

PHP: The ”Right” Way
Your guide to PHP best practices, coding standards, and authoritative
tutorials.

Phil Sturgeon and Josh Lockhart

This book is for sale at http://leanpub.com/phptherightway

This version was published on 2015-01-05

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean
Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction once you do.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported
License

http://leanpub.com/phptherightway
http://leanpub.com
http://leanpub.com/manifesto
http://leanpub.com/manifesto
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

Tweet This Book!
Please help Phil Sturgeon and Josh Lockhart by spreading the word about this book on Twitter!

The suggested hashtag for this book is #phptherightway.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on
Twitter:

https://twitter.com/search?q=#phptherightway

http://twitter.com
https://twitter.com/search?q=%23phptherightway
https://twitter.com/search?q=%23phptherightway

This book is built entirely from the hard work put in from the PHP community via GitHub. There are too
many to name, but you know who you are. Without all the pull requests and suggests from you guys people

would still be durp-clicking around 10 year old tutorials with PHP 4 code examples like it’s 2003.

Contents

1. Getting Started . 1
1.1 Use the Current Stable Version (5.6) . 1
1.2 Built-in web server . 1
1.3 Mac Setup . 1
1.4 Windows Setup . 2

2. Code Style Guide . 3

3. Language Highlights . 5
3.1 Programming Paradigms . 5
3.2 Namespaces . 6
3.3 Standard PHP Library . 7
3.4 Command Line Interface . 7
3.5 Xdebug . 8

4. Dependency Management . 9
4.1 Composer and Packagist . 9
4.2 PEAR . 12

5. Coding Practices . 14
5.1 The Basics . 14
5.2 Date and Time . 14
5.3 Design Patterns . 15
5.4 Working with UTF-8 . 16

6. Dependency Injection . 20
6.1 Basic Concept . 20
6.2 Complex Problem . 21
6.3 Containers . 22
6.4 Further Reading . 22

7. Databases . 24
7.1 MySQL Extension . 24
7.2 PDO Extension . 24
7.3 Interacting with Databases . 26
7.4 Abstraction Layers . 28

CONTENTS

8. Templating . 29
8.1 Benefits . 29
8.2 Plain PHP Templates . 29
8.3 Compiled Templates . 30
8.4 Further Reading . 32

9. Errors and Exceptions . 34
9.1 Errors . 34
9.2 Exceptions . 37

10. Security . 39
10.1 Web Application Security . 39
10.2 Password Hashing . 39
10.3 Data Filtering . 40
10.4 Configuration Files . 41
10.5 Register Globals . 42
10.6 Error Reporting . 42

11. Testing . 44
11.1 Test Driven Development . 44
11.2 Behavior Driven Development . 46
11.3 Complementary Testing Tools . 46

12. Servers and Deployment . 47
12.1 Platform as a Service (PaaS) . 47
12.2 Virtual or Dedicated Servers . 47
12.3 Shared Servers . 48
12.4 Building and Deploying your Application . 48

13. Virtualization . 51
13.1 Vagrant . 51
13.2 Docker . 52

14. Caching . 53
14.1 Opcode Cache . 53
14.2 Object Caching . 53

15. Documenting your Code . 55
15.1 PHPDoc . 55

16. Resources . 57
16.1 From the Source . 57
16.2 People to Follow . 57
16.3 Mentoring . 57
16.4 PHP PaaS Providers . 57
16.5 Frameworks . 58
16.6 Components . 59

CONTENTS

16.7 Other Useful Resources . 60
16.8 Video Tutorials . 60
16.9 Books . 60

17. Community . 62
17.1 PHP User Groups . 62
17.2 PHP Conferences . 62

1. Getting Started

1.1 Use the Current Stable Version (5.6)

If you are getting started with PHP, start with the current stable release of PHP 5.6¹. PHP has added powerful
new features over the last few years. Though the incremental version number difference between 5.2 and 5.6
is small, it represents major improvements. If you are looking for a function or its usage, the documentation
on the php.net² website will have the answer.

1.2 Built-in web server

With PHP 5.4 or newer, you can start learning PHP without installing and configuring a full-fledged web
server. To start the server, run the following command from your terminal in your project’s web root:

1 > php -S localhost:8000

• Learn about the built-in, command line web server³

1.3 Mac Setup

OS X comes prepackaged with PHP but it is normally a little behind the latest stable. Mountain Lion has
5.3.10, Mavericks has 5.4.17 and Yosemite has 5.5.9, but with PHP 5.6 out that is often not good enough.

There are multiple ways to install PHP on OS X.

Install PHP via Homebrew

Homebrew⁴ is a powerful package manager for OS X, which can help you install PHP and various extensions
easily. Homebrew PHP⁵ is a repository that contains PHP-related “formulae” for Homebrew, and will let you
install PHP.

At this point, you can install php53, php54, php55 or php56 using the brew install command, and switch
between them by modifying your PATH variable.

¹http://php.net/downloads.php
²http://php.net/manual/
³http://php.net/features.commandline.webserver
⁴http://brew.sh/
⁵https://github.com/Homebrew/homebrew-php#installation

http://php.net/downloads.php
http://php.net/manual/
http://php.net/features.commandline.webserver
http://brew.sh/
https://github.com/Homebrew/homebrew-php#installation
http://php.net/downloads.php
http://php.net/manual/
http://php.net/features.commandline.webserver
http://brew.sh/
https://github.com/Homebrew/homebrew-php#installation

Getting Started 2

Install PHP via phpbrew

phpbrew⁶ is a tool for installing and managing multiple PHP versions. This can be really useful if two different
applications/projects require different versions of PHP, and you are not using virtual machines.

Compile from Source

Another option that gives you control over the version of PHP you install, is to compile it yourself⁷. In that case
be sure to have installed either Xcode⁸ or Apple’s substitute “Command Line Tools for XCode”⁹ downloadable
from Apple’s Mac Developer Center.

All-in-One Installers

The solutions listed above mainly handle PHP itself, and do not supply things like Apache, Nginx or a SQL
server. “All-in-one” solutions such as MAMP¹⁰ and XAMPP¹¹ will install these other bits of software for you
and tie them all together, but ease of setup comes with a trade-off of flexibility.

1.4 Windows Setup

PHP is available in several ways for Windows. You can download the binaries¹² and until recently you could
use a ‘.msi’ installer. The installer is no longer supported and stops at PHP 5.3.0.

For learning and local development you can use the built in webserver with PHP 5.4+ so you don’t need
to worry about configuring it. If you would like an “all-in-one” which includes a full-blown webserver and
MySQL too then tools such as the Web Platform Installer¹³, Zend Server CE¹⁴, XAMPP¹⁵, EasyPHP¹⁶ and
WAMP¹⁷ will help get a Windows development environment up and running fast. That said, these tools will
be a little different from production so be careful of environment differences if you are working on Windows
and deploying to Linux.

If you need to run your production system on Windows then IIS7 will give you the most stable and best
performance. You can use phpmanager¹⁸ (a GUI plugin for IIS7) to make configuring and managing PHP
simple. IIS7 comes with FastCGI built in and ready to go, you just need to configure PHP as a handler. For
support and additional resources there is a dedicated area on iis.net¹⁹ for PHP.

⁶https://github.com/phpbrew/phpbrew
⁷http://php.net/install.macosx.compile
⁸https://github.com/kennethreitz/osx-gcc-installer
⁹https://developer.apple.com/downloads
¹⁰http://www.mamp.info/en/downloads/
¹¹http://www.apachefriends.org/en/xampp.html
¹²http://windows.php.net
¹³http://www.microsoft.com/web/downloads/platform.aspx
¹⁴http://www.zend.com/en/products/server-ce/
¹⁵http://www.apachefriends.org/en/xampp.html
¹⁶http://www.easyphp.org/
¹⁷http://www.wampserver.com/en/
¹⁸http://phpmanager.codeplex.com/
¹⁹http://php.iis.net/

https://github.com/phpbrew/phpbrew
http://php.net/install.macosx.compile
https://github.com/kennethreitz/osx-gcc-installer
https://developer.apple.com/downloads
http://www.mamp.info/en/downloads/
http://www.apachefriends.org/en/xampp.html
http://windows.php.net
http://www.microsoft.com/web/downloads/platform.aspx
http://www.zend.com/en/products/server-ce/
http://www.apachefriends.org/en/xampp.html
http://www.easyphp.org/
http://www.wampserver.com/en/
http://phpmanager.codeplex.com/
http://php.iis.net/
https://github.com/phpbrew/phpbrew
http://php.net/install.macosx.compile
https://github.com/kennethreitz/osx-gcc-installer
https://developer.apple.com/downloads
http://www.mamp.info/en/downloads/
http://www.apachefriends.org/en/xampp.html
http://windows.php.net
http://www.microsoft.com/web/downloads/platform.aspx
http://www.zend.com/en/products/server-ce/
http://www.apachefriends.org/en/xampp.html
http://www.easyphp.org/
http://www.wampserver.com/en/
http://phpmanager.codeplex.com/
http://php.iis.net/

2. Code Style Guide
The PHP community is large and diverse, composed of innumerable libraries, frameworks, and components.
It is common for PHP developers to choose several of these and combine them into a single project. It is
important that PHP code adhere (as close as possible) to a common code style to make it easy for developers
to mix and match various libraries for their projects.

The Framework Interop Group¹ has proposed and approved a series of style recommendations. Not all of them
related to code-style, but those that do are PSR-0², PSR-1³, PSR-2⁴ and PSR-4⁵. These recommendations are
merely a set of rules that some projects like Drupal, Zend, Symfony, CakePHP, phpBB, AWS SDK, FuelPHP,
Lithium, etc are starting to adopt. You can use them for your own projects, or continue to use your own
personal style.

Ideally you should write PHP code that adheres to a known standard. This could be any combination of PSR’s,
or one of the coding standards made by PEAR or Zend. This means other developers can easily read and work
with your code, and applications that implement the components can have consistency even when working
with lots of third-party code.

• Read about PSR-0⁶
• Read about PSR-1⁷
• Read about PSR-2⁸
• Read about PSR-4⁹
• Read about PEAR Coding Standards¹⁰
• Read about Zend Coding Standards¹¹
• Read about Symfony Coding Standards¹²

You can use PHP_CodeSniffer¹³ to check code against any one of these recommendations, and plugins for text
editors like Sublime Text 2¹⁴ to be given real time feedback.

You can fix the code layout automatically by using one of the two possible tools. One is Fabien Potencier’s PHP
Coding Standards Fixer¹⁵ which has a very well tested codebase. It is bigger and slower, but very stable and

¹http://www.php-fig.org/
²https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
³https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-1-basic-coding-standard.md
⁴https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
⁵https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
⁶https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
⁷https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-1-basic-coding-standard.md
⁸https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
⁹https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
¹⁰http://pear.php.net/manual/en/standards.php
¹¹http://framework.zend.com/wiki/display/ZFDEV2/Coding+Standards
¹²http://symfony.com/doc/current/contributing/code/standards.html
¹³http://pear.php.net/package/PHP_CodeSniffer/
¹⁴https://github.com/benmatselby/sublime-phpcs
¹⁵http://cs.sensiolabs.org/

http://www.php-fig.org/
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-1-basic-coding-standard.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-1-basic-coding-standard.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
http://pear.php.net/manual/en/standards.php
http://framework.zend.com/wiki/display/ZFDEV2/Coding+Standards
http://symfony.com/doc/current/contributing/code/standards.html
http://pear.php.net/package/PHP_CodeSniffer/
https://github.com/benmatselby/sublime-phpcs
http://cs.sensiolabs.org/
http://cs.sensiolabs.org/
http://www.php-fig.org/
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-1-basic-coding-standard.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-1-basic-coding-standard.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-2-coding-style-guide.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
http://pear.php.net/manual/en/standards.php
http://framework.zend.com/wiki/display/ZFDEV2/Coding+Standards
http://symfony.com/doc/current/contributing/code/standards.html
http://pear.php.net/package/PHP_CodeSniffer/
https://github.com/benmatselby/sublime-phpcs
http://cs.sensiolabs.org/

Code Style Guide 4

used by some huge projects like Magento and Symfony. Another option is php.tools¹⁶, which is made popular
by the sublime-phpfmt¹⁷ editor plugin. While being newer, it makes great improvements in performance,
meaning real-time editor fixing is more fluid.

English is preferred for all symbol names and code infrastructure. Comments may be written in any language
easily readable by all current and future parties who may be working on the codebase.

¹⁶https://github.com/dericofilho/php.tools
¹⁷https://github.com/dericofilho/sublime-phpfmt

https://github.com/dericofilho/php.tools
https://github.com/dericofilho/sublime-phpfmt
https://github.com/dericofilho/php.tools
https://github.com/dericofilho/sublime-phpfmt

3. Language Highlights

3.1 Programming Paradigms

PHP is a flexible, dynamic language that supports a variety of programming techniques. It has evolved
dramatically over the years, notably adding a solid object-oriented model in PHP 5.0 (2004), anonymous
functions and namespaces in PHP 5.3 (2009), and traits in PHP 5.4 (2012).

Object-oriented Programming

PHP has a very complete set of object-oriented programming features including support for classes, abstract
classes, interfaces, inheritance, constructors, cloning, exceptions, and more.

• Read about Object-oriented PHP¹
• Read about Traits²

Functional Programming

PHP supports first-class function, meaning that a function can be assigned to a variable. Both user-defined
and built-in functions can be referenced by a variable and invoked dynamically. Functions can be passed as
arguments to other functions (feature called Higher-order functions) and function can return other functions.

Recursion, a feature that allows a function to call itself, is supported by the language, but most of the PHP
code focus on iteration.

New anonymous functions (with support for closures) are present since PHP 5.3 (2009).

PHP 5.4 added the ability to bind closures to an object’s scope and also improved support for callables such
that they can be used interchangeably with anonymous functions in almost all cases.

• Continue reading on Functional Programming in PHP³
• Read about Anonymous Functions⁴
• Read about the Closure class⁵
• More details in the Closures RFC⁶
• Read about Callables⁷
• Read about dynamically invoking functions with call_user_func_array()⁸

¹http://php.net/language.oop5
²http://php.net/language.oop5.traits
³http://phptherightway.com/pages/Functional-Programming.html
⁴http://php.net/functions.anonymous
⁵http://php.net/class.closure
⁶https://wiki.php.net/rfc/closures
⁷http://php.net/language.types.callable
⁸http://php.net/function.call-user-func-array

http://php.net/language.oop5
http://php.net/language.oop5.traits
http://phptherightway.com/pages/Functional-Programming.html
http://php.net/functions.anonymous
http://php.net/class.closure
https://wiki.php.net/rfc/closures
http://php.net/language.types.callable
http://php.net/function.call-user-func-array
http://php.net/language.oop5
http://php.net/language.oop5.traits
http://phptherightway.com/pages/Functional-Programming.html
http://php.net/functions.anonymous
http://php.net/class.closure
https://wiki.php.net/rfc/closures
http://php.net/language.types.callable
http://php.net/function.call-user-func-array

Language Highlights 6

Meta Programming

PHP supports various forms of meta-programming through mechanisms like the Reflection API and Magic
Methods. There are many Magic Methods available like __get(), __set(), __clone(), __toString(), __-
invoke(), etc. that allow developers to hook into class behavior. Ruby developers often say that PHP is lacking
method_missing, but it is available as __call() and __callStatic().

• Read about Magic Methods⁹
• Read about Reflection¹⁰
• Read about Overloading¹¹

3.2 Namespaces

As mentioned above, the PHP community has a lot of developers creating lots of code. This means that one
library’s PHP code may use the same class name as another library. When both libraries are used in the same
namespace, they collide and cause trouble.

Namespaces solve this problem. As described in the PHP reference manual, namespaces may be compared
to operating system directories that namespace files; two files with the same name may co-exist in separate
directories. Likewise, two PHP classes with the same name may co-exist in separate PHP namespaces. It’s as
simple as that.

It is important for you to namespace your code so that it may be used by other developers without fear of
colliding with other libraries.

One recommended way to use namespaces is outlined in PSR-4¹², which aims to provide a standard file, class
and namespace convention to allow plug-and-play code.

In October 2014 the PHP-FIG deprecated the previous autoloading standard: PSR-0¹³, which has been replaced
with PSR-4¹⁴. Currently both are still usable, as PSR-4 requires PHP 5.3 and many PHP 5.2-only projects
currently implement PSR-0. If you’re going to use an autoloader standard for a new application or package
then you almost certainly want to look into PSR-4.

• Read about Namespaces¹⁵
• Read about PSR-0¹⁶
• Read about PSR-4¹⁷

⁹http://php.net/language.oop5.magic
¹⁰http://php.net/intro.reflection
¹¹http://php.net/language.oop5.overloading
¹²https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
¹³https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
¹⁴https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
¹⁵http://php.net/language.namespaces
¹⁶https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
¹⁷https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md

http://php.net/language.oop5.magic
http://php.net/intro.reflection
http://php.net/language.oop5.overloading
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
http://php.net/language.namespaces
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
http://php.net/language.oop5.magic
http://php.net/intro.reflection
http://php.net/language.oop5.overloading
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
http://php.net/language.namespaces
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md

Language Highlights 7

3.3 Standard PHP Library

The Standard PHP Library (SPL) is packaged with PHP and provides a collection of classes and interfaces. It
is made up primarily of commonly needed datastructure classes (stack, queue, heap, and so on), and iterators
which can traverse over these datastructures or your own classes which implement SPL interfaces.

• Read about the SPL¹⁸

3.4 Command Line Interface

PHP was created to write web applications, but is also useful for scripting command line interface (CLI)
programs. Command line PHP programs can help automate common tasks like testing, deployment, and
application administrivia.

CLI PHP programs are powerful because you can use your app’s code directly without having to create and
secure a web GUI for it. Just be sure not to put your CLI PHP scripts in your public web root!

Try running PHP from your command line:

1 > php -i

The -i option will print your PHP configuration just like the phpinfo()¹⁹ function.

The -a option provides an interactive shell, similar to ruby’s IRB or python’s interactive shell. There are a
number of other useful command line options²⁰, too.

Let’s write a simple “Hello, $name” CLI program. To try it out, create a file named hello.php, as below.

1 <?php

2 if ($argc != 2) {

3 echo "Usage: php hello.php [name].\n";

4 exit(1);

5 }

6 $name = $argv[1];

7 echo "Hello, $name\n";

PHP sets up two special variables based on the arguments your script is run with. $argc²¹ is an integer variable
containing the argument count and $argv²² is an array variable containing each argument’s value. The first
argument is always the name of your PHP script file, in this case hello.php.

The exit() expression is used with a non-zero number to let the shell know that the command failed.
Commonly used exit codes can be found here²³.

To run our script, above, from the command line:

¹⁸http://php.net/book.spl
¹⁹http://php.net/function.phpinfo
²⁰http://php.net/features.commandline.options
²¹http://php.net/reserved.variables.argc
²²http://php.net/reserved.variables.argv
²³http://www.gsp.com/cgi-bin/man.cgi?section=3&topic=sysexits

http://php.net/book.spl
http://php.net/function.phpinfo
http://php.net/features.commandline.options
http://php.net/reserved.variables.argc
http://php.net/reserved.variables.argv
http://www.gsp.com/cgi-bin/man.cgi?section=3&topic=sysexits
http://php.net/book.spl
http://php.net/function.phpinfo
http://php.net/features.commandline.options
http://php.net/reserved.variables.argc
http://php.net/reserved.variables.argv
http://www.gsp.com/cgi-bin/man.cgi?section=3&topic=sysexits

Language Highlights 8

1 > php hello.php

2 Usage: php hello.php [name]

3 > php hello.php world

4 Hello, world

• Learn about running PHP from the command line²⁴
• Learn about setting up Windows to run PHP from the command line²⁵

3.5 Xdebug

One of the most useful tools in software development is a proper debugger. It allows you to trace the execution
of your code and monitor the contents of the stack. Xdebug, PHP’s debugger, can be utilized by various IDEs
to provide Breakpoints and stack inspection. It can also allow tools like PHPUnit and KCacheGrind to perform
code coverage analysis and code profiling.

If you find yourself in a bind, willing to resort to var_dump()/print_r(), and you still can’t find the solution
- maybe you need to use the debugger.

Installing Xdebug²⁶ can be tricky, but one of its most important features is “Remote Debugging” - if you
develop code locally and then test it inside a VM or on another server, Remote Debugging is the feature that
you will want to enable right away.

Traditionally, you will modify your Apache VHost or .htaccess file with these values:

1 php_value xdebug.remote_host=192.168.?.?

2 php_value xdebug.remote_port=9000

The “remote host” and “remote port” will correspond to your local computer and the port that you configure
your IDE to listen on. Then it’s just a matter of putting your IDE into “listen for connections” mode, and
loading the URL:

1 http://your-website.example.com/index.php?XDEBUG_SESSION_START=1

Your IDE will now intercept the current state as the script executes, allowing you to set breakpoints and probe
the values in memory.

Graphical debuggers make it very easy to step through code, inspect variables, and eval code against the live
runtime. Many IDE’s have built-in or plugin-based support for graphical debugging with Xdebug. MacGDBp
is a free, open-source, stand-alone Xdebug GUI for Mac.

• Learn more about Xdebug²⁷
• Learn more about MacGDBp²⁸

²⁴http://php.net/features.commandline
²⁵http://php.net/install.windows.commandline
²⁶http://xdebug.org/docs/install
²⁷http://xdebug.org/docs/
²⁸http://www.bluestatic.org/software/macgdbp/

http://php.net/features.commandline
http://php.net/install.windows.commandline
http://xdebug.org/docs/install
http://xdebug.org/docs/
http://www.bluestatic.org/software/macgdbp/
http://php.net/features.commandline
http://php.net/install.windows.commandline
http://xdebug.org/docs/install
http://xdebug.org/docs/
http://www.bluestatic.org/software/macgdbp/

4. Dependency Management
There are a ton of PHP libraries, frameworks, and components to choose from. Your project will likely use
several of them â€” these are project dependencies. Until recently, PHP did not have a good way to manage
these project dependencies. Even if you managed them manually, you still had to worry about autoloaders.
That is no longer an issue.

Currently there are two major package management systems for PHP - Composer¹ and PEAR². Composer is
the main package manager to use for PHP, however for a long time PEAR used to fill that role. Knowing what
PEAR is will be a good idea as you may still find references to it, even if you never use it.

4.1 Composer and Packagist

Composer is a brilliant dependency manager for PHP. List your project’s dependencies in a composer.json
file and, with a few simple commands, Composer will automatically download your project’s dependencies
and setup autoloading for you.

There are already a lot of PHP libraries that are compatible with Composer, ready to be used in your project.
These “packages” are listed on Packagist³, the official repository for Composer-compatible PHP libraries.

How to Install Composer

You can install Composer locally (in your current working directory; though this is no longer recommended)
or globally (e.g. /usr/local/bin). Let’s assume you want to install Composer locally. From your project’s root
directory:

1 curl -s https://getcomposer.org/installer | php

This will download composer.phar (a PHP binary archive). You can run this with php to manage your project
dependencies. If you pipe downloaded code directly into an interpreter, please read the code online first to
confirm it is safe.

Installing on Windows

For Windows users the easiest way to get up and running is to use the ComposerSetup⁴ installer, which
performs a global install and sets up your $PATH so that you can just call composer from any directory in your
command line.

¹/#composer_and_packagist
²/#pear
³http://packagist.org/
⁴https://getcomposer.org/Composer-Setup.exe

http://packagist.org/
https://getcomposer.org/Composer-Setup.exe
/#composer_and_packagist
/#pear
http://packagist.org/
https://getcomposer.org/Composer-Setup.exe

Dependency Management 10

How to Install Composer (manually)

Manually installing Composer is an advanced technique; however, there are various reasons why a developer
might prefer this method vs. using the interactive installation routine. The interactive installation checks your
PHP installation to ensure that:

• a sufficient version of PHP is being used
• .phar files can be executed correctly
• certain directory permissions are sufficient
• certain problematic extensions are not loaded
• certain php.ini settings are set

Since a manual installation performs none of these checks, you have to decide whether the trade-off is worth
it for you. As such, below is how to obtain Composer manually:

1 curl -s https://getcomposer.org/composer.phar -o $HOME/local/bin/composer

2 chmod +x $HOME/local/bin/composer

The path $HOME/local/bin (or a directory of your choice) should be in your $PATH environment variable. This
will result in a composer command being available.

When you come across documentation that states to run Composer as php composer.phar install, you can
substitute that with:

1 composer install

This section will assume you have installed composer globally.

How to Define and Install Dependencies

Composer keeps track of your project’s dependencies in a file called composer.json. You can manage it by
hand if you like, or use Composer itself. The composer require command adds a project dependency and if
you don’t have a composer.json file, one will be created. Here’s an example that adds Twig⁵ as a dependency
of your project.

1 composer require twig/twig:~1.8

Alternatively the composer init command will guide you through creating a full composer.json file for
your project. Either way, once you’ve created your composer.json file you can tell Composer to download
and install your dependencies into the vendor/ directory. This also applies to projects you’ve downloaded
that already provide a composer.json file:

⁵http://twig.sensiolabs.org

http://twig.sensiolabs.org
http://twig.sensiolabs.org

Dependency Management 11

1 composer install

Next, add this line to your application’s primary PHP file; this will tell PHP to use Composer’s autoloader for
your project dependencies.

1 <?php

2 require 'vendor/autoload.php';

Now you can use your project dependencies, and they’ll be autoloaded on demand.

Updating your dependencies

Composer creates a file called composer.lock which stores the exact version of each package it downloaded
when you first ran composer install. If you share your project with other coders and the composer.lock file
is part of your distribution, when they run composer install they’ll get the same versions as you. To update
your dependencies, run composer update.

This is most useful when you define your version requirements flexibly. For instance a version requirement
of ∼1.8 means “anything newer than 1.8.0, but less than 2.0.x-dev”. You can also use the * wildcard as
in 1.8.*. Now Composer’s composer update command will upgrade all your dependencies to the newest
version that fits the restrictions you define.

Update Notifications

To receive notifications about new version releases you can sign up for VersionEye⁶, a web service that can
monitor your GitHub and BitBucket accounts for composer.json files and send emails with new package
releases.

Checking your dependencies for security issues

The Security Advisories Checker⁷ is a web service and a command-line tool, both will examine your
composer.lock file and tell you if you need to update any of your dependencies.

Handling global dependencies with Composer

Composer can also handle global dependencies and their binaries. Usage is straight-forward, all you need to
do is prefix your command with global. If per example you wanted to install PHPUnit and have it available
globally, you’d run the following command:

1 composer global require phpunit/phpunit

This will create a∼/.composer folder where your global dependencies reside. To have the installed packages’
binaries available everywhere, you’d then add the ∼/.composer/vendor/bin folder to your $PATH variable.

• Learn about Composer⁸

⁶https://www.versioneye.com/
⁷https://security.sensiolabs.org/
⁸http://getcomposer.org/doc/00-intro.md

https://www.versioneye.com/
https://security.sensiolabs.org/
http://getcomposer.org/doc/00-intro.md
https://www.versioneye.com/
https://security.sensiolabs.org/
http://getcomposer.org/doc/00-intro.md

Dependency Management 12

4.2 PEAR

A veteran package manager that some PHP developers enjoy is PEAR⁹. It behaves similarly to Composer, but
has some notable differences.

PEAR requires each package to have a specific structure, which means that the author of the package must
prepare it for usage with PEAR. Using a project which was not prepared to work with PEAR is not possible.

PEAR installs packages globally, which means after installing them once they are available to all projects on
that server. This can be good if many projects rely on the same package with the same version but might lead
to problems if version conflicts between two projects arise.

How to install PEAR

You can install PEAR by downloading the .phar installer and executing it. The PEAR documentation has
detailed install instructions¹⁰ for every operating system.

If you are using Linux, you can also have a look at your distribution package manager. Debian and Ubuntu,
for example, have an apt php-pear package.

How to install a package

If the package is listed on the PEAR packages list¹¹, you can install it by specifying the official name:

1 pear install foo

If the package is hosted on another channel, you need to discover the channel first and also specify it when
installing. See the Using channel docs¹² for more information on this topic.

• Learn about PEAR¹³

Handling PEAR dependencies with Composer

If you are already using Composer¹⁴ and you would like to install some PEAR code too, you can use Composer
to handle your PEAR dependencies. This example will install code from pear2.php.net:

⁹http://pear.php.net/
¹⁰http://pear.php.net/manual/en/installation.getting.php
¹¹http://pear.php.net/packages.php
¹²http://pear.php.net/manual/en/guide.users.commandline.channels.php
¹³http://pear.php.net/
¹⁴/#composer_and_packagist

http://pear.php.net/
http://pear.php.net/manual/en/installation.getting.php
http://pear.php.net/packages.php
http://pear.php.net/manual/en/guide.users.commandline.channels.php
http://pear.php.net/
http://pear.php.net/
http://pear.php.net/manual/en/installation.getting.php
http://pear.php.net/packages.php
http://pear.php.net/manual/en/guide.users.commandline.channels.php
http://pear.php.net/
/#composer_and_packagist

Dependency Management 13

1 {

2 "repositories": [

3 {

4 "type": "pear",

5 "url": "http://pear2.php.net"

6 }

7],

8 "require": {

9 "pear-pear2/PEAR2_Text_Markdown": "*",

10 "pear-pear2/PEAR2_HTTP_Request": "*"

11 }

12 }

The first section "repositories" will be used to let Composer know it should “initialize” (or “discover” in
PEAR terminology) the pear repo. Then the require section will prefix the package name like this:

pear-channel/Package

The “pear” prefix is hardcoded to avoid any conflicts, as a pear channel could be the same as another packages
vendor name for example, then the channel short name (or full URL) can be used to reference which channel
the package is in.

When this code is installed it will be available in your vendor directory and automatically available through
the Composer autoloader:

vendor/pear-pear2.php.net/PEAR2_HTTP_Request/pear2/HTTP/Request.php

To use this PEAR package simply reference it like so:

1 <?php

2 $request = new pear2\HTTP\Request();

• Learn more about using PEAR with Composer¹⁵

¹⁵http://getcomposer.org/doc/05-repositories.md#pear

http://getcomposer.org/doc/05-repositories.md#pear
http://getcomposer.org/doc/05-repositories.md#pear

5. Coding Practices

5.1 The Basics

PHP is a vast language that allows coders of all levels the ability to produce code not only quickly, but
efficiently. However while advancing through the language, we often forget the basics that we first learnt (or
overlooked) in favor of short cuts and/or bad habits. To help combat this common issue, this section is aimed
at reminding coders of the basic coding practices within PHP.

• Continue reading on The Basics¹

5.2 Date and Time

PHP has a class named DateTime to help you when reading, writing, comparing or calculating with date and
time. There are many date and time related functions in PHP besides DateTime, but it provides nice object-
oriented interface to most common uses. It can handle time zones, but that is outside this short introduction.

To start working with DateTime, convert raw date and time string to an object with createFromFormat()

factory method or do new DateTime to get the current date and time. Use format() method to convert
DateTime back to a string for output.

1 <?php

2 $raw = '22. 11. 1968';

3 $start = DateTime::createFromFormat('d. m. Y', $raw);

4

5 echo 'Start date: ' . $start->format('Y-m-d') . "\n";

Calculatingwith DateTime is possible with the DateInterval class. DateTime hasmethods like add() and sub()
that take a DateInterval as an argument. Do not write code that expect same number of seconds in every
day, both daylight saving and timezone alterations will break that assumption. Use date intervals instead.
To calculate date difference use the diff() method. It will return new DateInterval, which is super easy to
display.

¹http://phptherightway.com/pages/The-Basics.html

http://phptherightway.com/pages/The-Basics.html
http://phptherightway.com/pages/The-Basics.html

Coding Practices 15

1 <?php

2 // create a copy of $start and add one month and 6 days

3 $end = clone $start;

4 $end->add(new DateInterval('P1M6D'));

5

6 $diff = $end->diff($start);

7 echo 'Difference: ' . $diff->format('%m month, %d days (total: %a days)') . "\n";

8 // Difference: 1 month, 6 days (total: 37 days)

On DateTime objects you can use standard comparison:

1 <?php

2 if ($start < $end) {

3 echo "Start is before end!\n";

4 }

One last example to demonstrate the DatePeriod class. It is used to iterate over recurring events. It can take
two DateTime objects, start and end, and the interval for which it will return all events in between.

1 <?php

2 // output all thursdays between $start and $end

3 $periodInterval = DateInterval::createFromDateString('first thursday');

4 $periodIterator = new DatePeriod($start, $periodInterval, $end, DatePeriod::EXCLUDE_START_\

5 DATE);

6 foreach ($periodIterator as $date) {

7 // output each date in the period

8 echo $date->format('Y-m-d') . ' ';

9 }

• Read about DateTime²
• Read about date formatting³ (accepted date format string options)

5.3 Design Patterns

When you are building your application it is helpful to use common patterns in your code and common
patterns for the overall structure of your project. Using common patterns is helpful because it makes it much
easier to manage your code and lets other developers quickly understand how everything fits together.

If you use a framework then most of the higher level code and project structure will be based on that
framework, so a lot of the pattern decisions are made for you. But it is still up to you to pick out the best
patterns to follow in the code you build on top of the framework. If, on the other hand, you are not using
a framework to build your application then you have to find the patterns that best suit the type and size of
application that you’re building.

²http://php.net/book.datetime
³http://php.net/function.date

http://php.net/book.datetime
http://php.net/function.date
http://php.net/book.datetime
http://php.net/function.date

Coding Practices 16

• Continue reading on Design Patterns⁴

5.4 Working with UTF-8

This section was originally written by Alex Cabal⁵ over at PHP Best Practices⁶ and has been used as the basis
for our own UTF-8 advice.

There’s no one-liner. Be careful, detailed, and consistent.

Right now PHP does not support Unicode at a low level. There are ways to ensure that UTF-8 strings are
processed OK, but it’s not easy, and it requires digging in to almost all levels of the web app, from HTML to
SQL to PHP. We’ll aim for a brief, practical summary.

UTF-8 at the PHP level

The basic string operations, like concatenating two strings and assigning strings to variables, don’t need
anything special for UTF-8. However most string functions, like strpos() and strlen(), do need special
consideration. These functions often have an mb_* counterpart: for example, mb_strpos() and mb_strlen().
These mb_* strings are made available to you via theMultibyte String Extension⁷, and are specifically designed
to operate on Unicode strings.

You must use the mb_* functions whenever you operate on a Unicode string. For example, if you use substr()
on a UTF-8 string, there’s a good chance the result will include some garbled half-characters. The correct
function to use would be the multibyte counterpart, mb_substr().

The hard part is remembering to use the mb_* functions at all times. If you forget even just once, your Unicode
string has a chance of being garbled during further processing.

Not all string functions have an mb_* counterpart. If there isn’t one for what you want to do, then you might
be out of luck.

You should use the mb_internal_encoding() function at the top of every PHP script you write (or at the top
of your global include script), and the mb_http_output() function right after it if your script is outputting to
a browser. Explicitly defining the encoding of your strings in every script will save you a lot of headaches
down the road.

Additionally, many PHP functions that operate on strings have an optional parameter letting you specify
the character encoding. You should always explicitly indicate UTF-8 when given the option. For example,
htmlentities() has an option for character encoding, and you should always specify UTF-8 if dealing
with such strings. Note that as of PHP 5. 4.0, UTF-8 is the default encoding for htmlentities() and
htmlspecialchars().

Finally, If you are building an distributed application and cannot be certain that the mbstring extension will be
enabled, then consider using the patchwork/utf8⁸ Composer package. This will use mbstring if it is available,
and fall back to non UTF-8 functions if not.

⁴http://phptherightway.com/pages/Design-Patterns.html
⁵https://alexcabal.com/
⁶https://phpbestpractices.org/#utf-8
⁷http://php.net/book.mbstring
⁸https://packagist.org/packages/patchwork/utf8

http://phptherightway.com/pages/Design-Patterns.html
https://alexcabal.com/
https://phpbestpractices.org/#utf-8
http://php.net/book.mbstring
https://packagist.org/packages/patchwork/utf8
http://phptherightway.com/pages/Design-Patterns.html
https://alexcabal.com/
https://phpbestpractices.org/#utf-8
http://php.net/book.mbstring
https://packagist.org/packages/patchwork/utf8

Coding Practices 17

UTF-8 at the Database level

If your PHP script accesses MySQL, there’s a chance your strings could be stored as non-UTF-8 strings in the
database even if you follow all of the precautions above.

To make sure your strings go from PHP to MySQL as UTF-8, make sure your database and tables are all set
to the utf8mb4 character set and collation, and that you use the utf8mb4 character set in the PDO connection
string. See example code below. This is critically important.

Note that you must use the utf8mb4 character set for complete UTF-8 support, not the utf8 character set! See
Further Reading for why.

UTF-8 at the browser level

Use the mb_http_output() function to ensure that your PHP script outputs UTF-8 strings to your browser.

The browser will then need to be told by the HTTP response that this page should be considered as UTF-8.
The historic approach to doing that was to include the charset <meta> tag⁹ in your page’s <head> tag. This
approach is perfectly valid, but setting the charset in the Content-Type header is actually much faster¹⁰.

1 <?php

2 // Tell PHP that we're using UTF-8 strings until the end of the script

3 mb_internal_encoding('UTF-8');

4

5 // Tell PHP that we'll be outputting UTF-8 to the browser

6 mb_http_output('UTF-8');

7

8 // Our UTF-8 test string

9 $string = 'Êl síla erin lû e-govaned vîn.';

10

11 // Transform the string in some way with a multibyte function

12 // Note how we cut the string at a non-Ascii character for demonstration purposes

13 $string = mb_substr($string, 0, 15);

14

15 // Connect to a database to store the transformed string

16 // See the PDO example in this document for more information

17 // Note the `set names utf8mb4` commmand!

18 $link = new PDO(

19 'mysql:host=your-hostname;dbname=your-db;charset=utf8mb4',

20 'your-username',

21 'your-password',

22 array(

23 PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION,

24 PDO::ATTR_PERSISTENT => false

25)

⁹http://htmlpurifier.org/docs/enduser-utf8.html
¹⁰https://developers.google.com/speed/docs/best-practices/rendering#SpecifyCharsetEarly

http://htmlpurifier.org/docs/enduser-utf8.html
https://developers.google.com/speed/docs/best-practices/rendering#SpecifyCharsetEarly
http://htmlpurifier.org/docs/enduser-utf8.html
https://developers.google.com/speed/docs/best-practices/rendering#SpecifyCharsetEarly

Coding Practices 18

26);

27

28 // Store our transformed string as UTF-8 in our database

29 // Your DB and tables are in the utf8mb4 character set and collation, right?

30 $handle = $link->prepare('insert into ElvishSentences (Id, Body) values (?, ?)');

31 $handle->bindValue(1, 1, PDO::PARAM_INT);

32 $handle->bindValue(2, $string);

33 $handle->execute();

34

35 // Retrieve the string we just stored to prove it was stored correctly

36 $handle = $link->prepare('select * from ElvishSentences where Id = ?');

37 $handle->bindValue(1, 1, PDO::PARAM_INT);

38 $handle->execute();

39

40 // Store the result into an object that we'll output later in our HTML

41 $result = $handle->fetchAll(\PDO::FETCH_OBJ);

42

43 header('Content-Type: text/html; charset=UTF-8');

44 ?><!doctype html>

45 <html>

46 <head>

47 <meta charset="UTF-8">

48 <title>UTF-8 test page</title>

49 </head>

50 <body>

51 <?php

52 foreach($result as $row){

53 print($row->Body); // This should correctly output our transformed UTF-8 stri\

54 ng to the browser

55 }

56 ?>

57 </body>

58 </html>

Further reading

• PHP Manual: String Operations¹¹
• PHP Manual: String Functions¹²

– strpos()¹³
– strlen()¹⁴
– substr()¹⁵

¹¹http://php.net/language.operators.string
¹²http://php.net/ref.strings
¹³http://php.net/function.strpos
¹⁴http://php.net/function.strlen
¹⁵http://php.net/function.substr

http://php.net/language.operators.string
http://php.net/ref.strings
http://php.net/function.strpos
http://php.net/function.strlen
http://php.net/function.substr
http://php.net/language.operators.string
http://php.net/ref.strings
http://php.net/function.strpos
http://php.net/function.strlen
http://php.net/function.substr

Coding Practices 19

• PHP Manual: Multibyte String Functions¹⁶
– mb_strpos()¹⁷
– mb_strlen()¹⁸
– mb_substr()¹⁹
– mb_internal_encoding()²⁰
– mb_http_output()²¹
– htmlentities()²²
– htmlspecialchars()²³

• PHP UTF-8 Cheatsheet²⁴
• Handling UTF-8 with PHP²⁵
• Stack Overflow: What factors make PHP Unicode-incompatible?²⁶
• Stack Overflow: Best practices in PHP and MySQL with international strings²⁷
• How to support full Unicode in MySQL databases²⁸
• Bringing Unicode to PHP with Portable UTF-8²⁹

¹⁶http://php.net/ref.mbstring
¹⁷http://php.net/function.mb-strpos
¹⁸http://php.net/function.mb-strlen
¹⁹http://php.net/function.mb-substr
²⁰http://php.net/function.mb-internal-encoding
²¹http://php.net/function.mb-http-output
²²http://php.net/function.htmlentities
²³http://php.net/function.htmlspecialchars
²⁴http://blog.loftdigital.com/blog/php-utf-8-cheatsheet
²⁵http://www.phpwact.org/php/i18n/utf-8
²⁶http://stackoverflow.com/questions/571694/what-factors-make-php-unicode-incompatible
²⁷http://stackoverflow.com/questions/140728/best-practices-in-php-and-mysql-with-international-strings
²⁸http://mathiasbynens.be/notes/mysql-utf8mb4
²⁹http://www.sitepoint.com/bringing-unicode-to-php-with-portable-utf8/

http://php.net/ref.mbstring
http://php.net/function.mb-strpos
http://php.net/function.mb-strlen
http://php.net/function.mb-substr
http://php.net/function.mb-internal-encoding
http://php.net/function.mb-http-output
http://php.net/function.htmlentities
http://php.net/function.htmlspecialchars
http://blog.loftdigital.com/blog/php-utf-8-cheatsheet
http://www.phpwact.org/php/i18n/utf-8
http://stackoverflow.com/questions/571694/what-factors-make-php-unicode-incompatible
http://stackoverflow.com/questions/140728/best-practices-in-php-and-mysql-with-international-strings
http://mathiasbynens.be/notes/mysql-utf8mb4
http://www.sitepoint.com/bringing-unicode-to-php-with-portable-utf8/
http://php.net/ref.mbstring
http://php.net/function.mb-strpos
http://php.net/function.mb-strlen
http://php.net/function.mb-substr
http://php.net/function.mb-internal-encoding
http://php.net/function.mb-http-output
http://php.net/function.htmlentities
http://php.net/function.htmlspecialchars
http://blog.loftdigital.com/blog/php-utf-8-cheatsheet
http://www.phpwact.org/php/i18n/utf-8
http://stackoverflow.com/questions/571694/what-factors-make-php-unicode-incompatible
http://stackoverflow.com/questions/140728/best-practices-in-php-and-mysql-with-international-strings
http://mathiasbynens.be/notes/mysql-utf8mb4
http://www.sitepoint.com/bringing-unicode-to-php-with-portable-utf8/

6. Dependency Injection
From Wikipedia¹:

Dependency injection is a software design pattern that allows the removal of hard-coded
dependencies and makes it possible to change them, whether at run-time or compile-time.

This quote makes the concept sound much more complicated than it actually is. Dependency Injection is
providing a component with its dependencies either through constructor injection, method calls or the setting
of properties. It is that simple.

6.1 Basic Concept

We can demonstrate the concept with a simple, yet naive example.

Here we have a Database class that requires an adapter to speak to the database. We instantiate the adapter
in the constructor and create a hard dependency. This makes testing difficult and means the Database class
is very tightly coupled to the adapter.

1 <?php

2 namespace Database;

3

4 class Database

5 {

6 protected $adapter;

7

8 public function __construct()

9 {

10 $this->adapter = new MySqlAdapter;

11 }

12 }

13

14 class MysqlAdapter {}

This code can be refactored to use Dependency Injection and therefore loosen the dependency.

¹http://en.wikipedia.org/wiki/Dependency_injection

http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Dependency_injection

Dependency Injection 21

1 <?php

2 namespace Database;

3

4 class Database

5 {

6 protected $adapter;

7

8 public function __construct(MySqlAdapter $adapter)

9 {

10 $this->adapter = $adapter;

11 }

12 }

13

14 class MysqlAdapter {}

Now we are giving the Database class its dependency rather than it creating it itself. We could even create
a method that would accept an argument of the dependency and set it that way, or if the $adapter property
was public we could set it directly.

6.2 Complex Problem

If you have ever read about Dependency Injection then you have probably seen the terms “Inversion of
Control” or “Dependency Inversion Principle”. These are the complex problems that Dependency Injection
solves.

Inversion of Control

Inversion of Control is as it says, “inverting the control” of a system by keeping organisational control entirely
separate from our objects. In terms of Dependency Injection, this means loosening our dependencies by
controlling and instantiating them elsewhere in the system.

For years, PHP frameworks have been achieving Inversion of Control, however, the question became, which
part of control are you inverting, and where to? For example, MVC frameworks would generally provide a
super object or base controller that other controllers must extend to gain access to its dependencies. This is
Inversion of Control, however, instead of loosening dependencies, this method simply moved them.

Dependency Injection allows us to more elegantly solve this problem by only injecting the dependencies we
need, when we need them, without the need for any hard coded dependencies at all.

Dependency Inversion Principle

Dependency Inversion Principle is the “D” in the S.O.L.I.D set of object oriented design principles that states
one should “Depend on Abstractions. Do not depend on concretions.”. Put simply, this means our dependencies
should be interfaces/contracts or abstract classes rather than concrete implementations. We can easily refactor
the above example to follow this principle.

Dependency Injection 22

1 <?php

2 namespace Database;

3

4 class Database

5 {

6 protected $adapter;

7

8 public function __construct(AdapterInterface $adapter)

9 {

10 $this->adapter = $adapter;

11 }

12 }

13

14 interface AdapterInterface {}

15

16 class MysqlAdapter implements AdapterInterface {}

There are several benefits to the Database class now depending on an interface rather than a concretion.

Consider that you are working in a team and the adapter is being worked on by a colleague. In our first
example, we would have to wait for said colleague to finish the adapter before we could properly mock it for
our unit tests. Now that the dependency is an interface/contract we can happily mock that interface knowing
that our colleague will build the adapter based on that contract.

An even bigger benefit to this method is that our code is now much more scalable. If a year down the line we
decide that we want to migrate to a different type of database, we can write an adapter that implements the
original interface and inject that instead, no more refactoring would be required as we can ensure that the
adapter follows the contract set by the interface.

6.3 Containers

The first thing you should understand about Dependency Injection Containers is that they are not the same
thing as Dependency Injection. A container is a convenience utility that helps us implement Dependency
Injection, however, they can be and often aremisused to implement an anti-pattern, Service Location. Injecting
a DI container as a Service Locator in to your classes arguably creates a harder dependency on the container
than the dependency you are replacing. It also makes your code much less transparent and ultimately harder
to test.

Most modern frameworks have their own Dependency Injection Container that allows you to wire your
dependencies together through configuration. What this means in practice is that you can write application
code that is as clean and de- coupled as the framework it is built on.

6.4 Further Reading

• Learning about Dependency Injection and PHP²

²http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php

http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php
http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php

Dependency Injection 23

• What is Dependency Injection?³
• Dependency Injection: An analogy⁴
• Dependency Injection: Huh?⁵
• Dependency Injection as a tool for testing⁶

³http://fabien.potencier.org/article/11/what-is-dependency-injection
⁴http://mwop.net/blog/260-Dependency-Injection-An-analogy.html
⁵http://net.tutsplus.com/tutorials/php/dependency-injection-huh/
⁶http://philipobenito.github.io/dependency-injection-as-a-tool-for-testing/

http://fabien.potencier.org/article/11/what-is-dependency-injection
http://mwop.net/blog/260-Dependency-Injection-An-analogy.html
http://net.tutsplus.com/tutorials/php/dependency-injection-huh/
http://philipobenito.github.io/dependency-injection-as-a-tool-for-testing/
http://fabien.potencier.org/article/11/what-is-dependency-injection
http://mwop.net/blog/260-Dependency-Injection-An-analogy.html
http://net.tutsplus.com/tutorials/php/dependency-injection-huh/
http://philipobenito.github.io/dependency-injection-as-a-tool-for-testing/

7. Databases
Many times your PHP code will use a database to persist information. You have a few options to connect
and interact with your database. The recommended option until PHP 5.1.0 was to use native drivers such as
mysqli¹, pgsql², mssql³, etc.

Native drivers are great if you are only using one database in your application, but if, for example, you are
using MySQL and a little bit of MSSQL, or you need to connect to an Oracle database, then you will not be
able to use the same drivers. You’ll need to learn a brand new API for each database — and that can get silly.

7.1 MySQL Extension

The mysql⁴ extension for PHP is no longer in active development, and is officially deprecated as of PHP
5.5.0⁵, meaning that it will be removed within the next few releases. If you are using any functions that start
with mysql_* such as mysql_connect() and mysql_query() in your applications then these will simply not
be available in later versions of PHP. This means you will be faced with a rewrite at some point down the
line, so the best option is to replace mysql usage with mysqli⁶ or PDO⁷ in your applications within your own
development schedules so you won’t be rushed later on.

If you are starting from scratch then absolutely do not use the mysql⁸ extension: use the MySQLi
extension⁹, or use PDO¹⁰.

• PHP: Choosing an API for MySQL¹¹
• PDO Tutorial for MySQL Developers¹²

7.2 PDO Extension

PDO¹³ is a database connection abstraction library — built into PHP since 5.1.0 — that provides a common
interface to talk with many different databases. For example, you can use basically identical code to interface
with MySQL or SQLite:

¹http://php.net/mysqli
²http://php.net/pgsql
³http://php.net/mssql
⁴http://php.net/mysql
⁵http://php.net/migration55.deprecated
⁶http://php.net/mysqli
⁷http://php.net/pdo
⁸http://php.net/mysql
⁹http://php.net/mysqli
¹⁰http://php.net/pdo
¹¹http://php.net/mysqlinfo.api.choosing
¹²http://wiki.hashphp.org/PDO_Tutorial_for_MySQL_Developers
¹³http://php.net/pdo

http://php.net/mysqli
http://php.net/pgsql
http://php.net/mssql
http://php.net/mysql
http://php.net/migration55.deprecated
http://php.net/migration55.deprecated
http://php.net/mysqli
http://php.net/pdo
http://php.net/mysql
http://php.net/mysqli
http://php.net/mysqli
http://php.net/pdo
http://php.net/mysqlinfo.api.choosing
http://wiki.hashphp.org/PDO_Tutorial_for_MySQL_Developers
http://php.net/pdo
http://php.net/mysqli
http://php.net/pgsql
http://php.net/mssql
http://php.net/mysql
http://php.net/migration55.deprecated
http://php.net/mysqli
http://php.net/pdo
http://php.net/mysql
http://php.net/mysqli
http://php.net/pdo
http://php.net/mysqlinfo.api.choosing
http://wiki.hashphp.org/PDO_Tutorial_for_MySQL_Developers
http://php.net/pdo

Databases 25

1 <?php

2 // PDO + MySQL

3 $pdo = new PDO('mysql:host=example.com;dbname=database', 'user', 'password');

4 $statement = $pdo->query("SELECT some_field FROM some_table");

5 $row = $statement->fetch(PDO::FETCH_ASSOC);

6 echo htmlentities($row['some_field']);

7

8 // PDO + SQLite

9 $pdo = new PDO('sqlite:/path/db/foo.sqlite');

10 $statement = $pdo->query("SELECT some_field FROM some_table");

11 $row = $statement->fetch(PDO::FETCH_ASSOC);

12 echo htmlentities($row['some_field']);

PDO will not translate your SQL queries or emulate missing features; it is purely for connecting to multiple
types of database with the same API.

More importantly, PDO allows you to safely inject foreign input (e.g. IDs) into your SQL queries without
worrying about database SQL injection attacks. This is possible using PDO statements and bound parameters.

Let’s assume a PHP script receives a numeric ID as a query parameter. This ID should be used to fetch a user
record from a database. This is the wrong way to do this:

1 <?php

2 $pdo = new PDO('sqlite:/path/db/users.db');

3 $pdo->query("SELECT name FROM users WHERE id = " . $_GET['id']); // <-- NO!

This is terrible code. You are inserting a raw query parameter into a SQL query. This will get you hacked
in a heartbeat, using a practice called SQL Injection¹⁴. Just imagine if a hacker passes in an inventive
id parameter by calling a URL like http://domain.com/?id=1%3BDELETE+FROM+users. This will set the
$_GET['id'] variable to 1;DELETE FROM userswhich will delete all of your users! Instead, you should sanitize
the ID input using PDO bound parameters.

1 <?php

2 $pdo = new PDO('sqlite:/path/db/users.db');

3 $stmt = $pdo->prepare('SELECT name FROM users WHERE id = :id');

4 $stmt->bindParam(':id', $_GET['id'], PDO::PARAM_INT); // <-- Automatically sanitized by PDO

5 $stmt->execute();

This is correct code. It uses a bound parameter on a PDO statement. This escapes the foreign input ID before
it is introduced to the database preventing potential SQL injection attacks.

• Learn about PDO¹⁵

¹⁴http://wiki.hashphp.org/Validation
¹⁵http://php.net/book.pdo

http://wiki.hashphp.org/Validation
http://php.net/book.pdo
http://wiki.hashphp.org/Validation
http://php.net/book.pdo

Databases 26

You should also be aware that database connections use up resources and it was not unheard-of to have
resources exhausted if connections were not implicitly closed, however this was more common in other
languages. Using PDO you can implicitly close the connection by destroying the object by ensuring all
remaining references to it are deleted, i.e. set to NULL. If you don’t do this explicitly, PHP will automatically
close the connection when your script ends - unless of course you are using persistent connections.

• Learn about PDO connections¹⁶

7.3 Interacting with Databases

When developers first start to learn PHP, they often end up mixing their database interaction up with their
presentation logic, using code that might look like this:

1

2 <?php

3 foreach ($db->query('SELECT * FROM table') as $row) {

4 echo "".$row['field1']." - ".$row['field1']."";

5 }

6 ?>

7

This is bad practice for all sorts of reasons, mainly that its hard to debug, hard to test, hard to read and it is
going to output a lot of fields if you don’t put a limit on there.

While there are many other solutions to doing this - depending on if you prefer OOP¹⁷ or functional
programming¹⁸ - there must be some element of separation.

Consider the most basic step:

1 <?php

2 function getAllFoos($db) {

3 return $db->query('SELECT * FROM table');

4 }

5

6 foreach (getAllFoos($db) as $row) {

7 echo "".$row['field1']." - ".$row['field1'].""; // BAD!!

8 }

That is a good start. Put those two items in two different files and you’ve got some clean separation.

¹⁶http://php.net/pdo.connections
¹⁷/#object-oriented-programming
¹⁸/#functional-programming

http://php.net/pdo.connections
http://php.net/pdo.connections
/#object-oriented-programming
/#functional-programming

Databases 27

Create a class to place that method in and you have a “Model”. Create a simple .php file to put the presentation
logic in and you have a “View”, which is very nearly MVC¹⁹ - a common OOP architecture for most
frameworks²⁰.

foo.php

1 <?php

2 $db = new PDO('mysql:host=localhost;dbname=testdb;charset=utf8', 'username', 'password');

3

4 // Make your model available

5 include 'models/FooModel.php';

6

7 // Create an instance

8 $fooList = new FooModel($db);

9

10 // Show the view

11 include 'views/foo-list.php';

models/FooModel.php

1 <?php

2 class Foo()

3 {

4 protected $db;

5

6 public function __construct(PDO $db)

7 {

8 $this->db = $db;

9 }

10

11 public function getAllFoos() {

12 return $this->db->query('SELECT * FROM table');

13 }

14 }

views/foo-list.php

1 <?php foreach ($fooList as $row): ?>

2 <?= $row['field1'] ?> - <?= $row['field1'] ?>

3 <?php endforeach ?>

¹⁹http://code.tutsplus.com/tutorials/mvc-for-noobs--net-10488
²⁰/#frameworks

http://code.tutsplus.com/tutorials/mvc-for-noobs--net-10488
http://code.tutsplus.com/tutorials/mvc-for-noobs--net-10488
/#frameworks

Databases 28

This is essentially the same as what most modern frameworks are doing, albeit a little more manual. You
might not need to do all of that every time, but mixing together too much presentation logic and database
interaction can be a real problem if you ever want to unit-test²¹ your application.

PHPBridge²² have a great resource called Creating a Data Class²³ which covers a very similar topic, and is
great for developers just getting used to the concept of interacting with databases.

7.4 Abstraction Layers

Many frameworks provide their own abstraction layer which may or may not sit on top of PDO²⁴. These will
often emulate features for one database system that is missing from another by wrapping your queries in PHP
methods, giving you actual database abstraction instead of just the connection abstraction that PDO provides.
This will of course add a little overhead, but if you are building a portable application that needs to work with
MySQL, PostgreSQL and SQLite then a little overhead will be worth it the sake of code cleanliness.

Some abstraction layers have been built using the PSR-0²⁵ or PSR-4²⁶ namespace standards so can be installed
in any application you like:

• Aura SQL²⁷
• Doctrine2 DBAL²⁸
• Propel²⁹
• ZF2 Db³⁰

²¹/#unit-testing
²²http://phpbridge.org/
²³http://phpbridge.org/intro-to-php/creating_a_data_class
²⁴http://php.net/book.pdo
²⁵https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
²⁶https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
²⁷https://github.com/auraphp/Aura.Sql
²⁸http://www.doctrine-project.org/projects/dbal.html
²⁹http://propelorm.org/
³⁰http://packages.zendframework.com/docs/latest/manual/en/index.html#zend-db

http://phpbridge.org/
http://phpbridge.org/intro-to-php/creating_a_data_class
http://php.net/book.pdo
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://github.com/auraphp/Aura.Sql
http://www.doctrine-project.org/projects/dbal.html
http://propelorm.org/
http://packages.zendframework.com/docs/latest/manual/en/index.html#zend-db
/#unit-testing
http://phpbridge.org/
http://phpbridge.org/intro-to-php/creating_a_data_class
http://php.net/book.pdo
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-4-autoloader.md
https://github.com/auraphp/Aura.Sql
http://www.doctrine-project.org/projects/dbal.html
http://propelorm.org/
http://packages.zendframework.com/docs/latest/manual/en/index.html#zend-db

8. Templating
Templates provide a convenient way of separating your controller and domain logic from your presentation
logic. Templates typically contain the HTML of your application, but may also be used for other formats,
such as XML. Templates are often referred to as “views”, which make up part of the second component of
the modelâ€“viewâ€“controller¹ (MVC) software architecture pattern.

8.1 Benefits

The main benefit to using templates is the clear separation they create between the presentation logic and the
rest of your application. Templates have the sole responsibility of displaying formatted content. They are not
responsible for data lookup, persistence or other more complex tasks. This leads to cleaner, more readable code
which is especially helpful in a team environment where developers work on the server-side code (controllers,
models) and designers work on the client-side code (markup).

Templates also improve the organization of presentation code. Templates are typically placed in a “views”
folder, each defined within a single file. This approach encourages code reuse where larger blocks of code are
broken into smaller, reusable pieces, often called partials. For example, your site header and footer can each
be defined as templates, which are then included before and after each page template.

Finally, depending on the library you use, templates can offer more security by automatically escaping user-
generated content. Some libraries even offer sand-boxing, where template designers are only given access to
white-listed variables and functions.

8.2 Plain PHP Templates

Plain PHP templates are simply templates that use native PHP code. They are a natural choice since PHP is
actually a template language itself. That simply means that you can combine PHP code within other code,
like HTML. This is beneficial to PHP developers as there is no new syntax to learn, they know the functions
available to them, and their code editors already have PHP syntax highlighting and auto-completion built-in.
Further, plain PHP templates tend to be very fast as no compiling stage is required.

Every modern PHP framework employs some kind of template system, most of which use plain PHP by
default. Outside of frameworks, libraries like Plates² or Aura.View³ make working with plain PHP templates
easier by offering modern template functionality such as inheritance, layouts and extensions.

Simple example of a plain PHP template

Using the Plates⁴ library.

¹http://phptherightway.com/pages/Design-Patterns.html#model-view-controller
²http://platesphp.com/
³https://github.com/auraphp/Aura.View
⁴http://platesphp.com/

http://phptherightway.com/pages/Design-Patterns.html#model-view-controller
http://platesphp.com/
https://github.com/auraphp/Aura.View
http://platesphp.com/
http://phptherightway.com/pages/Design-Patterns.html#model-view-controller
http://platesphp.com/
https://github.com/auraphp/Aura.View
http://platesphp.com/

Templating 30

1 <?php // user_profile.php ?>

2

3 <?php $this->insert('header', ['title' => 'User Profile']) ?>

4

5 <h1>User Profile</h1>

6 <p>Hello, <?=$this->escape($name)?></p>

7

8 <?php $this->insert('footer') ?>

Example of plain PHP templates using inheritance

Using the Plates⁵ library.

1 <?php // template.php ?>

2

3 <html>

4 <head>

5 <title><?=$title?></title>

6 </head>

7 <body>

8

9 <main>

10 <?=$this->section('content')?>

11 </main>

12

13 </body>

14 </html>

1 <?php // user_profile.php ?>

2

3 <?php $this->layout('template', ['title' => 'User Profile']) ?>

4

5 <h1>User Profile</h1>

6 <p>Hello, <?=$this->escape($name)?></p>

8.3 Compiled Templates

While PHP has evolved into a mature, object oriented language, it hasn’t improved much⁶ as a templating
language. Compiled templates, like Twig⁷ or Smarty⁸*, fill this void by offering a new syntax that has been

⁵http://platesphp.com/
⁶http://fabien.potencier.org/article/34/templating-engines-in-php
⁷http://twig.sensiolabs.org/
⁸http://www.smarty.net/

http://platesphp.com/
http://fabien.potencier.org/article/34/templating-engines-in-php
http://twig.sensiolabs.org/
http://www.smarty.net/
http://platesphp.com/
http://fabien.potencier.org/article/34/templating-engines-in-php
http://twig.sensiolabs.org/
http://www.smarty.net/

Templating 31

geared specifically to templating. From automatic escaping, to inheritance and simplified control structures,
compiled templates are designed to be easier to write, cleaner to read and safer to use. Compiled templates
can even be shared across different languages, Mustache⁹ being a good example of this. Since these templates
must be compiled there is a slight performance hit, however this is very minimal when proper caching is used.

*While Smarty offers automatic escaping, this feature is NOT enabled by default.

Simple example of a compiled template

Using the Twig¹⁰ library.

1 {% raw %}

2 {% include 'header.html' with {'title': 'User Profile'} %}

3

4 <h1>User Profile</h1>

5 <p>Hello, {{ name }}</p>

6

7 {% include 'footer.html' %}

8 {% endraw %}

Example of compiled templates using inheritance

Using the Twig¹¹ library.

1 {% raw %}

2 // template.html

3

4 <html>

5 <head>

6 <title>{% block title %}{% endblock %}</title>

7 </head>

8 <body>

9

10 <main>

11 {% block content %}{% endblock %}

12 </main>

13

14 </body>

15 </html>

16 {% endraw %}

⁹http://mustache.github.io/
¹⁰http://twig.sensiolabs.org/
¹¹http://twig.sensiolabs.org/

http://mustache.github.io/
http://twig.sensiolabs.org/
http://twig.sensiolabs.org/
http://mustache.github.io/
http://twig.sensiolabs.org/
http://twig.sensiolabs.org/

Templating 32

1 {% raw %}

2 // user_profile.html

3

4 {% extends "template.html" %}

5

6 {% block title %}User Profile{% endblock %}

7 {% block content %}

8 <h1>User Profile</h1>

9 <p>Hello, {{ name }}</p>

10 {% endblock %}

11 {% endraw %}

8.4 Further Reading

Articles & Tutorials

• Templating Engines in PHP¹²
• An Introduction to Views & Templating in CodeIgniter¹³
• Getting Started With PHP Templating¹⁴
• Roll Your Own Templating System in PHP¹⁵
• Master Pages¹⁶
• Working With Templates in Symfony 2¹⁷

Libraries

• Aura.View¹⁸ (native)
• Blade¹⁹ (compiled, framework specific)
• Dwoo²⁰ (compiled)
• Latte²¹ (compiled)
• Mustache²² (compiled)
• PHPTAL²³ (compiled)
• Plates²⁴ (native)

¹²http://fabien.potencier.org/article/34/templating-engines-in-php
¹³http://code.tutsplus.com/tutorials/an-introduction-to-views-templating-in-codeigniter--net-25648
¹⁴http://www.smashingmagazine.com/2011/10/17/getting-started-with-php-templating/
¹⁵http://code.tutsplus.com/tutorials/roll-your-own-templating-system-in-php--net-16596
¹⁶https://laracasts.com/series/laravel-from-scratch/episodes/7
¹⁷http://code.tutsplus.com/tutorials/working-with-templates-in-symfony-2--cms-21172
¹⁸https://github.com/auraphp/Aura.View
¹⁹http://laravel.com/docs/templates
²⁰http://dwoo.org/
²¹https://github.com/nette/latte
²²https://github.com/bobthecow/mustache.php
²³http://phptal.org/
²⁴http://platesphp.com/

http://fabien.potencier.org/article/34/templating-engines-in-php
http://code.tutsplus.com/tutorials/an-introduction-to-views-templating-in-codeigniter--net-25648
http://www.smashingmagazine.com/2011/10/17/getting-started-with-php-templating/
http://code.tutsplus.com/tutorials/roll-your-own-templating-system-in-php--net-16596
https://laracasts.com/series/laravel-from-scratch/episodes/7
http://code.tutsplus.com/tutorials/working-with-templates-in-symfony-2--cms-21172
https://github.com/auraphp/Aura.View
http://laravel.com/docs/templates
http://dwoo.org/
https://github.com/nette/latte
https://github.com/bobthecow/mustache.php
http://phptal.org/
http://platesphp.com/
http://fabien.potencier.org/article/34/templating-engines-in-php
http://code.tutsplus.com/tutorials/an-introduction-to-views-templating-in-codeigniter--net-25648
http://www.smashingmagazine.com/2011/10/17/getting-started-with-php-templating/
http://code.tutsplus.com/tutorials/roll-your-own-templating-system-in-php--net-16596
https://laracasts.com/series/laravel-from-scratch/episodes/7
http://code.tutsplus.com/tutorials/working-with-templates-in-symfony-2--cms-21172
https://github.com/auraphp/Aura.View
http://laravel.com/docs/templates
http://dwoo.org/
https://github.com/nette/latte
https://github.com/bobthecow/mustache.php
http://phptal.org/
http://platesphp.com/

Templating 33

• Smarty²⁵ (compiled)
• Twig²⁶ (compiled)
• ZendView²⁷ (native, framework specific)

²⁵http://www.smarty.net/
²⁶http://twig.sensiolabs.org/
²⁷http://framework.zend.com/manual/2.3/en/modules/zend.view.quick-start.html

http://www.smarty.net/
http://twig.sensiolabs.org/
http://framework.zend.com/manual/2.3/en/modules/zend.view.quick-start.html
http://www.smarty.net/
http://twig.sensiolabs.org/
http://framework.zend.com/manual/2.3/en/modules/zend.view.quick-start.html

9. Errors and Exceptions

9.1 Errors

In many “exception-heavy” programming languages, whenever anything goes wrong an exception will be
thrown. This is certainly a viable way to do things, but PHP is an “exception-light” programming language.
While it does have exceptions and more of the core is starting to use them when working with objects, most
of PHP itself will try to keep processing regardless of what happens, unless a fatal error occurs.

For example:

1 $ php -a

2 php > echo $foo;

3 Notice: Undefined variable: foo in php shell code on line 1

This is only a notice error, and PHP will happily carry on. This can be confusing for those coming from
“exception-heavy” languages, because referencing a missing variable in Python for example will throw an
exception:

1 $ python

2 >>> print foo

3 Traceback (most recent call last):

4 File "<stdin>", line 1, in <module>

5 NameError: name 'foo' is not defined

The only real difference is that Python will freak out over any small thing, so that developers can be super sure
any potential issue or edge-case is caught, whereas PHP will keep on processing unless something extreme
happens, at which point it will throw an error and report it.

Error Severity

PHP has several levels of error severity. The three most common types of messages are errors, notices and
warnings. These have different levels of severity; E_ERROR, E_NOTICE, and E_WARNING. Errors are fatal run-
time errors and are usually caused by faults in your code and need to be fixed as they’ll cause PHP to stop
executing. Notices are advisory messages caused by code that may or may not cause problems during the
execution of the script, execution is not halted. Warnings are non-fatal errors, execution of the script will not
be halted.

Another type of error message reported at compile time are E_STRICT messages. These messages are used to
suggest changes to your code to help ensure best interoperability and forward compatibility with upcoming
versions of PHP.

Errors and Exceptions 35

Changing PHP’s Error Reporting Behaviour

Error Reporting can be changed by using PHP settings and/or PHP function calls. Using the built in PHP
function error_reporting() you can set the level of errors for the duration of the script execution by passing
one of the predefined error level constants, meaning if you only want to see Warnings and Errors - but not
Notices - then you can configure that:

1 <?php

2 error_reporting(E_ERROR | E_WARNING);

You can also control whether or not errors are displayed to the screen (good for development) or hidden, and
logged (good for production). For more information on this check out the Error Reporting¹ section.

Inline Error Suppression

You can also tell PHP to suppress specific errors with the Error Control Operator @. You put this operator at
the beginning of an expression, and any error that’s a direct result of the expression is silenced.

1 <?php

2 echo @$foo['bar'];

This will output $foo['bar'] if it exists, but will simply return a null and print nothing if the variable $foo
or 'bar' key does not exist. Without the error control operator, this expression could create a PHP Notice:

Undefined variable: foo or PHP Notice: Undefined index: bar error.

This might seem like a good idea, but there are a few undesirable tradeoffs. PHP handles expressions using
an @ in a less performant way than expressions without an @. Premature optimization may be the root of
all programming arguments, but if performance is particularly important for your application/library it’s
important to understand the error control operator’s performance implications.

Secondly, the error control operator completely swallows the error. The error is not displayed, and the error
is not sent to the error log. Also, stock/production PHP systems have no way to turn off the error control
operator. While you may be correct that the error you’re seeing is harmless, a different, less harmless error
will be just as silent.

If there’s a way to avoid the error suppression operator, you should consider it. For example, our code above
could be rewritten like this:

1 <?php

2 echo isset($foo['bar']) ? $foo['bar'] : '';

One instance where error suppression might make sense is where fopen() fails to find a file to load. You could
check for the existence of the file before you try to load it, but if the file is deleted after the check and before
the fopen() (which might sound impossible, but it can happen) then fopen() will return false and throw an

¹/#error_reporting

/#error_reporting

Errors and Exceptions 36

error. This is potentially something PHP should resolve, but is one case where error suppression might seem
like the only valid solution.

Earlier we mentioned there’s no way in a stock PHP system to turn off the error control operator. However,
Xdebug² has an xdebug.scream ini setting which will disable the error control operator. You can set this via
your php.ini file with the following.

1 xdebug.scream = On

You can also set this value at runtime with the ini_set function

1 <?php

2 ini_set('xdebug.scream', '1')

The “Scream³” PHP extension offers similar functionality to Xdebug’s, although Scream’s ini setting is named
scream.enabled.

This is most useful when you’re debugging code and suspect an informative error is suppressed. Use scream
with care, and as a temporary debugging tool. There’s lots of PHP library code that may not work with the
error control operator disabled.

• Error Control Operators⁴
• SitePoint⁵
• Xdebug⁶
• Scream⁷

ErrorException

PHP is perfectly capable of being an “exception-heavy” programming language, and only requires a few lines
of code to make the switch. Basically you can throw your “errors” as “exceptions” using the ErrorException
class, which extends the Exception class.

This is a common practice implemented by a large number of modern frameworks such as Symfony and
Laravel. By default Laravel will display all errors as exceptions using the Whoops!⁸ package if the app.debug
switch is turned on, then hide them if the switch is turned off.

By throwing errors as exceptions in development you can handle them better than the usual result, and if you
see an exception during development you can wrap it in a catch statement with specific instructions on how
to handle the situation. Each exception you catch instantly makes your application that little bit more robust.

More information on this and details on how to use ErrorException with error handling can be found at
ErrorException Class⁹.

²http://xdebug.org/docs/basic
³http://php.net/book.scream
⁴http://php.net/language.operators.errorcontrol
⁵http://www.sitepoint.com/
⁶http://xdebug.org/docs/basic
⁷http://php.net/book.scream
⁸http://filp.github.io/whoops/
⁹http://php.net/class.errorexception

http://xdebug.org/docs/basic
http://php.net/book.scream
http://php.net/language.operators.errorcontrol
http://www.sitepoint.com/
http://xdebug.org/docs/basic
http://php.net/book.scream
http://filp.github.io/whoops/
http://php.net/class.errorexception
http://xdebug.org/docs/basic
http://php.net/book.scream
http://php.net/language.operators.errorcontrol
http://www.sitepoint.com/
http://xdebug.org/docs/basic
http://php.net/book.scream
http://filp.github.io/whoops/
http://php.net/class.errorexception

Errors and Exceptions 37

• Error Control Operators¹⁰
• Predefined Constants for Error Handling¹¹
• error_reporting()¹²
• Reporting¹³

9.2 Exceptions

Exceptions are a standard part of most popular programming languages, but they are often overlooked by
PHP programmers. Languages like Ruby are extremely Exception heavy, so whenever something goes wrong
such as a HTTP request failing, or a DB query goes wrong, or even if an image asset could not be found, Ruby
(or the gems being used) will throw an exception to the screen meaning you instantly know there is a mistake.

PHP itself is fairly lax with this, and a call to file_get_contents() will usually just get you a FALSE and
a warning. Many older PHP frameworks like CodeIgniter will just return a false, log a message to their
proprietary logs and maybe let you use a method like $this->upload->get_error() to see what went wrong.
The problem here is that you have to go looking for a mistake and check the docs to see what the error method
is for this class, instead of having it made extremely obvious.

Another problem is when classes automatically throw an error to the screen and exit the process. When you
do this you stop another developer from being able to dynamically handle that error. Exceptions should be
thrown to make a developer aware of an error; they then can choose how to handle this. E.g.:

1 <?php

2 $email = new Fuel\Email;

3 $email->subject('My Subject');

4 $email->body('How the heck are you?');

5 $email->to('guy@example.com', 'Some Guy');

6

7 try

8 {

9 $email->send();

10 }

11 catch(Fuel\Email\ValidationFailedException $e)

12 {

13 // The validation failed

14 }

15 catch(Fuel\Email\SendingFailedException $e)

16 {

17 // The driver could not send the email

18 }

19 finally

20 {

¹⁰http://php.net/language.operators.errorcontrol
¹¹http://php.net/errorfunc.constants
¹²http://php.net/function.error-reporting
¹³/#error_reporting

http://php.net/language.operators.errorcontrol
http://php.net/errorfunc.constants
http://php.net/function.error-reporting
http://php.net/language.operators.errorcontrol
http://php.net/errorfunc.constants
http://php.net/function.error-reporting
/#error_reporting

Errors and Exceptions 38

21 // Executed regardless of whether an exception has been thrown, and before normal exec\

22 ution resumes

23 }

SPL Exceptions

The generic Exception class provides very little debugging context for the developer; however, to remedy
this, it is possible to create a specialized Exception type by sub-classing the generic Exception class:

1 <?php

2 class ValidationException extends Exception {}

This means you can add multiple catch blocks and handle different Exceptions differently. This can lead to
the creation of a of custom Exceptions, some of which could have been avoided using the SPL Exceptions
provided in the SPL extension¹⁴.

If for example you use the __call() Magic Method and an invalid method is requested then instead of
throwing a standard Exception which is vague, or creating a custom Exception just for that, you could just
throw new BadMethodCallException;.

• Read about Exceptions¹⁵
• Read about SPL Exceptions¹⁶
• Nesting Exceptions In PHP¹⁷
• Exception Best Practices in PHP 5.3¹⁸

¹⁴/#standard_php_library
¹⁵http://php.net/language.exceptions
¹⁶http://php.net/spl.exceptions
¹⁷http://www.brandonsavage.net/exceptional-php-nesting-exceptions-in-php/
¹⁸http://ralphschindler.com/2010/09/15/exception-best-practices-in-php-5-3

http://php.net/language.exceptions
http://php.net/spl.exceptions
http://www.brandonsavage.net/exceptional-php-nesting-exceptions-in-php/
http://ralphschindler.com/2010/09/15/exception-best-practices-in-php-5-3
/#standard_php_library
http://php.net/language.exceptions
http://php.net/spl.exceptions
http://www.brandonsavage.net/exceptional-php-nesting-exceptions-in-php/
http://ralphschindler.com/2010/09/15/exception-best-practices-in-php-5-3

10. Security

10.1 Web Application Security

There are bad people ready and willing to exploit your web application. It is important that you take necessary
precautions to harden your web application’s security. Luckily, the fine folks at The Open Web Application
Security Project¹ (OWASP) have compiled a comprehensive list of known security issues and methods to
protect yourself against them. This is a must read for the security-conscious developer.

• Read the OWASP Security Guide²

10.2 Password Hashing

Eventually everyone builds a PHP application that relies on user login. Usernames and passwords are stored
in a database and later used to authenticate users upon login.

It is important that you properly hash³ passwords before storing them. Password hashing is an irreversible,
one way function performed against the user’s password. This produces a fixed-length string that cannot be
feasibly reversed. This means you can compare a hash against another to determine if they both came from
the same source string, but you cannot determine the original string. If passwords are not hashed and your
database is accessed by an unauthorized third-party, all user accounts are now compromised. Some users may
(unfortunately) use the same password for other services. Therefore, it is important to take security seriously.

Hashing passwords with password_hash

In PHP 5.5 password_hash()was introduced. At this time it is using BCrypt, the strongest algorithm currently
supported by PHP. It will be updated in the future to support more algorithms as needed though. The
password_compat library was created to provide forward compatibility for PHP >= 5.3.7.

Below we hash a string, and then check the hash against a new string. Because our two source strings are
different (‘secret-password’ vs. ‘bad-password’) this login will fail.

¹http://php.net/book.filter
²http://php.net/filter.filters.sanitize
³http://php.net/filter.filters.validate

http://php.net/book.filter
http://php.net/book.filter
http://php.net/filter.filters.sanitize
http://php.net/filter.filters.validate
http://php.net/book.filter
http://php.net/filter.filters.sanitize
http://php.net/filter.filters.validate

Security 40

1 <?php

2 require 'password.php';

3

4 $passwordHash = password_hash('secret-password', PASSWORD_DEFAULT);

5

6 if (password_verify('bad-password', $passwordHash)) {

7 // Correct Password

8 } else {

9 // Wrong password

10 }

• Learn about password_hash()⁴
• password_compat for PHP >= 5.3.7 && < 5.5⁵
• Learn about hashing in regards to cryptography⁶
• PHP password_hash() RFC⁷

10.3 Data Filtering

Never ever (ever) trust foreign input introduced to your PHP code. Always sanitize and validate foreign input
before using it in code. The filter_var() and filter_input() functions can sanitize text and validate text
formats (e.g. email addresses).

Foreign input can be anything: $_GET and $_POST form input data, some values in the $_SERVER superglobal,
and the HTTP request body via fopen('php://input', 'r'). Remember, foreign input is not limited to
form data submitted by the user. Uploaded and downloaded files, session values, cookie data, and data from
third-party web services are foreign input, too.

While foreign data can be stored, combined, and accessed later, it is still foreign input. Every time you process,
output, concatenate, or include data in your code, ask yourself if the data is filtered properly and can it be
trusted.

Data may be filtered differently based on its purpose. For example, when unfiltered foreign input is passed into
HTML page output, it can execute HTML and JavaScript on your site! This is known as Cross-Site Scripting
(XSS) and can be a very dangerous attack. One way to avoid XSS is to sanitize all user-generated data before
outputting it to your page by removing HTML tags with the strip_tags() function or escaping characters
with special meaning into their respective HTML entities with the htmlentities() or htmlspecialchars()
functions.

Another example is passing options to be executed on the command line. This can be extremely dangerous
(and is usually a bad idea), but you can use the built-in escapeshellarg() function to sanitize the executed
command’s arguments.

⁴http://php.net/book.filter
⁵http://php.net/filter.filters.sanitize
⁶http://php.net/filter.filters.validate
⁷http://php.net/function.filter-var

http://php.net/book.filter
http://php.net/filter.filters.sanitize
http://php.net/filter.filters.validate
http://php.net/function.filter-var
http://php.net/book.filter
http://php.net/filter.filters.sanitize
http://php.net/filter.filters.validate
http://php.net/function.filter-var

Security 41

One last example is accepting foreign input to determine a file to load from the filesystem. This can be
exploited by changing the filename to a file path. You need to remove "/", "../", null bytes⁸, or other
characters from the file path so it can’t load hidden, non-public, or sensitive files.

• Learn about data filtering⁹
• Learn about filter_var¹⁰
• Learn about filter_input¹¹
• Learn about handling null bytes¹²

Sanitization

Sanitization removes (or escapes) illegal or unsafe characters from foreign input.

For example, you should sanitize foreign input before including the input in HTML or inserting it into a raw
SQL query. When you use bound parameters with PDO, it will sanitize the input for you.

Sometimes it is required to allow some safe HTML tags in the input when including it in the HTML page. This
is very hard to do and many avoid it by using other more restricted formatting like Markdown or BBCode,
although whitelisting libraries like HTML Purifier¹³ exists for this reason.

See Sanitization Filters¹⁴

Validation

Validation ensures that foreign input is what you expect. For example, you may want to validate an email
address, a phone number, or age when processing a registration submission.

See Validation Filters¹⁵

10.4 Configuration Files

When creating configuration files for your applications, best practices recommend that one of the following
methods be followed:

• It is recommended that you store your configuration information where it cannot be accessed directly
and pulled in via the file system.

• If you must store your configuration files in the document root, name the files with a .php extension.
This ensures that, even if the script is accessed directly, it will not be output as plain text.

• Information in configuration files should be protected accordingly, either through encryption or
group/user file system permissions

⁸http://php.net/security.filesystem.nullbytes
⁹http://php.net/book.filter
¹⁰http://php.net/function.filter-var
¹¹http://php.net/function.filter-input
¹²http://php.net/security.filesystem.nullbytes
¹³http://htmlpurifier.org/
¹⁴http://php.net/filter.filters.sanitize
¹⁵http://php.net/filter.filters.validate

http://php.net/security.filesystem.nullbytes
http://php.net/book.filter
http://php.net/function.filter-var
http://php.net/function.filter-input
http://php.net/security.filesystem.nullbytes
http://htmlpurifier.org/
http://php.net/filter.filters.sanitize
http://php.net/filter.filters.validate
http://php.net/security.filesystem.nullbytes
http://php.net/book.filter
http://php.net/function.filter-var
http://php.net/function.filter-input
http://php.net/security.filesystem.nullbytes
http://htmlpurifier.org/
http://php.net/filter.filters.sanitize
http://php.net/filter.filters.validate

Security 42

10.5 Register Globals

NOTE: As of PHP 5.4.0 the register_globals setting has been removed and can no longer be used. This is
only included as a warning for anyone in the process of upgrading a legacy application.

When enabled, the register_globals configuration setting that makes several types of variables (including
ones from $_POST, $_GET and $_REQUEST) available in the global scope of your application. This can easily
lead to security issues as your application cannot effectively tell where the data is coming from.

For example: $_GET['foo'] would be available via $foo, which can override variables that have not been
declared. If you are using PHP < 5.4.0 make sure that register_globals is off.

• Register_globals in the PHP manual¹⁶

10.6 Error Reporting

Error logging can be useful in finding the problem spots in your application, but it can also expose information
about the structure of your application to the outside world. To effectively protect your application from
issues that could be caused by the output of these messages, you need to configure your server differently in
development versus production (live).

Development

To show every possible error during , configure the following settings in your php.ini:

1 display_errors = On

2 display_startup_errors = On

3 error_reporting = -1

4 log_errors = On

Passing in the value -1 will show every possible error, even when new levels and constants are
added in future PHP versions. The E_ALL constant also behaves this way as of PHP 5.4. - php.net¹⁷

The E_STRICT error level constant was introduced in 5.3.0 and is not part of E_ALL, however it became part
of E_ALL in 5.4.0. What does this mean? In terms of reporting every possible error in version 5.3 it means you
must use either -1 or E_ALL | E_STRICT.

Reporting every possible error by PHP version

• < 5.3 -1 or E_ALL
• 5.3 -1 or E_ALL | E_STRICT

• > 5.3 -1 or E_ALL

Production

To hide errors on your environment, configure your php.ini as:

¹⁶http://php.net/security.globals
¹⁷http://php.net/function.error-reporting

http://php.net/security.globals
http://php.net/function.error-reporting
http://php.net/security.globals
http://php.net/function.error-reporting

Security 43

1 display_errors = Off

2 display_startup_errors = Off

3 error_reporting = E_ALL

4 log_errors = On

With these settings in production, errors will still be logged to the error logs for the web server, but will not
be shown to the user. For more information on these settings, see the PHP manual:

• error_reporting¹⁸
• display_errors¹⁹
• display_startup_errors²⁰
• log_errors²¹

¹⁸http://php.net/errorfunc.configuration#ini.error-reporting
¹⁹http://php.net/errorfunc.configuration#ini.display-errors
²⁰http://php.net/errorfunc.configuration#ini.display-startup-errors
²¹http://php.net/errorfunc.configuration#ini.log-errors

http://php.net/errorfunc.configuration#ini.error-reporting
http://php.net/errorfunc.configuration#ini.display-errors
http://php.net/errorfunc.configuration#ini.display-startup-errors
http://php.net/errorfunc.configuration#ini.log-errors
http://php.net/errorfunc.configuration#ini.error-reporting
http://php.net/errorfunc.configuration#ini.display-errors
http://php.net/errorfunc.configuration#ini.display-startup-errors
http://php.net/errorfunc.configuration#ini.log-errors

11. Testing
Writing automated tests for your PHP code is considered a best practice and can lead to well-built applications.
Automated tests are a great tool formaking sure your application does not breakwhen you aremaking changes
or adding new functionality and should not be ignored.

There are several different types of testing tools (or frameworks) available for PHP, which use different
approaches - all of which are trying to avoid manual testing and the need for large Quality Assurance teams,
just to make sure recent changes didn’t break existing functionality.

11.1 Test Driven Development

From Wikipedia¹:

Test-driven development (TDD) is a software development process that relies on the repetition
of a very short development cycle: first the developer writes a failing automated test case that
defines a desired improvement or new function, then produces code to pass that test and finally
refactors the new code to acceptable standards. Kent Beck, who is credited with having developed
or ‘rediscovered’ the technique, stated in 2003 that TDD encourages simple designs and inspires
confidence.

There are several different types of testing that you can do for your application:

Unit Testing

Unit Testing is a programming approach to ensure functions, classes and methods are working as expected,
from the point you build them all the way through the development cycle. By checking values going in and
out of various functions and methods, you can make sure the internal logic is working correctly. By using
Dependency Injection and building “mock” classes and stubs you can verify that dependencies are correctly
used for even better test coverage.

When you create a class or function you should create a unit test for each behavior it must have. At a very
basic level you should make sure it errors if you send it bad arguments and make sure it works if you send
it valid arguments. This will help ensure that when you make changes to this class or function later on in
the development cycle that the old functionality continues to work as expected. The only alternative to this
would be var_dump() in a test.php, which is no way to build an application - large or small.

The other use for unit tests is contributing to open source. If you can write a test that shows broken
functionality (i.e. fails), then fix it, and show the test passing, patches are much more likely to be accepted. If
you run a project which accepts pull requests then you should suggest this as a requirement.

¹http://en.wikipedia.org/wiki/Test-driven_development

http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Test-driven_development

Testing 45

PHPUnit² is the de-facto testing framework for writing unit tests for PHP applications, but there are several
alternatives

• atoum³
• Enhance PHP⁴
• PUnit⁵
• SimpleTest⁶

Integration Testing

From Wikipedia⁷:

Integration testing (sometimes called Integration and Testing, abbreviated “I&T”) is the phase
in software testing in which individual software modules are combined and tested as a group.
It occurs after unit testing and before validation testing. Integration testing takes as its input
modules that have been unit tested, groups them in larger aggregates, applies tests defined in an
integration test plan to those aggregates, and delivers as its output the integrated system ready
for system testing.

Many of the same tools that can be used for unit testing can be used for integration testing as many of the
same principles are used.

Functional Testing

Sometimes also known as acceptance testing, functional testing consists of using tools to create automated
tests that actually use your application instead of just verifying that individual units of code are behaving
correctly and that individual units can speak to each other correctly. These tools typically work using real
data and simulating actual users of the application.

Functional Testing Tools

• Selenium⁸
• Mink⁹
• Codeception¹⁰ is a full-stack testing framework that includes acceptance testing tools
• Storyplayer¹¹ is a full-stack testing framework that includes support for creating and destroying test
environments on demand

²http://phpunit.de
³https://github.com/atoum/atoum
⁴https://github.com/Enhance-PHP/Enhance-PHP
⁵http://punit.smf.me.uk/
⁶http://simpletest.org
⁷http://en.wikipedia.org/wiki/Integration_testing
⁸http://seleniumhq.com
⁹http://mink.behat.org
¹⁰http://codeception.com
¹¹http://datasift.github.io/storyplayer

http://phpunit.de
https://github.com/atoum/atoum
https://github.com/Enhance-PHP/Enhance-PHP
http://punit.smf.me.uk/
http://simpletest.org
http://en.wikipedia.org/wiki/Integration_testing
http://seleniumhq.com
http://mink.behat.org
http://codeception.com
http://datasift.github.io/storyplayer
http://phpunit.de
https://github.com/atoum/atoum
https://github.com/Enhance-PHP/Enhance-PHP
http://punit.smf.me.uk/
http://simpletest.org
http://en.wikipedia.org/wiki/Integration_testing
http://seleniumhq.com
http://mink.behat.org
http://codeception.com
http://datasift.github.io/storyplayer

Testing 46

11.2 Behavior Driven Development

There are two different types of Behavior-Driven Development (BDD): SpecBDD and StoryBDD. SpecBDD
focuses on technical behavior of code, while StoryBDD focuses on business or feature behaviors or interac-
tions. PHP has frameworks for both types of BDD.

With StoryBDD, you write human-readable stories that describe the behavior of your application. These
stories can then be run as actual tests against your application. The framework used in PHP applications for
StoryBDD is Behat¹², which is inspired by Ruby’s Cucumber¹³ project and implements the Gherkin DSL for
describing feature behavior.

With SpecBDD, youwrite specifications that describe how your actual code should behave. Instead of testing a
function or method, you are describing how that function or method should behave. PHP offers the PHPSpec¹⁴
framework for this purpose. This framework is inspired by the RSpec project¹⁵ for Ruby.

BDD Links

• Behat¹⁶, the StoryBDD framework for PHP, inspired by Ruby’s Cucumber¹⁷ project;
• PHPSpec¹⁸, the SpecBDD framework for PHP, inspired by Ruby’s RSpec¹⁹ project;
• Codeception²⁰ is a full-stack testing framework that uses BDD principles.

11.3 Complementary Testing Tools

Besides individual testing and behavior driven frameworks, there are also a number of generic frameworks
and helper libraries useful for any preferred approach taken.

Tool Links

• Selenium²¹ is a browser automation tool which can be integrated with PHPUnit²²
• Mockery²³ is a Mock Object Framework which can be integrated with PHPUnit²⁴ or PHPSpec²⁵
• Prophecy²⁶ is a highly opinionated yet very powerful and flexible PHP object mocking framework. It’s
integrated with PHPSpec²⁷ and can be used with PHPUnit²⁸.

¹²http://behat.org/
¹³http://cukes.info/
¹⁴http://www.phpspec.net/
¹⁵http://rspec.info/
¹⁶http://behat.org/
¹⁷http://cukes.info/
¹⁸http://www.phpspec.net/
¹⁹http://rspec.info/
²⁰http://codeception.com/
²¹http://seleniumhq.org/
²²http://phpunit.de/manual/current/en/selenium.html
²³https://github.com/padraic/mockery
²⁴http://phpunit.de/
²⁵http://www.phpspec.net/
²⁶https://github.com/phpspec/prophecy
²⁷http://www.phpspec.net/
²⁸http://phpunit.de/

http://behat.org/
http://cukes.info/
http://www.phpspec.net/
http://rspec.info/
http://behat.org/
http://cukes.info/
http://www.phpspec.net/
http://rspec.info/
http://codeception.com/
http://seleniumhq.org/
http://phpunit.de/manual/current/en/selenium.html
https://github.com/padraic/mockery
http://phpunit.de/
http://www.phpspec.net/
https://github.com/phpspec/prophecy
http://www.phpspec.net/
http://phpunit.de/
http://behat.org/
http://cukes.info/
http://www.phpspec.net/
http://rspec.info/
http://behat.org/
http://cukes.info/
http://www.phpspec.net/
http://rspec.info/
http://codeception.com/
http://seleniumhq.org/
http://phpunit.de/manual/current/en/selenium.html
https://github.com/padraic/mockery
http://phpunit.de/
http://www.phpspec.net/
https://github.com/phpspec/prophecy
http://www.phpspec.net/
http://phpunit.de/

12. Servers and Deployment
PHP applications can be deployed and run on production web servers in a number of ways.

12.1 Platform as a Service (PaaS)

PaaS provides the system and network architecture necessary to run PHP applications on the web. This means
little to no configuration for launching PHP applications or PHP frameworks.

Recently PaaS has become a popular method for deploying, hosting, and scaling PHP applications of all sizes.
You can find a list of PHP PaaS “Platform as a Service” providers in our resources section.

12.2 Virtual or Dedicated Servers

If you are comfortable with systems administration, or are interested in learning it, virtual or dedicated servers
give you complete control of your application’s production environment.

nginx and PHP-FPM

PHP, via PHP’s built-in FastCGI Process Manager (FPM), pairs really nicely with nginx¹, which is a
lightweight, high-performance web server. It uses less memory than Apache and can better handle more
concurrent requests. This is especially important on virtual servers that don’t have much memory to spare.

• Read more on nginx²
• Read more on PHP-FPM³
• Read more on setting up nginx and PHP-FPM securely⁴

Apache and PHP

PHP and Apache have a long history together. Apache is wildly configurable and has many availablemodules⁵
to extend functionality. It is a popular choice for shared servers and an easy setup for PHP frameworks and
open source apps likeWordPress. Unfortunately, Apache usesmore resources than nginx by default and cannot
handle as many visitors at the same time.

Apache has several possible configurations for running PHP. The most common and easiest to setup is the
prefork MPM⁶ with mod_php5. While it isn’t the most memory efficient, it is the simplest to get working and

¹http://nginx.org/
²http://nginx.org/
³http://php.net/install.fpm
⁴https://nealpoole.com/blog/2011/04/setting-up-php-fastcgi-and-nginx-dont-trust-the-tutorials-check-your-configuration/
⁵http://httpd.apache.org/docs/2.4/mod/
⁶http://httpd.apache.org/docs/2.4/mod/prefork.html

http://nginx.org/
http://nginx.org/
http://php.net/install.fpm
https://nealpoole.com/blog/2011/04/setting-up-php-fastcgi-and-nginx-dont-trust-the-tutorials-check-your-configuration/
http://httpd.apache.org/docs/2.4/mod/
http://httpd.apache.org/docs/2.4/mod/prefork.html
http://nginx.org/
http://nginx.org/
http://php.net/install.fpm
https://nealpoole.com/blog/2011/04/setting-up-php-fastcgi-and-nginx-dont-trust-the-tutorials-check-your-configuration/
http://httpd.apache.org/docs/2.4/mod/
http://httpd.apache.org/docs/2.4/mod/prefork.html

Servers and Deployment 48

to use. This is probably the best choice if you don’t want to dig too deeply into the server administration
aspects. Note that if you use mod_php5 you MUST use the prefork MPM.

Alternatively, if you want to squeeze more performance and stability out of Apache then you can take
advantage of the same FPM system as nginx and run the worker MPM⁷ or event MPM⁸ with mod_fastcgi
or mod_fcgid. This configuration will be significantly more memory efficient and much faster but it is more
work to set up.

• Read more on Apache⁹
• Read more on Multi-Processing Modules¹⁰
• Read more on mod_fastcgi¹¹
• Read more on mod_fcgid¹²

12.3 Shared Servers

PHP has shared servers to thank for its popularity. It is hard to find a host without PHP installed, but be sure
it’s the latest version. Shared servers allow you and other developers to deploy websites to a single machine.
The upside to this is that it has become a cheap commodity. The downside is that you never know what kind
of a ruckus your neighboring tenants are going to create; loading down the server or opening up security
holes are the main concerns. If your project’s budget can afford to avoid shared servers you should.

12.4 Building and Deploying your Application

If you find yourself doing manual database schema changes or running your tests manually before updating
your files (manually), think twice! With every additional manual task needed to deploy a new version of
your app, the chances for potentially fatal mistakes increase. Whether you’re dealing with a simple update, a
comprehensive build process or even a continuous integration strategy, build automation¹³ is your friend.

Among the tasks you might want to automate are:

• Dependency management
• Compilation, minification of your assets
• Running tests
• Creation of documentation
• Packaging
• Deployment

⁷http://httpd.apache.org/docs/2.4/mod/worker.html
⁸http://httpd.apache.org/docs/2.4/mod/event.html
⁹http://httpd.apache.org/
¹⁰http://httpd.apache.org/docs/2.4/mod/mpm_common.html
¹¹http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html
¹²http://httpd.apache.org/mod_fcgid/
¹³http://en.wikipedia.org/wiki/Build_automation

http://httpd.apache.org/docs/2.4/mod/worker.html
http://httpd.apache.org/docs/2.4/mod/event.html
http://httpd.apache.org/
http://httpd.apache.org/docs/2.4/mod/mpm_common.html
http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html
http://httpd.apache.org/mod_fcgid/
http://en.wikipedia.org/wiki/Build_automation
http://httpd.apache.org/docs/2.4/mod/worker.html
http://httpd.apache.org/docs/2.4/mod/event.html
http://httpd.apache.org/
http://httpd.apache.org/docs/2.4/mod/mpm_common.html
http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html
http://httpd.apache.org/mod_fcgid/
http://en.wikipedia.org/wiki/Build_automation

Servers and Deployment 49

Build Automation Tools

Build tools can be described as a collection of scripts that handle common tasks of software deployment. The
build tool is not a part of your software, it acts on your software from ‘outside’.

There are many open source tools available to help you with build automation, some are written in PHP
others aren’t. This shouldn’t hold you back from using them, if they’re better suited for the specific job. Here
are a few examples:

Phing¹⁴ is the easiest way to get started with automated deployment in the PHP world. With Phing you can
control your packaging, deployment or testing process from within a simple XML build file. Phing (which is
based on Apache Ant¹⁵) provides a rich set of tasks usually needed to install or update a web app and can be
extended with additional custom tasks, written in PHP.

Capistrano¹⁶ is a system for intermediate-to-advanced programmers to execute commands in a structured,
repeatable way on one or more remotemachines. It is pre-configured for deploying Ruby on Rails applications,
however people are ** successfully deploying PHP systems** with it. Successful use of Capistrano depends on
a working knowledge of Ruby and Rake.

Dave Gardner’s blog post PHP Deployment with Capistrano¹⁷ is a good starting point for PHP developers
interested in Capistrano.

Chef¹⁸ is more than a deployment framework, it is a very powerful Ruby based system integration framework
that doesn’t just deploy your app but can build your whole server environment or virtual boxes.

Deployer¹⁹ is a deployment tool written in PHP, it’s simple and functional. Deploy your code to all servers
you want, it supports deploy via copy, or via VCS (like git), or via rsync. Run your tasks on all your servers,
or use our recipes of common tasks for Symfony, Laravel, Zend Framework and Yii.

Chef resources for PHP developers:

• Three part blog series about deploying a LAMP application with Chef, Vagrant, and EC2²⁰
• Chef Cookbook which installs and configures PHP 5.3 and the PEAR package management system²¹
• Chef video tutorial series²² by Opscode, the makers of chef

Further reading:

• Automate your project with Apache Ant²³

¹⁴http://www.phing.info/
¹⁵http://ant.apache.org/
¹⁶https://github.com/capistrano/capistrano/wiki
¹⁷http://www.davegardner.me.uk/blog/2012/02/13/php-deployment-with-capistrano/
¹⁸http://www.opscode.com/chef/
¹⁹http://deployer.in/
²⁰http://www.jasongrimes.org/2012/06/managing-lamp-environments-with-chef-vagrant-and-ec2-1-of-3/
²¹https://github.com/opscode-cookbooks/php
²²https://www.youtube.com/playlist?list=PLrmstJpucjzWKt1eWLv88ZFY4R1jW8amR
²³http://net.tutsplus.com/tutorials/other/automate-your-projects-with-apache-ant/

http://www.phing.info/
http://ant.apache.org/
https://github.com/capistrano/capistrano/wiki
http://www.davegardner.me.uk/blog/2012/02/13/php-deployment-with-capistrano/
http://www.opscode.com/chef/
http://deployer.in/
http://www.jasongrimes.org/2012/06/managing-lamp-environments-with-chef-vagrant-and-ec2-1-of-3/
https://github.com/opscode-cookbooks/php
https://www.youtube.com/playlist?list=PLrmstJpucjzWKt1eWLv88ZFY4R1jW8amR
http://net.tutsplus.com/tutorials/other/automate-your-projects-with-apache-ant/
http://www.phing.info/
http://ant.apache.org/
https://github.com/capistrano/capistrano/wiki
http://www.davegardner.me.uk/blog/2012/02/13/php-deployment-with-capistrano/
http://www.opscode.com/chef/
http://deployer.in/
http://www.jasongrimes.org/2012/06/managing-lamp-environments-with-chef-vagrant-and-ec2-1-of-3/
https://github.com/opscode-cookbooks/php
https://www.youtube.com/playlist?list=PLrmstJpucjzWKt1eWLv88ZFY4R1jW8amR
http://net.tutsplus.com/tutorials/other/automate-your-projects-with-apache-ant/

Servers and Deployment 50

Continuous Integration

Continuous Integration is a software development practice where members of a team integrate
their work frequently, usually each person integrates at least daily â€” leading to multiple inte-
grations per day. Many teams find that this approach leads to significantly reduced integration
problems and allows a team to develop cohesive software more rapidly.

– Martin Fowler

There are different ways to implement continuous integration for PHP. Recently Travis CI²⁴ has done a
great job of making continuous integration a reality even for small projects. Travis CI is a hosted continuous
integration service for the open source community. It is integrated with GitHub and offers first class support
for many languages including PHP.

Further reading:

• Continuous Integration with Jenkins²⁵
• Continuous Integration with PHPCI²⁶
• Continuous Integration with Teamcity²⁷

²⁴https://travis-ci.org/
²⁵http://jenkins-ci.org/
²⁶http://www.phptesting.org/
²⁷http://www.jetbrains.com/teamcity/

https://travis-ci.org/
http://jenkins-ci.org/
http://www.phptesting.org/
http://www.jetbrains.com/teamcity/
https://travis-ci.org/
http://jenkins-ci.org/
http://www.phptesting.org/
http://www.jetbrains.com/teamcity/

13. Virtualization
Running your application on different environments in development and production can lead to strange bugs
popping up when you go live. It’s also tricky to keep different development environments up to date with the
same version for all libraries used when working with a team of developers.

If you are developing on Windows and deploying to Linux (or anything non-Windows) or are developing
in a team, you should consider using a virtual machine. This sounds tricky, but besides the widely known
virtualization environments like VMware or VirtualBox, there are additional tools that may help you setting
up a virtual environment in a few easy steps.

13.1 Vagrant

Vagrant¹ helps you build your virtual boxes on top of the known virtual environments and will configure
these environments based on a single configuration file. These boxes can be set up manually, or you can use
“provisioning” software such as Puppet² or Chef³ to do this for you. Provisioning the base box is a great way
to ensure that multiple boxes are set up in an identical fashion and removes the need for you to maintain
complicated “set up” command lists. You can also “destroy” your base box and recreate it without many
manual steps, making it easy to create a “fresh” installation.

Vagrant creates folders for sharing your code between your host and your virtual machine, which means that
you can create and edit your files on your host machine and then run the code inside your virtual machine.

A little help

If you need a little help to start using Vagrant there are some services that might be useful:

• Rove⁴: service that allows you to pre-generate typical Vagrant builds, PHP among the options. The
provisioning is made with Chef.

• Puphpet⁵: simple GUI to set up virtual machines for PHP development. Heavily focused in PHP.
Besides local VMs, it can be used to deploy to cloud services as well. The provisioning is made with
Puppet.

• Protobox⁶: is a layer on top of vagrant and a web GUI to setup virtual machines for web development.
A single YAML document controls everything that is installed on the virtual machine.

• Phansible⁷: provides an easy to use interface that helps you generate Ansible Playbooks for PHP based
projects.

¹http://vagrantup.com/
²http://www.puppetlabs.com/
³http://www.opscode.com/
⁴http://rove.io/
⁵https://puphpet.com/
⁶http://getprotobox.com/
⁷http://phansible.com/

http://vagrantup.com/
http://www.puppetlabs.com/
http://www.opscode.com/
http://rove.io/
https://puphpet.com/
http://getprotobox.com/
http://phansible.com/
http://vagrantup.com/
http://www.puppetlabs.com/
http://www.opscode.com/
http://rove.io/
https://puphpet.com/
http://getprotobox.com/
http://phansible.com/

Virtualization 52

13.2 Docker

Beside using Vagrant, another easy way to get a virtual development or production environment up and
running is Docker⁸. Docker helps you to provide Linux containers for all kind of applications. There are many
helpful docker images which could provide you with other great services without the need to install these
services on your local machine, e.g. MySQL or PostgreSQL and a lot more. Have a look at the Docker Hub
Registry⁹ to search a list of available pre-built containers, which you can then run and use in very few steps.

Example: Runnning your PHP Applications in Docker

After you installed docker¹⁰ on your machine, you can start an Apache with PHP support in one step. The
following command will download a fully functional Apache installation with the latest PHP version and
provide the directory /path/to/your/php/files at http://localhost:8080:

1 docker run -d --name my-php-webserver -p 8080:80 -v /path/to/your/php/files:/var/www/html/\

2 php:apache

After running docker run your container is initialized and running. If you would like to stop or start your
container again, you can use the provided name attribute and simply run docker stop my-php-webserver

and docker start my-php-webserver without providing the above mentioned parameters again.

Learn more about Docker

The commands mentioned above only show a quick way to run an Apache web server with PHP support but
there are a lot more things that you can do with Docker. One of the most important things for PHP developers
will be linking your web server to a database instance, for example. How this could be done is well described
within the Docker User Guide¹¹.

• Docker Website¹²
• Docker Installation¹³
• Docker Images at the Docker Hub Registry¹⁴
• Docker User Guide¹⁵

⁸http://docker.com/
⁹https://registry.hub.docker.com/
¹⁰https://docs.docker.com/installation/
¹¹https://docs.docker.com/userguide/
¹²http://docker.com/
¹³https://docs.docker.com/installation/
¹⁴https://registry.hub.docker.com/
¹⁵https://docs.docker.com/userguide/

http://docker.com/
https://registry.hub.docker.com/
https://registry.hub.docker.com/
https://docs.docker.com/installation/
https://docs.docker.com/userguide/
http://docker.com/
https://docs.docker.com/installation/
https://registry.hub.docker.com/
https://docs.docker.com/userguide/
http://docker.com/
https://registry.hub.docker.com/
https://docs.docker.com/installation/
https://docs.docker.com/userguide/
http://docker.com/
https://docs.docker.com/installation/
https://registry.hub.docker.com/
https://docs.docker.com/userguide/

14. Caching
PHP is pretty quick by itself, but bottlenecks can arise when you make remote connections, load files, etc.
Thankfully, there are various tools available to speed up certain parts of your application, or reduce the number
of times these various time-consuming tasks need to run.

14.1 Opcode Cache

When a PHP file is executed, under the hood it is first compiled to opcodes and, only then, the opcodes are
executed. If a PHP file is not modified, the opcodes will always be the same. This means that the compilation
step is a waste of CPU resources.

This is where opcode caches come in. They prevent redundant compilation by storing opcodes in memory
and reusing it on successive calls. Setting up an opcode cache takes a matter of minutes, and your application
will speed up significantly. There’s really no reason not to use it.

As of PHP 5.5, there is a built-in opcode cache called OPcache¹. It is also available for earlier versions.

Read more about opcode caches:

• OPcache² (built-in since PHP 5.5)
• APC³ (PHP 5.4 and earlier)
• XCache⁴
• Zend Optimizer+⁵ (part of Zend Server package)
• WinCache⁶ (extension for MS Windows Server)
• list of PHP accelerators on Wikipedia⁷

14.2 Object Caching

There are times when it can be beneficial to cache individual objects in your code, such as with data that is
expensive to get or database calls where the result is unlikely to change. You can use object caching software
to hold these pieces of data in memory for extremely fast access later on. If you save these items to a data
store after you retrieve them, then pull them directly from the cache for following requests, you can gain a
significant improvement in performance as well as reduce the load on your database servers.

¹http://php.net/book.opcache
²http://php.net/book.opcache
³http://php.net/book.apc
⁴http://xcache.lighttpd.net/
⁵http://www.zend.com/products/server/
⁶http://www.iis.net/download/wincacheforphp
⁷http://en.wikipedia.org/wiki/List_of_PHP_accelerators

http://php.net/book.opcache
http://php.net/book.opcache
http://php.net/book.apc
http://xcache.lighttpd.net/
http://www.zend.com/products/server/
http://www.iis.net/download/wincacheforphp
http://en.wikipedia.org/wiki/List_of_PHP_accelerators
http://php.net/book.opcache
http://php.net/book.opcache
http://php.net/book.apc
http://xcache.lighttpd.net/
http://www.zend.com/products/server/
http://www.iis.net/download/wincacheforphp
http://en.wikipedia.org/wiki/List_of_PHP_accelerators

Caching 54

Many of the popular bytecode caching solutions let you cache custom data as well, so there’s evenmore reason
to take advantage of them. APCu, XCache, and WinCache all provide APIs to save data from your PHP code
to their memory cache.

The most commonly used memory object caching systems are APCu and memcached. APCu is an excellent
choice for object caching, it includes a simple API for adding your own data to its memory cache and is very
easy to setup and use. The one real limitation of APCu is that it is tied to the server it’s installed on.Memcached
on the other hand is installed as a separate service and can be accessed across the network, meaning that you
can store objects in a hyper-fast data store in a central location and many different systems can pull from it.

Note that when running PHP as a (Fast-)CGI application inside your webserver, every PHP process will have
its own cache, i.e. APCu data is not shared between your worker processes. In these cases, you might want to
consider using memcached instead, as it’s not tied to the PHP processes.

In a networked configuration APCu will usually outperform memcached in terms of access speed, but
memcached will be able to scale up faster and further. If you do not expect to have multiple servers running
your application, or do not need the extra features that memcached offers then APCu is probably your best
choice for object caching.

Example logic using APCu:

1 <?php

2 // check if there is data saved as 'expensive_data' in cache

3 $data = apc_fetch('expensive_data');

4 if ($data === false) {

5 // data is not in cache; save result of expensive call for later use

6 apc_add('expensive_data', $data = get_expensive_data());

7 }

8

9 print_r($data);

Note that prior to PHP 5.5, APC provides both an object cache and a bytecode cache. APCu is a project to
bring APC’s object cache to PHP 5.5+, since PHP now has a built-in bytecode cache (OPcache).

Learn more about popular object caching systems:

• APCu⁸
• APC Functions⁹
• Memcached¹⁰
• Redis¹¹
• XCache APIs¹²
• WinCache Functions¹³

⁸https://github.com/krakjoe/apcu
⁹http://php.net/ref.apc
¹⁰http://memcached.org/
¹¹http://redis.io/
¹²http://xcache.lighttpd.net/wiki/XcacheApi
¹³http://php.net/ref.wincache

https://github.com/krakjoe/apcu
http://php.net/ref.apc
http://memcached.org/
http://redis.io/
http://xcache.lighttpd.net/wiki/XcacheApi
http://php.net/ref.wincache
https://github.com/krakjoe/apcu
http://php.net/ref.apc
http://memcached.org/
http://redis.io/
http://xcache.lighttpd.net/wiki/XcacheApi
http://php.net/ref.wincache

15. Documenting your Code

15.1 PHPDoc

PHPDoc is an informal standard for commenting PHP code. There are a lot of different tags¹ available. The
full list of tags and examples can be found at the PHPDoc manual².

Below is an example of how you might document a class with a few methods;

1 <?php

2 /**

3 * @author A Name <a.name@example.com>

4 * @link http://www.phpdoc.org/docs/latest/index.html

5 * @package helper

6 */

7 class DateTimeHelper

8 {

9 /**

10 * @param mixed $anything Anything that we can convert to a \DateTime object

11 *

12 * @return \DateTime

13 * @throws \InvalidArgumentException

14 */

15 public function dateTimeFromAnything($anything)

16 {

17 $type = gettype($anything);

18

19 switch ($type) {

20 // Some code that tries to return a \DateTime object

21 }

22

23 throw new \InvalidArgumentException(

24 "Failed Converting param of type '{$type}' to DateTime object"

25);

26 }

27

28 /**

29 * @param mixed $date Anything that we can convert to a \DateTime object

30 *

31 * @return void

¹http://www.phpdoc.org/docs/latest/references/phpdoc/tags/index.html
²http://www.phpdoc.org/docs/latest/index.html

http://www.phpdoc.org/docs/latest/references/phpdoc/tags/index.html
http://www.phpdoc.org/docs/latest/index.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/index.html
http://www.phpdoc.org/docs/latest/index.html

Documenting your Code 56

32 */

33 public function printISO8601Date($date)

34 {

35 echo $this->dateTimeFromAnything($date)->format('c');

36 }

37

38 /**

39 * @param mixed $date Anything that we can convert to a \DateTime object

40 */

41 public function printRFC2822Date($date)

42 {

43 echo $this->dateTimeFromAnything($date)->format('r');

44 }

45 }

The documentation for the class as a whole firstly has the @author³ tag, this tag is used to document the
author of the code and can be repeated for documenting several authors. Secondly is the @link⁴ tag, used to
link to a website indicating a relationship between the website and the code. Thirdly it has the @package⁵
tag, used to categorize the code.

Inside the class, the first method has an @param⁶ tag documenting the type, name and description of the
parameter being passed to the method. Additionally it has the @return⁷ and @throws⁸ tags for documenting
the return type, and any exceptions that could be throw respectively.

The second and third methods are very similar and have a single @param⁹ tag as did the first method.
The import difference between the second and third method is doc block is the inclusion/exclusion of the
@return¹⁰ tag. @return void explicitly informs us that there is no return, historically omitting the @return
void statement also results in the same (no return) action.

³http://www.phpdoc.org/docs/latest/references/phpdoc/tags/author.html
⁴http://www.phpdoc.org/docs/latest/references/phpdoc/tags/link.html
⁵http://www.phpdoc.org/docs/latest/references/phpdoc/tags/package.html
⁶http://www.phpdoc.org/docs/latest/references/phpdoc/tags/param.html
⁷http://www.phpdoc.org/docs/latest/references/phpdoc/tags/return.html
⁸http://www.phpdoc.org/docs/latest/references/phpdoc/tags/throws.html
⁹http://www.phpdoc.org/docs/latest/references/phpdoc/tags/param.html
¹⁰http://www.phpdoc.org/docs/latest/references/phpdoc/tags/return.html

http://www.phpdoc.org/docs/latest/references/phpdoc/tags/author.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/link.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/package.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/param.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/return.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/throws.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/param.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/return.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/author.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/link.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/package.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/param.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/return.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/throws.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/param.html
http://www.phpdoc.org/docs/latest/references/phpdoc/tags/return.html

16. Resources

16.1 From the Source

• PHP Website¹
• PHP Documentation²

16.2 People to Follow

• Rasmus Lerdorf³
• Fabien Potencier⁴
• Derick Rethans⁵
• Chris Shiflett⁶
• Sebastian Bergmann⁷
• Matthew Weier O’Phinney⁸
• P��draic Brady⁹
• Anthony Ferrara¹⁰
• Nikita Popov¹¹

16.3 Mentoring

• phpmentoring.org¹² - Formal, peer to peer mentoring in the PHP community.

16.4 PHP PaaS Providers

• PagodaBox¹³
• AppFog¹⁴

¹http://php.net/
²http://php.net/docs.php
³http://twitter.com/rasmus
⁴http://twitter.com/fabpot
⁵http://twitter.com/derickr
⁶http://twitter.com/shiflett
⁷http://twitter.com/s_bergmann
⁸http://twitter.com/mwop
⁹http://twitter.com/padraicb
¹⁰http://twitter.com/ircmaxell
¹¹http://twitter.com/nikita_ppv
¹²http://phpmentoring.org/
¹³https://pagodabox.com/
¹⁴https://appfog.com/

http://php.net/
http://php.net/docs.php
http://twitter.com/rasmus
http://twitter.com/fabpot
http://twitter.com/derickr
http://twitter.com/shiflett
http://twitter.com/s_bergmann
http://twitter.com/mwop
http://twitter.com/padraicb
http://twitter.com/ircmaxell
http://twitter.com/nikita_ppv
http://phpmentoring.org/
https://pagodabox.com/
https://appfog.com/
http://php.net/
http://php.net/docs.php
http://twitter.com/rasmus
http://twitter.com/fabpot
http://twitter.com/derickr
http://twitter.com/shiflett
http://twitter.com/s_bergmann
http://twitter.com/mwop
http://twitter.com/padraicb
http://twitter.com/ircmaxell
http://twitter.com/nikita_ppv
http://phpmentoring.org/
https://pagodabox.com/
https://appfog.com/

Resources 58

• Heroku¹⁵
• fortrabbit¹⁶
• Engine Yard Cloud¹⁷
• Red Hat OpenShift Platform¹⁸
• dotCloud¹⁹
• AWS Elastic Beanstalk²⁰
• cloudControl²¹
• Windows Azure²²
• Google App Engine²³
• Jelastic²⁴

16.5 Frameworks

Rather than re-invent the wheel, many PHP developers use frameworks to build out web applications.
Frameworks abstract away many of the low-level concerns and provide helpful, easy-to-use interfaces to
complete common tasks.

You do not need to use a framework for every project. Sometimes plain PHP is the right way to go, but if you
do need a framework then there are three main types available:

• Micro Frameworks
• Full-Stack Frameworks
• Component Frameworks

Micro-frameworks are essentially a wrapper to route a HTTP request to a callback, controller, method, etc
as quickly as possible, and sometimes come with a few extra libraries to assist development such as basic
database wrappers and the like. They are prominently used to build remote HTTP services.

Many frameworks add a considerable number of features on top of what is available in a micro-framework
and these are known Full-Stack Frameworks. These often come bundled with ORMs, Authentication packages,
etc.

Component-based frameworks are collections of specialized and single-purpose libraries. Disparate component-
based frameworks can be used together to make a micro- or full-stack framework.

• Popular PHP Frameworks²⁵

¹⁵https://devcenter.heroku.com/categories/php
¹⁶http://fortrabbit.com/
¹⁷https://www.engineyard.com/products/cloud
¹⁸http://openshift.com
¹⁹http://docs.dotcloud.com/services/php/
²⁰http://aws.amazon.com/elasticbeanstalk/
²¹https://www.cloudcontrol.com/
²²http://www.windowsazure.com/
²³https://developers.google.com/appengine/docs/php/gettingstarted/
²⁴http://jelastic.com/
²⁵https://github.com/codeguy/php-the-right-way/wiki/Frameworks

https://devcenter.heroku.com/categories/php
http://fortrabbit.com/
https://www.engineyard.com/products/cloud
http://openshift.com
http://docs.dotcloud.com/services/php/
http://aws.amazon.com/elasticbeanstalk/
https://www.cloudcontrol.com/
http://www.windowsazure.com/
https://developers.google.com/appengine/docs/php/gettingstarted/
http://jelastic.com/
https://github.com/codeguy/php-the-right-way/wiki/Frameworks
https://devcenter.heroku.com/categories/php
http://fortrabbit.com/
https://www.engineyard.com/products/cloud
http://openshift.com
http://docs.dotcloud.com/services/php/
http://aws.amazon.com/elasticbeanstalk/
https://www.cloudcontrol.com/
http://www.windowsazure.com/
https://developers.google.com/appengine/docs/php/gettingstarted/
http://jelastic.com/
https://github.com/codeguy/php-the-right-way/wiki/Frameworks

Resources 59

16.6 Components

As mentioned above “Components” are another approach to the common goal of creating, distributing and
implementing shared code. Various component repositories exist, the main two of which are:

• Packagist²⁶
• PEAR²⁷

Both of these repositories have command line tools associated with them to help the installation and upgrade
processes, and have been explained in more detail in the Dependency Management²⁸ section.

There are also component-based frameworks and component-vendors that offer no framework at all. These
projects provide another source of packages which ideally have little to no dependencies on other packages,
or specific frameworks.

For example, you can use the FuelPHP Validation package²⁹, without needing to use the FuelPHP framework
itself.

• Aura³⁰
• FuelPHP³¹
• Hoa Project³²
• Orno³³
• Symfony Components³⁴
• The League of Extraordinary Packages³⁵
• Laravel’s Illuminate Components

– Eloquent ORM³⁶
– Queue³⁷

Laravel’s Illuminate components³⁸ will become better decoupled from the Laravel framework. For now, only
the components best decoupled from the Laravel framework are listed above.

²⁶/#composer_and_packagist
²⁷/#pear
²⁸/#dependency_management
²⁹https://github.com/fuelphp/validation
³⁰http://auraphp.com/packages/v2
³¹https://github.com/fuelphp
³²https://github.com/hoaproject
³³https://github.com/orno
³⁴http://symfony.com/doc/current/components/index.html
³⁵http://thephpleague.com/
³⁶https://github.com/illuminate/database
³⁷https://github.com/illuminate/queue
³⁸https://github.com/illuminate

https://github.com/fuelphp/validation
http://auraphp.com/packages/v2
https://github.com/fuelphp
https://github.com/hoaproject
https://github.com/orno
http://symfony.com/doc/current/components/index.html
http://thephpleague.com/
https://github.com/illuminate/database
https://github.com/illuminate/queue
https://github.com/illuminate
/#composer_and_packagist
/#pear
/#dependency_management
https://github.com/fuelphp/validation
http://auraphp.com/packages/v2
https://github.com/fuelphp
https://github.com/hoaproject
https://github.com/orno
http://symfony.com/doc/current/components/index.html
http://thephpleague.com/
https://github.com/illuminate/database
https://github.com/illuminate/queue
https://github.com/illuminate

Resources 60

16.7 Other Useful Resources

Cheatsheets

• PHP Cheatsheets³⁹ - for variable comparisons, arithmetics and variable testing in various PHP versions
• PHP Security Cheatsheet⁴⁰

More best practices

• PHP Best Practices⁴¹
• Best practices for Modern PHP Development⁴²

PHP universe

• PHP Developer blog⁴³

16.8 Video Tutorials

Paid Videos

• Standards and Best practices⁴⁴
• PHP Training on Pluralsight⁴⁵

16.9 Books

There are a lot of books around for PHP but some are sadly now quite old and no longer contain accurate
information. There are even books published for “PHP 6” which does not exist, and will not now ever exist.
The next major version of PHP will be named “PHP 7” because of those books.

This section aims to be a living document for recommended books on PHP development in general. If you
would like your book to be added, send a PR and it will be reviewed for relevancy.

Free Books

• PHP The Right Way⁴⁶ - This website is available as a book completely for free.

³⁹http://phpcheatsheets.com/
⁴⁰https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet
⁴¹https://phpbestpractices.org/
⁴²https://www.airpair.com/php/posts/best-practices-for-modern-php-development
⁴³http://blog.phpdeveloper.org/
⁴⁴http://teamtreehouse.com/library/standards-and-best-practices
⁴⁵http://www.pluralsight.com/search/?searchTerm=php
⁴⁶https://leanpub.com/phptherightway/

http://phpcheatsheets.com/
https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet
https://phpbestpractices.org/
https://www.airpair.com/php/posts/best-practices-for-modern-php-development
http://blog.phpdeveloper.org/
http://teamtreehouse.com/library/standards-and-best-practices
http://www.pluralsight.com/search/?searchTerm=php
https://leanpub.com/phptherightway/
http://phpcheatsheets.com/
https://www.owasp.org/index.php/PHP_Security_Cheat_Sheet
https://phpbestpractices.org/
https://www.airpair.com/php/posts/best-practices-for-modern-php-development
http://blog.phpdeveloper.org/
http://teamtreehouse.com/library/standards-and-best-practices
http://www.pluralsight.com/search/?searchTerm=php
https://leanpub.com/phptherightway/

Resources 61

Paid Books

• Modernizing Legacy Applications In PHP⁴⁷ - Get your code under control in a series of small, specific
steps

• Building Secure PHP Apps⁴⁸ - Learn the security basics that a senior developer usually acquires over
years of experience, all condensed down into one quick and easy handbook

• The Grumpy Programmer’s Guide To Building Testable PHP Applications⁴⁹ - Learning to write testable
doesn’t have to suck

• Securing PHP: Core Concepts⁵⁰ - A guide to some of the most common security terms and provides
some examples of them in every day PHP

• Scaling PHP⁵¹ - Stop playing sysadmin and get back to coding
• Signaling PHP⁵² - PCNLT signals are a great help when writing PHP scripts that run from the command
line.

⁴⁷https://leanpub.com/mlaphp
⁴⁸https://leanpub.com/buildingsecurephpapps
⁴⁹https://leanpub.com/grumpy-testing
⁵⁰https://leanpub.com/securingphp-coreconcepts
⁵¹https://leanpub.com/scalingphp
⁵²https://leanpub.com/signalingphp

https://leanpub.com/mlaphp
https://leanpub.com/buildingsecurephpapps
https://leanpub.com/grumpy-testing
https://leanpub.com/securingphp-coreconcepts
https://leanpub.com/scalingphp
https://leanpub.com/signalingphp
https://leanpub.com/mlaphp
https://leanpub.com/buildingsecurephpapps
https://leanpub.com/grumpy-testing
https://leanpub.com/securingphp-coreconcepts
https://leanpub.com/scalingphp
https://leanpub.com/signalingphp

17. Community
The PHP community is as diverse as it is large, and its members are ready and willing to support new PHP
programmers. Consider joining your local PHP user group (PUG) or attending larger PHP conferences to learn
more about the best practices shown here. You can hang out on IRC in the #phpc channel on irc.freenode.com¹
and follow the @phpc² twitter account. Get out there, meet new developers, learn new topics, and above
all, make new friends! Other community resources include the Google+ PHP Programmer community³ and
StackOverflow⁴.

Read the Official PHP Events Calendar⁵

17.1 PHP User Groups

If you live in a larger city, odds are there’s a PHP user group nearby. You can easily find your local PUG at the
usergroup-list at php.net⁶ which is based upon PHP.ug⁷. Alternate sources might be Meetup.com⁸ or a search
for php user group near me using your favourite search engine (i.e. Google⁹). If you live in a smaller town,
there may not be a local PUG; if that’s the case, start one!

Special mention should be made of two global user groups: NomadPHP¹⁰ and PHPWomen¹¹. NomadPHP¹²
offers twice monthly online user group meetings with presentations by some of the top speakers in the PHP
community. PHPWomen¹³ is a non-exclusive user group originally targeted towards the women in the PHP
world. Membership is open to everyone who supports a more diverse community. PHPWomen provide a
network for support, mentorship and education, and generally promote the creating of a “female friendly”
and professional atmosphere.

Read about User Groups on the PHP Wiki¹⁴

17.2 PHP Conferences

The PHP community also hosts larger regional and national conferences in many countries around the world.
Well-known members of the PHP community usually speak at these larger events, so it’s a great opportunity
to learn directly from industry leaders.

¹http://webchat.freenode.net/?channels=phpc
²https://twitter.com/phpc
³https://plus.google.com/u/0/communities/104245651975268426012
⁴http://stackoverflow.com/questions/tagged/php
⁵http://php.net/cal.php
⁶http://php.net/ug.php
⁷http://php.ug/
⁸http://www.meetup.com/find/
⁹https://www.google.com/search?q=php+user+group+near+me
¹⁰https://nomadphp.com/
¹¹http://phpwomen.org/
¹²https://nomadphp.com/
¹³http://phpwomen.org/
¹⁴https://wiki.php.net/usergroups

http://webchat.freenode.net/?channels=phpc
https://twitter.com/phpc
https://plus.google.com/u/0/communities/104245651975268426012
http://stackoverflow.com/questions/tagged/php
http://php.net/cal.php
http://php.net/ug.php
http://php.ug/
http://www.meetup.com/find/
https://www.google.com/search?q=php+user+group+near+me
https://nomadphp.com/
http://phpwomen.org/
https://nomadphp.com/
http://phpwomen.org/
https://wiki.php.net/usergroups
http://webchat.freenode.net/?channels=phpc
https://twitter.com/phpc
https://plus.google.com/u/0/communities/104245651975268426012
http://stackoverflow.com/questions/tagged/php
http://php.net/cal.php
http://php.net/ug.php
http://php.ug/
http://www.meetup.com/find/
https://www.google.com/search?q=php+user+group+near+me
https://nomadphp.com/
http://phpwomen.org/
https://nomadphp.com/
http://phpwomen.org/
https://wiki.php.net/usergroups

Community 63

Find a PHP Conference¹⁵

¹⁵http://php.net/conferences/index.php

http://php.net/conferences/index.php
http://php.net/conferences/index.php

	Table of Contents
	Getting Started
	Use the Current Stable Version (5.6)
	Built-in web server
	Mac Setup
	Windows Setup

	Code Style Guide
	Language Highlights
	Programming Paradigms
	Namespaces
	Standard PHP Library
	Command Line Interface
	Xdebug

	Dependency Management
	Composer and Packagist
	PEAR

	Coding Practices
	The Basics
	Date and Time
	Design Patterns
	Working with UTF-8

	Dependency Injection
	Basic Concept
	Complex Problem
	Containers
	Further Reading

	Databases
	MySQL Extension
	PDO Extension
	Interacting with Databases
	Abstraction Layers

	Templating
	Benefits
	Plain PHP Templates
	Compiled Templates
	Further Reading

	Errors and Exceptions
	Errors
	Exceptions

	Security
	Web Application Security
	Password Hashing
	Data Filtering
	Configuration Files
	Register Globals
	Error Reporting

	Testing
	Test Driven Development
	Behavior Driven Development
	Complementary Testing Tools

	Servers and Deployment
	Platform as a Service (PaaS)
	Virtual or Dedicated Servers
	Shared Servers
	Building and Deploying your Application

	Virtualization
	Vagrant
	Docker

	Caching
	Opcode Cache
	Object Caching

	Documenting your Code
	PHPDoc

	Resources
	From the Source
	People to Follow
	Mentoring
	PHP PaaS Providers
	Frameworks
	Components
	Other Useful Resources
	Video Tutorials
	Books

	Community
	PHP User Groups
	PHP Conferences

