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Mathematical models are useful tools to understand the 
epidemiology and agent-host interaction of diseases. 
They are developed and applied since over a century, 
but with increasing computer capacity, they become 
increasingly prominent as part of evidence based 
decision making. Mathematical models are frequently 
used to construct preparedness and contingency plans 
for highly contagious diseases such as foot-and-mouth 
disease. This allows proposing effective strategies to 
control the spread of the disease in case of an incursion, 
and avails useful tools to support decision making during 
an outbreak. They are also used to monitor, prevent 
and control endemic diseases within populations or 
farms. In addition, mathematical models improve our 
understanding of the contact structure between farms, 
pointing out risky elements in the contact network 
for disease introduction or further spread within the 
population.

This Research Topic presents valuable studies presenting different aspects and implementations 
of mathematical modeling for disease spread and control in the veterinary field. The areas 
covered include model construction, network analysis, tools for decision makers, and cost-
effective control of endemic diseases.

Citation: Halasa, T., Dürr, S., eds. (2018). Modeling Disease Spread and Control. Lausanne: Frontiers 
Media. doi: 10.3389/978-2-88945-384-9

Image: Pashi/Pixabay.com.

2Frontiers in Veterinary Science January 2018 | Modeling Disease Spread and Control

http://journal.frontiersin.org/researchtopic/4664
http://www.frontiersin.org/Veterinary_Science


05 Editorial: Modeling Disease Spread and Control
 Tariq Halasa and Salome Dürr

 Model Construction

08 An Integrated Framework for Process-Driven Model Construction in Disease 
Ecology and Animal Health

 Rebecca Mancy, Patrick M. Brock and Rowland R. Kao

23 Relevance of Indirect Transmission for Wildlife Disease Surveillance
 Martin Lange, Stephanie Kramer-Schadt and Hans-Hermann Thulke

 Network Analysis

35 Impact of Network Activity on the Spread of Infectious Diseases through the 
German Pig Trade Network

 Karin Lebl, Hartmut H. K. Lentz, Beate Pinior and Thomas Selhorst

46 Prediction of Pig Trade Movements in Different European Production Systems 
Using Exponential Random Graph Models

 Anne Relun, Vladimir Grosbois, Tsviatko Alexandrov, Jose M. Sánchez-Vizcaíno,  
Agnes Waret-Szkuta, Sophie Molia, Eric Marcel Charles Etter and  
Beatriz Martínez-López

 Tools for Decision Makers

58 Early Decision Indicators for Foot-and-Mouth Disease Outbreaks in  
Non-Endemic Countries

 Michael G. Garner, Iain J. East, Mark A. Stevenson, Robert L. Sanson,  
Thomas G. Rawdon, Richard A. Bradhurst, Sharon E. Roche, Pham Van Ha and  
Tom Kompas

72 Semiquantitative Decision Tools for FMD Emergency Vaccination Informed  
by Field Observations and Simulated Outbreak Data

 Preben William Willeberg, Mohammad AlKhamis, Anette Boklund, Andres M. Perez, 
Claes Enøe and Tariq Halasa

80 Resource Estimations in Contingency Planning for Foot-and-Mouth Disease
 Anette Boklund, Sten Mortensen, Maren H. Johansen and Tariq Halasa

91 Evaluation of Strategies to Control a Potential Outbreak of Foot-and-Mouth 
Disease in Sweden

 Fernanda C. Dórea, Maria Nöremark, Stefan Widgren, Jenny Frössling,  
Anette Boklund, Tariq Halasa and Karl Ståhl

Table of Contents

3Frontiers in Veterinary Science January 2018 | Modeling Disease Spread and Control

http://journal.frontiersin.org/researchtopic/4664
http://www.frontiersin.org/Veterinary_Science


 Cost-Effective Control of Endemic Diseases

106 Simulating the Epidemiological and Economic Impact of Paratuberculosis  
Control Actions in Dairy Cattle

 Carsten Kirkeby, Kaare Græsbøll, Søren Saxmose Nielsen, Lasse E. Christiansen,  
Nils Toft, Erik Rattenborg and Tariq Halasa

119 Epidemiological and Economic Evaluation of Alternative On-Farm Management 
Scenarios for Ovine Footrot in Switzerland

 Dana Zingg, Sandro Steinbach, Christian Kuhlgatz, Matthias Rediger,  
Gertraud Schüpbach-Regula, Matteo Aepli, Gry M. Grøneng and Salome Dürr

4Frontiers in Veterinary Science January 2018 | Modeling Disease Spread and Control

http://www.frontiersin.org/Veterinary_Science
http://journal.frontiersin.org/researchtopic/4664


November 2017 | Volume 4 | Article 1995

Editorial
published: 21 November 2017

doi: 10.3389/fvets.2017.00199

Frontiers in Veterinary Science | www.frontiersin.org

Edited by: 
Andres M. Perez,  

University of Minnesota,  
United States

Reviewed by: 
Amy Delgado,  

Animal and Plant Health Inspection 
Service (USDA), United States

*Correspondence:
Tariq Halasa  

tahbh@vet.dtu.dk

Specialty section: 
This article was submitted to 

Veterinary Epidemiology  
and Economics,  

a section of the journal  
Frontiers in Veterinary Science

Received: 11 October 2017
Accepted: 07 November 2017
Published: 21 November 2017

Citation: 
Halasa T and Dürr S (2017) Editorial: 

Modeling Disease  
Spread and Control.  

Front. Vet. Sci. 4:199.  
doi: 10.3389/fvets.2017.00199

Editorial: Modeling disease Spread 
and Control
Tariq Halasa1* and Salome Dürr2

1 National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark, 2 Veterinary Public Health 
Institute, University of Bern, Bern, Switzerland

Keywords: model, disease spread, control, network analysis, decision support

Editorial on the Research Topic

Modeling Disease Spread and Control

iNtrodUCtioN

Infectious diseases are a major burden for health (1) for both humans and animals and pose a 
constant economic challenge for the global economy (2, 3). Climate change, intensive global trade, 
emergence/reemergence of infectious agents and of antimicrobial resistance, combined with inten-
sive livestock production systems make prevention and control of livestock infectious diseases a 
major global challenge. This intensifies the demand for tools to aid in better understanding of disease 
spread for cost-effective contingency planning and disease prevention and control.

Mathematical and simulation models have contributed to improve our understanding of the 
population dynamics of infectious diseases. In addition, they have provided decision makers with 
tools to aid in disease prevention and control based on scientific evidence (4–6). This research topic 
includes 10 scientific studies presenting different aspects and implementations of mathematical 
modeling for disease spread and control. The studies can be divided into: (1) model construction 
(two studies); (2) network analysis (two studies); (3) tools for decision makers (four studies); and (4) 
cost-effective control of endemic diseases (two studies).

ModEl CoNStrUCtioN

Constructing and describing a model of livestock production systems is challenging, as the systems 
are complex and may vary largely. It requires determining the most appropriate structure to use and 
the elements to include in the model. An integrated conceptual analysis is presented in this study 
availing a guideline for the construction of infectious disease process models and a comparison 
between the different modeling approaches (Mancy et al.). The authors discussed the different moti-
vations for use of models in epidemiological research identifying key steps in model design and use 
and presented a conceptual framework for guiding model construction and comparison, depending 
on the modeled epidemiological systems.

The impact of indirect transmission of foot-and-mouth disease (FMD) via explicit modeling 
of virus persistence outside the host (in the environment) on the overall spread of the virus was 
examined using a stochastic individual-based model on the example of wild boar populations (Lange 
et al.). The authors compared a situation where there is transmission via direct and indirect contacts 
and a situation where transmission occurs only through direct contact. The results showed that the 
simplified, direct transmission model underestimates necessary sample size in surveillance plans by 
up to one order of magnitude, but overestimates the area put under control measures. Consequently, 
incorporation of indirect transmission mechanisms in epidemiological modeling is necessary.
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NEtWorK aNalYSiS

Livestock industries are increasingly connected in ways that make 
control strategies based on local geographic boundaries or proxim-
ity unsuccessful. Long distance and complex patterns of move-
ments complicate our understanding of how diseases spread, and 
how they should be controlled. The impact of changing the activity 
level of the German pig trade network on the probability of disease 
outbreaks, size, and duration of epidemics was studied (Lebl et al.). 
The results showed that small changes of the activity level of the 
network would have dramatic effects on the outcomes. These results 
are important because they indicate that the activity level of a trade 
network should be considered when simulating disease spread 
between pig herds, as it may influence the results significantly.

Exponential random graph modeling was used to reproduce, 
understand and predict pig trade networks in different European 
production systems (Relun et al.). The results showed that pro-
duction system and farm characteristics—such as the geographi-
cal location, the production type, belonging to a pig company or 
housing system—were key drivers of pig trade. Statistics on local 
network configurations was necessary to capture the clustering 
observed in pig trade networks. This work provides approaches 
to simulate realistic pig trade networks that may be included in 
epidemic models.

toolS For dECiSioN MaKErS

Resources are limited and hence control strategies must be 
effective. Modeling offers a unique opportunity to evaluate con-
trol strategies and decision-making in the absence of an actual 
outbreak, as well as to estimate resource requirements that are 
needed for an appropriate response. A modeling study was carried 
out to identify characteristics measurable during the early phase 
of a FMD outbreak that might be useful predictors of epidemic 
outcomes, such as the total number of infected premises (IPs), 
outbreak duration, and the total area under control (AUC) 
at the end of the outbreak (Garner et al.). The results showed 
that these outcomes were associated with the number of IPs, 
the number of pending culls, the AUC, and the rate of disease 
spread at days 7, 14, and 21 following first detection, as well as 
cattle density around the index herd. These findings show that 
information available early in the outbreak can indicate its likely 
magnitude.

Simple semi-quantitative model-based decision tools are pre-
sented aiming to estimate the likelihood and the consequences of 
the ultimate size of an ongoing FMD epidemic, using simulated 
and actual outbreak data (Willeberg et al.). The results showed 
that the number of outbreaks at day 14 after FMD incursion is a 
useful predictor of the final epidemic size. In addition, the authors 
recommended that EU member states adopt simulation models 
as tools to aid decision-making, while ensuring that the output of 
such models is clearly understood by decision makers.

An iterative tool was developed with the aim of estimating the 
resources needed during an outbreak of FMD and identifying 
areas with limited resources that can delay the control of the 
disease (Boklund et al.). Outcomes of a simulation model of FMD 
spread were used to determine the daily required resources. The 
results showed that the number of needed personnel was predicted 

to peak within the first week. In addition, the time needed for 
surveillance visits was predicted to be the most influential factor 
for the required personnel.

The spread of a hypothetical outbreak of FMD in Sweden 
was studied and different control measures were simulated and 
evaluated (Dórea et al.). The results showed that the density of 
farms in the area where the epidemic started would have little 
impact on the time to control the outbreak. However, spread in 
high-density areas would require more surveillance resources, 
compared to areas of lower farm density. Based on these results, 
FMD outbreaks could be kept limited in Sweden using the EU 
standard control strategy and a national standstill of 3 days.

Cost-Effective Control of Endemic 
diseases
Endemic diseases cause large economic damage to livestock 
production, which requires constant evaluation of strategies to 
cost-effectively monitor, control, and prevent these diseases. A 
stochastic individual-based model simulating the spread and 
control of Mycobacterium avium subsp. paratuberculosis (MAP) 
within a dairy cattle herd was presented (Kirkeby et al.). The results 
showed that it was possible to eradicate MAP from a dairy cattle 
herd. Nevertheless, from an economic stand point, this was not 
attractive since the expenses for the control actions outweighed 
the benefits.

A comparison between two nationwide control strategies for 
footrot and a no intervention scenario with the current situation 
was conducted, to quantify their net economic effects (Zingg 
et  al.). This was done by sequential application of a maximum 
entropy model, epidemiological simulation, and calculation of 
net economic effects using the net present value method. The 
results showed that a systematic Swiss-wide management pro-
gram under the application of the recent PCR diagnostic test is 
the most recommendable strategy for a cost-effective control of 
footrot in Switzerland.

CoNClUSioN

The use of mathematical modeling to support decision-making 
is noticeably increasing, as its importance is progressively rec-
ognized by decision makers. The current research topic provides 
approaches, methods, and models that can support this evolu-
tion. It also provides useful tools to support decision-making 
for contingency planning and for the prevention and control of 
animal diseases on both the herd and the national level.
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Process models that focus on explicitly representing biological mechanisms are increas-
ingly important in disease ecology and animal health research. However, the large 
number of process modelling approaches makes it difficult to decide which is most 
appropriate for a given disease system and research question. Here, we discuss different 
motivations for using process models and present an integrated conceptual analysis 
that can be used to guide the construction of infectious disease process models and 
comparisons between them. Our presentation complements existing work by clarifying 
the major differences between modelling approaches and their relationship with the 
biological characteristics of the epidemiological system. We first discuss distinct motiva-
tions for using process models in epidemiological research, identifying the key steps in 
model design and use associated with each. We then present a conceptual framework 
for guiding model construction and comparison, organised according to key aspects 
of epidemiological systems. Specifically, we discuss the number and type of disease 
states, whether to focus on individual hosts (e.g., cows) or groups of hosts (e.g., herds 
or farms), how space or host connectivity affect disease transmission, whether demo-
graphic and epidemiological processes are periodic or can occur at any time, and the 
extent to which stochasticity is important. We use foot-and-mouth disease and bovine 
tuberculosis in cattle to illustrate our discussion and support explanations of cases in 
which different models are used to address similar problems. The framework should 
help those constructing models to structure their approach to modelling decisions and 
facilitate comparisons between models in the literature.

Keywords: process models, modelling, model construction, epidemiology, infectious disease, disease ecology, 
foot-and-mouth disease, bovine tuberculosis

BaCKGRounD

The use of models is becoming increasingly popular for understanding the biological processes that 
drive the host-to-host spread and within-host progression of infectious diseases, for both theoretical 
and applied problems. Key epidemiological processes include transmission arising from contact 
between infectious and susceptible hosts, disease progression within hosts (e.g., onset of symptoms, 
recovery), and interventions such as vaccination or treatment. These processes are dynamic, and this 
time dimension can be captured through changes in the epidemiological state of individuals over 
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time. Models in which these processes are represented explicitly, 
often referred to as mechanistic or process models,1 are increasingly 
common in disease ecology, including in veterinary epidemiology.

The explicit incorporation of biological mechanism makes 
process models ideal for studying systems in which population-
level effects (such as disease outbreaks) arise from individual-level 
processes in ways that are difficult to anticipate (such as details 
of how infectious individuals today feed into generating new 
infections tomorrow) (1). By changing model inputs to simulate 
interventions, we can also use them to analyse the effects of poli-
cies that cannot be tested in the real world because doing so would 
be infeasible due to time or resource constraints or because such 
experiments would be ethically undesirable. Such effects would 
be difficult or impossible to investigate using standard statistical 
frameworks.

A wide range of options exists for constructing process 
models. Early epidemiological process models typically took the 
form of differential equation models representing susceptible-
infectious-susceptible (SIS) or susceptible-infectious-removed 
(SIR) disease dynamics. However, increasingly, researchers are 
using models that incorporate higher levels of biological detail. 
One approach is to use agent-based models (ABMs; also referred 
to as individual-based models) in which each host is modelled 
explicitly and its state (i.e., its disease state plus all relevant 
epidemiological characteristics) progresses according to a set 
of rules. These rules can be simple, but can and often do incor-
porate greater complexity. Many more types of process model 
exist, including partial differential equation models and cellular 
automata. This diversity makes it challenging to make defensible 
decisions when developing new models, and complicates the 
task of elucidating any inconsistencies between studies, assessing 
the weight of the evidence for particular claims, and identifying 
research gaps. However, most overviews focus on describing 
technical aspects of each type and include only limited discussion 
of their relationship with biology, while original research articles 
typically compare only a small number of model types.

Here, we clarify the relationship between process modelling 
approaches both in relation to high-level motivations for their 
use and to lower-level decisions about the characteristics of a par-
ticular model. We describe five distinct motivations, identifying 
the key steps in model design and uses associated with each and 
present a framework that forms the conceptual basis for making 
modelling decisions, considering the constraints imposed by the 
epidemiological system, the available data, relevant knowledge 
and expertise, and the questions of interest. Our approach is 
explanatory rather than prescriptive, as the implications of 

1 The relationship between model and biological mechanism differs between 
process models and statistical approaches based on linear models, traditionally 
the mainstay of research and education in biology. Although these statistical 
approaches are often guided by mechanistic theory and employed with the aim 
of understanding biological mechanisms, the mechanisms themselves are not 
modelled directly and are instead inferred from associations with explanatory and 
response variables. In contrast, process models incorporate processes explicitly 
based on biological understanding, potentially in the absence of detailed data on 
every aspect of the modelled system. They can be thought of as simplified “model 
worlds” in which key epidemiological processes unfold over time, analogously to 
their progression in the real world.

modelling decisions are highly dependent on context. We antici-
pate that this analysis will be most valuable for researchers who 
are relatively new to process modelling, but believe it has broader 
value by providing an organisational structure for comparing and 
contrasting modelling approaches.

FRoM systeM to MoDel

A major preoccupation when choosing a modelling approach is 
that it should, in some sense, be “correct.” Although Box’s (2) claim 
that “all models are wrong but some are useful” has become some-
thing of a mantra, its practical implications remain a justifiable 
concern. Nearly a century earlier, Claude Bernard (3, 4) had noted 
that, like models, scientific theories are always “wrong” insofar as 
they are “only partial and provisional truths,” but had emphasised 
their necessary role in science as “steps on which we rest, so as 
to go on with investigation.” In evaluating models, Odenbaugh 
(5) argues for a shift of focus away from model “truth” towards 
the appropriateness of particular modelling “idealisations” (sim-
plifications or abstractions), which should be considered in the 
context of the biological system to which we apply the model and 
the questions it helps us answer. Below, we discuss the application 
of these principles to epidemiological modelling.

To provide meaningful context, we discuss model construc-
tion decisions with reference to two illustrative2 disease systems 
in veterinary epidemiology involving cattle: foot-and-mouth 
disease (FMD; caused by FMD virus) and bovine tuberculosis 
(bTB; caused by Mycobacterium bovis). To keep the focus on the 
underlying concepts and avoid introducing multiple epidemio-
logical systems, we limit practical examples discussed to those 
provided by modelling work on these two diseases. These two 
high profile pathogens have important animal health implica-
tions and are associated with a considerable body of research 
using process models, much of which has focused on recent UK 
epidemics: a major outbreak of FMD occurred in 2001 and was 
controlled by large-scale intervention (6), while bTB remains 
endemic in the UK (7). In thinking about potential influences 
of the epidemiology of bTB and FMD in cattle, we observe 
that: different numbers of cows are kept on farms of variable 
size; cows have fixed attributes (e.g., breed) and changing states  
(e.g., age); and there can be variation in the environment at, 
around, and between farms. We note that cattle come into contact 
with one another through activities such as grazing on the same 
or neighbouring pastureland, and are moved between farms as 
part of trade, slaughter, and breeding activities. These factors can 
affect epidemiological outcomes and it is important to consider 
whether and how to model them. For example, in an ABM, we 
would represent cattle hosts as distinct agents. The attributes, 
states, and movement in continuous space of these individuals 
could be simulated and tracked through time. The model would 
be initiated with a population of cattle and seeded with infection. 
When the model was run, the initial population would be subject 
to processes such as aging, movement, infection, and recovery. 

2 Despite this restriction, much of the conceptual ground covered in this article 
applies to any biological discipline in which process models are used as research 
tools (e.g., ecology). We return to this point in the Section “Discussion.”
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taBle 1 | Five categories of motivations for modelling, illustrative prompt questions, and focus during model construction.

Motivations for modelling illustrative prompt questions or statements  
and references

Focus during model 
construction

Mapping and formalising 
theory—providing 
conceptual frameworks

Modelling helps provide a conceptual framework 
(for self or others)

What are the key entities and processes required to 
model bTB and how might we formulate them in the 
most conceptually useful way?

Conceptual clarity of key 
entities and processes and 
formalisation of these

Begin with informal understanding or verbal 
theory; obtain a precise formal representation 
of the theory (a full model) or of concepts and 
subcomponents of it

Are there similar concepts in associated areas that 
could apply (e.g., how does reproductive potential 
relate to R0)? (9)

Exploring theory—
exploring possibilities

A model formalising theory is used to constrain 
relationships between entities so that system 
behaviours can be explored

Is infection invasion success dependent on spatial 
clustering? (10)

Accurate representation of 
relevant aspects of the theory 
in the model

Begin with a model that formalises theory; 
obtain a set of possible behaviours given those 
processes

What is the probability of bTB persisting in cattle 
herds of different sizes? (11)

No explicit use of data is 
required

Building theory—
generating hypotheses 
and explanations

The structure of the formalised model focuses our 
attention on particular processes and parameters, 
changes to which constitute testable hypotheses

Following the 10-year randomised badger culling 
trial, bTB incidence in cattle decreased in the badger 
culling area, but increased in adjoining areas (12)

Observing the way structures 
and parameters suggest model 
reformulations

Begin with an observation or data; obtain precise 
hypotheses. NB: theory building often conducted 
iteratively with theory testing (below)

The 1967–1968 UK foot-and-mouth disease (FMD) 
epidemic was characterised by rapid early spread 
followed by slower later spread (13)

Testing theory—
identifying mechanisms

To generate empirically relevant and measurable 
predictions, for the purpose of falsification

Does the incorporation of transmission heterogeneity 
allow us to better explain the data? (14)

Incorporation of mechanisms 
into a model in ways that 
allow us to establish whether 
observed phenomena can 
be reproduced; structural 
equivalence between data  
and model outputs

Begin with a model that encapsulates a theory; 
obtain predictions that can be compared with 
data to help pinpoint incorrect mechanisms

Applying theory—
generating accurate 
predictions

To make forecasts, predict responses under 
intervention, and examine counterfactual 
scenarios

How might FMD epidemiological dynamics have 
differed under alternative culling scenarios during the 
2001 FMD outbreak? (15)

Ensuring key mechanisms 
are replicated as closely 
as required to accurately 
reproduce real-world 
phenomena and data

Begin with a model that is assumed to be true; 
obtain hindcasts/forecasts, and predictions 
relating to counterfactuals and other systems

What difference might incursion location and speed 
of deployment make to the effectiveness of FMD 
reactive ring vaccination? (16)
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Cattle movement within farms could be modelled as a random 
process, while between-farm movement could be informed by 
trade volume data, and transmission between hosts determined 
by contact between susceptible and infectious individuals.  
As time progressed, the state of every host would be updated 
following the specified process rules.

Because the structure of detailed ABMs maps closely to our 
understanding of the real world, they often appear intuitive. 
However, they are time-consuming to construct because they 
involve making many decisions about the processes to model. 
Many alternatives exist, yet selection can be challenging. The 
remainder of this paper consists of two main sections: in the first, 
we distinguish between five motivations for using process models 
and the particular aspects of model construction to focus on for 
each; in the second, we provide an organisational structure for 
navigating modelling decisions. The first of these sections is more 
philosophical and the second more practically oriented; they can 
be read together or as stand-alone sections.

tHe Questions We WisH to ansWeR

The appropriateness of a particular model depends on both 
our precise research question and our motivations for using a 

process model to help answer it. Clarifying our motivations for 
using a model and the steps required to use it in this way helps 
guide modelling decisions towards the aspects of the model that 
are most critical for the way it will be used and help us determine 
the appropriate level of complexity or output accuracy, some-
thing we return to in Section “Applying the Model Construction 
Approach.” Irrespectively of whether the focus is on highly 
specific or abstract systems, one or several motivations can apply 
in each piece of work. These are not always made explicit in the 
text of an article, but distinguishing between them can help us 
to understand the role of modelling within a piece of work and, 
therefore, evaluate its appropriateness. In this section, we pre-
sent five motivations for using process models in epidemiology.3 
In Table 1, we describe start and end points for each motiva-
tion, provide illustrative questions or observations associated 

3 Although motivations for modelling have been classified in different ways, see, 
e.g., Ref. (8), we draw on the five categories described by Odenbaugh (5). We build 
on these by clarifying distinctions between them, adapting them to the context 
of epidemiological process modelling, and clearly identifying the steps in model 
construction and use associated with each. We rename certain categories for con-
ceptual clarity: Odenbaugh refers to Mapping and formalising theory as “providing 
conceptual frameworks,” to Building theory as “generating explanations,” and to a 
category similar to Testing theory as “investigating more complex systems.”
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with each (with references, where available for bTB/FMD and 
otherwise for more abstract disease systems), and identify the 
primary focus during model construction. In the main text, we 
provide an overview of the associated steps involved.

Mapping and Formalising theory
When our initial thinking about an epidemiological system is 
relatively imprecise, the process of formalising our ideas helps 
improve conceptual clarity and can even allow us to develop new 
epidemiological concepts or refine existing ones. By “mapping 
and formalising theory,” we refer to the process by which we go 
from our (typically informal) understanding of an epidemiologi-
cal system derived from verbal theory or experience, to a formal 
model that can be written down (e.g., using mathematical symbols 
or computer code). Formal and symbolic models provide con-
ceptual frameworks that allow us to reason about more complex 
systems than would be possible using purely verbal arguments. 
Odenbaugh (5) points out that “model building is first and 
foremost a strategy for coping with an extraordinarily complex 
world,” making this an important motivation for model construc-
tion. Heesterbeek (9) describes how formalising theory led to the 
development of the basic reproductive number (sometimes called 
“rate” or “ratio”), R0, that has become one of the most important 
concepts in contemporary infectious disease epidemiology.  
R0 is now widely used independently of the original models  
(or indeed of any model at all), as a communication tool, to raise 
and formulate new questions about epidemiological systems and 
how to model them.

Although the benefits of increased conceptual precision that 
arise from formalisation are often considered a side effect of 
model development (and rarely reported in research articles), for-
malising theory can be a deliberate strategy to help us understand 
complex systems. In this case, during model construction, we 
focus on questions about how best to represent the key processes 
in our system. These questions can relate to direct analysis of 
our biological system; alternatively, we may seek inspiration in 
similar concepts from other domains, attempting to identify the 
link between the two. If a mapping can be found, then concepts, 
insights, and results can be transferred—for example, identifying 
parallels with network models developed in the statistical physics 
literature has been particularly fruitful in epidemiology, e.g., Ref. 
(17)—but even failed attempts would ideally be reported because 
they help us identify inconsistencies, potentially leading to the 
development of new concepts.

exploring theory
Once a theory has been incorporated into a formal model, its 
implications can be explored. An epidemiological model con-
strains the range of outcomes that can arise, so it can be used to 
deduce or simulate the range of possible system behaviours or the 
probability that those behaviours arise. This might be achieved 
in different ways, including mathematical deduction that allows 
us to develop and prove theorems and experimental approaches 
based on simulation. For example, process models could be 
used to explore the range of potential long-run behaviours of 
epidemiological systems (e.g., whether endemicity can arise), or 
to establish whether chaotic behaviour is possible (5).

When exploring theory, we begin with a model that represents 
that theory and use logical reasoning, mathematical deduction 
or computational approaches to understand the range of pos-
sible behaviours that can be generated under the assumptions of 
the theory, and potentially their associated probabilities. When 
used to explore theory, neither the model construction nor the 
exploration stage focuses directly on the correspondence between 
model and data, but rather on the correspondence between 
theory and model, to ensure that the implications for theory of 
model findings are clear. The theory under investigation may be 
general and abstract, and correspond to a hypothetical disease, 
or a specific epidemiological system. Exploration does not rely 
on the existence of data; even in the absence of data, it can guide 
epidemiological science by suggesting behaviours to look for in 
empirical work and their expected frequencies, and by helping to 
determine sample sizes (18).

Building theory
Theory building consists of generating possible explanations for 
empirical observations. When we use models to help us with 
this task, our motivation is to help us formulate hypotheses by 
suggesting potential causal mechanisms that explain an observed 
phenomenon. The phenomenon to explain could take the form of 
a general trend or pattern observed in a range of epidemiological 
systems, or an observation arising from a specific dataset. For 
example, following the 10-year randomised badger culling trial, 
bTB incidence in cattle decreased in the badger culling area, 
but increased in adjoining areas. This observation was initially 
counter-intuitive and theory building was required to explain 
how it arose (12).

When constructing models to assist us in theory building, 
our starting point is an unexplained observation. Our primary 
focus in their construction is on the way in which structures 
and parameters, usually from an existing model, might suggest 
reformulations or extensions that constitute hypotheses. These 
hypotheses can be based on mechanisms drawn from general 
theory (e.g., about different kinds of host contact structure) or 
system-specific mechanisms, such as those based on experiential 
knowledge of the system (e.g., differences between England and 
Scotland in cattle-trading behaviour). These mechanisms need 
to be incorporated into the model before proceeding with theory 
testing (see Testing Theory) when the model will be used to 
characterise their effect and make comparisons with empirical 
observations.

testing theory
Theory testing refers to attempts to establish whether a theory 
provides a good explanation for empirical observations or data. 
Our motivation for using models for this purpose is their abil-
ity to generate falsifiable predictions that we can compare with 
existing data or observations or employ to guide data collection 
protocols or experiments. Although verbal theory is sometimes 
sufficient to make falsifiable predictions, a model can be valuable 
if we want to generate quantitative predictions or if the system 
is too complex to reason about otherwise. When using a model 
to test theory, no initial claim is made about the truth status 
of the model, and we often acknowledge that it is idealised or 
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incomplete. Model predictions used to test theory are not fore-
casts; rather, the intention is that they are empirically falsifiable. 
Indeed, when models fail to make accurate predictions, they 
often fail for reasons that are very informative about the systems 
under study (5).

When testing theory, it is important to incorporate hypoth-
esised mechanisms into the model in a way that allows us to 
establish whether it produces an observed real-world phenom-
enon. During model construction, we have a dual focus on 
accurately incorporating the mechanism and on devising ways to 
characterise its effect in a form that can be compared with data 
or observations. Comparisons with observations can be more or 
less formal depending on whether the model is highly idealised 
or complex, whether our predictions are qualitative of quantita-
tive, and the form and extent of real-world observations or data. 
For example, formal model fitting and parameter estimation rely 
on the availability of data and a model at an appropriate level 
of complexity for the methods employed.4 Simple or complex 
models can be used to pinpoint errors in scientific hypotheses by 
using them to generate several predictions and establishing which 
are more (or less) compatible with observations. For example, in 
the work by Donnelly et al. (12) described in the section above, 
once explanations had been suggested through theory building, 
model predictions were used to narrow the space of possibilities. 
Ultimately, these authors concluded the unexpected pattern of 
disease incidence following culling was due to the perturbation 
of badger social structure and consequent movement. Additional 
uses of models to test theory include the use of a “null model” 
to serve as a baseline (or “straw man”) and sensitivity analysis to 
gauge the importance of model assumptions.

applying theory
By applying theory, we refer to the use of models to forecast 
potential future events, or to predict events that might have 
occurred or could occur under circumstances or interventions 
that differ from those observed (sometimes referred to as “coun-
terfactuals”). For example, Porphyre et al. (16) used a model to 
investigate the possible effects of a vaccination intervention in 
the event of a hypothetical introduction of FMD into Scotland, 
and Ferguson et  al. (15) used a model to compare 2001 FMD 
outcomes under the implemented culling strategy with those that 
might have occurred without the intervention.

When motivated by the application of theory, model construc-
tion focuses on ensuring that key mechanisms are modelled as 
accurately as possible. Predictions are not intended to be falsified: 
they should be as accurate as possible so that we can compare 
actual and counterfactual scenarios. Steps in model use include 
careful construction, verification, and validation, subsequent 
use to conduct “experiments” under different conditions, and 
the examination of any effect on epidemiological outcomes (20). 
This use capitalises on the power of process models: to the extent 
that the model embodies real-world mechanisms, changing the 
conditions in which those mechanisms play out allows us to 

4 A full discussion of formal model fitting and parameter estimation is beyond 
the scope of this paper, but this is an area of particularly active development, see,  
e.g., discussion in Ref. (19).

observe, characterise, and quantify the effects of these changes. 
Using models in this way requires a solid understanding of the 
processes acting in the epidemiological system for at least two 
reasons. First, empirical investigation of counterfactual scenarios 
is usually infeasible or impossible, e.g., in the case of historical 
counterfactuals, but also experimental testing of a range of policy 
options (also making falsification of model results impossible). 
Second, if models are used to inform policy decisions, incorrect 
predictions can be harmful, giving model use an important ethi-
cal dimension.

MoDel ConstRuCtion DeCisions

Establishing our motivations for using process models informs 
lower-level modelling decisions by helping us focus on how to 
select and represent the parts of the system to best answer the 
research question. Our key decisions centre on which aspects of 
reality to simplify and in which ways, taking our knowledge of 
the epidemiological system and research questions into account. 
As Grassly and Fraser (18) point out, “unnecessary complexity 
can obscure fundamental results and is almost as undesirable as 
over-simplification,” thus “model choice—the process of decid-
ing which model complexities are necessary—is a central part of 
mathematical modelling of infectious diseases.” In this section, 
we identify and discuss five important modelling decisions and 
associated options.

We begin with three key decisions that apply to all infectious 
disease models in epidemiology: whether we want to track the 
infection status of individuals or groups; how to model the con-
nectivity of hosts that determines transmission between them; 
and which disease states to model. These decisions relate to how 
we choose to represent the fundamental elements of infectious 
disease epidemiology: the disease states of the host population 
and the connections supporting transmission between them. 
The first two decisions determine the epidemiological states that 
we wish to track in the model, shown by the colours and rows 
of Figure 1, while different forms of connectivity are shown in 
the columns. Figure  1 demonstrates how their combinations 
can result in different model structures, while Table 2 provides 
descriptions of model types that include key search terms to aid 
with literature searching. We then describe two further decisions 
that relate to how we choose to implement changes of epide-
miological state over time: whether these are modelled as taking 
place continuously or in discrete time; and whether and how to 
incorporate randomness into the processes that we model.

How to Model Hosts
Our first decision, captured by the rows in Figure  1, concerns 
whether we want to track the infection status of individuals  
(e.g., cows) or of groups (e.g., herds). In our earlier ABM of disease 
spread in UK cattle (Figure 1, 1a), each cow is modelled explic-
itly and tracked over time, taking up its own space in computer 
memory. This allows us to track both the total number of infected 
animals and the fate of individual cows; however, as the number of 
cows increases, so too does the computational cost of simulation 
and potentially the complexity of outputs, making them difficult 
to interpret. As a result, detailed ABMs are rarely used to model 
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disease spread across a system as large as the UK and are more 
frequently used on local scales. For example, Biek et al. (24) used 
an ABM (Figure 1, 1a) to explore the correspondence between 
likely transmission pathways identified through epidemiological 
modelling and data on phylogenetic relationships in the bacterial 
population.

When detailed ABMs are too computationally intensive or 
complex to analyse, we might choose to group individuals. For 
example, it is sometimes preferable to focus on groups, such as 
herds or farms, or groups defined by age, sex, or spatial distribution;  
in Figure 1, the difference between row one and the remaining 
rows represents this grouping distinction. Whether grouping 
is an appropriate decision depends on both the system and the 
research question. For example, it makes sense when individuals 
fall into relatively clear groups that have important implications 
for their epidemiology, or if we have better information about 
group-level than individual-level epidemiological processes.

In rows 2, 3, and 4, we track groups rather than individuals, 
and the distinctions between these rows relate to the kind of 
information we choose to track about group infection status. 

There are several main alternatives: we could track the number of 
individuals displaying each infection status (row 2), the presence 
(or absence) of hosts in each state (row 3), or the density or propor-
tion of hosts in each state (row 4). Models that track the number 
or proportion of hosts in one of three disease states (susceptible, 
infectious, and removed) may be familiar as simple SIR-type trans-
mission models based on ordinary differential equations (ODEs).  
A further simplification consists of tracking only the presence 
(and absence) of infection in groups of hosts.

In addition to increased analytic and computational trac-
tability, summarising the infection status of a group of hosts 
sometimes better represents the scale at which data are available, 
or at which transmission processes are understood. However, 
one drawback of modelling groups rather than individuals is 
that we only know that at least one animal is infected, losing 
information about which individuals are infected. Grouping also 
forces us to aggregate, so we lose the capacity to study within-
group heterogeneity. Further, if a model tracked the disease 
state of farms (Figure  1, 3a) rather than cows (Figure  1, 1a),  
the influence of individual attributes could no longer be 
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Figure 1 type usual model name/description

4b Uncommon in the animal epidemiology literature

4c Network in which the proportion of animals in each state, 
per network node, is modelled

4d Proportion of animals in each state is modelled for a single 
population. Classic ordinary differential equation (ODE) 
models fit into this category
Reference for FMD (15)

Not all model types are used in the literature on bTB/FMD, and some, therefore, do not 
have a reference within this literature. Note that although much of the literature refers to 
only differential equation models as “compartmental models,” all models referred to in 
this article are compartmental models in the sense that states are discrete (an individual 
can only be one state, e.g., susceptible, exposed, infectious, etc.). Depending on the 
number of states, all could, therefore, be described by reference to the states included, 
so could be referred to as, e.g., susceptible-infectious-susceptible (SIS), susceptible-
infectious-removed, SIR models (those in Figure 1 have only 2 states, so are SI or SIS 
models).

taBle 2 | Typical names used to describe the models shown in Figure 1,  
to assist in literature searches (particularly terms highlighted in italics); 
descriptions of almost all modelling approaches discussed here are provided in 
Ref. (21–23), as well as in the references cited throughout this article.

Figure 1 type usual model name/description

1a Usually referred to as an agent-based model (ABM); 
sometimes an individual-based model (IBM). Typically, IBMs 
are less detailed and have fewer state variables than ABMs
Reference for bTB (24)

1b Usually referred to as a cellular automaton (CA) or 
probabilistic cellular automaton (PCA) if transitions between 
time steps are probabilistic

1c Network model. Note that in the mathematical literature, 
networks are referred to more precisely as graphs 
and many results used in epidemiology use graph 
theory. Approximations to full network models include 
moment closure methods (including so-called pairwise 
approximation models or approximations based on  
triples, etc.)
References for foot-and-mouth disease (FMD) (25, 26)

1d Agent-based or IBM without spatial information (See 1a), 
possibly in the form of a branching process model

2a Sometimes referred to as a metapopulation model or 
patch model, although there is some confusion in the 
literature regarding the distinction between these terms. 
(The confusion focuses on whether to refer to models that 
maintain individuality but of grouped individuals versus 
models that consider only whether a patch is occupied  
or unoccupied, should be referred to as patch models  
or metapopulations. Both are used.)

2b Might be referred to as a CA or PCA (see 1b), but 
where each cell can contain more than one individual. 
Alternatively, might be referred to a gridded metapopulation 
model
References for bTB (25, 27)

2c Network model in which the network connects groups 
(e.g., herds) rather than individuals
Reference for bTB (27)

2d Difference equation model or standard Gillespie simulation 
model (also Gillespie algorithm or Gillespie stochastic 
simulation algorithm) in which counts of hosts in each 
state are integer values. Adaptations include tau-leaping 
approximations

3a Usually referred to as a metapopulation or patch model. 
One example in continuous space is the Spatially Realistic 
Levins Model, in which patches can also have different 
characteristics
Reference for FMD (28)

3b CA or PCA (see 1b), where each cell is considered 
infectious if at least one individual is infectious (see 
relationship between 1b/2b and 3b)

3c Network model in which each group is considered 
infectious if at least one individual is infectious (see 
relationship between 2c and 3c)
For FMD, InterSpread (29, 30) can be used in this way 
when transmission is not solely a function of distance 
between farms

3d Trivial presence–absence model

4a Partial differential equation (PDE) model, reaction-diffusion 
equations
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investigated. Presence-absence and density approaches (rows 
3 and 4 in Figure  1) are usually more appropriate for systems 
in which randomness and individual-level variation are small. 
However, they are more difficult to justify when we are interested 
in modelling processes in which individuality matters. For exam-
ple, they can cause problems when we are interested in studying 
extinction because continuous population densities mean that 
the pathogen population can become arbitrarily small (e.g., less 
than one pathogen present) without going extinct.

The grouping of cattle into herds, each of which is associated 
with a farm, underpins most models of FMD and bTB transmis-
sion in the UK. For example, in the InterSpread modelling frame-
work used during the 2001 FMD outbreak in the UK, researchers 
initialised all UK farms with counts of the number of different 
kinds of livestock recorded during the most recent farm census  
(29, 31), and simulated whether each farm was susceptible or 
infected (the framework is able to capture different distance meas-
ures, so corresponds to Figure 1, 3a and 3c). Similar approaches to 
modelling the spread of bTB within and between farms have been 
implemented, tracking the numbers of animals moving between 
farms, and the number and disease state of animals on each farm, 
with some work using a combination of approaches from row 
2, e.g., Ref. (27), that involves both a tiling and a network, i.e., 
Figure 1, 2b and 2c. In Ref. (28), only the presence or absence of 
infection in groups is tracked (Figure 1, 3a).

How to Model Connectivity
Our third modelling decision, represented by columns in Figure 1, 
relates to how infection passes between individuals or groups of 
hosts. In our original ABM, hosts move in continuous space,5 
and space itself determines host connectivity—for example, 
pathogen transmission might be modelled as occurring when 
agents are sufficiently close to one another (Figure  1, 1a),  

5 When modelling in continuous space, each host has an (x,y) location, in which 
x and y are not restricted to integer values (i.e., can have arbitrarily many decimal 
places).(Continued )

taBle 2 | Continued
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or as a continuous function of distance. Models can also 
represent space as continuous without explicitly repre-
senting individual hosts, e.g., by modelling the location of 
farms in continuous space, with distances between farms 
affecting the spread of infection among them (Figure  1, 2a).  
This is an appropriate approach when our primary interest is 
between-farm transmission and spatial distance is considered a 
good proxy for strength (or probability) of potentially infectious 
contact. A continuous space approach that models the propor-
tion of infected hosts is that of reaction–diffusion models that are 
based on PDEs (Figure 1, 4a).

One alternative to modelling hosts in continuous space is to 
divide the modelled landscape into discrete areas in the form of 
a tiling (often referred to as a grid or lattice), as in the example 
scenarios shown in Figure 1 column b. A tiling can be composed 
of regular shapes such as hexagons or squares (as in Figure 1), 
as is often the case for satellite data; alternatively, it can be 
irregular, as might be the case for administrative jurisdictions. 
Discretisation of space is often used when model outputs will be 
compared with data that are only available in spatially discrete 
form, or when epidemiological interventions are necessarily 
applied over predetermined areas because of administrative 
jurisdiction. Each patch in a tiling can have different charac-
teristics (e.g., host density), making it possible to examine the 
influence of this heterogeneity.

A tiling covers the full space and can, therefore, only be used 
when connectivity can be collapsed to two dimensions (32); how-
ever, often there are also parts of the landscape that we do not need 
to model explicitly. This can occur in the case where hosts aggre-
gate in housing or pastureland, or when non-spatial mechanisms 
such as human-mediated transport or watercourses determine 
transmission. A spatial tiling is a special case of a network that 
takes a lattice form, and a more general network approach can 
be valuable for this kind of problem, modelling farms as nodes 
in a connectivity network, with the strength of the links between 
farm nodes determining the probability of transmission from one 
to another. Link strength could, for example, be determined by 
the shortest distance between farms when travelling by road, or 
by previous trading history between them. This broad category 
of network models is represented by the diagrams in Figure 1, 
2c, 3c, and 4c. The approach is similar to that of metapopulation 
models used in ecology, in which the network connections or dis-
tance influence otherwise independently modelled populations 
that exist in patches.6 This type of model, usually represented in 
the form of a distance- or contact-matrix, was the basis of several 
FMD models in which transmission was modelled using known 
distance between farms, e.g., Ref. (28), making it a model of 
type 3a in Figure 1. Using distances between farms (Figure 1, 
3a) is also a special case of Figure 1, 3c, where these distances 
determine the modelled connection between nodes.

6 The emphasis of heterogeneity in metapopulation models is typically on the 
attributes of patches, and patches are usually thought of as being equally connected 
or connected by distance. In network models, it is more common to assume nodes 
are homogeneous and emphasise different levels or kinds of connectivity between 
them. Nonetheless, this is a question of research tradition and emphasis, and a 
model from one of the two frameworks can be thought of from either perspective.

The final broad category of model approaches to connectivity 
is represented by column d in Figure  1, in which the effects 
of space are not modelled. The most familiar form of disease 
model in which space is implicit is the simplest SI model, 
represented by Figure 1, 4d, in which all modelled individuals 
have the same probability of encountering one another per unit 
time, as if they occupied a theoretical homogenous space and 
mixed randomly within it. This “complete mixing” assumption 
may be appropriate for certain systems (perhaps for water-
borne diseases of fish), but can also be used as a simplification 
when the complexity of other aspects of a model (e.g., number 
of disease states) make a spatially explicit model difficult to 
analyze. Non-spatial models can also be used to track only 
the presence or absence of disease in a system (Figure 1, 3d), 
modelling numbers of individuals (Figure  1, 2d), or keeping 
track of distinct individuals (Figure 1, 1d).

The decision about how to model connectivity is usually 
based on a combination of factors including data availability 
and our understanding of disease processes. For example, for 
the analysis of local culling policies for the 2001 FMD epidemic, 
one difficulty was that individual farms often contained multiple 
parcels of land whereas the data only represented each farm as a 
single spatial point. As a result, many more farms were actually 
contiguous (and thus needed to be subject to culling) than was 
apparent from the available data. However, by grouping farms 
into discrete tiles with neighbouring tiles used to establish 
contiguity and counting the number of infected farms per 
tile (as in Figure 1, 2b), it was possible to mimic the extent of 
culling recorded during the epidemic and, therefore, explore 
counterfactual culling policies (25). In this case, a discretisation 
of space allowed the simulation of more realistic interventions. 
Modelling in discrete space can also be used as a tool for detect-
ing the spatial scales of key processes driving transmission,  
e.g., Ref. (33) for a general epidemiological example.  
Figure 1, 1c  also highlights that it is possible to model the con-
nections between individuals as a network, as in social network 
analysis models or models of sexually transmitted disease 
spread, or between farms via the movement of livestock (26).

How to Model states
Once we have decided on a level of grouping of hosts and how 
infection passes between them, we need to decide what states, 
captured by colours and spatial locations and other attributes 
in Figure  1, each individual animal or group can take. In the 
simplest model, we might decide that each host (individual or 
group) can have only two states, susceptible or infectious. Classic 
SI models based on differential equations are models of this type. 
However, we might decide to include additional states such as 
spatial location or age, or additional disease states that capture 
incubating or immune status, or changes in the level of infectivity 
during different stages of infection.7 In Figure 1, colours are used 
to illustrate disease state, with blue and red used to represent 
susceptible and infected cows or patches; in 1a, differences in 

7 States could be either discrete (as in compartmental models) or continuous  
(e.g., antibody titer).
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shading of the markings on the head of each cow emphasise that 
individuals have additional distinct attributes and states, while in 
columns a and b, the position of crosses, points, and square cells 
denote spatial location.

As we increase the number of attributes and states that we 
model, the complexity of the model grows quickly. For example, 
if we model space using patches/nodes or a grid, the full system 
state at any given time consists of the combination of the states 
of all the patches. For example, even for the simple presence–
absence model in Figure 1, 3a,  although each patch has only two 
states, the whole system has 23 = 8 states. By using “R” to represent 
red and “B” for blue, these states are: (R,R,R), (R,R,B), (R,B,R), 
(B,R,R), (R,B,B), (B,R,B), (B,B,R), and (B,B,B). Adding a single 
patch leads to 24 = 16 system states. As the numbers of patches 
or animals and states grow, the number of possible system states 
grows very quickly. Although we do not expect all possible system 
states to occur, even if only a small proportion of these arise dur-
ing the dynamic process captured by the model, this number can 
be very large. As a result, it is often helpful to track instead a 
one-dimensional variable, such as the number of infectious hosts 
or groups in the system.

How to Model time
The order of events—the sequence in which farms become 
infected—and whether two events occur close together in time 
or far apart, can have important effects on disease dynamics, so 
determining how to model time forms an important considera-
tion in the construction of process models.

In determining how to model the progress of time, it is 
helpful to distinguish between epidemiological processes that 
can occur at any time—i.e., in continuous time—and those in 
discrete time. Modelling approaches have been developed that 
respect this distinction between continuous and discrete time 
and are named accordingly. Biological processes take place in 
continuous time in the sense that the interval between events 
can be arbitrarily small, so in some senses, discrete time repre-
sentations are always an approximation, with a key difference 
being that when time steps are sufficiently long in discrete 
time models, more than one event can occur at the same time. 
Nonetheless, if events are highly clustered in time, for events 
within the same time window, it may not matter—and it may not 
even be possible to decide—which happened first. For example, 
within the period of a day, it may not be important which cow 
became infectious first, especially if cows only come into contact 
during milking. In a more extreme scenario, the host population 
might be periodically eliminated (e.g., harvested crops), or there 
could be periods of the year during which new infections can-
not arise (e.g., if vectors overwinter in diapause). In these cases, 
we have a biologically driven reason to model in discrete time. 
Discrete time representations can also be used as an approxima-
tion to continuous time processes, perhaps because researchers 
are more comfortable with the modelling techniques or in cases 
where discrete time approximations are less computationally 
expensive.

When discrete time approaches are used, it is important to 
choose an appropriate time step length. When discrete time 
modelling has a biological justification, the length of the interval 

should be chosen so that it can reasonably be assumed that the 
order of events within the same time step is unimportant. This 
means that we need to focus on the fastest process in the system, 
typically transmission dynamics rather than host demographic 
processes. When discrete time is used as an approximation, time 
needs to advance in very short steps; however, it is usually very 
difficult to decide how short the interval needs to be to avoid 
influencing model predictions. For example, Mancy et  al. (34) 
showed that the outcome of spatial competition between two 
species differed between a continuous and a discrete time model, 
even for very short time steps. It is, thus, important to report 
whether a discrete or continuous time model is employed along 
with the rationale for the decisions made.8

In general, the decision about whether to model in continuous 
or discrete time is driven primarily by the biology of the system 
under study and associated research questions, rather than our 
motivations for modelling. Although when testing theory, time 
is often modelled discretely to support comparisons with data, 
if real-world processes are continuous, it is often preferable to 
model in continuous time and then aggregate model output to 
correspond to data intervals. Similarly, when applying theory, 
the timing of interventions should be modelled according to 
the feasibility of implementing these interventions in the real 
world. Examples of continuous time modelling paradigms are 
differential equations (both ordinary and PDEs) and simulation 
approaches such as the Gillespie algorithm (modelling discrete 
events in continuous time, Figure 2, column a),9 whereas dis-
crete time approaches include difference equations and cellular 
automata. The symbolic form of these is shown in Figure  2 
(column b).

Whether and How to Model stochasticity
The final decision we discuss is whether to model epidemiological 
processes as deterministic or stochastic. Although familiar, this 
distinction bears repeating as it relates to differences in both the 
relationship between models and the real world, and to the steps 
required for their use. Deterministic models are those in which 
outcomes are entirely predictable based on the parameter values; 
in contrast, the output of stochastic models is not fully dependent 
on parameter values so cannot be predicted precisely. This means 
that deterministic models only need to be solved once for each 
set of parameter values, whereas stochastic models need to be run 
multiple times to gain good insight into the “average” or “typical” 
outcome. Running a model multiple times creates an operational 
overhead; however, the variation generated allows us to exploit 
information on the distribution of outcomes in real world data 
in their validation.

The first issue that arises is whether deterministic or stochas-
tic models provide a better representation of the system we are 

8 It is not uncommon to read articles in which this information is not provided. 
One tip to determine whether a model represents time as continuous as discrete is 
to search for the keyword “time step” or “timestep” in the text and figure captions.
9 Although, in the Gillespie algorithm, time between events is “skipped over” such 
that simulation time progresses in a step-wise manner, it is nonetheless a con-
tinuous time approach because each step can have arbitrarily many decimal places  
(i.e., is a real number, to the limits of computational accuracy).

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


FiGuRe 2 | Illustrative examples of deterministic and stochastic models and their symbolic formulation for continuous and discrete time.

17

Mancy et al. Process Model Construction

Frontiers in Veterinary Science | www.frontiersin.org September 2017 | Volume 4 | Article 155

modelling. The discussion about whether the universe is truly 
deterministic or stochastic is an unresolved debate in the phi-
losophy of science literature; however, because epidemiological 
systems are never fully known, it is often preferable to use sto-
chastic models. Bolker (35) partitions stochasticity into three 
sources of random variability: process-related stochasticity in 
the form of either endogenous stochasticity or environmental 
stochasticity and measurement error. Endogenous stochasticity10  
is variability which is inherent to the system itself and that 
would occur between realisations even under identical envi-
ronmental (or experimental) conditions, including variability 
in host demographic processes and the number of secondary 
cases. Environmental stochasticity refers to the unpredictability 
of exogenous processes (i.e., those outside of the system of 
interest and that occur independently of it), such as extreme 
weather events that affect host demography or disease dynam-
ics. Depending on where we locate the limit between our system 

10 Bolker refers to endogenous stochasticity as demographic stochasticity; however, 
the term is awkward in infectious disease epidemiology in which both host and 
pathogen demographic processes are important.

and the environment, the same source of stochasticity might be 
thought of as endogenous or exogenous: for example, weather 
and climate stochasticity are usually treated as environmental; 
in contrast, stochasticity in individual farmer responses to 
policy interventions might be viewed as exogenous or as part 
of the system. In contrast to process stochasticity that exists 
regardless of whether we study the system, measurement error 
arises in conjunction with our role as scientists and refers to 
variability in data due to difficulties of measurement. Within 
this category, Clark and Bjørnstad (36) refer to measurement 
inaccuracy, missing data points, lags between the biological 
process of interest and measurable outcomes, and “hidden” 
system states that are not amenable to measurement; methods 
for dealing with measurement error are discussed in Calder 
et al. (37).

Starting from deterministic models in the form of, for 
example, ODEs or difference equations (Figure 2, a1, b1), there 
are several ways in which process stochasticity can be incorpo-
rated into epidemiological models. Two common approaches 
are the inclusion of a stochastic error term into an otherwise 
deterministic framework (Figure 2, a2) and the use of a fully sto-
chastic process model (e.g., a Markov model) (Figure 2, a3, b2).  
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In the first, epidemiological processes are modelled as having 
a deterministic component, with variability around this deter-
ministic trajectory modelled as “noise.” In a fully stochastic 
approach, the state of the system depends on previous states and 
a random component, with transitions occurring according to 
probabilities often represented in matrix form. If we decide to 
ignore states further back in time, we can employ results from 
mathematical Markov process theory, including those that 
facilitate simulation approaches using the Gillespie algorithm, 
a continuous time, event-driven approach (38, 39). In contrast 
to ODE models, advantages of simulating Markov processes  
(e.g., using the Gillespie algorithm or discrete-time equivalents) 
are that negative population counts and partial individuals are 
not possible and it is possible to identify a precise extinction 
time. For the Gillespie algorithm, there is a clear relationship 
with deterministic ODE approaches, including R0 calcula-
tions, meaning that results from these simpler models can be 
compared with simulation outcomes. The Gillespie algorithm 
assumes exponentially distributed waiting times, which are often 
unrealistic (40), so it may be necessary to combine exponential 
distributions via the so-called “method of stages” (41), or associ-
ate the approach with alternative simulation algorithms for to 
achieve other distributions, e.g., for infectious periods.

In addition to determining the type of model to use, the deci-
sion between deterministic and stochastic models also affects the 
steps involved in model use. “Solving” a process model can refer 
to obtaining either long-run outcomes, often in the form of an 
equilibrium solution, or to obtaining the time path of the system 
states. For each set of parameters and initial conditions, solving 
a deterministic process model leads to a single time path. For 
simple deterministic systems, it is sometimes possible to solve 
for time paths or equilibria analytically (i.e., symbolically). For 
more complex systems, numerical methods that allow us to 
obtain approximate solutions are often available (e.g., numerical 
methods for solving differential equations such as Runge–Kutta 
and variants thereof).11 This means that we only require one 
solution of the model per parameter set (and initialisation, where 
appropriate). In contrast, stochastic models lead to a set of solu-
tions and associated probabilities. For some types of stochastic 
models, numerical methods are available to obtain certain gen-
eral results (e.g., the stationary distribution of a Markov chain 
can be obtained from eigenvector relations, for which numerical 
methods are available), and some more complex models can be 
solved in this way if we are interested only in summary statistics 
such as means. However, in many cases, it is necessary to use 
stochastic simulation in which system states are computed as 
a function of previous states and transition probabilities, and 
for each initialisation and parameter set, multiple solutions are 
obtained. We are, therefore, required to simulate multiple times 

11 Although numerical solutions are often referred to as simulations, it is useful to 
distinguish between the two. A simulation is defined as the imitation of a process 
over time. In a stochastic simulation such as an ABM/IBM, the computer simulation 
is an imitation of real-world processes, but is the actual playing out of the model. In 
contrast, a numerical algorithm used to solve a differential equation model imitates 
the differential equation; strictly speaking it is, therefore, not a simulation of the 
real world processes (although it is a simulation of the differential equation model).

for each parameter set and initialisation and compute summary 
statistics on model output.

When deciding whether and how to incorporate different 
sources of stochasticity into process models, it is helpful to 
consider the system, the questions we want to answer and our 
motivations for using a model. In relation to the system, a com-
monly recognised point is that stochasticity causing random 
population size fluctuations has stronger effects in smaller sys-
tems. In disease ecology, stochasticity is more important when 
the host population is small, but also at the very beginning and 
end of an outbreak when there are fewest infectious agents (18). 
Stochasticity is also important for certain questions: for exam-
ple, process stochasticity is important when studying pathogen 
elimination (39), not just because pathogen populations are 
small close to elimination but also because populations can 
go extinct through random processes even when their deter-
ministic equivalent persists. Further, incorporating existing 
knowledge about stochasticity in epidemiological processes can 
be intrinsic to certain questions: for example, O’Hare et al. (14) 
used knowledge of variability in the number of secondary cases 
to guide model choice decisions when investigating the role of 
“superspreaders.” The type of answer required can also drive 
decisions. For example, mathematical tools for deterministic 
models are also generally more developed, meaning that it is 
possible to obtain analytic expressions or precise numerical 
estimates of quantities of interest, and is easier to examine 
threshold behaviours. In such cases, choosing between deter-
ministic and stochastic models is, therefore, driven primarily 
by our questions, rather than our motivations. Nonetheless, 
especially when exploring theory, we may decide to ignore sto-
chasticity altogether or include only one form at a time, because 
this allows us to isolate the effect of each in conjunction with 
parameter changes. Incorporating measurement error is impor-
tant when the motivation for using models involves using or 
explaining data or observations affected by measurement error; 
when using models for exploring theory, it can often be ignored.

applyinG tHe MoDel ConstRuCtion 
appRoaCH

To apply the approach outlined here, we would begin by iden-
tifying our motivations for model use to guide us towards the 
aspects of model construction that require the most attention. 
We would then identify the biological entities that need to be 
distinguished, and then consider whether and how each of these 
should be modelled, according to the dimensions discussed 
above, referring to the references provided and standard texts 
on process modelling. This approach can also be applied when 
analysing the relationship between studies reported in the 
literature, to compare and contrast model-based findings. This 
should make it easier to pinpoint complementarities between 
approaches used to address very similar questions about related 
(or even the same) epidemiological systems. Indeed, although 
the examples provided in this article all relate to bTB or FMD in 
cattle, different modelling decisions are made in different pieces 
of work, as was also the case for work focusing on the 2001 FMD 
epidemic (42). For example, Ferguson et al. (15) investigated the 
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potential for exploiting local clustering of transmission to target 
culling, and chose an approach (deterministic moment closure) 
that formulated disease spread in the context of an ODE model 
(as in Figure  1, 4d) but where individual states represent not 
just the status of individual farms, but the combined statuses of 
triplets of farms (e.g., not just states S, I, and R in an SIR model, 
but with S-S-I an explicit state representing the proportion of 
triplets with two susceptible farms and one infected farm). 
Geographical space was represented abstractly by “counting,” 
on the map of farms in Great Britain, the proportion of times 
two neighbouring farms shared a neighbour (this proportion 
is commonly called the “clustering coefficient”). This decision 
may have been motivated both by their previous analytical 
approaches and the need to provide rapid, responsive advice. 
However, similar situations can lead to different decisions: 
Keeling et  al. (28) had previously used deterministic moment 
closure models to describe epidemiological invasions scenarios, 
but in 2001 developed a stochastic “transmission kernel” simula-
tion approach (as in Figure 1, 3a with farms as the individuals 
and transmission probability declining with distance) in order 
to capture the explicit heterogeneity in transmission potential 
of FMD across Great Britain (28). Our examples are drawn 
from research on bTB and FMD, but for other ecological or 
epidemiological systems, different sets of model types might be 
more appropriate. For example, for diseases of wildlife, natural 
host groupings corresponding to herds may not exist, making 
this simplification inappropriate, or host movements or demo-
graphic processes might be highly seasonal, leading to different 
decisions about how to model time. In addition, because bTB 
and FMD are reportable diseases in the UK, good datasets exist 
for their tracking; however, for other diseases or in areas of the 
world where this is not the case, more limited data can influence 
modelling decisions.

Once possible modelling options are identified, their appro-
priateness can then be (re)considered with reference to the epide-
miological system, our motivation for using modelling, and the 
precise questions asked. It is therefore valuable to identify explicit 
criteria for assessing whether modelling decisions are satisfactory 
in terms of their accuracy and level of detail. Drawing on military 
terminology, Holling (43) contrasted strategic models, usually 
designed to be as simple as possible to reveal potential explana-
tory generalities, and tactical models, deliberately higher in 
complexity because they are designed to predict the dynamics of 
specific systems. Historically, models used to explore theory have 
typically been simpler than those used to apply it, in part because 
they have been more amenable to analysis using mathematical 
techniques. However, contemporary techniques including prin-
cipled use of computer simulation (44) and mathematical tools 
for the analysis of stochastic systems (45) have made it easier to 
conduct theory exploration and obtain general results, even for 
relatively complex models. Although still a common heuristic, 
the distinction between simple and complex models and their 
relative roles in relation to motivations for using models is begin-
ning to break down (46).

In determining the appropriate level of complexity or output 
accuracy, we focus on three factors: the respects, the degree, and 
the specificity of the system to which results should apply (5). 

When we determine the respects in which a model is required to 
be accurate or sufficiently detailed, we are asking the qualitative 
question “what epidemiologically relevant phenomena do we 
want our model to reproduce?” For example, when using models 
to explore theory, we may decide that it is sufficient that our 
model provides information on whether a disease persists or 
goes extinct; however, when we use models to apply theory, we 
may also want the model to provide information on time until 
extinction or the spatial locations at which a pathogen is likely 
to persist the longest. When we determine the extent to which 
our model is required to be accurate, we ask the quantitative 
question of “how close do we need those phenomena to be to 
those seen in the real world?” In terms of model outputs, this 
question is primarily relevant when we use models to help us 
generate, test and apply theory. However, in relation to model 
inputs, such as parameter values and initial conditions, it can 
apply to all motivations for model use. When we determine the 
system for which our model is required to be sufficiently accurate 
or detailed, we are asking “for what systems do we want this 
to apply?” For example, much of the more theoretical work 
using process models, often in the form of theory exploration, 
is deliberately general and a specific disease system may not be 
mentioned (e.g., it may apply to abstract SIR processes); when 
applying theory, it is usually critical for the model to relate to 
a specific disease system, but it may be sufficient for it to be 
accurate for a country or region, or host breed. Decisions about 
the level of detail or accuracy required of a model will often be 
driven by practical considerations such as funding, publication 
targets, or data availability.

DisCussion

Historically, the majority of veterinary disease modelling has 
followed a statistical approach, in which the focus has been on 
characterising statistical associations between a response vari-
able and explanatory variables. For example, we might use this 
approach to identify farm factors—e.g., sanitation practices—
that affect risk of an outbreak. This form of modelling becomes 
increasingly involved if the explanatory variables interact with 
one another, or if the response variable depends on its previous 
values. Although techniques have been developed to cope with 
interactions between the variables of interest, these become 
increasingly unwieldy as the number of interactions increases. 
Further, even the sophisticated techniques developed to account 
for these interactions usually only identify them as statistical 
relationships and do not explicitly represent the direction of 
causality in the links between them. Furthermore, models of 
this type are particularly reliant on all variables being available 
within a single dataset, using information on measurable states 
to infer knowledge of processes from interactions between 
variables that define those states. Process models, on the other 
hand, focus explicitly on biological processes. They can, there-
fore, generate considerably greater insight for investigations 
of the impact of changes to those processes, for example, to 
understand the population level impact of imperfect vaccina-
tion. Recent developments include the introduction of Bayesian 
modelling approaches, such as hidden Markov models that are 
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underpinned by process models, and that bridge statistical and 
process approaches.

There are good reasons for increasing interest in process 
modelling among disease ecologists and veterinary epidemi-
ologists. Yet, making decisions about how to construct process 
models, and knowing how to compare different approaches in 
the literature, is complicated by the existence of multiple process 
model types and the difficulty of establishing the relationship 
between them. In applied work, the model is often treated as a 
tool, so only the chosen modelling approach is described without 
comparison with alternatives, while in more theoretical work 
focused on developing new modelling approaches, space often 
limits comparative discussion to a small set of related model-
ling approaches. Further, most introductory texts on process 
modelling in disease ecology proceed by describing prototypical 
examples of a small range of modelling paradigms. This tends to 
obscure the relationships among modelling approaches and fails 
to make explicit the link between the appropriateness of different 
approaches for different systems, while reinforcing the popular-
ity of particular paradigmatic approaches somewhat arbitrarily.

Ideally, model construction decisions should be guided pri-
marily by the system, what we know about it, and our scientific 
questions. Nonetheless, our decisions are often constrained to 
some extent by practical considerations, including technical 
limitations (e.g., computational resources) and modelling 
knowledge. Although the increasing development of specialist 
software simplifies the mechanics of modelling, understanding 
the modelling assumptions embedded within any software used 
is important for accurate interpretation of outputs. As models 
incorporate more and more components—such as in the case of 
ABMs or complex models represented in matrix form—we can 
quickly reach a situation in which more information needs to 
be available to simulate or solve the model than can be held in 
computer memory. Time can also be a constraint if models take 
a long time to run or solve, especially if they need to be run or 
solved multiple times. Depending on which aspects of the out-
puts we choose to store, these can put a strain on storage capacity, 
and although hard disk storage capacity is increasingly cheap, 
managing these large volumes of data, both in terms of transfer-
ring data between devices and maintaining a file structure that 
is easy to navigate, can be challenging. In relation to technical 
knowledge, there are limitations to the number of techniques we 
can acquire, and it is often preferable to sacrifice some accuracy 
or detail in modelling decisions to allow us to use an approach 
that we understand well, in terms of its strengths, weaknesses, 
and underpinning assumptions. A strong understanding allows 
us to safeguard against known pitfalls, and critically, to better 
account for any assumptions in interpreting model outcomes.  
In interdisciplinary work or work at the research–policy inter-
face where team members often have different skillsets, it can 
also be advantageous to use a form of modelling that all team 
members can understand.

In this article, we have described one way to approach model 
construction, based around a set of modelling decisions and their 
relationship with the system under study, the research questions, 

and our motivations in using modelling. In most cases, we have 
presented modelling decisions as though they were either/or 
decisions. In reality, within the same project, several motivations 
might underpin model use. Similarly, researchers often use sev-
eral models, and do so with a range of motivations. For example, 
we might begin by using a modelling exercise to formalise our 
ideas about an epidemiological system, constructing a model 
that we use to explore theory, ultimately using it to test theory 
once we have acquired appropriate data (47). We might also try 
out multiple modelling frameworks in a single piece of work. 
For example, it is often very valuable to begin with a relatively 
simple model that we understand well or that has been analysed 
previously and incrementally add or change the epidemiologi-
cal processes involved. This allows us to understand the effects 
of these changes, as well as to locate any errors in our logic or 
solution processes. For example, even if we are interested in the 
effects of host population heterogeneity, we often begin with a 
simple model of a well-mixed host population for comparison. 
Indeed, using multiple model types to address the same problem 
is often very useful, both within and between research teams, as 
redundancy, overlap, and replication serve to reduce the risk of 
unidentified errors (48).

To conclude, we believe that the structured approach 
presented here, based on the identification and classification 
of model construction decisions, should help those new to 
epidemiological modelling to reach a level of model con-
struction expertise more quickly, while providing an analytic 
structure and terminology for more experienced readers. This 
conceptual analysis helps clarify the relationship between the 
biological system and the assumptions about it embedded in the 
model and highlights the similarities and differences between  
modelling approaches.
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Epidemiological models of infectious diseases are essential tools in support of risk
assessment, surveillance design, and contingency planning in public and animal health.
Direct pathogen transmission from host to host is an essential process of each
host–pathogen system and respective epidemiological modeling concepts. It is widely
accepted that numerous diseases involve indirect transmission (IT) through pathogens
shed by infectious hosts to their environment. However, epidemiological models largely
do not represent pathogen persistence outside the host explicitly. We hypothesize that
this simplification might bias management-related model predictions for disease agents
that can persist outside their host for a certain time span.We adapted an individual-based,
spatially explicit epidemiological model that can mimic both transmission processes.
One version explicitly simulated indirect pathogen transmission through a contaminated
environment. The second version simulated direct host-to-host transmission only. We
aligned the model variants by the transmission potential per infectious host (i.e., basic
reproductive number R0) and the spatial transmission kernel of the infection to allow
unbiased comparison of predictions. The quantitative model results are provided for the
example of surveillance plans for early detection of foot-and-mouth disease in wild boar,
a social host. We applied systematic sampling strategies on the serological status of
randomly selected host individuals in both models. We compared between the model
variants the time to detection and the area affected prior to detection, measures that
strongly influence mitigation costs. Moreover, the ideal sampling strategy to detect the
infection in a given time frame was compared between both models. We found the
simplified, direct transmissionmodel to underestimate necessary sample size by up to one
order of magnitude but to overestimate the area put under control measures. Thus, the
model predictions underestimated surveillance efforts but overestimated mitigation costs.
We discuss parameterization of IT models and related knowledge gaps. We conclude that
the explicit incorporation of IT mechanisms in epidemiological modeling may reward by
adapting surveillance and mitigation efforts.

Keywords: indirect transmission, wildlife surveillance, wild boar, FMD, simulation model, contingency planning,
environmental transmission, individual-based R0

INTRODUCTION

Host–pathogenmodels play an essential role in epidemiology (1). Epidemiologicalmodels arewidely
used to support risk assessment, surveillance design, and contingency planning (2–5). The driving
force of any infectious disease is the transmission of the pathogen to susceptible hosts (6, 7), and its
adequate representation in epidemiological models is therefore of crucial importance (8, 9).
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The relevance of indirect transmission (IT) without a vector or
reservoir, but through contaminated environment, was demon-
strated for pathogenic viruses, bacteria, prions, and macropara-
sites. Examples include highly contagious diseases of wildlife and
livestock like foot-and-mouth disease [FMD (10), reviewed in Ref.
(11, 12)], classical swine fever [CSF; (13, 14)], bovine tuberculosis
[bTB; (15, 16)], brucellosis (17), avian influenza [AIV; (18)],
porcine reproductive and respiratory syndrome [PRRS; (19)], and
chronic wasting disease [CWD; (20)]. Zoonotics and diseases
of man with IT mode include infections with influenza viruses
(21), cholera bacteria (22, 23), hantaviruses (24), and Salmonella
bacteria (25). For several pathogens, longevity outside the hostwas
investigated under experimental conditions [see, e.g., Ref. (26)
for FMD, CSF, BVDV, and PPV; (27) review FMD; (28) review
poultry diseases; (29) review CSF; (30) CSF; (31, 32) AIV; (33)
Influenza A, B; (34) cholera].

The necessity to incorporate indirect environmental transmis-
sion in epidemiological models was already claimed by several
authors (20, 35, 36). Despite this fact, only recent modeling stud-
ies considered this transmission mode explicitly [(18) AIV; (20)
CWD; (37) cholera; (38) brucellosis]. Instead, the majority of
epidemiological models follow a century-old postulate by mod-
eling transmission proportionally to both the current number
of infectious and the current number of susceptible individuals
(39). Using this approach, Breban (40) elaborated the theory of
incorporating IT in epidemiological models. It is not always nec-
essary, indeed, to explicitly model all possible routes of pathogen
transmission. One may argue that, for example, infectiousness
of environmental contamination being short compared to the
host infectious period, and then nothing is lost by summarizing
everything in increased estimates of direct transmission (DT)
(40). However, if empirical evidence suggests a more fundamental
role of pathogen transmission through an environmental pathway,
then the previous model paradigm does circumvent the explicit
consideration of the biologically independent mechanisms. Such
mechanisms may respond differently to interference, e.g., to mea-
sures or treatments. Summarizing transmission models, hence,
do not allow inferences to be made concerning the role of
pathogen stages that can persist outside of their host. Interest-
ingly, studies assessing the impact of IT on disease dynamics
or disease mitigation are rare [see, e.g., Ref. (18), for example,
Ref. (41–43)].

Explicit consideration of an indirect environmental transmis-
sion mode may not only be of serious relevance to understand
experimental results or the dynamics of host–pathogen systems
[e.g., Ref. (40, 43, 44)]. We claim that the explicit inclusion of
environmental transmission in models of wildlife diseases may
be necessary for adequate predictions in the context of man-
agement activities, e.g., surveillance, mitigation, and contingency
planning. Further, IT is particularly relevant in socially organized
wildlife species, where direct contact is mainly restricted to the
social group, and for multi-host pathogens, where direct contact
between species is rare (45, 46). We addressed this hypothesis
using a parameterized stochastic spatially explicit, individual-
based model (SEIBM) designed for studying infectious diseases
in landscape-scale populations of social (47–50) andmulti-species
wildlife hosts (51, 52).

We used the host–pathogen system of FMD in large wild boar
(Sus scrofa) populations as a biological example. The wild boar
is a social species, widely distributed in many parts of the world.
It is the most abundant large mammal species in Europe (53)
with increasing geographic range and population densities (53,
54) maintaining a number of infectious diseases (55, 56). FMD is
one of the economically most important livestock diseases, which
can be devastating in case of an incursion, like in the outbreaks in
the UK in 2001 with more than 6.5 million animals culled and
economic losses estimated at 5 billion £ (57, 58). FMD affects
approximately 70 species of cloven-hoofed domestic and wild
animals including wild boar (59). However, epidemiology of FMD
in European wildlife populations is largely unknown. The FMD
virus (FMDV) can survive outside the host for hours to months,
depending on the environmental conditions. In pig slurry, FMDV
was detectable for 14 days at 20°C and more than 100 days at
5°C in an experiment by Bøtner and Belsham (26). In a recent
outbreak of FMD in wildlife and livestock in Bulgarian Thrace in
2011, wild boars were detected as being virus- and seropositive for
FMD, suggesting the potential involvement of the species in FMD
epidemics (59, 60).

The objective of this study was to evaluate whether infections
with IT may require different surveillance and mitigation efforts
than predicted by models based on DT. To this end, we extracted
from the SEIBM seroprevalence time series as obtained under
surveillance conditions and compared measures important for
outbreak mitigation such as time to detection and the minimum
sample size needed for disease surveillance.

MATERIALS AND METHODS

Model Description
Overview
The FMDwildlifemodel was based on a spatially explicit, stochas-
tic, individual-based demographicmodel for wild boars (S. scrofa)
in a geographic area with suitable habitat. Superimposed is a
transmission and disease course model for the FMDV. Epidemi-
ological data on FMDV infections in wild boar are available from
the field (59) and laboratory experiments (61, 62). The model is
documented following the ODD protocol [Overview, Design, and
Details; (63, 64)].

Purpose
The aim of the modeling study was to provide an experimen-
tal environment to test the hypothesis that neglect of pathogen
persistence outside its host is an inappropriate simplification
from the perspective of surveillance or contingency planning.
The model was designed to compare the predictions between
explicit IT and equivalently parameterized DT. For this purpose,
two model variants were constructed only differing by the exclu-
sion (DT) or inclusion (IT) of an environmental transmission
model. Hence, the following model documentation is represen-
tative for all simulations performed with the submodels of direct
and IT substituting each other (see Virus Transmission in Section
“Details”).
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State Variables and Scales
Themodel comprises twomajor components: spatial habitat units
and wild boar individuals. All processes take place on a raster
map of spatial habitat units. Each cell represents a functional
classification of the landscape denoting habitat quality and a scalar
value denoting environmental pathogen load. The cells of the
model landscape represent 4 km2 (2 km× 2 km), encompassing
a boar group’s core home range (65). State variables comprise
boar habitat quality of the grid cell. At run time, habitat quality is
interpreted as breeding capacity, i.e., the number of female boars
that are allowed to have offspring [explicit density regulation;
(66)]. Furthermore, an FMDV state of the habitat cell represents
environmental virus load and accumulates infection pressure as
shed by viremic animals.

State variables of host individuals are the wild boar’s age in
weeks [where 1week represents the approximate FMD infec-
tious period in wild boar; (61, 62)], resulting in age classes:
piglet (<8months± 6weeks), sub-adult (<2 years± 6weeks),
and adult (67). Each host individual has a location, which denotes
its home range cell on the raster grid as well as its family group.
The individual host animal comprises an epidemiological status
(susceptible, infected, or immune after recovery or due to transient
maternal antibodies). Sub-adult wild boarmay disperse during the
dispersal period (i.e., early summer).

Process Overview and Scheduling
The model proceeds in weekly time steps and processes are exe-
cuted in the following order (see Figure 1): virus release, infec-
tion, dispersal of subadults, reproduction, death, and aging. In
the first week of each year, mortality probabilities are assigned
stochastically to represent annual fluctuations in wild boar living
conditions, and female wild boars are assigned to breed or not,
according to the carrying capacity of their home range cell.

FIGURE 1 | Flow chart of the scheduling of submodels.

Design Concepts
Wild boar population dynamics emerge from individual behavior,
defined by age-dependent seasonal reproduction and mortality
probabilities and age- and density-dependent dispersal behavior,
all including stochasticity. The epidemic course in the DT model
emerges from virus transmission within and between groups and
wild boar dispersal. The epidemic course in the IT model emerges
from virus excretion by infectious hosts, survival dynamics of
infectious virus outside the host, contact to infectious doses, and
wild boar dispersal.

We included stochasticity by representing demographic, behav-
ioral, and pathogen parameters as probabilities or probability
distributions. Annual fluctuations of living conditions are realized
by annually varying mortality rates.

Details
Initialization
The model landscape represents 60 km× 60 km of connected
wildlife habitat without barriers. The specified extent ensures that
the epidemic wave does not reach the edge of the landscape before
detection in any simulation. The 900 grid cells were randomly
initialized with integer values of local breeding capacity in range
0, . . ., 3. Breeding capacity was scaled to result in an average wild
boar density of 5 hosts/km2 in January, i.e., before the reproduc-
tive season (68, 69). The average population size in January was
18,000 individuals.

One boar group was released to each habitat cell, where group
size is six times breeding capacity. Initial age distributions were
taken from the results of a 100 years model run [see Table S1 in
Supplementary Material; (48)].

Input
The applied model setup does not include any external inputs or
driving variables.

Submodels
Submodels are described where essential to understand the study.
The Supplementary Material contains the complete descriptions
of all submodels. A list of parameters with their values and sources
is given in Table S2 in Supplementary Material.

Virus Release
The virus was released to the population by infection of five
wild boars, randomly selected from the nine most central habitat
cells. Release takes place in the sixth year of each simulation
(see Simulation Experiments) to allow population dynamics to
be established. Introduction was chosen in the season of most
likely establishment of the infection according to the increasing
population numbers, i.e., at the start of the reproductive season of
wild boar.

Disease Course
The disease course following infection is modeled for each
infected individual. The infectious period of a host tinf is 1 week.
After the infectious period, hosts achieve lifelong immunity. We
assumed minimum case lethality (61, 62).
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Virus Transmission
Direct Transmission. Direct transmission in the model is a
stochastic process. Parameters determine the probability of con-
tracting the infection from an infectious group mate P(i)

inf and the
probability of contracting the infection from an infectious animal
in a neighboring group P(e)

inf (3× 3 neighborhood) during 1week.
For each susceptible animal, the probability of becoming infected
accumulates over all infectious animals within the group and in
the neighborhood:

Πi = 1 − (1 − P(i)
inf )

Ii
(1 − P(e)

inf )
Σj Ij

, (1)

where Ii is the number of infected individuals in the home group i
and Ij is the number of infected individuals in wild boar groups of
the eight neighboring cells j∈ {1, . . ., 8}. The model iterates over
all individuals and stochastically sets each susceptible individual
to infected if a uniformly distributed random number r drawn
from U(0, 1) is smaller than Πi of its home cell.

Indirect Transmission. We modeled indirect virus transmission
via excretion of infectious material, decay of infectious material
by time in the environment (i.e., outside of host individuals), and
contact of hosts to infectious material in the environment. At
contact, we modeled the effective infection stochastically with the
event probability derived from a standard dose–response relation.

The weekly dynamics of the pathogen pool used in the model
are based on parameters available from literature on a daily basis.
Temporal evolution of the pathogen pool C of each cell is an
exponential decay process and the term of pathogen load added
to the cell:

dC
dt = −λC + s, (2)

with λ being the decay constant λ = ln(2)/T1/2, s being the
pathogen added to the cell per time unit, and t being time inweeks.
Solve

C (t) =
(
C0 − s

λ

)
e−λt +

s
λ

. (3)

Within one time step, s is constant. Thus, the pathogen pool can
be calculated analytically as

Ct+1 =
(
Ct −

s
λ

)
e−λ +

s
λ

(4)

The average available dose for uptake during the weekly time
step is

C̄ =
∫ t+1

t
C (t) dt =

Ct

(
1 − e−λ

)
+ s

λ
+

s
(
e−λ − 1

)
λ2 . (5)

The pathogen source s for a cell is determined from the number
of infectious hosts in the cell and in neighboring cells. Hosts
in infectious state excrete infectious material with constant daily
rate (parameter g; i.e., 7g is the weekly excretion), measured in
tissue culture infective dose 50% (TCID50) per day. A host animal
spends a portion of daytime (parameter pt) in contact areas,
i.e., areas subsequently reached by neighboring animal groups.
Accordingly, excreted infectious material is distributed to differ-
ent cells: g(1− pt) doses adding to the pool of the home cell of the

host, while 1/8g pt doses are added to each of the eight neighboring
cells. Therefore, the pathogen added to a cell on a weekly basis is:

s = 7g
(

(1 − pt) Ii + 1/8 pt
∑

j
Ij
)

. (6)

Per host, individual contact to infectious material in the envi-
ronment is determined as constant share (parameter u on a daily
basis; i.e., 7u corresponds to the weekly share) of the available dose
C̄ in its home range cell. The weekly contact dose CD is

CD = 7uC̄. (7)

Effective infection after contact to a particular dose of infec-
tious material is modeled stochastically as a binomial chance
process so that the individual’s weekly probability of becoming
infected follows an exponential dose–response relation:

PCD = 1 − (1 − PTCID50)CD, (8)

with PTCID50 being the probability of infection after contact to
one TCID50 dose. Figure 2 shows the dose–response curve for
PTCID50 = 0.003 (70, 71).

Parameters, Simulation Experiments, and
Analysis
Parameters
A complete list of all parameters with their values and sources is
shown in Table S2 in Supplementary Material.

Parameterization of Transmission
In the DT model, the transmission is defined by scaling the two
parameters P(i)

inf and P(e)
inf . In the IT model, an analog to Pinf can be

calculated from Eq. 8 and the dose available from one infectious
host. To calculate the available dose, Eq. 5 is applied for 1week
after infection (i.e., parameter infectious period) including the
excretion into the environment (i.e., s> 0) and for infinite time
without further excretion. The total available dose over time is

C̄∞ =
∫ 1

0
C+ (t) dt +

∫ ∞

0
C−(t) dt, (9)

FIGURE 2 | Dose–response curves for wild boar (PTCID50 = 0.003). Inset:
linear ordinate.
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whereC+(t) is the pathogen poolwith pathogen excretion starting
with C0 = 0 (Eq. 3). C−(t) is the pathogen pool without pathogen
excretion for an initial pool equal to the value after the first week
[i.e., C0 =C+(1)]. Solve

C̄∞ =
s
λ

(10)

or, without stressing mathematics, it is the product of added
material s and average lifetime of the pathogen in the environment
τ = 1/λ.

With Eqs 7 and 8, this gives

P(i)∗
inf = 1 − (1 − PTCID50)7usi/λ (11)

P(e)∗
inf = 1 − (1 − PTCID50)7use/λ , (12)

with newly added pathogen si = 7g(1− pt) for within-group
transmission and se = 7g(1/8)pt for between-group transmission.

By choosing P(i)
inf = P(i)∗

inf and P(e)
inf = P(e)∗

inf , both models
produce the same basic reproductive number R0 (for validation,
see Figure 3).

Parallel of R0 in DT and IT Models
TheDTmodel was parameterized tomimic the ITmodel in terms
of the basic reproduction numberR0. Accounting for transmission
within and between groups, R0 was calculated for both scales of
spatial transmission separately. This gives the expected number of
infections from one case to its group-matesR(i)

0 and to the animals
of neighboring groups R(e)

0 , summing up to R0 = R(i)
0 + R(e)

0 .
In the DT model with an infectious period of 1week, R0 is a

linear function of Pinf:

R(i)
0 = SiP(i)

inf (13)

R(e)
0 = SeP(e)

inf (14)

FIGURE 3 | R0 measured in simulations for the DT model and for the IT
model with different pathogen half-life, in total, within-group and
between-group component (average of 500 simulations). Black: without
population dynamics, white: with population dynamics. Lines indicate the
theoretical values, R(i)

o = 1.653 and R(e)
o = 0.606. Numbers indicate

p-values of two-sided Mann–Whitney U tests of total R0 without population
dynamics against DT model (H0: not different from DT).

Si is the number of susceptible hosts in the group of the infectious
individual. Se is the number of susceptible hosts in its neighboring
groups.

We can calculate R0 from the parameters of the IT model using
Eqs 11 and 13 for within-group transmission and Eqs 12 and 14
for between-group transmission:

R(i)
0 = Si

(
1 − (1 − PTCID50)7usi/λ

)
(15)

R(e)
0 = Se

(
1 − (1 − PTCID50)7use/λ

)
(16)

The exponent in Eqs 15 and 16 can be transformed to
7us/λ = 7usT1/2/ln(2). Thus, R0 in the IT model can be kept con-
stant over arbitrary pathogen half-life T1/2 by compensatory scal-
ing of the uptake u, i.e., u×T1/2 is constant (see Figure 4). With
pathogen half-life approaching 0, the IT model becomes equiva-
lent to the DT model as pathogen uptake becomes instantaneous.

Independent Variables
The primary independent variable was the pathogen half-life T1/2.

Simulation Experiments
We performed simulations for the IT model with environmental
pathogen half-lifeT1/2 ∈ {1/8, 1/4, 1/2, . . ., 32, 64} days (Figure 4).
To keep R0 constant over all IT simulations, we scaled u accord-
ing to u= 4× 10−6/T1/2. All parameter combinations resulted in
R0 = 2.259. For comparison, we repeated the simulations with the
DT model. To achieve the same R0 as the IT model, transmission
parameters were scaled to P(i)

inf = 0.087 and P(e)
inf = 0.00379. Each

parameter set was repeated 500 times.
We performed supplementary simulations to measure an

individual-based equivalent of R0 (20) in order to verify accor-
dance of the transmission model with the theoretical calculations
for the basic reproduction number. This was achieved by allowing
only the first disease case permodel run to be infectious and count
of the number of secondary infection in the initially infected cell

FIGURE 4 | R0, depending on the environmental pathogen half-life T1/2

and on the uptake rate u. Circles along the diagonal line show the
realizations of T1/2 and u used in the simulation experiments
(u×T1/2 = 4×10�6), resulting in R0 = 2.259.
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and in its neighboring cells. The theoretical calculations neglect
population turnover, therefore in the third set of simulations,
reproduction and mortality were deactivated from the week of
pathogen introduction onward. The model runs for 100 times the
pathogen half-life after the initial infection to make sure that the
environmental reservoir completely decayed and no secondary
infections were missed in the analysis.

Dependent Variables
We recorded seroprevalence time series for each run on a weekly
basis as the first order dependent variable. These prevalence time
series were then used to determine second-order dependent vari-
ables: (1) time to detection for fixedweekly sample sizes, (2) size of
the outbreak at the time of detection, and (3) sample sizes needed
to detect the disease within an a priori specified time frame. For
second-order dependent variables, see Section “Analysis.”

Analysis
We mimicked systematic surveillance on the seroprevalence out-
come p of the DT and the ITmodel deriving the following second-
order dependent variables from prevalence time series.

Time to Detection
Given a weekly sample size n and seroprevalence p, the probability
to not find any seropositives in a particular week t is

P̂0 (t) = (1 − p (t))n. (17)

The probability of not finding any seropositives until the given
week can be determined as

P0 (t) =
∏t

i=0
P̂0 (t). (18)

Hence, the probability to detect the disease until the given
week is

PD (t) = 1 −
∏t

i=0
P̂0 (t). (19)

For each model run, the first week of PD(t)≥ 0.95 determines
the time of detection. Subtracting the week of virus incursion, this
gives the time to detection tD of the individual run. The geometric
mean of the distribution over the runs gives the time to detection
tD with 95% confidence.

Sample sizes for the underlying surveillance schemewere deter-
mined on a monthly basis according to the following equation
(72):

nmonth =
(
1 − (1 − CL)

1
N�p

) (
N − N × p − 1

2

)
, (20)

with true population size N. Parameters of interest were
CL= 95%, p= 5% and 1%. The required sample size was 58.3 per
month (14 per week) for p= 5% and 295.6 per month (69 per
week) for p= 1%.

Outbreak Size
The area affected by the disease (area of cells infected) before
detection Aaff was determined as a measure of the spatial extent
of the outbreak.

Required Sample Size
The probability to detect the disease before the given week is
calculated according to Eq. 19. This gives the weekly sample size
needed to detect the disease in a given time frame t for a given
seroprevalence time series:

nD =
ln(1 − CL)

ln
∏t

i=0 (1 − p(i))
. (21)

We calculated the required weekly sample sizes for each
model run.

Statistical Analysis
For each simulated value ofT1/2 in the ITmodel, we compared dis-
tributions of time to detection tD and weekly sample size needed
nD to the outcome of the DT model using the Mann–Whitney U
test (H0: distribution with IT not greater than distribution with
DT). Similarly, distributions ofAaff were compared to the outcome
of the DT model using the Mann–Whitney U test (H0: distribu-
tion with IT not less than distribution with DT). Significance was
defined as p-value< 0.01.

RESULTS

Basic Reproduction Number
The individual-based equivalent to R0 did not differ systemati-
cally from the theoretical calculations (compare points to lines in
Figure 3). Differences between IT andDTmodels were not signif-
icant (Mann–Whitney U, without population dynamics: p≥ 0.3,
black fill and numbers in Figure 3; with population dynamics:
p≥ 0.35, white fill in Figure 3).

Seroprevalence
Seroprevalence increased most rapidly in the DT model
(Figure 5). The first maximum was reached after less than
40weeks. In the IT model with equal R0, the increase of
seroprevalence slowed down with increasing pathogen half-life
(Figure 5, numbers).

FIGURE 5 | Average seroprevalence over the first year after virus
incursion for the DT model and for the IT model with different
pathogen half-life (numbers, in days).
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Time to Detection
In the first experiment, i.e., detection of 5% seroprevalence with
95% confidence within one month of sampling, the surveillance
design required 14 samples per week. Applying this sample size
to the time series of the DT model, the disease was detected
13.3 weeks after incursion with 95% confidence (geometric mean,
Figure 6A, left-most box). With the IT model, time to detection
depended on the half-life of pathogen T1/2 (Figure 6A). Already
at T1/2 > 1 day, detection times were significantly longer than
in the DT model (Mann–Whitney U test, p< 0.01). For half-
life of 16 days, time to detection increased to 23.9 weeks. When
half-life was 64 days (maximum simulated), time to detection
more than doubled compared to the DT model and reached
36.6 weeks.

In the second experiment (detection of 1% seroprevalence
with 95% confidence within 1month of sampling, 69 sam-
ples per week), the DT model resulted in detection within
8.6 weeks (Figure 6B, left-most box). Increase of time to detec-
tion was significant for T1/2 > 1 day (Figure 6B). T1/2 = 16 days
resulted in 15.1 weeks and T1/2 = 64 days in 22.2 weeks to out-
break detection.

Outbreak Size
In both experiments (design prevalence of 5 and 1%), the spatial
extent of the outbreaks Aaff in the IT model decreased signifi-
cantly compared to the DT model for T1/2 > 1/2 and T1/2 > 1 day,
respectively (Figures 7A,B).

Required Sample Size
We calculated the weekly sample size for detection within 9weeks
with 95% confidence. In the DT model, an average of 69 sam-
ples per week was necessary for detection with 95% confidence
(Figure 8, left-most box). With the IT model and for pathogen
half-life T1/2 > 1/2 day, the required sample size increased expo-
nentially (Figure 8). With T1/2 = 16 days, the required sample size
was 406 per week. For the maximum half-life of 64 days, 828
samples per week were required for detection within 9weeks.

DISCUSSION

For a wildlife host–pathogen system with a social host species,
we investigated the consequences of an a priori assumption of
direct host-to-host transmission inmodels for surveillance design.

FIGURE 6 | Time to detection for monthly design prevalence of 5% (A) and 1% (B) for the DT model and for the IT model with different pathogen
half-life. Outlier symbols (+) show 5 and 95% quantiles. Text shows geometric means. Asterisks show significance of Mann–Whitney U test against DT model (H0:
not greater than DT; *p<0.05, **p<0.01, ***p<0.001).

FIGURE 7 | Outbreak size at the time of detection Aaff for monthly design prevalence of 5% (A) and 1% (B) for the DT model and for the IT model with
different pathogen half-life. Outlier symbols (+) show 5 and 95% quantile. Asterisks show significance of Mann–Whitney U test against DT model (H0: not less
than DT; *p<0.05, **p<0.01, ***p<0.001).
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FIGURE 8 | Required sample size to detect the disease within 9weeks
for the DT model and for the IT model, depending on pathogen
half-life. Outlier symbols (+) show 5 and 95% quantiles. Text shows the
average, i.e., the expected sample size for detection with 95% confidence in
9weeks. Asterisks show significance of Mann–Whitney U test against DT
model (H0: not greater than DT; *p<0.05, **p<0.01, ***p<0.001).

We show that the simplified, DT model underestimated necessary
sampling efforts by up to one order of magnitude, but overesti-
mated the outbreak area that would receive control or mitigation
measures. Thus, simplifying transmission risk as being propor-
tional to the abundance of infectious and susceptible individuals
hindered estimation of the most appropriate surveillance and
contingency parameters.

The outcomes of a DT model were compared to results from
equivalently parameterized ITmodels with different environmen-
tal pathogen persistence. In abstract models, the DT model is
a special version of IT assuming persistence time of infectious
pathogen in the environment being 0 (40). Here, we are talking
about explicit process models tailored to surveillance design in
the field. In the field, direct and IT modes correspond with dif-
ferent biological mechanisms that need adequate representation
in a model to allow targeted manipulations (see model docu-
mentation). The inclusion of environmental transmission is no
longer a matter of model re-parameterization but corresponds
to a structural change in the model. In this sense both models,
the direct and the IT model become fundamentally different.
Our results pinpoint the relevance of a decision on whether
environmental transmission needs to be represented in a model
or not already prior to making predictions. In the logic of our
analysis, however, it was necessary to allow seamless transition
between models in spite of two alternative transmission mecha-
nisms involved. We have achieved the virtual equivalence of the
models while keeping the transmission potential per infected host
unchanged.

Environmental transmission in a diseasemodelmight be repre-
sented assuming prolonged infectiousness of infected hosts along
with prolonged half-life of the pathogen in the environment. Log-
ically then, prolonged pathogen persistence in the environment
leads to increased transmission potential of the average infected

host in turn changing disease dynamics [see, e.g., Ref. (40)]. Here,
we were not interested in theoretical variation of the infectious
potential of infected hosts across alternative pathogens. Rather,
wewere addressing alternativemodels of the same infection, e.g., a
pathogen with R0 established in experiments. This approach was
fundamental to the presented comparative assessment of model
predictions on a particular disease, i.e., when the DT and the IT
version of the model are aligned by the R0 value.

We focused the comparative assessment of the different trans-
mission models on three measurements for two surveillance
schemes: (1) time to detection of an outbreak tD, (2) spatial extent
of the outbreakAaff at the time of detection, and (3) the sample size
required for outbreak detection within a prescribed time frame.

Indirect transmission slowed down the increase in seropreva-
lence compared to DT with equal R0. An IT route through the
environment results in prolonged infectiousness beyond the infec-
tious period of the host. This causes delayed infections compared
to the DT mode, where the infectious period of the hosts limits
the time span for new infections. Outbreaks governed by IT may
progress much slower and hence less obvious.

Time to detection tD is a central measure to be minimized by a
surveillance scheme (73). The underestimated time to detection
in the DT model will impede the realized probability of detection
of a given surveillance design. Therefore, a surveillance scheme
based on the estimates from the DT model [e.g., Ref. (74)] would
not meet its aim of detecting an outbreak within the time horizon
it was designed for. The pathogen would circulate undetected in
the wildlife population longer than expected, therewith increasing
the risk of infection of other hosts, e.g., livestock, and the risk of far
range spread by transportation or airborne aerosols [e.g., reviewed
for FMD in Ref. (75)].

The spatial extent of the outbreak Aaff reflects the area under
intervention measures to be implemented after outbreak detec-
tion. Aaff was overestimated by the DT model. With IT but equal
R0, the disease spread slower than with DT and also hasmore time
to spread due to later detection. Due to the continuous surveil-
lance scheme with accumulation of chance of detection over time,
the longer period of undetected pathogen circulation could not
completely compensate the slower spread, thus outbreak size at
detection was smaller. Control and restriction zones would be
oversized if designed on estimates of undetected spread from aDT
model. Thereby, the applied measures would be overly expensive
and an unnecessary burden for the livestock sector (76).

The DT model underestimated the required sample size per
time unit for disease detection within a given time frame. This
measure quantifies the effort that is actually necessary to achieve
the original aim of the surveillance program, namely, outbreak
detection within a prescribed time horizon with given confidence.
The extreme increase of the sample size for long pathogen persis-
tence suggests that other methods than testing host individuals
for seropositivity may be necessary for the surveillance of certain
diseases (77, 78).

Remarkably, time to detection and required sample size differed
from the predictions of the DT model for pathogen half-life as
short as 1 day. This time span is by almost one order of magnitude
shorter than the infectious period of 1week. This fact emphasizes
the relevance of IT, even in absence of extreme pathogen longevity.
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The model used in this study has been previously applied
for risk assessment (47), for assessment of disease control mea-
sures (79), and to contribute to the understanding of wildlife
host–pathogen systems (48, 49, 51). In this study, we extend our
previouswork by the integration of IT and compared surveillance-
related predictions of different model versions.

We restricted the model versions to either DT or IT, but did
not combine both. Although DT is likely to play a role in most
host–pathogen systems with IT mode, we were interested in the
differences between the two modes. As the IT model with short
pathogen half-life resembles the DT model, we nonetheless exam-
ined a continuous transition between the aggregation to DT and
the explicit IT model.

Numerous empirical andmodeling studies dealt with the quan-
tification of indirect, particularly airborne transmission of FMD
and other diseases between domestic livestock holdings [e.g., Ref.
(71, 80–84), reviewed for FMD in Ref. (85)], but IT of FMDV in
wildlife animals has, to our knowledge, not yet been quantified.
We developed a modeling approach that breaks down IT into
components that are accessible to experimental measurements,
namely pathogen shedding, survival/decay in the environment,
contact with infectious material, and infection according to a
dose–response relationship. Although some experiments quan-
tified pathogen excretion and secretion of FMDV [reviewed in
Ref. (12)] and other pathogens [see, e.g., Ref. (86) for CSF] by
domestic animals, knowledge for wildlife is rare (87). The large
differences between domestic animal species regarding the shed-
ding rates of FMDV (12, 75) call for further attention to this
issue. The same applies for the susceptibility of different species,
i.e., the dose–response relation (12, 75). Some quantification for
domestic animals can be found in the literature [e.g., Ref. (70,
88) for FMD], but the qualitative relation between dose in the
environment and probability of infection is often unclear (89,
90). Survival outside the host has been investigated for several
pathogens in animal products and excrements under laboratory
conditions (for references, see INTRODUCTION), but further
research is necessary for environmental factors that influence
pathogen survival. The contact of animals with viral contamina-
tion in the environment remains the most uncertain parameter.
Here, an inverse parameter fitting approach could aid the quan-
tification. Given assumptions for the other parameters, contact
to viral contamination could be estimated from the probability of
infection.

Experimental investigations of virus survival outside the host
depict striking dependence on temperature and humidity [see,
e.g., Ref. (26) for FMD, CSF, BVDV, and PPV; (91) for PRRS virus;
(92) for influenzaA]. This fact gives rise to seasonal fluctuations of

themagnitude of IT. Indeed, for several viral diseases, fluctuations
of their transmission were associated with climatic seasonality,
partly related to virus survival outside the host [see, e.g., Ref. (92,
93) for influenza viruses; (94) for hepatitis A]. Therefore, climatic
factors are expected to play a role in regional variations of the
epidemiology of infectious diseases with an IT mode.

With this work, we contribute to the research on IT, which
is still in an early stage but attracting increasing attention. Pre-
vious work focused on the impact of IT on key figures of
host–pathogen systems such as the basic reproductive number
(20), disease persistence (41), and formal conditions of relevance
for modeling (40).

Our results resemble findings byWearing et al. (1) andAlmberg
et al. (20), which show that a neglect of prolonged infectiousness,
e.g., through environmental pathogen stages or inappropriate
assumptions about the infectious period, may result in an under-
estimate of R0, if derived from the prevalence growth rate. Recip-
rocal, in our study prevalence growth rates decreased under IT
despite equal reproductive potential (R0). Thus, we transferred the
findings regarding the relevance of IT from a theoretical underes-
timation of infection dynamics, i.e.,R0, to the application-oriented
context of designing surveillance of any particular wildlife disease,
i.e., R0 being fixed.

We conclude that a simplified aggregation of transmission pro-
cesses, particularly a neglect of environmental pathogen stages,
may considerably bias model predictions of the performance of
disease surveillance and mitigation strategies. We state that this
applies even for pathogenswith an average environmental survival
time that is comparatively short compared to the infectious period
of the host.
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The trade of livestock is an important and growing economic sector, but it is also a 
major factor in the spread of diseases. The spreading of diseases in a trade network is 
likely to be influenced by how often existing trade connections are active. The activity α 
is defined as the mean frequency of occurrences of existing trade links, thus 0 < α ≤ 1. 
The observed German pig trade network had an activity of α = 0.11, thus each existing 
trade connection between two farms was, on average, active at about 10% of the 
time during the observation period 2008–2009. The aim of this study is to analyze how 
changes in the activity level of the German pig trade network influence the probability 
of disease outbreaks, size, and duration of epidemics for different disease transmission 
probabilities. Thus, we want to investigate the question, whether it makes a difference 
for a hypothetical spread of an animal disease to transport many animals at the same 
time or few animals at many times. A SIR model was used to simulate the spread of a 
disease within the German pig trade network. Our results show that for transmission 
probabilities <1, the outbreak probability increases in the case of a decreased frequency 
of animal transports, peaking range of α from 0.05 to 0.1. However, for the final outbreak 
size, we find that a threshold exists such that finite outbreaks occur only above a critical 
value of α, which is ~0.1, and therefore in proximity of the observed activity level. Thus, 
although the outbreak probability increased when decreasing α, these outbreaks affect 
only a small number of farms. The duration of the epidemic peaks at an activity level 
in the range of α = 0.2–0.3. Additionally, the results of our simulations show that even 
small changes in the activity level of the German pig trade network would have dramatic 
effects on outbreak probability, outbreak size, and epidemic duration. Thus, we can 
conclude and recommend that the network activity is an important aspect, which should 
be taken into account when modeling the spread of diseases within trade networks.

Keywords: network analysis, disease spread, trade activities, temporal network, animal movements, epidemiology
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inTrODUcTiOn

Live animal trade represents an important economic sector but is 
permanently subject to fluctuations. For instance, consignments 
of pigs increased to 48% within EU-27 member states between 
2005 and 2009 (1). However, the financial crisis in the subsequent 
years might have lessened this effect. The importance of live ani-
mal trade on the economy is also demonstrated during animal 
disease outbreaks. Trade restrictions with movement bans cause 
enormous financial losses for the affected livestock holdings and 
countries. For example, the outbreak of classical swine fever 
(CSF) in the 1990s in Germany led to an economical loss of 
approximately €1 billion (2). Thus, as demonstrated during CSF 
outbreak in Germany, livestock trade between farms is one of the 
major routes for the spread of animal diseases, although other 
infection routes, like proximity to infected herds or contact with 
contaminated persons and vehicles, exist as well (2).

Scientific research has primarily focused on the influence of 
the trade structure of farms on disease dynamics (3, 4). Farms 
differ with respect to their trade activity, i.e., with respect to the 
number of trading partners, trade connections, trade volume, 
and time intervals (5). Within the trade network, farms with 
greater trade activities are the most important contributors to 
disease spread (6). Veterinary epidemiology assessments utilized 
social network analysis (SNA) tools, such as centrality meas-
ures, developed within the field of social sciences, to calculate 
the importance of farms for the spread of animal infections. 
Numerous centrality measures, such as in- and out-degree, 
betweenness, and closeness (7), were correlated with standard 
epidemiological parameters, such as size of an epidemic, dura-
tion of the epidemic, time to peak of the epidemic, and the basic 
reproduction number R0 (4, 8–10).

Previous studies applying SNA on pig trade networks have 
already provided important insight for disease prevention and 
control. One aspect of this research was the identification of 
the structure of trade communities (11, 12). Another essential 
finding was that there is a large degree of heterogeneity associ-
ated with movements of pigs at the movement level and at the 
premise specific network level as well (13). As a result, pig trade 
has a right-skewed distribution of all centrality parameters, i.e., 
few holdings have high centrality, while most have a low cen-
trality. Thus, strategic removal of the most central nodes would 
result in a decomposition of the network into fragments, which 
would interrupt infection chains and prevent further disease 
spread (14–16). It was also shown that the holding types differ in 
their centrality measures, which allow for a targeted removal of 
specific holding types in the case of a disease outbreak (16–18). 
Further, SNA has been utilized to simulate the spread of specific 
diseases to estimate the effects of an outbreak, e.g., the spread of 
Methicillin-resistant Staphylococcus aureus (MRSA) through the 
Danish pig trade network (19).

Although SNA provides useful insights into epidemic dynam-
ics on trade systems, the methods used in SNA do not take 
into account the temporal ordering of trade links. Whenever 
a network is traversed using trade links, each traversal has to 
follow a causal sequence of connections. This constraint can 
have a significant impact on the spreading paths for pathogens 

in networks (20). For this reason, recent work has been focused 
on temporal network analysis, where each connection has a time 
stamp marking its occurrence time. The probability of contagion 
between two individuals is not constant in time and depends, 
beside the transmission rate and infectious period, also on the 
frequency and duration of the contact (21–24). Studies that 
considered the heterogeneity and duration of contacts and their 
importance for the epidemic showed the importance to elucidate 
the time dependency of activities in order to investigate disease 
dynamics (22, 24–26). Previously, it has been shown that the 
aggregation of trade links into static networks leads to an overes-
timation of the epidemic size (27–30), the outbreak probability 
(31), and the epidemic duration. Thus, scientific research in the 
veterinary field has increasingly focused on time-dependent 
networks. Methods have been adapted and extended from static 
analyses to time-dependent analyses (20, 27, 31–37).

A temporal network view on livestock trade networks includes 
the frequency of trade links. For the whole system, this frequency 
can be considered as the pace of trading. This raises the ques-
tion, whether it makes a difference for a potential spread of an 
animal disease to transport many animals at the same time (low 
frequency) or few animals at many times (high frequency). From 
the economic point of view, it is appropriate to choose a low trade 
frequency and transport many animals at the same time.

In this work, we analyze the impact of the overall trade fre-
quency on the spread of infectious disease. Hereby, we keep the 
total trade volume of the network constant and systematically 
investigate the impact of a changing frequency of traded animals. 
We define the activity of a network by averaging the frequency 
of all existing trade connections between node pairs and analyze 
how changes in the activity influence the probability of a disease 
outbreak, the final outbreak size, and the duration of an epidemic. 
A discrete stochastic SIR model is used to simulate the spread of 
a hypothetical disease through the trade network of the German 
pig production chain.

MaTerials anD MeThODs

In order to analyze the influence of network activity on the 
course of an epidemic, an outbreak model predicting the course 
of a hypothetical animal disease on a contact network between 
holdings belonging to the German pig production chain was set 
up. Besides the outbreak model, we propose a method how to 
systematically adjust the activity of the network.

Data and network setup
According to the EU directive EC/2000/15 (38), EU member 
states are obliged to collect and record livestock movement 
data in a national database. Pursuant to the German Animal 
Movement Directive (Viehverkehrsverordnung), each holding 
in the pig production chain (including piglet production, breed-
ing, raising, fattening, slaughtering, and trading) is obliged to 
notify the movement of pigs within 7 days. All data are stored 
in a database, “Herkunftssicherungs- und Informationssystem 
für Tiere” (HI-Tier). In Germany, movement data for pigs are 
collected on a daily basis. In general, movement data of livestock 
comprise information about the source and target farms (unique 
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FigUre 1 | Disease spread in a temporal network. If the source node i is 
infectious at time t = 0, the disease can spread via node x to node j. Node k 
cannot become infected, as the edge between node x and k is active at 
t = 1, thus before the disease has reached node x at t = 2.
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identifiers), the date of movement, and the number of animals 
moved (batch size).

For this study, pig movement data from the federal states of 
Bavaria and Baden-Württemberg between the years 2008 and 
2009 were used. It has previously been shown that a period of 
2  years is suitable to cover all characteristic properties of the 
German pig trade network (31). In our data set in most cases 
(90%), only one movement per week took place between a supplier 
and buyer. Consequently, we decided to use a weekly timescale for 
our analysis. In the case of two movements per week, those were 
merged into one occasion.

To describe the pattern of trade activity over time, a tem-
poral network was constructed. By implementing a temporal 
network, it is possible to take into account causality for network 
transversal. In other words, consecutive trade connections have 
to be temporally ordered in order to make up a valid indirect 
connection between farms (Figure 1). The network comprised 
nodes and edges, where each edge connected a node pair. Farms 
were represented by nodes, and movements of animals between 
farms at a certain point in time were represented by directed 
edges. A temporal network is defined as (V, , T), where V 
is the set of nodes within the network,  is the set of directed 
edges, and T represents the length of the observation period, 
as we considered weekly time steps, T  =  104  weeks. An edge 
(u, v, t, w)∈ describes the movement of w pigs from farm u to 
farm v at time t ≤ T. This network comprises |V| = 45,065 and 
||  =  1,237,753 edges (i.e., overall number of transports dur-
ing the observation period). Further, the static representation 
of the network was constructed by summing all observations 
in the temporal network over the study period, such as the 
static network is the time-aggregated network of . In the 
static representation of the network G(V, E), V represents the 
set of nodes and E the set of directed edges (|E| = 112,826). A 
directed edge between two nodes exists in the static network if 
a certain animal movement has taken place at least once during 
the observation period.

The aim of this analysis was to investigate the influence of the 
network activity on the outbreak size of an epidemic. However, 
this outbreak size would be strongly influenced by differences in 
the reachability of the nodes, i.e., nodes form distinct reachability 

classes where a significant number of nodes may only cause trivial 
outbreak (11, 12). To reduce this bias, the data were first tailored 
to include only nodes, which are, in the static representation 
of the network, reachable from each other. We used the static 
network to identify the largest strongly connected component 
(LSCC; in a strongly connected component, each node is reach-
able by any other node in the component). The further analysis 
was limited to this LSCC, which we denote as G*. Thus, the static 
representation of the network enables the disease to reach all 
nodes in finite time, no matter which node is the source of infec-
tion. All nodes and edges, which were not elements of the LSCC 
in the static network, were removed, as well as the correspond-
ing elements from the temporal network. We hereby implicitly 
assumed that the concept of connectivity (35, 36) is preserved 
for the temporal network. In the resulting network, pigs moved 
between |V| = 7,455 farms (number of nodes in the LSCC) and 
|E|  =  27,149 transport routes (number of edges in the LSCC) 
were recorded during the observational period, corresponding 
to || = 315,481 transports in the temporal network.

setting the network activity α
Starting from the network generated as described above, we 
changed the activity systematically. The activity of a single edge in 
a temporal network  can be described by its frequency, i.e., how 
often a certain edge was active during the study period divided by 
the length of the study period. The network activity α was defined 
as the mean edge frequency of a network, with 0 < α ≤ 1. The net-
work activity α of a temporal network (V, , T) and its according 
static representation G(V, E) can be calculated as follows.

 α =
×


E T

, (1)

where || is the number of edges in the temporal network, |E| 
is the number of edges in the aggregated network, and T is the 
observation period.

In order to investigate the influence of α on disease dynam-
ics, we propose a method to systematically change the network 
activity. Since the results for a network with shifted α should be 
comparable to the original network, following constraints had to 
be considered: (i) the aggregated network G remained the same 
for all α, (ii) the total trade volume remained constant for all α, 
(iii) the temporal sequence of existing trade routes had to be 
preserved (see details below), and (iv) the observation period T 
was preserved.

In order to highlight the activity of a temporal network, we 
computed the activity according to Eq. 1 and denoted a temporal 
network with a certain network activity as α. For our observed 
network, we found α = 0.11, and we denote the observed network 
as α=0.11≡*.

In order to create networks with a reduced α, randomly chosen 
edges from *(V, , T) were removed. According to constraint (i), 
edges were removed in a way such that each edge of the aggregated 
network appeared at least once in the newly generated temporal 
network.

In order to increase α, we first considered our temporal 
network as a sequence of static network snapshots. In other 
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FigUre 2 | example for creating a graph with an increased α using a time shift of two time steps. In this example, the original graph has |V| = 4 nodes 
(A, B, C, D) and || = 6 directed edges (with u as the starting node and v as the receiving node), corresponding to |E| = 5 in the time-aggregated network. The 
edges are active at times t ϵ {1, 2, … , 5} (numbers next to the drawn edges), thus T = 5. The line widths of the edges correspond to the edge weights w. 
Overlapping edges (i.e., edges with the same u, v, t) are marked in red. The newly generated graph has the same number of nodes, but an increased number of 
edges (|| = 11). Note that, due to rounding errors, the sum of edge weights in the original and the new graph are only approximately equal.
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words, a temporal network consists of an ordered sequence 
α(V, , T) = G1, G2, … , GT, where each Gt ∈  is a static snap-
shot of the temporal network at time t. In order to increase 
α, each snapshot was first duplicated (once or multiple times) 
and time-shifted by a certain value chosen at random. Second, 
these snapshots were merged into a new temporal network. In 
the case of overlapping edges occurring between the same node 
pairs (i.e., multiple occurrences of directed edges active at the 
same time; regardless of their edge weights), the edge weights 
w (i.e., number of transported pigs) were averaged. Using this 
approach, the existing trade routes remain preserved as required 
by constraint (iii).

In order to satisfy constraint (iv), we used periodic boundary 
conditions, i.e., for each edge (u, v, t, w) = (u, v, t + T, w). In other 
words, if the new times exceeded the observation period T, the 
times were shifted by subtracting T.

The procedures described above would already be sufficient 
to change the activity α of the observed network *. Nevertheless, 
both procedures would violate constraint (ii), as the overall sum 
of edge weights changes as well. Therefore, the new edge weights 
had to be adjusted. During the observation period, a total of 
W = 24,995,162 transported pigs were recorded. The new edge 
weights for α were normalized, so that the sum of the new edge 
weights equaled the total of the observed edge weights W. Finally, 

edge weights for the generated network were rounded to a whole 
number, with the minimum number of pigs per transport set to 
one [constraint (i)].

For example, in a first step, we duplicated the graph * once and 
conducted a 52-week shift (i.e., a shift of 1 year in the duplicate). 
Thus, an edge active in the original graph at weeks 2, 40, 63, and 
92 would be active in a 52-week-shifted graph at weeks 54, 92, 11, 
and 40. Merging the original with the time-shifted graph would 
thus result in a graph where this certain edge is active at weeks 2, 
11, 40, 54, 63, and 92 (see Figure 2 for a more detailed example).

Overall, 22 different networks were generated with different 
activity values, including the original network *  =  0.11. The 
considered values for α were approximately evenly distributed in 
the interval (0; 1].

Disease Dynamics
SIR Model
In order to analyze the influence of network activity α on the 
course of an epidemic, we simulated the spread of a disease 
on different temporal networks α with parameter α. Disease 
dynamics were modeled by applying a stochastic discrete-time 
SIR model (29). Farms were treated as epidemiological units that 
are assigned to one of the three epidemiological states: susceptible 
(S), infected (I), and recovered (R). The infection spread along an 
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TaBle 1 | Description and value bound of the used parameters.

Parameter Description Value

Network α Network activity 22 values in the interval 
(0; 1]

Infection 
parameters

p Infection probability 
per transported animal

{0.25, 0.5, 0.75, 1}

pe Infection probability 
per edge, depending 
on batch size

calculated according 
to Eq. 2

μ Infectious period 4 weeks (constant)

Initial 
conditions

u Starting node 2,000 random samples 
from V

t Starting time 2,000 random samples 
from [1; T − 40]

Total runs 176,000
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edge (u, v, t, w), if at time t the supplying node u was in state I, 
and the receiving node v in state S. Thus, a receiving farm could 
only became infected, if a transport took place from the supplying 
farm to the receiving farm during the time period in which the 
supplying farm was in the I state. Infectious nodes stayed in the I 
state for μ time steps, thereafter they passed to the R state. Nodes 
in the R state remained in this state until the end of a simulation 
run. Infectious farms infect susceptible farms with probability pe.

Due to the fact that certain information was not available, the 
following model assumptions were made. (I) farms representing 
the nodes within the network were all treated identically (8, 29, 
31, 39). Thus, in this model, the number of animals on the farm, 
breed, farm type, or farm practices did not have an effect on the 
transmission dynamics. (II) the epidemiological status does not 
alter the trade contact structure. The latter is a strong assumption, 
but it allowed an examination of the influence of network topol-
ogy on unmanaged disease dynamics (29).

Model Parameters
In order to compute the transmission probability pe for each edge, 
we first considered the risk of infection for each transported 
animal. For every transport from an infected to a susceptible 
farm, each transported animal has a probability p to infect the 
receiving node. In this work, the probabilities p = {0.25, 0.5, 0.75, 
1} were considered. The receiving node became infected, when at 
least one transported animal spread the disease. The probability 
pe can be described with a binomial function B(w, p), whereas 
the function depends on the parameters edge weight w and an 
animals’ transmission probability p.

 p P X B w p pe
w

= >( ) ( ) = − −( )0 1 1~ , .  (2)

A transmission probability of p = 1 corresponds to a highly 
infectious disease: the supplied farm always became infected, 
independent of the batch size w. This corresponds to a worst-case 
scenario and is therefore often used in studies investigating the 
spread of diseases within the trade networks (6, 8, 31).

Nodes remain in the I state for the infectious period μ and 
then pass to the R state. Nodes in the R state remained in this 
state. In this paper, we considered a constant infectious period of 
μ = 4 weeks [as estimated for cases, such as CSF, African swine 
fever, foot-and-mouth disease; Ref. (40)].

Initial Conditions
In the analysis presented here, the model predicted the disease 
dynamics for discrete intervals of 1 week. Initially, all farms were 
in the susceptible state (S). At a randomly chosen time, the state 
of one randomly selected farm was set to infected (I).

The disease dynamics were simulated on a temporal network 
α. All possible start times and initially infected nodes (index 
nodes) had the same selection probability. The start times were 
selected from the interval [1; T − 40] to avoid that the durations 
of the epidemics exceed the observation period of 104  weeks. 
We chose 40 weeks arbitrarily, as the first test runs showed that 
the duration of the epidemic only rarely exceeded this time 
period. However, in some cases, the duration of the epidemic 
still exceeded the study period – those cases were excluded from 

the further analysis. The simulation stopped when the number of 
infectious nodes reached 0.

Summary of Parameters
For each value of the activity parameter coming from one of the 
22 investigated α, each with the 4 transmission probabilities 
as described above, the simulation was repeated 2,000 times, as 
test runs showed that this number of iterations provided robust 
results. Thus, 176,000 simulation experiments were run in total 
(Table  1). In 175,877 of those simulations, the duration of the 
infection did not exceed the observation period and were used 
for further analysis.

analysis
We wanted to determine the probability that a disease outbreak 
occurs for a certain level of α. The outbreak probability was esti-
mated as the proportion of the 2,000 simulation runs, in which 
the disease spread beyond the starting node. In those cases where 
the disease spread beyond the starting node, the outbreak size 
was calculated as the total number of infected nodes. In addition, 
the outbreak duration was defined as the number of weeks in 
which infected nodes occurred. The distribution of the latter two 
measures was skewed to the right, and thus we give the median 
and the first and third quartiles (Q1, Q3).

All analyses were conducted using the open-source software R 
version 3.2.1 (41). The package igraph (42) was used to generate 
and analyze the network.

resUlTs

Descriptors of G*
For this static representation G*, we found an average shortest 
length of 6.33; the path length between the two most distant nodes 
(diameter) was 17. The median in-degree, measuring the number 
of trade partners delivering animals to a certain node was only 
one, while the median for the number of trade partners a certain 
holding delivers to (out-degree) was two (Table 2). The values for 
the median ingoing and outgoing closeness centrality were rather 
similar (Table 2), indicating that the number of steps required to 
reach a certain node equals the number of steps required to reach 
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FigUre 3 | Outbreak probability (±95% ci) depending on the network activity level α for different disease transmission probabilities p. The vertical 
orange line represents α for the observed pig trade network *.

TaBle 2 | Minimum, 25% quartile, median, 75% quartile and maximum of 
the calculated centrality parameters for G*, the static representation of 
the observed network.

Min Q1 Median Q3 Max

In-degree 1 1 1 2 665
Out-degree 1 1 2 3 358

Ingoing  
closeness 
centrality

0.000011 0.000018 0.000023 0.000026 0.000041

Outgoing 
closeness 
centrality

0.000012 0.000019 0.000022 0.000024 0.000037

Betweenness 
centrality

0.0 1.0 316.2 7,490.2 15,166,160.0
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any other node from a certain node. The number of shortest paths 
going through a certain node (betweenness centrality, Table 2) 
showed a high variation, ranging from 0 to 15,166,160.

Outbreak Probability
We observed that the outbreak probability is finite, independent 
of the particular values of transmission probability p and network 
activity α (Figure  3). Even for the smallest considered activity 
values (α = 0.01), the outbreak probabilities was in the region of 
5% for all considered transmission probabilities.

We now focus on the outbreak probability for a transmis-
sion probability of p = 1, i.e., the worst-case scenario, in which 
transports of any size spread the infection. In this scenario, a 
monotonous increase of the outbreak probability with increas-
ing activity was observed. The outbreak probability saturated 
for larger values of α. More precisely, the outbreak probability 
was greater than 99% for all α >  0.80. For small and interme-
diate values of α, it can be observed that even relatively small 
changes in α had a strong effect on the outbreak probability. Our 
observed network (α =  0.11) lies in this region. Consequently, 
small changes in the real system would result in large changes in 
the outbreak probability.

We now focus on transmission probabilities of p  <  1. For 
all considered p  <  1, a qualitatively similar behavior could 
be observed. Contrary to the worst-case scenario (p  =  1), the 
outbreak probabilities for p < 1 did not increase monotonously, 
but rather showed a maximum. The location of these maxima 
was shifted to the right for increasing values of p. It should be 
noted that the location of these maxima was relatively close to the 
activity of the observed network *.

Final Outbreak size
We now consider the cases where the infection spread beyond the 
starting node and the corresponding outbreak sizes for different 
values for α and p (Figure 4). For the worst-case scenario p = 1, 
the outbreak size increased monotonously with increasing α. The 
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FigUre 4 | Median outbreak size (measured as a fraction of total number of nodes) ± quartiles (Q1 and Q3) for different disease transmission 
probabilities p (in the case the disease spread beyond the starting node). The vertical orange line represents α for the observed pig trade network *.
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possibility that all nodes in the network became infected was only 
found at this scenario (p =  1), but only for very high network 
activities. For the observed network (α = 0.11), ~15% of the nodes 
would become infected in the worst-case scenario.

For smaller transmission probabilities (p <  1), we observed 
that outbreak sizes are significantly smaller than in the worst-case 
scenario. In contrast to the worst-case scenario, the outbreak sizes 
showed a maximum at approximately α = 0.3.

The authors would like to stress the fact that the outbreak size 
showed a critical threshold regarding the network activity. This 
means that there was a critical activity αcrit, such that finite out-
breaks occurred only if α > αcrit. To estimate αcrit, we calculated the 
central point between the last value of α below and the first value 
above the threshold. For transmission probability p = 1, we found 
αcrit =  0.1, and for transmission probabilities of 0.75, 0.5, 0.25, 
we found αcrit = 0.15. Interestingly, the activity of the observed 
network was close to the critical region. For p = 1, the activity 
of the observed network * was only slightly above the critical 
threshold, whereas for transmission probabilities p  <  1, the 
observed network was subcritical. As it is typical for such critical 
regimes, small changes in the activity result in large changes in the 
outbreak size (Figure 4).

Outbreak Duration
Although the shapes of the outbreak durations were similar for 
different transmission probabilities, we found that the outbreak 

duration increased with higher transmission probabilities 
(Figure 5). However, for all transmission probabilities, a maxi-
mum in the outbreak probability at approximately α = 0.2 could 
be found, with the exception of p = 0.25, where the maximum was 
at approximately α = 0.3. The reason for these maxima is the exist-
ence of two dueling effects. (i) For small α, the outbreak duration 
correlates with the outbreak size. Outbreaks were typically small 
here, and increasing α increased the possible number of paths to 
other nodes. Topological and temporal shortcuts played a minor 
role here. (ii) For large values of α, the network was likely to form 
a number of shortcuts, accelerating the spread of a disease.

DiscUssiOn

In this study, we investigated how the spreading of hypothetical 
infectious diseases through a trade network is influenced by the 
networks activity level. For the observed German pig trade net-
work α = 0.11, thus each existing trade connection between two 
farms was on average active at about 10% of the time during the 
observation period (using weekly time steps). At this observed 
low network activity, the chances for a disease to spread beyond 
the starting node were relatively low, especially for low transmis-
sion probabilities (e.g., 10% at p = 0.25). Even in the case that an 
infection spread, the total number of infected farms was for all but 
the worst-case scenario only about 0.2% of the nodes within the 
network. Previously, the size of the largest connected component 
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FigUre 5 | Median duration of the epidemic in weeks (in the case the disease spread beyond the starting node) ± quartiles (Q1 and Q3) depending 
on the network activity level α for different disease transmission probabilities p. The vertical orange line represents α for the observed pig trade network *.
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has often been used as an estimate for the potential final size of 
an epidemic spreading through a network (43). However, even at 
the applied worst-case scenario (p = 1), the size of the epidemic 
in our simulation was only a fraction (around 16%) of the total 
number of nodes for the observed trade data. Using the LSCC 
would therefore have considerably overestimated the final size of 
the epidemic. Thus, our results indicate that, at the observed level 
of the network activity, the threat of large epidemics spreading 
through the German pig trade network is relatively low, especially 
for diseases with low transmission rates. However, as we focused 
in our study on the spread of diseases through the trade network, 
the actual number of infected farms could be higher due to addi-
tional spreading via other infection routes (2).

For our analysis, we limited the trade network to the LSCC 
in order to avoid bias in the results caused by differences in the 
reachability of the nodes. The observed network activity of the 
untailored network (α = 0.105) was very similar to the activity in 
the LSCC (α = 0.112), indicating that changes from the observed 
network activity would have the same effect on the outbreak 
probability, -size, and -duration. However, due to the differences 
in the reachability of the nodes, a much higher variation in the 
results is to be expected (20).

Interestingly, the German pig trade network seems to be at 
a rather unstable state, as even small changes in the networks 
activity level would have a large impact on the spreading of 

diseases. The main factor that could change the network activity 
of the German pig trade network is likely to be the farm size. 
In the last years, the pig production in Germany and other EU 
countries increased, resulting in larger farm sizes and increased 
number of traded pigs (1, 44). This would also result in increasing 
animal transports, which could by archived either by increasing 
the animals per transport (i.e., edge weights) or by a higher 
frequency of transports (i.e., higher activity level), whereby the 
latter would likely have a higher impact on disease dynamics. If 
an increase in the network activity is to be expected in the long 
term, the probability for an outbreak and outbreak size are likely 
to increase, as shown in this study. Considering all three inves-
tigated measurements (outbreak probability, final outbreak size, 
and duration of epidemic), it becomes apparent that an increase 
in the network activity should be avoided. Further, in order to 
confine disease spreads, a decrease in the activity of the German 
pig trade network would be conducive, even if this reduction 
would only be minor. In our model, a decrease of the activity is 
realized by random deletion of edges. We assume that a targeted 
deletion of edges might even have a larger effect (45). From a 
practical point of view, a reduction in the network activity would 
mean that animal transports from one farm to another would 
have to be concentrated to fewer occasions. This also implies that 
a matching pig production schedule would be necessary, favoring 
“all-in-all-out” production systems.
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The final outbreak size for different network activities shows, 
as depicted in Figure 4, strong similarities to the threshold behav-
ior known from epidemic SIR-type models (46). This epidemic 
threshold describes a condition above which an epidemic becomes 
global, while below this threshold only a limited number of nodes 
become infected (46, 47). To estimate the epidemic threshold 
in a given network is thus important as it allows predicting the 
possibility that an infection spreads on a large scale. Hence, it 
is essential for the planning control and intervention strategies. 
Different methods exist to identify the epidemic thresholds, with 
the performance of those methods depending on the topology of 
the network (48, 49). The results of our study show not only the 
existence of a threshold but also that its position varies with the 
transmission probability. Read and colleagues (22) demonstrated 
for a small-scale human contact network that the encounter rate 
had a strong effect on the outbreak size at high transmission rates 
but could find no significant effect at low transmission rates. This 
concurs with our results, where the effects of the network activity 
on the outbreak size were most produced at high transmission 
rates. Again, it seems that the actual activity of the investigated 
system is close to this threshold value, as even a small increase 
in the activity level has a large impact on the outbreak size of an 
epidemic.

The outbreak probability peaked in a region below this thresh-
old for a global epidemic. As the total number of transported 
animals was kept constant for all network activities, the batch 
sizes per transport increased, while the frequency of transports 
decreased at low network activities. Thus, as the edge infection 
probability pe depends on the batch size, the chance to transmit 
a disease beyond the starting node is rather high at low network 
activity levels, given the case that a transport occurs. As the 
number of transports is low at low levels of α, the epidemics are 
restricted to only a few livestock holdings. On the other hand, a 
decrease in the observed outbreak probabilities for large values 
of α can be observed, which can be explained by the fact that 
the batch sizes are small in this regime. Thus, disease spread was 
dominated by strong fluctuations in edge infection probability pe. 
These described effects only apply to transmission probabilities 
<1, as in the case of p = 1, the spreading of diseases is independ-
ent of the batch size.

As the necessary information was not available to us, we had 
to made several simplifications for our analysis. Especially, the 
farm type has already been shown to be an important factor in 
the spreading of the disease in animal trade networks (15). The 
farm type defines how long animals remain at a certain node. 
It is likely, that if the network activity would change due to an 
overall increase or decrease in the German pig production, the 
change in the activity of the individual trade connections would 
be irregular and vary according to the type of the source and the 
receiving node. This would be an important point to consider in 
further studies, as heterogeneous waiting times have been shown 
to influence the spread of diseases in networks (50, 51). For our 
simulation, we neglected within-herd transmission dynamics as 
well. Within-herd transmission depends not only on the specifics 
of a disease but is also influenced by several external factors that 
were not available to us (e.g., farm size or biosecurity measures 
on the farm level). The numbers of infected animals within a 

farm vary over time (52), and it is unlikely that all animals are 
simultaneously infected over a certain time period, as assumed in 
our simulation. Consequently, the presented results could over-
estimate the probability of a disease outbreak and the size of the 
epidemic. For our model, we assumed that the epidemiological 
status of the farms does not alter the trade contact structure. This 
applies to rather harmless diseases, like porcine reproductive and 
respiratory syndrome (PRRS), porcine circovirus type 2 (PCV2), 
or MRSA. However, depending on the severity of a disease, trade 
connections with an infected farm could cease. The withdrawal 
of trade connections would not be instantaneous but depend on 
various factors like incubation period or the occurring of clinical 
symptoms, resulting in a high variation between the time of infec-
tion of a farm and the potential termination of trade connections. 
Thus, the more likely a disease results in trade restrictions and the 
faster those restrictions are applied, the more our model is prone 
to overestimate the size of an epidemic. In case of an outbreak of a 
severe disease, trade connections could change due to the targeted 
implementation of trade restrictions by veterinary authorities. 
However, the extent of trade restrictions often differs between 
countries. For instance, during the bluetongue virus outbreak in 
Europe starting in 2006, trade restrictions in France were directed 
to specific areas (53), while in Germany, as well as in Austria and 
Swiss, the whole country was declared a single restriction zone at 
an early stage of the epidemic (54–56). Thus, if the whole country 
is declared a single restriction zone, the within-country trade 
network would likely show only marginal changes. The effect 
of lowering the contact rate on outbreak probability, -size, and 
-duration is shown in this analysis, but the implementation of 
trade restrictions directed to specific areas could lead to different 
dynamics.

In our study, we presented the network activity as a new 
indicator value for networks. With this parameter, it is possible to 
investigate how changes in the mean frequency in the activation 
of existing trade connections can affect the spread of diseases. By 
setting the total trade volume constant, as we did in this study, 
it was possible to differentiate between effects of trade frequency 
and trade volume. There are two specific characteristics of α: first, 
it is designed to be a characteristic of a temporal network. It has 
been shown that several network parameters drawn from a static 
network correlate with standard epidemiological parameters. 
Especially in networks with a right-skewed degree distribution, 
as we found for the pig trade network, nodes with a high degree 
can play an important role in the spreading of diseases (8, 14, 16). 
However, the frequency of trade links cannot be represented by a 
static network; static networks generated from different levels of α 
would be identical and thus network measurements (like centrality 
measurements) would be identical as well. As static networks do 
not take the temporal causality of the paths into account, results 
drawn from such static representations can be problematic. For 
example, it has been shown that compared to a temporal network, 
its static representation overestimates the size of a disease outbreak 
(20). Thus, in the last years, measurements for temporal networks 
have been developed (20, 57), and their relation to disease spread, 
however, remains to be investigated. In comparison with most 
of those measurements, the calculation of the network activity is 
simple, as it is obtained from the total number of edges in the 

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


44

Lebl et al. Impacts of Network Activity

Frontiers in Veterinary Science | www.frontiersin.org June 2016 | Volume 3 | Article 48

static and the temporal network. Second, the network activity is a 
measurement for the state of the whole network and not for single 
nodes. It can be used as a measurement of how well a temporal 
network is described by its static representation. An α = 1 would 
be equal to network, where each existing trade link is active at 
all time steps, thus the static representation would be true at any 
time. The more closely the network activity is to one, the more 
accurate is its static representation. Still, for now, we would like 
to suggest carefulness in applying the results to other networks. 
While the general pattern is likely to stay the same, the exact 
location of the maxima/threshold of the investigated parameters 
could vary. Further, when comparing the network activity of dif-
ferent networks, care must be taken to use the same time period 
and time steps, as α changes with those two values.

In this study, we could demonstrate that the network activ-
ity α is an important factor in evaluating the effects of a disease 
spread in the German pig trade network. We would like to 
propose applying this indicator number to other networks used 
to demonstrate the spread of disease or other malicious agents as 
well, as the networks’ activity is likely to have a strong impact on 
the spreading.
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In most European countries, data regarding movements of live animals are routinely 
collected and can greatly aid predictive epidemic modeling. However, the use of complete 
movements’ dataset to conduct policy-relevant predictions has been so far limited by 
the massive amount of data that have to be processed (e.g., in intensive commercial 
systems) or the restricted availability of timely and updated records on animal movements 
(e.g., in areas where small-scale or extensive production is predominant). The aim of this 
study was to use exponential random graph models (ERGMs) to reproduce, understand, 
and predict pig trade networks in different European production systems. Three trade 
networks were built by aggregating movements of pig batches among premises (farms 
and trade operators) over 2011 in Bulgaria, Extremadura (Spain), and Côtes-d’Armor 
(France), where small-scale, extensive, and intensive pig production are predominant, 
respectively. Three ERGMs were fitted to each network with various demographic and 
geographic attributes of the nodes as well as six internal network configurations. Several 
statistical and graphical diagnostic methods were applied to assess the goodness of 
fit of the models. For all systems, both exogenous (attribute-based) and endogenous 
(network-based) processes appeared to govern the structure of pig trade network, 
and neither alone were capable of capturing all aspects of the network structure. 
Geographic mixing patterns strongly structured pig trade organization in the small-scale 
production system, whereas belonging to the same company or keeping pigs in the 
same housing system appeared to be key drivers of pig trade, in intensive and extensive 
production systems, respectively. Heterogeneous mixing between types of production 
also explained a part of network structure, whichever production system considered. 
Limited information is thus needed to capture most of the global structure of pig trade 
networks. Such findings will be useful to simplify trade networks analysis and better 
inform European policy makers on risk-based and more cost-effective prevention and 
control against swine diseases such as African swine fever, classical swine fever, or 
porcine reproductive and respiratory syndrome.
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inTrODUcTiOn

Movements of animals play a key role in the spread of several 
major infectious diseases, like foot-and-mouth disease, classical 
swine fever, or African swine fever (1–3). Therefore, detailed 
data on livestock movements may help to better simulate trans-
mission dynamics and identify areas, periods, and farms that 
are more likely to spread the diseases and could be targeted to 
improve surveillance and control strategies (4, 5). However, one 
of the challenges of using livestock movement data to support 
decision-making in preventive veterinary medicine is the limited 
availability of timely and updated records on animal movements 
and, if available, the massive amount of data that have to be 
processed. This is particularly challenging when considering 
diverse and, sometimes, epidemiologically complex, production 
systems, such as backyard or extensive systems, where the infor-
mation may not be frequently collected and accessible. Models of 
livestock movement networks based on holding characteristics 
and past-temporal observed networks could be useful to simplify 
real-world networks and to predict disease spread even in back-
yard or extensive environments.

Pig trade movements can be represented as a network, 
consisting of a set of nodes (here the pig premises) connected 
by links (also called edges) representing movements of pigs 
between them. These networks are not strictly identical from 
1  year to the following, but their structural properties, which 
impact disease dynamics, are likely to be stable over time (6, 
7). These properties emerge from pig trading behaviors. For 
example, some premises may be more likely to trade with each 
other due to geographical proximity or because they belong 
to the same pig company [selective mixing or homophily, see 
Morris (8)]. Some particular types of premises may also be more 
likely to trade with a high number of premises (attributes that 
influence degree). Finally, if a trading partner B of premises A 
trades with a third premises C, this might encourage A to trade 
with C (structural balance effect).

The first statistical models developed to evaluate which pro-
cesses lead to observed network structures were quite simple. 
They only addressed relational reciprocation [i.e., mutuality; 
see Holland and Leinhardt (9)] or assortative mixing (8). The 
recent developments of exponential random graph models 
(ERGMs), also known as p* models (10), offer possibilities to 
better capture the complexity of real-life networks (11). This 
family of models assumes that the observed network is only 
one realization among many potential networks with similar 
characteristics and that the probability that a link exists is a 
logit-linear function of predictors that reflect node characteris-
tics, link characteristics, and network structural properties (10, 
12, 13). Although they were developed to handle the inherent 
non-independence of network data, the results of ERGMs are 
interpreted in similar ways to logistic regression, making this 
a very useful method for examining contact networks in the 
context of epidemiology.

The aims of this paper were to use ERGMs to (1) develop 
models that reproduce observed pig trade networks; (2) under-
stand the mechanisms that underlie the organization of pig 
trade networks; and (3) predict trade networks structures in 

three different European pig production systems (i.e., industrial, 
extensive, and backyard). Results of this study are intended 
to inform the design of prevention and control programs for 
swine diseases such as African swine fever, classical swine 
fever, or porcine reproductive and respiratory syndrome under 
diverse epidemiological scenarios and pig productions systems 
in Europe.

MaTerials anD MeThODs

Data collection and network construction
Three areas were selected to represent different European pig pro-
duction systems: Bulgaria, where most premises raise pigs for own 
consumption; the autonomous community of “Extremadura,” 
which is the cradle of extensive Iberian pig production in Spain; 
and the department of “Côtes-d’Armor,” which is the French 
department with the highest concentration of industrial pig 
premises.

Data on pig movements and premises characteristics were 
obtained from national databases, through Bulgarian Food 
Safety Agency in Bulgaria, the professional database of swine 
(La Base de Données Professionnelle Porcine—BDPORC) in 
France, and the Ministry of Agriculture, Food and Environment 
(MAGRAMA) in Spain. The year 2011, which was common in all 
databases, was retained for analysis. The premises characteristics 
available were the classification or type of farm (described in 
the next two sentences), the size of premises (i.e., number of 
sows, weaners, and finishers on farm), the type of housing 
system (i.e., indoor or outdoor), the geographical coordinates, 
and the pig company number (only for France). In Bulgaria, 
pig farms were classified as small producers (<10 pigs kept 
for own consumption), type B (medium-size: 10–500 pigs; 
with low biosecurity level: access to other pigs or feral pigs, 
use of swill feeding, no fences around the holdings, and/or 
no disinfection at the entrance and exit of buildings), type A 
(medium-size, high biosecurity level), or industrial farms (large 
size: >500 pigs; high biosecurity level) (14, 15). Traditionally 
and outdoor-raised East Balkan pig herds are also found in 
the South East of Bulgaria. For Spain and France, pig farms 
were classified as multipliers (premises that produce breeding 
stocks and semen), farrowing farms, farrow-to-finish farms, 
finishing farms, or small producers. Small producers for Spain 
were defined as those that produce pigs for own consumption, 
whereas for France were those with ≤4 pigs. Traders, collec-
tion centers, markets, fairs, and stopping points (i.e., or staging 
point: locations used to feed, water, rest, accommodate, care 
for, and dispatch animals in transit before arriving to their final 
destinations) were considered as trade operators. Because of 
the dead-end characteristics of slaughterhouses, these premises 
were excluded from analysis.

For each area, yearly networks (i.e., using year 2011) were built, 
the nodes being all pig premises of the study areas, even those 
that were not trading pigs during the study period. Movement 
data were aggregated over the study period, and a direct link 
was drawn whenever a shipment of pigs occurred between the 
corresponding premises. Movement imported from or exported 
to outside areas was excluded from the analyses.
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Table 1 | network statistics used to fit the exponential random graph 
models of pig trade networks.

network statistics zk(y) abbreviation 
useda

# of edges L(y)
# of in- and outgoing edges for each type of production, 
housing system, pig company

Mi,v,a(y), Mo,v,a(y)

# of edges that are within housing systems, within pig 
companies, within regions, with differential homophily

Ha,v(y)

# of edges that are within housing systems, within pig 
companies, within regions, with uniform homophily

Ua,v(y)

# of edges that are within and between housing systems, within 
and between type of productions, within and between regions

Sa,v(y)

Euclidean distance between pairs of premises E(y)
# of isolates I(y)
# of asymmetric links A(y)
Geometrically weighted dyadwise shared partners gwdsp(y, α)
Geometrically weighted edgewise shared partners gwesp(y, α)
Geometrically weighted in- and out-degree distribution gwid(y, α), 

gwod(y, α)

aSome statistics use attribute-specific terms where a and v represent the attribute 
and level, respectively. The observed network is represented by y and the scale 
parameter by α.

Relun et al. Pig Trade Network Modeling Using ERGMs

Frontiers in Veterinary Science | www.frontiersin.org March 2017 | Volume 4 | Article 27

The ergMs
Exponential random graph models specify the probability of any 
random network Y given a set of n nodes and their attributes as 
in Eq. 1.

 P y n
c

z yk kkθ θY =( ) = 




 ( )∑| exp ( )nodes

=1

K1
 (1)

The zk(y) terms represent model covariates, any set of K net-
work statistics calculated on the y observed network and hypoth-
esized to affect the probability of this network forming. The 
model covariates can include network parameters that account 
for the frequency of occurrence of certain network configurations 
(e.g., two-path, triangles), as well as node or edgewise covariates 
like the pig company to which a premise belongs or the distance 
between two premises, respectively. The θ coefficients estimate 
the strength of the effect of each covariate. The denominator c 
represents the normalizing constant, which correspond to the 
sum of exp ( )θk kk

z y
=1

K∑( )  over all possible networks with n 
nodes.

Because ERGMs’ calculation time dramatically increased with 
the increase of network size, it was decided to exclude isolates, 
i.e., pig premises that did not trade with other premises, from 
the small-scale productions system (Bulgaria, initially 28,729 
premises, of which 95.3% were isolated premises).

Model specification
First, an exploration of network data was undertaken, with the 
computation of several local topological measures (number of 
isolates, triangles, degree distribution, etc.) and of mixing matri-
ces for premises’ attributes (16). Specifically, we computed the 
number of nodes, the network density, the percentage of isolates, 
the clustering coefficient, and the mean and range of in-degree 
and out-degree centrality measures [e.g., Ref. (5)]. Network 
graphs were plotted, with the nodes colored according to nodes’ 
attributes, to better visualize the selective mixing patterns.

Based on this exploration, several network statistics were 
chosen to represent hypothetic rules for trade movements 
(Table  1). L(y) captures the density of the observed network 
y. Mi,v,a(y), Mo,v,a(y), Ha,v(y), Ua,v(y), Sa,v(y), and E(y) are attribute-
specific terms that capture the way in which premise attributes 
structure trading patterns, where a represents the attribute 
(e.g., housing system) and v the level (e.g., indoor, outdoor). 
The main effects, Mi,v,a(y) and Mo,v,a(y), allow variation in 
the propensity of a premise to form incoming and outgoing 
edges according to the level of an attribute characterizing this 
premise. Ha,v(y) models a tendency of edges to occur between 
premises belonging to the same attribute level that varies 
among attribute levels (hereafter referred to as differential 
homophily), while Ua,v(y) models a uniform tendency of edges 
to occur between premises belonging to the same attribute level 
(hereafter referred to as uniform homophily). Sa,v(y) accounts 
for variation in the occurrence of edges according to the levels 
of an attribute characterizing each of two premises (hereafter 
referred to as selective mixing). E(y) captures variation in the 
propensity of premises to form links according to the Euclidean 
distance in km to other premises.

A(y) and I(y) model the tendency of premises to form unidi-
rectional links or no links, respectively. The terms gwdsp(y, α), 
gwesp(y, α), gwid(y, α), and gwod(y, α) are related to local struc-
tures and represent the parametric forms of the alternating two-
paths, clustering (alternating k-triangles) and in- and out-degree 
distributions, respectively. A fixed value of 0.5 was adopted for the 
scale parameter α in these terms (11).

The Markov Chain Monte Carlo (MCMC) algorithm was used 
to estimate the maximum likelihood for the θ coefficients included 
in models (12). The MCMC chain is intended to step around the 
sample space of possible networks, selecting a network at regular 
intervals to evaluate the statistics in the model. For each MCMC 
step, n (n = 1 in the simple case) toggles are proposed to change 
the dyad(s) to the opposite value. A chain burn-in of 105 toggles, 
an MCMC sample size of 104, and an interval between successive 
samples of 103 was fixed for these models.

Model selection and goodness of Fit
For each area, four models were built: (1) a simple Bernoulli 
model that only includes the number of edges; (2) a model with 
edges and statistics based on nodal attributes (hereafter called 
“edge + attribute” model); (3) a model with edges and structure-
related statistics (“edge +  network statistics” model); and (4) a 
model with edges, nodal attributes, and structure-related statistics 
(“edge + attributes + network statistics” model).

For the “edge  +  attribute” and “edge  +  network statistics” 
models, univariable analyses were performed first. The terms 
(i.e., attributes and network statistics) were then added one by 
one, until the best model fit was obtained. The fourth model was 
based on the final “edge + attribute” model, and network statistics 
terms were added one by one manually until the best model fit 
was obtained.

Three approaches were used to examine goodness of fit of the 
models: (1) check for model convergence and degeneracy; (2) 
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Table 4 | Topological statistics of the pig trade networks in 2011.

Production system (area) Topological statistics

# of nodes Density % of isolates clustering coefficient Mean kin (range) Mean kout (range)

Small producers (Bulgaria)a 1,349 6.7 × 10−4 0.0 0.049 0.9 (0–7) 0.9 (0–35)
Extensive (Spain—Extremadura) 14,097 2.1 × 10−5 67.7 0.038 0.3 (0–70) 0.3 (0–27)
Intensive (France—Côtes-d’Armor) 2,396 5.4 × 10−4 20.4 0.066 1.3 (0–236) 1.3 (0–83)

kin, in-degree; kout, out-degree.
aIsolates were excluded for Bulgaria: initially there were 28,729 premises, of which 95.3% were isolated premises.

Table 3 | Descriptive statistics of pig shipments in bulgaria, côtes-d’armor (France), and extremadura (spain) in 2011.

country # active premisesa (%) # ingoing shipments 
per active premise

# outgoing shipments 
per active premise

euclidean shipment 
distance (km)

shipment size  
(# of pigs)

Median (iQr) Max Median (iQr) Max Median (iQr) Max Median (iQr) Max

Bulgaria 1,349 (4.5) 1 (1–1) 121 3 (1–7) 107 3 (1–32) 433 4 (2–21) 1,750
Côtes-d’Armor 1,907 (79.6) 5 (2–9) 1,021 6 (3–13) 253 17 (5–34) 129 61 (6–207) 950
Extremadura 4,555 (32.3) 1 (1–1) 71 1 (1–2) 27 13 (1–35) 204 30 (7–103) 11,650

IQR, interquartile range.
aPremises that sent or received pigs in 2011.

Table 2 | Description of pig industry in bulgaria, côtes-d’armor (France), and extremadura (spain) in 2011.

côtes-d’armor extremadura bulgaria

Area (km2) 6,878 41,634 Area (km2) 110,944
Road density (km/km2) 2.9 0.21 Road density (km/km2) 0.36
# of premises 2,396 14,099 # of premises 28,729
Premise type (%) Premise type (%)

Multiplier 2.6 0.3 Multiplier NA
Farrowing 2.9 1.9 Industriala 0.21
Farrow-to-finish 45.4 65.8 Type Aa 0.48
Finishing 47.5 28.6 Type Ba 6.44
Small producerb 0.5 3.3 Small producerb 92.54
Unknown 1 0 East Balkan pigsa 0.33
Trade operator 0.1 0.01 Trade operator NA

Outdoor premises (%) 1.6 38.9 Outdoor premises (%) NA

aFor Bulgaria only: industrial farm (large size: >500 pigs, high biosecurity level farm); type A farm (medium-size: 10–500 pigs, high biosecurity level); type B farm (medium-size: 
10–500 pigs, low biosecurity level); east Balkan pigs (traditional outdoor pig herds). Small producer for Bulgaria: <10 pigs kept for own consumption.
bSmall producers were defined for Spain as those farms (any size) that produce pigs for own consumption; for France were those with ≤4 pigs and for Bulgaria were those with <10 
pigs kept for own consumption. NA, not applicable/not available.
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comparison of Akaike information criteria; and (3) comparison 
of goodness of fit plotting for higher order statistics (11). For this 
purpose, four sets of statistics were used: the in- and out-degree 
distributions, the geodesic distance distribution, and the edge-
wise shared partner distribution, which reflects the clustering of 
the network (17). These statistics were chosen because of their 
impact on disease spread dynamics (18). Finally, plots of simu-
lated networks were visually compared to the plot of the observed 
networks.

All analyses were conducted in R (19) using the “statnet” suite 
of packages (20, 21).

resUlTs

A total of 7,811 out of the 45,224 premises keeping pigs (i.e., 
17.3%) were actively moving pigs during 2011. Description of 
the pig industry demographics (i.e., number of premises for 

each type of farm), pig trade (to/from different types of farm), 
and topological characteristics in Côtes-d’Armor (France), 
Bulgaria, and Extremadura (Spain) in 2011 are presented in 
Tables  2–4.

The inclusion of both nodal attributes and network con-
figurations statistics provided the best fit to the data (Tables 5–7; 
Figures 1 and 2). Selective mixing between premises according to 
their type of production appeared to be an important mechanism 
of pig organization, whichever system considered (Tables 5–7). 
In addition to this mechanism, the other mechanisms related to 
premises characteristics that impacted the most on trade organi-
zation were belonging to the same pig company, the tendency 
of outdoors premise to trade with outdoor premises, and the 
geographical location of pig premises, in the intensive, extensive, 
and small-scale production systems, respectively (Tables  5–7). 
Network statistics on dyadwise and edgewise shared partner 
distributions, as well as on in- or out-degree distributions were 
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Table 5 | Parameter coefficients and fit for the four exponential random graph models (ergMs) of pig trade in a small-scale production system 
(bulgaria).

covariates ergM coefficients (se)a

bernoulli (edges) edges + attributes edges + network statistics edges + attributes + network statistics

Edges −7.30 (0.03)*** −10.18 (0.30)*** −9.62 (0.67)***
Link attributes

Distance (km) −0.07 (0.00)*** −0.07 (0.00)***
Nodal attribute mixing

Regionb

E to E 0.02 (0.16) −0.88 (0.53)
NW to E 0.08 (0.48) −0.36 (1.02)
S to E 0.92 (1.02) 1.85 (1.60)
SW to E NA NA
E to NW 0.57 (0.38) −0.51 (0.74)
NW to NW −1.29 (0.13)*** −0.82 (0.44)
S to NW NA NA
SW to NW −1.43 (1.01) 3.10 (1.66)
E to S 3.50 (0.32)*** 3.89 (0.68)***
NW to S 1.61 (0.37)*** 1.75 (0.62)**
S to S Reference Reference
SW to S NA NA
E to SW 15.91 (0.49)*** 20.78 (0.99)***
NW to SW 2.55 (0.31)*** 6.49 (0.68)***
S to SW 3.77 (0.45)*** 5.68 (1.06)***
SW to SW 0.39 (0.36) 1.75 (0.93)
Type of farmc

SP to SP Reference Reference
IN to SP 2.37 (0.17)*** 0.75 (0.24)**
TA to SP 2.20 (0.12)*** 0.92 (0.17)***
TB to SP 1.98 (0.08)*** 0.82 (0.10)***
SP to IN −1.45 (1.00) −1.08 (1.33)
IN to IN 3.33 (0.28)*** 2.31 (0.93)*
TA to IN 1.19 (0.52)* 1.43 (1.16)
TB to IN 0.58 (1.01) 0.14 (1.74)
SP to TA −0.81 (0.45) 0.09 (0.68)
IN to TA 2.95 (0.25)*** 2.22 (0.78)**
TA to TA 1.26 (0.37)*** 1.24 (0.83)
TB to TA 2.26 (0.32)*** 2.16 (0.69)**
SP to TB −1.03 (0.26)*** 0.73 (0.44)
IN to TB 3.08 (0.29)*** 3.32 (0.71)***
TA to TB 2.72 (0.24)*** 3.22 (0.55)***
TB to TB 1.92 (0.22)*** 2.49 (0.59)***

Structural terms
Asymmetric edges NS 1.31 (0.40)**
GWID 10.18 (0.30)*** 10.44 (0.35)***
GWDSP −2.72 (0.07)*** −2.52 (0.09)***
GWESP 4.59 (0.29)*** 2.28 (0.36)***

Fit
Akaike information criteria 20,372 14,940 17,394 12,397

a*** <0.001; ** <0.01; * <0.05.
bE, east; NW, north-west; S, south; SW, south-west.
cSP, small producer; IN, industrial; TA, type A; TB, type B.
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needed to fit the models (Tables  5–7). These statistics better 
reflected the clustering of the observed networks and allowed 
to reproduce well the observed global network properties 
(Figures 1 and 2). This can be clearly observed in the goodness of 
fit diagnostics plot (Figure 2), where the value of all the observed 
network statistics (solid black line) is only well captured by the 
distribution of values of the simulated networks (underlying 
boxplots) generated with the final ERGM model (i.e., model with 
edges + attributes + network statistics).

DiscUssiOn

Exponential random graph models were used to represent, 
understand, and predict pig trade networks structures from 
different European production systems, with predominantly 
small-scale, extensive, or intensive pig producers. Such informa-
tion improved our understanding of the processes that govern 
the organization of pig trade and can further be used to better 
inform European policy makers on prevention and control 
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Table 6 | Parameter coefficients and fit for the four exponential random graph models (ergMs) of pig trade in an extensive production system 
(spain—extremadura).

covariates ergM coefficients (se)a

bernoulli (edges) edges + attributes edges + network statistics edges + attributes + network statistics

Edges −10.77 (0.02)*** −9.34 (0.04)*** −5.87 (0.26)*** −4.87 (0.55)***
Nodal attribute mixing

Housing systemb

In to in −1.23 (0.05)*** −0.74 (0.06)***
In to out −0.68 (0.04)*** −0.30 (0.05)***
Out to in −0.68 (0.04)*** −0.56 (0.05)***
Out to out Reference Reference

Type of farmc

MU to MU 2.44 (1.00)* 2.09 (2.47)
MU to FA 1.79 (0.58)** 1.84 (0.88)*
MU to FF −0.26 (0.27) −0.34 (0.28)
MU to FI −0.23 (0.38) −0.41 (0.46)
MU to SP NA NA
FA to MU 1.38 (0.71) 0.83 (1.17)
FA to FA 0.07 (0.58) −0.09 (0.82)
FA to FF −0.39 (0.13)** −0.45 (0.16)**
FA to FI 0.18 (0.13) 0.06 (0.18)
FA to SP −0.89 (0.71) −0.67 (0.87)
FF to MU 0.20 (0.22) 0.36 (0.32)
FF to FA −0.67 (0.14)*** −0.28 (0.18)
FF to FF −1.25 (0.05)*** −0.75 (0.06)***
FF to FI −0.72 (0.05)*** −0.33 (0.06)***
FF to SP −2.46 (0.26)*** −1.83 (0.28)***
FI to MU 0.47 (0.27) 0.28 (0.36)
FI to FA −0.02 (0.15) −0.05 (0.21)
FI to FF −0.59 (0.05)*** −0.50 (0.06)***
FI to FI Reference Reference
FI to SP −1.79 (0.27)*** −1.52 (0.31)***
SP to MU 0.15 (1.00) 0.96 (1.27)
SP to FA NA NA
SP to FF −2.46 (0.26)*** −1.37 (0.29)***
SP to FI −1.95 (0.29)*** −1.00 (0.30)***
SP to SP −2.12 (1.00)* −0.86 (1.39)

Structural terms
Isolates 1.08 (0.04)*** 0.90 (0.06)***
Asymmetric edges −1.99 (0.27)*** −2.28 (0.54)***
GWOD −2.59 (0.06)*** −2.55 (0.08)***
GWDSP −0.24 (0.02)*** −0.26 (0.03)***
GWESP 3.63 (0.27)*** 4.34 (0.24)***

Fit
Akaike information criteria 96,949 94,851 91,182 89,952

a*** <0.001; ** <0.01; * <0.05.
bIn, indoor; Out, outdoor.
cU, multipliers; FA, farrow farms; FF, farrow-to-finish farms; FI, finishers; SP, small producers.
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measures against swine diseases such as African swine fever, 
classical swine fever, or porcine reproductive and respiratory 
syndrome.

Rapidity of targeted action during the initial phase of an 
outbreak is fundamental to effectively curtail the transmission 
and minimize the disease burden. At this time, movements of 
animals have not been banned, and it is thus relevant to use 
“peace-time” movement networks to compare different control 
strategies. Until recently, variability in contact patterns was 
mostly approached in epidemic models by combining prob-
abilities of contact between premises according to their type 
of production and to the distance between premises (22, 23).  
These efforts may fail to capture the structural properties of 

livestock trade networks that will impact diseases dynamic 
as well as their spatial spread (24–26). The use of ERGMs to 
model pig trade networks allows capturing both network topol-
ogy and complex behaviors that depend on various premises 
characteristics. They may thus help to generate more realistic 
networks that may be used to study diseases spread, identify 
premises that could be targeted for risk-based surveillance, early 
detection, and rapid control of diseases, and compare different 
control strategies (27–29). Indeed, by simulating diseases spread 
on several simulated networks, we could identify some farms 
that are frequently and early infected and thus that should be 
targeted to provide timely and accurate indications of epidemic 
activity (30, 31). These networks could also be simulated to 
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Table 7 | Parameter coefficients and fit for the four exponential random graph models (ergMs) of pig trade in an intensive production system 
(France—côtes-d’armor).

covariates ergM coefficients (se)a

bernoulli (edges) edges + attributes edges + network statistics edges + attributes + network statistics

Edges −7.52 (0.02)*** −11.08 (0.28)*** −4.27 (0.15)*** −6.44 (0.46)***
Homophily

Housing system 1.11 (0.24)*** 0.72 (0.30)*
Nodal attribute mixing

Pig companyb

No. 1 to no. 1 1.56 (0.15)*** 1.07 (0.21)***
No. 1 to no. 2 −2.23 (0.72)** −2.69 (0.88)**
No. 2 to no. 2 2.93 (0.21)*** 2.78 (0.30)***
NC to NC Reference Reference

Type of farmc

MU to MU 3.72 (0.27)*** 1.53 (0.77)***
FA to MU 0.98 (1.01) −1.06 (2.93)
FF to MU −1.10 (0.71) −2.69 (1.65)
FI to MU −0.57 (0.59) −0.21 (1.24)
SP to MU NA NA
TR to MU NA NA
MU to FA 4.21 (0.22)*** 2.81 (0.37)***
FA to FA 0.92 (1.00) −0.12 (1.25)
FF to FA −0.14 (0.42) −1.09 (0.74)
FI to FA −1.12 (0.71) −2.03 (1.61)
SP to FA NA NA
TR to FA NA NA
MU to FF 4.64 (0.11)*** 3.08 (1.69)***
FA to FF 2.07 (0.17)*** 0.79 (0.26)**
FF to FF 0.90 (0.12)*** −0.11 (0.17)
FI to FF −1.28 (0.22)*** −1.50 (0.35)***
SP to FF NA NA
TR to FF 2.58 (0.76)*** 5.45 (0.27)***
MU to FI 2.17 (0.17)*** 0.53 (0.23)*
FA to FI 3.40 (0.12)*** 2.07 (0.17)***
FF to FI 2.57 (0.10)*** 1.66 (0.13)***
FI to FI Reference Reference
SP to FI NA NA
TR to FI 3.12 (0.51)*** 7.99 (0.26)***
MU to SP 3.30 (1.01)** 1.72 (1.41)
FA to SP NA NA
FF to SP NA NA
FI to SP 0.29 (1.00) 0.41 (1.42)
SP to SP 5.28 (1.02)*** 4.25 (2.12)*
TR to SP NA NA
MU to TR 7.13 (0.30)*** 4.65 (0.33)***
FA to TR 6.69 (0.32)*** 5.54 (0.28)***
FF to TR 7.05 (0.12)*** 5.91 (0.10)***
FI to TR 3.81 (0.31)*** 3.41 (0.39)***
SP to TR NA NA
TR to TR NA NA

Structural terms
Isolates 0.94 (0.08)*** 0.28 (0.10)**
Asymmetric edges −1.53 (0.15)*** −2.42 (0.29)***
GWOD −2.76 (0.07)*** −1.77 (0.13)***
GWDSP −0.27 (0.01)*** −0.18 (0.04)***
GWESP 2.51 (0.10)*** 0.85 (0.17)***

Fit
Akaike information criteria 53,087 40,233 48,891 39,649

a*** <0.001; ** <0.01; * <0.05.
bFor readability, not all values for selective for the pig companies are shown; NC, no company.
cMU, multipliers; FA, farrow farms; FF, farrow-to-finish farms; FI, finishers; SP, small producers; TR, trade operators.
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assess the effectiveness of compartmentalization or zoning, 
strategies that might be efficient to prevent disease’s spread 
without disrupting pig trade (32, 33).

Exponential random graph models developed in this study 
also improved our understanding of the drivers of pig trade 
in different production systems. Geographic mixing patterns 
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FigUre 1 | Observed and simulated trade networks based on the four exponential random graph models in an extensive pig production system 
(spain—extremadura—2011); nodes colored according to their type of production: MU, multipliers; Fa, farrowers; FF, farrow-to-finishers; Fi, 
finishers; sP, small producers.
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FigUre 2 | goodness of fit diagnosis for the four exponential random graph models in the intensive production system (France—2011); (a) “edges” 
model; (b) “edges + attributes” model; (c) “edges + network statistics” model; (D) “edges + attributes + network statistics” model.
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strongly structured pig trade organization in the small-scale 
production system, whereas belonging to the same company, 
or keeping pigs in the same housing system appeared to be 
key drivers of pig trade, in intensive and extensive produc-
tion systems, respectively. As expected, the specialization and 
organization of pig production also explained a part of trading 

behaviors, illustrated by the heterogeneous mixing between 
types of production. This mechanism was however less impor-
tant than the geographical location of premises and as impor-
tant as belonging to the same pig company in the small-scale 
and intensive production systems, respectively. Geographical 
proximity did not appear to play a role in the intensive system, 
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whereas it was significant in the small-scale producer system. 
Unfortunately, model degeneracy occurred when trying to 
include the distance between premises as a covariate in the 
extensive production system (Spain—Extremadura), prevent-
ing a conclusion to be drawn on the impact of this covariate in 
this production system.

Finally, this study revealed that the inclusion of nodal 
attributes was necessary to represent the mixing patterns, but it 
was not sufficient to reproduce the great clustering observed in 
the pig trade networks, which could only be represented when 
adding additional statistics on local network configurations. 
These statistics reveal some features of these networks, such 
as the propensity of trade to have a short path length (nega-
tive coefficient for the degree distribution terms). Some social 
behavior, economic factors, or unobserved covariates, which 
may differ between countries, may also have driven the choices 
of farmers for trading partners (e.g., pig prices, road distribu-
tion, traditions, or cultural practices, etc.). This may explain the 
increased clustering as represented by the positive coefficient 
for the gwesp term.

Until recently, problems of degeneracy and computational 
intractability for large network sizes limited the use of ERGMs 
in epidemiological modeling (11, 34). Indeed, ERGMs have been 
mainly used on small networks to understand the factors driv-
ing human social behaviors (35, 36) and have sometimes been 
applied on disease transmission modeling (37). Ortiz-Pelaez 
et  al. (38) were the first to introduce ERGMs in preventive 
veterinary medicine, using this method to understand the fac-
tors driving livestock trade in a small network of villages in 
Ethiopia. In the present study, the use of new parameters that 
limit degeneracy problems (12) allowed us to obtain statistical 
models with a good fit to the large-size observed networks. 
Isolates always depends on the spatial and temporal “frontiers” 
that are decided and on the exchange with farms outside these 
“frontiers.” For Extremadura, most of movements were inside 
the region (i.e., from the 9,544 isolates, 174 of them sent pigs 
to farms outside Extremadura and 73 received pigs from farms 
outside Extremadura); therefore, most of the isolates (97.4%) 
can be considered as true isolates during the study period (i.e., 
not movements within the region and not trading with other 
regions). For Côtes-d’Armor, there was a lot of exchange with 
other departments, and only 47% of the 489 isolates can be 
considered as true isolates (i.e., 57 sent pigs to farms outside 
Côtes-d’Armor and 202 received pigs from farms outside the 
region). Therefore, the scale to simulate networks for disease 
spread models should consider areas where almost all move-
ments are inside these areas. For Bulgaria, the entire country was 
evaluated, and all were considered to be true isolates; however, 
it was not feasible to include these isolates in the ERGM due to 
memory limits, and therefore the model produced here might 
not fully represent the true pig movement network in Bulgaria. 
Further studies should be conducted to validate this network 
once computational difficulties to fit ERGM’s to large networks 
are solved.

Since implementation of Regulation (EC) no 1760/2000 of 
the European parliament, recording of livestock movements 
between premises is mandatory, making data on pig trade 

movements available, at least in the main producing countries 
in the EU. However, there are no standards on the definition of 
different types of premises (e.g., backyard) or on other premises 
attributes. The scales of the networks considered in this study 
were also different, being the national level for Bulgaria and the 
regional level for France and Spain, to better study very specific 
production systems. Therefore, though the analyses and results 
in the different settings intended to illustrate the applicability 
and usefulness of the approach in the predominant swine pro-
duction systems in the EU, mechanisms and rules that govern 
trade organization in the different study populations are not 
fully comparable.

Several studies showed that, in addition to the topology of 
a contact network, heterogeneity in the weight of edges and 
temporal network dynamics had a strong influence on diseases 
spreading (39, 40). Tools to model such networks are still under 
development, and their application is currently limited by the size 
of the networks modeled (41–43). In the next few years, these 
methods could be promising tools to improve our representation 
of real-world livestock trade networks.

cOnclUsiOn

This study is one of the very first to illustrate the usefulness of 
ERGMs to understand and simulate livestock trade networks 
under different European production systems, specifically 
small-scale, extensive, and intensive swine production systems. 
Depending on the production system, some premises charac-
teristics, such as their geographical location, type of production, 
belonging to a pig company or housing system, were key drivers 
of pig trade, but adding statistics on local network configurations 
was necessary to accurately capture the great clustering observed 
in all pig trade networks. These models offer a framework to 
simulate realistic pig trade networks that may be included in 
epidemic models to compare different control strategies against 
major swine diseases such as African swine fever, classical swine 
fever, or porcine reproductive and respiratory syndrome.
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Disease managers face many challenges when deciding on the most effective control 
strategy to manage an outbreak of foot-and-mouth disease (FMD). Decisions have to 
be made under conditions of uncertainty and where the situation is continually evolving. 
In addition, resources for control are often limited. A modeling study was carried out to 
identify characteristics measurable during the early phase of a FMD outbreak that might 
be useful as predictors of the total number of infected places, outbreak duration, and 
the total area under control (AUC). The study involved two modeling platforms in two 
countries (Australia and New Zealand) and encompassed a large number of incursion 
scenarios. Linear regression, classification and regression tree, and boosted regression 
tree analyses were used to quantify the predictive value of a set of parameters on three 
outcome variables of interest: the total number of infected places, outbreak duration, 
and the total AUC. The number of infected premises (IPs), number of pending culls, 
AUC, estimated dissemination ratio, and cattle density around the index herd at days 
7, 14, and 21 following first detection were associated with each of the outcome 
variables. Regression models for the size of the AUC had the highest predictive value 
(R2 = 0.51–0.9) followed by the number of IPs (R2 = 0.3–0.75) and outbreak duration 
(R2 = 0.28–0.57). Predictability improved at later time points in the outbreak. Predictive 
regression models using various cut-points at day 14 to define small and large outbreaks 
had positive predictive values of 0.85–0.98 and negative predictive values of 0.52–0.91, 
with 79–97% of outbreaks correctly classified. On the strict assumption that each of the 
simulation models used in this study provide a realistic indication of the spread of FMD 
in animal populations. Our conclusion is that relatively simple metrics available early in a 
control program can be used to indicate the likely magnitude of an FMD outbreak under 
Australian and New Zealand conditions.
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inTrODUcTiOn

Disease managers are faced with a number of challenges when 
deciding on the most effective disease control strategy to imple-
ment in an exotic animal disease outbreak. Foot-and-mouth 
disease (FMD) is particularly challenging given its wide range 
of host species, potential for rapid spread, and serious socio-
economic consequences. For countries such as Australia and 
New Zealand, FMD represents the most serious threat to their 
livestock industries. A recent study estimated the 2013 value of 
total direct economic loses over 10 years for a large multi-state 
outbreak of FMD in Australia at USD 47 billion (1). Animal prod-
ucts constitute a significant proportion of New Zealand exports, 
and the provisional results of recent modeling of the economic 
impacts of a large FMD outbreak in New Zealand have estimated 
net 2014 GDP losses over an 8-year period to be between USD 
13 and 17 billion (2). Consequently, Australia and New Zealand 
invest considerable resources in preparedness and planning for 
emergency animal disease outbreaks, including maintaining vac-
cine banks for FMD. Despite recent changes to contingency plans 
to recognize that vaccination could be an important component 
of an FMD control program, it is unclear how or when vaccina-
tion should be used, and if it is used, how vaccinated animals 
should be managed once an outbreak has been resolved.

Modeling studies carried out in Australia (3–5) and overseas 
(6–8) have shown that vaccination is effective in reducing the 
duration and/or size of FMD outbreaks in  situations where 
disease is widespread, where there is a high rate of spread or the 
resources for stamping out are limited. Reports suggest that early 
vaccination may have been beneficial in eradicating the disease 
earlier than was the case with recent FMD outbreaks in Korea (9) 
and Japan (10). Thus, vaccination is increasingly being recognized 
as a potential useful tool to assist in containing and eradicating 
FMD outbreaks in countries where the disease is not endemic. 
However, while vaccination may contribute to earlier eradication 
of the disease, it will be associated with additional costs – keeping 
vaccinated animals in the population will delay the period until 
FMD-free status is regained under current World Organization 
for Animal Health guidelines (11) and add additional complexity 
to post-outbreak surveillance programs. These issues are of par-
ticular concern for countries with significant exports of livestock 
and livestock products because, under current conditions, the use 
of vaccination and the presence of FMD vaccinated animals in the 
population could be expected to cause significant market access 
difficulties.

From a planning and management perspective, it would be use-
ful to have access to decision support tools that take into account 
the information that would be available to disease managers early 
in an outbreak to provide an indication of the potential severity 
of the outbreak that could ensue. This would enable decisions on 
specific measures like vaccination to be made at a time when they 
are likely to be most effective.

McLaws and Ribble (12) documented the relationship between 
the interval (in days) from incursion to detection and epidemic 
size [expressed as the total number of infected premises (IPs)] 
for 24 FMD outbreaks in non-endemic countries that occurred 
between 1992 and 2003. They did not find a direct relationship 

between time to detection and total number of IPs or total ani-
mals culled for disease control, concluding that the movement of 
animals through markets was the most critical factor contribut-
ing to large outbreaks. Sarandopoulos (13) conducted a review 
of 125 FMD epidemics in non-endemic temperate countries 
reported to the OIE between January 1, 2005 and December 31, 
2013 to identify associations between epidemic size/duration and 
early outbreak explanatory variables. The explanatory variables 
assessed in this study included susceptible animal densities, 
weather conditions at the time of detection, the number of IPs 
detected in the first 7 days, and the size of the area under control 
(AUC) at 7 days (based on a convex hull calculation). In total, ten 
candidate explanatory variables were tested for their association 
with epidemic size and duration using a zero-inflated negative 
binomial regression model. Cattle density, pig density, and the 
number of IPs at day 7 post-detection were all positively associ-
ated with epidemic size while increased average temperature in 
the month of detection was associated with “smaller” outbreaks.

Using data from the outbreak of FMD that occurred in the 
UK in 2001, first fortnight incidence (FFI), i.e., the cumula-
tive number of new FMD-IPs found in the first 2 weeks of the 
response, was found to be a useful predictor of the size and dura-
tion of outbreaks at the regional and national scale (14, 15). The 
larger the number of detected herds within the first 2 weeks, the 
higher the risk of the large outbreak. Halasa et al. (16) extended 
the approach of Hutber et  al. to incorporate the first fortnight 
spatial spread (FFS) as well as FFI (which they renamed first 
fortnight outbreaks – FFO, since a true incidence rate is not 
actually calculated) – in a simple decision tool using simulated 
FMD outbreaks. In terms of outcome, in addition to the number 
of IPs and outbreak duration, they also considered the size of the 
AUC and costs. Halasa and colleagues found good correlations 
between FFO and FFS and all of the outcome variables, indicat-
ing that both FFO and FFS have the potential as predictors of 
epidemic outcomes. They also found that the type of index herd 
was a significant predictor of epidemic outcome.

The combined work of Hutber et al. (15), Halasa et al. (16), and 
Sarandopoulos (13) indicates that information available early in 
an outbreak can be used to make inferences about the potential 
severity of an FMD outbreak and could perhaps be incorporated 
into decision support tools. However, one of the concerns is that 
FFO and FFS are quite simple parameters that are likely to be 
sensitive to outbreak management response, in particular the 
effectiveness of the surveillance/reporting system. For example, 
while a low FFO may be indicative of a limited spread and small 
number of infected places, it could also be indicative of the 
adequacy of resources to undertake surveillance and tracing. 
In addition, based on the work of McLaws and Ribble (12) and 
Sarandopoulos (13), other factors such as animal densities at 
the location of the index premises and involvement of animal 
markets may also be important.

With this background, this study was undertaken to identify 
characteristics measurable during the early phase of a FMD 
outbreak that might be useful as predictors of the severity of an 
FMD epidemic (expressed as the total number of infected places, 
outbreak duration, and the total AUC). The study also aimed 
to assess how robust findings were across different incursion 
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scenarios and between different production and management 
systems. A key point is that in this study simulation models of 
FMD were used to generate a series of outbreaks listing incident 
infected places over time and geographical space. Regression 
approaches were then used to identify characteristics measurable 
during the early phase of a simulated outbreak that might be use-
ful as predictors of the total number of infected places, outbreak 
duration, and the total AUC predicted by each simulation model. 
The inferences drawn from this study are dependent on the strict 
assumption that each of the simulation models used in this study 
provide a realistic indication of the spread of FMD in animal 
populations.

MaTerials anD MeThODs

A modeling study was undertaken to test a range of explanatory 
variables as predictors of the total number of infected places, 
outbreak duration, and the total AUC in an FMD outbreak. 
The study involved two countries (Australia and New Zealand) 
and two modeling platforms. Linear regression, classification 
and regression tree (CART), and boosted regression tree (BRT) 
analyses were used to assess the association between putative 
explanatory variables and the three outcome variables.

Disease Models
The Australian Animal Disease Spread Model [AADIS (17, 18)] 
is a hybrid model that simulates the spread and control of FMD 
in livestock populations at a national scale. AADIS uses the herd 
as the epidemiological unit of interest and models the spread of 
disease both within and between herds. Spread of disease within 
a herd is modeled through a deterministic equation-based model, 
and between-herd spread is modeled with a spatially explicit 
stochastic agent-based model. There are five discrete spread 
pathways in the between-herd model: direct animal movements, 
local spread (infection of farms within close geographical prox-
imity by unspecified means), indirect contact (via contaminated 
equipment, people, or animal products), animal movements via 
saleyards, and windborne spread.

The model incorporates the attributes and spatial locations of 
individual farms, saleyards, weather stations, local government 
areas, and various other features of the environment. For FMD 
control, AADIS is configured to support the range of mitigation 
strategies described in Australia’s contingency plans for FMD 
(19) with the effectiveness of these measures dependent on avail-
able resources (4).

InterSpread Plus [ISP (20)] is a spatial and stochastic simula-
tion model of infectious disease in domestic animal populations. 
ISP is a state-transition model meaning that the epidemiological 
units of interest (farm locations) exist in either the susceptible, 
infected, or not-at-risk state at any given time. Similar to AADIS, 
ISP uses a series of user-defined parameters to define the spread 
of an infectious agent from one farm location to another through 
local spread, windborne spread, and direct and indirect contacts. 
Updated movement parameters are informed by findings from 
recent livestock movement studies in New Zealand (21, 22). 
Control measures, such as depopulation, vaccination, and move-
ment restrictions, in addition to varying disease surveillance 

intensity can be simulated, with the ability to carry out each 
of these activities subject to user-defined resource constraints, 
similar to the AADIS model.

study Design
Epidemics of FMD in Australia and New Zealand were simulated 
using the AADIS and ISP models, respectively. A total of 10,000 
FMD outbreak simulations were carried out using each model. 
For each simulation, FMD was introduced into a single livestock 
farm selected at random within assessed high risk areas for 
FMD. For Australia, the study area was the whole country, with 
initial seeding of infection confined to south eastern Australia 
(Figure  1A). South eastern Australia comprises the states of 
Victoria and Tasmania and parts of New South Wales and South 
Australia. This area contains a mix of farming enterprises. It is 
the center of Australia’s dairy production and is considered a 
higher risk area for introduction, establishment, and spread of 
FMD (23).

The study area for New Zealand comprised the whole of main-
land New Zealand, incorporating the North and South Islands. 
Initial seeding of infection was confined to the Auckland mega-
region (Auckland and its three neighboring regional council 
areas, Figure 1B) as it is assumed that the most likely introduc-
tion scenario for FMD into New Zealand would involve people 
or contaminated products seeding infection into livestock in this 
area. The Auckland mega-region has the largest international air 
and sea ports. Furthermore, yachts visiting the country are more 
likely to make landfall in the north.

The following assumptions were used for the Australian and 
New Zealand FMD models. The time from incursion to first 
detection was probabilistically determined based on farming 
systems and expected disease reporting rates in the two coun-
tries. For Australia, data on the daily probability of detection and 
the delay from incursion to first detection were sourced from 
Martin et  al. (24). For New Zealand, data on the daily prob-
ability of detection were sourced from Murray and Sanson (25). 
Outbreak control was based on application of animal movement 
controls, enhanced surveillance, tracing, and stamping out (i.e., 
destruction, disposal, and decontamination) on detected IPs. 
These were applied according to each country’s FMD response 
plan (19, 26). Resources for disease control were based on each 
country’s estimates of expected resources (5). Each model run 
ended when disease was eradicated or after 1  year, whichever 
occurred first.

explanatory Variables
Three time points (days 7, 14, and 21 after first detection) were 
selected, and candidate explanatory variables based on data 
that would be available to disease managers at these time points 
were collated: (1) outbreak location: farm and animal densities 
around the site of first detection; (2) the involvement of markets/
saleyards; (3) measures of the geographic distribution of IPs, as 
measured by the AUC, and the number of discrete disease clus-
ters; (4) measures of temporal spread, as measured by the number 
of IPs reported, and the number of traced premises identified; 
(5) the rate of disease spread, as measured using the estimated 
dissemination ratio (EDR), calculated using the methods 
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FigUre 1 | Maps of (a) australia and (B) new Zealand showing the areas (shaded), in which FMD outbreaks were initiated. NSW, New South Wales; 
VIC, Victoria; TAS, Tasmania; SA, South Australia; WA, Western Australia; NT, Northern Territory; QLD, Queensland.
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TaBle 1 | explanatory variables tested.

Metric/parameter Details

Location characteristics – farm 
density, animal density (cattle, sheep, 
pig), human density at first detected 
farm site

Calculated for 5 km × 5 km cell 
centered on the index farm

Markets/saleyards involvement Any IP infection(s) via saleyard 
pathway recorded as a 0/1 for days 7, 
14, and 21

Size of area under control (AUC) Based on a dissolved polygon 
constructed around IPs using a 10 km 
buffer at days 7, 14, and 21

Number of clusters The number of non-contiguous 
polygons using a 10 km radius buffer 
around IPs at days 7, 14, and 21

Number of IPs The number of IPs reported at days 
7, 14, 21

Number of traced premises The cumulative number of backward 
and forward traced premises at days 
7, 14, and 21

Estimated dissemination ratio (EDR) Four-day EDR calculated at days 14 
and 21

Resources Number of premises awaiting 
destruction at days 7, 14, and 21
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described by Miller (27) and Morris et al. (28); and (6) adequacy 
of resources available for control. A description of each of the 
candidate explanatory variables is provided in Table 1.

For each simulated outbreak, we defined three outcome vari-
ables: the total number of IPs, outbreak duration (defined as the 
number of days from first detection until the date on which the 
last IP was culled), and the total AUC (in km2). Modeling results 
for each country were analyzed separately.

statistical Methods
Linear Regression
The Stata/IC statistical package (29) was used for all linear regres-
sion analyses. Datasets were imported into Stata and the three 
outcome variables and each of the explanatory variables checked 
for normality and log transformed, where necessary, to minimize 
problems due to non-normality and heteroscedasticity of model 
residuals (30). Scatterplots of each of the log transformed outcome 
variables and each of the log transformed candidate explanatory 
variables were made and the association between variable pairs 
assessed by superimposing a Lowess-smoothed curve on each 
plot. After log transformation, all relationships were linear or 
near linear. Subsequent analyses used two modeling techniques: 
(1) linear regression modeling using robust estimates to account 
for non-normally distributed dependent variables (31) and (2) 
negative binomial regression. It was considered appropriate to 
use linear regression techniques because the methodology is 
robust to violations of the requirement for normally distributed 
dependent variables if the number of observations is large (32, 
33). The outputs of the two regression models were similar, so 
only the results of the linear regressions are presented. The linear 
regression was preferred because a small proportion of values had 
excessively large residuals in the negative binomial models.

Candidate explanatory variables were initially tested for 
unconditional associations with each of the three outcome vari-
ables. Explanatory variables that were associated with the outcome 
variables with P < 0.20 were selected for inclusion in the initial 
multiple regression models. The initial multiple regression model 
was then reduced step-wise by removing the explanatory vari-
able with the highest PWald value. This process was repeated until 
all remaining explanatory variables had PWald  <  0.05. After the 
most parsimonious model was developed, all excluded explana-
tory variables were reassessed by adding them individually back 
into the model. All biologically plausible, first-order interaction 
terms were tested, one at a time and retained in the model if the 
PWald < 0.05 (no interaction terms were retained). The extent of 
confounding was assessed using the variance inflation factor. 
No significant confounding was observed in the final models 
presented.

We acknowledge that the outcome variables measured on a 
given EDI day (i.e., days 7, 14, and 21 post-detection), which were 
used as explanatory variables in each model were correlated with 
their corresponding outcome variable. To investigate this issue 
further, alternative models were developed where the outcome 
variable was expressed as (for example) the total number of 
IPs − IPs identified up to day 14. Using this approach, we identi-
fied no substantial differences in the final set of explanatory 
variables included in the model and the direction and magnitude 
of the adjusted measure of association between each explanatory 
variable and the outcome were essentially the same. For this rea-
son, and also to allow our findings to be compared with previous 
studies (16), we elected to use the total number of infected places, 
total outbreak duration, and the total AUC as outcome variables 
in each of the models presented.

While the explanatory variables that remained in each of 
the Australian and New Zealand regression models differed, 
those with the most explanatory power (that is, those with the 
highest beta weight values) were present in both of the country 
models. For parsimony, a simpler regression model was built 
using only the explanatory variables that were common to both 
the Australian and New Zealand models with little or no loss of 
explanatory power (see Results).

For the linear regression models, the R2 value is reported 
as a measure of the goodness of fit of the model. Based on the 
regression coefficients estimated for the explanatory variables 
included in each of the three regression models for each country, 
predictions of the total number of infected places, outbreak dura-
tion, and the total AUC were computed. Several cutpoints (e.g., 
more or less than 20 IPs) were then arbitrarily selected to divide 
the model iterations into large and small outbreaks. Two by two 
contingency tables were constructed to compare the regression 
model estimates with the actual values of the (classified) outcome 
variables. These data were then used to calculate negative and 
positive predictive values for the day 14 model estimates using 
standard techniques (34).

Regression Trees
Acknowledging the possibility of non-linear relationships 
between the explanatory variables and the three outcome vari-
ables used in this study, we used CART and BRT analyses as an 
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TaBle 2 | Descriptive statistics of explanatory variables from the aaDis model of foot-and-mouth disease.

Variable n Mean (sD) Median (Q1, Q3) Min, max

Day 7
IPs 6790 4 (3) 3 (2–6) 1, 24
AUC (km2) 6790 734 (579) 459 (344–927) 300, 4242
Clusters 6790 2 (2) 1 (1–3) 1, 14
IPs per km 6790 0 (0) 0 (0–0) 0, 0
Traces 6790 3 (3) 2 (0–4) 0, 30

Day 14
IPs 6790 9 (10) 5 (3–10) 1, 82
EDR 6790 0.55 (0.89) 0 (0–1) 0, 15
AUC (km2) 6790 1168 (1282) 651 (357–1394) 300, 10,980
Clusters 6790 3 (3) 2 (1–4) 1, 28
IPs per km 6790 0 (0) 0 (0–0) 0, 0
Traces 6790 6 (7) 3 (1–8) 0, 97

Day 21
IPs 6790 12 (16) 5 (3–13) 1, 148
EDR 6790 0.42 (0.77) 0 (0–0.78) 0, 9
AUC (km2) 6790 1297 (1564) 667 (364–1543) 300, 16,270
Clusters 6790 3 (4) 2 (1–4) 1, 34
IPs per km 6790 0 (0) 0 (0–0) 0, 0
Traces 6790 8 (12) 4 (1–9) 0, 147

Others
Cattle densitya 6790 49 (83) 28 (9–62) 0, 1644
Sheep densityb 6790 120 (131) 82 (18–176) 0, 1615
Pig densityc 6790 32 (100) 0 (0–13) 0, 946
Human densityd 6790 23 (135) 3 (1–8) 0, 3725

AUC, area under control; EDR, estimated dissemination ratio.
aCattle density: number of cattle/km2.
bSheep density: number of sheep/km2.
cPig density: number of pigs/km2.
dHuman density: number of humans/km2.
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alternative approach for identifying associations in these data. 
CART analysis involves recursively partitioning an outcome 
variable into two parts based on the value of a given predictor 
variable that best splits the data. A complete CART returns a 
“tree” with multiple splits, depicted as branches. Predictor 
variables and their split points are chosen to optimize a given 
goodness-of-fit criterion, such as minimizing the residual sum 
of squares (for continuous data). CART analysis is mathemati-
cally identical to some multivariable regression techniques, but 
presents the results in a way that is easily understood by non-
technical audiences.

In contrast to CART, a BRT analysis generates a large number 
of regression trees based on random samples of the data (35). 
A BRT model returns a list of predictor variables used to create 
the splits in each of the trees computed using the randomly sam-
pled data. A relative weight is then calculated for each predictor 
variable by computing the average number of times the variable 
was chosen for splitting weighted by the squared improvement 
to the model from each split and scaled to sum to 100. Larger 
weights indicate a stronger influence between an explanatory 
variable and the outcome. The BRT analysis requires the ana-
lyst to specify the learning rate and tree complexity. Learning 
rate controls how much each tree contributes to the model as 
it develops. In general, smaller learning rates result in better 
predictions than larger learning rates. Tree complexity sets the 
number of interactions fitted in the model: a tree complexity of 

two allows for two-way interactions, three allows for three-way 
interactions, and so on.

Classification and regression tree analyses were carried out 
for each of the three outcome variables for the Australian and 
New Zealand data using the rpart package (36) implemented in 
R version 3.3.1 (37). The BRT analyses were carried out using the 
dismo package (38) in R.

resUlTs

Of the 10,000 outbreaks that were simulated, FMD did not 
establish (there was no spread from the seed herd) in 3210 
simulations in Australia and 1180 simulations in New Zealand. 
These simulations were excluded from subsequent analyses. 
Descriptive statistics of the simulated outbreaks and explanatory 
variables for Australia and New Zealand are shown in Tables 2 
and 3, respectively. Descriptive statistics of the outcome variables 
for the AADIS (Australia) and ISP (New Zealand) models (that 
is, the total number of infected places, outbreak duration and the 
total AUC) are shown in Table 4.

For the New Zealand (ISP) simulations, the area used for seed-
ing FMD outbreaks had a substantially higher density of cattle 
(median of 152 head/km2) than the areas where FMD was seeded 
for the Australian (AADIS) simulations (median of 28 head/km2).

Compared with the FMD outbreaks simulated by AADIS, ISP 
simulated relatively high numbers of IPs during the early phase of 
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TaBle 4 | Descriptive statistics of the three outcome variables from the 
aaDis model of FMD in australia and the interspread Plus model of FMD 
in new Zealand.

Model – outcome 
variable

n Mean  
(sD)

Median  
(Q1, Q3)

Min, max

aaDis
Total number of IPs 6790 22 (51) 6 (3–16) 2, 844
Outbreak duration 6790 53 (38) 43 (30–61) 16, 365
Area under control 6790 1523 (2136) 680 (368–1669) 300, 29,953

interspread Plus
Total number of IPs 8784 32 (46) 15 (5–39) 2, 424
Outbreak duration 8784 52 (28) 43 (31–64) 21, 263
Area under control 8784 1542 (1220) 1176 (636–2110) 316, 12,815

TaBle 3 | Descriptive statistics of explanatory variables from the interspread Plus model of foot-and-mouth disease.

Variable n Mean (sD) Median (Q1, Q3) Min, max

Day 7
IPs 8784 9 (10) 6 (3–12) 1, 141
AUC (km2) 8784 934 (623) 739 (452–1216) 314, 5856
Clusters 8784 2 (1) 1 (1–2) 1, 10
IPs per km 8784 0 (0) 0 (0–0) 0, 0
Traces 8784 12 (12) 8 (4–16) 0, 113

Day 14
IPs 8784 15 (18) 9 (4–20) 1, 218
EDR 8784 0.69 (0.93) 0.5 (0–1) 0, 19
AUC (km2) 8784 1169 (830) 928 (576–1553) 314, 7368
Clusters 8784 2 (1) 1 (1–2) 1, 10
IPs per km 8784 0 (0) 0 (0–0) 0, 0
Traces 8784 16 (16) 11 (5–22) 0, 148

Day 21
IPs 8784 20 (23) 11 (5–25) 1, 255
EDR 8784 0.62 (1.05) 0.2 (0–1.0) 0, 20
AUC (km2) 8784 1287 (930) 1021 (617–1716) 314, 8310
Clusters 8784 2 (1) 1 (1–2) 1, 9
IPs per km 8784 0 (0) 0 (0–0) 0, 0
Traces 8784 18 (18) 12 (5–24) 0, 165

Others
Cattle densitya 8784 166 (84) 152 (104–217) 0, 570
Sheep densityb 8784 86 (79) 70 (24–122) 0, 893
Pig densityc 8784 5 (24) 0 (0–1) 0, 349
Human densityd 8784 891 (2162) 273 (153–653) 4, 24,048

AUC, area under control (km2); EDR, estimated dissemination ratio.
aCattle density: number of cattle/km2.
bSheep density: number of sheep/km2.
cPig density: number of pigs/km2.
dHuman density: number of humans/km2.
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each epidemic. The median number of IPs on days 7, 14, and 21 
for ISP was 6, 9, and 11 (respectively) compared with 3, 5, and 5 
for AADIS (Tables 2 and 3). Similarly, the number of traces gen-
erated by ISP in the early phase of each epidemic was higher than 
those generated by AADIS. The median number of traces gener-
ated by days 7, 14, and 21 for ISP was 8, 11, and 12 (respectively) 
compared with 2, 3, and 4 for AADIS. There are three possible 
explanations for these findings: (1) differences in characteristics 
of the countries and/or study regions and incursion scenarios 
used for each model; (2) differences in model parameterization, 
resulting in different probabilities of farm-to-farm transmission 

of virus; and (3) differences in model design (in ISP the prob-
abilities of transmission vary according to farm type but not farm 
size whereas in AADIS both farm size and farm type influence 
probabilities of transmission).

Outbreak durations for the two models were similar: a 
median of 43 (minimum 16, maximum 365) days for AADIS 
compared with a median of 43 (minimum 21, maximum 
263) for ISP. The size of the AUC was substantially lower for 
the AADIS simulations. The median AUC for the AADIS 
simulations was 680  km2 (minimum 300, maximum 29,953) 
compared with 1176 km2 (minimum 316, maximum 12,815) 
for ISP.

linear regression
Regression coefficients and their standard errors for the linear 
regression models of the total number of infected places, 
outbreak duration, and the total AUC for the AADIS and ISP 
models of FMD are provided in Table 5. Table 6 provides details 
of the goodness of fit (R2) for each of the linear regression models 
developed for Australia and New Zealand. A consistent pattern 
was observed with the goodness of fit of the models improving 
from days 7 to 14 to 21 for all outcome variables for both the 
Australian and New Zealand data sets.

Positive and negative predictive values for “large” or “small” 
outbreaks (for the total number of IPs and total AUC) or “short” 
or “long” outbreaks (for outbreak duration) for AADIS and ISP 
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TaBle 5 | regression coefficients and their standard errors for the multivariable linear regression models of first 14-day predictors of area under 
control, the total number of infected places, and outbreak duration for the aaDis and interspread Plus models of FMD.

explanatory variable coefficient (se) t P-value 95% ci

aaDis – total number of iPs
Intercept −0.02 (0.019) −0.80 0.421 −0.05 to 0.02
Number of IPs at day 14 1.27 (0.008) 164.51 <0.001 1.25 to 1.28
Pending culls at day 14 0.18 (0.017) 10.64 <0.001 0.15 to 0.22

aaDis – outbreak duration
Intercept 13.87 (0.480) 28.88 <0.001 12.92 to 14.81
Area under control day 14 0.39 (0.008) 51.72 <0.001 0.38 to 0.40
EDR day 14 0.12 (0.009) 14.31 <0.001 0.11 to 0.14
IP density day 14 18.45 (0.721) 25.60 <0.001 17.04 to 19.86

First detected farm type
 Beef intensive Reference
 Dairy −0.09 (0.021) −4.16 <0.001 −0.13 to −0.05
 Feedlot −0.20 (0.020) −9.98 <0.001 −0.23 to −0.16
 Mixed beef-sheep 0.11 (0.018) 6.24 <0.001 0.08 to 0.14
 Pigs (large) −0.50 (0.020) −25.28 <0.001 −0.54 to −0.46
 Pigs (small) −0.27 (0.017) −15.66 <0.001 −0.30 to −0.24
 Sheep 0.25 (0.019) 12.73 <0.001 0.21 to 0.28
 Smallholder −0.26 (0.048) −5.44 <0.001 −0.35 to −0.17

aaDis – area under control
Intercept −0.57 (0.023) −25.09 <0.001 −0.62 to 10.52
Area under control day 14 1.10 (0.003) 313.84 <0.001 1.09 to 1.11

interspread Plus – total number of iPs
Intercept 0.19 (0.016) 11.63 <0.001 0.15 to 0.22
Number of IPs at day 14 1.11 (0.006) 174.93 <0.001 1.10 to 1.12
Pending culls at day 14 0.13 (0.010) 13.22 <0.001 0.11 to 0.15

interspread Plus – outbreak duration
Intercept 7.07 (0.173) 40.76 <0.001 6.73 to 7.41
Area under control day 14 0.29 (0.005) 55.24 <0.001 0.28 to 0.30
EDR day 14 0.21 (0.007) 29.62 <0.001 0.19 to 0.22
IP density day 14 7.82 (0.241) 32.36 <0.001 7.34 to 8.29

First detected farm type
 Dairy dry Reference
 Lifestyle −0.003 (0.015) −0.25 0.800 −0.03 to 0.03
 Beef-sheep-mixed −0.042 (0.016) −2.63 0.009 −0.07 to −0.10
 Dairy milking −0.084 (0.016) −5.33 <0.001 −0.12 to −0.05
 Pig breeding −0.138 (0.087) −1.59 0.111 −0.31 to 0.03
 Pig fattening 0.232 (0.271) 0.86 0.392 −0.30 to 0.76

interspread Plus – area under control
Intercept −0.28 (0.027) −10.45 <0.001 −0.33 to −0.23
Area under control day 14 1.07 (0.004) 275.96 <0.001 1.06 to 1.08

EDR, estimated dissemination ratio.

TaBle 6 | goodness-of-fit statistics (R2) for each of the linear regression 
models for the total number of infected places, outbreak duration, and 
area under control using days 7, 14, and 21 explanatory variables for the 
aaDis and interspread Plus models of FMD.

Model – outcome Day 7 Day 14 Day 21

aaDis
Total number of IPs 0.84 0.92 0.96
Outbreak duration 0.61 0.71 0.77
Area under control 0.77 0.96 0.98

interspread Plus
Total number of IPs 0.73 0.85 0.91
Outbreak duration 0.43 0.58 0.67
Area under control 0.73 0.85 0.91
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are shown in Table  7. The proportions of correctly classified 
outbreaks ranged from 0.88 to 0.97 for AADIS and 0.79 to 0.92 
for ISP.

regression Trees
Classification and regression tree analyses were carried out to 
identify factors associated with the total number of IPs, outbreak 
duration, and total AUC. Similar to the approach used for the 
linear regression analyses, three sets of explanatory variables were 
used: those at day 7 post-detection, day 14 post-detection, and day 
21 post-detection. Using these three sets of explanatory variables 
with each of the three outcome variables and both the Australian 
and New Zealand data sets resulted in 18 CART analyses in total. 
BRT models using the same explanatory variables and the same 
outcome variables were developed using the Australian and New 
Zealand data.

The CART for the predicted total number of IPs using day 14 
explanatory variables for the Australian and New Zealand data 
are shown in Figures 2 and 3, respectively. For both the AADIS 
and ISP models, the number of IPs at day 14 had the greatest 
influence on the total number IPs. For the AADIS model, in 
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TaBle 7 | Positive and negative predictive values and the proportion of 
outbreaks correctly classified as large or small (or short or long) using 
the day 14 linear regression model for the aaDis and interspread Plus 
simulated FMD outbreaks.

Model – outcome cut pointa Predictive value correctly 
classified

Positive negative

aaDis
Total number of IPs 20 0.97 0.83 0.96
Total number of IPs 54 0.97 0.80 0.95
Outbreak duration 54 0.94 0.68 0.88
Outbreak duration 90 0.95 0.62 0.94
Area under control 1000 0.98 0.91 0.96
Area under control 3000 0.98 0.88 0.97

interspread Plus
Total number of IPs 20 0.89 0.87 0.88
Total number of IPs 54 0.94 0.77 0.92
Outbreak duration 54 0.85 0.64 0.79
Outbreak duration 90 0.92 0.52 0.91
Area under control 1000 0.94 0.87 0.85
Area under control 3000 0.94 0.79 0.92

aUsed to classify outbreak as small or large.
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addition to the number of IPs identified at day 14, the total 
AUC at day 14 and cattle density influenced the total number 
of IPs.

The five most influential explanatory variables (and their 
weights) from the BRT models for the total number of IPs, out-
break duration, and the total AUC for the Australian and New 
Zealand data are listed in Table  8. Consistent with the CART 
analyses, for both AADIS and ISP, the number of IPs identified at 
day 14 was associated with each of the three outcome variables. 
While for ISP the number of IPs identified at day 14 had the 
highest weight for each of the three outcomes, the total number 
of outbreak clusters identified at day 14 had the greatest weight as 
a predictor of the total AUC for AADIS. For AADIS, the density 
of cattle was associated with each of the three outcome variables, 
albeit with a relatively low regression weight in each model (10.2, 
15.4, and 0.1 for the total number of IPs, outbreak duration, and 
the total AUC, respectively).

The predictive ability of each of the day 14 boosted regres-
sion models was assessed by calculating the positive and nega-
tive predictive values for each model (Table 9), similar to the 

FigUre 2 | classification and regression tree summarizing day 14 post-detection variables predictive of the total number of iPs using aaDis. The 
number of IPs identified at day 14 post-detection had the strongest association with the total number of IPs followed by cattle density at the location of the index 
premise. Relatively large outbreaks were those where there were more than 32 IPs identified by day 14 and where cattle density at the location of the index premise 
was greater than or equal to 82.38 head/km2.
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approach taken for the linear regression models. Overall, the 
BRT models were able to correctly classify simulated outbreaks 
as either large or small (for the total number of IPs and total 
AUC) or short or long (for outbreak duration) with the propor-
tion of correctly classified outbreaks ranging from 0.82 to 0.96 
for AADIS and 0.77 to 0.93 for ISP. In general, negative predic-
tive values for the BRT models were greater than the positive 
predictive values.

DiscUssiOn

During a disease outbreak, decisions on control are often made 
under significant uncertainty and in conditions that are continu-
ally evolving. Resources are often limited and will influence the 
effectiveness of disease control efforts. Experience overseas sug-
gests that resource and logistical issues are critical considerations 
when evaluating disease control strategies (39–41). Vaccination 
is increasingly being recognized as an important tool to assist 
in containing and eradicating FMD outbreaks (6–8, 42, 43). 

FigUre 3 | classification and regression tree summarizing day 14 post-detection variables predictive of the total number of iPs using interspread 
Plus. The number of IPs identified at day 14 post-detection had the strongest association with the total number of IPs followed by human population density at the 
location of the index premise. Relatively large outbreaks were those where there were greater than or equal to 69.5 IPs identified by day 14.

TaBle 8 | identified explanatory variables (n = 5) and their weights (in 
brackets) for the boosted regression tree model of first 14 day predictors 
of area under control, the total number of infected places, and outbreak 
duration for the aaDis and interspread Plus models of FMD.

Model – outcome explanatory variables (weights)

aaDis
Total number of IPs IPs day 14 (60.8), cattle/km2 (10.2), AUC day 14 (9.4), 

number of traces day 14 (4.0), EDR day 14 (3.1)
Outbreak duration IPs day 14 (40.7), cattle/km2 (15.4), AUC day 14 (9.3), 

number of pigs/km2 (7.6), EDR day 14 (6.2)
Area under control Number of clusters day 14 (90.1), IPs day 14 (9.6), 

IPs/km2 (0.1), number of traces day 14 (0.1),  
cattle/km2 (0.1)

interspread Plus
Total number of IPs IPs day 14 (81.4), human population density 

(5.1), EDR day 14 (3.5), IPs/km2 day 14 (2.3),  
cattle/km2 (1.7)

Outbreak duration IPs day 14 (50.4), human population density (14), EDR 
day 14 (12.1), IPs/km2 day 14 (5.4), cattle/km2 (4.5)

Area under control IPs day 14 (39.8), number of traces day 14 (36.3),  
IPs/km2 (11.6), number of clusters day 14 (7.2), 
EDR day 14 (2.3)
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Vaccination has been shown to be most effective in  situations 
where disease is spreading rapidly or resources are inadequate 
to maintain effective stamping out (4). A number of studies have 
shown that vaccination is more beneficial when used early in an 
outbreak (8, 44, 45).

Although vaccination can be an important tool to control 
FMD, it will make achieving recognition of FMD-free status 
more difficult – keeping vaccinated animals in the population 
will delay the period until FMD-free status is regained under 
the World Organization for Animal Health (OIE) guidelines 
and add additional complications to the post-outbreak surveil-
lance program (46). Shifting attitudes to vaccination among the 
international veterinary community means that it is no longer 
viewed as a measure of last resort. In Australia and New Zealand, 
vaccination will be given consideration as a potential additional 
measure (alongside stamping out) from day one of any FMD 
eradication response. However, given the complications and costs 
associated with implementing a vaccination strategy, it would 
only be used if authorities consider that it would be beneficial in 
managing the outbreak (19, 26, 47). A decision to vaccinate early 
in the outbreak may result in situations where it was not actually 
required and have consequent implications for post-outbreak 
surveillance, management of vaccinated animals, and regaining 
FMD-free status and access to markets. Conversely, not using 
vaccination in some situations may lead to larger and longer 
outbreaks, increased control costs, and greater on-going impacts 
on industry and local communities.

Although Australia and New Zealand have developed 
frameworks to support decision-making on FMD control 
(19, 48), these are qualitative and subjective. We reason that 
it would be useful if disease managers could identify early 
in an outbreak those situations that are likely to progress 
to “large” outbreaks and for which additional measures like 
vaccination are likely to be beneficial. In this context, measur-
able parameters such as the number of IPs, numbers of traced 

premises and/or farms under surveillance, and estimated rates 
of spread might be useful indicators of the potential severity 
of an outbreak.

The overarching aim of this project was to identify factors that 
could be used to predict the total number of IPs, outbreak dura-
tion, and the total AUC. Here, “factors” refers to characteristics of 
the physical environment in which an FMD incursion first occurs 
(e.g., farm density, animal density, human population density) 
or characteristics of the outbreak itself (e.g., the number of IPs 
reported at a given point in time post first detection). We were 
particularly interested in how robust the findings were to out-
breaks in different settings. For this study, we used a wide range 
of FMD incursions in terms of location, production systems and 
seed farm type, and time to first detection (determined probabil-
istically). These outbreaks were simulated in two countries using 
two independent modeling platforms.

It is reassuring for animal health authorities that, in both 
countries, the simulated FMD outbreaks tended to be small 
and readily able to be contained and eradicated with available 
resources. For both countries, median outbreak durations were 
around 6  weeks. This finding assumes that FMD is reported 
relatively quickly and resources are adequate to implement 
effective control programs. For Australia, the median time from 
first introduction to reporting was 17 days (range 9–89), and for 
New Zealand, the median time to detection was 13 days. A pre-
vious Australian study found considerable regional variability 
in the probability that an individual infected farm would report 
suspect FMD (24, 49). Recent experience of outbreaks of FMD 
in non-endemic countries indicate that it can take up to 3 weeks 
after introduction of the virus to the primary farm before the 
disease is recognized (40, 50–52). However, early detection does 
not necessarily mean that an outbreak will be small. A total of 
3.4% of the 10,000 outbreaks of FMD in Australia that were 
simulated in this study had more than 100 IPs and 7.2% of the 
10,000 outbreaks lasted longer than 90 days. For New Zealand, 
there was a 7.2% probability of an outbreak involving more than 
100 IPs and an 8.6% probability of an outbreak lasting more 
than 90 days.

The key objective of this study was to test whether information 
known or available to disease managers early in an FMD outbreak 
could be used to predict the severity of the epidemic outcome. 
Epidemic outcome was defined in terms of the total number of 
IPs, outbreak duration, and the total geographic AUC. While 
FFO and FFS have been shown to correlate with epidemic size 
(16), it was recognized that it would be more useful to consider 
a broader range of times than just 14  days. Accordingly, three 
time points were considered: 7, 14, and 21 days into the control 
program. A range of potential explanatory variables were tested 
using different analytical approaches, including linear regression, 
CART, and BRT analyses.

Although there was some variability between the different 
analyses and between countries, the cumulative number of IPs 
at specified time points early in the outbreak were consistently 
found to be strongly associated with the final number of IPs and 
the duration of an outbreak. It was possible to build relatively 
simple linear regression models for predicting the magnitude 
and duration of simulated FMD outbreaks that fitted both the 

TaBle 9 | Positive and negative predictive values and the proportion of 
outbreaks correctly classified as large or small (or short or long) using 
the day 14 boosted regression tree model for the aaDis and interspread 
Plus simulated FMD outbreaks.

Model – outcome cut pointa Predictive value correctly 
classified

Positive negative

aaDis
Total number of IPs 20 0.79 0.97 0.93
Total number of IPs 54 0.76 0.98 0.96
Outbreak duration 54 0.72 0.87 0.82
Outbreak duration 90 0.70 0.96 0.94
Area under control 1000 0.93 0.96 0.95
Area under control 3000 1.00 0.90 0.90

interspread Plus
Total number of IPs 20 0.79 0.91 0.86
Total number of IPs 54 0.74 0.95 0.91
Outbreak duration 54 0.64 0.85 0.77
Outbreak duration 90 0.63 0.92 0.91
Area under control 1000 0.90 0.89 0.90
Area under control 3000 0.81 0.94 0.93

aUsed to classify outbreak as small or large.
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Australian and New Zealand data (see Table 5). R2 values as a 
measure of goodness of fit ranged from 0.3 to 0.9 depending on 
time point, outbreak variable, and country (Table 6). A consistent 
pattern was observed, with the fit of the models improving from 
days 7 to 14 to 21 for all dependent variables and for both data 
sets (Australia and New Zealand). The total AUC had the high-
est predictability and duration of an outbreak the lowest. In this 
study, we found that the number of IPs occurring up to a given 
time point provided the most predictive power for both size (total 
IPs) and outbreak duration. This confirms previous findings by 
Hutber et al. (15) and Halasa et al. (16). The AUC at a given time 
point was most predictive of the total AUC.

These findings were confirmed in the CART and BRT analy-
ses. Consistency between the different approaches helps build 
confidence that the criteria identified are relevant to response 
decision-making. CART techniques are a useful alternative as 
they provide a visual decision tree output that is intuitive and 
likely to be well received by those not familiar with statistical 
analysis (see Figures  2 and 3). The tree diagrams produced in 
a CART analysis are consistent with clinical reasoning used by 
animal health professionals and can help to structure explana-
tions of prediction. Compared with regression-based approaches, 
an advantage of a CART analysis is that it can accommodate 
non-linear relationships between an outcome variable and a set 
of explanatory variables as well as missing data.

Boosted regression trees have the advantages of being able to 
handle a range of explanatory variable types, not requiring any 
data transformations, and being able to account for complex, 
non-linear relationships (35). BRTs are better-able to describe 
linear relationships and are more robust in terms of predictive 
accuracy, although interpretability suffers as a result. CARTs and 
BRTs are complementary. CARTs are relatively simple and provide 
readily interpretable output; BRTs are more complex and robust, 
but with reduced interpretability. The BRTs for both countries 
had good predictive ability when the total number of IPs was less 
than 100. When the total number of IPs was greater than 100, the 
BRT analyses tended to under predict total IP numbers.

Although it is informative to build statistical models to 
summarize factors influencing outputs from complex simulation 
models of FMD, for disease managers, the key issue is how 
this information can be used to support decision-making. From 
a disease manager’s perspective, it is useful to consider how 
good the models are at predicting small and large outbreaks. 
To do this, it is necessary to make some judgment calls about 
what constitutes a “large outbreak.” It is difficult in advance to 
reach agreement on what are acceptable benchmarks in terms 
of eradicating FMD, as this will be influenced by the time and 
location of an outbreak, availability of resources, etc. Accordingly, 
we looked at a series of arbitrary “cut points” for classifying 
outcomes into small and large (or long and short) outbreaks. 
Model sensitivity, specificity, and positive and negative predictive 
values were calculated using these cut-points. In general, the 
linear regression models were very good at predicting when an 
outbreak would be small or short; the positive predictive values 
varied from 0.85 to 0.98 meaning that a small outbreak was 
correctly predicted between 85 and 98% of the time. It should 

also be noted that having predicted a small outbreak at day 14 
(which would probably mean that a decision to vaccinate would 
not be made), this decision could be revisited at a later time in 
the outbreak when more information was available. Incorrectly 
predicting a large outbreak and using vaccine when it is not 
actually required will have trade implications and increase 
outbreak costs. The models were less accurate at predicting a 
large or long outbreak with the negative predictive values for 
outbreak duration exceeding 90  days being as low as 0.52 for 
the models of FMD in New Zealand. The negative predictive 
values for the total number of IPs and the total AUC were better 
ranging from 0.77 to 0.91 for both AADIS and ISP.

The BRT models were able to correctly classify simulated 
outbreaks as either large or small with the proportion of correctly 
classified outbreaks ranging from 0.77 to 0.96. Negative predic-
tive values tended to be higher than the positive predictive values 
for the BRT models.

In conclusion, this study shows that based on simulated FMD 
outbreak data relatively simple metrics available at 1–3  weeks 
into the control program can be used to predict the size of an 
FMD outbreak under Australian and New Zealand conditions 
and provide a basis for making decisions on the use of vaccina-
tion as a control measure. It should be noted that the simula-
tion modeling analyses carried out for this study focused on 
introduction of FMD into the areas considered to be at higher 
risk of disease entry and dissemination in Australia and New 
Zealand (23). The results need further validation with modeling 
data generated from other areas of these countries. Finally, it 
should be recognized that in the absence of FMD outbreaks in 
Australia and New Zealand, this study has fitted statistical mod-
els to simulated, not real outbreak data. Although the modeling 
teams have been careful to parameterize the respective models 
as realistically as possible, it is inevitable that assumptions and 
extrapolations from overseas experience have had to have been 
made. These considerations need to be taken into account when 
using the findings from this study.
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semiquantitative Decision Tools for 
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informed by Field Observations and 
simulated Outbreak Data
Preben William Willeberg1*, Mohammad AlKhamis2,3, Anette Boklund1, Andres M. Perez3, 
Claes Enøe1 and Tariq Halasa1

1 Department of Diagnostic and Scientific Advice, National Veterinary Institute, Technical University of Denmark, Copenhagen, 
Denmark, 2 Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait, 
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We present two simple, semiquantitative model-based decision tools, based on the 
principle of first 14 days incidence (FFI). The aim is to estimate the likelihood and the 
consequences, respectively, of the ultimate size of an ongoing FMD epidemic. The tools 
allow risk assessors to communicate timely, objectively, and efficiently to risk manag-
ers and less technically inclined stakeholders about the potential of introducing FMD 
suppressive emergency vaccination. To explore the FFI principle with complementary 
field data, we analyzed the FMD outbreaks in Argentina in 2001, with the 17 affected 
provinces as the units of observation. Two different vaccination strategies were applied 
during this extended epidemic. In a series of 5,000 Danish simulated FMD epidemics, 
the numbers of outbreak herds at day 14 and at the end of the epidemics were esti-
mated under different control strategies. To simplify and optimize the presentation of the 
resulting data for urgent decisions to be made by the risk managers, we estimated the 
sensitivity, specificity, as well as the negative and positive predictive values, using a cho-
sen day-14 outbreak number as predictor of the magnitude of the number of remaining 
post-day-14 outbreaks under a continued basic control strategy. Furthermore, during 
an ongoing outbreak, the actual cumulative number of detected infected herds at day 
14 will be known exactly. Among the number of epidemics lasting >14 days out of the 
5,000 simulations under the basic control scenario, we selected those with an assumed 
accumulated number of detected outbreaks at day 14. The distribution of the estimated 
number of detected outbreaks at the end of the simulated epidemics minus the number 
at day 14 was estimated for the epidemics lasting more than 14 days. For comparison, 
the same was done for identical epidemics (i.e., seeded with the same primary outbreak 
herds) under a suppressive vaccination scenario. The results indicate that, during the 
course of an FMD epidemic, simulated likelihood predictions of the remaining epidemic 
size and of potential benefits of alternative control strategies can be presented to risk 
managers and other stakeholders in objective and easily communicable ways.

Keywords: epidemics, modeling, disease control, risk communication, Foot-and-Mouth Disease
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TaBle 1 | Detected number of outbreaks at day 14 (θi), provincial herd 
densities (ωi), and detected and predicted number of outbreaks after day 
14 for each affected province.

Province number of 
outbreaks 

until day 14

(ωi) number of outbreaks after day 14

Detected Predicted
θi

Ci model i Ci model ii

Buenos Aires 21 0.2 1,477 1,189 1,049
Catamarcaa 1 – 0 – –
Chaco 1 0.11 6 22 16
Cordoba 3 0.36 73 33 68
Corrientes 3 0.08 75 33 21
Entre Rios 4 0.4 159 40 98
Formosa 1 0.11 4 22 16
Jujuy 1 0.03 3 22 11
La Pampa 6 0.07 142 60 35
Mendozaa 1 – 0 – –
Misiones 1 0.3 10 22 36
Rio Negroa 2 – 0 – –
Salta 1 0.04 3 22 12
San Luis 9 0.09 17 108 67
Santa Fe 17 0.2 166 535 491
Santiago del 
Estero

2 0.06 30 27 16

Tucuman 3 0.12 2 33 24

aNot included in subsequent analyses due to 0 outbreaks after day 14.
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inTrODUcTiOn

A series of 10 criteria supporting a decision of whether or not 
to make use of protective emergency FMD-vaccination is listed 
in Annex X of Council Directive 2003/85/EC (1). These criteria 
include: “a rapidly rising incidence slope of outbreaks.” A simple, 
quantitative tool was proposed and documented by Hutber et al. 
(2), using the “first 14 days incidence” (FFI) of outbreaks in fore-
casting the duration and the cumulative number of outbreaks at 
the end using data from 12 regional foci of the UK 2001 FMD 
epidemic. Thus, according to the abovementioned directive, the 
FFI might be considered a useful parameter in deciding about the 
launching of emergency vaccinations in an attempt to lower the 
total number of outbreaks, as well as to shorten the duration and 
to lower the losses and costs of an ongoing epidemic.

Modeling the effects of available risk management options during 
an FMD outbreak in Denmark was undertaken in a recent research 
project (3). Results and comparisons of simulations of the basic control 
strategy were compared to different versions of depopulation and vac-
cination strategies, in terms of their influence on epidemic duration, 
size, losses, and costs. Simulation results to evaluate the FFI principle 
were presented by Halasa et al. (4) who introduced the alternative term 
“first 14 days outbreaks” (FFO).

Decision tools should not only provide scientifically valid results 
but also have to be transparent and communicable to non-scientists, 
such as politicians, the media, and the general public to appear trust-
worthy. Therefore, the technically complex simulation-based results 
(4) were reformulated as presented here to better allow for commu-
nication of the results to the non-scientifically inclined stakeholders. 
Preliminary results of this work have been presented elsewhere (5–7).

The objectives of this study are as follows:

• To further explore and evaluate the FFI/FFO principle (2), 
using field data from the FMD outbreaks in Argentina in 2001, 
with the 17 affected provinces as the units of observation, 
comprising more than 2,000 outbreaks throughout the coun-
try (8). Initially, in-contact herds were vaccinated and imposed 
with movement control. However, the extensive epidemic was 
finally controlled by mass vaccination, animal movement 
control, and active surveillance strategies (9).

• To describe two semiquantitative decision tools based on the 
FFI/FFO principle as applied to simulated quantitative FMD 
outbreak data from Denmark (4). These tools are meant for 
use by risk assessors to document and communicate critical 
information in a simplified format to risk managers, decision 
makers, and other stakeholders on the potential benefits and 
consequences of adding emergency FMD vaccination to the 
basic control strategy during an emerging FMD epidemic. 
The tools could also be used as assets to the development and 
exercise of national FMD contingency plans.

MaTerials anD MeThODs

argentina
Data from the 2001 FMD outbreaks in the 17 affected provinces 
were obtained from SENASA, as described previously (8). The 

number of outbreaks with complete data required for the analy-
ses (2,244 outbreaks or approx. 95% of all recorded outbreaks) 
are shown in Table 1, where the outbreaks are grouped by time 
of detection relative to day 14 of the epidemic, as proposed (2). 
Figure 1 shows a plot of the 14 provincial observations of the 
relationship between the numbers of accumulated detected 
outbreaks after day 14 against the accumulated number of 
outbreaks at day 14. A regression analysis was used to predict 
number of outbreaks at the end of the epidemic (Ci) using the 
accumulated number of outbreaks at day 14 as a direct predic-
tor (θi) (see Table 1), model I WinBugs version 1.4.3 (10) was 
used to quantify this relationship through a Bayesian mixed 
log-linear model, where Ci was assumed to follow a Poisson (λi) 
process, in which λ is the distribution of the total number of 
cases in each affected province in 2001. Therefore, the model is 
formally expressed as: Ci ~ Poisson (λi), log(λi) = β0 + β1θi + Ui 
where β0 denotes the model intercept, β1 denotes the regres-
sion coefficients for θi, and Ui denotes non-structured random 
effect. Ui is included in the formula to account for lack of 
independence in the observations due to variables other than θi. 
Non-informative prior distributions of the form N~ (0, 0.001) 
and N [0, δ ~ gamma (0.05, 0.005)] were used to model prior 
knowledge on the value of the regression coefficients. The model 
was run using 20,000 iterations after burning out the first 1,000 
iterations.

Furthermore, provincial herd densities (ωi) were included in 
a second model with θi (Table 1, model II), since herd density 
has been shown to be an important determinant for within-
province clustering of FMD herds (8). Confounding of ωi was 
evaluated using the method of change in the estimates of βi, and 
best fitting model was assessed based on the smallest value of the 
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FigUre 1 | Plot of number of day 14 outbreaks against number of 
post-day-14 outbreaks for the argentina 2001 FMD epidemic from the 
14 provinces in the analysis. The top-right observation is the Buenos Aires 
province. Four provinces with small numbers of outbreaks are hidden, as 
they coincide with other close provincial outbreak numbers (see Table 1).
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deviance information criteria (DIC). Finally, a Kruskal–Wallis 
test was used to assess the significance of the differences between 
observed and predicted number of outbreaks at the end of the 
epidemic.

Denmark
Danish data were obtained from a series of FMD simulations 
from models with actual Danish population data on swine, cattle, 
and sheep herds at the national level and using FFO to designate 
the cumulative number of outbreaks detected in the first 14-days 
as a predictor for the size, duration, and costs of the epidemics. 
The simulation model, the farm data (simulated population), and 
the simulation study are explained in the next sections.

The Simulation Model
The DTU-DADS model (version 0.15) (11) was further updated 
(to version 0.16) and used to obtain the simulation data for the 
analysis in this study. The updates included updating the mod-
eling of the local spread and adjusting the code to correct a coding 
error. For the local spread, in the earlier version of the model, 
the probability of infection varied depending on distance from 
the infectious herds in a maximum of 3 km zone (3, 11). In the 
current version, the disease could spread locally depending on 
distance from the infectious herd in the same way as modeled 
earlier, but depending on time from the start of the infectiousness 
of the infectious herd using similar probabilities (12).

The Farm Data
The data consisted of all cattle, swine, sheep, and goat herds that 
are registered in the Central Herd Register (CHR) of Denmark in 
the period from first October 2006 until 30th September 2007. 
During this period, there were 23,550, 11,473, and 15,830 cattle, 
swine, and sheep/goat herds, respectively. The data included infor-
mation about the identification number, the UTM coordinates, 
the number of animals, and the rate of animal movements per 
day for each herd. While cattle herds were divided into milking 
and non-milking herds, sheep and goats were grouped into one 

category, while swine herds were split into 19 types (13). When 
a farm included several animal species, each species was given 
a different ID and set as a different herd on the same location 
and with the same CHR number. Further details about the study 
population and model input parameters can be found elsewhere 
(3, 11).

The Simulation Study
Modeling Virus Spread
Spread of infection between herds was simulated through seven 
spread mechanisms: (1) direct animal movement between herds; 
(2) abattoir trucks; (3) milk tankers; (4) veterinarians, artificial 
inseminators, and/or a milk controllers (medium risk contact); 
(5) visitors, feedstuff, and/or rendering trucks (low risk contact); 
(6) markets; and (7) local spread (11, 14).

The virus spread via animal movements and abattoir contacts 
was simulated based on the rate of movements/contacts per day 
calculated from actual movement data. For abattoir contacts, 
an additional parameter representing the number of herds that 
will be contacted by the abattoir truck on its way to the abattoir 
following its contact to the infectious herd was included based on 
the type of the infectious herd. Virus spread via medium and low 
risk contacts was simulated using the daily frequency of contact 
between herds via these routes. Virus spread via milk tank was 
possible only from a milking to another milking herd using the 
daily frequency of milk pickup from the dairy herds. Virus spread 
via markets was possible initially between cattle herds as markets 
in Denmark are restricted to cattle only. From markets, the virus 
could spread to susceptible herds due to movement of animals, 
people, and/or vehicles (11).

Modeling Disease Detection
An infected herd could be detected in one of the three mecha-
nisms, namely: first detection, basic detection, and detection 
following surveillance or tracing. First detection reflected the 
detection of the disease in the country (the index case/outbreak). 
This occurred following a specific number of days after the intro-
duction of infection. A PERT distribution was used to determine 
the day of first detection following virus introduction. The 
minimum, mode, and maximum values were 18, 21, and 23 days, 
respectively. Basic detection reflected the farmers’ awareness of 
a problem within their herds and hence calling the veterinarian, 
while detection through surveillance or tracing occurred follow-
ing a visit by the veterinary authorities. The probabilities of detec-
tion using the last two detection mechanisms were dependent on 
the type of the herd (11).

Modeling Disease Control
Once the first infected herd is detected, a set of control actions 
are enforced as explained earlier (11). These actions include (1) 
depopulation, cleaning, and disinfection of all detected herds, 
(2) the implementation of a 3-km protection zone and a 15-km 
surveillance zone around each detected herd, (3) all susceptible 
herds within the zones are surveyed and animal movements 
and contacts between herds are restricted within the zones, 
(4) forward and backward tracing of animal movements and 

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


TaBle 2 | regression model parameters estimated from the argentina 
2001 epidemic data.

regression 
coefficients

Posterior 
estimates

sD Monte 
carlo 
error

97.5% cia Deviance 
information 

criteria

Model i
β0 2.89 0.061 <0.001 (2.77, 3.00) 1,199.61
β1θi 0.20 0.003 <0.001 (0.19, 0.21)

Model ii
β0 2.11 0.333 <0.001 (1.92, 2.30) 934.61
β1θi 0.19 0.003 <0.001 (0.19, 0.21)
β2ωi 4.28 0.096 <0.001 (3.63, 4.93)

a97.5% credible interval.
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contacts to and from detected herds, and (5) the implementa-
tion of a 3-day national stand still on animal movements. In 
addition, herds that received animals from detected herds were 
depopulated (11).

Extra control strategies, including preemptive depopulation 
or suppressive vaccination, were adopted in separate scenarios. 
When implemented, herds with susceptible animals within a 
1-km radius around newly detected herds were subjected to the 
extra control. The extra control strategy was initiated 14 days after 
first detection.

Initiation of Simulation and Model Run
The simulation started with the model loading the input data 
and, thereafter, selecting the primary outbreak herd, which 
is the first infected herd in the epidemic. About 5,000 cattle 
herds were selected randomly as potential primary outbreak 
herds to initiate disease spread. Earlier results have shown 
that epidemics initiated in cattle herds would provide larger 
spread than epidemics initiated in other species (14), reflecting 
a worse-case scenario. Each primary outbreak herd initiated 
an epidemic once, resulting in outbreak data from 5,000 
epidemics.

The outcomes of the model included epidemic duration 
(number of days between first detection and the culling of the last 
detected herd), number of infected herds, number of depopulated 
or vaccinated herds, and the total costs of the epidemics. The total 
costs were calculated as direct cost and export losses (11).

The Decision Tools
To simplify the presentation of pros and cons of vaccination to all 
stakeholders and to enable the urgent decisions to be made by the 
risk managers during the course of an ongoing FMD epidemic, a 
two-step methodology based on the FFO principle was applied in 
presenting the Danish simulation outcomes.

Quantifying Uncertainty (Predictive Values) of Estimating the 
Likelihood of a “Catastrophic” Epidemic
During an ongoing national FMD epidemic, the actual cumula-
tive number of outbreaks at day 14 will have a given observed 
value, e.g., 15 herds (i.e., FFO =  15). Data from the simulated 
epidemics lasting more than 14 days were distributed among the 
cells of a two-by-two table based on a selected cutoff value for both 
the independent (i.e., FFO = 15) and of the dependent variables 
(a chosen “catastrophic” number of post-day-14 outbreaks, e.g., 
50 or 100). This enables estimation of sensitivity, specificity, and 
negative and positive predictive values describing the association 
between the observed FFO value and a “catastrophic” epidemic 
in terms of the cumulative number of outbreaks occurring after 
day 14.

The estimation procedure described above was performed 
using simulated data for the basic control strategy throughout 
5,000 simulated epidemics in Denmark.

If applied as part of an exercise to update FMD contingency 
plans, a series of alternative FFO and “catastrophic” simulated 
outbreak numbers post-day-14 might be explored for the com-
parative control strategies.

Quantifying the Consequences (Expected Benefits) in Terms 
of the Number of Prevented “Catastrophic” Outbreaks when 
Changing to a Vaccination Strategy at Day 14 during the 
Epidemic
The frequency distribution of the observed number of total 
cumulative outbreaks for the series of simulated epidemics 
with the observed fixed FFO-value were compared for the basic 
control strategy and the vaccination strategy, with both strate-
gies applied to the same set of simulated epidemics in terms of 
the seeded primary outbreak herds. The benefit of changing 
from basic control to emergency vaccination can be estimated 
by comparing the number and proportion of “catastrophic” 
epidemics expected in the basic with those in the vaccination 
simulations.

resUlTs

The argentinian epidemic
Table 2 summarizes the posterior estimates for the two regression 
models. While θi is a significant predictor for Ci by itself, ωi is an 
important confounder based on the method of the change in the 
posterior estimate (i.e., the constant’s coefficient changed by 27%), 
a significant predictor (97.5% CI), and substantially improved the 
fit of the model (smallest DIC value).

The observed and predicted number of outbreaks for models I 
and II are summarized in Table 2. No significant differences were 
identified between the number of observed and the number of 
predicted outbreaks at the end of the epidemic for models I and 
II (Kruskal–Wallis p-value >0.54).

Descriptive results of the Danish 
simulations
Table 3 shows the overall descriptive results from the simulation 
study, using the basic control, preemptive depopulation, and 
suppressive vaccination scenarios. For instance, using the median 
basic scenario, epidemic duration is predicted to be 36 days (5th 
and 95th percentiles 2–128 days), resulting in 22 infected herds 
(5th and 95th percentiles 2–145 herds), and a total loss of €869 
million (5th and 95th percentiles €703–€1,434 million).

Among the group of 5,000 simulations specifically considered 
here, 4,092 epidemics lasted >14 days. Figure 2 shows a plot of 
these simulated epidemics with their accumulated number of 
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FigUre 2 | Plot of the number of day 14 outbreaks against the 
number of post-day 14 outbreaks for the 4,092 simulated Danish FMD 
epidemics lasting more than 14 days.

TaBle 4 | Danish-simulated FMD epidemics lasting more than 14 days: 
specificity, sensitivity, negative predictive value (nPV), and positive 
predictive value (PPV) for two alternative combinations (a and B) of 
the presumed observed cumulative outbreak size on day 14, and the 
subsequent cumulative outbreak size until the end of the epidemic.

a: more or less than 50 outbreaks expected subsequently

Outbreaks on 
day 14

Outbreaks after day 14

<50 ≥50 Total

<15 2,009 156 2,165 NPV = 93%
≥15 1,284 643 1,927 PPV = 33%
Total 3,293 799 4,092 p(≥50) = 20%

Sp = 61% Se = 80%

B: more or less than 100 outbreaks expected subsequently

Outbreaks on day 14 Outbreaks after day 14

<100 ≥100 Total

<15 2,092 73 2,165 NPV = 97%
≥15 1,719 208 1,927 PPV = 11%
Total 3,811 281 4,092 p(≥100) = 7%

Sp = 55% Se = 74%

TaBle 3 | summary of the results of 5,000 simulated Danish FMD epidemics all starting in cattle herds; median and 5–95% ci.

control strategy epidemic duration infected herds culled herds Vaccinated herds Total costs (€ million)

Basic control throughout 36 (2–128) 22 (2–145) 22 (2–145) 0 869 (703–1,434)
Preemptive depopulationa 25 (2–50) 19 (2–67) 35 (2–150) 0 807 (703–994)
Suppressive vaccinationa 36 (2–98) 22 (2–105) 22 (2–105) 24 (0–184) 863 (703–1,284)

aChange from basic control after day 14.
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outbreaks occurring after day 14 until the end of the epidemics, 
against the accumulated number of outbreaks at day 14.

Quantifying Predictive Values Based on 
the FFO Principle
For a set of chosen cutoff values [i.e., FFO <  15 vs. FFO ≥  15 
outbreaks and <50 vs. ≥50 outbreaks recorded after day 14 
(Table 4)], the negative predictive value (NPV) is 93% and the 
positive predictive value (PPV) is 33%. This would mean a 7% 
probability of an epidemic with <15 outbreaks at day 14 becom-
ing a “catastrophic epidemic” of ≥50 subsequent outbreaks, if the 
basic strategy was continued, while there would be a 33% prob-
ability that an epidemic with ≥15 outbreaks at day14 would turn 
out to be a” catastrophic epidemic” of ≥50 subsequent outbreaks 
with no change in strategy.

Changing the cutoff value for “catastrophic” epidemics to ≥100 
outbreaks changes the NPV to 97% (Table 4). This means that 
if <15 infected herds have been detected up until day 14, there 
would be an estimated probability of just 3% that the ongoing 
epidemic under a continued basic control strategy would result in 
a cumulative number of outbreaks of ≥100. The PPV, however, is 
estimated at only 11%, which is explainable by the relatively low 
probability of “catastrophic” epidemics of ≥100 outbreaks among 
the simulated outcomes (p = 7%).

Quantifying the expected Benefit of 
changing to a Vaccination strategy during 
an epidemic
Among the simulated epidemics lasting 14 days or more, all the 
simulations with a cumulative number of outbreaks equal to 15 

were chosen (i.e., assuming that in an ongoing field epidemic, 
FFO = 15), resulting in 182 epidemics, which were further ana-
lyzed. The distribution of the number of outbreaks at the end of the 
epidemics minus the FFO-value of 15 was determined (Figure 3). 
The distribution of the number of outbreaks under the basic con-
trol scenario is compared to that under a suppressive vaccination 
scenario for the same 182 epidemics, i.e., using the same primary 
outbreak herds as in the basic control scenario (Figure  4). Of 
the eight “catastrophic epidemics” with ≥100 outbreaks after day 
14 in the basic scenario, 5 (63%) were predicted to be spared by 
applying emergency vaccination. Using 50 outbreaks as the cutoff, 
13 out of the 29 (i.e., 45%) of these “catastrophic epidemics” were 
predicted to be spared by vaccination, see Figures 3 and 4.

DiscUssiOn

For the Argentina 2001 epidemic, the median herd disease repro-
duction ratio decreased significantly from 2.4 (before the epidemic 
was officially recognized) to 1.2 during the mass-vaccination 
campaign and <1 following the mass-vaccination campaign (9). 
This is consistent with our finding of the agreement with the FFO 
principle for this epidemic, although once the index outbreak was 
detected, control activities were applied including both emer-
gency vaccination of in-contact-herds, and subsequently mass 
vaccination, which started late and lasted for a long period due 
the extended area and large numbers of herds to be covered (8, 9). 
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FigUre 4 | Distribution under the emergency vaccination scenario of 
the 182 epidemics with 15 detected herds at day 14 by number of 
post-day 14 outbreaks. The two alternative definitions of “catastrophic” 
epidemics in terms of number of outbreaks are indicated.

FigUre 3 | Distribution under the basic control scenario of 182 
FMD-epidemics with 15 detected herds at day 14 by number of 
post-day 14 outbreaks. The two alternative definitions of “catastrophic” 
epidemics in terms of number of outbreaks are indicated.
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One would generally expect a marked decrease in the number 
of outbreaks following vaccination, but in this case, the initial 
intervention probably was of insufficient magnitude to effectively 
control the spread, resulting in a substantial epidemic tail-end in 
terms of number of outbreaks, duration, and geographical cover-
age. Had it been possible to monitor the early part of the epidemic 
and to apply the FFI/FFO tools described here, i.e., to act on day 
14 of the epidemic, it might have led to a smaller epidemic and 
a faster recovery. It is worth noting that the magnitude of the 
association between the accumulated number of outbreaks at day 
14 and the subsequent number of cases in each affected province, 
as indicated by the value of the regression coefficient (Table 2), 
is influenced by the presence of the large outbreak contributions 
from the Buenos Aires province (see Figure  1). However, the 
nature of the association, as indicated by the positive sign of the 
regression coefficient and its significance (see 97.5% CI, Table 2) 
remains (data not shown). For that reason, we conclude that the 
model was robust to the inclusion or exclusion of Buenos Aires 
in the analysis. Inclusion is justified, however, by the biological 
and economical significance of the 67% of the total number of 
outbreaks, which this province accounted for.

A high degree of variation is seen in the Danish simulation 
results (Figure 2). This is likely due to the Danish data describing 
5,000 different simulated epidemics, while both the British (2) 
and the Argentinean data considered here were concerned with 
regional variations within individual extended field epidemics. 
Our main finding as shown in Figures 3 and 4, favoring vaccination 
over continued basic control when aiming to avoid catastrophic 
epidemics, is consistent with the overall results of the Danish 
simulation study (4). As can be seen from Table 3, on average, 
the alternative control strategies do not differ much; however, the 
extreme upper range values tend to be lower for the vaccination 
and cull strategies than for the basic control strategy. The relatively 
low positive predictive values (Tables 4) of course influence the 
average benefit/cost ratio of implementing a vaccination strategy 
based on this procedure, as many such vaccination campaigns 
apparently may be wasted, since by far most epidemics would 
entail <50 outbreaks with just the basic control strategy. This 
might indicate that the basic control strategy could be continued 
with a reasonably high degree of confidence. So here, also the PPV 
indicates a limited effect to be expected from a change of strategy 
toward vaccination. Apparently, a cutoff value of 100 predicted 
outbreaks to be used for vaccination considerations may be too 
high to yield useful decision criteria, because only a small percent-
age (here 7%) of simulated outbreaks reach that level under the 
basic control strategy. Such information would be valuable to note, 
when using simulations as part of FMD contingency planning and 
exercising. The benefits of possibly reducing the actual number 
of outbreaks within “non-catastrophic” epidemics due to vaccina-
tion are, however, not taken into account in these estimates.

The added economic costs introduced by applying FMD vac-
cination should be considered when setting the cutoff for what 
would be a “catastrophic epidemic” in terms of the number of 
outbreaks. Implementing vaccination in a control strategy by itself 
might be very costly, e.g., due to a lengthier trade ban for Danish 
animals and products on the export markets (3). Thus, risk man-
agers might tolerate up to a moderate likelihood of a high number 
of outbreaks in order to avoid these economic consequences of 
vaccination. However, if the decision tool predicts vaccination to 
spare a relative large number of outbreaks, the added costs may 
appear acceptable, also considering the welfare benefits of a limited 
culling after implementation of suppressive vaccination strategy.

Along with the aspects of risk assessment and risk man-
agement discussed above, risk communication is an equally 
important part of an FMD risk analysis in the face of an ongoing 
epidemic (15). The interactions of these three components are 
nowhere more critical than in the initial phases of a national FMD 
epidemic, when alternative control strategies must be considered. 
Fast and reliable assessment of the likelihood and consequences 
of spread and the continuous evaluation and selection of opti-
mal management and control measures should be supported 
by timely, robust, and transparent communication among risk 
assessors, risk managers, and other stakeholders. Only then may 
urgent and critically important decisions be properly understood 
and accepted. Emergency vaccination should be considered, if 
the anticipated cumulative size of the epidemic under a contin-
ued basic control strategy appears alarming and if a sufficient 
reduction can be expected in the magnitude and duration of the 
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epidemic to justify the estimated additional direct and indirect 
control costs incurred by vaccination (3).

Several FMD epidemics affected Europe and South America 
in 2001 and the control strategies applied have been discussed 
extensively (8, 9), major obstacles to effective prevention, detec-
tion, and control of FMD have been identified and the role of 
disease models in animal health emergency preparedness has 
been highlighted (16–18). In particular, the following statements 
characterize the situation facing authorities when it comes to 
decisions on the potential use of emergency vaccination during 
an FMD epidemic:

 - The decisions about if and how to vaccinate during a major 
FMD epidemic are complex (9).

 - The choice of whether or not to apply emergency vaccination 
is probably the most difficult decision facing the authorities 
when disease breaks out in an erstwhile FMD-free country. 
Effective computational models should be actively financed 
for a range of outbreak scenarios to assist objective decision-
making and minimize bureaucratic delays in vaccine applica-
tion (19).

 - There is a need for better analytical tools to support decisions 
for FMD control (20).

When future epidemics occur, scientific and political debate 
will rise again regarding the merits of vaccination, with many 
technical, logistical, economic, political, cultural, and historical 
facts affecting the decision. Generally, vaccination decisions have 
to be made quickly and will be influenced greatly by previous 
experiences, but because large FMD epidemics are extremely rare 
events, the opportunities to directly assess the effects of control 
strategies are very limited (9). Therefore, effective computational 
models should be made available for a range of outbreak scenarios 
to assist objective decision-making and minimize bureaucratic 
delays in vaccine application, and continued efforts are required 
to develop robust models for use during outbreaks in FMD-free 
countries (19, 21). Comparison of the pros and cons of alterna-
tive control strategies has been the aim of numerous simulation 
modeling studies, as recently reviewed and discussed (21, 22). 
The special importance of communicating output results from 
modeling tools to decision makers has been highlighted by 

the European Commission for the control of Foot-and-Mouth 
Disease—EuFMD (23):

 - Member states should consider the use of modeling tools 
as decision-making aids, while ensuring that the output of 
such models are clearly understood by decision makers with 
respect to uncertainty and sensitivity.

The results presented here indicate that, in the context of a 
decision-making aid, choice of control strategy and predictions of 
epidemic consequences based on the cumulative number of out-
breaks detected by day 14 would be useful. Furthermore, results 
from simulation models comparing alternative control strategies 
can be documented and communicated to risk managers and 
stakeholders in simple ways, which seem appropriate in urgently 
informing decisions about whether or not to implement changes, 
such as deployment of emergency vaccination.
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Preparedness planning for a veterinary crisis is important to be fast and effective in 
the eradication of disease. For countries with a large export of animals and animal 
products, each extra day in an epidemic will cost millions of Euros due to the closure 
of export markets. This is important for the Danish husbandry industry, especially the 
swine industry, which had an export of €4.4 billion in 2012. The purposes of this project 
were to (1) develop an iterative tool with the aim of estimating the resources needed 
during an outbreak of foot-and-mouth disease (FMD) in Denmark, (2) identify areas, 
which can delay the control of the disease. The tool developed should easily be updated, 
when knowledge is gained from other veterinary crises or during an outbreak of FMD. 
The stochastic simulation model DTU-DADS was used to simulate spread of FMD in 
Denmark. For each task occurring during an epidemic of FMD, the time and personnel 
needed per herd was estimated by a working group with expertise in contingency and 
crisis management. By combining this information, an iterative model was created to 
calculate the needed personnel on a daily basis during the epidemic. The needed per-
sonnel was predicted to peak within the first week with a requirement of approximately 
123 (65–175) veterinarians, 33 (23–64) technicians, and 36 (26–49) administrative staff 
on day 2, while the personnel needed in the Danish Emergency Management Agency 
(responsible for the hygiene barrier and initial cleaning and disinfection of the farm) was 
predicted to be 174 (58–464), mostly recruits. The time needed for surveillance visits 
was predicted to be the most influential factor in the calculations. Based on results from 
a stochastic simulation model, it was possible to create an iterative model to estimate 
the requirements for personnel during an FMD outbreak in Denmark. The model can 
easily be adjusted, when new information on resources appears from management of 
other crisis or from new model runs.

Keywords: stochastic modeling, veterinary crisis, epidemics, simulation models, preparedness

inTrODUcTiOn

Foot-and-mouth disease (FMD) is a highly contagious disease, which is known to spread easily  
within and between herds and cause severe economic losses in each herd as well as in the  
country (1). The control and eradication of FMD within the EU is governed by EU legislation 
(Council Directive 2003/85/EC of 29 September 2003; http://eur-lex.europa.eu/legal-content/EN/
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TXT/PDF/?uri=CELEX:32003L0085&from=EN). Following the 
directive, EU member states are obliged to use a stamping out 
policy, involving quarantine, movement restrictions, zoning, and 
slaughter and disposal of all affected herds, followed by cleaning 
and disinfection (CD) of the farm. Additional control measures 
can be used, for example, preemptive culling or vaccination, after 
approval of the plan by the European Commission regulatory 
committee Standing Committee on the Food Chain and Animal 
Health.

Preparedness planning for a veterinary crisis, such as an FMD 
outbreak, is important in order to be fast and effective in the 
eradication of the disease. For countries with a large export of 
animals and animal products, each extra day in an epidemic will 
cost millions of Euros due to the closure of export markets. This 
is of utmost importance for the Danish swine industry, which had 
a yearly export of €4.4 billion in 2012 (2).

Modeling results have previously been used to inform decision-
making related to disease control options (3–14). Models have  
traditionally been including limitations on resources for culling 
and vaccination, while only few models have included resources 
for other things such as surveillance visits [e.g., Ref. (15)]. With 
this work, we propose to also use the outputs of simulation 
modeling for planning and operational purposes in a Veterinary 
Administration of a country before and during a veterinary  
crisis.

Geering and Lubroth (16) describe how the first step in pre-
paring a resource plan is to make a resource inventory, “listing 
all the resources needed to respond to a moderate-sized FMD 
outbreak or other high-priority emergency disease. The plan 
includes personnel, equipment, and other physical resources.” 
Garner et  al. (17) estimated the needed resources during a 
hypothetical FMD-epidemic in Australia, focusing on the 90th 
percentile out of 100 iterations simulated to set-off from the area  
previously predicted to give the worst epidemics in terms of 
size and duration (18). For the Danish Veterinary and Food 
Administration, it is important to know how many persons must 
be available within hours and days in order to efficiently handle 
and eradicate the disease. And to consider whether these people 
are already available in the organization and how extra person-
nel can be recruited. Furthermore, it is important to consider, 
whether this personnel has the required level of education or if 
extra training and education is needed. Similarly, the need for  
materials and services during a veterinary crisis must be 
identified and quantified. These materials and services include 
for example cars, sampling materials and testing capacity at 
the laboratory, equipment for culling of animals, protective 
clothing, disinfection agents, valuators, trucks and rendering 
capacity.

The purposes of this project were (1) to develop an iterative 
tool with the aim of estimating the resources needed during an 
outbreak of FMD in Denmark and (2) to identify areas, which 
can be bottle necks in the veterinary administration, and thereby 
delay the control of the disease and the time to regain disease 
free status and the access to export markets. The tool developed 
should easily be updated, when new knowledge is gain from other 
veterinary crises or during an outbreak of FMD.

MaTerials anD MeThODs

The simulation Model
The DTU-DADS model (version 0.16) was used to simulate 
spread of FMD in Denmark (19, 20).

Farm Data
From the official Danish central herd register, all Danish herds 
registered with cattle, swine, sheep, or goat in the period from 
October 1st 2006 to September 30th 2007 were extracted and 
used in the model. This period was used to avoid influence of 
the blue tongue outbreak in Denmark, which started in October 
2007. For each herd, a unique identification number, the herd 
type, the numbers of animals of different types, and the UTM 
geo-coordinates was extracted. In total, 23,550 cattle herds, 11,473 
swine herds, and 15,830 sheep or goat herds were included. Sheep 
and goat herds were grouped in one category, called sheep, as 
there are a limited number of goat herds in Denmark, and they 
are considered to be handled similar to sheep herds during an 
epidemic. Furthermore, herds were described as different types, 
cattle herds as milking or beef cattle, sheep herds as commercial 
or hobby herds, and swine herds as 19 different herd types, based 
on their SPF status and their production type (5). For each herd, 
the rate of daily movements were calculated as the total numbers 
of movements off the herd in the 1-year period mentioned above 
divided by 365, for batches of animals moved to other herds or to 
abattoirs, respectively. For swine herds, animals moved to other 
herds were divided into sows or weaners. Farms including several 
species were separated into several herds, with different herd IDs 
but with the same coordinates.

Modeling Spread of Disease
Spread of disease was modeled to occur through seven different 
spread mechanisms: (1) direct contact, i.e., animal movements, 
(2) indirect medium risk contacts, i.e., veterinarians, artificial 
inseminators, or milk controllers, (3) indirect low risk contacts, 
i.e., visitors, feed stuff/rendering trucks, (4) abattoir trucks,  
(5) milk tankers, (6) markets, and (7) local spread.

Based on movement data from the period October 2006 to 
September 2007, the rate of movement per day for the individual 
herd was used as λ in a Poisson distribution simulating spread 
of disease. Similarly, the rate of abattoir deliveries was calculated 
for the individual herd and used as λ in a Poisson distribution 
simulating the risk of spread on the abattoir route. Contrary, 
the pick-up of milk from dairy herds was simulated as a Poisson 
distribution with λ  =  0.6 for all dairy herds. Indirect medium 
and low risk contacts were simulated with different λ for differ-
ent herd types (5, 19). Markets were simulated for cattle only, as 
markets in Denmark are restricted to cattle and horses, with an 
average of 3.5 extra contacts generated from a market. And local 
spread was simulated as a probability of spread within 3 km from 
infected herds, simulating the unexplained spread within short 
distance as a consequence of for example limited airborne spread, 
rodents, birds, flies, and animal movements or person contacts 
not registered (19, 20).
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Modeling Detection of Disease
Detection of the first infected herd was simulated to occur between 
day 18 and 23 after the disease was introduced, with a mode of 
21 days. Thereafter, the disease could be detected either from the 
farmer or veterinarian (basic surveillance) or from surveillance 
by official veterinarians as result of tracing contacts from infected 
herds or as surveillance in the protection or surveillance zones. 
The probabilities of detection by each type of surveillance were 
assumed to be dependent on the herd type, as different species 
show more or less clinical signs (19).

Modeling Control of Disease
After detection of disease, a set of control measures must be 
applied based on the EU council directive 2003/85/EC. These 
include depopulation of all detected herds, CD of infected proper-
ties, tracing (back and forward) of contacts, and establishment of 
protection (3 km) and surveillance (10 km) zones around detected 
herds. In both zones, movements of animals are prohibited and 
all herds must be surveyed at least twice in the protection zone 
and once in the surveillance zone, before the zones can be lifted.

In the model, herds were assumed to be depopulated as soon 
as capacity was available. A daily capacity for depopulation of 
2,400 ruminants and 4,800 swine was estimated by the industry 
and the Veterinary and Food administration based on experi-
ences with other diseases (19). Animals moved from a detected 
herd within 14 days before detection were assumed to be traced, 
and the receiving herd to be culled. For other traced contacts, the 
herds receiving contact were assumed to be put under surveil-
lance. Traced contacts and herds in the protection zone would 
be visited as soon as possible, depending on available resources 
for surveillance. A daily capacity for surveillance was estimated 
to 450 herds by the Veterinary and Food administration, based 
on experiences with other diseases (19). Herds in the protection 
and the surveillance zone would be set for surveillance visit 
immediately after the initiation of the zones, and herds in the 
protection zone would be set for another visit after 21 days and 
before lifting the zone. Details on how surveillance is modeled 
can be obtained from Halasa and Boklund (15). All sheep within 
the zones were simulated to be tested as described in the Danish 
contingency plan due to non-specific clinical signs in sheep (21). 
The probability of detecting disease from clinical surveillance and 
testing increased with time (5).

Furthermore, a 3-day national standstill for all animal move ments 
was modeled, based on the Danish contingency plan for FMD.

Initiation of Disease Spread and Model Run
One thousand cattle herds were randomly chosen and used to 
initiate the spread of disease (index herds). Epidemics starting 
in cattle herds have previously been shown to create some of the 
largest outbreaks under the simulated circumstances (5, 19).

For each index herd, one iteration was run, resulting in 1,000 
epidemic simulations. The outcome of the model included, for 
every iteration and for every day in the epidemic, which herds 
were detected, which herds were depopulated, and which herds 
were surveyed. Of the 1,000 simulated epidemics, in 19 cases, the 
disease did not spread from the first infected herd and was not 
detected, resulting in 981 simulated epidemics in total.

estimations of resources during an 
Outbreak
A working-group of 12 persons1 was constituted with staff from the 
Danish Veterinary and Food Administration (10 persons), with 
experience in contingency planning and handling of veterinary 
crises, and experts from the Danish Emergency Management 
Agency (DEMA) (1 person) and the National Veterinary Institute 
(1 person). A series of meetings were undertaken, in order for 
these experts to identify best practices for all work tasks during 
an epidemic and estimate the man power and other resources 
needed. In some cases, information was from external sources, 
while other information was exclusively based on the knowledge 
and experience within the group.

Estimates for resources during an outbreak were divided in 
resources for detected herds, suspected herds, surveyed herds, 
and local crisis centers (Tables 1 and 2). No assumptions were 
made regarding the skills required for neither different tasks nor 
the manpower available, except for the resource assumptions in 
the model, described in Section “Modeling Control of Disease.” 
Neither did we decide on whether veterinarians (VET) should 
be official veterinarians, vets from private practice or from other 
sources. “Technicians” (TECH) are defined as non-vets working 
as animal technicians or as legal advisors, HR, or IT personnel. 
Administrative personnel (ADM) were only related to work in 
the local crisis center (LCC). The DEMA is hired to be involved 
in the culling and cleaning phase on detected herds. They will 
be taking care of setting up an organizational board at the farm, 
cleaning and disinfecting people and trucks entering and leaving 
the farm, preliminary CD of the farm, and eventually transporta-
tion of culled animals. Personnel from DEMA were categorized as 
leading officers, officers, and recruits. For all groups of personnel, 
a detailed description of tasks and necessary skills was provided 
in the Danish report from the project (22).

Based on the daily outputs from the simulation model, per-
sonnel for valuation of herds for each day (i) in the epidemic 
was calculated as the total type of personnel (p) needed, i.e., the 
numbers of VETs, TECHs, ADMs, and staff from DEMA, for a 
given task (t), here valuation, and a given species (a) as:

 
Total animals orherds teamp,a,i,t g,a,i p,t,a

t,a

=∑ ( ) ⋅⋅
1

K  
(1)

where a is reflecting the animal species, g is the action these 
animals are undergoing—i.e., detection, depopulation, or surveil-
lance, teamp,t,a is the estimated team for a given type of personnel, 
task, and species, and Kt,a is the number of animals (or herds) of 
a given species that a team can handle per day for the given task.

For valuation, the number of veterinarians needed would then 
be calculated based on Eq. 1 as:

 
Total = herds VET 1

VET,a,i,valuation detection,a,i valuation,∑ ⋅ ⋅
KK valuation,a  

(2)

where VETvaluation is the number of VETs in the valuation team 
and Kvaluation is the number of herds a valuation team can handle 
in one day (Table 1).

1 Of the 12 persons, 3 are included as authors, and the 9 other persons are listed in 
the acknowledgements.
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TaBle 1 | inputs used for estimation of the total personnel resources needed during a foot-and-mouth disease epidemic in Denmark  
(brackets refer to eq. 1).

Task (t) Description Output from 
simulation model (g)

Team (team) estimate (k)

Detected herds

Valuation Valuation of animals in detected herds  
for compensations to the farmer

#Detected herds 3 assessor and 1 vet A team can per day assess
1 cattle herd or
2 swine herds or
4 sheep herds
1 car per team is needed

Culling Culling of all animals in detected herds #Animals in 
depopulated herds

1 coordinating vet Per hour
Cattle—1 vet, 4 
technicians, 1 truck driver

12 cattle

Swine—1 vet, 8–10 
technicians, 2 truck 
drivers

30 sows or 60 finishers  
or 300 weaners

Sheep—1 vet,  
1 technician

20 sheep

Cleaning and disinfection 
point

#Depopulated herds 1 vet in 4 h

Clinical examination and 
sampling

60 animals in detected herds are assumed  
to be sampled

#Depopulated herds 1 vet, 1 technician Per day: 1 herd

All animals are clinically evaluated

Cleaning and disinfection Preliminary CD #Depopulated herds 1 vet Per day: 1 cattle or swine herd
4 sheep herds

Personnel from the Danish Emergency  
Management Agency (DEMA)

#Depopulated herds 2 leading officers 2 days in each cattle/swine herd

Personnel from the DEMA #Depopulated herds 9 officers 2 days in each cattle/swine herd
Personnel from the DEMA #Depopulated herds 47 recruits 2 days in each cattle/swine herd

Final cleaning and 
disinfection

Conducted by subcontractors, but managed  
by this team

#Depopulated herds 1 vet 5 days in cattle and swine herdsa

0.5 day in sheep herdsa

suspicions We have assumed to have five suspected farms for each detected herd

Clinical suspected farms Fence, clinical inspections, testing, 
epidemiological interview, tracing

5 × #detected herds 1 vet, 1 technician Per day: 1 herd

surveillance in zones and 
in traced contact herds

The day of the surveillance is extracted from the simulation model

1 vet
Clinical surveillance #Surveyed herds Per day: 4 cattle or swine herds
Collection of blood samples #Surveyed herds 4 sheep herds

Vet, veterinarian.
aDivided over 21 days.

83

Boklund et al. Resource Estimations in Contingency Planning for FMD

Frontiers in Veterinary Science | www.frontiersin.org May 2017 | Volume 4 | Article 64

The total number of veterinarians needed for depopulation 
was calculated as:

 

Total = herds coordinatingVet  
+ ani

VET,a,i,depop depop,at,i∑

∑

⋅

mmals VET
1

workingHours

depop,at,i depop

depop,at

⋅ ⋅

⋅K  (3)
where at is now reflecting the animal species and type of animal—
i.e., cattle, sheep/goat, sows, finishers, or weaners, VETdepop is 
the number of VETs in the depopulation team, and Kdepop is the 
number of animals a depopulation team can handle per working 
hour. The numbers of coordinating vets at the herd is a constant, 
with 1 as the default value. Working hours was estimated from the 
working group to be 8 h efficient work a day, excluding transport 
time, and breaks.

The number of veterinarians needed for the cleaning and 
disinfection point (CDP) of the herd was calculated as:

 Total = herds CDP VETVET,a,i,CDP depop,a,i CDP∑ ⋅ ⋅  (4)

where CDP is the numbers of CD points in a herd (default = 1), 
and VETCDP is the number of days that a veterinarian will be 
needed at the CDP (default = 0.5). The CDPs were assumed to 
be used in cattle and swine herds only, based on the limited herd 
sizes of Danish sheep and goat herds.

The numbers of veterinarians used for clinical inspection (CI) 
in detected cattle and swine was calculated as:

 
Total herds VET 1

VET,a,i,CI depop,a,i CI
CI,a

=∑ ⋅ ⋅
K  

(5)

where VETCI is the numbers of veterinarians in the team used for 
CI in the herd and KCI is the number of herds a CI team can handle 
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TaBle 2 | inputs used for estimation of the total personnel resources in local crisis centers (lccs) during a foot-and-mouth disease epidemic in 
Denmark.

input Description Team estimate

LCCsa We assume that there will be three crisis centers active at all times during the epidemic. Management, 
communication, and competency development is in total, not per crisis center

Management (lead) 2 vet, 1 lawyer, 1 adm, 1 technician pr. crisis 
center, 1 human resource

Log and journals (log) Min. 3, 1 adm Per 5 detected herds

Press and communication (press) 1 technician Per crisis center

Case-officers (case) 1 adm Per 3 detected herds

Suspicion group (suspicion) 1 vet, ½ adm Per 2 SI the first 2 weeks, per 3 SI thereafter

Assessor (valuation) 1 adm Per 2 detected herds

Culling (cull) 1 vet Per 2 detected herds

Cleaning and disinfection Counted as part of detected herds

Epidemiology 1 vet, ½ adm Per 3 detected herds in the first 2 weeks, 
Per 4 detected herds thereafter

Screening (screening) 1 adm Per 50 detected herds

Movements and dispensations (MoveDisp) 1 vet, 1 adm First week  
Thereafter8 vets, 24 adm

Service and catering (service) 2 adm Per 100 persons

Logistics, equipment (log) 2 technicians, 5 adm Per 100 persons

Personnel administration (HR) 1 human resource person All epidemic

Competency development (Edu) 1 vet, 1 adm Per crisis center

Vet, veterinarian; Adm, administrative personnel.
aNames in brackets refer to the abbreviations used in the R-script (Supplementary Material).
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in one day. Because of the limited size of Danish sheep herds, CI 
and blood sampling was assumed to be included in the culling of 
the animals in sheep herds.

The numbers of veterinarians used for preliminary CD of 
detected herds was calculated as:

 
Total = herds VET 1

VET,a,i,CD depop,a,i CD,a
CD,a

∑ ⋅ ⋅
K  

(6)

where VETCD is the numbers of veterinarians in the team used for 
initial CD of the herd and KCD is the number of herds a CD team 
can handle in 1 day.

The following final cleaning and disinfection (FCD) of herds 
was assumed to be done by private commercial cleaning compa-
nies, but under guidance and acceptance by the official veterinar-
ians. Therefore, for each species, a certain time was needed for 
the veterinarians, but spread over a 3 week period of time, as few 
hours are needed a day. This was calculated as:

 
Total

herds VET 1

durationVET,a,i,FCD

depop,a,i FCD,a
FCD,a

F

=
∑ ⋅ ⋅

K

CCD  
(7)

where durationFCD is the time period over which the FCD is taking 
place and KFCD is the number of herds a FCD team can handle in 
1 day. This value is then included every day over the durationFCD.

When an epidemic is running, there will be suspicion of 
disease, also in herds that are not infected. Suspicions (SI), which 
are following detected with FMD as result of investigation, will in 
the model be counted as detected herds. However, there will be 
suspicion of FMD in non-infected herds as well.

As the simulation model only simulate spread of infec-
tion, we do not have information on non-infected SI from the 
model. Therefore, a conservative estimate based on data from 

the UK 2001 epidemic was used, i.e., five SI per detected herd 
was assumed for the numbers of inspections based on passive 
surveillance (23).

The SI were randomly distributed over a period of 10 days, 
starting the day after a herd was detected in the model. As it is not 
known in which herd type a suspicion will occur, we could not 
take herd type into account for SI. The number of veterinarians 
needed to inspect SI of FMD was calculated as:

 
Total herds VETVET,i,SI suspicion,i SI

SI,a

=∑ ⋅ ⋅
1

K  
(8)

where VETSI is the number of veterinarians used in the team 
investigating a suspicion and KSI is the number of herds a suspi-
cion inspection team can handle in 1 day.

The numbers of veterinarians needed for surveillance in 
traced herds and in herds in the protection or surveillance zones 
(zoneSurv) were calculated as:

 Total herds VETVET,i,zoneSurv surveillance,a,i zoneSurv= ∑ ⋅  (9)

where VETzoneSurv was the numbers of veterinarian needed for a 
surveillance visits. No difference was assumed between herd types 
for surveillance visits. From the output of the simulation model, 
the day of the surveillance visit was extracted and, therefore, even-
tual waiting time for a surveillance visit was already accounted for.

During an epidemic, a LCC will be created according to the 
Danish veterinary contingency plan (24). The numbers of LCCs 
in Denmark could vary from 1 to 3, related to the regions for offi-
cial veterinarians. It was assumed that all LCCs were active from 
the beginning to the end of the epidemic. The needed numbers 
of veterinarians were calculated as a total for all LCCs (Table 2). 
After the first 14 days after first detection, it was assumed that the 
experience in the crisis centers would result in more effectiveness 
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FigUre 2 | The number of veterinarians needed during a foot-and-
mouth disease (FMD) epidemic in Denmark. Based on results from a 
stochastic simulation model simulating 981 FMD epidemics in Denmark, all 
starting in a cattle herd. The central administration is not included. The solid 
black line indicates the median value, the dotted black line indicates the 75th 
percentile, and the lower and upper dotted gray lines indicate the 5th and 
95th percentiles, respectively.

FigUre 1 | numbers of detected herds for each epidemic in a 
simulated Danish foot-and mouth disease-outbreak. Nine hundred 
eighty-one iterations were simulated, all starting in a randomly selected cattle 
herd. The solid black line indicates the median value, the dotted black line 
indicates the 75th percentile, and the lower and upper dotted gray lines 
indicate the 5th and 95th percentiles, respectively.
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in the centers and, therefore, the time needed for different work 
tasks would be reduced (Table 2). The numbers of veterinarians 
needed in the LCCs were calculated as:

Total LCC LCC herds susVET,i,LCC VET,management detect,a,i= ⋅ + ∑ ⋅( ppicion
LCC herds LCC

herd
VET,suspicion detect,a,i VET,EPI

⋅

+ ∑ ⋅

+ ∑ ss LCC LCC
LCC

depopulated,a,i VET,depop VET,move

VET,comp

⋅ +

+  
(10)

where LCC is the numbers of local crisis centers, LCCVET,management 
are veterinarians working in the management of the group, 
LCCVET,suspecison are veterinarians working suspicisons, LCCVET,EPI 
are veterinarians working with epidemiology of the epidemic, 
LCCVET,depop are veterinarians working with depopulation of 
detected herds, LCCVET,move are veterinarians working with move-
ment restrictions in the zones, and LCCVET,comp are veterinarians 
working with educating new staff during the epidemic.

Similarly, the needed numbers of technicians, administrative 
staff, and personnel from DEMA were calculated for each day and 
each task in the epidemic, and summed over all tasks resulting in 
the daily needs for personnel. Furthermore, the needs for render-
ing capacity was calculated for ruminants and non-ruminants, 
and the needed equipment for culling and testing was calculated, 
however, not included in this paper. Details from these calcula-
tions can be obtained from the authors.

Materials
The simulation model as well as the calculations of resources 
was run using the freeware R (25). All estimated resources are 
presented in Tables 1 and 2 and calculations are presented above. 
The full model is available in the Datasheet S1 in Supplementary 
Material. From the stochastic simulation model, the following out-
puts per day of the epidemics were used as inputs in the resource 
calculations: numbers of detected herds, numbers of depopulated 
herds, numbers of animals (for each type of animal) in depopu-
lated herds, and numbers of surveyed herds (Table 1) resulting 
in a stochastic model of resources needed during an outbreak. 
Resource estimations were calculated for every single epidemic 
(981) and presented as median values and 5th–95th percentiles.

sensitivity analyses
The influence of estimates on the required number of staff dur-
ing an outbreak was investigated by decreasing or increasing the 
number of vets, technicians, and administrative staff as described 
in Table 4. We investigated the effect of change on valuation, cull-
ing, CD, surveillance visits in herds under suspicion of disease 
and in herds located in protection and surveillance zones, on staff 
at the LCCs being more or less efficient, the influence of only 
1 LCC, of DEMA present only 1 day in each herd compared to 
2 days (default), and of the numbers of DEMA personnel needed. 
Sensitivity analyses were run in 100 iterations.

resUlTs

The simulated epidemics had a median size of 22 (5–95%: 2–155) 
infected and detected herds (Figure 1) and a median duration 

of 34  days (5–95%: 2–142), counted from first detection until 
the last herd is culled, but not taking into account the time until 
zones are lifted. The median number of SI was 110 (5–95%:  
10–7,775).

Based on the results from the simulation models, we estimated 
that the need for personnel in the regions would peak in the first 
couple of days with a median of 116 veterinarians, 22 technicians 
needed, while the need for administrative personnel would peak a 
little later with a need for a median of 45 administrative personnel 
21 days in the epidemic (Figures 2–4; Table 3). Furthermore, the 
numbers of needed veterinarians would also increase at day 21, 
caused by the second surveillance visit of herds in the protection 
zone (Figure 2). Additionally, 174 persons would be needed from 
DEMA at day 2, mostly recruits (Figure 5; Table 3).

From the sensitivity analyses (Table 4), it was clear that the 
time needed to perform clinical surveillance in farms (either 
suspected farms or farms located in protection and surveillance 
zones) influences the estimated numbers of veterinarians and 
technicians needed during an outbreak. Increased efficiency 
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FigUre 4 | The number of administrative personnel needed during an 
foot-and-mouth disease (FMD) epidemic in Denmark. Based on results 
from a stochastic simulation model simulating 981 FMD epidemics in 
Denmark, all starting in a cattle herd. The central administration is not 
included. The solid black line indicates the median value, the dotted black 
line indicates the 75th percentile, and the lower and upper dotted gray lines 
indicate the 5th and 95th percentiles, respectively.

FigUre 3 | The number of technicians needed during an foot-and-
mouth disease (FMD) epidemic in Denmark. Based on results from a 
stochastic simulation model simulating 981 FMD epidemics in Denmark, all 
starting in a cattle herd. The central administration is not included. The solid 
black line indicates the median value, the dotted black line indicates the 75th 
percentile, and the lower and upper dotted gray lines indicate the 5th and 
95th percentiles, respectively.

TaBle 3 | estimated personnel needed at day 2, 7, 14, and 21 in 981 
simulated foot-and-mouth disease-epidemics in Denmark, starting  
in cattle herds given as median and 5th–95th percentiles.

Day in epidemic

2 7 14 21

Veterinarians 116 (60–164) 23 (12–144) 28 (12–94) 36 (19–135)
Technicians 22 (13–52) 16(11–33) 16 (11–35) 16 (12–38)
Administrative 35 (25–46) 19 (16–39) 19 (16–31) 45 (42–61)
Danish emergency 
management agency

174 (58–464) 58 (0–290) 58 (0–290) 58 (0–290)

FigUre 5 | The number of persons from the Danish emergency 
Management agency needed during an foot-and-mouth disease 
(FMD) epidemic in Denmark. Based on results from a stochastic 
simulation model simulating 981 FMD epidemics in Denmark, all starting in a 
cattle herd. The solid black line indicates the median value, the dotted black 
line indicates the 75th percentile, and the lower and upper dotted gray lines 
indicate the 5th and 95th percentiles, respectively.
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of only one LCC decreased the total manpower needed during 
the epidemics.

DiscUssiOn

Based on results from a stochastic simulation model, it was 
possible to create a model in R to estimate the requirements for 
personnel during an FMD outbreak in Denmark. The model can 
easily be adjusted, when new information on resources appear 
from management of other crisis, or when new simulation results 
are available from new model runs in peacetime. Furthermore, it 
is possible to adjust the model during a crisis, when model results 
from daily runs of the stochastic simulation model gives more 
precise estimates on the specific epidemic, or when adjustments 
in management procedures becomes available.

It was not surprising to find that especially the number of 
staff needed for surveillance visit influenced our results, as the 
numbers of herds in zones are so large. This was also in line with 
what was found by Garner et al. (17). This means that if veterinar-
ians doing surveillance visits can be more efficient, the number 
of needed veterinarians will decrease substantially. On the other 
hand, if veterinarians are not careful, the probability of detection 
by surveillance visits will decrease, resulting in larger and longer 
lasting epidemics.

A peak for veterinarians was predicted very early in the epi-
demic (Figure 2). However, the assumption in the model is to be 
able to survey 450 farms a day in the protection and surveillance 
zones. If resources for this surveillance are reduced, as described 
by Halasa et al. (15), surveillance visits will be delayed, leading 
to delayed detections, prolonged epidemic duration, and an 
expected right shift in the peak for resources needed.

The resources estimated here were based on simulated epidem-
ics and were shown to follow the simulated epidemic peaks closely 
(Figures 1, 2 and 5), however, with some delays for technicians and 
administrative personnel (Figures 3 and 4) and with an increase 
in needed resources again around day. Varying model inputs in 
the simulation model have previously been shown to change the 

in the LCCs, leading to decreased time needed for each task, 
decreased the need for veterinarians, technicians and admin-
istrative personnel, and using DEMA personnel for only 1 day 
instead of 2 in detected herds, had large influence on the total 
numbers of DEMA staff needed. Furthermore, the involvement 
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outputs (5, 19) and corresponding changes in resources can be 
expected. Especially, the low risk contacts and the probability of 
local spread and disease detection were highly influential (19). 
Furthermore, a decrease in the length of the high-risk period 
(HRP) would decrease the size, duration, and costs of an outbreak 
(5). However, using a conservative estimate with a mode of 21 days 
(18–23) as the HRP would relate to the 2001 FMD epidemic in 
Europe, where the HRP was estimated to 21  days in the UK  
(26, 27) as well as in the Netherlands (28).

Our estimates were based on daily outputs from 981 simulated 
epidemics under a basic control strategy, e.g., the strategy expected 
to be used, if an outbreak would occur tomorrow. However, in 
very large epidemics, there is a probability that decision makers 
would not choose to stick to the basic control strategy, but would 
most likely add extra control measures such as preemptive culling 
or emergency vaccination, and therefore, the resources needed in 
the extreme epidemics would change.

Surprisingly, it was shown that there was a very high need for 
recruits from the DEMA used in the CD of detected herds (Figure 5), 
which might turn out to be a bottle neck; while our expectations 
were that the Danish Veterinary and Food Administration could 
run out of veterinarians.

Before the UK 2001 outbreak of FMD, the UK State Veterinary 
Service used two scenarios in their contingency planning, one 
moderate scenario with 10 simultaneous outbreaks and 1 severe 
outbreak, also with 10 simultaneous outbreaks, but with a large 
herd density. And they found a need for 235 veterinary officers, 
which they extrapolated to around 300 in more severe outbreaks. 
During the UK 2001 outbreak, 57 premises were infected before 
the first herd was diagnosed, leading to an almost immediate need 
for all state veterinary officers. Before the end of the outbreak, 
another 2,500 temporary veterinary inspectors were appointed, 
nearly 70 from abroad, and another 700 foreign government vets 
and secondees assisted in periods (29).

Based on the experience in the UK, we could fear that we are 
underestimating the needs during an FMD crisis in Denmark. 
However, even though we were interested in estimating man-
power and materials needed, we were also aware that we can end 
up with even larger epidemics. Therefore, it was important for us 
to create a model, which can easily be adjusted during a crisis in 
an iterative process. Each time new information become avail-
able, regarding the epidemic or the resources needed, it can be fed 
into the model, and new outputs can be calculated. For example, 
if the compositions of the veterinary teams for different tasks are 
changed, we will change the inputs in the model and rerun it. Or 
if we rerun the stochastic model with historic data from the first 
10 days of the epidemic, we will have more precise estimates on 
the further development of the epidemic and that can be put into 
the resource model.

The results of our estimations seem somewhat lower than what 
was estimated in Australia (17). Direct comparisons are difficult, 
due to geographical differences, resulting in several state disease 
control centers and local disease control centers in Australia, 
differences in estimated size of the epidemic, i.e., Garner et  al. 
chose a 90th percentile epidemic and differences in how results 
are presented. Garner estimated nearly 20% of staff needed was 
veterinarians, while we estimated 33%.

The calculation of resources needed is an iterative process. 
The simulation model includes assumptions regarding resources, 
to simulate realistic epidemics, as scarce resources will prolong 
the epidemics. After assuming the available resources, we then 
calculate the daily needs. Naturally, this seems like a circular argu-
ment. However, in the simulation model, resources are roughly 
set as numbers of animals or herds that can be processed daily for 
either depopulation or surveillance. In the resource calculation 
presented here, we go into details regarding the teams for each 
task, the time needed, and look at number of herds and numbers 
of animals to process. The influence of the assumptions regarding 
resources has previously been described for depopulation (5) 
and surveillance (19). In both situations, the influence of reduc-
ing the resources was limited, reflecting that plenty of resources 
were assumed for most simulated outbreaks. This means that the 
calculations presented in this paper closely reflect the daily needs, 
when resources are not a limiting factor.

One of the assumptions was that all three veterinary regions 
would be involved from the beginning of the epidemic. While 
this was not truly realistic, the influence of this assumption was 
assumed to be limited, as many parameters even in the LCC 
depended on the numbers of herds and animals involved in the 
epidemic rather than the numbers of LCC. However, overall, we 
did estimate a clear decrease in the manpower needed for veteri-
narians as well as technicians and administrative staff. Therefore, 
an adjustment of the model taking region into account will be 
considered in future versions of the model.

In the current estimations, the very basic needs during an epi-
demic were estimated. Traveling time between herds was taken 
into account in the estimates (Table 1), while logistic challenges 
were not taken into account, such as veterinarians stuck in a herd 
after a surveillance visit that turned out to become a detection of 
an infected herd. In situations like that the veterinarian will stay 
in the detected herd and will not be able to visit other herds for the 
two following days. However, we assumed that the veterinarian 
would then be able to carry out other tasks, for example in the 
LCC. The competences needed for personnel involved in each 
task are described in details in the contingency plan for FMD (24) 
and in the project report (22). Furthermore, geographical chal-
lenges were not taken into consideration in these calculations. 
Denmark is a rather small country, where farmost destinations 
can be reached in a reasonable driving time (3–4 h). However, 
longer driving time will of course reduce the number of herds 
a veterinarian can visit on a given day. Nevertheless, estimating 
the amount of personnel needed gives us no answers in itself. 
To be able to use these estimates, it is necessary for the Danish 
Veterinary and Food Administration to compare with the present 
staff available and to consider how and where more personnel can 
be recruited to meet the needs during a crisis and which type of 
training is required in peace time, to be ready for an outbreak. The 
working group has continued working on this matter to update 
the Danish FMD contingency plan according to the results of 
the resource estimations and has given detailed descriptions on 
required competences for different types of staff for different tasks 
and how people can be trained to meet the challenges during a 
crisis. All of these results are described in a report from the expert 
group, in Danish (22).
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To minimize the potential consequences of an introduction of foot-and-mouth disease 
(FMD) in Europe, European Union (EU) member states are required to present a contin-
gency plan. This study used a simulation model to study potential outbreak scenarios 
in Sweden and evaluate the best control strategies. The model was informed by the 
Swedish livestock structure using herd information from cattle, pig, and small ruminant 
holdings in the country. The contact structure was based on animal movement data and 
studies investigating the movements between farms of veterinarians, service trucks, and 
other farm visitors. All scenarios of outbreak control included depopulation of detected 
herds, 3 km protection and 10 km surveillance zones, movement tracing, and 3 days 
national standstill. The effect of availability of surveillance resources, i.e., number of field 
veterinarians per day, and timeliness of enforcement of interventions, was assessed. With 
the estimated currently available resources, an FMD outbreak in Sweden is expected 
to be controlled (i.e., last infected herd detected) within 3 weeks of detection in any 
evaluated scenario. The density of farms in the area where the epidemic started would 
have little impact on the time to control the outbreak, but spread in high density areas 
would require more surveillance resources, compared to areas of lower farm density. The 
use of vaccination did not result in a reduction in the expected number of infected herds. 
Preemptive depopulation was able to reduce the number of infected herds in extreme 
scenarios designed to test a combination of worst-case conditions of virus introduction 
and spread, but at the cost of doubling the number of herds culled. This likely resulted 
from a combination of the small outbreaks predicted by the spread model, and the high 
efficacy of the basic control measures evaluated, under the conditions of the Swedish 
livestock industry, and considering the assumed control resources available. The results 
indicate that the duration and extent of FMD outbreaks could be kept limited in Sweden 
using the EU standard control strategy and a 3 days national standstill.

Keywords: foot-and-mouth disease, spread model, simulation, vaccination, stamping out, outbreak control

inTrODUcTiOn

Foot-and-mouth disease (FMD) is described by the World Organisation for Animal Health (OIE) 
as “the most contagious disease of mammals” (1). The FMD virus (FMDV, family Picornaviridae, 
genus Aphthovirus) causes an acute vesicular disease in cloven-hoofed animals. Seven FMDV 
serotypes have been described, with cross-protection among serotypes not being observed: O, A, C,  
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FigUre 1 | Overview of the events simulated stochastically in the DTU-DADs 
model.
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Asia1, and SAT1, SAT2, SAT3 (2). Due to its exceptional eco-
nomic impact, the disease is a high priority in disease surveil-
lance, contingency planning, and trading agreements around 
the globe. Despite not being a zoonosis, the disease can have  
severe psychosocial impact for the farming society. The extent 
of the negative effects of an outbreak in previously free coun-
tries, such as economic, social, and in animal welfare, can be 
demonstrated by the European 2001 outbreak that started in 
the UK (3).

In 2000 and 2001, outbreaks in the Republic of Korea, Japan, 
Russia, Mongolia, South Africa, the United Kingdom, Republic 
of Ireland, France, and the Netherlands were caused by FMDV 
of serotype O (of a particular genetic lineage named the PanAsia 
strain) (4). The European outbreak ignited an intense debate 
regarding the best control strategy during the outbreak, as well 
as their effect on trading reestablishment after the outbreak. 
The discussions resulted in a revision of the European Union 
(EU) legislation for the control of FMD, now established in the 
Council Directive 2003/85/EC. One of the main new elements 
of the current legislation, compared to previous ones, is the 
emphasis on preparation of contingency plans (5). Countries are 
urged to include the preparation for a “worst-case” scenario in 
the plan, and contingency plans should be regularly updated in 
light of current information.

Mathematical modeling was used extensively during the 2001 
FMD outbreak, especially in the UK, which was most severely 
affected (6–10). Since then, it has been a tool for evaluating con-
trol strategies in hypothetical scenarios, and supporting decisions 
when elaborating contingency plans (11–17).

Davis animal disease spread (DADS) is a stochastic simu-
lation model developed at the University of Davis (11) and 
programmed in R (18). The model was later adapted by the 
Technical University of Denmark (DTU) to simulate the 
spread of FMD using different control measures (12, 13, 19). 
The resulting DTU-DADS model has two main components. 
Between-herd spread is simulated using an agent-based model 
that simulates FMD spread through direct and indirect con-
tact. Within-herd spread is modeled as a compartmental model 
based on the work of Carpenter et al. (20), and parameterized 
following (21), as detailed in Ref. (12). Several options for 
outbreak control have been set up in the DTU-DADS model, 
which can be enforced in specific herds, buffer zones, or fol-
lowing contact tracing. The model explicitly takes into account 
the resources available and herds are queued if resources are 
exceeded.

We used a simulation model to study potential outbreak 
scenarios in Sweden in case of an introduction of FMD, assess 
their expected magnitude, and evaluate control strategy options. 
The model developed is a result of the partnership between 
epidemiologists from the Swedish National Veterinary Institute 
(SVA) and the Danish team that developed the spread model 
DTU-DADS at the Technical University of Denmark (DTU). SVA 
and the Swedish Board of Agriculture (SJV) worked together to 
define the main questions to be addressed, and the needed sup-
port to the decision-making process of drafting a contingency 
plan. Emphasis was given to the comparative effect of different 
control measures.

MaTerials anD MeThODs

The DTU-DADS spread model [version 0.15 (19)] was adapted 
by feeding the model with specific Swedish data, and by adjusting 
the R codes when needed. All model details are discussed below, 
and a full description of the model and parameters, including 
original descriptions from the DTU-DADS model when needed 
[transcribed from Ref. (12), including updates], are available in 
the Presentation S1 in Supplementary Material. Model param-
eterization focused on FMDV serotype O, the same that caused 
the European outbreaks of 2001, and which is the most widely 
distributed and prevalent FMDV serotype (4).

An overview of the stochastic events simulated in the model 
is given in Figure 1. Events are simulated in discrete time steps 
of 1 day. Simulations run from the day of the virus introduction 
until all infected herds are detected, or up to 365  days if the 
outbreak is not controlled.
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TaBle 1 | List of all inputs to the Swedish foot-and-mouth disease (FMD) spread model.

Parameter source Valuea

FMD 
transmission 
parameters

Probability of transmission when an infected 
animal is transferred to a new herd

DTU-DADS (12) Pert (0.95, 0.98, 1)a

Probability of spread by a truck carrying PIGS 
to slaughter

DTU-DADS (12) Before detection: Pert (0.005, 0.175, 0.35)
After detection: reduction of 20%

Probability of spread by a truck carrying 
RUMINANTS (cattle or small ruminants) to 
slaughter

DTU-DADS (12) Same as a medium contact risk (see below)

Probability of spread by a low risk contact 
(feedstuff trucks, rendering trucks, technicians, 
visitors, and milk tank trucks)

DTU-DADS (12) RUMINANTS: Pert (0.005, 0.175, 0.35)
PIGS: Pert (n, 0.005, 0.1, 0.35)

Probability of spread by a medium risk contact 
(persons visiting a farm and expected to visit 
another farm after, for example, veterinarians, 
artificial inseminators, and milk controllers)

DTU-DADS (12) Depends on the herd type.
RUMINANTS: Pert (0.1, 0.5, 0.9)
PIGS (all specified herd types): Pert (0.05, 0.2, 0.9)
PIGS (production type unknown—classified as “others”):  
Pert (0.1, 0.35, 0.9)

Local spread DTU-DADS (12) 95% within 100 m, 1.2% up to 1 km, 0.4% in 2 km, and 
0.1% in 3 km

Disease spread within a herd once an infected 
animal is introduced

DTU-DADS (12) Latent period: Poisson distribution with a λ of 3.59, 3.07,  
and 4.79 for cattle, swine, and sheep, respectively
Subclinical period: Poisson distribution with λ of 2.04,  
2.27, and 2.16

Time to detection if clinical signs are present DTU-DADS (12) If not detected due to surveillance or tracing, the probability  
of detection due to clinical signs per day for cattle and  
pigs: 0.085, 0.17, 0.51, 0.19, 0.06, and 0.07 for days from  
1 to 6, respectively. For sheep herds the probabilities for  
days from 1 to 9 were 0.02, 0.04, 0.27, 0.29, 0.14, 0.12, 
0.08, 0.05,5 and 0.12, respectively

Table 1 lists all model parameters and their sources. Further 
details for each parameter are given in Presentation S1 in 
Supplementary Material.

All disease transmission parameters that were thought to 
be readily applicable from the Danish to the Swedish livestock 
population, or to be independent from the host population 
(intrinsic pathogen properties) were kept as set up in the DTU-
DADS model, as explained individually for the parameters in 
Table 1 and Presentation S1 in Supplementary Material.

To adapt the model to the Swedish livestock population, 
specific data were collected for all FMD susceptible herds in 
Sweden, including animal movement data, as shown in Table 1 
and detailed in Presentation S1 in Supplementary Material. The 
direct and indirect contact networks among these herds were 
also characterized. Animal and people movements were charac-
terized and modeled according to herd type, but independently 
for two main geographical regions in Sweden: North and South. 
This was to account for the lower farm density in the north of 
Sweden.

The model considers each group of animals from the same  
species, within the same farm, as one herd, and models herds indi-
vidually; if a farm contains cattle and pigs, for example, cattle and 
pig herds are modeled individually. A farm ID is used to keep track 
of herds in the same farm, and enforce control measures in all herds 
within a farm equally. If for instance one of the herds is detected 
as infected, all herds belonging to the same farm are culled. A high 

probability of local area spread within 100 m is used to account for 
horizontal transmission between herds in the same farm.

Outbreaks were modeled under different scenarios of disease 
introduction, to assess the effect of different population param-
eters in the development of the outbreak. In each of 21 base 
scenarios, outbreaks were set to start in a herd of a particular 
type, and in each iteration, the first infected herd was randomly 
selected among all herds of that type. Seven scenarios had infec-
tion seeded in the south of Sweden, in one specific herd type (dairy 
cattle, cattle herds without milking activity, sow herds, fattening 
pig herds, weaners, multiplying pig herds, or small ruminant 
herds); another seven scenarios were related to the same herd 
types, but seeded in the north of Sweden; and finally herds were 
chosen based on the frequency of direct animal contacts in a year 
(low, medium or high contact network cattle herds; low, medium 
or high contact network pig herds; or high contact network small 
ruminant herds). In addition, spread was also evaluated when 2, 
3, or 4 initial seeds were set (number of infected herds to start the 
epidemic), all in cattle herds. The evaluated scenarios are listed 
in Table 2.

Base scenarios were simulated using a fixed control strategy 
(here we use “control strategy” to denote a specified collec-
tion of “control measures”). In these base control scenarios the 
mandatory conditions determined in the EU Council Directive 
2003/85/EC were implemented, and in addition a 3-day national 
standstill:

(Continued )
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Parameter source Valuea

Swedish animal 
population

Cattle herds:

 (1) geographical coordinates
 (2) herd size
 (3) type of herds

CDB database; and Swedish 
Salmonella surveillance (Estelle 
Ågren, personal communication)

A total of 23,247 cattle herds were classified into milking 
(3,427 herds) and not milking. See the Supplementary 
Material for a map and summary statistics

Swine herds:

 (1) geographical coordinates
 (2) herd size
 (3) type of herds

Swedish Board of Agriculture 
database of farms; and personal 
communication with “Jord På Trynet”

A total of 955 herds were classified into: satellite, weaners, 
integrated, fattening, KRAV integrated and non-integrated, 
multipliers, and others. See the Supplementary Material for  
a map and summary statistics

Sheep/goats herds:

 (1) geographical coordinates
 (2) herd size
 (3) type of herds

Swedish Board of Agriculture 
database

A total of 14,885 herds were classified into hobby  
(15,157) and commercial. See the Supplementary  
Material for a map and summary statistics

Probability of sending animals to slaughter National movement registry  
(CDB database)

Calculated for each herd individually, per day, based on  
actual movement data

Probability of sending animals to other herds National movement registry  
(CDB database)

Calculated for each herd individually, per day, based on  
actual movement data

Expected distance between herds moving 
animals and when sending animals to 
slaughter

National movement registry  
(CDB database)

Calculated separately for cattle, swine, and sheep, for  
regions North and South of Sweden, based on actual 
movement data from 2013. See the Supplementary  
Material for summary statistics

Probability of sending animals from each  
herd type to every other herd type

National movement registry  
(CDB database)

Calculated separately for cattle, swine, and sheep,  
for regions North and South of Sweden, based on  
actual movement data from 2013. See the  
Supplementary Material for summary statistics

Average of medium risk contacts coming to  
the farm, each day

Calculated based on data available 
from Ref. (22)

Poisson distribution λ=
Milking cattle herds: 0.1391881
Non-milking cattle herds: 0.01178143
PIG herds: 0.03535898
SHEEP herds: 0.01377529

Average of low risk contacts coming to the 
farm, each day

Calculated based on data available 
from Ref. (22)

Poisson distribution λ=
Milking cattle herds: 0.0904619
Non-milking cattle herds: 0.05215315
Milk tank truck: 0.11 (0.4297846*25%)
PIG herds: 0.0821647
SHEEP herds: 0.068445975

Probability of medium risk contacts going  
from each herd type to every other herd type

DTU-DADS (12) “Medium risk contacts from cattle herds were modeled to 
most often have another cattle herd as the destination herd 
(88%), while we modeled 60 and 40% of the medium risk 
contacts to go to other herd types (cattle or sheep) from 
hobby and non-hobby pig herds, respectively. From sheep 
herds, we assumed that 50% of the movements were to other 
sheep herds, while the other 50% were to pig or cattle herds.” 
Please note that in the Swedish model the herd category 
equivalent to “hobby” was “others,” which grouped all herds 
without commercial production type information available

Distance between farms visited in the same  
day by low and medium risk contacts

An estimate for Sweden lacks, therefore we used the same 
distances calculated for the movement of animals

Distance between the farm and the 
slaughterhouse

National movement registry  
(CDB database)

Calculated separately for cattle, swine, and sheep, for  
regions North and South of Sweden, based on actual 
movement data from 2013 (CBD database)

Number of herds visited by a slaughter truck,  
in average, in one trip to the slaughter house

DTU-DADS (12) CATTLE: 5 before detection, and 2 after detection
PIGS: 1–7, most likely 1 (see specific section for details)
SHEEP: modeled as a Poisson distribution with mean 1.5, 
and 1.2 after detection

Region Included in the model by SVA, 
separating North (listed in the  
range) from South (all others)

North region includes the following Swedish territories: 
Värmland, Dalarna, Gävleborg, Västernorrland, Jämtland, 
Västerbotten, and Norrbotten

TaBle 1 | Continued

(Continued )
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Parameter source Valuea

Start Seeding herd Swedish Board of Agriculture Chosen depending on the outbreak scenario (see text and 
Table 2)

Disease control 
scenarios

Day the epidemic is detected DTU-DADS (12) Default values: 21 days
Total range evaluated: 17–35 days

Survey capacity (number of herds that can  
be visited per day for surveillance)

Swedish Board of Agriculture 40 is the default value, ranges of 20–100 were evaluated

Culling capacity per day Swedish Board of Agriculture Default values: 1,250 ruminants and 2,750 pigs  
Total range evaluated: 500–3,000 ruminants; 500–3,000 
swine

Vaccination capacity per day Swedish Board of Agriculture Default values: 1,000 ruminants and 5,000 pigs  
Total range evaluated: 500–3,000 ruminants; 3,000–30,000 
swine

Control zones DTU-DADS (12), and in accordance 
to EU Council Directive 2003/85/EC

Protection: 3 km from an infected herd
Surveillance: 3–10 km

Number of days to revisit a herd in the 
surveillance zone

DTU-DADS (12) and 2003/85/EC 14 days

Delay for the second visit in case a herd 
is located in the intersection of multiple 
surveillance zones

DTU-DADS (12) and 2003/85/EC 7 days

Duration of the surveillance zone DTU-DADS (12) and 2003/85/EC 30 days

Movement ban DTU-DADS (12) and 2003/85/EC Ban on any animal movement in the country, 3 or 7 days
98% effective [Pert (0.95, 0.98, 1)]

Time necessary to trace all movements  
from infected herds

Swedish Board of Agriculture 1 day

Risk contacts (herds that received animals 
from infected herds)

DTU-DADS (12) and 2003/85/EC Compulsory depopulation or put under surveillance only

Probability of tracing contacts (back and 
forward) of an infected herd

Swedish Board of Agriculture 98% of tracing and 100% of detecting FMD if the herd  
is infected

Probability of tracing indirect, medium risk 
contacts of an infected herd

Swedish Board of Agriculture 80% of tracing and 99.9% of detecting FMD if the herd  
is infected

Probability of tracing indirect, low risk contacts 
of an infected herd

Swedish Board of Agriculture 50% of tracing and 99.9% of detecting FMD if the herd  
is infected

Ring depopulation DTU-DADS (12) and 2003/85/EC Radius: 500, 1,000, 1,500 m
Enforced: 1 or 14 days after detection of the epidemic;  
or enforced after 10, 20, or 30 herds are detected

Ring vaccination DTU-DADS (12) and 2003/85/EC Radius: 1,000, 2,000, 3,000 m 
Enforced: 7 or 14 days after detection of the epidemic;  
or enforced after 10, 20, or 30 herds are detected

Vaccination efficiency DTU-DADS (12) Pert (0.39, 0.42, 0.47)

Vaccination immunity built up DTU-DADS (12) See appropriate section for detailed number per day

Behavior changes after detection Swedish National Veterinary Institute 
(SVA)

Medium risk contacts would reduce with a probability Pert 
(0.7, 0.8, 0.95) and low risk contacts Pert (0.2,0.3,0.5)

Further details for each parameter are given in the Supplementary Material.
aProbability distribution used (minimum, most likely, and maximum).

TaBle 1 | Continued

• Culling of all animals in detected FMD-positive farms and 
their high risk contacts (farms that received animals from the 
infected ones).

• Establishing of a 3 km protection zone and a 10 km surveil-
lance zone around every detected farm. Susceptible animals’ 
movement prohibition is kept in these zones for 30  days, a 
period during which all herds are visited for clinical inspection 
twice, starting from the protection zone. More details are given 
in Presentation S1 in Supplementary Material (Section 1.4.2 in 
Supplementary Material).

• 3-day national standstill, i.e., ban of all susceptible animal 
movements after first detection.

A reduction in the number of indirect contacts among farms 
after detection of the outbreak was also enforced, as per param-
eters listed in Table  1. The standard detection day used in the 
DTU-DADS model (21 days) was set, and the estimated surveil-
lance capacity in Sweden is listed in Table 1.

After the effects of different scenarios of disease introduction 
were evaluated with this base control strategy, one of the base 
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control scenarios was chosen to evaluate the effect of applying 
alternative control strategies. The choice was based on the evalu-
ation of the base control scenarios and is described in the results. 
Alternative disease control measures were evaluated, using a range 
of parameters listed in Table 1 (see Table 2 for a list of the evalu-
ated scenarios):

• Preemptive depopulation (ring culling), for different ring radii, 
and triggered when a determined number of detected infected 
herds was reached, or outbreak control was not reached after 
a number of days;

• Ring vaccination (vaccination to cull), using different ring 
radii, and also dependent on the number of detected infected 
herds reached, or the outbreak length.

Based on the results of previous scenarios, three worst-case 
scenarios were chosen. Sensitivity analysis was carried out in 
these worst-case scenarios to ensure that the effect of different 
parameters could be more easily identified. Model sensitivity was 
evaluated against a range of values for the detection day and the 
effectiveness of the alternative control measures, and variation in 
the amount of surveillance resources available (daily survey and 
culling capacity, see Tables 1 and 2).

Finally, to confirm the conclusions drawn from the previous 
steps, all disease spread conditions determined to have high 
impact in the outbreak size were manipulated to exaggerate the 
worst-case scenarios, and create a chaos scenario. “Chaos” was 
assumed to be a consequence of a very high infection pressure 
to start with (four infected herds to start the epidemic, all in the 
south of Sweden and close to the Danish border), and a cumula-
tive number of failures in the effectiveness of all control measures 
applied. These conditions were intended to mimic an epidemic 
that starts and develops with a much greater magnitude than 
expected, compared to the typical outbreak scenarios modeled 
previously, or an epidemic that gets out of control. The effective-
ness of specific control measures were challenged against this 
chaotic scenario (see Table 2).

Table 2 lists every scenario evaluated. For each scenario, the 
following outputs are reported:

• Epidemic duration, in days, defined as the day from first detec-
tion until the day when the last infected herd was detected 
(note that control would then still continue until all infected 
farms are culled and surveillance and protection zones are 
lifted);

• Total number of herds infected during the course of the 
epidemic;

• Total number of herds visited by surveillance teams (herds put 
in surveillance queue due to being direct or indirect contacts 
of an infected farm, or for being in a surveillance zone);

• Total number of herds culled, and total number of animal in 
these herds;

• Total number of herds vaccinated, and total number of animals 
in these herds.

Ten-thousand iterations of scenario 1 showed that output 
medians and interquartile ranges were stable after 500 iterations, 
but the maximum varied due to longer epidemics observed in 
individual iterations when more repetitions were run. As a 
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com promise between achieving higher variability and keeping com-
pu tational time manageable, 1,000 iterations were simulated for  
each scenario.

The progression of scenarios described above focused on  
testing the model sensitivity to the control measures. To also 
evaluate the structure of the model, and the impact of the param-
eters that were imported from the Danish model, the transmis-
sion parameters listed in Table 1 were also subjected to sensitivity 
analysis. The probability of transmission associated with direct 
contact, slaughter trucks, low risk contact, and medium risk 
contact were increased and reduced to up to 20%. The effect of 
local spread was also subjected to sensitivity analysis, by remov-
ing any local spread that was not between herds in the same farm, 
or increasing the probabilities in radius from 1 to 3 km up to five 
times.

resUlTs

In general, the results showed that an FMD outbreak in Sweden 
would most likely be small and of short duration, and that base 
control measures as specified in the EU legislation, comple-
mented with a 3-day national standstill of all susceptible animals 

movements, would be enough for bringing the outbreak under 
control. Considering the 24 base scenarios evaluated, the median 
epidemic duration (time from detection of the first infected herd 
to the day in which the last herd was detected) was 3–15 days, and 
the median number of infected herds was 2–19 (with a median 
number of culled animals of 46–4,136). The 95% percentiles were 
for an epidemic of 20 days, involving 15 infected herds and cull-
ing nearly 5,000 animals.

Summary statistics for all the scenarios evaluated are presented 
in Table S2-1 in Presentation S2 in Supplementary Material and 
Table 1, and relevant results and conclusions are presented and 
discussed by group of scenarios below. Please note that epidemic 
duration is counted from the detection day. Simulations in which 
the epidemic was considered to die off before detection resulted 
in negative epidemic duration.

The results of the base scenarios (Figure 2) showed that the 
region where the outbreak started (North versus South) had little  
effect on the expected size and duration of the epidemic. By 
looking in detail into individual iterations, and mapping every 
modeled transmission event, it was possible to conclude that 
this was because epidemics starting in the North eventually 
spread to the South through long distance movements. The main 

FigUre 2 | Results for the base scenarios with outbreaks starting in the South, North, or based on number of contacts (trade), per herd type and herd species. 
Individual box plots represent the summary of 1,000 iterations for each scenario. All scenarios are detailed in Table 2, but in short: Milk = cattle herds delivering 
milk; NotMilk = herds without any reported milking activity; Sows = sow pools; Fatt = fattening pig herds; Wean = weaners pig herds; Breed = multiplier pig herds; 
SmallRum = small ruminant herds (sheep, goats, or both).
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difference between epidemics starting in the North and South 
are the resources needed to control the outbreak, as farm density 
is lower in the North, and therefore a smaller number of farms 
ends up in the surveillance zones. The median number of farms 
that needed to be visited by surveillance teams (direct contacts 
of infected farms, or farms within the surveillance zones) was 
106–381 for the base control scenarios in which epidemic started 
in the South (95% percentile = 448–915) and 49–195 in the North 
(95% = 188–734).

The effect of species and herd types seemed to be a direct effect 
of the contact network structure for each herd type. Epidemics 
starting in sheep/goats herds were generally smaller, due to a 
lower probability of direct (animal movement) and indirect 
(people movement) contacts. Cattle herds had very different 
results depending on whether it was a dairy herd or not, reflecting 
the larger number of indirect contacts expected daily in herds 
with milking animals. Outbreaks starting in pig herds in general 
resulted in an average epidemic size between milking and non-
milking cattle herds. The main impact of starting epidemics in 
pig herds was the higher number of animals that were culled, a 
reflection of their much larger herd size (see Presentation S1 in 
Supplementary Material for herd statistics). As epidemics were 
generally small, with only a few herds being culled, the size of 
the seeding herd had high impact on the total number of culled 
animals. Only the number of animals culled is shown in Figure 2, 

since the number of herds culled was almost always the same 
as the number of infected herds (Table S2-1 in Supplementary 
Material).

The number of pig herds in Sweden is very small, and as a 
result, epidemics that started in pig herds were ultimately driven 
by spread among cattle herds, as we could conclude from extensive 
analysis of the base control scenarios. Since cattle herds seemed 
to be driving spread, and the contact network (direct and indirect 
contacts) was the main driver of the epidemic size, a “typical 
outbreak scenario” was chosen as one starting in a cattle herd 
in the south of Sweden, with an average number of yearly direct 
contacts. This scenario was chosen to test the effect of alternative 
control measures, as shown in Table 2.

The main result for all scenarios designed to evaluate the 
effect of alternative control measures (listed in Table  2) was a 
remarkable lack of variation between these scenarios, as dem-
onstrated for a few selected scenarios in Figure  3, and for all 
scenarios in Presentation S2 in Supplementary Material (Figure 
S2-1 in Supplementary Material). Late detection (modeled as a 
pert distribution from 21 to 25 days, with most likely 23 days) 
had an effect in increasing the epidemic duration and the maxi-
mum observed number of infected herds, but not increasing the 
median number of infected herds. In all the different scenarios 
simulated the median number of infected herds was 3, and the 
95% percentile ranged from 12 to 15 for all scenarios but late 

FigUre 3 | Results of selected scenarios comparing alternative control measures and amount of resources available. Scenario labels are as presented in Table 2. 
Individual box plots represent the summary of 1,000 iterations for each scenario. Red lines mark the median for all the iterations in the “typical outbreak scenario” 
against which all measures are compared (first box plot), and the dashed lines represent the 25 and 75% percentiles for that scenario.
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detection, in which the 95% percentile for the number of infected 
herds was 19. Ring culling had only a marginal effect in reducing 
the epidemic duration, but not the number of herds infected. 
Ring vaccination did not reduce the epidemic duration nor the 
number of herds infected.

The “typical outbreak scenario” was examined on a daily basis, 
focusing on the number of herds put in the surveillance list daily, 
in comparison to the number of available teams. The results 
(Figure S2-3 in Supplementary Material, Presentation 2) showed 
that the number of herds to be visited per day only exceeded 
the capacity of surveillance immediately after detection in the 
median outbreak, with herds waiting at most a day to be visited 
in the cases when the outbreak was controlled within a week. 
Epidemics in iterations placed above the 90% percentile could 
take up to 19 days to be controlled. In those cases the number of 
days a herd would have to wait to be visited could be as high as 
14, with daily medians ranging from 0 to 8.

Sensitivity analysis were performed using three “worst-case 
scenarios” to magnify the observed effectiveness of control 
measures, which could have been hard to observe in the small 
outbreak sizes associated with the “typical outbreak scenario.” The 
sensitivity analysis showed that these results were robust for the 
range of parameters tested in the sensitivity analysis (see sensi-
tivity analysis section in Table 2), except for one: the day of detec-
tion (Figure S2-2 in Supplementary Material, Presentation 2).  
Table  2 lists the 19 scenarios evaluated based on worst-case 
scenario A (cattle scenario with highest expected epidemic size 
and duration—starting in a milking herd). If we exclude the two 
scenarios in which late detection was tested, the median number 
of infected herds for all other 17 scenarios ranged from 7 to 8, and 
the median epidemic duration was always 11 days (from detection 
of the first until detection of the last infected herd). Each week 
of delayed detection doubled the median number of infected 
herds, resulting in medians 16 and 32 herds for the scenarios of 
detection on days 28 and 35, respectively. The median epidemic 
duration for the late detection scenarios were 14 and 18 days.

For worst-case scenario B (starting in a pig herd with a great 
number of direct contacts), the median number of infected herds 
in the 17 scenarios tested with detection on day 21 (but varying 
the efficacy of various control measures) ranged 10–11, and the 
median epidemic duration was always 13 days. Detection on days 
28 and 35 increased the median number of infected herds to 30 
and 61, respectively, and resulted in a median epidemic duration 
of 17 and 21 days.

When the epidemic was seeded in four cattle herds at the same 
time (worst-case scenario C), but detection was not delayed, 
the median number of infected herds in all sensitivity analysis 
scenarios evaluated varied between 19 and 20 herds, with median 
epidemic duration varying between 15 and 16 days. Detection on 
days 28 and 35 increased the median number of infected herds 
to 40 and 87, respectively, and resulted in a median epidemic 
duration of 19 and 24 days.

Sensitivity analysis for the transmission parameters showed 
that the results were very robust to changes in punctual transmis-
sion parameters. As for the previous analysis, this was particularly 
true in scenarios with low expected number of infected herds.  

In the “typical outbreak scenario,” for instance, changes of up to 
20% in the probability of transmission following direct contact 
did not change the median number of infected herds. Evaluation 
of the percentage of all transmission events, over all iterations 
in that scenario, showed that about 45% were a result of direct 
contact, and 5% of movement to slaughter. This resulted in 
robustness of the model to changes in the probabilities of trans-
mission associated with slaughter movements. About 28% of 
the transmission events were due to indirect contact (low and 
medium risk contacts), and 22% due to local spread. The prob-
ability of local spread within 100 m was kept high in all scenarios 
to ensure transmission between herds within the same farm. As 
expected, increases in the probability of transmission for other 
distances resulted in a higher number of infected herds, but a 
fivefold increase in the probability of transmission within 1 km, 
for instance, only increased the median number of infected herds 
in the typical scenario by about two herds.

Based on the results of scenarios presented above, a cutoff of 
10 detected infected herds was set as a decision point for when 
authorities should start considering that the outbreak was not 
being brought under control. In all base scenarios the expected 
number of infected herds was under 10, and only higher in sce-
narios with multiple starting seeds or failures in the effectiveness 
of control measures. The effect of deciding to implement ring 
culling or vaccination after this threshold was reached was evalu-
ated in the chaos scenarios, and results are presented in Figure 4.

The scenario with infection seeded in four cattle herds in the 
south of Sweden at the same time, and detection after 4 weeks 
(base chaos scenario), resulted in a median number of 42 infected 
herds (95% percentile of 83 herds), and an epidemic duration of 
20 days between detection of the first and last herd (95% percentile 
at 33 days). This is assuming that all base control measures would 
be applied, and the surveillance capacity would be at a regular 
level, but all applied control measures would be 15% less effective 
than in the base scenarios (for instance effectiveness of enforce-
ment of the standstill, and effectiveness of tracing). Increasing the 
period of standstill was not effective in reducing the number of 
infected herds nor the epidemic duration. Ring vaccination was 
not effective in reducing the median number of herds infected, 
although the median epidemic duration was reduced by 1  day 
(median 19 and 95% percentile of 28 days).

The implementation of preemptive depopulation of all 
susceptible animals, in a radius of 1 km around every infected 
farm, would reduce the median epidemic duration in the chaos 
scenarios by 4 days (median 16 days; 95% percentile at 26 days). 
The median number of infected herds was reduced to 38 (95% 
percentile at 72 herds). As a consequence of the reduction in the 
number of infected herds (fewer surveillance zones to be estab-
lished), the median number of visited herds was reduced from 
1,075 in the base chaos scenario to 875 when culling was applied 
(95% percentiles at 1,439 and 1,327, respectively). The median 
number of culled herds, however, was increased from 42 to 86 
(95% percentiles at 82 and 179, respectively), and the median 
number of animals culled from 6,682 to 12,789 (95% percentiles 
at 23,002 and 29,897, respectively, for the scenarios without and 
with preemptive depopulation).
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FigUre 4 | Results of spread under a scenario of “chaos,” with only base control measures in place, and with implementation of additional controls. All scenarios 
are further detailed in Table 2. Individual box plots represent the summary of 1,000 iterations for each scenario. Red lines mark the median for all the iterations in the 
scenario with base control measures (first box plot), and the dashed lines represent the 25 and 75% percentiles for that scenario.

DiscUssiOn

A disease spread model was adapted to the Swedish livestock 
structure to evaluate the effect of different control strategies and 
inform FMD preparedness in Sweden. Results showed that an 
FMD introduction in Sweden will most likely spread slowly and 
be readily contained with adoption of a control strategy combin-
ing the control measures required in the current EU legislation 
for the control of FMD (Council Directive 2003/85/EC), and a 
national standstill. The detailed control strategy is: a 3-day prohi-
bition of all movements of susceptible animals after first detection 
(standstill), 3 km protection zones and 10 km surveillance zones 
around every detected farm, and culling of all animals in detected 
farms and their high risk contacts.

The results of the model are not meant to be interpreted as a 
strictly quantitative representation of reality. The application of 
models to decision-making, in general, should serve primarily 
as a means for comparing the effectiveness of different control 
measures, and assessing the comparative magnitude of various 
scenarios to understand the main outbreak drivers and the most 
important control targets (16). While we do not expect the model 
to tell us the exact number of herds that would be affected by 
a FMD outbreak in Sweden, for instance, the range of results 

evaluated gave us the expected dimension of the problem, in 
particular when compared among scenarios within this work, 
and also when compared to results from other countries.

Our results are a direct contrast to those observed when 
the same model was applied in Denmark, where the adoption 
of additional measures such as protective vaccination and ring 
depopulation were concluded to be cost-effective on most scenar-
ios of spread (12). The contrasting conclusions, however, increase  
confidence that the results observed are not an artifact of the 
model, and highlight the impact that the specific characteristics of 
the Swedish livestock structure had in the model. In comparison 
to Denmark, Sweden is characterized by a low density of farms, 
with much smaller herd sizes on average, and most particularly, 
a small pig industry (23–25). Many farms also have very limited 
trade of live animals (26). In Finland, where cattle and pig farms 
are also typically family owned and small in size compared to the 
rest of Europe, and where the livestock industry has also been 
decreasing in recent years, results of a risk assessment published 
in 2011 were similar to the ones presented here (27). The authors 
concluded that a possible FMD outbreak in Finland would be 
controlled within 5 weeks of introduction, affecting on average 
four farms, and even the larger expected outbreaks would involve 
few farms and be promptly controlled.
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Another difference to the original Danish model is that a 
reduction in the number of indirect contacts between farms after 
outbreak detection was assumed. The assumption that people 
would reduce all unnecessary traffic from and to their farms, once 
an outbreak is known to be occurring in the country, is based on 
feedback from farmers (28). It is also informed by the experience 
of our group through several outbreaks (of diseases other than 
FMD) and in particular a change in behavior noted in the country 
during the FMD outbreak in the UK in 2001.

The model was scrutinized by individual evaluation of multiple 
iterations per scenario, and mapping of every modeled transmis-
sion event, including the mode of transmission (direct or indirect 
contact). This confirmed that epidemic size was mainly driven 
by infected cattle farms. It also confirmed the expected effect of 
long distance movements in keeping North and South of Sweden 
highly inter-connected (29).

The choice of a predefined detection date (21 days after seed-
ing the infection) was based on extensive review of information 
from previous outbreaks performed by the Danish team that 
developed the DTU-DADS model (12, 13). Complementary 
work (not presented in this paper) trying to estimate the detec-
tion date based on the probability of animals showing clinical 
signs, and the documented efficacy of passive surveillance in 
Sweden, suggested that 21  days is a conservative assumption. 
Relaxation of this assumption, i.e., assuming a later detection, 
was the single parameter with the most impact in the epidemic 
size. Sensitivity analysis showed that each week of later detection 
generally doubled the expected total number of infected herds 
by the time the epidemic is controlled. The epidemic duration  
(i.e., from day of detection to day of detection of last infected 
herd), however, showed remarkable robustness when compared 
to the number of infected herds, and the median epidemic dura-
tion was increased by only 3–4 days when detection was delayed 
by 1 week, and another 4–5 days for an extra week of delay. This 
highlights that surveillance resources were rarely exceeded,  
and the base control measures modeled were sufficient to cope 
with outbreaks of dimensions much larger than what was consid-
ered the “typical outbreak scenario” for Sweden.

The DTU-DADS model (in the version used to carry out this 
work, 0.15) did not allow adjustment of the surveillance capac-
ity along the outbreak, that is, surveillance resources are fixed 
for the whole period of the epidemic. The surveillance capacity 
used in this model was based on what the Swedish Board of 
Agriculture considered feasible to gather in the first 1–3 days 
after detection of the first suspicion (and therefore arguably 
at the same time or shortly after confirmation). In reality, the 
number of surveillance resources could be increased after a few 
days of outbreak control. In the “typical outbreak scenario,” only 
in exceptional epidemics the number of herds that needed to be 
visited for clinical surveillance was greater than the number of 
teams available for field visits (see Figure S2-3 in Supplementary 
Material), and a herd queue was generated. The culling capacity, 
however, was never exceeded. Most of the farms in the model 
had herds smaller than the daily culling capacity per team 
declared by the Swedish Board of Agriculture and used in the 
model. Moreover, the number of herds that needed to be culled 
in the same day was very small.

The relatively small expected outbreak size and low demand for 
surveillance resources in all scenarios resulted in a high observed 
efficacy of the base control measures. In all evaluated scenarios, even 
the most chaotic ones, an FMD epidemic is expected to be controlled 
within 3 weeks from the detection of the first case. The number of herds 
infected is small, and most of the surveillance effort needed will be to 
visit farms that fall into the surveillance zones around each infected 
farm, to rule out infection. Surveillance capacity was not often exceeded.  
In epidemics that took longer than 2 weeks to control, herds could 
eventually wait longer than 2  days to be visited by a surveillance 
queue. However, herds in queue were those that needed to be visited 
because they fell within the surveillance zone. Suspected farms and 
high risk contacts are given priority in the surveillance visiting list, 
and therefore can be visited on the day of detection/tracing, as long 
as the number of infected herds and their direct contacts is below 
the number of surveillance teams, as was the case in all scenarios 
evaluated.

The base control measures were not only predicted to be 
effective, they were also robust. Reductions of up to 40% in the 
efficacy of a single measure can be compensated if everything 
else is assumed to be working properly. The number of infected 
herds was more sensitive to failures in control than the expected 
epidemic duration, due to the reasons discussed above.

Direct contact and local spread were the main modes of 
disease transmission. The central role of direct contact transmis-
sion is expected (30). In this model, the high percentage of local 
spread transmission is a consequence of the way the model 
was set up. Individual herds are modeled independently, and 
transmission between herds in the same farm is enforced by  
setting a high probability of local transmission within 100 m. The 
model was obviously sensitive to the set probability of transmission 
for other distance radius. In this model transmission events are 
modeled individually, and the addition of a local spread component 
was meant only to reflect any residual transmission not accounted 
for after modeling direct and indirect contacts explicitly.

The worst-case scenarios observed were those related to 
multiple introductions at the same time, and delayed detection 
of introduction. Even in those cases, a reduction in the expected 
number of infected herds as a result of the application of vaccina-
tion could not be demonstrated. Preemptive depopulation had 
an effect in reducing the median number of infected herds when 
very large epidemics were modeled (multiple introductions and 
late detection). Considering, however, that this measure would 
double the median number of herds and total animals to be culled, 
cost–benefit analysis will be needed to determine whether the 
benefits of applying this measure would justify the costs both in 
resources and animal welfare. As the current results indicate that 
the effect of preemptive depopulation can only become relevant 
for very large epidemics, this measure should only be considered 
after a large number of infected herds have been detected. Models 
exploring scenarios of FMD spread in the UK and Denmark 
have shown that ring culling can have a positive effect in specific 
circumstances (17, 31). We have, as those authors, concluded that 
the effect is not very pronounced, and more extensive analysis 
will be needed to determine the exact conditions under which 
an outbreak may have become large enough to justify preemptive 
depopulation.

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


104

Dórea et al. FMD Outbreak Control in Sweden

Frontiers in Veterinary Science | www.frontiersin.org July 2017 | Volume 4 | Article 118

reFerences

1. OIE – World Organisation for Animal Health. Chapter 2.1.8. – Foot and 
mouth disease (infection with foot and mouth disease virus). OIE Terrestrial 
Manual 2012. (2012). Available from: http://www.oie.int/fileadmin/Home/
eng/Health_standards/tahm/2.01.08_FMD.pdf

2. Pereira HG. Foot-and-mouth disease virus. In:  Gibbs  RPG, editor. Virus 
Diseases of Food Animals. (Vol. 2), New York, NY: Academic Press (1981). 
p. 333–63.

3. DEFRA – Department for Environment, Food and Rural Affairs. Animal 
Health and Welfare: FMD Data Archive. (2004). Available from: http:// 
footandmouth.fera.defra.gov.uk/

4. Knowles NJ, Samuel AR, Davies PR, Midgley RJ, Valarcher J. Pandemic 
strain of foot-and-mouth disease virus serotype O. Emerg Infect Dis (2005) 
11(12):1887–93. doi:10.3201/eid1112.050908 

5. European Commission. FMD: Byrne Welcomes New EU Legislation to Control 
Outbreaks. Press Release Database, IP/03/1307. (2003). Available from: http://
europa.eu/rapid/press-release_IP-03-1307_en.htm

6. Ferguson NM, Donnelly CA, Anderson RM. Transmission intensity and 
impact of control policies on the foot-and-mouth epidemic in Great Britain. 
Nature (2001) 413:542–8. doi:10.1038/35097116 

7. Ferguson NM, Donnelly CA, Anderson RM. The foot-and-mouth epidemic 
in Great Britain: pattern of spread and impact of interventions. Science (2001) 
292:1155–60. doi:10.1126/science.1061020 

8. Keeling MJ, Woolhouse MEJ, Shaw DJ, Matthews L, Chase-Topping M, 
Haydon DT, et al. Dynamics of the foot-and-mouth epidemic: stochastic dis-
persal in a heterogeneous landscape. Science (2001) 294:813–7. doi:10.1126/
science.1065973 

9. Morris RS, Wilesmith JW, Stern MW, Sanson RL, Stevenson MA. Predictive 
spatial modelling of alternative control strategies for the foot-and-mouth dis-
ease epidemic in Great Britain, 2001. Vet Rec (2001) 149:137–44. doi:10.1136/
vr.149.5.137 

10. Tildesley MJ, Deardon R, Savill NJ, Bessell PR, Brooks SP, Woolhouse ME, 
et al. Accuracy of models for the 2001 foot-and-mouth epidemic. Proc Biol Sci 
(2008) 275(1641):1459–68. doi:10.1098/rspb.2008.0006 

11. Bates TW, Thurmond MC, Carpenter TE. Description of an epidemic simula-
tion model for use in evaluating strategies to control an outbreak of foot-and-
mouth disease. Am J Vet Res (2003) 64:195–204. doi:10.2460/ajvr.2003.64.195 

12. Boklund A, Halasa T, Christiansen LE, Enøe C. Comparing control strategies 
against foot-and-mouth disease: will vaccination be cost-effective in Denmark? 
Prev Vet Med (2013) 111:206–19. doi:10.1016/j.prevetmed.2013.05.008 

13. Halasa T, Boklund A, Stockmarr A, Enøe C, Christiansen LE. A comparison 
between two simulation models for spread of foot-and-mouth disease. PLoS 
One (2014) 9:3. doi:10.1371/journal.pone.0092521 

14. Martínez-López B, Perez AM, Sánchez-Vizcaíno JM. A simulation model for 
the potential spread of foot-and-mouth disease in the Castile and Leon region 
of Spain. Prev Vet Med (2010) 96:19–29. doi:10.1016/j.prevetmed.2010.05.015 

15. Porphyre T, Auty HK, Tildesley MJ, Gunn GJ, Woolhouse ME. Vaccination 
against foot-and-mouth disease: do initial conditions affect its benefit? PLoS 
One (2013) 8(10):e77616. doi:10.1371/journal.pone.0077616 

16. Probert WJ, Shea K, Fonnesbeck CJ, Runge MC, Carpenter TE, Dürr S, et al. 
Decision-making for foot-and-mouth disease control: objectives matter. 
Epidemics (2016) 15:10–9. doi:10.1016/j.epidem.2015.11.002 

17. Tildesley MJ, Bessell PR, Keeling MJ, Woolhouse ME. The role of pre- 
emptive culling in the control of foot-and-mouth disease. Proc Biol Sci (2009) 
276(1671):3239–48. doi:10.1098/rspb.2009.0427 

18. R Core Team. R: A Language and Environment for Statistical Computing. 
Vienna, Austria: R Foundation for Statistical Computing (2015). Available 
from: https://www.R-project.org

19. Halasa T, Toft N, Boklund A. Improving the effects and efficiency of FMD 
control by enlarging protection or surveillance zones. Front Vet Sci (2015) 
2:70. doi:10.3389/fvets.2015.00070 

20. Carpenter TE, Thurmond MC, Bates TW. A simulation model of intra-
herd transmission of foot and mouth disease with reference to disease 
spread before and after. J Vet Diagn Invest (2004) 16:11–6. doi:10.1177/ 
104063870401600103 

21. Mardones F, Perez A, Sanchez J, Alkhamis M, Carpenter T. Parameterization 
of the duration of infection stages of serotype O foot-and-mouth disease virus: 
an analytical review and meta-analysis with application to simulation models. 
Vet Res (2010) 41(4):45. doi:10.1051/vetres/2010017 

While the base control strategy recommended based on this 
work is expected to be effective, it should be highlighted that the 
overall costs to the society and governmental agencies, as well 
as the workload, should not be overlooked. Effective control is 
associated with prompt implementation of a contingency strategy 
that would require deployment of 40 field surveillance teams per 
day and capacity to destroy thousands of animals per day. And for 
the control to be efficient, additional teams on central and regional 
level are needed working with contact tracing, data analysis, dis-
semination of information, logistics, etc., although these functions 
have not been included as a limiting factor in the model.

In summary, a potential FMD outbreak in Sweden is expected 
to be small and controlled fast through a 3-day national standstill, 
application of surveillance zones around infected farms, and cull-
ing of all animals in detected farms and their high risk contacts. 
This result is based on the assumption that detection would not 
be delayed by more than 4–5 weeks after introduction, that these 
measures would be enforced quickly after detection, and that the 
effectiveness of these control measures can be expected to fall 
within the range of values evaluated in this work.

aUThOr cOnTriBUTiOns

FD adapted the infectious disease model to Sweden, param-
eterized and ran the model, summarized results, and wrote the 

manuscript. MN, JF, and KS helped parameterize the model, 
set relevant scenarios to be evaluated, and analyze and interpret 
results. SW helped adapt the model to Sweden, prepare Swedish 
data, and evaluate model behavior. AB and TH wrote the initial 
infectious disease model, trained the group into using it, and 
helped inspect model behavior and interpret results once the 
model was adapted to Sweden.

acKnOWleDgMenTs

The authors thank the Swedish Board of Agriculture (Diana 
Viske, Vida Jordén, Thomas Svensson, Håkan Henriksson, and 
Bengt Larsson), Svensk Lantbrukstjänst (Mikael Lidholm), 
and Jord på trynet (Mats Schörling) for their invaluable sup-
port in informing the parameters for the model, and help “ask-
ing the model the right questions.” Financial support for this 
work was given by the Swedish Civil Contingencies Agency 
under grant program 2:4 on Emergency Preparedness/Civil 
Contingency.

sUPPleMenTarY MaTerial

The Supplementary Material for this article can be found online at 
http://journal.frontiersin.org/article/10.3389/fvets.2017.00118/
full#supplementary-material.

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive
http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.01.08_FMD.pdf
http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.01.08_FMD.pdf
http://footandmouth.fera.defra.gov.uk/
http://footandmouth.fera.defra.gov.uk/
https://doi.org/10.3201/eid1112.050908
http://europa.eu/rapid/press-release_IP-03-1307_en.htm
http://europa.eu/rapid/press-release_IP-03-1307_en.htm
https://doi.org/10.1038/35097116
https://doi.org/10.1126/science.1061020
https://doi.org/10.1126/science.1065973
https://doi.org/10.1126/science.1065973
https://doi.org/10.1136/vr.149.5.137
https://doi.org/10.1136/vr.149.5.137
https://doi.org/10.1098/rspb.2008.0006
https://doi.org/10.2460/ajvr.2003.64.195
https://doi.org/10.1016/j.prevetmed.2013.05.008
https://doi.org/10.1371/journal.pone.0092521
https://doi.org/10.1016/j.prevetmed.2010.05.015
https://doi.org/10.1371/journal.pone.0077616
https://doi.org/10.1016/j.epidem.2015.11.002
https://doi.org/10.1098/rspb.2009.0427
https://www.R-project.org
https://doi.org/10.3389/fvets.2015.00070
https://doi.org/10.1177/104063870401600103
https://doi.org/10.1177/104063870401600103
https://doi.org/10.1051/vetres/2010017
http://journal.frontiersin.org/article/10.3389/fvets.2017.00118/full#supplementary-material
http://journal.frontiersin.org/article/10.3389/fvets.2017.00118/full#supplementary-material


105

Dórea et al. FMD Outbreak Control in Sweden

Frontiers in Veterinary Science | www.frontiersin.org July 2017 | Volume 4 | Article 118

22. Nöremark M, Frössling J, Sternberg Lewerin S. A survey of visitors on Swedish 
livestock farms with reference to the spread of animal diseases. BMC Vet Res 
(2013) 9:184. doi:10.1186/1746-6148-9-184 

23. SVA – National Veterinary Institute. Surveillance of Infectious Diseases in 
Animals and Humans in Sweden 2015. Uppsala: SVA (2015).

24. Nöremark M, Håkansson N, Lindström T, Wennergren U, Sternberg 
Lewerin S. Spatial and temporal investigations of reported movements, 
births and deaths of cattle and pigs in Sweden. Acta Vet Scand (2009) 51:37. 
doi:10.1186/1751-0147-51-37 

25. Statistics Sweden. Agricultural Statistics 2016. (2016). Available from: 
http://www2.jordbruksverket.se/download/18.40bf03f155b59eb32ed8860/ 
1467814436106/JO02BR1601.pdf

26. Nöremark M, Håkansson N, Lewerin SS, Lindberg A, Jonsson A. Network 
analysis of cattle and pig movements in Sweden: measures relevant for disease 
control and risk based surveillance. Prev Vet Med (2011) 99(2–4):78–90. 
doi:10.1016/j.prevetmed.2010.12.009 

27. Lyytikainen T, Niemi J, Sahlstrom L, Virtanen T, Lehtonen H. The Spread of 
Foot-and-Mouth Disease (FMD) within Finland and Emergency Vaccination 
in Case of an Epidemic Outbreak. A Quantitative Risk Assessment. Evira 
Research Reports 1/2011. Helsinki: Finnish Food Safety Authority Evira 
(2011).

28. Nöremark M, Frössling J, Sternberg Lewerin S. Application of rou-
tines that contribute to on-farm biosecurity as reported by Swedish  

livestock farmers. Transbound Emerg Dis (2010) 57:225–36. doi:10.1111/j.1865- 
1682.2010.01140.x 

29. Widgren S, Frössling J. Spatio-temporal evaluation of cattle trade in Sweden: 
description of a grid network visualization technique. Geospat Health (2010) 
5(1):119–30. doi:10.4081/gh.2010.192 

30. Tildesley MJ, Volkova VV, Woolhouse ME. Potential for epidemic take-off 
from the primary outbreak farm via livestock movements. BMC Vet Res (2011) 
7:76. doi:10.1186/1746-6148-7-76 

31. Tildesley MJ, Keeling MJ. Modelling foot-and-mouth disease: a compar-
ison between the UK and Denmark. Prev Vet Med (2008) 85(1–2):107–24. 
doi:10.1016/j.prevetmed.2008.01.008 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2017 Dórea, Nöremark, Widgren, Frössling, Boklund, Halasa and Ståhl. 
This is an open-access article distributed under the terms of the Creative Commons 
Attribution License (CC BY). The use, distribution or reproduction in other forums is 
permitted, provided the original author(s) or licensor are credited and that the original 
publication in this journal is cited, in accordance with accepted academic practice. No 
use, distribution or reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive
https://doi.org/10.1186/1746-6148-9-184
https://doi.org/10.1186/1751-0147-51-37
http://www2.jordbruksverket.se/download/18.40bf03f155b59eb32ed8860/1467814436106/JO02BR1601.pdf
http://www2.jordbruksverket.se/download/18.40bf03f155b59eb32ed8860/1467814436106/JO02BR1601.pdf
https://doi.org/10.1016/j.prevetmed.2010.12.009
https://doi.org/10.1111/j.1865-1682.2010.01140.x
https://doi.org/10.1111/j.1865-1682.2010.01140.x
https://doi.org/10.4081/gh.2010.192
https://doi.org/10.1186/1746-6148-7-76
https://doi.org/10.1016/j.prevetmed.2008.01.008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


ORIGINAL RESEARCH
published: 10 October 2016

doi: 10.3389/fvets.2016.00090

Edited by:
Eyal Klement,

The Hebrew University, Israel

Reviewed by:
Dannele E. Peck,

University of Wyoming, USA
Karin Orsel,

University of Calgary, Canada

*Correspondence:
Carsten Kirkeby
ckir@vet.dtu.dk

Specialty section:
This article was submitted to
Veterinary Epidemiology and
Economics, a section of the

journal Frontiers in Veterinary Science

Received: 12 August 2016
Accepted: 26 September 2016
Published: 10 October 2016

Citation:
Kirkeby C, Græsbøll K, Nielsen SS,

Christiansen LE, Toft N, Rattenborg E
and Halasa T (2016) Simulating the

Epidemiological and Economic
Impact of Paratuberculosis Control

Actions in Dairy Cattle.
Front. Vet. Sci. 3:90.

doi: 10.3389/fvets.2016.00090

Simulating the Epidemiological and
Economic Impact of Paratuberculosis
Control Actions in Dairy Cattle
Carsten Kirkeby 1*, Kaare Græsbøll1,2, Søren Saxmose Nielsen3, Lasse E. Christiansen2,
Nils Toft1, Erik Rattenborg4 and Tariq Halasa1

1DTU VET, Section for Epidemiology, Technical University of Denmark, Frederiksberg, Denmark, 2 DTU Compute, Section for
Dynamical Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Frederiksberg, Denmark, 3 Section for Animal Welfare and Disease Control, Department of Large Animal Sciences, University
of Copenhagen, Frederiksberg, Denmark, 4 SEGES, Agro Food Park, Aarhus, Denmark

We describe a new mechanistic bioeconomic model for simulating the spread of
Mycobacterium avium subsp. paratuberculosis (MAP) within a dairy cattle herd. The
model includes age-dependent susceptibility for infection; age-dependent sensitivity for
detection; environmental MAP build up in five separate areas of the farm; in utero infection;
infection via colostrum and waste milk, and it allows for realistic culling (i.e., due to other
diseases) by including a ranking system. We calibrated the model using a unique dataset
from Denmark, including 102 random farms with no control actions against spread of
MAP. Likewise, four control actions recommended in the Danish MAP control program
were implemented in themodel based on reportedmanagement strategies in Danish dairy
herds in a MAP control scheme. We tested the model parameterization in a sensitivity
analysis. We show that a test-and-cull strategy is on average the most cost-effective
solution to decrease the prevalence and increase the total net revenue on a farm with low
hygiene, but not more profitable than no control strategy on a farm with average hygiene.
Although it is possible to eradicate MAP from the farm by implementing all four control
actions from the Danish MAP control program, it was not economically attractive since
the expenses for the control actions outweigh the benefits. Furthermore, the three most
popular control actions against the spread of MAP on the farm were found to be costly
and inefficient in lowering the prevalence when used independently.

Keywords: bioeconomic model, dairy cow, MAP, paratuberculosis, simulation model

INTRODUCTION

Paratuberculosis is a chronic infection in ruminants caused byMycobacterium avium subsp. paratu-
berculosis (MAP), and resulting in financial losses to the dairy industry worldwide (1), where the
prevalence of infected farms is believed to be substantial (2). Infected cattle can be subclinically
infected for years until the animals develop acute diarrhea and eventually die. Infected animals also
exhibit a decline in milk production. The annual economic loss due to MAP infection has been
estimated to be as high as $200 million in the US alone (3). In Denmark, a national voluntary MAP
control programwas initiated in 2006, and in 2013, the estimated median true between- and within-
herd prevalences among 925 herds participating in the control program were estimated to be 77 and
7%, respectively (4).
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Simulation models have been used in evaluating the impact of
different actions on the prevalence and spread of MAP in dairy
herds [e.g., Ref. (5–8)]. These models predict that the within-herd
true prevalence increases from 50 to 90% if no control actions are
implemented (6–11). However, the within-herd true prevalence
on farms in Denmark is much lower, around 7% (4), indicating an
endemic situation with a stable prevalence. The previous models
(mentioned above) are frequency-dependent models, in which
the probability of infection depends directly on the number of
infectious animals. Such models are suited for simulating epi-
demic situations [as described by Ryder et al. (12)]. Nevertheless,
paratuberculosis is a slow progressing disease of endemic nature
(7) and, hence, the chosen simulation model should reflect this
nature. Therefore, we chose a density-dependent model, in which
the probability of infection is dependent on the density of MAP
in the herd. This model is suitable for modeling disease spread in
endemic situations, especially when pathogens are spread through
the environment (12). The objective of our study was to build a
bioeconomicmodel framework, PTB-iCull calibrated to field data.
Here, we describe the model and show how we used it to esti-
mate the economic and epidemiologic impact of recommended
MAP control actions from Denmark’s paratuberculosis control
program.

MATERIALS AND METHODS

The PTB-iCull model is a stochastic, mechanistic, and dynamic
discrete event simulationmodel that deals with the spread ofMAP
within a dairy herd in Denmark. It is written in R (13), and the
current version of themodel simulates a closed herd (without pur-
chase of livestock) with a constricted herd size. Themodel consists
of two main components: a herd dynamics component (LifeStep
component) and a disease dynamics component. The time periods
determining the life stage for each animal and the durations of
the disease states of MAP infection are stochastically drawn from
relevant distributions (Tables S1 and S2 in Supplementary Mate-
rial). We used a dataset from the Danish Cattle Database hosted
by SEGES (www.seges.dk) including milk records from 293,929
individual cows on 610 farms, recorded between year 2000 and
2013. In total, almost 5 million records were used to parameterize
the cows in themodel with regard tomilk production and somatic
cell count (SCC). We also used another dataset comprising 102
randomly chosen herds that were not enrolled in the DanishMAP
control program. These herds were tested in August 2011 due to a
sampling error where all milk-recorded herds were tested instead
of just those in the control program. The error was detected after
5 days, so this cohort was considered as a random selection of
non-program herds (program herds were excluded). All lactating
animals in the herds were tested using the ID Screen (IDvet,
Graebels, France) ELISA for detection of MAP (see also Section
“ELISA” for test characteristics).

The simulation process is as follows: first, an initial herd is
generated. The proportions of heifers, milking cows, and all other
life steps are chosen to create a stable model, with regard to the
number of animals in each life stage (Table S3 in Supplementary
Material). In this study, the model represents a closed system
(no purchase of animals), but it is possible to simulate an open

herd. For each time step (1 day), the model tracks and updates the
age of all animals in the herd, days in milk (DIM, the number
of days a cow has been milking in the current lactation), the
number of days that remain in the present life stage of each animal,
and the number of days each animal has spent in the present
disease state. For each day, we calculated the animal units in
the herd and the number of slaughtered animals in each disease
state.

We here use the model to simulate different scenarios. In each
scenario, the farmer use a different strategy to controlMAP on the
farm, from no control to implementation of three control actions,
and a test-and-cull strategy.

Herd Dynamics
The model simulated a herd where the animals are kept indoors
throughout the year. The cattle pass successively through the life
stages in the model: calf; heifer; inseminated heifer; pregnant
heifer; early lactation stage (after calving); inseminated cow; preg-
nant cow; and dry cow, and then again to the early lactation stage
of next parity and so on. An animal can be culled at any stage
of its life, which is modeled based on distributions in the Danish
cattle population (Table S3 in Supplementary Material). We used
the initial number of lactating cows as the maximum number of
lactating cows during the simulated period. A typical Danish farm
is divided into five sections based on the life stage of the animal.
In the simulation model, animals are placed in one of the five
farm sections: calves (0–1 year old), heifers (1 year old until first
calving), lactating cows, dry cows, and calving pens. This reflects a
common structure of farms in Denmark and allows us to simulate
the spread of MAP within each section.

Insemination
When a heifer or a cow is inseminated, the insemination success
(and hence the probability of continuing into pregnancy) is given
by the probability of detecting the heat and the probability of
conception following insemination. Of the unsuccessful insemi-
nations, 90% (default) will wait 41 days before another insemina-
tion is attempted. The remaining 10% (default) will only wait one
estrous cycle (21 days) before a new attempt, corresponding to the
proportion of cows failing to conceive from an insemination. The
default maximum number of insemination attempts before a cow
is culled is seven (expert opinion).

Pregnancy and Calving
When an animal conceives, the number of days for pregnancy is
drawn from a normal distribution (Table S1 in Supplementary
Material). During the last stage of pregnancy, a cow is given
a number of days in the dry period (Table S1 in Supplemen-
tary Material). Half of the calves are bull calves and are sold
from the farm at a given price [161AC per calf (14)], and 4% of
the calves are stillborn (Table S4 in Supplementary Material).
Female calves proceed in the herd and are raised to heifers.
After calving, the dam enters the early lactation stage where it
produces milk. The number of days spent in the early lactation
stage is drawn from a normal distribution (Table S1 in Supple-
mentary Material). After the early milking stage, the cows are
inseminated.
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Culling
All heifers are inseminated, calve, and are put in the milking
section. If there aremore than 200 cows in themilking section, the
excess numberwill be culled once perweek. Culling is divided into
two parts: voluntary and involuntary culling. Involuntary culling
includes animals that are injured or subjected to other diseases
and therefore sent to slaughter. These are randomly selected, but
the probability of culling is dependent on the parity in order
to balance the demographic structure of the herd. Data on the
reasons for culling show that about 33% of cases are voluntary
(Kasper Krogh, SEGES, personal communication, 2014). Volun-
tary culling in the model is carried out by prioritizing which
cows should be culled, based on the information about simu-
lated milk production, reproduction status, SCC, and repeated
MAP ELISA values. We simulate quarterly observations of the
milk production and SCC level for each cow. Practically, this
is done by updating a cow-specific indicator measure for milk
yield, and another cow-specific indicator measure for SCC, for
each cow every time, there is a new observation. The observed
level of milk or SCC for each cow is a weighted measure with
35% weight on the latest measurement and 65% on the previous
value of the indicator. This results in an exponential smoothing
mechanism where the four latest measurements account for 73%
of the information, tomimic a farmer’s decision. Furthermore, the
farmer can use flags to mark and prioritize cows for culling as in
the national Danish Cattle Database (SEGES, Aarhus, Denmark).
A cow is flagged each time, it exceeds a specified value for each
of four categories: (1) milk yield is in the lowest 20% of cows
on the farm; (2) number of insemination attempts in the current
lactation is seven (default) or more; (3) observed SCC is above
200,000/ml (default), and (4) if test-and-cull strategy is used, a
minimum of two of the last four MAP ELISA values are positive
(according to the Danish MAP control program). Cull rates for
each parity estimated from the dataset from SEGES (parity 1:
26%, parity 2: 40%, parity 3: 51%, parity 4: 59%, parity 5: 65%,
and parity 6: 70%) are then added numerically to the number of
flags per cow to balance the cullings. We kept the income from a
culled cow fixed in the model at 483AC [600 kg× 0.805AC as listed
in Kudahl et al. (14)]. Besides culling, cows can die due to back-
ground mortality at a cost of 79AC per carcass (from the rendering
plant “DAKA SecAnim” 2014, see Table S4 in Supplementary
Material).

Milk Yield
The model simulates a non-quota system without any assump-
tions about financial support or delivery contracts. Milk yield is
recorded in kilograms of ECM (energy-corrected milk yield). We
assigned an individual milk production level to each cow, relative
to the other cows on the same farm. From this individual milk
production level, we modeled the daily milk yield with two cow-
specific parameters using the Wood lactation curve (15). We used
a daily variation (SD) in the milk yield of 0.1.

Heifers inherit the milk production level from their dam.
Animals get a new shape parameter for each parity. The shape
parameter, S, is drawn from an exponential distribution:

S ∼ exp (λ) (1)

where λ is 6.735207. The individual milk level, αM, for a cow will
be inherited by its offspring, with a regression tendency toward
the mean:

αM = N
(
1 +

(
αM

dam − 1
)

· 0.13, 0.19
)

(2)

where αM is the milk level of the dam, and 0.19 is the SD. We
calculated DIM for each cow (and heifer) from when they have
calved to when they are dried off. The farmer discards the milk in
the first 2 days of each lactation period.

Somatic Cell Count
We modeled the SCC per cow during each lactation period. The
values are generally inversely proportional to the milk yield over a
lactation and have been parameterized by fitting a Wilmink style
curve (16) to SCC data from the large dataset. The SCC level, αC,
for each animal is drawn from a normal distribution as estimated
from the dataset of Danish dairy herds:

αC = N (1, 0.051) (3)

where 0.051 is the cow-specific variation estimated from the data.
The SCC for the bulk tank milk is calculated for each day using a
daily variation (SD) of 0.043, which is normally distributed before
the log–log transformation.

We simulated a milk price according to the rules of Arla Foods
(17). If the farmer has a bulk tank milk SCC count lower than
200,000ml−1, the milk price increases by 2%. If the bulk tank
milk SCC count is between 201,000 and 300,000ml−1, the price
increases by 1%. If the bulk tank milk SCC count is between
401,000 and 500,000ml−1, the price decreases by 4%, and if the
bulk tank milk SCC count is higher than 501,000ml−1, the price
decreases by 10%.

Feeding
We calculated the cost of feed for every simulated day. Farmers
each have a specific feeding strategy, and therefore in order to
include a standardized procedure in this model, we simulated a
basic scenario for the cost of feed (Table S1 in Supplementary
Material). For calves, the feeding costs are a linear function from
0AC at day 1 to the daily heifer costs when they are 1 year old,
resulting in feeding cost for a calf of 170AC for their first year
of life. For heifers and dry cows, we set the feed to cost 0.931AC
per day, adding up to 340AC per year. The feed costs for raising a
2-year-old heifer are thus 510AC (170AC+ 340AC). Formilking cows,
we set the feed to cost 0.195AC per kilogram of milk produced per
day (18).

Disease Dynamics
Infected animals go through the following states of the dis-
ease in succession: susceptible, low-shedding, high-shedding, and
affected. The low-shedding state corresponds to a stage where the
animal is infected, asymptomatic, and without detectable levels of
MAP-specific IgG1, whereas the high-shedding state corresponds
to the infection stage where the cow becomes less able to control
the infection, with increasing amounts of MAP-specific IgG1 and
an increase in excretion ofMAP (19). To scale the amount ofMAP
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shed in the low-shedding, high-shedding, and affected states, we
set the shedding amount to between 0 and 100% of the possible
shedding amount. Thus, low-shedders shed 5%, high-shedders
shed 20%, and affected cows shed 100% of the possible amount
(see Table S2 in Supplementary Material). Once a cow begins
to show clinical signs such as reduced milk yield or diarrhea, it
transfers to the affected state. The number of days spent in each
disease stage is drawn from a specified distribution and assigned
to each animal (Table S2 in Supplementary Material). Susceptible
animals can be infected with MAP from the environment. MAP is
shed in the manure of infected animals, and viable MAP bacteria,
once introduced to a farm section, are capable of persisting in the
environment here. In the model, we keep track of every cow, the
amount ofMAP it sheds, and inwhich farm section.We, therefore,
calculated the bacterial load in each farm section per day, and the
daily survival rate for MAP was modeled by:

Surv (day) = exp
(
day ·

(
log (0.01)

385

))
(4)

where day is the number of days that have passed since the bacteria
were shed. This suggests that 99% of the bacteria will be dead after
385 days, in concordance with Whittington et al. (20).

Contamination between Farm Sections
We also simulate the spread of MAP between farm sections on
the dirty boots of personnel and wheels on machines (including
contaminated tools). For each time step, the amount of cross-
contamination of MAP from each section is calculated as:

Spilloverj =
(

exp
(

−1
NP

)
· SP + exp

(
−1
NM

)
· SM

)
·MAPj (5)

where NP and NM are the numbers of personnel and machines,
respectively, that can potentially transmit MAP between farm
sections, SP and SM is the level of cross-contamination from boots
and machines, respectively, and MAPj is the amount of MAP
shed in farm section j. Cross-contamination of MAP from all four
sections is summed daily and divided equally between the sections
to simulate an even spread ofMAP on the farm. A machine on the
farmby default takes 3%of the bacteria shed fromall farm sections
(maximum 8% of shed MAP can stick to machines) and divides it
evenly into all sections again. The default for one farm worker is
0.3% of daily shed bacteria in each section (maximum 1% of shed
MAP can stick to personnel).

Risk of Infection from the Environment
The daily risk of obtaining an infection for the individual animals
is modeled through the environment:

Rj = 1 − (1/ exp ((1/H) · F · MAPj)) (6)

whereRj is the probability of each animal of acquiring an infection
with MAP shed in farm section j, H is the hygiene level on the
farm, F is the force of infection parameter, which was calibrated
in the model (see below). MAPj is the amount of MAP shed in
section j. MAP can thus accumulate in each farm section, but the
survival of the bacteria decreases with time. It is possible to adjust

the force of infection in the model, thus increasing or decreasing
the risk of infection from the environment.

The hygiene level represents the likelihood that MAP will find
a surface to stick to in the farm section, i.e., in principle a proxy of
how clean the stable is.

Risk from Other Transmission Routes
Within the model, there are different transmission routes: in utero
infection, infection from MAP in the environment of each farm
section, infection from colostrum, and infection from waste milk.
For in utero infection, we used the estimates fromWhittington and
Windsor (21), but for the latter three, we did not have a direct esti-
mate from the literature. However, a previous Danish study (22)
estimated that the annual reduction in the odds ratio of infection
when calves were not fed waste milk from repeatedly test-positive
cows was −0.05. Over a 5-year period, this effect corresponds to
an odds ratio of exp(−0.05·5)= 0.78 (CI: 0.65–0.95). Similarly,
the effect of not using colostrum from repeatedly test-positive
cows was exp(−0.04·5)= 0.82 (CI: 0.67–1.00). In this model, we
set the risk of infection from waste milk to 0 when the calves
are not fed with waste milk from repeatedly test-positive cows.
Likewise, we set the risk of infection from colostrum to 0 if the
farmer did not feed calves with colostrum from repeatedly test-
positive cows. To adjust waste milk risk, colostrum risk and force
of infection, we ran a series of simulations [with 500 iterations,
3-year burn-in period (initial simulation time required to stabilize
the system)+ 5 simulation years and 5.6% initial prevalence],
varying these levels (data not shown). This gave a 3D parameter
space for calibrating the model. We then chose the set of parame-
ters that came closest (based on visual inspection) to (1) keep the
true prevalence stable at about 5.6% over the five simulated years,
(2) yield a 22% lower apparent prevalence when not feeding calves
with waste milk from repeatedly test-positive cows, and (3) yield a
18% lower apparent prevalence when not using colostrum from
repeatedly test-positive cows. This approximation was deemed
appropriate for calibrating the three levels of infection in the
model to maintain a stable endemic status of MAP in the farm.
If the farmer removed the calves from the dam at birth, the
risk of infection from the dam was reduced by 95%, causing the
apparent prevalence to drop to about 0.80% compared with no
calves being removed. This was within the confidence limits for
the estimated effect of this control action which was previously
estimated to reduce the risk of infection to 0.70% (0.53–0.95% CI)
of the previous level (22). We did not want to reduce this risk to 0
when the control action was implemented, since the calf still faces
some risk of infection from the dam via in utero transmission.

Model Calibration
In the model, we record both true and apparent prevalence within
the herd. The true prevalence is observed from the number of
infected (adult) cows, in all states of disease. The apparent preva-
lence is calculated from the number of (adult) cows that are test-
positive. We used the maximum of the estimated prevalence (45%
prevalence) to determine a low-hygiene scenario in a herd with
high prevalence, hereafter referred to as the low-hygiene herd
(Figure 1).

We calibrated the force of infection in the model, so the preva-
lence was stable over five simulated years. This time span was
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FIGURE 1 | The distribution of the true prevalence calculated for 102
randomly chosen herds in Denmark. The dashed lines show the 25, 50,
and 75 percentiles (at 0.8, 5.6, and 9.3% prevalence, respectively), and the
dotted line show the maximum observed prevalence (45%).

chosen because the estimated effects (odds ratios) of the control
actions were based on a maximum of 4 years (22). Paratuber-
culosis has been present in Denmark for many years. There-
fore, we assume that the within-herd prevalences have stabilized
within each farm. Furthermore, we found no evidence in our data
(Figure 1) of within-herd prevalences >45%. Even if some farms
have such a high prevalence, they would be rare, and our aim was
to represent average Danish farms.

We based our “no control” (baseline) scenario on the dataset
of 102 farms described above. Age-specific sensitivity estimates
alongwith the specificity (23)were used to estimate the true preva-
lence within these herds, using the approach described in Sergeant
et al. (24). The resulting prevalences are shown in Figure 1.

Calves
At calving, calves have a probability, Pj, of becoming infected:

Pj = 1 − (1 − D) (1 − S) (1 − (Rj (1 − C))) (7)

where j denotes the (calving) section, D is the probability of
infection from the dam to the calf: 9% for calves born from
subclinical cows (states: low-shedding and high-shedding), and
39% fromclinical cows (state: affected or clinical) [(20); Table S1 in
SupplementaryMaterial]. S is the reduction in the risk of infection
from the dam to the calf when they are separated, corresponding
to 0 if calves are not removed from the dam within 2 h from birth.
R is the risk of obtaining an infection from the environment. C is
the fractional reduction in the MAP shed within the calving area
if the farmer cleans between calvings, default set to 1. See below,
for the calibration of these parameters.

If the calf is removed from the dam within 2 h after calving,
D is decreased by 7% [default; taken as the difference in risk
between not removing any calves, and removing calves from cows
identified as infected (22)]. We used 4% (default) risk of this if the
individual calving pens were not cleaned between calvings [taken
as the difference in risk between not cleaning calving pens and
cleaning calving penswith repeatedly test-positive cows (22)]. The
susceptibility of newborn calves to infection is equal to 1. A risk

calf (i.e., a calf born to a dam with antibodies) is back-traced if
their dam delivers a positive ELISA within 200 days after calving,
enabling a strategy where risk calves can be culled (25).

After calving, the calves have a daily probability of becoming
infected:

Pj = (1 − (1 − Rj) (1 − RM · F)) · Susc(age) (8)

where Pj is the cumulated probability of infection from MAP in
section j, here the calf section, Rj is the risk of infection fromMAP
shed in farm section j, RM is the risk of infection from colostrum
when the calf is 1–3 days old or from waste milk when the calf
is between 3 days and 8weeks old. F is the fraction of lactating
cows that are infected at that time (and therefore able to infect
via colostrum or waste milk), and Susc(age) is the age-dependent
susceptibility, equal to 1 for newborn calves.

Heifers and Cows
Heifers, lactating cows, and dry cows have a daily probability, Pj,
of becoming infected:

Pj = Rj · Susc(age) (9)

where Rj is the risk of infection fromMAP shed in section j, where
j can be any one of the four sections: heifers, lactating cows, dry
cows, or the calving pen. Susc(age) is the susceptibility depending
on the age of each animal.

Traditionally, calves have been perceived as most susceptible to
MAP, but recent research has shown that animals older than 1 year
are also susceptible to MAP infection (26, 27). In this model, we
constructed the susceptibility of each animal toMAP given by this
function:

Susc(age) = exp(−0.01 · age) (10)

where 0.01 is a scaling coefficient, and age is measured in years.
In this way, the susceptibility to infection drops exponentially to
2.6% at the age of 1 year and 0.07% at the age of 2 years. Thus, there
is a small risk of infection for older animals.

ELISA
We incorporated cow-specific results based on the ELISA in the
model. Milk ELISA is done quarterly in all herds participating in
the Danish MAP control program. The sensitivity of the ELISA
is based on Nielsen et al. (23) and is a logarithmic function
dependent on the age of the tested animal, resulting in an ELISA
value indicating if the animal is infected.

To simulate the test strategy currently used in Denmark, cattle
in the different states of MAP infection are tested every 3months.
Animals that are susceptible to MAP are assigned a test value for
the ELISA reading taken from a uniform distribution between 0
and 0.30405 (to simulate a specificity of 98.67%). The cut-off for
identifying a cow with antibodies is ≥0.30, and test values above
0.30 for susceptible animals are considered technical variation.
The test value for an animal in state 1 (infected and low-shedding)
and state 2 (infected and high-shedding) is given by:

TV (age) = U [Cut − ((1 − Sens (age)) · 4.5) ; Cut
+(Sens (age) · 4.5)] (11)
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where TV (age) is the test value dependent on the age of an
animal, U is a uniform distribution defined by [min; max], Cut
is the cut-off used to determine positive tests, and Sens(age) is the
sensitivity for the ELISA dependent on age of the tested animal,
based on Nielsen et al. (23). The min and max of the uniform
distribution are calculated, so that the proportion of the interval
above the cut-off value is the same as the age-sensitivity for a
given animal. In this way, the ELISA value is adjusted to the age of
each tested animal and to the specific cut-off value. For example,
animals at the age of 1, 2, 3, 4, and 5 years have the probabilities
of 3, 27, 54, 68, and 74%, respectively, of a positive result. If the
uniform distribution yields a negative test value, it is converted
into 0 in concordance with real ELISA values. The test value 4.5 is
introduced to create amaximumvalue of 4.5 test value units above
the cut-off, reflecting real ELISA values.

Animals in the affected stage of infection get a test value taken
from a uniform distribution between 0.5 and 5 and will therefore
always be positive. Every 3months, the animals are separated into
antibody groups based on the repeated recordings of the last four
test results, as described by Nielsen (25).

Economics
Infected animals are subjected to a reduction in slaughter value
due to weight loss if they have tested positive in at least one of
the last three tests (28). Therefore, cowswith fluctuating responses
lose 12.9% of their slaughter value, those with only the latest test-
positive lose 7.9% of the slaughter value, and those with repeated
positive ELISAs lose 16.6% of their slaughter value. The relative
ECM yield level in infected cows is reduced according to the latest
ELISA value (29), wherewe describe the dailymilk reduction,MR,
in ECM by:

MR =


2/3TV2 − 2/5TV + 1.02 , TV < 0.3
0.96 , 0.3 ≤ TV < 0.9
1 − 0.044TV , 0.9 ≤ TV

(12)

Milk production and the income from slaughtered cows are
summarized both as measures corrected for ELISA values and
uncorrected measures for comparison with a MAP-free scenario.
For each simulation, the number of ELISAs performed, bull
calves sold, carcasses destroyed, and inseminations conducted
are summarized, as are the man-hours spent cleaning calving
boxes (1 h per calving), handling colostrum (2 h per test-positive
cow calving), and handling calves if removed immediately
following birth (1 h per test-positive cow calving). The model
also summarizes the daily amount of money spent on feed (see
Feeding). The prices of milk and labor costs per hour are listed in
Table S1 in Supplementary Material.

For each simulated scenario, we calculated the change in net
revenue annually by subtracting the expenses (feed, labor, insemi-
nations, anddestructions) from the income (milk production, sold
bull calves, and slaughtered cows). To obtain the yearly change in
net revenue per cow year, we also divided the net revenue by the
annual number of cow years for a comparison of the simulated
scenarios. We chose to use cow years for comparability with other

studies even though the number of cows in the simulated herd
varies only slightly over the years. For all scenarios, we also report
total net revenue (the sum of net revenue over 10 years). We
did not consider the development of value over time; that is, we
assume a 0% discount rate.

Test Herd Generation
We generated a test herd to examine the model performance and
evaluate the test scenarios. The test herd represents amedium-size
Danish dairy herd with 118 calves (age 0–1 year), 127 heifers (age
1–2.5 years), and 200 cows (age 2–7 years) (Table S3 in Supple-
mentary Material). The milk level for each cow was randomly
assigned from a distribution estimated based on the dataset. A
number of animals in the test herd were initially infected from
the beginning of the simulations according to the specified preva-
lence. The number of initially infected animals and their pro-
gression through disease states were randomly chosen for every
simulation. The number of days spent in the assigned disease
state was drawn from a normal distribution with mean equal to
the corresponding value taken from expert opinion (Table S2 in
Supplementary Material).

For comparison of the results, we set the seed to a new value at
the beginning of each iteration. We used the same string of seeds
on all test scenarios to allow comparisons.

Impact of MAP Control Actions
We used the model to examine the epidemiological and economic
impact of four of the seven recommended actions to control and
prevent infection with MAP in dairy cattle herds (22, 25). The
actions are built upon a classification system where cows are
divided into “red,” “amber,” and “green” groups. “Red” cows have
tested positive a minimum of two times within the last four tests
(repeatedly test-positive cows), “amber” cows have tested positive
at least once in the last four tests, and “green” cows have only tested
negative in the four most recent tests (25).

The four evaluated actions are described below, including
implementations, costs, and impact:

(1) Remove calves from “red” and “amber” cows within 2 h
of calving. Of 1081 farmers in the control program, 736
(68%) stated that they had implemented this practice (22). It
decreased the apparent within-herd prevalence to 70% of the
initial prevalence over a 5-year period (22) and is estimated to
cost one man hour per calving.

(2) Avoid feeding colostrum from “amber” or “red” cows to
calves or pasteurize colostrum. Of 1081 farmers in the control
program, 707 (65%) claimed to do this (22). It was estimated
to decrease the apparent within-herd prevalence to 82% of the
initial prevalence over a 5-year period (22). The financial cost
of this action has been set to 0.

(3) Avoid using waste milk from “amber” or “red” cows for feed-
ing calves. Of 1081 farmers, 742 (69%) in the Danish control
program implemented this, causing the apparent prevalence
to decrease to 78% of the initial prevalence over a 5-year
period (22). This action has been set to have no direct finan-
cial cost.
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(4) If “red” cows are not allowed to calve, they get a flag on the
culling list and are therefore prioritized for voluntary culling.
This action has no direct economic cost and the impact is a
direct output of the model.

Herd Hygiene: Average vs. Low
For each control scenario, we used a generalized test farm that
resembled the average Danish farm with 200 cows. In all simu-
lations, we used a burn-in period of 3 years to stabilize the herd
(especially with regard to build-up of MAP in the environment)
before any actions are implemented.We initiated all scenarioswith
5.6% prevalence and repeated the simulations 500 times which
was found to be adequate in the convergence test (Figure S1 in
Supplementary Material).

For the average-hygiene herd, we set the hygiene level to 1
in this scenario, stabilizing the true prevalence at a median of
6% within the simulated herd in the baseline scenario. For all
other MAP-related parameters, default values were used (Table
S2 in Supplementary Material). In this study, we simulated the
following scenarios:

(1) No actions against MAP infection are implemented (baseline
scenario).

(2) The three most popular actions (1–3 as described above), i.e.,
those that were implemented by more than 50% of the par-
ticipating farmers in the control program (22, 25) are imple-
mented. We make the assumption that farmers implementing
an action for all possibly infectious (“amber”) cows will also
implement it for cows identified as likely to be infectious
(“red” cows).

(3) The farmer implements actions 1–3 (as described above) in
addition to culling the cows identified as infectious (“red”
cows).

(4) The farmer only implements action 1.
(5) The farmer only implements action 2.
(6) The farmer only implements action 3.
(7) The farmer places only implements action 4.

We also simulated a herd with a prevalence of 45% (the highest
herd prevalence found in the 102 herds with no control) for
comparison with the average-hygiene herd. The initial prevalence
was set to 45%, and the hygiene level was adjusted to 0.806. In
a sensitivity analysis, this hygiene level was able to sustain a
median prevalence of 45% over 10 years (data not shown). This
low-hygiene herd reflects a scenario where the hygiene level,MAP
build-up and general properties of the farm and management
cause the prevalence to persist at 45%. As in the average-hygiene
herd, we allowed a 3-year burn-in period for MAP to build up in
the farm sections. We also used the same number of animals and
the same age demographics as assumed for the average-hygiene
herd.

Model Validation
Internal Validation
We internally validated the model using the rationalism method
(checking the consistency of results and comparing results with
different inputs), the tracing method (following single animals
and their properties over time), unit testing (where cow attributes

were observed and controlled during model iteration), and the
face validity method (where the code was revised for functionality
and all input parameters scrutinized) (30).

External Validation
We compared the true prevalence predicted by the model to the
true prevalence from the dataset of 102 farms without control
measures. In this way, we validated the baseline scenario using
field data.

Convergence Test
In order to determine the required number of iterations, we
conducted a convergence test on the median net revenue estimate
from the model. We deemed that 500 iterations were sufficient to
reach a stable variance of the estimates as determined by visual
inspection (see Figure S1 in Supplementary Material).

Sensitivity Analysis
We tested 38 parameters in sensitivity analyses to assess the
robustness of the model with regard to the prevalence, milk yield,
and economic output. The parameter names are described in
detail in Tables S1, S2, and S4 in Supplementary Material.

RESULTS

The results of the simulations for an average-hygiene herd and
a low-hygiene herd are summarized in Tables 1 and 2. Exten-
sive results about the epidemiological production and economic
results of the seven scenarios, and the sensitivity analysis are
shown in SupplementaryMaterials. In this section, we citemedian
results unless otherwise stated. In the figures, we show the 50%
simulation envelope for the results, corresponding to the outcome
between the 25th and 75th percentiles.

Average-Hygiene Herd
We show the results of the average-hygiene herd simulations in
Table 1. Milk yield, income, and expenses are cumulated over
the simulated 10-year period. The true prevalence and apparent
prevalence shown are the end prevalences after 10 simulated years.
The true prevalence is shown over time for the average-hygiene
herd in Figure 2.

When all four examined actions against MAP were imple-
mented, the model showed that it was possible to eradicate MAP
from the farm. When only the test-and-cull strategy was imple-
mented, it was also possible to eradicate MAP (i.e., to reduce
true prevalence to 0). When the three most popular actions were
implemented, true prevalence was reduced to a median level of
2.4%. There was only a marginal reduction in prevalence when
the actions of removing calves, handling colostrum, and handling
waste milk were implemented independently.

The best scenario judged using the mean milk production was
the one where all actions were implemented, yielding a total of
20.17 million kilograms of ECM over the 10 simulated years
(Table 1). The lowestmilk productionwas observedwhen no con-
trol actionswere implemented, yielding 20.12million kilograms of
ECM.

The scenario where no control actions were implemented gen-
erated the highest total net revenue (summed over 10 years),
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TABLE 1 | Results of the scenarios on an average-hygiene herd with a
baseline true within-herd prevalence of 5.6%.

Scenario

ECM (5%; 95%) TP (5%; 95%) AP (5%; 95%)

No control 20.12 (19.90; 20.39) 7.02 (0.00; 18.46) 5.91 (1.46; 13.81)

Three actions
scenario

20.15 (19.88; 20.40) 2.43 (0.00; 8.29) 2.93 (0.49; 7.32)

Four actions
scenario

20.17 (19.90; 20.42) 0.00 (0.00; 0.00) 0.99 (0.00; 2.46)

Remove calves 20.13 (19.88; 20.37) 5.91 (0.00; 15.20) 5.37 (1.42; 12.25)

Handle
colostrum

20.14 (19.88; 20.41) 5.33 (0.00; 16.02) 4.87 (0.98; 12.68)

Handle waste
milk

20.13 (19.89; 20.39) 4.87 (0.00; 12.75) 4.41 (0.99; 10.85)

Cull pos. cows 20.16 (19.91; 20.41) 0.00 (0.00; 0.00) 1.44 (0.00; 2.46)

EXP (5%; 95%) INC (5%; 95%) TNR (5%; 95%)

No control 5.10 (5.05; 5.16) 8.12 (7.99; 8.25) 3.02 (2.91; 3.12)

Three actions
scenario

5.21 (5.14; 5.27) 8.13 (8.00; 8.26) 2.92 (2.82; 3.02)

Four actions
scenario

5.20 (5.14; 5.26) 8.14 (8.01; 8.27) 2.94 (2.84; 3.03)

Remove calves 5.20 (5.14; 5.26) 8.12 (7.99; 8.25) 2.93 (2.83; 3.02)

Handle
colostrum

5.14 (5.07; 5.20) 8.13 (7.99; 8.26) 2.99 (2.88; 3.08)

Handle waste
milk

5.13 (5.07; 5.20) 8.13 (7.99; 8.26) 2.99 (2.88; 3.09)

Cull pos. cows 5.13 (5.07; 5.20) 8.15 (8.01; 8.26) 3.01 (2.91; 3.09)

ECM, kilograms of ECM milk yield from of all cows on the farm; TP, true within-herd
prevalence; AP, apparent within-herd prevalence; EXP, expenses in million AC; INC, income
in million AC; TNR, total net revenue in million AC over 10 years.
The numbers are median results with 5 and 95% confidence limits, calculated over the 10
simulated years. Milk yield and economic values are shown in millions. Prevalences shown
in % are the resulting prevalences at the end of the simulations.

TABLE 2 | Results of the scenarios on a low-hygiene herd with a baseline
true within-herd prevalence of 45%.

Scenario

ECM (5%; 95%) TP (5%; 95%) AP (5%; 95%)

No control 19.83 (19.57; 20.08) 38.73 (28.43; 47.80) 27.32 (19.60; 34.32)

Three
actions

19.90 (19.66; 20.16) 19.61 (10.78; 28.30) 15.12 (8.33; 22.06)

All actions 20.03 (19.76; 20.32) 0.00 (0.00; 0.00) 0.99 (0.00; 2.48)

Remove
calves

19.84 (19.59; 20.08) 34.31 (22.80; 44.35) 24.15 (16.33; 31.53)

Handle
colostrum

19.84 (19.60; 20.08) 33.25 (22.69; 43.00) 23.96 (15.76; 31.26)

Handle
waste milk

19.86 (19.61; 20.12) 30.64 (19.99; 41.48) 22.44 (14.29; 30.40)

Cull pos.
cows

20.01 (19.75; 20.29) 0.00 (0.00; 1.47) 1.46 (0.00; 2.96)

EXP (5%; 95%) INC (5%; 95%) TNR (5%; 95%)

No control 5.04 (4.97; 5.10) 8.00 (7.86; 8.13) 2.97 (2.86; 3.05)

Three
actions

5.17 (5.10; 5.23) 8.03 (7.90; 8.16) 2.87 (2.76; 2.95)

All actions 5.16 (5.09; 5.23) 8.11 (7.97; 8.23) 2.95 (2.85; 3.03)

Remove
calves

5.14 (5.07; 5.20) 8.01 (7.87; 8.12) 2.87 (2.77; 2.95)

Handle
colostrum

5.09 (5.04; 5.15) 8.01 (7.87; 8.14) 2.92 (2.81; 3.01)

Handle
waste milk

5.07 (5.01; 5.14) 8.02 (7.88; 8.14) 2.94 (2.85; 3.03)

Cull pos.
cows

5.08 (5.01; 5.15) 8.10 (7.97; 8.23) 3.02 (2.93; 3.11)

ECM, kilograms of ECM milk yield from of all cows on the farm; TP, true within-herd
prevalence; AP, apparent within-herd prevalence; EXP, expenses in AC; INC, income in
AC; TNR, total net revenue in million AC over 10 years.
The numbers are median results with 5 and 95% confidence limits, calculated over the 10
simulated years. Milk yield and economic values are shown in millions. Prevalences shown
in % are the resulting prevalences at the end of the simulations.

FIGURE 2 | True prevalence: 50% simulation envelope over 10 simulated years for the tested scenarios in the average-hygiene herd. (A) “Three control
actions” means the three control actions in (B). “Four control actions” means the three actions in B plus test-and-cull. (B) “Handle waste milk” and “handle
colostrum” means that the farmer only uses milk or colostrum from test-negative cows for feeding calves.

Frontiers in Veterinary Science | www.frontiersin.org October 2016 | Volume 3 | Article 90113

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


Kirkeby et al. Simulating Paratuberculosis

FIGURE 3 | Change in net revenue per cow year over time for the average-hygiene herd, relative to the baseline scenario. The marginal for each action
and combinations are shown. The dotted line (at 0AC) represents the baseline scenario (no control).

followed by the test-and-cull strategy. The lowest total net revenue
was found when the three most popular actions were imple-
mented. This is a result of the higher expenses for implementing
these actions, which are not offset by sufficiently higher revenues
(results not shown). The scenario with the highest (and intermit-
tently positive) net revenue per cow year was when only a test-
and-cull strategy was implemented (Figure 3). All other scenarios
consistently yielded negative change in net revenue per cow year
during the 10 simulated years.

The apparent prevalence was slightly lower than the true
prevalence in most of the scenarios for the average-hygiene herd
(Table 1). However, when the prevalence was very low, for
instance, when three actions were implemented, the apparent
prevalence was higher (2.93) than the true prevalence (2.43). This
is caused by the specificity of the test resulting in false positive
results.

Low-Hygiene Herd
The results of the simulated low-hygiene herd are shown in
Table 2. Milk yield, income, and expenses are cumulated over
the simulated 10-year period. The true prevalence and apparent
prevalence shown are the end prevalences after 10 simulated years,
while the development is illustrated in Figure 4. The model was
calibrated over 5 years to fit a median prevalence level of 45%
in a scenario where no control actions were implemented. The
prevalence then decreased to 39% over 10 years. This effect was
seen because we calibrated the model to be stable over 5 years but
used it to predict for 10 years and therefore the prevalence will
change over longer periods (Table 2).

In the low-hygiene scenario, as was true for the average-hygiene
herd, it was only possible to eradicate MAP from the herd by
using all four actions or by using a test-and-cull strategy alone.
The three most popular actions did not have considerable impact

when implemented independently, but reduced the median true
prevalence to 20% when combined.

Again, when considering milk production, the best scenario
was the one where all actions were implemented, followed by the
test-and-cull strategy (Table 2). The lowest milk production was
reached when no control actions were implemented.

The number of cow years was kept stable throughout all simu-
lations, with a mean of 205 cow years (min: 203, max: 208). Here,
we report the revenue per cow year to ease comparison with other
management actions and herd sizes.

The highest total net revenue (summed over 10 years), at 3.02
million AC, was attained in the scenario where test-positive cows
were culled. This was largely due to an increased income from a
higher milk yield and the higher slaughter value of healthy cows.
The highest income came from the scenario where all actions were
implemented (8.11 million AC), but this was counterbalanced by
an increase in the expenses for the actions (5.16 million AC). The
lowest expenses were in the scenario where no control or handling
of waste milk was implemented, but these were counterbalanced
by lower incomes. The scenario generating the second-highest
net revenue on average was when no control actions were imple-
mented. Scenarios generating the lowest net revenues were when
three actions were implemented, or when calves were removed
frompotentially infectious dams. It was, therefore,more profitable
on average to avoid implementing control actions, rather than
implement the three most popular actions on their own. The test-
and-cull scenario consistently yielded a positive change in net
revenue per cow year over the 10 simulated years (Figure 5). The
scenario with all four actions implemented had positive change in
net revenue per cow year in years 2 and 3 but was otherwise neg-
ative. The scenario with three actions showed steadily increasing
net revenue per cow year after 4 years, yet it was still negative after
10 simulated years. All other scenarios had negative net revenue
per cow year.
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FIGURE 4 | True prevalence: 50% simulation envelope over 10 simulated years for the tested scenarios in the low-hygiene herd. (A) “Three control
actions” means the three control actions in (B). “Four control actions” means the three actions in (B) plus test-and-cull. (B) “Handle waste milk” and “handle
colostrum” means that the farmer only uses milk or colostrum from test-negative cows for feeding calves.

FIGURE 5 | Change in net revenue per cow year over time for the low-hygiene herd, relative to the baseline scenario. The marginal extra income for each
action and combinations are shown. The net revenue of implementing the three most popular actions (handling colostrum and waste milk, and removing calves from
the dam) increases after 6 years but is still not profitable. The dotted line (at 0AC) represents the baseline scenario (no control).

Sensitivity Analyses
The extensive results of the sensitivity analyses are shown inTables
S5–S10 in Supplementary Material. The parameters that had a
negative correlation with the true prevalence were heat detection
success for heifers; insemination success for heifers and cows;
cross-contamination from boots and machines; duration of the
low-shedding and high-shedding infection stages; and hygiene
level. The negative impact of higher cross-contamination is likely
due to a higher proportion of the shed MAP being spread out

on the farm, thus lowering the local probability of infection in
each farm section. Parameters with a positive correlation to the
true prevalence were the maximum number of heat cycles before
culling, the percentage of voluntary culling, the amount of bacteria
shed in all infection stages, the proportion of stillbirths, and the
duration of the affected stage. The positive impact of more volun-
tary culling on the true prevalence is likely caused by a change in
the demography of the herd, leading to higher transmission (no
test-and-cull in this scenario). The test specificity did not seem to
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impact the true prevalence (no test-and-cull in this scenario), but
was negatively correlated with the apparent prevalence. Lowering
the level of the test sensitivity to 50% so that the sensitivity for
5-year-old cows was 37% resulted in a slightly increased true
prevalence (from 7.02 to 7.28 median result) prevalence after 10
simulated years. Increasing the test sensitivity level to 120% so
that it was 88% for 5-year-old cows was able to decrease the true
prevalence from 7.02 to 6.83% (median result).

DISCUSSION

Our results showed that on average the most economically prof-
itable strategy for a low-hygiene herd was to cull “red” and
“amber” cows (Figure 5), resulting in eradication of the disease
within 7–10 years (50% simulation envelope, Figure 4). However,
it was not possible to eradicate MAP in all of the simulations
within 10 years by using the test-and-cull strategy (Figure 4),
where the true prevalence was still 1.47% at the 95% percentile
(Table 2). For this scenario, 69% of the simulations resulted in
zero prevalence after 10 years (data not shown). Therefore, we
conclude that, although test-and-cull is themost profitable control
action for low-hygiene herds, it is not guaranteed to eradicate
MAP. Future studies should investigate whether eradication could
be guaranteed by combining test-and-cull with some preventive
measure (other than those already analyzed here), and whether
this approach would be more profitable than test-and-cull alone.

In herds with average hygiene, test-and-cull is sufficient for
eradication, but not more profitable than no control. Therefore,
we suggest that in these herds, test-and-cull is used if the aim is
to eradicate paratuberculosis or lower the prevalence. Because the
effect of the simulated control measures in herds with average
hygiene is limited, and because the costs are considerable, we
suggest that these herds focus on test-and-cull alone.

We found that implementing only one of the threemost popular
control actions did not have much impact on the prevalence
(Figures 2B and 4B). However, there was a synergistic effect of
implementing all three actions at the same time (Figures 2A and
4A). Therefore, it is not economically attractive to implement
just one of these actions due to the associated cost, which is not
counterbalanced by enough benefit. And although a combination
of these three control actions reduces prevalence more effec-
tively, such a combination is among the least profitable strategies
(Figures 3 and 5). This is concordant with the results from the
SimHerd model (6).

When considering only the prevalence of MAP, we found
that the optimal scenario was to implement all control actions,
allowing the farmer to eradicate MAP from the farm completely
in the average-hygiene herd within 3 or 5 years (50% simulation
envelope, Figures 2 and 4, respectively). This assumes that MAP
is not reintroduced into the farm at any point. This scenario was
also the most expensive (Table 2).

The results of this study contradict results of previous models
that have presented within-herd true prevalences between 50 and
90% if no control actions are implemented on the farm (6, 8–11).
We did not find such high within-herd prevalences in Denmark,
but found a median within-herd true prevalence at 5.6% and a
maximum within-herd true prevalence of 45% (Figure 1). This

is close to the result of Verdugo et al. (4) who estimated the
median within-herd true prevalence in Danish farms to be 7%.
The reason for the difference between our results and those
of previous models is mainly because we calibrated the model
to keep a stable prevalence. This constraints the transmission
process in the model, so the prevalence is not able to increase
exponentially.

In both the low- and average-hygiene herd, the best action to
reduce the prevalence was to cull test-positive cows, supporting
the findings ofNielsen andToft (22). However, this contradicts the
findings from JohneSSim and SimHerd simulations, where it was
found that test-and-cull strategies could not lower the prevalence
and that it was not economically attractive (6, 31). However, in the
SimHerd model, an ELISA-positive cow must be confirmed by a
fecal culture. This is a more time consuming and expensive test
than the ELISA used in the PTB-iCull model, where positive cows
can be put on top of the culling list as soon as they are detected.
The JohneSSim model simulated a low ELISA sensitivity based on
the disease state of the animal contrary to the disease state and
age-dependent sensitivity used in the current model. This could
add to the differences between the results of our and previous
models.

Previous models of MAP spread showed that it is impossible to
eradicateMAP evenwith the use of rigorous test-and-cull strategy
[e.g., Ref. (32)], which contradicts our results. The way we model
MAP spread is different than in earlier work [see review by Marcé
et al. (33)]. In those models, the probability of infection through
the environment is a function of, among others, the number of
infectious animals in the herd (frequency models) in a Reed-Frost
model (33). In our work, we use a density-dependent transmission
model to estimate the probability of infection through the envi-
ronment, depending on density of the bacterial load in the envi-
ronment. Density-dependent models tend to represent endemic
situations better than frequency-dependent models that tend
to seek pathogen/host extinction (12). In frequency-dependent
models, when no control actions are taken, the prevalence often
increases sharply to reach unusually high levels, as predicted by
previous models. Furthermore, in frequency-dependent models,
infectious cows that are culled immediately cease to be infective,
whereas in our model, MAP is shed in the environment and can
still give new infections if the shedding cow was culled earlier. As
discussed above, we observed a median within-herd true preva-
lence of 5.6% in herds that have no control actions against MAP
and have been practicing for several years (data not shown), indi-
cating a stable endemic state ofMAP in these herds.We, therefore,
consider a density-dependentmodelmore representative of actual
field situation than a frequency-dependent model that would lead
to massive spread of MAP.

In addition, our model differs from previous models in that the
sensitivity of the ELISA is higher than those used in previousmod-
els, as we use more recent estimations based on Nielsen et al. (23).

An important difference between our and previous models is
also that we model a closed herd with no risk of disease intro-
duction through animal purchase. The reason we model a closed
herd is that about 50% of the herds in Denmark are closed (data
not shown), and that it is recommended to keep the herd closed to
avoid introduction ofMAPandother diseases. Simulating an open
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herd would prevent eradication because of the risk of continuous
introduction of infected animals.

The relationship between susceptibility and age has not yet
been fully established, so we chose this function to incorporate
a small probability of infection even for old animals, as described
earlier (26). Susceptibility to MAP is also influenced by genetic
variation (34), but incorporating this into the simulation model
would require simulating genetic profiles of each cow, which is
out of the scope of the current study.

The findings of this study may be representative for other
countries than Denmark. However, care must be taken, when
translating the results to other countries, because certain key
parameters, such as prevalence, interest rate, and control options,
might differ between countries.

Further research should focus on investigating the relationship
between bacterial load and force of infection, as this relationship
might not be linear, as suggested by Slater et al. (35).

CONCLUSION

We used current knowledge of MAP infection and detection
mechanisms to build a new framework for simulating MAP infec-
tion within a herd. We simulated the epidemiological and eco-
nomic effects of different control strategies in a average and a
low-hygiene herd. The most profitable scenario over 10 years in
the average-hygiene herd was to avoid implementing a control
strategy. In the low-hygiene herd, a test-and-cull strategy was
the best solution economically. We did not find it profitable to

implement any of the three most popular actions for preventing
the spread of MAP within herds in Denmark, either for the low or
the average-hygiene herds. The results will help farmers improve
control of MAP in their herds.
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Footrot is a multifactorial infectious diseasemostly affecting sheep, caused by the bacteria
Dichelobacter nodosus. It causes painful feet lesions resulting in animal welfare issues,
weight loss, and reduced wool production, which leads to a considerable economic
burden in animal production. In Switzerland, the disease is endemic and mandatory
coordinated control programs exist only in some parts of the country. This study
aimed to compare two nationwide control strategies and a no intervention scenario
with the current situation, and to quantify their net economic effect. This was done by
sequential application of a maximum entropy model (MEM), epidemiological simulation,
and calculation of net economic effect using the net present value method. Building upon
data from a questionnaire, the MEM revealed a nationwide footrot prevalence of 40.2%.
Regional prevalence values were used as inputs for the epidemiological model. Under
the application of the nationwide coordinated control program without (scenario B) and
with (scenario C) improved diagnostics [polymerase chain reaction (PCR) test], the Swiss-
wide prevalence decreased within 10 years to 14 and 5%, respectively. Contrary, an
increase to 48% prevalence was observed when terminating the current control strategies
(scenario D). Management costs included labor and material costs. Management benefits
included reduction of fattening time and improved animal welfare, which is valued by
Swiss consumers and therefore reduces societal costs. The net economic effect of the
alternative scenarios B and C was positive, the one of scenario D was negative and over
a period of 17 years quantified at CHF 422.3, 538.3, and −172.3 million (1 CHF=1.040
US$), respectively. This implies that a systematic Swiss-wide management program
under the application of the PCR diagnostic test is the most recommendable strategy
for a cost-effective control of footrot in Switzerland.

Keywords: decision-making, Dichelobacter nodosus, epidemiological modeling, economic effect, prevalence,
ruminant, welfare, Switzerland

INTRODUCTION

Footrot is an old disease in European countries, mentioned in France as early as the end of the
eighteenth century (1). Early reports in Switzerland date to 1929 and 1965, indicating that the disease
has been known for at least 100 years in this country (2, 3). Since then, the disease has spread to all
regions of Switzerland, and is currently endemic (4, 5).
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Footrot is an infectious disease, which mainly causes severe
hoof lesions in sheep, but is also found in other ruminant species
all over the world (4, 6–8). It is a multifactorial disease favored by
humid environments with temperate climate. The main causative
agent isDichelobacter nodosus, although Fusobacterium necropho-
rum, aerobic diphtheroids, and coliforms are also reported to con-
tribute to the development of clinical signs (9). The development
and severity of disease depend on the climate, the virulence of the
isolate, and the immune system of an individual animal (10, 11).
Because the disease causes painful hoof lesions, it is not only of rel-
evance for animal health but also for animal welfare. These painful
lesions result in direct costs for the producers through weight loss
and reduced wool production. In addition, consumers generally
value animal welfare, so that there is a societal economic loss when
animals are affected by footrot. In combination with the costs for
treatment, the disease imposes a considerable economic burden
in animal production (12). Management of footrot consists of
regular hoof trimming, foot bathing, separation or elimination of
affected sheep, and usage of antibiotics. These control measures
are usually applied in combinations and are costly to the farmers.
For example, a study in Great Britain estimated direct costs of
£1.32 per ewe and £0.15 per lamb, summing up to costs of £24.4
for British producers annually (13). As control measures of single
farmers cannot wipe out footrot, some countries implemented
systematic programs to eradicate the disease. An economic study
on a footrot eradication program in Western Australia found
that the benefits of the program outweigh its costs at a ratio of
5.3:1 (14).

Footrot is not listed as a notifiable disease in the Swiss legisla-
tion. Nevertheless, all sheep farmers are obliged to comply with
animal welfare legislations, which imply that clinically affected
sheep has to be treated or slaughtered. In the cantons of Grisons
(GR) and Glarus (GL), a coordinated management program was
implemented in 1990 and 2013, respectively. The program con-
sists of regular control of sheep herds, hoof trimming and foot
bathing with formalin, zinc, or copper sulfate, and biosecurity
measures. In case of footrot problems, thesemeasures are executed

more frequently, and infected animals are separated. Themanage-
ment program has been successful in reducing footrot prevalence
within these cantons. Currently, policy is moving toward a nation-
wide coordinated control strategy against footrot in Switzerland,
presuming that the disease will be listed as notifiable and con-
trolled by law.

Epidemiological models are helpful and necessary tools to pre-
dict prevalence trends under different control strategies (15–17).
Outputs of such models can be used for the economic evalu-
ation of management strategies (18). Cost–benefit analyses of
control strategies are important, and ideally conducted in an
early phase of planning for potential control programs. Examples
include highly infectious animal diseases such as foot-and-mouth
disease (19) or classical swine fever (20, 21). Cost-effectiveness
of control strategies for zoonoses such as rabies or brucellosis
has also been studied, taking into account the costs for human
deaths (22–24).

The objective of our study is to evaluate epidemiologic and
economic aspects of different management strategies to reduce
footrot prevalence in Switzerland. For this purpose, the direct
costs of producers and the intangible costs of the society, mostly
caused by affection of animal welfare, are considered. No dis-
tinction between the virulent and benign strain of D. nodosus
was made. A cost–benefit analysis of four control strategies
was conducted to inform policy makers who are considering
an evidence-based nationwide coordinated control strategy of
footrot in Switzerland.

MATERIALS AND METHODS

The present study summarizes the results of a large project that
evaluated the costs and benefits of centrally organized control pro-
grams for footrot in the Swiss sheep population. The entire project
consisted of several successive subprojects (Figure 1). The animal
experiment was approved by the Cantonal VeterinaryOffice of the
Canton of Zug (approval number ZG 67/15) in accordance with
the Swiss animal welfare legislation.

FIGURE 1 | Outline of the research project on the evaluation of the cost–benefit analysis of centrally organized control programs for footrot in the
Swiss sheep population.
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Model Input Data
Aquestionnaire was sent to all sheep farmers of Switzerland aimed
at revealing the current perceived prevalence of footrot in Swiss
sheep premises (25). Questions on herd management, trade of
animals, health issues involving claws, andmanagementmeasures
against footrot were also included. Of the 15,036 questionnaires
sent out, 9,386 were returned, and 7,836 (52%) were usable for
further analysis. Large premises contributedmost to the question-
naire study, 79.6% of the total sheep population in Switzerland
was covered by the completed questionnaires. Overall, 37% of the
respondents stated that they experienced problems with footrot
during the year 2014.

Estimates of the impact of footrot on sheep health were
based on experimental controlled trial including a healthy versus
footrot-infected sheep flock (25). Briefly, 85 lambs in the diseased
group and 99 lambs in the control group were followed from
birth to slaughter, which occurred at an individual weight of
42–46 kg. Reduction of the fattening period for healthy lambs was
converted to economic benefit (see “Management Benefit”). The
trial was also used to estimate labor costs, i.e., the time required
for implementing of control measures on the farm.

Definition of the Regions
A total of 19484 herds were integrated into the model. For con-
ceptual reasons of the epidemiological model, Switzerland had
to be divided into regions. These regions also served as basis for
the regionalization for the maximum entropy model (MEM) and
the cost–benefit analysis, considering varying costs and benefits
between the different regions.

Switzerland was divided into 27 regions for the footrot model
(Figure 2). Two criteria were used for the allocation of the
regions: density of sheep premises (first criterion) and the climate
(second criterion). Data to inform the sheep premises density

were sourced from the AGIS database (agrarian policy infor-
mation system of Switzerland) and data were calculated as the
number of premises per agricultural area per political district.
The AGIS database only records data on professional premises
and therefore non-professional premises were not considered for
the classification of densities. District densities were divided into
three categories using tertiles as limits. The transmission of footrot
is also influenced by the climate in which mainly temperature and
precipitation are seen as relevant factors (26, 27). Switzerland is
divided into 12 climatic regions. Following these climatic regions,
the density-classified regions were further subdivided or merged.
In a final step, large regionswith the same density and climatewere
subdivided following cantonal borders to avoid large differences
in size between regions. For each region, the population size
(number of sheep premises according to the AGIS database) and
a climatic factor were calculated (Appendix in Supplementary
Material). Currently, a footrot control program is mandatory for
all sheep premises and implemented in the regions 23–27 (situated
in the cantons of GR and GL).

Estimation of Current Prevalence of
Footrot Using MEM
To account for the non-respondents of the questionnaire study
and to extrapolate the prevalence estimates per region to entire
Switzerland, an MEM was used (25). The MEM is a Bayesian
method that integrates a priori information to estimate the prob-
ability of the occurrence of an unknown variable (28). Here, the
maximum likelihood estimator was used to estimate the probabil-
ity of footrot prevalence in the defined regions. To ensure stability
of theMEM, regions with <200 herds had to be complied, leading
to 22 regions out of the 27 regions (regions 1 and 2 were compiled,
as well as regions 3 and 4, 13 and 14, 18 and 19, and 23 and 24).

FIGURE 2 | Division of Switzerland into 27 regions according to sheep premises density, climate, and cantonal borders. The colors reflect the tertiles of
the density of sheep premises (number of sheep premises per square kilometer agricultural area): white: 0–0.54; light gray: 0.54–1.05; dark gray: 1.05–6.43.
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A priori information included geographic location (region),
farm size (number of animals, growth rate, and agricultural area),
structural features of farms (whether or not the farm holds rams
or keeps animals on pasture, age of the farmer), and contact
information (exhibitions and pasturing) are used, sourced from
the questionnaire and AGIS database. This a priori information
was combined with the prevalence of farms per region that stated
to have experienced problems with footrot in 2014. The model
was tested by predicting footrot status of the farms within the
sample where the status was known. The econometric model had
a fit above 70% (measured as pseudo-R2), implying that themodel
mimics the data-generating process well. Neither selection nor
information bias was expected. It was then applied to the entire
Swiss sheep farm population to estimate the footrot prevalence
within each region (Table S1 in Supplementary Material). This
prevalence was further used as a starting point for the epidemi-
ological model. Within each of the compiled regions, the same
prevalence was used (Table S1 in Supplementary Material).

Epidemiological Model
Model Structure
The footrot transmission model has been developed based on a
stochastic susceptible-infected-recovered compartmental model
designed to simulate a footrot outbreak in Norway (29). The
model was implemented inR1. Themodel allows the simulation of

1https://cran.r-project.org

the spread of the disease within and between defined geographical
regions, using the sheep premises as the smallest unit (Figure 3).
The time step of the simulation is 1 year.

Simulation of the Spread within a Region
Premises were grouped into three compartments within a
region: susceptible (S), infected (I), and recovered (R) premises
(Figure 3). Susceptible premises get infected with an infection
rate β and recover afterward with a recovery rate σ. Subsequently,
they either become re-infected (with the reversion rate γ) or
again susceptible with a rate of 1− γ. The spread between the
compartments within a region i at the time t is:

Si,t+1 = Si,t + (1 − γi) ∗ Ri,t − βi ∗ Si,t ∗ Ii,t (1)

Ii,t+1 = Ii,t − σi ∗ Ii,t + βi ∗ Si,t ∗ Ii,t + γi ∗ Ri,t (2)

Ri,t+1 = Ri,t + σi ∗ Ii,t − γi ∗ Ri,t − (1 − γi) ∗ Ri,t (3)

The population size N = S+ I +R per region i was sourced
from the AGIS database. The regional prevalence at the start of
the simulation was informed by the output of the MEM (Table
S1 in Supplementary Material). The infection rate β is a stochas-
tic parameter (pert-distribution) calculated separately for each
region and incorporates the regional sheep premises density and
the climate (Appendix in Supplementary Material).

The recovery and the reversion rates were incorporated
as stochastic parameters (uniform distributions, Appendix in

FIGURE 3 | Structure of the epidemiological model simulating within and between the regional spread of footrot, modified from (29).
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Supplementary Material) with separate values for regions with
and without mandatory footrot control programs. Depending on
the scenarios simulated, the regions with and without mandatory
control program are varying.

Simulation of the Spread between the Regions
Spread of footrot between regions is implemented in three ways:
sheep transport (trade), common pasture, and sheep expositions.
Sheep transports are possible across entire Switzerland. The num-
ber of newly infected premises per year via this transmission
pathway (θj,i) was calculated out of the annual number of sheep
transports on herd level from regions j to i, the proportion of
infected premises in the sending region j and the proportion
of susceptible premises in the receiving region i (Appendix in
Supplementary Material). Sheep movement data were sourced
from the questionnaire study in which each farmer was asked to
state the two cantons—apart from the home canton—where the
majority of sheep has been sent to and received from in the last
12months.

The transmission from region j to i via common pasture
(parameter τj,i) and interregional sheep exhibitions (parameter
δj,i) follow the same principle. Animals of different regions come
together, get infected with the transmission rate βpasture and βExpo,
respectively, and go back to their premises at the end of the
summer or exhibition, where they may infect other animals and
premises. The number of newly infected premises per year via
common pasture (τj,i) was computed using information on the
number of sheep herds from both regions i and j that spend
the summer on common pasture, herd density and climate on
the pastures, the proportion of infected herds in region j, and the
proportion of susceptible herds in region i (Appendix in Supple-
mentary Material). The number of sheep sent to common pasture
for each region was sourced from the questionnaire. The size of
common pasture area was sourced from the AGIS database, which
was required to calculate the herd densities (herds per square
kilometer) on pastures. Similarly, the number of newly infected
premises per year via exhibitions (δj,i) was calculated out of the
number of sheep herds exhibited per year and regions i and j, the
herd density and climate on the site of exposition, the proportion
of infected herds in region j, and the proportion of susceptible
herds in region i (Appendix in Supplementary Material). Infor-
mation on the number of sheep herds exhibited by each region
for the large interregional expositions was provided by the Swiss
Sheep Breeding Association2.

As a result of the integration of the spread between the regions,
subsuper1 1–3 were expanded so that the number of premises in
each compartment of region i and year t is calculated as follows:

Si,t+1 = Si,t + (1 − γ) ∗ Ri,t − min

βi ∗ Si,t ∗ Ii,t +
∑
j̸=i

θj,i,t

+
∑
j̸=i

τj,i,t +
∑
j̸=i

δj,i,t

, Si,t


(4)

2http://szv.caprovis.ch/

Ii,t+1 = Ii,t − σ ∗ Ii,t + min

βi ∗ Si,t ∗ Ii,t +
∑
j̸=i

θj,i,t +
∑
j̸=i

τj,i,t

+
∑
j̸=i

δj,i,t

, Si,t

+ γi ∗ Ri,t (5)

Ri,t+1 = Ri,t + σ ∗ Ii,t − γi ∗ Ri,t − (1 − γi) ∗ Ri,t (6)

where i and j denote the region receiving and transmitting footrot.

Global Sensitivity (GSA) Analysis
A GSA analysis was applied that differs from the classical “one-
parameter-at-a-time” SA by considering interactions between the
parameters (30). In total, 13 parameters were included within the
GSA. These include the number of susceptible (Si,t=1) and infected
(Ii,t=1) herds per region i at the start of the simulation (t= 1),
the three interregional parameters (infection rate βi, recovery
rate σi, and reversion rate γi) per region, the number of sheep
herd transports between region i and j (MShj,i), the number of
sheep herds sent to common pastures (npasture,i), and exhibitions
(nExpo,i), respectively, and the herd density and climate on com-
mon pastures and exhibitions, respectively (dpasture, Clpasture, dExpo,
ClExpo). In addition, themean of all infection rates βi was incorpo-
rated, which was used to calculate the infection rates on pastures
and exhibitions. For the GSA, all parameters were allowed to
vary between ±10% around their original value. The function
“soboljansen” from the R package “sensitivity” was used (31, 32).
One hundred and fifty thousand iterations were needed to result
in narrow enough confidence intervals of the Sobol indices, the
measures of the parameters’ influence on the footrot prevalence.

Fitting of the Model to the Swiss Situation
To fit the model to the Swiss situation, it was assumed that footrot
is currently in a stable endemic stage in Switzerland, thus the
prevalence per region is constant over time. This assumption
was made based on evidence of existence of the disease in the
surrounding countries (Germany and France) since at least end
of the eighteenth century (1, 3) and on a study providing evidence
than footrot exists in all regions of Switzerland (5). The parameter
values of β, σ, θ, τ, and δ were calculated and incorporated in
the model as described above and in the Appendix in Supple-
mentary Material. The value of the reversion rate γ was fitted
to the countrywide prevalence in Switzerland so that the model
output came as close as possible to the target prevalence of 40.2%,
estimated by the MEM. Reversion rate values of 40–55% were
tested with steps of 1%. The value of γ for regions 23–27 (cantons
of GR and GL) was defined to be smaller than the one for the
other regions, based on the ratio of the reversion rates calculated
from the questionnaire dataset (43.6% for premises undergone a
footrot control program on herd level, 74.5% for those that did not
undergo such a program).

Because the Swiss-wide prevalence was used as the measure
to fit the model and prevalence in the different regions deviated
from the start value estimated by the MEM over the course of
the simulated years (running time of the model= 100 years), a
correction algorithm had to be applied. For each region i, a cor-
rection factor ki was calculated based on the target prevalence
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(target_previ, MEM outcome) and prevalence estimated by the
simulation model at year 45 (prevt = 45,i, year with prevalence
closest to the target value, see “Fitting to the Swiss Situation and
Calculation of Reversion Rate γ”), so that

ki =
target_previ
prevt=45,i

. (7)

Description of the Scenarios
Four scenarios were defined (Table 1). For each scenario, 1,000
simulations were conducted and the mean, median, and 2.5 and
97.5‰ of the footrot prevalence were extracted for results pre-
sentation and further analysis. Each simulation ran over 100 years
and started with the parameter values described above.

Scenario A (laisser-faire) was defined as the current status of
footrot control in Switzerland and used as the baseline when
different scenarios were compared. Recovery and reversion rates
differed between regions 23 and 27 (located in canton GR and
GL, mandatory control program ongoing) and regions 1–22 (rest
of Switzerland, no mandatory control program implemented). It
was assumed that in the future, the newly developed polymerase
chain reaction (PCR) diagnostic test (33) will be considered in the
regions with mandatory control program. This test also detects
non-clinical animals, which results in a higher sensitivity of the
footrot detection and in consequence in a lower reversion rate
(Appendix in Supplementary Material).

Scenarios B and C were defined as extension of the mandatory
control programs as currently implemented in the cantons of GR
and GL to a nationwide level including all regions. This program
consists of separation of the infected herd, hoof trimming, and
regular foot bathing3. In scenario B, no PCR diagnostic test was

3http://bgk.caprovis.ch/cms05/showlinx.asp?lang=1&id=1

TABLE 1 |Definition of scenariowith their recovery and reversion rate values
for regions 1–22 (no mandatory footrot program implemented) and regions
23–27 (mandatory footrot program implemented).

Scenario Values of the parameter (recovery
and reversion rate)

Regions 1–22 Regions 23–27
(canton GR and GL)

A (laisser-faire): current
control strategies ongoing
with mandatory control
program with polymerase
chain reaction (PCR)
diagnosis in regions 23–27
only

Recovery rate: uniform
(20.0–24.5%; mean
22.3%)

Recovery rate: uniform
(41.1–50.2%; mean
45.6%)

Reversion rate: uniform
(44.1–53.9%, mean
49.0%)

Reversion rate: uniform
(8.6–10.5%; mean
9.5%)

B: nationwide mandatory
control program without
PCR diagnosis

Recovery rate: uniform (41.1–50.2%; mean 45.6%)

Reversion rate: uniform (33.1–40.5%; mean 36.8%)

C: nationwide mandatory
control program with PCR
diagnosis

Recovery rate: uniform (41.1–50.2%; mean 45.6%)

Reversion rate: uniform (8.6–10.5%; mean 9.5%)

D: all footrot control
measures ceased in
Switzerland

Recovery rate: uniform (20.0–24.5%; mean 22.3%)

Reversion rate: uniform (56.6–69.1%; mean 62.8%)

considered and the definition of a premise being footrot free
was based on clinical signs only, where every single sheep was
tested. In scenario C, PCR was considered for the detection of
footrot, addressing a given proportion of sheep (ranging from
100% for small herds to 10–40% for large herds). Examination by
a veterinary (scenario B) or a PCR test (scenario C) and a hoof
inspector are conducted in the first year of the sanitation.

For scenario D, it was assumed that all mandatory control
measures were ceased in Switzerland. This comparison is relevant
because the current benefit of existing management strategies
should be assessed. The recovery rate was estimated based on the
questionnaire database for premises that did not undergo a footrot
control program. The reversion rate γD was calculated from the
fitted reversion rate γ (49.0%, see “Fitting to the Swiss Situation
andCalculation of Reversion Rate γ”) and ratio between the rever-
sion rate of premises with no herd level control measures applied
(γnon-controlled premises, 74.5%) and the reversion rate calculated from
the entire questionnaire dataset (γentrie_dataset, 58.1%):

γD =
γ

γentrie_dataset
∗ γnon-controlled premises. (8)

After the model simulation, the model output of all scenarios
per region i and year t was corrected by the correction factor ki.
For each scenario, the final regional prevalence in the year t was
calculated at:

prev_finalt,i = prev_modelOutputt,i ∗ ki. (9)

Cost–Benefit Analysis
The costs and benefits were calculated for each scenario according
to how many herds were infected, susceptible, and recovered in
each year. The cost–benefit analysis is a systematic approach for
evaluating the economic implications of management scenarios.
The aim of this analysis is to identify the management strategy
maximizing the net welfare effect, which is we call net economic
effect to avoid confusion with animal welfare. This method is
frequently used to evaluate policies that aim at an improvement of
animal health. To quantify the economic implications of footrot
management, the net economic effect was measured with the net
present value method as follows:

NPV(d,T) =
T∑

t=1

(∑J
j=1bj,t −

∑I
i=1ci,t

)
(1 + d)t

−
I∑

i=1
ci,0 (10)

where the year was denoted with t, the discount rate with d, the
benefits of management with b, and the costs of management
with c. The costs and benefits consist of a number of components,
which are summarized by i and j. The net economic effect was
calculated at the farm level and then aggregated at the nation
level.4 The benefits of improved animal welfare were also con-
sidered in our analysis. However, as these benefits are not direct
farm benefits, they were only considered at the national level. The
cost–benefit analysis is concernedwith the period 2014–2030. The

4The index for each farm was dropped in the NPV formula to simplify the
notification.
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analysis was limited to this period because uncertainty increases
over time. For the evaluation of the effect of disease control,
the time period after the implementation is of largest interest.
The discount rate was assumed to be 1 during calculation period
because the inflation rate in Switzerland remained close to 0 in the
last years, although there is considerable uncertainty with respect
to future economic development. Similarly, it was assumed that
prices and salaries will remain at their respective level in 2014.
The implementation of footrot measures affects the supply of
Swiss sheep products and, therefore, their market prices. Price
changes affect rents on the consumer and producer side [Ebel et al.
(34)]. Such indirect economic effects of footrot are not taken into
account in the conducted cost–benefit analysis, but are discussed
below. Because the Swiss sheep industry has undergone major
changes in recent years, it was necessary to predict the future sheep
population and farms structure before assessing costs and benefits
of the management of footrot.

Predicting the Future Sheep Population
The size of sheep population for 2014–2030 was estimated with
historical data on sheep farming in Switzerland from the farm
accounting database (AGIS database). This database contains
information on the entire sheep population in Switzerland for
1999–2014 (Table S2 in Supplementary Material). The size of the
sheep population in each region was calculated for every year.
The data show that the number of sheep has been increasing
over this period. However, the development is not homogenous
with some regions observing a substantial decrease in the sheep
population (regions 26 and 27) and others a substantial increase
(regions 1+ 2, 9, and 17). Considering the substantial variation
in the development of the sheep population, it is necessary to
apply an identification strategy for the future sheep population
that accounts for this heterogeneity. A number of regression
specifications were compared to obtain a correct identification
of the relationship using the farming data for 1999–2014.5 It was
found that the seemingly unrelated regression model with region-
specific fixed effects and linear time trends replicates the data-
generating process most appropriately. The regression model was
developed by Zellner (35) and allows correlation in the error
terms. The equation system is outlined below:

Si,t = αi + βiTi,t + εi,t, E [εi,t ∗ εk,t|Tt] = σi,k (11)

where i represents the equation number (region) and t the year.
The region fixed effects were denoted with αi and the region-
specific linear time trend with Ti,t. The error term was denoted by
εi,t, which was allowed to be correlated across regions but not over
time. The systemof equationswas solved simultaneously using the
feasible general least squares method. The estimation results are
summarized in Table S3 in SupplementaryMaterial and illustrated
in the Figure S1 in Supplementary Material. Most regions showed
a highly significant and positive trend in the sheep population,
and the largest effects are found in regions 7, 9, 10, and 20. The
regression specifications fitted the underlying data well, which is
indicated by the generally high predictive power (R2 values).

5Focusing on the regression specification that replicates the data generating process
most accurately; a detailed analysis of the different specifications can be found in
the project report [Aepli et al. (25)].

Predicting the Future Farm Structure
Themanagement costs were expected to vary between farm types.
Larger farms were expected to benefit from scale effects because
they can use their equipment more efficiently. Hence, the average
fixed and variable cost of treatment per unit was expected to be
substantially lower for larger farms. To account for scale effects
(reduction in average cost per unit of output by increasing the pro-
duction), sheep farmerswere classified in each region according to
the scale of their operation as small (1–30), medium (31–70), and
large operations (>70). Substantial differences could be observed
in the farm size between regions (Table S4 in Supplementary
Material). Although most farms in Switzerland were classified
as small operations, this share has been decreasing substantially
since 1998. Therefore, sheep farming activities in Switzerland are
becoming more professional with mostly small farms ceasing and
large farm expanding their activities. Tomodel future scale effects,
the same regression model as used for the prediction of the sheep
population was applied. The regression results are presented in
Table S5 in Supplementary Material. It was found that the propor-
tion of small and medium operations will decrease further in the
future. Particularly for the southern and alpine part of Switzerland
(regions 13–15 and 25–27), an increase in the size of farms is
expected.

Management Cost
The management cost by farm type was defined according to the
four management scenarios. They consist of labor costs on the
farm, third-party labor costs, and material costs. In regions with
mandatory control, the cost items consisted of hoof trimming
and weekly hoof bathing over a period of 10weeks for infected
farms, four control visits in the first year and one each in the
two consecutive years. In scenario B, control visits on farms
include clinical inspection of all animals. In the other scenarios,
samples for the PCR diagnostic test were taken during the control
visits to identify infected animals. The PCR test is assumed to
be conducted by trained personnel and only a proportion of
animals were tested per herd (ranging from 100% for small herds
to 10–40% for large herds), prioritizing high risk animals (lame
animals, newly purchased animals, rams, and heavy ewes). This
implies substantially lower management cost, which is accounted
for as third-party labor costs. On the other hand, the additional
laboratory cost of the PCR test increased the material costs (CHF
6.50 per test). For regions without control program, management
activities were reduced to the minimal level defined by the animal
welfare legislation. Costs related to this included hoof trimming
and hoof spray. A detailed summary of the management approach
and themanagement cost for the different scenarios is provided by
Aepli et al. (25).

Management Benefit
The management benefit is composed of farm benefits and the
reduction of intangible damage. Farm benefits arise mainly from
reduction in fattening time. It was found in the experimental
animal trial that the fattening time was significantly longer for
infected lambs than for non-infected lambs (31.9 days longer,
p< 0.01, linear mixed model) (25). An additional day of fattening
was valuedwith CHF 2.70 (1 CHF= 0.918 € or 1.040UD$), which
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is composed of feed cost (CHF 0.15), operation cost (CHF 0.25),
and labor opportunity cost (CHF 2.30).

Intangible costs are not directly quantifiable costs that are
related to an identifiable source. Therefore, they can be seen as
external costs, which are not taken into account in the cost calcu-
lation of the producers. These costs were measured with the help
of a structured expert elicitation. Two workshops were conducted
in which stakeholders such as farmers, consumers, veterinaries,
scientists, and government employees discussed the intangible
costs of footrot. It was found that intangible costs are primarily
related to the negative utility of society due to reduced animal
health and limitation of natural behavior. As an average of the two
workshops, the experts concluded that these two animal welfare
issues contribute 84% of intangible costs. The monetary value of
pain caused by footrot was then estimated using a similar method
as proposed by Fitzpatrick et al. (36). Based on the discussed
intangible cost components and the evaluated societal valuation
of animal pain, the experts estimated the national costs of footrot.
While there was a wide variation in the single expert opinions
on the society values animal welfare, the workshop participants
generally agreed with the mean monetary value derived in the
workshop. The experts concluded that the annual nationwide
intangible cost caused by footrot with a national prevalence of 70%
equals CHF 53.03million. The cost at prevalence rates of 0, 20, and
50% was evaluated as well. Piecewise cubic Hermite interpolation
was used in succession to calculate the intangible cost for each
prevalence level, in 0.1% steps. A more detailed description of the
elicitation approach and results is provided by Aepli et al. (25).

RESULTS

Fitting to the Swiss Situation and
Calculation of Reversion Rate γ
For the fitting procedure, the model started with a prevalence of
40.5%. This value was closest to the prevalence of 40.2% (target
prevalence) while avoiding partial herds. At year 45, the model
reached the target prevalence and stayed in an endemic steady-
state afterward (variation of 40.38–40.48%; Table 2; Figure S2 in
Supplementary Material). Year 45 was therefore defined as the
year of data collection (year 2014) and the year when the alter-
native strategies where implemented (Figure S3 in Supplementary
Material).

The value of the reversion rate γ, which resulted in a model
prevalence closest to the target prevalence, was determined at
49.0% for the regions 1–22 and 36.8% for regions 23–27.

TABLE 2 | Footrot prevalence in % during the fitting process to the Swiss
situation up to simulation year 45, which was defined as year 2014.

Year 2 Year 5 Year 10 Year 15 Year 45

Median 38.33 37.97 38.95 39.56 40.38
Mean 38.33 37.97 38.95 39.55 40.35
2.5‰ 37.19 35.33 34.7 34.31 33.73
97.5‰ 39.51 40.59 43.09 44.65 46.67

Statistics of 1,000 simulations.

Footrot Prevalence under Scenarios A–D
Scenario A was defined as the current state of footrot control, i.e.,
mandatory control program in regions 23–27 only, however, with
the introduction of a new PCR diagnostic test in these regions.
The nationwide prevalence and the prevalence in regions without
mandatory control program only decreased slightly (<1%) over
time (Table 3; Figures 4 and 5). For the regions with manda-
tory control program, a decrease in the prevalence was observed
because of improved disease detection and consequently lower
reinfection of controlled premises (Figure 6). On average these
regions had a median prevalence of 25.5% at the beginning of the
simulations. After 18 years of simulation, a plateau was reached at
a median prevalence of 18% for the regions 23–27.

Scenario B was defined as the introduction of Swiss-wide
mandatory control measures as currently implemented in the
cantons ofGR andGL,without using the PCRdiagnostic test (only
clinical diagnosis considered). A clear decrease in the nation-
wide prevalence was observed during the first year of simulation
(Table 3; Figure 4). In the first 2 years of simulation, themedian of
the Swiss prevalence decreased from 40.4 to 28.0% (mean 28.0%,
95% CI 24.0–32.3%). The 10% mark was reached at year 14 with
a median prevalence of 10.0% (mean 10.0%, CI 6.8–11.5%). In
the following years, the prevalence further decreased continuously
to a value of 1.8% (mean 2.0%, CI 0.4–4.7%) at the end of the
simulation (year 57). Elimination of footrot (median prevalence
of 0%) was only reached in regions 4 and 14 after 42 and 28 years
of simulation, respectively. On average, the prevalence in the
regions 1–22 fell more rapidly than that of the regions 23–27
(Figures 5 and 6). The prevalence of 10% was reached after a
mean of 13.5 years (6–28 years for the different regions) and after
a mean of 21 years (9–30 years) for the regions 1–22 and 23–27,
respectively.

TABLE 3 | Prevalence (%) of footrot of the scenarios A–D 2, 5, 10, 15, and
20 years after implementation (scenarios B and C) or cease (scenario D) of
the respective control measurements.

Years after scenario
implementation

A B C D

2 Median 40.41 27.99 23.08 42.65
Mean 40.27 28.02 23.11 42.51
CI 2.5% 33.53 23.97 19.44 36.65
CI 97.5% 46.67 32.32 27.08 47.88

5 Median 40.33 19.97 11.87 45.26
Mean 40.18 20.01 11.96 45.17
CI 2.5% 33.40 16.50 9.38 39.59
CI 97.5% 46.63 23.81 14.95 50.34

10 Median 40.26 13.06 4.74 48.38
Mean 40.13 13.12 4.81 48.32
CI 2.5% 33.31 9.79 3.16 42.58
CI 97.5% 46.54 16.74 6.86 53.95

15 Median 40.28 9.32 2.09 50.38
Mean 40.10 9.39 2.17 50.30
CI 2.5% 33.31 6.27 1.12 44.03
CI 97.5% 46.53 12.89 3.60 56.42

20 Median 40.29 7.01 0.97 51.62
Mean 40.10 7.12 1.04 51.51
CI 2.5% 33.28 4.23 0.38 44.85
CI 97.5% 46.54 10.54 2.02 57.97

Thousand simulations were conducted per scenario.
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FIGURE 4 | Trend of footrot prevalence for the four different scenarios
A–D for entire Switzerland. Lower dashed line= 2.5‰, upper dashed
line= 97.5‰, solid line=median out of 1,000 simulations.

FIGURE 5 | Trend of footrot prevalence for the four different scenarios
A–D for region 10 (example for a region without mandatory control
program). Lower dashed line= 2.5‰, upper dashed line= 97.5‰, solid
line=median out of 1,000 simulations.

Scenario C was defined as the introduction of Swiss-wide
mandatory control measures as currently implemented in the
cantons of GR andGL, but including the use of the PCRdiagnostic
test. The effect of the PCR diagnostics can therefore be observed
by comparing scenario C with B. Shortly after the implementa-
tion of the control measures, the prevalence decreases even more
rapidly than in scenario B. Starting at a nationwide median of

FIGURE 6 | Trend of footrot prevalence for the four different scenarios
A–D for region 25 (example for a region with mandatory control
program). Lower dashed line= 2.5‰, upper dashed line= 97.5‰, solid
line=median out of 1,000 simulations.

40.4%, it fell to 23.1% (mean 23.1%, CI 19.4–27.1%) after 2 years
(Table 3; Figure 4). In the following years, the prevalence rapidly
decreased further so that after 6 years of simulation the median
prevalence fell below 10% and after 20 years to 1.0% (mean 1.0%,
CI 0.3–2.0%). After 50 years of simulation, footrot is predicted to
be eliminated on average (median nationwide prevalence of 0%).
Only slight differences were observed between the regions 1–22
and 23–27 (Figures 5 and 6). The 10% prevalence was reached
earlier for the median of the regions 1–22 (after 6 compared to
after 7 years) and the footrot elimination (0% median prevalence)
was achieved earlier for the regions 23–27 (after 24 compared to
after 33 years).

Scenario D was defined as the cease of all mandatory control
measures in Switzerland. The median of the Swiss prevalence
increased slightly in the first 2 years up to 42.7% (mean 42.5%, CI
36.7–47.9%) (Table 3; Figure 4). An increase of 10% to a median
of 50.4% (mean 50.3%, CI 44.0–56.4%)was observed after 15 years
of simulation. This increasing trend continued and toward the
end of the simulation (year 57), the median of the prevalence
reached a plateau, which was 13% higher than at the beginning
of the simulation (median 53.3%, mean 53.2%, CI 46.0–59.9%).
The increase inmedian prevalencewas faster in the regions 23–27,
where the cease of the mandatory control program had a direct
effect (Figure 6), than for the regions without earlier implemented
control programs (Figure 5).

GSA Analysis
Two parameters were detected to mostly influence footrot preva-
lence (the outcome of the model). These are the recovery rate
σ and reversion rate γ with total effect Sobol indices of 0.69
and 0.61, respectively. To a lower extent, infection rate β (total
effect Sobol index= 0.49) and the number of susceptible herds at
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TABLE 4 | Cost and benefit of footrot management for 2014–2030 (in 1,000 CHF).

Scenario A B C D

Management costs
On-farm labor 47′135 14′244 8′080 59′477

(38′707–55′203) (11′180–17′611) (6′205–10′297) (51′648–66′793)
Third-party labor 985 12′451 7′922 0

(669–1′339) (10′265–14′851) (6′601–9′484) (0–0)
Material cost 2′020 763 414 2′591

(1′656–2′370) (588–956) (311–536) (2′248–2′910)

Total costs 50′140 27′458 16′416 62′068
(41′031–58′912) (22′034–33′418) (13′117–20′317) (53′896–69′703)

Economic consequences for footrot development
Benefit from shorter fattening time 1′648 40′665 52′754 −20′474

(1′328–1′802) (36′921–43′821) (45′788–59′249) (−20′901 to −19′540)
Intangible cost (animal welfare and others) 553′422 192′775 99′936 691′667

(441′966–647′156) (140′771–253′578) (71′947–134′365) (606′668–762′332)

The discount factor is 1. All cost and benefit are expressed in constant 2014 prices. Direct cost and treatment cost are summed over time of the management period (2014–2030).
The 95% confidence interval is reported in parenthesis. The total net economic effect is presented in Table 5.
Cost differences between small, medium, and large farms are taken into account. Composition of the cost categories depends on the scenario. On-farm labor costs are calculated as
28 CHF/h times the farm personnel’s time estimated for foot bathing, hoof trimming, and presence at clinical inspections or collection of samples for diagnostic tests. Third-party costs
include clinical inspections by hoof controllers and veterinaries and diagnostic tests. Material costs include water and zinc sulfate. The saved costs associated with the reduction of
fattening time were calculated by assuming that the costs per animal are 2.70 CHF/day, and animals are not prematurely slaughtered. Intangible costs are calculated based on national
prevalence rates, given the results of the expert elicitations.

the beginning of the simulation (total effect Sobol index= 0.48)
also resulted in Sobol indices slightly higher than for the other
parameters, which range from 0.43 to 0.45 (Figure S4 in Supple-
mentary Material). The total effect Sobol index also integrated the
interactions between the respective parameter and with all other
parameters tested in the GSA.

Cost and Benefit Evaluation
Table 4 summarizes the cost and benefit of footrot management
under the four management scenarios for 2014–2030. Among the
components of management cost, labor cost accounted for the
largest share in total cost. The smallest management costs were
found under scenario C, and the highest costs were expected
with scenario D. In comparison to scenario C, labor costs under
scenario B were substantially larger. This is because PCR tests are
less labor demanding than footrot inspections and this includes
both, on-farm labor as well as third-party labor. Most of the total
management costs of scenario C occur in the initial years after
the management strategy was implemented, and cost decreases
substantially in the following years as the prevalence rate drops.
For the benefits, it was found that under scenario D, the fattening
time would increase substantially and the animal welfare would
decrease. By increasing the management intensity (scenarios B
and C), a substantial decrease in fattening time and improvement
of animal welfare could be achieved. The effect was larger for
scenario C, where the benefit for reduced fattening time increased
to CHF 52.8million.While the intangible cost in scenario C is still
nearly double as high as the gain through reduced fattening time,
its value of 99.9 Mio. CHF is substantially lower than in any other
scenario.

The net economic effect of footrot management was calculated
by comparing the alternativemanagement scenarios B–Dwith the
baseline scenario A (Table 5). It was found that under scenario D,
the management cost will increase by CHF 11.9 million. Since the
management benefit will also be reduced by CHF 160.4 million,

TABLE 5 | Net economic effect of scenario B–D compared to scenario A
(laisser-faire) in 1,000 CHF.

Scenario B C D

Management costs (compared to scenario A)
Difference in labor cost −32′891 −39′055 12′342
Difference in third-party labor cost 11′466 6′937 −985
Difference in material cost −1′257 −1′606 571

Total of cost differences −22′682 −33′724 11′928

Management benefits (compared to scenario A)
Difference in direct benefits (reduced
fattening time)

39′017 51′106 −22′122

Reduction in intangible cost (animal welfare
and others)

360′647 453′486 −138′245

Total of benefit differences 399′664 504′592 −160′367

Cost–benefit
Direct net economic effect 61′699 84′830 −34′050
Net economic effect, direct and intangible 422′346 538′316 −172′295

The total of cost and benefit are reported for the period 2014–2030. All cost and benefit
are expressed in constant 2014 prices.

the net economic effect of scenario D is negative (CHF −172.3
million), indicating that it is less preferable than the laissez-
faire scenario A and clearly the least preferable option among
the compared scenarios. In contrast, scenarios B and C have a
positive net economic effect of CHF 422.3 and 538.3 million,
respectively. In both scenarios, reductions of intangible costs are
the largest fraction of economic gains. Given that the sanitation
measures have to be paid by the farmers and intangible cost
reductions are social gains, it is worthwhile to note that there is
also a positive benefit due to shortened fattening time—which is
a benefit received directly by the farmer. It was found that the
management costs were substantially lower for scenario C than for
scenario B. Moreover, due to higher accuracy of the PCR method
in recognizing footrot, management benefits were estimated to be
larger for scenario C than for scenario B.
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DISCUSSION

The aim of this study was to evaluate the current footrot situa-
tion in the Swiss sheep population and the costs and benefits of
Swiss-wide control programs. The joint analysis of the economic
and epidemiological aspects of footrot allowed predicting the
costs, benefits, and net economic effects under different control
programs has not been implemented to date. By applying an
epidemiological model, spatio-temporal prevalence information
could be generated that served as basis for the economic analy-
sis of the control strategies. Particularly in veterinary medicine,
cost–benefit analysis is highly relevant for the decision whether or
not to implement a disease control program.

The simulation model revealed that scenario C is most efficient
in reducing nationwide footrot prevalence as fast as possible. This
is due to the combination of the nationwide mandatory control
program with the use of PCR diagnostics, which substantially
increases the detection rate of infected animals. Nevertheless, this
scenario was predicted to still require 6 and 10 years to reduce the
Swiss-wide prevalence below 10 and 5%, respectively.

Global sensitivity analysis revealed that the recovery rate σ
and reversion rate γ are most influential on the prediction of
footrot prevalence over time. These parameters simulate the dis-
ease spread within the regions. Parameters defining the spread
between regions, i.e., those related to common pasture, exhibi-
tions, and sheep transport between regions, are less sensitive.
This implies that in the current endemic footrot situation in
Switzerland, the main effort should be directed toward reducing
the prevalence within the regions. This finding is in line with
experiences of the cantons GR andGLwhere the prevalence could
be reduced significantly within a few years after the implemen-
tation of the mandatory control program (personal information
cantonal veterinary office GR). However, reinfections have also
been observed frequently through contact with infected animals
on pastures or after purchase of infected sheep. Therefore, it can
be hypothesized that the between region transmission pathways
will become more relevant in an advanced control phase after
the prevalence within the regions was successfully reduced. In
this project, modification of between region pathways has not
been investigated by restriction of sheep movements, pasturing,
or participation at exhibitions. Yet, this is certainly worthwhile to
be undertaken in the situation of advanced footrot management,
because control measures restricted to regional activities are not
sustainable enough.

From an economic point of view, it can be concluded that
under current management costs and benefits, it is advisable to
implement a systematic program that aims at a reduction of the
footrot prevalence level. Over the long run management costs of
individually tackling footrot are far higher than in a systematic,
Swiss-wide approach, which is able to quickly reduce the preva-
lence of footrot in Switzerland. The analysis has shown that the
net economic benefit increases with higher treatment intensity.
Therefore, a systematic sanitation program with PCR method has
been demonstrated to be the best choice.

An aspect is the potential economic effect of nationwide pro-
grams on the market price of sheep product markets. It has been
demonstrated earlier that consumers are willing to pay higher

prices for products yield from animal production with high wel-
fare levels (37). For the Swiss sheep meat market, this effect is
hard to predict and likely small due to several factors. On the
one hand, a successful nationwide footrot program increases the
number of healthy animals in Switzerland andwith it the supply of
sheep products.On the other hand, the high costs of implementing
the mandatory measures might induce farmers to exit, which has
adverse effects on the supply. The net effect of these diverging
forces on the lamb meat market price is further dampened due
to Swiss import regulations (potential adjustment of the import
quota for lamb meat). The import quota is set quarterly by the
Swiss meat association. A changing supply could, therefore, be
compensated by higher or lower imports. However, it has to be
noted that theminimum import amount set by theUruguay round
has to be 4,500 tons per year (38). During the last years, this
threshold has always been exceeded, resulting in an import share
of >50% of the Swiss sheep meat market (38).

Like all models, the simulation model is based on a series of
assumptions. First, it was assumed that only one herd exists per
premises. It might, therefore, be possible that the number of herds
in Switzerland were underestimated. However, the influence on
the output of the simulation model is expected to be negligible
because the disease very likely spreads easily via pasturing or
contaminated objects (e.g., foot-paring instruments) within the
same premises even when more than one herd is kept. Second,
neither disease transmission by migratory sheep flocks nor by
cattle, goat, and wild ruminants were considered for the spread
between regions. Migratory sheep flocks integrate sheep collected
from different premises at the end of the pastoral season, and
travel to the low land of Switzerland until they reach the weight
to be slaughtered. Information on migration routes is not avail-
able in Switzerland. Therefore, uncertainties would have been too
high to allow inclusion into the model. Also, only six migratory
flocks are currently registered in Switzerland, their influence on
the propagation of the disease is likely to be limited. The role
of cattle in the transmission of virulent strains of D. nodosus
leading to footrot in sheep is still under debate, although cross-
infection between the two species in co-grazing settings was
demonstrated (39, 40). In Switzerland, cattle and sheep are rarely
kept in the same stable and are not transported together, which
hampers potential transmission. It was demonstrated that the
transmission of footrot is possible between goats and sheep when
kept in close contact (41). However, in Switzerland sheep and
goats are mainly kept together in smaller premises and hobby
farms and the main part of sheep movements is caused by pro-
fessional farmers. Therefore, it can be assumed that the role of
goats in spread of footrot is negligible in Switzerland. Neverthe-
less, the influence of goats, but also other species such as wild
ruminants on the spread of footrot to sheep should be further
investigated.

In the presented work, epidemiological and economic models
were combined to assess footrot management programs in the
Swiss sheep population. It was found that a nationwide coor-
dinated program with the use of the improved diagnostic test
revealed to be the most cost-efficient strategy to control the
disease. Implementation of such a program is therefore recom-
mended from a scientific point of view.
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