

Steffen Lamparter

Policy-based Contracting in Semantic Web Service Markets

Studies on eOrganisation and Market Engineering 7

Universität Karlsruhe (TH)

Herausgeber:
Prof. Dr. Christof Weinhardt
Prof. Dr. Thomas Dreier
Prof. Dr. Rudi Studer

Policy-based Contracting in
Semantic Web Service Markets

by
Steffen Lamparter

Universitätsverlag Karlsruhe 2007
Print on Demand

ISSN: 1862-8893
ISBN: 978-3-86644-181-1

Impressum

Universitätsverlag Karlsruhe
c/o Universitätsbibliothek
Straße am Forum 2
D-76131 Karlsruhe
www.uvka.de

Dieses Werk ist unter folgender Creative Commons-Lizenz
lizenziert: http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Dissertation, genehmigt von der Fakultät für Wirtschaftswissenschaften
der Universität Fridericiana zu Karlsruhe, 2007
Referenten: Prof. Dr. Rudi Studer
 Prof. Dr. Christof Weinhardt

http://www.uvka.de
http://creativecommons.org/licenses/by-nc-nd/2.0/de/

Abstract

Web services generalize the idea of the Web beyond the exchange of simple Web
pages in order to enable the provision of a broad range of different services. By com-
posing Web services, cross-organizational and collaborative business processes can
be realized in a highly dynamic and flexible way, which is particularly important if
services have to be automatically procured at runtime. However, achieving a higher
degree of automation is obstructed by the informal nature of legal, contractual and
organizational regulations, the numerous and complex service descriptions includ-
ing manifold customization possibilities, and the open and heterogeneous nature of
the Web service market.

In this thesis, semantic technologies that provide more explicit meaning of in-
formation are employed to address these problems. These technologies facilitate
the exchange of information in heterogeneous systems and increase the share of
machine-understandable data accessible for automated decision-making. We intro-
duce the Core Policy Ontology in order to capture regulations as well as preferences
by means of goal and utility function policies, respectively. Furthermore, we in-
troduce the Core Ontology of Bids that facilitates customization of Web services to
specific user needs by efficiently representing highly configurable Web service of-
fers and requests. Analogously, we derive the Core Contract Ontology from the
Core Policy Ontology to formally represent Web service contracts. Thereby, we pro-
vide an open, transparent and interoperable representation of contracts and enable
a tight integration of contractual information with the collaborative business inter-
actions they govern.

In order to show the applicability of the presented ontologies, we introduce an
automated contracting mechanism that includes algorithms for automated match-
ing, allocation, contract formation and contract monitoring. It exploits the semantic
descriptions provided by the ontology framework and thereby enables logic-based
matching between offers and requests and the specification of policies on hierarchi-
cal sets of service characteristics. Since declarative matching and allocation rules
are used to define the mechanism, it can be dynamically adapted to new domains
or settings. For the efficient allocation of Web services in heterogeneous environ-
ments, we present a novel approach that enables the integration of semantic match-
ing and efficient optimization techniques such as linear programming. Moreover,
the mechanism can be used to verify whether a Web service invocation adheres to
the obligations stated in the contract. The contracting mechanism is prototypically
implemented using WS-BPEL and the ontology reasoner KAON2. The evaluation
of the prototype indicates that Web service contracting is applicable in practice and
that semantic matching of requests and offers is particularly important for settings
with highly customizable services.

vi

Acknowledgements

This work would not have been possible without the support and guidance of
many persons. First of all, I would like to thank my advisor Professor Dr. Rudi
Studer for giving me the opportunity to do this research. Throughout my studies
he granted me the freedom, the trust, and the help I needed.

In addition, I would like to thank my co-advisor Professor Dr. Christof Wein-
hardt for fostering my interdisciplinary research by providing new ideas and
insights. Thanks also to the other committee members, Professor Dr. Wolffried
Stucky and Professor Dr. Hagen Lindstädt, for their support.

I would like to thank the phenomenal team at the research group LS3WIM and
the graduate school IME. They provided the inspiration and constructive criticism
that helped me to continuously improve my work. In particular, I am grateful
to Anupriya Ankolekar, Sudhir Agarwal, and Andreas Eberhart for guiding my
research and for many fruitful discussions and debates. Special thanks also to
Saartje Brockmans, Björn Schnizler, Julien Tane, and Raphael Volz who took the
time to review chapters of this book and provided me with invaluable comments.

Above all, I am indebted to my family and friends. This work would not have
been possible without all their support, encouragement, and confidence during my
PhD study and especially during writing of this thesis.

Steffen Lamparter

viii

Contents

I Foundations 1

1 Introduction 3

1.1 Motivation . 3
1.2 Research Questions and Goals . 5
1.3 Contributions . 7
1.4 Reader’s Guide . 9

2 Basic Concepts and Technologies 11

2.1 Service-oriented Architectures . 11
2.1.1 Basic Principles . 11
2.1.2 Flexible Binding and Customization of Services 14
2.1.3 Web Service Technology . 16

2.2 Policy-based Computing . 20
2.2.1 Autonomic Computing . 21
2.2.2 Policies in Service-oriented Architectures 22
2.2.3 Policy Classification Scheme . 22

2.3 Electronic Markets . 26
2.3.1 Market Phases . 27
2.3.2 Market Mechanisms . 28

2.4 Semantic Technologies . 31
2.4.1 Ontologies . 32
2.4.2 Ontology Formalisms . 32
2.4.3 Categorization of Ontologies 40
2.4.4 The Foundational Ontology DOLCE 41

2.5 Conclusion . 44

3 Towards a Semantic Web Service Market 47

3.1 Methodology . 49
3.1.1 SOA and Web Service Engineering 50
3.1.2 Market Engineering . 53
3.1.3 Ontology Engineering . 54

3.2 Core Building Blocks of Web Service Markets 56
3.2.1 The Role of Ontologies . 56
3.2.2 The Contracting Process . 58

3.3 Conclusion . 60

x CONTENTS

II Designing a Semantic Web Service Market 61

4 Scenarios and Requirements 63

4.1 Scenarios . 63
4.1.1 Enterprise Services . 64
4.1.2 Grid Computing . 66
4.1.3 Mobile Services . 68

4.2 Requirements Analysis . 70
4.2.1 Language-specific Requirements 70
4.2.2 Mechanism-specific Requirements 73

4.3 Discussion . 75

5 Abstract Web Service Market Model 77

5.1 Policies Specification . 77
5.1.1 Goal Policies . 79
5.1.2 Utility Function Policies . 80
5.1.3 Policy Aggregation . 83

5.2 Communication Primitives . 84
5.2.1 Generic Web Service Specification 84
5.2.2 Bid Specification . 84
5.2.3 Contract Specification . 88

5.3 Web service Contracting and Contract Monitoring 89
5.3.1 Matching of Bids . 89
5.3.2 Web Service Allocation . 90
5.3.3 Contract Formation and Monitoring 94

5.4 Conclusion . 95

6 An Ontology Framework for Web Service Markets 97

6.1 Overview . 97
6.2 Core Policy Ontology (CPO) . 99

6.2.1 Valuation Functions . 101
6.2.2 Modeling Policies and Configurations 107
6.2.3 Policy Aggregation . 113

6.3 Core Ontology of Bids (COB) . 114
6.3.1 Specification of Trades . 115
6.3.2 Specification of Bids . 117
6.3.3 Bid evaluation . 119

6.4 Core Contract Ontology (CCO) . 121
6.4.1 Semi-Automated Contracting and Monitoring 123
6.4.2 Contract Representation . 125
6.4.3 Representing Monitoring Information 132
6.4.4 Contract Monitoring . 134

6.5 Conclusion . 135

CONTENTS xi

7 Ontology-based Contracting and Contract Monitoring 137

7.1 Automated Contracting of Web Services 137
7.1.1 Matchmaking Mechanism . 137
7.1.2 Allocation Mechanism . 144
7.1.3 Contract Formation . 147

7.2 Automated Monitoring of Web Service Contracts 148
7.3 Conclusion . 152

III Realization and Evaluation 153

8 Implementation 155

8.1 General Architecture . 155
8.2 Business Process Component . 156
8.3 Bid Specification Component . 159
8.4 Web Service Market Platform . 160
8.5 Application Example . 161

8.5.1 Automated Web Service Selection for Mobile Applications . . 162
8.5.2 An Ontology-based Exchange for Grid Services 164

9 Discussion and Evaluation 167

9.1 Choice of Language . 167
9.2 Expressiveness of Vocabulary . 169
9.3 Design of Mechanisms . 171

9.3.1 Simulation Setup . 171
9.3.2 Compactness of Bid Representation 174
9.3.3 Performance . 176
9.3.4 Completeness of Results . 180
9.3.5 Discussion of Simulation Results 183

9.4 Conclusion . 184

IV Finale 187

10 Related Work 189

10.1 Knowledge Representation in Web Service Markets 189
10.1.1 Electronic Data Interchange . 189
10.1.2 XML-based Policy Languages 190
10.1.3 Semantic Web Services . 191
10.1.4 Semantic Policy Specifications 194
10.1.5 Market Bidding Languages . 195
10.1.6 Product and Service Catalogs 195
10.1.7 Discussion . 196

10.2 Contracting and Contract Monitoring Mechanisms 196
10.2.1 (Semantic) Web Service Selection 196

xii CONTENTS

10.2.2 Product Configuration . 199
10.2.3 Social Service Selection . 199
10.2.4 Market-based Web Service Allocation 200
10.2.5 Web Service Contract Management 201
10.2.6 Discussion . 201

11 Conclusions and Outlook 203

11.1 Summary of Contributions . 203
11.2 Future Work . 206

11.2.1 Extensions to the Selection Algorithm 206
11.2.2 Automated Bidding . 207
11.2.3 Expressive Contract Representation 207
11.2.4 Extending the Prototype . 207

V Appendix 209

A Detailed Evaluation Results 211

References 218

List of Figures

2.1 Illustration of the Publish-Find-Bind-Execute Paradigm 13
2.2 Overview of Web service technologies 17
2.3 Policy classification scheme. 23
2.4 Influence of information technology on the applicability of markets . 26
2.5 Categorization of Ontologies. 40

3.1 Semantic Web service market diamond. 48
3.2 Integrated Methodology for semantic Web service markets 49
3.3 SOA layers and Web service engineering process 51
3.4 Market phases and the Web Service usage process 59

4.1 Service Bus Architecture [LEO05, LAO+06]. 64
4.2 Hierarchy of financial information [LML+05]. 66
4.3 Example for mobile service usage [LAGS07]. 68

6.1 Ontology framework for Web service markets. 98
6.2 Representation of value functions . 101
6.3 Example of a point-based value function 102
6.4 Example of a piecewise linear value function 105
6.5 Example of a pattern-based valuation function 106
6.6 Policy description framework . 107
6.7 Representation of a PolicyCollection . 113
6.8 Example for a TradeSituation and AtomicBid 116
6.9 Representation of the Core Contract Ontology. 126
6.10 Example for representing a ProviderObligation 132
6.11 Representing MonitoringInformation as DnS:Situation 133

7.1 Using complex attribute values in a TradeSituation 139
7.2 Contract formation process. 147

8.1 General Architecture. 156
8.2 Extended WS-BPEL process for dynamic Web service binding. 157
8.3 Screenshot of the visual policy editor. 159
8.4 Screenshot of the SPARQL query editor. 160
8.5 Prototype extended by auction components. 164

9.1 Comparing policy-based and enumeration-based representation of
Bids . 172

9.2 Compactness of bid representation. 175

xiv LIST OF FIGURES

9.3 Comparing the evaluation performance of enumeration-based and
policy-based bid representation. 176

9.4 Performance with 100 configurations and varying number of offers. . 178
9.5 Performance with 900 configurations and varying number of offers. . 179
9.6 Performance with 1010 offers and varying number of configurations. 179
9.7 Increase in number of matches enabled by semantic matching. 181
9.8 Absolute gain in utility through the use semantic matching. 182

List of Tables

2.1 Description logic variants [BCM+03]. 34
2.2 Subset of SWRL built-ins . 38
2.3 Upper level concepts from DOLCE, DnS, OoP, and OIO. 43

4.1 Possible route planning service configurations. 69
4.2 Relevance of requirements with respect to scenarios. 75

5.1 Summary of notation . 78

6.1 Correspondence of Core Policy Ontology and Abstract Policy Model 100
6.2 Correspondence of Core Ontology of Bids and the Abstract Market

Model. 115
6.3 Correspondence of Core Contract Ontology and Abstract Contract

Model. 125

9.1 Experiment dataset obtained from [LNZ04, WVKT06]. 172
9.2 Requirements and the approaches to address them. 184

10.1 Analyzing related work w.r.t language-specific requirements. 190
10.2 Analyzing related work w.r.t mechanism-specific requirements. . . . 197

A.1 Comparison of Bid -compactness . 212
A.2 Performance of enumeration- and policy-based approach 213
A.3 Performance of matching variants . 214
A.4 Relative increase in number of matches 216
A.5 Absolute increase in utility . 217

xvi LIST OF TABLES

Part I

Foundations

Chapter 1

Introduction

1.1 Motivation

Service-oriented computing is a paradigm where applications are composed by ser-
vices. Services are business assets that are exposed by software components pro-
vided internally or by other businesses. Service-oriented architectures thus consti-
tute a distributed computing infrastructure for both intra- and inter-organizational
application integration and collaboration [PG03]. They abandon the prevailing soft-
ware paradigm, where applications are installed and executed on local machines.
Rather, applications contract other software modules to get certain subtasks com-
pleted.

In recent years, technologies for implementing service-oriented architectures
have matured into productive systems. Companies are implementing SOA-based
applications and hope to gain strategic benefits, such as increased application flex-
ibility, agility and reuse. Since major functionalities of software systems are pur-
chased from other companies, the contracting process in a service-oriented archi-
tecture can be seen as a special e-procurement process. According to [GB01], the
average procurement cycle in enterprises is of the order of three months. Of this
time, about 50% is spent in identifying the appropriate suppliers, about 20% of the
time in handling the RFQ (request for quotes) process, and an additional 10% is
spent in negotiating the terms and conditions of the contract.

The ability to increase automation in the contracting process could lead to sig-
nificant time savings and therefore also to cost reductions. In addition, automation
of the contracting process is indispensable in case services have to be procured “on
demand”, i.e. at the point of time when they are required. This is the case whenever
selection of a service depends on the execution context, e.g. on the time of invoca-
tion or on the current location of the customer. In addition, dynamic contracting
enables timely reactions and automatic reconfiguration of the application in case of
service failures or frequent changes in the set of available providers. This can lead
to more robust systems and to lower costs since erroneous and expensive services
can be automatically replaced.

However, automating the contracting process requires overcoming several seri-
ous obstacles: (i) legal regulations, e.g., involving restrictive data protection rules,
and organizational policies that regulate business transactions might have to be con-
sidered in the contracting process; (ii) the size of the decision problem which might
involve a considerable number of providers with each of them offering differenti-

4 CHAPTER 1: INTRODUCTION

ated services and extensive customization possibilities; (iii) the heterogeneity and
openness of the service market, which might involve many business partners dy-
namically joining and leaving the market, each of them with different procurement
systems, data formats and information models. The latter has also been recognized
by the Harvard Business Review (October 2001):

“Trying to engage with too many partners too fast is one of the main
reasons that so many online market makers have foundered. The trans-
actions they had viewed as simple and routine actually involved many
subtle distinctions in terminology and meaning.”

Our work addresses these issues by combining and extending technologies and
techniques from various fields of research in an original way:

• As a basic technology for implementing service-oriented architectures, Web
services emerged as the state of the art, providing a set of standard specifica-
tions and protocols. Our platform utilizes Web service technologies to realize
a Web compliant service-oriented infrastructure.

• Since the find-bind-execute-paradigm of service-oriented architectures is a
special kind of electronic procurement process, we rely on concepts known
from the area of electronic markets to design a Web service contracting process.

• The Semantic Web [BLHL01] addresses the heterogeneity of the environment
by providing more explicit meaning of terms. One of the cornerstones of the
Semantic Web are ontologies as formal specifications of conceptual models
[Gru93]. By committing on common ontologies, different autonomous entities
on the Web can interoperate and by leveraging the formal definitions of the
ontology constructs, new knowledge can be inferred from existing informa-
tion. We formalize Web service offers, requests and contracts with ontologies.
This facilitates interoperability through a standardized syntax and semantics.
By means of the underlying logical calculus matching in the market can be
improved to handle heterogeneous offer as well as request descriptions. Aug-
menting electronic markets with ontologies enables the trading of complex
services and realizes a degree of automation which would not be possible oth-
erwise [MMW06].

• As decisions automatically taken within the contracting process have to ad-
here to legal and organizational regulations, this work takes up the idea of
policy-based computing. In this context, regulations are declaratively captured
by policies expressed via ontologies. While featuring management tasks such
as consistency checking, ontology-based policy representation facilitates also
the exchange of policies contained in offers or requests, which is needed in
order to identify possible transactions in the market.

By grounding our work on these four pillars, we extend the state of the art in design-
ing a semantic Web services market that supports an automated contracting process
while addressing the heterogeneity that comes with open, Web-based markets. This
is realized by the development of an ontology framework that enables the expres-
sion of Web service offers, requests and contracts based on a formal policy model.
Policies enable us to automate tasks like finding a suitable business partner and

1.2 Research Questions and Goals 5

verifying if a transaction has been executed correctly. By extending the traditional
policy view that captures only hard constraints to the concept of utility function
policies, this work enables preference-based selection of business partners and al-
lows a compact representation of requests and offers. This is particularly important
in situations where services need to be customized to the needs of a requester by
offering a wide range of different configurations. The formal specification of offers
and requests features improved matching functionality by addressing heterogeneity
issues in the Web. We are thereby able to overcome a common problem in electronic
markets which is caused by different entities using different levels of abstraction for
describing service functionality. By utilizing declarative matching and allocation
rules, the approach facilitates a high degree of flexibility as the vocabulary can be
extended during the runtime of the system and the allocation mechanism can be
changed seamlessly without changing the implementation.

Efforts in developing inter-organizational service-oriented infrastructures have
intensified considerably within the last years. For the area of automated Web ser-
vice contracting, this is evidenced by the substantial number of submissions to the
World Wide Web Consortium (W3C) proposing semantic descriptions for Web ser-
vices. Prominent examples are the proposal for Semantic Annotations for WSDL
(SAWSDL),1 Semantic Markup for Web Services (OWL-S),2 the Web Service Model-
ing Ontology (WSMO),3 and the Semantic Web Services Framework (SWSF).4 This
work complements the approaches above by focusing on important aspects in Web
service markets beyond pure Web service descriptions. Among others, these as-
pects include the modeling of customizable offers and requests as well as legally en-
forceable Web service contracts. We thus use an abstract service description where
services are described using a set of attributes. Such a general description of Web
services enables us to abstract from various existing Web service description frame-
works such as WSDL, OWL-S, SAWSDL, WSMO, while simultaneously allowing
us to leverage existing decision-theoretic algorithms for multi-attribute products.
However, our approach allows the representation of attributes using existing ser-
vice description ontologies and thereby enables the reuse of existing work.

1.2 Research Questions and Goals

Realization of an inter-organizational service-oriented computing infrastructure has
to address technical issues such as implementing and describing Web services, eco-
nomic questions like selecting the right service at an acceptable price, and legal
problems dealing with automated contract conclusion and interpretation. One of
the goals of this thesis is to provide a better insight into how an interdisciplinary
approach drawing from the fields of computer science, economics and law can be
used to build a service-oriented computing infrastructure. The following hypothesis
captures the main research question of this thesis.

Main Hypothesis: Contracting in Web service markets can be automated
using semantic policy descriptions.

1W3C Working Draft, April 2007, http://www.w3.org/TR/sawsdl/
2W3C Submission, November 2004, http://www.w3.org/Submission/OWL-S/
3W3C Submission, April 2005, http://www.w3.org/Submission/2005/06/
4W3C Submission, September 2005, http://www.w3.org/Submission/SWSF/

6 CHAPTER 1: INTRODUCTION

As discussed in the previous section, the major obstacles for a higher degree
of automation in the contracting process between Web service providers and re-
questers are legal and organizational regulations that are often specified in an in-
formal way, numerous and complex service descriptions including manifold cus-
tomization possibilities which makes manual selection cumbersome, and the open
and heterogeneous nature of the Web service market hinders collaboration between
different parties. Semantic technologies address these problems by providing more
explicit meaning of information. This facilities exchanging of information in het-
erogeneous systems and increases the amount of machine-understandable data re-
quired for automated decision-making.

In order to support our main hypothesis, we investigate in this thesis how on-
tologies can be applied in order to realize automated contracting between Web ser-
vice providers and their customers. Since electronic markets generally require the
design of two components – language and mechanism – we split our main hypoth-
esis into two subordinate hypotheses for each of which an approach how to support
the hypothesis is given.

Hypothesis 1: Semantic technologies can be used to express policies such
that they enable the specification of offers, requests and contracts in Web
service markets.

Approach: Develop an expressive Web service market ontology for repre-
senting Web service offers, requests and contracts in a formal machine-
interpretable way.

The first hypothesis postulates that semantic technologies can be applied to de-
sign a communication language for the exchange of knowledge about products and
prices in the market. This requires a language that allows capturing legal and orga-
nizational regulations as well as extensive customization possibilities in a machine-
understandable manner. To support this hypothesis, we develop an expressive Web
service market ontology and thereby show that semantic technologies are a suitable
technology for this purpose.

Hypothesis 2: The contracting process in the market can be automated
based on semantic descriptions.

Approach: Develop algorithms that automate the contracting process based
on the Web service market ontology and that provide the flexibility to
cope with environmental changes.

The second hypothesis postulates that semantic technologies can be used to auto-
mate the contracting process. We are going to support this hypothesis by designing
algorithms for automated matching, allocation, contract formation and validation
based on the previously defined ontology.

This means, in order to realize a semantic Web service infrastructure we first
have to develop an ontology that provides the expressivity to formalize all required
information in the market and second we have to design the contracting algorithms
in a way that they utilize the formalized knowledge and can be executed without
human intervention.

1.3 Contributions 7

1.3 Contributions

The main contribution of this work is the design and realization of a service-oriented
computing infrastructure that builds on existing Web service technology and en-
ables the automation of the contracting process. As indicated by our research ques-
tions, realizing such an infrastructure requires two main components which are pro-
vided in this thesis:

• We present a novel ontology framework for Web service markets that enables
the formal representation of market information. The framework thereby sup-
ports the interpretation of this information by machines and the exchange of
information between different market participants in the Web.

• We present a contracting mechanism based on this ontology framework that
automates the matching of Web service offers and requests, the determination
of optimal allocations between offers and requests, and the conclusion and
monitoring of Web service contracts.

The automation of these tasks allows the procurement of services “on demand”
and thus addresses several major shortcomings of today’s service-oriented architec-
tures, such as the inability to consider the execution context or to react on service
failures or a changing set providers. Moreover, the time for integrating a new ser-
vice into the architecture can be reduced, which may lead to major cost savings for
the service requester. In the following, the novel aspects of the ontology framework
and the contracting mechanism are discussed in more detail.

Web Service Market Ontology

To realize the goal of automation, we have developed a set of ontology modules
that enables the formal and unambiguous representation of market information. In
particular, the work contributes the Core Policy Ontology, the Core Ontology of
Bids and the Core Contract Ontology. The Core Policy Ontology is novel in that
it enables not only expressing hard constraints in a formal and declarative manner,
but also fine-grained preferences over alternatives captured by the concept of util-
ity function policies. By reusing these policies in the Core Ontology of Bids highly
configurable offers and requests can be expressed in a compact way which allows
us to communicate them efficiently within the market. The fact that services are
easily customizable, e.g., by differentiation of quality of service levels, is an issue
which has by far been neglected by existing approaches. Moreover, policies can be
specified depending on the context in which they are applicable, which also enables
automation in the presence of context-dependent preferences as observable particu-
larly in mobile scenarios. In extending the DOLCE foundational ontology library
and by utilizing ontology design patterns, the modules provide a high-quality on-
tology framework that circumvents typical shortcomings of naively built ontologies,
such as conceptual ambiguity, poor axiomatization, narrow scope and loose design
[Obe05].

8 CHAPTER 1: INTRODUCTION

Contracting Mechanism

As a further contribution to the state of the art, we present a contracting mecha-
nism that exploits the declarative semantic descriptions provided by the ontology
framework in several ways: the heterogeneity that arises from a constantly chang-
ing number of autonomous market participants is addressed by logic-based match-
ing of offers and requests. This allows us to overcome the different levels of ab-
stractions in offer and request description that are usually observed in markets. In
contrast to other logic-based matching approaches, we additionally show how such
techniques enable defining policies on hierarchical sets of service characteristics.
This means, it is not required to specify preferences for all possible configurations,
but the valuation of a market participant for a certain configuration can be inferred
from general policies defined on a higher level. This simplifies the definition of
policies considerably. Another drawback of existing semantic approaches is that
they assume a fixed, predefined set of matching algorithms that is applied irrespec-
tive of the domain, application, or the characteristics of the underlying ontology
(cf. [PKPS02, LH03, NSDM03, GMP04]). This is only sensible under the assump-
tion that all ontologies are specified with the corresponding matching algorithm in
mind. However, this contradicts the basic idea of the Semantic Web, where domain
ontologies are to be reused by several applications in order to reduce the modeling
efforts that have to be devoted to building ontologies. Therefore, this work relies
on the idea of customizable matching rules that can be declaratively defined for
each domain ontology. Based on these rules, the right matching approach is ap-
plied automatically. The declarative nature of the matching rules enables adding of
new service characteristics and required domain ontologies during runtime of the
system, which is essential for providing the required flexibility.

In order to allow for dynamic contracting at runtime the contracting algorithms
have to be executed within a short period of time. In this work we thus present
a computational tractable selection mechanism, which could be used as basis for
more complex allocation mechanisms such as auctions. Developing such mecha-
nisms essentially requires an algorithm that selects the optimal configuration for
a provider/requester pair. This has to involve semantic matching of services and
ranking according to utility function policies. To realize this in a computationally
tractable manner, we propose a novel approach that integrates semantic matching
and efficient optimization techniques such as linear programming. This allows us,
on the one hand, to benefit from existing efficient optimization tools developed over
the last decades in the field of operations research, and on the other hand, to gain
from the flexibility and expressivity provided by semantic technologies. Assuming
additive utility function policies, experimental results indicate that our algorithm
introduces an overhead of only around 2 sec. compared to random service selection,
while giving optimal results. The overhead, as percentage of total time, decreases as
the number of offers and configurations increase. Moreover, our experiments indi-
cate that applying semantic matching in Web-based markets increases the utility of
the participants.

In addition to the matching and allocation algorithm, this work presents a
method for semi-automated contract formation, execution and monitoring. Since
full automation is not achievable based on current (German) law, we propose a semi-
automated approach which originally combines a manually concluded umbrella
contract with an individual contract automatically closed for each invocation. Based

1.4 Reader’s Guide 9

on this formalization, the contract management tasks can be automated such as con-
tract execution or monitoring. This is especially important for configurable services
where each contract might be different. In order to address fuzzy interpretations of
contract clauses, interpretation rules are introduced to allow the monitoring of such
aspects.

As a proof of concept, we finally present a prototypical implementation that
shows how the developed techniques can be applied based on current Web service
infrastructure. Here we discuss how dynamic binding of Web services is realized
for a WS-BPEL process using conventional WS-BPEL engines.

1.4 Reader’s Guide

This thesis is structured as follows. In Part I: Foundations the fundamental ideas and
concepts are introduced. First, in Chapter 2 the four technologies that constitute
the cornerstones of our work are presented: service-oriented architectures, policy-
based computing, electronic markets and ontologies. In Chapter 3, we discuss how
these technologies can be integrated in terms of a design and engineering method-
ology. According to this methodology, the development of a semantic Web service
market infrastructure comprises the following steps: requirements analysis, design,
embodiment, implementation, and testing. The subsequent parts and chapters are
structured according to this engineering process.

In Part II: Designing a Semantic Web Service Market we describe the design process
of developing a semantic Web service market. As a first step, the requirements are
elicited from a set of typical scenarios for service-oriented architectures in Chapter
4. The scenarios cover enterprise, mobile and grid service applications. The require-
ments are clustered into language and mechanism-specific requirements. In Chapter
5 the conceptual design of the market model is introduced in an abstract way with-
out discussing concrete technologies or other implementation details. The market
model addresses the language-specific requirements by introducing an appropriate
conceptualization and formalization of the ontology and the mechanism-specific re-
quirements by specifying the Web service contracting algorithms. In the subsequent
embodiment phase this abstract conceptual model is explicitly specified: Chapter
6 presents an ontology framework which implements the conceptualization intro-
duced in the conceptual design. The framework introduces the novel modules Core
Policy Ontology, Core Ontology of Bids and the Core Contract Ontology. Based on
this framework concrete contracting algorithms are presented in Chapter 7, which
includes matching, allocation, contract formation as well as contract monitoring
functionality.

The implementation and testing steps of the engineering process are covered in
Part III: Realization and Evaluation. In Chapter 8 a prototypical implementation of
a semantic Web service market infrastructure is presented that features automated
contracting of Web services and supports dynamic binding of services in a busi-
ness process. In addition, two concrete applications of the prototype are given. In
Chapter 9, the design of the market is discussed with respect to the requirements
that have to be met. In this context, computational tractability and communication
efficiency are evaluated by means of a simulation.

10 CHAPTER 1: INTRODUCTION

Part IV: Finale consolidates the language- as well as mechanism-specific related
work in Chapter 10 by discussing how other approaches address the requirements.
Finally, Chapter 11 concludes the work by recapitulating the results with respect to
our research questions and gives an overview of problems that remain open and
have to be addressed in future work.

Throughout the work, relevant publications are given at the beginning of the
chapters. Bits and pieces of the thesis are based on conference and journal publica-
tions [LEO05, LML+05, LA05, LS06, LAO+06, OLG+06, LA07, LAGS07].

Chapter 2

Basic Concepts and Technologies

In this chapter, we introduce the fundamental definitions and technologies required
throughout the thesis. We start with the notion of service-oriented architectures in
Section 2.1, which provides a powerful paradigm for developing flexible and in-
teroperable software systems. Due to their complexity and dynamics, the design,
management and administration of service-oriented architectures is difficult and
time-consuming. By introducing policies in Section 2.2, a higher degree of autonomy
can be realized and thus reduced human interaction is required. Recently, electronic
markets have been proposed as an efficient coordination mechanism between ser-
vice providers and service requesters. Therefore, Section 2.3 introduces the idea of
markets. Subsequently in Section 2.4, the concept of ontologies is introduced. On-
tologies provide a formal vocabulary for knowledge sharing in distributed systems.
Within service-oriented architectures they are typically used for service discovery
and mediation between different heterogeneous services. In addition, they enable
the use of market mechanisms for complex product.

2.1 Service-oriented Architectures

Service-oriented architectures (SOA) come in many different forms and are imple-
mented by means of various technologies. In Section 2.1.1, we first introduce our
notion of a service-oriented architecture independent of technologies and applica-
tion areas. In Section 2.1.2, two main concepts enabled by service-oriented archi-
tectures are presented: flexible binding of services and service customization. Since
Web services have become the predominant technology and a quasi-standard for im-
plementing service-oriented architectures in an inter-organizational context, we in-
troduce the technology behind Web services in Section 2.1.3.

2.1.1 Basic Principles

Service-oriented architectures have received considerable attention throughout the
last years which has led to several highly diverse definitions. In our work, we follow
the definitions of the OASIS Reference Model for Service Oriented Architectures
[MLM+06], which is an emerging standard clarifying the significant entities and
their relations in a service-oriented architecture.

Before we can define the term service-oriented architecture, the notion of service
used intuitively up to now has to be clarified. A service is defined as an “act or a

12 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

variety of work done for others”.1 We call activities that solves someone’s problem
capabilities. According to this definition, a service might cover a wide range of ca-
pabilities ranging from constructing a house to trading stocks, each of them carried
out for someone else. An entity (people or organizations) offering a service is called
provider and an entity that initiates the service execution and profits from the service
ia called requester. Both – providers as well as requesters– define certain conditions
or regulations on the usage of the service.

In the context of service-oriented architectures, only a subset of services – called
software services – are relevant. Software services are software components that pro-
vide certain capabilities via electronic media such as the Internet. On the one hand,
these can be purely digital services where the capabilities are provided entirely in
electronic form. Examples are services that provide stock quote information via e-
mail or a route planning service on the Web. On the other hand, software services
can also cause real world effects, such as a travel booking service that sends an ac-
knowledgement of the booking by e-mail, but delivers the actual tickets by surface
mail. In order to be usable for requesters, a software service has to adhere to a pre-
scribed service interface that can be used to integrate the software service into the
requester’s application. For this work the following definition of software services
is adopted:

Definition 2.1 (Software Service) A software service is a mechanism to enable access to
one or more capabilities provided by an encapsulated software component via an electronic
medium. The provider installs, runs, maintains, and evolves hardware as well as software
infrastructure and provides all physical and organizational means. The access is provided
by a prescribed and well-defined programmatic service interface and is consistent with the
provider’s constraints and conditions.

Note that not every service available through an electronic medium is a software
service. A set of Web pages that allow, e.g., the reservation of a table in a restaurant
is a service, but usually not considered as a software service, according to Definition
2.1, since it does not provide a programmatic interface that can be used to invoke
the service from a software program [ACKM04].

The technique of modularization and goal-oriented composition of software ser-
vices can be seen as a distinguishing aspect of service-oriented software develop-
ment compared to traditional software development [PG03]. Generally, a service
composition defines which software services are used in which order by an applica-
tion. Along this line, a service-oriented architecture can be defined as follows:

Definition 2.2 (Service-oriented Architecture) A service-oriented architecture is a soft-
ware design where a reusable set of interoperable and discoverable software services is
loosely-coupled in order to realize a distributed application.

We next describe the key principles of service-oriented architectures in more de-
tail:

Loose-coupling. Loosely-coupled relations between two services minimize the de-
pendencies between the two ends. This can be realized by using message-
oriented communication and encapsulation of implementation and business

1http://www.thefreedictionary.com/service

2.1 Service-oriented Architectures 13

Registry

Service
Provider

Service
Requester

Find

Bind

Execute

Publish

Request Offer

Contract

Figure 2.1: Illustration of the Publish-Find-Bind-Execute Paradigm

logic details with clear interfaces. This allows a maximal degree of autonomy
for each service and leads to a separation of concerns.

Interoperability. Interoperability is the capability to communicate or transfer data
among the services in the system with little or no need for manual adaption.
Typically interoperability in service-oriented architectures is approached by
means of standardized communication protocols and languages.

Reusability. Each service is self-contained in a sense that capabilities can be used
in different business processes or for different purposes. In this situation, ap-
plications are built by composing existing modular services.

Discoverability. A prerequisite for the reuse of services is their discovery. Services
have to be discoverable either manually by the application developer or auto-
matically by the system. Discoverability is usually ensured by adding a service
repository component to the service-oriented architecture.

Additional principles such as service encapsulation or abstraction can be found
in the literature [Erl06]. However, these are direct consequences of the principles
discussed above.

These design principles enable an easy reorganization of services and flexible
implementations of business processes reflecting the fact that business processes are
often much more volatile than the information they manipulate, i.e. while process
typically change frequently, the service from which they are composed are rather
static and can be reused several times. This idea is captured by the following state-
ment [Bur05]:

“Design Services to Last, Design Systems to Change.”

To realize this flexibility, a service-oriented architecture is based on the publish-find-
bind-execute paradigm, which is illustrated in Figure 2.1. A service provider publishes
a service offer using a registry and makes the service discoverable and thus reusable
for requesters. The offer contains information about the interface of the service and
the constraints and conditions under which the service may be accessed. These

14 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

constraints and conditions are usually called policies [MLM+06, W3C06b]. When a
requester requires a service, a service request is sent to the registry. This request de-
scribes the requirements in terms of service interface and policies, which have to be
met by the service offers to be qualified as suitable service candidates. Depending
on the concrete implementation of the registry, either the set of suitable offers or a
concrete service contract is returned. A contract represents a concrete agreement be-
tween the requester and the provider fixing the agreed interface and service levels
in a well-defined and unambiguous manner. If the registry returns suitable offers
instead of contracts, a contract has to be closed in the binding process. A binding is
a unidirectional assignment of a task in a requester’s business process to a concrete
service. The flexibility of the business process and the ability to adapt to changing
requirements depend crucially on the binding mechanism used. Therefore, in Sec-
tion 2.1.2, different binding mechanisms are discussed in more detail. Once the best
binding is determined, the requester executes the service by sending the input data
required by the service interface. Requests, offers and contracts are key concepts in
our work and will be formally defined in Section 5.

2.1.2 Flexible Binding and Customization of Services

In today’s business environment there is an urgent need for flexible software sys-
tems that can be easily adapted to fast changing requirements. Consider the exam-
ple where a drastic increase in the number of users might require a quick increase
in the scalability of an application, or where a merger requires the fast integration
of two independent software systems. By leveraging the loose coupling of services
in a service-oriented architecture, this flexibility can be provided in two ways: first,
we can reconfigure a service and adapt it to our needs. We call this reconfiguration
of services service customization. Alternatively, we can dynamically replace a service
in the business process by another provider. We call this feature flexible binding of
services. These two alternatives are briefly discussed in the following.

Service Customization

A key concept in economics and management is product differentiation or versioning.
The idea behind product differentiation is to provide a certain product in such a
way that it differs from the products of the competitors in the market with the in-
tent to influence the demand. Thereby, suppliers can decrease the substitutability of
their product which increases their monopoly power [BKK+02], and they can pro-
vide a version customized to often very heterogeneous requirements of customers
which could significantly increase the revenue of the supplier [Var97]. Product dif-
ferentiation is usually realized by exploiting customer self-selection. For example, it
can be distinguished between feature-based and performance-based differentiation
[Ded02], where either a product is available with different features or with the same
features but different quality. All of these versions are offered to customers who
select the version most suitable to them. Thereby, the utility of the supplier and
customer can be increased.

The idea of product differentiation can be directly transferred to software ser-
vices in a service-oriented architecture. In fact, service differentiation is particularly
easy, since it can be realized simply by providing different quality-of-service guar-

2.1 Service-oriented Architectures 15

antees, by forwarding requests to different service implementations (e.g. each with
different performance characteristics), or by assigning different priority levels to
requests (e.g. requesters paying a higher price are served first). Examples of ser-
vice differentiation can be found in [ZWX06, CM02, WBCL02, DLP03]. In line with
[Bro98, BAG03], we call these different versions of a certain service configurations
throughout our work. Initially, we will only provide an intuitive definition of the
term, which is then made concrete in Chapter 5 as part of our formal model.

Definition 2.3 (Service Configuration) A service configuration selects a value for each
attribute of a service and thereby unambiguously defines all relevant service characteristics.
The choice of configuration might affect the functional as well as non-functional aspects of a
service and is a major determinant of the price.

Obviously, providers as well as requesters have certain constraints and condi-
tions with regard to the allowed configurations. For instance, a requester might
have minimum requirements regarding quality of service. We represent such con-
straints by means of policies, which are introduced in Section 2.2. In the following,
we first discuss the case where reconfiguration of individual services is not sufficient
or possible.

Flexible Binding

If adaption of the business process is not possible through reconfiguration of indi-
vidual services, entire services have to be replaced. As defined in the Section 2.1.1,
a process sequences certain tasks which are executed by certain software services.
The assignment of tasks to the services that carry out this task is called a binding.
Bindings can be specified in three different ways [PA05]:

Binding by Inclusion. In this case services are statically bound in the composition
by inclusion. That means a binding is explicitly set to the address of an service.
Such hard-wiring can be considered as the state-of-the-art in today’s service
oriented architectures.

Binding by Reference. In this case the composition is linked to an external service
description, which then in turn refers statically to a service. This approach
separates binding from composition and increases flexibility. For example, the
address of a service can be changed without changing the composition.

Binding by Constraint. While in case of “binding by reference” compositions still
uniquely identify services, “binding by constraint” abolish this static assign-
ments. In fact, this approach distinguishes between the composition and the
set of suitable services. The composition only defines which criteria (e.g. con-
ditions on the interface and policies) a suitable service has to meet.

If using the “binding-by-constraint” paradigm, an evaluation will be required that
determines the concrete binding. Based on requests and offers, the evaluation has
to calculate the set S of suitable services and select one service s ∈ S. This evaluation
process might also require customization of the selected service.

A major advantage of this approach is that this evaluation can be done at differ-
ent stages in the software development. We distinguish between dynamic and static

16 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

binding.2 While static binding can be used for all three binding paradigm mentioned
above, dynamic binding is only possible if the “binding-by-constraint” paradigm is
used. Static and dynamic binding is defined as follows:

Static Binding. In case of static binding the evaluation is done at development time.
The development time comprises the composition, compilation and deploy-
ment of process. That term “static” arises from the fact that a deployed com-
position is executed always with the same services.

Dynamic Binding. In contrast, dynamic binding evaluates the constraints at run-
time of the composition, i.e. during execution of the application. Pautasso et
al. [PA05] distinguish further whether the binding is done at startup time, in-
vocation time or failed invocation time. If binding is done at startup time, all
services are bound before the composition is executed. In doing this, one can
make sure that for all tasks an appropriate service is available. Evaluation at
invocation time is the latest possible time before the service is invoked. Failed
invocation time refers to the strategy where new bindings are only determined
if the current binding fails, i.e. the binding refers to a service that does not react
or is not available any more. Consequently, only in this case is an evaluation
necessary. That means the dynamic binding is “dynamic” in the sense that
each time the composition is executed, other services might be used.

Conceptually, using dynamic binding in service-oriented architectures provides
considerable advantages: In many scenarios, the decision which service to invoke
depends on runtime-specific aspects such as the current location of the requester
or the time of execution. In such a context, binding at development time is simply
not possible. Moreover, the set of available services may change frequently after a
composition has been deployed. In this case dynamic binding is required to be able
to react to these changes. However, a major challenge to realize dynamic binding
remains open: modeling the constraints C that can be used to determine the most
suitable configuration and binding. Before we revisit the problem of constraint rep-
resentation in Section 2.2 by introducing the concept of policies, the current state-of-
the-art for implementing service-oriented architectures is introduced.

2.1.3 Web Service Technology

Web service are a new form of middleware that enable the integration of computer
programs across application and organization boundaries. The basic idea of conven-
tional middleware such as Remote Procedure Calls (RPC) or Object Brokers was to
reside between the applications to be integrated and to mediate their interactions
[ACKM04]. While allowing distributed applications, these middleware systems
were (logically) centralized and controlled by a single company. For the imple-
mentation of service-oriented architectures in an inter-organizational setting such
solutions are not appropriate. They require agreements on a specific middleware
platform as well as on a “global workflow” for the entire business process. This is
very unlikely to happen due to the lack of trust between companies, the autonomy
each company wants to preserve, and the confidentiality of the business transactions
and processes.

2The term early and late binding are also used to refer to static and dynamic binding, respectively.

2.1 Service-oriented Architectures 17

Formatting

Service Description

Messaging

HTTP, SMTP, etc.

XML, XML Schema

SOAP

WS-Addressing WS-Security WS-Reliable-Messaging

WS-Coordination WS-Atomic-Transaction

WSDL WS-Policy, XACML, etc.

Business ProcessWS-BPEL, WS-CDL

Transport

Coordination and Context

Figure 2.2: Overview of Web service technologies

When moving from intra-enterprise application integration to inter-
organizational structures the Web aspect becomes important. Web technologies
provide the basic protocols such as HTTP and information encoding mechanism
like the eXtensible Markup Language (XML) [W3C04a]. Due to their standard-
ization, they provide a key ingredient for application integration in a B2B setting.
The first step towards “Web-enabled” middleware are application servers [Obe05].
However, they require tight integration of the distributed components and thus
do not support the loose-coupling aspect of service-oriented architectures. Web
services extend the concept of “Web-enabled” middleware by factorizing software
functionality in loosely-coupled services that communicate via the Web and provide
a well-defined programmatic interface. In line with the definition provided by the
World Wide Web consortium (W3C) [W3C04d], we adopt the following notion of
Web services.

Definition 2.4 (Web Service) A Web service is a software service identified by a Uniform
Resource Identifier (URI) [RFC05], whose public interfaces and bindings are defined and
described using XML. Its definition can be discovered by other software systems. These
systems may then interact with the Web service in a manner prescribed by its definition,
using XML based messages conveyed by Internet protocols.

This definition stresses the key aspects of implementing service-oriented archi-
tectures as manifested in Definition 2.2: for discoverability and reusability, a def-
inition prescribing the service’s interaction is required. To provide interoperabil-
ity in the Web URIs for identification and the usage of standardized XML and In-
ternet protocols is required. Loose-coupling is supported by requiring message-
orientation and encapsulation of functionality behind interfaces.

As standardization plays a major role, a great number of Web service specifica-
tions provide (often alternative) proposals for enabling interaction and description
of Web services. The specifications are arranged in six layers where each layer re-
quires (at least a partial) implementation of the subjacent layers. Figure 2.2 relates
the layers with the respective specification belonging to these layers. Note that for
each layer further specifications exist. However, since they are not relevant for the
understanding of the remainder of the thesis, we omit a detailed introduction at

18 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

this point.3 In the following, we gradually introduce the layers starting with the
Transport layer.

Transport Layer

The Transport layer defines methods that are used to transfer or convey information
in the Internet. Although the Hypertext Transfer Protocol (HTTP) [RFC99] is by far
the most prominent protocol for communication between two Web services, other
protocols such as the Simple Mail Transfer Protocol (SMTP) are also used. Resources
to be accessed by HTTP are identified using Uniform Resource Identifiers (URIs) (or,
more specifically, URLs) using the “http:” or “https:” URI schemes.

Formatting Layer

As stated in Definition 2.4, messages exchanged between Web services and the de-
scriptions of Web services have to be encoded using XML documents, which can be
validated according to a schema expressed via XML Schema (or DTD).

Messaging Layer

Messaging specifications are intended to give a framework for exchanging informa-
tion in a decentralized, distributed environment. Messages that can be understood
by Web services have to be organized according to the Simple Object Access Pro-
tocol (SOAP) [W3C03]. SOAP describes how documents are encoded using XML,
provides conventions for the interactions between different peers, and defines how
messages should be transported on top of HTTP or SMTP. There are also alternative
protocols such as REST. However, they are rarely used in practise. With specifica-
tions such as WS-Security [OAS06b] additional functionality can be added to the
messaging layer. WS-Security is an extension to SOAP that allows implementing
integrity and confidentiality.

Service Description Layer

The focus of this layer is the definition of specifications that support the description
and discovery of Web service providers, the Web services they make available, and
the technical interfaces for accessing and using these services. In this context, the
Web Service Description Language (WSDL) [W3C01b] plays a central role. WSDL
are XML documents defined via a XML Schema consisting of an abstract and a con-
crete part. In the abstract part the service interface is described by means of port type
definitions which are logical collections of related operations. For each operation
the data types of the input and output messages are defined. Although WSDL al-
lows the specification of arbitrary data type systems, usually the XML Schema data
type system is used [W3C04e]. In the concrete part this abstract port type definition
is bound to a concrete message encoding and protocol. In addition, a concrete end
point address (specified by a URI) is attached to each port type and end points are
grouped in a service element.

3For a comprehensive overview the interested reader is referred to http://www-128.ibm.
com/developerworks/views/webservices/libraryview.jsp?type_by=Standards .

2.1 Service-oriented Architectures 19

Since WSDL lacks expressiveness for describing requirements and conditions a
Web service or a requester has to fulfill for a successful interaction, additional spec-
ifications are needed. WS-Policy [W3C06b] provides a framework through which
requesters as well as providers can specify their policies. The framework is domain-
independent and requires further specification for providing domain-specific vo-
cabulary.

Coordination and Context Layer

Transactions are a fundamental concept in building reliable distributed applications.
A Web service environment requires coordination behavior provided by a tradi-
tional transaction mechanism to control the operations and outcome of an applica-
tion. Examples for specifications belonging to this layer are WS-Coordination and
its extension WS-Transaction.

Business Process Layer

A business process specifies the potential execution order of operations from a col-
lection of Web services, the data shared between these Web services, which partners
are involved and how they are involved in the business process, and other issues
involving how multiple services and organizations participate.

The Business Process Execution Language (WS-BPEL) [ACD+03] is a XML-based
language used to define business processes, where each task or operation is as-
sumed to be implemented as a Web service. The key objective of WS-BPEL is to
standardize the format of business process flow definitions so that companies can
work together seamlessly using Web services. The WS-BPEL notation includes flow
control, variables, concurrent execution, input and output, transaction scoping/-
compensation, and error handling. Processes written in WS-BPEL can orchestrate
interactions between Web services using XML documents in a standardized man-
ner. These processes can be executed on any platform or product that complies with
the WS-BPEL specification.

Listing 2.1 shows a simple loan approval business process specified using WS-
BPEL. Loan approval is a scenario commonly used in related literature on this topic
[Kha02, MM03, Act06]. In line 1-6 the business process definition specifies the name
of the process and the namespaces required for the remaining document. The ac-
tual operations of the business process are defined between the flow-tags in line 7
and 20. The first operation called request is of type receive (lines 8-10) and initiates
a new process instance whenever a message from a customer is received. The input
of this customer is stored in a variable called request. This variable is then passed to
the subsequent invoke-operation (lines 11-15) which uses this information as input
for invoking the operation check of a Web service providing risk assessment func-
tionality. The result of the service invocation is passed to the next operation (line
16-18) using the variable riskAssessment. This operation is of type reply and returns
the result of the risk assessment to the customer.

BPEL supports two different types of business processes:

• Executable processes: Models the actual behavior of a participant in a business
interaction. They can be executed by an BPEL engine.

20 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

1 <process name="loanApprovalProcess"
2 targetNamespace="http://ontoware.org/loanprocessing"
3 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business−process/"
4 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business−process/"
5 xmlns:lns="http://ontoware.org/wsdl/loan−approval"
6 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
7 <flow>
8 <receive createInstance="yes" operation="request"
9 partnerLink="customer" portType="lns:loanServicePT"

10 variable="request">
11 </receive>
12 <invoke inputVariable="request" name="invokeAssessor"
13 operation="check" outputVariable="riskAssessment"
14 partnerLink="assessor" portType="asns:riskAssessmentPT">
15 <target linkName="receive−to−assess"/>
16 </invoke>
17 <reply operation="request" partnerLink="customer"
18 portType="lns:loanServicePT" variable="approval">
19 </reply>
20 </flow>
21 </process>

Listing 2.1: WS-BPEL process.

• Abstract processes: Uses process descriptions that specify the mutually visible
message exchange behavior of each of the parties involved in the protocol,
without revealing their internal behavior.

2.2 Policy-based Computing

Generally, the notion of policy-based computing refers to a software model that incor-
porates a set of decision-making technologies into its management components in
order to simplify and automate the administration of computer systems” [Mur05].
This is achieved by interpreting policies at runtime to make autonomous decisions
as desired by the policies’ author. Policies represent the goals, constraints, require-
ments, or conditions of the system administrator that guide the decisions of a sys-
tem. Thereby, they state the objective/desired behavior, but they do not specify the
way how this should be accomplished. A major advantage of policy-based comput-
ing is the separation of the components responsible for managing the system and
the guidelines defining the desired system behavior. This facilitates manageability,
while providing a high degree of flexibility. In the area of computer science and
artificial intelligence various definitions of the term policy can be found in litera-
ture (e.g. [MLM+06, RFC01, Slo94, KW04]). Most of them share the commonalities
captured by the following definition.

Definition 2.5 (Policy) A policy represents some constraint or condition on the use, de-
ployment or description of an owned entity and thereby guides the behavior of an au-
tonomous decision maker (agent). Policies are expressed with a declarative, machine-

2.2 Policy-based Computing 21

interpretable formalism that enables automated decisions, policy changes at runtime and
communication of policies to other decision makers.

Definition 2.5 captures a crucial property of a policy formalism: they have to be
automatically enforceable by the system each time a decision has to be made. Thus,
decision can be transferred from a human decision maker to the system level, while
ensuring conformance with the human counterpart. This is one of the core ideas
in the emerging field of autonomic computing, which is briefly introduced in Section
2.2.1. Subsequently, we discuss how these concepts can be transferred to service-
oriented architectures and then introduce the fundamental policy types that have
been suggested in literature.

2.2.1 Autonomic Computing

The final goal of autonomic computing is to introduce “computing systems that can
manage themselves given high-level objectives from administrators” [KC03]. By
enabling self-management functionality policy-based computing is therefore a core
technology for implementing such systems. Self-managing systems maintain and
adjust their operations in the face of changing environmental states (e.g. workload
changes) and in the face of hardware or software failure. Often four aspects of self-
management are distinguished: self-configuration, self-healing, self-optimization
and self-protection [KC03]. We shortly introduce these aspects in the following.

Self-configuration. Self-configuration is a feature that enables a software system to
configure itself, e.g., to different platforms or vendors in accordance to high-
level policies. The goal is that the system will adjust itself automatically if new
components are incorporated or the system is transferred to another platform.
Since installing and updating major applications is very time-consuming, such
functionality can greatly facilitate system management.

Self-healing. Manual diagnosing and fixing of failures in large and complex com-
puter systems is very tedious and system support is required. Self-healing
addresses this problem by providing means for detecting, diagnosing and re-
pairing failures automatically. For example, this could comprise analyzing
monitoring information such as log files, recognize failures and install patches
or alert the human administrators.

Self-optimization. Large computer systems usually have hundreds of parameters
that have to be set correctly to enable the system to perform optimally. There-
fore, a self-optimization functionality is required that automatically seeks op-
portunities to improve system performance and efficiency. This could be for
example realized by simulating different settings and measuring their effi-
ciency and adapting the parameter values accordingly.

Self-protection. Since companies realize more and more vital business activities
with computer systems and attacks become more frequent, system security
becomes increasingly important and hard to guarantee. Self-protection mecha-
nisms can address this problem by taking automatic defense measures against
malicious attacks and issue early warnings to avoid system-wide cascading
errors.

22 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

In the next section, we discuss how the idea of autonomic computing carries
over to complex software system implemented using service-oriented architectures.
In particular, we discuss how service-orientation features the different aspects of
self-management.

2.2.2 Policies in Service-oriented Architectures

When applying the concept of policy-based computing to service-oriented archi-
tectures, the management and administration of the service-oriented architecture–
often referred to as SOA Governance – can be (at least partially) delegated to the
system itself and thus reduce management effort. This requires that administrators
define appropriate policies how the system should behave. Since the behavior of a
SOA-based system is mainly determined by the question which task of the business
process is executed by which service, the major problem in SOA Governance is the
management of these bindings. In this context, self-manageability can be realized
by assigning services automatically according to policies reflecting the companies’
business objectives, regulative norms, such as Sarbanes-Oxley4, or IT-Governance
standards (e.g. ISO 200005). An explicit specification of such policies makes sure
that the overall behavior of the software system will be in line with the compa-
nies’ high-level objectives and regulations, while many low-level decisions can be
automatically done by the system without human intervention. Thereby, the man-
agement effort can be reduced considerably.

As introduced in Section 2.1.2, by featuring the binding-by-constraint paradigm,
service-oriented architectures support flexible assignments of business process
tasks to available services. This is an important property for implementing self-
manageable software systems, since it enables the system to discover or replace ser-
vices itself as required. To enable a flexible binding mechanism, the constraints that
have to be met by all services are the set of policies defined by the company. Con-
sequently, constraint evaluation can be directly realized by the policy enforcement
mechanisms. In this sense, the creation, communication and enforcement of policies
are a central part of SOA Governance.

For example, self-healing functionality can be realized by a dynamic binding
mechanism, where a faulty service is replaced by an alternative service comply-
ing with the administrator’s policies. In the same line, self-optimization and self-
configuration can be realized by replacing a service once a better service or a better
service configuration is available in the system. Thus, policy enforcement has to
feature compliance checking as well as rating of services for different degrees of op-
timality. Not all kinds of policy languages are expressive enough to support this.
In Section 2.2.3 we introduce a policy classification scheme providing a coherent
framework to distinguish the different types of policies suggested in literature.

2.2.3 Policy Classification Scheme

In recent years, several policy specification languages have been proposed address-
ing a wide range of different purposes. In this section, we introduce a policy classi-

4Sarbanes-Oxley Act 2002, available at http://www.legalarchiver.org/soa.htm
5ISO 20000 IT Service Management Standards, available at http://20000.

standardsdirect.org/

2.2 Policy-based Computing 23

Policy Type

Formal Nature of
Policy Language

Level of
Abstraction

Business-
driven

Device-

driven

Action
Policy

Goal
Policy

Utility

Function
Policy

Purely
Syntatic

Formally
Defined

Figure 2.3: Policy classification scheme.

fication scheme that distinguishes policies on a conceptual level according to three
orthogonal dimensions: horizontally we distinguish between the type of the policy
that determines the information that is expressible; vertically we differentiate the
levels of abstraction on which a policy is defined; finally, each policy (type) can be
expressed with various languages ranging from pure syntactic specification to lan-
guages with a well-defined formal semantics. Figure 2.2.3 illustrates these different
dimensions. The classification provides the basis for the design of an appropriate
policy language later in this work.

Policy Type

The notion of policy type originates from the field of agent design. Russel and Norvig
[RN03, Chapter 2.4] distinguish between simple reflex agents, goal-based agents and
utility-based agents. To illustrate the three different approaches we use a transition
system as a common framework for comparing the policies embodied in these kinds
of agents. An labeled transition system is based on the notion of states and actions as
specified in the following definition.

Definition 2.6 (Labeled Transition System) A labeled transition system is a tuple
(S, A,S) where S is a set of states, A is a set of actions and→⊆ S× A× S is a ternary re-
lation between states and actions called transition. If s, s′ ∈ S and a ∈ A, then (s, a, s′) ∈→
represents a transition from state s to s′ triggered by action a and is written s a

→ s′.

A state s ∈ S characterizes a system or system component and is usually described
by a set of attributes (directly or indirectly) measured by a sensor. In a current state s
a certain set of actions A can be taken which results in transitions to new states S′ ⊆
S. For simplicity we consider only one-shot decisions and assume a deterministic
environment without uncertain transitions, i.e. for a given s and a possible a there is
exactly one s′ such that (s, a, s′) ∈→.

Action Policies. Simple reflex agents select actions based on the current percep-
tion of the sensors. The policies that encode the agents behavior have the form of

24 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

condition-action rules, which can be written as

if service supports encryption
︸ ︷︷ ︸

then invoke service
︸ ︷︷ ︸

.

condition action

In line with [KW04] we call these policies action policies. By comparing the cur-
rent state S of a system to the condition (denoted by Φ) specified in the policy, pos-
sible actions A′ ⊆ A are determined. Thus, an action policy can be seen as a function
FΦ : A× S→{0,1} and A′ = {a ∈ A|∃s ∈ S : FΦ(a, s) = 1}. In order to exhibit rational
behavior the action policy set must cover the entire state space and only one action
should be triggered in one state. Since this can be hardly guaranteed in complex
scenarios, explicit mechanisms for conflict handling between policies are required.
For example, this can be realized by prioritizing policies or by explicitly introducing
“meta-policies” that define which policy should be used in case of a conflict.

Goal Policies. However, action policies are often not sufficient to make a deci-
sion since they only regard the current state s when selecting an appropriate action
a and do not consider information about the desired state s′. Goal policies, in con-
trast, avoid specifying what to do in a current state s, but rather specify the set of
desired states S′, which is called a goal. Goal policies define the desired state by
declaratively specifying constraints Φ on its characteristics and can thus be seen as
a function GΦ : S→ {0,1} mapping each state to a value of 0 or 1, where 1 charac-
terizes a desired state and 0 a not desired one (i.e. S′ = {s ∈ S|GΦ(s) = 1}). With this
approach rational behavior has not to be specified explicitly, but is generated by the
system itself. This provides greater flexibility and frees human administrators from
knowing detailed system information [KW04]. Since reaching a desired state re-
quires knowledge about the actions to be executed to reach this state, sophisticated
planning or modeling algorithms might be required. Due to the fact that actions can
be derived automatically from goals, goal policies can be considered as higher level
forms of policies [KW04].

Utility Function Policies. Goal policies as defined above are limited in a sense
that any member of the set S′ is equally desired and thus such policies cannot reflect
preferences between states. That means a decision maker is indifferent between the
different states that can be realized. Preferences can be expressed by generalizing
goal policies in a sense that the function G is replaced by a function U : S→ R that
maps each state to a real-valued number. In line with [KW04] we call declarative
representations of such functions utility function policies. By explicitly specifying the
trade-off between different states, they allow for unambiguous and rational decision
making also in cases where goal policies would lead to a conflict. By means of an
optimization algorithm the most desired state can be determined and goal as well
as action policies can be derived from utility function policies.

Level of Abstraction

Each of the policy types introduced above can be expressed on different levels of ab-
straction forming a policy continuum [Str02]. Generally, at least two main levels can
be distinguished [AAFP03]: (i) Low level policies that are defined directly based on

2.2 Policy-based Computing 25

detailed system information. We call them system or device-driven. Since profound
knowledge about the system is required such policies are typically defined by tech-
nical experts. For example, such policies might define that services supporting the
AES encryption protocol with a key of 1024 bit are preferred, or that system logs may
deleted after two weeks with acknowledgement of the administrator. (ii) High level
policies, in contrast, are formulated from a business perspective and regulate more
general aspects such as service levels an application has to meet or IT-governance
regulations. These policies are relatively independent of the underlying technology.
Hence, we say they are business-driven.

Instead of distinguishing between business- and device-driven policy definitions
one can also divide the policy continuum according to roles of people defining the
policies, which leads to a more fine-grain segmentation. Strassner [Str02] suggests
introducing different types of views optimized for a certain user group. The Business
View allows defining high-level policies using business terms and avoids technical
details. The System View translates business policies to the technical terminology but
generalizes from a specific technology. For example, a business policy specifying
that only premium customers are allowed to use a certain service is translated to
system policy specifying that users taking the role of premium customers can obtain
a special type of access rights; others cannot. In a next step, the policies defined in
the Administrator View map them to specific technologies, e.g. to the specific user
model or system architecture. Depending on the concrete application and system
implementation further views can be defined. What views are required depends on
the groups of people defining policies for the system.

Formal Nature of Policy Language

The third dimension captures the language aspect. In recent years, a vast amount of
policy languages have been developed for various purposes including security as
well as trust aspects and business rules. Each approach comes with a policy speci-
fication language that enables expressing, storing and interpreting polices. Policy
languages range from natural language descriptions (e.g. [MBG99, MOR01]) via
more structured languages with a standardized syntax (e.g. [W3C06b, MAPG03,
IBM03]) to formal languages based on an underlying logical calculus (e.g. [BSD+04,
KPKH05, Kag04, TBJ+03]). Natural language policies are deemed to be the most
intuitive approach for human policy authors. However, automatic interpretation
and enforcement of policies is not completely achievable due to highly ambigu-
ous nature of natural languages statements. Controlled vocabularies and structured
policies expressions can improve the situation and enable automated processing of
polices through a special interpreter. Since this interpreter implicitly defines the
semantics of the language syntax, it is difficult to determine their expressivity and
computational properties. Moreover, a well-defined semantics which can be real-
ized by mapping the language constructs into a logic (e.g., some variant of first
order logic) provides improved interoperability. This is particularly true in scenar-
ios where policies have to be exchanged between different independent companies
as it is typically the case in service-oriented architectures.

26 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

Asset specificity

C
o

m
p

le
x
it

y
 o

f
p

ro
d

u
c
t

d
e
s
c
ri

p
ti

o
n

HighLow

L
o

w
H

ig
h

Market

Hierarchy

Figure 2.4: Influence of information technology on the applicability of markets
[MYB87].

2.3 Electronic Markets

The infrastructure coordinating service supply and demand can be seen as a market
platform. Economic theory distinguishes between two extreme forms of coordina-
tion that enable transactions between different parities: (i) markets and (ii) hierar-
chies. (i) Markets coordinate the transactions through supply and demand forces,
which determine prices, quantities, quality, etc. Traditionally, markets have been
used in scenarios with many autonomous participants, where products are simple
and mostly standardized, and where the required interactions are rather simple. (ii)
In hierarchies transactions are planned by controlling and directing at a higher po-
sition in the hierarchy. In scenarios with more complex products and interactions
usually a hierarchical coordination mechanism has been used. While markets are
preferable in terms of transaction costs (e.g. they provide more efficient information
processing), they typically come with much higher coordination costs than hierar-
chical approaches (e.g. selecting suppliers, negotiating contracts, paying bills, etc.)
[MS84].

However, with the availability of markets based on more sophisticated informa-
tion and communication infrastructure a shift towards market-based coordination
can be realized [MYB87]. Such electronic markets are institutions that allow the ex-
change of goods and services between multiple participants through global commu-
nication networks, such as the Internet. In the process, they create economic value
for buyers, sellers, market intermediaries, and for the society at large [Bak98].

Electronic markets differ considerably from classical markets by being indepen-
dent from time and space [Sch93]. For example, they enable world-wide access and
trading all day and night which is not possible in most “off-line” markets. There-
fore, more information can be gathered in a shorter time and due to the electronic
nature additional market services can be provided, which reduce the transaction
costs in the market. For example, they may reduce search costs for products and

2.3 Electronic Markets 27

information, enable companies to automate their transactions with business part-
ners all over the world, and facilitate product customization and aggregation. In
fact, improved information representation and handling within electronic markets
leads a much broader applicability of markets beyond simple uniform goods and
commodities. Figure 2.4 captures this idea by illustrating applicability of the coor-
dination mechanisms depending on:

• product complexity, i.e. the amount of information required for describing a
product in such detail that a meaningful matching and selection can be car-
ried out.

• asset specificity, which refers to the fact that certain products cannot be used
by other person or companies, because they are not easily transferable; for
example, a huge machine or internalized knowledge.

For example, even complex products can be traded via an auction if market infras-
tructure provides an adequate representation formalism (i.e. bidding language) and
matching algorithms. In this context, the concept of ontologies introduced in Section
2.4 plays a crucial role.

Before we come to the representational aspects, we look in more detail on the
market process. Section 2.3.1 introduces the different phases the market process can
be partitioned and Section 2.3.2 provides more insight into the contracting process
by discussing different market mechanisms.

2.3.1 Market Phases

The exchange of products and services between customers and suppliers is carried
out through business transactions, which can be seen as the process of initiating, ar-
ranging and completing a contractual agreement about the exchange of goods and
services [LS98]. Langenohl [Lan94, pp. 18-22] identifies three main transaction
phases of electronic markets – information, agreement and settlement phase – which
are discussed in the following.

Information Phase: In the information phase market participants gather all kinds
of information about the participants in the market and the products avail-
able. This could for example comprise information about the reputation or
credit rating of potential business partners or the concrete technical specifica-
tions of a product. Based on this information an offer (either to sell or buy)
is generated. With the submission of the offer to the market the information
phase for a certain market participant ends.

Agreement Phase: Starting with receiving the offers and requests from the market
participant, the agreement phase constitutes the core component of a market
infrastructure. Ströbele and Weinhardt [SW03] distinguish between three steps
that have to be executed to transform requests and offers to legally binding
contracts:

• Matching: Matching (Matchmaking) is the process of comparing requests
and offers with the goal of finding suitable counterparts. Matching is
thus a core functionality of a market mechanism. The quality of a market

28 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

crucially depends on the quality of the matching algorithms used. In fact,
the quality will be low if many ill-suited matches are realized as well as if
many suitable matches are not realized. This corresponds to the concepts
of precision and recall known from information retrieval [vR79].

• Allocation: An allocation is a function that maps the set of requests to a set
of offers. Note that this mapping does not have to be bijective in sense that
for all offers and requests a suitable counterpart is assigned. For example,
several requests might be assigned to an extremely competitive service
offer, or in case of excess demand some requests may not be assigned to
any offer. Determination of an allocation can be done by means of the
take-it-or-leave-it principle or it might involve negotiations or auctions
mechanisms to increase the efficiency of the market.

• Acceptance: After the allocation is determined, for each pair of customers
and providers allocated to each other a legally binding contract has to be
concluded. With closing a contract an agreement between a customer and
provider is reached and thus the agreement phase is completed.

Settlement Phase: Finally, in the settlement phase the transaction agreed upon is
carried out, which might involve the exchange of products or the invocation
of a service. With a proper execution a contract is fulfilled. The contractors
might further want to verify if a certain execution complies with the terms
agreed-upon. This involves monitoring of the execution.

In the following, we will have a closer look on the agreement phase, in which a
market mechanisms provides matching and allocation functionality.

2.3.2 Market Mechanisms

Market mechanisms can be seen as an institution according to the Neo-classical in-
stitution theory that define the set of admissible actions (e.g. available messages in
the communication protocol), and the rules that define how the outcome is deter-
mined based on these actions. According to [Par01, MMW06], an outcome O refers
to an allocation of products to market participants i ∈ {1, . . . , N}. A market mecha-
nism thus consists of two set of rules: those defining the set of admissible actions
(called strategies) which are denoted by Σ1 . . . ΣN and those for selecting the alloca-
tion based on the actions which is represented by a function g : Σ1× · · · ×ΣN→ XN .

In the following, we distinguish between between two basic forms of market
mechanisms: rather simple mechanisms based on fixed prices and more complex
mechanisms featuring dynamic pricing used in negotiations and auctions.

Fixed-price Mechanisms

In a fixed-price mechanism prices are statically defined by the market participants.
In particular, the price does not react to the bids and therefore does not adapt to
new information coming in the market. Such an approach is usually adopted in tra-
ditional retail markets, where the supplier dictates the price leaving no room for ne-
gotiations. A popular fixed-price mechanism is the hit-and-take mechanism described
below.

2.3 Electronic Markets 29

Definition 2.7 (Hit-and-Take Mechanism) A hit-and-take mechanism (aka take-it-or-
leave-it mechanism or offer/accept mechanism) requires the provider (requester) to announce
its transaction proposal including detailed product description and fixed price. This price
represents the acceptable price for which the product can be sold/bought. Given this price
(together with the exact product description and trading conditions) the potential trading
partner either accepts this transaction proposal or declines it. Conflicts arising due to ex-
ceeding demand and supply are handled according to the first come first serve principle.

For example, if a price fixed by the provider is lower than the corresponding
reservation price of the requester, a potential transaction is found by the mechanism;
if the price fixed by provider is higher then the requester’s price, no transaction can
take place. In this context, the problem of a fix-price mechanism becomes evident. In
scenarios where prices of products are not known exactly (e.g. a product is unique
or extremely volatile) it is hard to fix a price in a way that the market performs
optimally, e.g. a maximum of transactions are carried out.

Dynamic-pricing Mechanisms

In order to address the problem of inefficient allocations, dynamic pricing mecha-
nisms can be used. Dynamic pricing refers to a mechanism where prices and other
transaction conditions are dynamically fixed based on the interplay between supply
and demand. According to [Hur73], such a coordination mechanism can be used to
allocate resources efficiently to requesters. They allow the determination of prices in
cases where the true value is not known and the market participants’ estimate may
be imperfect. There are two main forms of dynamic-pricing mechanisms which are
discussed in the following.

As a first category of mechanisms featuring dynamic pricing we consider nego-
tiations. As defined by [LWJ01, BKS03], in the following we use a rather general
definition that covers mechanisms ranging from highly individual bilateral negoti-
ations to mechanisms with very structured protocols.

Definition 2.8 (Negotiation) A negotiation is an iterative, progressive communication
and decision making process by which a group of agents communicate with one another
to try to reach an agreement on some matter of common interest. Usually the process starts
with a rather inefficient offer and leads to a compromise (or to a disagreement). A negotiation
between exactly one buyer and one seller is called a bilateral negotiation.

As a second category of dynamic-pricing mechanisms we introduce auctions.6

The most appealing properties of auctions are their process efficiency (e.g. simple
communication protocol, high rates of Pareto-efficient outcomes, fast convergence
to equilibrium) and ability to manage a large number of bidders. Therefore, auctions
have emerged as the primary market institution for electronic commerce.

Definition 2.9 (Auction) An auction is a market institution with an explicit set of rules
determining resource allocation and prices on the basis of bids submitted by the market par-
ticipants [MM87]. Thus, auctioning is the form of negotiation with simple well-defined
rules, but it naturally includes multiple parties [Kar03].

6Note that auctions (and particularly on-line auctions) can be seen as a special kind of negotiation
mechanism having a distributive negotiation protocol and multiple parties. For a detail discussion
on the relation of negotiation and auction mechanisms the interested reader is referred to [KNT00,
BKS03].

30 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

Naturally, the design of negotiation systems requires a highly interdisciplinary
approach drawing from computer science and information systems, economic sci-
ences and management, and law and social sciences [BKS03, WHN03]. In this con-
text, law and social sciences mainly contribute with qualitative studies of the mar-
ket participants’ behavior and prescriptive as well as descriptive negotiation mod-
els. Computer science deals with designing electronic market platforms, decision
support systems, and agent-based simulation framework for markets. Economics,
finally, contribute to the field by providing techniques for constructing agent strate-
gies and formal negotiation models that can be used for predicting market out-
comes. This usually involves a game-theoretic analysis from which certain con-
clusions for the institutional design of market mechanisms can be drawn, i.e. how
should a social choice function look like that implements g(·) of the mechanism?
For example, in one of the first game-theoretic approaches to negotiations Nash
[Nas50, Nas53] describes a two-person multi-item negotiation problem and presents
a technique for determining equilibria that represent optimal strategies for the mar-
ket participants. Typically, the goal is to design market mechanisms with the fol-
lowing characteristics (compare e.g. [Par01, DJP03, BKS03, SNVW06]):

• Pareto-optimal outcomes, i.e. there is no outcome, where one agent is better-off
without other agents being worse-off.

• The pricing mechanism should be incentive compatible, i.e. each self-interested
agent has an incentive to bid its true valuation of the product.

• Allocative efficiency, i.e. the total utility across all market participants should be
maximal.

• The outcome should be budget balanced, which means that the sum of all pay-
ments in the market is zero. No money is removed from or injected into the
system.

• Individual rationality, which means all participants realize a nonnegative utility
in equilibrium.

A wide range of different electronic negotiation and auction mechanisms has
been proposed in literature and some of them have already been successfully im-
plemented in practice (e.g. eBay7, onSale8). For a more detailed overview of nego-
tiation and auction mechanisms refer to overview articles such as [OR05, LLSG04]
for (bilateral) negotiations and [MW82, dVV03, ADR05] for auctions, respectively.

In addition, several classification schemas for dynamic-pricing mechanisms have
been proposed. [SW03] provides a comprehensive classification of negotiation and
auction mechanisms according to endogenous and exogenous factors. Other classi-
fications have been presented, e.g., by [LWJ01] focusing on automated negotiations
between agents and [WWW01] focusing purely on auctions.

For our work, a coarse classification along the main dimensions of a market
mechanism is sufficient. We adopt the view of [BKK+02], where a market mech-
anism is described by three dimensions:

7www.ebay.com
8http://www.onsale.com/

2.4 Semantic Technologies 31

• Multi-attribute: In order to allow negotiations not only about price, there are
mechanisms that support multiple attributes, which capture additional char-
acteristics of the product such as quality aspects.

• Multi-unit: Often a buyer requires several units of a product at once. In this
case, often volume discounts are provided or one time costs such as regis-
tration fees have to be paid. Obviously, these aspects have to be explicitly
considered during negotiation.

• Multi-item: In some cases not only one product is required but a bundle of
products. In such cases, the value of a bundle containing both products might
be valued higher by a customer than the sum of the value for the single prod-
ucts. We call this superadditivity. Superadditive prices occur in case of comple-
mentary products that are usually used together, such as desktop computers
and computer monitors. Similarly, subadditivity describes substitutes where
products suit the same purpose, e.g. a laptop and a desktop computer. Mech-
anisms supporting multiple items are also called combinatorial market mecha-
nisms.

In the context of Web service markets, we will see later (Chapter 4) that such
multi-dimensional markets are required. As already discussed above, in order to
realize market mechanisms in a distributed environment with complex products
like Web services an expressive knowledge representation formalism with the cor-
responding matching algorithms is required. Therefore, in the next chapter we in-
troduce the concept of ontologies which provide expressive means for representing
market information and an executable calculus for handling this information in an
efficient way.

2.4 Semantic Technologies

In this section, we present basic technologies for the formalization of knowledge
and its processing within machines. Knowledge representation and reasoning is
a branch of symbolic Artificial Intelligence that aims at designing computer sys-
tems that enable reasoning about a machine-interpretable representation of domain
knowledge. In this section, we show how ontologies as conceptual models enable for-
malizing the semantics of information in heterogeneous, distributed systems, such
as service-oriented architecture or Web-based markets. Thereby, an ontology for-
mally specifies the relationship between the data and its meaning, and thus pro-
vides an unambiguous language that can be interpreted by humans and machines
alike.

After defining the concept of ontologies in Section 2.4.1, we discuss languages for
the specification of ontologies in Section 2.4.2 focusing on the Web Ontology Lan-
guage (OWL), the Semantic Web Rule Language (SWRL) and the query language
SPARQL. We introduce a classification of ontologies according to their generality in
Section 2.4.3 and then present the foundational ontology DOLCE as a basis for the
ontologies developed throughout this work in Section 2.4.4.

32 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

2.4.1 Ontologies

While originally the term ontology denotes a branch of metaphysics introduced by
Aristotle [Ari08] that addresses the philosophical investigation of existence, on-
tologies in computer science are computational artifacts that represents knowledge
about a domain of interest. In recent years, ontologies became an important tech-
nology for knowledge sharing in distributed, heterogeneous environments, partic-
ularly in the context of the Semantic Web [BLHL01]. Within the Semantic Web com-
munity the following definition is predominantly used [SBF98].

Definition 2.10 (Ontology) An ontology is a formal explicit specification of a shared con-
ceptualization of a domain of interest.

Requiring an ontology to be an “explicit specification of a conceptualization”
was first introduced by Gruber [Gru93]. Conceptualization refers to the way knowl-
edge is represented. It is encoded in an abstract manner using concepts and rela-
tions between concepts. Abstractness refers to the fact that ontologies try to cover as
many situations as possible, instead of focusing on particular individuals [Gua98].
An “explicit specification” refers to the fact that the concepts and the constraints
on their use are explicitly defined in an ontology and thus accessible for machines.
This basic definition is extended by requiring a “formal specification” and a “shared
conceptualization” [Bor97]. In this context, formality refers to the type of knowledge
representation language used for specifying the ontology. This language has to pro-
vide formal semantics in a sense that the domain knowledge can be interpreted by
machines in an unambiguous and well-defined way. In addition, the vocabulary for-
mally defined by this language should represent a consensus between the members
of a community. By committing to such a common ontology, community members
(or more precisely their software agents) can make assertions or ask queries that
are understood by the other members. Finally, an ontology always covers knowl-
edge about a certain “domain of interest”. Therefore, many applications use a set of
ontology modules that model different aspects of the application.

There is a broad range of application areas where ontologies have been
successfully used within the last years. Examples are information integration
(e.g. [ABdB+05]), matching of products or user profiles (e.g. [NSDM03, CCC+04]),
and the search of textual or multimedia content (e.g. [SR03, PBS+06]). For the dif-
ferent applications different ontology languages with a different degree of formality
are required. For example, in many applications already a rather low degree of for-
malization can be sufficient to realize immediate benefits [Hen03].

Common to most languages are the principal constituents: concepts, relations
and instances. Depending on the concrete language, they are represented differ-
ently. For instance, they map to generic nodes in a semantic network, to unary
predicates in logic or to concepts in description logic [GHA07]. Instead of introduc-
ing all of these different formalisms, we refer the reader to [SS04b] for an overview
of ontology languages. In the following, we introduce only formalisms that are
specifically required throughout this work.

2.4.2 Ontology Formalisms

In this section, we introduce the languages that are used for representing and query-
ing knowledge within the service-oriented architecture. We rely on the ontology

2.4 Semantic Technologies 33

language OWL which is standardized by the World Wide Web Consortium (W3C)9.
We first introduce the main ideas behind OWL as well as its logical foundations.
Then the rule language SWRL is presented that considerably increases expressive-
ness of OWL by supporting additional axioms. Finally, a query language for our
OWL and SWRL knowledge bases is introduced that provides means for retrieving
knowledge from the ontology.

Web Ontology Language (OWL)

In order to guarantee mutual understanding in distributed environments, the
underlying logic has to be standardized. The Web Ontology Language (OWL)
[W3C04c] is an expressive ontology language standardized by the World Wide Web
Consortium. Historically, OWL emerged from several former knowledge represen-
tation and description languages, like SHOE [Hef01] and DAML+OIL [W3C01a].
The development was mainly driven by the need to build one widely accepted
and backward compatible standard for knowledge sharing in the Web. The logical
foundation of OWL is a subset of first-order logic called description logic [BCM+03].
Subsequently, we first introduce the family of description logic languages and then
show how they can be used in a Web environment.

Description Logics. The development of description logic was influenced by ideas
stemming from the work on frame languages, such KL-ONE (see [BS85]), which
provided a logical basis for interpreting individuals, concepts (unary predicates)
and roles (binary predicates) between them. Concepts can be built by concept and
role constructers. In addition, terminological axioms can be used to define how
concepts or roles are related and assertional facts can be used to define statements
about the properties of individuals.

A major focus of research has been the trade-off between expressiveness of the
knowledge representation language and the difficulty of reasoning over this lan-
guage [BL84]. In practical applications it is particularly important that algorithms
exist, which allow for deriving logical consequences in a sound and complete man-
ner. If one can guarantee that these algorithms always terminate, the corresponding
logic is called decidable.

Decidability of a description logic depends on the provided constructors from
which concepts and relations can be composed. Table 2.4.2 gives a short overview
of the constructs available in a particular description logic. OWL comes in three
levels of expressiveness: OWL-Lite, OWL-DL and OWL-Full, reflecting different
degrees of expressiveness and in turn also different degrees of scalability (compare
[HPSvH03]). OWL-Lite as well as OWL-DL directly map to a corresponding de-
scription logic dialect, whereas OWL-Full departs from the description logic seman-
tics.

According to [HPSvH03], OWL-Lite is equivalent to the SHIF (D) descrip-
tion logic and it is in worst case decidable within deterministic exponential time
(EXPTIME complexity). OWL-DL extends SHIF (D) with nominals and allows un-
qualified number restrictions. Hence it is equivalent to the SHOIN (D) descrip-
tion logic which is in worst case decidable in non-deterministic exponential time
(NEXPTIME complexity) and for which no nearly optimal and complete inference

9http://w3c.org

34 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

Symbol Available Constructs
AL conjunction, universal value restriction

and limited existential quantification
C disjunct and full existential quantification with full negation
R+ transitive role (owl:TransitiveProperty)
S shortcut for ALCR+
H role hierarchy (rdfs:subPropertyOf)
I inverse role (owl:inverseOf)
F functional role (owl:FunctionalProperty)
O nominals, i.e. enumeration of classes or data values

(owl:oneOf and owl:hasValue)
Q qualified number restrictions
N unqualified number restrictions
D concrete domains

Table 2.1: Description logic variants [BCM+03].

algorithm exists. In general, OWL-Full is shown to be undecidable [Mot05]. In the
following, we define the syntax and semantic of the most expressive decidable lan-
guage OWL-DL, which fully subsumes the OWL-Lite fragment and is used through-
out the work.

The syntax of SHOIN (D) is given by concept as well as role descriptions and
constructers for transforming them into complex concept and role descriptions. In
addition, individuals and datatypes are supported. The meaning of these modeling
constructs is formally defined via a model theoretic semantics, i.e. it is defined by re-
lating the language syntax to a model consisting of a non-empty set of objects ∆I ,
denoted by a domain, and an interpretation function I , which maps entities of the
ontology (e.g. an atomic concept φ) to concrete entities in the domain (e.g. the set
ŒI ⊆ ∆I) [HPSvH03]. Thereby, axioms define certain constraints on these interpre-
tations. Based on [BCM+03], the following list defines certain concept descriptions
and constructors with their abstract syntax and model theoretic semantic. Let A,R,
and I be pairwise disjoint finite non-empty sets of atomic concepts, roles and indi-
viduals, respectively.

• BOTTOM: the concept⊥ represents a shortcut for φ⊓¬φ with φ ∈A and⊥I =
∅.

• TOP: the concept ⊤ represents a shortcut for φ ⊔ ¬φ with φ ∈ A and ⊤I = ∆I .

• Conjunction: the conjunction of concepts φ ⊓ ψ (with φ,ψ ∈ A) refers to the set
of individuals belonging to both concepts, i.e. (φ ⊓ ψ)I = φI ∩ ψI .

• Disjunction: the disjunction of concepts φ ⊔ ψ (with φ,ψ ∈ A) refers to the set
of individuals belonging to either φ or ψ, i.e. (φ ⊔ ψ)I = φI ∪ ψI .

• Negation: the complement ¬φ with φ ∈ A contains all individuals not con-
tained in φ, i.e. ¬φI = ∆I\φI

• Existential restriction: an existential restriction ∃R.φ denotes that only indi-
viduals with a relation R belong to the concept φ, where R ∈ R and φ ∈ A,
i.e. (∃R.φ)I = {a ∈ ∆I |∃b.(a,b) ∈ RI ∧ b ∈ φI}.

2.4 Semantic Technologies 35

• Universal restriction: an universal restriction ∀R.φ denotes individuals, for
which all roles R point to the concept φ, where R ∈ R and φ ∈ A. The in-
terpretation is given by (∀R.φ)I = {a ∈ ∆I |∀b.(a,b) ∈ RI → b ∈ φI}.

• Unqualified number restrictions: an unqualified number restriction ≥n R, ≤n R,
or = nR defines concepts of individuals having at least, at most, or exactly n
relations R ∈ R, respectively. The semantics for ≥n R is given by (≥n R)I =
{a ∈ ∆I ||{b ∈ ∆I}|(a,b) ∈ RI}| ≥n}. The definitions for ≤n R and =n R are
analogous.

• Nominals: nominals I are individuals used in concept expressions and they are
interpreted as singleton sets that consist exactly of one element of the domain,
i.e. II ⊆ ∆I and |II |= 1.

In the following, we introduce an additional concept constructor originally not
contained in OWL-DL, but planned for the next version of OWL (Version 1.1).
Namely, this constructor is a qualified number restriction, which extents unquali-
fied number restrictions in that a range concept can be defined. Qualified number
restriction are already supported by most OWL-DL reasoners. The semantics of
qualified number restrictions is given as follows:

• Qualified number restrictions: an qualified number restriction ≥ nR.φ, ≤ nR.φ,
or = nR.φ defines concepts of individuals having at least, at most, or exactly n
relations R ∈ R to a concept φ. The semantics for ≥ nR is given by (≥ nR)I =
{a ∈ ∆I ||{b ∈ ∆I}|(a,b) ∈ RI ∧ b ∈ φI}| ≥ n}. The definitions for ≤ nR.φ and
= nR.φ are analogous.

The description logic concept constructers are augmented by role constructers
that combine role and/or concept descriptions to more complex role descriptions.
SHOIN (D) supports transitive closure as well as inverse roles:

• Transitive closure: The transitive closure R+ with R ∈ R allows modeling the
transitive characteristic of roles, i.e. (R+)I is the transitive closure of RI .

• Inverse roles: An inverse role R− with R ∈ R has inverted domain and range
descriptions, i.e. (R−)I = {(b, a) ∈ ∆I × ∆I |(a,b) ∈ RI}.

Based on the concept and role definitions introduced above, terminological and
assertional axioms can be defined, which constrain the allowed interpretations.
These axioms cover concept (role) inclusion, equality and assertion are defined as
follows.

• Inclusion: If a concept φ∈A is a subconcept of another concept ψ ∈A, we write
φ ⊑ ψ. In this case φI ⊆ ψI holds. The same is true for roles and is defined
analogously for the inverse inclusion “⊒”. A set of concept inclusions is called
concept hierarchy, a set of role inclusions role hierarchy.

• Equality: Concept equality φ ≡ ψ is given if the two concepts classify the same
individuals φI = ψI (role equality is defined analogously).

• Assertion: A concept assertion defines that an individual a belongs to a concept
φ. Concept assertions are denoted by φ(a) and the semantics is defined by
aI ∈ φI . Similarly, role assertions R(a,b) are defined as (aI ,bI) ∈ RI .

36 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

By means of the underlying model theoretic semantics that describes models that
are valid according to a certain description logic theory, logical consequences can be
drawn from the set of axioms defined in the ontology – a process usually referred to
as deduction or inferencing. Thereby, knowledge can be derived that is not explicitly
stated but that is implicitly given by the logical theory [GHA07]. When an axiom F
satisfies an interpretation I (or if I is a model of F), we write I |= F. In case I |= F
holds for all axioms F in the knowledge base KB, we say the KB is satisfiable. A
logical consequence is denoted by KB |= F. To illustrate this consider the following
example.

Example 2.1 Assume a service registry where a description logic knowledge base is used
to describe, classify and store Web service offers. For example, consider the description of a
route planning Web service. We define that (A1) a Service10 has at least one input (indicated
by relation hasInput) and output (indicated by relation hasOutput), (A3) a RoutePlan-
ningService is a Service has exactly one role hasStart as well as hasDestination and at
least one role hasRoute, which (A4/A5) are specializations of hasInput and hasOutput,
respectively. In addition, (A6) assume a concrete Service that (A7) provide a route A8)
between two places within Germany.

Service⊑ ∃hasInput.⊤⊓ ∃hasOutput.⊤(A1)
RoutePlanningService ⊑ Service ⊓ =1 hasStart ⊓ =1 hasDestination ⊓(A2)

∃hasRoute.⊤(A3)
hasStart⊑ hasInput; hasDestination⊑ hasInput(A4)
hasRoute⊑ hasOutput(A5)
Service(ServiceCompA)(A6)
hasRoute(ServiceCompA,calculatedRoute)(A7)
hasStart(ServiceCompA, Germany),(A8)
hasDestination(ServiceCompA, Germany)

From a set of such axioms conclusions can be derived that are not explicitly stated in the
ontology, e.g. a subsumption hierarchy between concepts in the ontology can be constructed.
For example, consider the case where a requester is looking for a RoutePlanningService in
the knowledge base described above (A1)-(A8). In this case the instance ServiceCompA
is also returned as a result. Although it is not explicitly state that ServiceCompA is an
instance of RoutePlanningService, we can infer this from the knowledge base, viz., KB |=
RoutePlanningService(ServiceCompA).

This is particularly important for matchmaking in heterogeneous markets, where offers
and requests are usually described on different levels of abstraction, e.g. when looking for a
route planning service for Germany also route planning service for entire Europe are rele-
vant.

An Ontology Language for the Web. In order to represent ontologies in a com-
pact and convenient way, we have described ontologies up to now using the ab-
stract description logic syntax presented in [BCM+03]. However, in order to make

10Throughout the work entities from an ontology are formatted using the slanted style. Sometimes
concept names in the text are used in plural to improve the readability.

2.4 Semantic Technologies 37

1 <rdf:RDF xmlns="http://www.ontoware.org/service#"
2 xml:base="http://www.ontoware.org/service"
3 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
4 xmlns:rdfs="http://www.w3.org/2000/01/rdf−schema#"
5 xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"
6 xmlns:owl="http://www.w3.org/2002/07/owl#">
7 <owl:Ontology rdf:about=""/>
8 <owl:Class rdf:ID="RoutePlanningService">
9 <rdfs:subClassOf rdf:resource="#Service"/>

10 <rdfs:subClassOf>
11 <owl:Restriction>
12 <owl:onProperty rdf:resource="#supports"/>
13 <owl:someValuesFrom rdf:resource="#Navigation"/>
14 </owl:Restriction>
15 </rdfs:subClassOf>
16 <rdfs:subClassOf>
17 <owl:Restriction>
18 <owl:onProperty rdf:resource="#start"/>
19 <owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
20 </owl:Restriction>
21 </rdfs:subClassOf>
22 <rdfs:subClassOf>
23 <owl:Restriction>
24 <owl:onProperty rdf:resource="#destination"/>
25 <owl:cardinality rdf:datatype="&xsd;int">1</owl:cardinality>
26 </owl:Restriction>
27 </rdfs:subClassOf>
28 ...
29 </owl:Class>
30 <owl:Class rdf:ID="Service"/>
31 ...
32 </rdf:RDF>

Listing 2.2: OWL ontology in XML/RDF serialization.

the description logic applicable for a heterogeneous, distributed environment such
as the Web, resources (e.g. ontology elements) have to be uniquely identifiable in
the system, support for extensive modularization has to be provided and compli-
ance with existing Web languages and protocols has to be guaranteed. Thus, OWL
uses Uniform Resource Identifiers (URI) for defining the vocabulary and provides
a serialization using XML [W3C04a], which comes with support for datatypes and
data values [W3C04e]. In addition, OWL provides an import mechanism for reusing
other ontologies and therefore enables modularization, where different ontologies
can be created and updated by different parties and still be shared within a dis-
tributed environment. Listing 2.2 shows an excerpt from the XML/RDF serializa-
tion of Example 2.1.

38 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

Built-in Name Functionality

swrlb:equal(x,y) true iff x = y
swrlb:notEqual(x,y) true iff x 6= y
swrlb:lessThanOrEqual(x,y) true iff x ≤ y
swrlb:greaterThanOrEqual(x,y) true iff x ≥ y
swrlb:add(z, x,y) true iff z = x + y
swrlb:subtract(z, x,y) true iff z = x− y
swrlb:multiply(z, x,y) true iff z = x ∗ y
swrlb:divide(z, x,y) true iff z = x/y
swrlb:max(z, x,y) true iff z = max(x,y)

Table 2.2: Subset of SWRL built-ins. A full list is available in [HPSB+04].

Semantic Web Rule Language (SWRL)

In order to define our ontology, we require additional modeling primitives not pro-
vided by OWL-DL. For example, due to the restriction to tree structures [GHVD03]
OWL-DL does not support triangle relations between concepts, such as the role suit-
ableFor saying that a Service is suitable for a certain Country if the starting point
of a route is in this Country. Obviously, this rule leads to non-tree models and
the description logic becomes undecidable. In contrast to description logics, rule
languages can be used to express such triangle relation. Intuitively, the head (conse-
quent) of rule holds if the condition specified in the body (antecedent) holds. Thus,
the example above can be formalized as follows:11

suitableFor(x,y)←Country(y),start(x,z), locatedIn(z,y)(R1)

However, compared to description logics, rule-based approaches have also
drawbacks, e.g. they are restricted to universal quantification. The Semantic Web
Rule Language (SWRL) [HPS04, HPSB+04] allows us to extend OWL with Horn-
like rules that are interpreted according to first-order semantics. In addition, SWRL
provides a XML-based syntax for encoding rules within an ontology, an extension
to the OWL semantics which provides formal meaning for SWRL constructs, and an
extensible set of built-in predicates12 that can be used for implementing operations
such as arithmetic calculation, string comparisons or manipulations, etc. The SWRL
built-ins used in this work are introduced in Table 2.2.

Unfortunately, reasoning with knowledge bases that contain arbitrary SWRL ex-
pression usually becomes undecidable [HPS04]. Thus, we restrict ourself to DL-safe
rules [MSS05]. DL-safe rules keep the reasoning decidable by placing constraints on
the format of the rule, namely each variable occurring in the rule must also occur in
a non-DL-atom in the body of the rule. This means that the identity of all objects re-
ferred to in the rule has to be known explicitly (i.e. they have to be explicitly named
in the knowledge base). For example, Rule R1 is not DL-safe, since x,y, and z occur

11For the notation of rules we rely on the standard first-order implication syntax. In the following,
rules are labeled by R1, . . . , Rn.

12Whenever built-ins are used within a rule, they are identified by the prefix “swrlb”.

2.4 Semantic Technologies 39

only in DL-atoms. However, the rule can be made DL-safe by adding the non-DL-
atoms O(x),O(y), and O(z) to the body, which ensure that the variables refer only
to known objects, i.e. individuals in the knowledge base. Since we deal only with
known instances in our application and the terms O(x) are automatically added by
the reasoner, we do not explicitly mention the non-DL-atomsO(x) in the following.

SPARQL

In order to access information stored in a knowledge base, a query language is re-
quired. Queries can be seen as “intentional” denotations [LL87] of individuals in
the knowledge base representing required characteristics without referring to an
concrete individual. The emerging standard for querying RDF and OWL ontolo-
gies is the query language SPARQL [W3C06a] currently being standardized by the
W3C. In addition to a SQL-like query syntax, SPARQL provides a data access pro-
tocol based upon HTTP as well as SOAP, and a XML format in which query re-
sult are returned. Although originally a query language for RDF graphs or triples,
SPARQL can be also used to express conjunctive queries over description logic knowl-
edge bases. A detailed discussion how the SPARQL syntax can be used to encode
conjunctive queries is presented in [Haa06]. Listing 2.3 shows the language syntax
of SPARQL.

1 PREFIX ns:<uri of namespace>
2 SELECT [DISTINCT] <projection>
3 FROM <uri of dataset>
4 WHERE{<graph pattern> [FILTER <expression>]}
5 [ORDER BY <attribute> [ASC|DESC]|LIMIT <n> | OFFSET <m>]

Listing 2.3: SPARQL syntax.

Keywords like SELECT, FROM, WHERE, FILTER, etc. are interpreted in line with
their meaning in SQL. The meaning of <projection>, <graph pattern> and
<expressions> is given as follows [W3C06a]:

• <projection>: A Projection p(QS,VS) is the solution {(v, QS(v))|vinVS}
over a query solution (QS) and a set of wildcard variables (VS). In other
words it is a selected subset of the variables defined in the <graph pattern>
section.

• <graph pattern>: There are four OWL relevant types of graph patterns that
can be used in a query:

– basic: A subject-predicate-object pattern binding OWL
Classes and (or) properties to variables. For example,
?x <http://example.de/a.owl#hasValue> ?z. Here ?x is
an variable representing an OWL individual whereas ?z is an variable
representing either an OWL individual or an data literal depending on
the range of property <http://example.de/a.owl#hasValue>.

– group: One graph pattern containing a conjunction of other graph pat-
terns that must all match.

– optional: A graph pattern that may fail to match but the query is still
executed against the data without failing entirely.

40 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

Application Ontology

Domain Ontology Task Ontology

Core Ontology

Top-level Ontology

Figure 2.5: Categorization of Ontologies. Arrows represent specialization relation-
ships.

– union: A combination of two graph patterns that bind the same variables
and may match.

• <expression>: A regular expression that is supplemented by a subset of
the built-in functions and operators defined by XQuery [W3C07b]. To get an
overview about the applicable unary, binary and trinary operators as well
as the regular expression grammar the interested reader is referred to the
[W3C06a].

After having defined the language for expressing knowledge bases including
rules and queries for accessing the data stored in this knowledge bases, we discuss
the different types of ontologies that can be built based on this languages in the next
section.

2.4.3 Categorization of Ontologies

One of the central ideas behind ontologies is the possibility of reusing existing on-
tologies and thus reducing the modeling effort. However, it has turned out that
different types of ontologies are more suitable for reuse than others. In this context,
the generality of the ontologies is important: general ontologies can be reused in
many different contexts, whereas very specific ontologies are rarely reused. Thus,
the following categorization of ontologies can be applied [Gua97, Obe05]:13

Top-level Ontology: Top-level ontologies describe general concepts, such as object,
event, action, etc. that may be present or occur in many (or even all) dif-
ferent domains and applications. Therefore, these concepts are independent
from a concrete usage scenario and can be shared by a large community of
users. Top-level ontologies are also often called foundational, generic or upper
level ontologies. Since they are easily reused, it is worth devoting effort into
building philosophically sound and highly axiomatized top-level ontologies,
which unambiguously describe the vocabulary. Prominent examples of top-
level ontologies are DOLCE [MBG+02b] and SUMO [NP01].

13Of course, also other categorization dimensions have been proposed in literature. For exam-
ple, ontologies can be classified according to the level of formality or with respect to the ontology
language used.

2.4 Semantic Technologies 41

Core Ontology: Core ontologies are situated between the two extremes of top-level
and domain/task/application ontologies. They are still application indepen-
dent and generic over a set of domains, but serve a specific purpose required
in different domains. For example, Oberle [Obe05] presents a Core Ontology
of Software Components and Services which describe certain aspects of com-
puter systems independent from a certain application. Core ontologies reuse
the vocabulary defined in the top-level ontology.

Domain or Task Ontology: These ontologies describe vocabulary specific to a cer-
tain domain, such as financial instruments or location information, or specific
to a certain task such as selling or diagnosing. Much work has already been
devoted to domain ontologies in the area of medicine, genetics, geography, etc.
and to task ontologies focusing on scheduling and planning tasks, intelligent
tutoring, etc.

Application Ontology: An application ontology, finally, introduces vocabulary to
adapt the ontologies above to a concrete application. Usually they can be
rarely reused for other application contexts.

In this work, we mainly focus on developing appropriate core ontologies, e.g.,
for expressing service offers, requests and contracts in a Web service market. Since
core ontologies are grounded in a top-level ontology, we introduce the foundational
ontology DOLCE that provides the modeling basis for our work in the next section.
The entire ontology framework for electronic markets is presented in chapter 6.

2.4.4 The Foundational Ontology DOLCE

While for some applications low quality ontologies with ambiguous vocabulary def-
initions might be sufficient (e.g. for ontology-based text classification [BCHS05] or
information retrieval [Sto04]), exact definitions of the term are required for estab-
lishing consensus in a community (especially for persons joining the community).
In order to explicitly capture the ontological commitment in a community, a rich ax-
iomatization that eliminates terminological and conceptual ambiguities is required.
However, building common ontologies in a bottom-up manner, where different on-
tologies of participants are integrated, might not be possible, since the intended
models of the ontologies do not overlap [BGG+02]. By grounding the different do-
main ontologies on a common basis, a certain overlap can be ensured and reaching
consensus becomes considerably easier. As introduced in Section 2.4.3, we call such
a common basis foundational (or top-level) ontology.

Foundational ontologies are high-quality formalizations of domain independent
concepts and associations that contain a rich axiomatization of their vocabulary.
Such formal principles are required to allow a comparison and integration of dif-
ferent conceptualizations [GM03]. To enable high axiomatization, foundational on-
tologies are usually formalized with a rather expressive logic, e.g. full first order
logic or modal logic. While this expressivity enables exact definitions of the vocab-
ulary, it also leads to a high reasoning complexity and undecidability, which ob-
structs the direct practical applicability of foundational ontologies. Therefore, most
foundational ontologies come also in a lightweight version that enables reasoning at
runtime. Nevertheless, the heavyweight version is still useful, since it can be used

42 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

as reference, e.g., for determining a consensus and meaning negotiation. Another
major advantage of foundational ontologies is the fact that by reusing generic con-
cepts, relations and larger ontology structures the modeling effort can be reduced.
We call such reusable structures ontology design patterns [Gan04]. Typical design pat-
terns are location in space and time, which can be used in many different domains
and applications.

In literature, several foundational ontologies have been presented over the last
years, including the Basic Formal Ontology (BFO) [MBG+03], the Descriptive On-
tology for Linguistic and Cognitive Engineering (DOLCE) [MBG+02b], the Object-
Centered High-level Reference Ontology (OCHRE) [Sch03], OpenCyc14, and the
Suggested Upper Merged Ontology (SUMO) [NP01]. Oberle [Obe05] compares
these ontologies with respect to a set of requirements stemming from the design
and management of middleware. These requirements are thus also applicable for
this work. He concludes that only DOLCE supports all required features. In partic-
ular, only DOLCE provides a theory of contextualization and a theory of informa-
tion objects which will be crucial for representing policies, bids and contracts in an
electronic market. Moreover, DOLCE comes in a heavyweight as well as lightweight
version and the modular structure of DOLCE reduces the risk of over-commitment,
i.e. agents have to reach consensus only about certain domains (individual mod-
ules), not about their entire conceptualization. We, therefore, select DOLCE as mod-
eling basis for our work. In the following, the part of DOLCE relevant for the sub-
sequent chapters is introduces in more detail.

DOLCE

The foundational ontology DOLCE (Descriptive Ontology for Linguistic and Cog-
nitive Engineering) provides a philosophically well-founded basis for developing
core, domain, task and application ontologies. It has already been successfully ap-
plied in different domains, such as software engineering [Obe05], law [GST05], and
biomedicine [GCB04]. Central to the structure of DOLCE is the distinction between
Endurants (i.e. objects or substances), Perdurants (i.e. events or processes), Quali-
ties and Abstracts. According to [MBG+02a], Endurants exist in time without having
temporal parts, whereas Perdurants happen in time and may have temporal parts.
That means, while Endurants may change in time, Perdurants cannot change, since
they have no unique identity in time. The ability to model 4D entities, such as Per-
durants, is a major advantage of DOLCE. Qualities inhere in Perdurants as well as
in Endurants and represented entities that can be perceived or measured. Qualities
are located in abstract entities called Regions . They encode Qualities in some metric
or conceptual space, e.g. a color space or speed range. Each of the presented DOLCE
entities features a hierarchy of specializations. A detailed description of DOLCE can
be found in [MBG+02a].

Based on this backbone, further ontology modules are defined. These include
ontological theories about contextualization, information objects and plans. They
are provided by the DOLCE modules Descriptions & Situations (DnS), Ontology of
Information Objects (OIO) and Ontology of Plans (OoP). The concepts of DOLCE
and its modules required in our work are briefly described in Table 2.3.

14www.opencyc.org

2.4 Semantic Technologies 43

Module Concept label Usage

DOLCE Endurant Static entities such as objects or substances

Perdurant Dynamic entities such as events or processes

NonAgentive- Non-physical Endurant that does not actively
SocialObject participate in Perdurants

NonAgentive- Physical Endurant that does not actively
PhysicalObject participate in Perdurants

Quality Basic entities that can be perceived or measured

Region Quality space such as colors, speed ranges, etc.

DnS SituationDescription Non-physical objects like plans, regulations,
defining Roles, Courses and Parameters

Role Descriptive entities that are played by Endurants
(e.g. a customer that is played by a certain person)

Course Descriptive entities that sequence Perdurants
(e.g. a service invocation which sequences concrete
communication activities)

Parameter Descriptive entities that are valued by Regions
like the age of customer

Situation Concrete real world state of affaires using
ground entities from DOLCE

OoP Task Course that sequences Activities

Activity Perdurant that represents a complex action

Plan describes a SituationDescription that sequences Activities

OIO InformationObject Entities of abstract information like the content
of a book or a story

Table 2.3: Upper level concepts from DOLCE, Descriptions and Situations (DnS),
Ontology of Plans (OoP) and Ontology of Information Objects (OIO) that are used
as modeling basis.

Descriptions & Situations

The intent of Descriptions & Situations is the representation of non-physical objects,
such as social institutions, regulations, plans or mental contents [GM03]. Therefore,
Descriptions & Situations introduces the distinction between a Situation and a Sit-
uationDescription . A Situation is constituted by entities of the ground ontology (in
our case DOLCE) and defines a state of affair (e.g. real settings in the world such
as facts or legal cases). A SituationDescription (or in short Description) is a con-
ceptualization, which encompasses non-physical social objects such as laws, plans,
policies, etc. and it (partly) represents a theory that is perceived by an Agent. The
fact that a Situation is a model of this theory is reflected by the satisfies relation be-
tween a SituationDescription and Situation which reifies the satisfiability relation,
|=, of the underlying logic. A SituationDescription contains descriptive entities,
such as Roles, Course of Events, and Parameters. By means of the satisfies relation
they allow the definition of views on concrete Situations, i.e. depending on the con-

44 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

straints specified in the SituationDescription a concrete Situations satisfies or does
not satisfy the SituationDescription.

The ground entities in Descriptions & Situations are derived from DOLCE:
Functional Roles are played-by DOLCE:Endurants15, Courses of Events sequences
DOLCE:Perdurants , Parameters are valued-by DOLCE:Regions .

Ontology of Plans

The Ontology of Plans (OoP) uses the design pattern Descriptions & Situations and
formalizes a theory of plans in a generic way, i.e. independent from concrete logical
calculi. It specializes DOLCE and DnS by adding concepts for modeling planning
concepts, such as Tasks and Goals, and by concretizing the DnS:satisfies relation.

A Plan represents a DnS:SituationDescription that DnS:defines a
DnS:FunctionalRole and a Task. A Task DnS:sequences Activities , which specialize
DOLCE:Perdurants . By refining the DnS:satisfies relation the Ontology of Plans
can be used to decide whether a certain Plan will be (has been) fulfilled by a certain
plan execution (e.g. workflow). For a detailed description of the Ontology of Plans
the interested reader is referred to [GST04].

Ontology of Information Objects

The notion of information is a crucial concept in the area of computer science. How-
ever, it is often hard to grasp in a conceptual model. For example, one might distin-
guish between the content of information, the physical representation in a computer
system, and encoding used for representation. Disregarding this distinction may
easily lead to a conceptual ambiguity. This problem is, e.g., discussed in [MOGS04]
for the service description ontology OWL-S. In order to avoid such problems, the
Ontology of Information Objects (OIO) provides a design pattern for modeling ab-
stract Information Objects , the encoding of these objects and the conceptualization
expressed by an Information Object. A detailed description of the Ontology of In-
formation Objects can be found in [GST04].

2.5 Conclusion

In this chapter, the basic technologies for realizing a semantic Web service market
infrastructure have been presented. Therefore, we have first discussed the basic
principles of service-oriented architectures and the technologies for implementing
such architectures in a heterogeneous environment. In this context, mechanisms for
dynamic binding of services at deployment or runtime are required. These mech-
anisms have to support the fact that Web services can be easily configured to cus-
tomers’ needs. To express and enforce such requirements autonomously at run-
time, we have presented the idea of policy-based computing, where policies capture
guidelines how the system should behave. Since the find-bind-execute-paradigm of
a service-oriented architecture can be seen as a specialization of market process,

15For all concepts that are not contained in the ontology discussed in the current section, the names-
pace of the ontology module is added where the concept is derived from.

2.5 Conclusion 45

electronic markets have been introduced as a third technology. Finally, we have pre-
sented ontologies as a means for representing information that provide a high de-
gree of interoperability and enable powerful matching algorithms. This is required
to facilitate the use of market mechanisms for complex goods and services. In chap-
ter 3, we show from a methodological as well as from a conceptual point of view,
how these technologies can be seamlessly combined in order to realize a semantic
Web service market infrastructure.

46 CHAPTER 2: BASIC CONCEPTS AND TECHNOLOGIES

Chapter 3

Towards a Semantic Web Service
Market

We approach the goal of this thesis systematically by first defining a methodol-
ogy which is used for deriving requirements from typical scenarios, for coming up
with a conceptual design, for implementing this design, and for evaluating whether
the realized infrastructure meets the postulated requirements. Since engineering a
service-oriented architecture that enables the automation of the contracting process
requires the integration of various technologies, we propose an integrated method-
ology in this chapter, which is used to structure the remaining thesis. In addition, we
define in this chapter the expected results of the engineering process which is a Web
service market infrastructure that enables providers as well as customers to automate
the contracting process.

In many aspects service-oriented architectures are fundamentally different from
traditional distributed component- or object-based frameworks. Most notably they
introduce the roles of providers and requesters as first class citizens in the architec-
ture. This is an important step towards truly inter-organizational business processes
since it allows us to directly apply concepts and ideas traditionally developed for
electronic commerce. Moreover, the concept of dynamic service binding is intro-
duced that requires automated discovery, selection and invocation of new services.
In contrast to an object in object-oriented systems, which represents a (physical or
non-physical) real world “thing”, a service instead represents a business activity and
thus is directly usable within a business process. These fundamental distinctions
lead to three types of components required for implementing a service-oriented ar-
chitecture [GB01]:

1. A hosting platform. This is where service providers can deploy and operate
their service. The hosting platform also has to provide means for requesters to
invoke the service.

2. A hub that connects service providers and requesters. This hub should en-
able dynamic discovery of suitable services. Therefore, means for describing
services hosted on different platforms in an interoperable way have to be pro-
vided.

3. Standard conventions that ensure that services can interoperate with each other
irrespective of their implementations. This involves communication and inter-
action protocol aspects.

48 CHAPTER 3: TOWARDS A SEMANTIC WEB SERVICE MARKET

describes

describes

describes

exchanged in

exchanged in

constitutes

constitutes

constitutes

Figure 3.1: The semantic Web service market diamond illustrating the relation be-
tween the involved technologies that constitute a SOA.

In order to realize these components, we propose to combine different technolo-
gies captured by the diamond structure in Figure 3.1: (i) As introduced in Section
2.1.3, Web service technologies provide a hosting platform and a set of standardized
protocols, formats and language specifications that enable interoperation between
services hosted on different platforms. Therefore, they partly cover component
No. 1 and 2 introduced above. (ii) In this context, it is important that each party
is able to exactly define the capabilities and characteristics of the services that are
provided or required. For example, a provider might state that her service is only
accessible after a certain authentication method has been carried out. Such con-
straints and conditions are defined using policies. This is important to find out which
providers and requesters can be connected by the hub. Thus, policies partly cover
component No. 2. (iii) Markets – as the place where service providers, requesters
and intermediaries come together to advertise their services and requests – are the
cornerstone of service-oriented architectures [EL04]. Thus, results from the area of
market theory should be considered when designing a hub that provides technolo-
gies for mechanism to dynamically determine suitable bindings and methods for
closing legally enforceable and manageable contracts. Determining suitable bind-
ings may involve locales for negotiating with and selecting among many potential
providers. Since markets bring together requesters and providers they are required
to realize component No. 2. (iv) In order to enable automated discovery, selection
and negotiations, metadata about services has to be specified in a formal, machine-
understandable way. Our technology of choice for formally describing services and
their policies are ontologies. They come with a standardized logical foundation pro-
viding well-defined semantics that is required for matching of descriptions and for
realizing a high degree of interoperability. In addition, ontologies can be used to de-
scribe market mechanisms allowing a flexible and adaptive market implementation.
Therefore, they are important for component No. 2 and 3.

Realizing a seamless integration of the different technologies is essential for de-
signing a Web service market. For this purpose we introduce the methodologies
required for designing service-oriented architectures, electronic markets and ontolo-
gies and identify relations between them (Section 3.1). Subsequently in Section 3.2,

3.1 Methodology 49

SOA
Engineering

Market
Engineering

Ontology
Engineering

Implementation

Specification

Conceptualization

Environmental
Analysis

Conceptual
Design

Evaluation

System Analysis
Domain Decomposition

Component Design

Service Design

Service Binding

Refinement/
Maintenance

Evaluation

Formalization

Embodiment

Implementation

R
e

q
u

ir
e

m
e

n
ts

G
a

th
e

ri
n

g
D

e
s
ig

n
 a

n
d

R

e
a

liz
a

ti
o

n
E

v
a

lu
a

ti
o

n

Evaluation

Figure 3.2: Integration of service, market and ontology engineering for developing
semantic Web service markets.

we discuss the desired results of the methodology. In this context, we identify the
main building blocks of a Web service market including a set of ontologies providing
the communication primitives in the market and a market process bringing together
the different phases that can be identified in the market with the publish-find-bind-
execute paradigm of service-oriented architectures.

3.1 Methodology

In order to obtain a system that seamlessly integrates different technologies, the
integration has usually to happen already at design time. As discussed in the previ-
ous section, developing a SOA infrastructure also requires developing an electronic
market bringing together requesters and providers. Each market requires a commu-
nication language for exchanging offers, requests and contracts. In our case, this is
realized by introducing appropriate ontologies. Although each of these components
comes with an individual development methodology, the corresponding develop-
ment processes cannot be executed independently, since there are several interde-
pendencies in terms of time and required information. These interdependencies are
captured by Figure 3.2. For example, one cannot finish the environmental analysis
in the market engineering process, before the specification phase of the ontology en-

50 CHAPTER 3: TOWARDS A SEMANTIC WEB SERVICE MARKET

gineering has not been concluded. In fact, the requirements gathering phases have
to be finished, before the design and realization phases can be approached, and the
design and realization phases have to be finished, before the evaluation phases can
be started. However, note that each engineering process itself does not have to be
executed sequentially.

In order to identify and cope with the interdependencies that occur in the Web
service market development process, we introduce the design methodologies for
service-oriented architectures (Section 3.1.1), markets (Section 3.1.2) and ontologies
(Section 3.1.3) and identify overlapping areas where the different processes have to
be aligned and synchronized. We aim thereby at a coherent development process
for semantic Web service markets as sketched in Figure 3.2.

3.1.1 SOA and Web Service Engineering

First, we address the question of how a Web service and service-oriented architec-
tures as a whole are built. Generally, there is an enormous amount of literature
dealing with engineering software systems ranging from sequential methods such
as the influential waterfall model [Roy70] to iterative models which combine top
down and bottom up approaches such as the spiral model [Boe88] or the Rational
Unified Process (RUP) [Kru03]. However, although service engineering can be seen
as a special case of software engineering1, when moving to a service-oriented archi-
tecture these methodologies have several shortcomings neither addressed by object-
oriented analysis and design nor by business process management techniques:

• First, the question of how services can be identified has to be answered. In or-
der to identify the different aspects required for developing a service-oriented
architecture, business process aspects as well as the enterprise-scale applica-
tion architecture have to be taken into account. Obviously, object-oriented
analysis is a good starting point, but it does not address how to discover the
functional units of work from a business perspective required for identifying
a reusable set of services.

• Second, a paradigm shift towards explicitly appreciating the key roles found
in service-oriented systems is required. As shown in Figure 2.1 on page 13, the
key roles are service provider, service requester and service broker (a passive
broker is called a registry).

• Third, the methodology should reflect the fact that services are not built for
one single business line or company, but are potentially exposed to other de-
partments or companies.

With these ideas in mind, several methodologies have been defined that are ex-
plicitly tailored towards Web service engineering. In the following, we look more
closely at the service-oriented analysis and design methodology (SOAD) propa-
gated by IBM [ZKG04] and the service-oriented design and development method-
ology proposed in [PH06]. While the overall process strongly conforms with the

1Note that our focus is engineering of software services. For the broader field of service engineer-
ing beyond software services several mature approaches exist, which are beyond our discussion. For
an overview refer to [SDBW03].

3.1 Methodology 51

Domain decomposition
Service Identification
Service Specification
Request Specification

Domain decomposition
Service Identification
Service Specification
Request Specification

Offer Specification
Service Realization

Service Specification
Service Identification
Component Allocation

Component Realization
Component Specification
Component Identification
Existing System Analysis

Offer Specification
Service Realization

Service Specification
Service Identification
Component Allocation

Component Realization
Component Specification
Component Identification
Existing System Analysis

Services

Business
Processes

Application
Logic

Operational
Systems

P
ro

v
id

e
r

R
e
q

u
e
s
te

r

Service Binding

Figure 3.3: SOA layers and Web service engineering process

standard software engineering process [AMBD04] comprising the steps requirement
analysis, design, construction, testing and maintenance, the design phase in particular
has been refined.

Figure 3.3 relates the steps that have to be conducted in the design phase with
the layers of a typical service-oriented architecture. From a software engineering
perspective a service-oriented architecture can be broken down into four layers:

1. The operational system providing the basic hardware and software for run-
ning an application, such as servers, operating systems, Java virtual machines,
etc.

2. The application logic within software components implementing the actual
functionality, e.g., by means of an object-oriented programming language.

3. Services encapsulating functionality in self-contained activities and providing
a well-defined interface to internal or external requesters.

4. Business processes combining the activities accessible via services. Often, the
functionality of a business process is exposed again by a service to customers.
Therefore, further business process and service layers can be added on top
(Figure 3.3 abstracts from this fact).

The design process (represented by the arrows in Figure 3.3) combines a
business-driven top-down approach with a bottom-up approach leveraging legacy
assets, while considering the different roles in the system. The service infrastructure
(layers 1 and 2) is set up by the provider, whereas layer 4 resides on the requester’s
side. In layer 3 the interaction between the provider’s and the customer’s system
takes place. In the following, the design process is described in more detail:

System Analysis

The bottom-up technique starts with an analysis of the existing system. The goal is to
find resources that could serve as a basis for providing service functionality. System
analysis is typically executed by the provider.

52 CHAPTER 3: TOWARDS A SEMANTIC WEB SERVICE MARKET

Domain Decomposition

The top-down approach starts with the domain decomposition step. Here the busi-
ness process is decomposed into its subprocesses using high-level business use cases
that enable identifying the functionality required as service. Domain decomposition
therefore requires extensive knowledge about the requester’s business models and
use cases.

Component Design

In the next step, viable components that implement the application logic required for
a service are identified. In the component specification, the messaging and event speci-
fication, the internal flow and structure of the identified components and other com-
ponent dependencies are described. Missing components have to be custom built in
the component realization step. After realizing the application logic, its functionality
can be exposed by providing an appropriate service. Defining the component that
implements a certain service is called component allocation. In Figure 3.2, the compo-
nent identification, specification, realization and allocation is captured by the term
component design.

Service Design

Similarly, service design can be broken down to service identification, specification
and realization. The service identification step deals with deciding which operations
of the component should be accessible via a Web service. Since this is difficult with-
out knowledge of the business domain, a top-down approach is needed, in which
the results of the domain decomposition step is utilized. After identification of the
services their characteristics have to be documented to enable their implementation
and later reuse. This is done in the service specification step. In order to make services
discoverable in a service-oriented architecture (e.g. required for dynamic binding),
the service specification has to be machine-interpretable. For this purpose WSDL
and ontology-based specifications are used that allow, e.g., defining quality of ser-
vice policies or information about the business process implemented by the service.
Typically domain-specific ontologies are required in this step. If such ontologies are
not available for a certain service they have to be built. Thus, an ontology engineer-
ing phase has to be initiated, which is discussed in Section 3.1.3.

Service Binding

Once services are realized and exposed by the provider on a service market (offer
specification), requesters can integrate them into their business process. Therefore,
they have to decide in a top-down manner by means of domain decomposition,
which services are required and which task of the process should be done by which
service (request specification). In Section 2.1.2, we introduced the term binding for the
assignment of service requests to offers. As discussed, these bindings can be speci-
fied explicitly by the developer or determined dynamically by the system using the
request and offer specification. In either case, the mechanisms bringing together ser-
vice demand and supply have to be carefully designed, which is the main purpose
of the field market engineering discussed in Section 3.1.2.

3.1 Methodology 53

Evaluation

Finally, the constructed architecture is evaluated in terms of functionality, robustness,
efficiency, etc. While these step mainly corresponds to the traditional software en-
gineering methods, some additional criteria are important, such as reusability of
services, efficiency of provider selection, etc.

Since service-oriented architectures require mechanisms that bring together ser-
vice requesters and providers, we discuss in the next section, how such mechanisms
can be developed in a structured manner.

3.1.2 Market Engineering

Building an electronic market that meets certain requirements, such as welfare opti-
mization or maximizing the transaction volume in the market, is a complex process.
Therefore, the market engineering process breaks down this complex process into less
complex sub-phases very much as software engineering does it for the implementa-
tion of complex software systems. Although structured according to similar phases
as software engineering, market engineering focuses on different aspects and goals.
In this section, we briefly introduce the different phases. A more fine-grained pro-
cess accompanied with a detailed discussion for each phase can be found in [Neu04].

Environmental Analysis

The environmental analysis deals with gathering information about the concrete set-
ting for which the market is designed, including information about the participants,
about the products to be traded, about possible intermediaries, etc. This first step
is called environment definition and directly makes use of information derived from
domain decomposition of the service engineering process (Figure 3.2). In Section
4.1, we perform this step for Web service markets by analyzing different concrete
scenarios. Based on the environmental definition, requirements can be derived that
should be met by the market. For example, due to the easy differentiability of Web
services, we will need multi-attribute product descriptions as part of offers and re-
quests. Such language-specific requirements in the market engineering process are
also direct requirements for the expressivity and the vocabulary of the ontology as
shown in Figure 3.2.

Design and Implementation

After identifying the requirements, the market algorithms and infrastructure can be
defined and implemented. First, in the conceptual design phase, the market is set up
in an abstract way, i.e. the institutional rules are defined without specifying the way
they are implemented. In our case, this mainly requires the design of a bidding
language and market mechanism that provide matching, allocation and contract
formation functionality. We will introduce the conceptual design for Web service
markets in Chapter 5 using an abstract, implementation-independent mathematical
notation. As depicted in Figure 3.2, the design and implementation phase can be
done in parallel to the component and service design. However, since at the end of
these phases, service offers and requests have to be specified and the market bidding

54 CHAPTER 3: TOWARDS A SEMANTIC WEB SERVICE MARKET

language (e.g. including the formal ontology model) has to be present before the
service design phase can be finished.

Based on this conceptual design, the market can be implemented. In this con-
text, one can distinguish between the embodiment phase and the actual implementation
phase. During the embodiment phase, the abstract conceptual design is concretized,
but still remains platform independent. For example, the bidding language is con-
cretized by formalizing the appropriate core, domain and application ontologies
using a concrete ontology language. Thus, the market design and implementation
phase has to be accompanied by the conceptualization, formalization and imple-
mentation of the appropriate ontologies (Figure 3.2). As mentioned before, ontolo-
gies are independent of a concrete implementation platform and therefore they can
be implemented in the embodiment phase. In this work, the embodiment phase is
realized in Chapters 6 and 7.

Finally, in the implementation phase the market platform is realized. This in-
volves, for instance, the implementation of the required matching and allocation al-
gorithms, integration of an appropriate ontology reasoner, the installation of a Web
server for deploying the market, etc. The implementation of our Web service market
is presented mainly in Chapter 8.

Evaluation

Once the market infrastructure is set up, it can be evaluated whether the desired
market outcome can be realized. Usually these evaluations are done with respect
to the requirements specified in the environmental analysis and include technical
aspects (e.g. performance, system reliability) and economic aspects (e.g. efficiency).
Of course, evaluation of the market as well as of the service-oriented architecture
may reveal problems which have to be corrected by going back to the correspond-
ing engineering phase. In this context, also major revision of the ontologies could
be necessary. For the Web service market presented in this thesis evaluation is per-
formed in Chapter 9.

Since the expression of offers, requests and contracts in a market typically in-
cludes complex description of goods or services that may involve broad domain
knowledge as well as a wide-range of different parties, defining an appropriate mar-
ket language easily becomes a cumbersome task. Therefore, ontology engineering
provides structured means that support this task. The ontology engineering process
in sketched in the following section.

3.1.3 Ontology Engineering

Several ontology engineering methodologies have been proposed in literature serv-
ing different purposes or addressing different domains [CFLGP03, PM04]. For ex-
ample, for ontology building from scratch TOVE [GF95], ENTERPRISE [UK95],
METHONTOLOGY [LGPJ97, LGPSS99], the OTK-methodology [SSA+01] and DILI-
GENT [TPS06] have been proposed. Pinto and Martins [PM04] compare ontology
engineering methodologies using a general process containing the stages specifica-
tion, conceptualization, formalization, implementation, and maintenance. Although the
tasks classified within a certain stage differ slightly from one methodology to the

3.1 Methodology 55

next, these stages are most suitable as a brief introduction to ontology engineering,
since they abstract from a specific methodology.

Specification

The objective of the specification stage is to identify the scope of the ontology. In this
context, the domain that has to be captured and the intended users have to be spec-
ified. This also involves to determine requirements regarding the expressivity of
the ontology language. For application and task ontologies also application-specific
and task-specific requirements have to be considered.

Conceptualization

In a second step, the identified specification is described with a conceptual model.
As shown in Figure 3.2, ontology conceptualization is part of the conceptual design
phase of the market engineering process and done during component and service
design. Depending on the concrete methodology used, different conceptualization
models ranging from informal models, such as mind mapsTM, to semi-formal mod-
els, like binary relations diagrams, might be used. These conceptualizations de-
scribe the basic concepts and relations relevant in a domain. Moreover, vocabulary
is clustered into groups for modularization purposes. This is essential for later reuse
of ontologies and for avoiding the problem of over-commitment [Obe05].

Formalization

After describing the required vocabulary and the relations between the vocabulary
terms in a conceptualization, the conceptualization has to be formalized in order to
get an unambiguous definition of the terms. The formalization stage involves defin-
ing concepts by restricting their interpretation to certain individuals in the domain
(see Section 2.4.2). Thus, concepts and relations are mathematically well-defined,
but are not yet serialized in a computer-interpretable format. Since the result of the
conceptual market design should be a formal model, ontology formalization is also
a part of the conceptual design phase of the market engineering processes (shown
in Figure 3.2).

Implementation

In the implementation stage, the formalized and semantically well-defined model of
the ontology is represented by means of a machine-interpretable syntax, as provided
by OWL, for instance. Since the ontology is still platform- and implementation-
independent, this implementation of the ontology is usually part of the embodi-
ment phase of the market engineering process. Furthermore, a fully implemented
ontology is already required when entering the implementation phase of the market
engineering process.

Evaluation

In this stage, the quality of the ontology is technically judged by a knowledge en-
gineer. According to [PM04], this includes verification (i.e. is the ontology correct

56 CHAPTER 3: TOWARDS A SEMANTIC WEB SERVICE MARKET

according to the accepted understanding of the domain), validation (i.e. does the
ontology meet the specified requirements), and user assessment (i.e. judging the us-
ability and usefulness of the ontology and its documentation). Since up to now there
are no mature ontology evaluation methods available, this area requires major re-
search efforts. For a detailed discussion of ontology evaluation methodologies refer
to [GP04, VSFGS06, OCM+07].

Maintenance

During testing of the service-oriented architecture as well as of the market mecha-
nism, updating and correcting of ontology modules might be required. Each update
or correction should be verified carefully and the implemented ontology should be
checked for consistency.

After introducing the process for development of semantic Web service markets
that integrates service, market and ontology engineering into one coherent process,
in the next section we discuss the results of this design process in more detail. In
particular, we answer the question: what are the artifacts that should be constructed
and how can these artifacts be used to realize dynamic service contracting and mon-
itoring in service-oriented architectures? Afterwards in Part II and III of this thesis,
we then apply the methodology introduced above to design, implement and evalu-
ate a semantic Web service market infrastructure.

3.2 Core Building Blocks of Web Service Markets

In this section, we view semantic Web service markets from two orthogonal per-
spectives reflecting the two main building blocks of electronic markets [Neu04]:
first, we discuss the communication primitives that constitute the market informa-
tion model in Section 3.2.1. Essentially this breaks down to a discussion about the
role ontologies can play in such markets. Second, in Section 3.2.2 we consider the
market mechanisms required for contracting and monitoring of Web services. This
involves an exact definition of a Web service market process implementing this func-
tionality. We realize this by specializing the general market process (e.g. defined in
[TBP03, SW03]) to a process capturing the find-bind-execute paradigm of a service-
oriented architecture. To put it simply, in the following we introduce the result of
the engineering process distinguishing between the static aspects of a market that is
modeled using ontologies and the dynamic aspects implementing the market pro-
cess.

3.2.1 The Role of Ontologies

As defined in Section 2.1.1, the three main communication primitives required in
a service-oriented architecture are offers, requests and contracts. Since a detailed
requirements analysis regarding the desired expressiveness and properties of these
primitives is done within the market engineering process in Part II of this work
(Chapter 4), this section is limited to a brief discussion of the benefits that can be
realized using ontologies for representing the primitives. This discussion is accom-
panied by a short introduction to the ontologies available in this context.

3.2 Core Building Blocks of Web Service Markets 57

In Section 2.4, we introduced the concept of ontologies as a means for achiev-
ing interoperability through the specification of standard syntax and semantics, and
through their well-defined grounding in logics which enables improved matchmak-
ing of offers and requests in the market. Several proposals for using ontologies in
electronic markets have been put forward that exploiting these features. The goal is
to reach a degree of openness, flexibility and dynamism not achievable with traditional
technologies for B2B integration such as RosettaNet2, UNSPSC3, etc. [DFK+04].

One major aspect in this context is the unambiguous description of the products
exchanged in the market. Product descriptions have to be part of offers, requests
and contracts. Such product information is subject to continuous changes due to the
introduction of new products, evolution of products, changes in the organization
due to internal reorganization or fusion-acquisition (e.g. fusion of product lines, re-
organization of hierarchies or policies) and therefore product information is often
difficult to capture in traditional relational databases [BMW+07]. In this context,
OWL ontologies provide important advantages, since they allow class inheritances
that feature product categories and logical classes that enable automatic classifica-
tion of products according to OWL restrictions. In [BMW+07], this is illustrated
using the following examples:

• The class “Outdated Products” can be introduced that dynamically clas-
sifies all products that are replaced by at least one other product,
i.e. OutdatedProducts ⊑ Products ⊓ ∃replacedBy.⊤.

• The class “Metallic Products” capture all products the are made purely using
metal, i.e. MetallicProducts ⊑ Products ⊓ ∀madeBy.Metal.

As we will see later, these are advantages that carry over to descriptions of Web ser-
vices, which naturally are the products dealt with in a Web service market. The term
Semantic Web Services captures the idea of describing Web services using ontologies
for improving discoverability, composition, mediation, etc.

Semantic Web Services

The goal of semantic Web services research is the automation of certain manage-
ment tasks within a service-oriented architecture, such as discovery of suitable Web
services, the composition, interoperation and execution of Web services [MSZ01]. In
[SGA07] the following definition is given:

“The Semantic Web Services vision is to semantically annotate Web Ser-
vices with machine interpretable meta data, such that computer pro-
grams are enabled to reason about their functionality. In this way, var-
ious kinds of services, such as book selling, shipment of goods or pro-
vision of stock market information, can be advertised and discovered
on the Internet in an automated way, and their functionalities can be
combined in composite services at run-time in order to achieve higher
level goals. Semantic Web Services particularly aim at realizing smooth
information integration through flexible architectures within and across
organization boundaries.”

2http://www.rosettanet.org/
3http://www.unspsc.org/

58 CHAPTER 3: TOWARDS A SEMANTIC WEB SERVICE MARKET

For semantic annotation of Web services, ontologies are the technology of choice
and several ontologies providing appropriate vocabularies have been proposed.
The most prominent approaches are OWL-S [SPAS03], SAWSDL [W3C07a] and
WSMO [DKL+05]. More specific ontologies (or extensions to the previous) are pro-
vided for topics such as quality of service modeling [TFJ+06] or specification of the
temporal behavior of a Web service [AS06, BFM06].4

As discussed in Section 2.2, policies are required within communication primi-
tives to specify constraints and preferences on service properties. However, since
policies are also relevant in other domains they are usually modeled in their own
ontology module.

Policy Ontology

In recent years, a set of policy ontologies have been proposed that enable the rep-
resentation of constraints. The most influential approaches are KAoS [UBJ+04], REI
[Kag04] and an ontology that formalizes WS-Policy [KPKH05]. The advantage of us-
ing ontologies is that they provide a high degree of formalization with respect to the
classification introduced in Section 2.2.3. This provides features, such as automated
consistency checking as well as conflict handling, and improves interoperability in
heterogeneous systems. As we will see later on, by means of policies, highly config-
urable service offers or requests can be efficiently represented and exchanged.

Market Ontology

Market mechanisms represent a set of rules that determine how the market process
(e.g. service contracting) has to be carried out. Ontologies can be used to declara-
tively specify these market rules and thus enable a high degree of flexibility. For
example, rules can be easily added and changed at runtime of the market, the mar-
ket behavior can be adapted to different contexts, and the market participants can
download and understand these rules, since they have a standardized syntax and
well-defined formal semantics. Several approaches that declaratively represent mar-
ket mechanisms can be found in literature [WWW01, RWG01, ETJ04, TPDW05].
However, only [RWG01, TPDW05] make direct use of ontologies.

After having introduced the building blocks that constitute the information
model of a Web service market, the following section focuses on the other main
design object: the Web service market process which comprises algorithms for con-
tracting and monitoring of Web services.

3.2.2 The Contracting Process

To develop a mechanism for contracting in Web service markets, the find-bind-
execute-paradigm of service-oriented architectures (see Section 2.1.1) has to be
aligned with the general market process introduced in Section 3.2.2. In fact, the
find-bind-execute-paradigm on which service-oriented architectures are based can
be seen as a specialization of the general market process introduced in Section 2.3.1.

4A more thorough discussion of the ontologies discussed in this section can be found in Chapter
10.

3.2 Core Building Blocks of Web Service Markets 59

A
g

re
e

m
e

n
t

A
g

re
e

m
e

n
t

• Attributes required for
invocation

• Goal Policies

• Service attributes
relevant for decision

• Utility Function Policies

DiscoveryDiscovery

CompositionComposition

AuctionAuction

Contract
Formation

Contract
Formation

• Unambiguous
formalization of all
service attributes

Functionality Relevant informationMarket Phase

Match-

making

Allocation

Acceptance

NegotiationNegotiation

Hit-and-TakeHit-and-Take

Figure 3.4: Market phases and the Web Service usage process

This means, when moving from systems operating within one company to systems
that involve different, independent companies, the find-bind-execute-paradigm de-
scribes nothing other than a B2B procurement process, where digital services such
as information delivery or execution of calculations are purchased. Thus, service-
oriented architecture requires an infrastructure that provides an institution for co-
ordinating between service requestors and providers. This coordination mecha-
nism has to provide a platform where potential business partners can be discov-
ered, prices can be ascertained, and contracts can be closed. As discussed in Section
2.3, a market, where prices are determined by the interplay between supply and de-
mand, can be regarded as a coordination mechanism that efficiently provides these
functionalities [Hur73].

Figure 3.4 brings together the agreement phases that can be identified in an elec-
tronic market (see Section 2.3) and the typical Web service usage process which
comprises the steps discovery, composition, negotiation, and finally contract formation.
In the Matching Phase suitable services are discovered. For discovery of Web ser-
vices, we consider only attributes that are mandatory for invocation of a service
and for integrating the results. This usually includes attributes such as the input
and output of a service or attributes describing the behavioral characteristics of the
service process.5 Typically these attributes are constrained by goal policies, which
are evaluated within the matchmaking process. Whether a certain attribute has to be
considered within matchmaking process depends on the concrete domain and offer-
/request description. Since a certain goal can not be accomplished only by a single
service but also by a combination of services, this phase also includes composition.

After having determined services that are able to achieve a certain goal, an opti-
mal assignment of service requests and offers with respect to the individual utility
of the participants or to the overall welfare has to be found in the Allocation Phase.
To achieve this, an allocation mechanism is required that determines the concrete
terms of the transaction. Mechanisms featuring a fixed-price mechanism, such as a
Hit-and-Take, or dynamic pricing mechanisms that involve negotiations or auctions

5In literature, such attributes are often called functional properties of a Web service. Correspond-
ingly, attributes not required in the matching process are denoted by non-functional properties. How-
ever, since there is no clear definition (depending on the domain attributes might be functional or
non-functional), we refrain from adopting this nomenclature.

60 CHAPTER 3: TOWARDS A SEMANTIC WEB SERVICE MARKET

could be used. In this phase, attributes are considered that represent decisive factors
for service selection and price determination. This could also include attributes al-
ready used in the matching phase. Typical attributes are payment methods, security
as well as trust characteristics, and most notably quality of service attributes.

After determining the allocation, legally binding contracts are closed between
the corresponding business partners in the Contract Formation Phase. Especially dy-
namic contract formation at runtime is a big issue, since in this case the contract
formation has to be done by agents without human intervention. Contracts have to
be formalized in a machine-understandable way in order to enable automated con-
tract management in the settlement phase (e.g. automated execution and monitoring
of contracts).

3.3 Conclusion

In this chapter, we have aligned different technologies, namely service-oriented
architectures, electronic markets and ontologies, in order to develop a coherent
methodology and architectural view for establishing a semantic Web service mar-
ket. In Part II and III of this work, the methodology introduced in Section 3.1 is
applied: in Chapter 4, the requirements for the market are elicited using concrete
scenarios. Based on the derived requirements, in Chapter 5 the conceptual design of
the market is presented, which involves defining algorithms for all market phases
as well as the conceptualization and formalization of the required ontologies. Chap-
ter 6 and 7 covers the embodiment phase where the ontologies are serialized using
a concrete ontology language. The market is then implemented in Chapter 8 and
finally tested in Chapter 9. Applying this methodology consequently results in an
ontology framework for expressing Web service offers, requests and contracts, and a
set of market mechanisms for trading Web services in an open, Web-based market.

Part II

Designing a Semantic Web Service
Market

Chapter 4

Scenarios and Requirements

This chapter presents scenarios for service markets and derives requirements from
these scenarios. This represents the first stage of the market engineering process.
We analyze three scenarios, which represent typical use cases for applying service-
oriented architectures. According to our research statement presented in Section 1.2,
the requirements have to cover two main aspects of a market: language-specific and
mechanism-specific aspects.

This chapter is structured as follows: Section 4.1 introduces three scenarios rep-
resenting the major use cases of service-oriented architectures in current businesses.
Based on these scenarios Section 4.2 addresses the requirements a market for ser-
vices has to meet. In Section 4.3, we discuss the importance of the requirements for
the different scenarios and outline our approach to meet the identified requirements.

Parts of this chapter are published in conference proceedings. The scenario and
the corresponding requirements for enterprise services are discussed in [LEO05,
LAO+06], for grid services in [LS06] and for mobile services in [LAGS07].

4.1 Scenarios

The scenarios introduced is this section are meant as a starting point for determin-
ing the requirements for a semantic Web service market. The scenarios capture the
main application areas of service-oriented architectures and Web service technolo-
gies, namely enterprise service architectures, mobile services, and grid/utility com-
puting [SH05, Pap03]. In order to show their broad applicability, we first describe
them in a domain-independent way and later augment them with a concrete ex-
ample. The scenarios differ in the type of services they provide as well as in the
environment of the architecture. However, they also exhibit important commonali-
ties:

• a set of providers is available offering functionally equivalent services;

• services are configurable (e.g. they can provide different quality of service lev-
els);

• different participants in the market have different policies;

• these policies could depend on the execution context;

• automation of the market process is at least partially required;

64 CHAPTER 4: SCENARIOS AND REQUIREMENTS

Company A

Provider B

Provider A

4. invokeS
e
rv

ic
e
 B

u
s

Select

Initialize

1. import

3. getOffer

3. getO
ffe

r

Service
Repository

2.
qu

er
y

Scoring
Policies

Business
Process

D

A

C

B

E

2. Service
Request

Invoke

Pricing
Policies

Pricing
Policies

5. sendResult

Figure 4.1: Service Bus Architecture [LEO05, LAO+06].

• and the environment is open, which refers to information systems that involve
components from different organizations that are autonomic, typically highly
heterogeneous and may change dynamically [SH05].

4.1.1 Enterprise Services

One of the driving forces behind the development of service-oriented architectures
has been the need for adaptive software solutions that enable a seamless integra-
tion of software components from different vendors. The envisioned benefits are a
faster redesign of a company’s business processes and applications, facilitated out-
sourcing of functionality, and smooth application integration. The different building
blocks that constitute a company’s application are called enterprise services. Exam-
ples for enterprise services are billing services, stock quote services or order pro-
cessing services. Such enterprise services are provided by companies such as SAP,
Google or Amazon. For example, consider the supply chain management appli-
cation mySAPTM SCM, which is composed of different enterprise services such as
Order Processing, Transportation Planning, Billing and Invoicing, and Parts Moni-
toring.

The infrastructure that enables the combination of different enterprise services
for an application is called an enterprise service bus [Sch02, Rob04, Cha04, Ley05].
Depending on the concrete definition, an enterprise services bus comprises func-
tionality such as (dynamic) service discovery, selection, composition and execution,
data integration and mediation, monitoring of executions, and wrapping of legacy
software components and protocols.

Figure 4.1 sketches a simplified architecture of a service bus architecture. On the
left side, a company’s business process is visualized as a workflow of tasks that have
to be accomplished by an enterprise service. The company further defines general
policies about how the business process should behave. For example, these policies
directly influence the selection of an appropriate service. They might include the
company’s preferences about Web service characteristics. Figure 4.1 exemplifies the
automated integration of a Web service at runtime. This means, in order to enable

4.1 Scenarios 65

such dynamic binding of services using the enterprise service bus, the following
steps have to be carried out, once a Web service is required within the business
process (step D in Figure 4.1):

1. In order to automate the selection process, relevant policies are sent with the
first service request to the service bus and are stored there locally. Note that
this initialization step only has to happen once for the initialization of the ser-
vice bus. Based on the policies, the service bus is able to take over the re-
sponsibility of selecting between potential providers, such as A and B. In this
sense the service bus can be seen as a simple Hit-and-Take market mechanism
(see Definition 2.7). Since the decision for a certain service might depend on
runtime information, different policies might have to be specified for different
contexts (current location, time, etc.).

2. Once a request from an application arrives, the service bus first queries a ser-
vice repository (such as a UDDI repository) for suitable providers. Here only
a very simple matching of the service functionality is carried out. This means
only the addresses of services are returned that provide the required function-
ality.

3. In a next step, offers from the providers are collected in parallel. These offers
contain a list of provided configurations together with the service policies of
the corresponding provider. These are also stored in the knowledge base of
the service bus.

4. Finally, the service bus queries the knowledge base for all service offers and
configurations that fulfill the required functionality. A list of services ranked
according to the difference between score and price is returned. Based on the
ranking, the best provider is selected and the respective service invoked. In
case this invocation fails, the second best service is chosen. This is repeated
until the required task is accomplished or no acceptable service remains.

The service bus scenario described above provides the benefits that come with
dynamic binding mechanisms (see Section 2.1.2). To realize these benefits, reliable
automated contracting of enterprise services is required, since many enterprise ap-
plications are business-critical and thus the contracted services have to be chosen
carefully. In addition, legally enforceable contracts between service requesters and
providers are required to provide security in case of problems during service execu-
tion (e.g. contracts have to regulate what happens if the service is not provided as
agreed). In this context, it is essential that the contracts capture all important, price-
relevant attributes of a Web service. A list of such Web service attributes that are
independent across domains are presented in [OEH02, Ran03, CSM+04]. Thereby,
service differentiation as described in Section 2.1.2 is enabled. Especially for service
providers such differentiation is essential in order to compete with other providers.
For example, this could be realized by providing better quality of service guaran-
tees for the same price or services that more closely meet the requirements of the
customer.

In the following, we exemplify the usage of enterprise services using an example
from the financial domain.

66 CHAPTER 4: SCENARIOS AND REQUIREMENTS

Credit Information

-type DDIO:InformationObject

Business Background Information

-Ownership
-Company History
-Company Principles
-Operations
-Locations

Credit Score Information

-Risk of Insolvency

Quality of Company Information

-In Depth Information
-Situation of Company in Market
-Senior Management

Credit Limit Calculation

-Individual Credit Limit Information

Warning Information

-Deterioration of Creditworthiness

Figure 4.2: Hierarchy of financial information [LML+05].

Example 4.1 In order to reduce credit risk and to select profitable customers, companies
rely upon credit information. The latest legal developments around risk management such
as Sarbanes Oxley have forced companies to have a closer look at the management of financial
risk. Financial information relating to the creditworthiness of companies, the profitability of
their business or the quality of their senior management helps companies to assess the risk
of doing business with each other and respond to increased or decreased risk. Such financial
information is sold by companies such as Dun & Bradstreet or Creditreform. Based on
credit information, companies will decide whether to start business with another company
or determine and adapt lines of credit. In the past, such lines of credit have often been
considered too late as the buying of credit information was done manually and not always
on a continuous basis. By providing this critical credit information via Web services the
credit information can be integrated into existing enterprise applications facilitating risk
decisions based on externally provided and permanently updated data. Often the integration
of the services has to be done dynamically based on transaction specific information, such as
the origin of the business partner, type of transaction, etc.

From a technical point of view, such financial services are functions that typically take the
name of a company as input and return certain financial information that can be classified
according to the hierarchy shown in Figure 4.2. In addition, service levels guaranteed by
the Web service providers are an essential decision criteria for the provider selection. Wrong
financial information could lead to a wrong decision and thus to a huge financial loss. In the
case of financial information services, the typical quality of service attributes are update time
of the delivered information, delivery time (response time), warranties about the accuracy of
the information, etc. In addition, other relevant attributes have to be considered during
service selection such as the payment terms. A customer’s IT management infrastructure
has to include execution monitoring of the service usage and checking for conformance with
the contract [CSDS03].

4.1.2 Grid Computing

As defined by [Fos02], a grid is a distributed computing infrastructure that coor-
dinates resources without central control, that is based on open, general-purpose,
standard protocols and interfaces, and delivers services under various, nontrivial
quality of service guarantees. With the Open Grid Services Architecture (OGSA)
there is an increasing trend towards providing grid resources via Web services tech-

4.1 Scenarios 67

nologies. This is realized by enabling stateful Web services through the WS Resource
Framework [FMS06], which enables a service manage numerous parallel session
with requesters. Although from a technical point of view, they are very similar to
enterprise services (e.g. based on Web service protocols and languages, open en-
vironment, distributed control), in contrast to enterprise services, grid services are
directly connected to the underlying resources. While the provision of enterprise
services takes a working computing infrastructure for granted, grid services deal
with providing this computing infrastructure in a flexible way. Similar to enterprise
services they can be combined on demand in order to react on changing application
needs (e.g. to deal with peak demand). This also requires a dynamic contracting
process as is the case for enterprise services. Typical examples for grid services are
services which provide CPU processing time to applications or where data can be
stored for a certain time period. One of the first major commercial providers of such
services via a Web service interface are Amazon, SUN and Google.

As already mentioned in the definition above, an important aspect of grid sys-
tems are the quality of service attributes of the capabilities they provide. This
usually includes response time, throughput, availability, and security, and/or co-
allocation of multiple resource types to meet complex user demands. Allocation of
grid services also has to consider possible resource limitations of providers. This is
usually not considered in the case of enterprise services, since they are not directly
related to specific resources and thus resource limitation can be handled at provider
side (e.g. by assigning more computational power to a service). Moreover, most en-
terprise services are pure information services that can easily handle a considerable
amount of requests and therefore resource limitations are not a problem.

Example 4.2 Increasing demand for high-performance computational resources in aca-
demic as well as commercial organizations has lead to numerous initiatives such as UK’S
e-Science, Germany’s D-Grid or IBM’s utility computing program aiming at the provision
of on-demand computing resources. Recently the first commercial grid services have been
released that can be used by customers “on demand” and are paid for by use. Examples
are the Amazon Elastic Compute Cloud (Amazon EC2)1 services which provide a virtual
computing environment. They provide the following quality of service guarantees:

• Guaranteed performance: power equivalent to a system with a 1.7Ghz x86 pro-
cessor, 1.75GB of RAM, 160GB of local disk, and 250Mb/s of network bandwidth is
provided.

• Reliability: replacement of system instances provides a high degree of reliability, for
stored data availability of 99.99% is guaranteed

• Security: Web service interfaces to control network security (customizable)

Prices are calculated according to the time for which the system is required: $0.10 per
instance-hour consumed (or part of an hour consumed), $0.20 per GB of data transferred
into/out of Amazon (i.e., Internet traffic). In addition, the services has to be bundled with
the Amazon Simple Storage Service (Amazon S3)2 for which a price of $0.15 per GB-Month

1http://www.amazon.com/gp/browse.html?node=201590011
2http://www.amazon.com/S3-AWS-home-page-Money/b/ref=sc_fe_l_2/

002-0629126-4701622?ie=UTF8&node=16427261&no=3435361&me=A36L942TSJ2AJA

68 CHAPTER 4: SCENARIOS AND REQUIREMENTS

Service

Repository

Web service

Mobifhon

Web service
1. Request Route

2. Service

Lookup

Publish Service

Offer

3. Invoke Route

Planning Service
4. Receive Route

Annika

Figure 4.3: Example for mobile service usage [LAGS07].

is charged. Amazon does not provide any formal description of this information beyond
a WSDL file for accessing the Web service. Since competitors provide similar grid ser-
vices such as Sun’s One-Dollar-Per-CPU-Hour3, having formal descriptions would allow
requester to dynamically contract the best service currently available.

4.1.3 Mobile Services

In recent years, there is a strong proliferation of mobile devices like mobile phones
and PDAs with increasing computational power as well as broadband Internet ac-
cess. Such devices clear the way for more sophisticated and demanding mobile
applications. Usually these applications do not involve solely local computation,
but also require information from external services. In general, the type of services
required by such mobile application are similar to enterprise or grid services. How-
ever, the importance of the applications and the way they are accessed is fundamen-
tal differently. In contrast to the previous scenarios, services in a mobile environ-
ment are typically less business critical since they are mostly required in a personal
context (e.g. calculating a route, agreeing on appointments, receiving sport news),
but the environment is more dynamic and the resources, such as bandwidth, are
limited. For example, if a mobile phone user travels across a border, automatically,
an equivalent service to a previous one has to be discovered in this new context.
Of course, such advanced personalization and localization features are additional
issues that have to be addressed by the service-oriented architecture.

Example 4.3 As an example for the Web service usage in a mobile environment, we con-
sider the project SmartWeb.4 The goal of the project is to enable mobile multi-modal access
(e.g. speech input or browsing) to the knowledge available in the Web. This also involves the
usage of Web services provided by one of the project partners.5 The set of available services
comprises route planning, weather, event and address services. Obviously, the invocation
of these services has to happen in a context sensitive way. This means that service selection

3http://www.sun.com/service/sungrid/overview.jsp
4SmartWeb is a resarch project financed by the German Federal Ministry of Education and Re-

search (BMBF). More information is available at http://smartweb.dfki.de.
5http://services.t-info.de/soap

4.1 Scenarios 69

ServiceType Response Coverage Indicated Traffic Weather Price

Time Attraction Info Consideration

A RoutePlanning 10sec. Ger Non no no $.2

B RoutePlanning 12sec. EU Attractions yes no $.5

C RoutePlanning 5sec. EU HistoricSites no no $.8

D RoutePlanning 18sec. World-Wide Non yes yes $.5

. .

Table 4.1: Possible route planning service configurations.

could depend on the current location of a mobile phone user, the current time, or the cur-
rent role of the user, e.g., users acting as car drivers, sports spectators, etc. Thus, dynamic
contracting is required in such a scenario to deliver relevant information to the user.

To exemplify this approach, assume the route planning example shown in Figure 4.3.
Consider Annika, a mobile phone user, who is currently in the city of Karlsruhe in Germany
and wants to know the driving directions to Munich as soon as possible. Annika’s mobile
network operator, Mobifhon, provides route planning services for several countries to its
customers, dynamically outsourced from third party route planning services on the Web, as
sketched in Figure 4.3. Thus, the service selection takes place at Mobifhon’s end. The ser-
vice selection is therefore not constrained by the limited resources and partial connectivity
of Annika’s mobile phone, while allowing Mobifhon to aggregate demands and thus procure
better discounts for services than if each customer were to transact individually. Mobifhon
only sends the final route to Annika’s mobile phone. Mobifhon might implement the process
depicted in Figure 4.3, where first the customers’ requests are received and the current lo-
cation of the customer is determined. Based on this context information a suitable service
is discovered in a repository. A possible candidate for route planning in Germany is the t-
info Route Service.6 For other countries other services are available that can be used in case
Annika travels abroad, e.g. the Yahoo! Maps Web Services7 or the Google Maps API8.

Since often route planning services provide various kinds of routes (the fastest, the short-
est etc.) with or without highways, identifying different kinds of attractions on the way and
different levels of service quality, the requester has also to decide on a concrete configuration
of the service. A more complex route planning, for example, will cost more than a simple
route and similarly a quick response will cost more than a slower one. The various route
planning services need to be able to describe their capabilities and configurations to Mob-
ifhon, such that it can choose the appropriate one at the desired QoS level. Examples for
different configurations of a route planning service are given in Table 4.1. Configurations
may differ in the guaranteed ‘ResponseTime’, the country for which the service can be used
(‘Coverage’), the attractions that can be indicated along the route (‘IndicatedAttractions’),
and whether traffic information (‘TrafficInfo’) or weather information (‘WeatherInforma-
tion’) is considered for calculating the route. Naturally for each configuration a different
price is charged depending on the provided functionality and quality.

In order to find out which configuration is most suitable for a given requester the re-
quester’s preferences have to be considered. Typically there is a trade-off between price and

6http://services.t-info.de/soap/routeservice/index.jsp
7http://developer.yahoo.com/
8http://code.google.com/

70 CHAPTER 4: SCENARIOS AND REQUIREMENTS

functionality/quality leading to the problem that no absolutely dominant configurations can
be identified.

In this section we have introduced the main inter-organizational application sce-
narios for service-oriented architectures. In order to realize these scenarios the ser-
vice infrastructure has to provide a set of features to support service contracting and
execution. In the next section we discuss these required features in more detail.

4.2 Requirements Analysis

The goal of this work is to develop an infrastructure for the specification of Web ser-
vice offers, requests and contracts, and for efficient handling these communication
primitives in the contracting and settlement process of a Web service market. In line
with our research methodology outline in Section 1.2, we first discuss the require-
ments regarding the market communication language (Section 4.2.1) and regarding
the market mechanism (Section 4.2.2). The requirements that can be derived from
the scenarios presented in the previous section are listed in the table below:

Label Requirement

la
n

g
u

a
g

e
-s

p
e

ci
fi

c (R1) Web-compliance

(R2) Multi-attribute Descriptions

(R3) Combinatorial Requests and Offers

(R4) Context Dependency

(R5) Communication Efficiency

(R6) Interoperability

m
e

ch
a

n
is

m
-s

p
e

ci
fi

c

(R7) Automation

(R8) Flexibility

(R9) Optimality

(R10) Computational Tractability

(R11) Legal Reliability

After introducing these requirements in detail, we summarize the chapter in Sec-
tion 4.3 by relating the requirements to the scenarios introduced above and discuss
how they are addressed in our work.

4.2.1 Language-specific Requirements

(R1) Web-compliance

One of the central requirements when considering the adoption of new technolo-
gies is the compliance to existing standards. For designing languages usable within

4.2 Requirements Analysis 71

service-oriented architectures this means that communication has to conform to ex-
isting Web as well as Web service languages and protocols. Thus, messages should
be serialized using XML, which is the basis of most Web languages. In addition, Web
service technologies like SOAP and WSDL should be supported. In this context,
Web resources should be identified by Uniform Resource Identifiers (URI). Another
important feature for languages to be used in a heavily decentralized environments
such as the Web is the support of modularization, i.e. the vocabulary can be specified
in a decentralized way. In addition, modularization enables reducing the problem
of over-committing which arises if people have to agree on an extensive set of terms
although a small subset would already be sufficient for a certain purpose.

Although Web-compliance is generally an important topic and a sine qua non
for Web-based service-oriented architectures, in many mobile scenarios the require-
ments are bypassed by introducing an intermediary (such as the network operator in
Example 4.3) who spares the mobile device from directly handling service-oriented
aspects (like SOAP messages). Such an approach has been widely adopted to re-
duce the required bandwidth and computational power of the mobile component
(e.g. [gri05]). However, the trend towards more powerful devices has also led to
a paradigm shift towards pure service-oriented architectures in the mobile domain
[KKS06].

(R2) Multi-attribute Descriptions

An important way to enable service differentiation are multi-attribute descriptions of
service offers, requests and contracts. Attributes are inherent to configurable products,
i.e. there are usually important aspects beyond just the price. Often these attributes
considerably influence the price of a product in the market. As discussed in Sec-
tion 2.1.2, Web services are products which can be easily differentiated – often even
without changing the implementation. In particular, Web services quality of ser-
vice attributes are an essential part of the service description although they do not
address the service functionality itself. Since service differentiation is generally an
important instrument for competing in service markets, expressing service configu-
rations is essential in all of our scenarios mentioned above.

(R3) Combinatorial Requests and Offers

When considering grid applications such as the one presented in Example 4.2, rarely
are single services required by the application, but rather a combination of services
which exhibit utility only when combined. For example, typically computational
power is usable only when bundled with storage capacity. To a lesser extent this
is also true for mobile and enterprise service scenarios. However, especially in the
mobile scenario usually individual services are acquired that already provide the
full required functionality.

In general, when specifying combinations of services, one could define either
complements or substitutes. In case of complements, participants have super-
additive valuations for the services, as the sum of the valuations for the single ser-
vices is less than the valuation for the whole bundle of services. In this case bundles
can be used to ensure that either all services or non is acquired. In case of substi-
tutes, participants have sub-additive valuations and thus the valuation of the bundle

72 CHAPTER 4: SCENARIOS AND REQUIREMENTS

is lower than the valuations of the individual services. In this case offers or requests
excluding each other might be required.

(R4) Context Dependency

Often customers do not have absolute preferences about the services they need.
Their preferences rather depend on their current context, which could include their
location, current activities or time, etc. This is particularly true for mobile scenar-
ios, where typically a lot of different context dimensions influence the preferences.
Considering Example 4.3, Annika might typically prefer to travel on highways, but
she is currently on vacation and wants to travel through scenic country roads, pos-
sibly making several stops at attractions on the way. Annika’s preferences may also
depend on her implicit context. For example, if she has an upcoming appointment
in Munich the next day, she is more likely to prefer a short route than a long scenic
route. In fact, her context-dependent preferences may be predefined, allowing her to
define general policies that are automatically considered by her device. This enables
the dynamic application of the right preferences in a certain context. Therefore, we
need a way to describe preferences for particular service configurations declaratively in
terms of the customer’s context.

(R5) Communication Efficiency

The possibility of customizing services to the customers’ needs tremendously in-
creases the complexity of expressing services offers and requests. This arises from
the exponential size of the configuration space defined by service attributes and
prohibits us from enumerating all possible configurations as proposed by related
literature (e.g. [TPP02]). For instance, a service described by five attributes, each
with five attribute values, already involves over 3000 configurations. In addition,
some attributes might be described on a continues scale which makes enumeration
of configurations impossible.

Thus, a critical requirement – especially for resource-constrained environments
such as mobile services – is that the chosen representation of information in the Web
service market has to be designed for communication efficiency. This requires not only
that the amount of data that has to be communicated between the market partici-
pants is minimized, but also that the amount of data that has to be locally stored by
the participants and intermediaries in the market should be minimal. The commu-
nication overhead can be determined in terms of the bytes required for expressing
offers, requests and contracts and we thus use it as a measure of communication
efficiency.

(R6) Interoperability

Depending on the market mechanism used, either offers have to be communicated
to the buyer, requests to the seller or both to an intermediary. Thus, interoperability
becomes an important issue. This is particularly crucial in open markets on the Web,
where participants may use highly heterogeneous data formats, and participants
as well as vocabulary may change frequently. Therefore, a standardized syntax and
semantics is essential that ensures valid matching in the market although requests

4.2 Requirements Analysis 73

and offers are often specified differently (e.g. using a different level of abstraction or
alternative term definitions).

In Example 4.3, a service provider might specify that routes between all cities
in Europe are supported, while a customer might look for a route between exactly
two cities Karlsruhe and Munich. To bridge these different levels of abstraction, so-
phisticated logical inferencing mechanisms are required which, in this case, utilize the
knowledge about cities being in countries and countries belonging to continents. In
order to apply such inferencing mechanisms Web service offers and requests have
to be described using a formal logic-based language. Different levels of abstractions
occur due to the different kind of information available for providers and requests.
For instance in Example 4.3, when defining her preferences Annika may not know
which attributes are used by the providers to describe their services and even if she
did, it would be too tedious to define preferences for all attribute values. She may
rather want to say that she generally prefers historical sites to museums without
specifying which particular types of each she prefers and by how much. Therefore,
in our description approach, attribute hierarchies that allow some degree of abstrac-
tion have to supported.

The difficulty of guaranteeing interoperability increases with the openness and
the heterogeneity of the system. It is thus a major problem for enterprise and grid
service markets, since here usually no restriction on openness and heterogeneity is
assumed. In mobile scenarios often the network operators have a market power that
allows them to ensure a certain homogeneity, e.g., regarding the vocabulary or the
language syntax used. Thus, interoperability can be considered a minor problem in
mobile scenarios. However, there is also a trend towards more openness in mobile
environments, for instance, involving P2P communication between mobile devices
where interoperability becomes increasingly important.

4.2.2 Mechanism-specific Requirements

(R7) Automation

As already discussed in the scenario descriptions in Section 4.1, automation of the con-
tracting process is required in each scenario. Generally, automation refers to decision
making without or with minimal human intervention. In the context of contracting,
this requires discovering, selecting and closing a contract in an automated fashion.

In addition, the concept of service differentiation may lead to highly diverse Web
service contracts. For example, some contracts might guarantee high service qual-
ity, whereas others may allow for slow answers and bad quality (e.g. in turn for
a cheap price). To cope with this diversity, additional automation within the set-
tlement phase is required: the infrastructure should support automated verification
whether a service execution meets the obligations of the other party specified in the
contract. Due to the high diversity of contracts, manual verification would be very
time-consuming or even impossible.

(R8) Flexibility

All scenarios defined in Section 4.1 assume an open environment that comes with
a high degree of dynamism. For example, as new providers or requesters join the

74 CHAPTER 4: SCENARIOS AND REQUIREMENTS

market, new types of services emerge. This might introduce additional, new vocab-
ulary and could require new forms of market mechanisms. Therefore, we need a
flexible infrastructure that is easily adaptable to a changing environment. The infras-
tructure should support changing and adding vocabulary terms and market mecha-
nism functionality (e.g. matching and allocation rules) during runtime of the system.
This is essential to provide the required freedom for market participants to compete
by offering novel services.

(R9) Optimality

The contracting process requires the determination of an allocation between the set
of offers and the set of requests. As outlined in Section 2.3 and 3.1.3, an alloca-
tion should meet the goal of the market designer. No matter which mechanism is
used the goal should be addressed optimally. Possible goals range from mecha-
nisms maximizing the sum of requesters’ and/or providers’ utility to mechanisms
maximizing market volume or mechanisms with the goal of load balancing. From
an economic perspective the goal might also include design criteria stemming from
the theory of mechanism design [Par01]. However, in a heterogeneous environ-
ment, it is not sufficient to provide an optimal allocation algorithm, but one has
also to make sure that all relevant offers and requests are considered. For example,
when requesting a financial service, credit as well as loan services might provide the
desired information and thus both have to be considered in the optimization algo-
rithm. Even an optimal allocation algorithm does not lead to optimal results if only
a subset of relevant matches are considered.

(R10) Computational Tractability

Although the market mechanism used should be able of dealing with complex
(e.g. multi-attribute, combinatorial) offers and request descriptions, the contracting
process also has to be computationally tractable, i.e. the time for Web service discov-
ery, determining the allocation and closing the contract, has to be short enough to be
applicable in our scenarios. However, the duration of the contracting process is not
always crucial: its importance depends on the concrete application scenario. For
example, in the case of grid and enterprise services, the contracting is often done
at deployment time of the business process, once for several invocations, or once
in a certain time period. Thus, in such use cases, enough time for the contracting
process can be scheduled. The contracting process is therefore less time-critical here
compared to the mobile environment, where services are usually contracted on de-
mand, i.e. at the time they are required. Nevertheless, there are also applications of
enterprise and grid services that require individual contracting at runtime.

(R11) Legal Reliability

As already discussed in Section 4.1, the contract closed between providers and requesters
must be reliable in a sense that all duties defined in the contract have to be exercised
as promised, or the legal consequences that are caused by an infringement of the
contract are applicable. This is especially important for the enterprise and grid sce-
narios since the failure of crucial applications might lead to a considerable financial
loss for the requester.

4.3 Discussion 75

Requirement Enterprise Grid Mobile

Services Computing Computing

Web-compliance G#

Multi-attribute Descriptions

Combinatorial Requests/Offers G# #

Context Dependency G# G#

Communication Efficiency G# G#

Interoperability G#

Automation

Flexibility G#

Optimality

Computational Tractability G# G#

Legal Reliability #

Table 4.2: Relevance of requirements with respect to scenarios.

4.3 Discussion

In this chapter, the environmental analysis of the market engineering process has
been conducted. Recapitulating, by analyzing three major scenarios for service-
oriented architectures we derived 11 requirements. Table 4.2 summarizes these re-
sults by relating the requirements and the scenarios they are derived from. The table
entries are interpreted as follows:

 : very important feature for the considered scenario

G# : feature is not necessarily required, could be helpful in some specific set-
tings

: rather unimportant feature for the considered scenario

The table shows that the different scenarios are rather similar with respect to
their requirements for the service market infrastructure. This is particularly true
for grid and enterprise services, where the only major difference is the importance
of combinatorial offers and requests in the grid scenario. More differences can be
found between the enterpise/grid and the mobile scenario. These differences are
due to three major observations: (i) In the mobile scenario the openness can be
restricted by the network operators, which may lead to less importance of Web-
compliance, interoperability and flexibility. (ii) Services in the mobile scenario are
combined less often with other services and typically provide personal services
which are less business crucial. Thus, combinatorial requests and offers as well
as legal reliability are less important than in the enterprise and grid scenario. (iii)
Another important finding is that computational tractability and communication ef-
ficiency is more important in the mobile scenario due to the resource-restrictions in

76 CHAPTER 4: SCENARIOS AND REQUIREMENTS

terms of computational power and bandwidth. However, as outlined above we ex-
pect all these differences to vanish or at least to become less important within the
next years.

As already discussed in Chapter 3, we realize a Web service market by combining
different technologies:

Web service technology: Web service technologies provide us with the basic tech-
nology for implementing a service-oriented architecture in an open and het-
erogeneous environment. By providing standardized protocols and lan-
guages, a first step towards interoperability (R6) can be achieved, while ad-
hering to existing Web standards (R1).

Semantic technologies: This effort is further reinforced by introducing ontologies.
Ontologies facilitate interoperability (R6) beyond the pure syntactic level by
means of standardized logics that provide reasoning capabilities. Reasoning is
required in open environments to match requests and offers in a meaningful
and complete manner, which is also important to derive optimal results (R9).

Policy-based computing: By expressing policies with ontologies, we are able to
specify multi-attribute requests and offers (R2) in an efficient (R5) and context-
sensitive (R4) way. In addition, the ontology enables expressing combinatorial
requests and offers (R3) and legal contracts between requesters and providers
(R11).

Market mechanisms: Based on the vocabulary defined in the ontology a set of mar-
ket mechanisms are declaratively defined via rules, which leads to a very flex-
ible systems (R8) that enables automated contracting of Web services (R7). In-
spired by optimization techniques from operations research these rules seam-
lessly integrate efficient optimization techniques for determining the alloca-
tion with semantic matching approaches in order to realize computationally
tractable mechanisms (R10) that lead to optimal results (R9).

In Chapter 5, we present the conceptual design of the contracting mechanism.
After the conceptual design phase, the embodiment phase of the market engineer-
ing process is carried out in Chapter 6 and 7. In this context, the abstract conceptual
model is concretized and implemented using an appropriate ontology language.
The ontological implementation of the conceptual model finally meets the require-
ments defined above.

Chapter 5

Abstract Web Service Market Model

In this chapter, we introduce a conceptual market model for trading Web services
and thereby implement the conceptual design phase of the market engineering pro-
cess. The model is formalized using an abstract mathematical notation, which is in-
dependent from the concrete representation language used in the market. We thus
refer to the model as abstract model. The notation we use throughout the chapter is
shortly summarized in Table 5.1.

In Section 5.1, we first define a policy model that enables the definition of con-
straints and preferences over attribute values. In doing so, we concretize the con-
cepts of goal and utility function policies introduced in Section 2.2.3. Subsequently,
a policy-based model for specifying multi-attribute, combinatorial requests and of-
fers is presented in Section 5.2. Based on the request and offer specification the
contracting process is outlined in Section 5.3. Section 5.3.1 introduces the matching
algorithms that are used in Section 5.3.2 for determining the allocation between of-
fers and requests. Finally, a policy-based contract representation is introduced in
Section 5.3.3 that enables automated compliance checking of Web service invoca-
tions.

This chapter partly assembles results from several publications: A model for
goal policies is intuitively introduced in [GLA+04, LEO05]. The motivation and the
model for utility function policies is given in [LA05, LASW06, LAO+06]. [LA07]
presents first versions of the matching and selection algorithms, which are further
developed in [LAGS07]. An informal discussion of the contract compliance moni-
toring algorithm can be found in [LLM07].

5.1 Policies Specification

As illustrated in the policy classification schema presented in Section 2.2.3, the di-
mensions for classifying polices are their type, their level of formalization and their
level of abstraction. Since automation is needed according to Requirement (R7), a
high level of formalization is necessary (e.g., for matching offers and requests or for
compliance checking of contracts). Further, we want to express abstract business-
oriented as well as low-level system-specific policies. The policy model should thus
allow the expression of both variants. Concerning the policy types, we are mainly
interested in policies that allow us to specify the desired outcome of a decision. Since
this is not possible with action policies, we only consider goal and utility function
policies in the following.

78 CHAPTER 5: ABSTRACT WEB SERVICE MARKET MODEL

Notation Meaning Example

L set of attribute identifiers L = {l1, . . . , ln} L = {‘ResponseTime’, ‘Coverage’, . . .}

A set of attributes with A = {A1, . . . , An} A = {‘ResponseTimeValues’, ‘Countries’, . . .}

ale ∈ Al attribute value of Al with 0 < e ≤ |Al | a1 = ‘1sec.′, a2 = ‘2sec.′,etc.

C set of configurations C = {c1, . . . , c|∏l=1,...,n Al |
} c1 = (‘1 sec.’, ‘GER’, . . .)

G(·) function representing a goal policy G((‘1 sec.’, ‘GER’, . . .)) = 1

Φ set of constraints Φ = {φ1, . . . , φk}

φ ∈ Φ represents a constraint φ = (scpφ,relφ) φ1 = ((‘ResponseTime’),{(′1sec.′), (‘2sec.′)})

scpφ scope of a constraint φ scpφ = (‘ResponseTime’,‘Coverage’)

relφ tuple of allowed values for l ∈ scpφ relφ = {(‘1sec.’,‘Ger’),(‘2sec.’,‘Ger’)}

U(·) function representing a utility function policy U((‘4 sec.’, ‘GER’, . . .)) = 0.4

US/UP represent scoring and pricing policies, respectively

ri ∈ R a request ri = (Ci,US
i) of requester i ∈ I specifies ri = ({(‘1 sec.’, ‘GER’, . . .), . . .},

a set of desired configurations Ci and a 1
2 (uS

1 (c1) + uS
2 (c2)))

scoring policy US
i defining the willingness to pay

I set of Web service requester in the market

oj ∈O an offer oj = (Cj,UP
j) of provider j ∈ J specifies oj = ({(‘4 sec.’, ‘EU’, . . .), . . .},

a set of provided configurations Cj and a pricing 1
5 (4uP

1 (c1) + uP
2 (c2)) + 3)

policy UP
j defining the reservation price

J set of Web service provider in the market

tij ∈ T the trade tij = (c, π) between a provider j and a T = {(‘1 sec.’, ‘GER’,4),

requester i of a service with configuration c (‘2 sec.’, ‘GER’,3), . . .}

to a price π

T ′i , Tj trades acceptable for requester i and provider j

δ ∈ ∆ represents a context dimension ∆ = {‘Time’, ‘Location’, . . .}

k ∈ K represents an execution context k = (‘12 : 00′ , ‘Karlsruhe′, . . .)

b ∈ B the set of bids B = (C, p) with B = O ∪ R repre-

sents requests or offers, B comprises atomic bids

BA, AND-bids B∧, OR-bids B∨ and XOR-bids B⊕

G set of service types defined via disjoint subsets C1 = {(‘1sec.’,‘France’), (‘3sec.’,‘France’)}

of configurations C1 , . . . , Cm ⊆ C C2 = {(‘1sec.’,‘GER’), (‘3sec.’,‘GER’)}

S a bundle of service types S ∈ ℘(G)

γ ∈ Γ a contract Γ is a set of obligations γ = (y, GΦ) Γ = {(‘CompA′, GΦ1), (‘CompB′, GΦ2)}

with y ∈ I ∪ J

̺(·) An evaluation function ̺(Γ, c) determines whether

a configuration c fulfills a contract Γ

Table 5.1: Summary of notation

5.1 Policies Specification 79

5.1.1 Goal Policies

As defined in Section 2.2.3, goal policies define the desired states of a decision maker.
In our case states represent concrete configurations of Web services and goal policies
are used to define whether a certain configuration is admissible for the decision
maker. Thus, we can adapt the goal policy definition (as introduced in Section 2.2.3)
as follows: a goal policy G : C→ {0,1} assigns a value of 0 or 1 to each configura-
tion c ∈ C, where 0 represents a forbidden configuration and 1 an admissible one.
Configurations are described by a set of attributes identifiers L = {l1, . . . , ln}. This set
might not only comprise attributes of Web services, but also other attributes rele-
vant to the decision, such as attributes of the service provider. The corresponding
domain of the attributes are given by A = {A1, . . . , An}. Attribute values ak of an
attribute Ak can be discrete and continuous. The potential configuration space C
is defined as the cartesian product A1 × · · · × An. A configuration c ∈ C is a n-ary
tuple containing exactly one attribute value of each attribute.

The function G is defined by specifying a set of constraints Φ on the attributes that
describe the configuration. We denote a policy G that is defined via the constraints Φ

by GΦ. Under the assumption that the a constraint is defined on the first k attributes,
let the scope of a constraint scp be a k-tuple of attribute labels (l1, . . . , lk)∈ L+ (e.g. l1 =
‘ResponseTime’ and l2 = ‘Coverage’) and the relation rel of a constraint the set of k-
tuples defining the allowed attribute values rel ⊆ A1 × · · · × Ak for the scope. Then
the k-ary constraint φ ∈ Φ is a tuple (scpφ,relφ) with scpφ representing the k labels
of constrained attributes and relφ representing the k-tuples of allowed values. A
constraint involving one attribute only is called unary constraint and a constraint
with two attributes binary constraint. For example, a 2-ary constraint that restricts the
attribute ‘ResponseTime’ to 1 sec. or 2 sec. and the attribute ‘Coverage’ to Germany
is written as follows: ((‘ResponseTime’,‘Coverage’),{(‘1sec.’,‘Ger’),(‘2sec.’,‘Ger’)}).

Given a k-ary constraint with scpφ = (l1, . . . , lk) and relφ =

{(arel
11 , . . . , arel

k1), . . . ,(arel
1q , . . . , arel

kq)}, and a configuration c = (ac
1, . . . , ac

n), a goal
policy can be defined as follows:

(5.1) Gφ(c) =

{

1 iff ∃j ∈ [1,q],∀i ∈ [1,k] : match(arel
ij , ac

i) = true

0 else

The Equation 5.1 is evaluated to 1 for a given constraint φ and a given configura-
tion c if there is a tuple in the relation relφ, for which each attribute value arel

ij matches
the corresponding attribute value ac

i in the configuration. The predicate match is
used to compare two attribute values. In the most simple case, where attribute val-
ues represent “flat” datatypes, such as integers or strings, this could be realized by
a simple syntactic comparison, e.g. match(arel

ij , ac
i) = true iff arel

ij = ac
i . However, as

discussed in Section 5.3.1 and in Chapter 7 specifically for our representation mech-
anism, we do not restrict our approach to simple datatypes. In particular, set based
attribute values (e.g. ‘Cities in Germany’) and hierarchical structures (e.g. the set
‘Cities in Germany’ is included by ‘Cities in Europe’) are required in order to pro-
vide the interoperability postulated by Requirement (R6).

In order to judge a configuration c ∈ C as admissible, Equation 5.1 has to hold
for all constraints φ ∈ Φ. This is ensured by the following formula:

80 CHAPTER 5: ABSTRACT WEB SERVICE MARKET MODEL

(5.2) GΦ(c) = ∏
φ∈Φ

Gφ(c)

A more detailed discussion about the combination of policies can be found in
Section 5.1.3. The constraint specification above is only applicable for a discrete do-
main. Extending the constraint language to an infinite domain using mathematical
operators such as +,−, etc., boolean operators like ∧, ∨, =, etc., and constants is
described, e.g., in [LF04, BdVS02].

In this work, goal policies provide the following important features:

• Policies can be used to define guidelines how a service can be configured. In
doing so, they enable automation of the selection processes postulated by Re-
quirement (R7).

• Goal policies can be used to define indifference classes, i.e. classes of config-
urations which are equally desired by the decision maker. Since minimal and
maximal prices can be defined for the entire class, rather than for each member
of the class individually, they avoid enumerating all possible configurations in
case of coarse preferences and therefore reduce the communication overhead
as required by Requirement (R5).

The following example illustrates how goal policies can be used to describe ad-
missible Web service configurations.

Example 5.1 Consider the route planning service introduced in Example 4.3. In
this context, route planning service offers are described by the attributes L =
{‘Category’, ‘ResponseTime’, ‘Coverage’, ‘Attraction’, ‘Price’}. Assume a provider of a route
planning service wants to announce that the service only provides routes in Germany. This
can be realized by expressing a goal policy for the attribute ‘Coverage’. The domain of the
attribute is given by ACoverage = {‘Germany’, ‘France’, ‘UK’}. In this case an unary con-
straint φ ∈ Φ can be defined with scpφ = {‘Coverage’} and relφ = {‘Germany’}. Conse-
quently, the constraint can be used to define a goal policy Gφ which enables only configura-
tions that support routes in Germany:

Gφ(c) =

{

1 iff match(‘Germany’, ac
Coverage)

0 else

5.1.2 Utility Function Policies

Although goal policies are a first step towards automation and more compact offer
and request representation, they are not sufficient in scenarios, where preferences
over alternatives are fine-grained, e.g. each alternative might have a different price
attached or might be desired to a different degree. In this case, goal policies do
not improve representational compactness, since an own indifference class would
be required for each alternative. Rather than having policies that classify an alter-
native as acceptable or not acceptable, we require policies that lead to a degree of
satisfaction.

5.1 Policies Specification 81

To address this problem, a functional relation between alternatives and their
value for the decision maker can be used, which is referred to as utility function.1

Over the last decades, there has been a broad stream of work about modeling util-
ity functions [vNM47, Fis70, KR76, WD92, BG95]. The goal is to provide sufficient
expressivity for modeling complex decisions, while keeping the elicitation and com-
putation effort at an admissible level. In our specific case, a utility function is de-
fined as a function U : C→R mapping each configuration to a real-valued measure
reflecting the value a decision maker attaches to a certain alternative. The utility is
measured on a cardinal scale, which allows making statements about the relative as
well as absolute suitability of a configuration. They thus generalize the concept of
goal policies by allowing not only two levels ‘admissible’ and ‘not admissible’, but
make all configurations comparable by introducing a preference structure over the
configurations.

Definition 5.1 (Preference Structure) A preference structure is defined by the complete,
transitive, and reflexive relation �. For example, the configuration c1 ∈ C is preferred to
c2 ∈ C if c1 � c2. The preference structure can be derived from the utility function U(c) by
means of the following condition:

(5.3) ∀ca,cb ∈ C : ca � cb⇔U(ca) ≥U(cb)

Preferences often have an underlying structure which is introduced by the inde-
pendency of the attributes. Relying on this structure substantially improves their
compactness and analytic manipulability [WD92]. The most prominent approach in
this context are additive models, where the utility function U is decomposed into
several lower-dimensional functions. There are several well known approaches for
doing this decomposition based on different structural assumptions. In the follow-
ing, we shortly introduce the additive utility model which has favorable computa-
tional properties, but also imposes restrictive assumptions.

Definition 5.2 (Additive Utility Function) An additive utility function is a utility
function where an individual utility function ul(al) with al ∈ Al is defined for each attribute
l ∈ L separately. The overall utility measure U for a configuration c is then calculated by
the sum of all individual utility measures. Equation (5.4) below exemplifies an additive
function. The vector λ is used to define the relative importance of attributes.

(5.4) U(c) = ∑
l∈L

λlul(al),with ∑
l∈L

λl = 1

The additive form of utility functions as defined above can only be used if at-
tributes are mutually preferential independent [KR76].

Definition 5.3 (Mutual Preferential Independence) The attributes L are considered
mutually preferential independent if every proper subset X ⊂ L of these attributes is prefer-
entially independent of its complement Y = L \X. The set of attributes X is preferentially
independent from the set Y if and only if, for all assignments x, x′ ∈ X and y,y′ ∈ Y the

1In economic literature, often a distinction between utility functions and value functions can be
found referring to decisions under uncertainty and certainty, respectively. As in related computer
science literature [WTKD04, KW04], we abstract from such a distinction in our work and focus on
the general concepts suitable for both cases.

82 CHAPTER 5: ABSTRACT WEB SERVICE MARKET MODEL

following condition holds: [(x,y′) � (x′,y′)]⇒ [(x,y) � (x′,y)]. Under this assumption,
we can decompose the utility function U(c) into the individual functions ul(al) of the in-
dependent attributes l ∈ L. The overall value can be calculated by Equation (5.4), where
λl ≥ 1 represents the weighting factor of an attribute normalized in the range [0,1].

However, in real markets the preferential independency often does not hold. For
example, a decision maker might assign a high utility value to ‘Historic Sites’ in
case ‘Coverage’ is not valued with her native country. Otherwise with a low util-
ity value, since attractions in her native country might be already well-known and
thus indication of attractions is not important. In such a scenario, the attributes
‘Coverage’ and ‘IndicatedAttraction’ are not preferential independent. In order to
at least partly capture this, dependent attributes Aj, . . . , Ak ∈ A can be treated as one
single attribute A∗l in our model, where the utility function is modeled as a com-
plex (higher dimensional) function ul∗(aj, . . . , ak). Since this approach allows one
attribute Aj to influence several of the aggregated attributes A∗l , we support the
family of generalized additive utility functions [Fis70, BG95]. While the generalized
model requires expressing high dimensional functions for the entire service, the ad-
ditive model requires attaching an one dimensional function to each attribute of the
service. Since in general determining utility functions of an agent is rather difficult,
we assume extensive methodology and tool support in the preference elicitation
process (cf. [CP04]).

In the context of electronic markets, utility functions policies can be used on
buyer-side to specify preferences, assess the suitability of trading objects and derive
a ranking of trading objects based on these preferences. Since the functional form
avoids the enumeration of all configurations in order to attach prices, utility function
policies can be used to capture the reservation price of the provider and the maxi-
mal willingness to pay of the requester. Therefore, they provide an efficient way of
communicating pricing information to the customers and preference information to
providers (e.g. in a reverse auction). In the remainder of this work, we denote rules
that specify the functional relation between configurations and prices defined by a
seller as pricing policies (denoted by UP) and rules that define how much a buyer is
willing to pay for a certain configuration as scoring policies (denoted by US).

Example 5.2 We take up Example 5.1 and assume a provider who specifies prices for the
service by means of the following pricing policy. This function has been suggested in [BK05]
for configurable products and augments a base price ubase with an additional surcharge de-
pending on the configuration chosen by the requester. The surcharge is calculated by an
additive function as defined in Equation 5.4. This enables the provider to define price in-
crease on per attribute bases. Often this information can be derived from the provider’s
internal cost structure.

(5.5) U(c) = ubase + ∑
l∈L

λlul(al)

Independent of the chosen configuration, the provider charges a base price of ubase = 1.2. In
addition, there is a configuration dependent price component which is defined via functions
for each of the independent attributes uj(aj) as follows:

• Attribute ‘Response Time’: u1(a1) = 1− 1
10 a1 with a1 measured in seconds.

5.1 Policies Specification 83

• Attribute ‘Attraction’: u2(a2) is defined by the points P(“Historic Sites”,1),
P(“Events”,0.5), and P(“No Attraction Indication”,0).

Furthermore, we assume weights of λ1 = 0.5 and λ2 = 0.5. The attributes ‘Category’ and
‘Coverage’ are not configurable or do not influence the price and are thus omitted. For
example, the price for a service indicating historic sites and guaranteeing a response time of
2 seconds is specified as 2.1.

Since policies can be specified by many different parties (e.g. different depart-
ments in a company), methods for aggregating policies to one consistent decision
rule are required. We therefore discuss policy aggregation in the next section.

5.1.3 Policy Aggregation

Since policy-based decision making approaches are usually applied in large-scale
applications, typically more than one policy is specified in order to regulate a cer-
tain decision. For example, a Web service selection process of a company might
be regulated by several scoring policies coming from different departments of the
company. The information systems department, for instance, might prefer a highly
secure service, while the management might prioritize cheap services. Of course,
different scoring policies lead to different valuations as well as rankings and thus to
different selections of services. In the remainder of this section, we present a method
to derive a coherent decision from such diverse policies. Therefore, policies are first
evaluated and the results of this evaluation step are then aggregated.

In traditional policy languages there are two major operators that can be used
to combine policies [LEO05, W3C06b]: we can use either a logical and-operator in
order to define a conjunction of policies (i.e. the aggregated policy is admissible if
all contained policies are admissible) or a logical or-operator to derive a disjunction
of policies (i.e. the aggregated policy is admissible if at least one contained policy is
admissible).

However, since our utility function policies result in degrees of satisfaction, this
traditional interpretation of the logical operators is not sufficient. In order to define
the semantics of the logical operators for multi-valued logics, we borrow ideas from
fuzzy logic where the semantics of conjunction and disjunction is defined via T-
norms and T-conorms. In the following, we use the T-norm/T-conorm defined by
[Zad65] as follows:

⊤(a,b) = min(a,b) for and-operators(5.6)
⊥(a,b) = max(a,b) for or-operators(5.7)

Not that the above semantics is suitable for both types of polices, i.e. goal and
utility function policies. It ensures that if one of the policies is evaluated to 0, the
overall valuation of the conjunction of policies is also 0. This guarantees that if
one policy in a conjunction is violated, the entire conjunction is violated. In case
of disjunctions only one policy has to be fulfilled and thus we take the maximal
valuation, which is always 1 in case of goal policies.

In the following, we show how policies can be used within electronic markets to
specify requests, offers and contracts.

84 CHAPTER 5: ABSTRACT WEB SERVICE MARKET MODEL

5.2 Communication Primitives

In this section, we formally define the notion of Web services offers, Web service
requests and Web service contracts. For our work, we adapt general bidding lan-
guages for multi-attribute products developed in [EWL06, BK05]. This requires spe-
cializing the language to the Web service domain and to incorporate the policies
defined above. In doing this, we simplify the models in some areas while extending
them in others. We start with formally defining our notion of a Web service and then
specify how Web service offers, requests and contracts can be expressed.

5.2.1 Generic Web Service Specification

In order to be independent of concrete service description approaches, we take a
fairly abstract view of a Web service in our model and consider it to be fully de-
scribed by the attributes A1, . . . , An. Such properties might comprise service input
and output, behavioural aspects of a service, QoS attributes, etc., thus covering ex-
isting Web service description approaches as well as fulfilling Requirement (R2).
Such a general description of a Web service allows us to abstract from various exist-
ing Web service description frameworks, such as WSDL, OWL-S, SAWSDL, WSMO,
while simultaneously allowing us to utilize existing decision-theoretic algorithms
for multi-attribute products.

As defined above, the set C = A1 × · · · × An of Web service configurations com-
prises all possible combinations of attribute values. For example, considering the
attributes Attractions, Highways and Response Time of a route planning service, a con-
crete configuration would be a service that provides routes including highways and
information about nearby attractions within 10 seconds.

A Web service trade tij is defined as a tuple (c,π), where agent j provides a Web
service with configuration c ∈ C to a customer i at a price of π ∈ R. Furthermore,
let Tj denote the set of all contracts involving provider j, and Ti the set of contracts
involving customer i. Not all possible contracts are acceptable by an agent, and thus,
only subsets T′j ⊆ Tj and T′i ⊆ Ti are offered or requested, respectively.

Based on these definitions, we discuss in the next section how utility function
policies can be used to define offers and requests in terms of suitability of trades.

5.2.2 Bid Specification

A bid is a communication primitive that allows market participants to convey their
offers or requests to the market mechanism. As discussed in Requirement (R2) and
(R3), bids within a Web service market have to cover multiple attributes as well as
combinations of different service types. Moreover, bids may depend on the context
of an issuer (Requirement (R4)). These issues are addressed in the following:

Multi-attribute Bids

A major problem in designing bidding languages for multi-attribute products is the
combinatorial explosion that results from adding price markups to each configu-
ration. For instance in Example 4.3, for each configuration a row in the table is
required which already leads to thousands of rows for relatively small scenarios.

5.2 Communication Primitives 85

Assume, for example, a scenario with 5 attributes that each have 5 attribute values.
This leads already to 3125 possible configurations and increases exponentially with
the number of attributes. A technique to efficiently encode preference and pricing
information (Requirement (R6)) is the use of utility function policies that represent
the relationship between Web service configurations and their prices. In the follow-
ing definition pricing policies are used to define the acceptable price π implicitly in
a functional form.

Definition 5.4 (Web Service Offer) An offer by a provider j is defined as a pair oj =

(Cj,UP
j) of a set Cj ⊆ C of configurations and a pricing policy UP

j : Cj → R mapping
each configuration c ∈ Cj to a real number that represents the price π of invoking service
configuration c. The set of all offers in the market is denoted by O = {oj|j ∈ J}. Due to
payment monotonicity [EWL06], i.e. ∀π < π′ : (c,π) ∈ T′j ⇒ (c,π′) ∈ T′j , we interpret

UP
j (c) as the minimal price for which a provider is willing to accept a trade with T′j =

{(c,π) ∈ Tj|π ≥ UP
j (c)}. As suggested by [BK05], the pricing function UP

j (c) can be

described by a base price pbase
j and an additive function that aggregates pricing functions for

individual attributes:

(5.8) UP
j (c) = pbase

j + ∑
l∈L

λjlu
P
jl(al) with ∑

l∈L
λjl = 1

where uP
jl represents the pricing function of provider j for a particular attribute identified by

l ∈ L. The weights λjl are used to adjust the influence of different attributes on the price.

Thus, an offer assigns an additive pricing function to a Web service description,
mapping the configurations of the offer to a certain price. In Definition 5.4, an ad-
ditive function is used for the specification of the pricing policy. While additivity
improves compactness of the representation and analytic manipulation (e.g. imple-
menting an efficient market mechanism), it also constrains the pricing models avail-
able for the provider.

Analogously, we introduce a functional form for representing Web service re-
quests. One major difference though is that a requester’s willingness to pay might
depend on a runtime specific context (R4).2 Therefore, we introduce a set K =
δ1 × · · · × δm of execution contexts, where δl represents different context dimensions,
such as current location of a mobile device, time of service execution, history of past
transactions. Any k ∈ K denotes a concrete execution context.

Definition 5.5 (Web Service Request) A Web service request by requester i is defined
as a pair ri = (Ci,US

i) of a set Ci ⊆ C of acceptable configurations and a scoring policy
US

i : Ci × K → R that maps each configuration to a real number score depending on the
execution context k. The set of all requests in the market is denoted by R = {rj|i ∈ I}. Due to
payment monotonicity, i.e. ∀π > π′ : (c,π) ∈ T′i ⇒ (c,π′) ∈ T′i , we interpret US

i (c,k) as
the maximal price for which a customer is willing to carry out the trade, i.e. T′i = {(c,π) ∈
Ti|π ≤ US

i (c,k)}. US
i is an additive scoring function composed of the attribute-specific

2In general, also context-dependent reservation prices in an offer are possible, but rarely used in
practice.

86 CHAPTER 5: ABSTRACT WEB SERVICE MARKET MODEL

functions uS
il and their relative weights λil :

(5.9) US
i (c,k) =

{

∑l∈L λiluS
il(al ,k) if c ∈ Ci,

−∞ otherwise.
with ∑

l∈L
λil = 1

A configuration which is not requested is scored as minus infinity.

As discussed in the previous section, due to the additive form of the scoring func-
tion US

i , we have to assume mutual preferential independency [KR76] between the
attributes in the scoring function. This holds if the utility of an attribute Al does not
depend on the value of another attribute. For example, the score for a certain guar-
anteed response time will not change if the type of indicated attractions changes.
Technically, dependent attributes can be implemented by using higher-dimensional
functions [LAO+06]. However, the added value of this is questionable, given that
it is also much harder for requesters to specify preferences with inter-dependent at-
tributes. Context dimensions can be seen as preferential dependent attributes in a
sense that they directly influence the preferences for the other attributes and are rep-
resented by an additional dimension in the function. However, we assume a rather
modest increase in complexity for the requester by introducing contexts, since most
scenarios have a relatively small number of contexts k and most context changes do
not influence the preferences.

Combinatorial Bids

In order to model requests and offers that exhibit a complex structure with respect
to complementarity and substitutability (Requirement (R3)), we introduce primi-
tives for modeling OR/XOR-formulae [Nis00] that can be used to combine bids. In
order to do so, we first have to introduce the notion of AND-bids, OR-bids and XOR-
bids. Generally, a bid b ∈ B with B = O ∪ R represents either a request or offer. For
simplicity, we use a generic notation b = (C, p), where we assume that all possible
configurations C are provided/requested and where it is not distinguished between
offers and request. The variable p represents the maximal (e.g. p = US(c)) or min-
imal price (e.g. p = UP(c)) for requests and offers, respectively. The set of atomic
bids (C, p) is denoted by BA.

Combinatorial bids allow bidding on combinations of products, i.e. in our case on
combinations of Web services. We thus distinguish between different types of Web
services according to the configurations they provide. Let G = {C1, . . . ,C|G|} be the
set of service types containing pair-wise disjoint set of configurations, viz. ∀X,Y ∈
G : X ∩ Y = ∅. This rather general approach avoids explicitly introducing different
types of products/items into the model as it is usually the case in related literature.
We belief that especially when dealing with services it is often unclear whether we
talk about different service types or about different configurations of the same type.
For instance, consider our route planning service scenario. One might view a route
planning service for Germany and France as two different service types where oth-
ers might view that as different configurations of a route planning service. There-
fore, our modeling approach enables defining service types based on configurations.
By explicitly introducing an attribute ‘ServiceType’ and adding a separate set of con-
figurations C ∈ G for each attribute value of ‘Service Type’, our approach directly
maps to the standard formulation of combinatorial bidding languages in literature

5.2 Communication Primitives 87

(e.g. compare [BH01, San02, dVV03]). A service type is thus defined via a set of
viable configurations.

Given the set of service types G we introduce the notion of AND-bids (aka bun-
dles).

Definition 5.6 (AND-Bid/Bundle) AND-bids represent items that are required together
and are therefore considered as complements. AND-bids are expressed via a pair b∧= (S , p),
where S ⊆ G and p is the overall price for all required or provided service types C ∈ S . The
price can be defined explicitly or as a function of the contained configuration as outlined
above. Let Tq = {(c,π) ∈ T|c ∈ Cq} with Cq ∈ {C1, . . . ,C|S|}. Then the set of acceptable
trades for a requester i and provider j is given as T′i = {(t1, . . . , t|S|) ∈ T1× · · · × T|S||π1 +

· · ·+ π|S| ≤ p} and T′j = {(t1, . . . , t|S|) ∈ T1 × · · · × T|S||π1 + · · ·+ π|S| ≥ p}, respec-
tively. The set of AND-bids b∧ is denoted by B∧ with B∧ ⊆ B.

Based on these definitions, OR/XOR-formulae can be specified, which enable
the expression of arbitrary combinations of OR- and XOR-bids and thus enable the
specification of complementarity as well as substitutability. An OR-bid represents a
combination of bids, where a valid allocation has to fulfill any number of the con-
tained bids for a price equal to the sum of the individual prices of the contained
bids [Nis00]. In particular, it is possible to get all services contained in the bid or no
service at all.

Definition 5.7 (OR-Bid) Let b∨ = (b1 ∨ · · · ∨ bm, p) represent an OR-Bid with bk ∈ B
referring to an arbitrary bid and with b∨ ∈ B∨. The semantics of the disjunction ∨ is defined
as a set of separate, not-related bids {b1, . . . ,bm} and the overall price as the sum of the
individual bid prices p = p1 + · · · + pm. Thus, the acceptable trades are given by T′1 ×
· · · × T′m.3

This means that OR-bids can only represent valuation without substitutabilities
[Nis00, Proposition 3.1], e.g. it is not expressible that either a HD-storage service
or CD-storage service are required, but not both together. This can be done with
XOR-bids. We define XOR-bids as follows:

Definition 5.8 (XOR-Bid) Let b⊕ = (b1 ⊕ · · · ⊕ bm, p) represent an XOR-bid with arbi-
trary bids bk ∈ B and with b⊕ ∈ B⊕. The connective ⊕ makes sure that exactly one of the
specified service types is allocated to the bid, i.e. exactly one of the contained bids b1, . . . ,bm
is fulfilled. The set of acceptable trades is given by T′ = {t ∈ T|t ∈ T′1 ∨ · · · ∨ t ∈ T′n}, where
T′q with q = 1, . . . ,m is the set of acceptable trades for an atomic bid bq ∈ BA.

XOR-bids can represent all possible valuations [Nis00, Proposition 3.2]; how-
ever, not always in an efficient manner. Additive valuations of m service types re-
quire a XOR-bid of size 2m (OR-bids require only a size of m in this case).4 There-
fore, Definition 5.7 and 5.8 are recursively defined. The recursive nature of the OR-
and XOR-bid definition enables us to express arbitrary OR/XOR-formulae and thus
to represent XOR-of-OR-bids and OR-of-XOR-bids [San99]. As shown in [Nis00],

3Note that for each set T′1, . . . , T′m we have to add an null-element referring to ‘No Trade’, which
indicates that no trade to a price of zero is also acceptable. This is required since fulfilling an OR-bid
does not necessarily mean all service types are required.

4The size of a bid is the number of atomic or AND-bids contained in the OR/XOR-bid.

88 CHAPTER 5: ABSTRACT WEB SERVICE MARKET MODEL

OR/XOR-formulae are suitable for all kinds of combinatorial valuations and addi-
tionally can be transformed to the bidding language LOR∗

B [FBS99]. It can be shown
that this language allows an efficient representation of all kinds of combinatorial
bids [Nis00]. Merits and problems of the different formulations – in particular with
respect to the family of LG languages – are discussed in Chapter 10.

The overall set of bids that can be specified in our Web service market is given as
B = BA ∪ B∧ ∪ B∨ ∪ B⊕.

After an allocation between offers and requests has been determined, an auto-
matically enforceable and legally reliable contract has to be generated. Therefore,
in the next section a contract model is presented that relies on goal policies for the
specification of the contractual obligations.

5.2.3 Contract Specification

In service-oriented architectures, applications are assembled as required by pulling
together various services offered by different service providers. So as to make sure
that a service meets the requirements, customers and providers have to agree on
terms of a contract. According to the market phases introduced in Section 2.3.1,
these terms are determined in the agreement phase and unambiguously specified in
a contract. In the later settlement phase, this contract represents normative relations
between the contracting parties that specify, e.g., what must be done, should be done
or can be done. There is a vast amount of literature on different normative relations
that can be used in this context. The starting point for most work in this area is the
seminal work of Hohfeld [Hoh13], which introduces the legal relations duty, right,
power and liability. A formal, more fine-grained analysis of Kangar [Kan72] already
yield 26 different “normative positions” and a further development of the theory by
Lindahl [Lin77] 35 different positions.5 However, within the Web service settlement
phase we are only interested whether the obligations in the contract are met by the
Web service execution. A Web service execution can be seen as the execution of a
concrete configuration c from the set of possible configurations C. Obligations in
our Web service model are constraints on Web service attributes that classify the set
of configurations C into acceptable and not acceptable ones. We can thus use goal
policies to specify obligations as captured by the following definition.

Definition 5.9 (Web Service Contract) A Web service contract Γ is a bilateral agreement
specifying a set of obligations γ. Obligations are represented as goal policies that have to be
met by a contracting party. An obligation γ is a tuple (y, GΦ) specifying the contracting
party that is obliged to execute a certain task (y ∈ J ∪ I) and one or several goal policies GΦ

mapping each possible alternative to the set {0,1}. Moreover, let ̺(Γ,c) be a function that
evaluates a contract Γ = {γ1, . . . ,γn} with respect to an observed configuration. ̺(Γ,c) is
defined as follows:
(5.10)

̺(Γ,c) =

{

1 iff GΦ1(c) ∧ · · · ∧ GΦq(c) = 1, with γ1 = (y, GΦ1), . . . ,γq = (y, GΦq)

0 else.

5For a good overview of normative positions the interested reader is referred to [Ser01]. Moreover,
some relevant approaches based on deontic logic (i.e. the logic of permissions and obligations) are
presented in Chapter 10.

5.3 Web service Contracting and Contract Monitoring 89

The semantics of a contract conjunction is given by ̺(Γ1 ∧ · · · ∧ Γq,c) = ̺(Γ1,c) ∧ · · · ∧
̺(Γq,c) and of a contract disjunction by ̺(Γ1,∨· · · ∨ Γq,c) = ̺(Γ1,c) ∨ · · · ∨ ̺(Γq,c).

According to this definition, goal polices are used to define whether or not a
certain configuration is admissible. This is, of course, a very restricted view on
legal contracts which is specific to our Web service model, since it requires that all
essential properties of a service are described by attributes.

Example 5.3 Consider a contract Γ = {γ1,γ2} specifying that a Web service provider j
has to grant access to a route planning service which returns a route within 2 seconds.
The route has to contain information about historic sites along the way and route calcu-
lations should be possible for starting points and destinations within Germany. This can
be captured by the provider obligation γ1 = (j, GΦ1), where Φ1 contains a 3-ary con-
straint φ1 = ((‘ResponseTime’,‘Attraction’,‘Coverage’), ({(‘1sec.’, ‘HistoricSite’, ‘Ger’),
(‘2sec.’, ‘HistoricSite’, ‘Ger’)})). A second obligation γ2 = (i, GΦ2) captures the duty of
the requester i that requires paying the agreed amount of money for the service. Φ2 contains
the unary constraint φ2 = ((‘Amount’),{(‘3′)}).

Although this approach does not allow a full specification of all possible con-
tracts, it is sufficient to capture the information relevant for Web service contracting
and monitoring. This issue is further discussed in Section 6.4.

5.3 Web service Contracting and Contract Monitoring

Having defined the communication primitives available in the market, the concep-
tual design of the market process is specified. Our focus in this context is the con-
tracting and monitoring phase. As discussed in Section 3.2.2, the contracting process
comprises three main phases: the matching phase is discussed in Section 5.3.1, the
allocation phase in Section 5.3.2 and the contract formation phase in Section 5.3.3. In
the latter, we also discuss the monitoring of Web service contracts with respect to a
concrete service invocation, which can also be considered as a part of the settlement
phase.

5.3.1 Matching of Bids

Depending on the market mechanism used (e.g. hit-and-take-mechanisms, negoti-
ations or auctions), offers and requests have to be compared with respect to their
suitability for the other parties in the market. In case of configurable services, this
involves matching of all attributes described in the offer as well as in the request
in order to make sure that at least one provided configuration is suitable for the
requester. Generally, an offer matches a request if the intersection of the set of pro-
vided trades T′j and the set of requested trades T′i is not empty, i.e. T′j ∩ T′i 6= ⊘.
Given the policy-based definition of multi-attribute offers (Definition 5.4) and re-
quests (Definition 5.5), we can phrase this condition as follows:

(5.11) T′j ∩ T′i = {(c,π) ∈ Tj ∩ Ti|U
P
j (c) ≤ π ≤US

i (c,k)}

This means we can determine if there is a match between an offer and request by
evaluating if the condition US

i (c,k) −UP
j (c) ≥ 0 holds for at least one configuration

90 CHAPTER 5: ABSTRACT WEB SERVICE MARKET MODEL

c ∈ Ci ∩ Cj. However, in many situations it is not sufficient to know if there is a
match, but also which of the trades t ∈ T′j ∩ T′i is the best match, i.e. the trade max-
imizing the surplus u that can be realized. Finding this best match is denoted by
Multi-attribute Matching Problem (MMP) [EWL06]. Assuming no knowledge about
the providers internal cost function and therefore indifference between the different
configurations on provider side, we define the surplus simply as the difference be-
tween score and price US

i (c,k)−UP
j (c). In this case the MMP is defined as follows:

Definition 5.10 (MMP) Given an atomic request ri = (Ci,US
i), an atomic offer oj =

(Cj,UP
j) and an execution context k, we solve the MMP by maximizing the requester’s

utility per service configuration. The solution of the MMP for a given request ri ∈ BA and
provider oj ∈ BA is referred to as uij(ri,oj) and is defined as follows:

(5.12) uij(ri,oj) = max
c∈Ci∩Cj

US
i (c,k)−UP

j (c)

When assuming additive pricing and scoring functions as done in Definition 5.4
and 5.5, we can considerably simplify the MMP. In particular, we can decompose the
calculation into individual subproblems which can be solved independently. The
following formulae (5.13-5.15) use this property to solve Formula 5.12 efficiently by
reducing the the search space from O(|∏l Al|) to O(∑l |Al |). The binary decision
variable xle is associated with each attribute value and denotes whether the value is
part of the best configuration. Equation 5.14 ensures that exactly one attribute value
is selected for each attribute. Since the following integer programming formula-
tion has a totally unimodular constraint matrix and only integers on the constraints’
right-hand sides, the problem can be solved efficiently using the simplex algorithm
[PS82].

max
n

∑
l=1

|Al|

∑
e=1

(wil fi(ale,k)− wjl pj(ale))xle − pbase
j(5.13)

s.t.
|Al |

∑
e=1

xle = 1 for 0 < l ≤ n,(5.14)

xle ∈ {0,1} for 0 < l ≤ n, 0 < e ≤ |Al|(5.15)

The MMP formulation introduced above efficiently determines the optimal con-
figuration given an atomic request and offer. Combinatorial bids are not addressed,
since they become not relevant until several requests and offers are considered,
which is discussed in the next section.

5.3.2 Web Service Allocation

As introduced in Section 2.3.2, determining the allocation between offers and re-
quests in a market can be done by means of a wide range of different allocation
mechanisms. In this section, we consider the problem of designing a suitable mech-
anism for Web service markets. A general problem in this context is the trade-off
between the expressivity of the bidding language that can be handled by a mecha-
nism and the computational tractability of determining the allocation.

5.3 Web service Contracting and Contract Monitoring 91

As the requirement analysis in Section 4.2 has shown, an allocation mecha-
nism suitable for all different scenarios has to support multi-attribute, combinato-
rial bids. Moreover, especially in the grid scenario, we usually have serious re-
source restrictions at provider side that should be handled by the mechanism. To
address this resource allocation problem market mechanisms with dynamic pric-
ing – in particular different types of auctions – have been suggested in literature
[WPBB01, BAGS02, LZR03, SNVW06]. While using such mechanisms enables re-
alizing efficient allocations from an economical point of view (Requirement (R9)),
they are often computationally very demanding and thus are not suitable for all set-
tings (e.g. scenarios that require selecting the most suitable services from hundreds
of Web service offers).

In this section, our intention is therefore not to propose an allocation mechanism
generally applicable for all kinds of Web service scenarios, but rather to show how
the MMP formulation introduced in Section 5.3.1 can be applied in different alloca-
tion algorithms. In doing this, we seamlessly realize semantic matching of attribute
values. In the remainder of this section, we first introduce a lightweight allocation
algorithm that selects the most suitable service provider and the best available Web
service configuration for a given request. This mechanism is referred to as Web ser-
vice selection and addresses the requirements in an enterprise and mobile service
setting, where we usually do not have any resource limitations or the limitations
can be easily handled by the provider. As a second mechanism, we present an
auction-based approach featuring dynamic pricing based on supply and demand.
Particularly in the grid scenario this mechanism leads to economically more effi-
cient allocations.

Web Service Selection

In general, a selection is defined as a decision for the best available alternative. That
means in our case the goal is to find the Web service that is most appropriate to
fulfill a certain goal specified by the requester. Web services selection corresponds
to a Hit-and-Take-mechanism, where a requester selects an offer according to her
preferences. It provides the basic functionality for determining suitable Web service
bindings (see Section 2.1.2). For flexible binding at runtime the Web service selection
has to be done automatically by the system.

Finding the best service involves the decision for a certain provider as well as for
a certain configuration of the Web service. Therefore, we have to solve two maxi-
mization problems: First, the best contract for a given provider has to be identified
which corresponds to the Multi Attribute Matching Problem (MMP) defined in Sec-
tion 5.3.1. Based on the solution of the MMP, we can determine the best provider
by solving Local Selection Problem (LSP). This is to find the best provider for a given
request from the set of all offers. Obviously this implies that the best contract for
each provider is known, i.e. the MMP is solved for each pair of request and offer.
For formulating the LSP, we assume that all requesters get the service they want
if they fulfill the providers’ policies (e.g. pay the required price). This assumption
is realistic especially for information services such as a route planning service, be-
cause of their low operational demands with respect to the required resources. Since
each requester gets the chosen service, no combinatorial bids are needed in such a
scenario. The LSP is formally defined as follows:

92 CHAPTER 5: ABSTRACT WEB SERVICE MARKET MODEL

Definition 5.11 (LSP) Given a single atomic request r and a set of atomic offers O, the
Local Selection Problem can be solved by iterating over all offers oj ∈ O and determining
the offer which leads to a maximal solution for MMP. We thus have to solve the following
optimization problem:

max
j=1,...,|O|

uij(ri,oj)(5.16)

Given the solution of all possible MMPs, solving LSP is linear with respect to the
number of offers and requires O(|O|) steps, since we have to calculate the surplus
exactly once for each offer. However, as already mentioned the LSP formulation
above is based on several simplifying assumption and thus there are several scenar-
ios where LSP is not sufficient for service selection:

• First, the problem can be relaxed to the multi-unit case where a request might
require more than one invocation of a service. This might be the case if the
binding of services is done once at deployment time of the business process.
If we further do not assume quasi-linearity of the utility functions, e.g. by al-
lowing one time costs, the problem will get considerably more complex. It
can be shown by reduction of the Uncapacitated Facility Location Problem that
computing the optimal service in such scenarios is in FPNP [BF05].

• Second, the LSP is formulated for the selection of a single service required in
a business process. However, often several services might be required within
such a process. These services might depend on each other in a sense that
not all are compatible to each other (and thus cannot be used within one pro-
cess instance) or that service prices change if several services are bought from
one provider. When the LSP is generalized to an entire service compositions,
the problem is called Global Selection Problem (GSP). The GSP is addressed in
[ZBN+04, SBM+04, AVMM04, YL05, JMG05]. The goal of GSP is to optimize
attributes for the entire business process of a requester, such as the overall
runtime of the process, the overall costs, etc.

• Third, for the problem formulation of LSP we have assumed that offered ser-
vices are always available for all requesters and that possible resource limita-
tions are handled at the provider side, e.g. by adapting the guaranteed service
levels or by increasing server capacity. Of course, handling resource limitation
at provider side is not always possible (especially in grid or utility computing
scenarios). Therefore, the allocation mechanism has to handle the problem.
In case of LSP this can be done simply by applying the first-come-first-serve
principle. However, this may lead to economically inefficient outcomes, since
a requester with the highest valuation of a service might not get the service.
More efficient solutions can be realized by means of dynamic pricing mecha-
nisms such as auctions, as done in [SNVW06] for computational grids, or by
sophisticated scheduling algorithms as done in [BK06b].

As the Local Allocation Problem introduced in this section is mainly applicable
to the enterprise and mobile scenarios where the assumption of no resource limi-
tation is usually valid, in the next section we address the grid services scenario by
relaxing this assumption.

5.3 Web service Contracting and Contract Monitoring 93

Web Service Auction

Each provider of a grid system has only limited resources that can be offered to cus-
tomers. For example, a provider of a storage service is restricted by the capacity
of its hard discs and a computing service provider by the power of the available
processors. In this context, the providers also have to make sure that the quality of
service guaranteed to the customers is maintained. Therefore, it is sensible for ser-
vice providers to restrict access to their resources as the maximal load is approached.
This leads to the problem that not always the requester who value a certain service
most can invoke this service, since the maximal load might be already reached. In
such situations, the overall surplus realized by the system is not optimal and thus
the allocation is not efficient in an economic sense. This obviously contradicts Re-
quirement R9.

Introducing an auction mechanism where prices are dynamically determined by
the interplay of supply and demand could improve the situation. Consider a simple
so-called English auction, where an auctioneer announces a Web service offer on
behalf of the provider and the requesters interested in using the service submit their
bids iteratively in an open-cry manner. In this case, the requester with the highest
bid wins the auction and acquires the right to invoke the services. In subsequent
auctions, the service can be allocated to the requester with the second, third, fourth,
etc. highest bid. Thus, the allocation realizes a higher degree of efficiency compared
to the Web service selection mechanism, where a first-come-first-serve-principle is
applied.

A major problem with traditional single-item auctions as the English auction
described above is that the outcome depends on the behavior of other market par-
ticipants and is therefore unknown. For example, a requester that needs two Web
services for her business process might end up with only one service and a process
which is not executable. This is an example for services complementing each other.
As already discussed, bids on complements can be expressed via AND-bids. In or-
der to minimize the risk of a requester to end up without a required service, parallel
bidding on the same service might be necessary. This introduces the risk of purchas-
ing both services although only one is required. Such sub-additive valuations refer
to substitutability, which can be expressed via XOR-bids. It is therefore easy to see
that a combinatorial auction that supports AND- and XOR-bids further increases the
efficiency for the market participants [dVV03]. In addition, combinatorial auctions
provide lower transaction costs and higher transparency [Sch05].

In order to illustrate how we can use the MMP formulation defined in Section
5.3.1 within an auction, we consider a simple combinatorial auction that allows us
to allocate a set of AND-bids containing service types S ⊆ G to a set of requesters
i ∈ I. Before defining the corresponding optimization problem, we generalize the
MMP to handle arbitrary AND-bids of the form b = (S , p) with b ∈ B∧. In doing
so, the price pi a requester i is willing to pay for a service can be determined as a
function pi(S) = p(US

i (c∗1), . . . ,US
i (c∗|S|)), where c∗l represents the utility maximizing

configuration of a service type Cl ∈ S . Based on this definition, the Combinatorial
Auction Problem [RPH98] can be formulated as an integer program (Equation 5.17-
5.20), where xi(S) represents a binary decision variable indicating whether a bundle
S is allocated to requester i. Equations 5.18 ensures that no overlapping sets of

94 CHAPTER 5: ABSTRACT WEB SERVICE MARKET MODEL

service types are allocated to a requester. Constraint 5.19 ensure that no requester
gets more than one subset of G.

max ∑
i∈I

∑
S⊆G

xi(S)pi(S)(5.17)

s.t. ∑
S∋l

∑
i∈I

xi(S) ≤ 1 ∀l ∈ G(5.18)

∑
S⊆G

xi(S) ≤ 1 ∀i ∈ I(5.19)

xi(S) ∈ {0,1} ∀S ⊆ G, i ∈ I(5.20)

However, the conceptual advantage of the combinatorial auctions compared to
traditional auctions is partially offset by the computational hardness of the algo-
rithms for determining winners and prices. Most instances of integer programm
formulation for the winner determination problems above are not efficiently solv-
able, since the problem is reducible to the set packing problem [RPH98], which is
shown to be NP-complete [Kar72]. In literature, a vast amount of (exact as well as
approximate) algorithms have been suggested to solve the winner determination
problem in combinatorial mechanisms under wide range of different assumptions
and in different settings. A detailed discussion of this problem can be found in
[RPH98, FBS99, Nis00, ATY00, BH01, San02, dVV03].

Although computationally very demanding, the combinatorial auction model
presented above features only basic functionality which is not sufficient in many
scenarios. There are approaches to extend the model in several directions. For
example, MACE [SNVW06] introduces competition on both sides by providing a
double-sided mechanism, where requesters as well as providers simultaneously
submit bids to the auctioneer. In addition, XOR-bids B⊕, co-allocation constraints
and time-issues can be handled. Other extensions allow exchanging multiple-units
of a service as suggested by [dVV03, BK05]. This is especially important if service
bindings are determined at deployment time of a process for several executions at
once.

While these extensions further improve market efficiency, such additional fea-
ture often increase the complexity of the auction and limit the computational
tractability (Requirement R10). Thus, complex combinatorial auctions are typically
not applied for runtime-selection of services. However, they can be used for small
scenarios with a moderate number of providers or for selecting services at develop-
ment or deployment time.

5.3.3 Contract Formation and Monitoring

After allocating offers to requests a contract is needed that unambiguously speci-
fies the involved parties, agreed service levels and prices. As introduced in Section
5.2.3, a contract Γ is formally defined as a set of obligations γ = (y, GΦ), where GΦ

represents a goal policy with constraints Φ and y the party obliged to meet the con-
straints. In the allocation phase, the set of admissible trades is determined by the
intersection of the acceptable sets of requester i and provider j: T′i ∩ T′j . The obliga-
tions in the contract have to identify exactly these acceptable trades t = (c,π) with

5.4 Conclusion 95

t ∈ T′i ∩ T′j . Thus, each trade t defines a contract with a provider obligation γj and
a customer obligation γi as illustrated in Example 5.3 on page 89. In case several
trades t1, . . . , tq ∈ T′i ∩ T′j are admissible, for each of the trades a separate contract is
closed. The individual contracts are aggregated via disjunctions, i.e. Γ1 ∨ · · · ∨ Γq,
since only one of the trades has to be executed.

Once a contract has been executed, both parties evaluate whether the other
party’s obligations stated in the contract have been fulfilled. This requires moni-
toring the execution of the Web service. The requester is interested in the properties
exposed by the service. Therefore, monitoring methods are required that enable
the collection of execution information for each attribute within the configuration.
For example, this might include measuring ‘Response Time’, ‘Availability’ or other
quality of service guarantees, evaluation of error messages returned by the service,
judging quality of the data returned, etc. Metrics and methods for measuring such
quality of attributes are presented in [SMS+02, Lud03], for instance. The result of the
monitoring is thus exactly one configuration cE ∈ C that has been executed by the
service. Consequently, a contract Γ is interpreted simply by evaluating the function
̺(Γ,cE) defined in Equation 5.10.

However, some service characteristics are hardly observable by the other party
and thus cannot be verified automatically. For example, consider the obligation
which requires the provider to not disclose private data of the customer to third
parties. Although this is an important regulation in the contract, it cannot be directly
monitored by the customer. Nevertheless, the clause has to be part of the contract in
order to provide a legal instrument for the customer to sanction illegal disclosure of
her private data. In order to enable automated evaluation of contracts in presence
of not observable attributes the following methods is applied: before evaluating the
contract we remove all constraints defined on attributes that cannot be observed.
The attribute values of these attributes can be set to any value within the attribute
range. After this manipulation the function ̺(Γ,cE) is evaluated as usual.

5.4 Conclusion

In this chapter, we have presented the conceptual design of a Web service market
model using an abstract mathematical notation. Since this notation is not directly
processable by computers (Requirement (R7)) and there is no standardized serializa-
tion for exchanging the communication primitives in the Web (Requirement (R6)), in
the embodiment phase of the market engineering process the model is implemented
by means of ontologies. Ontologies are powerful enough to provide the required ex-
pressivity, while fostering interoperability in the Web through a standardized syntax
and semantics. In Chapter 6, the policy model as well as the communication primi-
tives introduced in Section 5.1 and 5.2 are formalized by means of ontologies. Based
on these ontologies, in Chapter 7 an implementation of the Web service contracting
and contract monitoring mechanisms presented in Section 5.3 is introduced.

96 CHAPTER 5: ABSTRACT WEB SERVICE MARKET MODEL

Chapter 6

An Ontology Framework for Web
Service Markets

One of the main contributions of this work is an ontology framework that unam-
biguously defines the vocabulary for communication in Web service markets. The
key modules of the ontology framework are ontologies for representing policies,
bids and contracts. In this chapter, we first give a short overview of the entire frame-
work (Section 6.1). This includes a discussion about the foundational ontology that
is used as modeling basis and clarifies the relation and interdependencies between
the different ontology modules. Subsequently, we introduce the ontologies for ex-
pressing policies, bids and contracts in Section 6.2, 6.3 and 6.4, respectively.

6.1 Overview

As discussed in Section 2.4.3, ontologies can be categorized into four major classes:
top-level ontologies, core ontologies, domain/task ontologies and application on-
tologies. The ontology framework is structured according to these categories by
providing a stack of ontology modules. This structure is illustrated in Figure 6.1
and comprises the following three layers:

• The framework is based on a philosophically sound formalization of domain-
independent concepts and relations that are captured by the top-level ontol-
ogy DOLCE (see Section 2.4.4). By capturing typical ontology design patterns
(e.g. location in space and time), foundational ontologies provide the basic vo-
cabulary for structuring and formalization of application ontologies. Reusing
these building blocks considerably reduces modeling effort. Furthermore, they
provide precise concept definitions through a high degree of axiomatization.
Thereby, foundational ontologies facilitate the conceptual integration of dif-
ferent ontologies and thus ensure interoperability in heterogeneous environ-
ments. DOLCE provides important ontology design patterns such as contextu-
alization and is available in the ontology language we use (i.e. OWL-DL). The
ontology DOLCE together with its modules Ontology of Description and Sit-
uations (DnS), Ontology of Information Objects (OIO) and Ontology of Plans
(OoP) has been introduced in Section 2.4.4. The concepts that are directly used
for alignment of our ontology are introduced in Table 2.3 on page 43.

98 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

Top-Level Ontology

(domain-independent)

Inherits

from

Ontology of Plans

(OoP)

Ontology of Information

Objects (OIO)

Ontology of Descriptions

and Situations (DnS)

DOLCE

Domain/Application

Ontology

(domain dependent)

Financial Service Ontology Route Planning Ontology

Core Ontology

(specific domain independent)

Core Contract Ontology

(CCO)
Core Ontology of Bids (COB)

Core Policy Ontology (CPO)
Core Web Service

Ontology

OWL-S

WSMO

COS

SAWSDL

alignment

Figure 6.1: Ontology framework for Web service markets.

• By means of the DOLCE vocabulary, additional ontology modules can be de-
fined that capture information within a Web service market. This includes
generally applicable ontology modules that formalize the notion of policies,
Web services, bids and contracts. The Core Policy Ontology (CPO) formalizes
the notion of goal and utility function policies defined in Section 5.1. This
module is used to define two additional ontology modules that formalize the
communication in electronic markets: The Core Ontology of Bids (COB) that
uses utility function policies to efficiently encode configurable Web service of-
fers and requests; and the Core Contract Ontology (CCO) the relies on goal poli-
cies to represent requester and provider obligations. In addition, an ontology
for representing services is required. The Core Ontology of Services (COS) is an
ontology module based on DOLCE for modeling the technical aspects of ser-
vices as presented in [Obe05, OLG+06]. Other ontologies that can be used to
describe services – such as OWL-S or WSMO – are not directly aligned with
DOLCE.1 The ontology modules Core Policy Ontology, Core Ontology of Bids,
Core Contract Ontology and Core Ontology of Services are classified as core
ontologies since they can be used for different purposes, in different domains
and for different applications.

• While the first two layers contain domain-independent off-the-shelf ontolo-
gies, the third layer comprises ontologies for customizing the framework to

1For OWL-S a DOLCE alignment exists which is presented in [MOGS04]. However, due to some
problematic aspects of OWL-S, such as conceptual ambiguity, poor axiomatization, loose design and
narrow scope, the alignment to DOLCE requires a major restructuring of OWL-S.

6.2 Core Policy Ontology (CPO) 99

specific domains (e.g. an ontology for modeling information that is returned
by a service such as credit or route information).

In the following, we focus on the second layer of our ontology framework. We intro-
duce the Core Policy Ontology in Section 6.2, the Core Bidding Ontology in Section
6.3 and the Core Contract Ontology in Section 6.4. The Core Web Service Ontology
has already been developed in [Obe05, OLG+06] and is therefore not addressed. For
the formalization of the core ontologies, we use the ontology formalisms introduced
in Section 2.4.2.

Ontology modules of the first layer are reused and published in [MBG+02a,
GBCL04]. They can be downloaded from http://www.loa-cnr.it/DOLCE.
html. Regarding the second layer, we reuse the Core Software Ontology and
the Core Ontology of Services published in [Obe05, OLG+06]. They are avail-
able at http://cos.ontoware.org. Parts of our contributed ontology mod-
ules originate from prior publications. The Core Policy Ontology is partly intro-
duced in [LEO05, OLG+06, LAO+06, LASW06] and the Core Contract Ontology in
[LML+05, LLM07]. The latter ontology modules as well as the Core Ontology of
Bids are available from http://emo.ontoware.org.

6.2 Core Policy Ontology (CPO)

The Core Policy Ontology (CPO) provides primitives for specifying goal and util-
ity function policies that have been introduced in Section 5.1. As outlined in the
following, expressing policies by means of ontologies provides several important
advantages [GLA+04, UBJ+04, Kag04, KPKH05]:

• Since the semantics of ontology languages is defined using a formal calcu-
lus, they provide logical inferencing mechanisms, which allow us to reason
about policy containment, i.e. whether the requirements for supporting one
policy are a subset of the requirements for another. For example, a provider
with a policy A restricting the coverage of a route planning service to routes
within Europe matches a requester stating a policy B, which requires a service
to support routes within Germany. We thus have to determine whether policy
A contains policy B. This is particularly important to address Requirements
(R1), (R6) and (R9). Beyond policy containment, the following reasoning task
for policy evaluation can be identified [KPKH05]:

– policy inclusion: if x meets policy A then it also meets policy B

– policy equivalence: if policy A is evaluated to a measure u then also pol-
icy B is evaluated to u and vice versa.

– policy incompatibility: if x meets policy A it cannot meet policy B

– policy incoherence: policy A cannot be met

– policy conformance: x meets policy A

• Since ontologies come with standard languages and pre-existing reasoners
they are easily exchangeable in the Web, and policy editing and processing
can be done with standard tools, i.e. no separate policy engine is required. In

100 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

Ontology entity DOLCE alignment Abstract model

Attribute DnS:Parameter L

AttributeValue DOLCE:Region A

Configuration DnS:Situation C

UtilityValue DOLCE:Region {0, . . . ,1}

satisfiesPolicy DnS:satisfies {(Φ, c)|GΦ(c) = 1}

overallDegree DnS:satisfies {(f , c)|∃v : U f (c) = v}

Context DnS:FunctionalRole K

ContextDimension DnS:Parameter {δ1, . . . ,δm}

Table 6.1: Correspondence of Core Policy Ontology and Abstract Policy Model. A
row in the table with the ontology entity φ, the DOLCE concept ψ and a set of the ab-
stract model E should be understood as follows: φ⊑ ψ and there is an interpretation
I such that φI = E holds.

addition, existing policy languages can be mapped into the same background
formalism, which makes the different policy specifications interoperable (Re-
quirement (R6)).

• Ontologies feature declarative policy specification, which provides the possi-
bility to change policies at runtime (Requirement (R8)) and to exchange them
with other parties in the system (e.g. share them with other market partici-
pants) as required in Figure 3.1 on page 48. Moreover, representing policies as
part of the knowledge base provides the ability to state knowledge about poli-
cies. For example, one could define the application area of a policy, the author
or the context in which the policy should be applied (Requirement (R4)).

In the remainder of this section, we implement the abstract policy model intro-
duced in Section 5.1 as follows: Since policies require the expression of the functions
G(·) and U(·), we first extend the DOLCE ground ontology by modeling primitives
required for representing functions (Section 6.2.1). Second, based on these functions,
we show how the DOLCE ontology module Descriptions & Situations is applied to
model Web service configurations and policies over these configurations (Section
6.2.2). In addition, we discuss in this section how configurations are evaluated ac-
cording to the specified policies, i.e. how the functions G(·) and U(·) are evaluated.
Finally, a mechanism to specify and evaluate combinations of policies is introduced
in Section 6.2.3. Table 6.1 illustrates the mapping between the core policy ontology
and the abstract policy model introduced in Section 5.1. Since the ontological model
is more comprehensive and fine-grained than the abstract model, only a subset of
the concepts and relations are mapped to the abstract model. While the abstract
model is geared specifically towards Web service markets, the core policy ontology
is applicable in a much broader context.2

2Note that although in the following we focus on applying the policy ontology for specifying
scoring and pricing functions in electronic markets, due to its generality it is not restricted to this

6.2 Core Policy Ontology (CPO) 101

Function

PatternBasedFunction PointBasedFunctionPiecewiseLinearFunction

Point

constitutedBy

next

constitutedBy

-

OIO:InformationObject

AttributeValue

valuation policyValue

IdentifierValue

patternIdentifer

ParameterValue

patternParameter1

patternParameterN

...

DOLCE:Region UtilityValue

Figure 6.2: Representation of value functions. For the reader’s convenience, we
define DL axioms informally via UML class diagrams, where UML classes corre-
spond to OWL concepts, UML associations to object properties, UML inheritance to
subconcept-relations and UML objects to OWL individuals [BVEL04].

6.2.1 Valuation Functions

As discussed in Section 5.1, utility function policies are expressed via functions
V : C→R that map each configuration c ∈ C to a corresponding valuation between
0 and 1 (or −∞), where a valuation of −∞ refers to forbidden alternatives and a
valuation of 1 to the optimal alternative [LEO05].3 We now show how the funda-
mental concepts formalized in DOLCE can be extended to allow expressing utility
functions.

As depicted in Figure 6.2, a Function is a specialization of
OIO:InformationObject which represents abstract information that exists in
time and is realized by some entity [GBCL04]. Currently our framework supports
three ways of defining Functions : (i) Functions can be modeled by specifying sets
of points that explicitly map attribute values to valuations. This is particularly
relevant for nominal attributes. (ii) We allow to extend these points to piecewise
linear value functions, which is important when dealing with continuous attribute
values, such as the response time of a service. (iii) Thirdly, we allow reusing typical
function patterns, which are mapped to predefined, parameterized valuation rules.
Note that such patterns are not restricted to piecewise linear functions since all
mathematical operators provided by the rule language can be used. The different
ways of declarative modeling functions are discussed next in more detail.

domain. In fact, it can be used for a wide range of multi-attribute decision problems, e.g. to define
preferences over agent strategies or penalties in electronic contracts.

3Note that normalization to the range [0,1] is not required. For example, for specifying scoring
and pricing policies a range R

+
0 might be more convenient.

102 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

0

0.2

0.4

0.6

0.8

1

yes no

U
ti

lit
yV

al
u

e

WeatherConsideration

rs

rs

0

0.2

0.4

0.6

0.8

1

cheapest quickest

U
ti

lit
yV

al
u

e

RouteType

rs

rs

Figure 6.3: Example of a point-based value function

Point-based Functions

As depicted in Figure 6.2, PointBasedFunctions are Functions that are constitutedBy
a set of Points (Axiom (A9)). Each Point has a property policyValue referring to an
AttributeValue a ∈ A and a property valuation that assigns exactly one UtilityValue
to this attribute value (Axiom (A10)).4 For the reader’s convenience we will often
use the syntax (x,y) to refer to a Point instance with policyValue x and valuation y.
An AttributeValue is a specialization of DOLCE:Region that defines which attribute
values a certain attribute may adopt (Axiom (A11)). It thus corresponds to the set
A in the abstract model. For example, the attribute WeatherConsideration in the
route planning example (Example 4.3) requires the DOLCE:Region WeatherConsid-
erationValue containing the elements “yes” and “no”. Similarly, the DOLCE:Region
UtilityValue comprises the range [0,1] and−∞. The following axioms formally cap-
ture these relations:

PointBasedFunction ⊑Function ⊓ ∃constitutedBy.Point(A9)
Point⊑ =1 policyValue.AttributeValue ⊓(A10)

=1 valuation.UtilityValue
AttributeValue ⊑DOLCE:Region(A11)

UtilityValue⊑DOLCE:Region(A12)

Example 6.1 In our route planing example, a requester might specify her preferences with
respect to the service attribute WeatherConsideration by a PointBasedFunction, which
is constitutedBy two instances of Point with (“yes”,1) and (“no”,0.2). Thus, the re-
quester would highly prefer weather information to be taken into account, but has some
small use for routes calculated without weather information. Similarly, the preferences for
the attribute RouteType calculation can be defined with Points (“quickest”,1) and cheap-
est (“cheapest”,0.4). These mappings are illustrated in Figure 6.3.

In order to evaluate this function, additional axioms are required that more
closely define the semantics of the concepts PointBasedFunction and Point as well

4Note that in case we have dependent attributes and thus complex value functions
vj∗(xk, . . . , xl) (cf. Section 5.1) each Point might have several policyValue relations,
i.e. policyValuek, . . . ,policyValuel .

6.2 Core Policy Ontology (CPO) 103

as their relations. Rule (R2) below defines how the UtilityValue v of a Attribute-
Value x can be determined based on the specification of the PointBasedFunction f .
For this purpose, we iterate over all Points constituting the function and compare
their property policyValue to the desired attribute value x.

degree(f , x,v)← PointBasedFunction(f),constitutedBy(f , p),(R2)
policyValue(p, pv),match(x, pv),valuation(p,v)

The comparison of attribute values is realized by the match -predicate. This pred-
icate has to be customizable since the way attributes are compared depends on the
domain of interest, i.e. on the concrete attribute. In order to keep Rule (R2) appli-
cable for all attributes, we specify this in a separate matching rule. For example,
considering the attribute WeatherConsideration, for matching the attribute values a
simple string matching predicate as provided with the built-in swrlb:equal is suffi-
cient. Rule (R3) illustrates this by defining the matching rule for the attribute Weath-
erConsideration.

match(x,y)←WeatherConsiderationValue(x),(R3)
WeatherConsiderationValue(y),swrlb:equal(x,y)

Unfortunately, in many cases attribute values have to be described in a more
complex way beyond simple strings or numbers, e.g. to express subclass relations
between attribute values. In such cases, it might be required to model attribute
values as concepts in OWL. Since in our ontology they are modeled as individuals,
a meta-modeling approach is required where a URI can be treated as concept as well
as instance.5 This allows us to specify preferences on a more abstract level and thus
avoids enumerating all possible attribute values.

Example 6.2 Consider an attribute IndicatedAttraction that specifies which types of at-
tractions along the route can be suggested by a certain service. In this case, the corresponding
value space IndicatedAttractionValue might comprise the alternatives CulturalAttrac-
tion, HistoricSite, Museum and Castle which are all related to each other. In particular,
CulturalAttraction can be seen as a class containing all other values. HistoricSite, in
turn, comprises Castles but not Museums. Consequently, a scoring function mapping
HistoricSites to a valuation of 0.8 has to assign the same value to information about Cas-
tles along the route (although this might not be specified explicitly). Such a behavior can
be realized by defining a Point that maps the AttributeValue HistoricSite to a Utility-
Value of 0.8 and another Point that maps everything else to 0 using the concept definition
Attraction ⊓ ¬HistoricSite. Similar to the attributes above, we can define a matching
rule for the attribute IndicatedAttraction by replacing the built-in implementing string
matching with the built-in subsumes that features DL subsumption checking between two
concepts.

5Although such an approach is outside of the ontology formalism at hand and part of OWL-Full,
many reasoners such as KAON2 can handle meta-modeling to some extent [Mot05].

104 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

match(x,y)←IndicatedAttractionValue(x), IndicatedAttractionValue(y),(R4)
subsumes(y, x)

Beyond subsumption several other notions of matching description logic con-
cepts have been proposed in literature (e.g. [LH03, NSDM03, GMP04, BK06a]). We
support these different notions of match by providing a flexible framework that can
be customized via declarative matching rules.

Piecewise Linear Functions

In order to support defining Functions also on continuous properties, we introduce
PiecewiseLinearFunctions as shown in Figure 6.2. Continuous attributes exhibit a
natural ordering between the attribute values A which can be utilized for specifying
the function. We utilize the property next which connects two Points with adjacent
attribute values in order to interpret Points as continuous functions. A Piecewise-
LinearFunction is defined by at least two points. This is captured by the following
axiom:

PiecewiseLinearFunction⊑ Function ⊓ ≥2 constitutedBy.Point(A13)

Such adjacent Points can be connected by straight lines forming a piecewise
linear value function as depicted in Figure 6.4. For every line between the Points
(x1,y1) and (x2,y2) as well as a given AttributeValue x, we calculate the valuation υ
as follows.

υ =

{
y2−y1
x2−x1

(x− x1) + y1, if x1 ≤ x < x2

0, otherwise

This equation is formalized by a predicate cal(v, x, x1,y1, x2,y2). This predicate
can be realized either directly by means of a built-in or by exploiting the math as
well as the comparison built-in predicates provided by the rule language.6

Using this predicate, Rule (R5) defines the valuation of a certain attribute value x
(as Rule R2 does for PointBasedFunctions). The rule makes sure that only adjacent
Points are considered in the calculation.7

6Although predicates with arity higher than two cannot be modeled with the formalism at hand
directly, many reasoning tools support them. Moreover, techniques for reifying higher arity predi-
cates are well known [HSTT00].

7For the readers convenience, throughout the work we avoid repetition of predicates by us-
ing the

∧
-operator. For example, the term ‘

∧

i∈{1,2}(policyValue(pi, pvi))’ is written instead of
‘policyValue(p1, pv1), policyValue(p2, pv2)’.

6.2 Core Policy Ontology (CPO) 105

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

U
ti

lit
yV

al
u

e
Response Time in sec.

rs

rs

rs

rs

Figure 6.4: Example of a piecewise linear value function

degree(f , x,v)←PiecewiseLinearFunction(f),(R5)
∧

i∈{1,2}

(constitutedBy(f , pi),policyValue(pi , pvi),

valuation(pi,vi)),next(p1, p2),swrlb:lessThan(x, p2)

swrlb:greaterThanOrEqual(x, p1),cal(v, x, pv1,v1, pv2,v2)

Example 6.3 As an example, let us assume that the Function for the attribute Response
Time of the route planing service is given by a PiecewiseLinearFunction with the
Points (0,1), (10,0.8), (30,0.3), (60,0) as depicted in Figure 6.4. Now, we can easily
find out which UtilityValue v a certain AttributeValue x is assigned to. The predicate
calv(v, x, x1,y1, x2,y2) is true iff the policyValue x is between two adjacent Points (x1,y1)
and (x2,y2) and the UtilityValue of x equals v. For instance, for a Response Time of 20
sec. calv evaluates the straight line connecting the adjacent Points (10,0.8) and (30,0.3),
which results in a UtilityValue 0.675.

Pattern-based Functions

Alternatively, value functions for continuous attributes can be modeled by means of
PatternBasedFunctions . This type refers to functions like up1 ,p2(x) = p1ep2x, where
p1 and p2 represent parameters that can be used to adapt the function. In the
Core Policy Ontology, these Functions are specified through parameterized pred-
icates which are identified by patternIdentifiers . A patternIdentifier points to a
DOLCE:Region IdentifierValue that uniquely refers to a specific rule predicate.

PatternBasedFunction ⊑ Function ⊓ =1 patternIdentifier.IdentifierValue(A14)

This predicate is denoted pattern . A patternParameter defines how a specific
parameter of the pattern-predicate has to be set. For allowing an arbitrary number
of parameters in a rule, universal quantification over instances of patternParameter

106 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
U

ti
lit

yV
al

u
e

ResponseTime in sec.

Figure 6.5: Example of a pattern-based valuation function

would be necessary in the body of the rule. Since this is not expressible with the rule
language at hand, the different parameters are modeled as separate properties in
the ontology, viz. patternParameter1,. . . , patternParameterN. Although this restricts
the modeling approach as the maximal number of parameters has to be fixed at
ontology design time, for most applications this is sufficient and we believe that
keeping the logic decidable justifies this limitation.

As shown in the example below (Rule (R6)), each pattern is identified by a hard-
coded internal string. This is required to specify, which pattern is assigned to a
certain attribute in the ontology. Thus, in order to find out which pattern-predicate
is applicable, the patternIdentifier specified in the policy is handed over to the pred-
icate and then it is compared to the internal identifier. If the two strings are identical,
the predicate is applied to calculate the UtilityValue that is assigned to a Attribute-
Value .

pattern(v, id, x, p1, . . . , pn)←(R6)
String(id),AttributeValue(x),UtilityValue(v),
swrlb:equal(id,“id:exp”),swrlb:multiply(x, t1, p2),
swrlb:pow(t2,“2.70481”, t1),swrlb:multiply(v, p1, t2)

Example 6.4 We again focus on the attribute ResponseTime of the route planning ser-
vice. Assume the preferences for Response Time are given by the exponential function
up1,p2(x) = p1ep2x with the patternParameter p1 = 1.03 and p2 = −0.04 (Figure 6.5).
Rule (R6) formalizes the pattern. The internal identifier in this example is ‘id:exp’. The
corresponding comparison is done by the built-in equal, which is satisfied if the first argu-
ment is the same as the second argument.

SWRL supports a wide range of mathematical built-in predicates (cf. [HPSB+04])
and thus nearly all functions can be supported. As in our example, these functions
are typically parameterized only by a rather small number of parameters. Therefore,
we believe that constraining the number of parameters at ontology design time has
only few practical implications.

Based on the definition of the pattern-predicate, we can calculate the UtilityValue
of an AttributeValue according to a PatternBasedFunction using the following rule.

6.2 Core Policy Ontology (CPO) 107

PolicyDescription

Attribute

Preference

-Weight:float(xsd)

DnS:playedBy isAssignedTo

PolicyTask

DnS:attitudeTowards

Configuration

AttributeValue

Function PolicyObject

DnS:Parameter

OoP:Activity Dolce:Endurant

DnS:playedByDnS:sequences

DnS:SituationDescription

DnS:Situation

DOLCE:
participant

DOLCE:
locatedIn

DnS:requisiteFor

DnS:
requisiteFor

DnS:valuedBy

see Figure 1

DnS:RoleOoP:Task

DOLCE:
locatedIn

Figure 6.6: Policy description framework. To improve the readability we illus-
trate certain relations by plotting UML classes within other UML classes: The
class PolicyDescription has a DnS:defines-relation and the class Configuration a
DnS:settingFor-relation to each contained class.

degree(f , x,v)←PatternBasedFunction(f),patternIdentifier(f , id),(R7)
patternParameter(f , p1), . . . ,patternParameter(f , pn),
pattern(v, id, x, p1, . . . , pn)

Based on the notion of Functions introduced above, we show in the following
how they are used to define and reason about policies.

6.2.2 Modeling Policies and Configurations

As discussed in Chapter 5, we formalize preferences of a user as well as pricing in-
formation of a provider in a functional form by means of utility function policies.
For instance, a price-conscious user might prefer a cheap service although the ser-
vice has a rather slow response time, whereas a time-conscious user might accept
any costs for a fast service. Hence, policies can be seen as different views on a cer-
tain configuration. For modeling such views, we use and specialize the DOLCE
module Descriptions & Situations (DnS) which provides a basic theory of contex-
tualization [GBCL04]. Hence, a certain configuration can be considered as more or
less desirable depending on the scoring policies of a buyer or a configuration can be
priced differently depending on the pricing policies of a seller.

As depicted in Figure 6.6, when using DnS with DOLCE, we distinguish be-
tween DOLCE ground entities that form a DnS:Situation and descriptive entities com-
posed in a DnS:SituationDescription , i.e. the view in which DnS:Situations are in-

108 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

terpreted. We specialize the DnS:SituationDescription to a PolicyDescription that
can be used to evaluate concrete Configurations which are modeled as special kind
of DnS:Situations . This distinction enables us, for example, to talk about products
as roles on an abstract level, i.e. independent from the concrete entities that play the
role. For instance, a certain product configuration can be evaluated in the light of
either a pricing policy of the seller or the preferences of a user depending on the
point of view.

In the following, we describe how such Configurations and PolicyDescriptions
are modeled and then show how the evaluation of policies is carried out.

Configuration

In a first step, we define the ground entities that constitute a DnS:Situation . In our
context, such DnS:Situations reflect multi-attribute descriptions of decision alterna-
tives (e.g. real-world objects or activities). In a concrete DnS:Situation these prod-
ucts have one distinct configuration. Recall that in Section 5.1 we defined the set
of configurations C as the cartesian product of the attributes C = A1 × · · · × An.
Hence, we model Configuration as a subclass of DnS:Situation that exactly defines
one configuration c ∈ C of a product (Axiom (A15)). Since there are various dif-
ferent ways of describing products, a generic approach is used in this work, where
concrete objects and activities are represented by instances of DOLCE:Endurant and
OoP:Activity , respectively. Attributes of DOLCE:Endurants and OoP:Activities are
modeled via the locatedIn property that points to a value range represented by the
DOLCE:Region AttributeValue [GST05].8 This approach is illustrated in the lower
part of Figure 6.6.

The following axioms capture this notion by ensuring that each Configura-
tion comprises at least one multi-attribute object (Axiom (A15)). Axiom (A16)
ensures that each AttributeValue belongs to exactly one DOLCE:Endurant or
OoP:Activity . Moreover, we can define a context for each DOLCE:Perdurant and
DOLCE:Endurant . This is realized by means of the concept ContextRegion (Ax-
iom (A17)) which contains the allowed values for a context dimension δ, i.e. for the
context dimension ‘Location’ ContextRegion might represent a list of countries.

Configuration ⊑DnS:Situation ⊓ ∃DnS:settingFor.(DOLCE:Endurant ⊔(A15)
OoP:Activity) ⊓ ∃DnS:settingFor.AttributeValue

AttributeValue⊑DOLCE:Region ⊓(A16)

=1 DOLCE:locatedIn−.(OoP:Activity ⊔
DOLCE:Endurant)

ContextRegion⊑DOLCE:Region ⊓(A17)

∃DOLCE:locatedIn−.(DOLCE:Endurant ⊔
DOLCE:Perdurant)

8Note that this approach is more general than our abstract model, where a Web service is fully
described by a set of attributes.

6.2 Core Policy Ontology (CPO) 109

Example 6.5 A configurable Web service can be modeled by a combination of
CSO:ComputationalObjects and CSO:ComputationalActivities, which specialize
DOLCE:Endurants and OoP:Activities, respectively [Obe05]. Hereby, specializations
of CSO:ComputationalActivities capture ServiceActivities like RoutePlanningActiv-
ity. Specializations of CSO:ComputationalObjects represent the objects involved in such
a ServiceActivity (e.g. inputs and outputs). A RoutePlanningActivity might have several
DOLCE:Qualities that are located in specializations of AttributeValue such as Weather-
ConsiderationValue, IndicatedAttractionValue, ResponseTimeValue or Availability-
Value. In addition, the RoutePlanningActivity involves a ServiceOutput which special-
izes CSO:ComputationalObject. ServiceOutput is associated to a RouteTypeValue that
defines whether the output is the cheapest or the fastest route.

Policy Description

In a second step, we define views on the ground entities defined in Section
6.2.2. This is realized by specializing the descriptive entities DnS:FunctionalRoles ,
DnS:Courses , DnS:Parameters , and DnS:SituationDescriptions as introduced in Ta-
ble 2.3. Policies are modeled as specialization of DnS:SituationDescription (Axiom
(A18)). They are called PolicyDescriptions and have to DnS:define a PolicyObject9

or PolicyTask that represent the entity on which the policy is defined, e.g. this could
be a certain type of good or a service. Since PolicyObjects and PolicyTasks are mod-
eled as specialization of DnS:FunctionalRoles and OoP:Tasks (Axiom (A19) and Ax-
iom (A20)), policies can be defined on an abstract level without referring to a con-
crete DOLCE:Endurant or OoP:Activity . For instance, policies can be defined for a
certain service category (specialization of OoP:Task) such as route planning services
in general. Then all OoP:Activities that fulfill the task of route planning in a certain
DnS:Situation are evaluated according to the policy. Axiom (A18) formally defines
a PolicyDescription . It ensures that at least one entity is constrained by means of
the DnS:Parameter Attribute . Moreover, each Attribute that is introduced has to
constrain exactly one PolicyObject or PolicyTask which can be realized by means of
the DnS:requisiteFor-relation (Axiom (A21)).

PolicyDescription ⊑DnS:SituationDescription ⊓(A18)
∃DnS:defines.(PolicyObject ⊔ PolicyTask) ⊓

∃DnS:defines.Attribute
PolicyObject ⊑DnS:FunctionalRole ⊓(A19)

DnS:definedBy.PolicyDescription
PolicyTask ⊑OoP:Task⊓DnS:definedBy.PolicyDescription(A20)

Attribute ⊑DnS:Parameter ⊓=1 DnS:requisiteFor.(PolicyObject(A21)
⊔ PolicyTask)

9PolicyObjects can represent entities that are passively or actively involved in a certain OoP:Task .
For example, a PolicyObject could represent a user that actively executes an service invocation as
well as a Web service, which is passively involved in an invocation. Sometimes these two aspects are
distinguished using two separate concepts. For instance in [LEO05, OLG+06], an additional concept
PolicySubject is introduced that refers to the active entities.

110 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

Up to now, a PolicyDescription can be used to define constraints φ ∈ Φ on cer-
tain properties of an entity. This is exactly what we consider as goal policies. A
similar approach is used in [OLG+06] for expressing policies such as access rights.
As discussed in Section 5.1, utility function policies generalize goal policies by ad-
dressing the fact that configurations are preferred to varying degrees depending on
the concrete attribute values. Therefore, some extensions to the basic model are
required. The DnS:FunctionalRole Preference is introduced which assigns Prefer-
ences to an Attribute (via the isAssignedTo-relation). This enables modeling ad-
ditive preference functions. Thus, preference structures on attributes are imposed
by Functions . As discussed in Section 6.2.1, Functions are OIO:InformationObjects .
They play the role of Preferences in a PolicyDescription and define how Attribute-
Values are mapped to UtilityValues (Axiom (A22)). Preferences might be applicable
only in a certain context. That means that a policy defines which Function should
be used for which attribute and in which context. The set of contexts K are cap-
tured by the DnS:FunctionalRole Context , which comprises an instance for each
k ∈ K = δ1 × · · · × δm (Axiom (A24)). The set {δ1, . . . ,δm} is modeled by ContextDi-
mension (Axiom (A25)).

Preference ⊑DnS:FunctionalRole⊓ =1 DnS:playedBy.Function ⊓(A22)
=1 DnS:requisites.Weight⊓ ∀applicableIn.Context

applicableIn⊑DOLCE:part(A23)
Context ⊑DnS:FunctionalRole ⊓(A24)

∃DnS:requisiteFor−.ContextDimension
ContextDimension ⊑DnS:Parameter⊓ ∃DnS:requisiteFor.Context ⊓(A25)

∀DnS:requisiteFor.Context ⊓
∀DnS:valuedBy.ContextRegion

Besides defining Functions , Preferences also define the relative importance of
the given Attribute via the DnS:Parameter Weight and the DOLCE:Region Weight-
Value (omitted in Figure 6.6), which corresponds to factor λ in the abstract model.

Example 6.6 As an example, consider the scoring policy for the property response time of
a Web service. To express this, we introduce in Axiom (A26) a new instance of OoP:Task,
called WebServiceTask . In addition, Axiom (A27) introduces an Attribute Response-
Time that represents a constraint (DnS:requisiteFor) that has to be fulfilled by WebSer-
viceTask (Axiom (A28)). In order to define preferences over all possible attribute values,
ResponseTime is DnS:valuedBy a AttributeValue ResponseTimeValue comprising the
entire value space (e.g. represented by a subclass of DOLCE:Temporal-Region) as spec-
ified in Axioms (A29) and (A30). Moreover, the instance RTPreference of the concept
Preference is assigned to ResponseTime and is played by an instance of a PatternBased-
Function or PiecewiseLinearFunction (Axioms (A32) – (A34)). These Functions map
AttributeValues to UtilityValues as discussed in Section 6.2.1.

OoP:Task(WebServiceTask)(A26)
Attribute(ResponseTime)(A27)

6.2 Core Policy Ontology (CPO) 111

DnS:requisiteFor(ResponseTime,WebServiceTask)(A28)
AttributeValue(ResponseTimeValue)(A29)
DnS:valuedBy(ResponseTime,ResponseTimeValue)(A30)
Preference(RTPreference)(A31)
isAssignedTo(RTPreference,ResponseTime)(A32)
PatternBasedFunction(RTFunction)(A33)
DnS:playedBy(RTPreference,RTFunction)(A34)

After presenting how Configurations as well as PolicyDescriptions are modeled,
we introduce the rules for evaluating concrete Configurations with respect to given
PolicyDescriptions . We show how pricing policies are applied to determine the
price of a configuration or scoring policies to determine the willingness to pay.

Policy Evaluation

With our approach, policies that define Preferences no longer lead only to a pure
boolean statement about the conformity of a Configuration , but rather to a degree
of conformity of the Configuration . Therefore, the original DnS:satisfies-relation be-
tween a DnS:Situation and DnS:SituationDescription is not sufficient any more since
additional information about the degree of conformity has to be captured. However,
since checking for satisfaction can be interpreted as the evaluation of the goal policy
aspect in the PolicyDescription , meeting the constraints in the the goal policy can be
seen as a necessary prequisite. This is captured by the following rule which refines
the DnS:satisfies-relation. The reader familiar with DOLCE will notice that Rule
(R8) largely corresponds to the completely-satisfies relation described in [GST04].
Since the formalism at hand is not expressive enough to capture this relation di-
rectly, we provide a workaround that explicitly enumerates the attributes A1, . . . , An
and checks for classification of an appropriate ground entity, thus implementing
qualified satisfaction (cf. [GST04]). Note that we assume an own AttributeValue con-
cept for each Attribute .

satisfiesPolicy(c, p)← Configuration(c),PolicyDescription(p),(R8)

DnS:satisfies(c, p),
∧

i∈1...,n

(Attributei(ai),

DnS:defines(p, ai),DnS:valuedBy(ai , avi),
DnS:settingFor(c,cvi),match(avi ,cvi))

Ontologically, modeling utility function policies requires putting in relation the
PolicyDescription , a concrete Configuration and an overallDegree that represents
the value to which the latter satisfies the former. For the sake of simplicity and
compact representation, we use predicates of higher arity in the following. If satis-
fiesPolicy does not hold no further evaluation will be necessary and a value of −∞

is assigned by Rule (R9).

overallDegree(c, p,v)←¬satisfiesPolicy(c, p),assign(v,“−∞”)(R9)

112 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

In line with the additive utility model defined in Equation (5.4), we first cal-
culate the valuation for each independent set of attributes individually and then
aggregate the individual valuations to get the overall degree of a configuration. The
local utility values can be calculated by Rules (R2), (R5) and (R7) depending on the
type of function used. The valuation derived from these rules can be interpreted as
the valuation a single attribute contributes to the overall valuation. Note that the
non-additive case is a simplification of this approach, where the local utility value
corresponds to the overall value.

overallDegree(c, p,v)← satisfiesPolicy(c, p),
∧

i=1,...,n

(DnS:defines(p, ai),(R10)

DnS:defines(p, p fi), isAssignedTo(p fi , ai),DnS:valuedBy(ai , avi),
DnS:settingFor(c,cvi),match(avi ,cvi),DnS:playedBy(p fi , fi),
degree(fi,cvi,vi)),sum(v,v1, . . . ,vn)

Rule (R10) is simplified in a sense that predicates for weighting of attributes ac-
cording to their relative importance λi are omitted. However, adding the relevant
terms for executing this calculation using SWRL built-in predicates is straightfor-
ward.

Example 6.7 To illustrate this approach, we assume a customer with the scoring policies
p based on the example Functions defined in Examples 6.1, 6.3, and 6.4. We can query
the knowledge base to compare the overallDegree for Configuration c with respect to the
PolicyDescription p. As an example, we assume a Configuration of a route planning
service, which returns the cheapest route that includes information about historical sites
while considering weather information. Further, a response time of 20 sec. is guaranteed.
Evaluating the (local) degree -predicates for each Attribute leads to a score of 1 for the
Attribute WeatherConsideration, 0.4 for RouteType, 0.8 for IndicatedAttraction and
0.47 for Response Time, respectively. Provided that all Attributes are equally important
this Configuration results in a overallDegree of 0.67.

The policy evaluation rules (R8) - (R10) defined above are all context indepen-
dent, i.e. the context in which PolicyTask are executed is not considered in the eval-
uation. In order to extend our approach to allow context dependent policies, we
introduce the predicate isValidIn(p,c) that is true if a PolicyDescription p should be
applied in a Configuration c.

isValidIn(p,c)←PolicyDescription(p),Configuration(c)(R11)

DnS:defines(p,k),
∧

l=1,...,m

(DnS:requisiteFor(dl ,k)

DnS:valuedBy(dl ,vp),DnS:settingFor(c,vs),
ContextRegion(vs),match(vp,vs))

6.2 Core Policy Ontology (CPO) 113

DnS:SituationDescription

PolicyCollection Policy Description

memberPolicy

memberPolicy

ConjunctivePolicyCollectionDisjunctivePolicyCollection

Figure 6.7: Representation of a PolicyCollection .

Similar to the matching of attribute values, for comparing context dimension
values we also rely on the match -predicate, which can be easily adapted to new
context ontologies. For evaluation of context dependent policies, we simply have to
add the predicate isValidIn to the corresponding evaluation rules (R8) - (R10).

6.2.3 Policy Aggregation

Up to now we focused on scenarios where only one policy was used by a buyer or
seller. However, as discussed in Section 5.1.3, policies can be combined by either a
logical and-operator referring to a conjunction of policies (i.e. the aggregated policy
is admissible if all contained policies are admissible) or a logical or-operator to de-
rive a disjunction of policies (i.e. the aggregated policy is admissible if at least one
contained policy is admissible). Equation 5.6 and 5.7 define the T-norm and T-conorm
to combine policy conjunctions and disjunctions, respectively.

We introduce the modeling primitives required for representing conjunctions
and disjunctions of policies, as shown in Figure 6.7. To be able to evaluate a certain
Configuration with respect to a set of policies, we adapt Rule R10 in a way that it
can be used not only for a single PolicyDescription , but also for a PolicyCollection .
A PolicyCollection is defined as a DnS:SituationDescription that has exactly two
memberPolicy-relations pointing to PolicyDescriptions or PolicyCollections . This
is formalized using the following DL axioms:

PolicyCollection ⊑DnS:SituationDescription⊓(A35)
=1 memberPolicy1.(PolicyDescription
⊔ PolicyCollection)⊓

=1 memberPolicy2.(PolicyDescription
⊔ PolicyCollection)

memberPolicy1 ⊑DnS:expands(A36)
memberPolicy2 ⊑DnS:expands(A37)

114 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

The reason why we restrict a PolicyCollection to exactly two memberPolicy-
relations is the fact that SWRL does not support universal quantification in the rule
body. Hence, we cannot iterate over an arbitrary number of PolicyDescriptions con-
tained in the collection (e.g. the first order logic term ‘∀y.memberPolicy(x,y)’ is not
expressible in SWRL). However, restricting a PolicyCollection to exactly two mem-
berPolicy-relations is in fact no limitation, since an arbitrary number of PolicyCol-
lections with two memberPolicy-relations can be nested. This has the same effect as
multiple memberPolicy-relations within one PolicyCollection .

In order to define a relation between the members of a PolicyCollection , we intro-
duce two subclasses of PolicyCollection , namely ConjunctivePolicyCollection and
DisjunctivePolicyCollection . Then, for each of these subclasses a rule is introduced
that calculates the overallDegree of the collection based on the overallDegrees of the
elements contained. The following rule does the calculation for a ConjunctivePoli-
cyCollection where the individual elements are connected by a logical and-relation
based on the T-norm defined in Equation (5.6).

overallDegree(c, p,v)← ConjunctivePolicyCollection(p),(R12)
∧

i∈{1,2}

(memberPolicyi(p, pi),overallDegree(c, pi ,vi)),

min(v,v1,v2)

Note that Rule (R12) recursively calculates the overallDegree of the elements
contained in the collection. Rule (R12) will only be used if a ConjunctivePolicyCol-
lection is passed to the overallDegree-predicate. If it refers to a single PolicyDe-
scription , Rule (R10) will be applied as before.

Analogously, we can define the Rule (R13) for DisjunctivePolicyCollections
where the T-conorm (Equation (5.7)) is used to calculate the overallDegree.

overallDegree(c, p,v)← DisjunctivePolicyCollection(p),(R13)
∧

i∈{1,2}

(memberPolicyi(p, pi),overallDegree(c, pi ,vi)),

max(v,v1,v2)

DisjunctivePolicyCollections and ConjunctivePolicyCollections can be nested
within each other provided that the leafs of the emerging tree structure are always
primitive PolicyDescriptions .

6.3 Core Ontology of Bids (COB)

After having introduced a policy ontology for specifying valuation functions over
multi-attribute objects or activities, we show how such policies are used for effi-
ciently attaching price information to Web services in the following. As introduced
in Chapter 5, a statement that captures such information is called a bid. It repre-

6.3 Core Ontology of Bids (COB) 115

Ontology entity DOLCE alignment Abstract model

TradeSituation DnS:Situation T

Issuer DnS:FunctionalRole I ∪ J

Offer DnS:SituationDescription O

Request DnS:SituationDescription R

PriceValue DOLCE:Region R

Price DnS:Parameter {π ∈ R|∃C : (C,π) ∈ T}

price DnS:satisfies {(b, t,π) ∈ B× T ×R|∃c ∈ C,U :

t = (c,π) ∧ b = (C,U) ∧U(c) = π}

AtomicBid DnS:SituationDescription BA

ANDBid DnS:SituationDescription B∧

XORBid DnS:SituationDescription B⊕

BundleBid DnS:SituationDescription B

satisfiesBid DnS:satisfies {(b, t) ∈ B× T′}

Table 6.2: Correspondence of Core Ontology of Bids and the Abstract Market Model.
A row in the table with the ontology entity φ, the DOLCE concept ψ and a set of the
abstract model E should be understood as follows: φ ⊑ ψ and there exists an inter-
pretation I such that φI = E holds.

sents a set of trades that are acceptable to a requester or provider. For modeling
bids we apply the pattern Descriptions & Situations again. In line with the structure
of the previous section, we first define how to specify trades as DnS:Situations in
Section 6.3.1. A trade captures one possible transaction in the market and defines
exactly the objects and services to be exchanged and their concrete configuration.
Based on this definition, we introduce the specification of Bids , which can be seen
as DnS:SituationDescriptions that provide views on the set of trades (Section 6.3.2).
Finally in Section 6.3.3, a method for evaluating bids is presented. The correspon-
dence between abstract model and the ontology introduced in the following is illus-
trated in Table 6.2.

6.3.1 Specification of Trades

As defined in Section 5.2, a (bilateral) trade tij = (c,π) is a potential transaction be-
tween two parties i and j where agent i buys a concrete configuration c of an object or
service from agent j for a certain amount of money π. We model this by introducing
a special DnS:Situation called TradeSituation which extends the CPO:Configuration
(Axiom (A40)). Trades might contain two classes of products: the class of Goods
as specialization of DOLCE:Endurant and the class Service as specialization of
OoP:Activity (Axiom (A38) and (A39)). Since these Services or Goods are multi-
attributive they have to refer to a CPO:Configuration that defines the values of the
different properties of these products. A concrete TradeSituation should refer to ex-
actly one CPO:Configuration and could specify the corresponding price π which is

116 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

Request_Annika : AtomicBid

RoutePlanning : TradingTask

DnS:defines

DnS:defines

RouteServicePolicy : CPO:PolicyDescription

definesPolicy

$2:PriceValue

PriceLimit : Price

John'sService : RouteService

DnS:sequences

Conf1 : CPO:Configuration

DnS:
settingFor

DnS:
requisiteFor

DnS:defines

DnS:settingFor

DOLCE:
locatedIn

DOLCE:properPart

John'sTrade : TradeSituation

DnS:
settingFor

John : DnS:Agent
DnS:settingFor

DOLCE:
participateIn

RouteRequester : IssuerDnS:defines

Annika : DnS:Agent

DnS:playedBy

$3:PriceValue

DnS:valuedBy

?

TradeSituation

AtomicBid

Figure 6.8: Example for a TradeSituation and AtomicBid . The parts of the diagram
are successively introduced in Sections 6.3.1–6.3.3.

modeled via the DOLCE:Region PriceValue (Axiom (A41)). Moreover, at least one
DnS:Agent has to be part of the TradeSituation (Axiom (A40)). Note that this for-
malization does not require to specify both participants – i and j – of a trade, since
this information is usually not needed in the bid evaluation process.

Service ⊑OoP:Activity ⊓ ∃DnS:definedBy.CPO:Configuration(A38)
Good⊑DOLCE:Endurant⊓ ∃DnS:definedBy.CPO:Configuration(A39)

TradeSituation ⊑DnS:Situation ⊓ ∃DnS:settingFor.(Service ⊔(A40)
Good)⊓ =1 DOLCE:part.CPO:Configuration ⊓
=1 DnS:settingFor.PriceValue ⊓
∃DnS:settingFor.DnS:Agent ⊓
≤2 DnS:settingFor.DnS:Agent

PriceValue⊑DOLCE:Region(A41)

The lower part of Figure 6.8 illustrates the specification of a TradeSituation–
called John’sTrade – by means of an example: John provides the route planning
service John’sService to a price of $2 per invocation. Moreover, John provides a cer-
tain configuration Conf1. The specification of Conf1 is omitted in Figure 6.8, since
an example for modeling Configurations is already given in Section 6.2. Since the
price is explicitly modeled as a property of the service, for each additional configu-
ration John wants to provide, a new TradeSituation instance has to be introduced.
Therefore, enumeration based approaches are only feasible for very low number of

6.3 Core Ontology of Bids (COB) 117

configurations.10 In order to avoid such enumerations, the concept of Bid is pre-
sented in the following section.

6.3.2 Specification of Bids

Not all trades T that are possible in a market are favorable for an agent. Accord-
ing to Engel et al. [EWL06], a bid expresses the willingness to participate in trades.
We thus model a bid as DnS:SituationDescription that DnS:classifies exactly those
TradeSituations T′ ⊆ T in which the Issuer of a bid is willing to participate. In such
BidDescriptions Goods and Services of a concrete TradeSituation play the role of
TradingObjects and TradingTask , respectively. In order to implement matching in a
market, one has to define what entities can be DnS:classifiedBy a TradingObject or
TradingTask , e.g. that a RoutePlanningTask DnS:sequences only RoutePlanningSer-
vices. Moreover, the description defines a DnS:Parameter Price that constrains these
TradingObjects and TradingTasks . This Price can be defined explicitly for each ser-
vice configuration or implicitly by means of CPO:PolicyDescriptions as introduced
in Section 6.2.2. In the Core Ontology of Bids, we reuse the same idea by introducing
the concept AtomicBid as follows:

AtomicBid⊑DnS:SituationDescription ⊓(A42)
∃DnS:defines.(TradingObject ⊔ TradingTask) ⊓

=1 DnS:defines.Price ⊓
∀CPO:definesPolicy.(CPO:PolicyDescription ⊓
CPO:PolicyCollection)

definesPolicy⊑DnS:expandedBy(A43)
TradingObject ⊑CPO:PolicyObject ⊓ ∃DnS:playedBy.DOLCE:Endurant(A44)

TradingTask⊑CPO:PolicyTask ⊓ ∃DnS:sequences.DOLCE:Perdurant(A45)
Price ⊑DnS:Parameter ⊓=1 DnS:requisiteFor.(TradingObject ⊔(A46)

TradingTask) ⊓ ∀DnS:valuedBy.PriceValue
Issuer⊑DnS:FunctionalRole ⊓ ∃DnS:playedBy.DnS:Agent(A47)

According to Axiom (A48), a Price could represent a maximal price (MaxPrice)
or a minimal price (MinPrice). As formalized in Axiom (A49) and (A50), we de-
note an AtomicBid with minimal price as Offer (Definition 5.4) and an AtomicBid
with maximal price as Request (Definition 5.5). That means Offers classify Trade-
Situations where the property PriceValue is above a certain threshold defined via a
pricing policy, and thus they implement T′j = {(c,π) ∈ Tj|π ≥UP

j (c)}. Analogously,
Requests classify TradeSituations where PriceValue is below a threshold defined by
a scoring policy, i.e. T′i = {(c,π) ∈ Ti|π ≤US

i (c,k)}.

10In addition, this approach is imprecise from an ontological point of view, since a price is not
an inherent quality of a product that can be observed, but might depend on the context and other
factors.

118 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

Price ⊒MinPrice ⊔MaxPrice(A48)
Offer⊑AtomicBid ⊓ ∃DnS:defines.MinPrice(A49)

Request⊑AtomicBid ⊓ ∃DnS:defines.MaxPrice(A50)

Some market mechanisms support more complex bid specifications beyond the
simple case of AtomicBids . In Section 5.2, combinatorial bids that enable expressing
superadditive as well as subadditive prices for a bundle of products have been intro-
duced. Superadditivity is modeled by introducing ANDBids and subadditivity by
means of XORBids . ORBids are not necessarily required in terms of expressivity,11

but in many cases enable more compact bids representation. Intuitively, ANDBids
are bids on several products where one would like to have all of them or none. In
case of XORBids , exactly one product should be allocated, whereas ORBids corre-
spond to a set of independent bids. As formalized in Axiom (A53), (A54) and (A53),
ANDBids , XORBids and ORBids are specialization of BundleBid which are all Bids
that consist of exactly two other Bids (Axiom (A51)). A Bid represents the super-
concept of AtomicBids and BundleBids. While ANDBids have to contain a Price
attached to each bundle, no Prices can be attached to XORBids and ORBids , since
in this context only the Prices of the AtomicBids are relevant. Note that since each
BundleBid has to contain exactly two Bids , all BundleBids have to terminate solely
with AtomicBids in a consistent knowledge base (possibly after an arbitrary number
of nested BundleBids). The axioms below formalize combinatorial bids.

BundleBid⊑DnS:SituationDescription ⊓ =2 consistsOf.Bid(A51)
consistsOf ⊑DnS:expandedBy(A52)

ANDBid⊑BundleBid ⊓ =1 andRelated1.(AtomicBid ⊔ANDBid) ⊓(A53)
=1 andRelated2.(AtomicBid ⊔ANDBid) ⊓

∃DnS:defines.Price ⊓
∀definesPolicy.(CPO:PolicyDescription ⊓
CPO:PolicyCollection)

XORBid⊑BundleBid ⊓ =1 xorRelated1.Bid ⊓ =1 xorRelated2.Bid(A54)
ORBid⊑BundleBid ⊓ =1 orRelated1.Bid ⊓ =1 orRelated2.Bid(A55)

Bid≡AtomicBid ⊔ BundleBid(A56)

The relations andRelated1 and andRelated2 as well as xorRelated1 and xorRe-
lated2 are all modeled as subproperties of consistsOf . As done in Section 6.2.3 for
the concept PolicyCollection , we fix the number of Bids in a BundleBid by explicitly
introducing two consistsOf -relations. This technique allows us to avoid universal
quantification in rule bodies which is not supported by our rule language. Due to
the fact that bundles can be nested, an arbitrary number of AtomicBids can be com-
bined.

11Recall that all possible valuations can be represented by XOR-bids [Nis00, Prop. 3.2].

6.3 Core Ontology of Bids (COB) 119

A simple AtomicBid is exemplified in the upper part of Figure 6.8. Annika
needs a service for a route planning task. Therefore, she instantiates AtomicBid and
DnS:defines a TradingTask called RoutePlanning. Her willingness to pay is spec-
ified implicitly via her policy RouteServicePolicy. That means the DnS:Parameter
Price is DnS:valuedBy a PriceValue that has to be calculated with respect to a con-
crete TradeSituation . This evaluation of a bid is discussed in Section 6.3.3.

6.3.3 Bid evaluation

Bids are DnS:SituationDescriptions that select TradeSituations that fulfill the spec-
ified requirements. Requirements are expressed via PolicyDescriptions . Therefore,
evaluation of Bids can be largely reduced to policy evaluation. Rule (R14) deter-
mines the PriceValue p of a AtomicBid b with respect to a concrete TradeSituation t
using the predicate overallDegree which has been introduced in Section 6.2.2. Since
in the case goal policies are violated the overallDegree-predicate is evaluated to−∞,
we need to distinguish two cases: If the Bid represents a Request , a score of ‘−∞’
is correct as this leads to a final rejection (Axiom (R14)). If we deal with an Offer , a
price of −∞ is obviously not what we want to express. We rather want to express
a price of ∞ in order to make sure that a certain TradeSituation is not acceptable
(Axiom (R15) and (R16)).

price(b,t, p)← Request(b),CPO:PolicyDescription(d),(R14)
definesPolicy(b,d),TradeSituation(t),DnS:settingFor(t,c),
CPO:Configuration(c),overallDegree(c,d, p)

price(b,t, p)← Offer(b),CPO:PolicyDescription(d),(R15)
definesPolicy(b,d),TradeSituation(t),DnS:settingFor(t,c),
CPO:Configuration(c),overallDegree(c,d, p),

swrlb:notEqual(p,“−∞′′)

price(b,t, p)← Offer(b),CPO:PolicyDescription(d),(R16)
definesPolicy(b,d),TradeSituation(t),DnS:settingFor(t,c),
CPO:Configuration(c),overallDegree(c,d,r),

swrlb:equal(pr,“−∞′′),assign(p,“∞′′)

For BundleBids, we apply Rule (R14) for each AtomicBid contained in the bun-
dle. In case of XORBids only one Bid in the bundle has to be fulfilled. We thus
evaluate the TradeSituation with each contained Bid separately and then determine
the price of the AtomicBid that is most suitable. Rule (R17) captures this in a recur-
sive manner.

price(b,t, p)← XORBid(b),xorRelated1(b,b1),price(b1, t, p1),(R17)
xorRelated2(b,b2),price(b2, t, p2),swrlb:max(p, p1, p2)

120 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

Similarly, we define the evaluation rule for ORBids . In Definition 5.7 the price of
an OR-bid is defined as the sum of the contained Bids .

price(b,t, p)← ORBid(b),orRelated1(b,b1),price(b1, t, p1),(R18)
orRelated2(b,b2),price(b2, t, p2),swrlb:add(p, p1, p2)

For calculating the price of an ANDBid only policies attached to the ANDBid
itself are considered. This is realized by adapting Rule (R14) as follows:

price(b,t, p)← ANDBid(b),CPO:PolicyDescription(d),(R19)
definesPolicy(b,d),TradeSituation(t),DnS:settingFor(t,c),
CPO:Configuration(c),overallDegree(c,d, p)

After introducing the calculation of a bid’s PriceValue , we can define the satis-
fiesBid -relation that determines if a certain TradeSituation is acceptable according to
a Bid . For the case where Services are traded, the following rule checks whether the
right service is provided in the TradeSituation and whether the price is in an accept-
able range (which is defined by the policy). For comparing the TradingTask , we use
the built-in subsumes, which has already been used in Rule (R4). Thereby, we make
sure that the provided Service fulfills the same purpose as the Service sequenced by
the TradingTask . As already discussed in Section 6.2.1, a meta-modeling approach
is required where Services are seen as concepts as well as individuals. Moreover,
due to price monotonicity requests also include trades with prices that are cheaper
as desired and offers include trades with a higher price. Rules (R20)-(R21) ensure
that the TradeSituation provides the right TradingTask and the price is in a valid
range.

satisfiesBid(b, t)← Request(b),TradeSituation(t),DnS:defines(b,o),(R20)
TradingTask(o),DnS:sequences(o, e),Service(e),
DnS:settingFor(t,d),Service(d),subsumes(d, e),
price(b, t, pb),MaxPrice(pb),DnS:settingFor(t, pt),
swrlb:lessThanOrEqual(pt,pb)

satisfiesBid(b, t)← Offer(b),TradeSituation(t),DnS:defines(b,o),(R21)
TradingTask(o),DnS:sequences(o, e),Service(e),
DnS:settingFor(t,d),Service(d),subsumes(d, e),
price(b, t, pb),MinPrice(pb),DnS:settingFor(t, pt),
swrlb:greaterThanOrEqual(pt,pb)

To illustrate this approach, we come back to the example in Figure 6.8.

6.4 Core Contract Ontology (CCO) 121

Example 6.8 We are interested if the TradeSituation John’sTrade illustrated in Figure
6.8 is relevant for Annika’s bid (Request_Annika). In order to determine the maximal
price Annika is willing to pay for the Configuration Conf1 provided by John, we use
Rule (R14). Assume the result of this evaluation step is a MaxPrice of $3. For checking
if John provides the right service, we assume the following definition: RoutePlanning ⊑
OoP:Task ⊓ ∀DnS:sequences.RouteService. Since John provides exactly this type of ser-
vice for $2, the subsumes-predicate as well as the swrlb:lessThanOrEqual-predicate in
Rule (R20) evaluate to true and the TradeSituation satisfies the Bid.

How the Core Ontology of Bids can be used in the contracting process is outlined
in Section 7.1.

6.4 Core Contract Ontology (CCO)

As outlined in Section 2.1.2, the concept of service customization enables the same
service to be offered at different service levels for different prices. Usually a spec-
ification of the service levels agreed upon is called a service level agreement (SLA)
[LKD+03]. According to Definition 5.9, we call a legally binding specification of
such service level agreements together with additional obligations that result from
the contracting process (such as paying a certain price as compensation) a Web ser-
vice contract [HF05]. This corresponds to the definition given by Reinecke [RDS89],
where “a contract is a legally enforceable agreement, in which two or more parties
commit to certain obligations in return for certain rights.”

Due to the cross-organizational and collaborative nature of business processes,
which are supported by today’s service-oriented architectures, contracts have be-
come a key governance mechanism regulating business interactions. In spite of
their importance, today’s enterprises still treat contracts merely as paper documents
regulating the case where something goes wrong and without linking them to the
cross-organizational interactions that they govern. Dealing with contract manage-
ment task such as contract execution and monitoring is very cumbersome, time-
consuming, inefficient and thus expensive. Therefore, a more holistic approach to
contract handling is required that supports the following features [MG05]:

• formal contract languages that provide open, transparent and up-to-date in-
formation about contract data and the status of a contract;

• mechanisms that use information from contracts as a basis for monitoring of
contract compliance and subsequent notifications and enforcement measures;

• mechanisms and tools that support management of the entire contract life cy-
cle, including contract formation, contract execution and contract monitoring;

• tools that support personnel in meeting their obligations that arise from the
contract.

That means, formal representation of contracts is crucial for enabling more ef-
ficient contract management. In a service-oriented architecture, a formalized Web
service contract can be directly used to govern the business interactions executed
via Web service invocations. As specified in Requirements (R7) and (R11), Web ser-
vice contracts have to be found automatically and have to be legally reliable. This

122 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

requires, on the one hand, a formal machine-interpretable language that enables au-
tomated contract formation, execution and compliance checking; and on the other
hand, the expressivity to specify all legally required clauses. This ensures that any
violation of pre-agreed service levels results in a penalty for the party that is respon-
sible for the violation.

Over the last decades a lot of work has been devoted to the formalization of con-
tracts and legal norms in general – mainly in the areas Artificial Intelligence, Com-
puter Science and Philosophical Logic [DS97]. However, up to now formalization of
legal contracts has been restricted either to relatively simple contractual clauses ex-
pressed via a standard syntax [Mil95, GBW+98, CM01, GP03, AG03, Glo06, Gov05]
which lack standardized declarative semantics required to ensure interoperabil-
ity, or they rely on very complex logical formalism [Hag96, TT98, Ser01] which
are not computational tractable (Requirement (R10)) or lack any support for inter-
organizational interactions (Requirement (R6)). Since the trade-off between expres-
sivity and tractability cannot be easily resolved, we focus on semi-automated ap-
proach where a natural language umbrella contract is manually closed with differ-
ent service providers and only some of the terms are fully formalized. In fact, to
meet Requirement (R7) only obligations that have to be dynamically settled dur-
ing the contracting process or that should be monitored automatically after contract
execution have to be formalized. This eases the formalization task and allows the
usage of more simple, computationally tractable logical formalisms.

In this section, we propose the use of ontology languages for formally represent-
ing Web service contracts. As already outlined in Section 2.4 and 6.2, ontologies
come with a logical calculus that enables representing information in a formal and
standardized way. Thereby, ontologies provide interoperability (Requirement (R6)),
flexibility (Requirement (R8)) and extensive tool support. These advantages carry
over to contract specification and management. By providing an open, transparent
and interoperable view on contractual data, ontology-based contract representation
enables a tight integration of up-to-date contractual information with the collab-
orative business interactions they govern. This means, the machine-interpretable
contractual information can be easily accessed by contracting and contract monitor-
ing tools, and it can be easily shared with business partners. In addition, standard
tools supporting the logical formalisms of the ontology can be used to perform so-
phisticated contract monitoring that involves logical inferencing.

The different parts of the Core Contract Ontology are introduced in this section
as follows: In Section 6.4.1, the idea of a semi-automated approach to contracting
and contract monitoring is presented. In this context, an informal umbrella contract
is closed, which constitutes the environment that enables automated contracting of
formal individual contracts on a per-invocation-basis. The formalization of these in-
dividual contracts as specializations of DnS:SituationDescriptions is then presented
in Section 6.4.2. In order to support the settlement phase, Web service monitoring
information has to be formally represented. How this can be realized by means of
a DnS:Situation is outlined in Section 6.4.3. Finally, in Section 6.4.4 modeling prim-
itives for evaluating contracts are presented. This requires knowledge how specific
contractual clauses have to be interpreted. Since this knowledge is usually available
only as tacit knowledge of legally educated persons, it also has to be externalized
into a machine readable and executable form.

6.4 Core Contract Ontology (CCO) 123

6.4.1 Semi-Automated Contracting and Monitoring

Full automation of the contracting lifecycle has so far been investigated only for very
simple contracts. Semi-automated contracting can be seen as an approach, in which
a contract is composed of two separate parts: an umbrella agreement which is directly
negotiated by human beings and an individual contract automatically negotiated and
closed by software agents.

Umbrella Contract

The umbrella agreement is presently necessary to define the legal conditions under
which software agents can enter into binding agreements as not all jurisdictions ac-
knowledge negotiating and contracting by software agents. The service requestors
agree on an umbrella agreement with several Web service providers. The umbrella
agreement will therefore define the framework for several software agents to ne-
gotiate the individual contracts. The umbrella agreement regulates the following
issues:

• the beginning of the contractual relations between all parties, how long the
umbrella agreement is valid and how and when it can be terminated;

• the types of Web services to be negotiated;

• the timeframe for negotiations (preferably 24/7);

• auxiliary duties of the parties such as maintenance or the obligation to treat
customer information confidentially;

These clauses form the continuous contractual relations between the parties and
span more than one Web service invocation. In particular, they are not customizable
and not negotiable. Often each umbrella contract closed by a requester with dif-
ferent providers contains the same clauses. Differentiation between the providers
is realized in the individual contract, which captures content such as price, license
type, payment terms, response time guarantees, etc.

Individual Contract

In an individual contract most aspects are customizable. Requests and offers speci-
fied during the contracting phase can be seen as contract templates, where for each
attribute several values are possible. Formally, offers O and requests R define the
sets of acceptable trades T′j and T′i (see Definition 5.4 and 5.5), which correspond to
contract templates. In the matching and allocation phase, one value has to be chosen
for each attribute and a contract can be concluded. That means a trade t ∈ Ti ∩ Tj
acceptable to both parties has to be chosen. The configuration identified in the trade
t = (c,π) is then used in the contract formation process that generates the appropri-
ate provider and customer obligations of the contract.

In the following, we illustrate the general content of an individual contract for
a typical information service, such as a route planning service or credit information
service. In this context, we discuss for different content categories whether certain
clauses should be in the individual contract.

124 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

Scope of Agreement (§1). Although the general type of trading object might be de-
fined in the umbrella agreement, it is important that the agents have some
flexibility to find agreements. For example, let an umbrella agreement define
the scope of the agreement as Web services providing ‘Credit Information’ or
‘Route Information’. Then in the individual contract the exact type of informa-
tion (e.g. ‘Business Background Information’ or ‘German Route Information’)
can be automatically determined in the matching process.

Provider Obligation (§2). In this category obligations of the provider are defined
that can be customized for each invocation of the service. This is thus the
main category where service level agreements are contained. For example,
it is usually price relevant how old the credit or route information is. The
software agents might therefore negotiate the update periods of the provided
information. Of course, also other quality of service guarantees, such as max-
imal response time or the period in which errors have to be corrected, can be
specified here.

Use of Information (§3). The individual contract will specify how the customer
may use the information. This category may also involve obligations that
restrict the use of information. For example, a contract clause specifying
such use may grant a transferable license to use the information or a non-
transferable license and define further to what extent the customer may use
the credit information within its company or towards third parties.

Warranties and Liabilities (§4). Since warranties and liabilities directly influence
the costs of a provider, they are highly price relevant. We let the software
agents negotiate about the warranty level but not about the legal obligations
resulting from a breach of warranty. The legal complexity, including the re-
strictions by law to contract out certain statutory warranties and liabilities,
does not allow full automation at present. For example when customizing
warranty levels following scheme can be applied: (1) The service provider
does not give any warranty as to the accuracy of the information. (2) The ser-
vice provider does not warrant the accuracy of the information, but warrants
that it has put the information together with utmost care and state-of-the-art-
methods. (3) The service provider guarantees that the information is 100%
correct.

Delivery Time (§5). The delivery of the information can be automatically cus-
tomized in a way that the service has to be provided immediately after the
individual contract is concluded or at a later, negotiated time. The legal con-
sequences of non- or late delivery however are set forth in the umbrella agree-
ment.

Prices and Payment Terms (§6). Finally, the prices and payment terms have to be
specified, which can be mostly seen as customer obligations. While the parties
define the details of invoicing in the umbrella agreement, some parameters,
such as price for the individual Web service or the due date of the payment,
can be dynamically fixed.

After closing a contract, in the settlement phase the participants monitor whether
the contractual duties are fulfilled. However, full automation of the monitoring

6.4 Core Contract Ontology (CCO) 125

Ontology entity DOLCE alignment Abstract model

ContractDescription DnS:SituationDescription Γ

Obligation DnS:SituationDescription γ

ContractParty DnS:FunctionalRole I ∪ J

Customer DnS:FunctionalRole I

CustomerObligation DnS:SituationDescription {γ ∈ Γ|γ = (i, GΦ) ∧ i ∈ I}

Provider DnS:FunctionalRole J

ProviderObligation DnS:SituationDescription {γ ∈ Γ|γ = (j, GΦ) ∧ j ∈ J}

satisfiesContract DnS:satisfies {(c,Γ)|̺(Γ, c) = 1}

Table 6.3: Correspondence of Core Contract Ontology and Abstract Contract Model.
A row in the table with the ontology entity φ, the DOLCE concept ψ and a set of the ab-
stract model E should be understood as follows: φ⊑ ψ and there is an interpretation
I such that φI = E holds.

step is impossible since assessing the quality of a Web service can only be done
by taking external and not quantifiable factors into account. Nevertheless, some
aspects can be monitored by the system automatically. For instance, it can be assured
that a contracted service is provided at all and in the negotiated timeframe. For this
purpose, all clauses that are relevant to evaluate whether the contract is met also
have to be represented formally (even if they are not customizable).

6.4.2 Contract Representation

In this section, we show how contract information can be represented by reusing
the Core Policy Ontology. In doing so, goal policies are used to represent obliga-
tions and permissions in a contract. The correspondence between the abstract model
introduced in Section 5.3.3 and the Core Contract Ontology is illustrated by Table
6.3. After introducing this general contract ontology, we exemplify their usage by
modeling the content of the individual contract identified in Section 6.4.1.

General Contract Ontology

As defined above, a contract can be seen as a set of obligations and rights that
are binding for all parties. In the case of Web services we restrict ourselves
to contracts between exactly two parties, namely Provider and Customer. We
model this by introducing a ContractDescription as a DnS:SituationDescription
containing only Obligations and Permissions (Axiom (A57)). Obligations and
Permissions are CPO:PolicyDescriptions that represents obligations and permis-
sion for ContractParties . An Obligation is a CPO:PolicyDescription where the
DnS:attitudeTowards-relation is refined to DnS:obligedTo (Rule (R22)) and a Per-
mission a CPO:PolicyDescription where it is refined to DnS:rightTo (Rule (R23)). A
ContractParty is an active PolicyObject that is played by DnS:Agents . This can be
formalized using the following axioms and rules:

126 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

Customer Obligation

Provider Obligation

DnS:
obligedTo

Provider ServiceTask

Customer CompensationTask CompensationObject
DnS:

obligedTo

DnS:anakastic
DutyTowards

DnS:anakastic
DutyTowards

ContractDescription

DOLCE:part

DOLCE:part

WarrantyLevel UpdatePeriod

DnS:
requisiteFor

DnS:
requisiteFor

MonetaryUnits Amount

DnS:
requisiteFor

DnS:
requisiteFor

Currency

InformationGood

DnS:
requisiteFor

ResponseTime

MonetaryCompensation

OoP:
successor

DnS:
requisiteFor

PaymentTerm

Figure 6.9: Representation of the Core Contract Ontology. Note that plotting UML
classes within an Obligation-class illustrates a DnS:defines-relation between the Obli-
gation and the contained classes.

ContractDescription ≡DnS:SituationDescription ⊓(A57)
∀DOLCE:part.(Obligation ⊔ Permission)

ContractParty ⊑PolicyObject ⊓ ∀DnS:playedBy.DnS:Agent(A58)

Obligation(x)←PolicyDescription(x),DnS:defines(x,y),ContractParty(y),(R22)
DnS:defines(x,z),PolicyTask(z),DnS:obligedTo(y,z)

Permission(x)←PolicyDescription(x),DnS:defines(x,y),ContractParty(y),(R23)
DnS:defines(x,z),PolicyTask(z),DnS:rightTo(y,z)

The definition of ContractDescription and Obligation corresponds exactly to
Definition 5.9 in the abstract model.12 A ContractDescription Γ defines a set of Obli-
gations γ (Axiom (A57)), where each Obligation specifies a ContractParty y ∈ I ∪ J
and a PolicyDescription GΦ.

Consequently, as depicted in Figure 6.9, the most elementary contract about pur-
chasing Web services in exchange for money results in two simple Obligations:

12In contrast to the Core Contract Ontology, permissions are not contained in the abstract model
since they are currently not used in the contract monitoring process.

6.4 Core Contract Ontology (CCO) 127

Provider Obligation. A ProviderObligation specifies that the provider is obliged
to make certain functionality accessible to the customer (Axiom (A59)). This
functionality is represented by a CPO:PolicyTask ServiceTask , which is played
by a COS:WebService in a DnS:Situation (Axiom (A61)). In addition, an (ac-
tive) CPO:PolicyObject Provider is introduced that is DnS:obligedTo provide
the ServiceTask (Axiom (A60)). A second (passive) CPO:PolicyObject Infor-
mationGood is used to represent the information that has to be returned by the
COS:WebService playing the ServiceTask (Axiom A62). Note that the distinc-
tion between ServiceTasks and InformationGood allows modeling the func-
tionality of a service using either explicit or implicit capability representation
[SPAS03]. This enables our contract ontology to support major efforts striv-
ing for semantic Web service descriptions such as WSMO [DKL+05], OWL-S
[SPAS03] and WSDL-S [POSV04].

ProviderObligation ⊑Obligation ⊓ ∃DnS:defines.Provider(A59)
Provider ⊑ContractParty ⊓ ∃DnS:obligedTo.ServiceTask(A60)

ServiceTask⊑PolicyTask ⊓ ∀DnS:sequences.COS:WebService(A61)
InformationGood ⊑PolicyObject ⊓(A62)

∀DnS:playedBy.OIO:InformationObject

Customer Obligation. A CustomerObligation specifies that the customer is obliged
to compensate the provider for using the Web service (Axiom (A63)). This ac-
tivity is called CompensationTask and mostly involves the transfer of a cer-
tain amount of money. To define a CompensationTask the CPO:PolicyTask
is specialized to a CompensationTask (Axiom A65). A Customer is a
ContractParty that is obliged to carry out a CompensationTask (Axiom
A64). Moreover, a CompensationTask may involve a CPO:PolicyObject
CompensationObject , which refers to a passive physical or social entity
(DOLCE:NonAgentiveSocialObject or DOLCE:NonAgentivePhysicalObject)
such as money or a patent (Axiom (A66)).

CustomerObligation ⊑Obligation ⊓ ∃DnS:defines.Customer ⊓(A63)
DnS:defines.CompensationTask

Customer⊑ContractParty ⊓(A64)
∃DnS:obligedTo.CompensationTask

CompensationTask⊑CPO:PolicyTask ⊓(A65)

∀DnS:anakasticDutyTowards−.CompensationObject

CompensationObject⊑ CPO:PolicyTask ⊓(A66)
∃.DnS:anakasticDutyTowards.CompensationTask ⊓
∀DnS:playedBy.(DOLCE:NonAgentiveSocialObject ⊔
DOLCE:NonAgentivePhysicalObject)

Usually contracts also specify in which sequence obligations have to be fulfilled
and rights are obtained. In the basic contract outlined above, the ServiceTask has

128 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

to be executed before the CompensationTask . Hence, means for representing se-
quences of OoP:Tasks are required. We reuse the Ontology of Plans which provides
primitives for modeling complex processes, e.g. Sequential Tasks, Parallel Tasks,
Loop Tasks, etc. In this context, the primary ordering relation for OoP:Tasks are
OoP:directSuccessor and its transitive version OoP:successor.

As illustrated in Figure 6.9, concrete obligations are expressed via policies spec-
ifying CPO:Attribute for ServiceTask and InformationGood or CompensationTask
and MonetaryUnit , respectively. How this can be realized for the individual con-
tract clauses identified in Section 6.4.1 is shown in the next section.

Individual Contract Clauses

As discussed above, a contract imposes further obligations and permissions that
have to be fulfilled by the contractors. These obligations and permissions are mod-
eled within a CPO:PolicyDescription by introducing specialized CPO:Attribute
concepts and specifying the allowed CPO:AttributeValue for this CPO:Attribute .
In the following, we briefly discuss some examples how the obligations that have to
be defined in an individual contract can be formalized. Methodologically this is re-
alized by transforming a natural language contractual clause into a formalized goal
policy. However, note that this not an exhaustive enumeration. Depending on the
service types and scenarios a wide range of different Attributes are possible.

Provider Obligation (§2) As discussed on page 124, in this category service levels
can be specified a provider has to meet. We exemplify this by considering the
CPO:Attribute UpdatePeriod which is warranted by the provider. A legal text
negotiated by human beings could read as follows:

“The Provider warrants that it reviews and, if necessary, updates Route
Planning Information/Credit Information every month.”

Since the timeliness is a property of the provided InformationGood , we intro-
duce UpdatePeriod as a subclass of CPO:Attribute . UpdatePeriod constraints
the set of allowed CPO:AttributeValues UpdatePeriodValue. This is captured
by the following axiom:

UpdatePeriod⊑CPO:Attribute ⊓(A67)
∃DnS:requisiteFor.InformationGood ⊓
∀DnS:requisiteFor.InformationGood ⊓
∃DnS:valuedBy.UpdatePeriodValue

The CPO:Attribute UpdatePeriod is illustrated in Figure 6.9.

Use of information (§3) This category specifies how the customer may use the in-
formation. For example, consider licenses that typically regulate how certain
information can be used. An agreed legal text could read as follows:

6.4 Core Contract Ontology (CCO) 129

“The Provider grants the customer a non-transferable license to use the
Credit Information delivered under the terms of this contract. The Cus-
tomer may freely copy or forward Credit Information within its company.
The Customer may not disclose or make the Credit Information otherwise
available to third parties without prior consent of the Provider.”

The license specifies if the right to use a certain InformationGood is trans-
ferable, if the customer may disclose the InformationGood within the com-
pany (‘Disclose within Company’) or to external third parties (‘Disclose to 3rd
Party’). In order to facilitate contract monitoring, we model the right as an
Obligation that specifies which alternatives are not allowed. This is realized
by introducing an additional CustomerObligation DisclosureObligation (Ax-
iom (A68)) with the CompensationTask TransferInformation (Axiom (A69))
and the CPO:Attribute AdmissibleParty. AdmissibleParty may take the val-
ues ‘Not Transferable’, ‘Disclose within Company’ and ‘Disclose to 3rd Party’
(Axiom (A70)). The following axioms capture this information. Note that the
corresponding Obligation is omitted in Figure 6.9.

DisclosureObligation ⊑CustomerObligation ⊓(A68)
∃DnS:defines.TransferInformation ⊓
∃DnS:defines.AdmissibleParty

TransferInformation ⊑CompensationTask ⊓(A69)
DnS:requisites.AdmissibleParty

AdmissibleParty⊑CPO:Attribute ⊓(A70)
∃DnS:requisiteFor.TransferInformation ⊓
∀DnS:requisiteFor.TransferInformation ⊓
=1 DnS:valuedBy.{‘Not Transferable’,
‘Disclose within Company’,
‘Disclose to 3rd Party’}

Warranties and Liabilities (§4) In this category warranty and liability levels can be
defined. In legal practice a wide range of different warranty and liability reg-
ulations are used. In this example, we consider a very simple approach, where
automatically one level from a predefined set of warranty levels can be cho-
sen. The predefined warranty levels are defined in the umbrella contract. In a
natural language contract a level can be defined as follows:

“The Provider warrants that the credit information is 100% accurate.”

As shown in Figure 6.9, this can be realized by adding a CPO:Attribute War-
rantyLevel to the ProviderObligation which is valued by a DOLCE:Region
reflecting the three different warranty levels: ‘No Warranty’, ‘Uttermost Care’,
and ‘Full Warranty’. Since the warranty can be considered as a fundamental

130 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

property of a InformationGood , we model WarrantyLevel as a Attribute of
InformationGood .

WarrantyLevel⊑CPO:Attribute ⊓(A71)
∃DnS:requisiteFor.InformationGood ⊓
∀DnS:requisiteFor.InformationGood ⊓

=1 DnS:valuedBy.{NoWarranty′ , ‘UttermostCare′ ,

‘FullWarranty′}

In general, defining standard quality levels in the umbrella contract is a vi-
able way to reduce the complexity of the individual contract, while avoiding
complex, undecidable logics.

Delivery Time (§5) In many applications delivery time is a crucial property that
heavily influences the prices. It is also a property that often has to be cus-
tomized dynamically, e.g., in order to adapt the contract to changing Web
server load. A natural language clause could be formulated as follows:

“The Provider shall deliver the Route Planning/Credit Information
within five seconds after conclusion of the contract.”

In the context of Web services, delivery time usually refers to the response
time, in which the result is return by the service. The CPO:Attribute Re-
sponseTime specifies the period in which the Service Task has to be executed.
Hence, it is modeled as a constraint of ServiceTask which is DnS:valuedBy an
CPO:AttributeValue ResponseTimeValue. The approach is illustrated in Fig-
ure 6.9 and captured by the following axiom:

ResponseTime⊑CPO:Attribute ⊓ ∃DnS:requisiteFor.ServiceTask ⊓(A72)
∀DnS:requisiteFor.ServiceTask ⊓
=1 DnS:valuedBy.ResponseTimeValue

Prices and Payment Terms (§6) Usually the most important aspect regulated in a
contract is the price that has to be paid by the customer for invoking the ser-
vice. Prices of services may change frequently or are even determined dynam-
ically in a negotiation or an auction process (see dynamic pricing mechanisms
outlined in Section 2.3.2). For example, a corresponding clause could be sim-
ply specified as follows:

“The price for the provided route/credit information is EUR 15.”

We have defined a Customer as a ContractParty that is obliged to an execut-
ing a CompensationTask (Axiom (A64)). The nature of this compensation is
left open and can be defined by constraining the allowed alternatives using
policies. For the case in which no compensation is required (e.g. service usage

6.4 Core Contract Ontology (CCO) 131

is free of charge), simply no policies are defined for the CompensationTask .
For the usual case where a certain amount of money has to be paid, we have
specialized CompensationTask to MonetaryCompensation which requires the
specification of the MonetaryUnits that have to be transferred from the cus-
tomer to the provider (Axiom (A73)). MonetaryUnits are CompensationOb-
jects which specify a certain Amount of money in a given Currency (Axiom
(A74)). The CPO:Attribute Amount is valued by exactly one floating point
number representing the AmountValue (Axiom (A75)) and the CPO:Attribute
Currency is valued by exactly one CurrencyValue (Axiom (A76)). Thus, Cur-
rencyValue comprises Euro, Dollar, Yen, etc. This is formalized by the follow-
ing axioms.

MonetaryCompensation ⊑ CompensationTask ⊓(A73)

∀DnS:anakasticDutyTowards−.MonetaryUnit ⊓

∃DnS:anakasticDutyTowards−.MonetaryUnit
MonetaryUnits ⊑CompensationObject ⊓(A74)

∃DnS:requisites.Amount ⊓
∃DnS:requisites.Currency

Amount⊑CPO:Attribute ⊓(A75)
=1 DnS:valuedBy.AmountValue

Currency⊑CPO:Attribute ⊓(A76)
=1 DnS:valuedBy.CurrencyValue

Furthermore, a contract usually contains a PaymentTerm that specifies in
which timeframe a MonetaryCompensation has to take place. We model the
PaymentTerms as a CPO:Attribute constraining MonetaryCompensation as
shown in Figure 6.9.

PaymentTerm⊑CPO:Attribute ⊓(A77)
∃DnS:requisiteFor.MonetaryCompensation ⊓
∀DnS:requisiteFor.CompensationTask ⊓
=1 DnS:valuedBy.DOLCE:Temporal-Region

All regulations specified above can be extended either by introducing new
CPO:Attributes within an existing CPO:PolicyDescription or by adding further
Obligations or Permissions to the ContractDescription . In the following, we ex-
emplify how a simple ProviderObligation could be expressed.

Example 6.9 Assume a credit information service which is obliged to deliver business back-
ground information about the company SAP to a requester. The provider guarantees deliv-
ery within 30 seconds. This simple ProviderObligation can be expressed with the Core
Contract Ontology as shown in Figure 6.10. We introduce an instance of ProviderObliga-
tion called ProviderObligationX that DnS:defines a Provider X, the InformationGood

132 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

ProviderObligationX : Obligation X : Provider

BBInformation/SAP : InformationGoodDnS:defines

DnS:defines

Deliver : ServiceTask
DnS:defines

ResponseTimeX : ResponseTimeDnS:defines

<30seconds : ResponseTimeValue

DnS:valuedBy

DnS:obligedTo

DnS:anakasticDutyTowards

DnS:requisiteFor

Figure 6.10: Example for representing a ProviderObligation .

BBInformation/SAP, a ServiceTask Deliver, and the Attribute ResponseTimeX that
has to be valued by a ResponseTimeValue. In our example, this ResponseTimeValue is
a DOLCE:Region capturing all time periods below 30 seconds. Since ResponseTime is
a constraint on the ServiceTask, we thereby make sure that the delivery has to take place
within the 30 second time period.

6.4.3 Representing Monitoring Information

In the previous section, we presented contract information as a collection of Pol-
icyDescriptions which are modeled by refining DnS:SituationDescriptions . In
this section, we extend this approach in order to represent information about
the execution of a contract. We call such information monitoring information
and represent it by means of the DnS:Situation MonitoringInformation (Axiom
(A78)). MonitoringInformation is modeled as specialization of CPO:Configuration
and represents values of CPO:Attributes used in the Web service execution.
As defined in Axiom (A15), a CPO:Configuration identifies the value of an
CPO:Attribute belonging to an DOLCE:Endurant or DOLCE:Perdurant . Since
we are dealing only with monitoring Web service invocations, we can spe-
cialize our modeling approach. The Core Software Ontology (CSO) and the
Core Ontology of Service (COS) [Obe05] introduce the fundamental concepts re-
quired for describing software systems. According to [Obe05], the main en-
tities living in the computational domain are CSO:ComputationalObjects and
CSO:ComputationalActivities . CSO:ComputationalObjects can be regarded as con-
crete realization of CSO:Software or CSO:Data .13 The execution of CSO:Software
triggers CSO:ComputationalActivities and these CSO:ComputationalActivities
may involve CSO:Data . Rule (R24) and (R25) capture this active and passive as-
pect by introducing the relations executes and involvedIn , respectively. Each Mon-
itoringInformation instance has to contain at least one CSO:ComputationalActivity
that is monitored (Axiom (A78)). As for CPO:Configurations in general, each
CSO:ComputationalActivity and CSO:ComputationalObject may exhibit certain
properties that are captured by DOLCE:Qualities .

13Note that CSO:Software can be seen as a special form of CSO:Data , viz., CSO:Software ⊑
CSO:Data.

6.4 Core Contract Ontology (CCO) 133

WebService/163:12:23:1

COS:ComputationalObject COS:ComputationalActivity

executes

CreditInformation/SAP

involvedIn

DOLCE:
participateIn

Dolce:Quality

DOLCE:
inherentIn

DOLCE:
inherentIn

Dolce:Region
DOLCE:

q-location

ResponseTime 25ms
DOLCE:

temporal-location

DOLCE:
inherentIn

MonitoringInformation

WebServiceInvocation

Send/022706/8:00

CSO:DataCSO:Software

OIO:
realizes

OIO:
realizes

Figure 6.11: Representing MonitoringInformation as DnS:Situation . Note that plot-
ting UML classes within a DnS:Situation-class illustrates a DnS:settingFor-relation
between the DnS:Situation and the contained classes.

MonitoringInformation ⊑CPO:Configuration ⊓(A78)
∃DnS:settingFor.CSO:ComputationalActivity ⊓
∀DnS:settingFor.(CSO:ComputationalActivity ⊔
CSO:ComputationalObject ⊔
DOLCE:Quality⊔DOLCE:Region)

executes(x,y)←CSO:Software(x),OIO:expresses(x,z),(R24)
OoP:Plan(z),DnS:defines(z, t),CSO:ComputationalTask
DnS:sequences(t,y)CSO:ComputationalActivity(y)

involvedIn(x,y)←CSO:Data(x),OIO:realizedBy(x,z),(R25)
DOLCE:participantIn(z,y),
CSO:ComputationalActivity(y)

Providing information via a Web service leads to a CSO:ComputationalActivity
where one party transfers a CSO:ComputationalObject , e.g. credit or route infor-
mation, to another party. In executing this activity various types of monitoring in-
formation about the activity itself as well as about participating objects can be mea-

134 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

sured or perceived, which are represented as DOLCE:Qualities of the corresponding
CSO:ComputationalActivity or CSO:ComputationalObject .

Example 6.10 Figure 6.11 introduces a concrete example which represents information
about a specific Web service invocation as an instance of MonitoringInformation. Consider
the execution of a CSO:ComputationalActivity ‘Send’ carried out on February 27th, 2006
at 8 AM. The activity was executed by a Web service with the IP-address 163:12:23:1 and in-
volved the digital representation of credit information of the company SAP. According to the
Core Ontology of Services [Obe05], a COS:WebService is a specialization of CSO:Software
and thus we model ‘WebService/163:12:23:1’ as an instance of the concept CSO:Software,
while ‘Credit Information/SAP’ is modeled as CSO:Data. Moreover, the DOLCE:Quality
ResponseTime of the Send-activity is measured and represented by the DOLCE:Region
‘25ms’. Of course, other DOLCE:Qualities of the CSO:ComputationalActivity as well as
the CSO:ComputationalObject beyond ‘ResponseTime’ can be measured and represented
in a similar way.

6.4.4 Contract Monitoring

Having introduced the CPO:ContractDescription in Section 6.4.2 and Monitoring-
Information capturing information about contract execution in Section 6.4.3, we in-
troduce in this section how the compliance of MonitoringInformation with respect
to concrete ContractDescription can be verified. This corresponds to the evaluation
of function ̺(Γ,c) specified in the abstract model.

Since ContractDescriptions are modeled as a collection of
CPO:PolicyDescriptions and MonitoringInformation as specialization of
CPO:Configuration , the satisfiesPolicy-relation (Rule (R8)) that holds between
PolicyDescriptions and DnS:Situations can be reused in order to check whether the
MonitoringInformation meets the contractual obligations.

satisfiesObligation(m, p)←MonitoringInformation(m),Obligation(p),(R26)
satisfiesPolicy(m, p)

In order to validate the entire contract, each Obligation γ ∈ Γ specified in the
ContractDescription has to be satisfied by the MonitoringInformation . If all Obli-
gations are valid, the ContractDescription is met by the contract execution. The
following rule encodes the compliance check for a contract Γ.

satisfiesContract(m,c)←MonitoringInformation(m),(R27)
ContractDescription(c),

∧

i={1,...,|Γ|}

(DOLCE:part(c, pi),

satisfiesObligation(m, pi))

6.5 Conclusion 135

As already discussed in Section 6.2.1, universal quantification would be required
to formulate the rule in a way that it supports an arbitrary number of obligations of
the contract. Since DL-safe SWRL does not support this construct, maximal number
of obligations that have to be verified has to be specified at design time. Although
for the most applications this might not be a problem since the obligations can be
usually expressed with one customer and one provider obligation, there might be
scenarios where predefining the number of obligations is not possible. In this case
either a more expressive rule language is required (e.g. CIF/SWRL proposed by
[MGP04]) or a contract monitoring tool implementing an iterative algorithm that
evaluates the satisfiesPolicy-rule for each obligation contained in the contract.

Example 6.11 In order to illustrate how contracts are evaluated we come back to the
ProviderObligation introduced in Example 6.9 and to the MonitoringInformation out-
line in Example 6.10. We are now interested whether the MonitoringInformation fulfills
the ProviderObligation. Therefore, the satisfiesObligation-predicate can be applied. In
doing this, the satisfiesPolicy-predicate is used in order to determine if the constraints
specified in the contract are meet. This is realized by invoking the corresponding matching-
rules for each Attribute in the ProviderObligation. In our concrete example, we compare
the observed 25 seconds with the allowed 30 seconds using a matching rule that defines
DOLCE:TemporalRegions to be matched with swrlb:lessThanOrEqual. We thus get a
match and no policy violation in our example.

In Section 7.2, we provide a more detailed discussion on how the satisfiesCon-
tract can be applied and adapted.

6.5 Conclusion

In this chapter, we have introduced an ontology framework for Web service mar-
kets. In particular, we have presented three novel core ontology modules based on
the foundational ontology DOLCE: the Core Policy Ontology, the Core Ontology of
Bids and the Core Contract Ontology. Together with the Core Ontology of Services
[OLG+06] they constitute the second layer of the ontology framework (see Figure
6.1 on page 98). The framework provides the communication primitives which are
required in the market and addresses the language-specific requirements listed in
Section 4.2.1. Contracting algorithms that rely on these communication primitives
are introduced in the next chapter.

136 CHAPTER 6: AN ONTOLOGY FRAMEWORK FOR WEB SERVICE MARKETS

Chapter 7

Ontology-based Contracting and
Contract Monitoring

After having introduced a formal, interoperable language for expressing market in-
formation in Chapter 6, in this chapter we come back to the Web service contracting
and contract monitoring process abstractly introduced in Section 5.3. The goal is to
implement algorithms based on the presented ontology framework that meet the
mechanism-specific Requirements stated in Section 4.2.2.

The chapter is structured as follows: First, a contracting mechanism is intro-
duced in Section 7.1 featuring semantics-based matching of offers and requests,
optimal allocation algorithms, and a contract formation algorithm. After the con-
tracting phase, we move on to the settlement phase in Section 7.2 and introduce a
mechanism for contract monitoring based on the Core Contract Ontology.

Most results presented in this chapter are published in conference proceedings
and journals. Bits and pieces of the contracting process including the Web service se-
lection algorithm are obtained from [LAGS07], the auction-based allocation is partly
covered in [LS06], and the contract monitoring approach is presented in [LLM07].

7.1 Automated Contracting of Web Services

Web service contracting can be seen as the process which transforms given Web
service offers and requests to Web service contracts. As outlined in Section 3.2.2,
this process can be broken down into three phases: the matching phase in which
possible transactions are discovered (Section 7.1.1), the allocation phase in which the
final assignment between offers and requests is determined (Section 7.1.2), and the
contract formation phase in which a legally binding contract is closed (Section 7.1.3).
How these three phases of Web service contracting can be implemented based on
the presented ontology framework is introduced throughout this section.

7.1.1 Matchmaking Mechanism

The goal of the matching phase is to determine if a given offer o meets the require-
ments stated in a request r and vice versa. In Definition 5.10 of the abstract model,
this issue has been denoted by Multi-attribute Matching Problem (MMP). Concep-
tually, solving MMP requires determining the intersection of the acceptable trades

138 CHAPTER 7: CONTRACTING AND CONTRACT MONITORING

T′j ∩ T′i . This breaks down to the comparison of the attribute values that character-
ize the trades. Since in our approach attribute values can be described by complex
ontological structures (see Example 6.2), sophisticated matching mechanisms are re-
quired. These mechanism are described in the next section, before we discuss the
matching of entire bids.

Matching of Attribute Values

The comparison between a requested attribute value and an offered attribute value
is a fundamental functionality. As discussed in Section 6.2.1, the Core Policy On-
tology supports primitive attributes where values are directly expressible with an
OWL datatype as well as more complex attributes where values may capture classes
of individuals. Semantic technologies provide a wide range of techniques for han-
dling these complex attributes. In this context, various techniques have been pro-
posed for matching of OWL class descriptions based on DL inferencing, distin-
guishing between several notions of match, which are typically reducible to instance
checking, concept satisfiability or subsumption. For example, for two OWL classes
ai and aj that represent attribute values of a request or an offer, the degrees of match
proposed in [PKPS02] are: exact if ai and aj are equivalent, plugin if ai is a subclass of
aj, subsumes if aj is a subclass of ai, intersect if the conjunction of ai and aj is satisfiable,
and fail if the conjunction of ai and aj is unsatisfiable.

As already discussed in the context of the specification of functions (Section
6.2.1), we support these notions of match in our framework, and also allow for oth-
ers by including customizable matching predicates into the service selection algo-
rithm. In fact, since we use a declarative formalism to describe how attribute val-
ues are matched, a user can bring in arbitrarily complex matchmaking behavior ex-
pressed in rules. This facilitates the adaption of the selection component to changing
service descriptions (e.g. with new attributes) and thus the flexibility of the match-
ing approach. Contrarily, other approaches typically use hard-coded algorithms to
process the matching. Since we keep attributes in Web Service configurations rather
generic, the way in which two attribute values are compared strongly depends on
the domain of interest (e.g. ‘ResponseTime’ has to be matched in a different way
than ‘ServiceType’ or ‘IndicatedAttraction’) and on the way in which they are rep-
resented (e.g. the structure of the ontology representing the attribute values). In
the following, we illustrate this approach using an example where different domain
ontologies are “plugged-in” for describing various types of attributes. Since the re-
quired attributes and domain ontologies might change dynamically, our matching
approach has to support such flexibility.

Example 7.1 Figure 7.1 exemplifies a TradeSituation where the AttributeValue could
take values from different domain ontologies. To illustrate this, Figure 7.1 describes three do-
main ontologies: the first ontologies (denoted by Oscl) defines different service types such a
scl:RoutePlanningService or a scl:CreditInformationService. The second ontology (de-
noted by Ogeo) describes geographic knowledge. For example, it defines concepts such as
a geo:Country or geo:City and individuals like geo:Karlsruhe representing a concrete
geo:City. Thus, it can be used, e.g., to describe the ‘Coverage’ of a route planning service.
Third, the tourism ontology (denoted byOtourism) captures information about different kinds
of attractions, such as tourism:CulturalAttraction or tourism:SportsEvent, and can be

7.1 Automated Contracting of Web Services 139

COB:WebService

-WSDLreference:string(xsd)

...

DnS:
settingFor

CPO:Configuration

DnS:
settingFor

TradeSituation

locatedInService Activity

Navigation MoneyTransfer

RoutePlanningServiceCreditInfoService

supports

supports

Attraction

CulturalAttraction SportsEvent

HistoricSite Museum

Castle Monument

Country City

Munich

Karlsruhe
Germany

locatedIn

locatedIn

... ...

...

... ...

CPO:AttributeValue

COB:TradeSituation
DOLCE:

part

DnS:Agent

DnS:
settingFor

DOLCE:
participantIn

DnS:
settingFor

DOLCE:
locatedIn

COB:PriceValue

DnS:
settingFor

Geographic Knowledge Ogeo
Tourism Knowledge Otourism

Service Classification Oscl

Figure 7.1: Using complex attribute values in a TradeSituation

used to describe the attribute ‘Indicated Attraction’ of a route planning service, for instance
(refer to Example 4.3).

Considering now the matching of service types, a requester might ask for a
scl:RoutePlanningService whereas a provider might specify that a service that
supports navigation is offered, i.e. ServiceSupportingNavigation ≡ Service ⊓
∃supports.Navigation. The following rule definition specifies the matching predicate for
service types, requiring them to yield an exact match. This is implemented by the predi-
cate exact, which checks for the logical equivalence of a requested concept Cr and provided
concept Cp, i.e. Cr ≡ Cp.

match(v1,v2)←ServiceTypeValue(v1),ServiceTypeValue(v2),(R28)
exact(v1,v2)

In our example, the requested scl:RoutePlanningService indeed yields an exact match
with the provided ServiceSupportingNavigation, since Oscl entails their equivalence.

Analogously, values of the attribute IndicatedAttraction could be matched using the
predicate subsumes(x,y) instead of exact(x,y). Consider the scenario where a requester
requires a service that indicates tourism:Castles along the route, whereas a provider of-
fers information about tourism:CulturalAttractions in general. Again the provided value
would match the requested one, since Otourism |= Castle⊑ CulturalAttraction.

The values of the attributes StartPoint and EndPoint from Example 4.3 represent indi-
vidual locations in a geographic ontology and require a different treatment. Here the modeler

140 CHAPTER 7: CONTRACTING AND CONTRACT MONITORING

specifies the customized matching behavior for location attributes by introducing a class Lo-
cation as a subclass of CPO:Attribute, of which the start and destination are instances. The
appropriate matching behavior is then captured by the following rule.

match(v1,v2)←Location(v1),Location(v2),(R29)
matchLocation(v1,v2)

(7.30) matchLocation(x,y) =

{

true Ogeo |= DOLCE:locatedIn(x,y)

f alse otherwise

The predicate matchLocation(x,y) is realized as a built-in using a separate call to a
description logic reasoner, just as exact(x,y) or subsumes(x,y) before. Assuming an ex-
ample in which a requester looks for a service that provides a route from Karlsruhe to Munich
and a provider offers a route planning service for Germany, a match would be realized, since
Karlsruhe and Munich are both located in Germany according to Ogeo.

Finally, there are attributes that do not require a complex matching in terms of logical
reasoning, but where a simple and efficient string comparison or arithmetic calculations
are sufficient. In this case, the modeler of a matching rule can include predefined built-in
predicates defined in SWRL. From our example, the QoS attribute ResponseTime falls into
this category, and is processed according to the following rule specification.

match(v1,v2)←QoSAttributeValue(v1),QoSAttributeValue(v2),(R30)
swrlb:equal(v1,v2)

Here a subclass of AttributeValue, namely QoSAttributeValue, is introduced to enable
the specification of the matching behavior for all QoS attributes, such as ResponseTime, by
a single rule.

Based on the definitions above, we can define a shortcut for matching two arbi-
trary configurations as follows. This shortcut enables a more compact representa-
tion of the rules to come.

compareTrades(t1, t2)←DOLCE:part(t1,c1),DOLCE:part(t2,c2),(R31)
compare(c1,c2)

compare(c1,c2)←
∧

l=1,...,n

attrCompare(al ,c1,c2)(R32)

attrCompare(a,c1,c2)←DnS:settingFor(c1,v1),DnS:valuedBy(a,v1)(R33)
DnS:settingFor(c2,v2),DnS:valuedBy(a,v2)

match(v1,v2)

After discussing the matching of attribute values, we consider the matching of
entire offers and requests in the next section.

7.1 Automated Contracting of Web Services 141

Matching of Offers and Requests

In order to solve the Multi-Attribute Matching Problem, the matching predicates
introduced in the previous section can be used within the optimization rules that
solve the MMP and thus determine the best configuration for a given requester and
provider. We define three alternative variants of the mmp-predicate, which consid-
erably differ in their underlying assumptions, applicability and performance charac-
teristics. While the first variant [V1] implements the ranking of alternatives based on
enumerating all possible trades/configurations (Equation 5.12), [V2] solves MMP
on per attribute basis using Equation 5.13-5.15. [V3] goes a step beyond [V2] by
utilizing a linear program formulation and applying efficient solving techniques.

Variant [V1] This variant implements Equation 5.12, where a ranking of all offers
and configurations is derived by evaluating all possible configurations. We can
model the problem purely based on DL-safe rules using some standard SWRL
built-in functions. Rule (R34) calculates the difference between score US

i (c,k)
and price UP

j (c) of each Configuration c ∈ Ci ∩ Cj that is supported by the
offer as well as asked for in the request. The following rule is invoked using a
concrete Request r, Offer o as well as Context k, and returns the Configurations
c with the utility u given the preferences in the Request. By invoking the mmp-
predicate an allocation can be calculated as shown in Query (R39).

mmp(r,o,k,c,u)←COB:Request(r),COB:Offer(o),Context(k),(R34)
COB:satisfiesBid(r, t1),COB:satisfiesBid(o, t2),
compareTrades(t1, t2),COB:price(r, t1, s1),
COB:price(o, t2, s2),swrlb:subtract(u, s1, s2),
DOLCE:part(t2,c)

The compareTrades-predicate defined in Rule (R31) is used to match two
trades and thus also the corresponding configurations. We use the satisfies-
Bid -predicate defined in Rule (R20) on page 120 in order to determine the
acceptable TradeSituations Ti and Tj. Since prices are not explicitly given in a
TradeSituation , the price-predicate (refer to Rule (R14) - (R19) on page 119) is
used to calculate this information based on the utility function policies defined
in the offer or request. Finally, the built-in swrlb:subtract is applied to calcu-
late the difference between US

i (c,k) and UP
j (c). The Context k is not explicitly

required in Rule (R34), since it is handled automatically within the satisfies-
Bid -predicate. However, we add it to the signature of the mmp-predicate to
be compatible with the other mmp-variants where the context is explicitly re-
quired.

An advantage of variant [V1] is that one can get a full ranking of all configu-
rations, which might be required in some applications. Furthermore, it can be
modeled purely based on standard modeling primitives provided by OWL-DL
and SWRL. However, the disadvantages are also evident. Since the approach
is based on enumerating all TradeSituations/Configurations , a finite number

142 CHAPTER 7: CONTRACTING AND CONTRACT MONITORING

Algorithm 7.1 Determine optimal attribute value for two Policies
procedure OPTFKT(Function f1, Function f2, Utility u)

SELECT ?U WHERE {
f1 CPO:constitutedBy ?P1 . f2 CPO:constitutedBy ?P2 .
?P1 CPO:policyValue ?V1 ; CPO:valuation ?X .
?P2 CPO:policyValue ?V2 ; CPO:valuation ?Y .
?V1 match ?V2 . EVALUATE ?U := swrlb:subtract(?X,?Y) .

} ORDER BY DESC(?U)
Assign first element of the result set to u
return return u

of configurations is required and thus the approach is not suitable in the pres-
ence of continuous attributes. Moreover, all possible/relevant TradeSituation
have to be stored in the knowledge base, which leads to a high space complex-
ity. As already discussed in Chapter 5, another fundamental problem is the
complexity with respect to the number of required utility calculations. Recall
that the number of Configurations (and therefore also the number of possible
TradeSituation) that have to be evaluated grows exponentially with respect to
the number of attributes.

Variant [V2] The second variant of the mmp-predicate implements the decom-
posed optimization algorithm described in Equations (5.13)-(5.15) and thereby
avoids enumerating all TradeSituations . In this context, we utilize the addi-
tive structure of the pricing as well as scoring functions as follows: the optimal
value for each attribute is determined separately and the overall price/score
is composed based on these individual measures. Rule (R35) determines the
utility of an offer according to request in a specific execution context.

mmp(r,o,k,u)←Request(r),Offer(o),(R35)
∧

l=1,...,n

(hasFunctionC(r,k, al , frl),

hasFunction(o, al , fol),optFkt(frl , fol,ul)),
swrlb:add(u,u1, . . . ,un)

The predicates hasFunction and hasFunctionC are shortcuts to determine the
value function uS

il/uP
jl for a certain attribute Al without and with context defi-

nition. They are defined by the Rules (R36) and (R37), respectively.

hasFunction(b, a, f)←DnS:defines(b, p),Bid(b),Attribute(a),(R36)
DnS:defines(p, pr), isAssignedTo(pr, a),
Attribute(a),DnS:playedBy(pr, f)

7.1 Automated Contracting of Web Services 143

hasFunctionC(b,k, a, f)←DnS:defines(b, p),Bid(b),Attribute(a),(R37)
DnS:defines(p, pr),applicableIn(pr,k),
isAssignedTo(pr, a),Attribute(a),
DnS:playedBy(pr, f)

Since the calculation of the optimal value for a certain attribute requires it-
erating over an unknown number of attribute values (instances), the calcu-
lation cannot be directly expressed in SWRL. We thus use a built-in func-
tion, called optFkt, to determine the attribute value ale maximizing the utility
uS

il(ale)− uP
jl(ale) of attribute Al. Algorithm 7.1 shows the implementation of

the built-in-predicate specifically for Point-based Functions. In the predicate
optFkt for each attribute the requester and provider policies are retrieved from
the knowledge base and the attribute value leading to the maximal utility is
determined. A major advantage of the approach is that the SPARQL query
executed in Algorithm 7.1 uses the match -predicate defined in the ontology.
Thus, the correct matching algorithm is used for each attribute automatically
and the implementation of the built-in is completely domain independent.

Variant [V3] The third variant of the algorithm implements also the decomposed
ranking algorithm described in Equation (5.13-5.15), but with some additional
optimizations. We formulate the entire MMP as a single linear program that
can be solved efficiently by using techniques such as Branch and Bound meth-
ods [LW66]. Since the entire problem should be formulated as one linear pro-
gram, Rule (R38) defines the mmp-predicate simply by invoking the built-in
optLP.

mmp(r,o,k,u)←COB:Request(r),COB:Offer(o),(R38)
CPO:Context(k),optLP(r,o,k,u)

Algorithm 7.2 shows the built-in optLP that encapsulates the calculation of
the optimal COB:TradeSituation for a given COB:Request and an COB:Offer .
The built-in performs a query to get the relevant utilities for the at-
tribute values. This is done again by utilizing the match-predicate from
the ontology. The optimization problem is constructed and solved using
a standard optimization library. Note that for simplicity Algorithm 7.2
is specific to CPO:PointBasedFunctions . The corresponding built-ins for
CPO:PiecewiseLinearFunctions and CPO:PatternBasedFunctions are speci-
fied by adapting the query in Algorithm 7.2 to the corresponding Function
definitions. Variant [V3] has the advantage that we can use the efficient im-
plementations for solving integer linear programs provided by standard tools,
such as CPLEX1 or LPSOLVE2. Since querying the knowledge base as well as
the invocation of the solver involves a costly initialization step, the built-in

1http://www.ilog.com/products/cplex/
2http://sourceforge.net/projects/lpsolve

144 CHAPTER 7: CONTRACTING AND CONTRACT MONITORING

Algorithm 7.2 Optimization built-in using Linear Programming
procedure OPTLP(Request r, Offer o, Context k, Utility u)

resultList := SELECT ?A, ?V1, ?U WHERE {
?A rdf:type CPO:Attribute .
EVALUATE ?F1 := hasFunction(o,?A) .
EVALUATE ?F2 := hasFunction(r,k,?A) .
?F1 CPO:constitutedBy ?P1 ;
?F2 CPO:constitutedBy ?P2 ;
?P1 CPO:policyValue ?V1 ; CPO:valuation ?X .
?P2 CPO:policyValue ?V2 ; CPO:valuation ?Y .
?V1 match ?V2 . EVALUATE ?U := dif(?X,?Y) .}

Initialize matrix U = (ule)l=1...n,e=1...maxl |Al | with (Al, ale,ule) ∈ resultList
Initialize matrix X = (xle)l=1...n,e=1...maxl |Al |

determine u = max{〈U, X〉|∀l ∈ {1, . . . ,n} : ∑
|Al |
e=1 xle = 1, x ∈ {0,1}}

return u for given Offer o and Request r

calculates the utilities for all request/offer-pairs at once and stores the results
until they are requested in an internal cache.

In contrast to variant [V1], variants [V2] and [V3] can be easily adapted to handle
continuous attributes by introducing appropriate built-ins optFkt and optLP. How-
ever, it is not possible to get a ranked list enumerating all offers and configurations,
as it is possible using variant [V1]. Nevertheless, since most application only require
selecting the best service with the best configuration, determining the ranked list of
offers is sufficient. In the Chapter 9, a detailed analysis of the different modeling
approaches with respect to their computational and space complexity is presented.

7.1.2 Allocation Mechanism

Up to now, we have considered only the matching of one offer and one request.
In this section, we go beyond this simple case and present different mechanisms
that can be used to determine the allocation between several requests and offers. In
this context, we first implement the Local Selection Problem (Definition 5.11) based
on the ontological descriptions and then extend the approach to dynamic pricing
mechanisms.

Web Service Selection

As defined in Section 5.3.2, Web service selection is a Hit-and-Take-mechanism (Def-
inition 2.7) that allows a Web service requester to find the best Web service provider
and the best available configuration of this provider. This problem is referred to
as the Local Selection Problem (LSP) and does not involve any negotiation mecha-
nisms. Considering the fact that solving the MMP provides already the best config-
uration for a given offer/request-pair, solving LSP requires only to solve the follow-
ing simple optimization (Definition 5.11):

max
j=1,...,|O|

u(ri ,oj)

7.1 Automated Contracting of Web Services 145

In this context, u(ri,oj) represents the solution for the MMP for a request ri and an
offer oj. We now assume that the request and several offers are stored in a knowl-
edge base, which is formalized by means of the ontology framework introduced in
Chapter 6. In order to derive a ranked list of the Offer instances from the knowledge
base, we formulate a SPARQL-query that refers to a concrete Request instance x and
to an instance y representing the current Context .

PREFIX ex: < http://example.org/ns# >(R39)
SELECT ?O , ?U WHERE {

?O rdf:type COB:Offer .
EVALUATE ?U := mmp(x, ?O, y) .

}ORDER BY DESC(?U)

The Query (R39) sorts the result list by decreasing surplus (US
i −UP

j), i.e. the best
provider is returned as top answer, whereas the worst provider is returned as last
element. The utility of one Offer with respect to a Request is calculated by means of
the mmp-predicate.

Queries that not only return answers which meet the conditions specified in the
query, but also sort the results according to a user’s preferences are called preference
queries [Kie02, LL87, AW00]. In Query (R39) above we realize a preference query by
referencing a request in the knowledge base that defines a scoring policy. While stor-
ing requests in the knowledge base is a convenient way if the same scoring policies
are applied repeatedly, there are other scenarios in which this is not efficient, e.g. if
a request is only used once in a service selection. In this case, it is more convenient
to represent preferences directly in a query. This can be realized using SPARQL
with additional built-in predicates that take a string-encoding of Functions . Again,
we exemplify the approach using a PointBasedFunction . The pbF -predicate takes
a String representation of the tuples representing the PointBasedFunction and an
attribute value. The predicate evaluates the PointBasedFunction for the attribute
value and returns the corresponding score. For example, in the query below a value
of 1 is assigned to ‘HistoricSites’, a value of 0.5 to ‘Museums’ and a value of 0 to
‘SportsEvents’. In addition, to reduce the number of offers that have to be ranked
we can add mandatory conditions (viz. goal policies) directly to the query using
the SPARQL FILTER element. In the query below, only services that provide a guar-
anteed response time of less than 5 sec. are retrieved. Note that Query (R40) does
not make direct use of the mmp-predicate. However, within the pbF -built-in the
match -predicates can be used to semantically match attribute values, e.g. ‘Castles’
are matched with ‘HistoricSites’ and thus are valuated with 1.

146 CHAPTER 7: CONTRACTING AND CONTRACT MONITORING

SELECT ?O, ?C, ?U(R40)
WHERE {

?O rdf:type CPO:Offer ; DnS:defines ?A1 ; DnS:defines ?A2 .
?A1 rdf:type tourism:IndicatedAttraction ; DnS:valuedBy ?attractionValue .
?A2 rdf:type qos:ResponseTime ; DnS:valuedBy ?RTValue .
EVALUATE ?U := pbF(‘(tourism:HistoricSites,1),(tourism:Museum,0.5),

(tourism:SportsEvent,0)’,?tattractionValue) .
FILTER ?RTValue < 5 .

} ORDER BY DESC(?U)

Auction-based Allocation

In this section, we show how the previous selection approach can be extended to
auction mechanisms that enable dynamic pricing. As an example, we introduce
an extension of the Web service selection approach, where providers are able to
improve their offer in case they would not be selected based on their current of-
fer. Since such a mechanism allows the requester to utilize competition on provider
side, they are denoted by procurement auctions. Procurement auctions are particu-
larly interesting for large scale enterprise service scenarios, where a large number of
Web services (or Web service invocations) is required by a company or public body.
Procurement auctions take the form of reverse auctions with a single requester and
a set of precertified providers (e.g. providers having an umbrella contract with the
requester) negotiating within the context of a private exchange [BKK+02]. Based
on the Web service selection algorithm above, we introduce a simple procurement
auction as follows:

1. In a first step, the requester performs a Web service selection as defined above,
which results in a ranked set of providers. This is done by querying the repos-
itory of offers using Query (R39) or (R40).

2. The requester then selects the top-k providers from the result set, for which an
umbrella contract exists.

3. The requester issues a request for quote (RFQ) to purchase a particular service
to the selected providers. This is done by sending a Request-instance express-
ing the requesters requirements specified by means of scoring policies to the
selected providers.

4. Each provider assesses the Request locally. The provider has a given period of
time for updating her Offer in the repository.

5. Once the period is over, the requester again performs the usual Web service
selection (Query (R39) or (R40)); this time however restricted to the invited
providers.

7.1 Automated Contracting of Web Services 147

Start
Valid umbrella

contract?

Generate
indivdual contract

using c*

Umbrella contract
manually

negotiable?

no

yes

yes
Contracting

failed
no

Add
implementation

specific
information

Sign and distribute
individual contract

to contracting
parties

Contracting
successful

Figure 7.2: Contract formation process.

6. Finally, a Web service contract is concluded with the top-ranked provider us-
ing the configuration and price determined in the selection.

The Request-for-Quote-mechanism introduced above corresponds to a tradi-
tional sealed-bid auction. A concrete implementation of this protocol is presented
in Chapter 8. A major advantage compared to the pure selection approach is that
providers can adapt their offer according to a specific request. This is important in
many scenarios, where a full Offer specification is not possible. For example, con-
sidering a flight booking service, it is not possible for a provider to add all available
flights to the Offer , although this would be required in order to make sure that the
service is suitable for a requester looking for a flight between Berlin and Karlsruhe at
Friday evening. By allowing to adapt the Offer to the Request , this problem can be
addressed (c.f. [FKL+05]). However, the additional time period for bidding and the
communication overhead obstruct the application in time-critical scenarios, where
services have to be selected at runtime. A more thorough discussion of the economic
properties of (multi-attribute) RFQ auctions can be found in [RS01, Che93, Mil00].

Of course, many other forms of auctions can be implemented based on the MMP
problem. For example, in [LS06] an extension to the multi-attribute combinatorial
double auction MACE [SNVW06] is presented that features semantic matching of
bids based on the Core Ontology of Bids. Due to the double-sided mechanism, this
auction handles competition on requester as well as provider side and thus also al-
lows dealing with the resource limitation of service providers. Therefore, this mech-
anism particularly interesting for grid applications. We discuss this mechanism in
more detail together with the corresponding implementation in Chapter 8.

7.1.3 Contract Formation

In the allocation phase, a provider and requester agreed on a configuration of a
configurable service and on the price a requester has to pay for this service. In
Section 6.4, we presented a semi-automated contracting approach distinguishing
between an umbrella contract that is manually closed and an individual contract
that can be fully formalized using the Core Contract Ontology. In this section, we
discuss how an agreement in the allocation phase is transformed to a legally binding
contract.

This contract formation process can be intuitively described as follows: Assume
an agreement between a requester i and a provider j has been found with the agreed
configuration c∗. Depending on the architecture of the system, the following process

148 CHAPTER 7: CONTRACTING AND CONTRACT MONITORING

can be executed by one of the parties or by an independent intermediary, such as
an auctioneer or a service repository provider. Figure 7.2 sketches the workflow
described in the following.

1. First, it has to be determined whether there exists a valid umbrella contract
between requester i and provider j.

2. If this is not the case, either an umbrella contract has to be manually negotiated
or the contract formation fails. Manual negotiation is only possible in case the
Web service binding is determined at development or deployment time; for
dynamic binding at runtime it is recommended to consider in the matching
and allocation process only providers for which a valid umbrella agreement
exists. This can be realized by explicitly stating a corresponding policy within
the Request .

3. If there is an umbrella contract, the individual contract can be generated based
on the agreed configuration c∗ = (a1, . . . , aq, . . . , an). Therefore, the Customer-
Obligations and ProviderObligations have to be generated. Subsequently, the
Attributes Aq have to be added to the Obligations and the DnS:valuedBy-
relations to the AttributeValues aq with q = 1, . . . ,n.

4. Once the individual contract is generated, implementation specific informa-
tion is added, which is required for the contract execution. This might include
the physical address where the Web service can be invoked (e.g. a WSDL doc-
ument), properties of the authentication or encryption algorithm, etc.

5. As a next step, the contract is signed by the responsible party (e.g. the market
operator) using existing electronic signature infrastructure such as X.509, CA,
PGP, PKIX and SKIP [Ger00]. The signed individual contract is then made
available to the contracting parties.

6. Finally, the contract can be automatically used by the participants. Therefore,
they store the contract in their local knowledge base. The requester uses the
contract to generate the service invocation (see Chapter 8) and to monitor the
execution as outlined in the next section. The provider queries the knowledge
base in order to verify if access should be granted to a specific requester and to
determine how the service should be configured for this requester. In addition,
a provider could use the set of contracts to internally schedule the execution
of the different contracts according to the guaranteed service levels (e.g. to
minimize the risk of penalties).

After a contract is closed, the contracting phase is finished. In the next section,
we consider the monitoring of contracts which is part of the subsequent settlement
phase.

7.2 Automated Monitoring of Web Service Contracts

A major advantage of machine-interpretable, formal contracts is the fact that mon-
itoring whether a Web service execution complies with the contract can be (at least

7.2 Automated Monitoring of Web Service Contracts 149

partially) automated. This is particularly important in a scenario where many (dif-
ferent) contracts are closed and executed within a short timeframe. As discussed in
Section 4.3, this is usually the case for large-scale service-oriented architectures in-
volving enterprise and grid services. We already discussed in Section 6.4.4, how the
contract evaluation function ̺(Γ,c) is implemented by the satisfiesObligation- and
satisfiesContract-predicates in the Core Contract Ontology. In this section, we ex-
emplify how these rules can be applied together with additional expert knowledge
in order to monitor the compliance of contracts.

Since terms within contracts are often context-dependent and require fuzzy in-
terpretations, the evaluation process is not always possible by simply applying the
satisfiesObligation and satisfiesContract predicates. For example, certain obliga-
tions have to be done “immediately” or “with utmost care”. Although such terms
are interpreted in various different ways, lawyers typically have guidelines how to
interpret such statements and expressions in a given context. As these guidelines are
not part of the contract, we have to add them to the knowledge base in a formalized
way, which allows their inclusion in the contract evaluation process. For instance,
if the term “immediately” is used to specify a timeframe in which a response of the
service is expected, one could use the following rule of thumb: considering the cur-
rent state of the art a response is received “immediately” only if it is received within
5 seconds after sending the request. Subsequently, we exemplify this approach by
changing the ProviderObligation introduced in Example 6.9 to include a term that
cannot be directly interpreted.

Example 7.2 The credit information service provider X has to provide a complete set of
Business Background Information of company SAP to customer Y. This has to be done
immediately after receiving the customer’s request. Therefore, we derive the following formal
definition of the Provider Obligation:

Obligation(ProviderObligationX)

Provider(X)

DnS:defines(ProviderObligationX, X)

InformationGood(BBIn f ormation/SAP)

DnS:defines(ProviderObligationX, BBIn f ormation/SAP)

ServiceTask(Deliver)
DnS:defines(ProviderObligationX, Deliver)
ResponseTime(ResponseTimeX)

DnS:defines(ProviderObligationX, ResponseTimeX)

ResponseTimeValue(‘immediately‘)
DnS:valuedBy(ResponseTimeX, ‘immediately‘)
DnS:obligedTo(X, Trans f er)
DnS:anakasticDutyTowards(BBIn f ormation/SAP, Trans f er)
DnS:requisiteFor(responseTimeX, Trans f er)

Assume that the requester monitored the execution of the contract Con-
tractX with the ProviderObligation above and observed the MonitoringInformation

150 CHAPTER 7: CONTRACTING AND CONTRACT MONITORING

shown in Figure 6.11 on page 133. Based on this MonitoringInformation-instance,
the requester evaluates the contract using the satisfiesContract-predicate. To find
out if the contract is fulfilled, the following SPARQL-query has to be executed:

SELECT ?M(R41)
WHERE {

?M rdf:type CCO:MonitoringInformation .
?M CCO:satisfiesContract ContractX .}

If the query returns the MonitoringInformation shown in Figure 6.11, the con-
tract has been fulfilled correctly. Otherwise there is at least one obligation violated.
However, the above query does not give evidence about the reason of the violation.
In order to determine the legal consequences of a violation one might want to spec-
ify more fine-grained questions. In legal practise, typically a scheme of questions
is applied to determine the source of violation. The following questions exemplify
this approach using the obligation defined in Example 7.2:

1. Was the requested trading object delivered? To answer this question,
we have to find out whether information is delivered by the provider at
all, and - in case it is - whether the delivered information is complete
with respect to the agreement in the CCO:ContractDescription . We realize
this by comparing the delivered CSO:ComputationalObject contained in the
CCO:MonitoringInformation with the CCO:InformationGood agreed on in
the contract. Assuming the hierarchy of credit information presented in Exam-
ple 4.1, the following match -predicate might be defined for credit information:

match(cr,co)←CreditInformation(cr),CreditInformation(co),(R42)
subsumes(co,cr)

We thus allow the provider to send more information than required, while
making sure that at least the information agreed on is provided. Based on this
match -predicate, we determine whether a delivered information is correct as
follows:

correctInformation(m,c)← CCO:MonitoringInformation(m),(R43)
CCO:ProviderObligation(c),DnS:defines(c, t),
CCO:InformationGood(t),DnS:playedBy(t,d1),
CSO:Data(d1),DnS:settingFor(m,d2),
CSO:Data(d2),match(d1,d2)

7.2 Automated Monitoring of Web Service Contracts 151

Alternatively, Rule (R43) could also be expressed by means of a SPARQL-
query. This would be more appropriate, e.g., if the evaluation is done only
once.

2. Was the correct service task executed? In a similar way, we can also an-
swer this question by formulating the correctActivity-rule. This time the exe-
cuted CSO:ComputationalActivity stated in the CCO:MonitoringInformation
is compared to the CSO:ComputationalActivity agreed upon in the
CCO:ContractDescription . Again we use a match -predicate that relies on the
subsumes-predicate. Thereby, we allow a general activity description in the
contract to be fulfilled by a more specific activity. For example, a contract
might specify that certain information has to be transferred. How this should
be done is not specified exactly. Therefore, sending by mail or telling on the
phone might be admissible since both are certain types for delivering informa-
tion.

correctActivity(m,c)← CCO:MonitoringInformation(m),(R44)
CCO:ProviderObligation(c),DnS:defines(c, t),
CCO:ServiceTask(t),DnS:sequences(t, a1),
CSO:ComputationalActivity(a1),DnS:settingFor(m, a2),
CSO:ComputationalActivity(a2),match(a1, a2)

3. Was the task executed within the required timeframe? According to the
CCO:ProviderObligation a CCO:ServiceTask has to be executed within a cer-
tain time, which is denoted by ResponseTime. This is verified by the rule be-
low, which compares the monitored execution time with the ResponseTime in
the CCO:ContractDescription .

activityInTime(m,c)← CCO:MonitoringInformation(m),(R45)
CCO:ProviderObligation(c),DnS:defines(c, t),
CCO:ServiceTask(t),ResponseTime(d),
DnS:requisiteFor(d, t),DnS:valuedBy(d,r1),
DnS:settingFor(x, a),CSO:ComputationalActivity(a),
DOLCE:inherentIn(r2, a),DOLCE:Region(r2),
interpretRT(r1,r2),

However, since ResponseTime is expressed by a linguistic term rather than
a DOLCE:Temporal-Region, we need an interpretation rule, which specifies
how the linguistic terms should be interpreted. We use the interpretRT -
predicate to realize this interpretation independent from Rule (R45). This is
important since the interpretation of the linguistic terms may change from
time to time (e.g. due to new court decisions) and thus Rule (R46) has to be

152 CHAPTER 7: CONTRACTING AND CONTRACT MONITORING

adapted. Note that the interpretation of the term “immediately” is not content
of the contract but rather common sense knowledge modeled by a company’s
lawyers.

interpretRT(r1,r2)←swrlb:equal(r1, ‘immediately‘),match(‘ < 5s‘,r2)(R46)

Rule (R46) compares the required response time specified in the contract
with the static term ‘immediately’ and in case of a match uses the static
DOLCE:Temporal-Region ‘< 5s’ to judge the observed response time in the
MonitoringInformation . This is realized using the match -predicate applicable
for two DOLCE:Temporal-Regions.

Of course, similar questions about other elements of the obligations can be for-
mulated and expressed via rules or queries. Thereby, a company- and domain-
specific evaluation process can be assembled by including interpretation rules
where necessary.

7.3 Conclusion

In this chapter, we have presented algorithms for dynamic contracting of Web ser-
vices. One of the major contributions is the seamless integration of semantic match-
ing algorithms with efficient optimization techniques. Thereby, we strive for a con-
tracting mechanism that can be executed at runtime even for highly configurable of-
fers and requests (Requirements (R9) and (R10)). In addition, customizable match-
ing rules are used to define how attribute values of a certain attribute should be
matched. Since this approach enables adding attributes to the vocabulary during
runtime, it facilitates flexibility in the system (Requirement (R8)). Moreover, in con-
trast to most related work, it also does not require a universal and predefined match-
ing algorithm, which we believe is in many cases not realistic; particularly if existing
domain ontologies are used for describing attribute values.

Since our contracting mechanism features automated customization of Web ser-
vices to the requester’s needs (Requirement (R7)), each service invocation might be
executed with a different underlying contract (Requirement (R11)). For example,
each contract might specify different quality of service levels. To support the par-
ticipant with managing these heterogeneous contracts, a monitoring mechanism for
contracts expressed with the Core Contract Ontology has been introduced, which
can be adapted to different scenarios in a flexible way by formalizing legal contract
evaluation rules.

In this part, we have presented the design of a semantic Web service market. In
the next part, a concrete implementation of this market design is presented and it
is discussed whether the requirements identified in Chapter 4 are addressed appro-
priately.

Part III

Realization and Evaluation

Chapter 8

Implementation

Having introduced the ontological models for representing offers, requests and con-
tracts as well as the Web service contracting and contract monitoring process, in this
chapter, a prototype that implements this process is presented. First, the general
architecture of the system is presented in Section 8.1. Subsequently, the individual
components of the architecture are discussed: Section 8.2 introduces the business
process component which provides the means for designing and executing Web ser-
vices in a business process. Section 8.3 presents a tool for the specification of policies.
Policies are a part of requests and offers. They are used during the execution of the
business process in order to bind Web services in a flexible way. Section 8.4 intro-
duces the Web service market platform, which is used to bring service providers
and requesters together. Finally, in Section 8.5, we exemplify how the prototype can
be used in a mobile and grid scenario.

Implementation details of the prototype have been published in conference pro-
ceedings and journals [LS06, LA07, Aga07, LAGS07]. The prototype is available for
download at http://kaonws.sourceforge.net.

8.1 General Architecture

The ontologies and algorithms described in this work are implemented in the
KArlsruhe Semantic Web Services Framework (KASWS).1 As shown in Figure 8.1, the
prototype consists of two components: the KASWS client residing at the provider
and requester side, and the KASWS server that can be operated by a requester,
provider or a third party depending on the concrete scenario.

The KASWS client facilitates the specification of Web service offers as well as
requests and enables the automated execution of the selected Web services, their
monitoring and contract evaluation. For specifying the client’s business process,
a standard business process designer (e.g. ActiveBPEL Designerr, ORACLE Busi-
ness Process Managerr) is used. This design is augmented by a business process
execution engine and a bid specification tool. This tool enables creating goal as well
as utility function policies that can be used within the business process designer
to specify the client’s desired binding. In addition, the tool allows managing the
ontologies on the server, e.g. by specify mappings between ontologies or adding

1More information about the KASWS prototype can be found on http://kasws.
sourceforge.net.

156 CHAPTER 8: IMPLEMENTATION

Server

Web Crawler

Repository

Client
Upload/Edit

Service Description

Map Ontologies

Query Repository

KAON2
API &

Reasoner
Selection/
Auction

Web
Service

Query
Repository

K
A
S
W
S

A
P
ITranslate

to BPEL

lpsolve

Define
Request

Figure 8.1: General Architecture.

matching rules. The business process and the policy specification components are
discussed in Section 8.2 and 8.3, respectively.

The KASWS server provides a repository for Web service offers and requests
together with algorithms for determining matches and allocations. This compo-
nent thus represents a market platform that enables flexible binding of services in
a service-oriented architecture by connecting service providers and requesters. In
order to perform the matching, an ontology reasoner is required for comparing the
attribute values defined in offers and requests. For our implementation, we use
the KAON22 API and reasoner. To determine the allocation, a linear programming
solver is added that can be invoked by the reasoner on demand. In the prototype we
use the open source solver lpsolve3. The server component can be accessed either
via Web service interfaces or via the client tool. A more detailed description of the
component can be found in Section 8.4.

8.2 Business Process Component

As discussed in Section 2.1.3, WS-BPEL [OAS06a] has become a quasi-standard for
specifying and executing service-based business processes. We thus rely on existing
WS-BPEL engines instead of taking care of the business process execution ourself.
Therefore, a standard WS-BPEL engine and a WS-BPEL process designer have been
added to the client tool. A WS-BPEL specification defines which services should be
executed in which order. However, currently WS-BPEL only supports two forms of
binding mechanisms: “Binding by Inclusion” and “Binding by Reference” (cf. Sec-
tion 2.1.2). Since “Binding by Constraint” is not supported, dynamic binding mech-
anisms cannot be realized [PA05]. In order to enable dynamic service selection at
runtime, we propose modeling a dynamic invocation task in the WS-BPEL process
as two subsequent process tasks, where the first task is responsible for determining
(e.g. selecting) the Web service that is executed in the second task. For binding a
Web service during the runtime of the process, we utilize the distinction between
ports and port types. This feature allows us to dynamically re-assign end points as
long as the service candidates have an identical interface, i.e. port type.

2Available for download at http://kaon2.semanticweb.org/.
3Available for download at http://sourceforge.net/projects/lpsolve

8.2 Business Process Component 157

Figure 8.2: Extended WS-BPEL process for dynamic Web service binding.

This approach is exemplified in Figure 8.2 by means of the route planning exam-
ple (Example 4.3). Here the route planning service should be chosen dynamically,
since the required Web service depends on the location of the customer. In contrast
to the process used in Example 4.3, the ‘InvokeRoutePlanning’ task is modeled us-
ing two subtasks in Figure 8.2: ‘SelectRoutePlanningService’ and ‘InvokeRoutePlan-
ningService’. Both tasks are invocation-tasks, where the former sends a Request to
the server component to get the address of a suitable service and the latter uses
this received address and invokes the actual Web service. We realize the Binding by
Constraint paradigm by specifying a SPARQL query referring to a Request (such as
Query R39 or R40), which is then passed to the server. In this case, SPARQL pro-
vides a standardized language for identifying suitable services without referring to
a concrete name or identifier. Parts of the query are generated at development time
of the process, while others can be added dynamically at runtime.

To illustrate this approach, Listing 8.1 shows an excerpt from the WS-BPEL pro-
cess that implements the business process shown in Figure 8.2. In lines 2-4, the
user’s request is received, the contained clientId is passed to the location service,
where the current country of the user is determined (lines 8-10). Then the SPARQL
query, which statically refers to the Request ns1:RequestOperatorX in the knowl-
edge base, is extended by the context location (lines 12-15) that has been determined
by the location service. That means a SPARQL-request similar to those defined in
(R39)/(R40) is dynamically constructed during the process execution and stored in
the variable routeRequest. This variable is then passed to the server by means of
the provided Web service interfaces. This invocation takes place in lines 18-20. The

158 CHAPTER 8: IMPLEMENTATION

1 ...
2 <receive name="receiveRoute" partnerLink="customer"
3 portType="client:Process" operation="initiate "
4 variable="routeRequest" createInstance="yes"/>
5 <assign name="Assign_Query">
6 <copy> <from variable="routeRequest" part="user"/>
7 <to variable="clientID"/>
8 <invoke name="LocationCheck" partnerLink="LocationServicePLT"
9 portType="ns1:LocationService" operation="executeQuery"

10 inputVariable="clientID" outputVariable="location"/>
11 <assign name="Assign_Query">
12 <copy> <from expression=’"concat(string(\"SELECT ?O , ?U WHERE {
13 EVALUATE mmp(ns1:RequestOperatorX, ?O,\"),
14 bpws:getVariableData(’location’,’Country’),string (\",? U) . }\"))" ’/>
15 <to variable="requestQuery" part="queryMessage"/>
16 </copy>
17 </assign>
18 <invoke name="ServiceInvoke" partnerLink="SelectionServicePLT"
19 portType="ns1:SelectionService" operation="executeQuery"
20 inputVariable="requestQuery" outputVariable="responseQuery"/>
21 <assign name="Assign_Port">
22 <copy> <from variable="responseQuery" part="queryResult"/>
23 <to partnerLink="RoutePlanner"/>
24 </copy>
25 </assign>
26 <invoke name="RoutePlanningInvoke" partnerLink="RoutePlanner"
27 portType="ns1:RoutePlanningService" operation="requestRoute"
28 inputVariable="routeRequest" outputVariable="responseRoute"/>
29 ...

Listing 8.1: Flexible binding in WS-BPEL.

server internally executes the contracting process and returns the concluded con-
tract containing the port of the chosen Web service. This port is assigned to the
port type of the following partner link (lines 21-25) and the route planning service
is invoked by passing the original user request containing the start and end point
(lines 26-28) to the selected Web service.

This approach works as long as all Web services being considered have the same
interface, viz., port type definition. In case service candidates have different inter-
faces, dynamic selection requires complex interface mappings, which are currently
not supported by our prototype. In [PA05], an approach for dynamic binding of
services using reflection is presented. However, this technique cannot be used di-
rectly for WS-BPEL. A general discussion of mapping mechanisms between onto-
logical and WSDL interface descriptions (often called grounding mechanisms) can
be found in [KRMF06].

8.3 Bid Specification Component 159

Figure 8.3: Screenshot of the visual policy editor.

8.3 Bid Specification Component

As discussed in the last section, in order to enable dynamic Web service binding,
a query is specified within the process description that defines the policies of the
requester explicitly (Query (R40)) or via a reference to a Request in the repository
(Query (R39)). Therefore, means for the specification of Requests as well as Offers ,
and the corresponding queries are required. These are provided by the bid speci-
fication component. It allows specifying bids and transferring them to the server.
In this context, the domain ontologies that are used can be changed and mapped to
alternative ontologies. For specification of mappings between ontology constructs,
the approach presented in [HM05] is used. The specification of Requests and Offers
involves the modeling of policies. This is supported by a simple visual editor that
enables the definition of utility functions (namely PointBasedFunctions , Piecewise-
LinearFunctions or PatternBasedFunctions) over attributes of a Web service and
to define weights for the different attributes, capturing their relative importance.
Figure 8.3 shows a screenshot of the visual policy editor. Specified policies can be
stored remotely on the server or directly added to the query.

To support arbitrary domain ontologies, SPARQL queries can be defined using
the editor shown in Figure 8.4. The ontology concepts on the left are used to assem-
ble a query in the central panel. The query can be composed by a drag-and-drop
mechanism. Policies can be added to all variables that are connected to variables
typed as CPO:Attributes . They are indicated by a blue circle symbol labeled with a
‘P’. In addition, SPARQL filter conditions can be added using the input field below
the central panel. Once a query is generated, it can either be stored on the server as a

160 CHAPTER 8: IMPLEMENTATION

Figure 8.4: Screenshot of the SPARQL query editor.

Request/Offer , it can be serialized as SPARQL for inclusion in the business process,
or it can be used directly for initiating a Web service selection or auction process.
The buttons ‘Search’ and ‘RFQ-Auction’ are intended for the latter. A Web service
selection results in a ranked list of Web service offers, which is shown on the left
panel below the ‘Search’-button. Each offer can be selected for closer examination.
The offer is displayed with its attributes in the central lower panel. If no suitable ser-
vice is contained in the result list, a subset of offers can be selected as participants in
a procurement auction as described in Section 7.1.2.

8.4 Web Service Market Platform

The server component provides a market platform where providers and requesters
can place their bids in order to conclude a contract. The bids are stored in a repos-
itory. The repository can be seen as a description logic knowledge base. It can be
accessed via the inference engine KAON2. KAON2 is chosen because it supports
a suitable description logic fragment (SHIQ(D)) as well as the DL-safe subset of
SWRL. SHIQ(D) corresponds to the logic fragment required for expressing OWL-
DL ontologies (SHOIN (D)) without the construct of nominals (i.e. enumerated
classes), but including qualified number restrictions. KAON2 thus supports the for-
malism required for our bid and contract descriptions. In addition, KAON2 has
been optimized for query answering [MS06], which is the main functionality re-
quired for implementing the Web service market.

A single Web service market platform may support several different allocation
mechanisms. In order to support this feature, bids stored in the repository are as-
signed to TradingComponents, which virtually segment the bids into distinct mar-
kets. We therefore extend the ontology by the following axioms:

8.5 Application Example 161

TradingComponent⊑DnS:SituationDescription ⊓(A79)
=1 hasIdentifier.XSD:String ⊓ ∃DOLCE:part.Bid

hasIdentifier⊑DOLCE:locatedIn(A80)

According to Axiom (A79), a TradingComponent contains at least one Bid and is
identified uniquely by a string. This allows an allocation algorithm to consider only
a subset of bids assigned to a certain TradingComponent. The approach can not only
be used to provide different allocation mechanisms based on a single repository, it
also provides means for distributing a single market instance into independent sub-
markets. As shown in [LS06], such an approach could considerably improve scal-
ability of a complex allocation mechanism such as a multi-attribute combinatorial
exchange.

The allocation algorithms are also (partly) modeled in the knowledge base. For
example, Rules (R34) - (R38) specify how the ranking should be determined in a
Web service selection using KAON2. Since usually description logic reasoners are
not designed for handling numbers efficiently, calculations are executed using built-
in predicates such as swrlb:add or swrlb:divide. Rule (R38) even requires a linear
programming solver to calculate the ranking. This is realized by providing the built-
in optLP, which executes the semantic matching of attribute values and then inter-
nally invokes a linear solver. In our current implementation we use the open-source
solver lpsolve Version 5.5.

For settings in which the KASWS server cannot be accessed via the bid specifica-
tion tool, an additional Web service interface is provided. This interface enables ac-
cessing the server via the SOAP protocol and thus allows a direct access from a BPEL
execution engine, which is utilized in the business process specified above (Listing
8.1). Different allocation mechanisms might however require different operations
in the Web service interface. The most simple interface provides only two opera-
tions: (i) executeUpdate which is used for adding/deleting Offers and Requests and
(ii) executeQuery which is used for issuing a SPARQL query to the repository. This
two operations are exemplified by the excerpt from the WSDL document shown
in Listing 8.2. The interface (i.e. port type) is defined in lines 2-11. It contains the
two operations executeQuery and executeUpdate and defines the corresponding in-
puts and outputs. In addition, the concrete SOAP serialization of the messages is
defined in lines 12-25.

Due to the lack of a publicly available UDDI repositories, a Web crawler is added
to the server tool that automatically collects WSDL files from the Web and trans-
forms HTML forms to offer descriptions.

8.5 Application Example

In order to show how the prototype can be used in a real world scenario, we outline
two applications for a mobile and grid setting.

162 CHAPTER 8: IMPLEMENTATION

1 ...
2 <portType name="SelectionService">
3 <operation name="executeQuery">
4 <input message="tns:executeQuery"></input>
5 <output message="tns:executeQueryResponse"></output>
6 </operation>
7 <operation name="executeUpdate">
8 <input message="tns:executeUpdate"></input>
9 <output message="tns:executeUpdateResponse"></output>

10 </operation>
11 </portType>
12 <binding name="SelectionServicePortBinding" type="tns:SelectionService">
13 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="

document"></soap:binding>
14 <operation name="executeQuery">
15 <soap:operation soapAction=""></soap:operation>
16 <input><soap:body use="literal"></soap:body></input>
17 <output><soap:body use="literal"></soap:body></output>
18 </operation>
19 <operation name="executeUpdate">
20 <soap:operation soapAction=""></soap:operation>
21 <input><soap:body use="literal"></soap:body></input>
22 <output><soap:body use="literal"></soap:body></output>
23 </operation>
24 </binding>
25 ...

Listing 8.2: Web service interface (WSDL) of the server component.

8.5.1 Automated Web Service Selection for Mobile Applications

In order to illustrate the application of the system, we come back to our initial sce-
nario described in Example 4.3, where a mobile phone user sends a route request
to the network operator. Depending on the location of the customer the operator
selects dynamically an appropriate route planning service, invokes this service, and
finally forwards the route to the customer. By means of our prototype, the scenario
can be implemented as follows:

1. First, the network operator implements its business process using the BPEL
designer. This process might correspond to the process depicted in Figure 8.2.
In this context, each dynamic invocation of a Web service has to consist of two
invocations: one invocation of the selection service and one of the actual Web
service.

2. In a second step, the network operator has to define preferences and condi-
tions for Web services that should be selected dynamically. This can be done
by means of the bid specification tool. It supports the network operator in
defining the request including policies. This request is then serialized as a
SPARQL-query and the query-string is used as input of the service selection
invocation. In doing so, the customer’s location derived from the previous
Web service invocation has to be added as context to the query.

8.5 Application Example 163

3. Once the process has been finalized, it is serialized using the standard WS-
BPEL XML syntax, which is understood by standard WS-BPEL execution en-
gines. The serialization corresponding to Figure 8.2 is shown in Listing 8.1.

4. This process specification is then deployed on the network operator’s Web
server, which is augmented by a WS-BPEL engine. Thus, the WS-BPEL process
itself is exposed as a Web service to the customers. The business process is now
usable by customers.

5. Once a customer sends a route request with the correct input data, the execu-
tion of business process is triggered. That means, in the first step the location
of the customer is determined, the location is added as context to the query
and then the query is send to the server using the executeQuery-operation de-
fined in the WSDL file (compare Listing 8.2).

6. Within the server component the query is forwarded to the KAON2-reasoner,
which executes the query on the repository. In order to rank the returned of-
fers, a linear program might be generated and solved by using the lpsolve-
libraries. The Web service ranked first is returned to the requester via the out-
put variable of the selection Web service (denoted by executeQueryResponse in
Listing 8.2). In enterprise and grid scenarios, a contract formation algorithm
as outlined in Section 7.1.3 might be executed. In such cases, a ContractDe-
scription instance is returned as result from the server.

7. Once the result of the selection service is received, the port address of the route
planning service to be invoked can be assigned to the subsequent invocation
operation.

8. Then the actual route planning Web service is invoked by the WS-BPEL exe-
cution engine, which yields a route that can be returned to the customer and
displayed on the mobile device.

It is straightforward to extend this small example to a broader application sce-
nario, where a lot of other services can be provided to the customer, such as event,
cinema, traffic, weather, music or stock quote services. For example, compare the
services listed at service repositories such as WebRPC4 or programmableweb5. We-
bRPC also provides programmatic access to quality data about latency, availability
and customer ratings of Web services that can be directly used in the decision mak-
ing process. Therefore, the network operator simply has to define the corresponding
policies over these aspects.

The route planning example illustrates the application of the prototype within
a mobile scenario using the Web service selection algorithm. In a similar manner
other allocation algorithms can also be plugged in. This is realized by reformulating
the query that is sent to the server or by using an alternative Web service inter-
face. For example, in the case of an auction, it might be more convenient to send
Request and Offer instances to the server, where the allocation is then determined
by (successively) querying the knowledge base. This is addressed by the following
implementation of a grid service market.

4http://www.webrpc.com/
5http://www.programmableweb.com/

164 CHAPTER 8: IMPLEMENTATION

Server

Repository

KAON2
API &

Reasoner
Auction

Web
Service

K
A
S
W
S

A
P
I

lpsolveMACE

Pre-
processor

Market
Administrator

Figure 8.5: Prototype extended by auction components.

8.5.2 An Ontology-based Exchange for Grid Services

In order to adapt the allocation mechanism for grid services, two major extensions
to the service repository are required: on the one hand, we have to be able to deal
with limited resources which require more complex allocation mechanisms sup-
porting combinatorial bids, and on the other hand, a contracting phase that leads
to legally enforceable agreements. The former is realized by generalizing the Lo-
cal Allocation Problem (Definition 5.11) to the multi-attribute combinatorial double
auction (MACE) presented in [SNVW06]. This mechanism meets the requirements
by allowing simultaneous trading of providers as well as requesters, and supports
combinatorial as well as multi-attributive bid descriptions. However, existing im-
plementations of this mechanism rely on pure syntactic matching of bids and thus
do not support the interoperability requirement.

The problem can be addressed by an additional preprocessing step where
the Multi-attribute Matching Problem (Definition 5.10) is calculated for each
offer/request-combination using the matching rules contained in the repository.
Thus, semantic matching is automatically used where appropriate. Based on these
results, the original auction implementation can be used. Since a combinatorial dou-
ble auction is usually computationally demanding and exhibits an exponential run-
time with respect to the offers and requests in the market, a splitting approach is
used where the overall market is divided into sub-markets that can be solved inde-
pendently (compare the TradingComponents introduced Section 8.4).

In the following, we briefly sketch how the system is realized using the proto-
type described above. Figure 8.5 refines the architectural overview shown in Figure
8.1 by adding the components required for implementing the combinatorial auction.
These components are the Market Administrator, Preprocessor, and the original imple-
mentation of a combinatorial auction called MACE. For a detailed description of the
system the interested reader is referred to [LS06].

Market Administrator: The Market Administrator receives Bid instances from the
Web service interface and adds them to the repository. In this context, each
instance is assigned to exactly one TradingComponent. As defined by Axiom
(A79), a TradingComponent clusters Bid instances into disjoint sets, which are
subsequently handled by independent auction instances. Thereby, the number
of bids per auction can be reduced. To avoid loosing matches, the clustering

8.5 Application Example 165

algorithm has to make sure that all offers and requests that could potentially
be matched are assigned to the same TradingComponent. An algorithm which
splits the auction according to input and output of a service is presented in
[LS06].

As discussed in Chapter 4, grid scenarios usually require a contract forma-
tion step, where agreements are transformed into legally enforceable contracts.
This functionality is also provided by the Market Administrator, based on the
results received from the auction component.

Preprocessor: Once a new Bid comes into the system, the preprocessor executes
two tasks: (i) semantic preprocessing to solve the MMP for all relevant Of-
fer/Request-combinations using Query R39, where semantic matches be-
tween attribute values are considered. (ii) Subsequently, the results are used
to generate the bids according to the bidding syntax of the MACE system. We
call this second step syntactic preprocessing. By transforming OWL-syntax into
the bidding language of MACE, the formal semantics is lost. However, since
matching of attribute values is already carried out in the semantic preprocess-
ing step and solving the Combinatorial Auction Problem (as defined in Section
5.3.2) does not require logical reasoning any more, this does not have any dis-
advantages.

MACE: MACE is an implementation of the multi-attribute combinatorial double
auction and solves an extended version of the Combinatorial Auction Prob-
lem. It supports only the datatype matching operators ‘≤’/‘<’ or ‘=’/t’ 6=’
and therefore a semantic as well as syntactic preprocessing step is required in
order to ensure interoperability and Web-compliance.

Since the prototype returns formal contracts to the winning parties and most WS-
BPEL engines provide monitoring information about the process execution (e.g. the
ORACLE Business Process Managerr), which also contains information about each
Web service invocation, a compliance checking algorithm as outlined in Section 7.2
can be applied. This provides some insight into the performance of the different
providers that could be used, e.g., for future service selections.

After presenting a prototype that implements a semantic Web service market
in this chapter, we discuss in the next chapter whether our approach adequately
addresses the requirements postulated in Chapter 4.

166 CHAPTER 8: IMPLEMENTATION

Chapter 9

Discussion and Evaluation

In this chapter, we revisit the design requirements specified in Chapter 4, and dis-
cuss how they are addressed by our system. This step can be seen as a part of the
evaluation phase in the market engineering process. In a nutshell, as described in
Section 1.2, the recipe we use in this work for developing a Web service market is as
follows:

1. Identify a suitable language for the market and express the required vocabu-
lary with the chosen language.

2. Define contracting and contract monitoring mechanisms for the specified vo-
cabulary and the chosen language.

In the first part of this chapter (Section 9.1), we focus on requirements that can be ad-
dressed by choosing an adequate representation language. Subsequently, in Section
9.2 we assess whether the vocabulary defined in the ontology provides the required
expressiveness for context-dependent, multi-attributive and combinatorial bids as
well as legally reliable contracts. Having addressed language and vocabulary re-
quirements, we focus on the design requirements of the contracting mechanisms in
Section 9.3. We adopt a more quantitative view, evaluating the communication effi-
ciency, the computational tractability and the optimality of our approach by means
of a simulation.

Evaluation results have been partly published in conference proceedings. The
results of the performance evaluation without efficient optimization techniques are
taken from [LA07] and the results using efficient optimization techniques from
[LAGS07].

9.1 Choice of Language

A major contribution of this work is the development of an ontology framework for
expressing Web service offers, requests and contracts. In the following, we discuss
how the use of an ontology language in a service-oriented architecture facilitates
Web compliance and interoperability. In fact, ontologies can be seen as the main
enabler of these features.

168 CHAPTER 9: DISCUSSION AND EVALUATION

(R1) Web Compliance

Throughout this work, the ontology language OWL-DL and the DL-safe fragment
of the rule language SWRL is used. As discussed in Section 2.4.2, both logical for-
malisms are specifically designed for the Web and thus augment the facilities for
expressing the meaning of terms provided by XML. OWL documents can thus be
exchanged between computers having different operating systems and running dif-
ferent applications. By using URIs (Universal Resource Identifier) ontologies enable
the unique identification of resources in the Web. URIs are one of the essential de-
sign principles of the World Wide Web. Another important feature inherited from
XML is the concept of namespaces for denoting unambiguous information spaces.
URIs and namespaces support disambiguation of resources having the same name
and thus the modularization of ontologies into distinct modules. As there are many
different domains and applications with possibly overlapping vocabularies, modu-
larization is essential for ontologies on the Web. It enables reuse of ontologies and
avoids over-commitment (see Section 4.2.1 on page 42). Since SWRL rules can be se-
rialized with OWL/XML or OWL/RDF syntax, they are also compliant to existing
Web standards.

Regarding implementation, our platform resides on top of existing Web service
infrastructure and thus reuses existing W3C/OASIS standards and recommenda-
tions. Most notably, WS-BPEL is used for specifying the client process, which iden-
tifies individual services via WSDL. In order to enable dynamic assignment of ports
to a WSDL port type, we rely on WS-Addressing [W3C05]. For conveying messages
between participants in the system, traditional SOAP messages are used on top of
the HTTP protocol. Therefore, no proprietary extensions are introduced and the sys-
tem can be seen as fully Web-compliant in a sense that only existing standards and
recommendations are used.

(R6) Interoperability

Ontologies can be seen as state-of-the-art for enabling interoperability among het-
erogeneous information systems over the Web. By combining XML-based syntax
with a logical formalism that unambiguously captures its semantics, semantically
equivalent terms can be determined automatically even if they are represented by
different terms. Examples of how inferencing can be used in the matching process
of services are given in Examples 2.1 and 7.1.1. This matching technique particu-
larly addresses the common case, in which providers and requesters define their
services on different levels of abstractions. Utilizing concept hierarchies in the
matching process allows us to overcome this problem. Moreover, policies can be
defined on an abstract level, which is especially important if not all possible alter-
natives are known a priori. For example, a requester could use the following axiom
HighSecEncryption ⊑ EncryptionMethod ⊓ ∃keylength.{> 1024bit} to specify that
she generally accepts high security encryption methods. Given this definition, all
encryption methods with a shorter key length are considered inappropriate without
requiring the requester to know the exact encryption mechanism beforehand. Such
a mechanism is important for providers since it allows them to add new features to
the service and still be “discoverable” by customers.

Another important feature of a language consisting of OWL-DL and DL-safe
rules is that it allows the specification of complex mappings between ontology con-

9.2 Expressiveness of Vocabulary 169

structs (possible from different source ontologies). To some extent, simple mappings
can also be determined automatically [Ehr06]. For example, using the mapping sys-
tem presented in [HM05], a participant joining the Web service market may align
her local ontology to ontologies in the market and, thereby enabling the matching
of her request/offer to the ones already available in the market.

9.2 Expressiveness of Vocabulary

The ontology language OWL-DL and the rule language (DL-safe) SWRL has been
used to define an ontology framework for Web based markets. This framework
provides an expressive vocabulary for specifying Web service offers, requests and
contracts. In the following, we investigate whether the framework supports multi-
attribute combinatorial bids containing context-dependent preferences. In addition,
we discuss how automation and a high degree of flexibility is enabled by our ontol-
ogy framework.

(R2) Multi-attribute Descriptions

Configurability of products makes high demands on the bidding language in terms
of the exponential amount of possibilities that have to be captured by a bid. We ad-
dress this problem in Chapter 5 by introducing a multi-attribute Web service model,
in which the CPO:Attributes capture the different dimensions by which a service
can be differentiated. In addition, prices are expressed via functions over these at-
tributes, which enables efficient representation of highly configurable services. One
of the major contributions of this work is to specify a vocabulary that enables ex-
pressing this model with OWL and DL-safe rules. This is realized by the Core Policy
Ontology and the Core Ontology of Bids introduced in Chapter 6. These modules al-
low the market participants to express their bids without enumerating all acceptable
trades. A detailed discussion how this approach features communication efficiency
can be found in Section 9.3.

(R3) Combinatorial Requests and Offers

Some allocation mechanisms require the specification of sub- and superaddi-
tive valuations over combinations of Web services. The Core Bidding Ontol-
ogy provides the vocabulary for expressing such combinatorial offers and re-
quests. This is realized by the concept COB:BundleBid in the ontology, which
comprises COB:ANDBids , COB:ORBids and COB:XORBids . COB:ANDBids are
the ontological primitives for modeling complementarities (i.e. superadditivity)
and COB:XORBids for modeling substitutes (i.e. subadditivity). Hence, we can
express arbitrary OR/XOR-formulae of the form (b1 ∨ b2) or (b1 ⊕ b2), where
b1 and b2 may represent COB:AtomicBids , COB:ANDBids , or recursively again
COB:ORBids or COB:XORBids . While XOR-bids alone can represent all valua-
tions [Nis00, Prop. 3.2], for some cases an exponential number of contained Atom-
icBids is required. For example, additive valuation on m items requires at least 2m

COB:AtomicBid instances, whereas a representation of m COB:AtomicBids is pos-
sible using m COB:ORBids . Thus, a combination of OR- and XOR-bids is required

170 CHAPTER 9: DISCUSSION AND EVALUATION

for a succinct representation of bids. By featuring arbitrary OR/XOR-formulae, this
is provided by the Core Ontology of Bids.

(R4) Context Dependency

As discussed in Chapter 4, especially in mobile scenarios preferences of a user
may depend heavily on the current context, which could include the current
time, location, activity, etc. Although these properties can be seen as typical at-
tributes in the decision problem, ontologically we distinguish between charac-
teristics of the Web service and characteristics of the environment in which the
decision is taken. While the former are modeled as CPO:Attributes forming a
CPO:Configuration , the latter are modeled as CPO:ContextDimensions forming a
CPO:Context . This distinction is important, since the CPO:Context is usually given,
while the CPO:Configuration can be freely chosen. Preferential dependency be-
tween CPO:Attributes and CPO:ContextDimensions can be modeled in the Core
Policy Ontology by defining that certain Preferences are only applicable in a certain
Context . This means scoring and pricing functions can still be modeled additively,
while still capturing their dependency on the context.

(R7) Automation

Automation requires machines making decisions without human intervention. As
a first condition, the machine has to be able to interpret the different decision alter-
natives and criteria, which in turn requires a machine-understandable description
of them. In our approach, this is provided by an underlying ontology language.
As a second condition, the machine needs information on how to make decisions
in a certain situation. In our approach this information is provided by means of
CPO:PolicyDescriptions . They formalize the guidelines of the system owner in a
machine-interpretable format and thus enable autonomous decisions by the system.
We introduced the notion of goal policies which capture hard constraints that have
to be fulfilled and thus restrict the decision space of the system. Moreover, we in-
troduced utility function policies as a means for representing preferences. By means
of utility function policies the machine is able to arrange the alternatives in a pref-
erence structure, which enables the machine to make optimal decisions on behalf of
the user.

(R8) Flexibility

Due to the open nature of the Web service environment, flexibility is required in
order to adapt the system to changing Web service types, participants, or other en-
vironmental conditions. Such adaption might require rather small changes, such
as introducing new CPO:Attributes , or might involve a considerable redesign of
a mechanisms, e.g. changing from Web service selection to an auction-based ap-
proach. Our system facilitates both types of changes through declarative matching
and allocation rules. By leveraging declarative languages, we define the parts that
may change frequently using declarative rules. Consequently, important parts of
the algorithms are defined by means of DL-safe rules that can be easily changed
during runtime of the system. For example, Rules (R3), (R4) and (R29) declaratively

9.3 Design of Mechanisms 171

define how certain CPO:Attributes should be matched. Once new Attributes are
introduced, a corresponding matching rule is added or, alternatively, the concept of
Attribute hierarchies is used to define the type of Attribute and thus also the way
how it should be matched. For example, Rule (R30) defines the matching rule for
QoSAttributes. New quality of service attributes can be introduced as specialization
of QoSAttribute and, in doing this, they are automatically matched with the corre-
sponding match predicate. Similarly, declarative allocation rules are defined that
specify how requests and offers are allocated to each other. For example, in case
of Web service selection, the allocation rule can be expressed directly in the query
(Query (R39)) formalizing the Local Allocation Problem.

9.3 Design of Mechanisms

After having discussed whether the ontology language and the vocabulary ex-
pressed via this language meets our requirements, we now focus on the design of
the mechanism in terms of computational tractability, communication efficiency and
optimality. In contrast to the previous requirements, they are not amendable to a
qualitative analysis. Instead, we do a quantitative analysis using the indicators stor-
age space, performance and completeness of the results. Although a theoretical analysis
of the time and space complexity are a first indication for practical applicability of
the mechanism, to assess communication efficiency and computational tractability
an absolute measure of performance and required storage space is needed that also
includes possible side-effects that discloses potential software (development) prob-
lems. The latter is important since an efficient algorithm is easily implemented in an
inefficient way, which may lead to considerable performance problems. In order to
judge the optimality of the results, we have to investigate whether the allocation al-
gorithm is complete in a sense that all relevant matches are considered, and whether
the allocation optimizes the goal of the market.

In order to measure the compactness of our bid representation, the performance
of our matching algorithms and the completeness of the results, a simulation is con-
ducted in the following. The concrete setup of the simulation is described in Section
9.3.1, before we present insights into the results of the simulation. The compactness
of the bid representation is discussed in Section 9.3.2, the performance of service se-
lection in 9.3.3 and the completeness of the results in Section 9.3.4. Finally, the results
are interpreted and discussed with respect to the requirements in Section 9.3.5.

9.3.1 Simulation Setup

Testing the system by means of a simulation first requires to generate realistic test
data, which in our case breaks down to service descriptions and bids involving these
descriptions. Reviewing related literature on Web service selection algorithms re-
veals a lack of suitable service descriptions, especially, descriptions involving mul-
tiple attributes. In fact, we found only two approaches that have been quantita-
tively evaluated. The first work presented in [LNZ04] is evaluated by means of
a hypothetical phone service market. They consider two providers which differ
in price (specified in Dollar), transaction support (“yes”/“no”), time out period
(microsecond), compensation rate (percent), penalty rate (percent), execution du-

172 CHAPTER 9: DISCUSSION AND EVALUATION

Offer_John : AtomicBid

RouteServicePolicy : CPO:PolicyDescription

definesPolicy

PriceLimit : Price

DnS:defines

Offer_John : AtomicBid

$2:PriceValue

PriceLimit : Price

Conf1 : CPO:Configuration

DnS:defines

DnS:settingFor

DOLCE:properPart
John'sTrade : TradeSituation

DnS:valuedBy
DnS:satisfiedBy

Figure 9.1: Comparing policy-based and enumeration-based representation of Bids .

ration (micro-second) and reputation (rank value in [0;5]). The concrete attribute
values of their services are shown in the table below (Provider “ABC” and “BTT”).
The second work containing a quantitative analysis of the presented selection algo-
rithm is [WVKT06]. They use also the same dataset, but add additional hypothetic
providers, which are denoted by “A1” and “A2” and are shown in row 3 and 4 of
Table 9.1. Both approaches do not consider customizable services, but focus only
on selecting one provider for a given request without considering different config-
urations. Due to the small size of the dataset, obviously time and space complexity
have not been an issue.

name price transaction time out compensation penalty execution reputation

ABC 25 “yes” 60 0.5 0.5 100 2.0

BTT 40 “yes” 200 0.8 0.1 40 2.5

A1 28 “yes” 140 0.2 0.8 200 3.0

A2 55 “yes” 180 0.6 0.4 170 4.0

Table 9.1: Experiment dataset obtained from [LNZ04, WVKT06].

In order to adopt the dataset to our requirements, we allow one provider to offer
several configurations within one single offer. This is realized by means of the Core
Ontology of Bids. Hereby two important scenarios can be distinguished:

Enumeration-based Approach: This is the approach taken in most current Web ser-
vice description frameworks. It follows the idea that all acceptable configura-
tions are enumerated in the bid. Using the Core Ontology of Bids, this sce-
nario can be modeled by referencing the acceptable COB:TradeSituation in-
stances directly from the COB:BidDescription . This approach is illustrated
in the right diagram of Figure 9.1. For each combination of COB:Bid and
COB:Configuration the corresponding COB:PriceValue is introduced. For the
enumeration-based approach, the following adaption of Query (R39) can be
used to get all offers and configurations ranked according to the requester’s
utility.

9.3 Design of Mechanisms 173

PREFIX ex: < http://example.org/ns# >(R47)
SELECT ?O, ?C, ?U WHERE {

?O rdf:type COB:Offer ; DnS:satisfiedBy ?TO .
?TO DOLCE:properPart ?CO ; DnS:settingFor ?PO .
ex:RequestUserAnnika DnS:satisfiedBy ?TR .

?TR DOLCE:properPart ?CR ; DnS:settingFor ?PR .
?CO compare ?CR . EVALUATE ?U := swrlb:subtract(?U, ?PR, ?PO) .

}ORDER BY DESC(?U)

Policy-based Approach: Policy-based bid specification is illustrated on the left
hand side of Figure 9.1. According to Definition 5.4 and 5.5, no explicit mod-
eling of trades is required here. Instead, we introduce a PolicyDescription
which implicitly defines the PriceValue by means of Rules (R14)-(R19). For
modeling policies we consider the worst case scenario, in which all Functions
are represented by PointBasedFunctions . PiecewiseLinearFunctions and Pat-
ternBasedFunctions can be seen as more efficient in terms of compactness as
well as performance. For retrieving a set of offers ordered according to the
requester’s preferences we can directly use Query (R39).

In a first simulation, we gradually increase the number of configurations pro-
vided by the offers and measure the storage capacity that is required to represent
them. For each scenario, instances of offers, requests and contexts are randomly
generated using uniform distributions and stored in the knowledge base. Thereby,
we are able to address the following question:

Question A: Does the policy-based bid representation provide more efficient means
for representing highly configurable bids than an enumeration-based ap-
proach?

However, communication efficiency that can be realized through compact bid
representation is not the only goal the system should meet. We also have to pro-
vide means to efficiently query Bids from the repository and thereby execute the
contracting mechanisms. As the way bids are represented might also considerably
influence the performance of matching and allocation, in a second step the query an-
swering time for the Web service selection algorithm triggered either by Query (R47)
or (R39) is measured. Therefore, we send queries to the repository and measure the
time that elapses until we receive the ranked list of configurations and offers. We
take the average of 20 queries. To avoid network delays, the simulation is performed
on a single computer. Thereby, we are able to address the following questions:

Question B.1: How does the evaluation of bids scale if bids are represented by enu-
meration of trades or by means of policies?

Question B.2: Can we improve policy-based bid evaluation in terms of perfor-
mance by replacing matching algorithm [V1] with [V2] or [V3]?

174 CHAPTER 9: DISCUSSION AND EVALUATION

Question B.3: How does the performance of preference- and context-aware selec-
tion strategies compare to suboptimal strategies? How expensive is optimal-
ity?

In order to evaluate how semantic technologies influence the optimality of the
approach, we measure the completeness of the Web service selection algorithm and
investigate how the completeness influences the utility of the participants. In con-
trast to the dataset shown in Table 9.1, we generated normalized prices and scores
in the range [0,1]. Thus, the maximal utility that can be realized by a requester in a
selection is a utility of 1 and the worst a value of −1. Recall, for providers we as-
sume indifference between the different configurations, i.e. the difference between
the reservation price and internal costs is identical for all configurations. Since the
importance of semantic matching depends on the structure of the ontology, we intro-
duce an additional attribute ‘ServiceType’. The attribute values are modeled using
three different ontologies. Each ontology has a different structure in terms of num-
ber of concepts and depth of hierarchy. This allows us to compare the completeness
of our selection algorithm using syntactic and semantic matching and to draw con-
clusions how semantic technologies can improve the results in a Web service market.

Question C.1: Does semantic matching improve the completeness of the results? In
which cases is it particularly important?

Question C.2: How does the completeness of the results influence the utility that
can be realized by the market participants?

In the remainder of this section, the compactness of the bid representation is
evaluated by addressing Questions A (Section 9.3.2), the performance aspects by
answering Questions B (Section 9.3.3) and the completeness of the results by dis-
cussing Questions C (Section 9.3.4). Finally, these evaluation results are discussed
with respect to the requirements communication efficiency, computational tractabil-
ity and optimality in Section 9.3.5.

9.3.2 Compactness of Bid Representation

In this section, we investigate whether the policy-based modeling approach facil-
itates compact representation of bids and therefore improves communication effi-
ciency in the market. We compare the policy-based bid specification with a baseline
approach that enumerates all provided or requested trades in terms of storage ca-
pacity required for representing bids. We evaluate settings that differ in the number
of offers in the repository and in the number of configurations per offer. The differ-
ence between the two scenarios is illustrated in Figure 9.2.

Question A: Does the policy-based bid representation provide more efficient means
for representing highly configurable bids than an enumeration-based approach?

Figure 9.2 shows the number of bytes that are required to represent a multi-attribute
offer using the Core Ontology of Bids.1 Hereby, the dotted lines represents the re-
quired bytes using the policy-based approach and the solid lines the required bytes

1The detailed results are available in the appendix (Table A.1).

9.3 Design of Mechanisms 175

Enumeration-based
Policy-based

0
100

200
300

400
500

Number of offers 0
100

200
300

400

Number of configurations

0

40

80

120

160

Compactness [in MByte]

Figure 9.2: Compactness of bid representation.

using the enumeration-based approach. The number of offers in the repository is
increased step-by-step from 1 to 500 and the number of possible configurations per
offer from 1 to 400. Obviously, already with two configurations the policy-based
approach is more compact than the enumeration-based approach for expressing the
same information. If we further increase the number of configurations per offer,
the number of axioms required for the enumeration-based approach increases lin-
early, which leads to an overall space complexity of O(|O||C|) for the enumeration-
based approach. Because the set C of configurations is defined as C = ∏j Aj (Sec-
tion 5.1), the number of configurations grows exponentially with the number of
attributes. We thus get a space complexity of O(|O|n|A|), where n represents the
maximal number of attribute values of an attribute (n = maxj |Aj|). For the policy-
based approach, in contrast, storage size increases linearly with the number of at-
tribute values ∑j |Aj| and thus this approach exhibits a logarithmic space complex-
ity with respect to the number of configurations. In addition, no PriceValue instance
for each Offer and Configuration instance has to be introduced. The policy-based
approach leads therefore to an overall space complexity of O(|O| + log(|C|)) and
O(|O|+ n|A|). Note that this is the worst case complexity which holds only for dis-
crete attributes. Continuous attributes can be specified even more efficiently with
the policy-based approach using PiecewiseLinearFunctions or PatternBasedFunc-
tions , whereas a representation using enumeration is not possible at all.

Considering the absolute number of bytes required for representing bids, the
problem of enumeration-based bid representation for large scenarios becomes clear.
For example, assuming a scenario where 1000 providers offer a service with 100
configurations the size of the repository amounts to 77 MBytes (Table A.1). Using
policy-based bid generation only about 24 MBytes are required, which makes the
scenario much easier to handle. If PointBasedFunctions are replaced, e.g., by Pat-
ternBasedFunctions a further improvement even below 7 MBytes is possible. There-
fore, one can conclude that policy-based bid specification considerably improves
scalability of bid representation in the presence of highly configurable products.

176 CHAPTER 9: DISCUSSION AND EVALUATION

Enumeration-based Approach
Policy-based Approach

50 100 150 200Number of configuration
40

80
120

160
200

Number of offers

0

4000

8000

12000

Query answering time [in ms]

Figure 9.3: Comparing the evaluation performance of enumeration-based and
policy-based bid representation.

9.3.3 Performance

In the second step, we investigate the performance of bid evaluation. As discussed
above, this is realized by measuring the time between sending Query (R39)/(R47)
and receiving the result set (without considering the communication overhead). In
the following, we first compare the query answering time of the enumeration-based
(Query (R47)) and the policy-based approach (Query (R39)).

Question B.1: How does the evaluation of bids scale if bids are represented by enu-
meration of trades or by means of policies, respectively?

Generally, the performance of the system depends on the following factors:

• the number of Offers that have to be evaluated for each Request ;

• the number of Configurations that are contained in the Offers;

• and the type of Attributes that constitute the Configuration (e.g. the datatype or
structure of the ontology describing the AttributeValue , the match -predicate,
etc.).

Since the same match -rules are used for matching of attribute values in both sce-
narios, the third factor does not influence the comparison between the enumeration-
and policy-based approach. We thus restrict our following analysis of the two sce-
narios on a changing number of Offers and Configurations and use only “flat”
matching rules for comparing the attributes. Performance evaluations of query an-
swering with more complex matching rules is a complementary question and falls
back to the performance of standard description logic operations such as subsump-
tion checking, which have already been elaborated, e.g., in [MS06] for KAON2.

Since the time complexity of query answering is completely predefined by the
ontology/rule language as well as the corresponding reasoning algorithms (imple-
mented in KAON2), theoretically no difference between the complexity of the two

9.3 Design of Mechanisms 177

approaches exists. However, as KAON2 is based on the principle of “graceful degra-
dation” [MSS05] meaning that a user only pays the performance penalty for features
used, in practice their can be considerable performance differences. We have thus
conducted a simulation to measure the performance in practice. Figure 9.3 illus-
trates the average query answering time depending on the number of COB:Offers
and the number of CPO:Configurations per COB:Offer . The complete dataset is
listed in the appendix (Table A.2). For simplicity, we assumed that all provider offer
all possible configurations.

As depicted in Figure 9.3, while query answering in case of enumeration is ex-
tremely fast for small scenarios (i.e. less than 100 configurations or 50 offers), the
lookup time of prices in the knowledge base increases considerably with an increas-
ing size of the A-box. For example, the service selection with 200 Offer instances
each referring to 20 Configuration instances can be done within 194 ms. However,
executing the selection with 225 configurations per offer requires already 10 sec. and,
according to Table A.2, over 6 minutes are required for a setting with 800 offers and
600 configurations. This is clearly too long for service election at runtime.

In case of policy-based descriptions, similar performance characteristics can be
identified, however, on a lower level. In small scenarios, the policy-based approach
is outperformed by the enumeration-based approach, while for medium and large
scenarios the former performs considerably better. Considering 200 offers each with
20 configurations the selection can be done in 301ms, whereas in the case of 800
offers and 600 configurations the selection can be done within 2 minutes. This is
an improvement of 4 minutes compared to the enumeration-based approach. As a
reason for the slowdown, the exponential increase of CBO:TradeSituation instances
(in particular CBO:Price and CBO:PriceValue instances) in the knowledge base can
be identified. As discussed in Section 9.3.2, this is not the case for the policy-based
approach. However, in small scenarios the evaluation of Rules (R14) and (R19) is
more expensive than looking up the right PriceValue instance in the repository. As
discussed in [LA07], this issue can be addressed with intelligent caching algorithms
that, e.g., explicitly store price information of frequently queried configurations. Us-
ing such a strategy, the costly policy evaluations have to be done only once for the
first query.

Although the policy-based approach does provide a considerably improved scal-
ability compared to the enumeration-based approach, it might still not be sufficient
for dynamic service selection at runtime. For example, a mobile phone user usu-
ally does not want to wait for 2 minutes until a suitable route planner is found and
invoked. Therefore, in Section 7.1.1, we introduced two alternative matching vari-
ants that are applicable if not a full ranking of all configurations is required but the
selection is restricted to the best provider with the best configuration

Question B.2: Can we improve policy-based bid evaluation in terms of performance
by replacing matching algorithm [V1] with [V2] or [V3]?

Up to now, we used the matching variant [V1] introduced in Rule (R34) for solving
the Multi-attribute Matching Problem. While featuring a full ranking of configu-
rations, this approach requires to represent all configurations as instances in the
knowledge base and therefore does not support continuous attributes. In addition,
searching this configuration space is exponential in the number of attributes, which
leads to the unfavorable runtime discussed above.

178 CHAPTER 9: DISCUSSION AND EVALUATION

0

5000

10000

15000

20000

0 500 1000 1500 2000

Q
u

er
y

an
sw

er
in

g
ti

m
e

[i
n

m
s]

Number of offers

[V1]

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

[V2]

+

+

+

+

+

+

+

+

+

+

+

[V3]

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

random

+ + +
+ +

+
+

+
+ +

+

Figure 9.4: Performance with 100 configurations and varying number of offers.

Therefore, in Section 7.1.1 two alternative matchmaking variants are introduced,
which address the problem of the exponential search space by restricting the al-
lowed utility function policies to an additive form. As discussed in Section 5.1,
although preferential independency does often not hold perfectly between the dif-
ferent attributes, additive functions do still provide a good approximation [RN03].
Variant [V2] utilizes the additive structure by optimizing each attribute separately
and then aggregates the optimal values. Thereby, the search space can be reduced
from ∏l=1,...,n |Al | in case all configurations have to be considered to ∑l=1,...,n |Al | in
case the attributes are optimized. Variant [V3] further improves the optimization
through the use of an efficient linear programming solver. We distinguish between
[V2] and [V3] in order to find out which share of the expected improvement in per-
formance is due to the additive structure of the policies and which part is due to the
advanced tool support.

In Figures 9.4 - 9.6, the three variants of the matching predicate are evaluated
for varying number of offers in the knowledge base and varying number of con-
figurations per offer. In addition, they are compared to a baseline algorithm which
randomly selects an offer and configuration from the repository. Figure 9.4 shows
the change in runtime of a query if we stepwise increase the number of offers in the
repository. In this scenario we assume all offers to provide 100 configurations. In
Figure 9.5, a larger setting is considered where each offer provides 900 configura-
tions. Finally, in Figure 9.6, we assume a constant number of offers in the repository
and gradually increase the number of configurations per offer. A detailed list of the
simulation results can be found in Table A.3.

In the first setting (Figure 9.4) with 2000 offers in the repository, [V2] reduces
the runtime compared to [V1] from 18 to 11 seconds and in the second setting (Fig-
ure 9.5) from 477 to 41 second. [V3] further reduces the runtime in this setting to
5 and 13 seconds, respectively. While in the first setting where we deal only with
100 configurations the slowdown is only modest, [V1] does not scale when mov-
ing to more complex settings. This is in line with the experiment discussed in the

9.3 Design of Mechanisms 179

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000

Q
u

er
y

an
sw

er
in

g
ti

m
e

[i
n

m
s]

Number of offers

[V1]

rs

rs

rs

rs

[V2]

+
+

+

+

+

+

+

+

+

+

+

+

[V3]

rs rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

random

+ +

+

+

+

+

+

+

+

+

+

+

Figure 9.5: Performance with 900 configurations and varying number of offers.

0

10000

20000

30000

40000

50000

60000

0 400 800 1200 1600

Q
u

er
y

an
sw

er
in

g
ti

m
e

[i
n

m
s]

Number of configurations

[V1]

rs

rs

rs

rs

[V2]

+

+

+

+

+

+

+

+

+

[V3]

rs

rs

rs

rs

rs

rs

rs

rs

rs

random

+
+

+

+

+

+

+

+

+

Figure 9.6: Performance with 1010 offers and varying number of configurations.

180 CHAPTER 9: DISCUSSION AND EVALUATION

previous section. Regarding [V2] and [V3], the results indicate a considerable im-
provement of performance, especially, when moving from [V1] to [V2]. This means
that the assumption of additive policies seems to considerably simply and accelerate
the service selection process. Using an optimized linear programming solver further
improves the performance, but also requires to augment the description logic rea-
soner with an additional tool that is invoked via a built-in predicate of the reasoner.
The dominance of variant [V2] and [V3] over [V1] can be recorded almost for all
settings, except very small settings in which the number of offers is below 10 and
the number of configurations below 50. In this case, initializing the solver could
be more time-consuming than directly finding the best provider using mechanism
[V1].

Question B.3: How does the performance of preference- and context-aware selection
strategies compare to suboptimal strategies? How expensive is optimality?

In order to investigate the additional time required for optimal selection of services,
we compare the approaches that result in an optimal selection [V1], [V2] and [V3]
with a baseline algorithm that randomly selects an offer and corresponding configu-
ration from the knowledge base. While the random algorithm considerably outper-
forms all optimal algorithms in all settings, it may also lead to a huge utility loss for
the participants. Assuming a uniform distribution of the prices and scoring values
in [0,1] and a reasonable number of offers (> 50), an optimal algorithm leads to a
utility of almost 1 while the random algorithm results only in an average utility of 0
[LAGS07].

Comparing the fastest matching approach [V3] to the random algorithm, the
cost of optimality is rather moderate. In particular, considering the third setting
with 1000 offers and 1600 configurations per offer, there is only a slowdown by 35%
when moving from random selection to [V3] (Figure 9.6). Comparing this number
to smaller settings, we can observe much greater slowdowns which, at first glance,
seems contradictory. However, this observation can be explained by the fact that for
large-scale scenarios (more that 1000 offer per configuration) query answering be-
comes the predominant factor compared to the optimization. Since query answering
is required for both algorithms, variant [V3] and random selection converge.

9.3.4 Completeness of Results

Obviously, the allocation determined in the market should not be chosen randomly,
but should serve a certain goal. Goal of the Web service selection algorithm is the op-
timization of the requester’s utility. By solving the Local Selection Problem always
the service is selected that provides a utility maximizing configuration for a given
request. Hence, our selection algorithms can be considered as sound. However,
the set of offers that are considered in the LSP depends on the way attribute values
are matched. Obviously, if more matching offers are found there is a higher chance
of finding a better offer. As discussed, in a heterogeneous environment syntactic
matching is often not sufficient to ensure finding all relevant offers. Therefore, we
evaluate in this section how the semantic matching can improve the completeness of
the matching results, while ensuring soundness of the matching approach. In doing
this, we introduce the attribute ‘ServiceType’ which captures the main functional-

9.3 Design of Mechanisms 181

0

200

400

600

800

400 800 1200 1600

In
cr

ea
se

of
m

at
ch

es
[i

n
p

er
ce

nt
ag

e]

Number of offers

small hierarchy
medium hierarchy

large hierarchy

Figure 9.7: Increase in number of matches enabled by semantic matching.

ity of a service described via a service taxonomy (e.g. as given in the MIT process
handbook [MCP+99]).

Question C.1: Does semantic matching improve the completeness of the results? In
which cases is it particularly important?

In order to find out whether semantic technologies can improve the matching in the
market, we introduce a matching rule that uses subsumption checking for compar-
ing the attribute values of ‘ServiceType’ (compare Rule (R4)). This approach is still
sound since all service types that are more specific than a requested service type are
also relevant to the request. We compare the completeness of the results derived
by the semantic matching approach with a matching algorithm that does not utilize
the semantic information contained in the hierarchy, i.e. string matching of attribute
values. The results are shown in Figure 9.7. It shows the average percentage of ad-
ditional matches depending on the number of offers in the repository and on the
structure of the ontology used for describing the service type taxonomy. We used
the three different ontologies:

• An ontology from which a small hierarchy of service types can be inferred. The
hierarchy contains 3 concepts and a depth of 1 subclass relation.

• An ontology from which a medium hierarchy of service types can be inferred.
The hierarchy contains 30 concepts and a maximal depth of 3 subclass rela-
tions.

• In ontology from which a large hierarchy of service types can be inferred. The
hierarchy contains 197 concepts and a maximal depth of 5 subclass relations.

The results indicate that the larger an ontology is the more additional matches
can be found by means of the semantic matching approach. While the absolute num-
ber of additional matches increases with the number of offers in the repository (Table

182 CHAPTER 9: DISCUSSION AND EVALUATION

0.1

0.2

0.3

0.4

400 800 1200 1600

A
bs

ol
u

te
in

cr
ea

se
in

u
ti

lit
y

Number of offers

small hierarchy
medium hierarchy

large hierarchy

Figure 9.8: Absolute gain in utility through the use semantic matching.

A.4), the relative increase, as percentage of matches in total, seems to be indepen-
dent of the repository size. For small hierarchies the number of matches increases by
200% in average, for medium hierarchies by about 300%, and for large hierarchies
by over 500%. Of course, no negative numbers can be observed, since no matches
are lost when moving from the syntactic to the semantic matching approach.

However, the question is how important are these additional matches for a re-
quester. Do they really improve the allocation?

Question C.2: How does the completeness of the results influence the utility that
can be realized by the market participants?

In order to investigate this question, we measure the utility of the requester in the
different settings (Table A.5). The requester’s utility is given as the surplus realized
with the utility maximizing configuration and offer. The surplus is defined as the
difference between score and price. As discussed above, in our simulation we gen-
erate prices for offers and requests in the range [0,1] using a uniform distribution.
Thereby the utility is measured in the range [−1,1]. Figure 9.8 shows the absolute
gain in utility when moving from the syntactic to the semantic matching algorithm.
The results indicate that more additional matches (as in the case of large hierarchies)
also lead to a higher utility gain. This behavior is also expected since the probability
that a better offer is found increases with the number of additional matches. How-
ever, this behavior can be observed mainly in settings where the ratio of offers per
possible service type is rather low. In such sparse repositories semantic matching
is more important than in settings where already syntactic matching leads to a sub-
stantial number of suitable offers. This is intuitively clear since in the latter cases
the probability is also rather high that a very good offer is contained in this set. Very
good offers can hardly be improved by finding additional matches, whereas in cases
with only a few matches, additional matches often lead to a considerable improve-
ment in utility. This means that semantic matching is especially important if service

9.3 Design of Mechanisms 183

differentiation can be very high, while the number of provided services is rather
low.

9.3.5 Discussion of Simulation Results

In general, the results of the evaluation with respect to compactness and per-
formance are promising since we are able to reduce the storage capacity from
O(|O|n|A|) to O(|O| + n|A|) by means of utility function policies and the fastest
approach allows ranking up to 2000 offers with a reasonable number of configu-
rations below 15 seconds. Considering the fact that all these 2000 offers fulfill the
mandatory conditions that can be defined in the FILTER clause of Query (R39), such
a scenario can be considered as very large. Thus, the policy-based bid representa-
tion presented in this work meet the requirements communication efficiency and
computational tractability.

In this context, it is important to note that we analyzed a worst-case scenario, in
which all offers provide all possible configurations and all attributes of a configura-
tion are discrete. Optimization on discrete attributes is more time consuming than
on continuous attributes, because techniques like differentiation are not applicable.
Therefore, we expect better performance in a real-world use case. For example in our
mobile scenario, only up to 20 different route planning providers might be available,
whereas the number of possible configurations may easily exceed 1000. However, it
is unlikely that all of them are offered by all providers.

As a further result of our performance study, it becomes clear that providing
only expressive means for modeling preferences as done in [GP03, OVSH06] is not
sufficient. It also must be ensured that the preferences allow for an implementa-
tion of efficient matching/allocation algorithms. Comparing the results for [V2] and
[V3], we can identify the absence of the additivity assumption as the major source
of complexity (improvement from [V1] to [V2]). Using an efficient implementation
for solving the optimization problem provides a relatively minor improvement in
performance (improvement from [V2] to [V3]). Therefore, in many cases, especially
if service selection has to be done at runtime, restricting the expressiveness of the
bidding language is a viable way to considerably increase performance. In addition,
additive functions are easier to specify for a user and even if preferential indepen-
dency does not hold exactly, they often provide a good approximation [RN03].

As we rely on purely “flat“ matching predicates in our evaluation, we factored
out the overhead introduced by complex matching rules (such as complex DL-
inference predicates). However, since the execution of these complex matching rules
is done in typically rather small domain ontologies (e.g. the Service Category On-
tology or the Geographic Ontology shown in Figure 7.1), we do not expect a huge
slowdown. In particular, the complexity of matching is independent from the num-
ber of offers and configurations. Analyzing the performance loss that is caused by
more complex reasoning tasks depends on the axioms used in the ontology and is
beyond the scope of our evaluation. For a detailed discussion of this aspect see
[MS06].

A further conclusion from the evaluation is that in some very demanding set-
tings, selection algorithms are not feasible at all. Therefore, in such cases reducing
the set of offers is crucial. This can be realized by adding additional mandatory
conditions through FILTER conditions (e.g. derived from goal policies). A way to

184 CHAPTER 9: DISCUSSION AND EVALUATION

Approach (R
1)

W
e
b

-c
o

m
p

li
a
n

ce

(R
2)

M
u

lt
i-

a
tt

ri
b

u
te

(R
3)

C
o

m
b

in
a
to

ri
a
l

(R
4)

C
o

n
te

x
t

(R
5)

C
o

m
m

.E
ffi

ci
e
n

cy

(R
6)

In
te

ro
p

e
ra

b
il

it
y

(R
7

)
A

u
to

m
a
ti

o
n

(R
8)

F
le

x
ib

il
it

y

(R
9)

O
p

ti
m

a
li

ty

(R
10

)
T

ra
ct

a
b

il
it

y

(R
11

)
L

e
g

a
l

R
e
li

a
b

il
it

y

OWL-DL/DL-Safe-Rules X - - - X X X - - - -

WS-Standards X - - - - X - - - - -

Core Policy Ontology - X - X X - X - - X -

Core Ontology of Bids - X X X - - X - - X -

Core Contract Ontology - - - - - - X - - - X

Declarative Matching Rules - - - - - - - X - - X

Semantic Matching - X - - - X - - X - -

Integration of LP-techniques - - - - - - - - X X -

Table 9.2: Requirements and the approaches to address them.

realize this is to automatically exclude all attribute values leading to a score below a
certain threshold. If the number of offers is too high, the threshold can be increased
automatically.

Regarding the completeness of the results, the evaluation has shown that se-
mantic technologies can considerably improve matching in a sense that the com-
pleteness (i.e. high recall) can be increased, while retaining sound results (i.e. high
precision). Although this is an observation that is valid for all settings, the evalu-
ation has shown that additional matches do not necessarily lead to a higher utility
for the participants. Particularly in settings with highly differentiated services and a
rather low number of available offers semantic matching considerably improves the
results. Therefore, one can argue that with increasingly customizable service offers
there will be also an increasing need for semantic technologies.

9.4 Conclusion

In this chapter, we discussed whether the design, embodiment and implementa-
tion of our semantic Web service market meets the requirements stemming from a
grid, mobile and enterprise services scenario. Table 9.2 summarizes again how we
addressed the individual requirements.

Web compliance is addressed by the use of languages on top of current Web stan-
dards, namely, OWL and SWRL. Moreover, our platform also resides on top of exist-
ing Web service standards, in particular WSDL, SOAP, and WS-BPEL. This approach
allows seamless integration with current Web and Web service technologies. Based
on the ontology language, a framework consisting of several ontology modules has
been presented in order to define a common vocabulary for the semantic Web ser-

9.4 Conclusion 185

vice market. The vocabulary for multi-attribute descriptions is provided by the Core
Policy Ontology and the Core Ontology of Bids. By featuring utility function policies
the Core Policy Ontology enables the efficient representation of highly configurable
offers and requests. In addition, the Core Ontology of Bids provides means for ex-
pressing combinatorial bids and the Core Policy Ontology features context-dependent
policy specifications, i.e. policies can be defined as applicable only under certain
conditions. In order to provide the interoperability required in heterogeneous open
markets, we rely on standardized languages and realize the matching of bids by
means of a semantic matching approach that is featured by the underlying ontology
language. Besides handling interoperability, semantic matching is also important to
address the optimality requirement by ensuring complete results. Automation of the
contracting process is supported by formal, machine-interpretable descriptions of
the market information and by the concept of policies, which enable a human user
to define guidelines how the system should behave. Furthermore, we have shown
how the ontology Core Ontology of Bids can be used to design a contracting mech-
anism featuring automated selection of Web services and the Core Contract On-
tology to automated contract execution and monitoring by connecting contractual
information with the business interactions they govern. The flexibility required in a
distributed, heterogeneous environment is facilitated by declarative matching rules,
which can be used to adapt the contracting mechanism to different domains and ap-
plications. By combining this declarative logic-based matching rules with optimiza-
tion methods, such as linear programming, we are able to select the optimal service
in a reasonable time; thereby, providing a computationally tractable mechanism. This
mechanism can be seen as the basis for more complex allocation mechanisms such
as auctions. In order to provide legal reliability for the market participants, we pro-
posed to augment contracts formalized by means of the Core Contract Ontology
with a manually closed umbrella agreement. This approach features some degree of
automated legal reasoning, while ensuring full legal reliability.

In the following chapter, we discuss how other approaches address these require-
ments and how our approach compares to them.

186 CHAPTER 9: DISCUSSION AND EVALUATION

Part IV

Finale

Chapter 10

Related Work

In this chapter, we provide an overview of related work and discuss how it com-
pares to the approach taken in this work. We classify related work according to
two broad categories. In Section 10.1, we first concentrate on the knowledge rep-
resentation within Web service markets. In this context, we analyze to which ex-
tend other approaches meet the language-specific requirements outlined in Section
4.2.1. In Section 10.2, we address related approaches to contracting and compliance
monitoring mechanisms and analyze them with respect to the mechanism-specific
requirements introduced in Section 4.2.2.

10.1 Knowledge Representation in Web Service

Markets

In this section, we present various existing approaches applied in electronic markets
for modeling buyer preferences, seller offerings and electronic contracts. The ap-
proaches are discussed with respect to the requirements (R1) Web-compliance, (R2)
Multi-attribute Descriptions, (R3) Combinatorial Requests and Offers, (R4) Context
dependency, (R5) Communication Efficiency, and (R6) Interoperability. Table 10.2
summarizes the different streams of work in terms of which of the requirements
they support (indicated by check marks).

10.1.1 Electronic Data Interchange

One of the first attempts to exchange order information within electronic markets
were the Electronic Data Interchange (EDI) protocols (e.g. EDIFACT [DIN98], X12
[Ame06]), which serialize request, offer and agreement information according to a
predefined format agreed upon by both communication parties. Thus, EDI could
potentially be used to efficiently describe multi-attributive, combinatorial requests
and offers with preference and pricing functions. However, these pairwise agree-
ments were rarely based on any standards and turned out to be effort-intensive,
highly domain-dependent and inflexible. Thus, EDI is not addressing the interoper-
ability and Web-compliance requirements.

190 CHAPTER 10: RELATED WORK

Approach (R
1)

W
e
b

-c
o

m
p

li
a
n

ce

(R
2)

M
u

lt
i-

a
tt

ri
b

u
te

(R
3)

C
o

m
b

in
a
to

ri
a
l

(R
4)

C
o

n
te

x
t

(R
5)

E
ffi

ci
e
n

cy

(R
6)

In
te

ro
p

e
ra

b
il

it
y

EDI/EDIFACT - X X X (X) -

XML-based Languages X X X X - (X)

Semantic Web Service X - (X) - - X

Semantic Policy Specification X X (X) X (X) (X)

Bidding Languages for CA - X X (X) X -

Product/Service Catalogs X - - - - X

Our Approach X X X X X X

Table 10.1: Analyzing related work with respect to language-specific requirements.

10.1.2 XML-based Policy Languages

More recent approaches, such as WS-Policy [W3C06b], EPAL [IBM03] and the
XACML-based Web Service Policy Language (WSPL) [MAPG03], use XML (eX-
tensible Markup Language) [W3C04a] as a domain-independent syntax, to define
constraints on attributes of configurable trading objects within the context of Web
service agreements. However, they are not suitable for our purposes, because they
only allow the expression of attribute value pairs and thus cannot be used to express
seller pricing and buyer scoring functions. Therefore, multi-attribute bids cannot
be expressed in an efficient way. In addition, the meaning of XML annotations is
defined in a natural language specification, which is not amenable to machine in-
terpretation and supports ambiguous interpretation. Therefore, such approaches
require extensive standardization efforts, which is also a major problem for ebXML
[OAS06c].

WS-Agreement [Glo06] and the Web Service Offering Language (WSOL) [Tos05]
are further XML-based specification that can be used to express different valuations
for configurations. However, since they support only discrete attributes and no
functional relations, an exponential number of price attachments are required to
model configurable services. Hence, they do not provide the required efficiency. An
approach to extend WS-Agreement for expressing continuous functions is presented
in [SY05]. However, the XML annotations still lack formal semantics and there-
fore do not provide the required interoperability. This drawback can be observed
also for other approaches. Other rather informal policy languages are discussed in
[AAFP03] and specifically for Web service policies in [KL04].

10.1 Knowledge Representation in Web Service Markets 191

10.1.3 Semantic Web Services

As discussed in Chapter 2 and 6, a way to enable machine interpretation of bids
and contracts is to specify them using an ontology. Such an ontology consists of a
set of vocabulary terms, with a well-defined semantics provided by logical axioms
constraining the interpretation and ensuring the well-formed use of the vocabulary
terms. As already mentioned in Section 3.2.1, the Semantic Web Services community
has already invested a lot of effort in developing ontologies for describing the func-
tionality and other characteristics of Web services in order to support automated dis-
covery, composition, mediation, etc. Since such vocabularies are also required in our
approach for representing values of attributes such as Input, Output or Precondi-
tion and Effect, they can be considered as orthogonal work. In fact, our framework
considers these ontologies as core ontologies for describing Web services. Hence,
they can be “plugged-in” as modules in the second layer of the framework (com-
pare 6.1). The most prominent approaches are OWL-S [DAM02], WSMO [DKL+05]
and SWASDL [W3C07a] (former called WSDL-S [POSV04]). Since these approaches
are not directly related, we refrain from an exhaustive discussion and highlight only
those parts that are most interesting for our work. Bits and pieces are taken from the
projects’ Web pages and publications [SPAS03, POSV04, DKL+05, dBLPF05] as well
as from additional literature [LLP+07, ABK+04, Het06, MOGS04].

Web Ontology Language for Services (OWL-S)

The Web Ontology Language for Services (OWL-S) [DAM02] defines an upper on-
tology for services, which itself is an ontology specified in OWL. Thus, the OWL lan-
guage together with the OWL-S vocabulary defines the OWL-S Web service specifi-
cation language [LLP+07]. The OWL-S vocabulary consists of four major elements:
a Service as a central point of reference referring to a ServiceProfile, a ServiceModel
and a Service Grounding. These elements are discussed below.

Service Profile The OWL-S profile describes the intended purpose of services in
terms of their functionality as well as non-functional aspects. The functional-
ity is described in OWL-S by the information transformation (captured by Input
and Output) and the state change provoked by the service execution. The lat-
ter is described using Preconditions and Effects. Non-functional properties
are captured by human-readable metadata, such as serviceName, textDescrip-
tion or by Parameters. Parameters are not bounded in their meaning and can
therefore be used as a main extension anchor within the OWL-S framework.
Moreover, in order to support the discovery and matching of services the Ser-
viceProfile can be arranged according to a hierarchy.

Service Model The service model describes how a service works by means of a
ProcessModel. Generally speaking, the ProcessModel provides additional in-
formation for service requesters about how to interoperate with the service.
It represents the dataflow within a composite service by defining the cor-
responding Inputs and Outputs. A composite process is constructed from
atomic process by means of control constructs, such as split or sequence. These
constructs roughly correspond to the primitives provided by the Ontology of
Plans in our framework.

192 CHAPTER 10: RELATED WORK

Service Grounding The service grounding bridges the gap between the semantic
description and the concrete interface of a service provided by WSDL. It shows
how to technically access a service regarding transportation protocol, message
format, addressing and object serialization. Essentially, OWL-S atomic pro-
cesses are mapped to WSDL operations whereas the input and output param-
eters in OWL-S are equivalent to WSDL message part definitions.

Although by providing the concept of Parameters as means for modeling non-
functional properties, OWL-S does not provide native support for defining con-
straints over Parameters. When considering OWL-S as a module for our ontology
framework, the concepts ServiceProfile, Input, Output, Precondition, Effect, Param-
eter and ProcessModel can be seen as subclass of CPO:Attribute . This enables the
definition of goal as well as utility function policies (and thus fine-grained prefer-
ences) for these aspects and allows us to use them within the Web service selection
process. Advantages of using our approach in the selection process compared to the
current native OWL-S matchmakers is discussed in Section 10.2.1.

Web Service Modeling Ontology (WSMO)

The objective of the Web Service Modeling Ontology (WSMO) is to provide means
for fully describing a Web service in order to automate all tasks dealing with the
intra- and inter-enterprise integration of Web services [LLP+07]. The four main el-
ements that constitute WSMO are identified below. WSMO defines them by means
of the Meta Object Facility (MOF) [DKL+05].

Ontologies Ontologies provide the terminology used by Services, Goals and Me-
diators. In a first step, WSMO defines ontologies by means of a general epis-
temological model capturing the different existing ontology languages, such
as RDF [W3C04b], OWL [W3C04c], F-Logic [KLW95], etc. Concrete logical
languages for the general model are defined by the Web Service Modeling
Language (WSML) [dBLPF05, dBLK+05]. WSML consists of different variants
differing in their logical expressiveness and the underlying logical paradigms
ranging from description logics to logic programming (and combinations of
both).

Services A Service describes the Interfaces and Capabilities using Ontologies. In-
terfaces capture the Choreography, i.e. how to communicate with the service
to make use of the functionality, and the Orchestration, i.e. how the service
makes use of other services. The Capabilities are described by Preconditions,
Assumptions, Postconditions end Effects. As for all other WSMO elements,
non-functional properties can be attached to Services in order to capture, e.g.,
quality of service properties.

Goals Goals capture the requesters’ view and define the requirements in terms of
Capabilities and Interfaces a suitable service has to meet.

Mediators Finally, Mediators handle the heterogeneity of the environment by pro-
viding data, protocol and process mediation. The presence of Mediators can
be seen as a major conceptual advantage of WSMO compared to OWL-S.

10.1 Knowledge Representation in Web Service Markets 193

Considering the versions of WSML that are compatible with OWL-DL
(i.e. WSML-Core, WSML-DL), we can also make use of WSMO as module to de-
fine Web service bids and contracts. Although non-functional attributes, which es-
sentially refer to Dublin-Core metadata [WKLW98] and a recently added quality
of service ontology [TF06], can be used for representing non-functional properties
in WSMO, the current support for modeling, attaching and reasoning with qual-
ity of service descriptions is rather limited [TFJ+06]. One reason for this limitation
is the fact that WSML does only allow the attachment of one single value to each
property, which is obviously not sufficient to support the efficient representation of
configurable offers, i.e. neither goal nor utility function policies can be represented.

Semantic Annotations for WSDL (SAWSDL/WSDL-S)

In contrast to the previous approaches, the Semantic Annotations for WSDL
(SAWSDL) specification [W3C07a] (aka WSDL-S) does not aim towards a fully-
fledged framework for describing Web services, but rather adds XML annotation
tags to the WSDL XML-schema in order to enable references to a formal model. In
fact, this models can be OWL-S and WSMO [Kop05], but also more informal models
such as UML/OCL, for example. In addition, SWASDL provides a schema mapping
extension which can be used within XML schema definitions to point to an exter-
nal mapping specification language document, like XSLT. Hence, SAWSDL handles
structural differences between the XML Schema elements and their related semantic
model concepts.

However, as the previous approaches SAWSDL does not provide the necessary
means for expressing constraints or preferences over multi-attribute service descrip-
tions. In addition, SAWSDL alone does not solve the interoperability problem since
it requires an additional semantic model to describe the services.

Others

Besides the approaches presented above, several other semantic Web service ap-
proaches have been proposed in recent years. For example, the Semantic Web Ser-
vice Framework (SWSF) [BBB+05] can be seen as an extension and refinement of
OWL-S, which uses a richer logical formalism (full first-order logic) for defining the
ontology and the Process Specification Language (PSL) for formally specifying the
behavioral aspects. Other approaches that capture behavioral aspects of a service
are presented in [AS06, Aga07, BCG+05].

A problem with the above approaches is the fact that the ontologies only de-
scribe the services themselves and do not capture the environment in which they are
used. Thus, they cannot be used to express context-dependent requests. Additional
work that considers the role of context within service-oriented systems focuses on
context representation [CCMP06, SSSC06] or the usage of context information for
service discovery [ETW04, KK04, DLV06]. Martin [Mar06] specifically discusses the
requirements and possible solutions for context modeling with a focus on OWL-S.

Since the Web service ontologies presented above are not capable of expressing
constraints on attributes, they are also not sufficient for representing multi-attribute
requests and offers in an efficient way. This problem is addressed by approaches
that augment the Web service ontologies with ontology-based policy languages. For

194 CHAPTER 10: RELATED WORK

example, [KFJ04] provides an approach for extending OWL-S with the policy lan-
guage REI in order to model goal policies. Similar, approaches exist also for WSMO
(see the discussions in [ABK+04, OLPL04]). We thus focus on semantic policy spec-
ifications in the following.

10.1.4 Semantic Policy Specifications

As we discussed in the last section, the state of the art regarding semantic Web ser-
vices currently does not directly support constraints on multiple attributes. There-
fore, the ontology-based policy languages such as KAoS [UBJ+04], REI [Kag04] and
the work presented by Kolovsiki et al. [KPKH05] can be used to extend the service
ontologies in order to allow the definition of multi-attribute policies for representing
constraints on attributes. While KAoS and the approach by Kolovski et al. are based
mainly on OWL-DL, REI uses OWL-Lite only as syntax for exchanging policies and
performs reasoning based on a logic programming approach. How KAoS policies
are used for managing semantic Web services is outlined in [UBJ+04]. Since pure
OWL-DL is not fully sufficient to cope with the situation where one value depends
on other parts of the ontology, they extend the logic by so called role-value maps (see
also [BCM+03]). In REI (as well as in our work) this issue is addressed by using a
rule language. For a detailed comparison of KAoS and REI the interested reader is
referred to [TBJ+03]. The most recent approach by Kolovsiki et al. [KPKH05] defines
the semantics of the WS-Policy specification by means of an OWL-DL ontology. This
allows them to use a standard OWL reasoner for policy management and enforce-
ment. However, due to the open world assumption of OWL their results sometimes
are counterintuitive. Therefore, they plan to extend their approach with default
logic [BH95] and ensure decidability with restricting default rules to named entities
[KP06]. This roughly corresponds to the usage of DL-safe rules in our approach.

The major disadvantage of all these approaches in our context is their limita-
tion in terms of expressing fine-grained preferences. Using these approaches policy
evaluation always leads either to true or false, which is insufficient for efficiently
encoding scoring or pricing functions.

More expressivity in this context is provided by rule languages, such as Sweet-
Deal [GP03], DR-NEGOTIATE [SABG05, Gov05] and RBSLA [Pas06]. All three are
rule-based approaches that use defeasible reasoning (i.e. Courteous Logic Programs
or defeasible logic) to specify contracts or agent strategies, respectively. Similar to
our approach they feature automatic reasoning based on a formal logic. However,
there are some issues regarding the use of a (pure) logic programming paradigm.
Often such languages do not provide full-fledged declarative semantics and thus
combining rules from different sources becomes highly problematic. In fact, man-
ual integration of the different logic programs might be required. Since in our set-
ting, requests, offers and contracts have to be integrated from different sources, this
is a major drawback. From an expressivity point of view, pure logic programming
does not support equality reasoning required for expressing integrity constraints as
well as number restrictions and lack existential quantification. Another problem is
the interoperability of rules within the market. Although RuleML is available as a
standard syntax for exchanging rules, the semantics of the syntax is not yet stan-
dardized which hinders interoperability. In addition, while the underlying rule lan-
guage might be capable of expressing utility-based policies, they do not provide the

10.1 Knowledge Representation in Web Service Markets 195

required policy specific modeling primitives directly, rather the rules for interpret-
ing such policies have to be added manually by the user. In the DR-NEGOTIATE
approach qualitative preferences are expressed via defeasible rules and priorities
among them. While such an approach is suitable for ranking of alternatives, it is
not possible to assess the absolute suitability of an alternative, which is important
in case the best alternative is still not good enough.

Most similar to our approach is the work presented in [OVSH06], where WS-
Agreement is extended with an ontological model and preferences are expressed
via a rule-language. However, like the previous approaches they use a non-standard
rule language and do not elaborate on the structure of the preference rules, which
may narrow the applicability of the language for many service allocation algo-
rithms (see discussion in Section 10.2.1 below). Concerning context-dependent of-
fers and requests all rule-based approaches (and also description logics with role-
value maps) are sufficiently expressive.

10.1.5 Market Bidding Languages

A separate stream of work has focussed on developing highly expressive bid-
ding languages for describing various kinds of attribute dependencies and valua-
tions, particularly in the context of (combinatorial) auctions (e.g. [Nis00], [BH01],
[SNVW06]). The strength of these languages is to encode multi-attribute, combina-
torial bids in a highly efficient way. In this context, two major approaches to bidding
languages can be distinguished [BH01]: (i) the family of LB languages where logi-
cal combinations of bids are associated to prices and (ii) the family of LG languages
where prices are attached directly to logical combinations of goods. The former ap-
proach is used in [Nis00, San02, SNVW06] and has the advantage that a user can
specify her preferences completely in one bid, whereas the latter may require more
than one bit. However, LG could be more efficient in the presence of many disjunc-
tions (e.g. (b1 ∨ b2) ∧ (b3 ∨ b4) ∧ . . .). The language variant Lor∗

B efficiently captures
all possible preferences [Nis00]. As discussed in Section 5.2.2, our approach allows
arbitrary XOR/OR-formulae and thus also supports the Lor∗

B language.
However, the approaches discussed above assume a closed environment and

therefore, even if they do use XML-based bidding languages [BK05], they do not
deal with interoperability issues in the Web. While they do not explicitly consider
context dependency, it is usually possible to model context-dependent offers and
requests as preferentially dependent attributes.

10.1.6 Product and Service Catalogs

To address interoperability in B2B settings often standardized product and service
taxonomies are used, such as the UN/SPSC,1 the CPV,2 or the MIT Process Hand-
book [MCP+99]. However, while these taxonomies are suitable for pure functional
descriptions, their static hierarchical structure makes them inappropriate for multi-
attribute descriptions. Using hierarchies each new service configuration would re-
quire a new node in the hierarchy. Since the number of configurations grows ex-

1United Nations Standard Products and Services Code (http://www.unspsc.org)
2Common Procurement Vocabulary (http://simap.eu.int/nomen/nomenclature\

_standards_en.html)

196 CHAPTER 10: RELATED WORK

ponentially with the number of attributes (compare discussion in Section 5.1 and
Section 9.3.2), such an approach leads to an exponential hierarchy size. Therefore,
hierarchies might be applicable to describe individual attributes, but not the entire
multi-attribute trading object.

10.1.7 Discussion

Recapitulating, two major streams of work can be identified. First, approaches com-
ing from the area of market engineering propose highly expressive bidding lan-
guages for complex electronic markets such as combinatorial auctions. However,
they lack support for interoperability in a Web environment. Second, there are ap-
proaches addressing interoperability in heterogeneous and dynamic environments
such as the Web. These approaches typically do not focus on market-specific re-
quirements. Our work unifies these two aspects in one coherent framework. We
draw from utility theory to express scoring and pricing functions of market partici-
pants and thereby enable compact representation of context-dependent requests and
offers. Furthermore, we show how these functions can be expressed declaratively
with a standardized and Web-compliant ontology formalism.

10.2 Contracting and Contract Monitoring

Mechanisms

In this section, we discuss contracting and contract monitoring mechanisms with re-
spect to the mechanism-specific requirements (R8) Flexibility, (R9) Optimality, (R10)
Tractability, (R11) Legal Reliability. In this context, we review work from several
rather disjoint communities. First, we address approaches coming from the Web
service and Semantic Web community dealing mainly with matching and ranking
of Web services. Second, we examine approaches coming from the area of prod-
uct configuration. They mainly discuss matching of request and offers with respect
to differentiated products. As a third approach, we review Web service selection
strategies that involve reputation and trust issues. Finally, some approaches from
the area of legal information systems are discussed with a focus on contract man-
agement. Since all mechanisms discussed below also require a description language,
some of the technologies introduced in the last section are revisited.

10.2.1 (Semantic) Web Service Selection

A first approach to make existing Web services discoverable and thus reusable was
the Universal Description, Discovery and Integration (UDDI) repository. It can be
used by providers to register their services with a name, an WSDL and additional
service descriptions and by requesters to browse and find registered services. How-
ever, the used description language lacks expressiveness and formality (e.g. some
parts rely on natural language descriptions) and thus the UDDI approach turned
out to be not suitable for automated service contracting.

As discussed above, the goal of semantic service annotations is to provide
description with a high degree of expressive and formality. Several propos-
als for semantically enabled matching in electronic markets have been presented

10.2 Contracting and Contract Monitoring Mechanisms 197

Approach (R
7

)
A

u
to

m
a
ti

o
n

(R
8)

F
le

x
ib

il
it

y

(R
9)

O
p

ti
m

a
li

ty

(R
10

)
T

ra
ct

a
b

il
it

y

(R
11

)
L

e
g

a
l

R
e
li

a
b

il
it

y

(Semantic) WS Selection X - (X) X -

Product Configuration X - (X) X -

Social Service Selection - - (X) X -

Market-based WS Allocation X (X) X - -

WS Contract Management (X) - - X X

Our Approach (X) X X X X

Table 10.2: Analyzing related work with respect to mechanism-specific require-
ments.

[NSDM03, LH03, TBP03, GMP04]. The approaches improve semantic interoperabil-
ity by utilizing logical descriptions contained in Web service requests and offers.
Depending on the logic used and on the domain, different notions of match can be
defined. For example, [PKPS02] presents four different levels of match for OWL
descriptions, namely exact, plugin, subsumes and fail. The Web services are ranked
depending on the type of match that can be realized, i.e. services with an exact match
are ranked first, services with a fail are ranked last. Other notions of match for Web
services are presented in [GMP04, RDNDS+07]. However, all current approaches
use the same notion of match for different ontologies and domains. This approach
requires to model ontologies in a way that they fit to the matching approach used.
Since in most scenarios, already existing domain ontologies should be used, this
rather inflexible approach is problematic. As outlined in Section 7.1.1, in our work
we address this problem by means of customizable matching predicates for each
attribute that can be seamlessly changed, added or removed. This enables us to
add domain ontologies (with the corresponding matching rules) during runtime of
the system. In addition, approaches relying purely on logical matching do typically
lead only to a coarse preference structure over the different alternatives and thus
to insufficient rankings. Therefore, one can argue that pure logical matching is not
sufficient and has to be augmented by “value reasoning” [SRT05, KFS06].

Matchmaking approaches that are based on information retrieval techniques uti-
lizing ontological distance measures as done in [KFKS05, SMSA+05, BK06a] provide
such a more quantitative view. Here rankings are calculated by measuring similar-
ity between concepts or property values within an ontology. Klusch and colleagues
[KFKS05] extend the approach also with the logic-based matchmaking algorithm in-
troduced by [PKPS02]. This is similar to our approach, since similarity measures can
be seen as special type of preference functions that can be implemented by defining
the appropriate matching rules. However, our selection approach is not limited to

198 CHAPTER 10: RELATED WORK

similarity-based preferences, but instead preferences and pricing functions can be
explicitly stated, which is not possible using the former approaches.

Specifying the valuation of certain alternatives explicitly is possible in the system
presented by Balke and Wagner [BW03]. They use SQL-based preference queries
introduced in [Kie02] for their Web service selection algorithm. While this work
does not utilize semantic service annotations, in a recent extension it has been shown
how such preference queries can be formulated for SPARQL [SPT06]. This approach
is similar to our preference queries defined in Section 7.1.2. However, it meets our
requirements only partially since no policies can be expressed. Policies are required
to state information about preferences (e.g. in which context they should be used),
to specify multi-attribute offers (e.g. by means of pricing policies), and for more
complex allocation mechanisms such as a double auction.

In order to represent such information declaratively some kind of rule language
is required (such as in our case DL-safe SWRL rules). As discussed in Section
10.1.4, prominent examples are SweetDeal [GP03] and the work by Oldham and
colleagues [OVSH06]. Although these approaches show how preferences can be
formally represented, they currently lack a formal selection model (as we present
in Section 5.3), which allows to judge the computational tractability of the pro-
posed algorithms. Optimal and efficient algorithms for the Local Selection Prob-
lem (LSP) and Global Selection Problem (GSP) are presented in [LNZ04, BF05] and
[ZBN+04, VAG+04, CSM+04, YL05, AP05], respectively. For the GSP also AI plan-
ning algorithms exists that rely on (qualitative) preferential information [BFM06].
However, both communities focus purely on algorithm aspects and abstracts from
the representation issues. Like these approaches, our work utilizes efficient opti-
mization techniques for Web service selection (limited to LSP), but also augments
them with the required service description and matching models.

Just recently several WSMO based approaches for Web service selection by
means of user preferences have been presented [VHPA06, WVKT06]. There are sev-
eral major differences to our work. First, the semantic matching and the selection
algorithm are separated. Semantic matching is only executed with respect to func-
tional properties in order to determine valid services. The ranking for these services
is then determined based only on “flat” quality of service criteria. Second, the de-
gree of flexibility is lower since metrics are hard-coded and statically assigned to
quality of service attributes at development time. In addition, they do not focus
on highly configurable services, but consider only the problem of selecting between
different providers. The latter is addressed in product configuration which is dis-
cussed below.

From a preference modeling point of view, most similar to our work is the ap-
proach presented by [KKR04, KKRKS07]. They use fuzzy sets for expressing soft
constraints over attribute values which corresponds directly to the utility function
policies used in this work. The major drawback of their approach is the lack of ex-
pressivity for modeling attribute values. While we use standard description logic
for expressing attribute values, they have invented a new, proprietary logic which
provides very limited expressivity restricted to type hierarchies.

10.2 Contracting and Contract Monitoring Mechanisms 199

10.2.2 Product Configuration

Product configuration describes the problem a user faces when choosing values for
the parameters of a configurable product. Examples for typical configurable prod-
ucts are computer systems, customizable cars, made-to-order factory parts, or – as
discussed in Section 2.1.2 – Web services. A model capturing configuration prob-
lems is composed of the description of all the attributes characterizing it, the al-
lowed values for these attributes and the constraints expressing incompatible values
[MF89]. A wide range of different techniques can be used to solve different forms
of configuration problems. A detailed survey of models, techniques and tools is
presented in [Stu97, SW98]. Since the basic problem formulation corresponds to a
constraint satisfaction problem, this is one of the most prominent methods. Finding
a service that adheres to the goal policies introduced in Section 5.1 can be seen as a
combinatorial problem that corresponds to the definition of a Constraint Satisfaction
Problem [Tsa93]. The corresponding problem formulation is given by the following
tuple (L, A,Φ). Similar approaches for Web service selection have been discussed in
[MDRCD+03] for Enterprise services and in [LYFA02, LF04] for Grid services.

For applying constraint satisfaction approaches to configuration problems the
need for logic-based product descriptions has been widely acknowledge by the com-
munity [SW98]. Several approaches that utilize description logic for matching of
products have been presented (e.g. [MIP+98, FFJ+03, JM03]) to improve interop-
erability between heterogeneous descriptions. The problem of the constraint sat-
isfaction mechanisms so far is that they only support, so called, hard constraints
which correspond to goal policies in our framework. Since this is clearly insufficient
in many cases, there is work about adding fine-grained preferences to constraint
problems. The most prominent approach are semiring-based constraint satisfaction
problems [BMR97]. They add an objective function to the problem which is used to
rank the admissible results. This objective function can be compared to our scoring
policies. Pricing policies are not explicitly considered and the available notions of
match are typically restricted to a rather small set of operators, such as ‘<’,‘>’ or
‘=’. In addition, to the best of our knowledge there is no approach that combines
a semiring-based constraint satisfaction formulation with an expressive description
logic such as SHOIN .

10.2.3 Social Service Selection

Social service selection [SH05, Chp. 20] can be seen as a special case where the de-
cisive factors in the service selection process are social attributes that rely on no-
tions such as trust and reputation. Technically, this means the same algorithms can
be applied as presented in previous sections. The problem here is the determina-
tion of the values for trust and reputation. In this context, algorithms are required
that aggregate the experiences of users in a distributed and fair way. In addition,
mechanisms have to be found that give incentives to submit ratings for service ex-
ecutions. Reputation and trust based service selection approaches are presented in
[SS04a, MS04, JF05, LHVA05].

Since reputation and trust determination involves judging the quality of an Web
service execution, it mostly involves human interaction which contradicts Require-
ment (R7). In fact, the contract monitoring approach presented in Section 7.2 can be

200 CHAPTER 10: RELATED WORK

used to assess (at least partially) the quality of a Web service execution and to come
up with provider ratings in an automated fashion.

Another complementary approach to social service selection are recommender
techniques, such as collaborative filtering, that log customer data in order to utilize
this data for future decisions. For example, the market operator could store which
service is selected by which of the customers and then use this data to select services
for incoming requests from similar customers.

In this work, service selection is done based only on the preference data of a
requester without considering “community data”. However, additional social at-
tributes, such as reputation or user ratings, can be easily added to the decision prob-
lem formulated in Definition 5.10.

10.2.4 Market-based Web Service Allocation

All selection approaches discussed up to now have involved some kind of opti-
mization that ensures that the allocation meets the desired goal of the market de-
signer in an optimal way. For example, the Web service selection algorithm LSP
presented in Section 7.1.1 ensures that the services is selected that maximizes the re-
quester’s utility. Hereby, we assume that the defined scoring policies represent the
requesters real utility function. Considering the economic properties of this Hit-and-
Take-mechanism some problems become evident: the mechanism is not incentive
compatible in a sense that providers have an incentive to reveal their true valuation
of providing a service to the requester. That means it can be advantageous for a
provider to strategically over- or underprice the service.

To address this problem market mechanisms can be introduced where prices
are dynamically determined based on supply and demand. As discussed in Sec-
tion 2.3.2, such dynamic pricing mechanism can lead to economically efficient al-
locations [Hur73]. Thereby, they make sure that a provided services is awarded
to the requester who has the highest valuation of the service. This is particularly
relevant for grid services since not all requesters might get the best service due to
resource limitations. An overview of market mechanisms for grid services can be
found in [BAGS02, BAV05]. Hereby, an important goal is the realization of an in-
centive compatible mechanism, where the optimal strategy for all participants is to
reveal their true valuations (cf. Section 2.3). A detailed discussion of market mecha-
nisms with respect to their economic properties can be found in mechanism design
literature [Hur73, Par01, Jac02]. Since these dynamic pricing mechanisms have to
be tailored towards a concrete scenario, we refrain from introducing concrete mech-
anisms but rather exemplify how the Local Allocation Problem can be extended
to dynamic pricing mechanisms (see Section 7.1.2). In this context, a RFQ-auction
is introduced that realizes a simple auction protocol based on the selection infras-
tructure. As an example for more complex auction mechanisms, the approach is
extended to a combinatorial multi-attribute double auction by means of the MACE
system [SNVW06, LS06]. However, based on the infrastructure presented in this
work also other market mechanisms can be implemented. This makes them appli-
cable in an open and heterogeneous environment such as the Web.

10.2 Contracting and Contract Monitoring Mechanisms 201

10.2.5 Web Service Contract Management

Automated management of contracts requires a formal, machine-interpretable de-
scriptions [MG05]. Thereby, automation of management tasks like contract forma-
tion, monitoring and execution is enabled. Throughout Section 10.1, we have dis-
cussed several languages that strive for formalization of Web service contracts. For
example, these include ontologies that define a formal semantics for WS-Agreement
constructs [OVSH06, JW05] or languages based on proprietary rule formalisms
[GP03, Gov05]. They all enable closing machine-interpretable contracts in an au-
tomated fashion. However, they are not capable of fully expressing a real-world
contract and thus fail in providing legally reliable contracts. Our approach is dif-
ferent in that we do not strive for full automation, but augment an automatically
closed contract with an umbrella contract that provides the legal basis for the au-
tomation. An alternative would be to transform formal agreements to natural lan-
guage contracts by means of a template-based approach as presented in [HF05]. The
problem here is that the formality of the contract is lost and thus contract monitor-
ing and execution process cannot be automated. Another major difference is that
the approaches mentioned above focus mainly on the contracting phase. While pro-
viding a machine-interpretable language, they do not provide a formal language
for representing Web service monitoring information and no specific customizable
contract monitoring algorithms. An approach for automated verification, validation
and consistency checks of RBSLA contracts is presented in [PBD05]. As discussed
in the language part, while being considerably more expressive than our contract
representation, RBSLA is based on a combination of proprietary rule languages and
requires several different reasoners to perform this task. An approach for check-
ing the compliance of a business process with respect to a contract is presented in
[GMS06].

However, contract management is only a part of integrated quality of service
management. Work that complements our approach deals with monitoring of Web
service executions, which involves measuring and predicting certain service levels.
That means besides contract management, tasks such as admission control, resource
management, resource monitoring, system diagnostics and system adaption are re-
quired. An integrated approach to quality of service management is presented in
[CSDS03, LDK04, WWC+05]. For ensuring certain quality levels certain Web ser-
vice standards are available. For example, WS-Reliability [OAS04] can be used to
provide protocol guarantees, such as the guarantee that the order of messages is pre-
served. First commercial tools such as the Oracler Web Service Manager3 support
end-to-end monitoring of business processes. This is also utilized by our approach
to capture the required monitoring information.

10.2.6 Discussion

A wide range of different Web service contracting algorithms have been presented in
recent years. Most of them provide means for optimizing the selection with respect
to a certain goal. However, some approaches lack support for user preferences and
purely rely on (semantic or syntactic) distance measures such as different notions of
match or concept similarity. For most approaches the selection can be done auto-

3Available at http://www.oracle.com/technology/products/webservices_manager

202 CHAPTER 10: RELATED WORK

matically in a computationally tractable manner. For social selection approaches, in
contrast, feedback about service invocations is required, which in most cases has to
be determined manually. All Web service selection approaches mentioned above do
not address the flexibility requirement adequately, since they use fixed algorithms
for matching as well as allocation. In addition, legal reliability is not in their focus
and their optimization goals do not address economic objectives such as incentive
compatibility. This is provided by market-based allocation mechanisms, which in
turn require considerable additional time for determining the allocation (especially
if several bidding rounds are involved). Finally, there are several approaches that
strive for automated conclusion of contracts. However, legal reliability cannot be
reached in a fully automated fashion. This is also the case in our work. There-
fore, we use a semi-automated approach where an automatically closed contract is
augmented with an umbrella contract. The flexibility is provided by customizable
matching and allocation rules that seamlessly combine efficient optimization tech-
niques with semantics-based matchmaking. Thereby, we enable efficient calculation
of optimal allocations.

Chapter 11

Conclusions and Outlook

In this thesis, we outlined the entire development process of an ontology-based Web
service market infrastructure from the requirements analysis to the evaluation stage.
By combining techniques from the area of computer science, economics and law in a
novel way, this work proposed a market infrastructure for enabling automated con-
tracting and contract monitoring. Thereby, we contributed to the state of the art in
designing electronic markets by showing how semantic technologies can be utilized
for solving problems such as interoperability or insufficient flexibility. In order to
develop such a system in a structured way, we provided a coherent methodology
that integrates the engineering of service-oriented architectures, markets, and on-
tologies.

In Section 11.1, we briefly summarize the contents of this work and accentuate
the major contributions. Subsequently, open research questions are reviewed and
an outlook on how they could be addressed in future work is given in Section 11.2.

11.1 Summary of Contributions

Service-oriented architectures require coordination mechanisms bringing together
service requesters and providers. Throughout the work such a coordination mech-
anism is referred to as Web service market. The trend towards increasingly adap-
tive as well as autonomous service-oriented architectures requires an infrastructure
that enables a high degree of automation within Web services markets. This affects
mainly the contracting process that includes matching of service offers and requests,
determining suitable allocations and closing contracts.

In order to support the automation of the contracting process, this work investi-
gated two main research questions: (i) Can semantic technologies be used to express
policies such that they enable the specification of offers, requests and contracts in
Web service markets? (ii) Can we automate the contracting process in the market
based on these semantic descriptions? The two research questions were addressed
by developing an ontology framework and a mechanism that enables the automa-
tion of the contracting and contract monitoring process. In this context, we pointed
out the need for semantic technologies and showed the benefits that can be realized
in Web service markets.

In general, we focused mainly on two aspects: the language used within the mar-
ket and the mechanisms that provide the market functionality. In Part II of this work,
we discussed the design of these two aspects. In Chapter 4, we introduced three

204 CHAPTER 11: CONCLUSIONS AND OUTLOOK

general scenarios and analyzed them with respect to the requirements they impose
on the market infrastructure. Thereby, six language-specific and five mechanism-
specific requirements were derived. In Chapter 5, we presented an implementation-
independent conceptual design with a formal policy model that facilitates the ex-
pression of bids and contracts in the market. Based on these communication primi-
tives, we outlined a contracting mechanism that comprises the matching, allocation,
acceptance and (partly) the settlement phase.

In the embodiment phase, this conceptual design is then implemented by means
of a specific ontology language (Chapter 6). In order to feature interoperability and
Web-compliance, our technology of choice are ontologies. They provide expres-
sive, declarative and formal means for representing policies and the communication
primitives based on them. Regarding the ontology-specific aspects, the following
main contribution can be identified:

• We introduced an expressive ontology framework for representing the major
communication primitives required in electronic markets. The framework is
based on a clean and highly axiomatized foundational ontology and makes ex-
tensive use of typical ontology design patterns. This allows us to ensure high
quality and to avoid typical shortcomings that can be identified in naively built
ontologies, such as conceptual ambiguity or poor axiomatization [Obe05].
Moreover, we showed how the framework can be expressed using a standard
ontology language that is suitable for the Web.

• Major contributions of this work are the core ontologies that are newly added
to the framework. As a central part, the Core Policy Ontology takes up the idea
of utility function policies presented in [KW04] and shows how they can be
formally represented in a declarative way. To the best of our knowledge, this
is the first work heading towards this goal. Since utility function policies are
modeled as direct extensions of traditional goal policies, goal policies can also
be expressed using the ontology. The declarative nature of the policies enables
their integration and thus facilitates management tasks, such as checking for
consistency and automatically enforcing policies.

• Based on the Core Policy Ontology, primitives for expressing offers and re-
quests are provided by the Core Ontology of Bids. The Core Ontology of Bids
supports customizable services by providing a compact way for describing
configurable service offers. Compared to the state of the art where configu-
rations are usually described by enumerations, we were able to considerably
increase communication efficiency (Section 9.3.2) as well as the computational
tractability of the contracting process (Section 9.3.3) by means of utility func-
tion policies.

• The Core Contract Ontology extends the Core Policy Ontology by adding
primitives for formally expressing Web service contracts. The advantages of
the underlying ontologies also carry over to the Core Contract Ontology. In
particular, the formal representation of contracts is a necessary precondition
for realizing automated contract execution and monitoring.

By leveraging the formal nature of the ontological descriptions, contracting in
the market can be widely automatized. Chapter 7 provides novel algorithms for

11.1 Summary of Contributions 205

automated matching, allocation, contract formation and contract monitoring. These
algorithms rely on semantic technologies to realize a powerful, but still efficient mar-
ket infrastructure. In the following, we briefly summarize the mechanism-specific
contributions:

• The work illustrated how existing semantic Web service annotation frame-
works can be aligned with a well-known multi-attribute decision making ap-
proach based on techniques from economic fields, such as decision theory and
operations research. While this allows us to use standard decision theoretic ap-
proaches, it also enables leveraging matching algorithms based on description
logic, which provide improved interoperability and thus increase the quality
of the results (Section 9.3.4). By providing a seamless integration of efficient
optimization techniques into this framework, we were also able to ensure the
required performance of the contracting process (Section 9.3.3).

• Another important problem inherent to existing approaches is the hard-coding
of matching and allocation algorithms. Since different aspects of services often
have to be matched in a different way, such hard-coded solutions do not allow
adding of attributes during runtime. We approached this problem by means of
customizable matching predicates that can be added as well as changed at the
runtime of the systems. Similarly, we allow the adaption of allocation mecha-
nisms in a flexible manner. Thus, our infrastructure can be easily adapted to
new services and application scenarios.

• We provided the desired automation by relying on the concept of formal poli-
cies, where guidelines are used to specify declaratively how the system should
behave. Based on these guidelines, the system can allocate services optimally
without human interventions. In contrast to related approaches, this work
addressed the context-dependency of decisions. We handled this issue by as-
sociating policies to certain environmental conditions, such as time or location.

• After an agreement between market participants is reached, a legally enforce-
able contract has to be closed. We support this step by providing a semi-
automated contracting process. A formal contract expressed via the Core Con-
tract Ontology is augmented by a manually closed umbrella agreement. With-
out such an umbrella contract legal reliability cannot be guaranteed. Since au-
tomated contracting may lead to a heterogeneous set of individual contracts,
we provided sophisticated contract management mechanisms that enable con-
tract execution and monitoring.

In Part III, our approach to address the research questions was implemented
and evaluated. In a first step, we introduced the KASWS prototype in Chapter 8,
which implements the contracting process based on the presented ontology frame-
work. The prototype utilizes WS-BPEL as a workflow language. In this work, we
showed how automated contracting of Web services can be realized using a stan-
dard WS-BPEL execution engine. In addition, tools for defining requests and of-
fers, and a server component for hosting the market platform was presented. Based
on this implementation, we discussed the market infrastructure with respect to the
requirements in Chapter 9. In this context, an evaluation of the communication

206 CHAPTER 11: CONCLUSIONS AND OUTLOOK

efficiency, computational tractability and the optimality of our approach was con-
ducted. Thereby, we showed that a computationally tractable infrastructure can
be realized by means of standard linear programming solvers assuming additive
pricing and scoring policies. In addition, the results indicate that with increasing
customization possibilities there will be also an increasing need for semantic tech-
nologies to ensure reasonable results.

11.2 Future Work

There are several directions in which our approach can be extended. First, more
sophisticated allocation mechanisms than presented in this work can be envisioned.
Such mechanisms might address non-linear pricing or handle service selection for
an entire workflow. Extensions to the selection algorithms are discussed in Sec-
tion 11.2.1. Second, while introducing an automated contracting mechanism allows
the determination of Web service bindings for given requests and offers, specifying
these requests and offers is cumbersome and often cannot be done manually. There-
fore, solutions are required that automatically generate requests and offers based on
system information (Section 11.2.2). Third, the Core Contract Ontology is very re-
stricted in the normative positions that can be expressed. In fact, the Core Contract
Ontology currently supports only obligations. Although obligations are by far the
most important normative position, also other positions such as permissions might
be necessary in some settings. In addition, our systems lacks means for reasoning
over temporal aspects of a contract. Possible extensions to the contract representa-
tion are discussed in Section 11.2.3. Regarding implementation, the assumption of
having the same interface descriptions can be relaxed to apply our prototype in a
broader context. In the following, this is discussed in Section 11.2.4.

11.2.1 Extensions to the Selection Algorithm

In this work, we presented a basic Web service selection algorithm and showed how
this algorithm can be used for implementing a simple negotiation protocol. As al-
ready discussed in Section 5.3.2, this simple negotiation protocol can be extended
in several ways. For example, it would be interesting to consider the extension of
our approach to algorithms dealing with non-linear pricing [BF05], multi-unit nego-
tiation schemes [EWL06], homogeneity constraints [BK05], and the Global Selection
Problem [ZBN+04, SBM+04, AVMM04, YL05, JMG05]. However, the question is
how these algorithms can be implemented in the presented Web service infrastruc-
ture.

In [AL05], an approach is provided that can be used to aggregate service prop-
erties along the workflow. This is required to solve the Global Selection Problem. In
this context, aggregation rules are specified using DL-safe rules that determine how
a certain attribute is aggregated based on workflow constructs such as split, choice,
etc. By adapting the global selection algorithms mentioned above to the specific set-
ting, services could be selected based on the aggregated information. However, the
specification of aggregation rules for various different attributes and the computa-
tional complexity of the optimization algorithms are a major issue in this context.

11.2 Future Work 207

11.2.2 Automated Bidding

An important assumption underlying our work was that market participants know
their bids exactly. This does not only include the specific Web service they re-
quire/provide at some future point in time, but also the price and quality. This
assumption is very much simplifying reality and obstructs the actual use of Web
service markets. To establish a prospering Web service market rules how to conduct
the bidding are required. Since the demand and supply situation can be extremely
volatile, manual bidding is to slow to accommodate abrupt demand/supply shifts.
Therefore, automated approaches have to be developed that leverage current or
estimated system information such as predicted workload. An initial approach is
presented in [NLS06], where requests and offers are generated automatically based
on workload information as well as bidding policies. In this context, an important
future topic is also the development of policy management tools that support the
entire policy lifecycle.

11.2.3 Expressive Contract Representation

Obligations are often not sufficient to fully formalize Web service contracts. For
example, contracts typically also state rights, permissions, duties, etc. A detailed
overview of a wide range of different normative positions can be found in [Ser01].
Although these normative position can often be expressed by complex modal log-
ics in a formal way, an interesting further research question would be whether we
are able to avoid such complex, often undecidable logics by capturing the semantics
of additional normative positions in our framework. This would require to intro-
duce new types of CPO:PolicyDescriptions in addition to CCO:Obligations and to
extend the DnS:satisfies-relation for handling these normative positions. However,
whether such an extension is possible for normative positions beyond obligations is
the subject to further research.

Another interesting further research question is the incorporation of dynamic as-
pects into the contract descriptions. While our approach allows us to express the fact
that certain tasks have to be executed in a certain order, we currently do not support
sophisticated reasoning over such dynamic aspects. However, this is required for
verification of a correct execution of the temporal regulations contained in a con-
tract. A possible solution for this problem using temporal logic is briefly discussed
in the section.

11.2.4 Extending the Prototype

Our prototype can be extended in several ways: First, a major limitation of
our current prototype is the fact that all alternative Web services are required to
have an identical interface. Unless there are no standardized Web service inter-
faces as proposed by [GMN05], interface and protocol mappings are required.
Solutions for these problems are currently under investigation in many projects
[PA05, KRMF06, HBM+07] and an integration of these solutions in our prototype
should be considered. Second, our prototype can be extended by allowing the spec-
ification of policies on temporal attributes of a Web services. How values of tem-
poral attributes, such as the execution order of certain tasks, can be modeled using

208 CHAPTER 11: CONCLUSIONS AND OUTLOOK

π-calculus is extensively discussed in [Aga07]. By combining a temporal logic, such
as µ-calculus [Koz83], with the utility function policies defined in this work, pric-
ing and scoring policies as well as contractual obligations can be specified also for
such temporal attributes. Thereby, one can express, e.g., that services are preferred
that return route planning information, before credit card information has to be dis-
closed.

In summery, this work provided a Web service market infrastructure and showed
how semantic technologies can be leveraged to automate the contracting process.
This is a first step towards realizing the vision of applications being assembled and
reconfigured automatically according to the users’ needs. Although additional re-
search questions have to be addressed to fully reach this goal, the presented ontol-
ogy framework and contracting mechanism provide a solid basis for initial deploy-
ment as well as further research. In particular, the infrastructure paves the way for
implementing more sophisticated market mechanisms in an open and heterogenous
environment such as the Web.

Part V

Appendix

Appendix A

Detailed Evaluation Results

On the following pages, detailed evaluation results are listed. Table A.1 shows the
number of bytes required for storing a configurable bid with an increasing number
of configurations per bid. The table compares the compactness of the policy-based
bid representation with an enumeration-based approach. Table A.2 compares the
two approaches in terms of performance. This is done for several settings with
varying number of offers in the knowledge base and and varying number of config-
urations per offer. The third table (Table A.3) compares the three different optimal
variants for solving the MMP introduced in Section 7.1.1 with a random baseline
algorithm. Table A.4 lists the relative increase in the number of matches and Table
A.5 the gain in utility that can be realized by introducing semantic matching.

212 APPENDIX A: DETAILED EVALUATION RESULTS

Enumeration-based Policy-based

approach approach

Number of Number of offers

configurations 1 1000 1 1000

1 13584 884249 16713 4730290

4 18551 3180842 18802 6842185

9 26830 7007536 20892 8954157

16 38428 12387458 22980 11066050

25 53336 19302521 25070 13177972

36 71612 27756265 27161 15289955

49 93138 37745240 29249 17401855

64 118002 49272716 31334 19513784

81 146233 62337494 33436 21625528

100 177642 76937326 35512 23737525

121 212641 93161460 37614 25863421

144 251193 110930077 39728 27989455

169 292753 130246219 41827 30115456

196 337890 151110492 43922 32241324

225 386319 173517589 46035 34367403

Table A.1: Comparison of Bid -compactness measured in bytes.

213

Number of Enumeration-based Policy-based

configurations approach approach

Number of offers Number of offers

1 200 400 600 800 1000 1 200 400 600 800 1000

1 1 3 12 15 20 25 32

20 6 194 363 575 780 976 30 301 577 903 1224 1473

100 9 2042 4242 6828 8666 11414 16 1774 3552 5356 7168 9466

225 40 10352 20859 31380 42586 54592 49 5373 11014 17630 23130 29358

400 126 32615 66689 99168 132298 169301 107 12360 24753 38161 52519 65582

625 313 81734 166531 273764 356475 414763 204 24176 47834 214233 105613 132147

900 652 185013 355631 527661 740778 961524 362 45043 87550 130187 181685 245228

1225 1163 352069 726405 1047356 1484515 1913432 605 70275 146705 219234 297666 391032

Table A.2: Performance of enumeration- and policy-based bid representation measured in ms.

214 APPENDIX A: DETAILED EVALUATION RESULTS

Number of Number of Variant
offers requests [V1] [V2] [V3] random

10 100 88.40 11.00 98.70 2
10 225 275.75 14.50 96.38 2
10 400 578.78 18.89 50.00 6
10 625 1070.75 35.00 115.75 12
10 900 2032.50 49.00 136.75 12
10 1225 2805.75 54.75 153.75 16
10 1600 4388.50 73.00 175.25 125

210 100 1964.90 143.40 1055.70 28
210 225 5477.67 238.00 1024.33 59
210 400 12549.30 389.60 1278.80 130
210 625 23402.50 575.75 1550.75 229
210 900 40933.50 909.25 1943.75 354
210 1225 57545.00 1004.40 2456.00 566
210 1600 91913.50 1435.50 2807.25 667
410 100 3621.30 340.70 2565.10 58
410 225 10926.10 526.20 1882.30 143
410 400 24445.20 827.50 2315.10 285
410 625 46159.60 1219.40 2954.20 492
410 900 83385.00 1817.80 3804.80 732
410 1225 114123.60 2064.60 4364.20 1087
410 1600 195892.60 2910.00 6142.80 1414
610 100 5440.50 596.90 3880.00 97
610 225 16541.60 875.60 2867.40 239
610 400 36551.70 1335.20 3541.20 477
610 625 68247.80 1923.80 4530.40 872
610 900 126494.75 2869.00 5919.75 1231
610 1225 178032.00 3276.00 7176.67 1673
610 1600 303819.00 4830.00 9941.40 2392
810 100 7406.20 939.30 4604.70 137
810 225 22058.90 1283.50 3866.40 341
810 400 49532.40 1957.70 4927.40 659
810 625 92020.40 2727.80 6150.20 1167
810 900 162013.40 3844.20 8108.80 1631
810 1225 261356.60 5373.80 10242.40 2670
810 1600 392423.60 6261.40 13412.40 4244
1010 100 9363.70 1406.90 5889.00 194
1010 225 27704.60 1813.70 4997.20 485
1010 400 63007.90 2653.60 6505.30 916
1010 625 114931.20 3586.40 7887.60 1452
1010 900 209159.00 5008.40 10986.20 2594
1010 1225 334040.40 6650.60 14288.80 3590
1010 1600 499499.75 8301.25 17637.25 5415
1210 100 11378.70 1900.80 7631.70 244
1210 225 33705.20 2418.70 6223.80 609

Table A.3: Performance of matching variants measured in ms.

215

Number of Number of Variant
offers requests [V1] [V2] [V3] random

...table continued...
1210 400 76722.00 3462.00 8082.80 1114
1210 625 141408.80 4795.80 10310.00 1785
1210 900 250168.80 6570.60 13699.80 2992
1210 1225 385929.40 7657.80 18569.40 4411
1210 1600 615422.40 10829.00 27118.00 7675
1410 100 13158.20 2560.40 10016.30 288
1410 225 39189.00 3273.20 7584.80 697
1410 400 89581.80 4681.40 9707.60 1365
1410 625 170953.20 6253.80 13235.80 2493
1410 900 299713.60 8066.20 17863.00 3817
1410 1225 472858.60 9351.00 24232.60 6442
1410 1600 725616.60 12215.60 30870.00 8547
1610 100 15376.44 3376.33 12525.00 341
1610 225 44423.67 4114.11 9123.00 827
1610 400 105556.80 5741.60 12226.40 1561
1610 625 204100.80 7543.00 15905.60 2701
1610 900 356955.40 9797.20 21617.60 4281
1610 1225 564605.80 12520.40 32485.20 7684
1610 1600 829816.00 15782.00 41827.00 12243
1810 100 16546.00 4054.00 9440.00 381
1810 225 51097.10 5284.80 11168.80 983
1810 400 118398.20 7000.60 14366.00 1773
1810 625 230666.00 9164.00 19113.00 2930
1810 900 397408.80 11853.40 26760.00 5610
1810 1225 633159.60 14432.60 35638.40 8381
1810 1600 1018316.00 18928.00 57277.00 14999
2010 100 18377.00 5106.00 10967.00 474
2010 225 56024.40 6457.40 13028.40 1103
2010 400 129337.00 8346.00 17141.60 2224
2010 625 257530.40 10696.80 22923.60 3620
2010 900 477285.20 15189.20 41808.60 6893
2010 1225 750579.80 17367.40 47258.20 9628
2010 1600 1267707.20 23656.80 69836.40 17158

Table A.3: Performance of matching variants measured in ms.

216 APPENDIX A: DETAILED EVALUATION RESULTS

Number of Ontology Size
offers small medium large

50 2.1294615 4.121233 6.3432
100 2.0834138 3.3342234 5.85673
150 2.040428 3.6711953 4.86775
200 1.9481369 2.8867044 4.23123
250 2.028849 2.9601085 5.567565
300 2.018622 3.3694522 6.32232
350 1.9792932 3.7323475 4.97856
400 2.139109 3.370374 5.3223
450 2.024841 3.1682165 5.986
500 1.9944267 2.9396975 5.542
550 1.9858284 3.162173 4.964
600 1.9641815 3.0488298 5.98987
650 1.9487522 2.7331111 5.334362
700 2.0612867 3.058414 6.189736
750 1.9686356 3.1586716 6.5806847
800 2.007206 3.1291995 6.445567
850 2.0255516 2.75824 5.823243
900 2.0224805 2.8404422 5.0331
950 2.0243948 2.949343 5.6380305

1000 2.0013342 3.1555436 5.7260814
1050 2.0125282 2.9738472 4.7477293
1100 2.0098119 3.1146703 5.713008
1150 2.0276752 2.7581966 5.592429
1200 1.9817696 3.1809587 6.2915382
1250 2.037736 2.8324652 5.3207836
1300 2.0000722 2.9998546 5.52149
1350 1.9874947 3.2531524 5.575553
1400 1.9797436 3.0936215 4.710363
1450 2.0347984 2.99901 5.7617445
1500 2.0126047 2.9012818 5.4873
1550 2.0272074 3.0749483 7.14308
1600 2.0129132 3.1874866 5.672242

Table A.4: Relative increase in number of matches.

217

Number of Ontology Size
offers small medium large

20 0.09555222 0.37464982 0.19251056
40 0.05517628 0.3081325 0.30062455
60 0.04938148 0.27226597 0.36664814
80 0.036708742 0.2529401 0.47242188

100 0.022990435 0.14397457 0.43292484
120 0.02256395 0.17738761 0.3604471
140 0.022581125 0.17552733 0.40090007
160 0.01760894 0.119190454 0.35450992
180 0.013973519 0.052918535 0.37577412
200 0.015289108 0.086436376 0.40634733
220 0.012868008 0.08185781 0.4852279
240 0.008909034 0.09583692 0.38248003
260 0.010487919 0.0924208 0.32111472
280 0.010691282 0.092999406 0.47933888
300 0.012235651 0.0719818 0.36299497
320 0.008779077 0.056526937 0.3361407
340 0.007585828 0.039164335 0.34986693
360 0.008028221 0.054182816 0.3363778
380 0.0059215548 0.047897566 0.31925362
400 0.0069562746 0.04975953 0.30695474
420 0.0061652004 0.05378554 0.32924053
440 0.008710342 0.0461867685 0.26146355
460 0.006203355 0.039130975 0.24230418
480 0.0046784864 0.036651656 0.28084144
500 0.0062209563 0.0290486815 0.2632665
520 0.0032276108 0.040161386 0.32026425
540 0.004538642 0.03591316 0.24324867
560 0.003889592 0.0366198 0.23201433
580 0.004039617 0.04195609 0.25004023
600 0.00377196525 0.028168267 0.22053334
620 0.00305063425 0.024819074 0.28980482
640 0.0029021874 0.037336957 0.22122073
660 0.0038956509 0.037800502 0.2365056
680 0.0027790456 0.03350959 0.23051052
700 0.0038645505 0.023034053 0.17912284
720 0.0032849847 0.029631373 0.19297531
740 0.0031958327 0.03426681 0.20062312
760 0.0030074283 0.03157547 0.19072086
780 0.0042936774 0.023953684 0.19240904
800 0.003054501 0.019866526 0.14516315
820 0.0030347258 0.030413609 0.17781146
840 0.0038933815 0.021336889 0.2008796
860 0.0027463883 0.02413283 0.1822948
880 0.0030268072 0.020077545 0.1774458

Table A.5: Absolute increase in utility.

218 APPENDIX A: DETAILED EVALUATION RESULTS

Number of Ontology Size
offers small medium large

...table continued...
900 0.0026097656 0.02638042 0.20317516
920 0.0030189245 0.021451754 0.14562145
940 0.0026009171 0.0100156695 0.14834931
960 0.00204681 5 0.0322994485 0.13981244
980 0.0020820692 0.015991356 0.23037796

1000 0.0021654442 0.02420365 0.15034899
1020 0.0032640204 0.021291722 0.17357865
1040 0.002760285 0.013192313 0.118703626
1060 0.0020622672 0.01955185 0.12257241
1080 0.002252339 0.030172277 0.15654509
1100 0.0027919323 0.017989727 0.16042116
1120 0.002001287 0.013039539 0.13276814
1140 0.0022746518 0.011950105 0.13801081
1160 0.0016592741 0.016651746 0.1701133
1180 0.0014683396 0.023741398 0.10756383
1200 0.0017239705 0.015593271 0.13537155
1220 0.0032547847 0.013101587 0.080048814
1240 0.0021203817 0.017965656 0.12632816
1260 0.002794765 0.017708108 0.1773103
1280 0.0020168736 0.014791583 0.1738556
1300 0.0016111017 0.017072136 0.14256744
1320 0.0014701232 0.014631683 0.12065126
1340 0.0017422572 0.009344198 0.13710518
1360 0.0017253712 0.011862086 0.10211418
1380 0.0017002166 0.010610642 0.121615686
1400 0.0016830281 0.017689139 0.104814075
1420 0.0018417432 0.011392601 0.09553937
1440 0.0016883373 0.00914073 0.10963619
1460 0.0017317086 0.014893098 0.11682918
1480 0.0015989288 0.013872844 0.1184862
1500 0.0014090643 0.011929865 0.068410076
1520 0.0015754208 0.013377261 0.12113015
1540 0.001199834 0.010287596 0.10936712
1560 0.0018342689 0.011092854 0.09239143
1580 0.001652427 0.014645634 0.08503954
1600 0.0016681179 0.009022864 0.11921606

Table A.5: Absolute increase in utility.

References

[AAFP03] Issam Aib, Nazim Agoulmine, Mauro Sergio Fonseca, and Guy Pujolle.
Analysis of Policy Management Models and Specification Languages. In
Dominique Gaïti, Guy Pujolle, Ahmed Al-Naamany, Hadj Bourdoucen, and
Lazhar Khriji, editors, Network control and engineering for QoS, security and
mobility II, pages 26–50. Kluwer Academic Publishers, Norwell, MA, USA,
2003.

[ABdB+05] Vladimir Alexiev, Michael Breu, Jos de Bruijn, Dieter Fensel, Rubén Lara, and
Holger Lausen, editors. Information Integration with Ontologies: Experiences
from an Industrial Showcase. Wiley, February 2005.

[ABK+04] Sinuhé Arroyo, Christoph Bussler, Jacek Kopecký, Rubén Lara, Axel Polleres,
and Michal Zaremba. Web Service Capabilities and Constraints in WSMO.
In W3C Workshop on Constraints and Capabilities for Web Services, Redwood
Shores, CA, USA, 2004.

[ACD+03] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Jo-
hannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish
Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business Process Execu-
tion Language for Web Services, Version 1.1, 2003.

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Ser-
vices - Concepts, Architectures, Applications. Springer, 2004.

[Act06] Active Endpoints. ActiveBPEL Engine Tutorial. Available from http://
www.active-endpoints.com/open-source-tutorial.htm, 2006.

[ADR05] Ganand Anandalingam, Robert W. Day, and Srinivasa Raghavan. The Land-
scape of Electronic Market Design. Management Science, 51(3):316–327, March
2005.

[AG03] Samuil Angelov and Paul Grefen. The 4W Framework for B2B e-Contracting.
Int. Journal on Networking and Virtual Organisations, 1(3), 2003.

[Aga07] Sudhir Agarwal. Formal Description of Web Services for Expressive Matchmak-
ing. PhD thesis, Fakultät für Wirtschaftswissenschaften, Universität Karl-
sruhe (TH), May 2007.

[AL05] Sudhir Agarwal and Steffen Lamparter. User Preference based Automated
Selection of Web Service Compositions. In Kunal Verma; Amit Sheth; Michal
Zaremba; Christoph Bussler, editor, ICSOC Workshop on Dynamic Web Pro-
cesses, pages 1–12, Amsterdam, Netherlands, DEC 2005. IBM.

220 REFERENCES

[AMBD04] Alain Abran, James W. Moore, Pierre Bourque, and Robert Dupuis, editors.
Guide to the Software Engineering Body of Knowledge (SWEBOK). IEEE Com-
puter Society, February 2004. Available at http://www.swebok.org/.

[Ame06] American National Standards Institute (ANSI). ANSI ASC X12. http://
www.x12.org/, 2006.

[AP05] Danilo Ardagna and Barbara Pernici. Global and Local QoS Guarantee in
Web Service Selection. In Christoph Bussler and Armin Haller, editors, Busi-
ness Process Management Workshops, BPM 2005 International Workshops, pages
32–46, Nancy, France, September 2005.

[Ari08] Aristotle. Metaphysics. In W. D. Ross, editor, The Works of Aristotle translated
into English, Volume VIII. Oxford University Press, Oxford, UK, 1908.

[AS06] Sudhir Agarwal and Rudi Studer. Automatic Matchmaking of Web Services.
In Proc. of IEEE International Conference on Web Services (ICWS 2006), pages
45–54, Chicago, USA, 2006. IEEE Computer Society.

[ATY00] Arne Andersson, Mattias Tenhunen, and Frederik Ygge. Integer Program-
ming for Combinatorial Auction Winner Determination. In Proc. of 4th Int.
Conf. on MultiAgent Systems (ICMAS-2000), Washington, DC, USA, 2000.
IEEE Computer Society.

[AVMM04] Rohit Aggarwal, Kunal Verma, John Miller, and William Milnor. Constraint
Driven Web Service Composition in METEOR-S. In SCC ’04: Proceedings
of the 2004 IEEE International Conference on Services Computing, pages 23–30,
Washington, DC, USA, 2004. IEEE Computer Society.

[AW00] Rakesh Agrawal and Edward L. Wimmers. A Framework for Expressing
and Combining Preferences. In SIGMOD ’00: Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, pages 297–306, New
York, NY, USA, 2000. ACM Press.

[BAG03] Ziv Baida, Hans Akkermans, and Jaap Gordijn. Serviguration: Towards On-
line Configurability of Real-world Services. In ICEC ’03: Proceedings of the 5th
international conference on Electronic commerce, pages 111–118, New York, NY,
USA, 2003. ACM Press.

[BAGS02] Rajkumar Buyya, David Abramson, Jonathan Giddy, and Heinz Stockinger.
Economic Models for Resource Management and Scheduling in Grid Com-
puting. J. of Concurrency and Computation: Practice and Experience, 14(13-15),
2002.

[Bak98] Yannis Bakos. The Emerging Role of Electronic Marketplaces on the Internet.
Commun. ACM, 41(8):35–42, 1998.

[BAV05] Rajkumar Buyya, David Abramson, and Srikumar Venugopal. The Grid
Economy. Proceedings of the IEEE, Special Issue on Grid Computing, 93(3):698–
714, March 2005.

[BBB+05] Steve Battle, Abraham Bernstein, Harold Boley, Benjamin Grosof, Michael
Gruninger, Richard Hull, Michael Kifer, David Martin, Sheila McIlraith,
Deborah McGuinness, Jianwen Su, and Said Tabet. Semantic Web Ser-
vices Framework (SWSF). http://www.w3.org/Submission/SWSF/,
September 2005. W3C Member Submission.

REFERENCES 221

[BCG+05] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella.
Automatic Services Composition based on Behavioral Descriptions. Interna-
tional Journal of Cooperative Information Systems (IJCIS), 14(4):333Ű376, 2005.

[BCHS05] Stephan Bloehdorn, Philipp Cimiano, Andreas Hotho, and Steffen Staab. An
Ontology-based Framework for Text Mining. LDV Forum - GLDV Journal for
Computational Linguistics and Language Technology, 20(1):87–112, May 2005.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory Im-
plemenation and Applications. Cambridge University Press, 2003.

[BdVS02] Piero A. Bonatti, Sabrina De Capitani di Vimercati, and Pierangela Samarati.
An Algebra for Composing Access Control Policies. ACM Trans. Inf. Syst.
Secur., 5(1):1–35, 2002.

[BF05] Piero A. Bonatti and Paola Festa. On Optimal Service Selection. In WWW
’05: Proceedings of the 14th International Conference on World Wide Web, pages
530–538, New York, NY, USA, 2005. ACM Press.

[BFM06] Meghyn Bienvenu, Christian Fritz, and Sheila A. McIlraith. Planning with
Qualitative Temporal Preferences. In Patrick Doherty, John Mylopoulos, and
Christopher A. Welty, editors, Proceedings of the Tenth International Conference
on Principles of Knowledge Representation and Reasoning, pages 134–144, Lake
District of the United Kingdom, 2006. AAAI Press.

[BG95] Fahiem Bacchus and Adam Grove. Graphical Models for Preference and
Utility. In Eleventh Conference on Uncertainty in Artificial Intelligence (UAIŠ95),
page 3Ű10, San Francisco, CA, USA, 1995. Morgan Kaufmann.

[BGG+02] Stefano. Borgo, Aldo Gangemi, Nicloa Guarino, Claudio Masolo, and
Alessandro Oltramari. Ontology RoadMap. WonderWeb Deliverable D15.
http://wonderweb.semanticweb.org, Dec 2002.

[BH95] Franz Baader and Bernhard Hollunder. Embedding Defaults Into Ter-
minological Knowledge Representation Formalisms. J. Autom. Reasoning,
14(1):149Ű180, 1995.

[BH01] Craig Boutilier and Holger H. Hoos. Bidding Languages for Combinatorial
Auctions. In International Joint Conference on Artificial Intelligence IJCAI’01,
pages 1211–1217, Seattle, Washington, USA, 2001.

[BK05] Martin Bichler and Jayant Kalagnanam. Configurable Offers and Winner
Determination in Multi-attribute Auctions. European Journal of Operational
Research, 160(2):380–394, January 2005.

[BK06a] Abraham Bernstein and Christoph Kiefer. Imprecise RDQL: Towards
Generic Retrieval in Ontologies Using Similarity Joins. In 21th Annual ACM
Symposium on Applied Computing (SAC), pages 1684–1689, New York, NY,
USA, 2006. ACM Press.

[BK06b] Peter Bruckner and Sigrid Knust. Complex Scheduling. Springer, 2006.

222 REFERENCES

[BKK+02] Martin Bichler, Jayant Kalagnanam, Kaan Katircioglu, Alan J. King,
Richard D. Lawrence, Ho Soo Lee, Grace Y. Lin, and Yingdong Lu. Applica-
tions of Flexible Pricing in Business-to-Business Electronic Commerce. IBM
Systems Journal, 41(2), July 2002.

[BKS03] Martin Bichler, Gregory E. Kersten, and Stefan Strecker. Towards a Struc-
tured Design of Electronic Negotiations. Group Decision and Negotiation,
12(4):311– 335, 2003.

[BL84] Ronald J. Brachman and Hector J. Levesque. The Tractability of Subsump-
tion in Frame-Based Description Languages. In Ronald J. Brachman, editor,
Proceedings of the National Conference on Artificial Intelligence (AAAI’84), pages
34–37, Austin, USA, 1984. AAAI Press.

[BLHL01] Tim Berners-Lee, Jim Hendler, and O. Lassila. The Semantic Web. Scientific
American, May 2001.

[BMR97] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based Con-
straint Satisfaction and Optimization. J. ACM, 44(2):201–236, 1997.

[BMW+07] Jean-Sebastien Brunner, Li Ma, Chen Wang, Lei Zhang, Daniel C. Wolf-
son, Yue Pan, and Kavitha Srivinas. Explorations in the Use of Semantic
Web Technologies for Product Information Management. In Proc. of the 16th
Int. World Wide Web Conference (WWW’07), pages 747–756, Banff, Alberta,
Canada, 2007. ACM Press.

[Boe88] Barry W. Boehm. A Spiral Model of Software Development and Enhance-
ment. IEEE Computer, 21(5):61–72, May 1988.

[Bor97] Willem Nico Borst. Construction of Engineering Ontologies for Knowledge Shar-
ing and Reuse. PhD thesis, University of Enschede, Enschede, The Nether-
lands, 1997.

[Bro98] David C. Brown. Defining Configuring. Artif. Intell. Eng. Des. Anal. Manuf.,
12(4):301–305, 1998.

[BS85] Ronald J. Brachman and James G. Schmolze. An Overview of the KL-ONE
Knowledge Representation System. Cognitive Science, 9(2), 1985.

[BSD+04] Piero A. Bonatti, Nahid Shammehri, Claudiu Duma, Daniel Olmedilla, Wolf-
gang Nejdl, Matteo Baldoni, Cristina Baroglio, Alberto Martelli, Viviana
Patti, Paolo Coraggio, Grigoris Antoniou, Joachim Peer, and Norbert E.
Fuchs. Rule-based Policy Specification: Sate of the Art and Future Work.
Deliverable I2-D1, REWERSE Project (IST-2004-506779), August 2004.

[Bur05] Mike Burner. Service Orientation and Its Role in Your Connected Systems
Strategy. Technical report, Microsoft Corporation, 2005.

[BVEL04] Saartje Brockmans, Raphael Volz, Andreas Eberhart, and Peter Löffler. Vi-
sual modeling of OWL DL ontologies using UML. In Sheila A. McIlraith,
Dimitris Plexousakis, and Frank van Harmelen, editors, Proceedings of the
Third International Semantic Web Conference (ISWC), volume 3298 of Lecture
Notes in Computer Science, pages 198–213, Hiroshima, Japan, November 2004.
Springer.

REFERENCES 223

[BW03] Wolf-Tilo Balke and Matthias Wagner. Towards Personalized Selection of
Web Services. In Proceedings of the 12th International World Wide Web Confer-
ence, Budapst, Hungary, 2003.

[CCC+04] Andrea Cali, Diego Calvanese, Simona Colucci, Tommaso Di Noia, and
Francesco M. Donini. A Description Logic Based Approach for Matching
User Profiles. In Volker Haarslev and Ralf Möller, editors, Proc. of the 2004
Description Logic Workshop (DL 2004), volume 104 of CEUR Workshop Proceed-
ings, Whistler, British Columbia, Canada, 2004. CEUR-WS.org.

[CCMP06] Cinzia Cappiello, Marco Comuzzi, Enrico Mussi, and Barbara Pernici. Con-
text Management for Adaptive Information Systems. Electr. Notes Theor. Com-
put. Sci., 146(1):69–84, 2006.

[CFLGP03] Oscar Corcho, Mariano Fernández-López, and Asunción Gómez-Pérez.
Methodologies, Tools and Languages for Building Ontologies: Where is their
Meeting Point? Data Knowl. Eng., 46(1):41–64, 2003.

[Cha04] David A. Chappell. Enterprise Service Bus. Theory in Practice. O’Reilly Media,
2004.

[Che93] Yeon-Koo Che. Design Competition Through Multidimensional Auctions.
RAND J. Econom., 24:668Ű680, 1993.

[CM01] James Cole and Zoran Milosevic. Extending Support for Contracts in
ebXML. In Maria E. Orlowska and Masatoshi Yoshikawa, editors, ITVE
’01: Proceedings of the workshop on Information technology for virtual enterprises,
pages 119–127, Queensland, Australia, 2001. IEEE Computer Society.

[CM02] Xiangping Chen and Prasant Mohapatra. Performance Evaluation of Service
Differentiating Internet Servers. IEEE Trans. Comput., 51(11):1368–1375, 2002.

[CP04] Li Chen and Pearl Pu. Survey of Preference Elicitation Methods. Technical re-
port, Ecole Politechnique Federale de Lausanne (EPFL), Lausanne, Switzer-
land, 2004.

[CSDS03] Fabio Casati, Eric Shan, Umeshwar Dayal, and Ming-Chien Shan. Business-
oriented Management of Web services. Commun. ACM, 46(10):55–60, 2003.

[CSM+04] Jorge Cardoso, Amit P. Sheth, John A. Miller, Jonathan Arnold, and Krys
Kochut. Quality of Service for Workflows and Web Service Processes. Journal
of Web Semantics, 1(3):281–308, 2004.

[DAM02] DAML Services Coalition. DAML-S: Web service description for the se-
mantic web. In Proceedings of the First International Semantic Web Conference
(ISWC), Sardinia, Italy, 2002.

[dBLK+05] Jos de Bruijn, Holger Lausen, Reto Krummenacher, Axel Polleres, Livia Pre-
doiu, Michael Kifer, and Dieter Fensel. The Web Service Modeling Language
WSML. WSML Final Draft WSMO Deliverable D16, DERI, October 2005.
http://www.wsmo.org/TR/d16/d16.1.

[dBLPF05] Jos de Bruijn, Rubén Lara, Axel Polleres, and Dieter Fensel. OWL DL vs.
OWL flight: Conceptual Modeling and Reasoning for the Semantic Web. In
WWW ’05: Proceedings of the 14th international conference on World Wide Web,
pages 623–632, New York, NY, USA, 2005. ACM Press.

224 REFERENCES

[Ded02] Adenekan Dedeke. Self-Selection Strategies for Information Goods. First
Monday, 7(3), 2002.

[DFK+04] Ying Ding, Dieter Fensel, Michel C. A. Klein, Borys Omelayenko, and Ellen
Schulten. The Role of Ontologies in eCommerce. In Handbook on Ontologies,
pages 593–616. Springer, 2004.

[DIN98] DIN. ISO 9735 – EDIFACT Version 4.0. UNCEC CEFACT. In-
formation available from http://www.unece.org/trade/untdid/
welcome.htm, 1998.

[DJP03] Rajdeep K Dash, Nicholas R. Jennings, and David C. Parkes. Computational-
Mechanism Design: A Call to Arms. IEEE Intelligent Systems, 18(6):40–47,
November 2003. Special Issue on Agents and Markets.

[DKL+05] Roman Dumitru, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara,
Michael Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Di-
eter Fensel:. Web Service Modeling Ontology. Applied Ontology, 1(1):77 – 106,
2005.

[DLP03] Asit Dan, Heiko Ludwig, and Giovanni Pacifici. Web Services Differentia-
tion with Service Level Agreements. Ibm developersworks, IBM Corp., May
2003.

[DLV06] Christos Doulkeridis, Nikos Loutas, and Michalis Vazirgiannis. A System
Architecture for Context-Aware Service Discovery. Electronic Notes in Theoret-
ical Computer Science. Proceedings of the First International Workshop on Context
for Web Services (CWS 2005), 146(1):101–116, 2006.

[DS97] Aspassia Daskalopulu and Marek J. Sergot. The Representation of Legal
Contracts. AI and Society, 11(1/2):6–17, 1997.

[dVV03] Sven de Vries and Rakesh V. Vohra. Combinatorial Auctions: A Survey.
INFORMS Journal on Computing, 15(3):284–309, Summer 2003.

[Ehr06] Marc Ehrig. Ontology Alignment - Bridging the Semantic Gap. PhD thesis, Uni-
versität Karlsruhe (TH), Universität Karlsruhe (TH), Institut AIFB, D-76128
Karlsruhe, 2006.

[EL04] Ahmed Elfatatry and Paul Layzell. Negotiating in Service-oriented Environ-
ments. Commun. ACM, 47(8):103–108, 2004.

[Erl06] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall/Pearson PTR, 2006.

[ETJ04] Cora Beatriz Excelente-Toledo and Nicholas R. Jennings. The Dynamic Se-
lection of Coordination Mechanisms. Journal of Autonomous Agents and Multi-
Agent Systems, 9(1-2):55–85, 2004.

[ETW04] Islam Elgedawy, Zahir Tari, and Michael Winikoff. Exact Functional Context
Matching for Web Services. In ICSOC ’04: Proceedings of the 2nd international
conference on Service oriented computing, pages 143–152, New York, NY, USA,
2004. ACM Press.

REFERENCES 225

[EWL06] Yagil Engel, Michael P. Wellman, and Kevin M. Lochner. Bid Expressiveness
and Clearing Algorithms in Multiattribute Double Auctions. In EC ’06: Pro-
ceedings of the 7th ACM conference on Electronic commerce, pages 110–119, New
York, NY, USA, 2006. ACM Press.

[FBS99] Yuzo Fujishima, Kevin Leyton Brown, and Yoav Shoham. Taming the com-
putational complexity of combinatorial auctions: Optimal and approximate
approaches. In Proceedings of the Int. Joint Conference of Artificial Intelligence
(IJCAI’99), Stockholm, Sweden, July 1999. Morgan Kaufmann.

[FFJ+03] Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach, Markus Stumpt-
ner, and Markus Zanker. Configuration Knowledge Representations for Se-
mantic Web Applications. Artif. Intell. Eng. Des. Anal. Manuf., 17(1):31–50,
2003.

[Fis70] Peter C. Fishburn. Utility Theory for Decision Making. Wiley, NewYork, 1970.

[FKL+05] Dieter Fensel, Uwe Keller, Holger Lausen, Axel Polleres, and Ioan Toma.
What is Wrong with Web Services Discovery. In W3C Workshop on
Frameworks for Semantics in Web Services, Innsbruck, Austria, June 2005.
Available from http://www.w3.org/2005/04/FSWS/Submissions/
50/WWW_or_What_is_Wrong_with_Web_service_Discovery.pdf.

[FMS06] Ian Foster, Tom Maguire, and David Snelling. OGSA WSRF Basic Profile 1.0.
Technical report, Open Grid Forum, May 1 2006.

[Fos02] Ian Foster. What is the Grid? A Three Point Checklist. Grid Today, 1(6), July
22 2002. http://www.gridtoday.com/02/0722/100136.html.

[Gan04] Aldo Gangemi. Ontology Design Patterns. Technical Report 2004#1, Labo-
ratory for Applied Ontology, Rome, Italy, 2004.

[GB01] Kannan Govindarajan and Arindam Banerji. HP Web Services Architec-
ture Overview. In W3C workshop on Web services, San Jose, CA, USA, April
2001. W3C. Available at http://www.w3.org/2001/03/WSWS-popa/
paper36/.

[GBCL04] Aldo Gangemi, Stefano Borgo, Carola Catenacci, and Jos Lehmann. Task Tax-
onomies for Knowledge Content. Deliverable d07, EU 6FP METOKIS Project,
June 2004. Available from http://metokis.salzburgresearch.at.

[GBW+98] Frank Griffel, Marko Boger, Harald Weinreich, Winfried Lamersdorf, and
Michael Merz. Electronic Contracting with COSMOS - How to Establish,
Negotiate and Execute Electronic Contracts on the Internet. In C. Kobryn,
C. Atkinson, and Z. Milosevic, editors, 2nd Int. Enterprise Distributed Ob-
ject Computing Workshop (EDOC ’98), page 10, La Jolla, CA, USA, November
1998.

[GCB04] Aldo Gangemi, Carola Catenacci, and Massimo Battaglia. The Inflamma-
tion Ontology Design Pattern: An Exercisein Building a Core Biomedical
Ontology with Descriptions and Situations. In D. Pisanelli, editor, Biomedical
Ontologies, Amsterdam, The Netherlands, 2004. IOS Press.

[Ger00] Ed Gerck. Overview of Certification Systems: X.509, PKIX, CA, PGP and
SKIP. The Bell, 1(3):8, 2000.

226 REFERENCES

[GF95] Michael Grüninger and Mark Fox. Methodology for the Design and Evalua-
tion of Ontologies. In IJCAI’95, Workshop on Basic Ontological Issues in Knowl-
edge Sharing, Montréal, Québec, Canada, April 1995.

[GHA07] Stephan Grimm, Pascal Hitzler, and Andreas Abecker. Knowledge Repre-
sentation and Ontologies. In Rudi Studer, Stephan Grimm, and Andreas
Abecker, editors, Semantic Web Services Ű Concepts, Technologies and Applica-
tions, chapter 3, pages 37–88. Springer, 2007.

[GHVD03] Benjamin Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Descrip-
tion Logic Programs: Combining Logic Programs with Description Logic.
In Proceedings of 12th International Conference on the World Wide Web (WWW
2003), pages 48–57, Budapest, Hungary, 2003. ACM Press.

[GLA+04] Stephan Grimm, Steffen Lamparter, Andreas Abecker, Sudhir Agarwal, and
Andreas Eberhart. Ontology Based Specification of Web Service Policies. In
Peter Dadam and Manfred Reichert, editors, INFORMATIK 2004 - Informatik
verbindet, Band 2, Proceedings of Semantic Web Services and Dynamic Networks,
volume 51 of LNI, pages 579–583, Ulm, Germany, September 2004. GI.

[Glo06] Global Grid Forum. Grid Resource Allocation Agreement Pro-
tocol. Web Services Specification. Available from http://
www.ogf.org/Public_Comment_Docs/Documents/Oct-2006/
WS-AgreementSpecificationDraftFinal_sp_tn_jpver_v2.
pdf, October 2006.

[GM03] Aldo Gangemi and Peter Mika. Understanding the Semantic Web through
Descriptions and Situations. In Confederated Int. Conf. DOA, CoopIS and
ODBASE, number 2888 in LNCS, Catania, Sicily, Italy, November 2003.
Springer.

[GMN05] Martin Gaedke, Johannes Meinecke, and Martin Nussbaumer. Aspects of
Service-Oriented Component Procurement in Web-Based Information Sys-
tems. IJWIS, 1(1):15–24, 2005.

[GMP04] Stephan Grimm, Boris Motik, and Chris Preist. Variance in e-Business Ser-
vice Discovery. In Semantic Web Services: Preparing to Meet the World of Busi-
ness Applications, Workshop at ISWC 2004, Hiroshima, Japan, 2004.

[GMS06] Guido Governatori, Zoran Milosevic, and Shazia Sadiq. Compliance Check-
ing between Business Processes and Business Contracts. In Proceedings of
the 10th IEEE International Enterprise Distributed Object Computing Conference
(EDOC’06), pages 221–232, Los Alamitos, CA, USA, 2006. IEEE Computer
Society.

[Gov05] Guido Governatori. Representing business contracts in RuleML. International
Journal of Cooperative Information Systems, 14:181–216, 2005.

[GP03] Benjamin Grosof and Terrence C. Poon. SweetDeal: Representing Agent
Contracts with Exceptions using XML Rules, Ontologies, and Process De-
scriptions. In Proceedings of the 12th World Wide Web Conference, pages 340–
349, Budapest, Hungary, May 2003.

REFERENCES 227

[GP04] Asunción Gómez-Pérez. Ontology Evaluation. In Steffen Staab and Rudi
Studer, editors, Handbook on Ontologies, chapter Ontology Evaluation, pages
251–274. Springer, 2004.

[gri05] Sangyoon Oh and Geoffrey C. Fox. HHFR: A new architecture for Mobile
Web Services: Principles and Implementations. Technical report, Indiana
University, September 2005.

[Gru93] Tom R. Gruber. A translation Approach to Portable Ontologies. Knowledge
Acquisition, 5(2):199–220, 1993.

[GST04] Aldo Gangemi, Maria Teresa Sagri, and Daniela Tiscornia. A Con-
structive Framework for Legal Ontologies. Deliverable d07, EU 6FP
METOKIS Project, Deliverable, 2004. Available from http://metokis.
salzburgresearch.at.

[GST05] Aldo Gangemi, Maria Teresa Sagri, and Daniela Tiscornia. A Constructive
Framework for Legal Ontologies. In Richard Benjamins, Pompeu Casanovas,
Joost Breuker, and Aldo Gangemi, editors, Law and the Semantic Web: Le-
gal Ontologies, Methodologies, Legal Information Retrieval, and Applications.
Springer, 2005.

[Gua97] Nicola Guarino. Semantic Matching: Formal Ontological Distinctions for
Information Organization, Extraction, and Integration. In SCIE ’97: Interna-
tional Summer School on Information Extraction, pages 139–170, London, UK,
1997. Springer-Verlag.

[Gua98] Nicola Guarino. Formal Ontologies and Information Systems, Preface. In
Proceedings of the 1st Conference on Formal Ontologies and Information Systems
(FOIS’98), pages 3–15, Trento, Italy, 1998. IOS Press.

[Haa06] Peter Haase. Semantic Technologies for Distributed Information Systems. PhD
thesis, University of Karlsruhe (TH), 2006.

[Hag96] Jaap C. Hage. A Theory of Legal Reasoning and a Logic to Match. Artificial
Intelligence and Law, 4:199–273, 1996.

[HBM+07] R. Motahari-Nezhad Hamid, Boualem Benatallah, Axel Martens, Francisco
Curbera, and Fabio Casati. Semi-automated Adaptation of Service Interac-
tions. In WWW ’07: Proceedings of the 16th international conference on World
Wide Web, pages 993–1002, New York, NY, USA, 2007. ACM Press.

[Hef01] Jeff Heflin. Towards the Semantic Web: Knowledge Representation in a Dynamic,
Distributed Environment. PhD thesis, University of Maryland, College Park,
2001.

[Hen03] Jim Hendler. On Beyond Ontology. In Keynote talk, 2nd International Semantic
Web Conference (ISWC’03), Sanibel Island, Florida, USA, 2003.

[Het06] Moritz Hetzer. A Semantic Bidding Language for Combinatorial Contracts.
Master’s thesis, University of Karlsruhe (TH) and Carnegie Mellon Univer-
sity, May 2006.

[HF05] Yigal Hoffner and Simon Field. Transforming Agreements into Contracts.
International Journal of Cooperative Information Systems, 14(2-3):217–244, 2005.

228 REFERENCES

[HM05] Peter Haase and Boris Motik. A Mapping System for the Integration of OWL-
DL Ontologies. In Axel Hahn, Sven Abels, and Liane Haak, editors, IHIS 05:
Proceedings of the first international workshop on Interoperability of heterogeneous
information systems, pages 9–16, Bremen, Germany, November 2005. ACM
Press.

[Hoh13] Wesley Newcomb Hohfeld. Some Fundamental Legal Conceptions as Ap-
plied in Judicial Reasoning. Yale Law Journal, 23, 1913.

[HPS04] Ian Horrocks and Peter F. Patel-Schneider. A Proposal for an OWL Rules
Language. In WWW ’04: Proceedings of the 13th international conference on
World Wide Web, pages 723–731, New York, NY, USA, 2004. ACM Press.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, and Mike Dean. SWRL: A Semantic Web Rule Lan-
guage Combining OWL and RuleML. W3C Submission, avilable at
http://www.w3.org/Submission/SWRL, May 2004.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ
and RDF to OWL: The Making of a Web Ontology Language. Journal of Web
Semantics, 1(1):7–26, December 2003.

[HSTT00] Ian Horrocks, Ulrike Sattler, Sergio Tessaris, and Stephan Tobies. How to
Decide Query Containment under Constraints using a Description Logic. In
Proceedings of the 7th International Conference on Logic for Programming and Au-
tomated Reasoning (LPAR’2000), pages 326–343, Reunion Island, France, 2000.

[Hur73] Leonid Hurwicz. The Design of Mechanisms for Resource Allocation. Amer-
ican Economic Review, 69(2), 1973.

[IBM03] IBM Corporation. Enterprise privacy authorization language (EPAL
1.2). Available from http://www.w3.org/Submission/EPAL, Novem-
ber 2003. W3C Member Submission.

[Jac02] Matthew O. Jackson. Mechanism Theory. Eolss Publishers, Oxford ,UK, 2002.

[JF05] Radu Jurca and Boi Faltings. Reputation-based Service Level Agreements for
Web Services. In Service Oriented Computing (ICSOC - 2005), volume 3826 of
LNCS, pages 396 – 409, Amsterdam, Netherlands, 2005.

[JM03] Ulrich Junker and Daniel Mailharro. The logic of ILOG (J)Configurator:
Combining constraint programming with a description logic. In Proc of the
IJCAI-03 Configuration Workshop, page 13Ű20, Acapulco, Mexico, 2003.

[JMG05] Michael C. Jaeger, Gero Mühl, and Sebastian Golze. QoS-aware Composition
of Web Services: An Evaluation of Selection Algorithms. In Robert Meers-
man and Zahir Tari, editors, Confederated International Conferences CoopIS,
DOA, and ODBASE 2005, volume 3760 of LNCS, pages 646–661, Agia Napa,
Cyprus, 2005. Springer.

[JW05] Hai Jin and Hao Wu. Semantic-enabled Specification for Web Services Agree-
ment. International Journal of Web Services Practices, 1(1–2):13–20, 2005.

[Kag04] Lalana Kagal. A Policy-Based Approach to Governing Autonomous Behavior
in Distributed Environments. PhD thesis, University of Maryland Baltimore
County, Baltimore MD 21250, November 2004.

REFERENCES 229

[Kan72] Stig Kangar. Law and Logic. Theoria, 38:105–132, 1972.

[Kar72] R.M. Karp. Reducibility among Combinatorial Problems. In R.E. Miller and
J.W. Thatcher, editors, Complexity of Computer Computations, page 85Ű103.
Plenum Press, 1972.

[Kar03] Alan H. Karp. Rules of Engagement for Automated Negotiation. Technical
Report HPL-2003-152, HP Laboratories Palo Alto, 2003.

[KC03] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Comput-
ing. IEEE Computer, 36(1):41–50, Januar 2003.

[KFJ04] Lalana Kagal, Tim Finin, and Anupam Joshi. Declarative Policies for De-
scribing Web Service Capabilities and Constraints. In W3C Workshop on Con-
straints and Capabilities for Web Services, Oracle Conference Center, Redwood
Shores, CA, USA, October 2004. W3C.

[KFKS05] Matthias Klusch, Benedikt Fries, Mahboob Khalid, and Katia Sycara. OWLS-
MX: Hybrid semantic web service retrieval. In Proceedings of 1st Intl. AAAI
Fall Symposium on Agents and the Semantic Web, Arlington VA, USA, 2005.
AAAI Press.

[KFS06] Matthias Klusch, Benedikt Fries, and Katia Sycara. Automated semantic web
service discovery with OWLS-MX. In AAMAS ’06: Proceedings of the fifth in-
ternational joint conference on Autonomous agents and multiagent systems, pages
915–922, New York, NY, USA, 2006. ACM Press.

[Kha02] Rania Khalaf. Business Process with BPEL4WS: Learning BPEL4WS,
Part 2. IBM developerWorks, available from http://www.ibm.
com/developerworks/webservices/library/ws-bpelcol2/, Au-
gust 2002.

[Kie02] Werner Kießling. Foundations of Preferences in Database Systems. In 28th
International Conference on Very Large Data Bases (VLDB’02), pages 311–322,
Hong Kong, China, 2002.

[KK04] Markus Keidl and Alfons Kemper. Towards Context-aware Adaptable Web
Services. In WWW Alt. ’04: Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, pages 55–65, New York, NY,
USA, 2004. ACM Press.

[KKR04] Michael Klein and Birgitta König-Ries. Integrating Preferences into Service
Requests to Automate Service Usage. In First AKT Workshop on Semantic Web
Services, Milton Keynes, UK, Dezember 2004.

[KKRKS07] Ulrich Küster, Birgitta König-Ries, Michael Klein, and Mirco Stern. DIANE
- A Matchmaking-Centered Framework for Automated Service Discovery,
Composition, Binding and Invocation. In Proceedings of the 16th International
World Wide Web Conference (WWW2007), Banff, Alberta, Canada, May 2007.

[KKS06] John Kemp, Tapio Kaukonen, and Timo Skytta. Mobile Web Services: Architec-
ture and Implementation. Wiley & Sons, 2006.

[KL04] Alexander Keller and Heiko Ludwig. Policy-basiertes Management: State-
of-the-Art und zukünftige Fragestellungen. Praxis der Informationsverar-
beitung und Kommunikation, 27(2), June 2004. In German.

230 REFERENCES

[KLW95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. Journal of the ACM, 42(4):741–843, 1995.

[KNT00] Gregory E. Kersten, Sunil J. Noronha, and Jeffrey Teich. Are All E-Commerce
Negotiations Auctions? In COOP’2000: Fourth Int. Conference on the Design of
Cooperative Systems, Sophia-Antipolis, France, May 2000.

[Kop05] Jacek Kopeck. Aligning WSMO and WSDL-S. WSMO Working Draft WSMO
Deliverable D30, DERI, August 2005. http://www.wsmo.org/TR/d30/
v0.1/.

[Koz83] David Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 24:333–354, 1983.

[KP06] Vladimir Kolovski and Bijan Parsia. WS-Policy and Beyond: Application
of OWL Defaults to Web Service Policies. In 2nd International Semantic Web
Policy Workshop (SWPW’06). Workshop at the 5th International Semantic Web
Conference (ISWC), November 2006.

[KPKH05] Vladimir Kolovski, Bijan Parsia, Yarden Katz, and James A. Hendler. Rep-
resenting Web Service Policies in OWL-DL. In Yolanda Gil, Enrico Motta,
V. Richard Benjamins, and Mark A. Musen, editors, The Semantic Web - ISWC
2005, 4th International Semantic Web Conference (ISWC 2005), volume 3729 of
Lecture Notes in Computer Science, pages 461–475. Springer, 2005.

[KR76] Ralph L. Keeney and Howard Raiffa. Decisions with Multiple Objectives: Pref-
erences and Value Tradeoffs. J. Wiley, New York, 1976.

[KRMF06] Jacek Kopecky, Dumitru Roman, Matthew Moran, and Dieter Fensel. Se-
mantic Web Services Grounding. In Proceedings of the International Conference
on Internet and Web Applications and Services (ICIW’06), Guadeloupe, French
Caribbean, 2006.

[Kru03] Philippe Kruchten. The Rational Unified Proces: An Introduction. Addison-
Wesley, 3rd edition, 2003.

[KW04] Jeffrey O. Kephart and William E. Walsh. An Artificial Intelligence Perspec-
tive on Autonomic Computing Policies. In Proc. of 5th IEEE Int. Workshop
on Policies for Distributed Systems and Networks, pages 3–12, New York, USA,
June 2004.

[LA05] Steffen Lamparter and Sudhir Agarwal. Specification of Policies for Auto-
matic Negotiations of Web Services. In Lalana Kagal, Tim Finin, and James
Hendler, editors, Proceedings of the Semantic Web and Policy Workshop, held in
conjunction with the 4th International Semantic Web Conference, pages 99–109,
Galway, Ireland, November 2005.

[LA07] Steffen Lamparter and Anupriya Ankolekar. Automated Selection of Con-
figurable Web Services. In 8. Internationale Tagung Wirtschaftsinformatik
(WI2007), pages 441–460, Karlsruhe, Germany, 2007.

[LAGS07] Steffen Lamparter, Anupriya Ankolekar, Stephan Grimm, and Rudi Studer.
Preference-based Selection of Highly Configurable Web Services. In Proc. of
the 16th Int. World Wide Web Conference (WWW’07), pages 1013–1022, Banff,
Canada, May 2007.

REFERENCES 231

[Lan94] Thomas Langenohl. Systemarchitekturen elektronischer Märkte. PhD thesis,
University of St. Gallen, St. Gallen, Switzerland, 1994.

[LAO+06] Steffen Lamparter, Anupriya Ankolekar, Daniel Oberle, Rudi Studer, and
Christof Weinhardt. A Policy Framework for Trading Configurable Goods
and Services in Open Electronic Markets. In Proceedings of the 8th Int. Confer-
ence on Electronic Commerce (ICEC’06), pages 162–173, New Brunswick, Fred-
eriction, Canada, August 2006.

[LASW06] Steffen Lamparter, Anypriya Ankolekar, Rudi Studer, and Christof Wein-
hardt. Towards a Policy Framework for Open Electronic Markets. In Thomas
Dreier, Rudi Studer, and Christof Weinhardt, editors, Information Management
and Market Engineering, volume 4 of Studies on eOrganisation and Market Engi-
neering, pages 11–28. Universitätsverlag Karlsruhe, 2006.

[LDK04] Heiko Ludwig, Asit Dan, and Robert Kearney. Cermona: An Architecture
and Library for Creation and Monitoring of WS-Agreements. In ICSOC
’04: Proceedings of the 2nd international conference on Service oriented comput-
ing, pages 65–74, New York, NY, USA, 2004. ACM Press.

[LEO05] Steffen Lamparter, Andreas Eberhart, and Daniel Oberle. Approximating
Service Utility from Policies and Value Function Patterns. In 6th IEEE Int.
Workshop on Policies for Distributed Systems and Networks, pages 159–168,
Stockholm, Sweden, June 2005. IEEE Computer Society.

[Ley05] Frank Leymann. The (Service) Bus: Services Penetrate Everyday Life. In
Boualem Benatallah, Fabio Casati, and Paolo Traverso, editors, Third Interna-
tional Conference on Service-Oriented Computing (ICSOC 2005), Lecture Notes
in Computer Science, pages 12–20, Amsterdam, The Netherlands, December
2005. Springer.

[LF04] Chuang Liu and Ian Foster. A Constraint Language Approach to Matchmak-
ing. In IEEE International Workshop on Research Issues on Data Engineering: Web
Services for E-Commerce and E-Government Applications (RIDE’04), pages 7–14,
March 2004.

[LGPJ97] Mariano Fernández López, Asunción Gómez-Pérez, and Natalia Juristo.
METHONTOLOGY: From Ontological Art to Ontological Engineering. In
Workshop on Ontological Engineering. AAAI Spring Symposium, Stanfort, USA,
1997.

[LGPSS99] Mariano Fernández López, Asunción Gómez-Pérez, Juan Pazos Sierra, and
Alejandro Pazos Sierra. Building a Chemical Ontology Using Methontology
and the Ontology Design Environment. IEEE Intelligent Systems, 14(1):37–46,
1999.

[LH03] Lei Li and Ian Horrocks. A Software Framework for Matchmaking Based
on Semantic Web Technology. In WWW ’03: Proceedings of the Twelfth Inter-
national Conference on World Wide Web, pages 331–339, Budapest, Hungary,
2003. ACM Press.

[LHVA05] Manfred Hauswirth Le-Hung Vu and Karl Aberer. QoS-based Service Selec-
tion and Ranking with Trust and Reputation Management. In 13th Interna-
tional Conference on Cooperative Information Systems (CoopIS 2005), Agia Napa,
Cyprus, October 2005.

232 REFERENCES

[Lin77] Lars Lindahl. Position and Change - A Study in Law and Logic. Synthese
Library, 112, 1977.

[LKD+03] Heiko Ludwig, Alexander Keller, Asit Dan, Richard King, and Richard
Franck. A Service Level Agreement Language for Dynamic Electronic Ser-
vices. Electronic Commerce Research, 3(1-2):43–59, 2003.

[LL87] M. Lacroix and Pierre Lavency. Preferences; Putting More Knowledge into
Queries. In VLDB ’87: Proceedings of the 13th International Conference on Very
Large Data Bases, pages 217–225, San Francisco, CA, USA, 1987. Morgan Kauf-
mann Publishers Inc.

[LLM07] Steffen Lamparter, Stefan Luckner, and Sybille Mutschler. Formal Specifica-
tion of Web Service Contracts for Automated Contracting and Monitoring.
In 40th Annual Hawaii International Conference on System Sciences (HICSS’07),
page 63b, Waikoloa, Hawaii, USA, 2007. IEEE Computer Society.

[LLP+07] Holger Lausen, Rubeén Lara, Axel Pollers, Jos de Bruijn, and Dumitru Ro-
man. Description. In Rudi Studer, Stephan Grimm, and Andreas Abecker,
editors, Semantic Web Services Ű Concepts, Technologies and Applications, chap-
ter 7, pages 157–186. Springer, 2007.

[LLSG04] Guoming Lai, Cuihong Li, Katia Sycara, and Joseph Andrew Giampapa. Lit-
erature Review on Multi-attribute Negotiations. Technical Report CMU-RI-
TR-04-66, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, De-
cember 2004.

[LML+05] Steffen Lamparter, Sibylle Mutschler, Stefan Luckner, Kendra Stockmar, and
Carolina M. Laborde. A Modeling Perspective on Web Service Contracting.
In Proceedings of the EDOC Workshop on Contract Architectures and Languages
(CoALa’05), Enschede, The Netherlands, September 2005. IEEE Computer
Society.

[LNZ04] Y. Liu, A. H. Ngu, and L. Z. Zeng. QoS Computation and Policing in Dy-
namic Web Service Selection. In WWW Alt. ’04: Proc. of 13th Int. WWW Conf.
on Alternate track papers & posters, pages 66–73, New York, NY, USA, 2004.

[LS98] Markus A. Lindemann and Beat F. Schmid. Elements of a Reference Model
for Electronic Markets. In HICSS ’98: Proceedings of the Thirty-First Annual
Hawaii International Conference on System Sciences-Volume 4, Hawaii, USA,
1998.

[LS06] Steffen Lamparter and Björn Schnizler. Trading Services in Ontology-driven
Markets. In SAC ’06: Proceedings of the 2006 ACM Symposium on Applied Com-
puting, pages 1679–1683, Dijon, France, 2006. ACM Press.

[Lud03] Heiko Ludwig. The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems Manage-
ment, 11(1):57–81, 2003.

[LW66] Eugene L. Lawler and David E. Wood. Branch-and-Bound Methods: A Sur-
vey. Operations Research, 14(6):699 – 719, 1966.

REFERENCES 233

[LWJ01] Alessio Lomuscio, Michael Wooldridge, and Nicholas R. Jennings. A Classi-
fication Scheme for Negotiation in Electronic Commerce. In Agent Mediated
Electronic Commerce, The European AgentLink Perspective., pages 19–33, Lon-
don, UK, 2001. Springer-Verlag.

[LYFA02] Chuang Liu, Lingyun Yang, Ian Foster, and Dave Angulo. Design and Eval-
uation of a Resource Selection Framework for Grid Applications. In HPDC
’02: Proceedings of the 11 th IEEE International Symposium on High Performance
Distributed Computing HPDC-11 20002 (HPDC’02), page 63, Washington, DC,
USA, 2002. IEEE Computer Society.

[LZR03] Zhangxi Li, Huimin Zhao, and Sathya Ramanathan. Pricing Web Services
for Optimizing Resource Allocation Ű An Implementation Scheme. In Proc.
of the Web2003, Seattle, WA, 2003.

[MAPG03] Tim Moses, Anne Anderson, Seth Proctor, and Simon Godik. XACML
Profile for Web Services. Available from http://www.oasis-open.org/
committees/download.php/3661/draft-xacml-wspl-04.pdf,
September 2003. Oasis Working Draft.

[Mar06] David Martin. Putting Web Services in Context. Electr. Notes Theor. Comput.
Sci., 146(1):3–16, 2006.

[MBG99] Marco Casassa Mont, Adrian Baldwin, and Cheh Goh. POWER Prototype:
Towards Integrated Policy-Based Management. Technical Report HPL-1999-
126, HP Labs, October 1999.

[MBG+02a] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, Alessan-
dro Oltramari, and Luc Schneider. The WonderWeb Library of Foundational
Ontologies. WonderWeb Deliverable D17, August 2002. Available from
http://wonderweb.semanticweb.org.

[MBG+02b] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, Alessan-
dro Oltramari, and Luc Schneider. The WonderWeb Library of Foundational
Ontologies: Preliminary Report. WonderWeb Deliverable D17, ISTC-CNR,
Padova, Italy, August 2002.

[MBG+03] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, and
Alessandro Oltramari. Ontology Library. WonderWeb Deliverable D18.
http://wonderweb.semanticweb.org, 2003.

[MCP+99] Thomas W. Malone, Kevin Crowston, Brian T. Pentland, Jintae Lee, Chrysan-
thos Dellarocas, G. Wyner, John Quimby, Charles S. Osborn, Abraham Bern-
stein, George A. Herman, Mark Klein, and Elisa O’Donnell. Tools for Invent-
ing Organizations: Toward a Handbook of Organizational Processes. Man-
agement Science, 45(3):425–443, March 1999.

[MDRCD+03] Octavio Martín-Díaz, Antonio Ruiz-Cortés, Amador Durán, David Bena-
vides, and Miguel Toro. Automating the Procurement of Web Services. In
G. Goos, J. Hartmanis, and J. van Leeuwen, editors, Service-Oriented Comput-
ing - ICSOC 2003, volume 2910 of LNCS, pages 91–103, Trento, Italy, 2003.

[MF89] Sanjay Mittal and Felix Frayman. Towards a Generic Model of Configuration
Tasks. In Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence (IJCAI’89), pages 1395 – 1401, Detroit, MI, USA, 1989.

234 REFERENCES

[MG05] Zoran Milosevic and Guido Governatori. Special Issue on Contract Archi-
tectures and Languages – Guest Editors’ Introduction. International Journal of
Cooperative Information Systems, 14(2-3):73–76, 2005.

[MGP04] Craig McKenzie, Peter Gray, and Alun Preece. Extending SWRL to Express
Fully-Quantified Constraints. In RuleML 2004 Workshop at ISWC 2004, Hi-
roshima, Japan, 2004. Springer.

[Mil95] Zoran Milosevic. Enterprise Aspects of Open Distributed Systems. PhD thesis,
Computer Science Dept. The University of Queensland, October 1995.

[Mil00] Paul R. Milgrom. An EconomistŠs Vision of the B-to-B Marketplace. Execu-
tive white paper, www.perfect.com, 2000.

[MIP+98] Deborah L. McGuinness, Charles Isbell, Matt Parker, Peter Patel-Schneider,
Lori Alperin Resnick, and Chris Welty. A Description logic-based Configu-
rator on the Web. SIGART Bull., 9(2):20–22, 1998.

[MLM+06] C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F. Brown,
and Rebekah Metz. OASIS Reference Model for Service Oriented Archi-
tectures 1.0. http://www.oasis-open.org/committees/download.
php/19679/soa-rm-cs.pdf, August 2006.

[MM87] R. Preston McAfee and John McMillan. Auctions and Bidding. J. of Economic
Literatur, 25(2):699–738, June 1987.

[MM03] Daniel J. Mandell and Sheila McIlraith. Adapting BPEL4WS for the Seman-
tic Web: The Bottom-Up Approach to Web Service Interoperation. In Dieter
Fensel, Katia P. Sycara, and John Mylopoulos, editors, The Semantic Web -
ISWC 2003, Second International Semantic Web Conference, volume 2870 of Lec-
ture Notes in Computer Science, pages 227–247, Sanibel Island, FL, USA, Octo-
ber 2003. Springer.

[MMW06] Jeffrey K. MacKie-Mason and Michael P. Wellman. Automated Markets and
Trading Agents. In Leigh Tesfatsion and Kenneth L. Judd, editors, Handbook
of Computational Economics, volume 2 of Handbook of Computational Economics,
chapter 28, pages 1381–1431. Elsevier, 2006.

[MOGS04] Peter Mika, Daniel Oberle, Aldo Gangemi, and Marta Sabou. Foundations
for service ontologies: Aligning OWL-S to DOLCE. In Proc. of the 12th Int.
Conf. on WWW, New York, NY, USA, 2004. ACM.

[MOR01] James Bret Michael, Vanessa L. Ong, and Neil C. Rowe. Natural-Language
Processing Support for Developing Policy-Governed Software System. In
Proceedings of the 39th International Conference on Technology for Object- Oriented
Languages and Systems, pages 263–274, Santa Barbara, California, USA, July
2001. IEEE Computer Society Press.

[Mot05] Boris Motik. On the Properties of Metamodeling in OWL. In Proc. of the 4th
Int. Semantic Web Conf. (ISWC 2005), pages 548–562, Galway, Ireland, Novem-
ber 2005.

[MS84] Thomas W. Malone and Stephen A. Smith. Tradeoffs in Designing Organiza-
tions: Implications for New Forms of Human Organizations and Computer
Systems. Working papers no. 112. Working paper, Massachusetts Institute of

REFERENCES 235

Technology (MIT), Sloan School of Management, April 1984. Available from
http://ideas.repec.org/p/mit/sloanp/2075.html.

[MS04] E. Michael Maximilien and Munindar P. Singh. A Framework and Ontology
for Dynamic Web Services Selection. IEEE Internet Computing, 8(5):84–93,
September-October 2004.

[MS06] Boris Motik and Ulrike Sattler. A Comparison of Reasoning Techniques for
Querying Large Description Logic ABoxes. In Proc. of the 13th International
Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR
2006), pages 227–241, Phnom Penh, Cambodia, November 2006.

[MSS05] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL
with Rules. Journal of Web Semantics: Science, Services and Agents on the World
Wide Web, 3(1):41–60, JUL 2005.

[MSZ01] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng. Semantic Web Services.
IEEE Intelligent Systems, 16(2):46–53, 2001.

[Mur05] Richard Murch. How Policy-Based Computing Can Automate Tasks and
Reduce Costs. http://www.phptr.com/articles/article.asp?p=
361809&rl=1, January 2005. Pearson Education, Prentice Hall PTR.

[MW82] Paul R. Milgrom and Robert J. Weber. A Theory of Auctions and Competitive
Bidding. Econometrica, 50(5):1089–1122, 1982.

[MYB87] Thomas W. Malone, Joanne Yates, and Robert I. Benjamin. Electronic Markets
and Electronic Hierarchies. Commun. ACM, 30(6):484–497, 1987.

[Nas50] John Nash. The Bargaining Problem. Econometrica, 18:155–162, 1950.

[Nas53] John Nash. Two-person Cooperative Games. Econometrica, 21:128–140, 1953.

[Neu04] Dirk Neumann. Market Engineering - A Structured Design Process for Electronic
Markets. PhD thesis, Department of Economics and Business Engineering,
University of Karlsruhe (TH), Karlsruhe, 2004.

[Nis00] Noam Nisan. Bidding and Alllocation in Combinatorial Auctions. In Pro-
ceedings of the 2nd ACM conference on Electronic commerce (EC’00), pages 1–12,
New York, NY, USA, 2000. ACM Press.

[NLS06] Dirk Neumann, Steffen Lamparter, and Björn Schnizler. Automated Bidding
for Trading Grid Services. In Proceedings of the European Conference on Infor-
mation Systems (ECIS’06), Göteborg, Sweden, June 2006.

[NP01] Ian Niles and Adam Pease. Towards A Standard Upper Ontology. In FOIS
’01: Proceedings of the International Conference on Formal Ontology in Information
Systems, pages 2–9, Ogunquit, Maine, USA, 2001. ACM Press.

[NSDM03] Tommaso Di Noia, Eugenio Di Sciascio, Francesco M. Donini, and Marina
Mongiello. A System for Principled Matchmaking in an Electronic Market-
place. In WWW ’03: Proceedings of the Twelfth International Conference on World
Wide Web, pages 321–330, Budapest, Hungary, 2003. ACM Press.

236 REFERENCES

[OAS04] OASIS. WS-Reliability Version 1.1. http://docs.oasis-open.
org/wsrm/ws-reliability/v1.1/wsrm-ws_reliability-1.
1-spec-os.pdf, September 2004.

[OAS06a] OASIS. Web Services Business Process Execution Language (WS-BPEL).
http://www.oasis-open.org/apps/org/workgroup/wsbpel/,
2006.

[OAS06b] OASIS. Web Services Security: SOAP Message Security 1.1 (WS-Security
2004). http://www.oasis-open.org/committees/download.php/
16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf, February
2006. OASIS Standard Specification.

[OAS06c] OASIS ebXML Joint Committee. Organization for the Advancement of Struc-
tured Information Standards, Enabling a global electronic market: ebXML.
http://www.ebxml.org, 2006.

[Obe05] Daniel Oberle. Semantic Management of Middleware. PhD thesis, University of
Karlsruhe(TH), 2005.

[OCM+07] Leo Obrst, Werner Ceusters, Inderjeet Mani, Steve Ray, and Barry Smith. The
Evaluation of Ontologies. In Christopher J. O. Baker and Kei-Hoi Cheung,
editors, Semantic Web Revolutionizing Knowledge Discovery in the Life Sciences,
pages 139–158. Springer, 2007.

[OEH02] Justin O’Sullivan, David Edmond, and Arthur ter Hofstede. What’s in a
service?: Towards accurate description of non-functional service properties.
Distributed and Parallel Databases Journal - Special Issue on E-Services, 12:117–
133, 2002.

[OLG+06] Daniel Oberle, Steffen Lamparter, Stephan Grimm, Denny Vrandecic, Steffen
Staab, and Aldo Gangemi. Towards Ontologies for Formalizing Modular-
ization and Communication in Large Software Systems. Journal of Applied
Ontology, 2(2):163–202, 2006.

[OLPL04] Daniel Olmedilla, Rubén Lara, Axel Polleres, and Holger Lausen. Trust Ne-
gotiation for Semantic Web Services. In 1st International Workshop on Semantic
Web Services and Web Process Composition (SWSWPC), volume 3387 of Lec-
ture Notes in Computer Science, pages 81–95, San Diego, CA, USA, jul 2004.
Springer.

[OR05] Martin J. Osborne and Ariel Rubinstein. Bargaining and Markets. Levine’s
Bibliography 666156000000000515, UCLA Department of Economics, Feb
2005.

[OVSH06] Nicole Oldham, Kunal Verma, Amit Sheth, and Farshad Hakimpour. Seman-
tic WS-Agreement Partner Selection. In WWW ’06: Proceedings of the 15th in-
ternational conference on World Wide Web, pages 697–706, Edinburgh, Scotland,
2006. ACM Press.

[PA05] Cesare Pautasso and Gustavo Alonso. Flexible Binding for Reusable Com-
position of Web Services. In T. Gschwind, U. Aßmann, and O. Nierstrasz,
editors, Proc. of the 4th Workshop on Software Composition (SC 2005), volume
3628 of LNCS, pages 151–166, Edinburgh, Scotland, April 2005. Springer.

REFERENCES 237

[Pap03] Michael P. Papazoglou. Service-oriented Computing: Concepts, Character-
istics and Directions. In Proc. of the 4th Int. Conference on Web Information
Systems, pages 3–12, Rome, Italy, December 2003.

[Par01] David Parkes. Iterative Combinatorial Auctions: Achieving Economic and Com-
putational Efficiency. PhD thesis, Univesity of Pennsylvania, May 2001.

[Pas06] Adrian Paschke. Verification, Validation and Integrity of Distributed and
Interchanged Rule Based Policies and Contracts in the Semantic Web. In In-
ternational Semantic Web and Policy Workshop (SWPW’06) at ISWC’06, Athens,
Georgia, USA, 2006.

[PBD05] Adrian Paschke, Martin Bichler, and Jens Dietrich. ContractLog: An Ap-
proach to Rule Based Monitoring and Execution of Service Level Agree-
ments. In International Conference on Rules and Rule Markup Languages for the
Semantic Web (RuleML 2005), Galway, Ireland, 2005.

[PBS+06] Kosmas Petridis, Stephan Bloehdorn, Carsten Saathoff, Nikos Simou, Stama-
tia Dasiopoulou, Vassilis Tzouvaras, Siegfried Handschuh, Yannis Avrithis,
Yiannis Kompatsiaris, and Steffen Staab. Knowledge Representation and Se-
mantic Annotation of Multimedia Content. IEEE Proceedings on Vision, Image
and Signal Processing - Special issue on the Integration of Knowledge, Semantics
and Digital Media Technology, 153(3):255–262, June 2006.

[PG03] Michael P. Papazoglou and Dimitrios Georgakopoulos. Service-Oriented
Computing. Commun. ACM, 46(10):24–28, 2003.

[PH06] Michael P. Papazoglou and Willem-Jan Van Den Heuvel. Service-oriented
Design and Development Methodology. International Journal of Web Engi-
neering and Technology, 2(4):412 – 442, 2006.

[PKPS02] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia P. Sycara.
Semantic Matching of Web Services Capabilities. In Ian Horrocks and
James A. Hendler, editors, The Semantic Web - ISWC 2002, First International
Semantic Web Conference, volume 2342 of LNCS, pages 333–347, Sardinia,
Italy, 2002. Springer.

[PM04] Helena Sofia Andrade N. P. Pinto and João Pabãa Martins. Ontologies: How
can They be Built? Knowledge Information System, 6(4):441–464, 2004.

[POSV04] Abhijit Patil, Swapna Oundhakar, Amit Sheth, and Kunal Verma. METEOR-
S Web Service Annotation Framework. In The 13th International World Wide
Web Conference Proceedings, pages 553–563, New York, NY, USA, May 2004.
ACM.

[PS82] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization.
Englewood Cliffs, N.J.: Prentice Hall, 1982.

[Ran03] Shuping Ran. A Model for Web Services Discovery with QoS. SIGecom Exch.,
4(1):1–10, 2003.

[RDNDS+07] Azzurra Ragone, Tommaso Di Noia, Eugenio Di Sciascio, Francesco M.
Donini, Simona Colucci, and Francesco Colasuonno. Fully Automated Web
Services Discovery and Composition through Concept Covering and Con-
cept Abduction. International Journal of Web Services Research (JWSR), 4(3),
2007.

238 REFERENCES

[RDS89] John A. Reinecke, Gary Dessler, and William F. Schoell. Introduction to Busi-
ness - A Contemporary View. Allyn and Bacon, Boston, 1989.

[RFC99] Hypertext Transfer Protocol – HTTP/1.1 (IETF RFC 2616). http://tools.
ietf.org/html/rfc2616, June 1999.

[RFC01] Terminology for Policy-Based Management. http://www.rfc-archive.
org/getrfc.php?rfc=3198, November 2001.

[RFC05] Tim Berners-Lee, Roy T. Fielding, and Larry Masinter. Uniform Resource
Identifier (URI): Generic Syntax. RFC 3986, January 2005.

[RN03] Stuart Russel and Peter Norvig. Artificial Intelligence - A Modern Approach.
Prentice Hall Series in Artificiall Intelligence, second edition, 2003.

[Rob04] Rick Robinson. Understand Enterprise Service Bus scenarios and solutions in
Service-Oriented Architecture - The role of the Enterprise Service Bus. Tech-
nical report, IBM developerWorks, 2004. Available from http://www-128.
ibm.com/developerworks/webservices/library/ws-esbscen/.

[Roy70] Winston Royce. Managing the Development of Large Software Systems. Pro-
ceedings of IEEE WESCON, 26:1–9, August 1970.

[RPH98] Michael H. Rothkopf, Alexander Pekec, and Ronald M. Harstad. Computa-
tionally Managable Combinatorial Auctions. Management Science, 44:1131 –
1147, 1998.

[RS01] Jean-Charles Rochet and Lars A. Stole. The Economics of Multidimensional
Screening. Technical report, Graduate School of Business, University of
Chicago, Chicago, IL., 2001.

[RWG01] Daniel M. Reeves, Michael P. Wellman, and Benjamin N. Grosof. Automated
Negotiation from Declarative Contract Descriptions. In AGENTS ’01: Pro-
ceedings of the fifth international conference on Autonomous agents, pages 51–58,
New York, NY, USA, 2001. ACM Press.

[SABG05] Thomas Skylogiannis, Grigoris Antoniou, Nick Bassiliades, and Guido Gov-
ernatori. DR-NEGOTIATE - A System for Automated Agent Negotia-
tion with Defeasible Logic-Based Strategies. In EEE ’05: Proceedings of the
2005 IEEE International Conference on e-Technology, e-Commerce and e-Service
(EEE’05), pages 44–49, Washington, DC, USA, 2005. IEEE Computer Society.

[San99] Tuomas Sandholm. An Algorithm for Optimal Winner Determination in
Combinatorial Auctions. In Proceedings of the 16th Int. Joint Conference on Ar-
tificial Intelligence (IJCAI’99), Stockholm, Sweden, 1999.

[San02] Tuomas Sandholm. Algorithm for Optimal Winner Determination in Com-
binatorial Auctions. Artif. Intell., 135(1-2):1–54, 2002.

[SBF98] Rudi Studer, V. Richard Benjamins, and Dieter Fensel. Knowledge Engineer-
ing: Principles and Methods. Data Knowledge Engineering, 25(1-2):161–197,
1998.

REFERENCES 239

[SBM+04] Quan Sheng, Boualem Benatallah, Zakaria Maamar, Marlon Dumas, and
Anne Ngu. Enabling Personalized Composition and Adaptive Provision-
ing of Web Services. In Proceedings 16th International Conference on Advanced
Information Systems Engineering, volume 3084 of LNCS, pages 322–337, Riga,
Latvia, 2004.

[Sch93] Beat Schmid. Elektronische Märkte. Wirtschaftsinformatik, 35(2):465–480,
1993. In German.

[Sch02] Roy W. Schulte. Predicts 2003: Enterprise Service Buses Emerge. Gartner
Report, December 9th 2002.

[Sch03] Luc Schneider. How to Build a Foundational Ontology: The Object-Centered
High-level Reference Ontology OCHRE. In Andreas Günter, Rudolf Kruse,
and Bernd Neumann, editors, KI 2003: Advances in Artificial Intelligence, 26th
Annual German Conference on AI, volume 2821 of LNCS, pages 120–134, Ham-
burg, Germany, September 2003. Springer.

[Sch05] Michael Schwind. Design of Combinatorial Auctions for Allocation and Pro-
curement Processes. In CEC ’05: Proceedings of the Seventh IEEE International
Conference on E-Commerce Technology (CEC’05), pages 391–395, Washington,
DC, USA, 2005. IEEE Computer Society.

[SDBW03] Kristof Schneider, Christine Daun, Hermann Behrens, and Daniel Wagner.
Vorgehensmodelle und Standards zur systematischen Entwicklung von Di-
enstleistungen. In Hans-Jörg Bullinger and August-Wilhelm Scheer, editors,
Service Engineering, pages 113–138. Springer, 2nd edition, 2003. In German.

[Ser01] Marek Sergot. A Computational Theory of Normative Positions. ACM Trans.
Comput. Logic, 2(4):581–622, 2001.

[SGA07] Rudi Studer, Stephan Grimm, and Andreas Abecker, editors. SemanticWeb
Services – Concepts, Technologies and Applications. Springer, 2007.

[SH05] Munindar P. Singh and Michael N. Huhns. Service-Oriented Computing: Se-
mantics, Processes, Agents. John Wiley and Sons, 2005.

[Slo94] Morris Sloman. Policy Driven Management For Distributed Systems. Plenum
Press Journal of Network and Systems Management, 2(4):333–360, 1994.

[SMS+02] Akhil Sahai, Vijay Machiraju, Mehmet Saya, Aad van Moorsel, and Fabio
Casati. Automated SLA Monitoring for Web Services. In Proceedings of the
13th IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management: Management Technologies for E-Commerce and E-Business Applica-
tions, 2002.

[SMSA+05] Tanveer Fathima Syeda-Mahmood, Gauri Shah, Rama Akkiraju, Anca-
Andreea Ivan, and Richard Goodwin. Searching Service Repositories by
Combining Semantic and Ontological Matching. In IEEE International Confer-
ence on Web Services (ICWS 2005), pages 13–20, Orlando, FL, USA, 2005. IEEE
Computer Society.

[SNVW06] Bjoern Schnizler, Dirk Neumann, Daniel Veit, and Christof Weinhardt. Trad-
ing Grid Services - A Multi-attribute Combinatorial Approach. European
Journal of Operational Research, 2006.

240 REFERENCES

[SPAS03] Katja Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srini-
vasan. Automated Discovery, Interaction and Composition of Semantic Web
Services. Journal of Web Semantics, 1(1), 2003.

[SPT06] Wolf Siberski, Jeff Z. Pan, and U. Thaden. Querying the Semantic Web with
Preferences. In Proceedings of the 5th International Semantic Web Conference
(ISWC), Athens, GA, USA, 2006.

[SR03] Amit P. Sheth and Cartic Ramakrishnan. Semantic (Web) Technology In
Action: Ontology Driven Information Systems for Search, Integration and
Analysis. IEEE Data Engineering Bulletin, 26(4):40–48, 2003.

[SRT05] Amit P. Sheth, Cartic Ramakrishnan, and Christopher Thomas. Semantics for
the Semantic Web: The Implicit, the Formal and the Powerful. Int. J. Semantic
Web Inf. Syst., 1(1):1–18, 2005.

[SS04a] Raghuram M. Sreenath and Munindar P. Singh. Agent-based Service Selec-
tion. Journal of Web Semantics, 1(3), 2004.

[SS04b] Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. International
Handbooks on Information Systems. Springer Verlag, 2004.

[SSA+01] York Sure, Rudi Studer, Hans Akkermans, Victor Iosif, Uwe Krohn, Thorsten
Lau, Bernd Novotny, Hans-Peter Schnurr, and Fredrik Ygge. On-To-
Knowledge Methodology – Employed and Evaluated Version. Techni-
cal report, On-To-Knowledge Project Deliverable D16, 2001. Available
at http://www.aifb.uni-karlsruhe.de/WBS/ysu/publications/
OTK-D16_v1-0.pdf.

[SSSC06] Jaime Martín Serrano, Joan Serrat, John Strassner, and Ray Carroll. Policy-
Based Management and Context Modelling Contributions for Supporting
Services in Autonomic Systems. In Dominique Gaïti, Guy Pujolle, Ehab S.
Al-Shaer, Kenneth L. Calvert, Simon A. Dobson, Guy Leduc, and Olli Mar-
tikainen, editors, Autonomic Networking, First International IFIP TC6 Confer-
ence (AN 2006), volume 4195 of Lecture Notes in Computer Science, pages 172–
187, Paris, France, September 2006. Springer.

[Sto04] Nenad Stojanovic. A Logic-Based Approach for Query Refinement. In 2004
IEEE/WIC/ACM International Conference on Web Intelligence (WI 2004), pages
477–480, Beijing, China, September 2004.

[Str02] John Strassner. How Policy Empowers Business-Driven Device Manage-
ment. In 3rd International Workshop on Policies for Distributed Systems and Net-
works (POLICY 2002), pages 214–217, Monterey, CA, USA, June 2002. IEEE
Computer Society.

[Stu97] Markus Stumptner. An Overview of Knowledge-based Configuration. AI
Commun., 10(2):111–125, 1997.

[SW98] Daniel Sabin and Rainer Weigel. Product Configuration Frameworks – A
Survey. IEEE Intelligent Systems, 13(4):42–49, 1998.

[SW03] Michael Ströbel and Christof Weinhardt. The Montreal Taxonomy for Elec-
tronic Negotiations. Group Decision and Negotiation, 12:143–164, 2003.

REFERENCES 241

[SY05] Rizos Sakellariou and Viktor Yarmolenko. On the Flexibility of WS-
Agreement for Job Submission. In MGC ’05: Proceedings of the 3rd Interna-
tional Workshop on Middleware for Grid Computing, pages 1–6, New York, NY,
USA, 2005. ACM Press.

[TBJ+03] Gianluca Tonti, Jeffrey M. Bradshaw, Renia Jeffers, Rebecca Montanari, Ni-
ranjan Suri, and Andrzej Uszok. Semantic Web Languages for Policy Rep-
resentation and Reasoning: A Comparison of KAoS, Rei, and Ponder. In
Proceedings of the 2nd International Semantic Web Conference (ISWC’03), Sanibel
Island, Florida, USA, 2003.

[TBP03] David Trastour, Claudio Bartolini, and Chris Preist. Semantic Web Support
for the Business-to-Business e-Commerce Pre-contractual Lifecycle. Com-
puter Networks, 42(5):661–673, 2003.

[TF06] Ioan Toma and Douglas Foxvog. Non-functional Properties in Web Services.
WSML Working Draft (March 10, 2006) D28.4 v0.1, DERI Technical Report,
March 2006.

[TFJ+06] Ioan Toma, Douglas Foxvog, Michael C. Jaeger, Dumitru Roman, Thomas
Strang, and Dieter Fensel. Modeling QoS characteristics in WSMO. In
Karl M. Göschka, Schahram Dustar, Frang Leymann, and Stefan Tai, edi-
tors, Middleware for Service Oriented Computing (MW4SOC 2006), pages 42 –
47. ACM, November 2006.

[Tos05] Vladimir Tosic. Service Offerings for XML Web Services and Their Management
Applications. PhD thesis, Department of Systems and Computer Engineering,
Carleton University, Canada, 2005.

[TPDW05] Valentina Tamma, Steve Phelps, Ian Dickinson, and Michael Wooldridge.
Ontologies for Supporting Negotiation in e-Commerce. Engineering appli-
cations of artificial intelligence, 18(2):223–236, March 2005.

[TPP02] Vladimir Tosic, Kruti Patel, and Bernard Pagurek. WSOL - Web Service Of-
ferings Language. In Web Services, E-Business, and the Semantic Web: CAiSE
2002 International Workshop, WES 2002. Revised Papers, volume 2512 of LNCS,
Toronto, Canada, May 27-28 2002.

[TPS06] Christoph Tempich, H. Sofia Pinto, and Steffen Staab. Ontology Engineering
Revisited: an Iterative Case Study with DILIGENT. In York Sure and John
Domingue, editors, The Semantic Web: Research and Applications, Proceedings of
the 3rd European Semantic Web Conference (ESWC 2006), volume 4011 of LNCS,
pages 110–124, Budva, Montenegro, JUN 2006. Springer.

[Tsa93] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, Lon-
don and San Diego, 1993.

[TT98] Yao-Hua Tan and Walter Thoen. A Logical Model of Directed Obligations
and Permissions to Support Electronic Contracting. Int. J. Electronic Com-
merce, 3(2):87–104, 1998.

[UBJ+04] Andrzej Uszok, Jeffrey M. Bradshaw, Matthew Johnson, Renia Jeffers, Austin
Tate, Jeff Dalton, and Stuart Aitken. KAoS Policy Management for Semantic
Web Services. IEEE Intelligent Systems, 19(4):32–41, 2004.

242 REFERENCES

[UK95] M. Uschold and M. King. Towards a Methodology for Building Ontologies.
In Workshop on Basic Ontological Issues in Knowledge Sharing, held in conduction
with IJCAI-95, Montreal, Canada, 1995.

[VAG+04] Kunal Verma, Rama Akkiraju, Richard Goodwin, Prashant Doshi, and Juh-
nyoung Lee. On Accommodating Inter Service Dependencies in Web Pro-
cess Flow Composition. In AAAI Spring Symposium on Semantic Web Services,
Stanford, CA, USA, 2004.

[Var97] Hall .R. Varian. Versioning Information Goods. In Digital Information and
Intellectual Property Conference, Harvard University, USA, 1997.

[VHPA06] Le-Hung Vu, Manfred Hauswirth, Fabio Porto, and Karl Aberer. A Search
Engine for QoS-enabled Discovery of Semantic Web Services. International
Journal of Business Process Integration and Management, 1(4):244 – 255, 2006.

[vNM47] John von Neumann and Oskar Morgenstern. Theory of Games and Economics
Behavior. Princeton University Press, Princeton, NJ, 1947.

[vR79] C. J. Keith van Rijsbergen. Information Retrieval. Butterworths, London, 2
edition, 1979.

[VSFGS06] Denny Vrandecic, Mari Carmen Suárez-Figueroa, Aldo Gangemi, and York
Sure, editors. Proceedings of the Int. Workshop on Evaluation of Ontologies
(EON), in conjunction with the 15th WWW conference, Edinburgh, United King-
dom, 2006.

[W3C01a] World Wide Web Consortium (W3C). DAML+OIL Web Ontology Language.
http://www.w3.org/TR/daml+oil-reference, December 2001.

[W3C01b] World Wide Web Consortium (W3C). Web Services Definition Language
(WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

[W3C03] World Wide Web Consortium (W3C). SOAP Version 1.2 Part 1: Messaging
Framework. http://www.w3.org/TR/soap12-part1/, June 2003. W3C
Recommendation.

[W3C04a] World Wide Web Consortium (W3C). Extensible Markup Language (XML)
1.1. http://www.w3.org/TR/xml11, February 2004. W3C Recommenda-
tion.

[W3C04b] World Wide Web Consortium (W3C). Resource Description Framework
(RDF). http://www.w3.org/RDF/, 2004.

[W3C04c] World Wide Web Consortium (W3C). Web Ontology Language (OWL).
http://www.w3.org/2004/OWL/, 2004.

[W3C04d] World Wide Web Consortium (W3C). Web Services Architecture Require-
ments. http://www.w3.org/TR/wsa-reqs, February 2004.

[W3C04e] World Wide Web Consortium (W3C). XML Schema Part 2: Datatypes Sec-
ond Edition. http://www.w3.org/TR/xmlschema-2/, October 2004. W3C
Recommendation.

REFERENCES 243

[W3C05] World Wide Web Consortium (W3C). Web Services Addressing (WS-
Addressing) 1.0. http://www.w3.org/Submission/ws-addressing/,
May 2005. W3C Recommendation.

[W3C06a] World Wide Web Consortium (W3C). SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, October 2006. Working
Draft.

[W3C06b] World Wide Web Consortium (W3C). Web Services Policy Framework 1.5
(WS-Policy). http://www.w3.org/2002/ws/policy/, July 2006.

[W3C07a] World Wide Web Consortium (W3C). Semantic Annotations for WSDL and
XML Schema. http://www.w3.org/TR/sawsdl/, January 2007. W3C
Candidate Recommendation.

[W3C07b] World Wide Web Consortium (W3C). W3C XML Query (XQuery 1.0). http:
//www.w3.org/XML/Query/, January 2007. W3C Recommendation.

[WBCL02] Christopher Ward, Melissa J. Buco, Rong N. Chang, and Laura Z. Luan. A
Generic SLA Semantic Model for the Execution Management of E-Business
Outsourcing Contracts. In EC-WEB ’02: Proceedings of the Third International
Conference on E-Commerce and Web Technologies, pages 363–376, London, UK,
2002. Springer-Verlag.

[WD92] Michael P. Wellman and Jon Doyle. Modular Utility Representation for
Decision-Theoretic Planning. In Proc. of 1st Int. Conf. on AI Planing Systems
1992 (AIPS-92), pages 236–242, June 1992.

[WHN03] Christof Weinhardt, Carsten Holtmann, and Dirk Neumann. Market-
Engineering. Wirtschaftsinformatik, 45(6):635–640, 2003.

[WKLW98] Stuart Weibel, John Kunze, Carl Lagoze, and Misha Wolf. Dublin Core Meta-
data for Resource Discovery. IETF RFC2413, September 1998.

[WPBB01] Rich Wolski, James S. Plank, John Brevik, and Todd Bryan. Analyzing
Market-Based Resource Allocation Strategies for the Computational Grid.
Int. J. of High Performance Computing Applications, 15(3), 2001.

[WTKD04] William E. Walsh, Gerald Tesauro, Jeffrey O. Kephart, and Rajarshi Das. Util-
ity Functions in Autonomic Systems. In International Conference on Autonomic
Computing (ICAC-04), 2004.

[WVKT06] Xia Wang, Tomas Vitvar, Mick Kerrigan, and Ioan Toma. A QoS-Aware Selec-
tion Model for Semantic Web Services. In Asit Dan and Winfried Lamersdorf,
editors, Service-Oriented Computing - ICSOC 2006, 4th International Conference,
volume 4294 of LNCS, pages 390–401, 2006.

[WWC+05] Guijun Wang, Changzhou Wang, Alice Chen, Haiqin Wang, Casey Fung,
Stephen Uczekaj, Yi-Liang Chen, Wayne Guthmiller Guthmiller, and Joseph
Lee. Service Level Management using QoS Monitoring, Diagnostics, and
Adaptation for Networked Enterprise Systems. In Proceedings of the Ninth
IEEE International EDOC Enterprise Computing Conference (EDOC’05), vol-
ume 0, pages 239–250, Enschede, The Netherlands, 2005. IEEE Computer
Society.

244 REFERENCES

[WWW01] Peter R. Wurman, Michael P. Wellman, and William E. Walsh. A Parametriza-
tion of the Auction Design Space. Games and Economic Behavior, 35(1-2):304–
338, April 2001.

[YL05] Tao Yu and Kwei-Jay Lin. Service Selection Algorithms for Web services with
End-to-End QoS Constraints. Information Systems and E-Business Management,
3(2):103–126, 2005.

[Zad65] Lofti A. Zadeh. Fuzzy Sets. Information and Control, 8:338Ű–353, 1965.

[ZBN+04] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas,
Jayant Kalagnanam, and Henry Chang. QoS-Aware Middleware for Web
Services Composition. IEEE Transactions on Software Engineering, 30(5):311–
327, 2004.

[ZKG04] Olaf Zimmermann, Pal Krogdahl, and Clive Gee. Elements of Service-
Oriented Analysis and Design - An Interdisciplinary Modeling Approach
for SOA Projects. http://www-128.ibm.com/developerworks/
library/ws-soad1/, June 2004. IBM developerWorks.

[ZWX06] Xiaobo Zhou, Jianbin Wei, and Cheng-Zhong Xu. Resource Allocation
for Session-Based Two-Dimensional Service Differentiation on e-Commerce
Servers. IEEE Trans. Parallel Distrib. Syst., 17(8):838–850, 2006.

