pages 61-62, 64, 66, Feb 1990.

Gail C. Murphy, Albert Lai, Robert J. Walker & Martin P. Ro-
billard. Separating features in source code: an exploratory
study. In ICSE '01: Proceedings of the 23rd International Con-
ference on Software Engineering, pages 275-284, Washington,
DC, USA, 2001. IEEE Computer Society.



[Naveh 03]

[Nielson 99]

[Ossher 99]

[Ottenstein 84]

[Parnas 72]

[Poshyvanyk 06]

[Poshyvanyk 07a]

[Poshyvanyk 07b]

[Pressman 01]

Bibliography

B. Naveh. JGraphT. http://www.jgrapht.org/, 2003.

E Nielson, H. R. Nielson & C. Hankin. Principles of program
analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1999.

Harold Ossher & Peri Tarr. Multi-Dimensional Separation of
Concerns in Hyperspace. IBM Research Report RC21452, 1999.

Karl J. Ottenstein & Linda M. Ottenstein. The program depen-
dence graph in a software development environment. In SDE 1:
Proceedings of the first ACM SIGSOFT/SIGPLAN software en-
gineering symposium on Practical software development en-
vironments, pages 177-184, New York, NY, USA, 1984. ACM.

D. L. Parnas. On the criteria to be used in decomposing systems
into modules. Communications of the ACM, vol. 15, no. 12,
pages 1053-1058, 1972.

Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus,
Vaclav Rajlich & Giuliano Antoniol. Combining Probabilis-
tic Ranking and Latent Semantic Indexing for Feature Iden-
tification. In ICPC '06: Proceedings of the 14th IEEE Inter-
national Conference on Program Comprehension, pages 137-
148, Washington, DC, USA, 2006. IEEE Computer Society.

Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus,
Giuliano Antoniol & Vaclav Rajlich. Feature Location Using
Probabilistic Ranking of Methods Based on Execution Scenar-
ios and Information Retrieval. IEEE Trans. Softw. Eng., vol. 33,
no. 6, pages 420-432, 2007.

Denys Poshyvanyk & Andrian Marcus. Combining Formal
Concept Analysis with Information Retrieval for Concept Loca-
tion in Source Code. In ICPC’07: Proceedings of the 15th IEEE
International Conference on Program Comprehension, pages
37-48, Washington, DC, USA, 2007. IEEE Computer Society.

R. S. Pressman. Software engineering: A practitioner’s ap-
proach. McGrap-Hill, fifth edition, 2001.

189



Bibliography

190

[Putnam 97]

[Rajan 05]

[Reps 97]

[Reps 98]

[Robillard 99]

[Robillard 02]

[Robillard 03]

[Robillard 07]

[Roy 07]

L. H. Putnam & W. Myers. Industrial strength software: Effec-
tive management using measurement. Institute of Electrical
& Electronics Engineering, 1997.

H. Rajan & K. J. Sullivan. Classpects: unifying aspect- and
object-oriented language design. In Software Engineering,
2005. ICSE 2005. Proceedings. 27th International Conference
on, pages 59-68, May 2005.

T. Reps. Program analysis via graph reachability. In Proceed-
ings of the International Symposium on Logic Programming
(ILPS), pages 5-19, Cambridge, MA, USA, 1997. MIT Press.

T. Reps. Program analysis via graph reachability. Information
and Software Technology, vol. 40, no. 11-12, pages 5-19, 1998.

Martin P. Robillard & Gail C. Murphy. Migrating a Static
Analysis Tool to Aspect]. In MDSOC’99: OOPSLA'99 Work-
shop on Multi-dimensional Separation of Concerns in Object-
Oriented Systems, 1999.

Martin P. Robillard & Gail C. Murphy. Concern graphs: finding
and describing concerns using structural program dependen-
cies. InICSE’02: Proceedings of the 24th International Confer-
ence on Software Engineering, pages 406-416, New York, NY,
USA, 2002. ACM.

M. P. Robillard & G. C. Murphy. Automatically inferring con-
cern code from program investigation activities. In Automated
Software Engineering, 2003. Proceedings. 18th IEEE Interna-
tional Conference on, pages 225-234, Oct. 2003.

Martin P. Robillard & Gail C. Murphy. Representing concerns in
source code. ACM Trans. Softw. Eng. Methodol., vol. 16, no. 1,
page 3, 2007.

Chanchal Kumar Roy, Mohammad Gias Uddin, Banani Roy &
Thomas R. Dean. Evaluating Aspect Mining Techniques: A
Case Study. In ICPC '07: Proceedings of the 15th IEEE Inter-
national Conference on Program Comprehension, pages 167—
176, Washington, DC, USA, 2007. IEEE Computer Society.



[Safyallah 06]

[Shepherd 04]

[Shepherd 05a]

[Shepherd 05b]

[Smaragdakis 99]

[Smaragdakis 02]

[Sochos 06]

[Sochos 07]

Bibliography

Hossein Safyallah & Kamran Sartipi. Dynamic Analysis of
Software Systems using Execution Pattern Mining. In ICPC
'06: Proceedings of the 14th IEEE International Conference on
Program Comprehension, pages 84-88, Washington, DC, USA,
2006. IEEE Computer Society.

D. Shepherd, E. Gibson & L. Pollock. Design and evaluation
of an automated aspect mining tool. In SERP '04: Proceedings
of the International Conference on Software Engineering Re-
search and Practice, pages 601-607, 2004.

David Shepherd, Jeffrey Palm, Lori Pollock & Mark Chu-
Carroll. Timna: a framework for automatically combining as-
pect mining analyses. In ASE '05: Proceedings of the 20th
IEEE/ACM international Conference on Automated software
engineering, pages 184-193, New York, NY, USA, 2005. ACM.

David Shepherd, Tom Tourwé & Lori Pollock. Using language
clues to discover crosscutting concerns. SIGSOFT Softw. Eng.
Notes, vol. 30, no. 4, pages 1-6, 2005.

Yannis Smaragdakis & Don S. Batory. Building Product-Lines
with Mixin-Layers. In Proceedings of the Workshop on Object-
Oriented Technology, page 197, London, UK, 1999. Springer-
Verlag.

Yannis Smaragdakis & Don Batory.  Mixin layers: an
object-oriented implementation technique for refinements
and collaboration-based designs. ACM Trans. Softw. Eng.
Methodol., vol. 11, no. 2, pages 215-255, 2002.

Periklis Sochos, Matthias Riebisch & Ilka Philippow. The
Feature-Architecture Mapping (FArM) Method for Feature-
Oriented Development of Software Product Lines. In ECBS '06:
Proceedings of the 13th Annual IEEE International Sympo-
sium and Workshop on Engineering of Computer Based Sys-
tems, pages 308-318, Washington, DC, USA, 2006. IEEE Com-
puter Society.

Periklis Sochos. The Feature-Architecture Mapping Method
for Feature-Oriented Development of Software Product Lines.

191



Bibliography

192

[Sommerville 06]

[Sridharan 05]

[Steensgaard 96]

[Sutton-Jr. 05]

[Tar 99]

[Tarr 04]

[Tip 95]

[Tonella 04a]

PhD thesis, Technische Universitiat Ilmenau, Fakultét fiir In-
formatik und Automatisierung, 2007.

I. Sommerville. Software engineering. International computer
science series. Addison-Wesley Pub. Co., 8th edition, Jun 2006.

Manu Sridharan, Denis Gopan, Lexin Shan & Rastislav Bodik.
Demand-driven points-to analysis for Java. In OOPSLA ’05:
Proceedings of the 20th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and ap-
plications, pages 59-76, New York, NY, USA, 2005. ACM.

Bjarne Steensgaard. Points-to analysis in almost linear time.
In POPL '96: Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages
32-41, New York, NY, USA, 1996. ACM.

S. M. Sutton-Jr. & I. Rouvellou. Concern Modeling for Aspect-
Oriented Software Development. In R. E. Filman, T. Elrad,
S. Clarke & M. Aksit, editeurs, Aspect-Oriented Software De-
velopment, chapitre 21. Addison-Wesley, 2005.

P. Tar, H. Ossher, W. Harrison & S. M. Sutton-Jr. N Degrees
of Separation: Multi-Dimensional Separation of Concerns. In
Proceedings of the International Conference on Software En-
gineering (ICSE), May 1999.

Peri Tarr, William Harrison & Harold Ossher. Pervasive Query
Support in the Concern Manipulation Environment. IBM Re-
search Report RC23343, 2004.

Frank Tip. A Survey of Program Slicing Techniques. Journal of
Programming Languages, vol. 3, pages 121-189, 1995.

Paolo Tonella & Mariano Ceccato. Aspect Mining through the
Formal Concept Analysis of Execution Traces. In WCRE ’04:
Proceedings of the 11th Working Conference on Reverse En-
gineering, pages 112-121, Washington, DC, USA, 2004. IEEE
Computer Society.



[Tonella 04b]

[Tourwé 04]

[Trifu 05]

[Trifu 08]

[Trifu 09]

[van der Spek 08]

[van Rijsbergen 79]

[Weihl 80]

Bibliography

Paolo Tonella & Mariano Ceccato. Migrating Interface Imple-
mentation to Aspects. In ICSM ’04: Proceedings of the 20th
IEEE International Conference on Software Maintenance,
pages 220-229, Washington, DC, USA, 2004. IEEE Computer
Society.

Tom Tourwé & Kim Mens. Mining Aspectual Views using For-
mal Concept Analysis. In SCAM '04: Proceedings of the Source
Code Analysis and Manipulation, Fourth IEEE International
Workshop, pages 97-106, Washington, DC, USA, 2004. IEEE
Computer Society.

Mircea Trifu & Volker Kuttruff. Capturing Nontrivial Concerns
in Object-Oriented Software. In Proceedings of the 12-th Work-
ing Conference on Reverse Engineering, pages 99-108. IEEE,
Nov 2005.

M. Trifu. Using Dataflow Information for Concern Identifica-
tion in Object-Oriented Software Systems. In Proceedings of
the 12-th European Conference on Software Maintenance and
Reengineering, pages 193-202. IEEE, Apr 2008.

M. Trifu. Improving the Dataflow-Based Concern Identifica-
tion Approach. In Proceedings of the 13-th European Confer-
ence on Software Maintenance and Reengineering. IEEE, Mar
2009.

Pieter van der Spek, Steven Klusener & Pierre van de Laar. To-
wards Recovering Architectural Concepts Using Latent Seman-
tic Indexing. In CSMR ’08: Proceedings of the 2008 12th Eu-
ropean Conference on Software Maintenance and Reenginee-
ring, pages 253-257, Washington, DC, USA, 2008. IEEE Com-
puter Society.

C.J. van Rijsbergen. Information retrieval. Dept. of Computer
Science, University of Glasgow, second edition edition, 1979.

William E. Weihl. Interprocedural data flow analysis in the
presence of pointers, procedure variables, and label variables.
In POPL ’80: Proceedings of the 7th ACM SIGPLAN-SIGACT

193



Bibliography

194

[Weiser 79]

[Weiser 82]

[Weiser 84]

[Wiegers 03]

[Wieringa 95]

[Wilde 03]

[(Xu 05]

[yWorks 00]

[Zhang 03a]

[Zhang 03b]

symposium on Principles of programming languages, pages
83-94, New York, NY, USA, 1980. ACM.

Mark David Weiser. Program slices: formal, psychological, and
practical investigations of an automatic program abstraction
method. PhD thesis, University of Michigan, Ann Arbor, MI,
USA, 1979.

Mark Weiser. Programmers use slices when debugging. Com-
mun. ACM, vol. 25, no. 7, pages 446-452, 1982.

Mark Weiser. Program Slicing. IEEE Transactions on Software
Engineering, vol. 10, no. 4, pages 352-357, 1984.

Karl Eugene Wiegers. Software requirements. Microsoft Press,
Redmond, WA, USA, 2003.

Roel Wieringa. An introduction to requirements traceability.
Rapport technique, Faculty of Mathematics and Computer
Science, Vrije Universiteit Amsterdam, 1995.

Norman Wilde, Michelle Buckellew, Henry Page, Vaclav Ra-
jlich & LaTreva Pounds. A comparison of methods for locating
features in legacy software. Journal of Systems and Software,
vol. 65, no. 2, pages 105-114, 2003.

Baowen Xu, Ju Qian, Xiaofang Zhang, Zhonggiang Wu & Lin
Chen. A brief survey of program slicing. SIGSOFT Softw. Eng.
Notes, vol. 30, no. 2, pages 1-36, 2005.

yWorks. yEd Graph Editor. http://www.yworks.com, 2000.

C.Zhang & H. A. Jacobsen. Quantifying Aspects in Middleware
Platforms. In Proceedings of the International Conference on
Aspect-Oriented Software Development (AOSD), pages 130-
139. ACM, 2003.

C. Zhang & H. A. Jacobsen. Refactoring Middleware with As-
pects. IEEE Transactions on Parallel and Distributed Systems,
vol. 14, no. 11, pages 1058-1073, Nov 2003.



[Zhang 03c]

[Zhang 04]

[Zhang 07]

Bibliography

Charles Zhang & Hans-Arno Jacobsen. A Prism for Research in
Software Modularization Through Aspect Mining. Technical
Communication, 2003.

Charles Zhang & Hans-Arno Jacobsen. PRISM is research in
aSpect mining. In OOPSLA ’04: Companion to the 19th annual
ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 20-21, New York,
NY, USA, 2004. ACM.

Charles Zhang & Hans-Arno Jacobsen. Efficiently mining
crosscutting concerns through random walks. In AOSD ’07:
Proceedings of the 6th international conference on Aspect-
oriented software development, pages 226-238, New York, NY,
USA, 2007. ACM.

195









N 978-3-86644-494-2

ISBN 978-3-86644-494-2






