
MANFRED KRÖHNERT

A Contributi on to Resource-Aware
Architectures for Humanoid Robots

VOL. 01

KARLSRUHE SERIES ON
HUMANOID ROBOTICS

M
. K

RÖ
H

N
ER

T
Re

so
ur

ce
-A

w
ar

e
Ro

bo
t A

rc
hi

te
ct

ur
es

01

Manfred Kröhnert

A Contribution to Resource-Aware
Architectures for Humanoid Robots

Karlsruhe Series on Humanoid Robotics

Edited by Prof. Dr.-Ing. Tamim Asfour

Vol. 01

A Contribution to Resource-Aware
Architectures for Humanoid Robots

by
Manfred Kröhnert

Dissertation, Karlsruher Institut für Technologie (KIT)
KIT-Fakultät für Informatik, 2016

Print on Demand 2017 – Gedruckt auf FSC-zertifiziertem Papier

ISSN 	2512-0875
ISBN	 978-3-7315-0632-4
DOI	 10.5445/KSP/1000065884

This document – excluding the cover, pictures and graphs – is licensed
under the Creative Commons Attribution-Share Alike 4.0 International License
(CC BY-SA 4.0): https://creativecommons.org/licenses/by-sa/4.0/deed.en

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 4.0 International License (CC BY-ND 4.0):
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

A Contribution to Resource-Aware Architectures
for Humanoid Robots

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Dipl.-Inform. Manfred Kröhnert

aus Ettlingen

Tag der mündlichen Prüfung: 22. Juli 2016
Referent: Prof. Dr.-Ing. Tamim Asfour
Korreferent: Prof. Dr.-Ing. Walter Stechele

Acknowledgement

This thesis started with my employment as doctoral researcher at the Hu-
manoids group of the Humanoids and Intelligence Systems Lab (HIS) of
the Institute of Anthropomatics and Robotics (IAR), Karlsruhe Institute of
Technology (KIT) and was continued during my employment at the High
Performance Humanoid Technologies Lab (H2T) of the Institute of Anthro-
pomatics and Robotics (IAR), Karlsruhe Institute of Technology (KIT).

First of all, I would like to thank my doctoral supervisor Prof. Dr.-Ing.
Tamim Asfour for providing me with the great opportunity to work in the
fascinating field of humanoid robots. I want to thank Prof. Asfour for his
continuous and valuable support and advice as well as his believe in this
work. Prof. Asfour’s visionary ideas and the focus of the Humanoids group
always served as a great inspiration and will continue to do so. Furthermore,
I want to extend my thanks to Prof. Dr.-Ing. Rüdiger Dillmann who sparked
my interest in robotics and provided me with the possibility of an internship
at his lab before even going to university. I am very grateful for getting the
chance later on to work at his lab as a student and being able to start pursuing
a doctoral thesis in his Humanoids group which was led by Dr. Asfour at
this time. Prof. Dillmann always supported my work and provided me with
valuable feedback. I also want to thank Prof. Dr.-Ing. Walter Stechele, for
being my co-supervisor, for his support, and for his helpful suggestions and
discussions.

The Humanoids group has always been a great place to work at, with great
colleagues, the always friendly and helpful administration, as well as the
well-equipped labs. I want to thank Christine Brand, Isabelle Wappler, and
Diana Becker for always taking care of anything. The great team effort of

I

Acknowledgement

the Humanoids group made it possible for our robots to be in the position
they are today. Therefore, my thanks go out to all members of the humanoids
group: Dr. Eren Aksoy, Michael Bechtel, Jonas Beil, Dr. Julia Boras Sol, Dr.
Martin Do, Markus Grotz, Hans Haubert, Peter Kaiser, Lukas Kaul, Christian
Mandery, Dr. Michael Neaga, Simon Ottenhaus, Dr. Ekaterina Ovchinnikova,
Samuel Rader, David Schiebener, Ömer Terlemez, Mirko Wächter, Dr. Niko-
laus Vahrenkamp, and You Zhou. Further thanks go to my former colleagues
Dr. Kai Welke for the great collaboration while building our ArmarX robot
framework, Dr. David Gonzalez for being a great friend and for always pro-
viding valuable input, Julian Schill and Christian Böge for introducing me
to RC-planes and who were never short of a good Loriot quote, as well as
Paul Holz, Dr. Stefan Ulbrich, Fabian Schültje, Sebastian Schulz, and Dr.
Markus Przybylski. Not to forget all members of the cognitive cars group,
especially Dr. Tobias Gindele and Dr. Sebastian Brechtel for their friendship
and valuable discussions, the programming by demonstration group, and the
medical group at HIS. Special thanks go to Nikolaus Vahrenkamp for his
continuous support throughout the whole thesis, for his calm and balanced
nature, and for always having an open ear no matter how big his current work-
load. I would like to thank my good friend and office-mate Mirko Wächter
for the fun times extending and improving ArmarX, for our combined and
continuous supervision of the PSE student seminar (Praxis der Software En-
twicklung), and for the great times flying, crashing, and repairing airplanes.
Furthermore, I would like to express my thanks to Peter Kaiser and Ramin
Shirazi-Nejad for their friendship, the discussions we had and the great time
we spent abroad together.

This work could not have been completed without the help of my students
who contributed essential parts of this work. I would like to thank Tobias
Haaß, who implemented the original version of the prediction mechanisms in
his master thesis and Raphael Grimm, who implemented the resource-aware
motion planning algorithm in his bachelor thesis. Furthermore, I would like

II

Acknowledgement

to thank my student assistant Adil Orhan for his work on profiling and pre-
diction in ArmarX, and my student assistants Jan Brinker, Oliver Armbruster,
and Tim Bücher for their continuous work to get the invasive computing head
demo into a stable state.

I would also like to thank my wonderful friends, for the times we spent
together and hopefully will continue to do so in the future. Special thoughts
go to Nico Heid, one of my closest friends, who was always there for me and
will always be remembered.

Most importantly, I want to thank my parents Uwe and Christina and my
sister Andrea for their endless help, support, and guidance and last but not
least my girl-friend Mareike for always caring and bearing with me during
the finishing months of my thesis.

Last but not least I would like to thank the German Research Foundation
(Deutsche Forschungsgemeinschaft, DFG) for supporting the Transregional
Collaborative Research Center “Invasive Computing” (SFB/TR 89) that pro-
vided the framework in which this thesis was conducted.

Karlsruhe, July 2016 Manfred Kröhnert

III

Deutsche Zusammenfassung

Roboter werden mittlerweile in großen Stückzahlen zur Automatisierung
von Produktionen in Industrieanlagen eingesetzt und sind nicht mehr aus
der Gesellschaft wegzudenken. Zukünftige Robotergeneration werden sich
aus den Fabrikhallen herausbewegen und sich in der Nähe zu Menschen
und in für Menschen zugeschnittenen Umgebungen bewegen, sei es als au-
tonome Serviceroboter, autonom fahrende Autos oder humanoide Roboter.
Um vielfältige Aufgaben bewältigen zu können, müssen diese Roboter über
eine große Zahl an Fertigkeiten verfügen, die sich an dynamisch ändernde
Umgebungen anpassen können. Zu diesen Fertigkeiten zählen Sprachinter-
aktion, Umgebungswahrnehmung, Lernfähigkeit, Objekterkennung, Bewe-
gungsplanung, Bahnplanung als auch motorische Fähigkeiten zum Greifen
und Manipulieren von Objekten.

Eine robuste und zuverlässige Handlungsausführung bei humanoiden Ro-
botern erfordert ein perfektes Zusammenspiel dieser Vielzahl von Fähig-
keiten, sowie Algorithmen, die unterschiedliche, dynamisch veränderliche
und konkurrierende Anforderungen an Rechenressourcen haben. In heutigen
humanoiden Robotern werden die dafür benötigten Ressourcen oft durch
mehrere Rechner mit Multi-Core Prozessoren zur Verfügung gestellt. Auf
Grund begrenzt zur Verfügung stehender Ressourcen, kommt es häufig zu
Engpässen und instabilem Systemverhalten, z.B. wenn alle Anwendungen
die für sich optimalen Ressourcen anfordern. Wünschenswert ist ein System,
bei dem drohende Ressourcen-Engpässe zur Laufzeit vorhergesagt und kon-
kurrierenden Anwendungen kontextsensitiv Ressourcen zugeordnet werden.

V

Deutsche Zusammenfassung

Im Rahmen des spekulativen Ressourcenmanagements werden in dieser Ar-
beit Methoden zur datengetriebenen Erstellung kontextsensitiver Ressour-
cenmodelle, deren Verwendung zur Vorhersage zukünftiger Roboteraktio-
nen und assoziierter Ressourcenbelegungen sowie deren Evaluierung auf
humanoiden Robotern vorgestellt. Zusätzlich werden ressourcengewahre Al-
gorithmen vorgestellt, die mit einer, zur Laufzeit dynamisch wechselnden,
Anzahl an Ressourcen umgehen können, um ein optimales Verhalten zu ge-
währleisten. Damit bieten diese Algorithmen mehr Möglichkeiten bei der
Verteilung verfügbarer Ressourcen.

Spekulatives Ressourcenmanagement: Ressourcenmodelle
und kontextsensitive Ressourcenvorhersage

Spekulatives Ressourcenmanagement beschreibt das Management von Res-
sourcen basierend auf der Vorhersage kontextsensitiver Auslastungen von
Ressourcen durch zukünftig anstehende Roboteraktionen unter Verwendung
von Ressourcenmodellen und des aktuellen Roboterkontexts. Bei Verfügbar-
keit freier Ressourcen sollen Anwendungen spekulativ und damit frühzeitig
ausgeführt werden. Damit können die Ergebnisse dieser Anwendungen oh-
ne Wartezeit bei Anfragen zur Verfügung gestellt werden. Durch korrekte
Vorhersagen und vorgezogene Berechnungen kann die Ausführungszeit von
Roboterhandlungen entsprechend verkürzt werden. Eine Ausführung mit
falsch berechneter Vorhersage unterscheidet sich in diesem Fall nicht von
einer Ausführung ohne Vorhersage. Freie Ressourcen können dabei den ak-
tiven Anwendungen so zugewiesen werden, dass keine Ressourcenengpässe
auftreten.

In dieser Arbeit werden zwei wichtige Elemente des spekulativen Ressour-
cenmanagements vorgestellt, zum einen das datengetriebene Erstellen von
Ressourcenmodellen sowie die Vorhersage kontextsensitiver Ressourcenbe-
legungen.

VI

Deutsche Zusammenfassung

Zur Erstellung von Ressourcenmodellen wurden zunächst Mechanismen
zum Profiling relevanter Parameter während der Ausführung von Roboter-
handlungen realisiert. Diese Parameter umfassen interne Roboterzustän-
de, Umweltzustände, Ausführungsdauern einzelner Roboteraktionen, auftre-
tende Zustandsübergänge bei der Ausführung von Aktionsfolgen, aktuelle
CPU Auslastung und benötigter Speicherbedarf. Hierzu wurde das Roboter-
Software-Framework ArmarX erweitert, um eine Protokollierung vorherig
genannter Parameter, sowohl in Simulation als auch auf realen Robotersys-
temen, zu ermöglichen.

Aus den durch Profiling aggregierten Daten werden Statistiken zu Aus-
führungsdauern einzelner Roboteraktionen mit zugehöriger CPU Auslastung
und Speicherbedarf berechnet. Diese Ressourcenstatistiken werden durch As-
soziation mit gespeicherten Umweltzuständen zu kontextsensitiven Ressour-
cenmodellen weiterverarbeitet. Zusätzlich werden kontextabhängige Wahr-
scheinlichkeiten von Zustandsübergängen zwischen Roboteraktionen berech-
net. Aus diesen Wahrscheinlichkeiten können anschließend probabilistische
Aussagen über zukünftige Roboteraktionen abgeleitet werden. Die erstell-
ten Ressourcenmodelle stellen die Grundlage für die Vorhersage zukünftiger
Roboteraktionen, deren Ressourcenbelegungen und für das spekulative Res-
sourcenmanagement dar. Zusätzlich enthalten diese Modelle Informationen
über untere und obere Schranken von Ausführungszeiten und Ressourcen-
auslastung. Mit Hilfe dieser Daten besteht die Möglichkeit Rechner in Ro-
botersystemen geeignet zu dimensionieren oder potenzielle Flaschenhälse in
existierenden Systemen zu ermitteln.

Bei der Vorhersage werden zukünftig anstehende Roboteraktionen und
die damit assoziierten Ressourcenbelegungen basierend auf dem aktuellen
Roboterkontext bestimmt. Dieser Kontext wird zur Laufzeit durch die bereits
beschriebenen Profilingmechanismen ermittelt und besteht aus Umweltzu-
stand, Roboterzustand, CPU Auslastung und Arbeitsspeicherauslastung. Die
vorhergesagten Ressourcenbelegungen dienen als Grundlage zur Erkennung
von Roboterzuständen, in denen Ressourcen überbelegt sind.

VII

Deutsche Zusammenfassung

Ressourcen-gewahre Algorithmen

Die Hauptcharakteristik ressourcen-gewahrer Algorithmen besteht in deren
Fähigkeit sich an eine dynamisch ändernde Verfügbarkeit von Ressourcen
anzupassen, um eine optimale Systemauslastung gewährleisten zu können.
Dazu fordern diese Algorithmen bei Bedarf neue Ressourcen an, geben unbe-
nutzte Ressourcen wieder frei und passen anhand aktuell zugewiesener Res-
sourcen interne Parameter an. Im Gegensatz dazu verwenden die parallelen
Algorithmen meist eine feste Anzahl an statisch zugeordneten Ressourcen.
Dies kann einerseits zur Überlastung führen, wenn zu viele solch paralle-
ler Algorithmen gleichzeitig ausgeführt werden. Andererseits können auch
statisch zugeteilte Ressourcen unbenutzt bleiben, wenn die Ressourcenanfor-
derungen von Algorithmen zur Laufzeit stark schwanken.

In dieser Arbeit werden zwei ressourcen-gewahre Algorithmen vorgestellt.
Der Erste ist ein verteilt arbeitender Bewegungsplanungsalgorithmus, der im
Roboter-Software-Framework ArmarX implementiert ist. Der zweite Algo-
rithmus berechnet eine Tiefenbildkarte (Disparity Map) aus Stereobildern
und ist in einem speziellen ressourcen-gewahren Framework implementiert.

Zur Lösung komplexer Bewegungsplanungsprobleme werden häufig par-
allele Algorithmen eingesetzt, die eine statische Anzahl an Arbeiterprozes-
sen einsetzen. Diese Algorithmen berücksichtigen jedoch nicht die Verfüg-
barkeit von Ressourcen, wodurch Ressourcen-Engpässe entstehen können.
Diese Problematik wird mit Hilfe eines verteilt arbeitenden und ressourcen-
gewahren Bewegungsplanungsalgorithmus adressiert, der dynamisch zur
Laufzeit Ressourcen akquirieren und freigeben kann. Der Algorithmus star-
tet initial mit minimalen Ressourcen. Basierend auf einer Schätzung der
Problemkomplexität werden dynamisch zur Laufzeit entsprechend viele
Ressourcen angefordert. Verglichen mit der statischen Verwendung aller
verfügbarer Ressourcen setzt der Algorithmus die verwendeten Ressourcen
1,2- bis 2,4-fach effizienter ein, ist dabei aber um den Faktor 2 bis 3 lang-
samer. Vor allem bei einfacheren Bewegungsplanungsproblemen reduziert

VIII

Deutsche Zusammenfassung

sich dadurch die Gesamtbelastung des Systems drastisch. Die Zuteilung und
der Entzug von Ressourcen kann bei diesem Algorithmus mit Hilfe eines
übergeordneten Ressourcen-Managers beeinflusst werden.

Der zweite ressourcen-gewahre Algorithmus ist eine parallelisierte Vari-
ante zur Berechnung der Disparity Map aus Stereobildern. Der Algorithmus
besitzt die Fähigkeit die Eingabebilder in kleineren, an die Anzahl verfügba-
rer Ressourcen angepassten, Einheiten parallel zu verarbeiten. Im Gegensatz
zu dem vorgestellten Bewegungsplaner wurde dieser Algorithmus aufbauend
auf einem Betriebssystem implementiert, das spezielle ressourcen-gewahre
Mechanismen und Programmierschnittstellen anbietet. Das Verfahren wur-
de in Simulation und auf prototypischer Hardware evaluiert. Dabei konnte
gezeigt werden, dass der Einsatz ressourcen-gewahrer Funktionalitäten die
Ausführungsgeschwindigkeit erhöhen kann und die Anpassung an eine dy-
namisch wechselnde Verfügbarkeit von Ressourcen ermöglicht.

IX

Contents

1 Introduction . 1
1.1 Problem Statement . 2
1.2 Invasive Computing . 7

2 State of the Art . 11
2.1 Humanoid Robot Architectures and Middlewares 11

2.1.1 Humanoid Robot Architectures 12
2.1.2 Robotic Middlewares 16

2.2 Application Models . 19
2.3 Resource Models . 23
2.4 Profiling and Monitoring 27
2.5 Prediction Models and Algorithms 32
2.6 Resource-Aware Systems and Algorithms 35

2.6.1 Resource-Aware Operating Systems 36
2.6.2 Application Autotuning 38
2.6.3 Organic Computing 39
2.6.4 Resource-Awareness in Robotics 41

2.7 Sampling-Based Motion Planning 42
2.7.1 Improving the Quality of a found Solution 44
2.7.2 Changing the RRT Algorithm to find Solutions faster 46
2.7.3 Parallelizing the RRT Algorithm 49

2.8 Summary . 52

3 Speculative Resource Management 55
3.1 Data-Driven Generation of Context-Sensitive Resource Models 56

XI

Contents

3.1.1 Application Model 57

3.1.2 Basic Resource Model 58

3.1.3 Context-Sensitive Resource Model 62

3.1.4 Profiling and Monitoring 64

3.1.5 Resource Model Generation 68

3.2 Context-Sensitive Resource Prediction 75

3.2.1 State Prediction Model 77

3.2.2 Resource Prediction 80

3.2.3 Online Learning and Updating 81

3.2.4 Resource Prediction Architecture 81

4 Resource-Aware Algorithms 85
4.1 Resource-Aware Motion Planning 85

4.1.1 Algorithm Design 86

4.1.2 Resource Allocation Strategies 92

4.1.3 ArmarX Integration 97

4.2 Resource-Aware Disparity Map 99

4.2.1 Invasive X10 Implementation 100

4.2.2 Invasive C++ Implementation 103

4.2.3 Invasive Computing Head Demo 105

5 Evaluation . 107
5.1 Profiling and Resource Models 107

5.2 Robot State and Resource Prediction 124

5.2.1 Single-Transition Prediction 126

5.2.2 Multi-Transition Prediction 131

5.2.3 Resource Prediction 132

5.3 Resource-Aware Motion Planning 135

5.3.1 Test platform . 136

5.3.2 Test Case 1: SerialWalls 136

5.3.3 Test Case 2: Box 138

XII

Contents

5.3.4 Static Resource Allocation Strategy 139
5.3.5 Dynamic Resource Allocation Strategies 142
5.3.6 Evaluation on the Humanoid Robot ARMAR-4 . . . 146

5.4 Resource-Aware Disparity Map 148
5.4.1 Invasive X10 Evaluation 148
5.4.2 Invasive C++ Evaluation 150
5.4.3 Invasive Computing Head Demo 152

6 Conclusion . 155
6.1 Outlook . 159

Appendix . 161
A Markov Processes and Markov Chains 161
B Voronoi Diagram and Voronoi Regions 163
C ArmarX . 164

C.1 ArmarX Statecharts 165
C.2 MemoryX . 167

List of Figures . 172

List of Tables . 174

List of Algorithms . 175

XIII

1 Introduction

Robots have become an integral part of our daily life, albeit being mostly
hidden in factories or warehouses. Researchers are currently particularly
interested in autonomous cars, autonomous service robots, and humanoid
robots. The new generation of robotic systems emerging from this research
will be exposed to and work in environments designed by humans for humans.
These environments change dynamically during interactions between robots,
humans, and objects while tasks are performed.

Therefore, humanoid robots such as ARMAR-IIIa (see Figure 1.1) have
to be versatile and be able to adapt to dynamic changes in the environment
arising from interactions between the robot, humans and the world. The skills
of humanoid robots for performing tasks in such challenging environments
include but are not limited to natural language interaction, environmental
perception, learning processes, object recognition, motion planning, grasp
planning, object grasping and manipulation, as well as low-level control, and
much more.

Figure 1.1: The humanoid robot ARMAR-IIIa while loading a dishwasher.

1

1 Introduction

1.1 Problem Statement

Robust and reliable execution of robot tasks requires perfect interplay be-
tween all of the previously listed skills whose concurrent and dynamically
changing resource demands are tied to the structure of the environment. To-
day’s humanoid robots are equipped with multi-core processors providing the
required computing power. However, the limited amount of computational
resources must be shared by concurrently executing algorithms. Resource
bottlenecks occur in humanoid robots since, most algorithms tend to stat-
ically acquire resources in a greedy manner, not taking the global system
state and resource availability into account. While static resource assign-
ment is essential for tasks such as real-time control algorithms, higher level
tasks should be able to adjust to the dynamically changing availability of
resources.

In three-layer robot architectures similar to the one shown in Figure 1.2,
behaviors or sub-tasks executed on the lowest level typically communicate
with hardware and have very specific resource demands, while the selection
of behaviors to execute is performed in the mid-level layer. A desirable goal
for such robot architectures is to detect or even predict imminent resource
bottlenecks and to distribute resources among concurrent algorithms in a
context-sensitive manner. The goal of this work is to provide building blocks
for such resource-aware robot architectures. First, the concept of speculative
resource management is presented together with two essential methods for
data-driven generation of context-sensitive resource models and prediction
of future resource utilizations. Resource model generation methods should
operate on the low- and mid-level layer of the robot architecture and capture
task and behavior execution. Resource prediction should be performed on
the mid-level layer and provide input for speculative resource management
which can then distribute resources more efficiently on the lowest level by
acting on anticipated events before they happen. Second, resource-aware al-
gorithms are presented and shown to be capable of adapting parameters to

2

1.1 Problem Statement

Execution

Task 3 Behavior 3.1 Behavior 3.n...

Task 2 Behavior 2.1 Behavior 2.n...

Behavior Control

Task 1 Behavior 1.1 Behavior 1.n...

Planning

Task n Task 5... Task 4

Context-Sensitive Resource Prediction

Speculative Resource Management

Resource Bottleneck Detection

Resource-Aware Algorithms
Context-Sensitive Resource Assignment

Figure 1.2: A three-layer robotic architecture (green boxes on the left) as presented in [Sicil-
iano and Khatib, 2008]. The long-term or high-level planning layer decides on
tasks required for achieving long-term goals such as preparing the breakfast in
the morning, cooking lunch at noon, and setting the dinner table in the evening.
Each task in a long-term plan consists of multiple behaviors or sub-tasks which
can be represented as statecharts, a representation for defining the execution or-
der and dependencies between tasks. The short-term or mid-level execution layer
is responsible for selecting the appropriate behaviors for achieving a high-level
task. Low-level or behavior control executes the selected behaviors by commu-
nicating with sensors and actuators of the robot. The blue boxes indicate which
elements of speculative resource management influence which level of such a robot
architecture.

dynamically changing resource requirements. These algorithms work on the
lowest level of a robot architecture while their resource assignment can be in-
fluenced by decisions made on the mid-level, based on calculated predictions.
Proposed aspects are based on resource-aware concepts and methodologies
originating from the Transregional Collaborative Research Center Invasive
Computing (SFB/TR 89). Their connections are depicted in a high-level
overview in Figure 1.3 and explained in the next paragraphs. Invasive Com-
puting and its main concepts are introduced in the next section.

3

1 Introduction

Resource(
utilzation
Prediction

Execution of
Robot5Actions

Context(
sensitive
Resource
model

Resource(Aware
Motion5Planning

Context Speculative
Ressource
Management

Profiling

Resource
Assignment

Resource
Request

Figure 1.3: Overview of speculative resource management and the interplay between profiling,
prediction, and resource-aware algorithms. Profiling methods extract data used for
generating context-sensitive resource models. These resource models are further
used to predict future robot tasks and their resource utilization. This prediction can
be used to assign or withdraw resources from resource-aware algorithms.

Speculative Resource Management:
Resource Models and Context-Senstive
Resource Prediction

Speculative resource management describes the concept of managing re-
sources through the prediction of context-sensitive resource utilization of
future robot tasks, and is based on resource models and the current state of
the robot and its environment. With sufficient free resources available, appli-
cations like motion planning can be started in advance. As a consequence,
computations are most likely finished before results of these applications are
needed, thus leading to shortened execution times. Executions with wrong
predictions, however, are not distinguishable from executions without pre-
diction. Furthermore, free resources can be assigned to running applications
to increase their parallelism while preventing resource over-utilization.

The required resource models are generated using a data-driven approach
which requires mechanisms for profiling relevant parameters during the ex-
ecution of robot tasks. These parameters include the internal robot state,
environment parameters, robot state execution times, transitions between
robot states in task sequences, as well as CPU and memory utilization.

4

1.1 Problem Statement

In this work, the robot software framework ArmarX was extended to enable
recording of all these parameters during simulated and real robot executions.

Based on the acquired profiling data, statistics of execution times of sin-
gle robot tasks and associated CPU and memory utilization are calculated.
Combining these statistics with stored environment states further results in
context-sensitive resource models. In addition, context-dependent probabili-
ties for transitions between robot tasks are extracted from the profiling data.

This transition model provides the basis for determining probability distri-
butions of future robot tasks. Furthermore, these models contain information
of upper and lower bounds for both execution time and resource utilization of
robot tasks. This is crucial information for speculative resource management
or for determining resource bottlenecks.

In addition to resource models, this work focuses on predicting future
robot tasks and upcoming context-sensitive resource utilizations. The cur-
rent context required for this prediction approach consists of environment
state, robot state as well as CPU and memory utilization. This context is
obtained at runtime through the previously described profiling mechanisms.
Predicting future resource utilization will provide the means to detect or
even prevent robot states where resource over-utilization occurs in order to
circumvent system slow-downs or even system failure. Additionally, the pre-
sented approach does not require specialized hardware or operating systems
and runs on regular of the shelf computer systems.

Resource-Aware Algorithms

Resource-aware algorithms contain parallelizable stages and are character-
ized by their ability to adapt to dynamically changing resource situations. In
contrast, regular parallel applications typically use a fixed amount of stati-
cally assigned resources which can lead to over-utilization in the case of mul-
tiple running applications. This behavior can result in blocking of resource,

5

1 Introduction

if too many algorithms run in parallel while using their optimal amount of re-
sources. Furthermore, resource under-utilization can occur if an algorithm’s
internal resource requirements vary over time.

The idea behind resource-aware applications is to dynamically request and
release resources at runtime and to adapt to changes in the overall resource
distribution in the system. In this work, two resource-aware algorithms are
presented. A distributed motion planning algorithm implemented as part of
the ArmarX robot framework and a resource-aware disparity map (depth
map) algorithm implemented on top of a specialized resource-aware operat-
ing system.

The presented resource-aware parallel motion planning algorithm makes
use of multiple distributed worker processes. Contrary to current parallel
motion planning algorithms, the amount of worker processes is not fixed
and can be influenced at runtime. The algorithm starts with a minimal set of
resources and requests more resources based on an estimation of the com-
plexity of the planning problem at hand. It is also possible for an external
resource manager to withdraw or withhold resources from the motion plan-
ning algorithm. This adaptive planner drastically reduces the system load,
especially for simple motion planning problems, and provides the means for
further load balancing through an external resource manager.

An algorithm for calculating disparity maps from stereo input images is
presented as the second example of resource-aware algorithms. This algo-
rithm is capable of processing an input image in parallel by dividing the
input images into multiple smaller chunks based on the number of available
processing resources. As opposed to the motion planner, this algorithm is
implemented on top of the OctoPOS operating system which originates from
the Transregional Collaborative Research Center Invasive Computing (SF-
B/TR 89). OctoPOS implements specialized resource-aware mechanisms
and exposes them to application developers. Evaluation in simulation and on
prototype hardware shows adaptability of the algorithm to changing resource
situations and gains in execution speed when using resource-aware features.

6

1.2 Invasive Computing

1.2 Invasive Computing

The Transregional Collaborative Research Center Invasive Computing (SF-
B/TR 89) (InvasIC) 1 aims at providing a holistic approach for programming
and designing heterogeneous many-core systems containing hundreds or
thousands of CPUs on a single chip [Teich et al., 2011]. Computing resources
are especially limited in humanoid robots due to size and power constraints.
Utilizing the computational power of compact many-core systems would
therefore be a huge benefit in this domain.

InvasIC’s goal is to enable the application programmer to request and re-
lease resources at runtime based on the needs of the application. The idea
is that an application knows best which type and amount of resources are
required at which point in time during execution. Resources considered in
Invasive Computing are computational resources, memory, caches, or com-
munication bandwidth. Realizing this kind of approach in an efficient manner
requires built in support for resource-awareness in programming languages,
compilers, operating systems, and hardware. All these areas are addressed
by the work in InvasIC.

Once an invasive application decides to perform computations in parallel,
it can dynamically request resources, adapt to the resources provided by the
operating system, and afterwards release unused resources. The three phases
of this request-release cycle are shown in Figure 1.4.

Figure 1.4: The three main resource related phases of an invasive program: invade(),
infect(), retreat().

1 http://invasic.de

7

1 Introduction

Initially, new resources are requested from the operating system by calling
the invade() function which takes a collection of constraints as argument.
These constraints contain information about the requested resources such
as number of CPUs, amount of memory, or communication bandwidth. Fur-
thermore, non-functional constraints can be expressed, such as exclusive or
shared access to certain resources or if local instead of remote resources are
requested. This invade() request is handled by OctoPOS [Oechslein et al.,
2011], the invasive operating system. Inside OctoPOS, the agent-based Dis-
tributed Resource Management (DistRM) [Kobbe et al., 2011] is responsible
for resource negotiations between applications. After negotiation is finished,
a set of available resources is returned to the requesting application in a so
called claim. After receiving a claim, the application has to adapt its internal
algorithmic parameters to provide results with a specified quality. Adaptation
is typically based on the amount and type of available resources. The applica-
tion then distributes data structures onto remote and local memory resources
and starts its parallel computation after issuing an infect() function call.
infect() distributes isolated functions of the application to the new re-
sources and starts them. Once resources are no longer required, they can be
handed back to OctoPOS by calling the retreat() function, which takes
the amount of resources to return as a parameter. Additionally, it is possi-
ble to infect() resources without calling retreat() and invade()
or to invade() more resources after a successful infect(). OctoPOS
exposes these resource-aware invade(), infect(), and retreat()

operations to applications written in the C and C++ programming language.
Furthermore, the parallel programming language X10 [Charles et al., 2005]
was adopted by InvasIC to ease development of resource-aware parallel appli-
cations through high-level constructs already available within the language
and through extensions to support Invasive Computing specific resource-
aware programming constructs.

8

1.2 Invasive Computing

Finally, resource-aware hardware is developed in the Invasive Computing
project in order to support dynamic resource allocation and to accelerate spe-
cific functions of OctoPOS in hardware. Currently InvasIC supports regular
CPUs, runtime reconfigurable CPUs called i-Core [Henkel et al., 2011], and
a specialized parallel computing hardware called Tightly-Coupled Processor
Array (TCPA) [Kissler et al., 2006]. The i-Core is a regular CPU enhanced
with reconfigurable hardware for executing special instructions. Application
analyses is used to detect frequently occurring and compute intensive sub-
routines. These subroutines are extracted into optimized special instruction
hardware blocks and a compiler annotates their occurrence in the application.
These special instruction hardware blocks are then provided to the i-Core
which dynamically loads them at runtime to accelerate the application’s exe-
cution time. On the other hand, the TCPA is structured similar to Graphics
Processing Units (GPUs) found in current computers and consists of a matrix
of processing elements. Each processing element can be configured with a
limited instruction set while the connections between neighboring elements
are dynamically reconfigurable. This allows executing multiple isolated ap-
plications on a TCPA in parallel which can dynamically grow and shrink at
runtime.

Within the prototype Invasive Computing hardware architecture these
computational resources are grouped into so called tiles which are connected
through a Network on Chip (NoC) [Heisswolf et al., 2016]. Each tile can
contain additional local memory and a hardware block called CiC [Pujari
et al., 2011]. The task of the CiC is to support and accelerate operating sys-
tem primitives and to perform scheduling of incoming applications onto the
computational resources within a tile. In addition to compute tiles, memory
tiles for storing data and I/O tiles for communicating with peripheral compo-
nents are supported. An exemplary hardware layout containing all mentioned
components is shown in Figure 1.5.

9

1 Introduction

CPU CPU

CPU CPU

Memory

Memory

CPU i-Core

i-Core CPU

TCPA

Memory

Memory

CPU

CPU

Memory

CPU

CiC
I/O

CPU

CPU CPU

CPU

Memory
CiC

CPU

CPU CPU

CPU

Memory
CiC

CPU

CPU CPU

CPU

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

NoC
Router

NA

i-Core

Figure 1.5: An exemplary Invasive Computing hardware architecture consisting of one I/O
tile, one memory tile, 7 compute tiles, and the Network on Chip (NoC). Compute
tiles are further divided into plain CPU tiles, tiles containing reconfigurable CPUs
(i-Core), and a tile containing an array of simpler compute units called Tightly-
Coupled Processor Array (TCPA). Source: [Paul et al., 2012] ©2012 IEEE

10

2 State of the Art

This chapter gives an overview of current approaches to multiple topics
relevant to this thesis. It starts with humanoid robots, their architectures and
the robotic middlewares used to develop software for robots. Subsequent
sections cover application models, resource models as well as profiling and
monitoring approaches. Furthermore, algorithms and models for prediction
and algorithms for sampling-based motion planning are presented before
resource-aware operating systems and similar approaches are described. All
presented approaches are summarized and evaluated in the last section.

2.1 Humanoid Robot Architectures
and Middlewares

Humanoid robot architectures typically consist of a hardware and software
part. Hardware architectures of modern humanoid robots usually follow a
distributed approach with multiple computers containing off-the-shelf CPUs
and embedded components for low-level control. Specialized hardware com-
ponents such as Digital-Signal-Processors (DSPs) or Field-Programmable-
Gate-Arrays (FPGAs) are sometimes added for speeding up complex calcu-
lations.

Control and software architectures of humanoid robots are commonly
implemented on top of a middleware layer used for communication between
distributed software components.

11

2 State of the Art

2.1.1 Humanoid Robot Architectures

This section introduces a selection of popular humanoid robots and gives an
overview of the architecture and hardware components used in these robots.

Figure 2.1: The humanoid robots ASIMO, HRP-2, ARMAR-III, and Justin. Sources: [Chest-
nutt et al., 2005] ©2005 IEEE, [Kaneko et al., 2004] ©2004 IEEE, [Asfour et al.,
2006] ©2006 IEEE, [Ott et al., 2006] ©2006 IEEE

Figure 2.1 shows the humanoid robots ASIMO, HRP-2, ARMAR-III, and
Justin.

ASIMO [Sakagami et al., 2002] from Honda, Japan, contains three built
in PCs. One is connected to a frame grabber and performs image processing,
one recognizes and synthesizes speech, and the last one executes control and
planning algorithms. Furthermore, a radio communication network control
unit and a DSP board for detecting sound sources are built into the robot. Ad-
ditional software such as map management for navigation, task specification,
or a face detection database is executed on an external server.

HRP-2 [Kaneko et al., 2004] from the Nara Institute of Science and Tech-
nology (NAIST), Japan, relies on two CPU boards using Intel Pentium III
processors. Real-time control of whole body motions is performed on one
board, while the sound system and other non real-time tasks such as 3D
object recognition are running on the other board.

The humanoid robot ARMAR-III [Asfour et al., 2006] from the Karlsruhe
Institute of Technology (KIT), Germany, distributes the workload on five

12

2.1 Humanoid Robot Architectures and Middlewares

embedded PCs running Linux. All PCs are connected via Gigabit Ethernet.
One PC provides a gateway to the outer world and stores environment models.
Three PCs are used for task coordination as well as gathering, processing, and
distributing of sensor information such as camera images, laser scanner data,
force torque values, audio signals and more. The last PC used for sensory-
motor control is connected via CAN bus to specialized motor controllers
named UCoMs [Regenstein et al., 2007] which are enhanced by DSP and
FPGA components.

Justin [Ott et al., 2006] from DLR, Germany, is controlled by a PC with
an Intel Dual-Pentium processor. The control software is executed on a PC
running real-time QNX as operating system and is connected to a network of
other PCs via Gigabit Ethernet. Non real-time tasks running on a network of
PCs include computer vision, path planning, user interaction, development
tools, as well as monitoring and profiling applications.

Figure 2.2: The humanoid robots iCub, HRP-4C, LOLA, and Robonaut 2. Sources: [Roncone
et al., 2014]) ©2014 IEEE, [Kaneko et al., 2009] ©2009 IEEE, [Lohmeier et al.,
2009] ©2009 IEEE, [Diftler et al., 2011] ©2011 IEEE

Figure 2.2 shows the humanoid robots iCub, HRP-4C, LOLA, and Robo-
naut 2.

The iCub [Metta et al., 2008] humanoid robot from Istituto Italiano di Tec-
nologia (IIT), Italy, contains one integrated PC104 which is connected to the

13

2 State of the Art

outside world via Gigabit Ethernet. Motor control is realized with DSP-based
controllers which rely on additional analog circuitry for communicating with
the hardware.

HRP-4C [Kaneko et al., 2009], like its predecessor HRP-2, contains two
built in PCs equipped with a VIA C7 and an Intel Pentium M processor.
One of the PCs executes speech recognition software, while the other one
performs sound control and real-time control of whole body motions which
includes walking pattern generation and stabilization. Motor control is dis-
tributed throughout the robot by placing the electronics boards in proximity
to the motors. Connections from controllers to the control PC are realized
via CAN bus and the two PCs are connected via Ethernet.

LOLA [Lohmeier et al., 2009] from Technical University Munich (TUM),
Germany, performs control on a central PC equipped with an Intel Core2Duo
Mobile processor running the QNX real-time operating system. Local con-
trollers based on custom-made DSP modules provide interfaces to motor
controllers and sensors while also performing low-level tasks such as posi-
tion and velocity control. The real-time capable Ethernet based Sercos-III
protocol is used for communication between the control PC and local con-
trollers. Compute intensive vision algorithms are off-loaded to an external
PC cluster.

The control software of Robonaut 2 [Diftler et al., 2011] of the National
Aeronautics and Space Administration (NASA), USA, runs on top of the
VxWorks real-time operating system. Two PowerPC processors connected
via shared memory are used to handle the workload. One processor is occu-
pied with collecting sensor information, performing high-level sensor data
processing, and overseeing the robot’s safety system by evaluating kinemat-
ics and force levels in the system. The second processor performs kinematic
computations and implements the control law of the robot. Joint level control
is realized through electrical circuits containing embedded processors.

Figure 2.3 shows the humanoid robots PETMAN, ARMAR-4, and TORO.

14

2.1 Humanoid Robot Architectures and Middlewares

Figure 2.3: The humanoid robots PETMAN, ARMAR-4, and TORO. Sources: [Nelson et al.,
2012]1, [Asfour et al., 2013] ©2013 IEEE, [Englsberger et al., 2014] ©2014 IEEE

PETMAN [Nelson et al., 2012] from Boston Dynamics, USA, includes a
single on-board computer for reading sensors, performing high- and low-
level control, logging of available sensor data, and for communication with an
external operator. Internal communication uses a modified CAN bus protocol
to support 1 kHz control loop frequency. The robot is controlled via a hybrid
hierarchical control architecture containing a discrete component for balance
control using foot placement and a continuous component for body height
and orientation control and active center-of-pressure control of the feet.

ARMAR-4 [Asfour et al., 2013], the successor of ARMAR-III, contains
three embedded PCs with one Intel Core i7 and two Intel Core2Duo pro-
cessors which are connected via Gigabit Ethernet. Each of the three tasks
perception, high-level control, and balancing are executed on one of the built
in PCs. Low-level control is performed by distributed embedded components
connected via CAN bus to the real-time control PC running Xenomai Linux.
Off-the-shelf digital servo controllers from Elmo Motion Control [Elmo Mo-
tion Control Ltd., 2016] are used to drive all of the robot’s brushless motors.
These driver boards are enhanced by microcontrollers which measure abso-
lute angles and torque and monitor temperatures.

15

2 State of the Art

TORO [Englsberger et al., 2014] from DLR, Germany, contains two com-
puters equipped with Intel Core i7 processors. One of them is running a
Real-Time Linux kernel for real-time control, while the other one communi-
cates with drivers and sensors and performs high-level planning. Two more
computers equipped with one Intel Core2Duo and one ARM7 processor are
located in the head. They are running software for ego-motion estimation
and mapping. All computers inside the robot communicate via real-time
Sercos Ethernet and external control workstations are connected through
wireless LAN. Communication between software components and sensors
is performed via a proprietary real-time capable middleware.

2.1.2 Robotic Middlewares

Different kinds of middleware have been developed over time, each address-
ing different concerns of developing robotic applications. The presented mid-
dlewares are all distributed under an open source license and are designed
for building distributed robot applications in order to take advantage of the
increased processing power of multiple computers.

Design goals of the Orocos [Bruyninckx et al., 2003] framework include
being portable and real-time capable. Portability is achieved through the
implementation of an Operating System Interface (OSI). Robot programs
are written as loosely coupled distributed components and communication
happens via sending events. Orocos heavily relies on general software design
patterns and those used in distributed systems.

The OpenHRP [Kanehiro et al., 2004] framework is used in the HRP
robots (such as HRP-2 and HRP-4C) and builds on the standardized CORBA
middleware to supports writing modular and distribute software components.
The CORBA Interface Definition Language (IDL) is used to describe compo-
nent interfaces in a standardized way. Portability is achieved by abstracting
access to the robot hardware into interfaces which must be implemented for
simulation and for the real robot.

16

2.1 Humanoid Robot Architectures and Middlewares

YARP [Metta et al., 2006] is used in the iCub robot and is designed as a frame-
work for building distributed and modular robot applications. Relying on
the Adaptive Communication Environment (ACE) [Schmidt, 1993] for com-
munication and operating system abstraction makes YARP portable among
different operating systems. Communication is built around the Observer
pattern where one or multiple observables provide data through so-called
Ports which can be observed by multiple consumers. Connections between
Ports can be established and removed dynamically at runtime. This makes
the software tolerant to crashes, since connections can be re-established after
restarting an application. Additionally, timing inside an application can be
decoupled since each Observer can process incoming data at its own speed.

The Agile Robot Development toolkit (aRD) [Hirzinger and Bauml, 2006]
is used in Justin and was developed to support real-time applications and to
allow control-loop frequencies above 1 kHz. It builds on the basic concept
of an execution block which can be executed independently with a fixed
priority. Execution of a block can either be triggered periodically or through
incoming data. An application is built as a distributed network of blocks
and communication links. Connection schemes between blocks are static at
runtime. Tools are provided to specify these links and to distribute the blocks
of an application onto specific hardware components. In contrast to the other
described frameworks, aRD relies on specifying the functionality of blocks
in Matlab/Simulink which is later on compiled into executable programs.

The Robot Operating System (ROS) [Quigley et al., 2009] was designed to
address issues in large-scale integrative robotics research where scale, scope,
and variety of developed software continues to grow. It is currently one of
the most widespread robotics middlewares. The four main concepts of ROS
are nodes, messages, topics, and services. Nodes are software components
realizing a specific functionality. These nodes communicate in a distributed
peer-to-peer network via messages. It is possible to send these messages via
unidirectional topics to multiple nodes which subscribe to the topic in order
to get notified upon arrival of new messages. Services on the other hand

17

2 State of the Art

provide means for synchronous and bidirectional communication and are
specified by a name and a pair of request and response messages. Similar
to YARP, single nodes can be restarted at runtime without interrupting the
complete application network. Additionally, ROS provides a collection of
tools for visualizing, monitoring, compiling and launching software mod-
ules. Contrary to YARP, which uses the ACE library for communication, the
message-based format and communication infrastructure of ROS are cur-
rently non-standardized, with efforts being made to switch to a standardized
messaging protocol.

The ArmarX [Welke et al., 2013, Vahrenkamp et al., 2015, Wächter et al.,
2016] framework is used in ARMAR-III and ARMAR-4 and aims at pro-
viding the building blocks for creating high-level robot architectures. The
major design goals are distributed processing, interoperability, robot inde-
pendence, and disclosure of the system state. On the lowest level, ArmarX
relies on the Internet Communication Engine (Ice) [ZeroC, Inc., 2015] which
provides the infrastructure for writing distributed applications, defining in-
terfaces with the included Interface Definition Language (IDL) Slice, cluster
management, different types of communication, and other types of services.
Several layers are built on top, beginning with the middleware layer which
provides life-cycle and dependency management of distributed framework
components, graphical specification of control- and data flow, as well as pro-
gramming interfaces for controlling actuator units, for reading sensor data,
and for processing sensor data. The robot framework layer provides generic
robot components and interfaces, the memory layer provides biologically
inspired mechanisms for storing and persisting data, and the vision layer
provides interfaces for accessing and processing images, video streams, and
point clouds. Hence, ArmarX enables users to create software architectures
for robots by reconfiguring as many generic ArmarX components as possible
while providing interfaces for easy integration of robot specific components.

18

2.2 Application Models

Furthermore, the disclosure of the system state principle in ArmarX is sup-
ported by tools which aid in developing, visualizing, and debugging robot
applications.

2.2 Application Models

This section focuses on approaches for defining high-level control flow in
robot tasks. There are however other types of control flow definitions avail-
able, such as control flow graphs which are found in compilers. Those are
not covered, since they focus on application details which are too low-level
for this work.

stopwatch
time

chime

zero

reg.

lap

on

off

H
*

a

a

d
(in off)

b

rundisplay

d
(in on) d b b

Figure 2.4: An excerpt of a more complex statechart showing the logic of a stopwatch.
Source:[Harel, 1987]

Statecharts introduced by Harel [Harel, 1987] are an extended version of
finite state machines (FSM) and provide a structured approach for represent-
ing complex control flow. Major extensions include: support for hierarchical
grouping of states, parallel execution of states, history in states, and jumping
directly to sub-states anywhere in the hierarchy. Those extensions are backed

19

2 State of the Art

up by a formal definition of their semantics [Harel and Naamad, 1996]. Fig-
ure 2.4 shows a section of a more complex statechart presented in the original
statechart paper. It shows a hierarchical statechart which includes a history
state H, parallel execution of the sub statecharts display and run, and jumping
between hierarchies (from the state reg. to the state zero). Overall, statecharts
provide a structured way to develop the control flow of complex applications.

The Palladio Component Model (PCM) [Becker et al., 2009] is a frame-
work for describing component-based software architectures. Through spec-
ification of functional and non-functional parameters it is possible to reason
about the performance of the model when it is executed on different types of
hardware. Interactions between components in the PCM are described as Ser-

vice Effect Specifications which in turn are modeled as finite state machines.
In comparison to regular FSMs, the PCM state machines are extended with
transition probabilities used to predict the probability of component failures.

The Unified Modeling Language version 2 is a general-purpose model-
ing language from the field of software engineering [Object Management
Group (OMG), 2015]. It was designed to create a common notation and visu-
alization system for software architectures and single pieces of software. In
UML 2, state machines are used to describe the behavior of software while
the software structure is defined by other UML 2 mechanisms. The state
machine semantics are described in chapter 14 of the current UML 2 spec-
ification (version 2.5). Overall, UML 2 state machines are described as an
object oriented version of Harel’s statecharts, tailored to describe behaviors
in UML 2 based software architectures.

Within the context of robotics, state machines and statecharts are used for
describing robot tasks and robot behavior.

The Task Description Language (TDL) uses dynamically generated task
trees as its basic concept. Its description and formalization is presented
in [Simmons and Apfelbaum, 1998]. Two types of nodes exist in the task
tree: command nodes and goal nodes. Command nodes are used to specify
runtime behavior which is executed upon entering the node. Goal nodes are

20

2.2 Application Models

deliverMail

navigate
ToLocn

center
OnDoor

speak

lookFor
Door

move

monitor
Pickup

center
OnDoor

speak

lookFor
Door

notify
Sender

Figure 2.5: An exemplary task tree of the Task Description Language (TDL). Source: [Sim-
mons and Apfelbaum, 1998]

used to represent high-level behaviors and are expanded at runtime into a tree
of goal nodes and command nodes. Figure 2.5 shows an exemplary task tree
with expanded nodes. Command nodes as opposed to goal nodes can only
have other command nodes as children. Overall, TDL was created to for-
malize specification and implementation of robotic tasks. It provides means
similar to activity diagrams found in UML 2 but differs in the dynamic ex-
pansion of nodes at runtime which allows for a more compact description
than activity diagrams.

The event-based Task Description Language (ETDL) presented in [Park
et al., 2006] was created as a task description language to be used by a
task monitoring system. Design goals for the language were hierarchical
task specification, expression of variations in task executions similar to reg-
ular expressions, and the ability to forecast tasks described by the language.
Tasks themselves are described as a behavior associated with pre- and post-
conditions. However, no qualitative comparison of the new approach and
existing task description languages is presented and no formal semantic spec-
ification is given.

Extended State Machines (ESM) were introduced as an extension to clas-
sical state machines to help designing, implementing, and testing control

21

2 State of the Art

systems of autonomous robots [Merz et al., 2006]. Additions made include
task states for executing user defined program code, states with timers, data
flow between states, and special flags to configure sub state machines and
react on their outcome.

A model-driven approach for designing robotic software is described
in [Schlegel et al., 2009, Steck and Schlegel, 2010]. This work is an ex-
ample of how UML can be applied for designing software for autonomously
driving robots while using statecharts to specify the behavior of the software
and thus the robot.

The restricted Finite State Machine (rFSM) approach implements a mini-
mal variant of Harel statecharts and UML 2 state machines [Klotzbücher and
Bruyninckx, 2012]. Target properties of the rFSM implementation are com-
posability of states, compositional robustness, and satisfiability of real-time
constraints. The minimal subset is defined in the paper as “the smallest num-
ber of primitives necessary for humans to construct practical coordination
statecharts”. To achieve this minimalism, rFSMs omit parallel state execu-
tion as well as the execution time requirement, which requires that effects
of an action in step n can only be sensed in step n + 1. The rFSM model
is integrated into the real-time toolkit of the OROCOS robotics framework
and is used for explicit coordination of components in a robotic software
architecture.

Successful application of statecharts is also presented in [Paraschos et al.,
2012], where statecharts are used to coordinate individual soccer playing
robots as well as a team of those robots. Both functional and behavioral
aspects of the control of a single robot and a team of robots is described via
statecharts. After designing the controllers, tools are used to generate C++
code which can be compiled and run on the real robots.

A domain specific programming language based on UML/P statecharts is
described in [Thomas et al., 2013]. UML/P is an implementation oriented
version of the UML 2 specification, and allows for generating Java code out
of specified models.

22

2.3 Resource Models

Figure 2.6: The visual representation of a statechart in ArmarX. The initial state is marked
by the transition from the black dot. Regular sub-states are shown in blue and
end-states are shown in yellow.

The robot framework ArmarX also contains an implementation of hierarchi-
cal statecharts [Welke et al., 2013, Wächter et al., 2016]. High-level control
flow within ArmarX applications is realized via statecharts. Figure 2.6 shows
the graphical representation of an examplary ArmarX statechart. In addition
to classical statecharts, it is possible to specify the data flow within these stat-
echarts. Only sensor data acquisition and hardware access is implemented as
specialized components which are called from states within the statecharts.
One major aspect of ArmarX statecharts is their distributed nature which
allows running different parts of the complete robot program on different
computers. Additionally, runtime substitution of states is possible and is
used to implement high-level planning which decides on executing a specific
statechart at runtime.

2.3 Resource Models

Modeling resources in order to describe resource demands and resource
utilizations of applications or algorithms is a topic found in multiple domains.
Most existing modeling approaches show that resource models can only be
interpreted in a meaningful way if they are expressed based on a reference

23

2 State of the Art

model of the platform the respective algorithms and applications are executed
on. The following paragraphs give an overview of how resources are modeled
in different domains.

High Performance Computing (HPC) deals with massively parallel algo-
rithms executed on cluster computers with hundreds to thousands of pro-
cessors. Optimal resource allocation is crucial in this field for maximizing
performance and reducing operational costs. Hence, resource models are ex-
tracted from HPC applications on which resource scheduling is performed
as described in [Subramoniam et al., 2002]. Resources considered in this
publication are classified as CPU cycles, disk space, memory space, network
bandwidth, and specialized processing power such as GPUs. However, no
specific units for each class of resources and no explicit model of the ex-
ecution platform is given. Thus, the resource model is tied to a specific
cluster architecture and before moving to a different architecture, a mapping
between the old and the new platform must be established.

Scheduling theory provides the mathematical foundations for computing
a feasible schedule providing real-time guarantees for executing the work-
load of a number of applications on a given set of resources. Hence, this
field of research is another prominent area where resource models are used.
In [Shin and Lee, 2003] a Periodic Resource Model (PRM) is presented, and
is expanded in [Easwaran et al., 2007] towards a generalized Explicit Dead-
line Periodic Resource Model (EPD). The goal of the model is to accurately
describe periodic resource allocation behaviors of periodic tasks by guar-
anteeing the allocation of Θ time units every Π time units. Schedulability
analysis performed with these models is thus determined based on time units.
Resource demands of workload sets are specified as the amount of required
resource allocations requested by the workload set. However, the definition
of these resource models is based on the abstract notion of time units. The
presented resource models do not take fluctuations in workload execution
times or resource demands into account.

24

2.3 Resource Models

Based on the well established UML 2 standard, the “UML profile for Schedu-
lability, Performance, and Time Specification” (SPT) was developed and
standardized by the Object Management Group (OMG) [Object Manage-
ment Group (OMG), 2005]. Since 2011, it has been replaced by the “UML
Profile for MARTE” [Object Management Group (OMG), 2011]. One idea
behind MARTE is to develop software based on an abstract hardware model
and later on map the software to a specific hardware model determined
via performance analysis. Non-Functional-Property types (NFP) such as
utilization, basic measurement units, and probability distributions defined
as operations on NFP types are multiple ways to describe resources using
MARTE. The Generic Resource Modeling (GRM) library provides means to
model resources and resource demands. These resource demands are spec-
ified as a resource amount and a reference to a resource type. Resource
amounts are further specified as Behavior which can be any of repetitions,
probability, hostDemand (CPU), priority, responseTime, executionTime, in-
terOccurrenceTime, throughput, utilization, utilizationOnHost, and memory.
Additionally, the ResourceUsage package of GRM provides means to ex-
press statistical and dynamic usage of memory, CPU time, number of Bytes
sent through a communication resource and more. The “Hardware Resource
Modeling” library (HRM) is a refinement of the GRM library [Taha et al.,
2007] and lists the following hardware specific ResourceTypes: SynchRe-
source, StorageResource, ConcurrencyResource, CommunicationResource,
ComputingResource, TimingResource, and DeviceResource. The “Software
Resource Modeling” library (SRM) refines the GRM library [Thomas et al.,
2008] towards the software specific aspect and lists SchedulableResource
and CommunicationResource as software specific resources.

The Palladio Component Model (PCM) from the software modeling do-
main focuses on the development of Component Based Architectures [Krog-
mann and Reussner, 2008, Becker et al., 2009]. PCM does not extend the
general UML2 model like MARTE, but instead creates a new separate model
focusing on modeling and analysis of performance predictions and advanced

25

2 State of the Art

software component concepts whose constructs are mappable to the perfor-
mance domain. Resource types covered by PCM are communication band-
width, CPU, and memory which are expressed based on abstract Resource-

Types. For example, CPU demand is specified as time units of an abstract
ProcessingResource. Resource demands are specified as constant quantities,
probability distributions, or parameterized functions. The resource demands
are part of a so called Service Effect Specification (SEFF) which contains de-
pendencies on other components and expected input parameters or expected
return values of used services. Abstract ResourceTypes are instantiated later
in the development process in a ResourceEnvironment which specifies avail-
able resources, concrete resource types, and connection between resources.
Performance of a software architecture is then evaluated by mapping it onto
multiple ResourceEnvironments and running simulations. Furthermore, PCM
contains concepts for expressing component Quality of Service (QoS) param-
eters as parametric contracts depending on the component’s context [Becker
et al., 2006]. This context is specified independent of the component imple-
mentation and is defined as the software environment a component instance
is contained in. Parameters like deployment on concrete hardware, used
system software, or access patterns directly influence the component perfor-
mance and can vary from instance to instance. Finally, the PCM approach
of component contexts deals with static aspects of the software architecture
which are fixed or computed at design time.

A simple resource model containing CPU and memory consumption is
used in [Park et al., 2012]. Each component of the robot software is annotated
with an expected resource consumption which is computed through offline
simulation of the component’s execution. During execution, these parame-
ters are replaced by runtime measurements of running components. These
resource demands are used during task planning for generating resource
constrained plans. CPU usage is measured in percent and main memory con-
sumption in MByte. No explicit execution platform is specified which makes
it difficult to transfer the results from one platform to a different one.

26

2.4 Profiling and Monitoring

A model-driven approach for robot software design which makes resource
requirements explicit is presented in [Steck and Schlegel, 2010]. Resource re-
quirements are modeled as non-functional properties (NFP) and are used for
design time analysis of resource constraints. These NFPs include worst-case
execution time and the period of tasks which are used to perform schedula-
bility analysis of real-time tasks. Without further detail, the paper mentions
that some properties will be reasoned about at runtime since they can be
unknown at design time.

2.4 Profiling and Monitoring

Resource models (Section 2.3) or transition probabilities in PCM state ma-
chines (Section 2.2) are either based on expectations or are extracted from
usage data of real or simulated application executions. Different profiling
and monitoring approaches for acquiring usage data from applications are
presented in this section. The focus for types of data to acquire is put on CPU
and memory utilization, communication, state transitions within a statechart,
and environment changes.

The Task Description Language (TDL) specifies programs as a tree of
command nodes and group nodes. Additionally, task decomposition, syn-
chronization, execution monitoring, and exception handling are supported by
TDL [Simmons and Apfelbaum, 1998]. Any task in the task tree can define
expressions depending on monitored values. Once an expression evaluates
to be true, an event is triggered and sent to the task that initially provided the
expression. These events are triggered by a special Monitor task based on
external events, state transitions between task tree nodes, or due to passage
of time.

A Plan Execution Monitor (PEM) for failure recovery in high-level task
planning is presented in [De Giacomo et al., 1998]. Execution monitoring is
described as “the robot’s process of observing the world for discrepancies be-
tween the actual world and its internal representation”. Based on knowledge

27

2 State of the Art

gained through execution monitoring it is possible to react on and recover
from discrepancies. This work is based on high-level symbolic knowledge
of the world state and all possible actions. The Execution Monitor checks if
the world state matches the precondition of an executed action and triggers
a recovery action in case of a mismatch.

A survey of execution monitoring methods in robotics is presented in [Pet-
tersson, 2005]. The survey was conducted because robots must adapt to
the current environment which in turn requires execution monitoring to
detect faults and environment changes. Three categories of approaches
are described: analytical-based fault detection, data-driven approaches, and
knowledge-based approaches. Analytical-based monitoring and fault detec-
tion approaches rely on mathematical formulations for describing system or
robot behaviors. The most prominent version in this category are observer-
based methods which compare an estimated system state with the actually
observed system state, such as the PEM in [De Giacomo et al., 1998]. Data-
driven approaches do not rely on mathematical models, but instead derive
information for fault detection from statistic measures computed from mea-
sured input data. Knowledge-based approaches combine both analytical-
based and data-driven approaches. They are provided with training data
categorized by human experts and try to decide in a similar way. The survey
states that analytical observer-based monitoring approaches are commonly
used in robotics due to their correlation with state machine representations
of robot programs. In order to detect possible failures, observer-based ap-
proaches compare the actual system output against an estimated system
output which is calculated from the last known input and output parameters.

A model-driven approach for robot software design is presented in [Steck
and Schlegel, 2010]. The work discusses reasoning about non-functional
properties at runtime and changing the component wiring depending on the
current situation of the robot. However, the work focuses on the software
modeling aspect of designing robot software and no further details on moni-
toring the current situation are presented in the paper.

28

2.4 Profiling and Monitoring

Resource usage monitoring is used for executing resource constrained plans
of robot actions as described in [Park et al., 2012]. This approach uses a
framework specific Positioner component to monitor the CPU and main
memory resource status of a Single Board Computer (SBC). The planning
component yields a resource constrained execution sequence of component
candidates. Afterwards, the Positioner is responsible for selecting the appro-
priate components to execute, based on the current workload of the SBC.

A model for self-monitoring during execution of robot tasks is presented
in [Kurup et al., 2013]. The authors describe a model for classifying the
robot’s status by associating sensor information such as position and speed of
a robot with the robot’s internal operational state (Moving, Looping or Stuck).
This model is trained during an initial learning phase and maps previously
recorded sensor information onto simultaneously executed robot behaviors
of a navigation task. Afterwards, the same task is performed by the robot
and the learned model is used to diagnose problems during execution and
to detect the progress within the navigation task. During execution, possible
gaps in the learned model are filled by consulting a rule based heuristical
model. Since the rules are based on low-level sensor information a lot of
domain knowledge is required for manually specifying them.

The ArmarX robot framework emphasizes state disclosure as an essen-
tial requirement for implementing robot capabilities [Welke et al., 2013,
Vahrenkamp et al., 2015, Wächter et al., 2016]. Within the framework, robot
programs are represented as hierarchical distributed statecharts (see Sec-
tion 2.2). The internal structure and all incoming and outgoing data of these
statecharts are exposed for online inspection of the system state. Addition-
ally, the robot memory can also be inspected which contains information
about the state of the environment as perceived by the robot. This enables
monitoring of the currently executing state, transitions in the statechart, and
the environment of the robot.

Advanced ROS Network Introspection (ARNI) is an extension to the stan-
dard ROS robotics framework [Bihlmaier et al., 2016]. It allows generating

29

2 State of the Art

statistics for hosts running ROS programs and includes communication band-
width and CPU usage. Furthermore, constraints for the generated statistics
can be specified for executing counter measures if the constraints are vio-
lated.

Several approaches exist for profiling CPU usage of applications on Linux
based operating systems. They range from statistics generating compile-
time enhancements, application execution on a virtual CPU, and reading
CPU internal performance metrics to reading metrics provided by the Linux
kernel.

Both gprof [Graham et al., 1982] and Google PerfTools [Google, 2005]
fall into the category of modifying programs at compile-time and later on
at runtime. The gprof profiler enhances an application at compile-time with
special functions used to generate statistics at runtime. Google PerfTools are
added as libraries to an application at compile-time and also generate statis-
tics at runtime. After the execution of an application, the statistics of both
profilers are written to disk and can be evaluated afterwards. In many cases,
neither can be used due to required recompilation and the extra overhead for
calling the special functions.

Very accurate measurements can be retrieved by profiling an application
with tools of the Valgrind framework [Weidendorfer, 2008]. This approach
executes an application on a virtual CPU and intercepts calls to the hardware
for generating precise statistics. However, there is a notable slowdown in
execution time of at least a factor of 10 in using this approach.

Modern CPUs are equipped with embedded Performance Counters which
contain processor specific information such as the number of executed in-
structions, the number of floating point operations, or the number of cache
misses. One possible way to obtain these values from within an application is
to use the Performance Application Programming Interface (PAPI) [Browne
et al., 2000]. System wide profilers such as OProfile [Levon et al., 2002] or
perf [Kernel.org, 2010] also make use of Performance Counters by generat-
ing statistics for single applications or complete operating systems.

30

2.4 Profiling and Monitoring

These statistics are written to disk after program execution and can be ana-
lyzed with tools provided by the profilers.

Both SystemTap2 [SystemTap Documentation, 2005] and DTrace 3 [Mc-
Dougall et al., 2006] are system wide profilers with support for application
specific profiling. Statistics such as CPU usage are gathered based on user
supplied profiling scripts.

The Tuning and Analysis Utilities (TAU) framework targets “performance
instrumentation, measurement, analysis, and visualization of large-scale par-
allel computer systems and applications” [Shende and Malony, 2006]. It is
used for gathering performance data such as CPU utilization, memory con-
sumption, or communication bandwidth of applications running on parallel
CPU architectures such as clusters.

Operating system provided metrics can be obtained by using the GNU C
library (glibc) which provides interfaces for reading the CPU usage at run-
time [GNU Project, 1997a]. Additionally, CPU usage of applications running
on Linux based operating system can be extracted from information provided
by the kernel via the /proc filesystem [Linux Kernel Documentation].

Dynamic memory usage profiling of an application is supported by some
of the CPU profiling tools. Namely, Valgrind Massif [Valgrind Documen-
tation, 2004], Google PerfTools [Google, 2005], TAU [Shende and Mal-
ony, 2006], SystemTap [SystemTap Documentation, 2005], and DTrace [Mc-
Dougall et al., 2006].

The Linux kernel exposes memory statistics via the /proc filesystem,
similar to CPU statistics [Linux Kernel Documentation]. However, only vir-
tual memory statistics are provided which do not contain information about
dynamic allocation and deallocation of memory.

Thus, some approaches replace the memory manager to gain access to
allocation and deallocation statistics. In C++ code it is possible to override
the new() operator within an application or to replace the calls to memory

2 SystemTap only runs on Linux.
3 DTrace does not run on Linux.

31

2 State of the Art

allocation function malloc(). However, both approaches require the user
to do manual bookkeeping.

In general, the GNU C library provides an interface to read virtual mem-
ory statistics in combination with CPU usage via the getrusage() func-
tion [GNU Project, 1997a]. However, the memory fields are not supported
by Linux kernels. Instead, it is possible to retrieve memory statistics of the
C library’s memory allocator via the mallinfo() function [GNU Project,
1997b].

2.5 Prediction Models and Algorithms

A wide range of prediction and machine learning algorithms exists that are
applied in embedded systems, autonomous cars, and many other applica-
tions. The goal of this section is to present a selection of relevant approaches
capable of predicting the state of robot applications which are based on appli-
cation models presented in Section 2.2. Additionally, the prediction models
should be learned from experience based on data collected with methods
described in Section 2.4.

The book “Machine Learning” contains a comprehensive collection of
machine learning algorithms [Russell et al., 1996]. Amongst others, it cov-
ers Bayesian Learning, Markov Chains, Hidden Markov Models (HMM),
and Support Vector Machines (SVM) which can be applied for calculating
prediction.

Dynamic Bayesian Networks (DBN), a variant of Baysian Learning, are
shown to be suitable for learning a navigation task model in [Infantes et al.,
2006]. In this work, a robot performs a navigation task where it encounters
different situations such as a free path, a narrow path, or a blocked path.
First the DBN based model has to be learned from previous executions of
the task so that future situations can be reliably predicted by the model.
The DBN model is also used to generate plans for robot actions and can
be constrained by objectives such as avoiding to maneuver the robot into a

32

2.5 Prediction Models and Algorithms

failure state where it gets stuck. As expressed in [Russell et al., 1996], DBNs
are a generalization of Hidden Markov Models providing a probabilistic
representation in combination with inference (prediction) mechanism for
time-dependent domains.

Markov Chains are used in [Albers et al., 2009] to model short term
changes of task execution times in an image processing pipeline. Depend-
ing on its content, an image is processed with different combinations of
algorithms within the pipeline. The image processing time varies with the
execution times of the applied algorithms. Using the Markov Chain model,
switches in the pipeline control flow are predicted reliably and used to cal-
culate upcoming resource usage patterns. The Markov Chain model is used
in this case since the internal state of the system is known/observable and
previous execution steps in the pipeline influence future decisions on how to
process the image.

Case Based Reasoning (CBR) is used in cognitive automobiles for inter-
preting and classifying traffic situations [Vacek et al., 2007]. The idea behind
CBR is to solve a problem (case) by finding a similar previous situation and
adapting it to the current situation. Afterwards, the new experience is inte-
grated into the current database of cases for future usage. One big advantage
of CBR methods is their support for generating partial matches between the
current case and all stored cases. Vacek et al. use CBR to predict the evo-
lution of the current situation in order to select appropriate behaviors for
the automobile. Predicting future situations requires classification of situa-
tions or situation types, behaviors of participants, and risk potentials before
drawing conclusions.

Hidden Markov Models (HMM) are another viable alternative for situa-
tion interpretation in cognitive automobiles [Meyer-Delius et al., 2009]. In
this work, a situation is defined as a distribution over sequences of states as-
sociated with a meaningful interpretation. The distribution of each situation
is described by an HMM which is also used to recognize the situation. The

33

2 State of the Art

presented system tracks multiple possible situations in parallel, makes rea-
sonable choices between competing hypothesis, and can be used to predict
the position of all tracked vehicles.

HMMs can also be used to estimate the affective state of a human after
being stimulated by robot motions [Kulic and Croft, 2007]. The approach
is evaluated by letting a robot perform a pick up action and a reach and
retract action close to a human. HMMs are used to estimate an arousal
level or danger index based on physiological signals such as heart rate, skin
conductance, and facial muscle contraction. This danger index is then used as
input to the control system which adjusts the robot’s movements to achieve a
lower index and make the user more comfortable. In general, HMMs are used
in situations where only the external influence of a system can be observed
but their effect on the unobservable internal system state is to be represented.
In this work, the unobservable internal state represents the affective state of
the human.

Forecasting the load of a software architecture is presented in [Garousi
et al., 2009]. The proposed method works on a software model which is de-
fined in UML 2 and annotated with resource utilizations based on the UML-
SPT profile presented in Section 2.3. Load forecasting requires a scheduled
execution of the software and uses the specified SPT annotations to calculate
resource utilizations at design time, based on the calculated schedule and
simulated input values. This resource analysis technique allows detecting
resource overuse and predicting resource utilization at design time but does
not provide the means for runtime evaluation.

The Palladio Component Model (PCM) is designed to enable performance
evaluation and prediction of software architectures at design time [Happe,
2008]. Colored Petri Nets (CPN) are used for predicting software perfor-
mance based on a software model. The model is afterwards validated by
comparing predictions of the model with simulations and measurements of

34

2.6 Resource-Aware Systems and Algorithms

application executions. The goal of this approach is to determine resource uti-
lization and bottlenecks before the software is fully developed and deployed
to production systems.

A methodology for answering performance queries at runtime based on
PCM is presented in [Kounev et al., 2010]. The Hierarchical Queueing Petri
Nets based performance model is generated dynamically at runtime and
reflects the application configuration and workload. After its creation, the
model can be queried for predicting the application’s performance depending
on expected application input.

2.6 Resource-Aware Systems
and Algorithms

Gordon Moore formulated Moore’s Law in 1965, based on his observations
of the trends in chip manufacturing [Moore, 2006]. Specifically, this law says
that the number of transistors available in a highly integrated circuit doubles
approximately every two years. The International Technology Roadmap for
Semiconductors (ITRS 4) provides an outlook of future manufacturing tech-
nologies and shows numbers similar to the ones predicted by Moore’s Law.
Although the integration density of transistors has been slowed down since
2012, the roadmap still predicts the availability of hundreds to thousands of
CPU cores on one chip within the near future (10-15 years).

Up to now there is no common understanding on how to efficiently use and
program thousands of CPUs. Several research topics exist in this area which
are presented next. The resource-aware approach of the Transregional Col-
laborative Research Center Invasive Computing (SFB/TR 89) is described
in detail in Section 1.2, but belongs into this category, too. From an applica-
tion programmers point of view, the main ideas are similar and often include
system wide load monitoring and the expression of service level objectives

4 http://www.itrs2.net/

35

http://www.itrs2.net/

2 State of the Art

within a program. However, major differences can be found regarding re-
source reservation policies of specific approaches.

2.6.1 Resource-Aware Operating Systems

The scalable many-core operating system ROS uses Space-Time Partitioning
to provide guarantees to applications that resources are made available when
they are requested [Klues et al., 2010]. ROS allows the programmer of an
application and a system administrator to express the resource demands of an
application in both space and time. For example, an application might want
to use 4 processors and 50% of the available RAM for 75% of the time. Each
application can also demand more resources than initially requested but the
operating system provides only guarantees for the initial request. Resources
in ROS are defined as anything which is sharable between applications such
as CPU cores, RAM, caches, memory bandwidth, I/O device access, and
many more.

OctoPOS is a resource-aware operating system which heavily relies on
asynchronous, non-blocking system calls [Oechslein et al., 2011]. It is de-
veloped in the context of the Transregional Collaborative Research Center
Invasive Computing (SFB/TR 89) and is designed to manage heterogeneous
resources such as CPUs, CPUs with hardware accelerators, or specialized
parallel hardware structured similar to GPUs. OctoPOS enables an applica-
tion to express a performance metric. These metrics express the performance
of the application in dependence on different combinations of resource quan-
tities. Afterwards, an application can demand a specific set of resources at
any point during runtime. If the requested resources are granted is negotiated
upon at runtime, by using the performance metric to balance system wide
resource utilization. Depending on the outcome of the negotiation, another
set of resources is provided to the application which does not have to ex-
plicitly meet the original demand. The application can then either adapt its

36

2.6 Resource-Aware Systems and Algorithms

algorithmic parameters to the newly available resources, continue working
with the existing resources, or it can try to renegotiate for more resources.

The SElf-awarE Computing model (SEEC) provides a runtime system
designed to reduce programming effort in modern multi-core systems [Hoff-
mann et al., 2011]. SEEC is implemented as a set of Linux kernel libraries
and allows application programmers to specify both goals and progress of
their application. System programmers are provided with means to specify
actions which can be performed by SEEC and the hardware to influence
applications. During execution, each application is monitored in order to
create application and system models. The SEEC runtime system attempts
to optimize resource allocations based on an adaptive control system and
the generated models. Thus, SEEC optimizes system behavior instead of
requiring programmers to optimize their application for a specific system.

METE (Meeting End-to-End QoS) allows specifying Service-Level Agree-
ments (SLA) between applications and the operating system to ensure dy-
namic allocation of resources [Sharifi et al., 2011]. The main objective of
METE is to dynamically partition shared resources in multi-core machines to
allow concurrent applications achieve their specified performance. Resources
managed by METE are CPU cores, shared caches and off-chip bandwidth. A
feedback-based control loop captures application behaviors at runtime and
adapts resource demands by querying a centralized resource broker.

Tesselation is an operating system which introduces Adaptive Resource-
Centric Computing (ARCC) [Colmenares et al., 2013]. Within Tesselation,
resources are distributed among Quality of Service (QoS) domains called
cells. Interfaces for resource adaptation and composition of QoS domains
are realized on top of the cell abstraction. Resources are assigned to cells
and resource allocation is adapted at runtime while scheduling of resources
within a cell is performed via user-level scheduling. Thus, resource alloca-
tion is separated from actual resource usage. A separate Resource Allocation

37

2 State of the Art

Broker is responsible for distributing available resources to cells while si-
multaneously trying to satisfy global goals such as energy efficiency, met
deadlines, or throughput of applications.

The Autonomic Operating System (AcOS) is an extension and special-
ization of the Linux and FreeBSD kernel schedulers [Bartolini et al., 2013].
Its goal is to perform automatic and adaptive resource allocation based on
user-defined performance goals which are specified via Service-Level Ob-
jectives (SLOs). AcOS focuses on allocation of CPU and CPU bandwidth
and provides means for temperature based limiting of provided resources. A
closed control loop realizes the adaptive resource allocation by observing
the system state via monitors, deciding based on adaptation policies, and
finally acting based on the outcome of the policies. The observation in the
control loop is performed by Heart Rate Monitors (HRMs) which provide
performance measurements. Furthermore, the operating system schedulers
are changed to allow making runtime changes to the resources allocated to
an SLO-bound application.

2.6.2 Application Autotuning

Application autotuning automatically optimizes parallel applications through
empirical searches. Autotuning removes the requirement of manual specifi-
cation of Quality of Service application parameters by programmers.

XJava extends the Java language with tasks and parallel statements which
are further used to drive an autotuning process [Otto et al., 2010]. These
new high-level language constructs allow expressing parallelism explicitly
and allow the compiler to extract relevant tuning parameters such as thread
count, load balancing strategies, or number of pipeline stages. At runtime,
this knowledge is exploited by setting the determined parameters based on
context information gathered at runtime. The autotuner then systematically
changes the tuning parameters and measures the application performance

38

2.6 Resource-Aware Systems and Algorithms

to find an optimal parameter configuration for the specific machine it is
executing on.

An operating system wide and application independent approach for au-
totuning a combination of multiple applications is presented in [Karcher
and Pankratius, 2011]. The presented autotuner is integrated into the Linux
kernel and works without involving the user in the tuning process. Special
system calls are provided to the application programmer to add tuning pa-
rameters and to start and stop measuring the application performance. An
application’s repetitively executed hotspot must be annotated with these sys-
tem calls to provide information on where to insert measurement points and
what parameters to vary. At runtime, operating system data such as applica-
tion workloads and global system state is measured and fed into the autotuner.
The tuning process then employs a simplex-based optimization algorithm
which aims at determining a cross-process optimal parameter combination.
Since the set of determined tuning parameters is specific to a dedicated com-
puter platform, applications are automatically re-tuned at runtime when they
are executed on a new platform.

AtuneRT provides an approach for online autotuning of computations run-
ning on GPUs [Tillmann et al., 2014]. Optimizing memory access patterns,
workload balancing, and control flow minimization is required to write high
performance GPU applications. AtuneRT addresses these points by optimiz-
ing the parameters thread count, per-thread workload, and the degree of loop
unrolling of GPU bound applications. The online property of AtuneRT means
that the tuning can be changed at runtime in order to address changes in the
workload or the size of input data.

2.6.3 Organic Computing

The Organic Computing (OC) concepts are designed to deal with increas-
ingly complex networked systems by introducing so called self-x properties

39

2 State of the Art

such as self-organizing, self-configuring, self-adapting, self-healing, or self-
optimizing [Müller-Schloer et al., 2011]. One goal is to guarantee adaptive
and trustworthy behavior of systems whose complexity, autonomy, or dynam-
ics prevent foreseeing their behavior at design time. The self-x properties
allow deferring decisions to the runtime of an OC system. These decisions
are made by a Controller which receives input from an Observer which in
turn supervises the executing OC system. Additionally, a human operator
can provide input by setting system specific goals from outside the system.

The Organic Robot Control Architecture (ORCA) presented in chapter 4.5
in the OC book ([Müller-Schloer et al., 2011]) is realized with OC princi-
ples. ORCAs main idea is that so called Basic Control Units (BCUs) provide
the functionality for the robotic system and that additional Organic Control
Units (OCUs) supervise those BCUs. BCUs sent health signals which at-
tach uncertainties to sensor values. These uncertainties vary depending on
the current environment or faulty sensors. Based on these health signals,
OCUs determine the state of monitored BCUs at runtime and perform self-
organizing, self-optimizing, or self-healing actions based on the monitored
state. Possible actions to deal with anomalies, faults or unforeseen situations
are activation or deactivation of BCUs, changing of BCU parameters, or
changing BCU interaction patterns. Incremental online learning is used to
optimize adapting behaviors based on monitored performance of the system

An implementation of ORCA for a six-legged walking robot is pre-
sented in chapter 5.7 of [Müller-Schloer et al., 2011]. Self-organization,
self-reconfiguration and self-healing are the main principles employed in
building the control architecture. Required BCUs range from sensing and
single robot leg control, to reflexes for handling uneven terrain, up to a
health-signal based path planner. Upon deviation of health signals from their
regular range, an on-demand adjustment of the robot’s behavior is performed
by adjusting BCU parameters or by activating reflexes. In case of serious
damage to a robot leg, self-reconfiguration through detaching the faulty leg
is possible. It is shown that a considerable number of faults can be corrected

40

2.6 Resource-Aware Systems and Algorithms

without interrupting the robot albeit resulting in slower movement when legs
have to be detached. In addition, a health status based planning algorithm is
presented capable of adapting the plan if the robot’s health changes. Thus,
an initial plan of walking over bigger obstacles will be modified if the robot
has lost a leg and can not climb big obstacles anymore.

2.6.4 Resource-Awareness in Robotics

So far, research towards resource-awareness in robotics has been done, but
is not one of the major or hot topic as of now. Results from research towards
resource-awareness are shown in this section.

An architecture for autonomous rovers is shown in [Castano et al., 2006].
Every time a new command (such as taking a measurement) is sent to the
robot, the control software checks if enough resources such as memory or
power are available to fulfill the command. Checking is performed after an
action finishes, in order to take the currently available resources into account.

Generating resource constraint plans for a mobile robot was published
in [Steck and Schlegel, 2010]. Through annotation of the robot software
with non-functional properties it is possible to analyze resource usage and to
generate static real-time schedules of all involved components.

A task-based approach for generating resource-constrained architectures
for service robots is presented in [Park et al., 2012]. Starting with an initial ac-
tion to perform, an architecture including all required components to perform
the action is generated. Afterwards, the architecture is optimized by minimiz-
ing the usage of duplicate components and taking resource constraints into
account. During this step, components with high resource usage are replaced
by other components providing the same semantics but using less resources.
Before the architecture is instantiated and executed, a simulation is run to
ensure that all constraints are met.

Real-time reconstruction of contacts on a robotic skin is shown in [Mus-
cari et al., 2013]. The algorithm depends on the Skinware middleware for

41

2 State of the Art

reading and addressing the robotic skin sensors [Youssefi et al., 2015]. The
reconstruction algorithm takes input from multiple force sensitive sensors
and combines them into information about contact areas and direction from
which forces are exerted. Real-time performance of the algorithm can be
tuned to match the availability of resources by adjusting the sampling size
at runtime. This concept is supported by the underlying middleware which
supports adapting both the number and precision of currently active sensors.

2.7 Sampling-Based Motion Planning

Motion planning is used for calculating a collision free movement of an
object or a robot from a starting position to a goal position. A wide va-
riety of algorithms for solving this problem exist. However, in the hu-
manoid robotics domain mainly two randomized approaches are used to
solve complex planning problems. These algorithms are called Probabilistic
Roadmaps (PRM) [Kavraki et al., 1996] and Rapidly-exploring Random
Trees (RRT) [Kuffner and LaValle, 2000]. This work focuses on variants
of the RRT approach, since it allows for efficient solving of single query
planning problems while maintaining probabilistic completeness. RRTs are
designed for single query path planning which is defined as finding a solution
to single path planning problem as fast as possible and without preprocessing.
Furthermore, RRTs are probabilistic complete, meaning they find an existing
solution with any probability given sufficient time to execute.

The space in which an object can be moved is the configuration space
(Cspace) in motion planning. Cspace is then further divided into the free space
C f ree and the space occupied by obstacles Cobstacle (Cspace =C f ree∪ Cobstacle).
Thus, the goal of motion planning algorithms is to find a path in C f ree which
is collision free by definition. Dimensionality of Cspace and thus C f ree de-
pends on the problem formulation. Cspace will have 6 dimensions (rotation
and translation along each axis), if the problem is specified in cartesian space.
If the problem is specified as movements of each joint of a robot, Cspace will

42

2.7 Sampling-Based Motion Planning

have as many dimensions as there are joints or degrees of freedom (DoF)
in the robot. Computing C f ree is very time consuming for robots with many
DoF and is often not feasible.

Instead, the RRT algorithm builds a tree T of reachable configurations
in C f ree starting at the initial configuration ρstart . For n iterations, a random
pose ρrnd is sampled in Cspace and a configuration ρn is created by extending
the tree towards ρrnd by an amount ε . Each ρn is checked for collisions, to
decide whether ρn belongs to C f ree and should be added to the tree or if it
belongs to Cobstacle and should be discarded. T is returned after the algorithm
finishes. This procedure is called BUILD_RRT and is shown in Algorithm 1.

Algorithm 1 The BUILD_RRT algorithm starts with an initial configuration
ρstart , a number of iterations n, and an extension amount ε . Every iteration,
a random configuration ρrnd is created, the tree T extended towards ρrnd by
ρn, and finally ρn added to the tree if it is valid (collision free). T is returned
after the algorithm finishes.

1: procedure B U I L D _ R RT(ρstart ,n,ε)
2: T . I N I T(ρstart)
3: for k← 1..n do
4: ρrnd ← R A N D O M _ C O N F I G U R AT I O N()
5: ρn← N E A R E S T _ V E RT E X(ρrnd , T)
6: ρnew← E X T E N D(ρn, ρrnd , ε)
7: if VA L I D(ρnew) then
8: T . A D D _ V E R T E X(ρnew)
9: T . A D D _ E D G E(ρn, ρnew)

10: end if
11: end for
12: return T
13: end procedure

One of RRTs properties is the rapid exploration of unvisited areas of Cspace.
This property is based on the fact that the area of the Voronoi region (Ap-
pendix B) of a vertex is proportional to the probability that the vertex is
selected for extension [Kuffner and LaValle, 2000]. Vertices with more free

43

2 State of the Art

space around them are therefore more likely to be extended, since their
Voronoi region is comparatively bigger than the Voronoi regions of other
nodes in the search tree.

Many improvements to the original RRT algorithm have been published
since its first publication. All modifications can be separated into three func-
tional groups according to their goals and are explained in detail in the fol-
lowing sections. First of all, it is possible to further improve the quality of
a solution, once it was found. Furthermore, it is possible to make changes
to the sequential RRT algorithm in order speed up finding solutions. Last,
computation of the RRT algorithm can be sped up by parallelizing it to make
use of multi-core CPUs or graphics processing units (GPU).

2.7.1 Improving the Quality of a found Solution

The algorithms presented in this section are based on the original RRT and
are modified to refine and improve the quality of an existing solution.

RRT* provides asymptotic optimality in addition to probabilistic com-
pleteness [Karaman and Frazzoli, 2011]. Asymptotic optimality is described
in the paper as “almost-sure convergence to optimal paths” and is also math-
ematically defined. This property of RRT* is achieved through two major
modifications to the original RRT. First, the process of adding new nodes to
the tree of RRT* is changed. Instead of connecting a sampled configuration
to its nearest neighbor nn, an intermediate configuration c is created near
the sampled configuration. Then, c’s vicinity is searched for a parent node
containing the lowest cost (shortest path length) between start node and c.
The edge between parent and c is added to the tree, if the respective line
segment is collision free. The second modification optimizes overall path
costs in the tree through a rewiring step which is executed whenever a new
node c is added to the search tree. Every node n in c’s vicinity is checked,
whether its path costs are lower if the path is redirected through c. If the path
including c is cheaper and the new line segment between n and c is collision

44

2.7 Sampling-Based Motion Planning

free, this line segment is added to the tree and the old connection to n is
removed from the tree. This rewiring of the search tree ensures that nodes
are reachable through a path with minimal costs.

Convergence towards the optimal solution of the planning problem is
provided by the Informed RRT* algorithm [Gammell et al., 2014]. Every
time a better solution s is found by the algorithm, the sampling domain
Cspace is reduced to Cspace

⋂
Ps. Ps is defined as the ellipse with focal points

ρstart and ρgoal and a polar diameter equal to the cost of s (see Figure 2.7).
Thus, Ps contains all solutions within Cspace with a cost less than or equal
to the cost of s. Due to this modification, Informed RRT* always improves
the path ρstart → ρgoal and does not spend time on improving paths between
ρstart and all other configurations ρ ∈Cspace.

Figure 2.7: Informed RRT* reduces the search space to an ellipse (gray dotted line) with focal
points start (green) and goal (red). Each improved solution reduces the ellipse
radius further. Source: [Gammell et al., 2014] ©2014 IEEE

RRT* Fixed Nodes (RRT*FN) enhances the RRT* formulation to restrict
the memory available for storing nodes of the search tree [Adiyatov and
Varol, 2013]. The motivation for limiting the memory for storing the search
tree comes from the embedded systems domain where huge amounts of
memory are not always available. To conserve memory, a node removal
procedure is added to the RRT* formulation which removes weak nodes
whenever new nodes are added to the tree. Nodes are considered weak, when
their connection is cut during the rewiring of the tree or if they do not have

45

2 State of the Art

any child nodes. The paper shows that RRT*FN comes close to computing
paths which are almost as optimal as RRT* while needing much less memory.

Batch Informed Trees (BIT*) unifies techniques from graph- and sampling-
based planning [Gammell et al., 2015]. The algorithm works in batches
where each batch is responsible for finding a collision-free path from ρstart

to ρgoal . Once a solution was found while executing a batch, a new batch is
started in a search space restricted to an ellipsoid around the found solution.
The planning search space itself is based on a graph of uniformly created
samples which is used as a basis for a heuristic search. These properties
allow the algorithm to converge towards the optimal solution similar to
Informed RRT*.

2.7.2 Changing the RRT Algorithm
to find Solutions faster

The original RRT formulation can be enhanced to guide the search towards
the goal node. Different approaches are presented in this section.

RRTLocTrees provides a modification of RRT which is able to deal with
narrow passages in the workspace of the robot [Strandberg, 2004]. If a valid
sample can not be connected to the main search tree, a local RRT can be
started at this sample. A heuristic determines if a new local search trees
should be created. These local search trees are advanced together with the
main search tree and a connection attempt is made, once a local search tree
expanded its bounding box. Overall, the algorithm enables the exploration
of narrow passages and finds paths through narrow passages faster than a
regular RRT.

Blind RRT describes an enhancement of RRT which ignores obstacles in
the workspace of the robot during an initial phase [Rodriguez et al., 2013].
This allows Blind RRT to efficiently explore the entire Cspace at the expense
of generating many disconnected trees. Those disconnected trees are merged

46

2.7 Sampling-Based Motion Planning

again, after the initial exploration phase. The major advantage of this ap-
proach is a rapid expansion even if blocking obstacles are present in the
scene.

Dynamic-Domain RRT adapts the search tree’s sampling domain of nodes
near obstacles by limiting their domain to an approximation of the currently
visible Voronoi region called dynamic domain [Yershova et al., 2005]. Cal-
culating the visible Voronoi region of a node in the search tree (see Fig-
ure 2.8(c)) is computationally intensive and should thus be avoided in mo-
tion planning. The dynamic domain of a node ρ is represented by a sphere
around ρ with radius rborder (see Figure 2.8(d)) and is constructed as follows.
Initially, each node in the search tree searches its total Voronoi region (Fig-
ure 2.8(b)), which is expressed by assigning each node a radius of ∞. Once
connecting a node ρrnd to the nearest node ρn fails, the search space of ρn is
reduced to its dynamic domain by setting the radius of ρn to the predefined
value rborder. Nodes with a radius smaller than rborder are called boundary
nodes and only configurations lying within their dynamic domain are chosen
as valid samples if a border node is selected as a nearest neighbor. Thus,
only border nodes have a smaller visible Voronoi region since they lie near
the border of C f ree and Cobstacle. In the presence of narrow passages in the
workspace this property of boundary nodes reduces the number of collision
checks and forces the Dynamic-Domain RRT algorithm to sample only in
the boundary node’s vicinity. Expansions towards far away and unreachable
nodes is thus prevented. However, it is very important to choose an appropri-
ate value for parameter rborder in order to properly approximate the visible
Voronoi regions. It must be large enough to include enough of the node’s
visible Voronoi region but also small enough to exclude regions outside the
node’s visibility.

Adaptive Dynamic-Domain RRT enhances the original Dynamic-Domain
RRT algorithm to make it more robust against poor choices of parameter
rborder [Jaillet et al., 2005]. The original Dynamic-Domain RRT paper al-
ready explains that the introduced parameter rborder needs to be carefully

47

2 State of the Art

(a) (b) (c) (d)

Figure 2.8: From left to right: a) three sampled points (blue) and an obstacle (gray), b) total
Voronoi regions of the sampled points, c) visible Voronoi region of the sampled
points, d) dynamic domains of the sampled points (spheres with radius rborder).

Adaptive RRT enhances the original RRT formulation with a selection
process for expansion strategies. These strategies allow adapting the expan-
sion of the RRT based on the available space [Denny et al., 2013]. The basic
idea behind Adaptive RRT is that expansion of the tree is influenced by the
available exploration area. An expensive expansion method might be bene-
ficial for exploring narrow passages while inexpensive expansion methods
are sufficient for open areas. Thus, the RRT formulation is enhanced with
a mechanism for selecting an appropriate expansion strategy applied before

48

selected to achieve good performance. The Adaptive Dynamic-Domain RRT
addresses this problem by iteratively adapting the sampling domain of a
node at runtime. After the radius of a node was set to rborder, this radius
is decreased by a value of α for each additional failed connection attempt.
However, the radius is increased by α again for each successful connection
attempt. A minimum value of rmin for the radius is provided to preserver
the probabilistic completeness of the algorithm. This automatic adaptation
of the dynamic domain significantly increases the algorithm’s robustness
compared to the original Dynamic-Domain RRT, since the approximation of
the visible Voronoi region is more accurate. This follows from the fact that
border nodes with many obstacles in their vicinity have a lower radius than
nodes surrounded by less obstacles.

2.7 Sampling-Based Motion Planning

sampling new configurations. Expansion strategy selection is based on the
visibility of a search tree node which is constantly updated.

Poisson-RRT uses the maximal Poisson-disk sampling scheme to ensure
good coverage of C f ree and to generate the best distribution of samples in
Cspace [Park et al., 2014]. Using Poisson-disk sampling provides a guarantee
that each new sample is a minimum distance r away from any existing search
tree node. This is achieved by placing a hypersphere (or Poisson-disk) with
radius r around each node in combination with the condition that no further
samples can be placed inside the disk. Maximal Poisson-disk sampling uses
these Poisson-disks and is defined as being finished, once no further Poisson-
disk sample can be placed inside Cspace. The properties of this sampling
scheme ensure good coverage of C f ree and the best distribution of Poisson-
disk samples in Cspace. In addition, the sampling scheme is enhanced with an
adaptation mechanism which increases the sampling rate in narrow (difficult)
regions of Cspace. Once collisions between an edge of the sampling tree and
obstacles occurred, the specific region is re-sampled using Poisson-disks
with a smaller radius than r.

2.7.3 Parallelizing the RRT Algorithm

Reducing the planning time or increasing the planning problem difficulty
requires additional computational power which can be provided through par-
allelization of the RRT implementation. The most relevant of the published
approaches for parallelizing the RRT algorithm are presented next.

The Sampling-Based Roadmap of Trees (SRT) approach creates a global
Probabilistic RoadMap (PRM) which uses multiple RRT instances to find so-
lutions in locally confined spaces [Plaku et al., 2005]. As a result, the overall
planner is more decoupled than single PRM or sampling-based tree planners
which in turn allows distributing the computational workload evenly among
processors and keeping communication costs low. SRT is also designed to

49

2 State of the Art

answer multiple planning queries which goes beyond the scope of single
query RRT’s.

A basic OR parallel RRT is presented in [Devaurs et al., 2011, 2013]. This
algorithm starts multiple independent RRT instances in parallel and finishes
after one of the instances found a solution.

Manager Worker RRT collaboratively builds a common search tree in par-
allel [Devaurs et al., 2011, 2013]. To achieve this, the overall planning task
is decomposed into two functionally independent subtask classes. The first
kind of subtasks are operations requiring access to the search tree such as
nearest neighbor search. The second type of subtasks do not require access
to the search tree such as collision checking. All subtasks requiring access
to the search tree are executed by a Manager process while all other sub-
tasks are distributed to and collected from multiple Worker processes. This
strategy works well as long as subtasks are independent from each other.
However, the Manger Worker RRT becomes very inefficient if subtasks are
intertwined as it is the case in the RRT* algorithm.

In contrast, the Distributed RRT makes use of exploratory decomposition
in order to collaboratively build the search tree [Devaurs et al., 2011, 2013].
This approach distributes the planning onto multiple identical workers, each
owning a copy of the sampling tree and performing sampling and collision
checking. After every successful iteration, a worker sends its changes to the
search tree asynchronously to all other workers. These changes are applied
to the local search tree by all workers before starting their own next iteration.
A stop signal is sent via broadcast once a solution is found and all workers
terminate their calculations.

Both the pSBMP-RRT and pSBMP-PRM algorithm provide a parallel
planning framework compatible with sampling-based algorithms such as
PRMs and RRTs [Jacobs et al., 2012]. The major difference of these algo-
rithms is the application of Cspace subdivision to achieve superior scalability.
Each Cspace subdivision is processed in parallel and afterwards connected

50

2.7 Sampling-Based Motion Planning

with nearby subdivisions. This results in a final solution covering the entire
Cspace.

Bulk Synchronous Distributed RRT is another parallel RRT implementa-
tion which modifies the Distributed RRT algorithm [Jacobs et al., 2013].
This algorithm addresses the communication overhead of Distributed RRT
by broadcasting updates to the search tree only after a worker has fin-
ished computing a bulk of iterations. How the parallel expansion of the
search tree works is shown in Figure 2.9. The same paper presents the
Radial Subdivision Distributed RRT which subdivides Cspace into conical
regions. A search tree local to each region is constructed in parallel. Af-
terwards, neighboring regions are connected and existing cycles between
regional trees are eliminated.

a) b) c)
T = root

Process 0
Process 1

Figure 2.9: Bulk Synchronous Distributed RRT starts with multiple workers which only com-
municate after a certain amount of iterations. Two processes are shown (blue and
red), each advancing the tree individually. After two iterations, the found solutions
are synchronized and both processes continue planning with the new global view
of the tree (Subfigure c)) [Jacobs et al., 2013].

The computationally most intensive part of RRT based approaches is col-
lision checking, which is addressed in [Bialkowski et al., 2011]. Graphics
coprocessors (GPUs) are used to perform a parallelized version of collision
checking which in turn speeds up the basic RRT and the RRT* algorithm.

Another possibility is to take advantage of cache effects and lock-free
data structures as shown in [Ichnowski and Alterovitz, 2014]. The paper
shows that lock-free data structures and cache friendly Cspace subdivision
can result in superlinear speedup for both RRT and RRT* implementations.

51

2 State of the Art

This approach is however limited to multi-core processors sharing a common
data cache.

RRTLocTrees spawns local search trees in narrow passages (see Sec-
tion 2.7.2) [Strandberg, 2004]. The paper mentions that these local search
trees can be executed in parallel, but no explicit evaluation is provided.

Radial Blind RRT applies the Blind RRT approach to the Radial RRT [Ro-
driguez et al., 2013]. In each radial subdivision of Cspace, a Blind RRT is cre-
ated and expanded in parallel. Afterwards, local trees are connected and
cycles removed. The advantage of this approach is an overall reduction
of global communication due to Radial RRTs local computations of the
Cspace subdivision and the improved exploration of blocked regions due to
Blind RRTs properties.

Poisson-RRT and its enhancements to the RRT algorithm are described
in Section 2.7.2 [Park et al., 2014]. The paper also presents a parallel im-
plementation of Poisson-RRT which can take advantage of multi-core CPUs
and GPUs. It is shown that Poisson-disk sampling results in fewer redundant
nodes as opposed to the other parallel RRT algorithm implementation of
the comparison. The Poisson-disk properties prevents multiple threads from
generating redundant nodes which are too close to each other.

2.8 Summary

Overall, it was shown, that hardware architectures of all advanced humanoid
robots are based on distributed computers and low-level controllers which are
occasionally accompanied by special hardware. Depending on the hardware
architectures, both control- and software frameworks follow a distributed
design supported by the respective robotic middlewares. Robot applications
built on top of those frameworks are usually designed as some kind of finite
state machine or statechart. Even the concepts of the Task Description Lan-
guage (TDL) can be mapped to statechart semantics since they share many
similar ideas.

52

2.8 Summary

Contrary to the presented robot architectures, many different possibilities for
modeling resources exist, all being specific to certain application domains.
It is therefore necessary to select an appropriate model based on the use
case at hand. The most detailed resource models can be found in PCM and
the MARTE profile. PCM provides the possibility to describe the context
a component is operating in. However, this context is specified statically at
design time and contains the software environment the component will be
run in.

In summary, a wide range of profiling and monitoring methods exist, rang-
ing from low-level profiling on hardware level up to high-level plan execution
monitoring normally used in combination with planning of robot tasks. Since
planning is not a topic in this thesis, the focus is on low-level profiling and
monitoring approaches, each coming with its own set of drawbacks. Some
of them can only deal with single applications while others are designed to
work on applications running on computers with hundreds and thousands of
cores. Some measure very precisely but slow down the monitored applica-
tions and are therefore unusable for online monitoring, while others are less
precise but do not work on all operating systems.

Different kinds of prediction models and algorithms are available for all
kinds of use cases. Selecting an appropriate model depends on various pa-
rameters such as the type of information (discrete or continuous), the com-
pleteness of available domain knowledge, or the type of prediction. Different
types of predictions must be chosen, if results should only be classified or if
results should provide information about how a certain goal can be achieved.
Thus, choosing an appropriate prediction model requires careful analysis of
the application domain and the results desired from the prediction.

Several approaches for resource-aware systems have been presented, rang-
ing from autotuning which requires minimal changes to an application, to
approaches like specialized resource-aware operating systems or complete
new paradigms which require adapting applications to the paradigm. Some
of the presented approaches like auto-tuning change application parameters

53

2 State of the Art

after executing an application while other approaches like Invasive Com-
puting or Organic Computing allow dynamic changes while the application
is running. This differentiation can also be seen in the publications from
Section 2.6.4, where some robotic algorithms produce static allocations to
satisfy resource constraints but can not deal with changes of available re-
sources at runtime. On the other hand, the approach from [Muscari et al.,
2013] shows the capabilities to adapt itself to dynamic changes at runtime.

Details about enhancements to the original RRT algorithm were shown to
fit into three main categories. Namely, increasing the quality of a found so-
lution, speeding up the sequential algorithm, and parallelizing the algorithm.
However, no approach exists which combines all three kinds of enhance-
ments. Furthermore, none of the parallel implementations takes the difficulty
of the planning problem and availability of resources into account to dynam-
ically modify the number of planning processes.

54

3 Speculative Resource
Management

The key concept of speculative resource management is to improve resource
allocation and distribution based on context-sensitive predictions of the re-
source utilization of future robot tasks, while taking the current state of the
robot and its environment into account. With enough free resources avail-
able (or predicted), applications can be executed ahead of time in order to
start computations before their results are required. Correct predictions and
pre-computations can thus lead to shorter execution times without resulting
in resource over-utilization. Additionally, external influences of the dynamic
environment a robot operates in, can prevent the robot from performing tasks
in the original order while requiring additional handling of such uncommon
or unexpected events. In this case, correct anticipation of upcoming robot
tasks and the associated resource utilization can prevent ahead of time exe-
cution of applications which are unused in the error handling case. Finally,
information about predicted robot tasks and resources can provide the basis
for detecting upcoming resource bottlenecks or conflicts and can be used to
enhance the process of assigning and distributing resources.

This thesis focuses on two aspects of speculative resource management,
which are explained in detail in the following sections. The first aspect is
the data-driven generation of context-sensitive resource models for robot
tasks based on data gathered from previous experience of former executions
(Section 3.1). The second aspect is the context-sensitive prediction of future
robot tasks and the associated resource utilization based on resource models
(Section 3.2).

55

3 Speculative Resource Management

3.1 Data-Driven Generation of
Context-Sensitive Resource Models

This thesis introduces a context-aware resource model which builds upon the
definition of a basic resource model, which in turn depends on the applica-
tions to be described by these models. The application model influences the
choice of required input and output parameters of the model as well as the
level of abstraction on which to operate. Since this work is built on top of
the ArmarX robot framework (Appendix C), the resource models are built
on top of the framework’s application model.

Context-sensitive resource models are required, since humanoid robots
perform tasks in dynamically changing environments where robot tasks and
associated resource usages differ based on the robot’s surroundings. The
context-sensitive resource model is created by associating the basic resource
model with a context it is used in. For humanoid robots, this context consists
of the environment the robot operates in as well as the actions the robot per-
forms. It is also essential to find a suitable level of abstraction for influential
environmental parameters in order to reduce the complexity of the model.

Model parameters required for building the model have to be extracted
from executions of robot tasks by means of profiling and monitoring. How-
ever, acquisition methods differ widely, based on the type of data to extract.
Thus, profiling and monitoring mechanisms must be constructed in a generic
fashion in order to support various data types and their associated extrac-
tion technique. It is also essential for profiling and monitoring data of robot
tasks to be accessible during execution and to be stored additionally for later
processing. This allows building models at runtime or based on data from
previous executions.

56

3.1 Data-Driven Generation of Context-Sensitive Resource Models

Figure 3.1: Overview of the profiling and resource model generation process. Robot tasks are
composed of calculation performing robot components and control flow defining
statecharts. During the execution of these tasks, robot component and statechart
specific parameters are extracted by a Profiler and processed further into an appli-
cation model and resource models. As a last step, both models are associated with
one another to create context-sensitive resource models.

An overview of the overall profiling and resource model generation process
is shown in Figure 3.1. The whole process is implemented using the Ar-
marX robot framework which is used to control the robots of the ARMAR
series. New components such as the Profiler were introduced and existing
components were enhanced to support profiling of application data.

3.1.1 Application Model

An ArmarX robot application consists of parts from two distinct functional
categories. The first category contains so called robot components respon-
sible for accessing hardware and performing computationally intensive op-
erations. The second category comprises hierarchical statecharts containing
high-level logic for coordinating robot components. Statecharts have been
shown to be very descriptive and widely used for describing control flow and
are therefore used both in ArmarX and as the main application model in this
work (see Section 2.2). Additionally, ArmarX allows robot components and
statecharts to be distributed over several network-connected PCs.

Robot components provide specific services within the ArmarX frame-
work, such as retrieving camera images and sensor information, command-
ing motors, calculating robot poses, or detecting objects in camera images.

57

3 Speculative Resource Management

Different interface descriptions define input and output parameters of the
specific services provided by the components.

ArmarX statecharts follow the design of the original Harel statecharts and
allow hierarchical composition of states, meaning each state can be used
as sub-state in another statechart. This enables the application designer to
specify control flow at different levels of abstraction and allows building and
reusing generic statecharts for different robot tasks.

Altogether, a statechart can be described as a tuple (I,L,O,Σ,S,s0,F,δ).
Each sub-state is defined as the same tuple with different parameters, while
S, s0, F , and δ are empty or undefined for leaf states.

A state without sub-states is called a leaf state and is defined by a set of
input parameters I, a set of state local parameters L, a set of output param-
eters O, and a set of outgoing events Σ. Input parameters are used for state
parameterization and are accessible during state execution. Output parame-
ters can be thought of as return values of a state and are set during execution
to values derived from internal calculations or data retrieved from robot com-
ponents. Events are triggered based on conditions specified by the statechart
developer.

A state containing a set of sub-states S additionally contains a start state
s0 ∈ S, a set of final states F ⊂ S, and a state transition function δ : S×Σ→ S.
δ describes the transitions from the current state sc to any state s ∈ S based
on the output events emitted by sc. Each transition also maps parameters
from different sources such as input parameters of the parent state or output
parameters of the preceding state to the input parameters of the target state.

3.1.2 Basic Resource Model

Multiple possible definitions of resource models are presented in Section 2.3,
ranging from abstract to very concrete models as well as from simple to
more complex models. Robot tasks consist of concrete applications (robot
components and statecharts) which are executed on physical hardware.

58

3.1 Data-Driven Generation of Context-Sensitive Resource Models

Therefore, the resource model of the “UML2 profile for Modeling and Anal-
ysis of Real-Time Embedded Systems” (MARTE) fits best since it provides a
general approach to resource modeling [Object Management Group (OMG),
2011]. The Palladio Component Model (PCM) is similar in its resource de-
scription but the advanced features for describing component-based software
architectures are not required in this use case.

The MARTE model is complex due to its generalized approach. In general,
MARTE models are used to specify resource constraint parameters and non-
functional properties (NFPs) at design time based on abstract resource types
without connections to a concrete hardware/platform model. Once the design
is finalized, a concrete instance of the hardware/platform model is selected
which satisfies the specified constraints and NFPs.

The different resource types or entities defined in the MARTE profile are:

• ExecutionHost: a hardware device for executing operations.

• CommunicationHost: a hardware link between devices for exchanging
data.

• SchedulableResource: a software resource managed by the operating
system such as processes or threads.

• CommunicationChannel: a software-based middleware or protocol
layer for transporting messages.

Each entity is associated with different resource related parameters which
are described as a combination of a value and an associated SI-unit such
as hours [h] or frequency [Hz]. The parameter value itself can either be
expressed as a statistic measure (extracted from profiling data) or as differ-
ent probability distributions. The resource related parameters defined in the
MARTE profile are:

• repetitions: repetition count of a step or a loop.

59

3 Speculative Resource Management

• probability: probability of branching to a sub-path.

• hostDemand: host demand in time units (CPU requirement).

• priority: priority of a task, process or thread executed on a host system.

• respTime: time from starting a task until a result is returned (including
initial scheduling delays).

• executionTime: time for executing a task or performing a calculation
(excluding scheduling delays).

• interOccTime: time interval between two successive occurrences or
executions.

• throughput: number of executions per time unit.

• utilization: the time an entity is busy divided by the mean number
of busy copies (100%−utilization = the amount of time an entity is
idle).

• utilizationOnHost: resource utilization of an entity on the host system
(includes OS overhead).

• memory: amount of memory an entity uses during execution.

The use case in this work differs from the regular modeling with MARTE
approach since the concrete hardware platform and the applications are given
without any resource related parameters. These parameters must therefore be
extracted from executions of the given applications on the existing hardware
setup.

The platform model P describing the underlying computer architecture
of the robot is a collection of PCs identified via CPU frequency, number of
CPU cores, maximum memory, and network bandwidth

P := { (CPU_frequency,CPU_cores,maxMemory,networkBandwidth) }.

60

3.1 Data-Driven Generation of Context-Sensitive Resource Models

The hardware/platform model for the humanoid robot ARMAR-IIIa consists
of 4 PCs, excluding the gateway PC. All PCs are connected via Gigabit
Ethernet and provide the following specifications:

• Coordination: 8GB RAM, Intel(R) Core(TM) i7-3770S @ 3.10 GHz

• Platform Control: 4GB RAM, Intel(R) Core(TM)2 Duo P9300 @ 2.26
GHz

• Hardware Control: 8GB RAM, Intel(R) Core(TM) i7-2715QE @ 2.10
GHz

• High-level Control: 4GB RAM, Intel(R) Core(TM) i7-3770S @ 3.10
GHz

From the list of resource parameters defined in the MARTE profile, mem-

ory, respTime (repsonseTime), and utilization are the ones used for the basic
resource model. These parameters are the most relevant ones for describing
an existing system, as well as the memory consumption of a calculation, its
duration, and if an application is compute-bound. Other parameters such as
repetitions or priority are not included. They are more important for perform-
ing scheduling analysis at design time.

The resource model of a single robot component is thus defined as tuple

(componentName,memoryUtilization,cpuUtilization,duration,platform) ,

platform ∈ P.

The basic resource model is then defined as the collection of all resource
model tuples of all robot components

RMb := { (componentName,memoryUtilization,cpuUtilization,

duration,platform) |platform ∈ P }.

61

3 Speculative Resource Management

3.1.3 Context-Sensitive Resource Model

The developed context-sensitive resource model consists of basic resource
models embedded into a robot specific context. For humanoid robots, this
context consists of the robot’s internal state (including the parameterized
control flow) and the external state of the robot’s environment. The internal
robot state is represented on the ArmarX statechart level and is also required
for recognizing the current robot task. Environmental parameters influence
the sequence of robot tasks and thus the internal robot state. It is essential
to describe these environment parameters on a high level of abstraction as
well, since this helps to reduce the complexity of the resulting model. This is
achieved through a symbolic representation of environmental objects which
provides semantic information about the presence of objects stored in the
robot’s memory architecture. The PCM approach can not be applied in this
case, since the PCM idea of a component’s context is statically specified at
design time and does not account for dynamic and unforeseen changes in the
robot’s environment.

Transitions within applications must be modeled in a probabilistic man-
ner in order to describe the relationship between internal robot state and the
environment. The MARTE parameter probability serves exactly the purpose
of annotating transitions with probabilities. However, only one probability
is assigned to each transition in the original MARTE description. This ap-
proach must be enhanced, since the decision for taking a specific transition
is influenced by statechart parameters and by environment parameters.

For example, if a robot is ordered to fetch a bottle from the table, the most
relevant input parameters for the fetching task are the object (bottle) and
the pick up location (table). Based on the object type, an appropriate object
localization algorithm can be chosen. Furthermore, the current robot location
determines, if the robot is at the pick up location or if it has to move there
first. Once the robot is at the pick up location, the robot task is influenced
by the presence of the object to fetch and other objects acting as obstacles.

62

3.1 Data-Driven Generation of Context-Sensitive Resource Models

If the object is not on the table or unreachable, an alternative task has to be
determined.

Altogether, the sum of observed contexts C can be described as a collection
containing stateParameters and environment pairs

C := { (stateParameters,environment) |

∀sp ∈ stateParameters : sp ∈ I∪O }.

A robot statechart can then be defined as a collection of transitions T of
the application model associated with a context and a probability. The proba-
bility can either be represented as occurrence frequencies or as probabilistic
measures.

T := { (sourceState,destinationState,event,context,probability) |

event ∈ Σ,sourceState ∈ S,destinationState ∈ S,context ∈C,

(sourceState× event→ destinationState) ∈ δ }

This definition provides the means for reasoning about future state tran-
sitions. Based on the currently active state and context, exactly or partially
matching transitions can be extracted from T .

The context-sensitive resource model RMcs associates every transition∈ T

with a collection of basic resource models rmb ∈ RMb of robot components
running during the execution of the destination state of transition

RMcs := { (transition,{ rmb }) |

transition ∈ T,

∀rmb ∈ RMb :

rmb occurred during execution of transition.destinationState }.

63

3 Speculative Resource Management

3.1.4 Profiling and Monitoring

Generating context-sensitive resource models from previous experience re-
quires a profiling infrastructure which allows recording the internal robot
state and the external environmental state. This profiling infrastructure must
also be fast enough to support self-monitoring tasks in order to provide infor-
mation about the current context for prediction and model update purposes.
This section describes first, which parameters were selected to be profiled
or monitored and which approach is used to extract the relevant informa-
tion. Second, the profiling extensions made to the ArmarX framework are
described.

As described in Section 3.1.2, it is essential to gather information about
CPU and dynamic memory utilization of robot components as well as the
execution time of robot tasks. Additionally, information about statechart
executions and symbolic environment data is required to build the context for
the context-aware resource model as described in Section 3.1.3. Statechart
executions are described by transitions occurring between states, the time
when a state is entered, input parameters as well as output parameters, and the
time when a state is left. Information about the current environment is stored
in the robot’s working memory which is part of the memory architecture
called MemoryX (Appendix C.2). MemoryX allows components of the robot
application to perform queries on its complete contents, for example if certain
objects are present in the scene. Furthermore, components can register with
MemoryX to receive a notification for changes occurring in the memory,
such as updates of an object position.

Several existing methods for extracting CPU utilization from applications
were described in Section 2.4. Many methods such as Valgrind can not be
used for extracting data, since they drastically reduce the execution speed of
the profiled application and provide required information only after execution
has finished. Thus, the only viable option is to retrieve the application CPU
usage by querying the underlying operating system. Linux based operating

64

3.1 Data-Driven Generation of Context-Sensitive Resource Models

systems provide the same CPU utilization data through both the /proc

filesystem or the getrusage() programming interface.

Profilers such as Valgrind Massif provide reliable information about dy-
namic memory usage, but the same limitations as with measuring CPU uti-
lization with Valgrind apply. Querying the operating system only provides
reliable information about an application’s static memory. However, dynamic
memory information can only be retrieved by querying the memory allocator
of a programming language. An operating system can not know about the
currently occupied dynamic memory since it only hands out virtual mem-
ory to the allocator. The allocator then actually allocates dynamic memory
chunks when requested by the application. On Linux based systems running
the GNU C library, this dynamic memory information can be retrieved by
calling the mallinfo() utility function.

One core principle of ArmarX is disclosure of the system state which
allows querying ArmarX robot component parameters at runtime. It is there-
fore possible to poll input and output parameters of statecharts and the cur-
rently active state at runtime. Major drawbacks of polling are high bandwidth
utilization if no parameters changed and missed updates if the polling fre-
quency is too low. To address these issues, it is essential to enhance the
ArmarX statecharts to report internal values upon change.

Introspecting the content of the robot memory is also possible due the
system state disclosure principle of ArmarX. In order to reduce the amount
of memory information to process, snapshots of the current environment
should only by generated at crucial points in time such as occurrence of
transitions in a statechart. To achieve this, it is essential to couple generating
memory snapshots with reporting ArmarX statechart changes.

Profiling Architecture

An ArmarX application consists of one or more robot components responsi-
ble for performing tasks such as reading sensor values, setting control signals,

65

3 Speculative Resource Management

or recognizing objects. A special statechart component exists for instantiat-
ing and executing statecharts. Each state is managed by a StateController
which is responsible for triggering transitions between sub-states based on
internal or external events and for managing input and output values of the
sub-states. Each sub-state is again managed by a new instance of a StateCon-
troller.

Figure 3.2: Overview of the ArmarX profiling architecture. Each application contains a single
Profiler instance. The ProcessWatcher is responsible for measuring CPU and
memory utilization and forwarding it to the Profiler. Each Component is able to
log events via the Profiler and every statechart informs the profiler of occurring
transitions (entering or leaving of states), and current state parameters.

The ArmarX framework was enhanced by several mechanisms to realize
the profiling and monitoring architecture. See Figure 3.2 for an overview of
the main parts of the profiling architecture. Each ArmarX application holds
a single instance of the abstract Profiler class which contains methods for
gathering data, collecting events, creating timestamps, and for retrieving the
Process ID of the current application. Several specialized implementations
of the Profiler exist for storing received data in files, for sending received
data over the network, and a version for sending bulk data over the network.
The Profiler is accessible from anywhere in an ArmarX application, can be
activated and deactivated selectively, and allows straight-forward interface
extensions for dealing with future requirements.

Data is received by the Profiler from different sources depending on the
data type. Memory and CPU utilization is captured by a ProcessWatcher

66

3.1 Data-Driven Generation of Context-Sensitive Resource Models

executing periodically every 300 ms in a separate thread in each ArmarX
application. On Linux based operating systems, CPU utilization is retrieved
by the ProcessWatcher through parsing the application specific CPU statistics
from /proc/${ProcessID}/stat files. The left image of Figure 3.3
shows an exemplary CPU utilization profile for different robot components.
Simultaneously, the C library memory allocator is queried for the current
status of occupied dynamic memory. The right part of Figure 3.3 shows an
example of a dynamic memory utilization profile.

Figure 3.3: Plots of CPU and memory utilization profiling data. On the left, CPU utilization in
% is shown and on the right, dynamic memory utilization in MByte.

Statechart profiling data is gathered in the scope of an enhanced State-
Controller which calls the Profiler when state events occur. A transition is
identified by a timestamp, source state, destination state, and the triggering
event. On entering a state, its state identifier, a timestamp, and a FUNC-
TION_START event is recorded in combination with all state input param-
eters and finally all state local parameters. When a state is left, a FUNC-
TION_EXIT event is recorded together with a timestamp, the state identifier,
all state local parameters, and all state output parameters. Additionally, it is
possible to explicitly specify the hierarchy level at which profiling should be
stopped. This feature is especially helpful for excluding sub-states in which
high transition rates would result in huge amounts of profiling data.

67

3 Speculative Resource Management

The only parts of the profiling architecture not shown in Figure 3.2 are the
dedicated robot component for creating memory snapshots and the Profil-
erStorage component. Snapshot creation can not be integrated into every
ArmarX application, since it depends on executing statecharts and requires
access to the MemoryX components holding the external environment state.
Therefore, the snapshot component receives state, transition, and parameter
information from the Profiler instances of the statechart components and
queries the working memory component, once a state transition is reported.
Already existing snapshots are reused while non-existent snapshots are cre-
ated and stored permanently in MemoryX. Storing new snapshots can occur
multiple times per second depending on the profiled statechart. Hence, the
snapshot component is designed in a multi-threaded and concurrent way to
be able to handle high workloads. ProfilerStorage provides an interface to
MemoryX for storing all profiling data which is received by the Profiler. Ad-
ditionally, this component allows retrieving the stored information for later
offline processing.

The presented profiling architecture can additionally be used for monitor-
ing purposes, if a Profiler is enabled which sends out the profiling data via
network. This enables the generation of new or updated resource models at
runtime.

3.1.5 Resource Model Generation

The resource model generation process extracts models from profiling data
as shown in Figure 3.1. It starts by generating data through profiling of
robot tasks and creating environment model snapshots. From this data, a
probabilistic application model is generated, based on which the intervals
for the basic resource models are determined. The last step associates the
basic resource models with the application model to create the context-aware
resource model. The complete process is described in Algorithm 2 and the
called high-level functions are specified in more detail in the later algorithms.

68

3.1 Data-Driven Generation of Context-Sensitive Resource Models

Algorithm 3 describes how durations of state executions are calculated by
finding matching enter and exit events. Algorithm 5 describes how basic
resource models are generated by splitting CPU and memory utilization data
based on components and execution intervals and how component dependent
statistics for CPU and memory utilization are calculated. Afterwards, these
statistics are associated with the state which executed during the interval by
assigning them to a state name in combination with the timestamp at which
the computation started. Finally, Algorithm 4 describes how data of the pre-
vious two algorithms is used to create the context-sensitive resource model
by finding similar transitions, comparing them with transitions executed in
the same context, and by finding all resource models within the respective
execution intervals.

69

3 Speculative Resource Management

Algorithm 2 The algorithm for offline generation of the context-sensitive re-
source model RMcs. CALCULATE_STATE_TIMINGS is explained in more
detail in Algorithm 3, GENERATE_BASIC_RESOURCE_MODELS in Al-
gorithm 5, and GENERATE_CONTEXTSENSITIVE_RM in Algorithm 4.

1: procedure G E N E R AT E _ R E S O U R C E _ M O D E L()
2: (EventList,CPUList,MemoryList)←

R E A D _ DATA _ F RO M _ M E M O RY()
3: S O RT _ B Y _ A S C E N D I N G _ T I M E S TA M P(CPUList)
4: S O RT _ B Y _ A S C E N D I N G _ T I M E S TA M P(MemoryList)
5: // split events in EventList by ProcessID
6: for event ∈ EventList do
7: ProcessID← event.ProcessID
8: EventMap[ProcessID]← EventMap[ProcessID]∪ event
9: end for

10: for element ∈ EventMap do
11: // sort by timestamp:
12: // element.key contains a ProcessID
13: // element.value contains a list of ProcessID associated events
14: S O RT _ B Y _ A S C E N D I N G _ T I M E S TA M P(element)
15: end for
16: StateTimingMap←

C A L C U L AT E _ S TAT E _ T I M I N G S(EventMap)
17: StateResourcesMap←

G E N E R AT E _ BA S I C _ R E S O U R C E _ M O D E L S(
StateTimingMap, CPUList, MemoryList)

18: RMcs←
G E N E R AT E _ C O N T E X T S E N S I T I V E _ R M(

StateResourcesMap)
19: return RMcs
20: end procedure

70

3.1 Data-Driven Generation of Context-Sensitive Resource Models

Algorithm 3 CALCULATE_STATE_TIMINGS receives a map containing
(ProcessID, EventsForProcessID) pairs and calculates the execution dura-
tion of states. These durations are returned in map containing (stateName,
timingInformation) pairs.

1: procedure C A L C U L AT E _ S TAT E _ T I M I N G S(EventMap)
2: // calculate durations of state execution
3: for eventList ∈ EventMap do
4: for stateEnterEvent ∈ eventList do
5: stateExitEvent←

F I N D _ C L O S E S T _ E X I T _ E V E N T(
stateEnterEvent)

6: duration←
stateExitEvent.timestamp− stateEnterEvent.timestamp

7: timing← (stateEnterEvent.timestamp,
stateExitEvent.timestamp,duration)

8: StateTimingMap[stateEnterEvent.stateName]←
StateTimingMap[stateEnterEvent.stateName]∪ timing

9: // remove processed events from EventList
10: eventList← eventList∩{stateEnterEvent,stateExitEvent}
11: end for
12: end for
13: return StateTimingMap
14: end procedure

71

3 Speculative Resource Management

Algorithm 4 GENERATE_CONTEXTSENSITIVE_RM receives a map-
ping between state names and associated basic resource models. It builds
the probabilistic application model and the context-sensitive resource model
by attaching the resource models from the received mapping to the new
application model.

1: procedure G E N E R AT E _ C O N T E X T S E N S I T I V E _ R M(
StateResourcesMap)

2: TransitionData←
R E A D _ T R A N S I T I O N _ DATA _ F RO M _ M E M O RY()

3: // generate application model from transition statistics
4: for transition ∈ TransitionData do
5: similarTransitions←{t|

t.event = transition.event,
t.sourceState = transition.sourceState,
t.destinationState = transition.destinationState}

6: sameContextTransitions←{t|
t ∈ similarTransitions,
t.context = transition.context}

7: // transition probability of states with equal contexts
8: transition.probability← |sameContextTransitions|

|similarTransitions|
9: transitionTimes←{t.timestamp|t ∈ sameContextTransitions}

10: // remove processed transitions from TransitionData
11: TransitionData← TransitionData∩ sameContextTransitions
12: // find relevant basic resource models
13: resources←{r.value.resourceModel|

r ∈ StateResourcesMap,
r.value.startTime ∈ transitionTimes,
r.key = transition.destinationState}

14: // connect application model with the basic resource models
15: RMcs← RMcs∪ (transition, resources)
16: end for
17: return RMcs
18: end procedure

72

3.1 Data-Driven Generation of Context-Sensitive Resource Models

Algorithm 5 GENERATE_BASIC_RESOURCE_MODEL builds basic re-
source models based on state timing information (StateTimingMap) and data
from CPU (CPUList) and memory profiling (MemoryList). The result con-
sists of a mapping between stateName and (startTime, resourceModel) pair.
CALCULATE_STATISTICS takes a list of data points and calculates the
minimum, maximum, mean, and standard-deviation. The algorithm listing
continues in Algorithm 6.

1: procedure
G E N E R AT E _ BA S I C _ R E S O U R C E _ M O D E L(

StateTimingMap,CPUList,MemoryList)
2: /* create basic resource model */
3: for timingList ∈ StateTimingMap do
4: for time ∈ timingList do
5: // select CPU and memory utilization for execution interval
6: cpuUsage←{cpu|

cpu ∈ CPUList,
time.startTime≤ cpu.timestamp≤ time.endTime}

7: memoryUsage←{memory|
memory ∈MemoryList,
time.startTime≤memory.timestamp≤ time.endTime}

8: // split CPU and memory utilization by component
9: for cpu ∈ cpuUsage do

10: componentName← cpu.componentName
11: cpuComponentMap[componentName]←

cpuComponentMap[componentName]∩ cpu
12: end for
13: for memory ∈memoryUsage do
14: componentName←memory.componentName
15: memoryComponentMap[componentName]←

memoryComponentMap[componentName]∩memory
16: end for

Algorithm description is continued in Algorithm 6.

73

3 Speculative Resource Management

Algorithm 6 Second part of GENERATE_BASIC_RESOURCE_MODEL
(Algorithm 5).

17: // calculate resource statistics for each interval
18: for cpu ∈ cpuComponentMap do
19: componentName← cpu.key
20: platform← cpu.values[1].platform
21: // Store as (utilization,platform) pair
22: CPUMap[componentName]←

(C A L C U L AT E _ S TAT I S T I C S(cpu.values),
platform)

23: end for
24: for memory ∈memoryComponentMap do
25: componentName←memory.key
26: platform←memory.values[1].platform
27: // store as (utilization, platform) pair
28: MemoryMap[componentName]←

(C A L C U L AT E _ S TAT I S T I C S(memory.values),
platform)

29: end for
30: for componentName ∈ componentNames do
31: memoryUtilization←
32: MemoryMap[componentName].utilization
33: cpuUtilization←CPUMap[componentName].utilization
34: platform← cpuUtilization.platform
35: RMb← RMb∪

(componentName,memoryUtilization,cpuUtilization,
time.duration,platform)

36: end for
37: // associate (startTime, resourceModel) pair with stateName
38: StateResourceMap[time.stateName]←

StateResourceMap[time.stateName]
∪ (time.startTime,RMb)

39: end for
40: end for
41: return StateResourceMap
42: end procedure

74

3.2 Context-Sensitive Resource Prediction

After describing the resource model generation, the remaining step is to
select an appropriate abstraction level at which the profiling of the robot
application should be performed. Depending on the abstraction level, the
frequency with which data is generated differs widely.

Low-level control algorithms of humanoid robots usually operate at a fre-
quency of 1/,kHz or more [Ott et al., 2006, Diftler et al., 2011, Nelson et al.,
2012, Englsberger et al., 2014], On the other hand, algorithms on a higher
level of abstraction operate at a lower frequency. For example, the vision
algorithms on the humanoid robot ARMAR-III are bound by the update fre-
quency of 30Hz of the camera system [Asfour et al., 2006]. The focus is
therefore set on profiling high-level behavior and control flow, since the goal
of this thesis is to operate on the level of robot tasks. Profiling low-level
control algorithms is omitted due to the high update frequencies and the fine
granularity. Currently, expert knowledge is required to specify the important
high-level states of the statechart.

3.2 Context-Sensitive Resource Prediction

The second aspect of speculative resource management addressed in this
thesis is the prediction of future robot states and their associated resource
utilization. An overview of the proposed prediction architecture is shown in
Figure 3.4. This chapter presents a prediction model for robot tasks based
on Markov chains (see Appendix A for mathematical details). The model is
capable of learning and adapting the model parameters from previous execu-
tions and is used to predict the behavior of the humanoid robot ARMAR-III
while performing human robot interaction tasks. Context and robot state
information required by the prediction algorithm are provided by the moni-
toring concept introduced in Section 3.1.4. The preview of potential future
resource demands is expressed as a probability distribution, which is cre-
ated by combining predicted robot tasks with the context-sensitive resource
models as described in Section 3.1.3. The implementation of the prediction

75

3 Speculative Resource Management

model and the initial version of the prediction architecture originate from the
master thesis of Tobias Haaß [Haaß, 2014].

In the context of a resource-aware robot framework or an invasive runtime
system, this resource prediction provides additional information which can
be considered during resource negotiation and allocation to optimize sys-
tem performance by avoiding upcoming resource bottlenecks. Furthermore,
predicting future resource usages allows for speculative resource allocation
for upcoming tasks or for starting tasks earlier, if the resource utilization
permits so. In case of correct predictions, speculatively allocated resources
can decrease execution times, since the delay for allocating resources can be
omitted. Similarly, starting tasks earlier can also reduce execution times if
the prediction was correct. If earlier started tasks generate unusable results,
due to incorrect predictions, those results will be discarded and calculated
anew. Execution time is not impaired by incorrect predictions, if only tasks
are started early, whose execution characteristics match available resources
and who support adjusting to changes in available resources. Restricting
the number of early started tasks and terminating tasks, which were started
based on incorrect predictions, must be handled by the same mechanism
which performs the speculative resource allocation.

Predicting future resource usages consists of multiple steps, as shown
in Figure 3.4. First, the execution of the robot application must be moni-
tored in combination with the environmental context. Next, the monitoring
information must be used by a prediction model in combination with the
application model described in Section 3.1.1 in order to calculate a prob-
ability distribution for possible future robot tasks (states in the statechart).
Finally, associating the state prediction output with the previously generated
context-sensitive resource models leads to a distribution of most likely future
resource utilization possibilities.

Monitoring is performed via the Profiler component as described in Sec-
tion 3.1.4. Every time a statechart transition occurs at runtime the Profiler

reports the current state sc ∈ S of the robot’s application model.

76

3.2 Context-Sensitive Resource Prediction

Robot%Application

Profiler

Current CPU/Memory%Usage

Statechart
Transitions

Statechart
Parameters

Statechart

State%1

State%3

State%2

State%4

Application
Model

ContextC
Sensitive%
Resource
Model

Robot
Component1

Robot
Componentn...

State
Prediction

Robot%State
Probability
Distribution Resource

Prediction

Resource
Negotiation/
Allocation

Resource
Utlization
Distribution

Environment
Context

External Failures/
Human% InteractionInfluence

Statechart

Figure 3.4: Overview of the resource prediction process. First, the State Prediction component
calculates the prediction of future robot tasks. The result is consumed by the
Resource Prediction component and can then be used to influence decisions on
resource allocation or resource negotiation.

Additionally, transitions between all monitored states are reported as well as
the current context cc ∈C. The context is defined as in Section 3 and consist
of a snapshot of the environment the robot operates in, the tasks the robot
performs, as well as associated input and output state parameters. Counting
the occurrences of all transitions further leads to the transition probabilities
expressed in the context-sensitive resource models.

3.2.1 State Prediction Model

Characterizing the environment is essential for the selection of a matching
prediction model. In this work, the environment is described by the following
properties:

• dynamic: changes in the environment are possible without any interac-
tion of the robot.

• discrete: the states of environmental objects and the states of the robot
statecharts are discrete.

77

3 Speculative Resource Management

• stochastic: external events such as a human entering and modifying
the scene may occur with certain probabilities.

• completely observable: the state of all scene objects can be observed
and is therefore known.

The goal of the state prediction model is to calculate future robot tasks,
as in states of a statechart based on the current robot state and the current
context or world state. A world state ωi ∈ Ω is similar to a transition t ∈ T

but contains only the context ci and the current state si as parameters

ωi = (ci,si), ci ∈C,si ∈ S.

Predicting the next world state ωt+1, which is reachable from the current
state ωt , is defined as a function

p(ωt) = ωt+1, ωt ,ωt+1 ∈Ω.

The set of possible world states ωi ∈Ω is finite, since the environmental
model for the prediction use-case in this work is defined as being discrete
and completely observable. It is therefore possible to define a prediction
model as a first order Markov chain.

The transition probabilities πi from the current world state ωi to every
other world state ω j ∈Ω is described by the probability vector X ∈ Rn. The
dimension n of X represents the number of observed world states, while X

holds the following properties

n

∑
i=0

πi = 1, πi ≥ 0.

The transition probability pi, j from world state ωi to ω j is defined as

pi j := P(Xt+1 = ω j|Xt = ωi), ωi,ω j ∈Ω; t ∈ T.

78

3.2 Context-Sensitive Resource Prediction

This results in the overall transition matrix M, which describes transition
probabilities from any world state ωi to any other world state ω j. M is defined
as

M =


p11 . . . p1n

...
. . .

...

pn1 . . . pnn

 .

Each probability pi j is independent of the time parameter t for any given
Xt . This allows defining the prediction model as a homogeneous first order
Markov chain. Furthermore, the homogeneous nature of the Markov chain
allows calculating predictions not only for one future time step but for a
prediction horizon of h future time steps. However, the greater the prediction
horizon h, the less reliable the prediction outcome.

Calculating the prediction using a Markov chain given a world state ωi

requires the following steps

1. Initialize vector Xi with all entries set to 0 and mark the entry of ωi

(index i) as 1. X can thus be written as

Xi =


δ1i

...

δni

 . (3.1)

2. Construct the transition matrix M from the latest database entries ac-
cording to

pi j =
count(ωi→ ω j)

∑x∈Ω count(ωi→ x)
, (3.2)

where pi j is the number of transitions from ωi to ω j divided by all
transitions starting at ωi.

79

3 Speculative Resource Management

3. Calculate the probability distribution for ω j

X j = XT
i ·M.

4. The entry of Xi with the highest probability is chosen as the next most
probable world state from which the related robot state is extracted.

5. Repeat calculating ω j until the number of iterations matches the pre-
diction horizon h. During each iteration replace the state vector Xi with
the state vector X j from the previous iteration.

6. Return the sequence of calculated Xi vectors.

Using only the above approach, it is impossible to calculate a prediction
if an unrecognized world state is encountered, since no entry for this world
state is present in the matrix M. Thus, a replacement strategy is employed
which behaves like the Markov chain approach but without including the
context parameters.

3.2.2 Resource Prediction

Resource utilization is predicted after the probability distribution of states
and contexts are calculated. First, the most probable sequence of transitions
t1, . . . th is extracted from the prediction data. For each ti the associated ba-
sic resource models are retrieved from the context-sensitive resource model
RMcs, see Section 3.1.3 for details. This list of resource models holds the
information about the expected resource utilization in each state of the tran-
sition sequence t1, . . . th.

This procedure is repeated for the less likely transition sequences in or-
der of descending probability, until their accumulated probabilities lie above
a certain specified threshold. The result is a collection of the most proba-
ble state transitions which are annotated with the resource utilization of all

80

3.2 Context-Sensitive Resource Prediction

components involved during the execution of these states. Furthermore, ex-
tracting minimum and maximum values of the resources specified in these
models provides information about the expected range of resource utiliza-
tion.

3.2.3 Online Learning and Updating

Initially, no input data for the prediction model is available and occurring
transitions are regarded as uniformly distributed, regardless of the world
state. All monitored statechart transitions are continuously stored in Mem-
oryX in combination with a context snapshot. Upon first occurrence of a
transition, missing information in the prediction model is generated based on
the assumed uniform distribution, thus closing gaps in the model on the fly.
Immediately taking these newly observed executions into account leads to
continuous updates of the transition probabilities stored in the model matrix
M.

3.2.4 Resource Prediction Architecture

This section describes the resource prediction architecture built on top of the
profiling/monitoring architecture presented in Section 3.1.4. As indicated
in Figure 3.4, the main components StatePrediction and ResourcePrediction
are supplemented by the PredictionStorage component. As indicated by its
name, PredictionStorage receives data of calculated predictions and stores it
in MemoryX for later retrieval and evaluation.

Predicting state transitions and resource utilization in an ArmarX robot
application requires starting the three components StatePrediction, Resour-
cePrediction, and PredictionStorage in combination with monitoring compo-
nents described in Section 3.1.4. Every time a statechart transition is reported
by the Profiler, the StatePrediction component is triggered. Based on the new
current state and the current memory snapshot, a prediction is calculated

81

3 Speculative Resource Management

and the probability distribution is broadcast to listening components such as
PredictionStorage and ResourcePrediction.

The StatePrediction component is designed to support different prediction
mechanisms. Figure 3.5 shows the connection between the StatePrediction
component and the PredictionMethod interface it uses to calculate predic-
tions.

Figure 3.5: Relation between StatePrediction and the different prediction methods.

Once a new prediction method implements the PredictionMethod inter-
face, it can be used by the StatePrediction interchangeably. As indicated in
Figure 3.5, there are two implementations of the interface: MarkovPredic-
tion and GlobalProbabilityPrediction. The MarkovPrediction performs the
calculation as described in Section 3.2.1. This method uses the ProfilerStor-
age component to access the data required to construct the prediction model
consisting of the transition probability matrix M. The size of M is n×n for
n observed situations. In order to handle model data changes, the matrix is
created and updated on the fly. Equation (3.2) is used for calculating the in-
dividual probabilities stored in the matrix. Before a prediction is computed,
a world state ωi matching the current world state is computed and the ini-
tial vector X0 is created according to equation (3.1). Computing a matching
world state ωi is achieved by combining the current active state sc with a

82

3.2 Context-Sensitive Resource Prediction

current memory snapshot and comparing it with already stored world state
instances. If no matching world state can be found, the fallback method is
used for computing the prediction. The GlobalProbabilityMethod (GP) is
another implementation of the PredictionMethod interface. This implemen-
tation relies solely on global transition probabilities and discards any kind
of environment or statechart parameters.

After a new prediction is broadcast by the StatePrediction component, the
ResourcePrediction component is triggered. ResourcePrediction uses the pre-
dicted probability distribution to generate a resource utilization distribution
as described in Section 3.2.2. The context-sensitive resource model required
for this process is retrieved from MemoryX and the prediction horizon pa-
rameter h is defined at component startup. Each resource prediction contains
information about the most likely, the worst case, and the best case changes
in resource utilization. The finished resource prediction is then broadcast to
any listening component, such as the PredictionStorage, which creates a per-
sistent copy of the data in MemoryX, or the speculative resource allocation
framework.

83

4 Resource-Aware Algorithms

This chapter addresses the question of how algorithms can benefit from
resource-aware concepts. Two different approaches are described for two
different kinds of algorithms. First, a motion planning algorithm is presented
which is capable of dynamically adapting its resource utilization based on the
planning problem difficulty. The algorithm’s performance is close to a paral-
lel algorithm executed with a fixed amount of resources while providing bet-
ter CPU utilization. Additionally, no specialized hardware is required since
the implementation runs on standard PC hardware. The second resource-
aware algorithm calculates a depth map from a pair of stereo images. This
algorithm is based on mechanisms developed in the Transregional Collabo-
rative Research Center Invasive Computing (SFB/TR 89) [Teich et al., 2011].
Calculations are distributed across multiple cores while size and amount of
the distributed chunks are calculated based on the available resources.

4.1 Resource-Aware Motion Planning

Motion planning in cluttered environments is a difficult task, for which ran-
domized motion planning algorithms are known to provide solutions in and
adequately fast time. Parallelization further improves the problem solving
speed of randomized algorithms such as the Rapidly-exploring Random Tree
(RRT). Best performance for solving difficult planning problems is achieved
when parallelized motion planning algorithms utilize all available computing
resources.

However, humanoid robots must execute control, perception, and decision
making algorithms in addition to motion planning. All these algorithms

85

4 Resource-Aware Algorithms

need to be scheduled and distributed concurrently onto the limited on-board
resources of the robot (CPU, memory, communication bandwidth, power)
while additionally being constrained by the limited available battery power.
In this context, better resource utilization and allocation on system level is
facilitated by resource-aware algorithms which are capable of adapting their
resource demands to the dynamically changing system load.

This section presents a parallelized distributed motion planning approach
which is able to request and release resources at runtime in a resource-aware
manner. Figure 4.1 shows the overall architecture of this motion planner.
Allocation strategies perform dynamic resource allocation and algorithm
adaptation based on the current planning progress and an approximation of
the planning problem difficulty. The approximation is calculated at runtime
through different self-monitoring strategies. Compared to algorithms with
static resource allocation, this approach can reduce system workload and
still meet Quality of Service (QoS) measures such as average workload or
efficiency. This resource-aware motion planner originates from the bachelor
thesis of Raphael Grimm [Grimm, 2015].

The algorithm is designed to operate inside a resource-aware robot frame-
work which knows about the system status and resource utilization of all run-
ning components. Resource demands of the motion planner are then handled
by the framework which takes care of assigning or withdrawing resources
from the algorithm based on the overall resource utilization.

4.1.1 Algorithm Design

State of the art RRT algorithms only deal with finding existing solutions as
fast as possible. However, they do not take the problem’s requirements into
account for adapting the algorithm’s resource usage. On the contrary, paral-
lel RRT algorithms use a static number of processing units for calculation.
They do neither consider resource availability nor the overall system state as
explained in Section 2.7.3.

86

4.1 Resource-Aware Motion Planning

Figure 4.1: The motion planning algorithm consists of a manager process which creates and
destroys functionally equivalent worker processes. Self-monitoring strategies
are used to adaptively change the internal resource demand. Embedded within a
resource-aware robot software framework, this algorithm is additionally capable
of handing resources back to the framework if requested by a higher level resource
manager.

The presented resource-aware RRT algorithm provides a first step into the
resource-aware direction. It monitors its state and adapts its resource demand
to the current planning problem. The design goals of this algorithm are:

• parallelism

• distributed computation

• low resource utilization for easy planning problems

• efficient resource utilization for difficult planning problems

• dynamic adaptation of parallelism to estimated planning problem dif-
ficulty

• capable of releasing resources on request

• system load reduction while still meeting QoS

87

4 Resource-Aware Algorithms

Distributed computation and parallelism are achieved in the resource-aware
motion planning algorithm by building on the Bulk Synchronous Distributed
RRT which additionally provides reduced communication overhead as com-
pared to other parallelized RRT implementations.

Local planners are based on a combination of Informed RRT* and Adap-
tive Dynamic-Domain RRT. The used algorithms are explained in more
detail in Section 2.7. Informed RRT* was chosen due its asymptotic opti-
mality and its improved convergence towards an optimal solution. Adaptive
Dynamic-Domain RRT handles small passages in free-space better than stan-
dard RRTs by limiting its sampling domain to an approximation of the visible
Voronoi region. Using other RRT implementations is also possible. However,
some kind of failure metric must be provided by alternative planners in order
to support higher-level resource allocation strategies which approximate the
planning progress at runtime.

The planning algorithm itself consists of a single manager process and
multiple functionally equivalent worker processes which execute the local
planners as shown in Figure 4.1. Work associated with costly collision checks
is parallelized instead of optimizing specific details of the algorithm such as
sampling strategies whose computation time is comparatively low.

Algorithm 7 describes the manager process in detail. The main tasks of
the manager are monitoring the planning state, analyzing the sampling tree,
and determining if additional workers should be started based on resource al-
location strategies. Sampling or collision checking is however not performed
by the manager.

88

4.1 Resource-Aware Motion Planning

Algorithm 7 The actions performed by the manager process of the resource-
aware motion planning algorithm.

Require: start and goal configurations ρstart , ρgoal ∈Cspace, allocation strat-
egy s, bulk size m ∈ N, planningTimeout, initial and maximum worker
count workerCountinitial ,workerCountmax, adaptive dynamic domain pa-
rameters α , rborder, rmin ∈ R

1: procedure R E S O U R C E - AWA R E _ P L A N N I N G _ M A N A G E R
2: τ ← N E W _ S A M P L I N G _ T R E E()
3: A D D _ N O D E(τ , ρstart)
4: for i← 0..workerCountinitial do
5: S TA R T _ A D D I T I O N A L _ W O R K E R()
6: end for
7: while ! (H A S _ PAT H(τ , ρstart , ρgoal) or I S _ T I M E O U T()) do
8: WA I T()
9: A P P LY _ P E N D I N G _ U P D AT E S(τ)

10: U P D AT E _ S T R AT E G Y(s)
11: if C U R R E N T _ W O R K E R _ C O U N T() < workerCountmax

then
12: if R E Q U I R E S _ A D D I T I O N A L _ R E S O U R C E S(s) then
13: S TA R T _ A D D I T I O N A L _ W O R K E R()
14: end if
15: end if
16: while C U R R E N T _ W O R K E R _ C O U N T() > workerCountmax

do
17: S T O P _ N E W E S T _ W O R K E R()
18: end while
19: end while
20: S H U T D O W N _ A L L _ W O R K E R S()
21: A P P LY _ P E N D I N G _ U P D AT E S(τ)
22: return PAT H(τ , ρstart , ρgoal)
23: end procedure

Initially, the manager creates a sampling tree, adds the start node to the
tree, and starts workerCountinitial workers. Afterwards, the planning loop is
executed until a path from ρstart to ρgoal is found or a timeout occurs after
exceeding a predefined planning time.

89

4 Resource-Aware Algorithms

The planning loop first waits until updates from worker nodes have arrived
or a fixed time has passed (line 8). Next, updates from all workers are ap-
plied to the local search tree τ (line 9) and the internal state of the resource
allocation strategy is updated (line 10). These resource allocation strate-
gies are described in detail in Section 4.1.2. An additional worker is started
(line 13) if the number of active workers is below workerCountmax and if
the allocation strategy determines that additional resources are required
(RequiresAdditionalResources(s) evaluates to true). It must be
noted that a newly started worker will obtain a private copy of τ first, before
starting to plan.

The maximum number of active workers (workerCountmax) is designed
to be adjusted from a higher level resource manager located outside the
motion planner. Therefore, the algorithm reduces the active worker count
(line 17) if it surpasses workerCountmax. The algorithm stops workers, start-
ing with the newest worker, until the number of active workers is equal to
workerCountmax.

After the planning loop finishes, all workers are shut down, remaining
updates are applied to the search tree τ and the result is returned. The path
from ρstart to ρgoal is returned on success and an empty path on failure.
Planning fails if either no solution is found or if a timeout, specified before
starting the algorithm, passes.

The overall computation time required by the manager is split mainly
between two tasks. Starting worker processes and integrating their updates
into the local search tree is the first task which usually does not require much
processing power. Updating and evaluating the resource allocation strategies
is the second important task whose processing power requirements depend
on the selected strategy. If a cheap to evaluate allocation strategy is selected,
the overall computation time of the manager process is negligible.

Algorithm 8 describes the local planner executed by each worker. The
planner combines Informed RRT*, Adaptive Dynamic-Domain RRT, and
Bulk Synchronous Distributed RRT.

90

4.1 Resource-Aware Motion Planning

Algorithm 8 Actions performed by each worker process of the resource-
aware motion planning algorithm.

Require: goal configurations ρgoal ∈Cspace, bulk size m ∈ N, adaptive dy-
namic domain parameters α , rborder, rmin ∈ R

1: procedure R E S O U R C E - AWA R E _ P L A N N I N G _ W O R K E R
2: τ ← G E T _ C U R R E N T _ T R E E()
3: while ! R E C E I V E D _ S H U T D O W N _ R E Q U E S T() do
4: for i = 0..m do
5: A P P LY _ P E N D I N G _ U P D AT E S(τ)
6: repeat
7: ρrnd ← S A M P L E(Cspace)
8: ρnearest ← N E A R E S T N E I G H B O R(τ , ρrnd)
9: until ρnearest .r > D I S TA N C E(ρnearest , ρrnd)

10: ρreached ← S T E E R(ρnearest , ρrnd)
11: if ρreached 6= ρnearest then
12: VNNs← N E A R E S T N E I G H B O R S(τ , ρreached)
13: ρ f ← S E L E C T PA R E N T _ R RT * (ρreached , ρnearest ,

VNNs)
14: A D D _ N O D E(τ , ρreached)
15: A D D _ E D G E(τ , (ρ f , ρreached))
16: ρreached .r← ∞

17: ρnearest .r← ρnearest .r ∗ (1+α)
18: R E W I R E _ R RT * (τ , ρreached , VNNs)
19: U P D AT E _ M I N I M A L _ PAT H _ L E N G T H(τ)
20: else
21: if ρnearest .r = ∞ then
22: ρnearest .r← rborder
23: else
24: ρnearest .r←max(rmin,ρnearest .r ∗ (1−α))
25: end if
26: end if
27: end for
28: S E N D U P D AT E(τ .currentUpdate)
29: end while
30: S E N D U P D AT E(τ .currentUpdate)
31: end procedure

91

4 Resource-Aware Algorithms

Upon startup, each worker fetches the current search tree from the manager
and stores it in the local search tree τ . The planning loop executes until a
shutdown request is received from the manager. Within the loop, m plan-
ning iterations are performed before broadcasting a bulk of m updates to the
manager and all active planning nodes (line 28).

Each iteration starts with applying updates from all other workers to τ .
Next, the Dynamic Domain RRT adaptation of the sampling domain is per-
formed (line 6–9), followed by expanding towards ρrnd starting from ρnearest .
If an intermediate solution ρreached 6= ρnearest was found, a parent is selected
(line 13), ρreached is added to the search tree, and rewiring (line 18) is per-
formed analogous to RRT*. The radius of ρnearest is increased analogous to
Adaptive Dynamic Domain RRT (line 17). If no new configuration ρreached

could be found, the radius of ρnearest is reduced (line 20–26). If a shutdown
request is received, a final update of the current planning progress is sent as
broadcast (line 30).

4.1.2 Resource Allocation Strategies

Different resource allocation strategies can be used to determine the necessity
of additional computational power based on the difficulty and the progress
of the current planning problem. These strategies are used during the initial
planning phase for finding an initial solution. Resource allocation strategies
play a secondary role after a solution was found, since the second planning
phase optimizes the found solution and does not require to be computed in
parallel. In order to allow replacing the local planner, each strategy must
be independent of internals of the used planning algorithm. Additionally, a
strategy should only cause minimal overhead and must therefore be compu-
tational inexpensive.

92

4.1 Resource-Aware Motion Planning

Approximation of the Planning Problem Difficulty

The goal of resource allocation strategies is to indicate if more resources
are required based on the planning problem difficulty. Directly quantifying
the difficulty would require finding small passages in the planning problem
which requires building a representation of C f ree and is therefore equivalent
to solving the planning problem. Hence, the difficulty must be approximated
incrementally based on the current state of the planner.

A first approach is to measure the overall computation time of the algo-
rithm, since easy problems are usually solved in a short time frame and find-
ing a solution for a more difficult planning problem will take much longer.
This metric is therefore very robust since a planning problem is guaranteed to
be difficult if it takes a long time to solve. Furthermore, this metric is usable
with any type of planner, since it is independent of the planning algorithm.
Consequently, the idea is to measure the algorithms runtime and request more
resources after a specific time ∆T has passed since additional resources were
requested. However, the correct choice of ∆T determines if additional work-
ers are started too frequently (∆T too small) or too infrequently (∆T too
large). This problem can be addressed by adding an additional parameter
to compensate for bad choices of ∆T , similar to how bad choices of rborder

are addressed by Adaptive Dynamic-Domain RRT. Overall, weaknesses of
other approaches can always be balanced out by adding a time delta to the
strategy.

A second approach requires the underlying algorithm to provide some kind
of failure metric. One possibility is to determine the ratio between newly
created configurations and the total amount of attempts for creating new
configurations over the last N iterations. In case of Dynamic-Domain RRT
and related algorithms this ratio provides an approximation of the boundary
surface between the tree region and the tree region∪Cobstacle. A high ratio
indicates that the problem is most probably hard, since the algorithm is
currently searching near the boundary of an obstacle. In case of a high ratio

93

4 Resource-Aware Algorithms

new resources can be requested. However, it is essential for the planning
algorithm to support a similar failure metric, since this ratio tends to be
relatively high if only random sampling is used.

Other approaches can track the expansion of the search tree and us this
metric to calculate the ratio between current expansion and maximum ex-
pansion. The first kind of expansion metric depends on the cost or length
of a path. Expansion can be detected by monitoring the average cost for
reaching a leaf node or the length of the longest path in the tree. An esti-
mate for the current expansion rate is provided by observing the length of
the last N edges which were added to the search tree. Major drawbacks of
using path length or costs as metric is the necessity of a reference value in
order to correctly associate and compare the length or cost to the peculiarities
of the configuration space. Another kind of expansion metric considers the
volume of the search tree. One approach is to use the volume of the Axis
Aligned Bounding Box (AABB) of all generated nodes and compare it to
the overall volume of the configuration space. Similar to the previous length
and cost related metrics, the AABB version suffers from the same drawback
regarding reference values. Additionally, for this metric to be considered
stable, the AABB volume must be guaranteed to expand only if the solution
is approached. This is however not possible for cases where the solution is
contained within the AABB’s volume in which case it is impossible to track
the planning progress.

Implemented Resource Allocation Strategies

After evaluating the presented approaches for approximating the planning
problem difficulty, two of them were selected and implemented as resource
allocation strategies. The output of both strategies is a binary true or f alse

indicating whether additional resources should be requested or not. Distance-
based metrics were not implemented, since they depend on the planning

94

4.1 Resource-Aware Motion Planning

problem and would require normalizing the input. However, normalizing the
input is not possible in a general, meaningful, and problem independent way.

The strategy implemented first makes use of the ∆T -approach and is re-
ferred to as ∆T -strategy and as ∆Ty for a parameter ∆T = y. This strategy
was an obvious choice, since planning time correlates directly with the prob-
lem difficulty. Equation (4.1) provides the basis for deciding if additional
resources are required. The equation evaluates to true for the current time
Tnow, if more than ∆T time has passed since the last time Tlast when addi-
tional resources were requested.

Tlast +∆T ≤ Tnow (4.1)

Choosing a small value for ∆T leads to frequent resource requests while
high values of ∆T leads to belated resource acquisition. While the first case
leads to underutilization of resources, the second case leads to delays in
planning time.

The second strategy additionally modifies the ∆T parameter according to
the second approach presented in Section 4.1.2, to overcome this problem.
∆T is modified according to the rate ϕ of failed node creations versus the
total number of node creation attempts. For high ratios of ϕ , the algorithm
is most likely searching near difficult obstacle boundaries and would benefit
from additional resources. An additional parameter σ is introduced which is
used to dampen the effect of ϕ on ∆T . This strategy is referred to as NN∆T -
strategy (No Node ∆T) and as NNx∆T y for a set of parameters σ = x and
∆T = y.

∆T ′ =
∆T

1+σ ∗ϕ
(4.2)

Tlast +∆T ′ ≤ Tnow (4.3)

95

4 Resource-Aware Algorithms

Equation (4.2) describes how σ and ϕ influence the ∆T parameter and equa-
tion (4.3) describe the formula based on which the NN∆T -strategy decides to
request additional resources. Overall, the NN∆T -strategy requests additional
resources at least every ∆T but not faster than every ∆T/(1+σ).

Figure 4.2 shows the influence of σ on ∆T based on the value of ϕ (failed
node creation attempts). The faster the curve descends, the smaller the time
∆T ′ after which new resources are requested. A value of σ = 0 results in the
regular ∆T strategy, while increasing values of σ lead to shorter acquisition
intervals. This means that the NN∆T -strategy can compensate for high values
of ∆T for planning problems by requiring more resources in a faster time
interval when the planner is searching in a narrow passage.

Figure 4.2: Effect of the parameter σ of the NN∆T -strategy on the ratio ∆T ′
∆T as a function of

ϕ . Higher values of σ lead to shorter ∆T ′ times. Source: [Kröhnert et al., 2016]
©2016 IEEE

96

4.1 Resource-Aware Motion Planning

4.1.3 ArmarX Integration

The presented resource-aware and distributed planning algorithm is imple-
mented as part of the ArmarX robot framework. A more detailed descrip-
tion of ArmarX can be found in Appendix C. Communication between Ar-
marX components is either performed via Remote Procedure Calls (RPC) or
a Publish/Subscribe mechanism. The architecture of the planning algorithm
builds on these foundations and consists of the following four major parts:

1. RemoteObjects provide computational resources by starting threads
remotely. They allow communicating via RPC or broadcast messages.

2. RemoteObjectNodes represent computational resources and provide
the mechanisms for starting and stopping RemoteObjects. A Remo-
teObjectNode must be started on each PC in the distributed network
which is supposed to provide computational resources.

3. PlanningTasks contain all relevant information of a motion planning
problem such as ρstart , ρgoal , the specific planning algorithm to use,
and information about the size of the Cspace and the files required for
performing collision checks. Additionally, the PlanningTask imple-
ments the resource allocation strategies in order to provide them to the
dedicated planning algorithms.

4. PlanningServer is the central component which receives Planning-
Tasks and executes them sequentially. The PlanningServer also holds
a list of RemoteObjectNodes used by the manager of the motion plan-
ning algorithm to acquire new computational resources.

Initially, a client creates and parameterizes an instance of PlanningTask,
sends it to the PlanningServer, and receives a proxy. This proxy allows query-
ing the now server-side PlanningTask for the planning progress and the final
planning result via Remote Procedure Calls. The PlanningServer adds the

97

4 Resource-Aware Algorithms

PlanningTask to its task queue and starts it once all previous tasks have fin-
ished computing their motions. All available RemoteObjectNodes can be
used by the PlanningTask to start and stop remote computations by creat-
ing and destroying RemoteObject instances on these nodes. After planning
finishes, the used RemoteObjects are destroyed, the solution is stored in the
PlanningTask, and control is handed back to the PlanningServer for execut-
ing the next task. Figure 4.3 shows a sequence diagram of the previously
described steps involved in planning a motion.

Figure 4.3: Sequence diagram of the steps involved from specifying a planning problem to
retrieving the result.

98

4.2 Resource-Aware Disparity Map

4.2 Resource-Aware Disparity Map

Disparity maps are two dimensional images whose pixel colors correlate to
the distance of objects visible in the image. Light gray pixels are close to
the viewer while darker gray pixels represent objects with a larger distance.
Disparity maps can be computed from a pair of stereo images captured by
calibrated stereo cameras. The algorithm for computing the disparity map
used in this work was published in [Faugeras et al., 1993]. Computing the
disparity map is computationally expensive. However, the algorithm offers a
high degree of parallelism, since it works on isolated regions of the image.

Parallelized algorithms are typically mapped to resources in a static man-
ner. To overcome inefficiencies of static resource mapping, new resource-
aware methodologies such as Invasive Computing [Teich et al., 2011] are
currently studied. In this section a parallelized version of the disparity map
algorithm is shown as an example of invasive algorithms. The disparity map
algorithm is capable of benefiting from resource-aware concepts such as
online algorithm adaptation. This is achieved through dynamic problem par-
titioning and resource allocation based on the currently available resources.

In the following, two different implementations of the resource-aware
disparity map algorithm are presented. Both versions are designed to run on
an invasive platform with multiple processors. The first implementation is
written in the X10 programming language [Charles et al., 2005]. X10 was
adopted and extended by InvasIC to provide all required features related
to resource-awareness. The second version is written in C++ and interfaces
directly with the invasive operating system named OctoPOS [Oechslein et al.,
2011]. This approach enables fast algorithm development using an emulation
of OctoPOS while being able to execute the application on physical invasive
hardware by simply rebuilding the application for the new target.

99

4 Resource-Aware Algorithms

4.2.1 Invasive X10 Implementation

The X10 implementation of the disparity map algorithm is available both
as a single-core as well as a resource-aware multi-core version. Resource-
aware features missing in X10 are provided by the Invasive X10 library and
a functional simulation tool [Hannig et al., 2011]. A reference implemen-
tation of a disparity map algorithm in C++ is provided by the Integrating
Vision Toolkit (IVT) 1 [Azad, 2009]. Calculating the disparity information
from a pair of stereo input images is performed by moving a sliding win-
dow simultaneously across both images. The reference implementation in
IVT processes input images in a single large but efficient loop by reusing
previously computed results.

The single-core X10 version of the disparity map algorithm resembles
the IVT implementation. However, the X10 implementation does not take
advantage of any resource-aware concepts and is tailored to computer archi-
tectures as they are found in current humanoid robots such as ARMAR-III.
Typical commonalities of these hardware architectures are large amounts of
main memory accessible by the processor via a fast interconnect.

On the contrary, embedded systems, typically containing less main mem-
ory but potentially more CPU cores, would not be able to execute this algo-
rithm directly, at least not very efficiently. Due to higher resource constraints,
such embedded systems benefit from resource-aware approaches which pro-
vide algorithms with the means to adapt to these constraints. Therefore, a
resource-aware multi-core version of the disparity map algorithm was imple-
mented in Invasive X10 which is capable of adapting the internal parallelism
based on the quantity of available resources.

Achieving resource-awareness in algorithms requires starting with a paral-
lelized version of the algorithm and enhancing it to react to resource changes
and requirements at specific points during execution. Furthermore, these al-
gorithms must be executed on a multi-core or many-core architecture in order

1 http://ivt.sourceforge.net/

100

http://ivt.sourceforge.net/

4.2 Resource-Aware Disparity Map

to take advantage of their parallel nature. The architecture used for executing
and evaluating the invasive disparity map contains a shared main memory
and 8 RISC processors also called Processing Elements (PEs), see Figure 4.4.
The processors are divided into two groups called tiles each containing 4 pro-
cessors and a block of local shared memory called tile-local memory (TLM).
Both tiles and the main memory are connected via a Network on Chip (NoC).
Thus, access to TLM is faster than to the main memory because it can be ac-
cessed locally and does not have to fetch data over the much slower Network
on Chip connection.

TLM

CPU

CPU CPU

CPU

TLM

CPU

CPU CPU

CPU Main Memory

Figure 4.4: The hardware layout used for executing the resource-aware disparity map algo-
rithm. A total number of 8 CPUs is distributed across two tiles containing addi-
tional Tile-Local Memory (TLM). Both compute tiles and a third tile containing
the main memory are connected via a Network on Chip (NoC).

Taking the execution platform into account, it is recognizable that an algo-
rithm such as the single-core disparity map which manipulates data stored
in main memory will take a long time to execute. This is due to the constant
main memory accesses putting heavy load on the NoC. By definition, access-
ing the NoC is slower than accessing local memory partitions such as the
TLM.

Getting the best performance out of the underlying many-core architec-
ture requires building a parallelized distributed version of the algorithm and
enhancing it with resource-aware features. The disparity map algorithm is
therefore modified to split up the computation into fine-granular work pack-
ages. Every work package calculates a partial result which is merged into

101

4 Resource-Aware Algorithms

the final result image upon completion. Processing the smaller work pack-
ages is performed by the same basic implementation as it is used in the
single-core implementation. The corresponding high-level coordination of
the parallelized algorithm follows a divide & conquer approach and is shown
in Algorithm 9.

After receiving input images, the algorithm starts by requesting the maxi-
mum number of PEs specified as input parameter maxPEs (line 2). Available
resources returned by the invasive platform are stored in a structure called
claim which can be queried for a valid set of resources (line 3).

Dynamic and adaptable splitting of the pixel data of the input images into
smaller blocks is performed from line 4 to line 12. First, the total number of
usable PEs is extracted from the claim, followed by a division of the input
data into equally sized blocks (line 8). It is essential to split the input images
into overlapping blocks in order to produce an output image without missing
lines. A sliding window of size n reduces all pixels covered by the window
into a single pixel. Thus, every block but the first has to have at least n−1
lines overlap in order to generate a complete output image. Furthermore,
both PE count as well as the amount of available TLM are taken into account
for determining the size of the image blocks. This allows the algorithm to
run on systems equipped with only a small amount of TLM.

The split image data is distributed to the TLMs of the tiles on which the ac-
quired PEs are located. A call to infect() then distributes the worker func-
tions to the respective PEs and starts the computation. Afterwards, the coor-
dination function waits for the workers to finish their computations (line 16)
before the different parts of the result image are collected and combined into
the final disparity map.

Once all calculations are finished and their results collected, all requested
resources are released again by calling retreat() on the previously ac-
quired claim (line 22).

102

4.2 Resource-Aware Disparity Map

In contrast to algorithms using static resource allocation, this resource-aware
version is capable of calculating a disparity map even if the amount of avail-
able resources is constantly changing. If the request for additional resources
can only be partially fulfilled during execution, the algorithm can react in
two different ways. With enough tile-local memory but less PEs available,
the image chunk size is increased. If both less memory and less PEs are
available, the amount of image chunks is increased while keeping the chunk
size small.

4.2.2 Invasive C++ Implementation

The invasive X10 version of the disparity map algorithm was also imple-
mented as a native C++ application directly on top of OctoPOS, the inva-
sive operating system. This approach allows running the algorithm on real
invasive prototype hardware and analyzing the benefits of using tile-local
memory over regular main memory. Figure 4.5 shows the used hardware
platform, consisting of a single tile containing 6 CPUs running at 80 MHz.

Main Memory

TLM

CPU

CPU CPU

CPUCPU

CPU

Figure 4.5: The hardware layout used for executing and evaluating the resource-aware dispar-
ity map algorithm in C++. A total number of 6 CPUs are grouped together in one
compute tile containing additional Tile-Local Memory (TLM). The compute tile
as well as the main memory tile are connected via a Network on Chip (NoC).

103

4 Resource-Aware Algorithms

Algorithm 9 Coordination function of the resource-aware disparity map
algorithm.

Require: maxPEs, inputImages
1: procedure D I S PA R I T Y _ M A P _ C O O R D I N AT I O N
2: claim← invade(maxPEs)
3: if claim.valid() then
4: n← claim.PEs().count()
5: // retrieve the list of available memory for each processor
6: localMemory[] = claim.getLocalMemorySize()
7: // divide the data according to available resources and memory
8: data[]← divideIntoBlocks(inputImages.pixelsLeft,

inputImages.pixelsRight,n, localMemory)
9: // distribute data blocks to the PE’s local memory

10: for pe ∈ claim.PEs() do
11: pe.setLocalMemory(data[pe.id])
12: end for
13: // distribute the disparity map code onto the PEs and start it
14: infect(localDisparityMapComputation())
15: // wait for all PEs to finish their computation
16: waitForParallelCalculations()
17: // collect results in disparityMap
18: for pe ∈ claim.PEs() do
19: disparityMap.pixels[pe.id]← pe.getLocalMemory()
20: end for
21: // free unused resources
22: retreat(claim)
23: end if
24: return disparityMap
25: end procedure

104

4.2 Resource-Aware Disparity Map

4.2.3 Invasive Computing Head Demo

To integration of the disparity map into a bigger context was demonstrated
in a setup using the Karlsruhe Humanoid Head [Asfour et al., 2008]. The
task of the robot head is to track a colored object, once it is recognized in
the captured camera images. An image of the setup is shown in Figure 4.6.
Initially no target object is assumed to be present in the scene, thus most
resources are dedicated to calculating a disparity map image. Finding skin
and object colored regions is performed on low resolution images with a
minimal set of resources. Once, the object is detected in the low-resolution
images, tracking of the object starts and most resources are dedicated to
calculating high quality object positions. Once the object is lost, the object
recognition falls back to using low-resolution images and the majority of the
processing power is again used for calculating the disparity map.

Figure 4.6: The standalone head of the humanoid robot ARMAR-III tracking a blue pitcher.
The object position is determined by an invasive color segmentation algorithm.

The robot head is controlled by the original head software. Stereo im-
ages are forwarded to the invasive C++ algorithms running on the OctoPOS
guest layer on the same PC. Using the OctoPOS guest layer was the option
chosen to provide the head control software with fast image updates, which

105

4 Resource-Aware Algorithms

are required to show online tracking capabilities. Due to the lower process-
ing speed of 40 MHz of the processors available on the invasive prototype
hardware the tracking frequency would have been reduced significantly. The
layout of the used invasive architecture is shown in Figure 4.7. It contains 8
CPU cores divided among 2 compute tiles, one main memory tile and one
I/O tile. The I/O tile is used to receive and transmit images and other data
from within OctoPOS.

TLM

CPU

CPU CPU

CPU

TLM

CPU

CPU CPU

CPU I/O

Main Memory

Figure 4.7: The hardware layout used for running the invasive head demo OctoPOS guest
layer. A total number of 8 CPUs is distributed across 2 tiles containing additional
Tile-Local Memory (TLM). All compute tiles as well as a memory tile and an I/O
tile are connected via a Network on Chip (NoC).

106

5 Evaluation

The following different aspects of this work are evaluated in this chapter.
First, examples of resource models are presented. Next, the prediction of
future robot tasks and their associated resource utilization are evaluated in a
simulated pick and place scenario. Last, results of the resource-aware motion
planner and the invasive disparity map algorithm are shown.

5.1 Profiling and Resource Models

Resource models generated from profiling data are shown in this section.
The profiling data was obtained from a pick and place task executed by the
humanoid robot ARMAR-IIIa in simulation. Figure 5.1 demonstrates the
simulated task execution with screenshots while the executed statecharts
are shown in Figure 5.2 and Figure 5.3. Transition data was stored upon
occurrence of the associated transition events. CPU and memory utiliza-
tion data was reported and stored periodically every 300 ms. The execution
platform used for evaluation was defined by the following platform model
P :=(3.40GHz,8,16GB RAM, 1 GBit). This specification is close to the one
of the ARMAR-IIIa coordination PC. Important parameters contained in the
context were the pick up location (sideboard), the place location (table), the
object to move (cereal box), but no further obstacles or humans.

107

5 Evaluation

Figure 5.1: ARMAR-IIIa first moves from its initial position to the sideboard (top left) tries to
detect the requested object and moves its hand to the object if it is found (top right).
After ARMAR-IIIa reached for the object and grasped it, the next step is to lift the
object (middle left), followed by moving to the table (middle right), and finally
placing the object on the table (bottom).

108

5.1 Profiling and Resource Models

Figure 5.2: The pick and place statechart at the top displays the different required robot tasks.
States marked in yellow are end states and states marked in green are statecharts
which are executed in different processes. If an end state is entered, it sends a
transition event and immediately exits its parent state. The bottom statechart shows
the move platform statechart used for driving the robot through an environment.

109

5 Evaluation

Figure 5.3: Second part of Figure 5.2 containing the grasp object and place object statecharts.
grasp object opens the robot hand, uses visual servo to reach the object, grasps
the object, and finally lifts the object. The statechart contains additional states
for handling different kind of errors which can occur during visual servoing or
object localization. The place object statechart moves the robot arm to the placing
position, opens the hand if a contact between object and surface was detected, and
retreats the arm.

110

5.1 Profiling and Resource Models

The transition profiling data obtained from the execution is depicted in Fig-
ure 5.4 showing the execution intervals/durations of all states involved in
the task execution. Each line in the state execution diagram represents the
duration of a specific state with an index. The state name matching the index
can be retrieved from the mapping presented in Table 5.1. Each → in the
state name indicates a sub-state relation with the top-level parent on the left
and the executing state on the right side of the rightmost→. Every state exe-
cution is colored differently while the duration is represented by the length
of the respective bar. Additionally, states with shorter duration are sub-states
of states with longer duration. The topmost pick and place task for example
has index 50 and can be found at the top of the figure.

111

5 Evaluation

0 20 40 60 80 100 120

Time [s]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Figure 5.4: Execution intervals (durations) of the states involved for executing a pick and place
task. A state X whose execution interval is contained in the interval of another
state Y indicates that X is a sub-state in the hierarchy below state Y . The mapping
between indices and state names can be found in Table 5.1.

112

5.1 Profiling and Resource Models

Ta
bl

e
5.

1:
T

he
m

ap
pi

ng
be

tw
ee

n
in

di
ce

s
an

d
st

at
e

na
m

es
fo

rF
ig

ur
e

5.
4.

E
ac

h
lin

e
re

pr
es

en
ts

th
e

st
at

e
hi

er
ar

ch
y

st
ar

tin
g

w
ith

th
e

to
p-

le
ve

lo
n

th
e

le
ft

an
d
→

po
in

tin
g

to
th

e
ne

xt
su

b-
st

at
e

in
th

e
hi

er
ar

ch
y.

T
he

cu
rr

en
ts

ta
te

’s
na

m
e

is
th

us
th

e
na

m
e

af
te

rt
he

la
st
→

of
ea

ch
en

tr
y.

In
de

x
St

at
e

N
am

e

50
Pi

ck
A

nd
Pl

ac
e

49
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t

48
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
C

lo
se

H
an

d

47
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
L

if
tH

an
d

46
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
L

if
tH

an
d→

C
al

cu
la

te
Ta

rg
et

s

45
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
L

if
tH

an
d→

W
ai

t

44
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
N

ot
if

yO
bj

ec
tG

ra
sp

ed

43
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
O

pe
nH

an
d

42
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
St

op
R

ob
ot

_F
in

is
he

d

41
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
St

op
R

ob
ot

_F
in

is
he

d→
M

ov
eJ

oi
nt

s

40
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
St

op
R

ob
ot

_F
in

is
he

d→
Se

tZ
er

oV
el

oc
ity

113

5 Evaluation

Ta
bl

e
5.

1:
T

he
m

ap
pi

ng
be

tw
ee

n
in

di
ce

s
an

d
st

at
e

na
m

es
fo

rF
ig

ur
e

5.
4.

E
ac

h
lin

e
re

pr
es

en
ts

th
e

st
at

e
hi

er
ar

ch
y

st
ar

tin
g

w
ith

th
e

to
p-

le
ve

lo
n

th
e

le
ft

an
d
→

po
in

tin
g

to
th

e
ne

xt
su

b-
st

at
e

in
th

e
hi

er
ar

ch
y.

T
he

cu
rr

en
ts

ta
te

’s
na

m
e

is
th

us
th

e
na

m
e

af
te

rt
he

la
st
→

of
ea

ch
en

tr
y.

In
de

x
St

at
e

N
am

e

39
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
St

op
R

ob
ot

_G
ra

sp
in

g

38
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
St

op
R

ob
ot

_G
ra

sp
in

g→
M

ov
eJ

oi
nt

s

37
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
St

op
R

ob
ot

_G
ra

sp
in

g→
Se

tZ
er

oV
el

oc
ity

36
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
G

ra
sp

in
gP

os
e

35
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
G

ra
sp

in
gP

os
e→

C
al

cu
la

te
T

cp
Ta

rg
et

34
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
G

ra
sp

in
gP

os
e→

G
et

O
bj

ec
tI

ns
ta

nc
e

33
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
G

ra
sp

in
gP

os
e→

G
et

O
bj

ec
tP

os
e

32
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
G

ra
sp

in
gP

os
e→

V
is

ua
lS

er
vo

To
w

ar
ds

Ta
rg

et
Po

se
W

ra
pp

er

31
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
Pr

ep
os

e

30
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
Pr

ep
os

e→
C

al
cu

la
te

T
cp

Ta
rg

et

29
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
Pr

ep
os

e→
G

et
O

bj
ec

tI
ns

ta
nc

e

114

5.1 Profiling and Resource Models

Ta
bl

e
5.

1:
T

he
m

ap
pi

ng
be

tw
ee

n
in

di
ce

s
an

d
st

at
e

na
m

es
fo

rF
ig

ur
e

5.
4.

E
ac

h
lin

e
re

pr
es

en
ts

th
e

st
at

e
hi

er
ar

ch
y

st
ar

tin
g

w
ith

th
e

to
p-

le
ve

lo
n

th
e

le
ft

an
d
→

po
in

tin
g

to
th

e
ne

xt
su

b-
st

at
e

in
th

e
hi

er
ar

ch
y.

T
he

cu
rr

en
ts

ta
te

’s
na

m
e

is
th

us
th

e
na

m
e

af
te

rt
he

la
st
→

of
ea

ch
en

tr
y.

In
de

x
St

at
e

N
am

e

28
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
Pr

ep
os

e→
G

et
O

bj
ec

tP
os

e

27
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
Pr

ep
os

e→
St

op
R

ob
ot

26
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
Pr

ep
os

e→
St

op
R

ob
ot
→

M
ov

eJ
oi

nt
s

25
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
Pr

ep
os

e→
St

op
R

ob
ot
→

Se
tZ

er
oV

el
oc

ity

24
Pi

ck
A

nd
Pl

ac
e→

G
ra

sp
O

bj
ec

t→
V

is
ua

lS
er

vo
To

w
ar

ds
Pr

ep
os

e→
V

is
ua

lS
er

vo
To

w
ar

ds
Ta

rg
et

Po
se

W
ra

pp
er

23
Pi

ck
A

nd
Pl

ac
e→

M
ov

eJ
oi

nt
sT

oZ
er

o

22
Pi

ck
A

nd
Pl

ac
e→

M
ov

eJ
oi

nt
sT

oZ
er

o→
M

ov
eJ

oi
nt

s

21
Pi

ck
A

nd
Pl

ac
e→

M
ov

eP
la

tf
or

m
To

Fi
na

l

20
Pi

ck
A

nd
Pl

ac
e→

M
ov

eP
la

tf
or

m
To

Fi
na

l→
M

ov
eT

oN
ex

t

19
Pi

ck
A

nd
Pl

ac
e→

M
ov

eP
la

tf
or

m
To

Fi
na

l→
M

ov
eT

oN
ex

t→
C

on
tr

ol
Pl

at
fo

rm

18
Pi

ck
A

nd
Pl

ac
e→

M
ov

eP
la

tf
or

m
To

Pi
ck

115

5 Evaluation

Ta
bl

e
5.

1:
T

he
m

ap
pi

ng
be

tw
ee

n
in

di
ce

s
an

d
st

at
e

na
m

es
fo

rF
ig

ur
e

5.
4.

E
ac

h
lin

e
re

pr
es

en
ts

th
e

st
at

e
hi

er
ar

ch
y

st
ar

tin
g

w
ith

th
e

to
p-

le
ve

lo
n

th
e

le
ft

an
d
→

po
in

tin
g

to
th

e
ne

xt
su

b-
st

at
e

in
th

e
hi

er
ar

ch
y.

T
he

cu
rr

en
ts

ta
te

’s
na

m
e

is
th

us
th

e
na

m
e

af
te

rt
he

la
st
→

of
ea

ch
en

tr
y.

In
de

x
St

at
e

N
am

e

17
Pi

ck
A

nd
Pl

ac
e→

M
ov

eP
la

tf
or

m
To

Pi
ck
→

M
ov

eT
oN

ex
t

16
Pi

ck
A

nd
Pl

ac
e→

M
ov

eP
la

tf
or

m
To

Pi
ck
→

M
ov

eT
oN

ex
t→

C
on

tr
ol

Pl
at

fo
rm

15
Pi

ck
A

nd
Pl

ac
e→

M
ov

eP
la

tf
or

m
To

Pl
ac

e

14
Pi

ck
A

nd
Pl

ac
e→

M
ov

eP
la

tf
or

m
To

Pl
ac

e→
M

ov
eT

oN
ex

t

13
Pi

ck
A

nd
Pl

ac
e→

M
ov

eP
la

tf
or

m
To

Pl
ac

e→
M

ov
eT

oN
ex

t→
C

on
tr

ol
Pl

at
fo

rm

12
Pi

ck
A

nd
Pl

ac
e→

Pl
ac

eO
bj

ec
tW

ra
pp

er

11
Pi

ck
A

nd
Pl

ac
e→

Pl
ac

eO
bj

ec
tW

ra
pp

er
→

Pl
ac

eO
bj

ec
t

10
Pi

ck
A

nd
Pl

ac
e→

Pl
ac

eO
bj

ec
tW

ra
pp

er
→

Pl
ac

eO
bj

ec
t→

H
ar

dS
to

pR
ob

ot

9
Pi

ck
A

nd
Pl

ac
e→

Pl
ac

eO
bj

ec
tW

ra
pp

er
→

Pl
ac

eO
bj

ec
t→

M
ov

eT
oP

la
ce

Po
se

8
Pi

ck
A

nd
Pl

ac
e→

Pl
ac

eO
bj

ec
tW

ra
pp

er
→

Pl
ac

eO
bj

ec
t→

M
ov

eT
oP

re
Pl

ac
eP

os
e

7
Pi

ck
A

nd
Pl

ac
e→

Pl
ac

eO
bj

ec
tW

ra
pp

er
→

Pl
ac

eO
bj

ec
t→

M
ov

eT
oR

et
re

at
Po

se

116

5.1 Profiling and Resource Models

Ta
bl

e
5.

1:
T

he
m

ap
pi

ng
be

tw
ee

n
in

di
ce

s
an

d
st

at
e

na
m

es
fo

rF
ig

ur
e

5.
4.

E
ac

h
lin

e
re

pr
es

en
ts

th
e

st
at

e
hi

er
ar

ch
y

st
ar

tin
g

w
ith

th
e

to
p-

le
ve

lo
n

th
e

le
ft

an
d
→

po
in

tin
g

to
th

e
ne

xt
su

b-
st

at
e

in
th

e
hi

er
ar

ch
y.

T
he

cu
rr

en
ts

ta
te

’s
na

m
e

is
th

us
th

e
na

m
e

af
te

rt
he

la
st
→

of
ea

ch
en

tr
y.

In
de

x
St

at
e

N
am

e

6
Pi

ck
A

nd
Pl

ac
e→

Pl
ac

eO
bj

ec
tW

ra
pp

er
→

Pl
ac

eO
bj

ec
t→

N
ot

if
yO

bj
ec

tR
el

ea
se

d

5
Pi

ck
A

nd
Pl

ac
e→

Pl
ac

eO
bj

ec
tW

ra
pp

er
→

Pl
ac

eO
bj

ec
t→

O
pe

nH
an

d

4
Pi

ck
A

nd
Pl

ac
e→

Pl
ac

eO
bj

ec
tW

ra
pp

er
→

Pl
ac

eO
bj

ec
t→

St
op

R
ob

ot

3
Pi

ck
A

nd
Pl

ac
e→

Pl
ac

eO
bj

ec
tW

ra
pp

er
→

Pl
ac

eO
bj

ec
t→

St
op

R
ob

ot
→

M
ov

eJ
oi

nt
s

2
Pi

ck
A

nd
Pl

ac
e→

Pl
ac

eO
bj

ec
tW

ra
pp

er
→

Pl
ac

eO
bj

ec
t→

St
op

R
ob

ot
→

Se
tZ

er
oV

el
oc

ity

1
Pi

ck
A

nd
Pl

ac
e→

Pl
ac

eO
bj

ec
tW

ra
pp

er
→

W
ai

tF
or

H
an

dA
nd

O
bj

ec
tC

ha
nn

el

117

5 Evaluation

Figure 5.5 shows the CPU utilization of all robot components required during
the execution of the pick and place statechart. Figure 5.4 shows the statechart
execution characteristics in detail. Each robot component’s CPU utilization
is shown on a separate line starting with the robot component name post-
fixed with _CPU. CPU utilization for each component ranges from 0 % to
100 % within an area limited by the current and the next components’ name.
Most components show an extremely low CPU utilization between 0 % and
5 % such as HandMarkerLocalization (red line) and TCPControlUnit (green
line) which are shown at the top of Figure 5.5. TCPControlUnit shows a
small spike in the beginning and low activity during later timesteps, whereas
HandMarkerLocalization shows almost no activity and stays near 0 % CPU
utilization.

Some components like XMLStateComponentHandGroupApp drop back
to a constant 0 % to 5 % after an initial high utilization of about 100 % while
ViewSelection alternates between high and low utilization. The RobotState-
Component which is responsible for holding the current sensor values of
the robot, utilizes around 5-10 % at the beginning, switches to 75-80 % af-
ter approximately 30 seconds, and then drops back to about 65-70 % after
approximately 55 seconds. XMLStateComponentVisualServoGroupApp re-
sponsible for performing visual servoing shows phases with almost 0 % uti-
lization when inactive and phases with approximately 50 % utilization when
visual servoing is performed.

118

5.1 Profiling and Resource Models

0 20 40 60 80 100 120

Time [s]

KinematicUnitDynamicSimulation_CPU

SystemObserver_CPU

XMLStateComponentHandGroupApp_CPU

XMLStateComponentPlatformGroupApp_CPU

TexturedObjectRecognition_CPU

HeadIKUnit_CPU

ForceTorqueObserver_CPU

ViewSelection_CPU

XMLStateComponentVisualServoGroupApp_CPU

XMLStateComponentPickAndPlaceApp_CPU

ForceTorqueUnitDynamicSimulation_CPU

RobotControl_CPU

SelfLocalizationDynamicSimulation_CPU

RobotStateComponent_CPU

GraphNodePoseResolver_CPU

ImageProviderDynamicSimulation_CPU

AStarPathPlanner_CPU

RobotIK_CPU

XMLStateComponentGraspObjectGroupApp_CPU

XMLStateComponentMotionControlGroupApp_CPU

LeftHandUnitApp_CPU

KinematicUnitObserver_CPU

SegmentableObjectRecognition_CPU

PlatformUnitObserver_CPU

XMLStateComponentPlaceObjectGroupApp_CPU

RightHandUnitApp_CPU

DebugObserver_CPU

PlatformUnitDynamicSimulation_CPU

ConditionHandler_CPU

TCPControlUnit_CPU

HandMarkerLocalization_CPU

Figure 5.5: CPU utilization of running robot components.

119

5 Evaluation

Figure 5.6 shows the utilization of dynamic memory in MByte of 9 selected
robot components. Components with low changes in memory utilization
were excluded for better visibility.

Figure 5.6: Memory utilization in MByte of a selection of robot components.

120

5.1 Profiling and Resource Models

An initial fluctuation in allocation and deallocation of memory can be ob-
served. The upper blue line in Figure 5.6 represents the XMLStateCompo-
nentVisualServoGroupApp whose memory allocation increases drastically
after approximately 20 seconds, which is the time when the visual servoing
statechart gets triggered. The red line represents the RobotStateComponent
and shows a steady increase in memory allocation once the visual servoing
starts and decreases, once the platform starts moving to the target position.

CPU utilization associated with the resource model of the transition ending
in Place-Object is depicted in Figure 5.7 while the memory utilization of the
resource model is shown in Figure 5.8. The PlaceObject sub statechart was
started after 42 seconds and had a duration of 54 seconds.

9

9

Figure 5.7: CPU utilization in [%] of robot components running during the execution of the
PlaceObject state starting after 42 seconds.

The figure shows changes in CPU utilization of HeadIK, ViewSelection
and RobotStateComponent. HeadIK is calculates the kinematics of the head
and where the robot should look at. ForceTorqueUnit and ForceTorqueOb-
server perform processing of the force values in the wrist of the robot which
is required for detecting contact with the table. SystemObserver, Kinematic-
UnitObserver, and XMLState-ComponentVisualServoGroup also use CPU
and are required for performing visual servoing of the hand to reach the
target position.

121

5 Evaluation

Figure 5.8 shows that only a few components perform a significant amount
of dynamic memory allocation in the PlaceObject state. The most signifi-
cant change happens in RobotControlUnit which continuously updates the
internal robot representation by applying the latest sensor updates and in the
TCPControlUnit which is used to steer the robot’s arm towards the target
pose. Additional memory is allocated and deallocated in XMLStateCompo-
nentPlaceObjectGroup, the overall statechart component coordinating the
subtask.

Figure 5.8: Memory utilization in [MB] of robot components running during the execution of
the PlaceObject state starting after 42 seconds.

MoveToPrePlacePose is a sub-state of PlaceObject starting at 42 sec-
onds with a duration of 7.6 seconds. The CPU utilization of the resource
model of MoveToPrePlacePose is shown in Figure 5.9. Compared to the
parent state, ViewSelection and XMLState-ComponentVisualServoGroup
show wider variation in CPU utilization, while RobotStateComponent shows
smaller variation in CPU utilization.

122

5.1 Profiling and Resource Models

Figure 5.9: CPU utilization in [%] of robot components running during the execution of the
MoveToPrePlacePose state which started after 42 seconds.

Memory utilization of the resource model of MoveToPrePlacePose is shown
in Figure 5.10. The figure shows that a reduced number of components per-
form dynamic allocation during this step as compared to the overall utiliza-
tion of the parent state. RobotStateComponent allocates a part of the memory
which is found in the statistics of the parent state. To the contrary, the memory
allocation statistics of XMLState-ComponentVisualServoGroup match the
ones found in the parent state, indicating that this state is mostly responsible
for the allocation.

Figure 5.10: Memory utilization in [MB] of robot components running during the execution
of the MoveToPrePlacePose state which started after 42 seconds.

123

5 Evaluation

5.2 Robot State and Resource Prediction

Evaluation of the resource prediction approach is performed in the context of
a pick and place robot program implemented in ArmarX. The robot program
describes a task for picking up an object from a table and placing it on
another location such as the sideboard. The execution of this task contains
the following subtasks: go to table, locate object, reach object, grasp and
lift object, go to destination location, place object, release object, and retreat
the arm. Irregularities in the execution of the task may occur, once a human
operator performs one of the following tasks:

• enter the room and observe the robot from a distance (high probability)

• walk to the table and grasp an object (possibly the object the robot is
supposed to grasp)

• leave the room

The human and all possible human tasks are described in and simulated
by the statechart shown in Figure 5.11. Transitions between human tasks are
annotated with probabilities to describe the likelihood of changing from one
task to another one.

Once a person is present in the scene, it may intend to grasp an object
located in front of the robot. The robot is required to react on such inter-
ruptions from the person to prevent any kind of damage. Possible reactions
are aborting the current task and start a dialog with the person, or pausing
and continue grasping the target object if the object grasped by the person is
outside the manipulation space of the robot. These interactions are stored as
part of the robot’s context in MemoryX. Once a person performing similar
tasks was encountered multiple times, it will influence the outcome of the
prediction in future calculations.

124

5.2 Robot State and Resource Prediction

Figure 5.11: The behavior of a human regarding the workspace of the robot. The human can be
absent, enter the scene and start observing the robot, grasp an object, or leave the
scene. Transitions between the tasks are annotated with transition probabilities.

Figure 5.12 shows the complete statechart of the Pick And Place task includ-
ing all error handling states. The entry point of the robot task is the idle state
in which the robot receives a pick and place command for a specific object.
The complete task is subdivided into a pick task and a place task. Once the
location of the target object is known, the pick task is entered and continued
with the move to object location state. Exiting the pick task via the success

exit point results in a transition to the place task, in which the robot drives
to the destination location and tries to place the object there. Major error
conditions are handled explicitly via dedicated error states which result in
retries of the same task or in cancellation of the current task and execution of
a different one. Every other error, which can not be handled by error states,
aborts the current task and leaves the state via the failure exit point. Transi-
tions from all states to the failure exit point are omitted in the statechart in
order to only show the main execution flow of the Pick And Place statechart.

125

5 Evaluation

During evaluation, the model shown in Table 5.2 was used in the simulation
for predicting future resource utilizations. All numbers are estimates of the
real resource usage of the actual components involved during the execution
of the specific robot states.

Table 5.2: Resource models used during the simulation of the Pick And Place statechart.

State Memory [MByte] CPU [%]

Idle 50 1

Get Object Location 300 30

Move To Object Location 200 20

Move To Object Destination 200 20

Find Object 600 50

Visual Servo 300 80

Grasp Object 200 70

Lift Object 100 10

Find Place Position 300 50

Place Object 200 70

5.2.1 Single-Transition Prediction

Evaluation of the presented profiling architecture was performed by simu-
lating the execution of the Pick And Place task with additional human inter-
vention, as described in Section 5.2. Both spontaneous failure events as well
as human interruptions were generated randomly throughout the execution
of the whole task. Spontaneous failure events occurred with a probability of
0.3 during the execution of single sub-states.

126

5.2 Robot State and Resource Prediction

Fi
gu

re
5.

12
:T

he
pi

ck
an

d
pl

ac
e

st
at

ec
ha

rt
de

sc
ri

bi
ng

th
e

ta
sk

s
of

th
e

ro
bo

t.
T

he
na

m
es

of
er

ro
rh

an
dl

in
g

st
at

es
en

d
w

ith
er

ro
r

an
d

su
cc

es
s

is
in

di
ca

te
d

by
tr

an
si

tio
ns

to
th

e
su

cc
es

s
ex

it
po

in
t.

Tr
an

si
tio

ns
fr

om
an

y
st

at
e

to
th

e
fa

ilu
re

ex
it

po
in

ta
re

hi
dd

en
in

th
e

di
ag

ra
m

to
al

lo
w

fo
cu

si
ng

on
th

e
m

ai
n

ex
ec

ut
io

n
flo

w
.

127

5 Evaluation

The human influenced the Pick And Place task according to the behavior and
associated transition probabilities as shown in Figure 5.11.

In advance of the evaluation, four datasets for training the prediction
model were gathered by repeated executions of the Pick And Place task.
The datasets contain 50, 500, 1500, and 3000 recorded transitions respec-
tively, including statechart and environment parameters. Each dataset with a
lower number of transitions is a subset of the datasets with a higher number
of transitions (∀i < j: dataset i ⊂ dataset j).

During the evaluation phase, the Pick And Place task was executed repeat-
edly until 500 transitions were reached. Each statechart transition instantly
triggered a calculation of the state prediction for the next three future transi-
tions using a prediction horizon of h = 3 time steps. After each state predic-
tion, the accompanying resource utilization was calculated by the resource
prediction and visualized.

Evaluation was performed using the Markov prediction model which is
explained in Section 3.2.1. Additionally, the Global Probability (GP) method
explained in Section 3.2.4 was used for comparison. The GP method takes
only the global transition probability into account without regarding the
world state. Prediction precision was determined by comparing the most
probable predicted state (highest transition probability) with the actually ex-
ecuted state. Two different matching criteria were used during the evaluation.
The first criterion measures the State-Match which only checks if the ac-
tually executed sub-state matches the predicted state. The second criterion
measures the World-Match which compares both executed sub-state and en-
vironmental parameters. In the second case, predictions are only considered
valid if both predicted and executed sub-state match as well as the environ-
mental parameters Results of the evaluation are listed in Table 5.3 and shown
in Figure 5.13.

128

5.2 Robot State and Resource Prediction

Table 5.3: Prediction correctness in percent of the Markov and the GP prediction method.
State-Match only detects sub-state matches while World-Match requires matches in
both sub-state and environmental parameter. Values for GP and World-Match do not
exist since this method does not take environmental parameters into account.

Dataset Prediction Method State-Match [%] World-Match [%]

1
Markov 53.1 43.5

GP 59.3 -

2
Markov 66.6 48.3

GP 65.6 -

3
Markov 65.9 50.5

GP 62.4 -

4
Markov 67.8 50.4

GP 63.7 -

1 2 3 4
0

20
40
60
80

100

Dataset

Pr
ed

ic
tio

n
C

or
re

ct
ne

ss
[%

]

Markov (State-Match)
GP (State-Match)
Markov (World-Match)

Figure 5.13: Prediction correctness percentage of the Markov and the Global Probability (GP)
prediction methods as listed in Table 5.3.

For the smallest set of training data, the GP method shows a higher prediction
rate than the Markov prediction. However, the Markov-based prediction per-
forms better than GP after being trained with more data. With more training
data, the Markov approach also has to rely less on the replacement strategy
for unknown situations This trend is shown in Table 5.4.

129

5 Evaluation

Table 5.4: Percentage of required calls to the replacement strategy for the Markov prediction
model based on the four different training datasets. With more training data, the
model has to rely less on the replacement strategy, since more situations are stored
in the Markov model.

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Replacement Stragety 58.9 42.6 29.3 25.0

The numbers in Table 5.3 show, that external interruptions lead to a failure
rate of up to 47% (State-Match (SM)) or 57% (World-Match (WM)). Many
interruptions can not be foreseen due to their random occurrence. Therefore,
an evaluation was performed, where the Pick And Place task was executed
without external interruptions while the model was trained with dataset 1.
The comparison between Pick And Place execution with and without external
events is listed in Table 5.5. The evaluations with failure events are marked
with +E.

Table 5.5 shows that prediction performance is significantly higher, when
no additional failure events are generated meaning the task is executed in
a straightforward manner. One reason is that in the case of additional error
events, at least one additional transition from the current state to the failure

exit point is generated which is unknown in the trained model.

As expected, the State-Match criterion always produces more matches
than World-Match. Prediction performance of the World-Match criterion
decreases, since a specific robot task can be performed despite differing envi-
ronment parameters. The robot might for example grasp the object whether
a human is present or not. However, the World-Match measure is able to
distinguish world states containing different humans, even if both humans
perform the same task. It is also not possible to rely on State-Match in cases
where interfering habits of different humans need to be considered. In the
evaluation, it is essential to differentiate between the preferences of humans

130

5.2 Robot State and Resource Prediction

to grasp specific objects since the specific object determines if the robot will
be interrupted or not. Increasing the number of correct predictions using the
World-State criterion requires splitting environmental parameters into one
class which influences the prediction result and another class containing all
parameters which do not influence the prediction result.

Table 5.5: Percentage of correct predictions of the Markov based state prediction method.
Evaluations marked with +E contain failure events generated in addition to the
human interruptions. State-Match (SM) only detects sub-state matches while World-
Match (WM) requires matches in both sub-state and environment parameter. Due to
the nature of the GP method, no World-State matches can be created.

Prediction Method SM [%] WM [%] SM +E [%] WM +E [%]

Markov 91.3 76.3 53.1 43.5

GP 79.6 - 59.3 -

5.2.2 Multi-Transition Prediction

In the previous section, prediction was performed for a single transition using
a prediction horizon of h= 1 time steps. The same setup was used to evaluate
the prediction performance for h ∈ {1,2,3} time steps. Results based on the
State-Match criterion are listed in Table 5.6. As expected, prediction accuracy
declines for a prediction horizon of h = 2 and h = 3 time steps. Similar to
results from the previous section, Markov produces better results than GP
and the overall accuracy of the Markov prediction increases with the number
of training samples used.

131

5 Evaluation

Table 5.6: Prediction accuracy for prediction horizon h = 3 time steps for Dataset 1 and
Dataset 2 for prediction methods Markov and GP.

Dataset 1 Dataset 2

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

Markov 53.1 35.2 28.9 66.6 49.6 36.7

GP 59.3 40.9 38.6 65.6 47.4 36,9

Dataset 3 Dataset 4

h = 1 h = 2 h = 3 h = 1 h = 2 h = 3

Markov 65.9 47.7 37.3 67.8 50.8 43.7

GP 62.4 42.5 35.6 63.7 43.8 39.5

5.2.3 Resource Prediction

Predictions from the last section were further associated with the resource-
profiles defined in Table 5.2. From each prediction calculated in Section 5.2.2,
the most probable transitions with an accumulated probability greater or
equal to 0.75 (75 %) were selected. Based on these transitions, three differ-
ent measures of possible resource utilization are computed: lower boundary,
upper boundary, and highest probability. Lower boundary describes the best
case scenario, upper boundary the worst case scenario, and highest probabil-
ity the scenario in which the most probable transitions are taken.

Three exemplary predictions and their associated resource predictions are
shown in this section for the three states visual servo, move to object location,
and place object. The statechart of the pick task is shown in Figure 5.14 and
its sub-states visual servo and move to object location are highlighted in red.

132

5.2 Robot State and Resource Prediction

The predicted transitions with the highest probability and their target state
are highlighted in blue.

Figure 5.14: The pick task with its sub-states pick object and move to location highlighted in
red. State transitions with the highest predicted probability are highlighted in blue.

The resource predictions for the states pick object and move to location

are shown in Figure 5.15. CPU utilization is shown in the left graph while
memory utilization is shown in the right graph of each sub-figure. Each graph
shows the lower boundary of the predicted resource utilization as a red line,
the upper boundary of the predicted resource utilization as a green line, and
the predicted resource utilization with the highest probability is shown as a
blue line.

The state grasp object was predicted to be the most probable successor
state of the visual servo with an overall high CPU utilization (Figure 5.15(a)).
The large difference between the upper and lower memory utilization bound-
ary of step 1 is due to failure requiring less resources than grasp error which
in turn requires less resources than the lift object state.

Both CPU and memory utilization of the resource prediction calculated
from state move to object location start with an identical value of 50 % and
300 MByte, as shown in Figure 5.15(b). Based on the current world state, the
only follow up state to be predicted from the current move to object location

was find object state.

133

5 Evaluation

(a) Prediction for the visual servo state

(b) Prediction for the move to object location state

Figure 5.15: Predictions for CPU and memory utilization generated for the visual servo and
move to object location state. CPU utilization in % is shown in the left graph
and memory utilization in MByte is shown in the right graphs of each sub-figure.
Values colored in blue show the resource utilization of the predicted state with the
highest probability. Furthermore, lower boundaries are shown in red while upper
boundaries are shown in green. Source: [Kröhnert et al., 2014]

The place task is shown in Figure 5.16 and its sub-state place object is
highlighted in red. The transitions with the highest predicted probability and
their target state are highlighted in blue. The resource predictions for the
state place object is shown in Figure 5.15.

Predictions for the place object show similar results to the visual servo

state. In this case, the gap in CPU usage visible in Figure 5.17(a) results
from the difference between success which requires no resources at all and
the place object state which might be reentered after the occurrence of an
interruption.

134

5.3 Resource-Aware Motion Planning

Figure 5.16: The place task with its sub-state place object highlighted in red. State transitions
with the highest predicted probability are highlighted in blue.

(a) Prediction for the place object state

Figure 5.17: Predictions for CPU and memory utilization generated for the place object state.
CPU utilization in % is shown at in the left graph and memory utilization in
MByte is shown in the right graph. Values colored in blue show the resource
utilization of the predicted state with the highest probability. Furthermore, lower
boundaries are shown in red while upper boundaries are shown in green. Source:
[Kröhnert et al., 2014]

5.3 Resource-Aware Motion Planning

Evaluation of the two implemented resource allocation strategies is per-
formed on four synthetic setups with increasing difficulty and one realistic
setup with the humanoid robot ARMAR-4.

Each test case is executed 100 times and the algorithm runtime is measured
in wall-clock-time. The bulk size parameter m is set to 10 to achieve the
best results and was determined empirically. In these tests, no resources are

135

5 Evaluation

removed from the algorithm at runtime to show the maximum performance
of the algorithm. During planning of the test cases the manager process
typically spends most of its time waiting for updates of its worker processes.
Compared to the 100% CPU utilization caused by the worker processes, the
manager process only causes an insignificant amount of CPU utilization and
is therefore excluded from the measurement. Finally, outliers are eliminated
by using the 10% trimmed mean of all values.

5.3.1 Test platform

The test cases are executed on up to four PCs connected via Gigabit Ethernet.
An average CPU speed of 3.38 GHz is achieved with the following Intel(R)

Core(TM) processors: 1 x i7-4770 (3.4 GHz), 2 x i7-4790 (3.6 GHz) and 1 x
i7 CPU 870 (2.93 GHz). All PCs were running the operating system Ubuntu

12.04.5 LTS which contains version 4.6.3 of the g++ compiler. During test
executions, the network was free from additional load and no other tasks
were executed on the PCs alongside the motion planning algorithm. Since
each i7 processor contains 4 physical CPUs, each machine was allowed to
start a maximum of four RemoteObjects (worker threads).

5.3.2 Test Case 1: SerialWalls

Performance of the resource-aware motion planning algorithm is evaluated
with the SerialWallsN test cases which provide similar setups with increas-
ing difficulty. This setup consists of N ∈ {1,2,3,4} parallel walls with holes
in the diagonally opposite corners, see Figure 5.18. In this setup, a long and
thin object must be moved on a collision-free path from its start configuration
ρstart on the left side through the holes in the walls to the goal configuration
ρgoal on the right side of the walls. SerialWalls4 represents the most difficult
test case and is shown in Figure 5.18 together with the object to move and a
computed collision-free path.

136

5.3 Resource-Aware Motion Planning

Overall system performance of the algorithm is evaluated using the following
strategies:

• Static Resource Allocation: At the beginning of the test case, a con-
stant number of worker processes is started subsequently. Solving the
planning problem is immediately started by the first initialized worker.
A fixed number of 1, 4, and 16 worker processes is used for evaluating
the test cases.

• ∆T : The ∆T -strategy is evaluated for ∆T ∈ {5,10,20,30}. This strat-
egy starts a new worker process after every ∆T seconds.

• NN∆T : The NN∆T -strategy is evaluated with a fixed ∆T = 30 and
σ ∈ {1,5,10} for a varying influence of the planning problem dif-
ficulty on the resource request frequency. The strategy dynamically
adapts ∆T at runtime to request new worker processes when the plan-
ning progress is stagnating.

Figure 5.18: The test case SerialWalls4 consists of four walls with opposing holes. The goal
is to move the green beam from ρstart on the left side of the walls to ρgoal on the
right side of the walls. Source: [Kröhnert et al., 2016] ©2016 IEEE

137

5 Evaluation

5.3.3 Test Case 2: Box

Figure 5.19: In the test case Box, the task of the humanoid robot ARMAR-4 is to pick up a
bottle out of a box of bottles. The difficulty lies in getting the bottle out of the box
without collisions, since it has to move in a straight line upwards. Collisions occur
immediately if the bottle deviates from the straight path by a few of millimeters.
Source: [Kröhnert et al., 2016] ©2016 IEEE

In the test case Box, a collision-free motion for the humanoid robot ARMAR-4
has to be planned for taking a bottle out of a box of bottles. Screenshots of
this planning problem are shown in Figure 5.19. Both torso and the right arm
are used for planning the motion, resulting in a total of 10 degrees of freedom
(DoF). Two DoF are located in the torso while the right arm consists of 8
DoF. The motion contains a narrow and difficult passage at the beginning,
where the bottle must be taken out of the box in a straight upward motion.
Slight deviations in rotation and position of the bottle result immediately in
collisions with the box.

This test case is used to examine whether the NN∆T -strategy can robustly
compensate bad choices of the parameter ∆T . The ∆T -strategy is configured
with ∆T ∈ {5,30}, while ∆T = 30 and σ ∈ {1,5,10} were chosen as param-
eters for the NN∆T -strategy. Each test case initially starts with one worker
process and is limited to request a maximum of 16 worker processes in total.

138

5.3 Resource-Aware Motion Planning

New worker processes are started first on any of the RemoteObjectNodes cur-
rently executing the least number of worker processes. Execution of the test
cases is stopped after finding an initial solution, since the resource allocation
strategies are only used during the initial planning phase.

Since the test case Box poses a difficult motion planning problem, the best
strategy for finding a solution as fast as possible would be to start as many
workers as fast as possible.

5.3.4 Static Resource Allocation Strategy

The static resource allocation strategy was tested on the SerialWalls test
cases with the static number of workers set to 1,4,16 and the number of walls
N ∈ 1,2,3,4. Figure 5.20 shows the result comparison of all combinations
of N and number of static workers. The bars in the chart are normalized to
the execution time tsolve of N = 1 static workers. Thus, the values for N = 4
and N = 16 show the speedup or how many percent faster the algorithm runs
with more resources. Green bars show the normalized average execution time
tsolve, which measures the time until the first solution was found. The time
tinitial measures the time required to start all initial workers and the resulting
blue bars show the percentage of normalized tinitial compared to normalized
tsolve.

Figure 5.20: Normalized execution times for the SerialWalls test cases with static resource
allocation. tsolve (green) represents the average execution time for finding the first
solution and tinitial (blue) shows the time required to start all initial workers. De-
tailed absolute planning times and their standard deviations are listed in Table 5.7.
Source: [Kröhnert et al., 2016] ©2016 IEEE

139

5 Evaluation

Figure 5.20 shows, that increasing difficulty leads to a decrease in both tsolve

and the ratio tinitial/tsolve decrease if the number of static workers increases.
However, a high number of static workers does not yield better results for sim-
ple problems as it can be seen in the SerialWalls1 test case. The graph shows
that starting 16 worker processes requires almost as much time as four work-
ers require for solving the SerialWalls1 planning problem. This is due to the
static overhead of starting worker processes and copying data. During startup,
all worker processes are started and initialized sequentially. Before a worker
process starts the planning algorithm, the initialization routine must load
all required collision models from the master process. Therefore, the time
tinitial is quite large for 16 worker processes to solve the simple SerialWalls1
test case. In this configuration, the last worker process has finished starting
when the first worker has already found a solution and planning is stopped.
The more difficult the motion planning problems get, the more negligible
the static overhead gets, since tsolve increases with the difficulty but the time
tinitial stays mostly unchanged.

Absolute planning times and their standard deviation (SD) are listed in
Table 5.7. It must be noted, that tsolve is measured in seconds, while tinitial

is measured in millisconds in order to not loose precision when displaying
the standard deviation of both values with a limit of 3 numbers behind the
decimal point. Since SDtinitial is smaller than SDtsolve by a factor of 1000,
SDtinitial would only differ in the last number, thus not showing the variation
in more detail. The tables contain an additional Solved metric, describing the
ratio between succeeded vs overall planning attempts in a given time frame.
For N = 1 the planning timeout was set to 12 minutes, while for N = 4
and N = 16 the timeout was set to 6 minutes. These timeout values were
determined empirically and are shorter for more workers, since they solve
the problem faster. With these timeouts, solutions were found in 100% of all
executions of the test cases SerialWalls1, SerialWalls2, and SerialWalls3.

140

5.3 Resource-Aware Motion Planning

However, test case SerialWalls4 could only be solved 42% of the time with
a single worker process, 94% of the time with 4 worker processes, but 100%
of the time with 16 worker processes.

Table 5.7: The execution time average tsolve and standard deviation (SDtsolve) until the first
solution was found and the time tinitial and standard deviation (SDtinitial) required to
start all initial workers.

Testcase SerialWalls1 SerialWalls2

Worker 1 4 16 1 4 16

Solved 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

tsolve [s] 0.950 0.701 0.700 21.100 8.200 4.000

SDtsolve [s] 0.006 0.031 0.009 1.103 0.397 0.131

tinitial [ms] 56.600 200.700 687.500 59.900 218.100 768.900

SDtinitial [ms] 0.660 11.640 1.940 0.750 12.000 1.780

tinitial/tsolve 5.9% 28.3% 97.9% 0.3% 2.7% 19.2%

Testcase SerialWalls3 SerialWalls4

Worker 1 4 16 1 4 16

Solved 100.0% 100.0% 100.0% 42.0% 94.0% 100.0%

tsolve [s] 198.310 64.210 23.280 671.900 239.810 65.260

SDtsolve [s] 7.571 2.511 0.709 8.368 6.962 1.438

tinitial [ms] 67.800 155.800 909.800 74.300 160.400 935.700

SDtinitial [ms] 0.740 6.390 1.850 0.880 1.150 1.420

tinitial/tsolve 0.0% 0.2% 3.9% 0.0% 0.1% 1.4%

141

5 Evaluation

5.3.5 Dynamic Resource Allocation Strategies

Both dynamic resource allocation strategies are first evaluated and compared
in the context of the SerialWalls test cases. The following measures are used
to obtain comparable numbers for all test cases:

• Efficiency ttotal : The resource utilization efficiency can be expressed
with ttotal , the accumulation of each worker’s individual execution time
required to calculate the planning result (measured in each worker
process). The smaller ttotal , the more efficient the computation power is
used. If only a single worker is started ttotal equals the overall execution
time.

• Average Workload Wavg: The average workload/number of work-
ers (Wavg) is better comparable than the number of workers started in
total throughout all executions (Wmax). Since additional workers are
requested at runtime based on a strategy, Wmax proves to be an incom-
parable measure It does not account for varying amounts of required
worker processes for processing the same problem multiple times.

Wavg :=
ttotal

tsolve
(5.1)

tsolve describes the time required for finding the first solution (mea-
sured in the manager process). Thus, a value of Wavg < 1 is possible,
since tsolve additionally includes the setup time of the master process
which is for example spent to set up the planning environment.

Figure 5.21 shows a comparison of Wmax and Wavg for all combinations of
SerialWalls test cases and executed strategies. Detailed numbers are listed
in Table 5.8. All dynamic resource allocation strategies started out with
a single worker process and did not request any further resources for the
SerialWalls1 test case. More resources were only requested by the dynamic
resource allocation strategies for the more difficult test cases.

142

5.3 Resource-Aware Motion Planning

Figure 5.21 also shows that more worker processes are started with a lower
value of the ∆T parameter. More worker processes are also started by the
NN∆T -strategy, but with an increasing value of the σ parameter. For ex-
ample, the NN10∆T 30-strategy compensates for not optimally chosen high
values of ∆T and starts almost double as many worker processes as the ∆T 30-
strategy.

Figure 5.21: The number of workers allocated by the resource allocation strategies for each
of the SerialWalls test cases. The bar of each strategy shows the number of total
worker processes Wmax in a half-transparent color and the average workload
Wavg in a solid color. The value of Wmax is always higher than the average Wavg
if the two show different values. The figure shows that new resources are only
allocated in case more difficult test cases such as SerialWalls3 and SerialWalls4
are encountered. Source: [Kröhnert et al., 2016] ©2016 IEEE

The effects of the resource allocation strategies on the execution time can
observed by measuring and comparing tsolve. Normalized solving times are
displayed in the left plot of Figure 5.22. The figure shows that SerialWalls2
is solved in the shortest amount of time with static resource allocation of 4
or 16 worker processes. However, the efficiency measure ttotal is worse in
comparison to the dynamic resource allocation strategies, since tsolve is partly
spent on initializing worker processes.

143

5 Evaluation

Table 5.8: Number of total worker processes Wmax and average workload Wavg for the graph
shown in Figure 5.21. The first row lists the different strategies.

Testcase SerialWalls1 SerialWalls2

Wmax Wavg Wmax Wavg

1 1 0.96 1 1.00

4 4 3.17 4 3.92

16 16 8.97 16 14.51

∆T 5 1 0.95 3.20 1.88

∆T 10 1 0.94 2.16 1.37

∆T 30 1 0.94 1.25 1.03

NN1∆T 30 1 0.96 1.30 1.04

NN5∆T 30 1 0.95 1.82 1.28

NN10∆T 30 1 0.95 2.23 1.48

Testcase SerialWalls3 SerialWalls4

Wmax Wavg Wmax Wavg

1 1 1.00 1 1.00

4 4 3.99 4 4.00

16 16 15.72 16 15.90

∆T 5 9.80 5.14 15.87 9.27

∆T 10 6.96 3.74 13.11 6.84

∆T 30 3.52 2.05 7.67 4.09

NN1∆T 30 4.27 2.40 8.25 5.19

NN5∆T 30 5.99 3.28 11.48 7.30

NN10∆T 30 7.46 4.09 14.53 9.61

144

5.3 Resource-Aware Motion Planning

Normalized total execution times are displayed in the right plot of Fig-
ure 5.22. Particularly the setup with 16 static workers shows the worst ef-
ficiency for the SerialWalls2 test case. In contrast, all dynamic resource
allocation strategies run slower than strategies with static allocation but with
a higher efficiency. Concrete numbers of the plots shown in Figure 5.22 are
listed in Table 5.9.

Evaluation of the more difficult SerialWalls4 problem shows that the dy-
namic resource allocation strategies perform almost as good as the static
16 worker strategy while the measured efficiency of the dynamic strategies
remains better.

Figure 5.22: Execution time tsolve and efficiency ttotal for the test cases SerialWalls2 and
SerialWalls4 per evaluated resource allocation strategy. All measured values are
normalized to the execution time of a single worker. See Table 5.9 for concrete
numbers. Source: [Kröhnert et al., 2016] ©2016 IEEE

In general, the efficiency of all dynamic resource allocation strategies is
comparably better than the efficiency of static approaches with more than
1 worker process. Therefore, the implemented dynamic resource allocation
strategies utilize the available computation power more efficiently, especially

145

5 Evaluation

when applied to easier planning problems. The difference in efficiency be-
tween static and dynamic resource allocation strategies gets smaller with
increasingly more difficult motion planning problems.

Table 5.9: Corresponding Execution time tsolve and efficiency ttotal numbers for the test cases
SerialWalls2 and SerialWalls4 per evaluated strategy as shown in Figure 5.22. The
first row lists the different strategies.

Testcase SerialWalls2 SerialWalls4

tsolve [s] ttotal [s] tsolve [s] ttotal [s]

1 21.1 21.1 671.9 672.0

4 8.2 32.1 239.9 959.0

16 4.0 58.0 65.3 1,040.0

∆T 5 13.7 25.9 92.5 857.0

∆T 10 16.6 22.8 127.9 875.0

∆T 30 20.8 21.3 215.6 882.0

NN1∆T 30 19.9 20.8 184.4 805.0

NN5∆T 30 18.3 23.3 146.0 881.0

NN10∆T 30 15.3 22.7 118.0 917.0

5.3.6 Evaluation on the Humanoid Robot ARMAR-4

A realistic motion planning problem is posed by the Box setup in which the
task of the humanoid robot ARMAR-4 is to take a bottle out of a box of
bottles (Figure 5.19). This test case was selected to show if and how well a
bad choice of the parameter ∆T can be compensated by different choices of
the parameter σ of the NN∆T -strategy.

The metrics Wavg, Wmax, tsolve, and ttotal are shown in Figure 5.23 and the
concrete values are listed in Table 5.10. For all test runs the execution time

146

5.3 Resource-Aware Motion Planning

was limited to a total of 6 minutes. The execution of the static configuration
with one worker process is not shown in the diagrams, since it only found a
valid path within the given time limit for 33% of the test runs.

Figure 5.23 shows that the ∆T 30 strategy obviously starts the least amount
of workers compared to all other strategies, due to the bad choice of ∆T = 30.
The runtime of ∆T 30 is more than three times larger than the runtime of ∆T 5
and the efficiency ttotal is two times worse.

All NN∆T -strategies compensate the high ∆T value and start more work-
ers than the ∆T 30 strategy, resulting in lower tsolve and ttotal values. Compen-
sation of high values of ∆T is stronger with an increasing value of σ .

NN10∆T 30 solves the problem 15% faster than ∆T 5 but with a 7% lower
efficiency value ttotal . These results again show the ability of the dynamic
resource allocation strategies to detect difficult planning problems. Addi-
tionally, the requested computation resources are utilized efficiently and the
NN∆T -strategy shows its ability to compensate bad choices of the ∆T pa-
rameter.

Table 5.10: Average number of workers Wavg and maximum number of workers Wmax for the
test case Box and all employed resource allocation strategies. Average execution
time tsolve and the associated standard deviation SDtsolve for the test case Box
and all employed resource allocation strategies. Total execution time tsolve and
the associated standard deviation SDtsolve for the test case Box and all employed
resource allocation strategies.

∆T 5 ∆T 30 NN1∆T 30 NN5∆T 30 NN10∆T 30

Wavg 5.7 3.5 4.3 5.6 7.0

Wmax 10.1 6.7 8.1 10.4 11.9

tsolve [s] 58.2 187.8 127.2 75.0 49.7

SDtsolve [s] 3.8 7.3 5.2 3.7 3.0

ttotal [s] 324.0 656.0 544.0 420.0 348.0x

147

5 Evaluation

(a) Wavg and Wmax (b) tsolve (c) ttotal

Figure 5.23: Wavg, Wmax, normalized tsolve and normalized ttotal for the test case Box per evalu-
ated strategy. Source: [Kröhnert et al., 2016] ©2016 IEEE

5.4 Resource-Aware Disparity Map

The resource-aware disparity map algorithm is evaluated as X10 implemen-
tation using the invasive simulator and as C++ implementation running on
top of OctoPOS on an Invasive Computing hardware prototype. Furthermore,
the integration of the disparity map algorithm into a demo setup is shown.

5.4.1 Invasive X10 Evaluation

Evaluation of the algorithm was performed using the invasive simulator [Han-
nig et al., 2011]. The simulator was executed on a PC equipped with a Core i7
(4 cores with HyperThreading @ 2.93 GHz) processor running Ubuntu Linux
8.04 and X10 version 2.2.1. Both the X10-runtime using the C++ backend as
well as the invasive simulator are compiled from scratch with the compiler
flags -Doptimize=true -DNO_CHECKS=true to achieve the best per-
formance.

148

5.4 Resource-Aware Disparity Map

Overall, execution time is measured in 5 trials, each running the algorithm
100 times using the same set of input images. The resource-aware disparity

map algorithm is executed using 1 to 8 PEs, while the IVT and the single-
core X10 version are not parallelized and can therefore not use more than
one PE.

Evaluation results are shown in Table 5.11 which lists the IVT and single-
core X10 versions first, followed by the resource-aware version. The fastest
evaluated variant was the IVT implementation. Slowdowns in all other vari-
ants are due to the used X10-runtime not containing fast and efficient imple-
mentations for accessing Array data structures.

As expected, the invasive variant using one PE shows slightly slower per-
formance than the plain X10 and the C++ version. In particular, the other
variants do not use the invade(), infect(), retreat() API for ac-
quiring and releasing resources and therefore do not require copying data
over the NoC into remote TLMs. Hence, the invasive API and simulator
overhead is comparatively small and accounts only for a small overhead in
execution time.

Overall, it can be shown that the performance of the invasive disparity
map algorithm measured in execution time increases with the number of PEs
available.

Table 5.11 also shows the range of calculated standard deviations for all
test executions. The usage of Intel Core i7 processors with HyperThreading
technology can most probably be made responsible for these ranges. Hyper-
Threading allows simultaneously scheduling two operating system threads
on the same CPU core. This technique can boost overall system performance,
but can also reduce performance if simultaneously executing threads share
the same set of processing resources. In the second case, one thread has to
wait until the shared resource is freed again by the other thread.

149

5 Evaluation

Table 5.11: Performance evaluation of the different disparity map implementations showing
the number of used PEs and the mean, min, max, and standard-deviation (SD) of
measured execution times.

Algorithm #PEs Mean [ms] Min [ms] Max [ms] SD [ms]

IVT (C++) 1 38 37 90 3-9

X10 1 93 84 143 11-17

Invasive 1 135 125 236 3-14

Invasive 2 138 125 193 3-11

Invasive 3 143 104 283 6-18

Invasive 4 144 131 283 3-19

Invasive 5 120 89 150 4-6

Invasive 6 105 98 134 3-6

Invasive 7 96 65 148 4-8

Invasive 8 90 81 213 3-18

5.4.2 Invasive C++ Evaluation

Evaluation of the OctoPOS native implementation of the disparity map was
performed on the hardware shown in Figure 4.5. Stereo images of the size
320x240 pixels were used as input for producing a same-sized disparity map.
The invasive C++ implementation of the algorithm was executed in two dif-
ferent configurations both using between 1 to 6 CPUs. First, the algorithm
uses main memory for storing input, intermediate, and final data structures.
Second, tile-local memory (TLM) is used for storing intermediate data struc-
tures used for local processing.

150

5.4 Resource-Aware Disparity Map

1 2 3 4 5 6
0

2,000

4,000

6,000

8,000

#CPUs

Ti
m

e
[m

s]

No TLM
TLM

Figure 5.24: Execution times in [ms] of the invasive C++ disparity map algorithm. Blue bars
represent executions without using tile-local memory (TLM). Red bars represent
executions making use of TLM.

Figure 5.24 shows a graph of the results with detailed execution times listed
in Table 5.12. The graph shows that on physical hardware, execution times
decrease with a higher number of used CPUs. It is also shown that storing
intermediate data in available TLM always results in faster execution times
as compared to storing this data in the main memory. This reduction in
execution time is due to the faster access to the TLM and a reduction of
the bus load of the bandwidth limited connection between CPUs and main
memory.

Table 5.12: Execution times in [ms] of the invasive C++ disparity map algorithm. The top row
indicates the number of CPUs used for calculation. Execution times in the first
data row are without using tile-local memory (TLM). Results in the second data
row were obtained using TLM.

1 2 3 4 5 6

No TLM [ms] 8950 5130 3850 3540 3580 3700

TLM [ms] 8700 4890 3500 2830 2480 2300

151

5 Evaluation

5.4.3 Invasive Computing Head Demo

Exemplary screenshots of the demo execution are provided in Figure 5.25
and Figure 5.26. The screen is divided into four different images showing:
one of the input images (top left), the calculated disparity map image (bottom
left), object detection (top right), and skin detection (bottom right). The first
image (Figure 5.25(a)) shows an empty scene with uninteresting objects
in the background, resulting in computations of the disparity map. Skin
color is first detected in a low-resolution version of the input images as seen
in Figure 5.25(b). Calculation of the disparity map continues in this case.
Once, the target object is detected in a low-resolution image, the detection
algorithm requests more resources to track both the object as well as any
skin colored region with higher quality, see Figure 5.26(a). In this case, not
enough resources remain for calculating the disparity map image.

152

5.4 Resource-Aware Disparity Map

(a) No objects in scene.

(b) Disparity map plus low-resolution skin detection.

Figure 5.25: Invasive tracking demo screenshots, showing an input image (top left), disparity
map image (bottom left), object tracking output image (top right), and the skin
tracking output image (bottom right). Only the disparity map is calculated if
no objects or skin is detected (5.25(a)). Object recognition performed on low-
resolution (5.25(b)).

153

5 Evaluation

(a) High-resolution object and skin detection.

Figure 5.26: Invasive tracking demo screenshots, showing an input image (top left), disparity
map image (bottom left), object tracking output image (top right), and the skin
tracking output image (bottom right). Object recognition is performed on full-
resolution images (5.26(a)) after an object was recognized in a low-resolution
image (5.25(b)).

154

6 Conclusion

The objective of this work was to provide building blocks for future resource-
aware architectures for humanoid robots. Since building a complete resource-
aware architecture is a huge task in itself, the scope of the work was to predict
resource over-utilization at runtime and to assign resources to concurrent
applications in a context-sensitive manner. This led to the key contributions
of this work, namely, the creation of context-sensitive resource models, a
prediction mechanism for future robot tasks, and the prediction of future
resource utilizations when resource models are combined with robot task
predictions. Resource-aware algorithms were created, that are capable of
adjusting their internal resource usage based on the amount of available and
assigned resources.

In summary, the contributions of this work to a resource-aware robot ar-
chitecture for humanoid robots are the following:

Context-Sensitive Resource Models

Humanoid robots work in dynamically changing environments where execu-
tions of tasks can differ significantly based on the current context. This thesis
presented a context-sensitive resource model which can be generated from
data extracted from real or simulated executions of robot tasks which are
described as statecharts. The model can specify varying resource demands
and execution times based on environmental contexts.

Furthermore, a profiling architecture which allows runtime introspection
and self-monitoring of robot applications and statecharts was introduced and
integrated into the existing ArmarX robot framework.

155

6 Conclusion

This architecture enables collecting high-level information about control and
data flow within robot application statecharts as well as the environment of
the robot. Runtime profiling of robot applications makes this information
available as training data for the resource models. The acquired data is also
stored in a database for further offline processing.

Context-Sensitive Resource Prediction

An architecture for predicting future robot tasks and resource utilizations
based on the current context was introduced in chapter 3. The components
required for realizing the prediction architecture were implemented as en-
hancements of the existing ArmarX robotics framework and the previously
described profiling mechanisms were reused for runtime monitoring pur-
poses. A prediction model based on Markov chains was trained with data
from simulated executions of ARMAR-III performing a pick and place task
in a fully observable environment. During the task, the robot was randomly
disturbed by human interactions and external failure events. The model was
shown to be capable of calculating probability distributions of the most prob-
able next robot tasks depending on the current world state. Predictions of
future robot tasks were further enriched with information from the presented
context-sensitive resource models to provide probabilistic information about
upcoming workload situations and their expected resource utilization.

The evaluation showed that the profiling architecture can also be used
to monitor environment and transition parameters of ArmarX-based robot
programs. During execution, predictions were constantly calculated upon
changes in the robot statechart and enhanced with context-sensitive resource
models. The presented approach was able to provide the means for detecting
resource over-utilizations in advance of their occurrence. This resource pre-
diction information provides the basis for performing speculative resource
management, either through extensions of off-the-shelf operating systems or
in combination with specialized resource-aware operating systems.

156

6 Conclusion

Currently, it is difficult to estimate the benefit of using prediction informa-
tion in operating systems. In general, prediction is not used in operating
systems, except in research-oriented operating systems. Additionally, dy-
namic resource profiles of applications are usually not taken into account by
resource allocation mechanisms of existing operating systems. Most current
systems lack the possibility to express these dynamic resource demands of
applications and to take these demands into account during resource distri-
bution.

One goal of new paradigms such as Invasive Computing is to prevent sys-
tem overload situations before they occur by dynamically influencing the
resource negotiation process in advance of actual resource requests. How-
ever, taking advantage of these resource negotiation capabilities requires
algorithms to be capable of dynamically adjusting their internal resource
demands based on resource availability.

Resource-Aware Motion Planning

State of the art humanoid robots are equipped with multi-core processors,
which are used either to execute parallelized algorithms or for parallel exe-
cution of different tasks and computations. Motion planning is one category
of algorithms benefiting from parallelization. However, current parallelized
and distributed motion planners work with a statically assigned number of
resources in order to provide results for difficult planning problems as fast
as possible.

This work showed that static resource allocation for motion planning al-
gorithms is not optimal for solving planning problems of various difficulties.
Additionally, static allocation can lead to inefficient resource utilization and
result in an increased system workload. To overcome this problem, a dis-
tributed resource-aware motion planning algorithm was presented which
was implemented in the ArmarX robotic framework.

157

6 Conclusion

This motion planning algorithm starts with minimal resources and is capa-
ble of requesting additional computing resources based on the progress and
the difficulty of the current motion planning problem. Different dynamic
resource allocation strategies for tracking the planning progress were im-
plemented. The strategies were evaluated in increasingly difficult synthetic
motion planning setups and in a realistic motion planning scenario involv-
ing the humanoid robot ARMAR-4. These resource allocation strategies
were shown to provide a good estimate of the planning problem difficulty
which could be translated into a measure for requesting additional resources.
Resource usage efficiency was increased by acquiring resources only for
difficult problems. However, the increased resource utilization comes at the
cost of a slightly increased overall execution time. Therefore, the planner
parameterization poses a trade-off between efficiency and speed.

Resource-Aware Disparity Map

In the field of robotic vision, a resource-aware disparity map algorithm based
on the new Invasive Computing paradigm was developed in this work. The
initial version was implemented in X10 and evaluated using a simulator
which provides support for invasive techniques for dynamically requesting
and releasing resources of a small CPU cluster. This version of the algo-
rithm was shown to be capable to dynamically adapt to different amounts
of available resources. Afterwards, the algorithm was implemented in C++
on top of OctoPOS, the operating system of the Transregional Collabora-
tive Research Center Invasive Computing (SFB/TR 89), and evaluated on
prototype hardware. It could be shown that utilization of features of the
Invasive Computing hardware platform results in further speedup of the al-
gorithm. Such algorithms, which can dynamically scale their performance
and functionality depending on the current state of the robot, are intrinsic
parts of future resource-aware robot architectures which execute on resource
restricted platforms.

158

6.1 Outlook

6.1 Outlook

This thesis focuses on basic building blocks required for building resource-
aware robot architectures. Namely, a context-sensitive resource model, a
profiling approach for recording execution data, an approach for predicting
future robot tasks and associated resource utilizations, and resource-aware
algorithms. These components provide the basics for performing speculative
resource management on humanoid robots. Future work therefore includes
the expansion of the presented pick and place scenario to use predicted re-
source utilizations in order to speculatively start computations before they
are requested. Furthermore, both current and predicted resource utilization
data can be used to influence resource-aware algorithms at runtime by grant-
ing more resources if available or by withdrawing resources when other
applications request resources. For example, motion planning could be spec-
ulatively started earlier than requested using as many resources as available
at any time. This scenario would also serve as an evaluation of the resource-
aware motion planner to be capable of handing back resources to balance the
system workload while still being capable of fulfilling the planning request.

Currently, the prediction approach requires full knowledge of the envi-
ronment, and thus a fully observable world. This is however not ideal for
humanoid robots operating in changing environments. A future enhance-
ment would be to address this issue by evaluating prediction models such as
HMMs, which are capable of dealing with incomplete world knowledge.

The context-sensitive resource model includes both CPU and memory
utilization statistics as well as statistics of execution time and branching
behavior. A future task related to this model is to include communication
bandwidth and behavior which also requires enhancements to the profiling
infrastructure.

159

6 Conclusion

One further aspect is automatic detection of ”relevant“ components or states
in a statechart which should be included in the profiling process. By not
processing every piece of information, the amount of gathered and stored
data could be reduced.

The resource-aware motion planner can be expanded with more special-
ized resource allocation strategies.When requesting more resources, these
strategies might for example take the current system load, memory pressure,
or communication bandwidth into account. Also, investigating and decreas-
ing the startup time of newly created worker nodes can result in reducing the
gap in execution times when many workers are used.

160

Appendix

A Markov Processes and Markov Chains

Markov processes describe statistical models that use probabilities to de-
scribe possible occurrences of future events. One use case is stochastic mod-
eling of environmental world states. Two different kinds of Markov processes
exist

• discrete-time: transitions within the process happen at discrete time
steps, meaning that time steps are countable

• continuous-time: time steps are not countable

Discrete-time Markov processes are also called Markov chains and are
described in more detail in this section. One major aspect of this type of
model is that limited knowledge of the past is sufficient to calculate the
probabilities for the next transitions in the model. The Markov property
states that the probability distribution of future states in the process only
depends on the current state of the process. This Markov property holds
true for first order Markov chains, where only the current state of the model
influences future transitions. In contrast, the probability distribution of nth
order Markov chains is influenced by the past n states occurred in the process.
Conditional probabilities are used to model this relation mathematically.

A Markov chain is based on a finite set of states S = {s1, . . . ,sm},m ∈ N.
Each state can represent a robot pose, a robot task, or emotional states of
a human. Transitions between states in the Markov chain are triggered by
observable events. Markov chains are described by a sequence of random
variables X1, . . . ,Xm,m ∈ N0 with the property

161

Appendix

P(Xn = sn|X0 = s0,X1 = s1, . . . ,Xn−1 = sn−1).

Here, P(Xn = sx|Xn−1 = sy) describes the probability of the transition (sx→
sy at time step n. Using pi j(n) = P(Xn = j|Xn−1 = i) as abbreviations leads
to the following compact matrix representation of the transition probabilities

Πn =


p11(n) · · · p1m(n)

...
. . .

...

pm1(n) · · · pmm(n)

 .

A Markov chain is called homogeneous, if every transition probability is
independent of the time parameter n resulting in the following property

P(Xn = sx|Xn−1 = sy) = P(Xm = sx|Xm−1 = sy).

The advantage of a homogeneous Markov chain is the possibility to calcu-
late the transition probability from (sx→ sy) via pn

i j = P(Xk+n = sy|Xk = sx).
Initially, a state distribution p(0) is required, describing how probable it is

for each s ∈ S to occur at time step 0. The product of p(0) and the transition
matrix Π then provides the probability distribution of all states in the process
after one time step.

Furthermore, Markov chains can be visualized intuitively as directed
graphs. An exemplary graph is given on the following page. The matching
transition probabilities are listed in the table after the figure.

162

B Voronoi Diagram and Voronoi Regions

s1

s2 s3

0.4

0.6

0.3

0.3

0.4
0.5

0.5

A Markov model consisting of three states s1, s2, s3, transitions between the states, and associ-
ated transition probabilities.

Transition probabilities of the Markov model depicted in the figure above.

s1 s2 s3

s1 0 0.4 0.6

s2 0.3 0.3 0.4

s3 0.5 0.5 0

B Voronoi Diagram and Voronoi Regions

A Voronoi diagram divides a plane into partitions based on seed points. Given
a set of seed points p1, p2, · · · , pn the partition Rpi associated with seed point
pi is constructed as follows. The distance between each point p and the seed
point pi is smaller than the distance between p and any other seed-point
p j (i 6= j). The partition Rpi is also called the Voronoi region of seed point
pi.

Different examples of Voronoi diagrams are shown in the figures on the
next page. The left image shows a square plane divided vertically into two
equally sized partitions. The middle image shows the same plane divided
into four equally sized partitions through four seed points. The locations of
the seed points in the left and middle image lead to the regular geometric
shape of the Voronoi regions. An example of a more complex and geometric
irregular Voronoi diagram is shown in the right image, which divides the
plane into 14 differently sized partitions.

163

Appendix

(a) (b) (c)

Voronoi diagrams for 2, 4, and 14 seed points.

C ArmarX

ArmarX is an event-driven Robot Development Environment (RDE) pro-
viding the infrastructure for creating distributed component-based software
architectures.

Communication in ArmarX is performed by the Internet Communication
Engine (Ice) framework provided by the company ZeroC [ZeroC, Inc., 2015].
The foundations of Ice include an Interface Definition Language (IDL) and
different communication patterns. IDLs allow specifying interfaces in a type-
safe manner and creating software using different programming languages
by transforming the IDL constructs into each language. Communication
patterns provided by Ice are remote procedure calls and publish-subscribe.
Remote procedure calls are used for direct interaction with specific software
components and can be one-way for commands or two-way if a result is ex-
pected. Publish-Subscribe is used when data such as sensor values need to be
send to an unspecified number of receivers. In this case, the data broadcast
by the publisher on so called topics is received by a server which in turn
delivers the data to receivers which have subscribed to specific topics. Addi-
tionally, all communication using Ice can be changed between asynchronous
or non-blocking based on context dependent requirements.

164

C ArmarX

Organization of ArmarX can be divided into three major categories. The
middleware category provides core functionalities such as communication,
deployment, the component model, dependency management, and the state-
chart application model. The robot framework category provides standard-
ized interfaces and components which can be reused and configured for a
specific robot. Components of the MemoryX memory architecture or com-
ponents for working with the kinematics of a robot are examples of such
reusable and reconfigurable components. The application category contains
all software implemented for a specific robot. Extensive introspection, debug-
ging, and development capabilities are provided by supporting tools such as
generic and specialized visualizations and editors or the ArmarXSimulation.

C.1 ArmarX Statecharts

The application model of ArmarX consist of two parts: robot components and
statecharts. Robot components perform most of the work such as accessing
hardware, computing kinematics, or detecting objects. Statecharts on the
other hand represent the high-level structure of robot programs and specify
control flow, data flow, and the coordination logic of robot components.

The major design goals of the ArmarX statecharts are modularity, reusabil-
ity, runtime-reconfigurability, decentralization, and state-disclosure. Modu-
larity and reusability are tightly coupled, meaning that states themselves are
decomposed into smaller statecharts with each statechart being reusable in
other statecharts. Runtime reconfigurability provides the means to dynami-
cally change the structure of a statechart, an essential feature for executing
dynamically changing plans. Decentralization of statecharts allows execut-
ing sub-statecharts in a process different than the parent process, leading
to more robust systems capable of load balancing and crash recovery from

165

Appendix

faulty lower-level statecharts. In addition to that, state-disclosure allows in-
specting the structure, the current state, and parameters of statecharts at run-
time. This feature aids developers in debugging control- and data flow issues
at runtime.

A state in an ArmarX statechart is defined by a set of input parameters, a
set of local parameters, a set of output parameters, a set of outgoing events,
as well as a collection of sub-states and parameter mappings between sub-
states. Additionally, user specified code can be executed when entering or
leaving a state. Different types of states exist: regular local states, end states
for triggering an event and leave the parent state, remote states for accessing
states running in a remote process, and dynamic remote states which are
similar to remote states but instantiate the target state at runtime.

Transitions are defined between a source and a destination state on the
same hierarchy level and are triggered by events generated by end states or
by conditions. Conditions are logical expressions defining checks on input
data and an event to fire when evaluating to true. In addition to the control
flow, data flow is specified via transitions by mapping source state output
parameters and parent state parameters to destination state input parameters.
A special initial state triggers a transition to a predefined sub-state when a
statechart is entered.

To enhance reusability of statecharts between different use cases, so called
statechart profiles are available. These statechart profiles allow changing
default values of state parameters based on the chosen profile. This feature
provides the means for creating reusable and more generic statecharts, since
robot dependent parameters can be optimized through changes in the robot
specific statechart profile.

Development of ArmarX statecharts is aided by the StateChartEditor
(SCE) which allows creating and connecting statecharts graphically via a
drag and drop interface. The SCE allows defining typed input, output, and
local parameters, specifying and overriding statechart profiles as well as

166

C ArmarX

mapping state parameters based on transitions. Furthermore, the SCE con-
tains sanity checks to enforce the user to only provide parameter mappings
between compatible types.

C.2 MemoryX

MemoryX provides a memory architecture for robots inspired by the human
brain. The architecture consists of three different types of memory: Working
Memory (WM), Long-Term Memory (LTM), and Prior Knowledge (PK). All
memory types are accessible via Ice throughout the complete application net-
work which allows querying and updating the memory from all parts of the
distributed robot application. Each memory type is divided into segments for
grouping semantically similar data such as perceived objects, known object
classes, or locations of robots and other agents in the world. Information is
stored in these memory types as entities representing generic key-value pairs.
Specialized entity classes exist holding a predefined set of keys. Further
entity classes can be specified by the robot programmer.

The Working Memory is a volatile memory, similar to the human’s short-
term memory, and contains the current robot’s internal state and all infor-
mation about the current environment known to the robot. Updates to the
Working Memory are usually performed by perception processes which in-
stantiate object classes found in Prior Knowledge.

Prior Knowledge contains persistent information provided by the user or
designer of the robot. Entities stored in Prior Knowledge may contain 3D
object models or visual features required for object detection. Furthermore,
entities in Working Memory can be enriched with information from Prior
Knowledge for example to display 3D objects in a visualization.

The Long-Term Memory is used to persistently store information learned
or inferred by the robot. Furthermore, snapshots of the Working Memory
can be created and stored in LTM. These snapshots can be used to store

167

Appendix

predefined environments which can be loaded by the robot into Working
Memory.

This memory architecture combined with perceptual components provide
a flexible and easy to use framework. Instead of directly querying the per-
ception about locations of objects, the memory architecture is asked for this
information. If the existence certainty of an object is high enough, the in-
formation is directly returned. If the existence certainty is below a specified
threshold, the respective memory triggers the associated object detection
components and fuses the returned result with the existing entities. Mem-
oryX provides different motion models which can be attached to entities.
These motion models are used to predict where a moving object will most
likely be found in the future. Additionally, MemoryX allows registering for
events which are sent out if specific objects or the general content of the
memory changes.

168

List of Figures

1.1 The humanoid robot ARMAR-IIIa while loading a dishwasher. 1

1.2 Generalized three-layer robotic architecture. 3

1.3 Overview of the interplay between profiling, prediction, specu-
lative resource management and resource-aware algorithms. . . 4

1.4 The three main resource related phases of an invasive program:
invade(), infect(), retreat(). 7

1.5 An exemplary Invasive Computing hardware architecture. 10

2.1 The humanoid robots ASIMO, HRP-2, ARMAR-III, and Justin. 12

2.2 The humanoid robots iCub, HRP-4C, LOLA, and Robonaut 2. . 13

2.3 The humanoid robots PETMAN, ARMAR-4, and TORO. 15

2.4 An excerpt of a more complex statechart showing the logic of a
stopwatch. 19

2.5 An exemplary task tree of the Task Description Language (TDL). 21

2.6 The visual representation of a statechart in ArmarX. 23

2.7 Informed RRT* search space reduction. 45

2.8 Difference between total Voronoi regions, visible Voronoi re-
gions, and dynamic domains of sampling points. 48

2.9 Parallel expansion of Bulk Synchronous Distributed RRT. 51

3.1 Overview of the profiling and resource model generation process. 57

3.2 Overview of the ArmarX profiling architecture. 66

3.3 Plots of CPU and memory utilization profiling data. 67

3.4 Overview of the resource prediction process. 77

169

List of Figures

3.5 Relation between StatePrediction and the different prediction
methods. 82

4.1 Overview of the resource-aware motion planning architecture. . 87

4.2 Effect of the parameter σ of the NN∆T -strategy on the ratio ∆T ′
∆T 96

4.3 Sequence diagram of the steps involved from specifying a plan-
ning problem to retrieving the result. 98

4.4 The hardware layout used for executing the resource-aware dis-
parity map algorithm. 101

4.5 The hardware layout used for executing and evaluating the
resource-aware disparity map algorithm in C++. 103

4.6 The standalone head of the humanoid robot ARMAR-III track-
ing a blue pitcher. 105

4.7 The hardware layout used for running the invasive head demo
OctoPOS guest layer. 106

5.1 Overview of the different robot sub-tasks during the execution
of a pick and place task. 108

5.2 The pick and place statechart used for creating resource profiles. 109

5.3 Substates of the pick and place statechart used for creating re-
source profiles. 110

5.4 Execution intervals (durations) of the states involved for execut-
ing a pick and place task. 112

5.5 CPU utilization of running robot components. 119

5.6 Memory utilization in MByte of a selection of robot compo-
nents. 120

5.7 CPU utilization of robot components running during the execu-
tion of the PlaceObject. 121

5.8 Memory utilization of robot components running during the ex-
ecution of the PlaceObject. 122

170

List of Figures

5.9 CPU utilization of robot components running during the execu-
tion of the MoveToPrePlacePose. 123

5.10 Memory utilization of robot components running during the ex-
ecution of the MoveToPrePlacePose 123

5.11 The behavior of a human regarding the workspace of the robot. . 125

5.12 The pick and place statechart describing the tasks of the robot. . 127

5.13 Prediction correctness percentage of the Markov and the Global
Probability (GP) prediction methods as listed in Table 5.3. . . . 129

5.14 The pick task with its sub-states pick object and move to location

highlighted in red. 133

5.15 Predictions for CPU and memory utilization generated for the
visual servo and move to object location state. 134

5.16 The place task with its sub-state place object highlighted in red. 135

5.17 Predictions for CPU and memory utilization generated for the
place object state. 135

5.18 The test case SerialWalls4 consists of four walls with holes in
opposing corners. 137

5.19 In the test case Box, the task of the humanoid robot ARMAR-4
is to pick up a bottle out of a box of bottles. 138

5.20 Normalized execution times for the SerialWalls test cases with
static resource allocation. 139

5.21 The number of workers allocated by the resource allocation
strategies for each of the SerialWalls test cases. 143

5.22 Execution time tsolve and efficiency ttotal of the evaluated re-
source allocation strategies. 145

5.23 Wavg, Wmax, normalized tsolve and normalized ttotal for the test
case Box per evaluated strategy. Source: [Kröhnert et al., 2016]
©2016 IEEE . 148

5.24 Execution times in milliseconds of the invasive C++ disparity
map algorithm. 151

171

List of Figures

5.25 Screenshots of the visualization of the invasive tracking demo.
(Part 1) . 153

5.26 Screenshots of the visualization of the invasive tracking demo.
(Part 2) . 154

172

List of Tables

5.1 The mapping between indices and state names for Figure 5.4. . . 113
5.1 The mapping between indices and state names for Figure 5.4. . . 114
5.1 The mapping between indices and state names for Figure 5.4. . . 115
5.1 The mapping between indices and state names for Figure 5.4. . . 116
5.1 The mapping between indices and state names for Figure 5.4. . . 117
5.2 Resource models used during the simulation of the Pick And

Place statechart. 126
5.3 Prediction correctness in percent of the Markov and the GP pre-

diction method. 129
5.4 Percentage of required calls to the replacement strategy for the

Markov prediction model based on the four different training
datasets. 130

5.5 Percentage of correct predictions of the Markov based state pre-
diction method. 131

5.6 Prediction accuracy for prediction horizon h = 3 time steps for
Dataset 1 and Dataset 2 for prediction methods Markov and GP. 132

5.7 The execution time tsolve until the first solution was found and
the time tinitial required to start all initial workers. 141

5.8 Number of total worker processes Wmax and average workload
Wavg for the graph shown in Figure 5.21. 144

5.9 Execution time tsolve and efficiency ttotal of the evaluated re-
source allocation strategies. 146

5.10 Average number of workers Wavg and maximum number of
workers Wmax for the test case Box and all employed resource
allocation strategies. 147

173

List of Tables

5.11 Performance evaluation of the different disparity map imple-
mentations showing the number of used PEs and the mean, min,
max, and standard-deviation (SD) of measured execution times. 150

5.12 Execution times in milliseconds of the invasive C++ disparity
map algorithm. 151

174

List of Algorithms

1 The basic BUILD_RRT algorithm. 43

2 Offline process for generation of context-sensitive resource mod-
els. 70

3 Calculation of state execution statistics 71
4 Build a context-sensitive resource model from preprocessed data. 72
5 Building basic resource models. 73
6 Second part of building basic resource models. 74

7 The actions performed by the manager process of the resource-
aware motion planning algorithm. 89

8 Actions performed by each worker process of the resource-aware
motion planning algorithm. 91

9 Coordination function of the resource-aware disparity map algo-
rithm. 104

175

Bibliography

O. Adiyatov and H. A. Varol. Rapidly-exploring random tree based memory
efficient motion planning. In 2013 IEEE International Conference on

Mechatronics and Automation (ICMA), pages 354–359, Aug. 2013.

R. Albers, E. Suijs, and P. de With. Resource Usage Prediction for Groups
of Dynamic Image-Processing Tasks Using Markov Modeling. In 2009

IEEE International Conference on Acoustics, Speech and Signal Process-

ing. ICASSP 2009, pages 1929–1932, Apr. 2009.

T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum, N. Vahrenkamp,
and R. Dillmann. ARMAR-III: An Integrated Humanoid Platform for
Sensory-Motor Control. In 2006 6th IEEE-RAS International Conference

on Humanoid Robots, pages 169–175, Dec. 2006.

T. Asfour, K. Welke, P. Azad, A. Ude, and R. Dillmann. The Karlsruhe
Humanoid Head. In Humanoids 2008 - 8th IEEE-RAS International Con-

ference on Humanoid Robots, pages 447–453, Dec. 2008.

T. Asfour, J. Schill, H. Peters, C. Klas, J. Bucker, C. Sander, S. Schulz, A. Kar-
gov, T. Werner, and V. Bartenbach. ARMAR-4: A 63 DOF Torque Con-
trolled Humanoid Robot. In 2013 13th IEEE-RAS International Confer-

ence on Humanoid Robots (Humanoids), pages 390–396, Oct. 2013.

P. Azad. Integrating Vision Toolkit. 2009. URL http://ivt.source

forge.net/.

177

http://ivt.sourceforge.net/
http://ivt.sourceforge.net/

Bibliography

D. B. Bartolini, R. Cattaneo, G. C. Durelli, M. Maggio, M. D. Santambro-
gio, and F. Sironi. The Autonomic Operating System Research Project:
Achievements and Future Directions. In Proceedings of the 50th Annual

Design Automation Conference, DAC ’13, pages 77:1–77:10, New York,
NY, USA, 2013. ACM.

S. Becker, J. Happe, and H. Koziolek. Putting Components into Context: Sup-
porting QoS-Predictions with an explicit Context Model. In R. Reussner,
C. Szyperski, and W. Weck, editors, Proc. 11th International Workshop on

Component Oriented Programming (WCOP’06), pages 1–6, July 2006.

S. Becker, H. Koziolek, and R. Reussner. The Palladio component model for
model-driven performance prediction. Journal of Systems and Software,
82(1):3–22, Jan. 2009.

J. Bialkowski, S. Karaman, and E. Frazzoli. Massively parallelizing the RRT
and the RRT*. In 2011 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 3513–3518, Sept. 2011.

A. Bihlmaier, M. Hadlich, and H. Wörn. Advanced ROS Network Introspec-
tion (ARNI). In A. Koubaa, editor, Robot Operating System (ROS), num-
ber 625 in Studies in Computational Intelligence, pages 651–670. Springer
International Publishing, 2016.

S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A Scalable
Cross-Platform Infrastructure for Application Performance Tuning Using
Hardware Counters. In Supercomputing, ACM/IEEE 2000 Conference,
pages 42–42, Nov. 2000.

H. Bruyninckx, P. Soetens, and B. Koninckx. The Real-Time Motion Control
Core of the Orocos Project. In IEEE International Conference on Robotics

and Automation, 2003. Proceedings. ICRA ’03, volume 2, pages 2766–
2771 vol.2, Sept. 2003.

178

Bibliography

R. Castano, T. Estlin, D. Gaines, A. Castano, C. Chouinard, B. Bornstein,
R. Anderson, S. Chien, A. Fukunaga, and M. Judd. Opportunistic Rover
Science: Finding and Reacting to Rocks, Clouds and Dust Devils. In 2006

IEEE Aerospace Conference, page 16 pp., 2006.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar. X10: An Object-oriented Approach to Non-
uniform Cluster Computing. In Proceedings of the 20th Annual ACM

SIGPLAN Conference on Object-oriented Programming, Systems, Lan-

guages, and Applications, OOPSLA ’05, pages 519–538, New York, NY,
USA, 2005. ACM.

J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade.
Footstep Planning for the Honda ASIMO Humanoid. In Proceedings of

the 2005 IEEE International Conference on Robotics and Automation,
pages 629–634, Apr. 2005.

J. A. Colmenares, G. Eads, S. Hofmeyr, S. Bird, M. Moretó, D. Chou,
B. Gluzman, E. Roman, D. B. Bartolini, N. Mor, K. Asanović, and J. D.
Kubiatowicz. Tessellation: Refactoring the OS Around Explicit Resource
Containers with Continuous Adaptation. In Proceedings of the 50th An-

nual Design Automation Conference, DAC ’13, pages 76:1–76:10, New
York, NY, USA, 2013. ACM.

G. De Giacomo, R. Reiter, and M. Soutchanski. Execution Monitoring of
High-Level Robot Programs. In Proceedings of the 6th International

Conference on Principles of Knowledge Representation and Reasoning

(KR’98), pages 453–465, 1998.

J. Denny, M. Morales, S. Rodriguez, and N. M. Amato. Adapting RRT
growth for heterogeneous environments. In 2013 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 1772–1778,
Nov. 2013.

179

Bibliography

D. Devaurs, T. Siméon, and J. Cortés. Parallelizing RRT on distributed-
memory architectures. In 2011 IEEE International Conference on

Robotics and Automation (ICRA), pages 2261–2266, May 2011.

D. Devaurs, T. Siméon, and J. Cortés. Parallelizing RRT on Large-Scale
Distributed-Memory Architectures. IEEE Transactions on Robotics, 29
(2):571–579, Apr. 2013.

M. Diftler, J. Mehling, M. Abdallah, N. Radford, L. Bridgwater, A. Sanders,
R. Askew, D. Linn, J. Yamokoski, F. Permenter, B. Hargrave, R. Piatt,
R. Savely, and R. Ambrose. Robonaut 2 - The First Humanoid Robot in
Space. In 2011 IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 2178–2183, May 2011.

A. Easwaran, M. Anand, and I. Lee. Compositional Analysis Framework
Using EDP Resource Models. In 28th IEEE International Real-Time

Systems Symposium, 2007. RTSS 2007, pages 129–138, Dec. 2007.

Elmo Motion Control Ltd. Elmo Servo Drivers, 2016. URL http://www.

elmomc.com/.

J. Englsberger, A. Werner, C. Ott, B. Henze, M. Roa, G. Garofalo, R. Burger,
A. Beyer, O. Eiberger, K. Schmid, and A. Albu-Schaffer. Overview of
the torque-controlled humanoid robot TORO. In 2014 14th IEEE-RAS

International Conference on Humanoid Robots (Humanoids), pages 916–
923, Nov. 2014.

O. Faugeras, B. Hotz, H. Mathieu, T. Viéville, Z. Zhang, P. Fua, E. Théron,
L. Moll, G. Berry, J. Vuillemin, P. Bertin, and C. Proy. Real time
correlation-based stereo: algorithm, implementations and applications.
1993.

J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed RRT*: Optimal
sampling-based path planning focused via direct sampling of an admis-
sible ellipsoidal heuristic. In 2014 IEEE/RSJ International Conference

180

http://www.elmomc.com/
http://www.elmomc.com/

Bibliography

on Intelligent Robots and Systems (IROS 2014), pages 2997–3004, Sept.
2014.

J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Batch Informed Trees
(BIT*): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs. In 2015 IEEE International

Conference on Robotics and Automation (ICRA), pages 3067–3074, May
2015.

V. Garousi, L. C. Briand, and Y. Labiche. A UML-based quantitative frame-
work for early prediction of resource usage and load in distributed real-
time systems. Software & Systems Modeling, 8(2):275–302, Apr. 2009.

GNU Project. The GNU C Library: Process Resource Usage Information,
1997a. URL http://www.gnu.org/software/libc/manual

/html_node/Resource-Usage.html.

GNU Project. The GNU C Library: Statistics for Memory Allocation, 1997b.
URL http://www.gnu.org/software/libc/manual/html_

node/Statistics-of-Malloc.html.

Google. PerfTools, 2005. URL https://github.com/gperftool

s/gperftools.

S. L. Graham, P. B. Kessler, and M. K. McKusick. Gprof: A Call Graph
Execution Profiler. In Proceedings of the 1982 SIGPLAN Symposium on

Compiler Construction, SIGPLAN ’82, pages 120–126, New York, NY,
USA, 1982. ACM.

R. Grimm. Ressourcengewahre Bewegungsplanung für humanoide Roboter.
Bachelor thesis, Karlsruhe Institute of Technology (KIT), September 2015.

T. Haaß. Situationsabhängige Prädiktion von Rechenressourcen für hu-
manoide Roboter. Bachelor thesis, Karlsruhe Institute of Technology
(KIT), April 2014.

181

http://www.gnu.org/software/libc/manual/html_node/Resource-Usage.html
http://www.gnu.org/software/libc/manual/html_node/Resource-Usage.html
http://www.gnu.org/software/libc/manual/html_node/Statistics-of-Malloc.html
http://www.gnu.org/software/libc/manual/html_node/Statistics-of-Malloc.html
https://github.com/gperftools/gperftools
https://github.com/gperftools/gperftools

Bibliography

F. Hannig, S. Roloff, G. Snelting, J. Teich, and A. Zwinkau. Resource-aware
Programming and Simulation of MPSoC Architectures Through Exten-
sion of X10. In Proceedings of the 14th International Workshop on Soft-

ware and Compilers for Embedded Systems, SCOPES ’11, pages 48–55,
New York, NY, USA, 2011. ACM.

J. Happe. Predicting Software Performance in Symmetric Multi-core and

Multiprocessor Environments. Dissertation, University of Oldenburg, Ger-
many, Aug. 2008.

D. Harel. STATECHARTS: A VISUAL FORMALISM FOR COMPLEX
SYSTEMS. Science of Computer Programming, 8(3):231–274, June
1987.

D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM

Trans. Softw. Eng. Methodol., 5(4):293–333, Oct. 1996.

J. Heisswolf, S. Friederich, L. Masing, A. Weichslgartner, A. M. Zaib,
C. Stein, M. Duden, J. Teich, T. Wild, A. Herkersdorf, and J. Becker. A
Novel NoC-Architecture for Fault Tolerance and Power Saving. In Pro-

ceedings of the third International Workshop on Multi-Objective Many-

Core Design (MOMAC) in conjunction with International Conference on

Architecture of Computing Systems (ARCS), pages 1–8, Nuremberg, Ger-
many, Apr. 2016. IEEE.

J. Henkel, L. Bauer, M. Hübner, and A. Grudnitsky. i-Core: A run-time
adaptive processor for embedded multi-core systems. In International

Conference on Engineering of Reconfigurable Systems and Algorithms

(ERSA), 2011.

G. Hirzinger and B. Bauml. Agile Robot Development (aRD): A Pragmatic
Approach to Robotic Software. In 2006 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems, pages 3741 –3748, Oct. 2006.

182

Bibliography

H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agarwal.
SEEC: A Framework for Self-aware Management of Multicore Resources.
Mar. 2011.

J. Ichnowski and R. Alterovitz. Scalable Multicore Motion Planning Using
Lock-Free Concurrency. IEEE Transactions on Robotics, 30(5):1123–
1136, Oct. 2014.

G. Infantes, F. Ingrand, and M. Ghallab. Learning Behaviors Models for
Robot Execution Control. pages 394–397, Ambleside, The English Lake
District, U.K., 2006.

S. A. Jacobs, K. Manavi, J. Burgos, J. Denny, S. Thomas, and N. M. Am-
ato. A scalable method for parallelizing sampling-based motion planning
algorithms. In 2012 IEEE International Conference on Robotics and

Automation (ICRA), pages 2529–2536, May 2012.

S. A. Jacobs, N. Stradford, C. Rodriguez, S. Thomas, and N. M. Amato. A
scalable distributed RRT for motion planning. In 2013 IEEE International

Conference on Robotics and Automation (ICRA), pages 5088–5095, May
2013.

L. Jaillet, A. Yershova, S. M. L. Valle, and T. Simeon. Adaptive tuning
of the sampling domain for dynamic-domain RRTs. In 2005 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2005. (IROS

2005), pages 2851–2856, Aug. 2005.

F. Kanehiro, H. Hirukawa, and S. Kajita. OpenHRP: Open Architecture
Humanoid Robotics Platform. The International Journal of Robotics Re-

search, 23(2):155–165, Jan. 2004.

K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata,
K. Akachi, and T. Isozumi. Humanoid Robot HRP-2. In 2004 IEEE

International Conference on Robotics and Automation, volume 2, pages
1083–1090, Apr. 2004.

183

Bibliography

K. Kaneko, F. Kanehiro, M. Morisawa, K. Miura, S. Nakaoka, and S. Kajita.
Cybernetic Human HRP-4c. In 9th IEEE-RAS International Conference

on Humanoid Robots, 2009. Humanoids 2009, pages 7–14, Dec. 2009.

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion
planning. The International Journal of Robotics Research, 30(7):846–894,
Jan. 2011.

T. Karcher and V. Pankratius. Run-Time Automatic Performance Tuning for
Multicore Applications. In E. Jeannot, R. Namyst, and J. Roman, editors,
Euro-Par 2011 Parallel Processing, number 6852 in Lecture Notes in
Computer Science, pages 3–14. Springer Berlin Heidelberg, Aug. 2011.

L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, Aug.
1996.

Kernel.org. perf, 2010. URL https://perf.wiki.kernel.org/i

ndex.php/Main_Page.

D. Kissler, F. Hannig, A. Kupriyanov, and J. Teich. A Highly Parameterizable
Parallel Processor Array Architecture. pages 105–112. IEEE, Dec. 2006.

M. Klotzbücher and H. Bruyninckx. Coordinating Robotic Tasks and Sys-
tems with rFSM Statecharts. JOSER: Journal of Software Engineering

for Robotics, 3(1):28–56, Dec. 2012.

K. Klues, B. Rhoden, Y. Zhu, A. Waterman, and E. Brewer. Processes and
Resource Management in a Scalable Many-core OS. HotPar10, Berkeley,

CA, 2010.

S. Kobbe, L. Bauer, D. Lohmann, W. Schröder-Preikschat, and J. Henkel. Dis-
tRM: Distributed Resource Management for On-chip Many-core Systems.
In Proceedings of the Seventh IEEE/ACM/IFIP International Conference

184

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

Bibliography

on Hardware/Software Codesign and System Synthesis, CODES+ISSS
’11, pages 119–128, New York, NY, USA, 2011. ACM.

S. Kounev, F. Brosig, N. Huber, and R. Reussner. Towards self-aware per-
formance and resource management in modern service-oriented systems.
In 2010 IEEE International Conference on Services Computing (SCC),
pages 621–624, 2010.

K. Krogmann and R. Reussner. Palladio – Prediction of Performance Proper-
ties. In A. Rausch, R. Reussner, R. Mirandola, and F. Plášil, editors, The

Common Component Modeling Example, number 5153 in Lecture Notes
in Computer Science, pages 297–326. Springer Berlin Heidelberg, Jan.
2008.

M. Kröhnert, N. Vahrenkamp, J. Paul, W. Stechele, and T. Asfour. Resource
Prediction for Humanoid Robots. Proceedings of the First Workshop on

Resource Awareness and Adaptivity in Multi-Core Computing (Racing

2014), pages 22–28, May 2014.

M. Kröhnert, R. Grimm, N. Vahrenkamp, and T. Asfour. Resource-Aware
Motion Planning. In 2016 IEEE International Conference on Robotics

and Automation (ICRA), pages 32–39, May 2016.

J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to
single-query path planning. In IEEE International Conference on Robotics

and Automation, 2000. Proceedings. ICRA ’00, volume 2, pages 995–1001
vol.2, 2000.

D. Kulic and E. Croft. Affective State Estimation for Human-Robot Interac-
tion. IEEE Transactions on Robotics, 23(5):991–1000, Oct. 2007.

U. Kurup, C. Lebiere, A. Stentz, and M. Hebert. A Hybrid Model for Ex-
ecution Monitoring in Autonomous Agents. pages 149–154, Carleton
University, Ottawa, Canada, 2013.

185

Bibliography

J. Levon, P. Elie, and M. Johnson. OProfile, 2002. URL http://oprofi

le.sourceforge.net/.

Linux Kernel Documentation. T H E /proc F I L E S Y S T E
M. URL https://www.kernel.org/doc/Documentation/

filesystems/proc.txt.

S. Lohmeier, T. Buschmann, and H. Ulbrich. Humanoid Robot LOLA. In
IEEE International Conference on Robotics and Automation, 2009. ICRA

’09, pages 775–780, May 2009.

R. McDougall, J. Mauro, and B. Gregg. Solaris(TM) Performance and Tools:

DTrace and MDB Techniques for Solaris 10 and OpenSolaris (Solaris

Series). Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

T. Merz, P. Rudol, and M. Wzorek. Control System Framework for Au-
tonomous Robots Based on Extended State Machines. In 2006 Interna-

tional Conference on Autonomic and Autonomous Systems, 2006. ICAS

’06, pages 14–14, July 2006.

G. Metta, P. Fitzpatrick, and L. Natale. YARP: Yet Another Robot Platform.
International Journal on Advanced Robotics Systems, 3(1):43–48, 2006.

G. Metta, G. Sandini, D. Vernon, L. Natale, and F. Nori. The iCub humanoid
robot: an open platform for research in embodied cognition. In Proceed-

ings of the 8th Workshop on Performance Metrics for Intelligent Systems,
PerMIS ’08, pages 50–56, New York, NY, USA, 2008. ACM.

D. Meyer-Delius, C. Plagemann, and W. Burgard. Probabilistic Situation
Recognition for Vehicular Traffic Scenarios. In IEEE International Con-

ference on Robotics and Automation, 2009. ICRA ’09, pages 459–464,
May 2009.

186

http://oprofile.sourceforge.net/
http://oprofile.sourceforge.net/
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
https://www.kernel.org/doc/Documentation/filesystems/proc.txt

Bibliography

G. E. Moore. Cramming more components onto integrated circuits,
Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114
ff. IEEE Solid-State Circuits Society Newsletter, 11(5):33–35, Sept. 2006.

C. Müller-Schloer, H. Schmeck, and T. Ungerer, editors. Organic Computing

— A Paradigm Shift for Complex Systems. Springer Basel, Basel, 2011.

L. Muscari, L. Seminara, F. Mastrogiovanni, M. Valle, M. Capurro, and
G. Cannata. Real-Time Reconstruction of Contact Shapes for Large Area
Robot Skin. In 2013 IEEE International Conference on Robotics and

Automation (ICRA), pages 2360–2366, May 2013.

G. Nelson, A. Saunders, N. Neville, B. Swilling, J. Bondaryk, D. Billings,
C. Lee, R. Playter, and M. Raibert. PETMAN: A Humanoid Robot for
Testing Chemical Protective Clothing. Journal of the Robotics Society of

Japan, 30(4):372–377, 2012.

Object Management Group (OMG). UML Profile for Schedulability, Perfor-
mance, and Time Specification, Version 1.1, 2005. URL http://www.

omg.org/spec/SPTP/1.1/.

Object Management Group (OMG). UML Profile for MARTE: Modeling
and Analysis of Real-Time Embedded Systems, Version 1.1, 2011. URL
http://www.omg.org/spec/MARTE/1.1/.

Object Management Group (OMG). OMG Unified Modeling Language
Version 2.5, 2015. URL http://www.omg.org/spec/UML/2.5/

PDF.

B. Oechslein, J. Schedel, J. Kleinöder, L. Bauer, J. Henkel, D. Lohmann,
and W. Schröder-Preikschat. OctoPOS: A Parallel Operating System for
Invasive Computing. In R. McIlroy, J. Sventek, T. Harris, and T. Roscoe,
editors, Proceedings of the International Workshop on Systems for Fu-

ture Multi-Core Architectures (SFMA), volume USB Proceedings of Sixth

187

http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/UML/2.5/PDF
http://www.omg.org/spec/UML/2.5/PDF

Bibliography

International ACM/EuroSys European Conference on Computer Systems

(EuroSys), pages 9–14, Salzburg, Austria, Apr. 2011. EuroSys.

C. Ott, O. Eiberger, W. Friedl, B. Bauml, U. Hillenbrand, C. Borst, A. Albu-
Schaffer, B. Brunner, H. Hirschmuller, S. Kielhofer, R. Konietschke,
M. Suppa, T. Wimbock, F. Zacharias, and G. Hirzinger. A Humanoid
Two-Arm System for Dexterous Manipulation. In 2006 6th IEEE-RAS In-

ternational Conference on Humanoid Robots, pages 276 –283, Dec. 2006.

F. Otto, C. A. Schaefer, M. Dempe, and W. F. Tichy. A Language-Based
Tuning Mechanism for Task and Pipeline Parallelism. In P. D’Ambra,
M. Guarracino, and D. Talia, editors, Euro-Par 2010 - Parallel Process-

ing, number 6272 in Lecture Notes in Computer Science, pages 328–340.
Springer Berlin Heidelberg, Aug. 2010.

A. Paraschos, N. I. Spanoudakis, and M. G. Lagoudakis. Model-driven
Behavior Specification for Robotic Teams. In Proceedings of the 11th

International Conference on Autonomous Agents and Multiagent Systems -

Volume 1, AAMAS ’12, pages 171–178, Richland, SC, 2012. International
Foundation for Autonomous Agents and Multiagent Systems.

C. Park, J. Pan, and D. Manocha. Poisson-RRT. In 2014 IEEE International

Conference on Robotics and Automation (ICRA), pages 4667–4673, May
2014.

J.-K. Park, S.-I. Jin, H.-K. Cho, and Y.-K. Chung. Design and Implemen-
tation of Service-Oriented Task Model for Autonomous Service Robot.
In SICE-ICASE, 2006. International Joint Conference, pages 2623–2628,
2006.

Y.-S. Park, H.-M. Koo, and I.-Y. Ko. A task-based and resource-aware ap-
proach to dynamically generate optimal software architecture for intelli-
gent service robots. Journal of Software: Practice and Experience, 42(5):
519–541, May 2012.

188

Bibliography

J. Paul, W. Stechele, M. Kröhnert, T. Asfour, and R. Dillmann. Invasive
Computing for Robotic Vision. In Design Automation Conference (ASP-

DAC), 2012 17th Asia and South Pacific, pages 207–212, Jan. 2012.

O. Pettersson. Execution monitoring in robotics: A survey. Robotics and

Autonomous Systems, 53(2):73–88, Nov. 2005.

E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki. Sampling-
based roadmap of trees for parallel motion planning. IEEE Transactions

on Robotics, 21(4):597–608, Aug. 2005.

R. K. Pujari, T. Wild, A. Herkersdorf, B. Vogel, and J. Henkel. Hardware
Assisted Thread Assignment for RISC based MPSoCs in Invasive Com-
puting. pages 106–109. IEEE, Dec. 2011.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng. ROS: an open-source Robot Operating System. In ICRA

workshop on open source software, volume 3, page 5, 2009.

K. Regenstein, T. Kerscher, C. Birkenhofer, T. Asfour, M. Zollner, and R. Dill-
mann. Universal Controller Module (UCoM) - component of a modular
concept in robotic systems. In 2007 IEEE International Symposium on

Industrial Electronics, pages 2089–2094, June 2007.

C. Rodriguez, J. Denny, S. A. Jacobs, S. Thomas, and N. M. Amato. Blind
RRT: A probabilistically complete distributed RRT. In 2013 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages
1758–1765, Nov. 2013.

A. Roncone, M. Hoffmann, U. Pattacini, and G. Metta. Automatic kinematic
chain calibration using artificial skin: Self-touch in the iCub humanoid
robot. In 2014 IEEE International Conference on Robotics and Automa-

tion (ICRA), pages 2305–2312, May 2014.

189

Bibliography

S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, and D. D. Edwards. Artifi-

cial Intelligence: A Modern Approach. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1996.

Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fu-
jimura. The intelligent ASIMO: System overview and integration. In
2002 IEEE/RSJ International Conference on Intelligent Robots and Sys-

tems, volume 3, pages 2478–2483, 2002.

C. Schlegel, T. Hassler, A. Lotz, and A. Steck. Robotic Software Systems:
From Code-Driven to Model-Driven Designs. In International Conference

on Advanced Robotics, 2009. ICAR 2009, pages 1–8, June 2009.

D. C. Schmidt. The Adaptive Communication Environment: An Object-
Oriented Network Programming Toolkit for Developing Communication
Software. pages 214–225, 1993.

A. Sharifi, S. Srikantaiah, A. K. Mishra, M. Kandemir, and C. R. Das. METE:
Meeting End-to-end QoS in Multicores through System-wide Resource
Management. In Proceedings of the ACM SIGMETRICS Joint Interna-

tional Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’11, pages 13–24, New York, NY, USA, 2011. ACM.

S. Shende and A. D. Malony. The TAU Parallel Performance System. In-

ternational Journal of High Performance Computing Applications, 20(2):
287–331, 2006.

I. Shin and I. Lee. Periodic Resource Model for Compositional Real-Time
Guarantees. In 24th IEEE Real-Time Systems Symposium, 2003. RTSS

2003, pages 2–13, Dec. 2003.

B. Siciliano and O. Khatib, editors. Springer handbook of robotics. Springer,
Berlin, 2008.

190

Bibliography

R. Simmons and D. Apfelbaum. A Task Description Language for Robot
Control. In 1998 IEEE/RSJ International Conference on Intelligent Robots

and Systems, volume 3, pages 1931–1937, 1998.

A. Steck and C. Schlegel. Towards Quality of Service and Resource Aware
Robotic Systems through Model-Driven Software Development. arXiv
e-print 1009.4877, Sept. 2010.

M. Strandberg. Augmenting RRT-planners with local trees. In 2004 IEEE

International Conference on Robotics and Automation, 2004. Proceedings.

ICRA ’04, volume 4, pages 3258–3262 Vol.4, Apr. 2004.

K. Subramoniam, M. Maheswaran, and M. Toulouse. Towards a Micro-
Economic Model for Resource Allocation in Grid Computing Systems.
In Canadian Conference on Electrical and Computer Engineering, 2002.

IEEE CCECE 2002, volume 2, pages 782–785, 2002.

SystemTap Documentation. SystemTap, 2005. URL https://source

ware.org/systemtap/documentation.html.

S. Taha, A. Radermacher, S. Gerard, and J. Dekeyser. An Open Framework
for Detailed Hardware Modeling. In International Symposium on Indus-

trial Embedded Systems, 2007. SIES ’07, pages 118–125, July 2007.

J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W. Schröder-
Preikschat, and G. Snelting. Invasive Computing: An Overview. In
M. Hübner and J. Becker, editors, Multiprocessor System-on-Chip, pages
241–268. Springer New York, 2011.

F. Thomas, S. Gérard, J. Delatour, and F. Terrier. Software Real-Time Re-
source Modeling. In P. E. Villar, editor, Embedded Systems Specification

and Design Languages, number 10 in Lecture Notes in Electrical Engi-
neering, pages 169–182. Springer Netherlands, Jan. 2008.

191

https://sourceware.org/systemtap/documentation.html
https://sourceware.org/systemtap/documentation.html

Bibliography

U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann. A New
Skill Based Robot Programming Language Using UML/P Statecharts. In
2013 IEEE International Conference on Robotics and Automation (ICRA),
pages 461–466, 2013.

M. Tillmann, T. Karcher, C. Dachsbacher, and W. F. Tichy. Application-
independent Autotuning for GPUs. In M. Bader, F. Peters, A. Bode, H.-
J. Bungartz, M. Gerndt, and G. R. Joubert, editors, Parallel Computing:

Accelerating Computational Science and Engineering (CSE), Advances
in Parallel Computing, pages 626–635. IOS Press, 2014.

S. Vacek, T. Gindele, J. Zöllner, and R. Dillmann. Situation classification
for cognitive automobiles using case-based reasoning. In 2007 IEEE

Intelligent Vehicles Symposium, pages 704–709, June 2007.

N. Vahrenkamp, M. Wächter, M. Kröhnert, K. Welke, and T. Asfour. The
robot software framework ArmarX. it - Information Technology, 57(2):
99–111, 2015.

Valgrind Documentation. Massif: a heap profiler, 2004. URL http://va

lgrind.org/docs/manual/ms-manual.html.

M. Wächter, S. Ottenhaus, M. Kröhnert, N. Vahrenkamp, and T. Asfour. The
ArmarX Statechart Concept: Graphical Programing of Robot Behavior.
Humanoid Robotics, page 33, 2016.

J. Weidendorfer. Sequential Performance Analysis with Callgrind and
KCachegrind. In M. Resch, R. Keller, V. Himmler, B. Krammer, and
A. Schulz, editors, Tools for High Performance Computing, pages 93–113.
Springer Berlin Heidelberg, 2008.

K. Welke, N. Vahrenkamp, M. Wächter, M. Kroehnert, and T. Asfour. The
ArmarX Framework - Supporting high level robot programming through
state disclosure. In GI Annual German Conference on Informatics, pages
2823–2837, 2013.

192

http://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html

Bibliography

A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle. Dynamic-Domain
RRTs: Efficient Exploration by Controlling the Sampling Domain. In
Proceedings of the 2005 IEEE International Conference on Robotics and

Automation, 2005. ICRA 2005, pages 3856–3861, Apr. 2005.

S. Youssefi, S. Denei, F. Mastrogiovanni, and G. Cannata. Skinware 2.0: A
real-time middleware for robot skin. SoftwareX, 3–4:6–12, Dec. 2015.

ZeroC, Inc. Internet Communication Engine (Ice), 2015. URL https:

//zeroc.com/.

193

https://zeroc.com/
https://zeroc.com/

ISSN 2512-0875
ISBN 978-3-7315-0632-4 G

ed
ru

ck
t a

uf
 F

SC
-z

er
ti fi

 z
ie

rt
em

 P
ap

ie
r

Humanoid robots face many challenging tasks in dynamically changing human-centered
environments. Solving these tasks requires the concurrent executi on of algorithms, which
compete for the limited available computati on power. Resource bott leneck detecti on or
predicti on as well as context-sensiti ve resource distributi on between competi ng algorithms
is indispensable for a robust task executi on.

The goal of this work is to provide building blocks for such resource-aware robot architec-
tures. Data-driven generati on of context-sensiti ve resource models and the predicti on of
future resource uti lizati ons is the fi rst part of the work. The second part includes a set of
resource-aware computer vision and moti on planning algorithms, which are adaptable to
dynamically changing resource requirements. The implementati on of these algorithms is
based on resource-aware concepts and methodologies originati ng from the Transregional
Collaborati ve Research Center "Invasive Computi ng" (SFB/TR 89).

KARLSRUHE SERIES ON
HUMANOID ROBOTICS

INSTITUTE FOR ANTHROPOMATICS AND ROBOTICS

EDITED BY PROF. DR.�ING. TAMIM ASFOUR

M
. K

RÖ
H

N
ER

T
Re

so
ur

ce
-A

w
ar

e
Ro

bo
t A

rc
hi

te
ct

ur
es

01

9 783731 506324

ISBN 978-3-7315-0632-4

	Introduction
	Problem Statement
	Invasive Computing

	State of the Art
	Humanoid Robot Architectures and Middlewares
	Humanoid Robot Architectures
	Robotic Middlewares

	Application Models
	Resource Models
	Profiling and Monitoring
	Prediction Models and Algorithms
	Resource-Aware Systems and Algorithms
	Resource-Aware Operating Systems
	Application Autotuning
	Organic Computing
	Resource-Awareness in Robotics

	Sampling-Based Motion Planning
	Improving the Quality of a found Solution
	Changing the RRT Algorithm to find Solutions faster
	Parallelizing the RRT Algorithm

	Summary

	Speculative Resource Management
	Data-Driven Generation of Context-Sensitive Resource Models
	Application Model
	Basic Resource Model
	Context-Sensitive Resource Model
	Profiling and Monitoring
	Resource Model Generation

	Context-Sensitive Resource Prediction
	State Prediction Model
	Resource Prediction
	Online Learning and Updating
	Resource Prediction Architecture

	Resource-Aware Algorithms
	Resource-Aware Motion Planning
	Algorithm Design
	Resource Allocation Strategies
	ArmarX Integration

	Resource-Aware Disparity Map
	Invasive X10 Implementation
	Invasive C++ Implementation
	Invasive Computing Head Demo

	Evaluation
	Profiling and Resource Models
	Robot State and Resource Prediction
	Single-Transition Prediction
	Multi-Transition Prediction
	Resource Prediction

	Resource-Aware Motion Planning
	Test platform
	Test Case 1: SerialWalls
	Test Case 2: Box
	Static Resource Allocation Strategy
	Dynamic Resource Allocation Strategies
	Evaluation on the Humanoid Robot ARMAR-4

	Resource-Aware Disparity Map
	Invasive X10 Evaluation
	Invasive C++ Evaluation
	Invasive Computing Head Demo

	Conclusion
	Outlook

	Appendix
	Markov Processes and Markov Chains
	Voronoi Diagram and Voronoi Regions
	ArmarX
	ArmarX Statecharts
	MemoryX

	List of Figures
	List of Tables
	List of Algorithms

