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The term allorecognition refers to the series of 
mechanisms used by an individual’s immune 
system to distinguish its own cells and tissues 
from those of another individual belonging to 
the same species. During evolution, different 
cells and molecules of both innate and adaptive 
immune systems have been selected to recognize 
and respond to antigens expressed by allogeneic 
cells, but not autologous cells (alloantigens). 
This research topic focuses on allorecognition 
by lymphocytes of the adaptive immune system 
and its involvement in rejection or tolerance of 
allogeneic transplants. 

T and B cells recognizing alloantigens via 
specific receptors become activated and undergo 
proliferation and differentiation into different 
types of effector and memory cells. Allorecognition 
by lymphocytes occurs regularly during pregnancy 
upon trafficking of both maternal and fetal 
cells. In this setting, allorecognition triggers an 
alloresponse that is protective towards the fetus 
thus preventing abortion. Protective alloimmunity 
is mediated through cooperation between different 

lymphocytes and antigen presenting cells (APCs), as well as regulatory mediators and receptors. 
Likewise, certain transplants placed in organs and tissues called immune-privileged sites such as 
the eye, the central nervous system and the testis elicit protective rather than destructive adaptive 
immune responses. Therefore, under certain circumstances, allorecognition by regulatory 
lymphocytes (Tregs and Bregs) can lead to tolerance of alloantigens. In contrast, allorecognition by 
T cells in non-immune privileged sites and under inflammatory conditions leads to a destructive 
immune response. Indeed, after transplantation of most allogeneic organs and tissues, activation 
of pro-inflammatory T cells (TH1 and TH17), which recognize donor MHC proteins (direct 

This picture shows dendritic cells in a skin 
graft.
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pathway) or peptides derived from donor MHC and minor antigens (indirect pathway), leads to 
graft rejection.  This inflammatory response leads to the differentiation of allospecific cytotoxic 
T cells as well as production of donor specific antibodies by B cells, both of which contribute to 
the destruction of the transplant. In this Research Topic, we describe the different pathways of 
allorecognition by T cells involved in allograft rejection, as well as the role of different antigen 
presenting cells and graft-derived microvesicles (exosomes) involved in this process. 

Another aspect of this Research Topic addresses the essential role of alloreactive memory T cells in 
allograft rejection and resistance to transplant tolerance induction in laboratory rodents, as well 
as non-human primates and patients. Indeed, it has become evident that laboratory mice display 
very few memory alloreactive T cells pre-transplantation, essentially due to the fact that they are 
raised in pathogen-free facilities. In contrast, primates display high frequencies of alloreactive 
memory T cells, either generated through prior exposure to allogeneic MHC molecules or via 
cross-reactivity with microbial antigens. We and others have provided ample evidence showing 
that this feature accounts for differences in terms of tolerance susceptibility between laboratory 
rodents and patients. This implies that further investigation of tolerance protocols in laboratory 
mice should be performed using “dirty mice” i.e., mice raised in non-sterile conditions. 

In summary, this Research Topic addresses key aspects of allorecognition by lymphocytes and 
alloantigen presentation by dendritic cells, and specifically how these processes shape our 
immune system and govern the rejection or tolerance of allogeneic tissues and organs. 

Citation: Benichou, G., Kim, J., eds. (2018). Allorecognition by Leukocytes of the Adaptive Immune 
System. Lausanne: Frontiers Media. doi: 10.3389/978-2-88945-386-3
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Editorial on the Research Topic

Allorecognition by Leukocytes of the Adaptive Immune System

Allorecognition refers to a series of mechanisms by which an individual’s immune system distin-
guishes its own cells and tissue from those of another individual belonging to the same species. This 
phenomenon is responsible for self–non-self recognition in both invertebrates and vertebrates. Both 
cells of innate and adaptive immune systems are capable of allorecognition.

In vertebrates, allogeneic cells are recognized by lymphocytes of the adaptive immune system, 
through interaction of alloantigens (antigens expressed by allogeneic but not autologous cells) with 
specific receptors (BCR and TCR for B and T lymphocytes, respectively). Such allorecognition by 
lymphocytes can trigger immune responses, which can lead to either rejection or acceptance of 
cells, tissues, and organs displaying these alloantigens. In the case of transplantation of allogeneic 
organs and tissues, allorecognition generally initiates an inflammatory response, which leads to the 
destruction and rejection of the graft. On the other hand, a number of regulatory mechanisms have 
been selected through evolution to suppress deleterious alloimmunity in selected situations. For 
instance, during pregnancy in mammalians, alloimmunity directed to paternal antigens generally 
prevents immune attack and abortion of the fetus by the female’s immune system. Similar to the 
fetus, it is now established that allorecognition within certain organs such as the testis and the brain 
(called immune privileged) triggers specific types of immune responses protecting allogeneic cells 
from rejection. This phenomenon called immunological tolerance involves active processes medi-
ated by regulatory lymphocytes and cytokines. Therefore, the nature of the cells, the environment, 
and the molecular mechanisms involved in allorecognition govern the fate of the immune response 
to allogeneic cells (rejection or tolerance).

This Topic of Frontiers offers the reader views on key aspects of the immune mechanisms underly-
ing allorecognition by T and B cells and its relationship to the development of pro-inflammatory and 
regulatory responses involved in rejection or tolerance of allografts.

T cells are considered as the main driving force behind the initiation and regulation of immunity 
to alloantigens. The article by Jose Marino and his colleagues reviews current knowledge regard-
ing the different pathways of alloantigen presentation, direct, indirect, and semi-direct, and their 
contributions to T cell alloimmunity and allograft rejection. This paper provides evidence that the 
role of different allorecognition pathways in allograft rejection or tolerance varies depending upon 
the nature of the transplant, its site of placement, and the time after transplantation. This paper 
also describes recent studies describing how extracellular vesicles and donor MHC cross-dressing 
of recipient cells influence allorecognition and allograft rejection. The paper by Gilles Benichou 
et al. summarizes current knowledge regarding alloresponses by memory T cells in experimental 
and clinical transplantation models. The article by Sehrawat and Rouse describes the interplay of 
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regulatory T  cells and CD4+ TH17 cells and how it influences 
the fate of immune responses in humans and animals. The 
article by Degauque and his colleagues describes different studies 
designed to track and identify particular T cell clones involved 
in allograft rejection or tolerance. Finally, the paper by Scalea 
et al. summarizes current knowledge of cell therapies designed to 
achieve T cell tolerance in transplantation and their mechanisms 
of action.

The concept of immune privilege is an important aspect of 
transplantation immunology. Indeed, certain organ and tissue 
transplants are less susceptible than others to inflammation and 
rejection. At the same time, placement of allografts in selected 
body sites enjoy long-term survival with no or minimal immu-
nosuppression. Immune privilege represents a natural form 
of tolerance selected through evolution to prevent potentially 
dangerous inflammation in selected tissues and organs, such as 
the central nervous system. It is also an important element of 
the prevention of immune attack of the fetus and its abortion 
by the mother during pregnancy. Therefore, a better under-
standing of the mechanisms underlying this phenomenon may 
help with the design of tolerance protocols in transplantation. 
The paper by A. Taylor summarizes current knowledge in the 
field of immune privilege and addresses specific mechanisms 
contributing to the development and maintenance of immune 
privilege in the eye.

B lymphocytes play a key role in the response to and rejec-
tion of allogeneic transplants. They contribute to this process by 
producing antibodies against donor MHC antigens and tissue-
specific autoantibodies and by serving as antigen-presenting cells 
for T cell activation. In addition, there is accumulating evidence 
showing that donor-specific antibodies and autoantibodies are 
involved in chronic form of allograft rejection characterized by 
tissue graft fibrosis and vasculopathy, a major cause of progres-
sive organ transplant failure in clinical settings. On the other 
hand, recent studies have now firmly established the existence 
of anti-inflammatory, tolerogenic B  cells (regulatory B  cells or 
Bregs), which contribute, along with regulatory T cells, to prevent 
allograft rejection. The article by Michelle Hickey and colleagues 
provides a comprehensive overview on the generation and func-
tions of alloantibodies directed to HLA and their role in trans-
plant rejection. The paper by Daniel Firl et al. discusses current 
knowledge of different subsets of B  cells, including regulatory 
B cells, in rejection and tolerance of allografts in experimental 
and clinical transplantation models.

Antigen-presenting cells, in particular dendritic cells (DCs), 
initiate alloimmune responses by activating T cells through the 
presentation of intact donor MHC molecules (direct allorecogni-
tion) or donor MHC peptides (indirect allorecognition). It is now 
well established that the nature of the T cell responses depends on 
the nature of the DCs, their degree of maturation, and their abil-
ity to deliver selected costimulatory signals to T cells. The article 
by Angus Thomson and colleagues reviews current knowledge 
regarding the tolerogenic properties of certain DCs and their 
potential utilization to achieve tolerance in transplantation.

The transplantation of allogeneic bone marrow and stem 
cells is an important aspect of clinical transplantation as it has 
been used for curative treatment of hematological malignancies. 
Unfortunately, the desired antitumor or graft-versus-leukemia 
effect is often accompanied with undesired side effects against 
healthy tissues known as graft-versus-host disease. The article by 
M. Griffioen and colleagues provides insights into the composi-
tion and kinetics of in  vivo immune responses with respect to 
specificity, diversity, and frequency of specific T-cells and surface 
expression of HLA–peptide complexes and other (accessory) 
molecules on the target cell. It describes how the complex 
interplay between these factors and their environment ultimately 
determines the spectrum of clinical manifestations caused by 
immune responses after transplantation of allogeneic stem cells.

In summary, great progress has been made with regards to the 
description of the cells and molecules involved in allorecognition 
by the adaptive immune system. Furthermore, we have acquired 
a better understanding of the mechanisms by which these cells 
and molecules influence the nature of the immune response to 
alloantigens in health and disease. Based on this knowledge, 
novel strategies are being designed in an effort to manipulate 
alloreactivity in clinical settings, such as organ transplantation 
and transplantation of allogeneic bone marrow and stem cells as 
well as pancreatic islet cells.
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Allorecognition by T Lymphocytes 
and Allograft Rejection
Jose Marino, Joshua Paster and Gilles Benichou*

Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 
Boston, MA, USA

Recognition of donor antigens by recipient T cells in secondary lymphoid organs initi-
ates the adaptive inflammatory immune response leading to the rejection of allogeneic 
transplants. Allospecific T cells become activated through interaction of their T cell 
receptors with intact allogeneic major histocompatibility complex (MHC) molecules on 
donor cells (direct pathway) and/or donor peptides presented by self-MHC molecules on 
recipient antigen-presenting cells (APCs) (indirect pathway). In addition, recent studies 
show that alloreactive T cells can also be stimulated through recognition of allogeneic 
MHC molecules displayed on recipient APCs (MHC cross-dressing) after their transfer 
via cell–cell contact or through extracellular vesicles (semi-direct pathway). The specific 
allorecognition pathway used by T cells is dictated by intrinsic and extrinsic factors to the 
allograft and can influence the nature and magnitude of the alloresponse and rejection 
process. Consequently, various organs and tissues such as skin, cornea, and solid 
organ transplants are recognized differently by pro-inflammatory T cells through these 
distinct pathways, which may explain why these grafts are rejected in a different fashion. 
On the other hand, the mechanisms by which anti-inflammatory regulatory T cells (Tregs) 
recognize alloantigen and promote transplantation tolerance are still unclear. It is likely 
that thymic Tregs are activated through indirect allorecognition, while peripheral Tregs 
recognize alloantigens in a direct fashion. As we gain insights into the mechanisms 
underlying allorecognition by pro-inflammatory and Treg cells, novel strategies are being 
designed to prevent allograft rejection in the absence of ongoing immunosuppressive 
drug treatment in patients.

Keywords: allorecognition, T cells, regulatory T cells, allograft rejection, T cell tolerance, major histocompatibility 
complex, exosomes

iNTRODUCTiON

Allorecognition relates to the detection of genetically encoded polymorphisms between individual 
organisms of the same species by the immune system. Allorecognition has been described in nearly 
all multicellular phyla, including invertebrates that are devoid of an adaptive immune system (1). 
Indeed, certain cells of the innate immune system such as NK cells and macrophages are capable of 

Abbreviations: MHC, major histocompatibility complex; APC, antigen-presenting cell; Treg, regulatory T cell; tTreg, thymic 
regulatory cell; pTreg, peripheral regulatory T cell; γIFN, gamma interferon; TNFα, tumor necrosis factor alpha; DST, donor-
specific transfusion; DTR, diphtheria toxin receptor; TMEM, memory T cell; CTL, cytotoxic T lymphocyte; DC, dendritic cell.
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self–non-self discrimination (2, 3). In vertebrates, the adaptive 
immune response to allogeneic cells is initiated through recogni-
tion of polymorphic proteins by T lymphocytes through their 
antigen receptors. Subsequent activation of pro-inflammatory 
allospecific T cells initiates a cascade of reactions leading to rejec-
tion of transplanted allogeneic tissues and organs. Alternatively, 
under particular circumstances, deletion or inhibition of alloreac-
tive effector T cells can result in allograft acceptance or tolerance 
(4, 5). In this article, we review current knowledge of the different 
pathways underlying alloantigen recognition by different T cells 
subsets and examine their contributions to rejection or tolerance 
of allografts.

DiFFeReNT MeCHANiSMS iNvOLveD  
iN T CeLL ReCOGNiTiON OF 
ALLOANTiGeNS

The following section describes the three known pathways (direct, 
indirect, and semi-direct) by which recipient T cells recognize 
donor alloantigens [major histocompatibility complex (MHC) 
and minor antigens] after allotransplantation.

Direct Allorecognition
Seminal studies in skin-grafted rodents support the view that 
early after transplantation intra-graft dendritic cells (DCs) (pas-
senger leukocytes) migrate through lymphatics to host regional 
lymph nodes (LNs) (6, 7). Naïve T cells located in these LNs 
become activated through recognition of allogeneic MHC mol-
ecules displayed on these donor passenger leukocytes (8). This 
phenomenon, known as direct T cell allorecognition, initiates 
an inflammatory immune response leading to rapid and acute 
cellular rejection of skin allografts (9). Unlike conventional 
T cell responses to nominal protein antigens, the direct T cell 
alloresponse is polyclonal in that it involves a large portion of the 
T cell repertoire (1–10%) (10–13). Two non-mutually exclusive 
mechanisms have been proposed to explain this unique feature 
of the T cell response against allogeneic MHC molecules: the 
high determinant density and the multiple binary complex models 
(14–16). The high determinant density model postulates that each 
allogeneic MHC molecule on a foreign cell can be recognized by a 
single T cell receptor (TCR), which is focused on exposed amino 
acid polymorphisms of the allogeneic MHC molecule independ-
ent of the peptide bound to it. Likewise, various T cells may be 
activated even if each individual receptor on a given clone displays 
a low affinity for its ligand. The multiple binary complex model 
is based on the principle that each individual alloreactive T cell 
clone interacts with allogeneic MHC molecules bound to a defined 
peptide. Allo-MHC molecules being occupied by a multitude of 
different peptides can create many new pMHC complexes that 
can serve as ligands for various T cell clones. The prevalence of 
either model in T cell allorecognition presumably depends upon 
the degree of heterogeneity (structural and/or conformational) 
between recipient and donor MHC molecules. Unlike conven-
tional immune responses, T cell responses to allogeneic MHC 
antigens can be observed in vitro with T cells isolated from naïve 
animals cultured with allogeneic irradiated cells. This so-called 

mixed allogeneic reaction [mixed lymphocyte reactions (MLR)] 
is believed to rely on the high frequency of precursor T cells capa-
ble of recognizing allogeneic MHC molecules. It is also possible, 
however, that the MLR may reflect the presence of alloreactive 
memory T cells generated after infections through cross-reactive 
recognition of self-MHC molecules bound to microbial peptides 
mimicking an allogeneic MHC–peptide complex, a phenomenon 
called heterologous immunity (17, 18). For instance, T cells from 
individuals sensitized to EBV peptides presented by self-MHC 
class I HLA-B8 also recognize the HLA-B4402 allogeneic MHC 
molecules (19). Consequently, HLA-B8 individuals display 
memory T cells directed to HLA-B4402 allogeneic subjects as a 
result of an EBV infection. The same phenomenon has also been 
shown in mice after exposure to LCMV and Leishmania parasites 
(17, 20, 21).

indirect Allorecognition
Seminal studies by Singer showed that allogeneic MHC 
class I antigens could be presented by self-MHC class I on 
antigen-presenting cells (APCs) and trigger the activation of 
some CD8+ cytotoxic T cells in vitro, a phenomenon referred 
to as cross-presentation (22). Most importantly, Lechler and 
Batchelor provided evidence for an alternative pathway of 
T cell alloresponse in  vivo in the early 1980s (23, 24). It was 
observed that allosensitization could occur in the absence of 
donor passenger leukocytes following retransplantation of 
kidney grafts in rats (23, 24). Based on the assumption that 
donor parenchymal cells were not capable of sensitizing 
naïve T cells, it was proposed that host MHC class II+ bone 
marrow-derived professional APCs could present alloantigens 
and initiate an alloresponse. In 1992, our laboratory provided 
definitive evidence showing that allogeneic MHC peptides were 
regularly presented by self-MHC class II molecules on recipi-
ent APCs and triggered the activation of CD4+ T cells in the 
LNs of skin-grafted mice (25). The relevance of this process, 
called indirect allorecognition, in solid organ transplantation 
was documented the same year in two subsequent studies by 
Fabre and Suciu-Foca’s groups in rats and humans, respectively 
(26, 27). Subsequent studies documented indirect activation of 
CD8+ T  cells after skin transplantation; the relevance of this 
phenomenon in the rejection process is discussed later in this 
article (28–30). Determinant mapping and TCR repertoire 
studies showed that the initial indirect response to an allograft 
was oligoclonal and followed the rules of immunodominance 
in that it was mediated by a discrete set of T cell clones directed 
to a few dominant determinants usually located within poly-
morphic regions of allogeneic MHC proteins (31, 32). However, 
progressively, indirect alloresponse by T cells tend to spread to 
new formerly cryptic allo-MHC peptides (33). Cryptic deter-
minants correspond to peptides that are not processed and/or 
presented efficiently enough to trigger a T cell response after 
protein immunization (34). However, T cell responses to these 
determinants can be elicited upon peptide immunization (34). 
Secondary responses to formerly cryptic determinants also 
called antigen spreading has been documented in autoimmune 
disorders (35, 36) and after allotransplantation and could be 
involved in chronic rejection (37).
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In addition to its role in allo-MHC recognition, indirect T cell 
recognition is considered as the main driving force being T cell 
responses to minor antigens (mH), which are peptides usually 
derived from housekeeping proteins displaying some degree of 
polymorphism (38). The contributions of mH to the overall indi-
rect alloresponse by T cells and to allograft rejection are discussed 
later in this article. Finally, it is important to note that it is still 
unclear where and through which process donor antigens are 
taken up and processed by recipient APCs and presented to T cells 
after transplantation. Acquisition of donor antigens by recipient 
APCs may occur in the graft itself or in the host lymphoid organs 
through pinocytosis of shed donor proteins, phagocytosis of dead 
donor cells and apoptotic bodies, or via transfer of donor antigens 
through cell–cell contact or phagocytosis of extracellular vesicles 
secreted by donor cells.

Semi-Direct Allorecognition
It is now well established that leukocytes exchange molecules, 
including RNA and proteins, either via cell–cell contact (tro-
gocytosis), nanotubes, or through the release of extracellular 
vesicles such as exosomes (39–41). For instance, T cells were 
shown to acquire surface immunoglobulin molecules from 
B  cells (42) and antigens from macrophages (43). Likewise, 
the transfer of MHC molecules between hematopoietic cells 
was originally documented by Frelinger et  al. (44). Acquired 
peptide–MHC complexes have been shown to remain at the cell 
surface of APCs for more than 48 h, providing ample opportuni-
ties for T  cell activation (45). There is accumulating evidence 
suggesting that this process plays a key role in the initiation and 
regulation of immunity to microbes and tumors (46). Recent 
studies have documented the transfer of MHC class I and II 
molecules (MHC cross-dressing) between recipient and donor 
DCs after solid organ and bone marrow transplantation (40, 
47, 48). At the same time, DCs that have acquired allogeneic 
MHC proteins in vitro via cell–cell contact have been shown to 
stimulate allospecific T cells in vitro, through a mechanism often 
referred to as semi-direct allorecognition (Figure 1) (49–51). It 
is conceivable that allo-MHC cross-dressing of APCs after 
transplantation could occur via cell–cell contact and through 
secretion of extracellular vesicles. Lechler et al. have shown that 
DCs and endothelial cells can acquire MHC complexes in vitro 
and in  vivo (after DC injections) through cell–cell contact in 
a temperature- and energy-dependent manner. In these stud-
ies, allo-MHC cross-dressed cells induced proliferation of 
Ag-specific T cells in vitro (49–51). On the other hand, a recent 
study by Marino in our laboratory shows that recipient APCs 
having acquired donor MHC from donor exosomes trafficking 
from skin and heart to host lymphoid organs are involved in 
T cell antigen recognition and activation after allotransplanta-
tion. Most exosomes expressed preferentially allogeneic MHC 
class II and were derived from donor DCs and B cells, i.e., bone 
marrow-derived professional APCs. However, it is important to 
note that a significant number of MHC class II+ vesicles involved 
in MHC cross-dressing were not derived from these cells and 
could potentially be secreted by activated endothelial cells, as 
suggested by a previous report from Lechler’s laboratory (50). 

Altogether, these studies involving transfer of MHC antigens 
provide a different view of the process by which donor passenger 
leukocyte cells can trigger T cell alloresponses after transplan-
tation. It is now crucial to investigate whether exosomes and 
allo-MHC cross-dressing are essential elements of the overall 
alloresponse and allograft rejection processes.

ReLATiONSHiPS BeTweeN  
DiFFeReNT PATHwAYS

Direct and indirect allorecognition represent distinct mechanisms 
involving different APCs, T cells, and antigen determinants. 
Each of these pathways can sufficiently and exclusively lead to 
acute rejection of fully allogeneic skin allografts (52). In certain 
circumstances, T cells activated directly and indirectly could 
either cooperate or suppress each other, a process influencing 
the survival of allografts. It is plausible that in recipients of MHC 
class I-disparate allografts, CD4+ T cells activated exclusively 
through indirect allorecognition provide help [via IL-2 and 
gamma interferon (γIFN) secretion] for the direct activation of 
other CD4+ T cells (three-cell cluster model) or the differentia-
tion of CD8+ cytotoxic T cells recognizing donor MHC class I 
peptides in a direct fashion (four-cell cluster model) (Figure 1). 
Likewise, in the absence of bone marrow-derived donor profes-
sional APCs, T cells recognizing donor MHC class I or II directly 
on parenchymal cells can receive costimulatory signals via 
interaction with CD80/86 or CD40 located on recipient profes-
sional APCs (activated through indirect presentation to T cells) 
(trans- costimulation) (Figure 1). At the same time, early inflam-
matory direct alloresponses associated with γIFN and tumor 
necrosis factor alpha production and subsequent induction of 
donor MHC class II expression on endothelial cells presumably 
enhances allo-MHC antigen processing by recipient APCs and 
indirect activation of T cells. Therefore, the direct and indirect 
alloresponses can act synergistically to reject an allograft.

T CeLL ReCOGNiTiON PATHwAYS 
iNvOLveD iN ALLOGRAFT ReJeCTiON

Many factors either intrinsic or extrinsic to the graft influence 
the nature and magnitude of the T cell response induced by a 
defined pathway of allorecognition. Consequently, the contribu-
tion of each T cell allorecognition pathway (direct or indirect) 
to the rejection process varies upon the nature of the tissue or 
organ transplanted, the site of the body where it is placed, and 
the immunological status of the recipient. This section describes 
some of the factors governing the initiation of direct and indirect 
alloresponses by CD4+ and CD8+ pro-inflammatory T cells and 
the rejection of allogeneic skin, corneal, and heart grafts.

T Cell Allorecognition in Skin 
Transplantation
Potent direct and indirect alloresponses by CD4+ T cells are 
induced after transplantation of fully MHC-mismatched skin 
allografts (13). The direct alloresponse to donor MHC class II 
antigens by inflammatory CD4+ T cells is polyclonal and leads 
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to the rapid rejection of skin allografts (53). Yet, studies from 
Auchincloss’ laboratory using MHC class II-deficient skin 
allografts have demonstrated that the CD4+ T cell indirect 
alloresponse was sufficient on its own to cause acute skin graft 
rejection by providing help for the activation/differentiation of 
CD8+ cytotoxic T cells recognizing donor MHC class I directly 
(54, 55). This conclusion was further confirmed by experiments 
using recipient mice adoptively transferred with CD4+ T cell 
clones recognizing donor antigens indirectly (56). In addition, 
indirect responses by CD8+ T cells are also detectable after skin 
transplantation (28). Studies by Valujskikh and Heeger support 
the view that indirectly activated CD8+ T cells can reject skin 
allografts following recognition of self-MHC class I+ allopep-
tides present on vascular endothelial cells after replacement 
of donor graft vessels by recipient ones (30, 57). Therefore, 
both CD4+ and CD8+ T cells activated directly and indirectly 
are elicited after skin grafting and can lead to acute rejection 
of these allografts. Recent articles by Marino et al. and Smyth 
et al. support the view that T cells activated through direct and 

possibly indirect pathway after skin transplantation recognize 
donor MHC molecules and peptides acquired and displayed by 
recipient APCs (58, 59). However, the precise contribution of 
this phenomenon to acute rejection of these grafts remains to 
be evaluated. Finally, it is important to note that skin allografts 
that are vascularized at the time of their placement are acutely 
rejected at the same pace as their conventional (non-primarily 
vascularized) counterparts, but they do not induce an indirect 
alloresponse (60). This shows that graft vascularization influ-
ences the nature of the allorecognition by T cells after skin 
transplantation.

T Cell Allorecognition in Corneal 
Transplantation
In contrast to skin transplants, corneal allograft rejection is 
slower and is driven by minor antigens instead of MHC dispari-
ties between the host and recipient (61). This unusual feature of 
corneal transplantation is attributed to the facts that (1) corneal 
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allografts are devoid of MHC class II+ APCs at the time of trans-
plantation and (2) they are placed in the eye that is an immune-
privileged site of the body (62, 63). These grafts induce indirect 
but no direct alloresponses by CD4+ T cells, a feature presumably 
associated with the lack of donor MHC class II expression in the 
cornea (64). In addition, the indirect CD4+ T cell alloresponse 
is directed almost exclusively to minor antigens (61). Such 
dominance of minor antigens is likely to rely on the low expres-
sion of MHC antigens in the cornea [absence of MHC class II 
and reduced MHC class I expression (65)]. Additionally, in the 
absence of CD4+ T cell direct alloreactivity, indirect alloresponse 
may be biased toward mH antigens, as observed in the rejection 
of APC-depleted thyroid grafts (66). On the other hand, CD8+ 
T cells activated directly against donor MHC class I are readily 
detected after corneal transplantation (67, 68). Although these 
CD8+ T cells produce γIFN, they do not display cytotoxic func-
tions (67, 68).

Only indirectly activated CD4+ T cells then drive the rejec-
tion process. Interestingly, while no MHC class II+ cells were 
originally detected in the cornea, studies by Dana’s laboratory 
have documented the presence of DCs in the cervical LNs 
draining corneal allografts (69). Indeed, CD11c+ DCs and 
CD11b+ macrophages are present in the corneal epithelium 
(70). Interestingly, in “high-risk” recipients of corneal trans-
plants placed in an inflamed eye bed environment (71), corneal 
DCs express MHC class II molecules as well as CD40, CD80, 
and CD86 co-receptors at the time of transplantation (71). 
Consequently, these allografts trigger vigorous direct allore-
sponses by host CD4+ T cells against intact donor MHC class 
II molecules and are acutely rejected in a few days similar to 
skin grafts (71). Therefore, lack of immunogenicity of corneal 
DCs is not an intrinsic property of these cells, but it is due to 
the microenvironment of the eye. This view is supported by 
Niederkorn’s studies showing that heterotopic corneal allografts 
elicit bona fide cytotoxic T cell (CTL) responses (72). Likewise, 
we have shown that corneal allografts placed subcutaneously in 
mice trigger CD4+ T cell direct alloresponses (68). Altogether, 
these studies demonstrate that both intrinsic (APC contents) 
and extrinsic (site of placement) factors determine the fate of 
corneal allografts by influencing the allorecognition pathway 
and the nature of target  alloantigens involved in the T cell 
response against these grafts.

T Cell Allorecognition and Rejection of 
vascularized Solid Organ Transplants
Early acute rejection of cardiac and kidney allografts is essen-
tially initiated by CD4+ T cells recognizing donor MHC class 
II molecules in a direct fashion (73, 74). These transplants 
differ from skin allografts in that they are vascularized at the 
time of their placement (75). This is associated with a rapid 
trafficking of graft DCs to the host spleen presumably occur-
ring via reverse transendothelial vascular migration (76, 77). 
In addition, some studies suggest that these allografts could be 
rapidly infiltrated with recipient endogenous alloreactive effec-
tor memory T cells (78, 79). These pre-existing memory T cells 
are present at low frequencies (5–10%) in laboratory rodents 

(80, 81). In contrast, primates display much higher frequencies 
(>50%) of alloreactive memory T cells before transplantation 
(82, 83). These memory T  cells may be generated through 
mimicry with microbial antigens or prior exposure to allogeneic 
MHC  molecules  following events such as pregnancy or blood 
transfusion. We and others have shown that these memory 
T  cells account for resistance to allograft tolerance induction 
in primates (82–85). Therefore, primarily naïve and presumably 
endogenous memory T cells activated in a direct fashion mediate 
early acute rejection of solid organ transplants. Suppression of 
this response by calcineurin inhibitors and other immunosup-
pressive agents is regularly achieved in transplanted patients, 
thereby allowing large-scale clinical transplantation of organs 
such as kidneys and livers. However, many of these transplants 
are ultimately lost due to chronic rejection, a process associated 
with progressive graft tissue fibrosis and blood vessel occlusion 
(86, 87). There is strong circumstantial evidence suggesting 
that T cells activated indirectly are responsible for chronic 
allograft rejection, either on their own or through the induction 
of alloantibody production by B cells (86–89). The relevance 
of this concept in clinical transplantation is supported by the 
detection of donor HLA DR peptide-reactive T cells in kidney-
transplanted patients with chronic rejection (90). Additionally, 
studies by Baker et al. showed the loss of direct and maintenance 
of indirect alloresponses in renal allograft recipients and its 
implications in chronic allograft nephropathy in patients (87). 
Finally, recent studies by Benichou and Morelli’s laboratories 
suggest that activation of recipient T cells through semi-direct 
allorecognition might represent an essential element of the 
immune response to and rejection of cardiac allografts in mice 
(58, 91). Both studies show that T cells activated via this pathway 
recognized allo-MHC molecules transferred to recipient APCs 
by donor exosomes released either in the heart transplant or in 
the recipient’s lymphoid organs (58, 91). Ongoing studies are 
underway to assess the role of semi-direct alloreactivity in acute 
and chronic rejection of heart and other solid organ transplants 
in animal models and patients.

T CeLL ALLOReCOGNiTiON PATHwAYS 
iN ReGULATORY TOLeRANCe

Allograft tolerance, defined as long-term survival of allogeneic 
transplants in the absence of ongoing immunosuppressive 
drug treatment, can occur via deletion or inhibition of allo-
reactive T  cells. This process can occur naturally, as seen in 
the tolerance of paternal alloantigens expressed by the fetus 
during pregnancy (92, 93). In addition, immune-privileged 
tissues such as the central nervous system and the testis are 
tolerogenic in that they elicit systemic tolerance to foreign 
antigens to which they are exposed (94–96). Various cells and 
mediators of the innate and adaptive immune systems have 
been implicated in the process of allograft tolerance (4, 96–99). 
Among them, regulatory T cells (Tregs) play an essential role 
by suppressing inflammatory responses (100–102). Tregs are 
CD4+CD25high T lymphocytes expressing FoxP3 transcription 
factor either constitutively (thymic Tregs or tTregs) or after 
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peripheral recognition of antigens (peripheral Tregs or pTregs) 
(100, 103, 104). In addition to their role in self-antigen toler-
ance, both Treg subsets can suppress inflammatory alloreactive 
T cells in vitro and in vivo. They inhibit alloreactivity in MLR 
in vitro (4, 96, 99, 105) and are thought to mediate transplant 
tolerance elicited via leukocyte costimulation blockade, donor-
specific transfusion (4). This is supported by experiments in 
which inoculation of Tregs from tolerant mice to naïve mice 
could prolong allograft survival and even transfer tolerance 
(4). In addition, studies from Colvin’s laboratory using FoxP3-
diphtheria toxin receptor mice showed that in vivo deletion of 
Tregs abrogated ongoing tolerance to kidney allografts in mice 
(106). tTRegs are positively selected in the thymus medulla 
based on their high affinity for self-antigen pMHC complexes 
(107). While tTregs require TCR interaction with self-MHC 
class II molecules to mediate their suppress functions, they 
are thought to be non-antigen specific. Indeed, tTregs isolated 
from naïve mice can suppress T cells responding to polyclonal 
stimulators (anti-CD3/anti-CD28 mAbs or PMA/ionomycin) 
and MLR regardless of the nature of the allogeneic stimulators. 
The nature of the self-peptide determinants recognized for 
tTregs is not known. Studies from LeGuern’s laboratory suggest 
that tTreg recognition is biased to self-MHC class II peptides 
bound with self-MHC class II molecules themselves (referred 
to as Tlo) (108). Tolerance of solid organ transplants in swine 
and rodents via allo-MHC class II transgenesis support this 
view (109–113). In contrast to tTregs, pTregs presumably 
acquire FoxP3 expression and suppressor functions through 
recognition of donor antigens (MHC and/or minor antigens) 
presented by selected APCs (immature DCs and plasmocytoid 
DCs) in an appropriate cytokine milieu (4, 114–117). Although 
activation of pTregs may be antigen specific, it is not clear 
whether their suppressive function follows the same rules. 
Therefore, both Treg subsets involved in allograft tolerance 
are presumably activated through recognition of peptides 
presented by self-MHC class II on recipient APCs, i.e., in an 
indirect fashion. However, the mechanisms by which they sup-
press alloreactive T cells and induce and/or maintain allograft 
tolerance are still unknown.

CONCLUDiNG ReMARKS

It is now firmly established that the mechanisms by which 
T cell recognize and respond to alloantigens greatly vary upon 
the nature of the transplanted organ or tissue, the site of ana-
tomical placement, and the immunological status of the host. This 
explains why certain transplants, such as skin allografts, which 
induce potent inflammatory responses by both CD4+ and CD8+, 
activated directly and indirectly, are highly immunogenic and 
thereby resistant to tolerance induction. In contrast, corneal allo-
grafts that elicit only indirect alloresponses by CD4+ T cells are 
tolerogenic and often spontaneously accepted. On the other hand, 
early acute rejection of solid organ allografts such as hearts and 
kidneys is mediated essentially by T cells activated directly. While 
this immune response results in a potent inflammatory reaction, 
it is readily inhibited by calcineurin inhibitors. This explains why 
these drugs have been effective at achieving prolonged survival 
of organ allografts in patients. These treatments do not, however, 
efficiently suppress alloreactive memory T cells, thus precluding 
transplantation in patients sensitized to their potential donors 
(10% of patients). Most importantly, many transplanted organs 
are progressively lost due to chronic rejection, a process presum-
ably initiated by indirectly activated T cells and subsequent 
production of cytotoxic anti-donor antibodies. For reasons that 
are still unclear, this response is not always efficiently suppressed 
by current immunosuppressive drugs. Therefore, future chal-
lenges in clinical transplantation will be to suppress or eliminate 
allospecific memory T cells and to prevent the development of 
indirect alloresponses.
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It is now clear that the outcome of an inflammatory process caused by infections depends 
on the balance of responses by several components of the immune system. Of partic-
ular relevance is the interplay between regulatory T cells (Tregs) and CD4+ T cells that 
produce IL-17 (Th17 cells) during immunoinflammatory events. In addition to discussing 
studies done in mice to highlight some unresolved issues in the biology of these cells, 
we emphasize the need to include outbred animals and humans in analyses. Achieving 
a balance between Treg and Th17 cells responses represents a powerful approach to 
control events during immunity and immunopathology.

Keywords: T regulatory cells, Th17 cells, cross-regulation, humans, animals, outbred population

iNTRODUCTiON

The realization that CD4+ T cells could be differentiated in two phenotypically separate lineages, 
Th1 cells that predominantly produce IFN-γ and IL-2 while Th2 cells produce IL-4 and IL-10, was 
elucidated by Mosmann et al. (1). The idea caught on because these cell types cross-regulated each 
other and this phenomenon helped in explaining many observations in inflammatory and infectious 
diseases. Subsequently, several additional subtypes of CD4+ T cells were discovered based on the 
transcription factor expressed, their cytokine profile and functions (2, 3). Of particular relevance 
was the discovery that some CD4+ T cells play a regulatory role and helped to constrain the effector 
function of other cell types. We currently recognize at least four CD4+ T cell subsets which largely 
play an effector function (Th1, Th2, Th9, and Th17) and another subset T follicular helper cell (TFH) 
which plays a major role during immune induction (4). This review focuses largely on the cross play 
between regulatory T cells (Tregs) and Th17 cells since these two subsets often subserve opposite 
roles during inflammatory processes. Th17 cells are recognized as one of the predominant proinflam-
matory cell types and produce IL-17 to help attract other innate immune cells such as macrophages 
and neutrophils to further aggravate chronic inflammation. The transcription factor RAR-related 
orphan receptor (ROR)-γt regulates the speciation program of Th17 cells. Tregs on the other hand act 
to regulate the differentiation and activity of Th17 cells. In fact, several lines of evidence demonstrate 
that Treg and Th17 cells exhibit some key shared differentiation pathways (Figure 1). Thus, both cell 
types require TGF-β and IL-2 for their differentiation and are predominantly present in the gut to 
maintain homeostasis (5). Both Treg and Th17 cells exhibit specificity toward commensal-derived 
antigens or self-antigens and their speciation transcriptional program shows direct interaction (5). 
Of the two major classes of antigen-presenting cells (APCs) in the gut, dendritic cells (DCs) are 
known to promote Th17 cell responses while macrophages promote Treg responses (6). Treg and 
Th17  cells were shown to predominantly maintain gut homeostasis but their interplay in other 
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FiGURe 1 | Differentiation of T regulatory cells (Tregs) and Th17 to 
effect immunity and immunopathology during infections. Antigen-
presenting cells (APCs) either by direct infection or by exogenously taking up 
antigens process polypeptides intracellularly to generate peptides. These 
peptides are loaded onto class II MHC molecules and presented on their 
surface to activate naïve Th cells. Depending upon the affinity of TCR to 
recognize processed peptides and the microenvironment in which such 
interactions take place, Th cells are polarized into pTreg and Th17 cells to 
maintain homeostasis. Treg and Th17 cells can also transdifferentiate 
depending on intrinsic as well as some extrinsic factors such as local 
concentration of TGF-β. Predominant products of Treg include IL-10, IL-35, 
and TGF-β in addition to membrane-expressed molecules while Th17 cells 
secrete IL-17, IL-21, IL-22, and other cytokines. Tregs cause 
immunoregulation while Th17 serve as proinflammatory cells during disease 
progression. Treg and Th17 leads to differential outcome ranging from 
dominant regulatory to stimulatory activity while a fine balance ensures 
homeostasis.
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diseases that include those caused by infections is beginning to 
be appreciated.

The idea that T  cells could suppress the function of other 
cells was popularized by Gershon and Kondo (7). The cells were 
called suppressor cells, but since there were no reliable means 
of identifying them, they soon fell into disrepute. Resurrection 
and respectability for Treg came some two decades later by the 
work performed by the Sakaguchi et al. and Suri-Payer et al. who 
had discovered a reliable way of distinguishing Treg from other 
cell types and also demonstrated their regulatory effects (8–10). 
Sakaguchi et al. and Thornton and Shevach demonstrated that 

5–10% of T helper (Th) cells that expressed the high affinity 
IL-2 receptor alpha (α) chain (CD25) were present in naïve 
mice and were able to suppress the proliferation of those cells 
that did not similarly express this molecule (9, 11). The idea of 
Treg’s existence helped in explaining many unsolved mysteries 
in immunobiology such as how tolerance is maintained and 
the variable outcome of autoimmune and infectious diseases is 
effected (12–14). The canonical transcription factor Fork head 
box protein 3 (Foxp3), responsible for controlling the function 
of Treg and acting as their identifier, was discovered in 2001 
(15–17). Whereas Foxp3+ Tregs are perhaps the most prominent 
regulatory cells, other cell types have been observed to mediate 
regulatory effects alongside or alternatively to Foxp3+ Treg. 
These many alternative regulators include Tr1 cells, Th3 cells, 
CD8+ Treg, double negative CD3+ T  cells, gamma delta (γδ) 
T cells, natural killer T cells, regulatory B cells, myeloid-derived 
suppressor cells, and perhaps others.

A great majority of our understanding of how the immune sys-
tem works comes from studies performed in inbred mice housed 
in controlled environment. Our ultimate objective, however, is 
to understand the workings of the immune system and to apply 
the wisdom to manipulate the outcome of events in humans and 
other animals. There is still a gap in our knowledge regarding 
what happens in humans and outbred non-rodents and this issue 
is elaborated in this review. We also discuss unresolved issues 
in the biology as well as pathophysiology of Treg and Th17 cells 
during infectious diseases.

BiOLOGY OF TReG AND Th17 CeLLS

The expression of the transcription factors Foxp3 and ROR-γt 
defines Treg and Th17  cells, respectively. Foxp3 is critically 
involved in the differentiation and function of Treg. Foxp3 
does so by directly binding to DNA to be transcribed and in so 
doing regulates the transcription of more than thousand genes 
many of which are involved in T  cell activation. Some of the 
Treg-specific genes directly targeted by Foxp3 are Il2ra (CD25), 
Tnfrsf18 (GITR), Nrp1 (neuropillin-1), and Ccr4 among others 
(18–20). Foxp3 could also influence gene expression indirectly 
by recruiting epigenetic modifiers such as histone deacetylases 
(HDAC1, 2, and 3) in the complex (21). Many genes that include 
Il2 are downregulated by HDACs activity. As newer mechanistic 
insights are emerging, clearly there is need of more studies to 
better define the role of Foxp3 in programming Treg and in fact 
different functions could be attributed to its different domains. 
Similarly, Foxp3 regulates the expression of some chemokine 
receptors suggesting that it may also control the homing of Treg. 
The latter effect has not received much attention and needs to be 
understood in greater detail. This is because immunosuppression 
at inflammatory sites is one of the most desirable outcomes of 
cell-based immunotherapies.

Tregs are broadly divided into thymically derived regulatory 
T  cells (tTregs) and those that are induced in the periphery 
(pTregs). pTregs are usually more plastic than tTregs (22). Nrp1 
may act as the distinguishing marker between tTreg (+) and pTreg 
(−) (23–25). Tregs in the thymus develop after 3  days of birth 
and a thymectomy at 3  days of birth abrogates Treg responses 
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leading to multiorgan autoimmune inflammatory diseases (26). 
However, some Treg that specifically home to select lymphoid 
organs can be detected in 3-day-old thymectomized mice (27). 
Therefore, it could be that the kinetics of Treg generation in the 
thymus is also linked to their differential homing pattern. As and 
when growing animals are exposed to different environmental 
conditions that include feed and habitation, the homing proper-
ties, functionality, and repertoire of Treg may be refined further 
to maintain homeostasis at different locations.

For the induction of T cell responses that include Treg, three 
signals comprising MHC–peptide–TCR, engagement of co-stim-
ulatory/inhibitory molecule, and cytokines in milieu are required 
(28, 29). Issues such as the strength and the nature of inducing 
signals and the subsequent formation of either plastic or stable 
Treg are beginning to be investigated (30). Low to intermediate 
affinity interactions between the TCR expressed by developing 
T  cells and peptides–MHC class II complexes in thymus are 
considered as one of the critical drivers of Treg differentiation 
(28). Contrary to what was considered as a paradigm that both 
α and β chains of the TCR are involved in peptide binding (31), 
a recent study demonstrated that only the β chain of TCR along 
with its framework regions contributed to peptide binding in 
Tr1 cells and thereby making it a very low affinity interaction  
(32, 33). However, one wonders how such a weakly interacting 
TCR ensures survivability of T cells during the thymic selection 
process. Whether or not TCRs of different types of Treg also 
display a similar orientation and affinity remains unexplored.

The affinity with which TCRs of Th17 cells recognize pep-
tides has not been extensively explored. Only a few studies 
have demonstrated that TCRs of Th17 cells might exhibit a low 
affinity (34). High affinity interactions in fact might be counter-
productive for gut health, a site so heavily infested by microbes. 
Thus, in healthy individuals a unique tripartite interaction 
among gut microbiota, Treg, and Th17  cells may be required 
to maintain gut homeostasis (35). Conceivably, Th17 cells act 
to control the excessive growth of microbes in the gut while 
Tregs regulate Th17 cell responses. Whether Th17 cells exhibit 
differential TCR specificity or affinity toward antigens and how 
it affects their pathogenicity is worth investigating and could 
indeed help identify Th17 cell subsets with different functions. 
Some studies have supported a similar idea that Th17  cells 
could indeed exist in different subtypes (36–38). Accordingly, a 
local intracellular concentration of saturated fatty acids (SFA) 
compared to polyunsaturated fatty acids (PUFA) favored more 
pathogenic Th17 cell formation (38). Differential accumulation 
of SFA or PUFA and their binding to intracellularly expressed 
CD5L led to the generation of Th17 exhibiting differential 
pathogenicity (38).

The stimulating antigens for Treg and perhaps for Th17 cells 
could also be generated during an ongoing inflammatory response 
caused by autoimmune diseases or infections. To support this 
notion, a few studies have demonstrated that Tregs isolated from 
draining LNs are more active and better suppressors as compared 
to those isolated from distal LNs (39–42). In draining LNs, 
APCs home from local sites and predominantly sample antigens 
released from these areas. This provides ample stimulation for 
Treg to remain better suppressors.

TGF-β is a critical cytokine required at least in vitro for induc-
ing the regulatory phenotype in T cells. Depending on the con-
centration, context, and condition, TGF-β helps skew responses 
toward Treg or Th17 cells (43, 44). Thus, a greater concentration 
of TGF-β may be conducive for a Treg response while a lower 
concentration particularly in the presence of other inflammatory 
cytokines such as IL-6 and IL-21 could preferentially promote 
Th17 responses (45). In fact, some pathogens either encode for 
the homologs of TGF-β or help activate latent TGF-β and this 
may be responsible for differential proinflammatory or regulatory 
responses (46). Whether or not TGF-β is critical for Treg genera-
tion in the thymic environment was investigated in the absence 
of TGF-β signaling using complete knockout or T  cell specific 
TGFβRII knock out mice (47–49). These studies revealed that an 
absence of TGF-β signaling only affected the peripheral pool of 
Treg and not their thymic generation (47). It could also suggest 
that Treg that develop in the thymus halt their proliferation and 
remain quiescent until they home to the periphery. The reduced 
proliferation of Treg in the thymus could be the consequence of 
limited antigen availability and the presence of abundant TGF-β, 
both of which could serve to induce slow proliferation of Treg 
(48). The thymic microenvironment could indeed provide copi-
ous amount of TGF-β for Treg differentiation or maintenance 
because of an ongoing process of apoptosis and disposal of 
such cells by phagocytic activity of DCs and macrophages (49). 
Another signal that has been implicated in Treg generation is 
retinoic acid, a metabolite of vitamin A (50). The expression 
of TGF-β and retinoic acid has also been demonstrated in the 
thymus supporting the notion that these induction pathways 
either alone or cooperatively could help thymic Treg generation 
(51–53).

IL-2 signaling is critically involved in Treg as well as Th17 cell 
differentiation. IL-2 is consumed preferentially by Treg since they 
express high affinity IL-2 receptors (54). IL-2 also acts to stabilize 
Foxp3 induced by TGF-β (30, 55). Treg are supposed to dampen 
inflammation where a mix of both pro- and anti-inflammatory 
cytokines constitutes the microenvironment. Therefore, the func-
tionality of Treg needs to be evaluated in the presence of relative 
abundance of different cytokines. TGF-β and IL-2, if present in an 
environment along with other proinflammatory cytokines such 
as IL-1β, IL-6, IL-21, or IL-23, facilitate Th17 differentiation at 
the expense of Treg (56). It is worth investigating how ROR-γt in 
Th17 cells actually promotes their programming. Thus, whether 
or not the transcription factor ROR-γt in Th17 cells actually binds 
in the promoter region of IL-17 to modulate its expression has 
not been shown experimentally. However, a putative binding site 
of ROR- γt in IL-17 promoter has been predicted (57). Similarly, 
any naturally existing endogenous ligands for ROR-γt is yet to be 
identified. The induction kinetics of such ligands during infection 
could provide better insights into the differentiation of Th17 cells 
during an ongoing immune response and provide potential tar-
gets to block a pathogenic response. One such example is binding 
of an artificial ligand digoxin to ROR-γt which acts to diminish 
IL-17 production (58). The factors shown to favor and antago-
nize Treg and Th17 cells in different species are summarized in 
Table  1. In a subsequent section, we highlight technological 
advances that facilitated Treg or Th17 cell response investigations 
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TABLe 1 | A summary of positive and negative regulators of regulatory 
T cell (Treg) and Th17 cell response in different species.

Species Tregs CD4+ T cells that produce 
iL-17

Promoting 
factors

inhibiting 
factors

Promoting 
factors

inhibiting 
factors

Mouse IL-2 IL-6 IL-6 TGF-β (high 
concentration)

TGF-β TNF-α TGF-β (low 
concentration)

IL-2

IL-10 IL-1β IL-21 IL-4
Lower affinity of 
TCR

IL-23 IL-12
Saturated fatty 
acids

IFN-γ

IL-1β Polyunsaturated 
fatty acids
Estradiol

Human Antigen or 
mitogen

IL-6 IL-6 TGF-β

IL-2 IL-21 TGF-β (low 
concentrated)

IL-4

TGF-β IL-23 IL-21 IL-12
IL-17 IL-23 IFN-γ
TNF-α
IL-1β
RANTES

Canine 
(dogs)

Con-A IL-6 IL-6 TGF-β
IL-2 IL-1β IL-1β
TGF-β TFG-β
IL-10

Feline 
(cats)

Mitogens IL-6 IL-1β TGF-β
LPS and flagellin IL-1β IL-6 IL-10
IL-2 TGF-β

IL-21

Bovine Antigen or 
mitogens along 
with IL-10, TGF-β

IL-6 IL-23 Progesterone, 
IFN-γ
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as well as their interplay and also make some comments about 
their potential therapeutic value.

HOw DO we STUDY THe FUNCTiON AND 
PHeNOTYPe OF TReG AND Th17 CeLLS?

A summary of the key technological advancements that has 
facilitated studies involving phenotype and function of Treg and 
Th17 cells is provided in Figure 2. One of the initial identifiers 
of Treg in naïve mice was surface expression of CD25 (IL-2R α 
chain) and this served as a marker to facilitate their isolation and 
characterization (10). The discovery of the bona fide transcription 
factor Foxp3 advanced the field since it is distinctive of Treg and 
separates them from non-Treg during ongoing infections. Foxp3 
not only confers Treg with their regulatory function but also is 
used for monitoring Treg responses during disease progression 
to serve as a prognostic biomarker (15, 16, 59–62). As Foxp3 is 
expressed intracellulary, its detection requires cells to be per-
meabilized, which renders them dysfunctional, and hence limits 
utility. The issue was addressed in inbred mice by Bettelli et al. and 
Fontenot et al. who constructed a Foxp3-GFP knock-in mouse so 

that live cells could be recovered based on GFP positivity (63, 64). 
This model also allowed studying migration and localization of 
Treg during infections (65–67). Other transgenic mouse models 
such as Foxp3-diphtheria toxin receptor (DTR) also helped 
advance our understanding of the function and pathophysiology 
of Treg especially during ongoing infections and immune activa-
tion. The DTR is not naturally present in mice and, therefore, a 
selective depletion of Treg could be achieved by injecting minimal 
dose of diphtheria toxin (13, 66, 68, 69). Many studies employed 
this model to study the role of Treg during different stages of an 
ongoing infection or autoimmune disease (66, 70).

A confounding problem, however, complicated matters since 
it was realized that Treg might lose their expression of Foxp3 as 
well as their regulatory function. Moreover, such cells could even 
take on the function of effector T cells (4). This phenomenon is 
usually referred to as plasticity or the transdifferentiation. This 
can be investigated with the availability of so-called fate mapping 
mice (77, 78). Such animals are constructed in a way that desirable 
gene products such as Foxp3 or IL-17 are driving Cre recombi-
nase. Crossing these animals with reporter floxed mice having a 
transgene for fluorescent protein generated fate-mapping mice to 
address plasticity issues during infections and other inflammatory 
situations (77, 79). Whether or not proinflammatory cells produc-
ing IL-17 could also become regulatory at a later time, triple fate 
mapping mice have now been created (77). Using these animals, 
it was demonstrated that Th17 cells could transdifferentiate into 
Tr1 cells in a model of parasite induced inflammatory disease 
(77). Thus, fate-mapping mice have become a valuable model to 
follow the functional changes of T cell subsets in different situa-
tions. The method of generation such as inducible vs constitutive 
expression of transgene/reporter, number of copies inserted, and 
the expression of products under non-endogenous promoters 
could, however, impact on the overall utility of such animal 
models (80). Whether or not Treg plasticity occurs in humans has 
been difficult to quantify and co-staining for different markers 
followed by multicolor flow cytometry represents one surrogate 
way to measure it. In order to generate phenotypically stable 
regulatory T cells, approaches that modify epigenetic architecture 
are used. For example, epigenetic modifiers such as HDACs or 
DNA methyltransferases (DNMTs) inhibitors are used. The use 
of azacytidine that inhibits DNMTs activity ameliorated herpes 
simplex virus 1 (HSV-1) induced ocular inflammatory lesion and 
enhanced Treg responses (81).

In order to gain insights into the functioning of Treg or 
Teffectors in lymphoid organs or in inflammatory tissues, cells 
need to be visualized in vivo. This could be achieved using two 
photon intravital microscopy but its accessibility is limited  
(82, 83). Many observations obtained using inbred strains may 
not translate to outbred populations for reasons such as the rep-
resentation of limited MHC polymorphism in former animals. 
In addition, spontaneous exposures of feral animals to multiple 
antigens as compared to those that are housed in clean facilities 
may also yield confounding conclusions. That a dirty environ-
ment can make a difference is being emphasized and may include 
differential migration pattern of immune cells as was shown for 
CD8+ T cells (84, 85). This led to differential outcome during a 
subsequent viral infection (84). There is no reason to believe that 
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such a situation would not exist for Th subsets and other types 
of infections.

One model that could be valuable to address such issues 
is the zebrafish (Danio rerio) (86). The model could be par-
ticularly valuable to study cellular interactions due to its ana-
tomical visual transparency. For investigating Treg and Th17 
responses in zebrafish, the genes encoding for transcription 
factors Foxp3 and ROR-γt have been cloned successfully (87). 
The immune cells and molecules known to exist in vertebrates 
critical for adaptive immunity are also present in zebrafish 
(88). Procedures such as transgenesis, nuclear reprogramming, 
and gene function disruption can be performed with ease in 
these animals as compared to mice (89–92). Therefore, rather 
than demonstrating immunological events with select few 
lines, multiple lines of zebrafish can be generated and used  
(93, 94). Moreover, the zebrafish is an excellent model for trac-
ing some infectious diseases such as tuberculosis. The granu-
loma formed by mycobacterial infection in zebrafish exhibits 
similar histological and pathological features as are evident in 
Mtb infected human granuloma lesions (95, 96). The zebrafish 
model could surely empower immunologists to visualize the 
cross regulation of Treg and Th17 cells in pathophysiology of 
diseases.

The functionality of Treg and Th17 cells can be measured by 
various in vitro assays and in vivo adoptive transfer approaches. 
In vitro functional assays include isolating and co-culturing Treg 
with identifiable non-Treg to measure the functionality (11, 97). 
Whether or not suppressive activity is contact dependent can be 
established using trans well assays (11). The responding cells used 

for suppressive assays can either be stimulated in a polyclonal 
manner or by antigen pulsed APCs (98).

COMPARiSON OF TReG AND Th17 
ReSPONSe iN HUMANS, RODeNTS, AND 
NON-RODeNT ANiMALS

Although there are considerable similarities in the function and 
phenotype of Treg as well as Th17 cells isolated from mice and 
humans, differences are also evident. Isoforms of Foxp3 that lack 
exon 2 or exon 7 exist in human, but not in mice suggesting that 
the differentiation pathways for Treg in humans and mice may 
differ (99). Stimulated CD4+CD25− T cells in the presence of IL-2 
and TGF-β, express Foxp3 and IL-2 acts to stabilize the expres-
sion (30). In the absence of TGF-β, Foxp3 could be expressed 
transiently in stimulated Foxp3− T cells isolated from humans and 
to a lesser extent in mice but human cells express latent TGF-β on 
their surface (100–102). Reactive oxygen species are abundantly 
present during the initial stages of inflammation and can activate 
latent TGF-β to make it available for further differentiation into 
either Treg or Th17 cells. The stages of human Treg generation 
when TGF-β and IL-2 are critically involved are not yet clearly 
identified and most studies have concluded that these cytokines 
dominantly help stabilize Foxp3 expression (49). Varying degrees 
of epigenetic changes in the Foxp3 locus of human and mouse 
Treg have been observed (103, 104). Thus, the Foxp3 locus in 
humans is methylated to a greater extent as compared to that in 
mice suggesting human Treg take longer to adopt a phenotype 
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similar to that of mouse Treg (30). The identification markers 
used for distinguishing human and mouse Treg also display dis-
cordance. Thus, even Foxp3 cannot be used for unambiguously 
defining Treg in humans, unlike in mice (105). Cells expressing 
sustained Foxp3 expression, however, are considered as suppres-
sive cells. The recently described marker Nrp1 that distinguishes 
mouse tTreg from pTreg does not faithfully identify one subset or 
the other in humans (106).

IL-6 and TGF-β play a non-redundant role in the generation of 
mouse Th17, but this may not be true for human Th17 cell genera-
tion (107). IL-1β, TNF-α, and IL-23 are all effective inducers of 
ROR-γt in differentiating human Th17 cells (108). TGF-β may be 
dispensable for Th17 cell generation in humans but not in mice 
(101). The requirement of factors for differentiation of human 
Th17  cells, however, needs to be cautiously interpreted. Thus, 
most studies focusing on differentiation of human Th17 cells were 
performed using peripheral blood cells, and donors are expected 
to have an exposure to one or more antigens. Therefore, the start-
ing population may not be naïve. Cells are more likely to be naïve 
when isolated from cord blood and for such cells to differentiate 
into Th17, TGF-β seems to be critically involved (107). Therefore, 
differentiation and transdifferentiation of human Th cells need to 
be fully understood for both naïve and committed cells in order 
to manipulate Th17 cell responses.

Regulatory T cells and to a lesser extent Th17 cells have been 
described to exist in most non-rodent animals as well. However, 
as is described for humans and mice, a mutation in Foxp3 and any 
subsequent phenotypic effect has not been described in other ani-
mals. This could be because of the rarity of such genetic disorders. 
Anti-human or mouse Foxp3 monoclonal antibodies that cross-
react with xenogeneic Foxp3 molecule are used for immunophe-
notyping Treg in other animal species. Various domains of Foxp3 
are conserved across different species and hence show appreciable 
cross reactivity (109). Foxp3 specific monoclonal antibodies were 
produced for some non-rodents such as cats and bovines to detect 
and measure Treg responses (110–112). In cats, an alternative 
splice variant of Foxp3 lacking exon 2 also exists, an observation 
similarly recorded for human Foxp3 (99). Surprisingly, when wild 
type and the variant lacking in exon 2 were expressed in a cell, the 
suppressive activity was enhanced, as compared a single version 
expressing cells suggesting a critical role of exon 2 in activity of 
Treg (111). Cytokines shown to promote Th17 responses in cats 
are IL-1β, IL-6, TGF-β, and IL-21 (113). Foxp3+ Treg have been 
demonstrated in animals that include pigs, cows, sheep, goat, 
horses, baboon, macaque, chimpanzee, harbor seals, and walrus 
(109). The Foxp3 expression could be induced in CD4+ as well as 
CD8+ T cells isolated from lymph node of healthy dogs that were 
stimulated with Con-A (114). A subset of cells that express Foxp3 
at intermediate level, but not Foxp3 high cells, also expressed IFN-
γ suggesting a plastic nature of such stimulated Treg as well as 
their tendency to acquire an effector phenotype (115). This could 
also means that those cells that express optimal level of Foxp3 are 
more stable as compared to those expressing it to a lower level 
and the latter cells are not fully committed to Treg phenotype. 
CD4+ T  cells isolated from PBMCs could be efficiently polar-
ized into Th17 cells using a poly-specific stimulator con-A and 
a combination of cytokines that include IL-6, IL-1β, and TGF-β 

(116). Foxp3+ Tregs in other species were also described. In fact, 
suppressor cells in domestic animals were described even before 
CD25+CD4+ T cells description in mice. In most of these studies, 
PBMCs stimulated with con-A for a few days acquired suppressive 
activity toward autologous and allogeneic blood cells (117), but 
phenotypic markers of these suppressor cells were not described. 
More recently, Foxp3 was detected not only in bovines αβ-T cells 
but also in a small proportion of γδ-T cells that were stimulated 
with Con-A (118, 119). In fact, a recent report suggested that in 
ruminants that includes bovines, γδ-T cells predominantly play 
a regulatory role by producing copious amounts of IL-10 and the 
contribution of CD4+CD25+ Foxp3+ T cells as regulatory cells is 
minimal (120). In small ruminants that include sheep and goats, 
Foxp3 expression was not only limited to CD4+ T cells, but was 
also detectable in other cells such as CD4+CD8+ T  cells, CD4-

CD8+ T cells, as well as double negative CD3+ T cells (109). The 
proportion of non-CD4+ T cells showing Foxp3 expression was 
variable however. The recorded variation in Treg responses could 
be attributed to a lack of appropriate reagents, pathophysiologi-
cal condition of animals, and accessibility to tissues samples for 
analysis. Animals that are also used for meat purpose, the analyses 
could be performed using peripheral blood as well as accessing 
lymphoid organs from slaughtered animals.

In summary, Treg and Th17 cells are likely to be present in 
most vertebrate species as these cells are thought to have co-
evolved (5). The contribution of Th17  cells and the cytokine 
IL-17 in the pathogenesis of some infectious diseases in some of 
the non-rodent animals has been described (116, 121). However, 
most of these studies are observational, and cells were isolated 
from peripheral blood samples only.

iNTeRCONveRSiON OF TReG AND Th17 
CeLLS

Does plasticity of Th subsets confer any advantage to the host? 
The answer probably is in the affirmative. Thus, thymic regression 
with age limits T cell precursor frequency and the interconverting 
ability of different Th subsets could provide a facility for the gen-
eration of an appropriate helper T cell response required for an 
efficient adaptive immunity. The cytokines present in the milieu 
dictate the phenotype of cell upon differentiation, which is well 
appreciated (122). Functional alteration can include a loss of a 
useful function, gain of an undesirable activity, or a change in cell 
location from the site where they normally function. Naïve non-
Treg (CD4+Foxp3-) are converted into Treg (CD4+Foxp3+) when 
stimulated in the presence of IL-2 and TGF-β (11). Similarly, the 
forced expression of Foxp3 converted conventional T cells into 
Treg that exhibited a suppressive activity (59). Treg may lose 
expression of Foxp3 but may not necessarily undergo functional 
changes (123). Alteration in a cell location is usually explained by 
differential expression of homing molecules and this relocation 
can also explain functional changes in some instances (40, 42). 
Relocation effects may help explain changes in Treg activity dur-
ing different phases of an inflammatory response. In fact, during 
an acute inflammatory response, the number of Foxp3+ Treg in 
draining lymph node is reduced dramatically while their number 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


22

Sehrawat and Rouse Cross Talk of Treg and Th17 during Infections

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 341

increased in distal lymph nodes. This could mean that Treg 
prefer to stay in a non-inflammatory environment conceivably 
by modulating their homing receptors. This may also mean that 
Treg are more efficient in regulating responses that are milder in 
nature. Alternatively, those cells that reside in the most severe 
inflammatory environments and still retain the phenotype are 
more resilient and less likely to become non-Treg. All these issues 
have yet to be addressed adequately.

Among factors responsible for conferring stability and limit-
ing, plasticity is the continuous availability of cytokines such as 
IL-2 (124). Treg that are deprived of IL-2 and potentially other 
cytokines are more inclined to change their phenotype (125). At 
a molecular level, this outcome can be explained in terms of epi-
genetic alterations in the conserved non-coding sequences (CNS) 
of Foxp3 gene (126). Some have advocated that the subsets of Treg 
that are more plastic are those at an intermediate stage of their dif-
ferentiation (122, 126). Such cells may eventually fail to establish 
their complete epigenetic architecture, an effect that can be influ-
enced by the microenvironment (122). One of the most studied 
epigenetic modifications that is known to influence the stability 
of Treg is methylation of CpG islands in the CNS2 of Foxp3 gene, 
also known as Treg-specific demethylated region (TSDR) (126). 
Thus, those Treg that have a hypomethylated Foxp3 TSDR are 
more stable as compared to those whose TSDR is hypermeth-
ylated (125, 126). This also relates to the expression of Foxp3 
and its ability to promote expression of Treg associated genes. 
Accordingly, the activity of DNA methyl transferases in such cells 
may decide whether phenotypically stable cells will be generated 
or not. Nrp1 a molecules differentially expressed by tTreg is also 
involved in stabilization of Foxp3 expression. Signaling induced by 
ligation of Nrp1 with semaphorin-4a molecule in Treg-enhanced 
expression of transcription factors such as Foxo1 and Foxo3 to 
help stabilize Foxp3 expression (23). Eos is another transcription 
factor that impacts on the stability of Treg, but this effect could 
be independent of Foxp3 expression (127). Other studies indicate 
that Treg stability involves post translational modification of 
Foxp3 and the induction of its alternative splice variants (128). 
Treg that have enhanced phosphorylated Foxp3 (p-Foxp3) levels 
are more stable as compared to those that have less or no p-Foxp3 
(128–130). Accordingly, phosphatases induced by a highly proin-
flammatory environment could dephosphorylate Foxp3 in Treg, 
which then are converted to become pathogenic Th17 cells (129, 
130). Another study attributed the metabolic state of Th cells to 
their function and phenotype (131). Thus, it was shown that gly-
colysis in Th cells is critical for their conversion to become Treg 
(131). Enolase I, an enzyme, is induced when cell metabolism 
is switched to the glycolytic pathway (131). Enolase I plays an 
essential role by interacting with Foxp3 regulatory sequences to 
effect the expression of an alternative splice variant that utilizes 
exon 2 of Foxp3 (131). However, the mechanisms responsible for 
stability conferred by alternative splice variants of Foxp3 are not 
entirely clear, but could relate to their resistance to degradation 
or the presence of more amino acid residues that can undergo 
phosphorylation.

Some studies have implicated the role of certain microRNAs in 
regulating the stability of Treg (132–134). miRNAs are small oli-
gonucleotides that are expressed endogenously and have critical 

roles in gene expression (132). In general, miRNA 29, 125a, 125b, 
155, and 181 seem to affect differentiation of Th subsets (132). 
Some miRNAs such as miRNA 181 modulates TCR signaling and 
its expression alters with the maturation state of T  cells (135). 
miRNA 155 specifically influences differentiation of Treg and 
Th17 cells which can affect the outcome of inflammatory diseases 
(136, 137).

As differentiation pathways between Treg and Th17 cells are 
shared, these cells exhibit greater tendency for interconversion. 
Some investigators have suggested that TGF-β induced Tregs 
as compared to natural Tregs are more likely to acquire a Th17 
phenotype. Such cells are more likely to express membrane bound 
TGF-β and in an environment enriched in IL-6 or other inflamma-
tory molecules, they become Th17 cells (138). Additionally, TGF-β 
induced cells have not established their complete epigenetic land-
scape and hence are more plastic in nature as compared to natural 
Treg. The conditions where Th17  cells can also become Foxp3 
expressing Treg have not been established as yet, but the Th17 cells 
change to acquire other phenotypes that include Th1, Th2, Tr1, or 
TFH. This could occur because of the relative positioning of Foxp3 
and ROR-γt in a 3-diamensional space in the cell and hence a 
physical interaction may not occur in Th17 cells as does occur in 
Treg (139). For establishing plasticity issues unambiguously, fate-
mapping mice as described in an earlier section are used. Not only 
mice but also human Treg can become Th17 cells when stimulated 
with IL-1β and IL-6 (140). In conclusion, the interconversion of 
Foxp3+ Treg into Th17  cells is appreciable and well established 
upon the change of microenvironment but counterconversion of 
Th17 cells into Foxp3+ Treg cells is not known currently.

CROSS ReGULATiON OF TReG AND Th17 
CeLLS DURiNG PATHOPHYSiOLOGY OF 
iNFeCTiOUS DiSeASeS

That Foxp3 is critically involved in the function of Treg has 
been shown in both humans and mice. A spontaneous mutation 
comprising a 2-bp insertion in the coding region of Foxp3 gene 
resulted in a truncated non-functional protein. Mutant mice, 
known as scurfy mice, developed spontaneous multiorgan inflam-
matory lesions (141–143). Male mice exhibited a pronounced 
phenotype as compared to females, suggesting the mutation was 
X-linked. Crossing scurfy mice with Foxp3 transgenics rescued 
the phenotype confirming the role of the mutation in disease 
causation (16). Similarly, patients who had immunodysregula-
tion polyendocrinopathy enteropathy X-linked (IPEX) syndrome 
exhibited a mutation in the Foxp3 gene and developed autoim-
mune enteropathy, psoriasiform or eczematous dermatitis, nail 
dystrophy, and endocrinopathy. IPEX is a rare disease with a 
strong genetic association (144).

The balancing of response in activity of Treg and Th17 cells 
can influence the outcome of numerous infectious and non-
infectious diseases (108). Whether or not these cells play a role 
in orchestrating disease due to infections in non-rodent animals 
is not well established and is suggested based on scanty data, 
which are often unconfirmed. During infections, the dominant 
effect of Treg perhaps is not to dampen protective immunity, but 
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to prevent collateral tissue damage. In some infections, such as 
the one caused by Leishmania, Tregs that were induced de novo 
and recruited to infected sites were specific to pathogen-derived 
antigens (14, 145). Along similar lines, it was demonstrated 
that parasites (Schistosome) and bacteria (Helicobacter pylori, 
Mycobacterium, Histoplasma) promoted the peripheral genera-
tion of Treg (146–148). A protozoan parasite, Toxoplasma gondii, 
caused enhanced immunopathological reactions by inhibiting 
and destabilizing Treg (14, 145). Interestingly, destabilized Treg 
acquired Tbet and produced IFN-γ suggesting their conversion 
into Th1 like cells. In this study, ROR-γt expression by these was 
not analyzed. Tbet controls the expression of TIM-3 and those 
Tregs that express TIM-3 were shown to be resistant to apoptosis 
when ligated with galectin-9 (149). These seemingly contradict-
ing observations could in fact hint the existence of different 
subtypes of Treg some of which will eventually be eliminated 
while some remain in animals and serve as dual function. How 
acute and chronic viral infections signal Treg response has been 
investigated (46). The outcome of acute infections caused by 
viruses such as Friend retrovirus, lymphocytic choriomeningitis 
virus (LCMV), influenza A virus (IAV), West Nile virus (WNV), 
respiratory syncytial virus (RSV), hepatitis A virus (HAV), and 
HSV-1 is influenced to a varying degree by Treg and possible 
Th17 cell responses (150). Acute LCMV infection induced type I 
interferon that diminished Treg function and as a result anti-viral 
CD4+ and CD8+ T cell responses are enhanced (151). Treg also 
critically influence the outcome of infection by IAV, WNV, RSV, 
HAV, and HSV-1 (69). In mice infected with IAV intranasally, 
more Foxp3+ Treg accumulate in the draining mediastinal LNs 
(MLNs) suggesting that virus is able to promote Treg responses 
(152). Mice depleted of Treg developed more severe lesion 
suggesting Tregs were able to control immunopathological 
responses. Respiratory influenza infection induced CCR9+CD4+ 
T helper cell generation in the MLNs. These cells, by responding 
to CCL25, preferentially migrated to the gut and were responsible 
for an inflammatory reaction mediated by Th17 cells (153). The 
antigen specificity and phenotype of migrating CD4+ T cells in 
the gut are not known. Whether or not the migratory cells by 
themselves orchestrated gut inflammation, or induced conver-
sion of resident CD4+ T cells to become Th17 cells, remains to be 
elucidated. However, this study indicated that Th17 cells could 
in fact serve as one of the players of “common mucosal immune 
axis” and could influence the composition of microbiota in the 
gut during some infections (153). Another study demonstrated 
that influenza virus inhibited Th17 mediated control of a second-
ary bacterial infection to cause pneumonia (154). Therefore, 
during IAV pathogenesis, the cross play of Treg and Th17 can 
impact the pathogenesis. During WNV infection in humans, 
Treg helped control the development of clinical symptoms and 
fever by preventing tissue damaging inflammatory reactions 
because asymptomatic individuals had greater numbers of Treg in 
peripheral blood (155). Similarly, WNV infected mice, depleted 
of Treg, developed lethal encephalitis suggesting Treg response 
was protective in nature (155). A specific role of Th17  cells in 
WNV pathogenesis has not been demonstrated, but encephalitis 
caused by WNV was not influenced by the Th17  cell response 
(156). As compared to controls, Treg depleted mice upon RSV 

infection showed enhanced Th2 responses that led to severe 
pulmonary immunopathological lesions (157). Most cases of 
acute HAV infection resolve with efficient viral clearance and 
innocuous pathological consequences, which could relate to how 
Treg are signaled (158). HAV directly binds to its cellular receptor 
1 (HAVCR1 also known as TIM-1) expressed by Treg and as a 
result abrogates their function to promote anti-viral CD8+ T cell 
responses. Efficient CD8+ T cells then help control virus infection 
(159). Whether or not Th17 cells play any role in RSV and HAV 
infection is not clear. The influence of Treg in HSV pathogenesis 
has been extensively studied by numerous approaches (160–164). 
Mice that were depleted of Treg prior to HSV infection mounted 
enhanced primary and memory anti-viral CD8+ T cell responses 
(162) and when Treg were depleted prior to ocular infection 
with HSV-1 heightened CD4+ T cell effector response led to an 
aggravated corneal inflammatory disease, as compared to those 
mice that had intact Treg responses (163). This observation was 
followed up in subsequent studies employing adoptive transfer 
of natural Treg as well as TGF-β induced Treg in mice before 
infection (161, 163). Treg recipient mice developed diminished 
inflammatory lesion as compared to infected controls (161). We 
observed that ligation of CD4+ T  cell expressed sphingosine 1 
phosphate receptor (S1P1) by an agonist FTY720 promoted 
Treg responses (165, 166). These converted cells, however, were 
inclined to acquire a Th17 phenotype when incubated with IL-6 
and exhibited an aggressive proinflammatory activity in HSV-1 
infected animals (165). IL-6 neutralization diminished lesions 
of the disease suggesting that the converted cells might be more 
plastic and in fact more damaging. What stage of infection Treg 
responses are critical in controlling the disease severity was inves-
tigated using a DTR-Foxp3 transgenic mouse model in which 
Treg could be depleted using diphtheria toxin at different times 
post-infection (70). The results suggested that Tregs continue to 
regulate inflammatory responses irrespective of stage when these 
are depleted and that Treg might in fact be acting both in the DLN 
during induction phase of response and at inflammatory sites 
(70). Direct interaction of Treg expressed HVEM and HSV-1-gD 
glycoprotein provided a partial explanation as to how HSV-1 is 
able to signal Treg so promptly after infection (167). The role of 
Th17 cells in HSV-1 induced pathogenesis was also investigated 
using IL-17R KO mice as well as in mice lacking different subunits 
of cytokine IL-23 (p19 and p35), a cytokine critically involved in 
promoting Th17 cell responses (168, 169). These studies demon-
strated that IL-17 contributed by innate immune cells, γδ T cells 
and Th cells, enhanced the severity of inflammatory lesions. 
Th17 cells were predominantly involved during the chronic phase 
of infection, while during the acute phase their contribution was 
minimal (169). This also suggests that inflammatory milieu in 
cornea may induce conversion of some accumulated Treg or 
Th1 cells into a Th17 phenotype. It would be worth investigating 
whether Th17 cells can further become Treg and how would that 
influence the lesion severity.

Most chronic viral infections were shown to influence Treg 
responses and eventually the outcome of chronic infections  
(13, 46). Notably, HIV and HCV are the most prominent chronic 
viral infections where Treg seems to play a critical role in patho-
genesis (13, 46). Precise mechanisms how these infections trigger 
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Treg responses are not clear, but the microenvironments created 
could contribute. HIV, HCV, and IAV could all activate latent 
TGF-β to promote Treg and potentially Th17 responses depend-
ing on its concentration along with that of other inflammatory 
cytokines (43, 170, 171). During HIV infection, Tregs play mul-
tiple roles that range from an early abrogation of effector CD4+ 
T cells to tissue repair during later stages (172). HIV promotes 
Treg responses by modulating the function of DCs which stimu-
late Treg generation (173). Tregs, in turn, control the activation 
of CD4+ T cells to minimize their infection by the virus. Thus, 
activated CD4+ T cells are more susceptible to HIV infection as 
compared to those in resting stage (174). TGF-β produced by 
Treg, and probably other cells, promotes collagen deposition in 
lymphoid organs (175). This poses a problem when the patients 
are given anti-retroviral therapy and immune reconstitution is 
required. Thus, the effective space available would be less for 
immune reconstitution (175). The involvement of Treg in HIV 
pathogenesis, therefore, is a complex issue and needs more study.

Th17 cells seem to play a crucial role in the pathogenesis of 
HIV infection as these cells accumulate abundantly in the gut-
associated lymphoid tissues (GALT) early after infection (176). 
Whether the accumulated Th17  cells in GALT originate from 
Treg or differentiate from naïve cells is still to be established. The 
activated Treg in the gut could contribute to TGF-β production 
and HIV infection could trigger IL-6 production by innate cells. 
Th17  cells are known to express surface CD45RO, CCR5, and 
CXCR4 making them more permissive to HIV infection (177). 
Infected Th17 cells are cleared by the virus itself, or by cytotoxic 
CD8+ T  cells. As Th17  cells are critical for maintaining the 
integrity of mucosal barriers, their depletion could disrupt these 
barriers and initiate generalized immune activation (178, 179). 
The Th17 cells that influence the outcome of HIV infection may 
not necessarily be specific for viral antigens. The role of Th17 cells 
was also demonstrated in long-term non-progressers who exhibit 
pronounced Th17 responses as compared to those who progress 
rapidly to develop HIV-AIDS. Restoration of Th17 cells in patients 
undergoing highly active anti-retroviral therapy is an indicator of 
better prognosis predominantly due to efficient control of bacte-
rial infections by these cells (180). Therefore, a balance of Treg 
and Th17 cell response may critically influence the pathogenesis 
of HIV infection.

HCV and Treg interaction is complicated to investigate, as the 
responses need to be evaluated in the liver, where disease occurs. 
This is particularly confounded by the unavailability of a rodent 
model and the now unavailable chimpanzee being the only reli-
able animal model to study HCV pathogenesis. What determines 
the resolution of infection in only 20% HCV infected patients 
is not clearly understood but is thought to be explained by an 
effective anti-viral CD8+ and CD4+ T cell response (181, 182). In 
those which fail to control infection, some have advocated that an 
induced Treg response, which blunts the activity of effector T cells, 
could be the explanation (183). During HCV infection, the cell 
types that are known to exhibit predominant regulatory activity 
are Tr1 cells and possibly CD8+ Treg in addition to Foxp3 positive 
cells as suggested by some studies (170). However, it remains to 
be evaluated whether Tregs play a beneficial or detrimental role 
during chronic stages of HCV infection. Th17 cells, owing to their 

cytokine secretion, are thought to play a predominant role in the 
repair process leading to fibrosis in the liver and seem not to play 
a critical role early during HCV infection. Accordingly, patients 
treated with interferon and ribavirin therapy had decreased 
Treg responses but minimal effects on Th17 cells were observed 
(183). The Treg and Th17 cell ratio, however, was skewed toward 
Th17  cells with a favorable outcome of therapy. How various 
subsets of Th cells influence HCV pathogenesis remains a con-
troversial issue that merits further evaluation. However, the issue 
is now less relevant since there is a new highly effective anti-viral 
that controls HCV infection.

Regulatory T cells, and to a lesser extent Th17 cells, do influ-
ence the outcome of various infections in pet animals that include 
dogs and cats. These animals also serve as models for various 
infectious and non-infectious diseases. For example, similarities 
in the pathogenesis of feline immunodeficiency virus (FIV) and 
HIV make the cat a useful animal model (184). FIV was shown 
to infect Treg and this made them better suppressors (113, 185). 
FIV infected cats exhibit an early depletion of CD4+ T cells and 
enhanced Treg activity, which in turn compromises anti-viral 
adaptive immunity. This provides the virus an opportunity to 
establish a productive infection (186). More recent reports suggest 
a dysregulation of Treg and Th17 cells during FIV pathogenesis in 
cats during a systemic infection as well as in the placenta leading 
to non-viable pregnancies (113). Whether or not a similar situa-
tion exists in pregnant women infected with HIV is not known.

The canines genome revealed striking similarities in function-
ally related genes with humans and single nucleotide polymor-
phisms have been recently mapped (187). Some shared infections 
between dogs and humans are beginning to provide new insights 
in the pathophysiology of diseases (188). Foxp3+ Treg responses 
have been studied in canine leishmania infection where a variable 
response pattern for Treg and Th17 cells was observed in differ-
ent organs (189). Whether or not interconversion in these cell 
populations occurs during infection is yet to be explained.

The responsiveness of Treg during infectious diseases in 
bovines has been investigated (190–192). Mycobacterium paratu-
berculosis, the causative agent of debilitating Johne’s disease and 
bovine leukemia virus (BLV) induce CD4+ T cells that produced 
IL-10 and those that expressed Foxp3, respectively (190, 192). 
During BLV infections, enhanced Treg responses act to constrain 
anti-viral immunity and probably cause the pathogen to persist 
in animals (191). Johne’s disease is thought to be orchestrated 
by Th1 cells of which some cells also produced IL-17 suggesting 
the plastic nature of these cells. However, as this is mainly a gut 
associated disease, probably the role of balance between Tregs 
and Th17 cells would provide better insights into its pathogenesis.

Small ruminants, such as sheep and goats, serve as major 
livestock for landless laborers and marginal farmers. Which 
cellular mediators are induced early during the response decides 
the efficiency of immunity to infections as well as immunization. 
Major pathogens that infect small ruminants are parasites such 
as Teladorsagia circumcincta and Haemonchus contortus, which 
induce an orchestrated response pattern characterized initially 
by Th1 and during later stages by Th2 and regulatory response 
(193, 194). Whether or not Th17 responses are critical for defense 
against parasitic infections has not been investigated. As these 
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parasites infest gut of these animals, it would be interesting to 
investigate how a balance of Th17 and Treg is affected. Rinderpest 
virus is the only pathogen of animals eliminated from the face of 
earth; however, its close relative pestes des petits ruminantium 
virus (PPRV) is still a major problem in many parts of the 
world in ruminants and cause immunosuppression in the host. 
Both viruses inhibit proliferation of leukocyte in  vitro (195). 
Surprisingly, however, the role of Treg and Th17 during PPRV 
infection or during vaccination against PPRV has not been inves-
tigated and could provide better insights into their pathogenesis 
and eventually better management practices could be employed.

CONCLUSiON

Enumerable studies performed in rodents and to some extent 
in humans exposed to or infected with one or more microbes 
revel an intricate interplay of various subsets of CD4+ T  cells 
which influences the disease outcome. Treg and Th17 response 

dynamics is beginning to provide new insights into the pathogen-
esis of various infections. However, there exist a vast gap in our 
understanding how these cell type are induced, maintained, and 
interact with each other in animals other than inbred rodents. 
Such insights could open new avenues of modifying their func-
tion to achieve better resolution of infection and mitigate tissue 
damaging reaction in humans and animals.
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Memory T cells are characterized by their low activation threshold, robust effector func-
tions, and resistance to conventional immunosuppression and costimulation blockade. 
Unlike their naïve counterparts, memory T cells reside in and recirculate through periph-
eral non-lymphoid tissues. Alloreactive memory T cells are subdivided into different 
categories based on their origins, phenotypes, and functions. Recipients whose immune 
systems have been directly exposed to allogeneic major histocompatibility complex 
(MHC) molecules display high affinity alloreactive memory T cells. In the absence of any 
prior exposure to allogeneic MHC molecules, endogenous alloreactive memory T cells 
are regularly generated through microbial infections (heterologous immunity). Regardless 
of their origin, alloreactive memory T cells represent an essential element of the allograft 
rejection process and a major barrier to tolerance induction in clinical transplantation. 
This article describes the different subsets of alloreactive memory T cells involved in 
transplant rejection and examine their generation, functional properties, and mechanisms 
of action. In addition, we discuss strategies developed to target deleterious allospecific 
memory T cells in experimental animal models and clinical settings.

Keywords: memory T cells, allotransplantation, tolerance, heterologous immunity, transplant rejection, immune 
suppression, costimulation blockade

inTRODUCTiOn

Rapid and robust protective responses against previously encountered antigens are beneficial during 
infections, vaccinations, and tumor surveillance. Conversely, memory immune responses against 
donor antigens are detrimental in the context of transplantation and are commonly associated with 
poor graft outcome. The danger of preexisting donor-specific alloantibody (DSA) was recognized 
early in transplant history, and all transplant candidates are tested for the presence of serum DSA 
prior to transplantation. Despite well documented harmful effects of memory T cells in transplanta-
tion (1–4), the potential impact of such cells is mostly neglected while choosing treatment regimens. 
In this review, we initially outline characteristics of alloreactive memory T cells and their functions. 
We also describe existing and emerging strategies designed to delete or suppress memory T cells 
in transplant recipients. To conclude, we discuss future areas of investigation that may translate 
experimental knowledge of alloreactive memory T cells into clinical practice and thus improve 
transplant outcome in sensitized recipients.

Abbreviations: MHC, major histocompatibility complex; APC, antigen-presenting cell; Treg, regulatory T cell; IFNγ, gamma 
interferon; TNFα, tumor necrosis factor alpha; CTL, cytotoxic T lymphocyte; DC, dendritic cell; DSAs, donor-specific 
antibodies.
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FiGURe 1 | Memory T cell subsets. Abbreviations: Tcm, central memory T cells; Tem, effector memory T cells; Temra, terminally differentiated effector memory T 
cells; Trm, resident memory T cells; Tfh, follicular helper memory T cells.
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BASiC BiOLOGY OF ALLOReACTive 
MeMORY T CeLLS

Origins of Alloreactive Memory T Cells
Laboratory rodents display low frequencies of memory T cells 
(5–10% of all T cells). In the absence of prior exposure to alloan-
tigens, 1–10% of these memory T cells can react to allogeneic 
major histocompatibility complex (MHC) molecules in  vitro 
(5). In mice, these cells called endogenous or natural alloreac-
tive memory T cells recognize intact allogeneic MHC molecules 
through the direct allorecognition pathway (6, 7). It is likely that 
these memory cells are generated through the recognition of 
peptides from commensal bacteria or environmental antigens 
presented by self-MHC, which can mimic complexes formed 
by allogeneic MHC molecules bound to other peptides (8). 
Such antigen mimicry, named “heterologous immunity,” is well 
documented in both humans and experimental animal models. 
Humans and non-human primates raised in a non-sterile envi-
ronment are exposed to more infectious and pro-inflammatory 
agents during their development and thereby likely to develop 
potent heterologous immunity (9). For instance, following an 
EBV infection, HLA-B8+ individuals can become sensitized to 
the allo-MHC molecule HLA-B4402 through antigen mimicry 
resulting from the presentation of some viral or parasitic peptides 
(10, 11).

In laboratory mice, direct sensitization with skin allografts or 
spleen cell immunization is a common approach for generating 

donor-reactive memory T cells. In humans, transplant patients 
can be sensitized from exposures to alloantigens such as previous 
transplants, pregnancies, and blood transfusions. Until now, only 
memory T cells recognizing intact alloantigens directly have been 
reported (2, 12). Yet, it is probable that sensitized patients exhibit-
ing high titers of allospecific antibodies display memory T cells 
recognizing alloantigens indirectly as donor peptides–self-MHC 
complexes.

Memory T cells can also be generated through homeostatic 
proliferation in a lymphopenic environment, including potentially 
alloreactive and pathogenic T cells (13–15). Such homeostatically 
expanded memory T cells can impair tolerance induction to 
allografts (15–17).

The accumulation of alloreactive memory T cells may be 
influenced by the end stage organ disease or treatment common 
in transplant candidates. For example, prolonged exposure to 
dialysis increases the risk of developing alloreactive memory T 
cells (18). In addition, Sawinski et  al. reported that low serum 
levels of 25-OH-vitamin D in dialysis patients correlates with 
the frequency of alloreactive memory T cells independent of age, 
gender, previous transplants, or time on dialysis (19).

Location of Memory T Cells
Memory T cells have been traditionally divided into two 
major subsets with largely overlapping functions but distinct 
trafficking patterns (Figure 1). Central memory T cells (Tcm) 
express lymphoid homing markers CCR7 and CD62L, whereas 
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effector memory T cells (Tem) are CCR7−CD62L− but instead 
express molecules that promote migration into peripheral tis-
sues (20–23). In humans, but not in mice, some memory T cells 
[terminally differentiated effector memory T cells (Temra)] re-
express naive T cell surface marker CD45RA, while downregu-
lating expression of CCR7, CD62L, and CD28, and represent 
a terminal stage of effector differentiation (21, 24, 25). Recent 
studies demonstrated that some T cells in peripheral tissues do 
not circulate and represent a distinct subset of tissue-resident 
memory T cells (Trm) (24, 26–28). Trm cells express early 
activation marker CD69 and αEβ7 integrin CD103 along with 
a number of tissue-specific chemokine receptors (26, 29–32). 
There is accumulating evidence that Trm cells play an important 
role in host protection against infections. It is conceivable that 
Trm cells of both donor and recipient origins may influence 
transplant outcome by facilitating GVHD or allograft rejection, 
respectively. However, the proportion of alloreactive T cells 
among Trm subset and the potential contribution of such cells 
following transplantation remain to be addressed. Another 
important type of memory T cells relevant to transplantation is 
CD4+CXCR5hi follicular helper (Tfh) cells that reside in B cell 
follicles within secondary lymphoid organs and are essential 
for optimal B cell responses and antibody generation (33). As 
memory T cells in secondary lymphoid and non-lymphoid 
peripheral tissues are spared by antibody-mediated lymphoa-
blation (34) Trm cells may be harder to control compared to 
circulating memory T cells.

Low Activation Threshold and Resistance 
to Conventional Costimulatory Blockade
In the process of memory T cell differentiation, the T cell 
receptor and costimulatory signaling cascades are adjusted to 
ensure rapid activation of high magnitude upon antigen reen-
counter (35, 36). This results in the ability of memory T cells to 
respond to lower antigen doses with limited costimulation, i.e., 
to antigen presented by non-professional antigen-presenting 
cells (36–38). While this process is essential for host defense, 
it renders alloreactive memory T cells more dangerous in 
transplant settings. Numerous studies in animal models have 
demonstrated that donor-reactive memory T cells can induce 
allograft rejection despite interruption of essential costimula-
tory pathways, CD28/CD80/CD86 and CD40/CD154 (11, 15, 
39–43).

COnTRiBUTiOn OF MeMORY T CeLLS 
TO ALLOGRAFT ReJeCTiOn AnD 
TOLeRAnCe

Role in Allograft Rejection
During the past decade, studies investigating CD4+ versus CD8+ 
memory T cells revealed that these subsets contribute to allograft 
rejection through distinct mechanisms. Indeed, memory CD4+ 
T cells not only become effector cells upon reactivation, but 
also provide help for the robust activation of donor-reactive 
effector CD8+ T cells (40). These effector CD8+ T cells then are 
the main driving force behind allograft rejection facilitated by 

memory CD4+ T cells in heart-transplanted mice, and CD8+  
T cell depletion or limiting their trafficking into the graft signifi-
cantly extends allograft survival (40, 44).

While de novo responses by naïve T cells can be efficiently 
controlled by current immunosuppression, memory CD4+ 
T cells are resistant to these therapies and can provide help 
for the generation of DSA leading to alloantibody-mediated 
graft injury (40, 44). Recent studies in a mouse model of heart 
transplantation identified potential therapeutic targets to control 
CD40-independent DSA generation by memory CD4+ T cells. 
First, gamma interferon (IFNγ) secretion by memory helper T 
cells is required for de novo DSA generation (45). Second, CD40-
independent helper functions of donor-reactive memory CD4+ 
T cells and heart allograft rejection were markedly inhibited by 
neutralizing B cell activating factor and a proliferation-inducing 
ligand, cytokines critical for B cell survival, activation, and dif-
ferentiation (46).

The fate and functions of donor-reactive memory CD8+ T 
cells following transplantation are equally fascinating. Early 
direct contact of circulating memory CD8+ T cells with donor 
endothelium upregulates the expression of adhesion molecules 
and chemokines thus facilitating infiltration of recipient leu-
kocytes into the graft (47, 48). A proportion of endogenous 
memory CD8+ T cells react to donor MHC class I molecules and 
can infiltrate cardiac allografts within hours after reperfusion. 
Once in the graft parenchyma, these memory CD8+ T cells 
proliferate extensively, upregulate the expression of ICOS, and 
secrete IFNγ in ICOS-dependent manner (49, 50). Although 
this early expression of effector functions was found to be insuf-
ficient to mediate allograft rejection (51), the potential danger 
of endogenous memory CD8+ T cells should not be underes-
timated. The approximation of clinical situation by increasing 
graft cold ischemia storage time enhanced effector functions of 
endogenous memory CD8+ T cells enabling them to promptly 
reject a cardiac allograft despite costimulatory blockade with 
CTLA4-Ig (52).

influence of Memory T Cells on Allograft 
Tolerance
In laboratory rodents, endogenous memory T cells generated 
through heterologous immunity have little ability to prevent 
tolerance induction given that hematopoietic chimerism and/
or costimulation blockade regularly achieve tolerance of fully 
allogeneic transplants (53–55). In contrast, mice that have 
been sensitized to allogeneic MHC through transplantation or 
multiple viral infections become resistant to tolerance induction 
(11, 39, 56, 57). Moreover, naïve mice adoptively transferred 
with alloreactive memory T cells display similar resistance to 
tolerogenesis via hematopoietic chimerism or costimulation 
blockade (11, 39, 56, 57). Therefore, in laboratory rodents, 
antigen-induced rather than endogenous memory T cells 
prevent transplant tolerance. It is still unclear whether this dif-
ference relies on the low frequency of endogenous memory T 
cells or on the fact that these two subsets of memory T cells are 
different in nature.

The presence of memory T cells has been often correlated 
with poor outcomes in clinical transplantation. In humans, the 
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presence of memory T cells pretransplantation has been associ-
ated with an increased risk for acute rejection of kidney trans-
plants (2). However, while EBV- and CMV-specific memory T 
cells displaying alloreactivity have been detected in human trans-
plant recipients, so far there is no indication that the presence of 
“heterologous immunity” in transplant recipients correlates with 
worse graft outcomes (10, 58–60).

Our laboratory showed that a sizable proportion of endog-
enous memory T cells found in peripheral blood, and secondary 
lymphoid organs of naïve cynomolgus monkeys are allospecific. 
Most Tem were CD8+CD95+CD28− IFNγ-producing cells 
located in the spleen, peripheral blood, and bone marrow while 
IL-2-producing Tcm were primarily CD4+CD95+CD28+ and 
limited to the lymph nodes and spleen (12). Based upon this 
observation, we studied the influence of pretransplant memory 
T cell alloreactivity on rejection versus tolerance of kidney 
allografts in monkeys (61). A series of cynomolgus monkeys 
were conditioned [whole body and thymic irradiations + horse 
antithymocyte globulin (ATG) treatment] and received a 
combined kidney and bone marrow transplantation from the 
same allogeneic donor (62). The animals then received a short-
term immunosuppression treatment comprised of anti-CD40L 
antibodies and cyclosporine A (62). This procedure resulted 
in a transient multilineage hematopoietic chimerism and 
achieved long-term survival of kidney allografts (>1 year) after 
withdrawal of immunosuppression in 70% of the monkeys (62). 
On the other hand, approximately 30% of the treated monkeys 
rejected their allograft in an acute fashion within 100–200 days 
posttransplantation (61). In this model, we observed that the 
vast majority of tolerant animals displayed low frequencies of 
donor-reactive memory T cells (61). It is noteworthy that no dif-
ferences between homeostatic expansion of memory T cells were 
observed between monkeys which rejected or accepted kidney 
allografts (61).

Even though memory T cells are generally viewed as 
pathogenic in the context of transplantation, under certain cir-
cumstances, they demonstrate regulatory capacity and suppress 
deleterious pro-inflammatory immune responses. Krupnick et al. 
have reported that early infiltration of central memory CD8+ T 
cells is essential for lung allograft acceptance after treatment with 
CTLA4-Ig and anti-CD154 mAbs (63). Similarly, CD8+CD45RClo 
cells with regulatory properties have been described in rat models 
of solid organ transplantation and GVHD (64, 65). These find-
ings raise a concern that lymphoablative approaches targeting 
memory T cells may interfere with allograft acceptance of certain 
types of transplants.

ReCenT DeveLOPMenTS in TARGeTinG 
ALLOReACTive T CeLL MeMORY

Lymphoablation
Induction therapy is widely used in clinical transplantation to 
overcome the deleterious effects of preexisting donor-reactive 
immunity. Antibody-mediated lymphocyte depletion is most 
commonly used induction strategy, particularly in highly sensi-
tized patients and in patients receiving marginal grafts (66–69). 

Although memory T cells are the primary targets of induction 
therapies, they are less susceptible to depletion than naïve T cells 
(70–73). T cells with an effector/memory phenotype are detect-
able after anti-CD52 mAb or ATG induction and are associated 
with acute rejection episodes in non-human primates and human 
transplant recipients (74, 75). In rodents, preexisting memory T 
cells rapidly recover following lymphocyte depletion with ATG 
and dominate anti-donor immune responses. The efficiency of 
memory CD4+ T cell depletion is generally lower than that of 
CD8+ T cells (34, 76–79). Additional depletion of residual CD4+ 
T cells severely impairs the recovery of memory CD8+ T cells 
after ATG treatment (80). Limiting CD4+ T helper signals during 
lymphoablation increases the efficacy of mATG in controlling 
memory T cell expansion and significantly extends heart allo-
graft survival in sensitized recipients (80). These findings are 
consistent with previous observations describing a synergistic 
effect between ATG lymphoablation and costimulatory blockade 
(81, 82).

Alefacept, a fusion protein combining extracellular domain 
of LFA-3 with constant regions of human IgG1 (83–85). LFA-3 
is a ligand for CD2, a molecule that is predominantly detected 
on human T and NK cells. As CD2 expression is upregulated on 
CD45RO+ effector/memory T cells, alefacept selectively depletes 
this subset and spares other T cell populations (86–88). Alefacept 
is currently being used in clinic for the treatment of severe pso-
riasis (89, 90) and is showing promise for targeting alloreactive 
effector/memory T cells in solid organ and bone marrow trans-
plantation (91–95). Most importantly, pretransplant alefacept 
therapy synergizes with CTLA4-Ig presumably by targeting 
costimulatory blockade-resistant CD8+CD2hiCD28− effector/
memory T cells (91).

In addition to direct lymphoablation, manipulating T cell sur-
vival and homeostasis by regulating cell metabolic pathways may 
be a promising therapeutic strategy in transplantation. Recent 
studies suggest that immune cells subsets use different mecha-
nisms of energy generation, and this information can be exploited 
to selectively target undesirable memory T cells [reviewed in Ref. 
(96)].

Costimulatory Blockade
Belatacept, a second generation of CTLA4-Ig, is currently 
used in clinical transplantation to prevent allograft rejection 
and minimize the toxic side effects of calcineurin inhibitors 
(97). Despite reduced side effects and improved graft survival, 
belatacept-treated patients have higher rates of acute cellular 
rejection compared to CNI treatment (98, 99). As memory T 
cells are more resistant to the effects of CTLA4-Ig in animal 
transplantation models, it is possible that presensitized T cells 
could account for some belatacept-resistant rejection episodes. 
Indeed, terminally differentiated memory CD4+ and CD8+ T 
cells in humans (Temra) lose CD28 expression and become 
insensitive to the lack of CD28/B7 costimulation (100–104). 
Not surprisingly, increased numbers of both CD4+ and CD8+ 
CD28− memory T cells are associated with a poor outcome in 
renal and lung transplant patients (105–108). A recent report by 
Espinosa et al. identified yet another population of CD57+CD4+ T 
cells as potential mediators of belatacept-resistant renal allograft 
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rejection. These cells are more common in patients with kidney 
failure, express high levels of adhesion molecules CD2, LFA-1, 
and VLA-4, downregulate CD28, and produce IFNγ, tumor 
necrosis factor alpha (TNFα), and granzyme B consistent with 
effector/memory phenotype (109).

Recent reports suggest that the pedigree of alloreactive 
memory T cells in a given recipient may have important practi-
cal implications. Using three different pathogens to generate 
donor-reactive memory T cells in a mouse model of skin 
transplantation, Badell et al. demonstrated that the sensitivity 
of memory T cells to immunosuppression is dependent on 
their origin (110). In this study, Tcm with a less differentiated 
phenotype were most sensitive to the effects of costimulatory 
blockade. Consistent with these findings, in vitro comparison of 
CMV- and alloreactive T cells suggested that virus-specific fully 
differentiated T cells secreting IFNγ, TNFα, and IL-2 simulta-
neously are more resistant to the effects of CTLA4-Ig, whereas 
tacrolimus inhibits responses by both allo- and virus-specific  
T cells (111).

In addition to blocking CD28/B7 costimulation, CTLA4-Ig 
also prevents signaling through CTLA-4, which can have 
negative effects on generation and functions of regulatory T cells 
(Tregs) (112–117). To circumvent this problem, several antago-
nistic anti-CD28 mAbs and Ab F(ab′)2 fragments have been 
generated and showed promise in animal transplantation models 
(118–121). The selective effects of these reagents on memory T 
cell subsets and the potential pathogenicity of CD28lo Temra 
cells during such therapies remain to be determined. Attempts 
to target another major costimulatory pathway, CD40/CD154, 
encountered early difficulties because of thromboembolic effects 
of anti-CD154 (CD40L) blocking antibodies (122). To avoid 
cross-linking CD154 that is highly expressed on platelets, an 
alternative approach has been the generation of non-activating 
anti-CD40 antibodies. Several such reagents have been suc-
cessfully tested in non-human primate recipients of renal and 
islet allografts (123–128).

In addition to CD28/B7 and CD40/CD154 costimulation, 
several other costimulatory pathways may play a role in effector/
memory T cell functions. Inhibition or genetic lack of ICOS/
B7RP-1, CD134/CD134L, CD70/CD27, or CD137/CD137L 
improved allograft survival even in donor-sensitized recipients, 
or after delayed administration which allowed initial priming of 
donor-reactive T cells [reviewed in Ref. (129)]. It was revealed 
that these costimulatory pathways might control distinct aspects 
of the alloimmune response. For example, blocking anti-CD134L 
mAb inhibits proliferation of effector T cells while supporting the 
survival of Tregs (71, 130). Conversely, signaling through CD134 
inhibits immunosuppressive properties of FoxP3+ Tregs and 
promotes allograft rejection (131, 132). ICOS/B7RP-1 blockade 
of resting memory CD4+ T cells inhibits their helper functions 
and decreases alloantibody production. In contrast, circulating 
memory CD8+ T cells are ICOSlo, but rapidly upregulate ICOS 
surface expression upon graft infiltration. These examples 
demonstrate that the complexity of costimulatory pathways 
governing alloimmune responses must be considered when 
costimulatory blockade is used as part of immunosuppression 
regimen.

Limiting Trafficking of Alloreactive 
Memory T Cells
While preventing memory T cell entrance into graft tissue 
should improve transplant outcome, the attempts to neutralize 
chemokines or chemokine receptors such as CCR5 or CXCR3 
did not live up to the initial expectations, most likely due to 
the redundancy of chemokine/receptor network. On other 
hand, reagents blocking LFA-1 (leukocyte function-associated 
antigen-1, an αLβ2 integrin) and VLA-4 (very late antigen-4, an 
α4β1 integrin) have been demonstrated to prolong allograft sur-
vival in experimental transplantation [reviewed in Ref. (133)]. 
Treatment with either anti-LFA-1 or anti-VLA-4 blocking mAbs 
prolonged skin allograft survival in a mouse model of costimu-
latory blockade-resistant rejection by memory CD8+ T cells 
(134). In another study, pretransplant treatment with anti-LFA-1 
mAbs inhibited early infiltration of endogenous donor-reactive 
memory CD8+ T cells into cardiac allografts, and significantly 
prolonged allograft survival (135). These findings suggest that a 
short course of integrin blockade may be instrumental in con-
trolling T cell memory while avoiding side effects of long-term 
treatments.

COnCLUDinG ReMARKS

While other types of immunologic memory lymphocytes such 
as memory B cells, preexisting alloantibodies, and “innate 
memory” described for NK cells and macrophages can impact 
transplant outcomes, in this review, we focused exclusively 
on T cell memory. It is now firmly established that alloreac-
tive memory T cells accelerate allograft rejection and prevent 
transplant tolerance. However, the implementation of accu-
mulated experimental knowledge in clinical transplantation 
is impeded by several factors. First, the diagnostics of T cell 
allosensitization in transplant candidates is problematic. Due 
to heterogeneity in phenotype and functions of memory T 
cells, complementary tests will be required including analyses 
of cytokine producing, cytotoxic, and follicular helper T cells. 
The resulting information is likely to be complex and hard to 
use in clinical decision-making. Second, memory T cells in 
humans are sampled only in peripheral blood. So far, there is 
no information on pathogenicity of tissue-resident alloreactive 
memory T cells. Third, memory T cell susceptibility to immu-
nosuppression may depend on their origins. As immunological 
histories of individuals are difficult to trace, the situation may 
arise when patients with similar T cell memory profile require 
distinct treatment strategies. Finally, despite rapidly accumu-
lating data on alloreactive T cell memory, the discrepancies 
between animal models and transplantation in human patients 
are profound. Ideally, animal transplantation models approxi-
mating clinical situation should take into account frequencies 
of total and donor-reactive memory T cells in different spe-
cies, time of graft cold ischemia storage, and the presence of 
DSA in recipient serum. Including these considerations into 
experimental design will facilitate the development of novel 
approaches to control memory T cells and improve transplant 
survival in sensitized recipients.
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Being able to track donor reactive T cells during the course of organ transplantation 
is a key to improve the graft survival, to prevent graft dysfunction, and to adapt the 
immunosuppressive regimen. The attempts of transplant immunologists have been for 
long hampered by the large size of the alloreactive T cell repertoire. Understanding how 
self-TCR can interact with allogeneic MHC is a key to critically appraise the different 
assays available to analyze the TCR Vβ repertoire usage. In this report, we will review 
conceptually and experimentally the process of cross-reactivity. We will then highlight 
what can be learned from allotransplantation, a situation of artificial cross-reactivity. 
Finally, the low- and high-resolution techniques to characterize the TCR Vβ repertoire 
usage in transplantation will be critically discussed.

Keywords: TCR repertoire, transplantation, cross-reactivity, alloreactivity, TCR, MHC, T cell

UNDeRSTANDiNG THe CROSS-ReACTiviTY

Shaping the T Lymphocyte Receptor Repertoire
Through evolution, numerous processes have been selected to generate a diverse repertoire of TCRαβ 
able to protect mammalian from pathogenic insults (Figure 1). Highly similar genes recombine to 
form functional genes and generate a highly diverse TCR repertoire. TCRβ chains are encoded by 
distinct Variable (V; TRBV), Diversity (D; TRBD), and Joining (J; TRBJ) genes, whereas TCRα chains 
are encoded by distinct sets of V and J genes (TRAV and TRAJ). Junctional diversification further 
extends the combinatorial diversity by either trimming gene ends or adding nucleotides between the 
recombining genes (1). In contrast to the IGHV (V genes of Immunoglobulin Heavy Chain) germline 
dataset compiled by the ImMunoGeneTics (IMGT) group that greatly benefit from the advanced of 
deep-sequencing technologies, the human TCR germline has been only minimally changed since 
the complete sequencing of the TCR gene loci in 1996 (2, 3). The 65 functional genes, ORFs, and 
pseudogenes have been reported for the TRBV, 54 for the TRAV and 2 for the TRBD dataset. The 
analysis of the TCR CDR3 is still a very challenging process. The identification of the TRBD genes 

Abbreviations: CAMR, chronic antibody-mediated; CDR, cluster differentiation region; CMV, cytomegalovirus; CNS, central 
nervous system; CSF, cerebral spinal fluid; EBV, Epstein–Barr virus; GZMb, Granzym B; HLA, human leukocyte antigen; IFNg, 
interferon g; ITAM, immunoreceptor tyrosine activation motifs; MHC, major histocompatibility complex; MLR, mixed lym-
phocyte reaction; NGS, next generation sequencing; PERF, perforin; TCR, T cell repertoire; TEMRA, T cell effector memory 
re-expressing CD45RA; TNFa, Tumor necrosis factor.
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FiGURe 1 | Understand the cross-reactivity of a highly diverse TCR 
repertoire. A highly diverse TCRαβ repertoire is generated by iterative 
processes selected through evolution. Combinatory diversity results from the 
selection of Variable (V; TRAV and TRBV), Diversity (D; TRBD) and Joining (J; 
TRAJ and TRBJ) genes. Junctional diversification further extends the 
combinatorial diversity by either trimming gene ends or adding nucleotides 
between the recombining genes. Finally, the association of the TCRα and 
TCRβ chain constitutes the final steps of the numerous iteration processes 
that lead to the generation of a highly diverse TCR repertoire, which is able to 
efficiently protect individuals from pathogenic stimulations. TCRαβ adopts a 
stereotype docking geometry atop the MHC/peptide complex. This 
orientation leads to a spatial interaction between the germline-encoded 
CDR1 and CDR2 of the TCRα and β chains and the edges of the peptide-
groove of MHC. The accumulation of reported crystallographic structures has 
challenged the stereotypic view of the angle of the TCR docking. However, 
the recognition of conserved motifs on the side of MHC molecules by CD4/
CD8 co-receptor constrained the TCR docking geometry. Despite the high 
diversity of the TCR repertoire, a high degree of cross-reactivity has been 
reported that could be explained by the “natural” ability of TCR to interact 
with MHC molecules (MHC focus model) as well as the interaction of TCR to 
a limited number of amino acids of the peptide bound to the MHC peptide 
groove.
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cannot be performed due to the high degree of similarities of the 
TRBD at their 5′ ends, the short length of the two genes, and the 
presence of G-rich N nucleotides at the 5′ ends that could be also 
added by the TdT enzyme.

It is misleading to estimate the combinatory diversity by 
simply multiplying together the number of V, D, and J genes (4). 
Rather than a random combination of the TCR genes, studies 
have shown that TCR genes are highly biased in their usage, 
and that only part of the theoretical diversity is selected (5, 6). 
Chromosomal recombination patterns can be explained by vari-
ations in enhancers and Recombination Signal Sequences (RSS) 
and organization of the TRBJ genes (a block of six and seven genes 

located respectively downstream from the TRDB1 and TRDB2 
gene) that leads to a bias in D–J pairing. The diversity of the TCR 
repertoire is further broaden during the rearrangement process 
first by the addition of P nucleotides (Palindromic nucleotides) 
thanks to recombination activating gene-1 and -2 (RAG1 and 
RAG2) (7) that form hairpin loops at the gene end and then by the 
addition of N nucleotides (with a biased toward G nucleotides) by 
the terminal deoxynucleotidyl transferase (TdT) (8). Insertions 
of nucleotides have a profound impact on the diversity of the 
Complementary-Determining Regions 3 (CDR3) sequences and 
contribute to most (60%) of this diversity (9). The coding ends of 
the genes can be also trimmed by exonucleases. However, given 
the limited number of amino acids, the removal of nucleotides 
by exonucleases is constrained to generate a productive codon 
and therefore limits the contribution of exonuclease trimming to 
the diversity of the TCR repertoire. Finally, the association of the 
TCRα and TCRβ chain constitutes the final steps of the numerous 
iteration processes that lead to the generation of a highly diverse 
TCR repertoire, which is able to efficiently protect individuals 
from pathogenic stimulations.

Current Understanding of the Recognition 
of pMHC by TCR
Six CDR will engage the peptide/MHC complexes, endogenous 
and exogenous peptides being presented respectively by MHC 
class I and II molecules. MHC class I grooves constrain the length 
of the presented peptides (8–14 amino acids length) while the 
open nature of peptide-binding cleft of MHC class II molecules 
allow a broader range of peptides to be presented. The HLA locus 
is the most polymorphic region of the human genome, with more 
than 13,000 variant alleles (10,297 HLA Class I Alleles and 3,543 
HLA Class II Alleles according to the IMGT/HLA). The high 
diversity of HLA conferring an almost unique signature of HLA 
for mankind is further extended by the combinatory diversity 
resulting from the association of six HLA Class I (two alleles of 
HLA-A, -B, and Cw) and six HLA Class II molecules (two alleles 
of HLA-DR, -DP, and -DQ). The high mutation level of the HLA 
loci is preferentially focused on the peptide-binding cleft that 
clustered most of the variability of the amino acid sequence. The 
focus of mutations underlines the function of the HLA molecules, 
namely being able to display a very large array of peptides.

Garcia et  al. were the first to report the crystallographic 
structure of a murine TCR 2C bound to peptide/MHC Class I 
(H-2KB–dEV8). The cytotoxic T cell clone 2C is one of the most 
well-characterized TCR and has been initially isolated from a 
BALB/b mouse as an allospecific T cell that recognized Ld on the 
mastocytoma P815. Beside its primary antigen (peptide p2C), 
the 2C TCR can bind to different antigens, including the dEV8 
(10) and SIYR (11). They also showed that TCRαβ adopts a 45° 
diagonal orientation to the long axis of the peptide (12). This 
orientation leads to a spatial interaction between the germline-
encoded CDR1 and CDR2 of the TCRα and β chains and the 
edges of the peptide-groove of MHC (Figure  1). The highly 
diverse CDR3 region is facing the central portion of the bound 
peptide. The multiple crystallographic structures of TCR/peptide 
MHC complexes [more than 120 of crystallographic structures 
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have been obtained (13)] have revealed that the docking angle of 
the TCR is conserved with a stereotype position of a 75° diagonal 
orientation to the long axis of the peptide (14). The conserved 
binding model has lead to the concept that TCR and MHC are 
hardwired to interact, resulting from a coevolution selection of 
conserved regions (codons) to lock in TCR onto MHC molecule. 
The stereotyped orientation of TCR atop MHC molecule is 
however more flexible than initially proposed, with the accumu-
lation of crystal structures. The median docking angle of TCR is 
63.2° (min–max 37–90°) with MHC class I and 76.4° (min–max 
44–115°) with MHC class II (13) (Figure 1).

Different theories have been postulated to explain the hard-
wire of TCR to MHC molecules (15), including the key role of 
co-receptors of CD4 and CD8 that imposed steric requirements 
for concurrent associations of TCR, CD3, CD4/CD8, and MHC 
complexes allowing the appropriate signaling events to occur. 
Indeed, the main role of co-receptor CD4 and CD8 is to recruit 
the Src tyrosine kinase p65lck (lck) via its association with the 
cytoplasmic tail of CD4 or CD8. Lck concentration promotes 
phosphorylation of immunoreceptor tyrosine activation motifs 
(ITAMs) in the cytoplasmic tails of CD3 subunits and then initi-
ates the cascade of signaling events leading to the full activation 
of the T lymphocyte. Given the key role of co-receptor CD4 and 
CD8 in process, it was assumed that their ability to bind, respec-
tively, the membrane-proximal α2 and β2 domains of the MHC 
class II molecule and the protruding loop in the α3 domain of the 
MHC class I molecule will constrain the docking geometry of the 
TCR to the pMHC (Figure 1).

A recent report by Beringer et  al. (16) had challenged the 
consensus idea of a highly stereotype docking of TCR atop MHC 
molecules (13). Crystallographic structures of two TCR binding 
to proinsulin peptide presented by HLA-DR4 (HLA-DR4proinsulin) 
have been obtained from two clones of induced regulatory CD4 
T cells. The ternary complexes revealed a 180° polarity reversal 
compared to all other TCR-peptide-MHC complex structures. It 
remains to be address whether this singular observation could be 
generalizable, whether the reverse docking is a unique feature of 
regulatory cells and whether the potential signaling differences 
may influence the phenotype and the function of the T cells.

Cross-Reactivity, from intellectual 
Concept to a Critical Need for immune 
System
Cross-reactivity can be defined by the ability of a given TCR 
to interact with more than one pMHC complex with different 
presented peptides or MHC molecules. This new concept has 
been presented as early as 1977 by Matzinger and Bevan (17). An 
alloreactive T cell clone was derived by Owens et al. in 1984 with 
three H2-E reactivity (allo-Ek specific, H2-Ek, DBA/B10 H2-Ed, 
and self H2-Ed) (18). Since then, numerous reports have provided 
evidence of cross-reactivity. For instance, mouse 2C TCR can 
interact with syngeneic MHC H-2Kb presenting dEV8 (10) and 
SIYR (11) and with allogeneic H-2Kbm3 presenting dEV8/Kbm3 
(10) and allogeneic H-2Ld–p2CA (11). The study by Birnbaum 
et  al. is an elegant attempt to quantify the cross-reactivity of a 
given TCR (19). Using five different CD4 TCR clones (three from 

mouse origin and two from human origin), high throughput 
screening of yeast libraries and deep sequencing, the authors 
demonstrate that a single TCR can interact with more than 100 
different peptides.

Jerne et al. postulated in the mid-1950 that each cell exhibits 
a unique clonotype able to recognize only one antigen (20, 21). 
Don Mason has been among the first to challenge the validity of 
this clonal selection theory (22) showing that the immune system 
will be highly incompetent to protect an individual from external 
insult if one and only TCR was able to recognize a single peptide 
presented in a given HLA context. More than 1015 T cells, which 
would weigh more than 500 kg, would be needed to provide effi-
cient coverage of the potential foreign peptides. This clearly stated 
that the immune system could not efficiently protect individual 
if one TCR interacts with a single antigen. Unlike the affinity 
maturation of B cell receptor, the protein sequence of TCR is 
fixed and naive T cells are required to recognize foreign antigens 
not encountered before. The number of potential antigens to be 
recognized is huge given the variability induced by the high diver-
sity of peptide-binding groove of HLA class I and II molecules. 
From the 20 proteinogenic amino acids and given that peptides 
from 8- to 14-mer can be presented, an incredibly high number 
of peptides can be potentially generated (>1015 peptides) (23). 
The diversity can be further extending by the posttranslational 
modifications of amino acids. In a 2012 opinion paper, Andrew 
Sewell elegantly presents the necessity of the cross-reactivity (23), 
as the number of potential foreign peptide–MHC complexes that 
T cells might encounter dwarfs the number of TCRs available [the 
number of unique TCRαβ is estimated to be in the magnitude of 
1011 (24, 25)].

The mechanisms described previously to generate a diverse 
TCRαβ have to be envisioned at the population level. Given the 
relatively limited number of genes encoding for TCR chain α and β 
and the requirement of TCR to recognize the highly diverse HLA 
molecules, the necessity of each T cell to recognize a large array 
of peptides is expected (22). Before presenting the experimental 
approach aiming to quantify the number of peptides recognized 
by a single TCR, we would like to present clear evidences of 
the cross-reactivity involving memory T cells without previous 
antigen encounter. It has been described few years ago that CD8 
T cells with a memory phenotype can be found in mice (26–28). 
CD8 T cells specific for ovalbumin and viral antigens (HSV, vac-
cinia) could be detected in mice despite their germ-free environ-
ment (28). Despite the absence of previous antigen encounter, 
these pre-existing memory CD8 T cells harbor traits of memory 
cells such as the ability to rapidly proliferate upon stimulation and 
to secrete rapidly pro-inflammatory cytokines. Homeostatic pro-
liferation, aging, and cross-recognition of alternate ligands have 
been postulated to drive the accumulation of these memory-like 
naive CD8 T cells (27, 29). This observation has been extended 
to human settings in which CD4 T cells specific for HIV-1, CMV, 
and herpes simplex virus (HSV) epitopes were identified in 
healthy volunteers that had never been infected with these viruses 
(30). Again, these cells exhibit not only memory markers but also 
memory-associated features (rapid proliferation and cytokine 
secretion). The acquisition of memory characteristics could be a 
consequence of homeostatic proliferation (31) or a consequence 
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of the cross-reactivity to other antigens in the environment. To 
support the latest hypothesis, Su et  al. have shown that HIV-1 
specific T cells can recognize environmental peptides present in 
the gut and soil, bacteria and ocean algae, and plants. Of interest, 
T cells specific for HIV-1 can even be purified from cord-blood 
(30), demonstrating thereby the presence of T cells able to recog-
nize self and non-self antigens in newborns. Of interest, the phe-
notype of cross-reactive T cells was different between newborns 
and adults, with a naive and a memory phenotype, respectively.

The concept of clonal deletion that occurred in the thymus is 
challenged by the aforementioned reports and compelling evi-
dences suggest that from an evolutionary perspective, the necessity 
to protect an individual against pathogens is far more important 
than to limit the autoreactivity. A recent study from Davis team 
further sustained this claim (32). The frequency of CD8 T cells 
specific of a Y chromosome specific antigen (equivalent to HY 
peptide) is only threefold lower in man as compared to women 
(32). Of interest, whereas CD8 T cells purified for their specific-
ity regarding a pool of six self peptides do not proliferate after 
stimulation with the same set of self peptides, CD8 T cells specific 
of a pool of six non-self peptides exhibit a potent proliferative 
response (32). The absence of response reported for self-specific 
CD8 T cells and not for foreign antigen-specific CD8 T cells has 
been linked to a different genetic programing as compared to the 
clones purified from woman, with a lower expression of IL-2R, 
IL-21R, and Bcl-XL (32). Thus, evolution has favored the absence 
of hole over autoimmune disease (about 1% of incidence). It may 
seem awkward that the evolution has favor the escape of anti-
self specific T cells from thymic selection over a more stringent 
deletion of all anti-self T cells. A heavier burden of maintaining 
tolerance is needed to prevent the development of autoimmune 
diseases. However, the need to defend the immune system against 
pathogens, especially during childhood, is far greater than the 
need to prevent autoimmunity as for population’s survival. By 
limiting the deletion of self-reactive T cells and thanks to the large 
cross-reactivity of T cells, the holes in the T cell repertoire that 
pathogens might take advantage of are constrained.

The analysis of the immune system in monozygotic twins is 
enlightened in many aspects as such studies allow the dissociation 
between the inborn and the acquired contributions. The team of 
Davis has recently showed that the heritability of T and B cells 
parameters declines very rapidly with age (33). At the age of 
40 years, the heritability explained less than 10% of the variation 
in T and B cell parameters. CMV infection is a protypical example 
of the influence of non-heritable factor on the whole immune 
system. Indeed, 58% of all parameters measured in discordant 
twins were influenced by CMV infection (33). The environment 
carves the immune system of each single individual, with each 
past immune response heavily imprinting the (present) immune 
system.

Since the initial observation that immunity against cowpox 
protects individual from smallpox (34), numerous examples of 
cross-reactivity had been reported in mice and in human (35). 
For instance, infections with BCG, influenza A virus (IAV), 
lymphocytic choriomeningitis virus (LCMV), and murine cyto-
megalovirus (MCMV) all confer a level of protective immunity 
against Vaccinia Virus (36–38). The benefit of cross-reactivity 

as for pan-virus protection is more difficult to assess for obvi-
ous reasons. Nevertheless, the numerous example of a single 
TCR able to recognize different antigens [BCG and Poxviruses 
(37); Papillomavirus and Coronavirus (39); Influenza virus and 
Epstein–Barr virus (40)]. The large cross-reactivity of T cells 
confers a more efficient protection cover using a limited number 
of T cells that need to screen an incredibly large array of peptides 
that can be presented by MHC molecules. Beside the efficient 
use of limited T cell resource, cross-reactivity confers a spatio-
temporal advantage to the immune system to scan any infected 
cells. Cross-reactivity could also be envisioned as an evolution 
strategy to limit the immune recognition escape.

ALLOTRANSPLANTATiON iS NOT ONLY 
AN eXAMPLe OF ARTiFACTUAL CROSS-
ReACTiviTY BUT ALSO GiveS CLUeS 
ReGARDiNG THe GLOBAL 
ORGANiZATiON OF THe iMMUNe 
SYSTeM

Recipient immune system can interact with foreign HLA 
molecules under two very different circumstances: pregnancy 
and transplantation. Thanks to evolution and adaptation of the 
maternal immune system to the presence of HLA mismatch 
fetuses, allorecognition during pregnancy is not harmful and 
could even be beneficial as for mammalian sexual reproduction. 
Immunological tolerance toward allogeneic fetus is obtained 
through a complex network of regulatory mechanisms including 
the lack of expression of classical MHC class I molecules by the 
placental trophoblast and the expression of non-classical MHC 
class I HLA-E and HLA-G. More surprisingly, HLA mismatches 
have been proposed to be beneficial for pregnancy outcome. In 
the 1960s, Billington reports that the placenta is larger in H-2 
incompatible mouse as compared to compatible fetuses (41). 
HLA compatible fetuses (i.e., similar to maternal HLA) have been 
shown to be more prone to be aborted (42). In contrast, recipient 
immune system will potently eliminate an allogeneic graft in the 
absence of immunosuppressive therapy.

Despite the absence of thymic central selection (43) of poten-
tial graft-recipient T cells by allogeneic MHC motifs regarding 
their ability to recognize allogeneic potential HLA, a large pool of 
T cells can be activated by donor HLA molecules either through 
the direct pathway (i.e., donor HLA presenting donor peptides) 
or the expected processing of foreign MHC molecules, coined 
as the “indirect pathway” (i.e., recipient HLA presenting donor 
peptides) in transplantation immunologist jargon. The direct 
allorecognition pathway represents a unique example of func-
tional and efficient cross reactivity. Two main hypothesizes have 
been postulated to explain the basis of alloreactivity, emphasizing 
the role of either MHC molecule or peptide. The polymorphism 
between donor and MHC molecules could act as an “innate 
focus” that leads to the activation of unprimed recipient T cells 
or the allopeptide could be recognized as foreign antigen while 
allogeneic and self-MHC molecules exhibit a high degree of 
similarity (Figure 1).
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According to the MHC centric model, the peptide plays only a 
minor role in the process, and alloreactive TCRs recognize struc-
tural determinants on the MHC helices of syngeneic or allogeneic 
MHC. The bias of TCR to interact with MHC molecules supports 
this theory. Crystal structures of allo-pMHC complexes such as 
2C TCR with allogeneic H-2Kbm3 presenting dEV8/Kbm3 (44) 
or BM3.3 TCR with allogeneic pBM1–H-2Kb (45) have shown 
that alloreactive TCRs interact with allogeneic MHC in a similar 
fashion as with syngeneic MHC. To further support the role 
of MHC in alloreactivity, it has been reported that some HLA 
mismatches between donor and recipient are associated with 
worse graft survival than others, leading to the notion of taboo 
mismatches based on shape rather than sequence differences 
(46). For instance, despite a single amino acid in an HLA Class I 
antigen, mismatches between HLA-B*4402 and HLA-B*4403 is 
associated with transplant rejection (47) and acute graft-versus-
host disease (48). The peptide repertoire bound to HLA-B*4402 or 
HLA-B*4403 have been shown to be very similar (49). However, a 
recent report challenges this observation (50). The single amino 
acid mismatch induced the presentation of more unique peptides 
by HLA-B*4403 than HLA-B*4402, consistent with the stronger 
T cell alloreactivity observed toward HLA-B*4403 compared 
with HLA-B*4402 (50). This observation supports the notion of a 
peptide focus TCR allorecognition, in the same line as molecular 
mimicry.

Allorecognition could also involved cross-reactivity between 
MHC class I and MHC class II or even xeno MHC (51, 52). In 
1986, Schilman et  al. reported that CD8 T cell clone could be 
activated by both MHC class I (H-2Db) and MHC class II (I-Ek) 
molecules (53). By-directional recognition of T cells between 
MHC class I and MHC class II have been reported later (54–56). 
These observations may have important implication in the 
attempt to minimize HLA mismatches during the process of 
organ allocation.

Defining the Magnitude of T Cell 
Response to Allostimulation
Using a mixed lymphocyte reaction (57), it has been shown that 
1–10% of T cell in peripheral blood can be activated (58). As men-
tioned before, the number of HLA mismatches between donor 
and recipient is a primary driving force that mobilized a larger 
fraction of T cells than nominal antigens. Whether alloreactive T 
cells are activated by the high number of new antigens presented 
by donor HLA or by the large number of different allo-pHLA 
complexes (or both) is still under debate, and the two hypoth-
eses are not mutually exclusives. The indirect pathway further 
enhances the reactivity of recipient T cells toward allogeneic graft. 
Indeed, peptides presented by MHC molecules derived predomi-
nantly from MHC-related molecules (59–61). The introduction 
of donor HLA molecules will thus lead to the introduction of 
great pool of new peptides that can mobilized a large fraction of 
recipient T cells.

It is now also well accepted that memory T cells generated 
prior transplantation constitute a major hurdle for long-term graft 
acceptance. Chronic viruses such as EBV and CMV induce the 
generation of a large pool of memory T cells. For instance, 10% of 

both the CD4 and CD8 memory compartments in blood are reac-
tive to HCMV (62). The cross-reactivity between virus-specific T 
cells and allogeneic HLA has been extensively documented (63). 
EBV or CMV specific CD8 T cells exhibit frequently a cross-
reactivity toward allogeneic MHC class I complexes (64–68). 
Similar observations have been reported for CD4 T cells specific 
for EBV or CMV (69–71). Virus-specific T cells that cross-react 
with alloantigens have been shown in experimental models to 
proliferate in response to a transplanted allograft in vivo (72). For 
instance, LCMV-specific CD8 T cells generated after infection 
of mice with Armstrong strain of LCMV are able to vigorously 
proliferate in  vivo after skin transplantation and ultimately to 
mediate skin graft rejection (72).

Tracking Anti-Donor Response by the 
investigation of TCR vβ Repertoire: From 
Low Resolution Technique to High 
Throughput Sequencing
Given the size of anti-donor T cell pool, great efforts have been 
paid to track the immune-response using the analysis of TCR Vβ 
repertoire and to correlate specific usage of TCR Vβ repertoire 
with graft status or graft outcome. Before presenting the available 
reports, it is necessary to present the two major methods used to 
investigate TCR Vβ usage; a low resolution (spectratype alone 
or TcLandscape when combined with quantitative analysis) and, 
more recently, a high resolution (deep-sequencing of TCR Vβ 
region) approach (Figure  2). The low-resolution technique is 
based on the analysis of the length of the CDR3 region whereas 
the high-resolution technique identifies the sequence of each 
TCR Vβ and later quantifies the abundance of the different T cell 
clones.

Each TCR Vβ family is composed of T cells with various 
lengths of their CDR3 region. The distribution of the CDR3 
length can be assessed by spectratype (73, 74). A broad spectrum 
of profiles can be identified ranging from a Gaussian-like profile 
to a highly restricted profile, highlighting the absence of selection 
of T cell, or the expansion of T cell clones, respectively. Different 
analytic tools have been used to characterize the CDR3 length 
distribution (75–78). The qualitative assessment of the TCR Vβ 
repertoire can be complemented by the quantification of the dif-
ferent Vβ families at the mRNA level using qRT-PCR (79–81) or 
at the cellular level using flow-cytometry (82). Such techniques 
still offer several benefits over higher resolution techniques such 
as their cost, the short time frame to obtain results, and the 
generation of a reasonable amount of data can be also displayed 
as “visible” pattern as an “X-ray” of the global TCR alteration in a 
specific pathological context (83–86). A rapid survey of the usage 
of the TCR Vβ repertoire can be efficiently performed, guiding 
further investigations focused on targeted TCR Vβ families. At 
the other range of the resolution spectrum, deep-sequencing of 
TCR Vβ obtains a full picture of the usage of T cell repertoire 
with deep or ultra-deep resolution. The availability of all TCR 
Vβ sequences allows for the precise appraisal of the distribution 
of the different T cell clones especially across different biologi-
cal compartments (76). Furthermore, with a complete TCR Vβ 
sequencing, researchers can investigate the similarity of T cell 
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sequences between biological compartments or individuals 
and take advantage of public repository databases to assess the 
specificity of a sequence and potentially to reconstruct the TCR in 
order to search for the recognized peptides. However, the amount 
of data generated using this technique is extremely high and 

efficient bio-informatics tools specifically devoted to the analysis 
are needed to identify meaningful information in the ocean of 
data. The accessibility of deep-sequencing is likely to be broaden 
in the near future thanks to the advances in bio-informatics tools 
and the reduction of the cost.
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Low-resolution techniques have been used to investigate 
the usage of TCR Vβ repertoire in kidney transplant recipients 
with various clinical outcomes or at various time points post-
transplantation (86–88). Using the combination of spectratyping 
and quantitative assessment of the TCR Vβ transcript, we have 
been able to define direct or indirect allorecognition patterns 
in an experiment model of allograft in congenic rats (52, 79, 
80). Using the same approach, we reported that patients with 
biopsy-proven chronic antibody-mediated (CAMR) rejection 
exhibits strong alterations of their TCR Vβ repertoire correlating 
with the level of graft lesions classified with Banff classification 
(87). In contrast, operationally tolerant patients [i.e., patients 
off-immunosuppression for more than 12  months with a well-
functioning graft (89–91)] exhibit a polyclonal TCR Vβ reper-
toire (87). A large cohort of patients with stable graft function for 
more than 5 years post-transplantation had been prospectively 
recruited in our center with stringent clinical and demographic 
inclusion criteria in order to obtain a homogeneous population. 
Nevertheless, we could highlight that the usage of TCR Vβ reper-
toire is highly heterogeneous ranging from the absence of clonal 
selection (similar to operational tolerance) to an accumulation 
of selected T cells (as for CAMR rejection) (87). The presence 
of altered TCR Vβ repertoire has been previously reported in a 
rat model of CAMR (92) in which similar CD8 clones could be 
identified in the blood and in the graft (93). In a large prospective 
study of kidney transplant recipients with a stable graft function 
for more than 5 years, we show that the altered TCR Vβ repertoire 
was due to an accumulation of TEMRA (T cell Effector Memory 
re-expressing CD45RA; CD45RA+CCR7−) CD8 T cells with an 
activated profile (CD27−CD28−), a high expression of cytotoxic 
molecules, perforin (PERF) and Granzym B (GZM-B), T-bet, 
and CD57 and the ability to secrete TNF-α and IFN-γ (88). Of 
interest, stable patients who have an increase in differentiated 
TEMRA CD8 T cells have a twofold higher risk of long-term 
graft dysfunction (88). Of note, using a similar strategy, Kim 
et al. recently reported that clonal CD8 T cell could be evidenced 
in human transplanted hand, with several TCR clonal selections 
persisting at least 100 days (among the 178 days of surveillance) 
(94). Collectively, these data highlight that a low-resolution 
technic provides key features as for the accumulation of selected 
T cell clones that can be used to monitor the kidney transplant 
recipients.

A major drawback of spectratype-based method is its intrinsic 
low resolution as multiple T cell clones could share the same 
CDR3 length. It is necessary to sequence the TCR Vβ chain with 
an altered CDR3 length distribution to assess the clonality of a 
given Vβ family. However, we recently compared spectratype or 
next generation sequencing (NGS) techniques to characterize the 
TCR Vβ repertoire in the blood, the cerebral spinal fluid (CSF), 
and the central nervous system (CNS) of patients with multiple 
sclerosis (76). Both methods were as efficient to highlight the 
similarity of TCR Vβ repertoire between CSF and CNS (≈80% 
of TCR Vβ clones identified in the CNS were also found in the 
CSF) and to identify ≈50% of the TCR Vβ clones using blood 
CD8 sample (76).

As previously discussed, the size of donor-reactive T cell 
repertoire is large and constitutes a limitation to the use of 

deep-sequencing approach. It may thus be a naive approach to 
perform NGS on unfractioned T cells with the aim to identify 
T cell clones specific to a given situation, such as kidney trans-
plantation or viral infection; a two-step approach is needed. The 
first step is to purify the T cell population of interest based on 
the expression of phenotypic (using tetramer for instance) or 
functional (e.g., cytokine secretion, proliferation) markers. The 
in-depth characterization of TCR Vβ of T cell population of inter-
est allows for the definition of a signature that can be later used 
as a tag when unpurified samples are analyzed. This approach 
has been used to track CMV- or BK-specific T cell clones (95) or 
alloreactive T cells (96, 97). The first report hypothesizing such 
an approach in the transplant context has been published by the 
group of Leventhal (96). Using healthy volunteers, this study 
aimed to assess breadth, clonal structure, and dynamics of the 
alloreactive T cell repertoire. After 7 days of MLR, the proliferat-
ing T cells were purified according to the dilution of cell division 
dye. By comparing the number of clones before culture and in the 
proliferated MLR responder, two types of alloreactive clones were 
identified, low- (i.e., unobserved in pre-culture sample and ≥10 
T cells after MLR) and high-abundance pre-culture clones (i.e., 
present in pre-culture sample and ≥10× enriched after MLR). 
More than 11,000 low-abundant clones and more than 2,000 
high-abundant clones were detected in the different experiments. 
These data provide new evidences of the large size of the alloreac-
tive T cell pool.

This approach was used recently to track donor-reactive T cells 
in kidney transplant recipients (97). The fingerprint of donor-
reactive T cell repertoire was established before transplantation by 
deep-sequencing of proliferating CD4 and CD8 T cells after 6 days 
of MLR. The fingerprint of donor-reactive T cells was monitored 
later after transplantation without the need to perform MLR. The 
team of Sykes provides evidences that tolerance induction proto-
col based on combined kidney and non-myeloablative bone mar-
row transplantation results in a reduction of donor-alloreactive 
T cell clones. However, this decrease was neither observed in the 
patient that failed to respond to the tolerant inducing protocol 
nor in patients with standard immunosuppressive regimens. Pre-
transplant identification of donor-reactive T cell clones before 
transplantation could thus be a means to track the activation of 
the immune system by allogeneic graft. The studies of Emerson 
(96) and Morris (97) showed that the anti-donor fingerprint is 
stable over-time in healthy volunteers. Given the design of the 
assay, only pre-existing clones could be tracked. It would be of 
great value to compare the anti-donor clone repertoire before and 
after transplantation, starting each time from a direct MLR assay 
to investigate if new anti-donor T cells arise after transplantation. 
Indeed, infections that occurred frequently after transplantation 
could generate virus-specific T cells with an allogeneic cross-
reactivity potential (71). Moreover, not all proliferating cells after 
6 days of MLR are per se donor-specific as proliferation of T cells 
could also be linked to bystander stimulation (98).

CONCLUDiNG ReMARKS

Will transplant immunologists be able to track the rise and the 
expansion of donor-specific T cells and would this approach be 
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widely available and useful to the clinical management are still 
open questions. High-through put techniques that have recently 
emerged are certainly an important step forward. Nevertheless, 
the high cross-reactivity of T cells is a major hurdle to identify the 
trigger of the expansion of donor-reactive T cells, as donor anti-
gen, viral peptides, and other environmental antigens can lead 
to the selection of donor-specific T cells. While promising, the 
study of TCR alteration has not overcome the double difficulties 
of offering an accessible technical presentation of the data and a 
validated correlation with clinical outcomes. Therefore, longitu-
dinal studies to test the reactivity of recipient T cells against donor 
antigens at different time points are needed.
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Create Diversity in immune Targets
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Allogeneic stem cell transplantation (alloSCT) can be a curative treatment for hematolog-
ical malignancies. Unfortunately, the desired anti-tumor or graft-versus-leukemia (GvL) 
effect is often accompanied with undesired side effects against healthy tissues known 
as graft-versus-host disease (GvHD). After HLA-matched alloSCT, GvL and GvHD are 
both mediated by donor-derived T-cells recognizing polymorphic peptides presented 
by HLA surface molecules on patient cells. These polymorphic peptides or minor histo-
compatibility antigens (MiHA) are produced by genetic differences between patient and 
donor. Since polymorphic peptides may be useful targets to manipulate the balance 
between GvL and GvHD, the dominant repertoire of MiHA needs to be discovered. In 
this review, the diversity of autosomal MiHA characterized thus far as well as the various 
molecular mechanisms by which genetic variants create immune targets and the role of 
cryptic transcripts and proteins as antigen sources are described. The tissue distribution 
of MiHA as important factor in GvL and GvHD is considered as well as possibilities how 
hematopoietic MiHA can be used for immunotherapy to augment GvL after alloSCT. 
Although more MiHA are still needed for comprehensive understanding of the biology of 
GvL and GvHD and manipulation by immunotherapy, this review shows insight into the 
composition and kinetics of in vivo immune responses with respect to specificity, diver-
sity, and frequency of specific T-cells and surface expression of HLA–peptide complexes 
and other (accessory) molecules on the target cell. A complex interplay between these 
factors and their environment ultimately determines the spectrum of clinical manifesta-
tions caused by immune responses after alloSCT.

Keywords: allogeneic stem cell transplantation, hematological malignancy, graft-versus-leukemia reactivity, 
graft-versus-host disease, donor lymphocyte infusion, T-lymphocytes, minor histocompatibility antigens, 
immunotherapy

Abbreviations: alloSCT, allogeneic stem cell transplantation; DLI, donor lymphocyte infusion; DRiP, defective ribosomal 
product; GvHD, graft-versus-host disease; GvL, graft-versus-leukemia reactivity; MiHA, minor histocompatibility antigen; 
SNP, single nucleotide polymorphism; WGAs, whole genome association scanning.
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ALLOGeneiC STeM CeLL 
TRAnSPLAnTATiOn

Allogeneic stem cell transplantation (alloSCT) can be a cura-
tive treatment for hematological malignancies. In alloSCT, the 
immune system from a healthy donor is transplanted into the 
patient to induce an effective response against the leukemic cells 
(1, 2). Unfortunately, desired anti-tumor or graft-versus-leukemia 
(GvL) reactivity is often accompanied with graft-versus-host 
disease (GvHD) affecting predominantly skin, gut, liver, and 
lungs (3–6). To reduce GvHD, donor T-cells can be (partially) 
depleted from the stem cell graft (7–9). T-cell depletion decreases 
the incidence and severity of GvHD, but increases the risk of 
leukemia relapse and opportunistic infections. Once toxicity of 
the conditioning has subsided, donor T-cells can be administered 
after alloSCT as donor lymphocyte infusions (DLI) to reinstall 
beneficial GvL (10, 11). Although DLI can induce long-lasting 
clinical remissions, GvHD remains a major cause of morbidity 
and mortality. Since DLI is applied to patients who do not receive 
(or only limited) immunosuppression, postponed DLI after 
alloSCT creates an ideal platform to study specificity, magnitude, 
and duration of GvL and GvHD.

MinOR HiSTOCOMPATiBiLiTY AnTiGenS

To minimize GvHD, patients with hematological malignancies 
are preferably transplanted with HLA-matched donors (12, 13). 
After HLA-matched alloSCT, donor-derived T-cells can mediate 
GvL and GvHD by recognizing polymorphic peptides presented 
on patient cells by shared HLA molecules. In the classical dogma, 
intracellular proteins are degraded in the cytosol by the protea-
some and peptides are presented by HLA class I to CD8 T-cells 
(14, 15). HLA class II molecules present peptides derived from 
intra- and extracellular proteins to CD4 T-cells (14, 16). In the 
autologous situation, peptides from normal cellular proteins can-
not be recognized by the immune system due to negative selection 
and deletion of self-specific T-cells in the thymus (17). After HLA-
matched alloSCT, however, donor T-cells recognize polymorphic 
peptides presented on patient cells by shared HLA as “non-self.” 
These polymorphic peptides or so-called minor histocompat-
ibility antigens (MiHA) can be encoded by the male-specific 
Y-chromosome (H-Y antigens) or other chromosomes (autosomal 
MiHA) and are produced by genetic differences between patient 
and donor (18–21). This review is focused on discovery strategies 
and molecular mechanisms behind autosomal MiHA.

T-CeLL iSOLATiOn

Minor histocompatibility antigen-specific T-cells can be directly 
isolated from in vivo immune responses after alloSCT or generated 
in vitro by stimulating antigen-experienced or naive donor T-cells 
(22, 23). T-cells have been isolated from in vivo immune responses 
by their capacity to produce IFN-γ upon in vitro stimulation with 
patient hematopoietic cells (24, 25). A disadvantage is that not 
all specific T-cells produce IFN-γ during 5–24 h of incubation, 

resulting in low T-cell isolation efficiencies. HLA-DR is a marker 
that has successfully been used to isolate in vivo activated T-cells 
(26, 27). Since HLA-DR is expressed on activated T-cells for a 
prolonged time, its expression does not require in vitro stimula-
tion and enables analysis of the in vivo immune response without 
introducing a bias. CD137 is another marker that allows direct 
isolation of antigen-experienced T-cells (28, 29). This marker is 
specific for T-cells that are recently activated and requires in vitro 
stimulation for re-expression on the cell surface.

DiSCOveRY STRATeGieS

To develop strategies that allow manipulation of GvL and 
GvHD, the dominant repertoire of autosomal MiHA needs to 
be discovered. HA-1 and HA-2 are the first MiHA that have been 
identified as T-cell targets in a patient with GvHD (Table  1). 
The antigens have been characterized as peptides eluted from 
HLA surface molecules that are recognized by specific T-cells 
by mass spectrometry. Other MiHA characterized by this 
approach are HA-8, HA-3, PANE1, and LB-ADIR-1F (Table 1). 
cDNA library screening in which pools of plasmids are tested 
for T-cell recognition is another technique that has been used 
for discovery of HB-1H, UGT2B17/A29, UGT2B17/B44, ACC-
4, ACC-5, ACC-6, SP110, LB-ECGF-1H, C19ORF48, TRIM22, 
and LB-TRIP10-1EPC (Table  1). In addition, five HLA class 
II-restricted MiHA encoded by PI4K2B, PTK2B, LY75, MR1, 
and MTHFD1 have been characterized by screening a library in 
which recombinant bacteria are screened for T-cell recognition 
(Table 1).

Due to advanced array techniques to measure single nucleotide 
polymorphisms (SNPs), whole genome association scanning 
(WGAs) became available as efficient method for MiHA discovery 
(39, 43). In this approach, a panel of test cells with known SNP 
genotypes is used to measure T-cell recognition. T-cell recognition 
is subsequently investigated for association with individual SNPs 
to identify the genomic region that encodes the MiHA. Before SNP 
arrays became commercially available, WGAs was performed with 
low-resolution genetic markers, leading to identification of large 
genomic regions of which all genes needed to be investigated for 
encoding the antigen. MiHA characterized by WGAs with low-
resolution markers are ACC-1Y, ACC-2, LRH-1, and HEATR1 
(Table  1). When high-resolution SNP data are used, WGAs 
enables direct identification of the MiHA-producing SNP or iden-
tification of small genomic regions with SNP(s) that are in linkage 
disequilibrium with the MiHA-producing SNP. MiHA identified 
with high- resolution SNP data are ACC-1C, SLC1A5, UGT2B17/
A2, DPH1, P2RX7, LB-PRCP-1D, SSR1-1S, LB-WNK1-1I, 
LB-EBI3-1I, LB-BCAT2-1R, LB-ARHGDIB-1R, LB-PDCD11-1F, 
LB-APOBEC3B-1K, LB-GEMIN4-1V, LB-ERAP1-1R, ZAPHIR, 
LB-SON-1R, LB-NUP133-1R,  LB-SWAP70-1Q, UTA2-1, and 
LB-FUCA2-1V (Table 1). WGAs with high-resolution SNPs also 
led to discovery of HLA class II-restricted MiHA encoded by 
CD19, SLC19A1, and ZDHHC12 (Table 1). Nowadays, data for 
all SNPs as present in the human genome are available in the 1000 
Genomes Project and the value of this dataset has recently been 
illustrated by discovery of UTDP4-1 (Table 1).
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TABLe 1 | HLA class i- and ii-restricted autosomal minor histocompatibility antigens.

HLA-i MiHA MiHA/Ava Gene variant rs number Location Transcriptb Proteinb HLA Reference

HA-3 V[T/M]EPGTAQY AKAP13 SNP rs2061821 Exon Normal Normal A*01:01 (30)
HA-2 YIGEVLVS[v/M] MYO1G SNP rs61739531 Exon Normal Normal A*02:01 (31)
HA-1/A2 VL[H/R]DDLLEA HMHA1 SNP rs1801284 Exon Normal Normal A*02:01 (32)
HA-8 [R/P]TLDKVLEV KIAA0020 SNP rs2173904 Exon Normal Normal A*02:01 (33)
LB-ADIR-1F SVAPALAL[F/S]PA TOR3A SNP rs2296377 Exon Normal Alternative A*02:01 (34)
C19ORF48 CIPPD[S/T]LLFPA C19ORF48 SNP rs3745526 Exon Normal Alternative A*02:01 (35)
TRIM22 MAVPPC[C/R]IGV TRIM22 SNP rs187416296 Exon Normal Normal A*02:01 (22)
LB-PRCP-1D FMWDVAE[D/E]LKA PRCP SNP rs2298668 Exon Normal Normal A*02:01 (27)
LB-SSR1-1S [S/L]LAVAQDLT SSR1 SNP rs10004 Exon Normal Normal A*02:01 (27)
LB-WNK1-1I RTLSPE[i/M]ITV WNK1 SNP rs12828016 Exon Normal Normal A*02:01 (27)
T4A GLYTYWSAG[A/E] TRIM42 SNP rs9876490 Exon Normal Normal A*02:01 (36)
UTA2-1 QL[L/P]NSVLTL KIAA1551 SNP rs2166807 Exon Normal Normal A*02:01 (37)
LB-HIVEP1-1S SLPKH[S/N]VTI HIVEP1 SNP rs2228220 Exon Normal Normal A*02:01 (38)
LB-NISCH-1A ALAPAP[A/V]EV NISCH SNP rs887515 Exon Normal Normal A*02:01 (38)
UGT2B17/A2 CVATMIFMI UGT2B1 Gene deletion Polymorphic Polymorphic A*02:06 (39)
PANE1 RVWDLPGVLK CENPM SNP rs5758511 Exon Alternative Polymorphic A*03:01 (40)
SP110 SLP[R/G]GTSTPK SP110 SNP rs1365776 Exon Normal Normal A*03:01 (41)
ACC-1Y DYLQ[Y/C]VLQI BCL2A1 SNP rs1138357 Exon Normal Normal A*24:02 (42)
ACC-1C DYLQ[Y/C]VLQI BCL2A1 SNP rs1138357 Exon Normal Normal A*24:02 (43)
UGT2B17/A29 AELLNIPFLY UGT2B17 Gene deletion Polymorphic Polymorphic A*29:02 (44)
P2RX7 WFHHC[H/R]PKY P2RX7 SNP rs7958311 Exon Normal Normal A*29:02 (45)
ACC-4 ATLPLLCA[R/G] CTSH SNP rs2289702 Exon Normal Normal A*31:01 (46)
ACC-5 WATLPLLCA[R/G] CTSH SNP rs2289702 Exon Normal Normal A*33:03 (46)
LRH-1 TPNQRQNVC P2X5 INDEL rs3215407 Exon Normal Polymorphic B*07:02 (47)
LB-ECGF-1H RP[H/R]AIRRPLAL TYMP SNP rs112723255 Exon Normal Alternative B*07:02 (48)
LB-APOBEC3B-
1K

[K/E]PQYHAEMCF APOBEC3B SNP rs2076109 Exon Normal Normal B*07:02 (27)

LB-ARHGDIB-1R LPRACW[R/P]EA ARHGDIB SNP rs4703 Exon Normal Alternative B*07:02 (27)
LB-BCAT2-1R QP[R/T]RALLFVIL BCAT2 SNP rs11548193 Exon Normal Normal B*07:02 (27)
LB-EBI3-1I RPRARYY[i/V]QV EBI3 SNP rs4740 Exon Normal Normal B*07:02 (27)
LB-ERAP1-1R HPRQEQIALLA ERAP1 SNP rs26653 Exon Normal Normal B*07:02 (27)
LB-GEMIN4-1V FPALRFVE[v/E] GEMIN4 SNP rs4968104 Exon Normal Normal B*07:02 (27)
LB-PDCD11-1F GPDSSKT[F/L]LCL PDCD11 SNP rs2986014 Exon Normal Normal B*07:02 (27)
ZAPHIR IPRDSWWVEL ZNF419 SNP rs2074071 Exon Polymorphic Polymorphic B*07:02 (49)
LB-FUCA2-1V RLRQ[v/M]GSWL FUCA2 SNP rs3762002 Exon Normal Normal B*07:02 (50)
LB-TEP1-1S APDGAKVA[S/P]L TEP1 SNP rs1760904 Exon Normal Normal B*07:02 (51)
HEATR1 ISKERA[e/G]AL HEATR1 SNP rs2275687 Exon Normal Normal B*08:01 (23)
HA-1/B60 KECVL[H/R]DDL HMHA1 SNP rs1801284 Exon Normal Normal B*40:01 (52)
LB-NUP133-1R SEDLILC[R/Q]L NUP133 SNP rs1065674 Exon Normal Normal B*40:01 (53)
LB-SON-1R SETKQ[R/C]TVL SON SNP rs13047599 Exon Normal Normal B*40:01 (53)
LB-SWAP70-1Q MEQLE[Q/E]LEL SWAP70 SNP rs415895 Exon Normal Normal B*40:01 (53)
LB-TRIP10-1EPC G[e/G][P/S]QDL[C/G]TL TRIP10 SNP rs1049229 3′ UTR Normal Alternative B*40:01 (53)

rs1049230
rs1049232

SLC1A5 AE[A/P]TANGGLAL SLC1A5 SNP rs3027956 Exon Normal Normal B*40:02 (39)
HB-1H EEKRGSL[H/Y]VW HMHB1 SNP rs161557 Exon Normal Normal B*44:03 (54)
HB-1Y EEKRGSL[H/Y]VW HMHB1 SNP rs161557 Exon Normal Normal B*44:03 (55)
UGT2B17/B44 AELLNIPFLY UGT2B17 Gene deletion Polymorphic Polymorphic B44 (44)
ACC-2 KEFED[D/G]IINW BCL2A1 SNP rs3826007 Exon Normal Normal B*44:03 (42)
ACC-6 MEIFIEVFSHF HMSD SNP rs9945924 Intron Polymorphic Polymorphic B*44:03 (56)
DPH1 S[v/L]LPEVDVW DPH1 SNP rs35394823 Exon Normal Normal B*57:01 (45)

HLA-ii MiHA MiHA/Ava Gene variant rs number Location Transcriptb Proteinb HLA Reference

LB-MTHFD1-1Q SSIIAD[Q/R]IALKL MTHFD1 SNP rs2236225 Exon Normal Normal DRB1*03:01 (26)
LB-LY75-1K LGITYR[n/K]KSLMWF LY75 SNP rs12692566 Exon Normal Normal DRB1*13:01 (26)
SLC19A1 [R/H]LVCYLCFY SLC19A1 SNP rs1051266 Exon Normal Normal DRB1*15:01 (57)
LB-PTK2B-1T VYMND[T/K]SPLTPEK PTK2B SNP rs751019 Exon Normal Normal DRB3*01:01 (26)
LB-MR1-1R YFRLGVSDPI[R/H]G MR1 SNP rs2236410 Exon Normal Normal DRB3*02:02 (26)
CD19 WEGEPPC[L/V]P CD19 SNP rs2904880 Exon Normal Normal DQB1*02:01 (58)
LB-PI4K2B-1S SRSS[S/P]AELDRSR PI4K2B SNP rs313549 Exon Normal Normal DQB1*06:03 (59)
UTDP4-1 R[i/N]LAHFFCGW ZDHHC12 SNP rs11539209 Exon Normal Normal DPB1*04 (60)

aThe polymorphic amino acid in the epitope is indicated between brackets (MiHA/AV = allelic variant).
bNormal and alternative transcripts and proteins are expressed independently of the SNP in both patient and donor, whereas polymorphic transcripts and proteins are de novo 
created by the SNP and, thus, restricted to the patient.
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Whereas T-cells are used to identify MiHA by forward 
strategies; in reverse strategies, peptides are selected to search 
for specific T-cells. Polymorphic peptides identified in HLA-
ligandomes (38, 51), hematopoiesis-restricted genes (52, 55, 61), 
and peptides identified based on association of SNPs with good 
clinical outcome after alloSCT (36) have been selected to search 
for specific T-cells in transplanted patients or healthy individuals.

In total, 48 HLA class I-restricted and 8 HLA class 
II-restricted autosomal MiHA have thus far been character-
ized. These numbers are expected to rapidly increase in the 
near future, in particular, if WGAs is performed with cell 
panels for which all SNPs are measured by whole genome 
sequencing.

MOLeCULAR MeCHAniSMS

HLA class I-restricted autosomal MiHA are generated by different 
molecular mechanisms. An overview of the various mechanisms 
by which genetic variants create MiHA is shown in Figure 1. Of 
the 48 HLA class I-restricted MiHA, 36 antigens are encoded by 
SNPs in coding exons, leading to single amino acid changes in 
proteins that are translated from primary gene transcripts in the 
normal reading frame (Figure 1A). MiHA can, however, also be 
translated from normal gene transcripts in an alternative reading 
frame. These SNPs can be located in coding exons (C19ORF48, 
LB-ECGF1-1H, LB-ADIR-1F, LB-ARHGDIB-1R) (Figure  1B) 
or in 5’ or 3’ UTR regions (LB-TRIP10-1EPC) (Figure  1C). 
Though not yet discovered, it is expected that MiHA can also be 
encoded by SNP in intron regions that are retained in alterna-
tive transcripts (Figure  1D). Proteins translated in alternative 
reading frames are considered as aberrant proteins that lack any 
cellular function, the so-called defective ribosomal products 
(DRiPs). DRiPs are rapidly degraded during or shortly after 
translation and evidence has been found that they may be a main 
source of peptide precursors for T-cell immunosurveillance 
(62). Degradation is an important factor for HLA presentation 
(63), but relative abundance of normal functional proteins in 
the cell may counteract the actual contribution of DRiPs to the 
HLA-ligandome.

In addition to the proteins described above that are expressed 
independently of the SNP in both patient and donor, MiHA 
can also be derived from proteins or protein products that are 
de novo created by SNPs. Expression of these polymorphic 
proteins is restricted to the patient and allelic variants in the 
donor do not exist. As a result, the epitope that is recognized 
by the T-cell can be derived from another protein region than 
the amino acids that are directly encoded by the SNP. Examples 
of antigens from polymorphic proteins that are de novo cre-
ated are LRH-1, an antigen that is produced by an insertion/
deletion variant (INDEL) that induces a frameshift in protein 
translation (Figure 1E) and PANE1, which is an antigen from an 
elongated protein created by a SNP that disrupts the stop codon 
(Figure 1F). PANE1 and LRH-1 are both polymorphic proteins 
translated from transcripts that are expressed independently of 
the SNP in both patient and donor. However, MiHA can also 
be encoded by transcripts that are newly created by the SNP. 
These polymorphic transcripts are expressed in the patient and 

do not exist in the donor. Antigens encoded by polymorphic 
transcripts that are newly created by SNPs are ZAPHIR, 
which is translated from a ZNF419 transcript in which an 
intron is retained (Figure 1G), and ACC-6, which is encoded 
by an HMSD transcript that is generated by exon skipping 
(Figure  1H). Finally, MiHA can be encoded by polymorphic 
genes as illustrated by UGT2B17, which is present in the patient 
but absent in the donor genome (Figure 1I).

The numbers of MiHA that have been characterized for each 
molecular mechanism as shown in Figure  1 probably do not 
reflect the actual contribution of the various mechanisms to the 
entire repertoire of MiHA that are recognized by specific T-cells 
after alloSCT. This is suggested by the finding that for various 
T-cell clones, associating SNPs have successfully been identified 
by WGAs in genomic regions outside known exons, whereas 
epitope discovery failed due to absence of SNP disparities in 
the normal gene transcript. MiHA recognized by these T-cells 
are probably encoded by cryptic transcripts. RNA-sequence 
data can be used to search for these cryptic transcripts in the 
genomic region that contains the associating SNPs and single 
RNA-sequence reads can be analyzed to determine the exact 
sequence composition of the transcripts, thereby facilitating 
discovery of these MiHA. As such, implementation of RNA-
sequence analysis in a combined approach of whole genome 
and transcriptome analysis may increase the efficiency of MiHA 
discovery. The various molecular mechanisms how genetic vari-
ants create MiHA as shown in Figure 1 are probably similar for 
neoantigens. Neoantigens are peptides created by tumor-specific 
mutations that are presented by HLA and recognized by specific 
T-cells (64). In cancer neoantigen discovery, research is focused 
on selecting peptides encoded by mutations in coding exons 
with single amino acid changes in the normal protein reading 
frame (Figure  1A), whereas other molecular mechanisms 
(Figures  1B–H) are often not taken into consideration. RNA-
sequence analysis may, therefore, also be relevant to elucidate 
transcript variants for neoantigens in particular since splicing 
defects often occur in cancer (65).

TiSSUe DiSTRiBUTiOn

The tissue distribution of MiHA is an important factor in clini-
cal manifestations caused by immune responses after alloSCT. 
Various T-cells recognize leukemic cells in vitro with no or mini-
mal reactivity against non-hematopoietic cells. These T-cells are 
expected to mediate beneficial GvL after alloSCT without GvHD. 
Other T-cells are reactive with both hematopoietic and non-
hematopoietic cells, suggesting a role in GvHD. Since in alloSCT, 
patient hematopoiesis is replaced by a blood-forming system 
from a healthy donor, donor T-cells for hematopoiesis-restricted 
MiHA eliminate the malignant cells of the patient, while sparing 
healthy hematopoietic cells of donor origin. Therefore, discovery 
of hematopoietic MiHA is an explicit research goal.

Various methods are available to investigate the tissue distri-
bution of MiHA to estimate their efficacy and toxicity as T-cell 
targets. Toxicity can be analyzed by measuring T-cell reactivity 
against non-hematopoietic cells from organs that are targeted in 
GvHD. This analysis, however, requires collection of a variety of 
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FiGURe 1 | Molecular mechanisms by which genetic variants create autosomal MiHA. Normal non-polymorphic sequences are indicated in gray, whereas 
alternative non-polymorphic sequences are shown in black. Polymorphic patient-specific sequences are shown in red and donor-specific sequences are indicated in 
green (if allelic variants exist). Whether the allelic variants are actually presented on the cell surface is also dependent on intracellular processing and presentation 
mechanisms, which are not taken into consideration in this figure. (A) MiHA created by SNPs in primary gene transcripts in the normal reading frame. (B) MiHA 
created by SNPs in primary gene transcripts in an alternative reading frame. (C) MiHA created by SNPs in 5´ or 3´ UTR of primary gene transcripts.  
(D) MiHA created by intron SNPs as retained in alternative gene transcripts. (e) MiHA derived from polymorphic proteins as created by frameshift insertions or 
deletions in primary gene transcripts. (F) MiHA derived from polymorphic proteins as created by SNP in alternative gene transcripts. (G) MiHA translated from intron 
sequences in polymorphic gene transcripts as created by exon or intron SNPs. (H) MiHA translated from polymorphic gene transcripts in which exon sequences are 
skipped as created by exon or intron SNPs. (i) MiHA encoded by polymorphic genes.
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tissues expressing the relevant MiHA and HLA restriction allele. 
Skin fibroblasts are frequently used to estimate toxicity and have 
also been cultured with cytokines to mimic the inflammatory 
environment of the early post-transplantation period. T-cells 
often recognize skin fibroblasts when cultured under inflam-
matory conditions, what may be explained by efficient antigen 
processing and presentation and enhanced surface expression 
of HLA, costimulatory, and adhesion molecules. Other non-
hematopoietic cells, however, are more difficult to culture 
and often not available in quantities that allow in depth T-cell 
analysis. Therefore, as second best option, the tissue distribution 
can be investigated by gene expression analysis. Thus far, only a 
limited number of MiHA are encoded by genes with restricted or 
predominant expression in (malignant) hematopoietic cells, i.e., 
HMHB1 (54), MYO1G (66), HMHA1 (67), BCL2A1 (42), P2×5 
(47), CENPM (40), HMSD (56), KIAA1551 (37), and ARHGDIB 
(68). Although gene expression analysis allows rapid selection 
of hematopoietic antigens, the therapeutic value of MiHA needs 
to be validated by demonstrating the capacity of specific T-cells 
to kill leukemic cells and confirming their failure to react with 
non-hematopoietic cells.

IN VIVO iMMUne ReSPOnSeS

Minor histocompatibility antigens characterization enabled ex 
vivo quantification of specific T-cells by pMHC multimers in 
individual patients after alloSCT. Staining with pMHC multimers 
demonstrated a peak in the immune response in patients who 
responded to DLI after HLA-matched alloSCT (27, 37, 47, 69). In 
these patients, high frequencies of circulating T-cells coincided 
with development of GvL. Detailed analysis of peak responses 
between 4 and 12 weeks after DLI demonstrated that a diversity 
of HLA class I- and II-restricted MiHA are targeted by CD8 and 
CD4 T-cells (26, 27, 53). These T-cells expand and retract with 
similar kinetics, although frequencies and timing of the peak may 
differ between MiHA (27, 53).

Although GvL after alloSCT is often accompanied with 
GvHD, strong anti-tumor responses without severe side effects 
are occasionally observed (69), illustrating that GvL can be sepa-
rated from GvHD. In the pathophysiology of GvHD, the tissue 
distribution of MiHA is important as well as the frequencies of 
circulating T-cells, their homing behavior and capacity to destroy 
non-hematopoietic cells in situ (70). Although tissue distribution 
is relevant, occurrence of GvHD cannot entirely be explained 
by induction of T-cells targeting MiHA on non-hematopoietic 
tissues. This became clear when T-cells for hematopoietic and 
ubiquitous MiHA were simultaneously detected in patients 
with severe GvHD (71) and patients without GvHD (53). Since 
immune responses in patients with GvHD are generally strong, it 
can be speculated that T-cell reactivity against non-hematopoietic 
tissues needs to exceed a certain threshold in GvHD (72). Since 
T-cells for ubiquitous MiHA may stimulate development of GvL 
by releasing cytokines, strategies that retain reactivity against 
healthy tissues below the threshold may effectively separate GvL 
from GvHD.

THeRAPeUTiC USe

As the number of characterized MiHA increases, T-cells from 
different patients more often recognize MiHA that are already 
known, suggesting that the repertoire of MiHA that are presented 
by HLA and recognized by specific T-cells is limited and follow 
rules for immunodominance that cannot be predicted by measur-
ing only SNP disparities (73). If true, a large proportion of all 
MiHA with balanced population frequencies will be character-
ized in the coming years. Discovery of these MiHA is needed to 
analyze and compare in vivo immune responses in GvL and GvHD 
with respect to specificity, diversity, frequency, and dynamics of 
specific T-cells. Moreover, it enables to follow GvL and GvHD in 
large patient groups, which is essential to investigate and compare 
efficacy and toxicity of different alloSCT (and DLI) transplanta-
tion protocols.

With the discovery of a large proportion of common MiHA, 
a variety of targets become available for therapy to augment GvL 
after alloSCT (74, 75). One strategy is in  vitro production and 
adoptive transfer of donor T-cells for hematopoietic MiHA (75, 
76). Patients with leukemia who relapsed after alloSCT have been 
treated with in vitro expanded T-cells for leukemic cells (77, 78), 
T-cells for HA-1 (79) or MiHA-specific T-cells that lacked reactiv-
ity against fibroblasts (45). Other strategies for adoptive transfer 
are isolation of MiHA-specific T-cells from the DLI by pMHC 
multimers and T-cell receptor (TCR) gene transfer. In the latter 
study, patients are treated with virus-specific donor T-cells that 
are genetically engineered with the TCR for HA-1 (80). Besides 
adoptive transfer, patients with hematological malignancies can 
be in vivo vaccinated with donor (or patient) dendritic cells loaded 
with peptides or mRNA (81–83). In conclusion, hematopoietic 
MiHA (and their specific TCRs) may be easily implemented in 
ongoing clinical trials to increase efficacy, reduce toxicity, and 
broaden applicability of immunotherapy after alloSCT.

COnCLUDinG ReMARKS

In this review, the various molecular mechanisms how genetic 
variants create autosomal MiHA are described as well as the 
relevance of these antigens as tools to understand the biology 
of GvL and GvHD and as targets for immunotherapy to treat 
hematological cancers after alloSCT. Although more MiHA are 
needed for comprehensive understanding and manipulation by 
immunotherapy, this review shows insight into the composi-
tion and kinetics of in  vivo immune responses with respect to 
specificity, diversity, and frequency of specific T-cells and surface 
expression of HLA-peptide complexes and other (accessory) 
molecules on the target cell. A complex interplay between these 
factors and their environment (84) ultimately determines the 
spectrum of clinical manifestations that are caused by immune 
responses after alloSCT.
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B lymphocytes contribute to acute and chronic allograft rejection through their 
production of donor-specific antibodies (DSAs). In addition, B cells present allopeptides 
bound to self-MHC class II molecules and provide costimulation signals to T cells, 
which are essential to their activation and differentiation into memory T cells. On the 
other hand, both in laboratory rodents and patients, the concept of effector T cell 
regulation by B cells is gaining traction in the field of transplantation. Specifically, 
clinical trials using anti-CD20 monoclonal antibodies to deplete B cells and reverse 
DSA had a deleterious effect on rates of acute cellular rejection; a peculiar finding that 
calls into question a central paradigm in transplantation. Additional work in humans 
has characterized IL-10-producing B cells (IgM memory and transitional B cells), which 
suppress the proliferation and inflammatory cytokine productions of effector T cells 
in vitro. Understanding the mechanisms of regulating the alloresponse is critical if we 
are to achieve operational tolerance across transplantation. This review will focus on 
recent evidence in murine and human transplantation with respect to non-traditional 
roles for B cells in determining clinical outcomes.

Keywords: regulatory B cells, transplant tolerance, antigen presentation, allorecognition, transplant rejection, 
autoimmune diseases

inTRODUCTiOn

Allorecognition refers to the detection by the immune system of polymorphic determinants 
expressed by different individuals of the same species (alloantigens) (1–3). After transplanta-
tion of allogeneic organs or tissues, recognition of alloantigens by host leukocytes initiates an 
inflammatory immune response leading to graft rejection (4, 5). It is now established that certain 
leukocytes of the innate immune system, including NK cells and macrophages, can distinguish 
between self- and non-self antigens and thereby contribute to the alloresponse (6–8). However, 
allorecognition by T lymphocytes of the adaptive immune system is the driving force behind 
alloimmunity and allograft rejection in vertebrates. After transplantation, graft MHC class II+ cells 
as well as donor-derived extracellular vesicles traffic to the recipient lymphoid organs where they 

Abbreviations: AMR, antibody-mediated rejection; APC, antigen-presenting cell; Breg, B regulatory cells; cGVHD, chronic 
graft versus host disease; CTL, cytotoxic T lymphocytes; DSAs, donor-specific antibodies; GC, germinal center; HSCT, hemat-
opoietic stem cell transplant; TrB, transitional B cells.
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activate CD4+ allospecific T cells (9–12). This process occurs 
via two distinct pathways: direct allorecognition in which T cells 
recognize intact donor MHC molecules as well as the semi-
direct mechanism dependent on donor-derived MHC–peptide 
complex, which traffics via extracellular vesicles to be presented 
upon recipient antigen-presenting cells (APCs). In this case, 
the recipient dendritic cell (DC) becomes chimeric for donor 
allopeptide–MHC complex and can present to donor responsive 
CD8+ T cells through the direct pathway (13). It is important to 
note that some complex can undergo internalization, degrada-
tion, loading, and presentation on MHC-II to CD4+ T cells 
in the same manner as below in the indirect pathway. Thus, a 
single DC can present to both CD4+ and CD8+ cells resulting in 
a linked activation of T cells (14). The indirect pathway involves 
T cells, which interact with donor peptides bound to recipient 
MHC molecules on host APCs (15–18). This process leads to 
the differentiation of CD8+ cytotoxic T lymphocytes (CTL) 
and to plasmocytes (B cells), which produce donor-specific 
antibodies (DSAs) (19). B cells play a key role in acute and 
chronic allograft rejection through their production of DSAs, 
a process requiring help from CD4+ T cells activated indirectly 
(20). In addition, B cells serve as APCs and present alloantigen 
peptides to T cells thereby contributing to their activation and 
differentiation into memory T cells (21, 22). On the other hand, 
certain B cell subsets can suppress inflammatory alloreactive 
T cells and promote allograft tolerance (23–27). In this article, 
we present recent data from human and animal studies that raise 
exciting new possibilities for B cells in antigen presentation and 
T cell regulation relevant to transplantation.

ALLOReCOGniTiOn BY B CeLLS

B cells have a critical role in indirect allorecognition. The 
traditional immunological concepts for developing an adaptive 
response to any given protein antigen underpin the so-called 
indirect pathway of allorecognition. Recipient T cells recognize 
processed allopeptide–self-MHC-II complexes on recipient 
APCs (28–30). The indirect response is primarily CD4+ T cell-
driven due to the involvement of self-MHC-II molecules (31, 
32). Following recognition of cognate antigen on DCs in the 
T cell zone, these CD4+ T cells upregulate BCL6, CXCR5, and 
CD40L and downregulate CCR7, which allows them to migrate 
to the follicle where they take on the follicular T helper cell 
phenotype (33). These cells can then instruct follicular B cells, 
which have internalized donor antigen to seed germinal centers 
(GCs) via the CD40L/CD40 axis as well as the secretion of IL-21 
promoting the differentiation of CD40L stimulated B cells (34). 
These B cells undergo somatic hypermutation, a critical step to 
generating high-affinity DSA (35). They also class switch and 
some differentiate into plasma cells (with highest BCR signal 
strength) or memory B cells if density and tonicity of the B cell 
receptor signaling are insufficient to differentiate to a plasma 
or GC B cell (36). Thus, the presence of DSA can be used as a 
proxy measure of the activity of the indirect pathway (37, 38). 
In addition to alloreactive or DSA, B cells can generate anti-
body responses against non-HLA self-peptides, the angiotensin 
II receptor is an example of an activating antibody leading 

to a functional change following renal transplantation (39). 
The extent to which these antibodies contribute to rejection, 
especially chronic vascular type rejection is as of yet unclear; 
however, the mechanism of generation in the face of varying 
degrees of allograft tolerance (DSA levels) is intriguing (40).

B CeLLS AS APCs

B cells are likely to play a role in antigen presentation associated 
with indirect activation of donor-specific T cells. For example, 
the presence of CD20+ cells in renal allografts is associated with 
poor outcomes and acute cellular rejection, but not necessarily 
antibody-mediated rejection (AMR), in renal transplantation 
(41). B cells present in these grafts presumably mediate their 
effects through alloantigen presentation and ICOS/CD28 
costimulation of T cells leading to their activation and expansion 
(42). Graft infiltrating CD20+CD27+ memory B cells survey for 
cognate antigen prior to expanding and seeding GCs, a process 
leading to increased DSA production and subsequent acute and 
chronic rejection (43). These DSAs have the potential to greatly 
modify the interplay of donor antigen and recipient tolerance 
since bound antibodies have the potential to fix complement 
and lead to increased tissue damage and increased antigen pres-
entation, as well as epitope spreading, leading to tissue-specific 
responses as in the indirect pathway described above (44).

ROLe OF B CeLLS in SUPPReSSinG 
inFLAMMATORY ALLOiMMUniTY

B cells may not always act as pro-inflammatory players. In 
human renal transplantation, B cells were recently shown to 
have a regulatory role on T cell alloresponses in  vitro using 
peripheral blood from 65 patients with biopsy-proven AMR, 
non-immune related graft dysfunction, or stable graft function 
(45). The authors found many biopsy-proven AMR samples 
that did not demonstrate an anti-donor IFN-gamma response 
unless CD25+ (regulatory T cells) and CD19+ cells (B cells) 
were depleted. More importantly, depletion of these cells also 
restored alloresponsiveness in patients with no histological signs 
of immune-mediated graft dysfunction. Alloresponsiveness was 
dependent on B–T interactions (with CD19+ cells acting as 
APCs in vitro).

A clinical trial in renal transplantation compared the efficacy of 
rituximab, a monoclonal anti-CD20 antibody, with daclizumab, 
a monoclonal anti-CD25 antibody (46) as induction therapy. 
This trial was halted early due to dramatically increased rates 
of biopsy-confirmed acute rejection (within the first 3  months 
post-transplant) in the rituximab-treated group compared with 
daclizumab (83 versus 14%; p = 0.01). In fact, the rate of acute 
rejection observed in the rituximab-treated group exceeded 
previously observed rates in recipients that did not receive any 
induction therapy (~35%), suggesting that B cell depletion actu-
ally increased alloreactivity. Another study sought to evaluate 
rituximab for desensitization prior to HLA-incompatible live 
donor renal transplantation. Rituximab-treated recipients exhib-
ited a trend toward higher rates of acute rejection and greater 
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number of episodes of rejection compared with non-rituximab 
recipients (47). These studies’ results are in line with animal 
models showing worsening of disease severity along several 
T-dependent autoimmune models including ulcerative colitis 
(48), psoriasis (49), and autoimmune encephalomyelitis/multiple 
sclerosis (EAE/MS) (50) following anti-CD20 mAb-mediated B 
cell depletion, despite decreases in circulating autoantibodies, 
underscoring the antibody-independent role of B cells in auto-
immunity. However, other studies including rituximab in the 
induction period for ABO incompatible desensitization did not 
show statistically significant differences in rates of acute rejection, 
although they did raise the concern of possible increased risk of 
cardiac mortality following B cell depletion (51, 52).

The role of B cells with regulatory potential has also been 
explored in human hematopoietic stem cell transplantation. 
Chronic graft versus host disease (cGVHD) is a debilitating 
complication that carries a poor prognosis in patients who fail 
to respond to corticosteroids (53, 54). A frequent observation in 
GVHD is increased titers of autoantibody that demonstrates a 
loss of peripheral B cell tolerance (54). Khoder et al. examined 
the frequencies of regulatory B cells in GVHD and healthy con-
trols and found that the ratio of IL-10+ B cells to IFN-gamma 
CD4+ T cells was greatly reduced in cGVHD patients compared 
to stable controls (55). They found B cells with regulatory 
function (Bregs) (as measured by the ability to suppress CD4+ 
T cell proliferation and effector function in  vitro) in both the 
IgM memory (CD19+IgM+CD27+) and transitional B cell (TrB; 
CD19+CD24hiCD38hi) compartments. They also demonstrated 
that the regulatory potential of these cells required cell–cell con-
tact by coculturing both IgM memory and TrB cells in transwell 
plates with anti-CD3 and anti-CD28 antibody-activated CD4+ 
T  cells. CD80/CD86 blockade in coculture systems was also 
found to be deleterious to the development of full regulatory 
effect by Bregs, and that this effect was independent of CD80/
PD-1 interactions. The necessity for cell–cell contact combined 
with the ability of B cells to act as APC raises the question of 
whether Bregs are antigen-specific via either the B cell receptor 
or MHC, although there have been no reports of direct evidence 
supporting either possibility.

Future work needs to be done to clarify the ontogeny of 
donor-specific “regulatory” B cells [current definitions rely on 
functional production of IL-10 (56–58)]. The regulatory B cell 
populations in murine models are more fully characterized and 
reliably defined by phenotypic markers compared with humans. 
Although no fewer than 10 subsets have been defined as “Bregs,” 
most work has been done on either marginal zone precursor 
B2 cells or B10 cells, which are typically CD19+CD1dhiCD5+ 
(a population, which overlaps with marginal zone B2 cells, 
marginal zone precursor B2 cells, and B1 cells) (59). However, 
many still perform in  vitro assays using anti-CD40 antibodies, 
and PMA-ionomycin, followed by monensin or brefeldin treat-
ment to stimulate IL-10-competent B cells to produce and retain 
this cytokine for intracellular staining (25). In humans, only a 
small percentage of cells identified as potentially regulatory by 
phenotypic markers produce IL-10, a finding that makes transla-
tion more difficult (60, 61).

One of the first animal models to demonstrate the regulatory 
role of B cells in transplantation was performed in a murine renal 
transplantation model where greater efficiency of tolerogenesis 
was observed by transplanting donor B cells at the time of renal 
transplantation than with donor T cells (62). Since that time, 
laboratory efforts have identified several subtypes of B cells with 
regulatory potential (63).

In a murine model of pancreatic islet allotransplantation, T 
cell Ig domain and mucin domain protein 1 (TIM-1), a costimula-
tory molecule was shown to modulate CD4+ T cell reactivity and 
serves as a marker of Bregs (27). TIM-1 broadly marked Bregs 
with significant overlap with IL-10+ capable cells. In fact, TIM-1 
ligation actually enhanced production and secretion of IL-4 and 
IL-10 by B cells. Compared to other reports, this group was able 
to more reliably identify IL-10+ cells in peripheral tissues and 
secondary lymphoid organs as compared to spleen using TIM-1 
positivity as opposed to a non-specific CD19+CD1dhiCD5+ gate. 
Finally, they were able to promote tolerogenesis via RMT1-10, 
an anti-TIM-1 mAb, which simulates CD4+ binding. This work 
was furthered by identifying the role of Breg-derived TGF-beta 
in inducing Tregs and in promoting tolerance to fully MHC-
mismatched pancreatic islet transplants. Tolerance induction 
in these mice was transferrable through injection of naïve 
mice with B cells from dual antibody-treated recipients (anti-
CD45RB and anti-TIM-1) (24). This dual therapy promoted 
TGF-beta secretion by TIM-1+ B cells and led to a substantial 
increase in Treg frequencies, which was blocked by anti-TGF-
beta antibody (26).

COnCLUSiOn

It is clear that great strides are being made across the field of 
transplantation with respect to the understanding of the many 
roles of B cells. B cells are unique in their ability to produce 
antibodies, which can kill donor cells via antibody-dependent 
cell-mediated cytotoxicity and complement fixation. In addi-
tion, B cells are efficient APCs providing help to T cells thereby 
polarizing the T cell response and promoting the differentiation 
of memory T cells. However, mechanistically informed clinical 
trials, which sought to take advantage of the indirect pathway 
of allorecognition via CD20+ antibody treatment to deplete 
recipient B cells, resulted in increased rates of acute cellular 
rejection. This peculiar result challenges the single faceted 
view of B cells as solely pro-inflammatory and supports the 
human relevance of recent laboratory work in rodents, which 
has demonstrated immunoregulatory roles for several B cell 
subsets. Future work needs to characterize the transcriptome of 
Bregs in an effort to identify a transcription factor necessary for 
function regulation such as Foxp3 in Tregs. Critical questions 
remain about whether the variety of reported Bregs are indeed 
separate cell subsets or merely different activation states of 
B cells across development. This would help to explain such 
diverse findings in B10, marginal zone precursors, and TIM-1+ 
B cells and would open up the exploration of what cytokine 
environment polarizes a Breg and might be useful in clinical 
transplantation.
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Allorecognition is the activation of the adaptive immune system to foreign human 
leukocyte antigen (HLA) resulting in the generation of alloantibodies. Due to a high 
polymorphism, foreign HLA is recognized by the immune system following transplant, 
transfusion, or pregnancy resulting in the formation of the germinal center and the gen-
eration of long-lived alloantibody-producing memory B cells. Alloantibodies recognize 
antigenic epitopes displayed by the HLA molecule on the transplanted allograft and 
contribute to graft damage through multiple mechanisms, including (1) activation of the 
complement cascade resulting in the formation of the MAC complex and inflammatory 
anaphylatoxins, (2) transduction of intracellular signals leading to cytoskeletal rearrange-
ment, growth, and proliferation of graft vasculature, and (3) immune cell infiltration into 
the allograft via FcγR interactions with the FC portion of the antibody. This review focuses 
on the generation of HLA alloantibody, routes of sensitization, alloantibody specificity, 
and mechanisms of antibody-mediated graft damage.

Keywords: human leukocyte antigen, allorecognition, HLA antibody, non-HLA antibody, transplant, Fc receptor, 
complement, endothelium

iNTRODUCTiON

The immune response is designed to recognize antigens that are distinct from self – termed “non-
self ” or “altered self ” – be they protein, lipid, or carbohydrate. Allorecognition is the activation of 
the transplant recipient’s adaptive immune response to foreign histocompatibility antigens following 
transplant (1, 2). This review focuses on the recognition of allogeneic human leukocyte antigen 
(HLA) and non-HLA molecules by the humoral immune response in the context of transplantation. 
We discuss the generation of alloantibodies, and how they mediate graft injury and rejection.

Human Leukocyte Antigen: Genomic Organization, Structure, 
Polymorphism, and Function
The human major histocompatibility complex (MHC), located on chromosome 6, is composed of 
highly polymorphic HLA class I genes (HLA-A, -B, and -C), HLA class II genes (HLA-DR, -DQ, 
and -DP), non-classical class I genes (HLA-E, -F, and -G), and class I-like genes (MICA and MICB) 
(3). The HLA class I molecules function to present peptide derived from intracellular antigens to 
CD8+ T lymphocytes and serve as ligands for receptors on natural killer (NK) cells. The HLA class 
II molecules present antigens from the extracellular space to CD4+ T cells.
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TABLe 1 | Typing of HLA molecules can be at low or high resolution.

Level of typing resolution Definition Nomenclature

Low Serologic/antigen A2
High Allele A*02:01

FiGURe 1 | HLA class i and ii are heterodimeric transmembrane 
proteins. HLA Class I is made up of a heavy chain with three globular 
domains (a1, a2, and a3) non-covalently bound to β2m. HLA Class II is made 
up of two heavy chains (a-chain and b-chain) each with two globular domains 
(a1 and a2 or b1 and b2). The a1and a2 domains of HLA class I, and the a1 
and b1 domains of HLA class II, make up the peptide-binding groove.
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Human leukocyte antigen molecules are heterodimers formed 
by polypeptides encoded by two distinct genetic loci (Figure 1) 
(3). The HLA class I molecule consists of one heavy β-chain that is 
non-covalently bound to a β2-microglobulin (β2m) light chain at 
the cell surface for stability. β2m is highly conserved and does not 
exhibit polymorphism. The HLA class II molecule is composed 
of two transmembrane glycoprotein chains  –  an α-chain and 
β-chain. The α-chain shared by all HLA-DR molecules (DRA1) 
has limited polymorphism (seven alleles identified to date, with 
only two different proteins/amino acid sequences; the amino 
acid polymorphism is V217L in the cytoplasmic domain) and is 
not a known target of humoral alloresponses. By contrast, both 
the α- and β-chains of HLA-DP and HLA-DQ are polymorphic 
(3, 4).

Globular domains of the HLA Class I and II molecules form 
the peptide-binding cleft that accommodates peptide antigens 
and interacts with the T cell receptor (TCR). The remarkable 
polymorphism of HLA Class I and II molecules allows for the 
presentation of a vast array of antigenic peptides within the 
human population. Each HLA molecule binds distinct peptides. 
At the protein level, HLA molecules are defined as antigens by 
either low-resolution (two digit, serologic level) or high resolu-
tion (four digit, allele level) nomenclature (Table 1). At the sero-
logic level, there are about 20 HLA-A, 50 HLA-B, 10 HLA-Cw, 18 
HLA-DR, and 7 HLA-DQ antigens. However, at the allele level of 
resolution, the number of HLA antigens in each serogroup is tre-
mendously expanded due to genetic polymorphism within each 
serogroup – ~2000–3000 distinct proteins for each of HLA-A, B, 
and C, ~500–2000 for each of DRB1, DQB1, DPB1, and ~10–50 
for each of DRB3 (DR52), DRB4 (DR53), DRB5 (DR51), and 
DQA1(4). Amino acid differences between HLA alleles enable 
presentation of a diverse array of peptides, and represent the basis 

for alloimmune recognition of non-self HLA by both T cells and 
antibodies (3).

Mechanisms of Allorecognition and 
Generation of Allospecific Antibodies
Three distinct pathways of allorecognition have been defined 
(Figure  2). The direct, indirect, and semidirect pathways can 
occur independently or simultaneously. Activation of the recipi-
ent’s CD4+ T lymphocytes is a pivotal step in the initiation of the 
immune response to alloantigen following transplantation lead-
ing to downstream activation of cytotoxic CD8+ T lymphocytes 
and antibody-producing B cells.

Indirect Allorecognition
Indirect allorecognition is the activation of the transplant recipi-
ent’s CD4+ T cells by alloantigen that is processed and presented 
in the context of the recipients HLA as occurs with the normal 
immune response to foreign pathogen (2). Donor antigens, shed 
by the grafted organ, are processed and presented in the context 
of self-restricted HLA class II by the recipient’s B cells. The recipi-
ent’s follicular helper CD4+ T cells are then activated to provide 
help leading to the generation of alloreactive CD8+ effector T 
cells and antibody-producing B cells (1, 5, 6). The immune 
response engendered by this pathway is credited with driving 
chronic rejection and due to lower frequency of T cells with 
indirect allospecificity, and requirement for antigen processing, 
is physio-dynamically slower than the response to presentation 
through the direct pathway (7–10).

Direct Allorecognition
Direct allorecognition is the activation of the transplant recipi-
ent’s CD4+ T cells by donor HLA:peptide complexes (2). Antigen 
presentation is mediated by the donor’s dendritic cells that are 
transplanted as passengers with the organ. In the context of 
inflammatory signals subsequent to the transplantation surgery, 
the donor’s DC, presenting intact donor allo-histocompatibility 
antigens, migrate to the secondary lymph nodes of the recipi-
ent and present antigen to the recipients CD4+ T cells (11, 
12). The strength of the immune response elicited by the direct 
allorecognition pathway correlates to the high frequency of 
recipient allogeneic T cells that become activated during the first 
few weeks following transplant (13, 14) mediating acute rejection. 
The immune response weakens as the passenger DC leave the 
graft (15, 16). CD4+ T cells activated through the direct pathway 
are capable of providing help to effector CD8+ T cells, therefore, 
promoting rejection of the transplanted organ (5). However, acti-
vation of B cells and production of alloantibody does not occur 
in the context of direct allorecognition as there is no cognate 
interaction between the T helper cell and B cell (5).

Semi-Direct Allorecognition
The semi-direct pathway of allorecognition is presented as a 
hypothesis to describe events of apparent overlap between the 
direct and indirect pathways. Evidence from animal models of 
transplant rejection indicate that indirect allospecific CD4+ 
T  cells can provide help to direct allospecific CD8+ T cells 
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FiGURe 2 | indirect, semidirect, and direct allorecognition. In the indirect pathway, (1) donor alloantigens are processed by recipient B cells and (2) presented 
to recipient T follicular helper (TFH) cells and CTL. Alloantibodies are generated when alloreactive B cells interact with CD4+ T cells. The semidirect pathway involves 
(3) intact donor HLA class I:peptide complexes that are presented on the DC of the recipient (through either membrane exchange or exosome uptake) to recipient 
CD8+ T cells (CTL). Simultaneously, (4) processed donor peptide is presented in the context of the recipient’s HLA class II to the recipient’s helper CD4+ T cells (Th). 
In the direct pathway, (5) allogeneic MHC class I and II antigens are presented to recipient CD4+ and cytotoxic CD8+ T cells (CTL) by donor APCs. Recipient cells, 
green. Donor Cells, blue.
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(17,  18). In principle, this would require a “four cell” model 
in which CD4+ T cells activated via the indirect pathway by 
processed alloantigen in the context of self-restricted HLA class 
II provide help to effector CD8+ T cells activated via the direct 
pathway by donor passenger APC bearing intact HLA:peptide. 
The “four cell model” challenges the dogma of the “three cell” 
or “linked” model whereby the primary mechanism by which 
activated helper T cells provide help to effector CD8+ T cells is 
by providing signals to the APC that result in the upregulation 
of presented antigens (19–21). Helper CD4+ T cells, therefore, 
“license” APC to more effectively present peptide in the context 
of HLA class I. The “three cell” model requires that both anti-
genic determinants recognized by CD4+ and CD8+ T cells be 
presented on the same APC.

However, the mechanism underling the phenomena of 
semi-direct allorecognition more likely lies in the exchange of 
membrane proteins between immune cells (22). After trans-
plantation, the recipients DC acquire intact donor HLA class 
I:peptide complexes from donor passenger DC or endothelial 
cells through either cell–cell interactions or by uptake of 
exosomes containing the antigen that are shed from donor tis-
sue (23, 24). In following, the recipients DC now bears intact 
donor HLA class I molecules as well as recipient HLA class II 
molecules, and is capable of stimulating the recipients CD4+ 
and CD8+ T cells via the indirect and direct pathways in a “three 
cell” model. Soluble MHC class I can be taken up by DC in vitro, 
and then presented leading to the production of alloantibody 
(25). The work by Curry et al. implies that soluble alloantigen 
can be taken up and presented intact to direct B cells, and can 
simultaneously be processed and presented to indirect CD4+ 
T cells.

Generation of HLA Alloantibody
Conlon et al. (6) definitively showed that production of alloanti-
body occurs exclusively through the indirect pathway. In a murine 
heart allograft model, C57B/6 mice (H-2b) lacking intact TCRs 
were transplanted with a BALB/c allograft (H-2Kd). Subsequent 
reconstitution with TCR transgenic CD4+ T cells engineered 
to specifically recognize an immunodominant BALB/c peptide 
(H-2Kd

54–68) processed and presented by MHC Class II resulted 
in a strong anti-H-2Kd IgG alloantibody response to the allograft. 
Furthermore, the adoptively transferred CD4+ T cells were found 
in germinal centers (GC), having acquired the phenotype of T 
follicular helper (TFH) cells (CXCR5+CCR7−), and anti-H-2Kd 
plasma cells were found in the bone marrow. By contrast, direct-
pathway CD4+ T cells were unable to provide help to allospecific 
B cells and alloantibody was not produced.

Formation of the Germinal Center and Generation of 
Long-Lived Memory
B cells residing in the secondary lymphoid organs can be exposed 
to small antigens directly through diffusion from the lymphatic 
system, or to large immune complexed antigens presented by 
follicular dendritic cells or by macrophages. Regulation of B cell 
immunity and generation of antibody-secreting plasma cells is 
primarily dependent on interactions with TFH cells in the GC of 
the secondary lymphoid organs (26). Antigen-specific TFH cells 
and antigen-primed B cells migrate to follicular regions of the 
secondary lymph nodes and form stable contacts through the 
signal lymphocyte activation molecule (SLAM)-associated pro-
tein (SAP) (27). Integrins and the SLAM protein CD84 are also 
involved in the interaction between TFH cells and pre-GC B cells 
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(28). These interactions ultimately lead to significant proliferation 
of antigen-specific B cells and the formation of the GC. CD4+ 
T cells recognize their cognate peptide antigen presented in HLA 
class II by the B cell, and provide help through costimulation and 
cytokines to drive activation and clonal expansion of B cells.

In the GC, B cells make contact with TFH cells that are both 
transient and stable resulting in selection of B cells that will that 
enter the long-lived memory component of the immune system 
(29, 30). Here, through somatic hypermutation, GC B cells that 
have high antigen affinity differentiate into memory B cells or 
antibody-producing long-lived plasma cells (31). Activated B cells 
differentiate into low-affinity antibody-producing plasmablasts, 
or undergo class-switch recombination and somatic hypermuta-
tion to form affinity matured, class-switched memory B cells or 
plasma cells. Long-lived plasma cells residing in the bone marrow 
contribute to much of the circulating antigen-specific immuno-
globulin and can persist for decades. There is also evidence that 
memory B cells can be maintained in the circulation without 
a requirement for continuous antigen exposure (32), ready for 
rapid recall upon repeated stimulation with antigen.

Recent work has aimed at detection of circulating allospecific 
memory B cells to predict durable sensitization and anamnestic 
responses in patients awaiting transplantation. One recent report 
(33) found that circulating HLA-specific B cells were found only 
in patients with a history of sensitization, and were detectable in 
nearly half of such patients. Interestingly, patients with circulat-
ing HLA antibodies but no known sensitization event had no 
detectable circulating B cells. Transfusion also resulted in little 
to no detectable circulating anti-HLA memory B cells, consist-
ent with the theory that transfusion is a less vigorous sensitizing 
event compared with pregnancy or transplantation (see below) 
(34). Snanoudj et al. were able to detect circulating B cells tar-
geting prior donor antigens many decades after transplantation 
and even after graft removal (33), supporting the paradigm that 
memory B cells do not require persistent antigen for survival. 
Finally, and most notably, several patients had detectable HLA 
antibody secreting B cells in circulation but no detectable circu-
lating antibodies in their sera.

Kinetics of Allorecognition
Direct pathway-activated donor-specific T cells are associated 
with acute T cell-mediated rejection in renal transplant patients 
(35). CD4+ T cells isolated from the recipient’s pre-transplant 
blood that were responsive to direct allostimulation with donor 
cells were also found to be predictive of early post-transplant out-
comes (35, 36). However, T cells activated via the direct pathway 
were found to be predominantly hyporesponsive in patients with 
transplant coronary artery disease (TCAD), chronic allograft 
nephropathy (CAN), or chronic rejection following liver trans-
plant indicating that these cells are not contributing to chronic 
rejection (7, 10, 37). In comparison, T cells primed by the indirect 
pathway are thought to mediate chronic rejection and are found 
in high frequency in patients with CAN, and in heart transplant 
patients with chronic rejection (7, 9, 10, 38).

Notably, T cells stimulated by the indirect allorecognition 
pathways are also capable of contributing to acute rejection during 
the early post-transplant period. Circulating allopeptide-reactive 

T cells were predictive of rejection in heart transplant patients stud-
ied during the first 10 weeks post-transplant (39). Furthermore, T 
cells responsive to allopeptide were found in significant quantities 
above that found in circulation when isolated from biopsies of 
graft tissue, suggesting that indirect pathway T cells can contrib-
ute directly to acute graft rejection (39).

ALLOANTiBODY ANTiGeN SPeCiFiCiTY

Antibody Structure and Function
Antibodies are heterodimers composed of a light chain and 
heavy chain encoded by distinct loci on different chromosomes. 
Each chain contains a constant region that is invariant, and a 
variable region that undergoes both recombination and somatic 
hypermutation to yield clonally unique sequences. The variable 
regions of both heavy and light chain form the antigen binding 
region (“complementarity determining region”), or paratope, 
which binds its cognate epitope on the antigen. Human immu-
noglobulins are divided into five isotypes (IgM, IgD, IgA, IgE, and 
IgG). Several of these isotypes are further divided into subclasses 
(IgG1, IgG2, IgG3, and IgG4; IgA1 and IgA2). Antibody isotype 
and subclass are determined by the constant region.

The subclasses were identified and numbered according 
to their predominance in circulation rather than order on the 
genome. Early in the GC reaction, IgM+ B cells class switch first 
to IgG3 or IgG1, then IgG2, and rarely IgG4 [immunoglobulin 
sequential class switching is described in Ref. (40, 41)].

Functionally, the subclasses of IgG are distinct. IgG1 has the 
highest concentration in circulation, and fixes complement well. 
IgG2 is the next most abundant in circulation and is not an effi-
cient complement fixer. IgG3 is unique with its long hinge region 
that confers the highest affinity for C1q compared with other 
subclasses, making it a potent effector [extensively reviewed in 
Ref. (42)]. However, IgG3 has the shortest half-life in circulation 
and, being first in order of class switching, has typically the lowest 
affinity for antigen but is the most potent activator of complement 
(43). IgG1, IgG3, and IgG4 mostly recognize protein antigens, 
while IgG2 is canonically efficient at recognizing carbohydrate 
antigens (in the absence of T cell help) and allergens. It is thought 
that IgG2 and IgG4 appear later after class switching and affinity 
maturation, as they have higher affinity for antigen but gener-
ally less effective activation of Fc-mediated effector functions, to 
temporally limit the immune response (41).

Antibodies Are Specific for Antigenic 
epitopes
Alloantibodies can be generated against any of the polymorphic 
loci, i.e., HLA-A, -B, -Cw, DRB1, DRB3 (DR52), DRB4 (DR53), 
DRB5 (DR51), DQB1, DQA1, DPB1, and DPA1. Antibodies 
recognize three-dimensional arrangements of amino acids on 
antigens, called epitopes. Fifteen to 25 amino acid residues form 
epitopes that are not necessarily adjacent in linear sequence, but 
are generally within 4 Å (44) (Figure 3). Many of the amino acid 
polymorphisms within HLA molecules lie within and around the 
peptide-binding groove at exposed residues on the alpha helices 
of the α1 and α2 chains of HLA class I, and on the α1 and β1 
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FiGURe 3 | Cartoon structure of antibody engaging epitope on HLA 
class i. Theoretical locations of polymorphisms impacting peptide binding 
are indicated in blue on the beta sheet of HLA class I. Locations of 
polymorphic amino acid residues available for recognition by antibodies on 
the alpha helices are highlighted in red. Red box, epitope.
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chains of HLA class II, enabling presentation of diverse peptides. 
The host–pathogen arms race is believed to have driven this 
polymorphism to prevent pathogen immune escape and protect 
populations from epidemics (45). Interestingly, antibody reactiv-
ity may also be influenced by the bound peptide (46), which can 
alter the overall three-dimensional conformation of HLA.

immunogenicity of HLA
Alloantibodies recognize three-dimensional amino acid epitopes 
on non-self HLA molecules. Because of the evolution of the HLA 
system, these epitopes can be shared by many different antigens, 
leading to broad antibody sensitization after exposure to a limited 
repertoire of non-self HLA. Antibodies are also sensitive enough 
to recognize single amino acid differences, resulting in intra-allele 
antibody production (47). Furthermore, molecular differences 
between HLA antigens can affect expression levels at the surface 
of the cell. Below, we describe in greater detail the mechanisms 
governing these various aspects of alloantibody recognition of 
epitopes.

Cross-Reactive Antibody Groups
The diversity of HLA has been driven by several genetic processes 
during positive selection. One major mechanism is gene conver-
sion via homologous recombination. Gene conversion results in 
large segments of genetic material being shared between alleles, 
giving rise to multiple proteins with the same or similar amino 
acid epitopes that can be recognized by the alloantibody response 
(48). This epitope sharing also results in cross-reactive antibody 
groups (CREGs), and indeed phylogenetic grouping of HLA 
based on nucleotide sequences generally mirrors serological 
cross-reactivity (49). Broad sensitization against many HLA 
antigens can, thus, occur even when the immune system is only 
exposed to a single non-self HLA antigen. For example, exposure 

to HLA-A11 may result in the generation of an antibody that is 
specific to an epitope carried by multiple HLA antigens belong-
ing to the A1 CREG including HLA-A1, A3, A23, A24, A36, and 
A80 as well as A11 (50, 51). In another example demonstrating 
inter-locus reactivity, sensitization to HLA-Cw can lead to 
antibody production to antigens of HLA-B (52) as HLA-B and 
HLA-Cw are more closely related to one another than to HLA-A. 
Similarly, DP antigens share epitopes with DR (53).

An extreme example of broad sensitization is in response to 
the mutually exclusive public epitopes Bw4 and Bw6, which are 
present on many different HLA-B (as well as some HLA-A, for 
Bw4) antigens. An individual exposed to a Bw6 positive antigen, 
such as B7, may produce antibodies against the Bw6 epitope that 
react with more than 20 different HLA-B antigens, carried by 
more than 50% of the population. These determinants, as well as 
C1 and C2 determinants on HLA-Cw molecules, are critical for 
NK cell receptor (KIR) binding, and so have likely been conserved 
through co-evolution of HLA and KIR receptors to prevent loss 
of self recognition (54).

In seminal work, Parham and McLean (55) described sero-
logical reactivity in relationship to known amino acid sequence 
data, first raising the idea of molecular matching. Differences in 
epitopes or “structural compatibility” between self and potential 
donor HLA antigens, also known as “eplets,” could portend the 
likelihood of an antibody response. HLA typing for solid organ 
transplantation is generally reported at the serologic (two digit) 
level. However, epitope matching is best accomplished with higher 
resolution HLA typing such that amino acid sequences that may 
be different within serologically equivalent groups are defined. 
Several groups have advocated for the use of structural epitope 
or eplet matching strategies in organ allocation, over serologic 
level matching (56, 57). For example, Wiebe et al. reported a lower 
incidence of de novo DSA production in patients who were HLA 
class II epitope matched (58), and immunogenicity of HLA-DP 
(59) also appears to be strongly based on epitope recognition.

Allele-Specific Antibodies
Antibodies can be produced against epitopes within antigens that 
differ from self by as little as one amino acid. Therefore, in addition 
to antibodies against serologic level HLA molecules, individuals 
can produce antibodies to other alleles of “self ” antigens, if amino 
acid sequences in key positions are sufficiently disparate. For 
example, a patient who displays HLA-DQ6 at the serologic level 
may also be defined through higher resolution typing methods as 
DQB1*06:01 at the allele level. The patient may become sensitized 
to other alleles of DQ6 and display allele-specific antibodies to 
alleles, such as DQB1*06:04, that are distinct from self (60).

Epitopes Formed by Specific DQA1/DQB1 Pairings
It is also possible for individuals to make antibodies against 
an epitope that is formed by the pairing of specific DQα1 and 
DQβ1 chains (61). The majority of HLA-DQ reactive antibodies 
recognize the DQβ chain, while a minority (<20%) bind DQα 
chain or a combination epitope formed by specific DQα/β pair-
ings (61). Importantly, such antibodies do not produce positive 
crossmatches against donors who carry only one of the DQα or 
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DQβ alleles in a different pairing (62), emphasizing the specificity 
of such antibodies.

Molecular Contributions to Immunogenicity
Differences in antigen availability may necessarily influence 
immunogenicity. Cell surface expression levels are known to vary 
among different loci, and even different alleles, of HLA. Certainly, 
expression of HLA-Cw (63, 64) and HLA-DP (65) is less abundant 
than proteins of other loci on endothelial cells that make up the 
vascular walls of the transplanted organ. In addition, HLA-A was 
found to be more highly expressed than HLA-B in HEK293T cells 
as it is hypothesized to form a more stable interaction with β2m 
throughout the terminal region of the alpha 2 domain and the 
entire alpha 3 domain (66) of the molecules.

Furthermore, Ramsuran et  al. recently reported wide varia-
tion in mRNA levels between different antigens of HLA-A; for 
example, individuals homozygous for HLA-A24 had higher 
expression of HLA-A than those homozygous for HLA-A3, 
which was attributed to polymorphic CpG sites and increased 
DNA methylation in the lower expressing alleles (67). Finally, 
lower expression of HLA-Cw may be the result of reduced affinity 
for β2 microglobulin, resulting in less stable protein at the cell 
surface (68, 69), increased degradation of mRNA (63), or dif-
ferential regulation by miRNA (70). Accordingly, sensitization to 
HLA-Cw is reportedly less frequent compared with other HLA 
class I molecules (71).

SeNSiTiZiNG eveNTS LeADiNG TO HLA 
iMMUNiZATiON: ROUTeS AND RATeS OF 
HLA SeNSiTiZATiON

Antibody responses to allogeneic HLA molecules can occur after 
any exposure to non-self tissues, such as transfusion, pregnancy, 
or transplantation. However, the durability and nature of the 
sensitization may vary depending on the alloimmunizing event.

Transfusion
Interestingly, the incidence of alloimmunization in the general 
population with a history of prior transfusion is less than 2% 
(72, 73), while in comparison Hyun et al. (74) reported that one-
third of transplant candidates with a history of transfusion were 
sensitized. The discrepancy indicates that transplant patients 
may have a more robust response to sensitization via transfusion, 
or may have more transfusions compared with non-transplant 
candidates.

Transfusion alone is considered poorly immunogenic. 
Sensitization to HLA antigens via transfusion requires very large 
blood volumes or multiple events to induce persistent HLA 
allosensitization in otherwise non-sensitized individuals (34). 
Paradoxically, a protective “transfusion effect” was reported in the 
early transplantation literature (75, 76), initially suggesting that 
donor-specific transfusion is immunomodulatory and improved 
graft outcomes. Animal models have suggested that graft pas-
senger leukocytes are important in this process, thus, providing 
tolerance prior to transplant (77). However, transplant recipients 
sensitized by third party transfusion have poorer 1-year survival 

compared with non-sensitized recipients (78). A modern meta-
analysis of that era concluded that higher rates of HLA sensitiza-
tion are found in patients with a history of transfusion compared 
with those without, and that there is a neutral to negative effect 
on allograft outcome after sensitization by transfusion (79).

Pregnancy
Both full-term pregnancy and spontaneous miscarriage induce 
alloantibodies (80). Anti-paternal alloantibodies appear around 
or after the 28th week of gestation during pregnancy (80). 
Sensitized women have higher rates of parity (pregnancy) 
compared with non-sensitized patients (81). One-third to half 
of women develop HLA immunization after delivery during 
their first pregnancy (73, 74, 82), and immunization frequency 
increases with parity (82). Antibodies to HLA class I were 
slightly more frequent than those to class II, although both were 
produced.

Female patients receiving kidney allografts from their male 
partners or their offspring experienced higher rejection rates 
(83), pointing to increased immunological risk in women upon 
re-exposure to paternal antigens on the allograft. Generally, 
antibodies induced by pregnancy declined in the circulation over 
time. Even so, post-transplant antibody increases occurred in the 
pregnancy cohort even decades after the last pregnancy (84).

Transplantation
Transplantation itself is a significant alloimmunizing event (81), 
and previously non-donor sensitized solid organ transplant 
recipients develop de novo donor-specific HLA antibodies at a 
rate of about 8–10% in the first year for liver and renal transplants 
(85, 86), and 15–25% of renal and cardiac transplant by 10 years 
post-transplant (85, 87, 88). Removal (transplantectomy) of failed 
renal-allografts appears to stimulate a large increase in circulating 
DSA (89), whether from increased immune activation in response 
to surgical trauma, removal of the antigen “sink” provided by the 
allograft and/or immunosuppression, is unclear.

When evaluating a patient for re-transplantation, it is impor-
tant to consider the presence of donor-specific alloantibodies that 
were formed via sensitization to the first allograft in relationship 
to the donor antigens carried by the second potential donor – the 
so-called “repeat mismatches.” Repeat mismatched donor HLA 
antigens against which a recipient has preformed alloantibody, 
particularly to HLA-DR, were found to have a detrimental effect 
on renal-allograft survival (90–92). While Farney et al. did not 
uncover a deleterious effect on graft survival of retransplantation 
with donors who shared mismatches in the presence of alloan-
tibodies with prior donors (93), a more recent study found that 
re-exposure to mismatched HLA class I antigens increased the 
risk of early graft loss in renal transplant recipients (94). Typically, 
repeat HLA mismatches in donors against which a recipient has 
made antibodies are avoided by transplant programs (95).

Allografts are also used for vascular reconstruction in many 
forms of congenital heart disease and have been demonstrated 
to cause persistent sensitization to HLA antigens (96). These 
findings have implications for those in whom heart transplant is 
considered late in the clinical course.
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ventricular Assist Devices
Ventricular Assist Devices (VADs) are associated with increased 
production of HLA antibodies. The current paradigm is that the 
VAD provides a continual antigenic or inflammatory stimulus that 
promotes generation of de novo HLA antibodies when patients 
are exposed to blood and/or platelet transfusions or heightens 
existing HLA antibody levels. In a recent study, we observed that 
patients implanted with the older pulsatile VAD (BiVad) showed 
increased HLA sensitization vs. patients implanted with the 
Heart MateII Axial VAD suggesting the older, pulsatile devices 
had greater sensitization potential (97).

Natural Antibodies
It has been suggested that HLA antibodies may be formed by 
means other than the typical routes of sensitization discussed 
above. Antibodies to HLA are found in non-transfused males 
at a rate of nearly 50% in one study (98) and often react with 
a restricted subset of HLA antigens that are uncommon in the 
general population. There is some evidence pointing to cross-
reactivity of pathogens (especially viral) with HLA by T cells 
(99–102). The abundant viral-specific memory T cell repertoire 
may, therefore, contribute to alloantibody production. Viral 
cross-reactivity with HLA may also occur at the protein level. 
For example, antibodies to HIV-1 may recognize HLA (103), 
and immunization with the HepB vaccine caused HLA antibody 
positivity in approximately half of previously negative, healthy 
adults 1 month after vaccination (104).

It has been proposed that “natural antibodies” against the 
non-classical HLA-E molecule can cross-react with HLA class 
I molecules (105). Alternatively, it is possible that antibodies 
detected are false-positive reactions with denatured antigen, a 
known limitation of the single-antigen bead assay commonly 
used to identify HLA antibodies in the sera (106–108). Additional 
evidence shows these antibodies do not often react with native 
antigen on cells (108, 109), and the clinical significance and 
durability of such natural antibody responses remain unclear 
(110, 111).

Non-HLA Antibodies
Non-HLA antibodies can be directed toward either alloan-
tigens, such as the major histocompatibility complex class I 
chain-related gene A (MICA) or B (MICB), or tissue-specific 
autoantigens, such as vimentin, cardiac myosin (CM), collagen 
V (Col V), agrin and angiotensin II receptor type I (AT1R). 
Additional non-HLA targets recently identified by Jackson et al. 
include anti-endothelial cell targets, including endoglin, EGF-
like repeats, Fms-like tyrosine kinase-3 ligand, and ICAM-4. The 
principle antigenic targets of non-HLA antibodies are expressed 
on cells of the allograft, including endothelium and epithelium. 
Therefore, donor cells are in direct contact with the recipients 
circulating peripheral blood lymphocytes, and have been shown 
to be the major immunological targets for the pathogenesis of 
allograft rejection. Prevalence of anti-endothelial cell antibodies 
(AECA) among renal recipients was nearly one quarter in pre-
transplant sera (112). AECAs correlated with post-transplant 
HLA DSA and AMR. Sun et al. observed that anti-endothelial 

cell antibodies were found in patients pre-transplant, but that 
they did not correlate with outcome or rejection; by contrast, de 
novo development of AECAs was significantly associated with 
early and severe acute rejection, but not C4d (113). AECA were 
implicated as the cause of acute antibody-mediated rejection 
(AMR) in 30% of heart transplant recipients without DSA to 
HLA (114).

MeCHANiSMS OF GRAFT DAMAGe BY 
HLA ANTiBODieS

High-titered pre-transplant DSA directed against HLA class I 
antigens can cause catastrophic hyperacute rejection and imme-
diate graft loss (115), whereas high titer class II DSA mediate 
graft rejection 2–4  days after transplant, upon re-expression 
of HLA class II antigens on the endothelium of the allograft 
(116–118). By contrast, pre-transplant DSA of low titer are often 
associated with development of acute AMR during the first 
3  months after transplantation and/or lower long-term graft 
survival (119). If left untreated, patients with AMR are at risk 
of graft loss and/or markedly shortened overall graft survival 
time. Patients producing de novo anti-HLA antibodies against 
their donor following transplantation are also at increased 
risk of graft failure unless their response can be controlled or 
abrogated (120).

There are three major effector functions carried out by anti-
bodies that can impact the graft. First, bivalent IgG can dimerize 
or crosslink its target upon binding. Collective studies indicate 
that IgG binding to HLA agonistically crosslinks HLA molecules 
and triggers downstream activation of the target cells. Second, 
antibodies can activate the classical complement cascade through 
binding to the Fc fragment to trigger production of potent 
anaphylatoxins, chemoattractants, opsonins, and cell-damaging 
factors. Thirdly, HLA IgG bound to target cells can engage Fc 
receptors on myeloid and lymphoid cells, to employ a host of 
Fc receptor-mediated effector functions, including antibody-
dependent cell cytotoxicity, antibody-dependent phagocytosis, 
and augment recruitment. These effector functions work in 
concert, and there is substantial interplay between them, as we 
will discuss below.

HLA Antibody-induced Signaling in Graft 
vascular Cells
Antibodies are capable of agonistically crosslinking their protein 
targets at the cell surface [recently reviewed in Ref. (121)]. In 
vascular cells, crosslinking of HLA induces intracellular signaling 
cascades that lead to functional changes, such as increased cell 
migration, cytoskeletal rearrangement, growth and proliferation, 
endothelial activation and exocytosis, and increased recruitment 
of leukocytes. These functional changes parallel the histological 
findings in clinical AMR, including microvascular inflammation, 
endothelial dysfunction, expansion of the neointima, and infiltra-
tion of mononuclear cells (Table 2).

HLA class I and II do not have intrinsic kinase activity and, 
therefore, partner with other proteins to transduce intracellular 
signals. Ligation of HLA class I with antibodies increases its 
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TABLe 2 | Function of HLA antibodies leading to histological 
manifestations of AMR.

Histological 
manifestation

Antibody function

C4d deposition Activation of complement
Endothelial cell swelling HLA crosslinking leading to cytoskeletal changes

Mononuclear cell 
infiltration

HLA crosslinking increases P-selectin and 
chemokines, monocyte, and neutrophil adherence
Antibody Fc regions interact with FcγRs

Neointimal thickening HLA crosslinking increases endothelial and 
smooth muscle cell proliferation and migration
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association with integrin β4 which, in turn, activates intracellular 
signaling cascades (122). Integrin β4 is an important cell adhe-
sion protein regulating cell adhesion, proliferation,  migration, 
and survival. Blockade of integrin β4 impairs HLA antibody-
stimulated signal transduction. Protein(s) that partner with HLA 
class II to transduce signaling are not yet reported. However, 
ligation of either HLA class I or class II with antibodies activates 
mammalian target of rapamycin (mTOR) signaling through the 
SRC/FAK–PI3K–AKT pathway and increases Akt-dependent 
cell survival signaling, through upregulation of Bcl-2 and HO-1 
(123–125). Furthermore, activation of key signaling proteins in 
endothelium, including S6K, S6RP, and ERK, demonstrated in 
human cardiac allografts with AMR and in murine models of 
MHC antibody-mediated injury (126–128) suggests pro-survival 
signals that may increase endothelial persistence, stress fiber 
formation (129, 130), and resistance to complement-induced cell 
death (125), contributing to neointimal formation during chronic 
rejection. Additional work by Galvani et  al. points to a direct 
effect of MHC antibodies on smooth muscle cells. Crosslinking 
of HLA I with antibodies provokes mitogenic signaling through 
matrix metalloproteinases in vitro, and contributes to neointimal 
thickening of human arterial grafts in vivo in murine recipients 
(131, 132). An additional feature of alloantibody crosslinking of 
HLA is increased intracellular calcium levels, leading to exocyto-
sis of endothelial Weibel–Palade body vesicles and increased cell 
surface P-selectin (133–135). P-selectin captures neutrophils and 
monocytes (133, 134), facilitating recruitment of immune cells 
into the allograft.

Complement
The complement system is an ancient form of innate immu-
nity that relies on proteolytic cleavage of active components. 
Complement proteins are always present in the circulation, 
but become rapidly activated upon exposure to target mol-
ecules. There are three main pathways of complement, which 
differ by the activating stimulus. The lectin pathway becomes 
activated upon recognition by mannose binding lectin (MBL) 
of pathogen-specific glycan residues on the surface of bacteria, 
fungi, and viruses. The alternative pathway of complement is 
initiated at the surface of non-host cells due to the presence of 
such factors as lipopolysaccharides on Gram-negative bacteria, 
zymosans on fungi and yeast, and other pathogen-associated 
molecules. Complexed human immunoglobulin has also 
been shown to activate the alternative pathway. The classical 

complement pathway is initiated exclusively by antigen-bound 
antibody through binding of the Fc portion of certain isotypes 
and subclasses to C1q. All of these pathways rely on sequential 
enzymatic reactions that produce active split products involved 
in inflammation, and all of these pathways converge on the 
terminal component C5.

Activation of complement by antibodies was one of the 
earliest methods used to detect donor-specific HLA antibodies, 
and positive cytotoxic crossmatch is still often considered to be 
a contraindication to transplant, as antibodies detected by this 
method can mediate hyperacute rejection of solid organ trans-
plants (115). Although the end result of complement activation, 
namely deposition of MAC and cell cytotoxicity, has been a focus, 
it is now thought to be a rare event (136). Endothelial cells express 
complement regulatory proteins (CD55/DAF, CD59, Crry) that 
antagonize complement activation by inactivating split products. 
C3d and C4d are generated by such inhibitory receptors and mark 
early complement activation. Attention has turned to the activity 
and predictive value of other complement proteins. Products of 
complement activation, in particular C4d, have proven histologi-
cal utility in detecting donor-specific antibody bound to the graft 
(137, 138). Other split products, including C4a, C3a, and C3b, are 
potent inflammatory signals that promote immune cell recruit-
ment and opsonization.

FcγR-Bearing immune Cells
Many cells express surface receptors that can interact with the 
constant region heavy chain (Fc) of antibodies. The human Fc 
receptor system consists of several classes that can bind to IgG 
(FcγR, CD64, CD32, CD16), IgA (FcαR, CD89), and IgE (FcϵR, 
CD23). The human receptor for IgM (FcμR) had been elusive 
until relatively recently (139). Fc receptors serve to bridge the 
humoral and cellular arms of the immune system, and provide 
innate immune cells with a target, and are critical for a variety of 
functions, including antibody-dependent cell-mediated phago-
cytosis (ADCP), antibody-dependent cell-mediated cytotoxicity 
(ADCC), cell–cell tethering and degranulation.

Given that IgG is thought to be the most clinically relevant 
isotype of HLA antibodies, we will focus on Fc-gamma receptors 
(FcγR) that bind to this isotype of immunoglobulins. FcγRs are 
expressed broadly in both the myeloid and lymphoid compart-
ments. There are three major classes of FcγRs, FcγRI (CD64), 
FcγRII (CD32), and FcγRIII (CD16). FcγRII and FcγRIII are 
further composed of several functionally disparate isoforms, 
most of which are dimorphic in the human population (140, 
141). Polymorphisms in human FcγRs influence susceptibility 
to autoimmune disease and response to anti-tumor therapeutics 
(142–146), and may also influence susceptibility of transplant 
recipients to rejection (147, 148), although a thorough evalua-
tion of the role of different FcγR alleles in antibody-mediated 
transplant rejection has not been reported.

Due to their lower affinity, the majority of FcγRs do not bind 
monomeric IgG very efficiently. Only the high-affinity FcγRI 
(CD64) is the exception, and cells with this receptor have been 
shown to carry monomeric IgG in circulation. FcγRs do bind to 
antigen-associated IgG, however, such as in immune complexes 
or immobilized on a (cell) surface. Once bound, FcγRs become 
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crosslinked as they physically colocalize at high antibody-antigen 
density. This promotes intracellular signaling in the FcγR-bearing 
cell leading to activation and maturation, and mediates effector 
functions such as phagocytosis or cytotoxicity.

The relevance of FcγR-bearing innate immune cells to anti-
body-mediated graft injury is reflected in the diagnostic criteria 
and histological manifestations of AMR. For example, infiltra-
tion of CD68+ macrophages is included in the AMR diagnostic 
criteria in cardiac transplantation (149), where macrophage 
staining is found intravascularly (150, 151). Indeed, increased 
macrophage burden is correlative with worse prognosis (152). 
Although not currently included in the AMR diagnostic criteria 
for renal transplantation, macrophage infiltration during rejec-
tion is also predictive of worse outcome in kidney allografts (153, 
154). Our recent studies are consistent with these clinical find-
ings and show that monocyte recruitment to HLA-Ab-activated 
endothelium is mediated by HLA-induced Weibel–Palade exo-
cytosis and P-selectin expression (134). Blockade of P-selectin 
potently inhibited leukocyte recruitment to the allograft during 
AMR underscoring its therapeutic potential (134). Furthermore, 
HLA-Ab augmented monocyte recruitment by the interaction 
of monocyte FcγRs with the Fc portion of the HLA-Abs (135). 
This interaction was IgG subclass dependent and influenced 
by monocyte FcγRIIa allelic variants. Monocytes from donors 
carrying the high-affinity FcγRIIa-H131 allele had greater FcγR-
dependent adhesion to ECs activated with HLA-Abs of both IgG1 
and IgG2 subclasses compared with monocytes expressing only 
FcγRIIa-R131. These results are clinically relevant and suggest 
that recipients producing DSA and carrying high-affinity FcγR 
alleles may be pre-disposed to acute AMR accompanied by 
increased monocyte infiltration.

Summary
Taken together, antibodies to donor proteins, including HLA, can 
cause graft damage through three major mechanisms, including 

direct activation of endothelial, smooth muscle, and epithelial 
cells to promote proliferation and inflammation; activation of the 
complement system to generate inflammatory split products; and 
engagement of FcγRs on NK cells, monocytes, and neutrophils.

CONCLUSiON

Allorecognition by the humoral immune system results in 
formation of antibodies to HLA and a variety of non-HLA 
proteins, and occurs after exposure to non-self tissues through 
pregnancy, transfusion, or transplantation. Alloantibody for-
mation is dependent upon T cell interactions and is primarily 
driven by indirect allorecognition by T cells. In addition, 
“natural” antibodies or anti-viral antibodies may cross-react 
with HLA, although the clinical significance of such antibod-
ies is not clear. Antibodies to donor HLA mediate allograft 
injury through Fc-dependent as well as Fc-independent 
mechanisms, which closely reflect the diagnostic criteria 
for AMR. Non-HLA antibodies can be against polymorphic 
proteins, such as MICA, or against autoantibodies, and also 
associate with worse graft outcome, although their etiology 
is less clear than for HLA DSA.
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Ocular immune Privilege 
and Transplantation
Andrew W. Taylor*

Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA

Allografts are afforded a level of protection from rejection within immune-privileged 
tissues. Immune-privileged tissues involve mechanisms that suppress inflammation 
and promote immune tolerance. There are anatomical features, soluble factors, mem-
brane-associated proteins, and alternative antigen-presenting cells (APC) that contribute 
to allograft survival in the immune-privileged tissue. This review presents the current 
understanding of how the mechanism of ocular immune privilege promotes tolerogenic 
activity by APC, and T cells in response to the placement of foreign antigen within the 
ocular microenvironment. Discussed will be the unique anatomical, cellular, and molecu-
lar mechanisms that lessen the chance for graft destroying immune responses within the 
eye. As more is understood about the molecular mechanisms of ocular immune privilege 
greater is the potential for using these molecular mechanisms in therapies to prevent 
allograft rejection.

Keywords: immune privilege, anterior chamber-associated immune deviation, immune tolerance, regulatory 
T cells

wHAT iS iMMUNe PRiviLeGe

The phrase immune privilege is a transplantation term defined by Peter Medawar and colleagues in 
the 1940s (1). They demonstrated that skin allografts placed within the anterior chamber of the eye 
survive indefinitely in contrast to their rapid rejection in other more conventional tissues such as the 
skin. This happened even when the recipient is already immunized against the alloantigens, but only 
if the blood–ocular barrier was maintained. It had been observed that once there is vascular leakage 
into the anterior chamber the graft is rejected. Another characteristic of allograft placement into the 
anterior chamber is that it does not immunize the recipient (2). Since the eye has no observable direct 
lymphatic drainage, it had suggested that alloantigen could not reach the regional lymph nodes and 
initiate an immune response. Such mechanisms of sequestration of antigen and antigen-expressing 
tissues has erroneously led some to think that the ocular microenvironment should be devoid of all 
immune cells and immune responses. This is clearly not the case (3).

There are resident immune cells with the potential of being antigen-presenting cells (APC) within 
the cornea, iris, ciliary body, and the retina. In the retina, they are the resident macrophage-like 
microglial cells (4–8), and there is very little evidence of cellular migration from blood circulation 
into the healthy ocular microenvironment (9). There is some speculation that resident macrophages 
and microglial cells are turned over, but this has only been seen in irradiated mice (10–13). It is also 
possible that the microglia of the retina are like microglial in the rest of the CNS are long-lived and 
are not initially bone marrow derived (9, 14–16). When there is inflammation, such as with uveitis, 
it is clear that the blood–ocular barrier is leaking, and that most of the infiltrating immune cells are 
coming through breaches in the barrier (13, 17, 18).
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The blood–ocular barrier is made from the tight junctions 
of the pigmented epithelial cell layer of the uveal track, of the 
endothelial cells of the inner-retina capillaries and the avascular 
cornea (19). This enclosed space allows for the eye to form its 
own microenvironment to regionally suppress the activation of 
inflammation and to control the functionality of immune cells. 
Locally produced soluble factors found in aqueous humor, and 
the soluble and membrane-bound factors of the pigmented 
epithelial cells described in detail later suppress the activation 
of inflammation (20–39). These factors are a defined group of 
proteins, neuropeptides, and biochemicals that modify the 
behavior, differentiation, and survival of immune cells within 
the ocular microenvironment. Their combined actions make the 
ocular microenvironment highly anti-inflammatory; moreover, 
the mechanism of immune privilege makes immune cells 
(monocytes, macrophages, dendritic cells, microglial cells, and T 
cells) to contribute to the anti-inflammatory microenvironment 
(3, 40–42). This promotes a self-perpetuating anti-inflammatory 
immune response, and induction of immune tolerance, which 
protects the eye from the irreversible collateral damage of inflam-
mation that can lead to blindness.

It has very much been demonstrated that immune cell activity 
is present, but it is driven within the ocular microenvironment 
toward anti-inflammatory and tolerogenic immune responses. 
In addition, the placement of alloantigen-expressing grafts into 
the anterior chamber or within the retina induces alloantigen-
specific systemic tolerance (1, 31, 41, 43–47). This has shown that 
the presence of foreign antigen with the eye is not hidden.

wHAT ARe THe iMMUNe ReSPONSeS TO 
THe PLACeMeNT OF FOReiGN ANTiGeN 
wiTHiN THe eYe

The prolonged survival of incompatible grafts in the eye is the defini-
tion of immune privilege (1). The mechanism of how this is achieved 
is through induction of systemic tolerance to the alloantigens and 
the regional suppression of inflammation (40). These mechanisms 
establish a strong blockade in activating a graft destructive immune 
response. Although this is not an absolute suppression of immunity, 
understanding the mechanisms of immune privilege has led to 
understand that a large part is to regulate APC activity in a manner 
that activates regulatory T (Treg) cells (6, 47–49).

The placement of foreign antigen into the anterior chamber, 
vitreous, or in the sub-retinal space induces systemic tolerance 
to the antigen. The initial experiments demonstrating this phe-
nomenon were done by placing MHC-mismatched tumor cells 
into the anterior chamber of the eye, resulted in graft survival 
of skin from the same MHC-mismatched mouse strain (50, 51). 
By contrast, mice that had the tumor cells placed into the skin 
rejected both the tumor cells and the subsequent skin graft. The 
induction of systemic tolerance was considered a deviation from 
the expected hypersensitivity immune response and was called 
anterior chamber-associated immune deviation (ACAID). Also, 
the same ACAID-like response is seen when any foreign antigen 
is placed in the vitreous, or sub-retinal space (44, 52, 53). Like the 
immune response to allografts, it is unclear what is the evolutionary 

advantage of ACAID unless it is either a byproduct of the anti-
inflammatory environment of the eye or part of controlling the 
immune response to presented autoantigens within the eye.

The tolerance induced in ACAID is efferent suppression 
mediated by a tolerogenic CD8+ T cell. It is antigen specific, and 
it suppresses the activation of effector T cells responding to the 
same source of antigen. Within hours after injecting antigen into 
the eye, the antigen disseminates almost throughout the body. 
This suggested for a long time that the tolerogenic mechanism of 
the eye was similar to inject antigen directly into the blood circu-
lation; however, the tolerance induced by antigen placed into the 
eye is dependent on the spleen, and the presentation of antigen by 
a F4/80+ macrophage (54, 55). The induction of the ACAIDogenic 
APC can be done by treating cultured macrophages with aqueous 
humor or with the aqueous humor factor TGF-β2 while providing 
antigen or a source of antigen, like cells expressing  alloantigens 
(56–59). These ACAIDogenic APC leave the eye via the blood 
circulation and home to the marginal zones of the spleen. They 
form cellular clusters with NKT cells as well as CD4+ and CD8+ 
T cells (60). Also, in these clusters are B cells that take up antigen 
directly from the ACAIDogenic APC and present the antigen (61). 
These clusters are mediated by the production of RANTES made 
by NKT cells stimulated by CD1d on the ACAIDogenic APC and 
this brings in CD8+ T cells (60, 62). The result is the induction and 
expansion of antigen-specific efferent suppressor CD8+ T cells. 
These cells are responsible for the antigen-specific systemic pre-
vention of graft rejection and hypersensitivity (63–65). Since the 
mechanism of inducing ACAIDogenic APC is a local effect of the 
immune-privileged ocular microenvironment, it is possible that 
presentation of CD1d in the eye would also locally activate tolero-
genic NKT cells. It has been shown that cornea allograft survival 
is associated with CD1d stimulation tolerogenic NKT cells like in 
the ACAID response (66, 67). By contrast, failure to stimulate the 
NKT cells to promote Treg cell activation may be associated with 
corneal allograft rejection. Therefore, from understanding the 
mechanisms of the ACAID, it is possible to speculate that APC in 
the ocular microenvironment are also influenced by ocular TGF-
β2 to CD1d-stimulated NKT cells that are anti-inflammatory, and 
mediators of Treg cell activation.

Similar tolerogenic APC induced by TGF-β2 is seen when 
antigen is placed into the sub-retinal space (68). The study of 
sub-retinal induction of ACAIDogenic APC has shown that part 
of the induction of immune deviation is a cascade of TGF-β2 
activation from latent to active mediated by thrombospondin-1, 
and it receptor CD38 on the F4/80+ macrophages (68). Therefore, 
antigen, either soluble or shed from transplanted cells, is processed 
by APC under the influence of the ocular microenvironment, and 
that these antigen-loaded APC migrate to the spleen to initiate 
tolerance, or remain within the eye to mediate anti-inflammatory 
activity and stimulate Treg cells.

MOLeCULAR MeCHANiSMS OF OCULAR 
iMMUNe PRiviLeGe

One of the original observations about ocular immunobiology 
was that placement of foreign antigen into the eye of a recipient 
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with an already established effector immune response does not 
elicit an inflammatory response (1). An additional element of 
immune regulation is the anti-inflammatory mechanisms of the 
ocular microenvironment itself that works to prevent induction 
of inflammation and suppress the activity of effector immune cells 
(69, 70). This is seen as the mechanisms of immune suppression 
mediated by soluble molecules of aqueous humor, and membrane 
expressed molecules of cells within the ocular microenvironment.

The most understood immunosuppressive mechanisms of 
ocular immunobiology are the effects of aqueous humor on 
immune cells. Since the blood barrier does not inhibit effector T 
cell migration into the eye (71, 72), there are several mechanisms 
regulating T cell activity within the immune-privileged eye. 
When effector T cells with APC-presenting antigen are injected 
into the anterior chamber, the inflammation mediated by the 
antigen-activated effector T cells is suppressed (69). Also, the T 
cell-mediated inflammation is suppressed when the APC and 
the T cells are first treated with aqueous humor, and adoptively 
transferred into tissues other than the eye. Molecular analysis of 
aqueous humor shows that TGF-β2 has the possibly of being the 
major regulatory molecule; however, it is in a latent form and rarely 
found active in fresh aqueous humor of healthy eyes (73–76). The 
first reports of aqueous humor suppression of T cell activation 
used pooled, frozen aqueous humor samples (77). The freezing 
and thawing of aqueous humor activate the TGF-β2, and because 
of the overwhelming potency of TGF-β2 on T cell activity, the first 
descriptions of aqueous humor suppressive activity were more of a 
study on the effects of TGF-β2 on immune reactions (78). One of 
these is the induction of the ACAIDogenic APC (59). Careful col-
lection of aqueous humor, and its immediate use in assays, keeping 
TGF-β2 in its latent form, has revealed a wealth of other soluble 
immunomodulating molecules dominated by neuropeptides such 
as alpha-melanocyte-stimulating hormone (α-MSH) (20).

Each of the molecules of aqueous humor target different cells of 
the immune response and different activities (41). The result is the 
induction of CD4+ Treg cells from an already established popula-
tion of effector T cells (79). This induction of CD4+ Treg cells is 
mediated mostly by the activity of the neuropeptide α-MSH. This 
is enhanced by the suppression of effector T cell activity by the 
other neuropeptides vasoactive intestinal peptide, somatostatin, 
and also by TGF-β2 when activated (21, 24, 79). The APC are 
also converted from presenting antigen that promote effector T 
cell activity to present antigen that activates Treg cells (80, 81). 
This is mediated by α-MSH, neuropeptide Y, and TGF-β2 that 
activate suppressive APC, and antigen-activated Treg cells. This 
means that molecules within the eye prevent immune-mediated 
inflammation while promoting the immune response to regulate 
itself. Since the immune response is an already established effector 
response, the activated Treg cells are inducible Treg (iTregs) cells 
meaning that the healthy ocular microenvironment is a site of 
immune reeducation. Therefore, immune privilege maybe more 
than suppressing inflammation, and that its immunosuppressive 
mechanisms can be used as a molecular approach to therapeuti-
cally promote long-term allograft survival through the induction 
of tolerance.

The cells of the cornea and the retina express on their membrane 
surfaces molecules that interact with immune cells to promote 

regulatory activity or apoptosis in the T cells. Many of the cells of 
cornea constitutively express FasL and PD-1 family of molecules 
(38, 82–84). The encounter between activated T cells and corneal 
endothelial cells leads to apoptosis of the T cells. The expression of 
B7-2 on pigmented epithelial cells lining the uveal track is associ-
ated with the conversation of naive T cells into Treg cells (35). This 
action is compounded by the fact that the pigmented epithelial 
cells are a source of many soluble immunomodulating molecules, 
such as TGF-β2, α-MSH, and neuropeptide Y (25, 28). Since 
naive T cells rarely migrate into peripheral tissues, the induction 
of apoptosis in the effector T cells is an important mechanism 
in preventing targeted immune attacks within the ocular tissues. 
Also, this could be a selective mechanism to allow for Treg cells 
to function within the eye, since they are more resistant to FasL-
induced apoptosis (85), and that PD-1 is an activation signal for 
Treg cells (81, 86). This indicates that even transplanted ocular 
tissues, such as the cornea, carry molecules with the potential to 
mediate immunosuppression and tolerance.

The retina expresses not only FasL like the cornea but also 
molecules unique to the regulation of microglial cells or migrat-
ing macrophages. Neurons of the retina express CD200 that binds 
to CD200L and suppresses microglial cell-mediated inflamma-
tion (87). Mice with CD200:CD200L interaction knocked out 
are more susceptible to uveitis (87). Along with this regulation, 
soluble molecules from the retinal pigment epithelial cells (RPE) 
alternatively activate the microglia cells and macrophages (28, 
80). This alternative activation makes these potential APC act and 
appear like myeloid-derived suppressor cells (MDSC) (88). The 
most we can understand of MSC is that they prevent effector T cell 
activation and suppress inflammation. Their presence in tumors 
has blocked many attempts at anti-cancer immunotherapy (89). 
Having such cells as part of the healthy retina is a potential advan-
tage for preventing autoimmune attack and inflammation (81, 90, 
91). The major molecular mediators of this are the neuropeptides 
α-MSH and NPY (28).

The placement of allogeneic neuroretinal cells or stem cells 
into the retina shows protection but is eventually rejected (92). 
This rejection is devoid of inflammation, and how the cells are 
eliminated is unknown. There is no rejection if the cells dif-
ferentiate into neuronal cells and make connections with other 
retinal cells (93). This suggest that while immune privilege can 
prevent an inflammatory response non-integrated neurons must 
some how be targeted for removal, and an alloimmune response 
accelerates this clearance.

Experimental conditions that alter the ocular microenviron-
ment to make it no different from conventional tissues, such as 
creating a high-risk cornea graft bed, or wounding RPE mon-
olayers, demonstrate the importance of maintaining immune 
privilege to the success of ocular allografts. High-risk cornea graft 
beds have elevated levels of dendritic cells and vascularization 
with in the cornea stoma, and allograft rejection is almost assured 
(6, 94, 95). Experimentally designed high-risk corneas in rodents 
do not support ACAID, suggesting that changes in the cornea are 
most likely opening a barrier, probably through corneal neovas-
cularization. Also, ACAID is lost in eyes with laser and sodium 
iodate wounded RPE monolayers (95, 96). The microglial cells 
change under these conditions from acting as suppressor cells 
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into proinflammatory cells (28). This further demonstrates that 
changes in the barrier that defines the ocular microenvironment 
have a profound influence on APC activity. The activity changes 
from supporting a blockade of inflammation and effector T cell 
activation to one where the APC themselves may contribute to 
the destructive immune response. How they change and what 
mediates the change is unknown. It is not clear which of the 
molecules and mechanisms of the ocular immune privilege is no 
longer active in high-risk ocular tissues.

USiNG THe MeCHANiSM OF iMMUNe 
PRiviLeGe TO PROMOTe ALLOGRAFT 
SURvivAL

It still remains to be seen if it is possible to use the molecular 
mechanisms of immune privilege to promote allograft survival. 
Some serendipitous discoveries suggest that it maybe possible 
involving ACAID, anti-inflammatory activity of aqueous humor, 
and ocular induction of Treg cells. Although there are several 
proposals, it will be awhile before any can be practical and 
administered in the clinic, but there are a few that can be done as 
a process of preparing and treating the allograft.

One issue of ocular immune privilege is whether it rests with 
the cells of eye or solely with the molecules within the healthy 
ocular microenvironment. Arguing that immune privilege is 
with the cells is the finding that allogeneic retinal progenitor 
cells (RPC) exhibited limited immunogenicity and may produce 
immunosuppressive factors that promote their survival when 
implanted. One idea of delivering RPC to remodel retinas is 
to place them in a degradable scaffolding (97). When the RPC 
are seeded on poly(lactic-co-glycolic acid) polymer, and grafted 
under allogeneic kidney capsules they survive, and cells begin to 
differentiate into neurons and astrocytes. This happens even after 
the grafts are treated with IFN-γ to stimulate immunogenicity. 
When allogeneic RPC-containing polymers are seeded with syn-
geneic APC, the APC acted like ACAIDogenic APC and promote 
alloantigen-specific tolerance. This suggests that it is possible to 
create a localized immune-privileged site using cells of immune-
privileged tissues within a defined structural microenvironment.

It is clear that soluble immunomodulating molecules of ocular 
immune privilege drive the induction of regulatory immunity. It 
is possible to use these molecules to suppress allograft rejection. 

The aqueous humor neuropeptide α-MSH is one of these soluble 
molecules of ocular immune privilege that has been used to gen-
erate retinal autoantigen-specific Treg cells in vitro (98). When 
these α-MSH-induced Treg cells are adoptively transferred into 
recipients with sub-retinal neonatal retinal allografts the grafts 
survive and the retinal cells begin to differentiate (99). This has 
demonstrated that the autoantigen-activated Treg cells within 
the retina provided the necessary immune protection needed for 
neonatal retinal cell development. Corneal allografts treated with 
eye drops containing α-MSH promote graft survival (100). These 
two studies have suggested that the use of the soluble molecules 
of immune privilege could be a new therapeutic approach in 
promoting allograft survival. Whether the survival is because of 
α-MSH suppression of inflammation by inhibiting proinflam-
matory cytokine production, or in the activation of Treg cells is 
not known. Use of α-MSH to treat models of autoimmune uveitis 
suggests that both may be its action (101).

CONCLUSiON

There is a need to continue to understand the molecular nature 
of ocular immune privilege. There is a unique molecular relation-
ship between the ocular microenvironment and immune cells 
to suppress inflammation and promote regulatory immunity. 
Although the benefits of ocular immune privilege have been 
seen with corneal allografts, understanding the mechanisms of 
this benefit means extending it to other allografts in other tis-
sues. The potential exists that as more is understood about the 
molecular building blocks of ocular immune privilege that these 
molecules can be applied to extend the survival of all allografts. 
Such a possibility would result in less need for tissue typing, 
and  systemic anti-rejection drugs, while increasing the pool of 
potential allogeneic donors.
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Dendritic cells (DC) are rare, professional antigen-presenting cells with ability to induce 
or regulate alloimmune responses. Regulatory DC (DCreg) with potential to down-mod-
ulate acute and chronic inflammatory conditions that occur in organ transplantation can 
be generated in  vitro under a variety of conditions. Here, we provide a rationale for 
evaluation of DCreg therapy in clinical organ transplantation with the goal of promoting 
sustained, donor-specific hyporesponsiveness, while lowering the incidence and severity 
of rejection and reducing patients’ dependence on anti-rejection drugs. Generation of 
donor- or recipient-derived DCreg that suppress T cell responses and prolong transplant 
survival in rodents or non-human primates has been well-described. Recently, good 
manufacturing practice (GMP)-grade DCreg have been produced at our Institution for 
prospective use in human organ transplantation. We briefly review experience of regu-
latory immune therapy in organ transplantation and describe our experience generating 
and characterizing human monocyte-derived DCreg. We propose a phase I/II safety 
study in which the influence of donor-derived DCreg combined with conventional immu-
nosuppression on subclinical and clinical rejection and host alloimmune responses will 
be examined in detail.

Keywords: dendritic cells, immune regulation, renal transplantation

iNTRODUCTiON

While rates of acute renal transplant rejection have improved dramatically since the advent of 
calcineurin inhibition (CNI) >30 years ago, similar improvement in long-term graft survival has 
not been achieved. This reflects the inability of conventional immunosuppressive agents to prevent 
late graft dysfunction leading to transplant failure (1, 2). Moreover, conventional immunosuppres-
sion is associated with significant morbidity and mortality due to cardiovascular, infectious, and 
pro-neoplastic side effects. Attempts to improve long-term survival, while reducing the burden of 
immunosuppression, have not been particularly fruitful to date. While the recent introduction of 
co-stimulation blockade, although renal-sparing, has resulted in an increased incidence of acute 
rejection (3), use of depleting antibody (Ab) as induction therapy at the time of transplantation has 
also failed to guarantee safe withdrawal of CNI, even in patients with stable graft function (4, 5). 
Furthermore, efforts to induce donor-specific tolerance using hematopoietic stem cell transplanta-
tion, an approach first shown to be successful many years ago in mice (6), have yielded promising 
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results, but many hurdles remain in terms of safety and wide-
spread applicability (7).

Our long-term goal is to develop a novel, safe, donor-specific 
induction (pre-conditioning) approach that will promote 
sustained, donor-specific immune hyporesponsiveness, while 
lowering the incidence and severity of acute and chronic rejec-
tion and reducing patients’ dependence on anti-rejection drugs. 
There is recent evidence that, by exploiting inherent mechanisms 
of immune regulation, it may be possible to achieve this goal. 
Rare, naturally occurring regulatory immune cells, either innate 
[regulatory dendritic cells (DCreg)] or adaptive [regulatory T 
cells (Treg)], critically regulate immunity, can promote antigen 
(Ag)-specific T cell hyporesponsiveness, and prevent adverse 
immune reactions (self-tolerance) in the healthy steady-state 
(8, 9). Moreover, in small animals, the adoptive transfer of 
DCreg (10–13) or Treg (14) can prolong allograft survival and 
induce donor-specific tolerance to organ transplants (15). Other 
regulatory immune cells with potential therapeutic applications 
include regulatory macrophages [Mreg; (16–18)], myeloid-
derived suppressor cells [MDSC; (19)], T regulatory type-1 
cells [Tr1 cells; (20)], and regulatory B cells (21). In addition to 
ex vivo-expanded Treg, now entering phase I/II trials in organ 
transplantation1, a compelling rationale has emerged for clinical 
testing of DCreg, i.e., donor or recipient blood monocyte-derived 
DC generated and modified ex vivo to promote their inherent 
regulatory properties (13, 22–24). Thus, we and others have 
shown that, in rodents, infusion of DCreg of donor or recipient 
origin before or after transplantation, including their use in 
combination with conventional immunosuppressive agents, can 
promote indefinite organ allograft survival. More importantly 
and uniquely, using a robust, clinically relevant, non-human pri-
mate (NHP) model with minimal immunosuppression, we have 
shown that infusion of donor-derived DCreg, 1  week before 
transplant, safely prolongs major histocompatibility complex 
(MHC)-mismatched, life-sustaining renal allograft survival, 
with no evidence of host sensitization (25). Equally significant is 
our demonstration that this therapeutic effect is associated with 
selective attenuation of donor-reactive memory T cell (Tmem) 
responses (25, 26), an important barrier to improvement of 
long-term graft survival (27, 28).

We have now generated good manufacturing practice 
(GMP) grade human DCreg from elutriated peripheral blood 
monocytes and demonstrated both their stable resistance to 
maturation under inflammatory conditions and their ability 
to negatively regulate alloreactive T cell responses. We have 
also established release criteria for clinical testing and plan to 
conduct a safety trial of donor-derived DCreg in adult, de novo, 
live-donor renal transplantation. To our knowledge, this prom-
ising donor-specific induction approach to regulatory immune 
cell therapy in clinical organ transplantation is unique. It is 
distinct from the testing of recipient blood monocyte-derived 
DCreg in live-donor renal transplantation currently being 
conducted at the University of Nantes, France, as part of The 
ONE Study (29, 30).

1 https://clinicaltrials.gov

THe CASe FOR DCreg THeRAPY iN 
ORGAN TRANSPLANTATiON

Extensive pre-clinical studies that we and others have conducted 
in rodents and human surrogate models provide compelling 
evidence of the potential of regulatory immune cell therapy to 
improve allograft outcomes and, in many instances, promote 
donor-specific tolerance (15). The case for testing DCreg gener-
ated ex vivo in human transplantation is particularly compelling 
(13, 23, 24) for the following reasons. First, DC are uniquely well-
equipped, professional Ag-presenting cells (APC) that potently 
regulate innate and adaptive immunity (31, 32). Second, in many 
animal studies, DCreg adoptively transferred to graft recipients 
before transplant induce Ag-specific T cell unresponsiveness (13) 
and promote indefinite organ allograft survival. Moreover, this 
beneficial effect on graft survival does not appear to depend on the 
in vivo persistence of intact DCreg (33–35). Indeed, the apparent 
independence of efficacy and regulatory mechanisms on the per-
sistence of intact donor DCreg may be a distinct advantage over 
other cell therapy approaches. Thus, e.g., Treg therapy may require 
costly repeated infusion of very large numbers of expanded cells 
(36, 37) and their sustained viability/replication may be required 
to achieve a therapeutic effect. Third, an important attribute of 
DCreg is their ability to regulate, in addition to de novo-primed 
effectors, preformed Tmem responses (38–40) that, either due to 
preformed memory to alloAgs or due to molecular mimicry and 
cross-reactivity with human leukocyte antigens (HLA) (41), rep-
resent a major barrier to long-term graft survival in humans (27, 
28, 42, 43). Fourth, in normal humans, local adoptive transfer of 
monocyte-derived DCreg has been shown to induce Ag-specific 
unresponsiveness to nominal Ags (44, 45). Fifth, using minimal 
immunosuppression in a robust NHP model, we have reported 
that a single infusion (3.5−10 × 106/kg) of donor-derived DCreg, 
1 week before transplant, safely prolongs renal allograft survival, 
with no evidence of host sensitization (25). Importantly, this 
effect is associated with attenuation of donor-specific, alloreactive 
Tmem responses (25, 26).

The unique phase I/II trial of donor-derived DCreg that we 
now propose in live-donor renal transplantation is essentially 
a dose-escalation safety trial in which the cell product will be 
administered, once only, concomitant with mycophenolic acid 
(MPA), 1 week before transplantation to patients receiving stand-
ard immunosuppression (CNI, MPA, and steroids). Successful 
safety evaluation of our strategy and any evidence of inhibition of 
early, acute subclinical or clinical rejection, and/or attenuation of 
long-term anti-donor immunity would justify broader evaluation 
of DCreg efficacy in renal transplantation. This would potentially 
address unmet needs of CNI-free immunosuppression and/or 
realize the unmet goal of improving long-term allograft survival, 
without increasing the burden of immunosuppression.

Thus, in future studies, it would be of interest to evaluate the 
influence of DCreg combined with co-stimulation blockade 
(Co-B) to ascertain whether the incidence of rejection episodes 
encountered with Co-B (3) can be reduced. Furthermore, evi-
dence of a beneficial effect of DCreg pre-conditioning in early 
clinical trials might justify evaluation of immunosuppressive 
drug curtailment. It is likely that the DCreg approach can be 
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applied readily in the clinic since, based on pre-clinical testing, a 
single infusion of a relatively small number of DCreg is sufficient 
to achieve the salutary effect. Therefore, neither expensive expan-
sion of the cell product, nor repeated infusion may be necessary. 
It is also probable that donor-derived DCreg will have broader 
clinical applications to encompass recipients of renal and other 
organ transplants from deceased donors. Indeed, rodent studies 
have shown that delaying DCreg infusion until 7 or 14 days post 
transplant is (still) effective in prolonging graft survival (46, 47), 
thus providing ample time to prepare DCreg from deceased 
donors.

NOveLTY OF THe APPROACH

Several closely interrelated aspects of our proposed clinical trial 
of DCreg in live-donor renal transplantation are highly innova-
tive. First, we have generated a highly-purified GMP cell product 
(allograft donor blood monocyte-derived DCreg) distinct from 
those [autologous tolerogenic DC (not pulsed with donor anti-
gen), Treg, Type-1 regulatory T cells (Tr1) cells, Mreg, and mes-
enchymal stem cells] being investigated by other groups, which 
satisfies phenotypic and functional release criteria. The manu-
facturing process is relatively simple, comparatively short and 
highly reproducible. Second, while early pilot studies have begun 
to examine the safety of autologous DCreg in human autoimmune 
diseases (48–50) and organ transplantation (29), this will be the 
first study to test allogeneic (donor-derived) DCreg in human 
organ transplantation. Third, our proposed mechanistic studies 
will address our hypothesis that, in addition to inhibition of de 
novo T cell priming and memory reactivation against donor HLA 
Ags, DCreg infusion will selectively undermine early inflamma-
tion that fuels anti-donor effector/Tmem responses and promote 
specific T cell unresponsiveness to donor that we will monitor 
sequentially in blood and protocol biopsies. We will also gener-
ate novel insight into the persistence/longevity of donor-derived 
DCreg in graft recipients. Of particular relevance, based on our 
NHP transplant data, will be analyses of de novo-primed T cell 
and Tmem phenotype and function and the potential of establish-
ing new biomarkers of donor-specific hyporesponsiveness based 
on the profile of donor-reactive T cells. Fourth, since protocol 
biopsies will be performed, we will gain preliminary insight into 
the influence of DCreg on the incidence of subclinical rejection, 
an important predictor of long-term graft outcomes by analyzing 
graft-infiltrating T lymphocytes. By contrast, traditional immu-
nosuppression trials have focused on the incidence of clinically 
evident rejection as a principal endpoint.

RATiONALe FOR TeSTiNG DCreg iN 
HUMAN KiDNeY TRANSPLANTATiON

Dendritic cells are highly specialized, bone marrow-derived 
APC [first described >40 year ago (51)] that induce or regulate 
innate and adaptive immunity (13, 32, 52–54). While DCreg 
play a crucial role in maintaining self-tolerance in the healthy 
steady-state (8, 55, 56) over the past 20  year, our research and 
others have revealed that these cells can subvert naïve T cell and 
Tmem responses by various mechanisms (13, 22, 57–59) and that 

DCreg can induce or restore T cell tolerance in animal models of 
autoimmune disease (60–63) or organ transplant rejection (12, 
13, 22, 64). In experimental transplantation, both donor-derived 
allogeneic DCreg and donor Ag-pulsed host autologous DCreg 
are effective. Importantly, our work has also confirmed that 
adoptive transfer of donor-derived DCreg can safely regulate T 
cell responses in clinically relevant NHP models, including MHC 
mis-matched organ allograft recipients (25, 65), an important 
bridge to clinical testing. There is also well-documented evidence 
that adoptive transfer of DCreg (in  vitro-generated autologous 
DC) via local administration can control T cell responses to 
model Ags (flu matrix peptide and keyhole limpet hemacyamin) 
in human healthy volunteers (44, 45). Important insights gained 
from in vitro studies and animal models have driven the recent 
development of clinical grade human DCreg (66–70), with the 
potential to treat autoimmune disease or enhance transplant 
survival, while reducing patients’ dependence on immunosup-
pressive drugs. Phase I safety trials, in which autologous DCreg 
have been administered locally, have been conducted in type-1 
diabetes (48) and rheumatoid arthritis (RA) (49, 50), with results 
that emphasize the feasibility, safety, and potential efficacy of 
DCreg therapy.

Based on these findings, we hypothesize that DCreg infu-
sion, as an adjunct to conventional immunosuppression, can 
improve long-term renal allograft and patient outcomes, with 
minimal early adverse events, by targeting both innate immunity 
and preformed memory responses. It also carries the prospect 
of enabling immunosuppression reduction in stable patients or 
converting to CNI-free immunosuppression, without increasing 
the incidence of rejection.

Our laboratory has had a major focus on the characterization 
and therapeutic efficacy of DCreg, especially in experimental 
pancreatic islet, skin, and organ transplantation (46, 64, 71–79). 
These studies include the first observations that these regula-
tory innate immune cells, deficient in MHC and co-stimulatory 
molecule expression and in the production of pro-inflammatory 
cytokines, could subvert alloAg-specific T cell responses, in vitro 
and in vivo (72, 80). In addition, we have extensive experience 
in the characterization and immune profiling of human T lym-
phocytes, including the contribution of naïve T cell and Tmem 
subsets to the alloimmune response, and the effects of induction 
therapy on regulatory T cell and Tmem subsets in relation to 
clinical outcome in kidney transplantation (41, 81).

eviDeNCe iN SUPPORT OF DCreg 
THeRAPY iN TRANSPLANTATiON

We summarize below evidence from rodent, NHP, and human 
studies that support the safety and, in the case of pre-clinical 
models, the efficacy of DCreg in solid-organ transplantation.

Rodent Observations
We and others have shown that combination of pre-transplant (day 
−7) infusion of donor-derived DCreg, either alone or with low 
doses of immunosuppressive agents, can induce donor-specific 
organ transplant tolerance in rodents (12, 74, 82–85). The route of 
administration, dosage, dosage regimen, and duration of dosing 
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TABLe 2 | evidence that use of standard-of-care immunosuppressive 
agents (corticosteroid, MMF, and CNi) together with DCreg promote 
long-term allograft survival in rodents.

Agent Type of allograft 
(species)

Reference

MMF Pancreatic islet (mouse) Adorini et al. (87)

Dexamathasone Renal (rat) Mirenda et al. (84)

Tacrolimus Composite tissue (rat) Eun et al. (88)

Cyclosporine Composite tissue (rat) Ikeguchi et al. (46)

Renal (rat) Mirenda et al. 2004 (84)

MMF, mycophenolate mofetil; CNI, calcineurin inhibitor.

TABLe 1 | Promotion of indefinite heart or renal allograft survival in rodents by infusion of donor-derived DCreg.

DC 
source

Species DC culture conditions Route of 
injection

when 
administereda

Additional host 
treatment

MST Reference

MoDC rat GM-CSF i.v. Day + 14/15 None >160 days Hayamizu et al. (86)

BMDC mouse GM-CSF + TGFβ i.v. Day-7 Anti-CD40L mAb >100 days (40%) Lu et al. (73)

BMDC mouse Low GM-CSF i.v. Day-7 None >100 days Lutz et al. (12)

BMDC mouse GM-CSF + IL-4 + NF-κB 
ODN + Ad CTLA4Ig

i.v. Day-7 None >100 days (40%) Bonham et al. (74)

BMDC rat GM-CSF + IL-4 i.v. Day-7 ALS >200 days (50%) DePaz et al. (85)

BMDC mouse Low GM-CSF i.v. Day-7 Anti-CD54 
mAb + CTLA4Ig

>100 days Wang et al. (83)

BMDC Ratb GM-CSF + IL-4 + dexamethasone i.v. Day-10 CTLA4Ig + cyclosporine >100 days Mirenda et al. (84)

aIn relation to transplantation on d0.
bRenal transplant.
Ad, adenoviral vector; ALS, anti-lymphocyte serum; BMDC, bone marrow-derived dendritic cells; i.v., intravenous; MoDC, monocyte-derived DC; MST, mean graft survival time; 
ODN, oligodeoxynucleotides decoys.
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(single i.v. infusion of up to 5 × 106 per kg of donor DCreg, 7 days 
prior to transplantation) that we propose in a phase I clinical trial 
are, therefore, supported by experiments in rodents [Table 1 and 
(12, 73, 74, 82–86)] and NHP (25). It is also important to note that 
use of conventional “standard of care” (SOC) immunosuppressive 
agents (MPA, CNI, or steroids), together with DCreg, promotes 
long-term allograft survival in rodents [Table 2 and (46, 84, 87, 
88)]. This is of direct relevance to the use of SOC immunosup-
pressive therapy in our proposed clinical trial.

NHP Observations
Non-human primate transplant models are considered important 
predictors of the safety and efficacy of experimental immunosup-
pressive/tolerogenic regimens since the NHP immune system 
more closely resembles that of humans than mice, and since, as 
in humans (but not in mice), Tmem present an important and 
difficult to overcome barrier to induction of donor-specific toler-
ance (41, 89–91). We have used a robust, MHC-mismatched, life-
sustaining rhesus macaque renal transplant model to evaluate the 
safety and efficacy of donor-derived DCreg therapy (25). In these 
studies, DCreg were generated from CD14 immunobead-isolated 
blood monocytes in a single leukapheresis product of the prospec-
tive kidney donor in granulocyte macrophage-colony-stimulating 
factor (GM-CSF) and IL-4. During the 7-day culture period, 
vitamin D3 (VitD3), a nuclear factor κβ inhibitor that impairs DC 
differentiation and maturation (92, 93) and IL-10, that converts 
immature DC into tolerogenic APC (94), were added to promote 

the maturation-resistant DCreg phenotype (95). We tested 
whether DCreg of donor origin, infused prospectively (once only) 
7 days before transplant, could safely prolong graft survival using a 
minimal immunosuppressive regimen of co-stimulation blockade 
[CTLA4Ig  =  cytotoxic T lymphocyte Ag 4:Ig (abatacept)] and 
mechanistic target of rapamycin (mTOR) inhibition [rapamycin 
(sirolimus)]. Our findings (25) clearly show that (1) no adverse 
effects were encountered, (2) no evidence of host sensitization was 
detected, as determined by circulating anti-donor alloAb levels, (3) 
graft survival time was prolonged significantly (threefold increase) 
in the group given DCreg compared to those recipients that did 
not receive the cell infusion, (4) weight loss and proteinuria were 
less marked in DCreg-infused monkeys, and (5) evidence was 
obtained of significant, donor-specific attenuation (exhaustion) 
of Tmem responses as evidenced by upregulation of concomitant 
programed death (PD)-1 and CTLA4 expression (Figure  1), 
reduced memory:regulatory T cell ratios in peripheral blood, and 
reduced CD8+ effector T cell responses in the transplant (25, 26).

Human Observations
Several pharmacologic agents and cytokines have been used to 
generate GMP grade autologous human DCreg for prospective 
clinical use in chronic inflammatory diseases, including type-1 
diabetes, RA, and multiple sclerosis (48–50, 66–68). The safety 
of locally administered, autologous, monocyte-derived DCreg 
in type-1 diabetes or RA patients has been reported (48–50). 
To our knowledge, there has been no human experience with 
donor-derived DCreg in human organ transplantation. However, 
clinical experience with a closely related, donor-derived myeloid 
lineage cell product in either deceased- or live-donor renal 
transplantation is relevant to the proposed investigation of 
DCreg in organ transplantation. Thus, “immunoregulatory 
macrophages” (Mreg) or “transplant acceptance-inducing cells” 
have been investigated by Hutchinson and colleagues in Germany 
as immune-conditioning therapy in human renal transplantation 
(96). The phenotype of these cells identifies them as a subtype 
of partially mature macrophages (96). Initially, they were gener-
ated from deceased-donor splenic mononuclear cells cultured 
in macrophage (M)-CSF and IFNγ for 5 days and administered 
i.v. on post-transplant day 5. All patients (n = 12; with 3–5 total 
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FiGURe 1 | DCreg infusion enhances programed death (PD)-1 and 
cytotoxic T lymphocyte antigen-4 (CTLA4) expression by donor-
reactive CD4+Tmem in renal allograft recipient monkeys. Incidences of 
PD1+ CTLA4+ populations in ex vivo-stimulated CD95+CD4+Tmem from 
representative control and DCreg-treated monkeys (n = 4 monkeys analyzed/
group). Recipient PBMC obtained 28 days after transplantation, were 
co-cultured with either donor or third party stimulators (T cell-depleted 
PBMC) for 5 days before flow cytometric analysis. The enhanced incidence 
of PD1+CTLA4+Tmem in response to donor, but not third party stimulation 
suggests selective attenuation (exhaustion) of donor-reactive Tmem. 
According to Ezzelarab et al. (25), Figure 5.
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MHC-mis-matches) received ≥0.55 × 106 viable Mreg/kg (range 
0.55–7.52 × 106/kg) and were immunosuppressed at the outset 
with tacrolimus, sirolimus, and glucocorticoids. They were then 
weaned from steroid therapy, if clinically appropriate, on day 28 
post-transplant. Administration of comparatively large numbers 
of these cells (up to 5 × 108 viable cells) via a central line was safe, 
with no evidence of graft-versus-host reactions induced by the 
Mreg or contaminating lymphocyte populations. Furthermore, 
as in our NHP DCreg studies, there was no evidence that human 
Mreg sensitized the recipients to donor Ags, or that the cells 
themselves could otherwise accelerate rejection. Importantly, 
none of the study participants experienced any delayed compli-
cations from Mreg infusion (mean follow-up time 36 months). 
Thus, it was concluded that the infusion of (donor-derived) Mreg 
was practicable and safe in the acute and medium term.

The same group of investigators have also infused donor-
derived Mreg to live-donor kidney transplant recipients (n = 5), 
5 days before renal transplantation (97). A larger number of Mreg 
and a different immunosuppressive regimen [anti-thymocyte 
globulin (ATG), tacrolimus, and steroids] were employed. PBMC 
were isolated from donor leukapheresis products 14 days before 
transplant. On day 9 pre-transplant, non-adherent PBMC from 
leukapheresis products of the prospective graft recipients were 
added (2.107/ml) to the donor-derived Mreg and the co-cultures 
of donor origin Mreg and recipient PBMC maintained for a 
further 4 days until infused (1.74−10.39 × 107 Mreg/kg) 5 days 
before transplant. No complications were observed. Moreover, 
there was no evidence that infusion of donor-derived Mreg 
prior to transplantation could sensitize recipients to donor Ags 
or otherwise accelerate graft rejection. As in the earlier study, it 
was concluded that preoperative treatment of live-donor kidney 

transplant recipients with Mreg was clinically practicable and safe 
in the acute and medium term.

In a further (2011) publication (98), the same group (plus 
additional authors) reported on two live-donor renal transplant 
patients who were given donor-derived Mreg (99) cultured for 
6 days with M-CSF before stimulation with IFNγ for a further 
24  h, and then administered 6 or 7  days before transplant. In 
this case, the Mreg were CD14−/lo, HLA-DR+, CD30−/lo, CD86+, 
CD16−, toll-like receptor (TLR)2−, and CD163−/lo. One patient 
(single HLA-B and HLA-DR mismatches) received 8.0  ×  106 
cells/kg and the other (fully HLA-mismatched) received 
7.1 × 106 cells/kg. Labeling of a proportion of the infused Mreg 
with [111In]-oxine in one patient and whole-body single photon 
emission computed tomography imaging (SPECT) revealed 
that the Mreg located initially in the lungs, but after 2.5 h were 
evident in the circulation and had begun to accumulate in the 
liver and spleen. Twenty-four hours after Mreg infusion, signal 
from the lung had diminished substantially and the cells had 
accumulated in the liver, spleen, and bone marrow. Absence 
of signal from the patient’s urinary tract throughout the 30  h 
follow-up suggested that the majority of labeled infused cells 
remained alive. No unexpected adverse events were observed 
in either patient. At 3 and 2 year, respectively, post-transplant, 
the patients were taking once-daily or twice-weekly tacrolimus. 
Despite early minimization of immunosuppressive therapy, 
neither patient underwent an acute rejection episode during the 
3-year follow-up period.

POTeNTiAL MeCHANiSMS OF THe 
LONG-TeRM MAiNTeNANCe OF 
SUPPReSSiON AFTeR DCreg 
ADMiNiSTRATiON

The in vivo mechanisms whereby infusion of donor (or recipient)-
derived DCreg restrains alloimmunity and promotes long-term 
survival of experimental organ allografts are not well understood. 
In mice, there is evidence that donor-derived DCreg infused 
before transplantation are targeted by host NK cells and, thus, 
short-lived (35). They are reprocessed by quiescent host splenic 
DCs for presentation of alloAg to indirect pathway CD4+ T cells. 
This results in abortive activation and deletion of T effector cells 
without impairing the incidence of indirect CD4+ Foxp3+ Treg, 
thus enhancing the regulatory to effector T cell ratio (33, 100). It 
appears, therefore, that mechanisms that sustain long-term graft 
survival are not dependent on persistence of intact donor DCreg.

PROPOSeD CLiNiCAL TeSTiNG OF DCreg 
iN ReNAL TRANSPLANTATiON

Here, we propose a protocol for the generation and testing of 
donor-derived DCreg in a phase I clinical trial in renal transplant 
recipients receiving conventional immunosuppressive therapy.

Generation, Purity, and Yield of hu DCreg
To ensure sufficient DCreg yields, blood monocytes will 
be obtained and banked in high purity by elutriation from 
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FiGURe 2 | Generation of DCreg from elutriated blood monocytes of 
the prospective renal allograft donor in GM-CSF, vitD3, and iL-10, and 
infusion of the validated cell product into the graft recipient 7 days 
before transplant.
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cryopreserved leukapheresis products of the prospective 
transplant donors approximately 28–15  days before scheduled 
transplantation (Figure 2). Fourteen days before transplantation, 
monocytes will be thawed and DCreg generated for infusion 
into the prospective graft recipient on day-7 (Figure 1). In our 
experience, whole individual leukapheresis products from non-
mobilized, healthy adult volunteers yield 4.3 ± 1.05 × 109 PBMC. 
Recovery of monocytes post-elutriation [consistently ≥90% pure 
with <1% CD3+ T cell contamination (n  =  4)] represents, on 
average, 25% of the total PBMC. The phenotype of the purified 
monocytes, determined by flow cytometry, is HLA-DR+ CD40lo 
CD80lo CD86+, programed death ligand (PD-L) 1lo, CD14+.

The DCreg are generated from thawed monocytes in serum-
free Cell Genix (Cellgro) medium, supplemented with 5% certi-
fied human AB serum and recombinant human (rhu) GM-CSF 
(1000 units/ml) and rhu IL-4. These cytokines are added at the 
start of culture (day 0) and on day 4. VitD3 and rhu IL-10, which 
suppress DC maturation (94, 101, 102), are also added on day 
4. The culture period is 7  days. We consistently generate suf-
ficient, highly purified DCreg from elutriated peripheral blood 
monocytes (yield  =  17  ±  7% of starting monocyte number) 
from a single whole leukapheresis product to administer up to 
2.0−2.5 × 106 per kg to a 70 kg recipient. To obtain larger numbers 
of DCreg for a higher dose, a second donor leukapheresis may 
be required.

The DCreg harvested at day 7 of culture are consistently 
>94% pure, with ≤0.1% contaminating CD3+T lymphocytes 
determined by flow cytometry. It is especially significant that 
the incidence of T cells is so low since these are the cells that 
are of concern regarding risk of graft-versus-host disease. The 
DCreg consistently exhibit an immature phenotype compared to 
control DC (i.e., immature DC generated in DC media without 
VitD3 and IL-10) and are HLA-DR+, CD11c+, CD14−, CD40lo, 
CD80lo, CD86lo, PD-L1hi, CCR7+, CD83lo. High expression of 
PD-L1(=  B7-H1), a negative regulator of T cell responses and 

a consistently high PD-L1:CD86 ratio [determined as: PD-L1 
mean fluorescence intensity (MFI) ÷ isotype control/CD86 (MFI) 
÷ isotype control] conforms to that of DCreg with potential to 
subvert alloreactive T cell responses.

Function of DCreg
Investigation of the function of hu DCreg harvested at 7 days of 
culture, including their responses to the TLR4 ligand bacterial 
lipopolysaccharide (LPS), CD40 ligation, or a pro-inflammatory 
cytokine cocktail, will ensure their regulatory properties. The 
DCreg we have generated display robust resistance to phenotypic 
and functional maturation in response to factors that promote 
the maturation of control DC, confirming that they are refractory 
to stimulation under inflammatory conditions. In particular, the 
inability of DCreg exposed to LPS to release pro-inflammatory 
and immunostimulatory cytokines (tumor necrosis factor 
[TNF]α and IL-12p70) is profoundly inhibited, while production 
of anti-inflammatory IL-10 is preserved, resulting in marked 
reversal of the IL-12:IL-10 and TNFα:IL-10 ratios.

The ability of the DCreg exposed to LPS to induce hypore-
sponsiveness of normal allogeneic T cells is of paramount impor-
tance. Therefore, DCreg (ratio 1 DCreg:40 T cells) should induce 
minimal CD4 and CD8 T cell proliferation, IFNγ and IL-17 
release, or granzyme B production in the responder CD4+ T cells 
over 4 days in culture. This analysis provides further assurance 
of the inability of the DCreg, despite exposure to a potent pro-
inflammatory stimulus (LPS), to stimulate allogeneic effector T 
cell responses. Similarly, marked attenuation of alloreactive CD8+ 
T cell responses is observed.

Thus, we contend that infusion of DCreg that are (1) phenotypi-
cally immature, (2) resistant to maturation under inflammatory 
conditions, and (3) able to induce allogeneic T cell hyporespon-
siveness in  vitro will not induce sensitization of prospective 
recipients following their adoptive in vivo cell transfer and rather, 
will induce donor-specific T cell hyporesponsiveness. Our plan 
to closely monitor study patients for evidence of development of 
donor-specific alloAb production and anti-donor T cell reactivity 
will allow detection of any increase in anti-donor immune effec-
tor activity in the unlikely event it should occur.

Release Criteria for DCreg
The DCreg generated for infusion will undergo rigorous testing 
at specified time points during their manufacture from blood 
monocytes. The following release criteria will be considered as 
crucially important: DCreg yield (sufficient cells to allow infu-
sion of the target number per kilogram), percent purity (>95% 
DC, <1% T cells), and viability (>70%); sterility; DCreg phe-
notype: phenotypic characterization will be performed by flow 
cytometry to monitor CD86 and PD-L1 expression before and 
after LPS stimulation, compared to conventional DC cultured 
in GM-CSF +  IL-4 and not VitD3 and IL-10. High PD-L1 and 
low CD86 expression, before and after LPS stimulation, with a 
PD-L1:CD86 ratio >3.5 (based on pre-clinical results) will be 
used as a release criterion. The 3.5 ratio is based on many analyses 
in which a ratio of 3.5 or above was associated with a cytokine 
profile and T cell stimulatory profile consistent with the induc-
tion of alloreactive T cell hyporesponsiveness. DCreg function: 
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supernatants from cultures (DCreg exposed or not to LPS) will 
be tested by ELISA to assess the lack of IL-12p70/TNF-α and the 
presence of IL-10 production, consistent with their regulatory 
properties and their resistance to maturation. We consider this, 
in addition to the tests above, a simple, reproducible, release 
criterion that can be applied before release of the DCreg product 
for infusion.

DCreg infusion
We plan to test three dose levels of DCreg in three separate groups 
of recipients (n = 5/group, with 4 receiving DCreg and 1 “control” 
subject receiving concomitant pre- and post-transplant immu-
nosuppression without DCreg): dose 1: 0.5 × 106 cells/kg body 
weight; dose 2: 2.5 × 106 cells/kg body weight; dose 3: 5 × 106 
cells/kg body weight.

Concurrent immunosuppressive Drug 
Regimen
The renal transplant recipients will receive combination immuno-
suppressive medications according to SOC at our Institute, with 
two exceptions. First, MPA (that blocks DNA synthesis in T and B 
cells) will be initiated 7 days before transplant, at the time of donor 
DCreg infusion, instead of on the day of transplantation. This is in 
order to minimize any risk of sensitizing the patient. Historically, 
pre-treatment of kidney transplant recipients with unmodified 
donor-specific transfusions and low-dose azathioprine (that acts 
similarly to MPA) significantly reduced the risk of sensitization 
(103–107). Furthermore, MPA augments and maintains the 
regulatory function of DC (108, 109), additionally minimizing 
any safety concern that DCreg could convert to a stimulatory 
phenotype after infusion. Second, Ab induction therapy will 
not be administered at the time of transplant. Patients will be 
maintained on triple immunosuppressive therapy with MPA, 
tacrolimus, and prednisone after transplantation, a combination 
regimen widely applied as SOC at many transplant centers, both 
in North America and elsewhere worldwide and in The ONE 
Study of regulatory immune cell therapy in renal transplantation2, 
a trans-Atlantic (European and North American) trial utilizing 
a unified approach to evaluating immune cell therapy in renal 
transplantation for the reasons outlined above. The immunosup-
pressive drug regimen that we propose differs from the regimen 
(belatacept and rapamycin) that we used together with DCreg 
in NHP (25). This is because belatacept plus rapamycin is not 
SOC in human renal transplantation and it is important to assess 
the safety and efficacy of DCreg in humans in comparison with 
current SOC, as being evaluated in The ONE study, including the 
testing of autologous DCreg.

The rationale for not using ATG, alemtuzumab (anti-CD52 
mAb) or basiliximab (anti-IL-2Rα mAb) as induction therapy 
at transplant, is to avoid potential targeting of DCreg infused 
7  days before transplant or dampening of immunoregulatory 
pathways triggered in host T cells by DCreg. In our NHP study, 
we established that such an approach (pre-transplant immu-
nosuppression at the time of DCreg infusion and avoidance of 

2 http://www.onestudy.org

lymphocyte-depleting induction agents) is both safe and effec-
tive. We have opted, however, not to use a Co-B and/or mTOR 
inhibition-based immunosuppressive regimen, such as that 
employed in our NHP study, because of the high incidence of 
acute rejection episodes, including higher grade rejection, in 
patients receiving Co-B (belatacept), MPA, and steroid therapy 
and increased side effects in clinical trials of rapamycin-based 
regimens, either with CNI or MPA (3, 5). Since our initial pro-
posed clinical trial is a safety trial, we have chosen to adhere to 
a safe and proven immunosuppression regimen that does not 
interfere with DCreg action.

Persistence of Donor DCreg after infusion
Monitoring DCreg persistence in the circulation and their tis-
sue homing is essential for understanding their survival and 
distribution. Flow cytometry techniques to detect donor T cells 
in peripheral blood of transplant recipients with a threshold sen-
sitivity of one donor cell in 1000 recipient cells (0.1%) are readily 
available (110). We plan to identify donor DCreg in whole blood 
at various time points post-transplant, by flow staining for Lin−, 
HLA-DR+, BDCA1(CD1c)+, CD209 (DC SIGN)+, CD11c+ DC, 
in conjunction with staining for a miss-matched donor MHC 
allele. This approach will allow us distinguish between recipient 
and donor-derived DCreg. Others (98) have used [111In]-oxine 
to label allogeneic donor-derived myeloid cells (Mreg) for 
short-term tracking by SPECT imaging following their infusion 
in renal transplant patients and we will consider using this as a 
complementary approach.

Mechanistic and immunological 
Monitoring Analyses of Transplant 
Recipients
Cellular pathways engaged after organ transplantation are com-
plex and involve coordinated interactions between DC as APC 
and distinct effector and regulatory T cell subsets, which can lead 
to a state of Ag-cognate effector cell hyporesponsiveness (graft 
acceptance or quiescence). While it is believed that DCreg are 
effective in blunting Tmem responses (25, 38–40) and de novo-
primed naive T cells (13, 34), it is unclear how long after infu-
sion donor-derived DCreg persist in the peripheral blood or in 
lymphoid tissue of transplant patients, and which mechanism(s) 
(clonal deletion, anergy, regulation, or exhaustion) may contrib-
ute to inducing donor-specific T cell hyporesponsiveness. Our 
hypothesis is that infusion of donor-derived DCreg (even if their 
survival is short-lived) (35) will induce donor-specific T cell 
hyporesponsiveness in the recipient, while nominal T cell recall 
responses [such as those to anti-Epstein–Barr virus (EBV) or 
tetanus toxoid (TT)] will be preserved. This could be mediated 
by decreased donor allo-specific Tmem frequencies and result 
in residual low allo-specific Tmem proliferation, IFN-γ and 
Granzyme B/Perforin production in response to donor Ag stimu-
lation, but with preserved responses to EBV and TT stimulation.

To address these questions, we will collect blood samples 
pre-transplant on day −7 (pre DCreg infusion), on day 0, and 
at 3 months, 1 year, and 2 year post-transplant. We will (1) char-
acterize the phenotype, memory differentiation, and function of 
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different T cell subsets, (2) assess donor-reactive T cell clonality 
and function, (3) identify effector and regulatory cells and mol-
ecules in for-cause and protocol biopsy samples. While no single 
immunologic test can identify peripheral hyporesponsiveness 
after organ transplantation, we will attempt to assess multiple 
essential T cell immune parameters methodically at the same 
time, an approach expected to provide a possible signature and 
mechanism of peripheral anti-donor hyporesponsiveness after 
DCreg infusion.

We will assess T cell expression of co-stimulatory receptors 
[e.g., CD28, inducible costimulator (ICOS) and CD40L], which 
are critical for cross-talk with DC, as well as co-inhibitory recep-
tors [PD-1, TIM3 (T cell immunoglobulin mucin domain 3) and 
cytotoxic T lymphocyte Ag (CTLA)-4] that are up-regulated on 
recently activated/exhausted T cells in conjunction with expres-
sion of Annexin V/7-AAD to track apoptosis. We will also track 
EBV-specific and anti-TT T cells as controls for recall responses. 
We will correlate the levels of memory CD8+, CD4+ TFH, and 
CD4+ Tconv effectors with Treg, DSA titer, plasma cytokines 
and effector and regulatory cell, IgG, and complement (C4d) 
deposition in the allograft. Age-matched healthy controls and 
renal transplant patients who did not receive DCreg infusion will 
serve as controls.

CONCLUSiON

There is extensive evidence that DCreg of donor origin can 
regulate alloimmune responses and promote long-term organ 
transplant survival in rodents. The recent observation that 
DCreg can safely prolong renal transplant survival in a robust, 
pre-clinical NHP model, in which the graft recipients received a 

minimal immunosuppressive regimen, provides further justifica-
tion for a clinical trial. Appropriate culture conditions, leading 
to the manufacture of GMP grade DCreg, which are resistant 
to maturation and have potential to regulate host alloimmunity, 
have been developed for clinical testing.
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Cell-based therapies have been studied extensively in the context of transplantation 
tolerance induction. The most successful protocols have relied on transfusion of bone 
marrow prior to the transplantation of a renal allograft. However, it is not clear that stem 
cells found in bone marrow are required in order to render a transplant candidate immu-
nologically tolerant. Accordingly, mesenchymal stem cells, regulatory myeloid cells, T 
regulatory cells, and other cell types are being tested as possible routes to tolerance 
induction, in the absence of donor-derived stem cells. Early data with each of these cell 
types have been encouraging. However, the induction regimen capable of achieving 
consistent tolerance, while avoiding unwanted sided effects, and which is scalable to 
the human patient, has yet to be identified. Here, we present the status of investigations 
of various tolerogenic cell types and the mechanistic rationale for their use in tolerance 
induction protocols.
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iNTRODUCTiON

Cell-based therapies lie at the root of transplantation tolerance induction protocols. Ray Owen at 
the University of Wisconsin made the early observation that a shared, naturally occurring neonatal 
blood supply was associated with the presence of chimeric red blood cell populations in adult cows 
(1). This, and other, observation prompted Peter Medawar to explore the possibility that donor 
chimerism would allow for acceptance of skin grafts from the same donor through which chimerism 
was established (2, 3). These findings, which led to the Noble Prize in 1960, were exploited by Dr. 
David Sachs (4) and Dr. Sam Strober (5) such that preclinical models (6) for tolerance to solid organ 
transplants could be developed (7–9). These preclinical models led to human clinical trials, which 
have since yielded encouraging results (10, 11).

Indeed, the mechanisms underlying tolerance development are still not clear. Since the 
completion of Medawar’s experiments, investigators have sought to identify the cell populations 
responsible for tolerance induction. Even today, however these cell types and their mechanisms 
remain elusive. Here, we will review some of the cell types, which have demonstrated tolero-
genicity in both experimental and in preclinical models, focusing on the potential for tolerance 
induction in man.
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DONOR BONe MARROw FOR MiXeD 
CHiMeRiSM eSTABLiSHMeNT

Based on the notion that outcomes in human transplantation 
were unacceptable due to the requirement for long-term phar-
macologic immunosuppression, and building on significant 
preclinical data, investigators at Massachusetts General Hospital 
attempted to achieve tolerance in humans. Their approach was 
to first establish lymphohematopoietic chimerism using the 
hematopoietic stem cells of the intended kidney donor, in order 
to establish a milieu where the donor and the recipient existed 
as a “mixed chimera” (10). In their seminal work published in 
the New England Journal of Medicine in 2008, investigators 
described the clinical course of five patients who received con-
ditioning, bone marrow transplantation, and subsequent renal 
transplantation. Transplant recipients were conditioned using 
two preoperative doses of cyclophosphamide, as well as peri-
transplantation anti-CD2, cyclosporine, and thymic irradiation. 
The five patients also underwent bone marrow transplantation 
and renal transplantation. In the group’s original description of 
the bone marrow procurement (11), investigators removed bone 
marrow from the donor’s iliac crest on the day of the transplant 
such that 2.7 × 108 cells/kg were infused into an intended recipi-
ent (11).

As per their initial description, four of the five patients included 
in this study were tolerant, and off all immunosuppression at last 
recorded follow-up (between 2 and 5 years) (10). Interestingly, 
while chimerism was pan-detectable in the first week, four of five 
patients had no detectable chimerism as of day 14, and in the 
remaining one patient only 3.5% chimerism in the granulocyte 
lineage remained until day 21. In this respect, the attempt to 
achieve sustained mixed chimerism failed. Despite this, the 
authors observed excellent clinical results. Given the non-specific 
nature of the bone marrow transplantation, it is difficult to know 
what elements of the cell transplant (bone marrow in this case), 
conditioning regimen, and the organ itself in this early study were 
responsible for long-lasting tolerance. Irrespective of the mecha-
nistic aspects of this initial study, these observations laid down 
the foundation for multiple pursuant studies, which have helped 
to address the tolerogenicity of cell-based transplants aimed at 
tolerance induction (10, 12).

Using donors and recipients who were HLA-matched siblings 
investigators at Stanford University employed a similar cell-based 
tolerance induction protocol for renal transplant recipients. Also 
published in the New England Journal of Medicine, Scandling 
et al. presented a series of 10 patients who underwent treatment 
with anti-thymocyte globulin, cyclosporine, and total lymphoid 
irradiation. Differing somewhat from the Massachusetts General 
Hospital (MGH) experience, an immunomagnetic bead column 
was used to enrich the bone marrow transplant for CD34+ hemat-
opoietic stem cells. The bone marrow donor was first mobilized 
with a 5-day course of subcutaneous G-CSF 6  weeks prior to 
procurement. Their patient then received 8 × 106 CD34+ hemat-
opoietic stem cells in addition to 1 × 106 CD3+ lymphocytes. The 
cell transplant was cryopreserved and administered on day 14, 
following completion of total lymphoid irradiation (13, 14). In 

more recent publications, the Stanford University group has 
shown that 8 of 15 patients completing the tolerance induction 
protocol were chimeric for 6 months or greater and successfully 
weaned from immunosuppression (14). Only four patients were 
not withdrawn from immunosuppression secondary to underly-
ing disease or episodes or rejection (14). Thus, in a well-matched 
cohort, both sustained mixed chimerism and renal transplanta-
tion tolerance could be achieved using this approach.

A third group at Northwestern University has successfully 
implemented human tolerance induction protocols using a dis-
tinct, yet similar cell-based protocol. Again, T cell depletion was 
utilized, however with two doses of alemtuzumab (anti-CD52) 
(15, 16). Tacrolimus in addition to mycophenolate mofetil was 
initiated at the time of transplantation. The first of four bone 
marrow transfusions obtained via iliac crest aspiration were given 
on posttransplantation day 5, followed by repeat transfusions at 
months 3, 6, and 9 (16). Bone marrow donors were mobilized with 
Neuopogen prior to donation, and bone marrow infusions were 
enriched for CD34+ hematopoietic stem cells. Encouragingly, 
five of the institution’s first eight patients were stably tolerant 
of their renal allografts at 1-year posttransplantation (16). The 
Northwestern group has also employed the use of “facilitator 
cells” to augment the chimeric state and tolerogenic milieu, 
although the details of these CD8+ non-T cell types are largely 
unknown as they are considered proprietary (15, 17).

Taken together, it is clear that bone marrow infusions, likely 
through the action of CD34+ hematopoietic stem cells can lead 
to tolerance induction in humans. Importantly, and consistent 
with the initial observations of Starzl and Demetris (18), it may 
not be absolutely necessary for a high-level of chimerism to last 
indefinitely, in order for the transplanted graft to remain tolerated 
(8, 10, 12).

In fact, the loss of chimerism (>1% donor cells) may coincide 
with a totally chimerism-free state, wherein tolerance is sustained 
solely by anergy and immunoregulation induced by the kidney 
graft parenchyma, as suggested by Sachs et al. (7, 8) Alternatively, 
the loss of macro-chimerism may coincide with the onset of 
micro-chimerism (<0.1% donor cells), a setting in which the 
“two-way” model of transplant tolerance, as proposed by Starzl 
and Demetris, is sustained (18, 19). Although Starzl’s theory was 
based on mutual HvG/GvH reactions, and not on Regulatory 
T  cells, a recent report indicates that Treg cells induced in the 
offspring during the transient chimerism stage of pregnancy are 
maintained by constant contact with rare maternal hematopoetic 
cells, indicating a key role for maternal microchimerism in toler-
ance (20).

In addition to the above descriptions of chimerism establish-
ment, exciting new reports have promulgated an alternative 
hypothesis underlying the mechanisms of tolerance induction 
through bone marrow infusion. Authors have shown that CD34+ 
monocytes are capable of inducting apoptosis of donor reactive 
T cells, and that through Treg expansion, this leads to tolerance. 
Regardless of the underlying mechanisms, immune tolerance 
through bone marrow infusion has proven efficacy in humans. 
However, additional potentially less morbid cell-based therapies 
are in development as well (21).
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MeSeNCHYMAL STeM CeLLS

Adapted from bone-marrow transplantation efforts to reduce 
the rate of bone-marrow graft failure following haplo-identical 
transplantation, mesenchymal stem cells may be capable of toler-
ance induction (22, 23). Pluripotent mesenchymal stem cells are 
naturally occurring and exist within the bone marrow (24–28). 
Mesenchymal stem cells are precursors to bone, fat, and other 
connective tissues. Additionally, however, mesenchymal stem 
cells have been shown to support normal hematopoiesis and 
to demonstrate immunosuppressive qualities (22, 25, 27, 28). 
Mesenchymal stem cells can rapidly expand ex vivo, yet they do 
not lose potential to differentiate into multiple cell types (23, 24, 
28). Partially explaining augmentation of haplo-identical bone-
marrow transplantation, mesenchymal stem cells also assist with 
engraftment of hematopoietic stem cells (23).

It has been hypothesized that mesenchymal stem cells partly 
explain the tolerogenic nature of bone marrow transplantation for 
tolerance induction. Accordingly, small and large animal models 
of attempted tolerance induction using these cells have been 
studied (23). In a rodent model of heterotopic heart transplanta-
tion, investigators observed that rapamycin alone led to rejection 
of haplo-mismatched cardiac grafts by 3  weeks. In contrast, 
mesenchymal stem cell infusion as monotherapy inhibited acute 
rejection, and when infusion of mesenchymal stem cells was 
coadministered with rapamycin, recipients enjoyed long-term, 
and rejection-free graft survival (23). Recipients of mesenchymal 
stem cell infusion also displayed minimal antibody production. 
Investigators observed deposition of mesenchymal stem cells into 
the cardiac grafts, as well as increased number of FoxP3+ T regula-
tory cells (23). Mechanistically, authors offered that the intra-graft 
mesenchymal stem cells might (1) protect the donor heart from 
exposure of alloantigens, and (2) provide local immunomodula-
tion for alloreactive T cell clones (23). While mesenchymal stem 
cells are certainly immunosuppressive, infusion of mesenchymal 
stem cells alone was insufficient to overcome the alloreactive host 
responses, suggesting that other factors intrinsic to the bone mar-
row (beyond mesenchymal stem cells) are potentially required for 
tolerance induction. Corroborating these findings, other authors 
have shown that mesenchymal stem cell infusions prolonged 
baboon skin graft survival (29) as well as survival of liver, kidney, 
and heart allografts in small animal models (23, 30–32).

The immunomodulatory effects of mesenchymal stem cells 
have been studied and their interplay with other immunological 
cell types has begun to be characterized (25–27). Indeed, authors 
have recently shown that the differential efficacy of mesenchymal 
stem cells is based on the cell source, suggesting that not all mes-
enchymal stem cells are created equally (33). While a complete 
understanding of the responsible mechanisms is incomplete, 
there is a clear upregulation of FoxP3+ Regulatory T cells result-
ing from mesenchymal stem infusion (34). In addition, the sup-
pressive functions of mesenchymal stem cells are thought to be 
mediated by both cell-to-cell contact as well as through the action 
of soluble factors (35). Additionally, mesenchymal stem cells have 
been shown to down regulate MHC class II and costimulatory 
molecules, resulting expansion of regulatory dendritic cells and 
impaired alloreactive T cell homing, respectively (30, 35–37). 

Perhaps important to clinical applications, recent reports sug-
gest that the timing of mesenchymal stem cell administration is 
important to graft survival. In addition, the immunosuppressive 
effects of mesenchymal stem cells have been shown to overcome 
the effects of graft versus host disease (GVHD) in man (38, 39). 
Indeed, in a rodent renal tolerance model, when mesenchymal 
stem cells were infused after kidney transplantation (versus 
prior), graft dysfunction and neutrophilic infiltration were 
observed within the graft. Unfortunately, however, at present it 
appears that the lifespan of mesenchymal stems cells is limited 
(28, 40). In contrast, significant graft survival prolongation was 
observed with the mesenchymal stem cell administration pre-
ceded organ transplantation (36). More recently, human studies 
of mesenchymal stem cell administration in living donor kidney 
transplantation demonstrated reduced doses of tacrolimus were 
required for those receiving cell therapy in addition to calcineurin 
inhibition (41), and improved graft function at 1 year. In 2015, 
investigators published of a human pilot study of renal trans-
plantation, in which pre- and posttransplantation administration 
of autologous mesenchymal stem cells was found to be not 
only safe, but the infusion lead to upregulation of Tregulatory 
cells in recipients (42). Taken together, mesenchymal stem cells 
seem capable of significant immunosuppression; however, the 
immunosuppressive effects appear incomplete, suggesting that 
additional elements need to be addressed for tolerance induction 
via mesenchymal stem cell adminsitration (41, 43).

EX VIVO eXPANDeD ReGULATORY 
T CeLLS

Regulatory T Cells
Regulatory T cells are perhaps the most widely discussed cell type 
with regard to tolerance induction and their biology has driven 
much of the recent research in transplantation tolerance (12, 
13, 44–50). Regulatory T cells, of which there are many subsets, 
are naturally occurring, and are required for self-tolerance. 
Additionally, Regulatory T  cells have been implicated in the 
immunosuppressive mechanisms described for each of the cell 
types presented in this manuscript (51–60). While some investi-
gators have reasoned that Regulatory T cells may be a marker of 
tolerance rather than the unifying mechanism by which tolerance 
to organ transplants is mediated, few will argue with the idea that 
Regulatory T cells are critical to the success of tolerance protocols. 
Accordingly, recent data show that microchimerism may itself 
sustain antigen-specific Regulatory T cells in a mouse model (20). 
Indeed, the hypothesis that Regulatory T cells represent a marker 
of tolerance is gaining traction among the tolerance community 
(20).

From the standpoint of cell-based tolerance induction 
protocols, Regulatory T  cells can be expanded ex vivo and 
administered exogenously, or transplanted as part of a tolerated 
graft (intra-graft Regulatory T  cells; for caveats, see Section 
“Intragraft Regulatory T cells”). Endogenous Regulatory T cells 
have been studied extensively and are conventionally defined 
as thymic derived (tRegulatory T cells) or peripherally derived 
(pRegulatory T  cells). tRegulatory T  cells and pRegulatory  
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T cells can be distinguished by different cell surface identifiers 
(CD39, CTLA-4, etc.) and by the soluble factors produced (IL-35, 
etc.). Notably, both tRegulatory T cells and pRegulatory T cells 
populations express intranuclear FoxP3, a transcription factor 
thought to be the most specific marker for Regulatory T  cells 
(61–63). Additionally, helios, a member of the Ikaros family of 
transcription factors, has been shown to distinguish thymic from 
peripheral Regulatory T cells (64). While helios is expressed in 
100% of thymocytes, naive rodent and human FoxP3 cells T cells 
generated peripherally via TCR stimulation failed to express 
helios (64). While the exact function of FoxP3 itself it not fully 
known, it is thought to downregulate the nuclear factor of acti-
vated T cells (NFAT) (62).

The mechanisms of Regulatory T cells have been extensively 
studied and recently reviewed (65). There are four primary 
actions, which are thought to mediate the inhibitory function of 
Regulatory T cells: (1) release of soluble, inhibitory factors, (2) 
cytolysis, (3) metabolic dysregulation, and (4) manipulation of 
the function of dendritic cells (65). The soluble factors IL-10 and 
TGF-beta have garnered significant interest in the Treg literature 
as the primary cytokines by which negative inhibition is mediated 
(66, 67). However, it is unclear if the cytokine profile for tRegula-
tory T cells and pRegulatory T cells is similar (65, 68). Building 
data from our laboratory and others have also suggested that 
IL-35 (Tomita et al., unpublished data) (69). It is also becoming 
clear that like natural killer cells and like cytotoxic T cells (CD8+), 
and regulatory T cells inhibit anti-donor responses via cytolysis 
through the activity of perforin and granzyme A (65, 70). While 
not widely discussed as a primary Treg function, regulatory 
T cells are also known to deplete IL-2 from the microenviron-
ment, resulting in metabolic dysregulation of target T cells (71, 
72). The interaction of Regulatory T cells and dendritic cells is 
bidirectional. Below in the review, we will discuss tolerogenic 
monocytes, which are upstream to Regulatory T cells, however 
Regulatory T cells themselves may also affect the maturation of 
suppressive monocytes through the action of CTLA-4 and other 
inhibitory signals (65, 73).

Given their known suppressive role in  vivo following 
protocols of tolerance induction, much interest has focused 
on ex vivo expansion of Regulatory T  cells such that subse-
quent administration might lead to tolerance induction. 
Regulatory T  cells may be generated (induced Regulatory 
T cells or iRegulatory T cells) ex vivo, in the presence of IL-2 
and TGF-beta (61, 67). Indeed preclinical and recent human 
trials have demonstrated that massive expansion of Regulatory 
T cells is possible, ex vivo. For such expansions, costimulation 
of purified Regulatory T  cells (CD4+CD25+CD127lo) with 
CD28 in the presence of rapamycin has been associated with 
a 1000-fold increase in Regulatory T cells over approximately 
3  weeks (74, 75). These protocols were extended to humans 
for the treatment of GVHD, with encouraging results. Notably, 
rapid expansion of Regulatory T cells ex vivo is associated with 
reduction is Regulatory T  cells’ suppressive qualities, despite 
the production of FoxP3 (74, 75). Similar expansion rates 
(also using CD28 costimulation) and findings were observed 
in human studies of autoimmune hepatitis (76, 77) and other 
autoimmune diseases (51).

Ex vivo expansion of Regulatory T cells has been attempted in 
both preclinical and clinical settings (78, 79). In a mouse model, 
investigators were able to expand antigen-specific CD4+CD25+ 
Regulatory T cells using antigen-primed, immature dendritic cells 
(79). Authors then adoptively transferred these antigen-specific 
Regulatory T  cells into skin-graft recipients (78). Investigators 
found that CFSE-labeled Regulatory T  cells migrated into the 
transplanted grafts, that survival was prolonged (stable appear-
ance and hear growth at >150 days), and that animals displayed 
evidence of transplantation tolerance (78). In a preclinical human-
ized mouse model of skin transplantation, investigators recently 
demonstrated that exogenous antigen-specific Treg administra-
tion significantly prolonged skin-graft survival. Importantly, the 
Treg expansion protocol utilizing CD69 and CD71 enrichment 
was thought to be scalable to the clinic (80). In a phase 1 2011 
study, Regulatory T cells were expanded ex vivo from umbilical 
cord blood and administered to partially HLA-matched patients 
with hematologic malignancy. Not only did this prove to be 
safe but also it provided preliminary evidence that recipients of 
these Regulatory T cells had decreased risk of acute GVHD (59). 
Another 2011 study was able to show that Regulatory T  cells 
coinfused with conventional T  cells prevented GVHD without 
the use of posttransplant immunosuppressive therapy (60).

According to the National Institutes of Health, there are four 
open-active trials and one closed-active trial utilizing the infu-
sion of ex vivo generated Regulatory T cells. A European group 
focused on cellular immunotherapy in organ transplantation 
has a phase 2 study in process in which autologous Regulatory 
T cells are removed from living donor renal transplant recipients, 
and after 5 days of expansion, they are reinfused into the recipi-
ent. In a second approved human trial, through the University 
of Minnesota, investigators are using autologous, donor 
alloantigen-specific Regulatory T cells produced from expanded 
Regulatory T  cells obtained from pre-liver transplant patients. 
The Regulatory T cells are then infused back into the recipient 
at regular intervals with the goal of achieving tolerance. A group 
from the University of California San Francisco is using ex vivo 
generated and expanded Regulatory T  cells to assess the effect 
on beta cell function and the autoimmune response in type 1 
diabetes. Another phase 1 trial is investigating the safety, toler-
ability, and effect of three different doses of ex vivo expanded 
polyclonal Regulatory T cells in the cutaneous manifestation of 
patients affected with lupus erythematosus. Another phase 1 trial 
is using ex vivo Regulatory T  cells for the prevention of acute 
GVHD in patients with hematological malignancies following 
hematopoietic stem cell transplantation. Another group from the 
University of California San Francisco is investigating the role of 
ex vivo expanded Regulatory T cells as a therapy for subclinical 
inflammation in kidney transplant patients.

iNTRAGRAFT ReGULATORY T CeLLS

It is widely accepted that immunomodulatory cell types home to 
areas of acute inflammation, and that these cell types establish a 
local, tolerogenic milieu (at least partly) through direct cell-to-
cell interaction (44, 46, 48, 81–86). In a miniature swine animal 
model of MHC class-I disparate tolerance induction, authors 
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have shown that a short course of calcineurin inhibition via 
cyclosporine leads to robust, long-lasting tolerance, which is not 
abrogated by infusion of pro-inflammatory cytokines, removal 
of the tolerated graft, or leukapheresis of peripheral T regulatory 
cells (44–46, 82, 87–89). Indeed, only when the tolerated kidney 
was removed for more than 3  months in this model, during 
which time the animal is kept alive by renal-transplantation with 
a recipient-matched kidney, did tolerance begin to wane (45, 90). 
These data are supported by mechanistic data in small animal 
models of heart transplantation (91). This abrogation of tolerance 
was hastened by sensitization with donor-derived peptide (45).

Given that Regulatory T  cells are known to mediate both 
tolerance induction and tolerance maintenance in the model, 
investigators hypothesized that adoptive transfer of recipient-
derived Regulatory T  cells (both peripherally and from within 
the graft) could lead to stable tolerance in a naive recipient (44, 
46). While adoptive transfer of leukapheresed Regulatory T cells 
alone did not lead to tolerance induction, transplantation of the 
tolerated kidney (with or without peripheral Treg infusion) did 
lead to stable tolerance in the naive recipient (44). These data 
suggested that the intra-graft regulatory components, widely 
thought to be CD4+CD25+FoxP3+ Regulatory T  cells, were 
capable of overcoming the intrinsic alloreactive responses from 
the naive recipient (86, 88, 89, 92). In this way, adoptive transfer 
of intra-graft Regulatory T cells is thought to be capable of toler-
ance induction (46). While important mechanistically, this model 
itself has little direct applicability to the clinic. However, these 
data strongly support the notion that tolerance is mediated by 
immunoregulatory cells and that, were these cells clinically avail-
able, transplantation tolerance might be readily achieved. There 
are questions surrounding this cell population. For example, it 
is unclear what percentage of intagraft cells are antigen specific, 
in contrast to tRegulatory T cells and pRegulatory T cells. If, for 
example, intragraft Regulatory T cells are enriched with donor-
specific Regulatory T  cells, these mechanisms by which this 
occurs might be exploited and extrapolated to the clinic.

CD40L(CD154)/CD40 is one of the key costimulatory 
mechanisms required for T-cell activation. CD40L(CD154) 
monoclonal antibody has used as a blocker of this costimulation 
pathway. After the clinical failure of CD40L(CD154) blockade 
in humans and non-human primates (NHP), the interest in the 
CD40L(CD154)/CD40 axis has reemerged due to promising 
results with CD40 blockade. In mice, donor-specific transfusion 
(DST) plus CD40L(CD154) blockade is a standard and successful 
protocol to induce donor-specific transplant tolerance, involving 
apoptosis, acquisition of regulatory cells, and suppression of 
proliferation of effector cells (93, 94).

Abbas and colleagues (95) have shown that there can be many 
resident T  cells in transplanted organs and tissues, including 
both pro-inflammatory memory T cells and memory Regulatory 
T  cells. On day 30–40 after resolution of an inflammatory 
response in the skin, activated T cells, which had migrated from 
central lymphoid tissue, were maintained in the target tissue, thus 
developing “Treg memory” to that tissue. This period roughly 
corresponds to the kinetics of development of allo-specific, linked 
suppression responses observed in DST and CD40 blockade 
tolerization model (Tomita et  al., submitted). Mechanistically, 

it is thought that anti-CD40L(CD154) leads to rapid changes 
in lymph node architecture and to the migration of Regulatory 
T cells and T effector cells through high-endothelial venules (96).

While capable of tolerance induction, the kinetics of periph-
eral allo-specific regulatory T memory cells into tissues (other 
than the lymphoid tissue) are unknown. In mice, approximately 
5 weeks after DST and CD40 blockade, treatment was sufficient 
for allo-specific regulation to manifest itself in both the lymphoid 
tissue and the non-lymphoid organ (liver) (Tomita et al., submit-
ted). The regulatory phenomenon was mediated by TGF-beta 
and IL-35, and the proportion of regulatory cytokine-producing 
CD4 T cells increased in lymphoid tissues and liver over time. 
However, TGF-beta producing and IL-35 producing cells had 
different migratory kinetics.

Whether Regulatory T cells (intra-graft or otherwise) induce 
tolerance directly or by virtue of facilitating other cell populations 
is unclear. Indeed, recently groups have reported that plasmacy-
toid dendritic cells are capable of facilitating hematopoietic cell 
engraftment. Below, we will address several addition cell popula-
tions, which may induce tolerance; however, it remains unclear if 
their function is by virtue of facilitation or by direct tolerogenic 
effects (17).

ReGULATORY MYeLOiD CeLLS

Myeloid cells derive from hematopoietic stem cells. Rather than a 
rigidly defined group of progressively matured cell types, myeloid 
cells are better conceptualized as a network of cells, which can 
differentiate into various subsets (52). Regulatory myeloid 
cells (RMCs) include three broad classes of cells: regulatory 
macrophages (Mregs), dendritic regulatory cells (DCregs), and 
myeloid derived regulatory cells. In vitro models using human 
cells demonstrate each class of RMC can be generated from 
peripheral blood mononuclear cells (PBMCs) (58). However, the 
signals required for differentiation into each cell type (Mreg vs. 
DCreg vs. MDSC) are different. For example, in vitro differen-
tiation of human PBMC into Mregs is facilitated by interferon 
gamma and macrophage colony stimulating factor (M-CSF). In 
contrast, expansion of DCregs from human PBMC is thought to 
require granulocyte/monocyte (GM)-CSF in addition to IL-4, 
IL-10, and TGF-beta plus other potentially tolerogenic factors. 
Lastly, MDSCs differentiation from PBMCs is supported by 
G-CSF and GM-CSF, and activation of MDSC requires IL-1, IL-6, 
and other pro-inflammatory factors (58).

Regulatory myeloid cells have elicited significant interest 
from the transplantation tolerance community, and clinical 
studies involving the use of DCregs as well as Mregs have been 
undertaken.

Regulatory Macrophages
Regulatory macrophages are a uniquely characterized group of 
cells expressing a profile of distinct group of cellular markers. 
They possess a novel gene-expression profile that is different 
from monocytes, monocyte-derived DCs, resting macrophages, 
IFN-gamma stimulated macrophages, and M-1, M2a-, M2b-, 
and M2c-polarized macrophages (97). They are derived from 
peripherally isolated CD14+ monocytes that are cultured for 
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7 days while exposed to M-CSF, 10% human serum, and a 24-h 
pulse of IFN-gamma (98). The mechanisms by which these cells 
work have been investigated in both mice and humans. Mouse 
Mregs have been shown to inhibit T cell activity in  vitro via 
inducible nitric oxide synthase (iNOS). In addition, Mregs delete 
cocultured allogeneic T cells via phagocytosis. In small animal 
models, T cells that avoided phagocytosis developed an impaired 
ability to secrete IL-2 and IFN-gamma (99). Human Mregs have 
been found to be potently suppressive of T cell proliferation 
via IFN-gamma induced indoleamine 2,3-dioxygenase (IDO) 
activity and contact-dependent deletion of activated T  cells 
(100). Riquelme and colleagues were able to demonstrate that a 
one-time intravenous dose of donor-derived Mregs given 8 days 
before cardiac transplantation in mice was able to significantly 
prolong allograft survival in immunocompetent recipients. The 
graft survival was antigen-specific as graft survival. Indeed, 
recipient Mreg infusions (and third party controls) yielded no 
survival prolongation (99). This mechanism appeared to be 
iNOS independent.

Regulatory macrophages are an attractive option for cell-
based tolerance induction in human recipients. A number 
of clinical trials have begun investigating this approach. The 
TAIC-I clinical trial was a single center, open-label single-arm 
study to assess the safety and tolerability of administering Mreg 
cell preparations to renal transplant recipients. A total of 12 
patients receiving their first renal transplant from a decreased 
donor were enrolled and infused with 0.9–5.0  ×  108 cells via 
central venous access 5  days after transplantation. Mregs 
were isolated by culturing donor splenic mononuclear cells in 
M-CSF and stimulation with IFN-gamma. There were no acute 
or later observed adverse reactions, providing initial clinical 
evidence that this is a safe therapy (101). A subsequent trial, 
TAIC-II, assessed the safety and efficacy of administering Mreg 
cell preparations to recipients of living-donor renal transplants. 
A total of 5 living-related kidney transplant recipients were 
infused with 1.4–5.9  ×  108 cells, received induction therapy 
with anti-thymocyte globulin, in addition to steroid and tac-
rolimus (trough levels of 8–12  ng/ml). Mregs were obtained 
by culturing donor pPBMCs in M-CSF and stimulation with 
IFN-gamma followed by coculture with recipient PBMCs. No 
acute reactions occurred. Steroids were weaned by 8  weeks 
posttransplant, and tacrolimus was decreased to 5–8  ng/ml. 
Four patients were successfully transferred to this dose of tac-
rolimus therapy, with no rejection occurring in two patients. 
Tacrolimus levels were further weaned to <2  ng/ml, and one 
patient experienced rejection at 36 weeks. Following cessation 
of immunosuppression, two patients experienced rejection at 
2 and 34 weeks postcessation (102). Another patient that did 
not qualify for the TAIC-II trial because of measurable levels 
of anti-donor HLA antibodies was described by Hutchinson 
and colleagues. The patient received a presensitized living-
related renal transplant. The patient was infused with 4.8 × 109 
Mregs 17 days prior to transplant, which were isolated via the 
same protocol as the TAIC-II study. The patient was stable at 
27 months posttransplant and interestingly was no longer posi-
tive for the anti-donor HLA antibodies. Serological screening 
determined that the patient remained hepatitis A virus positive 

(was positive before transplant) suggesting that this was a 
specific effect of Mreg treatment (103).

Since these two trials, Hutchinson and colleagues have refined 
their Mreg purification and treated two living-donor kidney 
transplant recipients. The first patient received a single HLA-B 
and DR mismatched-related kidney from her mother and 8 × 106 
donor-derived Mregs via central venous infusion 6 days prior to 
transplant. Azathioprine, steroids, and tacrolimus were started at 
the time of transplantation and at 3 years posttransplant, and the 
patient was stable with no signs of rejection demonstrated via 
biopsy while maintaining tacrolimus trough levels of 4–5 ng/ml. 
The second patient received a fully mismatched kidney from a 
living unrelated donor and 7.1 × 106 Mregs 7 days prior to trans-
plant. Azathioprine, steroids, and tacrolimus were started during 
transplantation. At 3 years posttransplant, the patient was stable 
with no signs of rejection via biopsy and was being maintained on 
tacrolimus with a trough level of 2.7 ng/ml (100). Taken together, 
preliminary evidence suggests that Mreg treatment preoperatively 
in renal transplant patients is safe, and further work needs to be 
done in humans to describe its effectiveness. The ONE Study is 
currently aiming to develop an array of cellular based therapies, 
one of which is Mregs, in order to achieve immunologic tolerance 
in transplant patients (104).

Dendritic Regulatory Cells
Dendritic regulatory cells have been reviewed in detail recently 
(51, 97, 105). In one early human study of DCregs, authors 
observed that in response to injection of 2 × 106 immature DCregs, 
antigen-specific Regulatory T cells were developed, and CD8+ T 
cell effector function was inhibited (58, 106, 107). Additionally, a 
more recent study of DCregs was undertaken in type I diabetes, 
for the purposes of self-tolerance (overcome autoimmunity). 
Authors administered 10 million cells intra-abdominally every 
2 weeks for a total of four injections. DCreg injections were not 
associated with adverse reactions. Perhaps important, investiga-
tors did observe an increase in the percentage of suppressive 
B220+ B cells, which may help suppress autoimmunity in type 1 
diabetes (108).

MDSCs
MDSCs are a heterogeneous, immature population of mono-
cytic- (mMDSCs) and granulocytic (gMDSCs)-derived cells 
that work to negatively regulate the immune system. MDSCs 
are naturally occurring, and are expanded during times of 
stress and inflammation (109). Much of what we know about 
MDSCs comes from cancer biology and the mechanisms by 
which MDSC-mediated immunosuppression occurs are being 
investigated. MDSC-mediated immunosuppression occurs 
through several known mechanisms. Primarily MDSCs have 
been found to express high levels of arginase-1 (produces 
urea and l-ornithine from l-arginine) and iNOS (generates 
NO), which have a well-established role in the suppression of 
T cell function (110, 111). By expressing arginase-1, MDSCs 
deplete local l-arginine levels of arginine, which is required 
by lymphocytes. In addition, MDSCs increase NO production. 
Arginase-1 dependent l-arginine depletion and NO production 
diminish the ability of T cells to proliferate and express MHC 
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class II as well as inducing T cell apoptosis (112–116). MDSCs 
have also been shown to elicit immunosuppressive effects 
through the production of reactive oxygen species (ROS) 
and peroxynitrite (117–121). In the case of the latter, the 
peptide-MHC structure is altered, weakening the peptide’s 
immunogenicity (109). Likely important for potential toler-
ance induction, MDSCs have been found (in the presence of 
IFN-gamma and IL-10) to induce de novo development of 
FoxP3+ Regulatory T cells (116, 122). MDSCs are capable 
of inducing the proliferation of existing Regulatory T cells 
and that depletion of Trges impairs the ability of MDSCs 
to accumulate (116, 123, 124). The mechanisms by which 
MDSCs contribute to immune tolerance is multifactorial, 
involves other cell types and is likely to be subset dependent 
as well (109, 125).

With regard to MDSCs and solid organ transplantation, 
Vanhove and colleagues have shown in a kidney transplant 
rat model that immune tolerance was induced via anti-CD28 
and that MDSCs accumulated within the allograft (126, 127). 
In vitro, the MDSCs were able to induce contact-dependent 
apoptosis of T cells, which induced the expression of iNOS in 
the MDSCs. The MDSCs were also found to have a minimal 
effect on Regulatory T cells that failed to induce iNOS in the 
MDSCs. These results highlight the cross-talk between these 
two cell types in immune tolerance. Lu et  al. demonstrated 
that transplantation of hepatic stellate cells into diabetic mice 
induced MDSCs. In addition, these MDSCs were associated 
with increased levels of iNOS and Arg-1 as well as CD4+ and 
CD8+ T cell suppression. The same group also demonstrated 
that with cotransplantation of 2.5 × 106 MDSCs and islet cells 
into diabetic mice, the survival of the islet cell allograft was 
significantly prolonged (128). In vitro and in vivo data both 
supported the necessity of the B7–H1 interaction for induc-
tion of Regulatory T cells involved in this process. Another 
study using repeated injections of LPS to induce MDSCs 
and evoke tolerance reported prolonged allograft survival 
through T cell suppression via a heme oxygenase-1 dependent 
pathway (129). This group was unable to reverse the T cell 
suppression by neutralizing iNOS or Arg-1, perhaps high-
lighting another immunomodulatory mechanism of MDSCs. 
Recently, Thomson and colleagues from the University of 
Pittsburgh showed that MDSCs can suppress T cell prolifera-
tion and cytokine secretion in non-NHP in vivo (130). This 
has raised the possibility of scaling these MDSC models to the 
NHP, and perhaps humans as well. In summary, much work 
is being done to uncover the mechanisms by which MDSCs 
contribute to establishing immune tolerance and the potential 
for use as a cellular based therapy is promising.

Regarding the potential for MDSCs in human transplanta-
tion, studies are lacking. Encouragingly, recent hematology 
data suggesting that MDCSs may control GVHD, and addi-
tional data demonstrating that MDSCs are upregulated after 
transplantation have highlighted MDSCs as a possible avenue 
to tolerance in humans (131). In a recent review, authors 
suggested that excitement for MDSCs in tolerance should be 
tempered until additional MDSC phenotyping can be per-
formed. Indeed, it is not yet clear if the immunosuppressive 

effects of MDSCs are specific vs. non-specific, and it is not 
yet clear if MDSCs would need to be used synergistically with 
other therapies (127, 131).

B CeLLS

While most studies have focused on the allo-reactive T cell in 
tolerance induction, the roles of allo-reactive B cells are largely 
unknown. However, a subset of B cells known as B regulatory 
cells (Bregs) has been identified as a potent factor in immune 
homeostasis and autoimmunity, and they have been found to 
be involved with maintaining immune tolerance associated with 
Regulatory T cells (132, 133). Recent work is uncovering a pos-
sible role in immunomodulation, which first gained attention 
when mice, deplete of B cells, were shown to develop a severe form 
of experimental autoimmune encephalomyelitis (EAE) (134). 
Further studies demonstrated similar findings in mouse models of 
autoimmune disorders such as collagen induced arthritis, ulcera-
tive colitis, and allergy (135–138). In 2007, investigators at MGH 
(139) reported to achieve tolerance in a heart transplant mouse 
model. They first established B-cell dependent allo-reactive tol-
erance using anti-CD45RB antibody. The phenomenon required 
the interaction of costimulation molecules on B cells with T cells, 
which were CD40+ and CD80/86+. They also reported in islet 
allograft models that mice treated with anti-CD45RB antibody 
plus anti-T cells immunoglobulin domain and mucin domain-1 
(anti-TIM-1) antibody were induced allo-reactive tolerance via 
an IL-10 dependent pathway (140). In addition, they recently 
showed that the Breg response was associated with Treg induc-
tion mediated by TGF-beta (141). A second group at University 
of Pittsburgh has indicated that TIM-1, which is an important 
marker for IL-10+ Bregs (induced by TIM-1 ligation), plays a 
critical role in regulation the immune response (142). A third 
group in Wisconsin has shown in an acute EAE mouse model 
deficient in B cells led to a delay in the emergence of FoxP3+ 
expression Regulatory T cells and the expression of IL-10 in the 
CNS. This was normalized by reconstitution with B cells, but 
was not normalized when reconstituted with B7 deficient B cells. 
The above work highlights a possible role for B cell dependent 
Treg expansion via B7 (143). Cell-to-cell contact has also been 
shown to contribute to B cell-dependent immunosuppression 
(144, 145). A recent study showed that coculture of purified 
Bregs was shown to suppress the proliferation of CD4+ T cells. 
Furthermore, Bregs coculture with Regulatory T cells led to the 
upregulation of FoxP3 and CTLA4 in Regulatory T cells (144). 
This evidence has led to the suggestion that Breg therapy may 
have an indirect role in immune tolerance therapy via ex vivo 
Treg expansion (133).

An immunoregulatory role for B cells has also been 
suggested in human diseases based on findings in patients 
with autoimmune diseases such as multiple sclerosis, lupus, 
rheumatoid arthritis, and even cancer (146–149). Numerous 
studies have begun to suggest that B cells also play an integral 
part in inducing immune tolerance in transplant patients (141, 
150–154). Although there are no studies to date regarding B cell 
therapy in humans, this technique has been quite successful in 
animal models of autoimmune diseases. Particularly exciting is 
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a model that has been developed in which polyclonal B cells are 
transduced with a retrovirus encoding specific antigens (155). 
Using this model, genetically modified B cells were able to 
inhibit autoimmune diseases such as uveitis, multiple sclerosis, 
type 1 diabetes, and rheumatoid arthritis in mouse models (19, 
156–160). These genetically engineered B cells were also shown 
to be capable of inducing the proliferation of FoxP3+ CD4+ 
Regulatory T cells (161). Furthermore, another group was able 
to show that reconstitution with similarly engineered B cells 
in  vivo protected against EAE in mice (162). Taken together, 
the success of B cell therapy for immunosuppression in animal 
models, and the established immunomodulatory role in humans 
suggests that the possibility of B cell-based cellular therapies 
for immune tolerance induction in humans is not out of the 
question.

OTHeR CeLL TYPeS

The above discussion is by no means complete. There are addi-
tional cell types which not included here which may be worthy 
of mention, such as apoptotic cells (163). Apoptotic cell-based 
therapies may improve graft survival and inflammatory diseases. 
Perhaps most excitingly, apoptotic cells may also be effective for 
the treatment of GVHD (163–165).

SYNTHeSiS OF THe DATA

Here, we have presented a number of different cell types, which 
contribute to tolerance induction. However, the presented data 
should be approached carefully. Indeed, mesenchymal stem cells 
or myeloid precursors (and/or MDSCs), which are present in the 
bone marrow may be involved in tolerance induction by cotrans-
plantation of bone marrow and a solid organ. The same is true 
for facilitating cells. However, cell therapies based on regulatory 
T  cells, B cells (Breg), dendritic cells, or macrophages emerge 
from their immunomodulatory properties rather than their sole 
presence in the bone marrow graft. Conversely, apoptotic cell-
based therapies (i.e., administration of donor apoptotic cells) 
or facilitating cells may account for tolerance induction after 
cotransplantation of bone marrow and solid organ. As such, the 
notion of tolerance inducing versus tolerance facilitation may 
require further discussion.
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